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IFIP – The International Federation for Information Processing

IFIP was founded in 1960 under the auspices of UNESCO, following the First
World Computer Congress held in Paris the previous year. An umbrella organi-
zation for societies working in information processing, IFIP’s aim is two-fold:
to support information processing within ist member countries and to encourage
technology transfer to developing nations. As ist mission statement clearly states,

IFIP’s mission is to be the leading, truly international, apolitical
organization which encourages and assists in the development, ex-
ploitation and application of information technology for the benefit
of all people.

IFIP is a non-profitmaking organization, run almost solely by 2500 volunteers. It
operates through a number of technical committees, which organize events and
publications. IFIP’s events range from an international congress to local seminars,
but the most important are:

• The IFIP World Computer Congress, held every second year;
• Open conferences;
• Working conferences.

The flagship event is the IFIP World Computer Congress, at which both invited
and contributed papers are presented. Contributed papers are rigorously refereed
and the rejection rate is high.

As with the Congress, participation in the open conferences is open to all and
papers may be invited or submitted. Again, submitted papers are stringently ref-
ereed.

The working conferences are structured differently. They are usually run by a
working group and attendance is small and by invitation only. Their purpose is
to create an atmosphere conducive to innovation and development. Refereeing is
less rigorous and papers are subjected to extensive group discussion.

Publications arising from IFIP events vary. The papers presented at the IFIP
World Computer Congress and at open conferences are published as conference
proceedings, while the results of the working conferences are often published as
collections of selected and edited papers.

Any national society whose primary activity is in information may apply to be-
come a full member of IFIP, although full membership is restricted to one society
per country. Full members are entitled to vote at the annual General Assembly,
National societies preferring a less committed involvement may apply for asso-
ciate or corresponding membership. Associate members enjoy the same benefits
as full members, but without voting rights. Corresponding members are not rep-
resented in IFIP bodies. Affiliated membership is open to non-national societies,
and individual and honorary membership schemes are also offered.
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Preface

Computing has become an indispensable component of modern science and
engineering research. As has been repeatedly observed and documented, pro-
cessing speed measured in floating point operations per second has experienced
exponential growth in the last few decades. These hardware efficiencies have
been accompanied by innovations in mathematical algorithms, numerical soft-
ware, and programming tools. The result is that, by any measure, the modern
computer is many orders of magnitude more powerful than its early predecessors,
capable of simulating physical problems of unprecedented complexity.

Given the success of scientific computation as a research tool, it is natural
that scientists, engineers, and policy makers strive to harness this immense po-
tential by using computational models for critical decision making. Increasingly,
computers are being used to supplement experiments, to prototype engineering
systems, or to predict the safety and reliability of high-consequence systems.
Such use inevitably leads one to question: “How good are these simulations?
Would you bet your life on them?” Unfortunately, most computational scien-
tists today are ill equipped to address such important questions with the same
scientific rigor that is routine in experimental science.

The International Federation of Information Processing (IFIP) Working Con-
ference on Uncertainty Quantification in Scientific Computing was convened
as a means to address these questions. Participants in the working conference
consisted of experts in mathematical modeling, numerical analysis, numerical
software engineering, and statistics, as well as policy analysts from a range
of application domains to assess our current ability to quantify uncertainty in
modeling and simulation (UQ), to raise awareness of this issue within the nu-
merical software community, and to help envision a research agenda to address
this critical need. The conference was held in serial plenary sessions organized
around four thematic areas: needs, theory, tools, and practice. Keynote speak-
ers introduced each thematic area in broad strokes, followed by invited speakers
presenting targeted studies. An additional “Hot Topics” session was organized in
real time to provide participants with a venue to expand upon discussions gener-
ated by conference presentations, and to present late-breaking material. Finally,
adding another dimension, a panel consisting of high-level representatives from
government agencies and academia were invited to discuss present practice and
future opportunities for uncertainty quantification in scientific computing in the
context of the missions of their respective organizations.

The conference Program Committee hoped to generate active engagement on
a range of topics both broad and deep. From questions about floating-point com-
pliance and exception handling to computations of 10,000-year risk assessments
of nuclear waste repositories, no scale of time, space, and numerical accuracy
was beyond scope. Theoretical treatments reflected the full range of uncertainty
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and risk analysis from approaches recommended by international guidance doc-
uments of measurement institutes worldwide, to Bayesian analyses, to a presen-
tation and energetic discussion of the axiomatic foundations of a relatively new
theory of uncertainty quantification referred to as probabilistic bounds analy-
sis. Finally, the applications and needs were equally diverse, covering topics of
judiciary and regulatory constraints on the use of predictive computation for
environmental and reactor safety models, to simulation-based engineering of the
electrodeposition paint application process as used by prominent automotive
manufacturers. Underlying this diversity, however, the common thread binding
all participants was the shared commitment to better achieve the promise of-
fered by numerical computation as a means not only to scientific discovery, but
to reliable decision making in matters of importance for society at large.

Of the 24 talks given at the conference, 20 authors contributed papers for
these proceedings. Keeping with the tradition of past IFIP Working Confer-
ences, each conference talk was followed by a lively discussion session. During
these sessions, assigned discussants presented forms to participants on which
they recorded their questions for the speakers. These forms were collected and
distributed to speakers with the request that they respond in writing. The re-
sulting record of the discussions appears after each chapter.

As with any activity of this scope many acknowledgments are due. First the
success of the conference can largely be attributed to an unmatched Program
Committee drawn from a global network of leaders. Many thanks to them for
actively participating in conference calls spanning multiple time zones. It was by
these efforts that conference topics were defined and associated speakers iden-
tified. The fruits of this labor are represented in the pages that follow. Behind
the scenes there were too many moving parts to thank all parties. We draw
attention to the incredible logistical and planning support provided by Wendy
McBride and other members of the Public and Business Affairs Office at the
National Institute of Standards and Technology (NIST) in Boulder. Further-
more, numerous speakers and participants would have never made it to Boulder
had it not been for the tireless efforts of Lorna Buhse and Robin Bickel of NIST in
navigating the cross-cutting constraints mandated for international travel under
sponsorship of the United States government. The financial support of the NIST
Applied and Computational Mathematics Division is gratefully acknowledged,
as is the in-kind support provided by the International Federation of Information
Processing’s Working Group 2.5 on Numerical Software, the Society of Indus-
trial and Applied Mathematics, and the United States Department of Energy.
Finally, we thank our wives and families for stepping in to fill the gaps created
by our limitations, and remaining steadfast as we traveled the ups and downs
associated with planning and executing such an event. We are happy to report
that the ride is over (for now).

April 2012 Andrew Dienstfrey
Ronald F. Boisvert
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Uncertainties Using Genomic Information

for Evidence-Based Decisions�

Pasky Pascual

U.S. Environmental Protection Agency
Washington, DC, USA
pascual.pasky@epa.gov

Abstract. For the first time, technology exists to monitor the biological
state of an organism at multiple levels. It is now possible to detect which
genes are activated or deactivated when exposed to a chemical com-
pound; to measure how these changes in gene expression cause the con-
centrations of cell metabolites to increase or decrease; to record whether
these changes influence the over-all health of the organism. By integrat-
ing all this information, it may be possible not only to explain how a
person’s genetic make-up might enhance her susceptibility to disease,
but also to anticipate how drug therapy might affect that individual in
a particularized manner.

But two related uncertainties obscure the path forward in using these
advances to make regulatory decisions. These uncertainties relate to the
unsettled notion of the term “evidence” — both from a scientific and legal
perspective. From a scientific perspective, as models based on genomic
information are developed using multiple datasets and multiple studies,
the weight of scientific evidence will need to be established not only on
long established protocols involving p-values, but will increasingly de-
pend on still evolving Bayesian measures of evidentiary value. From a
legal perspective, new legislation for the Food and Drug Administra-
tion has only recently made it possible to consider information beyond
randomized, clinical trials when evaluating drug safety. More generally,
regulatory agencies are mandated to issue laws based on a “rational ba-
sis,” which courts have construed to mean that a rule must be based,
at least partially, on the scientific evidence. It is far from certain how
judges will evaluate the use of genomic information if and when these
rules are challenged in court.

Keywords: genome, Bayesian model, scientific evidence, evidence-
based decisions, regulatory decisions, systems biology, meta-analysis.

In 2000, in an event announcing that one of biology’s long-standing challenges
— the sequencing of the human genome — had finally been scaled, then US
President Bill Clinton issued a bold prognostication: “It will revolutionize the

� The author is an environmental scientist and lawyer at the U.S. Environmental
Protection Agency (EPA). However, this chapter does not represent the viewpoints
of the EPA.

A. Dienstfrey and R.F. Boisvert (Eds.): WoCoUQ 2011, IFIP AICT 377, pp. 1–14, 2012.
c© IFIP International Federation for Information Processing 2012
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diagnosis, prevention and treatment of most, if not all, human diseases” [3]. A
decade later, while most biologists agree that mapping the human genome has
revolutionized science, some also admit that it has increased — not diminished
— the complexity of biological science by orders of magnitude. The complexity
arises not because more genes have been discovered than had been previously
anticipated. Indeed, before the Human Genome Project, biologists estimated
that the genome might contain about 100,000 genes. The current estimate is
that the human genome contains just a fraction of that — about 21,000 [7].
Rather, the challenge of interpreting genomic information lies in understanding
the network of events through which genes are regulated.

The traditional model through which genes were thought to be expressed —
that in response to environmental signals, one gene codes for one protein that
may metabolize one or a few cellular functions — is insufficient to describe the
full panoply of cellular behavior. The problem is that metabolic pathways, the se-
ries of cell-mediated chemical reactions necessary to maintain life, rarely proceed
in a linear fashion. If a gene that triggers a series of reactions is deactivated, there
still may be multiple other genes to ensure that the reactions continue to occur.
In the words of Cell Biologist Tony Pawson, “When we started out, the idea was
that signalling pathways were fairly simple and linear. Now, we appreciate that
the signalling information in cells is organized through networks of information
rather than simple discrete pathways. It’s infinitely more complex” [7].

1 “Hairballs” as a Metaphor for Systems Biology

To do full justice to this complexity, Lander [11] suggests that the double he-
lix — that icon of 20th century biology — should be replaced by the hairball
as a metaphor for genomic science (see Fig. 1). A ubiquitous visualization tool
for genomic data, the hairball consists of “nodes” (representing genes, proteins,
or metabolites) and “edges” (which represent the associations among the nodes).
A particular node may be the focus of a researcher’s entire program. In 1977 for
example, Andrew Schally, Roger Guillemin, and Rosalyn Sussman Yalow shared
the Nobel Prize in Medicine for their investigations into a biologically significant
“node” showing a connection between the nervous and endocrine systems [24].
Their work demonstrated that hormones secreted by an organism’s hypothalamus
could trigger the release of other hormones from its pituitary and gonadal glands.
Elucidating biology’s nodes — such as this so-called hypothalamus-pituitary-
gonadal axis — is necessary to understand how an organism operates. But to
the systems biologist intent on using genomic information in a quantitative way,
the focal point of understanding is the hairball, i.e. the computational, systems-
oriented model of how nodes relate to and function within a broader network of
other nodes. And so, for example, Basu [2] in research funded by the US Envi-
ronmental Protection Agency (EPA) proposes modeling how environmental tox-
icants disrupt fish reproduction and ultimately diminish fish populations by way
of perturbations to the hypothalamus-pituitary-gonadal axis. That is, they will
model how knowledge about the nodes describing the hypothalamus, pituitary,
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Fig. 1. The “hairball” of systems biology, consisting of “nodes” (representing genes,
proteins, or metabolites) and “edges” (which represent the associations among the
nodes). Original figure in color provided by Nicolas Simonis and Marc Vidal (see [5]).

and gonadal glands interact within a hairball to ultimately impact a resource pro-
tected by a regulatory agency’s statutory mandate.

A report issued under the aegis of the National Academy of Sciences, Toxicity
Testing in the 21st Century: a Vision and a Strategy [16], laid out a path for
explaining the etiology of environmental disease by using the tools of genomic sci-
ence. In that report, the Academy proposed that toxicity testing should become
less reliant on whole animal tests and eventually rely instead on systems-oriented,
computational models, which can be used to screen large numbers of chemicals,
based on information from in vitro assays and in vivo biomarkers. Technology
exists to monitor the biological state of an organism at multiple levels. It is now
possible to detect which genes are activated or deactivated when exposed to a
chemical compound; to measure how these changes in gene expression cause the
concentrations of cell metabolites to increase or decrease; and to record whether
these changes influence the over-all health of the organism. By integrating all
this information, it may be possible not only to explain how a person’s genetic
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make-up might enhance her susceptibility to disease, but to also anticipate how
drug therapy might affect that individual in a particularized manner. One of the
scientific leaders of the human genome project put it this way: “All biological
science works by collecting the complexity and recognizing it is part of a limited
repertoire of events. What’s exciting about the genome is it’s gotten us the big
picture and allowed us to see the simplicity” [4].

2 Three Enabling Technologies for Genomic Information

Rusyn and Daston [20] highlight three interconnected, technological
breakthroughs that have been accelerating developments in genomic science:
continuing progress in computational power; advances in quickly and efficiently
producing data streams with high information content; and novel biostatistical
methods that take advantage of the previous two breakthroughs. More than 45
years ago, Intel’s former Chief Executive Officer, Gordon Moore, first reported
the observation that has come to be popularly referred to as “Moore’s Law”:
the number of transistors that can be placed on an integrated circuit doubles
every 18 months, even as the cost of producing these transistors has diminished
over time [14]. In turn, the rapid increase in the cost-effectiveness of computing
power has fueled the speed and economic efficiencies with which the genome
can be sequenced. The National Institutes of Health’s National Human Genome
Research Institute has tracked data on the costs of sequencing a human-sized
genome during the ten years since the genome was first mapped [15]. These costs
have tracked and, since 2007, even exceeded the progress of Moore’s Law (see
Fig. 2). Similarly, computing power and the use of robotics have made it possible
to test thousands of chemicals in plates containing hundreds of wells in order
to evaluate a biological response — binding to a receptor site in a cell; produc-
ing a particular enzyme; transcribing a gene. These so-called “high-throughput
technologies” have generated considerable data about an organism’s reaction to
chemical exposure.

By itself, this profusion of biological information would be nothing more
than unrelated terabytes of data. Complemented with the appropriate analytical
methods, the data can yield important insights into the human response to syn-
thetic chemicals. The modeling objective for the systems biologist is the usual
one for any modeler, which is to solve for (using the standard regression model):

Y = Xβ + ε, (1)

where Y is the n-vector of the categorical biological response in which the mod-
eler is interested; X is the [n × p]-matrix of predictors; β is the p-vector of
parameters relating biological response to the predictors; and ε is the n-vector
error term.

For modelers in genomic science, the high dimension of genomic information
raises several challenges. Because high-throughput technologies can monitor for
multiple biological and chemical attributes simultaneously, these modelers typi-
cally confront a situation in which the [n× p]-matrix of predictors, X , is “short
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Fig. 2. Costs of sequencing the human genome. Figure from
http://genome.gov/SequencingCosts.

and wide,” i.e. the number of predictors far exceed the sample size, p >> n
[25]. At the same time, the biological attributes monitored by high-throughput
technologies may often be co-regulated by the same genes or may be involved in
metabolic pathways that are correlated [10].

Fortunately for the modeler, the basic tenets of biology suggest that assuming
an underlying structure can approximate biological data is not only analytically
convenient, but also reasonable, plausible, and empirical. Natural selection, the
key mechanism through which evolution selects biological traits that enable sur-
vival, imposes constraints on an organism’s physical attributes. This is evidenced
most clearly by cellular pathways that are conserved over long timescales and
among widely disparate organisms [12]. The National Academy’s report, Toxicity
Testing in the 21st Century, defines a “toxicity pathway” as a cellular response
that, when sufficiently perturbed, is expected to result in an adverse health ef-
fect [16]. Implicit in this definition is the notion that an organism’s response to
a toxic compound is the result of perturbation away from a stable, homeostatic
system of cellular behavior that has evolved over time.

Bayesian methods are particularly well-suited for generating models of ge-
nomic information. The Bayesian approach is grounded in the view that because
intractable uncertainties obscure any model’s objective truth, one can only ex-
press the degree to which one believes in a model’s truthfulness. If one can
assume that these models conform to probability distributions and to certain

http://genome.gov/SequencingCosts
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axioms, then any initial, hypothesized model can accommodate emergent evi-
dence according to the following relationship:

Posterior model ∼ Likelihood × Prior model.

Hierarchical Bayesian modeling, based on the notion that computational func-
tions and probabilistic relationships can capture the underlying structure of data
organized into discrete levels, conform to information about biological pathways
that occur across multiple scales of biological information — from gene to cell to
tissue to organ to the whole organism [13]. Additionally, several public databases
are available that store data on genomic information, such as the Gene Ontology
(GO) and the Kyoto Encyclopedia of Genes and Genomes (KEGG) [23]. Using
hierarchical Bayes, the modeler can merge the datasets available at these reposi-
tories in order to improve statistical power, while accounting for sources of vari-
ability inherent in the experimental protocols used to generate each dataset [1].

3 Example: A Multinomial Probit Model for Genomic
Information

As an example of how Bayesian methods can be used to develop computational
models of biological information, Sha et al. [21] investigated the use of gene
expression data in predicting rheumatoid arthritis, an autoimmune disease char-
acterized by chronic inflammation and destruction of cartilage and bone in the
joints. To glean useful insights from their data, the researchers used a multino-
mial probit (MNP) model. Like the more familiar multinomial logit model, the
MNP is used to estimate how categorical, unordered response variables might be
functionally related to explanatory variables. The MNP model is more appro-
priate in modeling genomic information because, unlike the multinomial logit,
it allows for the possibility that the categories of response variables are not
independent. The MNP model allows for dependence among these categories
by estimating the variance-covariance matrix that quantifies any co-variability
among them [27]. While this approach had long-standing theoretical appeal, ap-
plications of the MNP model were restricted by the computational complexities
in fitting them. However, recent advances now implement a Markov Chain Monte
Carlo (MCMC) method in order to estimate the MNP posterior model by taking
random walks through the given data set [8].

In an MNP model, the response variable, Yi , is modeled in terms of a latent
variable Wi = (Wi1, . . . ,Wi,p−1), where

Wi = Xiβ + εi εi ∼ N(0, Σ), for i = 1, . . . , n, (2)

and Σ is a p− 1 × p− 1 variance-covariance matrix. The response variable, Yi,
is then modeled using the latent variable Wi, as

Yi(Wi) =

{
0 if max(Wi) < 0
j if max(Wi) = Wij > 0

for i = 1, . . . , n and j = 1, . . . , p− 1,

(3)
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where max(Wi) is the largest element of the vector Wi and Yi equal to 0 corre-
sponds to an arbitrarily chosen base category.

In Sha et al.’s study [21], patients afflicted with rheumatoid arthritis were
differentiated by whether they were in early or late stages of the disease, as mea-
sured by erythrocyte sedimentation, the rate of red blood cell sedimentation that
is commonly used as an indicator of inflammation. As well, gene expression data
for major functional categories were derived for these patients. Applying their
MNP model, the investigators noted that genes regulating two sets of biological
pathways were associated with patients afflicted with the late stages of rheuma-
toid arthritis — those regulating aspects of the cytoskeleton (i.e. the system of
filaments that provide cells with their structure and shape) and those influencing
cytokines (i.e., molecules that participate in regulating immune responses and
inflammatory reactions).

It bears highlighting that in applying MCMC to estimate the MNP model, the
quantification of uncertainty pervades the entire model estimation process. That
is, the objective of model fitting is not merely to estimate the model parameters,
but rather to estimate the entire probability distributions underlying the system
being modeled.

Baragatti [1] extended this basic, single-level model to a hierarchical model
with a categorical, binary response variable. Her study focused on the estrogen
receptor status of a patient, a clinically measured indicator of breast cancer.
The data were drawn from three different datasets and therefore, a hierarchi-
cal model of fixed and random effects were used. The former corresponded to
gene expression measurements, while the latter corresponded to the variability
introduced by using the different datasets.

4 Weight of Evidence and Meta-analysis

In their review of highly cited studies that have used in vitro and in vivo bi-
ological information in order to predict disease risk, Ioannidis and Panagiotou
[9] suggest that the associations uncovered in these studies generally tend to
be exaggerated, when compared to larger studies and subsequent meta-analysis.
The authors attribute these false positives and spurious results partially to pub-
lication bias, i.e., the original researchers report only the data which indicate
statistically significant results. To guard against misleading results, Zeggini and
Ioannidis [26] propose the greater use of meta-analysis in genomic studies, for
which a Bayesian framework provides an intuitive framework.

Once again, fixed and random effects models serve as a useful approach. When
using these models in meta-analysis, one assumes that a common, fixed effect un-
derlies every single study in the meta-analysis; i.e., if each study was infinitely
large, there would be no heterogeneity between studies. However, no study is
infinitely large and therefore one must assume that individual studies exert ran-
dom effects. These random effects have some mean value and some measurement
of variability stemming from between-study differences.

By meta-analyzing genomic studies, one increases sample size as well as the
variation in genomic data, thereby enhancing the power to detect true
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Fig. 3. Evidence is often the precursor to obligations, rights and responsibilities estab-
lished by law, necessitating a decision that influences risk. But just as evidence leads
to legal rights and obligations that constrain regulatory decisions, so too does the law
constrain how evidence is established, sometimes in ways that are inconsistent with
scientific best practices.

associations. The weight of evidence for genomic information accumulates over
time. Previous, individual studies form the prior belief. With each additional
study, estimates are updated to form the posterior belief in a way that takes
into account all available evidence.

5 Linking Genomic Information to Regulatory Decisions
with Evidence

While high-throughput technologies, the proliferationof genomic information, and
evolving analytical techniques will continue to spur the scientific community’s un-
derstanding of the cellular basis for disease, an important issue that remains un-
certain is how these advances will be used to make regulatory decisions. The issue
arises because, as a matter of administrative law, governmental agencies must is-
sue regulations that have a “rational basis,” which the courts have taken to mean
that a regulation, among other things,must be based on the scientific evidence [17].
Some threshold of evidentiary burden must be satisfied before the evidence trig-
gers legal obligations, rights or responsibilities that thereby necessitate a decision
influencing risk (see Fig. 3). But just as scientific evidence constrains regulatory
decisions, so too does the law constrain the way that evidence is established, some-
times in ways that are inconsistent with best scientific practices.

An example of how the law on scientific evidence can hamper the use of
science for regulatory decisions is provided by the controversy surrounding the
Food and Drug Administration’s approval of the painkilling drug, Vioxx. Vioxx
works by suppressing enzymes regulating the body’s production of compounds
associated with inflammation. Unfortunately, these compounds also play a role
in maintaining the cardiovascular system [6]. Even before FDA’s approval of
Vioxx, there had been evidence indicating that inhibiting these enzymes may
elevate blood pressure, may thicken artery walls, and may increase blood clots
— all of which affect the risk of heart disease [19]. Two complications obfuscated
the drug’s risks. First, each single piece of evidence of risk — taken alone — did
not dispositively evince a hazard [6]. Second, current research indicates that the
response to Vioxx within a population is subject to genetic variation [22].
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But in 1962, Congress mandated that FDA must assess whether a drug was
effective for its intended use based on “substantial evidence” from “adequate
and well-controlled investigations.” The agency interpreted this statute to mean
that a regulatory decision on drug effectiveness must be based on randomized,
replicated, controlled, clinical trials (RCTs). Controlled means a clinical trial is
designed so that ideally, treatment and control groups are identical in every way
but one, which is in the levels of treatment being tested. Ergo, any variability
among these groups is attributed solely to the treatment. In reality, it is difficult
to eliminate extraneous sources of variability. Therefore, one randomizes how
treatments are assigned to the various groups so that, ideally, the effects of any
extraneous sources of variability cancel out. Finally, to ensure that experimental
results do not occur through sheer happenstance, one replicates or repeats the
experiment several times. But as stated earlier, it was because of the variable
response to Vioxx within the population that the risks of the drug were not fully
appreciated. In order to maintain the homogeneous conditions necessitated by
an RCT, the drug manufacturers left out data pertaining to those who would
have been at greatest risk — an older demographic with previous history of
heart disease. Given FDA’s enshrinement of RCTs as the gold standard for
substantial evidence supporting claims of drug safety, it is not difficult to see
why false negatives — as in the Vioxx case — were inevitable.

Shortly after Vioxx was taken off the market, the National Academy of Sci-
ence’s Institute of Medicine (IOM) issued a report clearly stating what others
had been saying for some time: that FDA’s practices were unlikely to detect
rare but serious drug risks [18]. Before drug approval by the FDA, RCTs simply
do not have the statistical power to generate the information needed to assess
risks that arise when the general population is exposed to a drug. After drug
approval by the FDA, FDA did not possess the statutory authorities needed
to implement a nation-wide system to continue gathering this information. The
IOM report advocated assessing safety over a drug’s life-cycle, in which data
were to be continuously gathered from multiple sources for ongoing analyses.

In 2007, Congress passed the Food and Drug Administration Act, which cor-
rected the FDA’s over-reliance on RCTs and statistical p-value tests to evaluate
drug safety. First, Congress directed FDA to establish a network of data sys-
tems to integrate any and all information that can be used to evaluate drug risks.
Second, it provided FDA with new, extensive authorities to require continuous
submission of risk information from drug companies.

Given the newness of the FDA Act of 2007, as well as the unprecedented use
of genomic information to inform regulatory decisions, it remains to be seen how
courts will rule when these decisions are challenged based on a lack of “rational
basis.”

6 Conclusion

For the first time, technology exists to monitor the biological state of an or-
ganism at multiple levels. It is now possible to detect which genes are activated
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or deactivated when exposed to a chemical compound; to measure how these
changes in gene expression cause the concentrations of cell metabolites to in-
crease or decrease; to record whether these changes influence the over-all health
of the organism. By integrating all this information, it may be possible not only
to explain how a person’s genetic make-up might enhance her susceptibility to
disease, but also to anticipate how drug therapy might affect that individual in
a particularized manner.

But two related uncertainties obscure the path forward in using these advances
to make regulatory decisions. These uncertainties relate to the unsettled notion
of the term “evidence” — both from a scientific and legal perspective. From a
scientific perspective, as models based on genomic information are developed us-
ing multiple datasets and multiple studies, the weight of scientific evidence will
need to be established not only on long established protocols involving p-values,
but will increasingly depend on still evolving Bayesian measures of evidentiary
value. From a legal perspective, new legislation for the Food and Drug Ad-
ministration has only recently made it possible to consider information beyond
randomized, clinical trials when evaluating drug safety. More generally, regu-
latory agencies are mandated to issue laws based on a “rational basis,” which
courts have construed to mean that a rule must be based, at least partially, on
the scientific evidence. It is far from certain how judges will evaluate the use of
genomic information if and when these rules are challenged in court.
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Discussion

Speaker: Pasky Pascual

Brian Smith: You expressed the issue of injury-in-fact versus probability of the
event as a concern with legal issues. Why is cost not a part of the issue, or why
is it not discussed?

Pasky Pascual: The only reason why I did not specifically discuss the issue of
cost was because of time constraints. As a matter of law, each major regulation
that is issued must first undergo a cost-benefit analysis which is then submitted
to the White House’s Office of Management and Budget. So, when issuing a
regulatory decision that is based on genomic information, an agency must also
be able to estimate the monetary value of the costs and the benefits associated
with a particular public health or environmental law.

Maurice Cox: My understanding of your main thesis is as follows. Scientific
evidence is out there, usually in the form of data. You explain your assumptions
and the statistical or computational model you are using. Then, if you have
done your job properly, you should be able to convince the court. But, the court
might question the validity of that data in terms of its reliability and consistency.
I would welcome your comments.

Pasky Pascual: That’s quite right. But part of the problem lies in the fact
that the courts may not have the appropriate scientific training to evaluate the
scientific evidence with which it is presented. As a matter of law, the courts will
be deferential to agencies, particularly in areas that fall within agency’s technical
expertise and competence. But when a decision is challenged, the courts will
subject the “rational basis,” which includes the scientific basis, of an agency
to a critical review. These reviews are necessarily ad hoc and depend on the
particularities of the case. But few guidelines, if any, exist to assist the court in
conducting this review.

Jeffrey Fong: Does the EPA have a policy statement on the minimum reliability
of informatics data that is acceptable? If not, does the speaker have a personal
opinion on this question?

Pasky Pascual: My personal opinion is that rather than have a standard score
of reliability that then determines acceptability, I would find transparency of
the informatics data and the analysis through which the data are used to derive
inferences to be more useful. If I were to tell you, for example, that a particular
dataset is 99% reliable, what would that mean? Perhaps it is unavoidable that
people will demand some kind of seal of approval for a dataset or model that is
used to make a decision, but I would want to make sure that the process through
which this evaluation occurs is also communicated.
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Tony O’Hagan: This is a conference on uncertainty quantification. You’ve
talked a lot about the law. My understanding is that these two things don’t go
together. Lawyers hate uncertainty, unless they can use it as a weapon against
someone foolish enough to admit uncertainty. They hate uncertainty quantifica-
tion even more. For instance, you pointed out that the law would much prefer
anecdotal evidence of actual harm to scientific reasoning of probabilistic harm.
What do you feel can be done about this?

Pasky Pascual: I agree that the law tends to operate on binary terms — you
comply with a rule or you don’t; a drug is safe to market or it is not. So the
legal decisions that ultimately get made based on scientific evidence do tend to
eschew uncertainty. But at least within a regulatory context, these decisions do
consider the uncertainties of science. For example, when EPA issues a regulation
these days, it will generally conduct formal uncertainty analyses in order to
better understand sources of uncertainty in the science. It may be something
as simple as conducting Monte Carlo draws in order to derive a distribution
of outputs from a model, rather than a single estimate. So quantification of
uncertainty occurs at that phase of rule development. The decision itself may
be binary — the Agency regulates or does not regulate a compound — but the
analysis that enters into the decision is not. Moreover, when EPA does conduct
formal uncertainty analyses when it proposes a rule, these analyses are generally
discussed in the documents that accompany the issuance of a rule.

William Oberkampf: Given the strong aversion to uncertainty in the legal
and judicial system, how will the EPA deal with more sophisticated uncertainty
quantification methods in the future?

Pasky Pascual: My personal opinion is that uncertainty quantification is not
going to go away. We will see more, rather than less, of it. It is in the best
interest of regulatory agencies to be transparent in their analyses. Transparency
is what leads to more defensible decisions. And part of analytical transparency
is transparency about sources of uncertainties — both epistemic and alleatory.

Antonio Possolo: In relation with your stated goal of replacing in vivo animal
experimentation with studies of differential gene expression: in 2005, colleagues
and I published an article in Toxicological Sciences suggesting that studies of
differential gene expression in vitro, using live rat and human liver cells, was an
effective proxy for studies involving live animals, and also much more expeditious
(days, including microarray processing and data analysis, versus the years that it
takes for malignancy indications to express themselves), induced by PCBs. Why
is it taking the EPA so long to put these and similar scientific, peer-reviewed
results to widespread use?

Pasky Pascual: Part of it lies in the complexity of the organism. As we are
realizing more and more, metabolic pathways rarely proceed in a linear fash-
ion. For example, if we know that a gene that triggers a series of reactions is
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deactivated, there still may be other genes to ensure that the reactions will occur.
So, the ways that a gene may relate to the manifestation of an observed harm is
organized through networks of information rather than simple discrete pathways.
And figuring what those networks are and how they operate is extremely hard,
I think. Also, it’s still not clear, to me anyway, what the evidentiary threshold
has to be, before we can say — in a way that is legally defensible — that the
behavior of this particular set of biomarkers are a reliable indicator that the
likelihood of harm is increased to a level that warrants regulatory action.
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Abstract. NRC’s approach to ensuring the safety of nuclear power in-
cludes two complementary approaches, one more deterministic and one
more probabilistic. These two approaches address the uncertainties in
the underlying methods and data differently, with each approach having
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This paper provides some background on the historical evolution of de-
terministic and probabilistic methods in the regulation of nuclear power
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methods to complement the more traditional deterministic approach, and
identifies some example challenges as a staff group considers a strategic
vision of how the agency should regulate in the future.
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1 Introduction

Nuclear power plants in the United States historically have been licensed using
Part 50 of Title 10 of the Code of Federal Regulations [1]. Implementation of
Part 50 has been achieved, for the most part, using deterministic methods and
acceptance criteria. These deterministic methods and acceptance criteria were
established originally in the 1960’s and 1970’s and were intentionally conservative
in recognition of uncertainties in both routine operations and potential accident
conditions. Concepts used included:

– A set of “design basis” accidents (DBAs) that was intended to envelope
conditions from a credible set of events,

– A “single failure criterion,” a qualitative approach to ensure that systems
used to mitigate accidents were highly reliable,

– A “defense in depth” philosophy that introduced barriers between radioac-
tive material and workers and the public, and

– Inclusion of safety margins, a traditional engineering approach for ensuring
a robust design.

In 1975, NRC published its first probabilistic risk assessment (PRA) which ex-
amined two reactors designed using Part 50 from a different, more realistic,
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perspective [2]. This study considered a broader set of possible accidents (rela-
tive to the DBAs) and estimated their occurrence frequencies, evaluated system
reliability quantitatively, estimated the potential public health consequences,
and measured, in effect, the effectiveness of the included defense in depth and
safety margins. Public health risk was estimated, including an estimate of the
uncertainties in this risk. The value of PRA, highlighted by the investigations of
the 1979 accident at Three Mile Island, led to the performance of a number of
PRAs on other plants and, in the late 1980’s, an examination by all operating
nuclear power plants for potential vulnerabilities using PRA techniques [3].

2 Commission Policy on Use of Risk Assessment

By the mid-1990s, the nuclear industry had gained considerable experience with
implementation of Part 50 and the results of PRAs. In 1995, NRC published a
statement describing, among other things, the relationship between these two
views of reactor safety [4]. This policy statement directed the NRC staff to
increase the use of PRA, setting a course for staff activities that has resulted in
a significant expansion in its use.

The Commission’s policy statement summarizes the value of risk assessment
as follows:

The NRC has generally regulated the use of nuclear material based on
deterministic approaches. Deterministic approaches to regulation con-
sider a set of challenges to safety and determine how those challenges
should be mitigated. A probabilistic approach to regulation enhances and
extends this traditional, deterministic approach, by: (1) allowing consid-
eration of a broader set of potential challenges to safety, (2) providing a
logical means for prioritizing these challenges based on risk significance,
and (3) allowing consideration of a broader set of resources to defend
against these challenges.

With this perspective on the value, and relative roles, of traditional and risk
methods, the Commission established the following as its policy:

Increase use of PRA technology in all regulatory matters to the extent
supported by the state-of-the-art in PRA methods and data and in a way
that complements the deterministic approach and supports the traditional
defense-in-depth philosophy.

Use PRA, where practical within the bounds of the state-of-the-art,
to reduce unnecessary conservatism in current regulatory requirements,
regulatory guides, license commitments, and staff positions and to sup-
port proposals for additional regulatory requirements in accordance with
10 CFR 50.109 (Backfit Rule).

PRAs used in regulatory decisions should be as realistic as practi-
cable and supporting data should be publicly available.
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Safety goals and subsidiary numerical objectives are to be used with
appropriate consideration of uncertainties in making regulatory judg-
ments on the need for new generic requirements.

NRC has made significant progress in implementing this policy in the past 15
years. In the late 1990’s-early 2000’s time frame, the NRC staff undertook a
number of initiatives to better incorporate risk insights and performance con-
siderations into its regulatory programs. In addition to regulatory changes, the
NRC worked with other organizations (e.g., the American Society of Mechanical
Engineers and the National Institute of Standards and Technology) to improve
the technical infrastructure underlying risk assessments. These improvements
included the development of consensus standards [20], the development of new
methods [21], and performing research including developing better computa-
tional methods to validate these new assessment techniques [22]. These initia-
tives resulted in fundamental changes to how the NRC conducts its licensing,
inspection and rulemaking programs.

NRC’s Commission has also directed the NRC staff to solicit input from in-
dustry and other stakeholders on performance-based initiatives, including areas
that are not amenable to risk-informed approaches, to supplement the NRC’s
traditional deterministic system of licensing and oversight. It should be noted
that deterministic1 and prescriptive2 regulatory requirements were based mostly
on experience, testing programs and expert judgment, considering factors such
as safety margins and the principle of defense-in-depth. These requirements are
viewed as being successful in establishing and maintaining adequate safety mar-
gins for NRC-licensed activities. The NRC has recognized that deterministic
and prescriptive approaches can limit the flexibility of both the regulated indus-
tries and the NRC to respond to lessons learned from operating experience and
support the adoption of improved designs or processes.

The NRC has as one of its primary safety goal strategies the use of sound sci-
ence and state-of-the-art methods to establish, where appropriate, risk-informed
and performance-based regulations. The NRC issued a paper [5] to define the
terminology and expectations for evaluating and implementing the initiatives
related to risk-informed, performance-based approaches. That paper defines a
performance-based approach as follows:

1 A deterministic approach to regulation establishes requirements for engineering mar-
gin and for quality assurance in design, manufacture, and construction. In addition,
it assumes that adverse conditions can exist and establishes a specific set of design
basis events and related acceptance criteria for specific systems, structures, and com-
ponents based on historical information, engineering judgment, and desired safety
margins. An example is a defined load on a structure (e.g., from wind, seismic events,
or pipe rupture) and an engineering analysis to show that the structure maintains
its integrity.

2 A prescriptive requirement specifies particular features, actions, or programmatic
elements to be included in the design or process, as the means for achieving a desired
objective. An example is a requirement for specific equipment (e.g., pumps, valves,
heat exchangers) needed to accomplish a particular function (e.g., remove a defined
heat load).
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A performance-based regulatory approach is one that establishes perfor-
mance and results as the primary basis for regulatory decision-making,
and incorporates the following attributes:

1. measurable (or calculable) parameters (i.e., direct measurement of
the physical parameter of interest or of related parameters that can be
used to calculate the parameter of interest) exist to monitor system,
including facility and licensee, performance,

2. objective criteria to assess performance are established based on risk
insights, deterministic analyzes and/or performance history,

3. licensees have flexibility to determine how to meet the established per-
formance criteria in ways that will encourage and reward improved
outcomes; and

4. a framework exists in which the failure to meet a performance crite-
rion, while undesirable, will not in and of itself constitute or result
in an immediate safety concern.3

Performance-based approaches can be pursued either independently or in combi-
nation with risk-informed approaches. After the paper’s issuance, NRC continued
to make progress on developing policies and guidance related to performance-
based approaches and subsequently issued guidance documents [6] [7].

Perhaps the most significant programmatic adoption of risk-informed and
performance-based considerations in the reactor area took place with implemen-
tation of the “reactor oversight process” (ROP) [8]. The ROP, intended to focus
agency reactor inspection resources in the most risk-significant areas of reac-
tor operation, replaced the previous program with explicit consideration of risk
and performance considerations. The normal “baseline” inspection program is
focused on the more risk-important areas of plant operations. In addition, events
or conditions at plants are assessed for significance using probabilistic risk mod-
els. The results of such assessments are used to direct additional oversight to
plants with more significant findings.

A more recent reactor initiative that adopts a risk-informed and performance-
based approach relates to fire protection, in which standards from the National
Fire Protection Association (NFPA-805) were incorporated into NRC’s regula-
tion in 10CFR50.48(c) [9]. This regulation provides deterministic requirements
that are very similar to those in NRC’s traditional fire protection regulations,
and also includes performance-based methods for evaluating plant configura-
tions that provide a comparable and equivalent level of safety intended by the
conservative deterministic requirements. The performance-based methods allow
engineering analyzes to demonstrate that the changes in overall plant risk that
result from these plant configurations is acceptably small and that fire protection

3 Using the previous example (footnote 2), a performance-based approach might pro-
vide additional flexibility to a licensee on plant equipment and configurations used
to accomplish a safety function (e.g., removing a heat load), but the performance
criteria could not be the actual loss of a safety function that would result in the
release of radioactive materials.



Considerations of Uncertainty in Regulatory Decision Making 19

defense-in-depth is maintained.4 Defense-in-depth as applied to fire protection
means that an appropriate balance is maintained between:

1. preventing fires from starting;
2. timely detection and extinguishing of fires that might occur; and
3. protection of systems, structures and components important to safety from

a fire that is not promptly extinguished.

The adoption of NFPA 805, which is voluntary on the part of reactor licensees,
provides a licensee with flexibility regarding how to implement its fire protection
program while maintaining an acceptable level of fire safety.

In parallel, the NRC staff was incorporating risk insights into other regulatory
areas. In the materials area, a staff document [12] was developed in the late 1990’s
to pull together into one place the various guidance documents written over the
years for the wide variety of materials licensees. These documents allow license
applicants to find the applicable regulations, guidance and acceptance criteria
used in granting a materials license. Operational experience (performance) and
risk insights guided the development of these documents. Over time the guidance
has been revised to further incorporate risk insights, performance considerations
and changing technology. A new revision to the series is under development to
address security and other issues.

The materials inspection program was fundamentally revised in 2001 — both
in terms of approach and frequency — in the Phase II Byproduct Material Re-
view [13]. The inspection approach was modified to emphasize licensee knowledge
and performance of NRC-licensed activities over document review. Inspectors
now review a licensee’s program against focus areas that reflect those attributes
which are considered to be most risk-significant. If a licensee’s performance
against a given focus element during the inspection is considered to be accept-
able, the inspector moves on to the next focus element. Performance concerns or
questions lead an inspector to go deeper into that area. In addition, inspection
frequencies were revised based on risk insights as well as licensee performance
over time.

3 Developing a Strategic Vision

In early 2011, an NRC staff group was established [14] to, in effect, reflect on
the past 15 years of experience and to develop a “strategic vision and options for

4 Building upon the guidance in Regulatory Guide 1.174 [10], “An Approach for Using
Probabilistic Risk Assessment in Risk-Informed Decisions on Plant-Specific Changes
to the Licensing Basis,” Regulatory Guide 1.205 [11], “Risk-Informed, Performance-
Based Fire Protection for Existing Light-Water Nuclear Power Plants,” states: “Prior
NRC review and approval is not required for individual changes that result in a risk
increase less than 1× 10−7 per year for CDF (core damage frequency) and less than
1× 10−8 per year for LERF (large early release frequency – a measure of potential
offsite health consequences). The proposed change must also be consistent with the
defense-in-depth philosophy and must maintain sufficient safety margins. The change
may be implemented following completion of the plant change evaluation.”
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adopting a more comprehensive and holistic risk-informed, performance-based
regulatory approach for reactors, materials, waste, fuel cycle, and transportation
that would continue to ensure the safe and secure use of nuclear material.” This
group was established by Chairman Gregory Jaczko and is being headed by
Commissioner George Apostolakis.

When this group was established, the agency was dealing with a number of
challenging regulatory issues. In several instances, the technical understanding
of the issue was relatively poor, with important uncertainties in key topics.
Just after the group was established, the Fukushima nuclear power plants in
Japan experienced a large earthquake and tsunami. The effects of these events,
and their implications to the safety and regulation of US nuclear power plants,
introduced additional challenges. Some of these challenges are discussed in more
detail below.

3.1 Challenging Regulatory Topics

Performance of Emergency Core Cooling Systems. In 2004, NRC issued
a communication [15] to all power reactor licensees requesting that each perform
an evaluation to address:

The identified potential susceptibility of pressurized-water reactor (PWR)
recirculation sump screens to debris blockage during design basis acci-
dents requiring recirculation operation of [emergency core cooling sys-
tem] ECCS or [containment spray system] CSS and on the potential for
additional adverse effects due to debris blockage of flowpaths necessary
for ECCS and CSS recirculation and containment drainage.

Since that time, power reactor licensees have made modifications, as necessary,
to address the 2004 issue. However, other related issues have also been identified,
including the possible effects of chemical additives on the debris characteristics,
potentially worsening the blockage potential, and the potential effects of debris
entering the reactor core region and causing blockages there.

In this example, decision makers are provided technical information having
uncertainties in several key technical areas, including the effect on debris accu-
mulation, and possible cooling system blockage, of chemical interactions, as well
the effect of debris potentially entering and blocking portions of the reactor core
area. Experimental work is underway to provide additional data in both areas,
but the applicability of the results to the different reactor types also complicates
decision making.

NRC staff addressed the complex technical and regulatory issues in a pa-
per [16] providing options to the NRC’s Commission for decision. The paper
recommended that the ongoing staff approach be continued, which included
a determination “whether, given the conservatisms, nonconservatisms, and/or
uncertainties in the various review areas, the licensee has demonstrated ad-
equate strainer performance and therefore compliance with the regulations.”
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The schedule for this considered the risk of different types of accidents, such that
it would “address any outstanding issues associated with more likely and risk-
significant smaller loss of coolant accidents (LOCAs) (14 inches and below) in
the short term, but would allow more time to address issues associated with the
low-likelihood larger break LOCAs (above 14 inches). In this way, the more risk-
significant issues would be closed quickly, and licensees would have the flexibility
to reduce the impact (cost and dose) of addressing the less risk-significant LOCAs
through planning, testing, or refined analyzes.” The paper also recommended a
second approach to be used in combination that “would provide more flexibility
to licensees for addressing larger LOCAs than is currently permitted” using
existing guidance and that would “likely reduce the scope of modifications needed
to address [the issue] for some plants and would be consistent with agency policy
regarding risk-informed regulation.” NRC’s Commission subsequently approved
the recommended approach [17] with “comments and clarifications.”

Earthquake Frequencies in the Central and Eastern United States.
In 2010, NRC staff completed an assessment [18] of new information related to
potential earthquakes in the central and eastern United States (that part of the
United States east of the Rocky Mountains). In some cases, the new information
indicated that estimated frequencies of earthquakes increased relative to previous
estimates. Not surprisingly, these estimates had considerable uncertainty.

Since that time, NRC staff have been working to determine what, if any,
actions need to be taken by power reactor licensees. A progressive screening ap-
proach is being considered which would include comparisons with deterministic
information used in the initial design and, if necessary, two alternative seismic
risk assessment methods.

One Impact of the Fukushima Accident. In March 2011, the Fukushima
nuclear power station in Japan experienced a very large earthquake and subse-
quent tsunami. The resulting damage is described in a number of documents,
and is summarized as follows in an NRC report [19]:

As a result of the earthquake, all of the operating units appeared to ex-
perience a normal reactor trip within the capability of the safety design
of the plants. The three operating units at Fukushima Dai-ichi automat-
ically shut down, apparently inserting all control rods into the reactor.
As a result of the earthquake, offsite power was lost to the entire facility.
The emergency diesel generators started at all six units providing alter-
nating current (ac) electrical power to critical systems at each unit, and
the facility response to the seismic event appears to have been normal.

Approximately 40 minutes following the earthquake and shutdown
of the operating units, the first large tsunami wave inundated the site fol-
lowed by multiple additional waves. The estimated height of the tsunami
exceeded the site design protection from tsunamis by approximately 8 me-
ters (27 feet). The tsunami resulted in extensive damage to site facilities
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and a complete loss of ac electrical power at Units 1 through 5, a con-
dition known as station blackout (SBO). Unit 6 retained the function of
one of the diesel generators.

The operators were faced with a catastrophic, unprecedented emer-
gency situation. They had to work in nearly total darkness with very
limited instrumentation and control systems. The operators were able to
successfully cross-tie the single operating Unit 6 air-cooled diesel genera-
tor to provide sufficient ac electrical power for Units 5 and 6 to place and
maintain those units in a safe shutdown condition, eventually achieving
and maintaining cold shutdown.

Despite the actions of the operators following the earthquake and
tsunami, cooling was lost to the fuel in the Unit 1 reactor after several
hours, the Unit 2 reactor after about 71 hours, and the Unit 3 reactor
after about 36 hours, resulting in damage to the nuclear fuel shortly af-
ter the loss of cooling. Without ac power, the plants were likely relying
on batteries and turbine-driven and diesel-driven pumps. The operators
were likely implementing their severe accident management program to
maintain core cooling functions well beyond the normal capacity of the
station batteries. Without the response of offsite assistance, which ap-
pears to have been hampered by the devastation in the area, among other
factors, each unit eventually lost the capability to further extend cooling
of the reactor cores.

The current condition of the Unit 1, 2, and 3 reactors is relatively
static, but those units have yet to achieve a stable, cold shutdown condi-
tion. Units 1, 2, 3, and 4 also experienced explosions further damaging
the facilities and primary and secondary containment structures. The
Unit 1, 2, and 3 explosions were caused by the buildup of hydrogen gas
within primary containment produced during fuel damage in the reactor
and subsequent movement of that hydrogen gas from the drywell into the
secondary containment. The source of the explosive gases causing the
Unit 4 explosion remains unclear. In addition, the operators were unable
to monitor the condition of and restore normal cooling flow to the Unit
1, 2, 3, and 4 spent fuel pools.

From a decision making perspective, this accident raises issues with respect to
the ability to predict the likelihood of very large earthquakes and to decide
how large of an earthquake should be considered sufficiently likely that it must
be considered in a nuclear power plant’s design. In addition, this example intro-
duces other important uncertainties. One key additional issue is the effectiveness
of emergency response, relied upon in nuclear safety to help ensure that the po-
tentially affected population near nuclear power plants would not be exposed to
large amounts of radioactive material.

An NRC group provided recommendations to the NRC Commission [19] that
included some that reflect on how to address issues with considerable uncer-
tainty, and the relative role of deterministic and risk assessment methods. These
recommendations are currently under evaluation.
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3.2 Some Issues to Resolve

These example issues raise some important questions, including:

– What are the relative roles of traditional engineering approaches and risk
assessment?

– Are there better ways to collect and analyze new information?
– Should performance based approaches be used to a greater extent to better

reflect such new information?
– How should decision makers include consideration of very unlikely events

that could result in very large consequences?

As noted above, an NRC staff group is now considering a strategic vision for
a more comprehensive and holistic risk-informed, performance-based regulatory
approach. This group is considering questions such as these; it expects to com-
plete its report in the spring, 2012.
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Discussion

Speaker: Mark Cunningham

Philip Starhill: Presumably the landscape of low probability events is much
more diverse than that of higher probability events. How does that impact the
utility of deterministic modeling of low probability events?

Mark Cunningham: The estimation of very low probability events, such as
very large earthquakes or floods, or the failure probability of very large pipes
used in nuclear power plants, is a particularly challenging aspect of nuclear safety
analyzes. Historically, nuclear safety organizations such as NRC have made con-
servative deterministic statements on what magnitudes of earthquakes or sizes of
pipe breaks needed to be considered in plant designs. These statements included,
of course, some consideration on the credibility of the specified earthquake or
pipe break, which was tied to some perception at the time of their probabil-
ity. Modern risk assessment methods supplement these statements by including
more quantitative probability estimates. Expert interpretation of available infor-
mation, and the translation of such interpretations in statements of probability,
is used for low probability events. This approach, especially when a number of
experts are used, has been found to be an acceptable method when sufficient
data are not otherwise available.

Van Snyder: A numeric limit is established for risk of death within a specified
distance due to nuclear power plant operations. Has there been a quantification,
and limit, of total system risk to the public at large, and a comparison of that
total system risk to total system risk from alternatives, especially coal?

Mark Cunningham: In 1986, NRC established “safety goals” for the operation
of nuclear power plants. These goals were intended to ensure that public risk from
nuclear power plant operations was a small fraction of other risks, including the
risks from other forms of electric power generation. Risk assessments performed
by NRC indicate that nuclear power plants meet the established safety goals.
NRC has not made comparisons between, for example, risks from electric power
generation from coal. Some such studies were performed, however, by staff at
Oak Ridge National Laboratory a number of years ago.

William Kahan: If I remember correctly, burning coal releases Radon; and coal
ash is very weakly radioactive, but there is a vast amount of it to be stored. When
the totals of radioactivity liberated by coal mining are added up, do they bring
the coal industry under the purview of the Nuclear Regulatory Commission?
Should they?

Mark Cunningham: The coal industry is not subject to regulatory review by
NRC. Since its establishment in 1975 by Congress, the scope of NRC’s statutory
authority has been discussed by Congress to possibly include, for example, De-
partment of Energy facilities using nuclear materials. To my knowledge, these
discussions have not considered the coal industry.
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Jeffrey Fong: My question is on stability of operation. After deregulation,
electricity is being treated as a commodity purchased every six minutes. This
creates instability and pressure on operators. Does NRC have new regulations
to address this type of operational instability?

Mark Cunningham: When deregulation was beginning to occur, NRC recog-
nized that nuclear power plant operations could be impacted by deregulation
of the electrical energy market, and reassessed its regulatory approach. To my
knowledge, no new regulations were established specifically to address the pos-
sible effects of deregulation.

Jeffrey Fong: Do risk assessment standards include quantitative estimates of
human errors during all phases of nuclear reactor operations?

Mark Cunningham: Yes, risk assessments do include quantitative considera-
tion of human errors.
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Abstract. Simulation is nowadays a major tool in R&D and engineer-
ing studies. In industrial practice, in both design and operating stages,
the behavior of a complex system is described and forecast by a com-
puter model, which is, most of time, deterministic. Yet, engineers coping
with quantitative predictions using deterministic models deal actually
with several sources of uncertainties affecting the inputs (and occasion-
ally the model itself) which are transferred to the outputs. Therefore,
uncertainty quantification in simulation has garnered increased impor-
tance in recent years. In this paper we present an industrial viewpoint of
this practice. After a reminder of the main stakes related to uncertainty
quantification and probabilistic computing, we will focus on the specific
methodology and software tools which have been developed for treating
this problem at EDF R&D. We conclude with examples illustrating ap-
plied studies recently performed by EDF R&D engineers arising from
different physical domains.
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1 Introduction

Computer simulation is undoubtedly a fundamental issue in modern engineering.
Whatever the purpose of the study, computer models help analysts to forecast
the behavior of the system under investigation in conditions which cannot be
reproduced in physical experiments such as accident scenarios, or when physical
experiments are theoretically possible but at a very high cost.

The need for simulating and forecasting gained dramatic momentum in recent
decades due to the growth of computers’ power and vice versa. Since the very
first large scale numerical experiments carried out in the 40’s, the development of
computers (and computer science) has gone pairwise with the desire to simulate
more and more deeply, more and more precisely, physical, industrial, biological,
economic systems. A profound change in science and engineering has resulted
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in which the role of the computer has been compared to the one of the steam
engine in the first industrial revolution [1]. Together with formulating theories
and performing physical experiments, computer simulation has been labeled a
“third way to Science” [2] allowing researchers to explore problems which were
unaffordable in a not so distant past. In turn this has raised epistemic issues.

Some scholars identify a shift from a scientific culture of calculation, linear,
logical, aiming to simplifying and unpacking results, to a culture of simulation,
empirical, opaque, aiming at providing high-dimension results, under nice forms
of graphs, or even movies, (see [3] for an interesting discussion). A quite negative
perspective of computer models, seen as opaque boxes one can play with to obtain
whatever desired result, has also emerged which directly attacks the credibility
of computational models as tools for guiding decisions [4].

Our viewpoint is pragmatic. We believe that computer simulation can serve
as a major tool in daily engineers’ work and is furthermore capable to assist
in understanding, forecasting, and guiding decision making. The possibility to
simulate more and more complex phenomena, taking into account the effect of
more and more input parameters is better viewed as an opportunity as opposed
to a threat. However, at the same time, we are aware that quantitative uncer-
tainty assessment of results is a fundamental issue for assuring the credibility of
computer model based studies and remains a challenge as well.

Besides technical and theoretical difficulties, in industrial practice a key diffi-
culty is to bridge the cultural gap between a traditional engineering deterministic
viewpoint and the probabilistic and statistical approach which considers the re-
sult of a model as an uncertain variable.

Even if the fundamentals of these topics are rooted in probabilistic and statis-
tic literature from decades back, in recent years there has been a significant
increase in interest on the part of industries and academia in uncertainty quan-
tification (UQ) applied to computer models. A casual survey of recent papers
reveals the variety of disciplinary fields involved: e.g. nuclear waste disposal [5],
[6] (which was also one of the first contexts in which UQ on large computer mod-
els was applied), water quality modeling [7], avalanche forecasting [8], welding
simulation [9], buildings performance simulation [10], galaxies formation [11],
climate modeling [13], fires simulation [14] to name a few.

The remainder of the paper is organized as follows. Section 2 presents the
common framework for uncertainty assessment as it is currently used in the in-
dustrial practice by EDF (Électricité de France) and other major stakeholder
companies and industrial research institutions, for example: European Aeronau-
tic Defence and Space Company (EADS), French Atomic Energy and Alternative
Energies Commission (CEA), and Dassault Aviation. Uncertainty analysis re-
quires a multi-disciplinary approach, and this framework is an useful tool to
establish dialog between experts in the disciplinary field of the model applica-
tion and those with a more probabilistic or statistical background. It also allows
to put into evidence, at the very early stage of the study, what is the really
relevant expected outcome and, consequently, to choose the most proper and
effective mathematical tools to obtain it.
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Section 3 presents Open TURNS, an open source software package, jointly
developed by the three companies EDF, EADS and Phiméca, which implements
the methodology described in Section 2. Together with proper and recent math-
ematical algorithms, an interesting feature of Open TURNS is that it can be
linked in an effective and rather easy way to any external computer code, which
is simply seen as a deterministic function of a random input. By a mathematical
viewpoint, that corresponds to linking a deterministic model to a probabilistic
model of its inputs.

Section 4 shows some practical examples of applied studies carried on at EDF.
These studies concern different problems and involve a great variety of physical
problems. The wide range covered by those examples, due to the diversity of
EDF’s business areas, illustrates the motivation for both a general approach to
the problem, as well as the need for specific and powerful mathematical and
software tools.

Section 5 very briefly sketches some conclusions and perspectives.

2 The Common Framework for Uncertainty Management

2.1 An Iterative Methodology in Four Steps

In the last decade, thanks to the numerous multi-disciplinary challenges it has
to cope with, EDF established a global methodology for uncertainty treatment
for models and simulations. This framework has subsequently been accepted and
improved by other industrial and research institutions.

The EDF focus is on so-called parametric uncertainties, i.e. uncertainties char-
acterizing dispersion of input parameters of a model, where a model could be a
complex numerical code which requires an approximated resolution or an analyt-
ical expression. Our analysis does not explicitly address uncertainties attached to
the computer model itself, arising from simplifying assumptions for the model of
the physical phenomenon under investigation, nor numerical uncertainties due to
its practical implementation as a computer code. The methodology is based on
the probabilistic paradigm, i.e. uncertainties are represented by associated prob-
ability distribution functions (pdf). Even if some perspective works are carried at
EDF R&D on extra-probabilistic approaches [15], they are currently considered
not yet sufficiently mature for engineering application.

The common framework of uncertainty management is a four step process
the genericity of which facilitates application across a broad variety of disci-
plinary fields: (i) Step A “Uncertainty Specification” defines the structure of the
UQ study by selecting the random parameters, the outcomes of interest and
the features of the output’s pdf which are relevant for the analysis; (ii) Step
B “Uncertainty Quantification” defines the probabilistic modeling of the ran-
dom parameters; (iii) Step C : Uncertainty Propagation evaluates the criteria
defined on Step A; (iv) Step C’ “Uncertainty Importance Ranking” determines
which uncertainty sources have the greatest impact on the outcome (sensitivity
analysis).
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In practice, the process is often iterative: a too large uncertainty tainting the
final outcome and/or the ranking step could motivate corrective feedback R&D
actions for reducing uncertainties where possible, e.g. setting up new experiments
to improve the probabilistic modeling of model’s inputs.

The following sections review the principal methods used in each step of the
framework.

2.2 Step A - The Uncertainty Problem Specification

This step first involves selection of the input parameters to be represented as
random variables. The remaining parameters are considered as fixed either be-
cause they are supposed to be known with a negligible uncertainty or (as it is
typical in safety studies) because they are given values, generally conservative,
which are characteristic of a given accident scenario. In the following we will
denote by X the vector of the random input parameters, and Z = G(X) the
random outcome of interest of the deterministic model G(·).

Step A requires also to select the relevant features of the outputs’ pdf, de-
pending on the stakes which motivated the study (the so-called quantities of
interest). In most cases they formalize, in a simplified yet explicitly normative
manner, some decision criteria. For instance, during the design stage of a system,
the analyst is often asked to provide the mean and the standard deviation (or the
range) of a given performance indicator of the system–e.g., fuel consumption–in
order to check its general conception. Whereas in operating stages, one must of-
ten verify that the system satisfies (or not) regulatory requirements for licensing
or certification. Therefore, depending on the context of the study, the decision
criteria may be: (i) a min/max criterion, i.e. the range of the outcomes given the
variability of the inputs; (ii) a central dispersion criterion, i.e. central tendency
and dispersion measures; (iii) a threshold exceedance criteria, i.e. the probability
for a state variable of the system to be greater than a threshold safety value.

A rudimentary analysis of the computer code is also necessary: does it require
a high CPU time for a single run, does it provide a precise evaluation of its
gradient with respect to the probabilistic input parameters are typical questions.

Depending on these considerations, the uncertainty quantification methodol-
ogy proceeds through different algorithms.

2.3 Step B - The Input’s Uncertainty Quantification

The methods used for the probabilistic modeling of the inputs depend on the
nature and the amount of available information.

In case of scarce information, the analyst first needs to interview experts. The
literature proposes numerous protocols (e.g. [16]) that can assist in obtaining
unbiased and relevant information which may then be translated into a pdf. In
addition, a commonly used approach consists in applying the Maximum Entropy
Principle, that leads to the pdf maximizing the lack of information (modeled by
the Shannon entropy [17]), given the available expertise on the variable to be
modeled. Whatever the chosen model, it is critical to validate it. One means



An Industrial Viewpoint on Uncertainty Quantification in Simulation 31

for this consists of establishing a dialog with the expert to clearly identify key
features for comparison with the established pdf–e.g. mean and quantiles, or
alternative shape and scale parameters.

When data sets are available, the analyst can use the traditional statistical
inference tools following a parametric or non parametric approach. The kernel
smoothing technique is useful to model distributions which do not present usual
shapes, for example, multimodal distributions. Then, the model is validated by
a numerical fitting test, adapted to the objective of the analysis: for example the
Kolmogorov test is used in the central zone or Anderson-Darling if one is more
interested in tail fitting.

The EDF framework requires that the random input parameters X1, . . . , Xm

be represented as a random vector X with a multivariate pdf, the dependence
structure of which must be explicit. A common way is to define the multivariate
pdf p(X) by its univariate marginal distributions p1(X1), . . . , pm(Xm) and its
copula C, the later encoding the dependence structure [18]. In practice, inference
on copula parameters can present problems and, as shown in [19], Kendall’s τ
or Spearman’s ρ coefficients are not sufficient to fully determine the structure.
Mismodeling the dependence structure is potentially dangerous as it can lead to
an error of several orders of magnitude in the estimate of a threshold exceedance
probability [20]. Our recommendation is that the copula inference be performed
using the same techniques (e.g. Maximum Likelihood Estimation) as those for
the univariate marginals.

2.4 Step C - The Uncertainty Propagation

Once quantified, uncertainties are propagated to the model outcomes. The prop-
agation algorithms depend on the decision criteria and on the model character-
istics specified in Step A.

In case of a min/max analysis, the range of the outcome is determined either
as a result of an optimization algorithm or by sampling techniques. The input
sample may come from a deterministic scheme –e.g., factorial, axial or composite
grid–or randomly generated from the distribution accorded to the input vector.
The choice of the method is informed by the CPU time required for model
execution, G(·).

In case of a central dispersion analysis, the mean value and the variance of
the outcome can be evaluated using Monte Carlo sampling, which also provides
confidence intervals of the estimated values. If a high CPU time forbids such a
sampling method, it is possible to evaluate the mean of the outcomes using a
Taylor variance decomposition method that requires the additional evaluation
of the partial derivatives of the model G(·). No confidence interval is estimated
to quantify the quality of the Taylor approximation.

Finally, in case of a threshold exceedance criteria P[G(x) ≥ z∗], the most
widespread techniques are the simulation-based, such as Monte Carlo method
and its variants that reduce the variance of the probability estimator: LHS, im-
portance sampling, directional sampling, . . . All of the simulation techniques pro-
vide confidence intervals. More sophisticated sampling methods exist to evaluate
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rare events (e.g. particle sampling [21]). In case of high CPU runtime, alterna-
tives (FORM and SORM methods) exist to estimate the exceedance probabili-
ties, based on an isoprobabilistic transformations such as the Generalized Nataf
transformation [20], [22] in case of elliptical copula of the input random vector,
and the Rosenblatt one [23], [24] in the other cases. These transformations are
designed to map the input random vector into a standard space of spherical
distributions. In that space, the integral defining the exceedance probability:∫

Df

p(x)dx, where: Df := {x;G(x) ≥ z∗}

is approximated using geometrical considerations [25,26,27]. These popular tech-
niques provide approximations of very low exceedance probabilities with very
few calls to the model. But no confidence interval is estimated to validate the
geometrical approximations.

Finally, an alternative technique is to use a given budget of model runs to
build a surrogate model G̃(·) which requires negligible CPU time for subsequent
runs. Monte Carlo is then performed on on G̃(·) instead of G(·). Many techniques
are provided in the Open TURNS package, among them the polynomial chaos
expansion (PCE) [28] and the kriging approach [29].

The analyst is invited to mix methods and optimize an evaluation strategy
with respect to a calculus budget. The validation comes from the confrontation
of results obtained by different methods.

2.5 Step C’ - Uncertainty Importance Ranking

The ranking of the uncertainty sources is based on the evaluation of some impor-
tance factors, correlation coefficients and sensitivity factors, the choice of which
varies according to the quantities of interest specified in Step A. See [30] for an
introductory overview of the problem.

In central dispersion studies, the Sobol’s indices explain the variability of the
outcomes by the variability of the input parameters or sets of parameters. Their
evaluation by Monte Carlo sampling is costly and surrogate modeling approach
(in particular PCE) are of great help. More simple correlation based indices
(SRC, SRRC, PCC, PRCC indicators) could also be useful in practice.

In a threshold exceedance study, importance factors could be defined as par-
ticular Sobol indices after the linearization of the model around a specific point
in the standard space. They quantify the impact of the global input uncertainty
on the estimated exceedance probability.

According to the nature of the highest impact uncertainty source, feedback ac-
tions will differ: epistemic uncertainty requires some additional work to increase
knowledge; reducible stochastic uncertainty requires some variability reducing
actions; and irreducible stochastic uncertainty requires some modifications of
the system in order to protect it against that unavoidable highest impact vari-
ability. These actions do not have the same consequences from the economical
point of view, and do not address time equivalent issues.
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3 The Open TURNS Software

3.1 An Open Source Software

Open TURNS [31] is an open source software package designed to implement the
uncertainty framework sketched above. The package is distributed under LGPL
and FDL licenses for the code source and its documentation respectively.

Running under the Windows and Linux environment, Open TURNS is a C++
library proposing a Python textual interface. It can be linked to any code com-
municating through input - output files (thanks to generic wrapping files) or to
any Python-written functions. It also proposes standard interface for complex
wrappings (distributed wrappers, binary data).

Gradients of the external code are taken into account when available and
otherwise can be approximated automatically by finite differences schemes. In
addition to its more than 40 continuous/discrete univariate/multivariate distri-
butions, Open TURNS proposes several dependence models based on copulas:
independent, empirical, Clayton, Frank, Normal, Gumbel, Sklar copulas. It of-
fers a great variety of definitions of a multivariate distribution: list of univariate
marginals and the copula, linear combination of probability density functions or
random variables. Uncertainty propagation step is accomplished through numer-
ous simulation algorithms. Open TURNS implements the innovative Generalized
Nataf transformation and the Rosenblatt one for the FORM/SORM methods.
For ranking analysis, Open TURNS implements the Sobol indices, in addition
to the usual statistical correlation coefficients.

Open TURNS has a rich documentation suite comprising more than 1000
pages, dispatched within 8 documents covering all the aspects of the platform:
scientific guidelines (Reference Guide), end-user guides (Use Cases Guide, User
Manual and Example Guide) and some software documentations (Architecture
Guide, Wrapper Guide, Contribution Guide and Windows port Guide).

Open TURNS implements select high performance computing capabilities
such as the parallelisation of algorithms manipulating large data set (up to 108

scalars) using the threading building blocks technology (TBB). It also provides
a generic parallel implementation of the evaluation of models over large data set
using either pthreads or TBB.

3.2 Some Innovative Aspects

Open TURNS is innovative in several aspects. Its input data model is based on
the multivariate cumulative distribution function (cdf). This enables the usual
sampling approach, as would be appropriate for statistical manipulation of large
data sets, but also facilitates analytical approaches. If possible, the exact fi-
nal cdf is determined (thanks to characteristic functions implemented for each
distribution, the Poisson summation formula, the Cauchy integral formula, ...).
Furthermore, different sophisticated analytical treatments may be explored: ag-
gregation of copulas, composition of functions from R

n into R
p, extraction of

copula and marginals from any distribution.
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Fig. 1. Some Open TURNS snapshots: (a) the Open TURNS logo inspired by Galton’s
box experience, (b) modeling a multi-modal random vector of R2, (c) copula’s fitting,
(d) importance sampling in the standard space around the FORM design point, (e)
FORM importance factors, (f) cobweb plots

Open TURNS implements up-to-date and efficient sampling algorithms. The
Mersenne Twister Algorithm is used to generate uniform random variables [32],
the Ziggurat method for normal variables [33], the Sequential Rejection Method
for binomial variables and the Tsang & Marsaglia method for Gamma variables
[34]. Exact Kolmogorov statistics are evaluated with the Marsaglia Method and
the Non Central Student and Non Central χ2 distribution with the Benton &
Krishnamoorthy method [35].

Open TURNS is the repository of recent results of PhD research performed
at EDF R&D. In 2011, sparse PCE based on the LARS method [36] was imple-
mented. In a future release the ADS (Adaptive Directional Stratification, [37])
accelerated Monte Carlo sampling technique will be made available for Open
TURNS users.

4 Examples of Applied Studies

We sketch examples from applied studies excerpted from recent works performed
at EDF R&D. Despite being representative of real industrial problems, these
examples are provided for demonstration purposes only and the results cannot
be used to draw any general conclusion about EDF risk assessment studies.

4.1 Flood Risk Assessment after the Failure of an Earth Dam

Considering that EDF is a major hydro-power operator (operating more than
200 dams and 400 power stations) and the role played by sea and river water in
the nuclear power generation, it follows that hydraulic simulation is an important
topic of interest for EDF R&D. In particular, most EDF studies are concerned
with flood risk. As an example, a recent study [38] investigates the flood risk
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assessment of a valley in the event that a dominating earth dam fails. Unlike
concrete dams, which generally collapse and empty instantaneously, earth dam
failure is assumed to be progressive and characterized by a so called failure
hydrograph, i.e. a function Q = H(t), describing the emptying discharge Q as
a function of time t. Due to the complexity of the physics involved during the
failure process, the precise shape of a hydrograph is not well known. Oft-used
ansatz in these studies are that (i) the hydrograph has a triangular shape, (ii)
the reservoir volume W at the beginning of the failure (t = 0) is known and
(iii) the reservoir will completely empty during the observation period [0, Tobs],

i.e.
∫ Tobs

0 H(t) · dt = W . Under these assumptions, the failure hydrograph is
completely determined by the peak discharge Qmax and the time Tm at which
the maximum discharge occurs.

The hydraulic modeling of the flood through the underlying valley is imple-
mented by the MASCARET software [39] (resolution of 1D shallow water De
St. Venant’s equations) jointly developed by EDF R&D and CETMEF (Centre
d’Etudes Techniques Maritimes et Fluviales). The geometrical features of the
valley, here modeled as a 200 km long 1D channel (length, slope, section shape)
are supposed to be known. On the other hand, the hydraulic friction parameter
Ks (Strickler’s coefficient) is uncertain and modeled as a random variable.

Three random variables are propagated trough the hydraulic model: Qmax,
Tm and Ks. The output variables of interest are the maximum water level Zmax

reached by the wave front in the most dangerous points of the valley and the
corresponding arrival time Tf . The two most dangerous points (located down-
stream a section narrowing, which gives raise to an hydraulic jump) have been
previously identified by physical consideration. They are located 11 km (Point
1) and 60 km (Point 2) downstream from the dam, respectively.

The uncertainty propagation has been performed by first building a polynomial
response surface, then Monte Carlo sampling. A sensitivity analysis has also been
made to find out the most influential variables on Zmax and Tf in different points
of the valley. The most interesting results of the study are: (i) the quantiles (95%,
99% and 99.9%) of Zmax in Points 1 and 2 and (ii) the Spearman ranks correlation
coefficients betweenZmax (Tf , respectively) and the three input randomvariables.
As an example of results the 99% quantiles of Zmax in Points 1 and 2 are respec-
tively 675.6 and 516.5 m above mean see level (amsl). The analysis of Spearman’s
coefficients is particularly interesting. The most influential variable with respect
to Zmax evaluation is the peak discharge Qmax. On the other hand, as far as Tf

is concerned, it can be noticed that for the abscissas located close to the dam the
most influential variable is Tm, but as one moves more and more downstream, the
influence of Qmax and Ks raises. 90 km downstream from the dam, the friction
coefficient becomes the dominant variable in the response evaluation.

This kind of study is valuable for supporting public powers in preparing the
Emergency Response Plans in case of dam failure (e.g. planning evacuation of the
most exposed areas).The sensitivity analysis is important to let the decisionmaker
be aware of the weight of the hypotheses taken on the input variable and to possibly
guide further study to reduce the uncertainties tainting the influential variables.
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Fig. 2. Flood risk example [38]: hypothesis on the failure hydrograph (left) and sensi-
tivity analysis by Spearman’s ranks correlation coefficients (right) of Tf with respect
to Qmax, Tm and Ks along the valley, up to 100 km downstream the dam

4.2 Globe Valve Sensitivity Analysis

EDF R&D has a deep history and experience in the application of uncertainty
analysis methods in the field of solid mechanics. Many applied studies have been
performed over the years, concerning for instance cooling towers, containment
structures, thermal fatigue problems, lift-off assessment of fuel rods etc. We will
focus on an application concerning reliability and sensitivity analysis of globe
valves [40]. This investigation was one of the industrial case studies proposed by
EDF in the context of the program,Open Source Platform for Uncertainty Treat-
ment in Simulation (OPUS), funded by the French National Research Agency
(ANR) between April 2008 and September 2011 [41].

Industrial globe valves are used for isolating a piping part inside a fluid circuit.
This study is concerned with the mechanical behavior of the valve under water
pressure. For this exemplary study, the variables of interest are the maximum
displacement of the rod and the contact pressures. The tightness performance
of the valve is assured if these variables stand below stated threshold values.
The numerical model has been implemented thanks to the Code Aster software,
developed by EDF R&D and distributed under GPL license [42].

We will focus here on the sensitivity analysis of the maximum rod displace-
ment Z. The problem has six uncertain input variables Xi, i = 1 . . . 6: packings,
glands, beams, steel rod Youngs modulus, hydraulic load and clearance. The
goal of the study is the evaluation of Sobol’s indices, which quantifies the con-
tribution of each input Xi (or combinations of inputs, e.g. Xi and Xj) to the
variance of the output V[Z]:

Si[Z] =
V [E[Z|Xi]]

V[Z]
, Sij [Z] =

V [E[Z|Xi, Xj ], ]

V[Z]
− Si[Z]− Sj [Z] . . .

In practice, the Monte Carlo evaluation of the variances of the conditional ex-
pectations above is unfeasible due to computational resource constraints. One
path to resolve this problem is by implementation of a polynomial chaos ex-
pansion (PCE). This technique consists in replacing the random output of the
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Fig. 3. Globe valve example [40]: cross sectional view (left), mechanical scheme (center)
and Sobol’s first order indices (right)

physical model by a decomposition onto a basis of orthonormal polynomials.
The problem is reduced to the estimation of a finite set of coefficients, under the
basis of a given number of previous runs of the physical model. As shown for
instance in [43], once the coefficients have been determined, the evaluation of
Sobol’s indices is straightforward due to the orthonormality of the polynomials.
PCE is particularly suited for this kind of problem.

Different methods have been tested for estimating the PCE coefficients. We
have found that the LARS method [36] (cf. Section 3.2) and the NISP library
(Non Intrusive Spectral Projection, developed by CEA [44]) return similar re-
sults, cf. Fig. 3.

5 Conclusion

Throughout this paper we have attempted to present an industrial perspective
on UQ as we see it in our current practice. Of course, we do not pretend to
provide an exhaustive nor prescriptive vision of this large problem.

Our approach is strictly non-intrusive and the problem is primarily viewed
as a propagation of uncertainties from inputs to outputs of a numerical code.
Some further steps for improving this methodology include: (i) systematically
accounting for uncertainties tainting the computer model itself (the works carried
by the MUCM [45], based on the Bayesian analysis of numerical codes [46,47]
will be indeed of great help), (ii) linking of the common methodology sketched
in Section 2 with decision theory, (iii) dealing with high dimension stochastic
problems (m ≈ 100) and (iv) treatment of functional inputs and outputs.

There can be no doubt that UQ is currently deeply rooted into EDF R&D
practice. Our motivation for further work takes inspiration by our belief that
industrial studies benefit from the consolidated practice of a common method-
ological framework and the Open TURNS software.
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Discussion

Speaker: Alberto Pasanisi

Michael Goldstein: I consider the notion of a unified formulation across ap-
plications as natural and valuable. I wonder how the model discrepency, i.e., the
difference between the model and the system that the model tries to represent,
is represented within the unified formulation.

Alberto Pasanisi: That is a crucial question and I thank Michael for giving
me the opportunity to discuss our viewpoint. Actually, our general formulation
of the problem and the methodological framework going with do not cope ex-
plicitly with model discrepancy. According to this scheme, UQ is mainly seen
as the propagation of parametric uncertainties from inputs X to output Z of a
deterministic computer model Z = G(X). In some studies, generally concerning
inverse problems (e.g. [1]), we did explicitly account for an additive Gaussian
error in the observation model, so that Z = G(X) + ε, but in most cases we
simply consider the model, provided by the experts of given specific application
fields as a black-box admitted as is. That is a purely pragmatic viewpoint, as
in most cases the phases of verification & validation of the numerical code and
parametric uncertainties propagation are made in separate times by different
teams. In addition, a quite shared viewpoint in Uncertainty Analysis practition-
ers’ community is that if the analyst does not trust enough the computer model,
he/she must first improve it, before carrying an uncertainty and a (following)
risk analysis [2].

Even if I acknowledge that the simplified framework I sketched makes thing
easier in the engineering practice, I am aware of the limits of such a scheme and I
hope that the use of more extended approaches quantifying both parametric and
model’s uncertainties will soon become a more standard practice in our studies.
And I think that the work you carried with A. O’Hagan and your colleagues of
MUCM will be of great help.

William Oberkampf: Model form uncertainty and, in many cases, model para-
metric uncertainty is epistemic (lack of knowledge) uncertainty. Epistemic un-
certainty may be characterized as a probability distribution, but this represents
incertitude as a random variable; which it is not. A more proper representation
is to characterize incertitude as an interval-valued quantity, i.e. no knowledge
structure over the range of the interval. This type of uncertainty analysis requires
the use of a broader framework usually referred to as imprecise probability the-
ory. Has EDF investigated the use of imprecise probability distributions in its
uncertainty quantification?

Alberto Pasanisi: This question concerns a very important topic, namely, in
a slightly reformulated way, “is the probabilistic assumption too informative for
coping with purely epistemic uncertainties?” Actually, in our current practice,
we use probabilistic modeling for both epistemic and stochastic uncertainty; in-
deed the Bayesian paradigm seems to give us a reasonable setting for coping with
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both sources of uncertainties in a decisional framework. Nevertheless, we have
also carried more perspective works involving Dempster-Shäfer Theory [3,4] or
a hybrid framework [5] combining probabilistic and possibilistic modeling of un-
certainties. The results about extra-probabilistic modeling are encouraging but,
as far as we are concerned, some issues (e.g. modeling dependencies) still need
to be investigated before these methods could be widely applied in engineering
practice.

Jeffrey Fong: Is the failure envelope boundary line the result of a deterministic
analysis, or, stochastic with a 95% lower limit? If the former, then the failure
envelope is not uncertainty-quantification-based at all. Please clarify.

Alberto Pasanisi: As we do not tackle explicitly model’s uncertainty in our
current framework, the failure domain Df := {x;G(x) ≥ z∗} is deterministic:
it is just the set of values of the input vector X that produce values of the
output Z corresponding to failure conditions. So, the probability of failure is the
probability for the random input X to belong to the failure domain Df .

Maurice Cox: In your framework for uncertainty management you referred
to various principles. Such principles are set out in the GUM (Guide to the
Expression of Uncertainty in Measurement) and Supplements to the GUM. Does
EDF use these documents, or is this a parallel development by EDF?

Alberto Pasanisi: Yes, absolutely. Actually, our framework is largely inspired
by the GUM (and its supplements) which is a reference document in EDF’s
practice. The GUM is widely used by EDF’s engineers and technicians working
in R&D and Engineering Departments, and in power plants.

Pasky Pascual: Maybe I misunderstood, but you seemed to suggest that
Bayesian inference is a way to address the issue of imprecise probabilities. But
doesn’t Bayes assume well-described pdfs or at least probability distributions
that can be (somewhat) estimated?

Alberto Pasanisi: I think that it was a misunderstanding. My idea was that
Bayesian setting allows to take into account an additional level of uncertainty
tainting the probabilistic distributions of inputs, and that this framework fits
comfortably most industrial requirements. Of course, imprecise probabilities con-
stitute a different way to address the problems.

Mark Campanelli: How does your framework do sensitivity analysis? In
particular, is sensitivity analysis done prior to uncertainty analysis in order to
determine which parameters can be treated as fixed? Furthermore, can these
sensitivity anayses incorporate dependencies between random variables, and if
so, how?

Alberto Pasanisi: According to our schematic framework, sensitivity analysis
(SA) is performed at the same time than uncertainty propagation. That happens,
for instance, when putting into practice advanced method of SA, as Sobol’s
decomposition of the output’s variance. Nevertheless, in particular when the
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number of inputs is large it is recommended to perform, prior to uncertainty
analysis a first SA with less costly techniques (e.g. screening [6] or Morris method
[7]) which, even if based on simplified assumptions, provides a first selection of
influent variables. Then fixed values are given to less influent variables, thus
reducing the stochastic dimension of the problem. Cf. also [8] for a pragmatic
approach to the choice of the SA method, depending on the context of the study.
The second part of the question is much more tricky and concerns more advanced
research works than industrial R&D practice. In engineering studies, the most
pragmatic way for coping with this problem is to gather dependent variables
in groups and evaluate sensitivity indices for each one of these groups. Moving
to more advanced works, you can see [9] for an introduction to the problem.
That is a quite active research topic. Recent interesting papers concerned with
this problem proposes several different approaches. In the linear case, Xu &
Gertner [10] distinguish two indices, quantifying the contribution of a parameter
due to its correlation with the other parameters and the contribution due to
its own effect. In the non-linear case, Li et al. [11] propose a technique for
the covariance decomposition and three types of Sobol’s indices. Other works
propose indices based on the distance [12] between the actual pdf of the output
and conditional densities. These indices can be used in presence of correlated
inputs, but their interpretation could not be easy. Finally techniques based on
the copulas’ formalism are proposed by Kucherenko et al. [13].

Wayne King: Could you describe EDF needs in life extension and life prediction
as it relates to reactors?

Alberto Pasanisi: That is an interesting and actually very wide question. I will
give hereby some elements, focused on the key topic “running safely nuclear power
units in the long-term” [14]. EDF operates today 58 pressurized water reactor
units with three different power levels: 900 MW (34 units), 1300 MW (20 units)
and 1500 MW (4 units). Nuclear generation represents about 85% of EDF power
generation. EDF nuclear power plants were designed for operating during 40 years
at least. The lifespan of some components is supposed to be greater than 40 years,
while others must be replaced before, e.g. transformers should be replaced after
25-30 years. As another example, the EDF Board has approved in September 2011
an order for 44 steam generators, for its 1300 MW units.

The mean age of EDF power units is around 29 years: most of nuclear reactors
operating worldwide are contemporary or older than EDF’s ones. Nowadays, ac-
cording to international studies lead on both lifespan and maintenance policies of
several nuclear units in different countries, the target of 60 years lifespan is con-
sidered to be granted, by a technical point of view. Since several years, EDF sets
the technical conditions to operate its nuclear unit well beyond 40 years: compo-
nents’ refurbishing and replacing programs currently run and will continue in the
next years. The extension of the lifespan will have to meet the compliance with
specific safety objectives which will be fixed by the French Regulation Authority
(ASN). By its side, the strategy of EDF for assuring a safe and high performance
running of its units in the long term is based on the five pillars below:
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– The ten-yearly inspection of each unit. Under the control of the Regulation
Authority, it is actually a complete check-up of the unit’s facilities. With
a duration of about 90 days, this exceptional shutdown period allows to
realize a huge number of controls and maintenance works. As a matter of
facts, the safety level of each unit is then reinforced every ten years. After
the end of the inspection, the Regulation Authority gives its verdict about
the continuation of the unit’s operation for ten more years.

– The modification and the refurbishing of unit’s devices. These operations
are lead regularly and can take place during ten-yearly inspection or other
shutdown periods. Thanks to the technical similarity of EDF’s units, these
works take profit of technological advances and the enhanced feedback of the
whole nuclear fleet.

– The survey and the anticipation of equipment’s ageing. EDF has set an am-
bitious maintenance policy of its components. Depending on the features and
the role played by each equipment, the maintenance policy could be sched-
uled, condition-based or corrective. Other actions as long-term partnership
with subcontractors to avoid technical obsolescence or shortage problems
complete this set of actions. As a key figure, EDF spends yearly about 2 bil-
lions of euros for the maintenance, refurbishing and modification of nuclear
units’ equipment.

– The preservation and the renewal of human skills. Nuclear units’ operation
needs workers with very specific and high skills. As a significant part of
technicians and engineers working in nuclear units will retire in the very
next years, this question is crucial and challenging and several actions have
already been set by HR to cope with (e.g. recruitment campaigns, tutoring,
partnerships with universities and engineering schools).

– The improvement of technical and technology knowledge. With its large staff
and budget (around 2000 people and 486 millions of euros in 2010 respec-
tively [15]), EDF R&D has a key role in this action. R&D activities cover all
disciplinary fields involved in nuclear process. As an example, two recently
acquired equipments of EDF R&D: the TITAN Transmission Electron Mi-
croscope and the IBM Blue Gene super-computer witness the ambition to
enhance more and more the knowledge of components and materials of nu-
clear units, by both physical and computer experiments.
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Abstract. This paper describes 12 years of experience in developing
simulation software for automotive companies. By building software from
scratch, using boundary integral methods and other techniques, it has
been possible to tailor the software to address specific issues that arise
in painting processes applied to vehicles and to provide engineers with
results for real-time optimization and manufacturing analysis. The title
provides the focus and the paper describes how living under the shadow
of uncertainty has made us more innovative and more resourceful in
solving problems that we never really expected to encounter when we
started on this journey in 1999.

Keywords: electrocoat simulation, computational science, simulating
painting processes.

1 Prologue

• On the one hand, this is a story of doing software business with over 14
automotive manufacturers spanning the USA, Europe, and Asia during the
period 1999 2011. The story is true, I have withheld the names of the guilty
and innocent, and the story is ongoing.

• On the other hand, it is the story of how little influence we, as a community
of computational scientists and numerical analysts, have had on engineers,
those doing the daily business of manufacturing, wherever they may be.

• But mainly, the story is about VALIDATION the process by which a man-
ufacturer thinks they can assess the quality of software.

In the attempt to assess the quality of software, manufacturers often forget that
it takes a level of skill to understand how to use software properly. Without a
clear understanding of the requirements of software and, more importantly, an
understanding of the imperfections in the manufacturers own processes, it is im-
possible to come to a valid conclusion given the present scheme of VALIDATION
undertaken by almost all automotive manufacturers.

This paper provides evidence to support these claims and gives some sim-
ple recommendations that make it easier for the manufacturer to make wiser
decisions.

A. Dienstfrey and R.F. Boisvert (Eds.): WoCoUQ 2011, IFIP AICT 377, pp. 46–59, 2012.
c© IFIP International Federation for Information Processing 2012
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2 Electrodeposition

The software used to exemplify our thesis is one simulator from a family of soft-
ware simulators called Virtual Paint Operations, or VPOTM Software for short.
This family contains software predictors for the processes involved in electro-
coating a vehicle, namely drainage, electrocoating, void detection, drag-out, and
baking. Everything said in this paper applies to all members of the VPOTM

Family but for the purposes of clarity the paper focuses on the simulator for
predicting the electrodeposition of paint on a vehicle body, frame, or part. Au-
tomotive manufacturers and the coatings industry call this type of paint e-coat
and it is the first coat of paint applied to protect a vehicle from salt spray induced
corrosion and stone chipping.

The application of e-coat is through a process called electrodeposition that
resembles the electro-plating technique that most people are familiar with. In
this case, a vehicle is immersed in a tank containing the e-coat material and
an electric potential (voltage) is applied to anodes positioned along the sides,
and possibly the top and bottom of the tank. The resulting electrical current
transports paint solids in the e-coat from the tank to the surface of the vehicle.
There, and as a result of the hydrolysis of water that also occurs, the paint
coagulates and adheres to the surface. As the paint adheres to the exterior
surfaces of the vehicle, an electrical resistance builds and since electricity always
seeks the path of least resistance the electrical current automatically flows to
areas of the vehicle not previously coated. To access recessed and other areas of
the body that are difficult to reach, engineers construct pathways, by manually
placing holes in the body of the vehicle to allow current to flow through.

Areas of the vehicle with an inadequate coating of e-coat are liable to corrode.
Therefore, the correct identification and subsequent choice of pathways are vital
to the vehicles quality, its corrosion protection, and the reduction of the vehicles
warrantee costs. Relying on manual experience and testing to insert a suitable
configuration of holes, of the right size, number, and placement, is not a good
idea, especially when software simulation guarantees success at far less cost to
the manufacturer.

An adequate coating of e-coat usually means exterior surfaces of the vehicle
have a thickness of paint, called film build, which for many manufacturers is
around 20 microns while interior surfaces can have less thick film build, usually
around 10 microns.

It is this difference in film build requirements between exterior and interior
surfaces that contributes to the cost of applying e-coat because to ensure inte-
rior surfaces have an adequate film build often requires the exterior surfaces to
have more than adequate coverage. One goal of any manufacturer is to avoid
excessive coverage on exterior surfaces while maintaining adequate coverage on
both exterior and interior surfaces.

Software experiments are an ideal way of investigating how to achieve this goal
because, unlike physical testing, they can guarantee success. Physical testing has
limitations —the amount of material wastage to perform the tests is bad for
theenvironment, it is financially expensive, and because the number of physical
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tests is limited, they are unsure of success. There are no such limitations when
using software but what is required is an understanding of the physical process
and the knowledge of how to use correctly a software tool that provides accurate
predictions of this process.

3 Validation

Since electrical resistance increases with paint thickness, one way of modeling
electrodeposition is to model resistivity correctly. This is the approach taken by
the simulator of this paper. A paint model, whose parameters are all measurable
and determined by a simple laboratory experiment, encapsulates the behavior
of e-coat over time, and allows accurate predictions at any instant the vehicle is
in the tank.

Verification of the simulator is the responsibility of the software developer
and in the present case; verification is a continual process of daily life, beginning
in 2003 and continuing today.

Validation is the process of comparing results from the simulator against
an experiment performed by the manufacturer. Validation should be a contract
between the customer and the developer, specifying precise conditions of the ex-
periment to ensure comparisons are fair. This specificity often falls short because
of uncertainties in the way the manufacturer conducted the experiment.

A manufacturer usually requests an experiment with the following components
for validating electrodeposition software.

1. The manufacturer applies e-coat to a vehicle and then bakes the vehicle.
2. Either the manufacturer or a third-party cut up the vehicle (a process called

teardown) and the manufacturer measures the thickness of electrocoat at
measurement points chosen by the manufacturer.

3. The manufacturer compares the measured thickness of electrocoat to the
predicted values obtained by the simulator.

On the face of it, these three components seem simple enough until one delves
into the details of how and when the manufacturer conducts the experiment.

4 The Vehicle to E-Coat

Western manufacturers usually intend to conduct item 1 of the experiment us-
ing a production vehicle, in other words, one that contains all of the rein-
forcements and other structural entities that are in the actual vehicle that a
customer purchases. However, a manufacturers good intentions often go awry
because the description of the vehicle that is passed to the software developer
misses some important material, such as reinforcements, bolts, separators, and
non-conductive material, the presence and position of all of which are necessary
if the simulator is to predict accurately the electrodeposition behavior.

On the other hand, Asian manufacturers will often have a specific point in
their design schedule for when they will perform a teardown. This teardown is for
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reasons other than validating electrodeposition software and can occur at a time
when the vehicle does not contain all of its reinforcements or other structural
entities. These manufacturers are reluctant, and often refuse, to perform a sec-
ond teardown for validating specific software. Regardless of the reasons for this
attitude, it behooves the software developer to accommodate the manufacturers
wishes and in this case provide an alternative benchmark by which to compare
the software predictions.

5 The Time Elapsed

Another uncertainty the developer needs to address is the time elapsed between
item 1 above and the comparison mentioned in item 3. For Asian manufacturers
this time can be on the order of years, because of their rigid teardown schedule,
and this means it is doubtful the e-coat used in step 1 still exists. Without a
sample of this e-coat, it is impossible to produce a paint model that encapsulates
the behavior of the e-coat used to paint the teardown vehicle.

The manufacturers paint vendor has been known to suggest that the labora-
tory experiment required to determine the model parameters is performed using
e-coat that has “the same characteristics” as that used to paint the teardown
vehicle. This is tantamount to using fresh e-coat paint and is definitely not ac-
ceptable for validation because the resistivity of such paint tends to be much
lower than the e-coat drawn from the manufacturers tank. Low resistivity im-
plies high film builds and the use of fresh paint will therefore result in distorted
and incorrect predictions from any simulator that uses properties of the e-coat
paint.

When a sample of the e-coat used to paint the aged teardown vehicle does
not exist then validation is inappropriate because it is impossible to reproduce
in software the precise conditions under which the vehicle was painted.

Provided the CAD file of the teardown vehicle exists, it is possible to model
the vehicle and if the e-coat used to paint the vehicle does not exist then one can
use a sample of the e-coat used to paint the existing vehicles of the same model
and type. In this way it is possible to evaluate trends in film build coverage over
the 3-D model of the teardown vehicle.

6 The Measurement Points

The manufacturer selects points on the vehicle surface and takes measurements
of the film thickness at them using one of the methods described in the follow-
ing sub-section. However, recording the accurate position of these measurement
points is not always easy for the manufacturer to remember and this is a po-
tential major source of error when it comes to obtaining predictions from the
simulator at the same measurement points. Very often, the person running the
simulator receives a photograph or image showing the positions and then has
to interpret them for input to the simulator. Ironically, to produce a predicted
result at an arbitrary point on the surface of a 3-D computational model requires
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a substantial amount of programming and technical effort, which is of little use
when the manufacturer forgets the position of a measurement point.

7 Measuring Film Build

Whichever geometry the manufacturer uses as a benchmark against which com-
parisons are made of the software predictions, it is necessary to consider how the
manufacturer measures the thickness of paint noted in item 2 above. There are
essentially two methods in common use by well known reputable manufacturers.
The first method consists of a special instrument designed specifically for this
purpose and is usually considered to be accurate. The second method however,
is manual and involves:

1. Measuring the thickness of the vehicle part.
2. Using sand paper to remove the paint layer and reveal the phosphate layer.
3. Measuring the thickness of the vehicle part again.
4. Computing the difference between the two measurements in 1 and 3.

Needless to say, item 2 of the second method is undesirable when considering
using the measured values as sufficiently accurate to be part of a validation
process. A small undue pressure on the sand paper can remove more of the
paint layer and thereby result in an incorrect measurement of film thickness.
However, this is unlikely to happen because usually the person performing the
removal has acquired a deft touch from experience over many years. Passing on
this experience to a new trainee will be problematical though.

8 Measured Film Build

An automobile manufacturer usually records measured film build by writing on
the surface of the teardown vehicle the thickness value at the measurement point.
A continuous sequence of voids usually indicates a problem in one or more stages
of the electrocoating process as opposed to a problem with the e-coat itself.

The phosphate process, that the vehicle undergoes prior to electrocoating,
cleans all surfaces of the vehicle from residual stamping oils and other contami-
nants, and deposits on the surface a protective layer of zinc and iron phosphate
crystals. The color of adequate phosphate crystal deposits are dullish gray and
rough and these facts help identify problem areas. For example, in the present
case, by examining a color photograph of the teardown or better still, the actual
teardown vehicle, the shiny color of the metal surrounding the voids indicates
that the phosphate system has not been effective in removing stamping oils, and
therefore the e-coat could not get to this surface of the vehicle causing the voids
to occur.

An engineer rarely divulges information about areas of the vehicle with phos-
phate problems or grease problems and therefore the simulator has no way of
knowing that contamination has compromised e-coat coverage in these areas of
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the vehicle. Consequently, predictions from the simulator cannot be correct in
these areas of contamination.

Surprisingly, engineers rarely understand this fact and tend to expect the
simulator to still produce accurate predictions in these areas even though they
know the areas are contaminated. This is a great pity, for in the spirit of a
validation contract, it is possible for the contractual partner —in this case the
software developer —to provide variations of the simulator to take account
of known uncertainties such as contamination from bad phosphating or grease
problems, or voids due to air pockets. For example, in the case of air pockets, a
variation of the simulator discussed in this paper can identify their location and
predict electrodeposition in their presence, which makes it unnecessary for the
engineer to know in advance where the air pockets may occur. The same is true
of grease spots where new research at BSSI may lead also to the identification
of grease spots a priori.

9 Towards a Turnkey HPC Solution

The attitude inherent in the last section is prevalent among engineers and is due
in large part from a combination of their bad experiences with software and its
providers, their lack of understanding of the power of mathematics, and their
lack of technical experience with software simulation.

The latter is especially true in countries with a low standard of education in
computational science. Unfortunately, there are few signs that this situation will
improve. Many Universities no longer teach the basic numerical methods that
are required to use software correctly, and employer-based training schemes have
little understanding of non-business or technical courses. Therefore, to optimize
the chances of a manufacturer using software simulation to improve their pro-
cesses, it behooves the developer to write software so that the level of technical
skill required to use it is minimal.

The software must include and convey the required expertise and knowledge in
a way that makes the software easier to use and control by non-expert users. This
means the developer must write the software to take account of imperfections in
the input to the software and must convey enough information to the user in a
way that allows them to either correct the input or to abandon the software run.
If done correctly then, the software supplements the present lack of knowledge
and expertise of an individual user in a way that opens up for the use of the
software by a much wider community, which is a beneficial outcome for the
manufacturer since a broader user space allows workers to migrate from one
responsibility to another without the company having to sacrifice the use of the
software.

Software produced in this way will not fail because invalid input is trapped
and either fixed automatically or reported to the user in a way that will allow a
correction.

Towards the goal of providing software that is significantly easier to use,
the designers of all the VPOTM Software made the following three conscious
decisions:
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1. A single user interface provides access to all VPOTM Software.
2. The computational mesh of the vehicle is the same for all VPOTM Software.
3. The system provides Software Generators to specify the input of tanks

(VPOTM Tank Generator) and bake ovens (VPOTM Oven Generator) and
to produce their respective 3-D models automatically.

Item 3 enables the manufacturer to specify dip tanks, e-coat tanks, and bake
ovens without the need of CAD files for these structures, up to date versions of
which often do not exist.

Item 2 ensures that only one mesh is required to model all the processes
addressed by VPOTM Software and thus the manufacturer only has to maintain
a single mesh for modeling painting processes. It is also the only item for which a
CAD file is required and the odds that this exists for a so-called Body In White
(BIW) are greatly improved.

Item 1 provides access to the VPOTM Software components from a single in-
terface and this makes it easier for users to invoke the individual related tools for
the topic of painting. A single user interface also makes it easier to combine the
use of tools for modeling related processes, for example, to determine the effects
on drainage from hole configurations used by electrocoating and vice versa.

10 Coping with Imperfections in the Input

The input to the simulator discussed in this paper requires the manufacturer to
specify three datasets describing

(a) The e-coat material
(b) The e-coat tank, and
(c) The vehicle.

11 The E-Coat Material

Characterization of the e-coat material is determined from a laboratory experi-
ment, usually performed by the automobile manufacturers paint vendor, accord-
ing to a set of rules specified by BSSI. As mentioned previously, a sample of
e-coat drawn from the operational e-coat tank is crucial for the correct deter-
mination of the model parameters that simulate the e-coat used to paint the
vehicle. This is the main contender for error in specifying the e-coat material
input for the simulator, as shown by the following items.

1. The automobile manufacturers paint vendor asserts that material used for
the laboratory experiment has the same characteristics as that in the opera-
tional tank, and this is blatantly impossible if the material is fresh or it has
not been drawn from the tank.

2. The paint vendor does not take adequate precautions when transporting the
e-coat from the operational tank, especially if it is possible for the e-coat to
be frozen during transit.
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Fig. 1. A single user interface to all tools makes it easier to use the software. In this
picture, invoking the Baking tool gives access to the Oven Generator.

BSSI has had to contend with these and other related issues from different au-
tomobile manufacturers at one time or another. Since the manufacturer or the
paint vendor does not divulge these issues, it was necessary for BSSI to develop
techniques, independent of the simulator, to analyze the laboratory results ahead
of calculating the paint model parameters. These techniques, which, among oth-
ers, identify the issues of 1 and 2 above, now form part of an Input Verification
package that all input to the simulator must pass through successfully before
running a simulation.

12 The E-Coat Tank

The dataset that describes the e-coat tank includes information about the anodes
contained in the tank: their type, the voltages applied to them, and the time the
vehicle spends in front of them.

Initially, many automobile manufacturers thought they had to provide infor-
mation about the shape of the tank and they instigated special laser measure-
ments to determine this information for their tanks. However, BSSI has removed
the burden from the manufacturer of providing this information because a built
in Tank Generator includes the information from the provided dataset (b) to
generate automatically a 3-D model of the tank suitable for the simulator.
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Thus, the Input Verification package mentioned in the previous section only
has to verify the anode information provided in the dataset. However, the ve-
racity of this information relies heavily on the records kept by the automobile
manufacturer and in some cases these can be questionable. Unfortunately, only a
physical inspection of the e-coat tank can verify these records, when they exist,
and this is something that BSSI has accepted they have to do for manufacturers.

13 The Vehicle

Every form of software simulation requires a computational mesh that captures
the physical features of the simulated process. Unstructured (or irregular) meshes
are usually required to model physical processes involving complex 3-D geome-
tries that contain recessed areas and other places difficult to reach. This type of
mesh is difficult to generate and requires experienced resources that most au-
tomotive companies do not possess. Therefore, BSSI incorporated a Mesh-Suite
into VPOTM Software and made it accessible to the individual components of
the software, since they all use the same mesh of the vehicle.

The starting point for this Suite is the native CAD file of the BIW, which is
essentially the frame of the vehicle containing the reinforcements, bolts, separa-
tors, and non-conductive material present in the vehicle when it enters any of the
tanks or the bake oven. For the electrodeposition simulator described in this pa-
per, dataset (c) is this native CAD file. Unfortunately, for one reason or another,
the automotive company rarely provides a CAD file of the BIW because one or
more of the listed items is usually missing. The omission of any one of them
will affect the predictions of e-coat but omitting one or more reinforcements will
have the most serious effect.

The present validation process defined by most automobile manufacturers
makes it very difficult to ascertain when the supplied CAD file differs from the
vehicle used to provide the benchmark measurements of film build. However, in
some cases where a manufacturer is willing to share these measurements with
the software developer it is possible for BSSI, using techniques it has developed,
to determine where differences occur in the geometry of the vehicle and then
together, the manufacturer and BSSI, can evaluate the situation and agree on
how to proceed. This is the ideal way of working but is all too often rare.

14 Observations

The standard validation process, used by most automobile manufacturers, can
never work because a painted vehicle is never free from imperfections. Unless
the manufacturer is prepared to accept this fact and to point out these imper-
fections BEFORE making simulations, predictions can never be totally correct.
Identifying imperfections makes it possible to use a simulator, modified to take
imperfections into account.

In an ideal world, validation is a contract meant to assist both the manufac-
turer and the developer. Unfortunately, for one reason or another, most manufac-
turers, but not all, view the validation process as adversarial. Until this attitude
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changes, manufacturers will not reap the benefits of using software to minimize
physical experiments.

To optimize the chances of a manufacturer using software simulation to im-
prove their processes, the developer must write software so that the level of tech-
nical skill required to use it is minimal. Since the use of the software requires
the INPUT to be correct in order for the OUTPUT to be likewise (garbage in
garbage out), and since the input requires three pieces of information that may
be contaminated with imperfections, the software must be written to recognize
this fact, inform the user, and supply enough information for corrections to be
made. To enhance this process and to foster a good working relationship, BSSI
has instigated the following new validation procedure, which is a modification of
the standard one.

At the manufacturers premises anywhere worldwide, BSSI will inspect the
vehicle while it is painted and baked, noting:

• Areas where grease or phosphate problems may have occurred prior to ap-
plying e-coat

• Any other imperfections in the vehicle or in the operations
• How the manufacturer takes measurements and transfers them to BSSI.

Of course the implementation of this new procedure will run into trouble when
the manufacturer wishes to use a teardown vehicle significantly older than the
inspected ones. However, provided the CAD file of the teardown vehicle exists,
it is possible to model it. Depending on the age of the teardown, the e-coat used
to paint it will most likely not exist and therefore validation is not appropriate.
Rather, the only recourse is to evaluate trends in film build coverage over the
3-D model of the teardown vehicle.

15 Conclusions

This paper gives a brief summary of the discoveries made by a naive software
developer when trying to interest automotive companies in the use of advanced
mathematical simulators of painting processes.

Naiveté on the part of the developer is from two perspectives: (1) the as-
sumption (unjustified) that the manufacturer’s people were knowledgeable in
the basics of modeling and understood the physical process and (2) the reality
that as a community of numerical analysts and computational scientists we have
failed to communicate with the very people we are in business to serve.

In the first case, the manufacturers technical people, almost universally, are
deeply skeptical, for whatever reason. In the second case, we have not been
successful to the extent that nowadays people who use software have little or no
concept of the importance of input to that software —the old adage of garbage-
in garbage-out is just that: a standalone saying that almost nobody thinks about
when using software.

Input to the software comes from the manufacturer and it has been our
unfortunate experience that almost no single one of them has got all aspects of
the input correct when requesting a validation.
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One way of avoiding this problem is for the software to diagnose invalid input,
correct it automatically where possible, and if not then convey to the user what
they need to do to correct the input. Another way is to remove the responsibility
from the user of providing aspects of the input that they are incapable of providing
correctly. The mesh of the vehicle is one example of both these situations.

For instance, the generation of a computational mesh requires that the el-
ements of the mesh (for example, triangles) are of a size, and placement that
accurately reproduces the simulated physical process. For example, to model ac-
curately the flow of paint between two plates, the number of triangles and their
size on both plates will depend on the gap between them. It should be intuitively
obvious that, if one is to obtain an accurate mesh that provides accurate predic-
tions from the simulator then many smaller triangles will be required on each
plate for a gap of 1 mm than for a gap of 3 mm or greater. In this context, an
accurate mesh is a mesh that has converged in space and mesh builders unfortu-
nately often overlook this aspect of mesh generation. It is not uncommon to find
the same mesh spacing used for gaps of 1, 2, 4, 8, and 10 mm and accompanying
wonderment that the predicted results look nothing like what they should be!

One way to avoid this problem is for the simulation system to generate the
converged mesh automatically without input from the user. Another way is for
the simulation system to monitor the mesh input by the user and determine if
it has converged in space or not. If it has not converged then, before continuing
with the run, the system informs the user that the mesh is too crude to get
accurate predictions and suggests where more refinement may be necessary.

I am definitely not advocating an artificial intelligence or expert systems ap-
proach to using the type of computational simulator addressed in this paper.
What I am advocating is much simpler: get the input right and the code
will work.

Since we know exactly the three pieces of information needed for the input
then we know what getting it right means. The three pieces of information come
from three different sets of people:

1. CAD people know CAD but not meshing - therefore let them provide the
CAD and the simulation system will do the meshing properly. The Mesh-
Suite mentioned above without input from the user produces an irregular
3-D mesh that is both mathematically correct and converged in space.

2. Paint vendors know paint - therefore let them supply what is required and
the simulation system will monitor and analyze their data to see that it is
correct.

3. The tank operators - they may delegate the operation of the tank to the
paint vendors, who, in turn, may not record the settings of that tank. Un-
fortunately, only a physical inspection of the e-coat tank can verify these
records, when they exist, and this is something that BSSI, as a developer,
have accepted to do for manufacturers.

In the paper, I have tried to make it clear that to perform computational sim-
ulation successfully the software must minimize the information required of the
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operator or engineer because they cannot easily get this information. Instead, the
software must be written in a way that either avoids the user having to provide
any information or that provides questions that the user is able to answer.

As mentioned in the prologue, this process is ongoing. One tool that is essen-
tial to ensure accuracy of code changes and to assist with parallel programming
implementations is Brian Smiths Test Harness (TH) [1]. This tool is an indis-
pensible part of working towards a turnkey HPC solution.

16 Afterword

“We are the heirs to a tradition that has left science and society out of
step.” – Jacob Bronowski, 1951

Over 60 years ago, the eminent scientist and philosopher Jacob Bronowski made
these remarks, in his seminal work The Common Sense of Science [2]. His words
are as true today as they were then.

Moving to today, I believe the further remark is unfortunately, no less true:

“We are the heirs to a tradition that has left computational science and
society out of step.” – 2011

I believe both statements are true for the same reasons: a lack of understanding
between both parties in each case, borne of a tradition where the practitioners of
Science and Computational Science tend to work in an environment populated
by the elite. This fact is even more apt today where computational scientists
have allowed the gap between themselves and their users to grow.

We cannot hope to stem or reverse this situation and therefore we have to ac-
commodate our knowledge and expertise in our software so that society at large
could find it as easy to use as their other Apps on their so-called smart-phones.
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Discussion

Speaker: Patrick Gaffney

Felipe Montes: You mention a series of problems that affect the validation
procedures of the simulation code. Those problems appear also in real life exper-
iments (not simulations). So how do car companies reconcile and argue against
simulation while real experimental results show the same problems as the model
simulation?

Patrick Gaffney: Experiments regarding electrodeposition (the subject of the
talk), baking, drainage, or void detection are limited to the extent that experi-
menting with each of these on full vehicles in real operational situations would
require an interruption to the production line and that is a no-no.

Automotive Manufacturers who conduct real life experiments for electrodepo-
sition, usually perform them under controlled laboratory conditions using sim-
plified geometries and they do not exhibit the problems discussed in the talk
and presented in the paper. It is only when scaling up to real world operating
circumstances that things go wrong, and they do so primarily because one ob-
tains the input for the code from several disjoint entities, many of whom are not
privy to the reasons, nor do they understand, why recording and monitoring of
conditions are necessary.

William Welch: How are OEMs using the simulator once verified? For ex-
ample, are they optimizing hole positions? This looks like a high-dimensional
optimization.

Patrick Gaffney: Once verified, OEMs use the software for a variety of pur-
poses, primarily at the Design and Re-Work stages, the latter for reducing the
costs of re-tooling.

In the Design stage, OEMs are using the software to determine configurations
of pathways (not necessarily holes) to enhance the flow of electric current and
hence e-coat coverage. For holes and other pathways we have provided software
that makes the task of running different scenarios easier.

Similarly, for optimizing hole or pathway positions in a vehicle part, the com-
bination of software tools together with 3-D animation to see how current flows,
is sufficient. High-dimensional optimization is not involved nor is it necessary if
one needs an answer quickly.

Brian Smith: Your model is that the cars are manufactured to be consistent
from one vehicle to the next–e.g., the holes are in the same place, the caps are the
same shape. Can you conceive of assessing the “vehicle” so that your software
can adjust the painting parameters to the “new” conditions?

Patrick Gaffney: Excellent question! Yes, we can absolutely conceive of this
situation, especially with the prospect of using fast GPUs to run the models
“on-the-fly” and this is something we are presently investigating.
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William Kahan: Can universities, that offer “computational science” minors
with engineering (but these courses are mostly about how to use software pack-
ages) be realistically expected to teach the kind of fundamentals about numerical
methods for PDE’s, whose lack you bemoaned to students whose syllabi are al-
ready packed tight?

Patrick Gaffney: A “computational science” minor that only teaches how to
use software packages is itself performing a disservice because I would contend
that in order to use a software package correctly a user should have some basic
knowledge of numerics, at least they should understand how important it is to
get the input correct.

This is not going to happen in the West, and therefore one cannot rely upon
Universities to fulfill this role.

However, the OEM has a responsibility for ensuring proper training of its staff
and technical people. For those OEMs, I would suggest that they include a very
basic course that exemplifies why the INPUT to the software is so important to
get right.

In our experience, it would be beneficial if engineers and those leaving Uni-
versity had knowledge and experience with the following basic items.

– Numbers
– Precision and significant figures
– Floating point arithmetic
– IEEE Standard
– The processes of rounding and truncation
– Rounding error

– Differences and divided differences
– Iteration methods
– Convergence
– Continuity
– Limiting processes

– Basic numerical integration

Anyone wishing more details should contact me directly.
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1 Introduction 

An approach to the conversion of regulatory requirements into a conceptual and 
computational structure that permits meaningful uncertainty and sensitivity analyses 
is descibed. This approach is predicated on the description of the desired analysis in 
terms of three basic entities: (i) a probability space characterizing aleatory 
uncertainty, (ii) a probability space characterizing epistemic uncertainty, and (iii) a 
model that predicts system behavior. The presented approach is illustrated with results 
from the 2008 performance assessment (PA) for the proposed repository for high-
level radioactive waste at Yucca Mountain (YM), Nevada, carried out by the U.S. 
Department of Energy (DOE) to assess compliance with regulations promulgated by 
the U.S. Nuclear Regulatory Commission (NRC) [1-3].        

2 Example: DOE’s Licensing Requirements for YM Repository 

The NRC’s licensing requirements for the YM repository provide a good example of 
the challenges that are present in the conversion of regulatory requirements into the 
conceptual structure and associated computational implementation of an analysis that 
establishes compliance (or noncompliance) with those requirements [4; 5]. 
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The following two radiation protection requirements for a reasonably maximally 
exposed individual (RMEI) are at the core of the NRC’s requirements for the YM 
repository ([6], p. 10829): “(a) DOE must demonstrate, using performance assess-
ment, that there is a reasonable expectation that the reasonably maximally exposed 
individual receives no more than the following annual dose from releases from the 
undisturbed Yucca Mountain disposal system: (1) 0.15 mSv (15 mrem) for 10,000 
years following disposal; and (2) 1.0 mSv (100 mrem) after 10,000 years, but within 
the period of geologic stability. (b) DOE’s performance assessment must include all 
potential environmental pathways of radionuclide transport and exposure.” In addi-
tion, the following elaboration on the preceding dose requirements for the RMEI is 
also given ([6], p. 10829): “Compliance is based upon the arithmetic mean of the 
projected doses from DOE’s performance assessments for the period within 1 million 
years after disposal”. 

The preceding dose requirements indicate (i) that dose results must be determined 
for long time periods into the future and also for many different potential modes of 
exposure and (ii) that some type of averaging process is to be used to determine the 
dose values to which the regulatory requirements apply. The indicated averaging 
process (i.e., “arithmetic mean of projected doses”) is vague and thus particularly 
challenging to the design of an analysis to assess compliance with the indicated 
bounds on (mean) dose. However, of necessity, implementation of this averaging 
process requires some form of a probabilistic representation of uncertainty. 

Additional detail on what is desired in assessing compliance with the indicated 
dose requirements is provided by the NRC in the following definition for PA ([7], p. 
55794): “Performance assessment means an analysis that: (1) Identifies the features, 
events, processes (except human intrusion), and sequences of events and processes 
(except human intrusion) that might affect the Yucca Mountain disposal system and 
their probabilities of occurring during 10,000 years after disposal, (2) Examines the 
effects of those features, events, processes, and sequences of events and processes 
upon the performance of the Yucca Mountain disposal system; and (3) Estimates the 
dose incurred by the reasonably maximally exposed individual, including the asso-
ciated uncertainties, as a result of releases caused by all significant features, events, 
processes, and sequences of events and processes, weighted by their probability of 
occurrence.” 

The preceding definition makes very clear that a PA used to assess regulatory 
compliance for the YM repository must (i) consider what could happen in the future, 
(ii) assign probabilities to what could happen in the future, (iii) model the effects of 
what could happen in the future, (iv) consider the effects of uncertainties, and (v) 
weight potential doses by the probability of the occurrence of such doses. Of particu-
lar interest and importance to the design of an analysis to assess compliance is the 
indicated distinction between “uncertainty” and “probability of occurrence”. This is a 
distinction between what is often called epistemic uncertainty and aleatory uncertain-
ty [8; 9]. Specifically, epistemic uncertainty derives from a lack of knowledge about 
the appropriate value to use for a quantity that is assumed to have a fixed value in the 
context of a particular analysis, and aleatory uncertainty derives from an inherent 
randomness in the properties or behavior of the system under study. 

The NRC further emphasizes the importance of an appropriate treatment of uncer-
tainty in assessing regulatory compliance for the YM repository in the following  
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definition of reasonable expectation ([7], p. 55813): “Reasonable expectation means 
that the Commission is satisfied that compliance will be achieved based upon the full 
record before it.  Characteristics of reasonable expectation include that it: (1) Requires 
less than absolute proof because absolute proof is impossible to attain for disposal due 
to the uncertainty of projecting long-term performance; (2) Accounts for the inherent-
ly greater uncertainties in making long-term projections of the performance of the 
Yucca Mountain disposal system; (3) Does not exclude important parameters from 
assessments and analyses simply because they are difficult to precisely quantify to a 
high degree of confidence; and  (4) Focuses performance assessments and analyses on 
the full range of defensible and reasonable parameter distributions rather than only 
upon extreme physical situations and parameter values.” As the preceding definition 
makes clear, the NRC intends that a thorough treatment of uncertainty is to be an 
important part of assessing compliance with licensing requirements for the YM repo-
sitory. 

Similar requirements to the NRC’s requirements for the YM repository, either by 
explicit statement or implication, underlie requirements for analyses of other complex 
systems, including (i) the NRC’s safety goals for nuclear power stations [10], (ii) the 
U.S. Environmental Protection Agency’s certification requirements for the Waste 
Isolation Pilot Plant [11; 12], and (iii) the National Nuclear Security Administration’s 
mandate for the quantification of margins and uncertainties in assessments of the 
nation’s nuclear stockpile [13-15]. Three recurrent ideas run through all of these ex-
amples: (i) the occurrence of future events (i.e., aleatory uncertainty), (ii) prediction 
of the consequences of future events (i.e., the modeling of physical processes), and 
(iii) lack of knowledge with respect to appropriate models and associated model pa-
rameters (i.e., epistemic uncertainty). The challenge in each case is to define a con-
ceptual model and an associated computational implementation that appropriately 
incorporates these ideas into analyses supporting compliance determinations.      

3 Conceptual Structure and Computational Implementation 

The needed conceptual structure and path to computational implementation is pro-
vided by viewing the analysis of a complex system as being composed of three basic 

entities: (i) a probability space (,, pA) characterizing aleatory uncertainty, (ii) a 

probability space (, , pE) characterizing epistemic uncertainty, and (iii) a model that 

predicts system behavior (i.e., a function f(t|a, e), or more typically a vector function 
f(t|a, e), that defines system behavior at time t conditional on elements a and e of the 
sample spaces  and  for aleatory and epistemic uncertainty). In the context of the 

three recurrent ideas indicated at the end of the preceding section, the probability 

space (,, pA) defines future events and their probability of occurrence; the  

functions f(t|a, e) and f(t|a, e) predict the consequences of future events; and the 

probability space (,, pE) defines “state of knowledge uncertainty” with respect to 

the appropriate values to use for analysis inputs and characterizes this uncertainty 
with probability. 
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In turn, this conceptual structure leads to an analysis in which (i) uncertainty in 
analysis results is defined by integrals involving the function f(t|a, e) and the two 
indicated probability spaces and (ii) sensitivity analysis results are defined by the 
relationships between epistemically uncertain analysis inputs (i.e., elements ej of e) 
and analysis results defined by the function f(t|a, e) and also by various integrals of 
this function. Computationally, this leads to an analysis in which (i) high-dimensional 
integrals must be evaluated to obtain uncertainty analysis results and (ii) mappings 
between high-dimensional spaces must be generated and explored to obtain sensitivity 
analysis results. In general, f(t|a, e) is just one component of a high dimensional func-
tion f(t|a, e). It is also possible for f(t|a, e) and f(t|a, e) to be functions of spatial 
coordinates as well as time. 

In general, the elements a of  are vectors 

1 2 ma ,a ,...,a=   a  (1)

that define one possible occurrence in the universe under consideration. In practice, 

the uncertainty structure formally associated with the set  and the probability meas-

ure pA is defined by defining probability distributions for the individual elements ai of 
a. Formally, this corresponds to defining a density function dAi(ai) on a set i charac-

terizing aleatory for each element ai of a (or some other uncertainty structure such as 
a cumulative distribution function (CDF) or a complementary CDF (CCDF) when 
convenient). Collectively, the sets i and density functions dAi(ai), or other appropri-

ate uncertainty characterizations, define the set  and a density function dA(a) for a 

on , and thus, in effect, define the probability space (, , pA). 

Similarly, the elements e of  are vectors 

[ ] 1 2A M n, e ,e ,...,e= =   e e e  (2)

that define one possible set of epistemically uncertainty analysis inputs, where the 
vector eA  contains uncertain quantities used in the characterization of aleatory uncer-
tainty and the vector eM  contains uncertain quantities used in the modeling of  
physical processes. As in the characterization of aleatory uncertainty, the uncertainty 

structure formally associated with the set  and the probability measure pE is defined 

by defining probability distributions for the individual elements ei of e. Formally, this 
corresponds to defining a density function dEi(ei) (or some other uncertainty structure 
such as a CDF or CCDF when convenient) on a set i characterizing epistemic uncer-

tainty for each element ei of e. Collectively, the sets i and density functions dEi(ei), or 

other appropriate uncertainty characterizations, define the set  and a density function 

dE(e) for e on , and thus, in effect, define the probability space (, , pE). In prac-

tice, the distributions for the individual elements of e are often obtained through an 
extensive expert review process (e.g., [16]). 
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The model, or system of models, that predict analysis results can be represented by 

( ) ( ) for a single resultM My t | , f t | ,=a e a e  (3)

and 

( ) ( ) ( ) ( )1 2 for multiple results,M M M Mt | , y t | , , y t | , ,... t | , = = y a e a e a e f a e  (4)

where t represents time. In practice, f(t|a, e) and f(t|a, e) are very complex computer 
models and may produce results with a spatial as well as a temporal dependency. 

In concept, the probability space (, , pA) and the function y(t|a, e) = f(t|a, e) are 

sufficient to determine the expected value EA[y(t|a, e)] of y(t|a, e) over aleatory un-
certainty conditional on the values for uncertain analysis inputs defined by an element 
e = [eA, eM] of  (i.e., risk in the terminology of many analyses and expected dose in 

the terminology of the NRC’s regulations for the YM repository). Specifically, 
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with the inclusion of “|eA” in dA(a|eA) and pA(j|eA) indicating that the distribution 

(i.e., probability space) for a is dependent on epistemically uncertain quantities that 
are elements of eA. Similarly, the probabilities that define CDFs and CCDFs that 
show the effects of aleatory uncertainty conditional on a specific element e = [eA, eM] 
of  are defined by  

( ) ( ) ( )| , | | , | dA M A y M A Ap y t y y t dδ   ≤ =   a e e a e a e


  (6)

and 

( ) ( ) ( )| , | | , | d ,A M A y M A Ap y y t y t dδ   < =   a e e a e a e


  (7)

respectively, where 
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| ,  

0 for | ,
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and 
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The integrals in Eqs. (6) and (7) can be approximated with procedures analogous to 
the sampling-based procedures indicated in Eq. (5). 

The integrals in Eqs. (5)-(7) must be evaluated with multiple values of e = [eA, eM] 
in order to determine the effects of epistemic uncertainty. As illustrated in Sect. 4, the 
indicated multiple values for e = [eA, eM] are often obtained with a Latin hypercube 
sample (LHS) 

1 2, , ,..., , 1, 2,..., ,k Ak Mk k k nke e e k nLHS= = =      e e e  (10)

of size nLHS from the sample space  for epistemic uncertainty due to the efficient 

stratification properties of Latin hypercube sampling [17; 18]. This sample provides 
the basis for both (i) the numerical estimation of the effects of epistemic uncertainty 
and (ii) the implementation of a variety sensitivity analysis procedures [19-21].  

Just as expected values, CDFs and CCDFs related to aleatory can be defined as in-
dicated in Eqs. (5)-(7), similar quantities can be defined that summarize the effects of 
epistemic uncertainty. Several possibilities exist: (i) epistemic uncertainty in a result 
y(t|a, eM) conditional on a specific realization a of aleatory uncertainty, (ii) epistemic 
uncertainty in an expected value over aleatory uncertainy, and (iii) epistemic  
uncertainty in the cumulative probability pA[y(t|a, eM)≤y|eA] or exceedance (i.e., com-
plementary cumulative) probability pA[y<y(t|a, eM) |eA] for a specific value y of an 
analysis result.  

For a result y(t|a, eM) conditional on a specific realization a of aleatory uncertainty, 
the expected value, cumulative probability and exceedance probability over epistemic 
uncertainty are given by 

( ) ( ) ( ) ( )
1

| , | , d | , / ,
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E M M E M Mk
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E y t y t d y t nLHS
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  = ≅  a e a e e a e
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and 
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respectively, where (i)  corresponds to the subspace of  that contains only the 

vectors eM and (ii) the vectors eMk are part of the LHS in Eq. (10). 
For an expected result EA[y(t|a, eM)|eA] over aleatory uncertainty, the expected val-

ue, cumulative probability and exceedance probability over epistemic uncertainty are 
defined analogously to the corresponding results in Eqs. (11)-(13). Specifically, 
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and 
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where, in general, the inner integrals over  will have to be evaluated with some 

appropriate integration procedure as indicated in Eq. (5). 
For a cumulative probability pA[y(t|a, eM)≤y|eA] or an exceedance (i.e., comple-

mentary cumulative) probability pA[y<y(t|a, eM) |eA] over aleatory uncertainty for a 
specific value y of an analysis result, the expected value, cumulative probability and 
exceedance probability over epistemic uncertainty are defined analogously to the 
corresponding results in Eqs.(14)-(16). For example, the expected value and cumula-
tive probability for pA[y<y(t|a, eM)|eA] that derive from epistemic uncertainty are de-
fined by  
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respectively. 
The conceptual structure and computational procedures described in this section 

are illustrated in the next section with results from the 2008 YM PA [1]. 

4 Example: 2008 PA for YM Repository 

The individual elements of the sample space  for aleatory uncertainty in the 2008 

YM PA are vectors of the form 
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, , , , , , , , , , , ,EW ED II IE SG SFnEW nED nII nIE nSG nSF=   a a a a a a a  (19)

where, for a time interval [a, b] (e.g., [0, 104 yr] or [0, 106 yr]), nEW = number of 
early waste package (WP) failures, nED = number of early drip shield (DS) failures, 
nII = number of igneous intrusive (II) events, nIE = number of igneous eruptive (IE) 
events, nSG = number of seismic ground (SG) motion events, nSF = number of seis-
mic fault (SF) displacement events, aEW = vector defining the nEW early WP failures, 
aED = vector defining the nED early DS failures, aII = vector defining the nII igneous 
intrusive events, aIE = vector defining the nIE igneous eruptive events, aSG = vector 
defining the nSG seismic ground motion events, and  aSF = vector defining the nSF 

seismic fault displacement events. The definition of the probability space (, , pA)  

for aleatory uncertainty was completed by defining probability distributions for the 
individual elements of a (see [1], App. J). In the 2008 YM PA, elements of the sam-

ple space  are referred to as scenarios, and elements of the set  are referred to as 

scenario classes. With this usage, scenarios and scenario classes correspond to what 
are called elementary events and events, respectively, in the usual terminology of 
probability theory.  

The individual elements of the sample space  for epistemic uncertainty in the 

2008 YM PA are vectors of the form 

[ ] 1 2 392A M, e ,e ,...,e ,= =   e e e  (20)

where, as examples, the following quantities are elements of e: DSNFMASS = scale 
factor used to characterize uncertainty in radionuclide content of defense spent nuc-
lear fuel; IGRATE = frequency of intersection of the repository footprint by a volcanic 
event (yr−1); MICTC99 = groundwater biosphere dose conversion factor (BDCF) for 
99Tc in modern interglacial climate; SCCTHRP = residual stress threshold for stress 
corrosion cracking nucleation of Alloy 22 (as a percentage of yield strength in MPa); 
SZGWSPDM = logarithm of scale factor used to characterize uncertainty in ground-
water specific discharge (dimensionless); and WDGCA22 = temperature dependent 
slope term of Alloy 22 general corrosion rate (K). Distributions characterizing epis-
temic uncertainty were assigned to the individual elements of e and, in effect, defined 

the probability space (, , pE) for epistemic uncertainty. A complete listing of the 

392 elements of e and sources of additional information on these variables and the 
development of their distributions are given in Table K3-3 of Ref. [1]. 

A very complex system of models was used to predict a large number of time-
dependent results related to evolution of the repository, including (i) the release of 
radionuclides from WPs, (ii) the transport of radionuclides away from the engineered 
component of the repository, and (iii) human exposure to released radionuclides (see 
[1], Table K3-4, for a listing of the analysis results selected for study). An overview 
description of these models and extensive sources of additional information are  
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available in Ref. [1]. As an example, a high-level overview of the models used in the 
analysis of seismic ground motion events is given in Fig. 1. The models indicated in 
Fig. 1 correspond to part of what is very simplistically represented by f(t|a, e) in Eq. 
(4). 

Owing to its central role in the NRC’s regulatory requirements for the YM reposi-
tory, 

( )
[ ]

| , dose (mrem/yr) to the RMEI at time  (yr) conditional on  

and ,  

M

A M

D t t= ∈

= ∈

a e a

e e e




 

 (21)

will be used as an example to illustrate results of the form indicated in Sect. 3. It is in 
the generation of such results where the challenge of bringing conceptual structure 
and computational implementation together arises. Bluntly put, it is not possible to 
evaluate integrals of the form indicated in Sect. 3 for D(t|a, eM ) defined by modeling 
systems of the complexity shown in Fig. 1 without a carefully designed computational 
strategy that makes efficient use of what will almost always be a limited number of  
detailed, mechanistic calculations. Such a strategy will be analysis specific and de-
signed to take advantage of particular properties of the models in use. 

A core quantity in the NRC’s regulatory requirements for the YM repository is the 
expected value EA[D(t|a, eM)|eA] of D(t|a, eM) over aleatory uncertainty, with 
EA[D(t|a, eM )|eA] being an example of the expected value formally defined in Eq. (5). 
Specifically, 
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 (22)

where the subscripts contained in the set  are used to denote doses to the RMEI from 

individual scenario classes with N designating the scenario class in which no disrup-
tions occur and the remaining subscripts designating scenario classes associated with 
the correspondingly subscripted aleatory occurrences in Eq. (19). Results associated 
with dose DC(t|a, eM) for scenario class C in Eq. (22) are assumed to be calculated 
with only those elements of a and e = [eA, eM] that are related to scenario class C. 
The approximation to EA[D(t|a, eM )|eA] in Eq. (22) can be justified on the basis of 
tradeoffs between the effects of high probability-low consequence scenario classes 
and low probability-high consequence scenario classes. 

Epistemic uncertainty is propagated in the 2008 YM PA with an LHS 

1 2 392, , ,..., , 1,2,..., 300,k Ak Mk k k ke e e k nLHS= = = =      e e e  (23)

from the sample space  for epistemic uncertainty.  In turn, the approximation 
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Fig. 1. Information transfer between the model components and submodels for the seismic 
scenario class in the 2008 YM PA ([1], Fig. 6.1.4-6) 

( ) ( )ˆ ˆ| , | | , |A Mk Ak A C Mk AkC
E D t E D t

∈
   ≅   a e e a e e


 (24)

results for each element ek of the LHS in Eq. (23), where ˆ [ ( | , ) | ]A Mk AkE D t a e e  and 

ˆ [ ( | , ) | ]A C Mk AkE D t a e e  denote approximations to [ ( | , ) | ]A Mk AkE D t a e e and 

[ ( | , ) | ]A C Mk AkE D t a e e , respectively. Because of the occurrence of the same elements 

of eM in the evaluation of DC(t|a, eM ) for different values of C (i.e., for different  
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scenario classes), it is essential that the doses DC(t|a, eM ) in Eq. (24) be evaluated for 
the same elements of the LHS in Eq. (23) for the indicated approximation to 

[ ( | , ) | ]A Mk AkE D t a e e  to be valid.  

As an example, analysis results are presented for seismic ground motion events oc-
curring in the time interval [0, 2×104 yr] (i.e., for what is called the seismic ground 
motion scenario class in the 2008 YM PA). This restriction reduces the elements of 
the sample space  for aleatory uncertainty to 

1 1 1 2 2 2, , , , , , ,..., , , ,nSG nSG nSGnSG t v A t v A t v A=   a  (25)

where (i) nSG = number of seismic ground motion events in 20,000 yr, (ii) ti = time 
(yr) of event i, (iii) vi = peak ground velocity (m/s) for event i, (iv) Ai = damaged area 
(m2) on individual WPs for peak ground velocity vi, (v) the occurrence of seismic 
ground motion events is characterized by a hazard curve for peak ground velocity, 
and (vi) damaged area is characterized by distributions conditional on peak ground 
velocity. 

To evaluate results of the form defined in Sect. 3 for the seismic ground motion 
scenario class, it is necessary to integrate the function DSG(t|a, eM) over the sample 
space  for aleatory uncertainty with a defined as indicated in Eq. (25). In full detail, 

DSG(t|a, eM) is defined by the model system shown in Fig. 1. Evaluation of this system 
is too computationally demanding to permit its evaluation 1000’s of times for each 
element ek = [eAk, eMk] of the LHS in Eq. (23). This is a common situation in analyses 
of complex systems, where very detailed physical models are developed which then 
turn out to be too computationally demanding to be naively used in the propagation of 
aleatory uncertainty. In such situations, it is necessary to find ways to efficiently use 
the results of a limited number of model evaluations to predict outcomes for a large 
number of different possible realizations of aleatory uncertainty. 

For the seismic ground motion scenario class and the time interval [0, 2×104 yr], 
the needed computational efficiency was achieved by evaluating DSG(t|a, eMk) at a 
sequence of times (i.e., 100, 1000, 3000, 6000, 12000, 18000 yrs) and for a sequence 
of damaged areas areas (i.e., 10−8+s(32.6 m2) for s = 1, 2, …, 5 with 32.6 m2  corres-
ponding to the surface area of a WP) at each time (Fig. 2a). This required 6×5 = 30 
evaluations of the system indicated in Fig. 1 for each LHS element in Eq.(23). Once 
obtained, these evaluations can be used with appropriate interpolation and additive 
procedures to evaluate DSG(t|a, eMk) for different values of a for each LHS element ek 
= [eAk, eMk].           

The individual CCDFs in Fig. 2b are defined by probabilities of the form shown in 
Eq. (7) with (i) DSG(t|a, eMk) and eAk replacing y(t|a, eM) and eA and (ii) t = 104 yr. 
Numerically, the integrals that define exceedance probabilities for the individual 
CCDFs are approximated with (i) random sampling from the possible values for a as 

indicated in Eq. (5) and (ii) estimated values ˆ ( | , )SG j MkD t a e  for DSG(t|a, eMk) con-

structed from results of the form shown in Fig. 2a. Specifically, 

( ) ( )
1

ˆˆ | , | | , / ,
nS

A SG Mk Ak y SG j Mk
j

p y D t D t nSδ
=

  < =   a e e a e  (26)
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with the aj, j = 1, 2, …, nS, sampled in consistency with the density function dA(a| 
eAk) for vectors of the form shown in Eq. (25). The mean and quantile curves in Fig. 
2b are (i) defined and approximated as indicated in Eqs. (17) and (18) and (ii) provide 
a summary of the epistemic uncertainty present in the estimation of exceedance prob-
abilities (i.e., pA[y < DSG(104|a, eM)|eA]) for DSG(104|a, eM).      

 

     

              

Fig. 2. Example results for dose (mrem/yr) to RMEI for seismic ground motion scenario class: 
(a) dose for seismic events occurring at different times and causing different damaged areas on 
WPs ([1], Fig. J8.3-3a), (b) CCDFs for dose at 10,000 yr ([1], Fig. J8.3-10a), (c) CCDF for 
expected dose at 10,000 yr ([1], Fig. J8.3-5c), (d) time-dependent expected dose ([1], Fig. J8.3-
6), (e) stepwise rank regression for expected dose at 10,000 yr ([1], Fig. K7.7.1-2a), and (f) 
time-dependent PRCCs for expected dose ([1], Fig. K7.7.1-1c) 
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As indicated in Eq. (5), the expected value EA[DSG(t|a, eMk)|eAk] of DSG(t|a, eMk) 
over aleatory uncertainty can also be defined and estimated, with the estimate 
ˆ

AE [DSG(t|a, eMk)|eAk] obtained as shown in Eq. (26) with removal of the indicator 

function yδ . The expected values EA[DSG(t|a, eMk) |eAk] and their corresponding esti-  

mates are the result of reducing each CCDF in Fig. 2b to a single number. As indi-
cated in Eqs. (14)-(16) and illustrated in Fig. 2c, epistemic uncertainty associated 
EA[DSG(t|a, eM)|eA] can be summarized by (i) an expected (mean) value EE{EA[DSG      

(t |a, eM)|eA]} over epistemic uncertainty as defined in Eq. (14) , (ii) a CDF as defined 
by the cumulative probabilities in Eq. (15), or (iii) a CCDF as defined by the com-
plementary cumulative probabilities in Eq. (16). The indicated mean defined in Eq. 
(14) and illustrated in Fig. 2c is the outcome of reducing all the information in Fig. 2b 
to a single number. The approximation process for a CDF also provides the basis for 
obtaining specific quantile values (e.g., q = 0.05, 0.5 ~ median, 0.95) as indicated in 
Fig. 2c. 

In the NRC’s regulatory requirements for the YM repository, bounds apply over  
time to expected dose to the RMEI. Thus, the analysis results of greatest interest are 
expected dose and the uncertainty in expected dose as a function of time (Fig. 2d). 
Specifically, expected doses for individual LHS elements correspond to the lighter 
lines in Fig. 2d, and quantile and mean values for expected dose that summarize the 
effects of epistemic uncertainty correspond to the darker dashed and solid lines. The 
results on Fig. 2d at 10,000 years correspond to the results shown in more detail in 
Fig. 2c. For reasons of computational efficiency, the individual expected dose curves 
in Fig. 2d were estimated with a quadrature procedure as described in Sect. J8.3 of 
Ref. [1] rather than with a sampling-based procedure as illustrated in Fig. 2b. 

Sensitivity analysis is an important component of the 2008 YM PA and contributes 
to an establishment of “reasonable expectation” by supporting a detailed examination 
of the operation of the models that predict dose and expected dose to the RMEI and 
many other analysis outcomes of interest. Specifically, sensitivity analysis in the 2008 
YM PA was based on an exploration of the mapping between elements of the LHS 
indicated in Eq. (23) and analysis results of interest (e.g., dose and expected dose to 
the RMEI) with a variety techniques including stepwise rank regression (Fig. 2e) and 
time-dependent partial rank correlation coefficients (PRCCs) (Fig. 2f) [19]. In step-
wise rank regression, variable importance is indicated by the order in which variables 
are selected in the stepwise process, the incremental changes in R2 values as variables 
are added to the regression model, and the values of the standardized rank regression 
coefficients (SRRCs) in the regression model. The indicated results with R2 values 
and SRRCs provide a measure of the amount of epistemic uncertainty in the depen-
dent variable under consideration that derives from the epistemic uncertainty in indi-
vidual analysis inputs (i.e., elements of e); in contrast, PRCCs provide a measure of 
the strength of the monotonic relationship between individual epistemically uncertain 
analysis inputs and the dependent variable under consideration after removal of the 
monotonic effects of all other epistemically uncertain analysis inputs. Definitions for 
selected variables appearing Figs. 2e and 2f are given after Eq. (20). 
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Fig. 3. Expected dose to RMEI: (a, b) Expected dose and associated PRCCs for [0, 2×104 yr] 
([1], Fig. K8.1-1[a]) and (c, d) Expected dose and associated PRCCs for [0, 106 yr] ([1], Fig. 
K8.2-1[a]) 

 
Additional detailed information on uncertainty and sensitivity analysis for the 

seismic ground motion scenario class in the 2008 YM PA is available in Sects. J8 and 
K7 of Ref. [1]. Included in this material are extensive examples of results conditional 
on individual realizations of aleatory uncertainty as defined in Eqs. (11)-(13). 

As indicated in Eq. (22), expected dose results are obtained for individual scenario 
classes and then summed to determine expected dose over all scenario classes (i.e., 
over all futures as described by the vectors defined in Eq. (19)). The results of this 
summation are shown in Figs. 3a and 3c for the time intervals [0, 2×104 yr] and [0, 
106 yr], respectively. The individual expected dose curves in Fig. 3c are not as smooth 
as the individual expected dose curves in Fig. 3a. This difference results because the 
complexity of the calculations for the [0, 106 yr] time interval required the use of a 
sampling-based procedure to approximate expected dose from seismic ground motion 
events (see [1], Sect. J8.4); in contrast, the quadrature procedures used to determine 
expected dose for the individual scenarios for the [0, 2×104 yr] time interval resulted 
in the smoother expected dose curves in Fig. 3a.    
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Ultimately, the NRC decided that their expected (i.e., “arithmetic mean”) dose re-
quirements of 15 mrem/yr and 100 mrem/yr for the time intervals [0, 104 yr] and [104, 
106 yr], respectively, applied to the mean (i.e., solid line) doses in Figs. 3a and 3c 
(i.e., to results of the form defined in Eq. (14)). However, it is the spread of the indi-
vidual dose curves in Figs. 3a and 3c that provide the NRC requested uncertainty 
information and thus a basis for a “reasonable expectation” that the requirements are 
being met despite the presence of substantial epistemic uncertainty.  Further, sensitivi-
ty analyses of the form illustrated in Figs. 3b and 3d also contribute to “reasonable 
expectation” by enhancing understanding of the overall analysis and thus confidence 
in the numerical implementation of the analysis. Definitions for selected variables 
appearing Figs. 3b and 3d are given after Eq. (20). 

Additional detailed information on uncertainty and sensitivity analysis in the 2008 
YM PA is available in Apps. J and K of Ref. [1]. 

5 Concluding Message 

Everyone cannot be expected to agree on the details of an analysis of a complex sys-
tem, but everyone should be able to know what those details are. Without such know-
ledge, it is not possible to have informed and meaningful discussions involving the 
views of all parties interested in the analysis. 

A necessary starting point for the design, computational implementation and, ulti-
mately, communication of an analysis for a complex system is a clear conceptual 
structure. As described in this presentation, this structure for many, if not most,  

analyses, can be based on three basic entities: a probability space (,, pA) characte-

rizing aleatory uncertainty, a probability space (, , pE) characterizing epistemic 

uncertainty, and a model that predicts system behavior (i.e., a function f(t|a, e), or 
more typically a vector function f(t|a, e), that defines system behavior at time t condi-
tional on elements a and e of the sample spaces  and  for aleatory and epistemic 

uncertainty). As illustrated with results from the 2008 YM PA, this conceptual view 
of the analysis of a complex system provides (i) a way to formally describe that  
analysis and then (ii) a clear path from formal description to computational  
implementation to written documentation. 
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Discussion 

Speaker: Jon Helton 
 
Scott Ferson: Jon, the definition on your slide #16 says that epistemic uncertainty is a 
lack of knowledge about a fixed value. But it seems to me that the fixedness should 
not be part of the definition. Of course, some quantities are fixed by definition, but 
others are fixed only under assumptions we might make. Suppose some quantity is 
unknown to us. It may be a fixed value, or it may be changing its value through time, 
but we don’t know which because of our great overall uncertainty about the quantity. 
Isn’t that epistemic uncertainty too, or would you like to call it something else? 
 
Jon Helton: The indicated slide states that epistemic uncertainty “arises from a lack 
of knowledge about the appropriate value to use for a quantity that is assumed to have 
a fixed value in the context of a specific analysis”. The salient idea is that the assump-
tions and associated computational structure for a specific analysis are developed 
under whatever knowledge, time and resource constraints may exist. Once this devel-
opment is complete at whatever level of sophistication is possible and before any 
calculations can be carried out, it is necessary to numerically define all the quantities 
required in the computational implementation of the analysis. In most analyses, many 
of these quantities will not be precisely known and are thus epistemically uncertain. 
This epistemic uncertainty is function of both available knowledge and the exact na-
ture of each uncertain quantity in the analysis under consideration. 

In the preceding, I have deliberately referred to uncertain “quantities” rather than 
using some expression that suggests that epistemic uncertain only involves analysis 
inputs that are real-valued parameters. Specifically, the uncertain quantities that are 
being referred to could be (i) real-valued parameters, (ii) functions of time or space, 
(iii) distributions, (iv) alternative models or model structures, or (v) some other possi-
bility. 

The “fixedness” that Scott refers to is unavoidably part of the assumptions of an 
analysis and thus central to the concept of epistemic uncertainty in the context of a 
specific analysis. Scott presents a modeling situation where a quantity may, or may 
not, be a function of time. This is an example of epistemic uncertainty where the un-
certain quantity is actually a model (i.e., the appropriate model to use for the temporal 
behavior of a variable). In turn, there are several possible strategies that an analysis 
team might take to deal with this situation, including (i) define a distribution of possi-
ble models for temporal behavior, (ii) define a distribution of functions for temporal 
behavior, or (iii) use average temporal behavior as an analysis input and the treat this 
average as being epistemically uncertain. As indicated earlier, whatever is done will 
depend on existing knowledge, time and resource constraints, and in turn, will affect 
the epistemic uncertainty in individual quantities used as inputs to the analysis. 
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Abstract. Most large and complex physical systems are studied by
mathematical models, implemented as high dimensional computer simu-
lators. While all such cases differ in physical description, each analysis of
a physical system based on a computer simulator involves the same un-
derlying sources of uncertainty. These sources are defined and described
below. In addition, there is a growing field of study which aims to quan-
tify and synthesize all of the uncertainties involved in relating models
to physical systems, within the framework of Bayesian statistics, and to
use the resultant uncertainty specification to address problems of fore-
casting and decision making based on the application of these methods.
We present an overview of the current status and future challenges in
this emerging methodology, illustrating with examples drawn from cur-
rent areas of application including: asset management for oil reservoirs,
galaxy modeling, and rapid climate change.
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1 Uncertainty in Complex Systems Represented by
Computer Simulators

Most large and complex physical systems are studied by mathematical models,
implemented as high dimensional computer simulators (like climate models).
To use complex simulators to make statements about physical systems (like
climate), we need to quantify the uncertainty involved in moving from the model
to the system. The issues that we must address are methodological (how can we
estimate what climate is likely to be?), computational (how can we ensure that
our methods are tractable?) and foundational (why should our methods work
and what do our answers mean?).

� Thanks to Engineering and Physical Sciences Research Council for funding through
the Managing Uncertainty in Complex models project, and Natural Environment
Research Council for funding through the RAPID programme. Thanks to Jonathan
Cumming, Ian Vernon, Danny Williamson for the collaborations described in this
paper.

A. Dienstfrey and R.F. Boisvert (Eds.): WoCoUQ 2011, IFIP AICT 377, pp. 78–94, 2012.
c© IFIP International Federation for Information Processing 2012



Bayes Linear Analysis for Physical Systems 79

Applications range across all areas of science and technology. In this article, I
will offer illustrations based on the following three applications, chosen as I have
some personal experience with each, and they illustrate the wide range of areas
of application for the methodology that we shall describe.

Oil Reservoirs. An oil reservoir simulator takes as inputs a physical descrip-
tion of the properties of a reservoir (permeabilities, porosities, faults, etc) and
produces, as output, various well characteristics(pressure profiles, oil and gas
production rates, etc.). The simulator is used to help manage assets associated
with the reservoir. The aim is commercial: to develop efficient production sched-
ules, determine whether and where to sink new wells, and so forth.

Galaxy Formation. The study of the development of the Universe is supported
by using Galaxy formation simulators. These simulators take as input various
parameters controlling physical processes which are thought to control the for-
mation of galaxies and the simulators perform simulations of the development of
the universe from the point of origin to the present producing as output various
large scale quantities which can be compared to current cosmological measure-
ments. The aim is scientific - to gain information about the physical processes
underlying the Universe.

Climate Change. Large scale climate simulators are constructed to assess likely
effects of human intervention upon future climate behaviour. Aims are both
scientific - much is unknown about the large scale interactions which determine
climate - and also very practical, as such simulators provide evidence for the
importance of changing human behaviour before possibly irreversible changes
are set into motion.

While each such model differs in all details of the scientific basis and mathe-
matical implementation, there are various sources of uncertainty which are com-
mon across all such applications.

(i) parametric uncertainty (each model requires a, typically high dimen-
sional, parametric specification, whose value is not known),

(ii) condition uncertainty (uncertainty as to boundary conditions, initial
conditions, and forcing functions),

(iii) functional uncertainty (model evaluations often take a long time, so
the function is unknown for almost all choices of inputs),

(iv) stochastic uncertainty (either the model is stochastic, giving different
outcomes each time it is evaluated under the same choice of input parameters,
introducing uncertainly directly, or aspects of the modelling which should in-
volve such stochastic uncertainty have been reduced to a deterministic form,
introducing uncertainty indirectly),

(v) solution uncertainty (the system equations can only be solved to some
necessary level of approximation),

(vi) structural uncertainty (even taking into account all of the above
sources of uncertainty, the model only approximates the physical system and
this discrepancy introduces further uncertainty about system behaviour),
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(vii) measurement uncertainty (as the model is calibrated against system
data all of which is measured with error),

(viii) multi-model uncertainty (usually we have not one but many models
related to the physical system),

(ix) decision uncertainty (to use the model to influence real world out-
comes, we need to relate things in the world that we can influence to inputs to
the simulator and through outputs to actual impacts. These links are uncertain).

Different physical models vary in many aspects, but the formal structures for
analyzing all of these components of the uncertainty for the physical system, as
derived from the study of computer simulators for the system, are very similar,
which is why there is a common underlying methodology for such problems.
In this article, we give an informal introduction to some important features of
this methodology. First, we introduce some general features of the uncertainty
structure, describe the Bayesian approach for addressing these uncertainties, and
explain why we prefer, in certain cases, a Bayes linear approach to the uncer-
tainty analysis. Then, we outline the rationale for history matching as a way
to constrain the input space, and describe a simple forecasting methodology for
future system outcomes. We illustrate the development with a brief description
of examples arising from each of the simulation problems described above. Fi-
nally, we consider the reason why we should view a computer simulator as being
informative for a physical system.

2 General Uncertainty Structure

Each simulator for a physical system can be conceived as a function F (x), where
x is an input vector, representing unknown properties of the physical system,
and F (x) is the corresponding output vector representing aspects of system
behaviour, y.

Interest in the analysis concerns general qualitative insights as to the be-
haviour of the system plus some of the following: (i) the “appropriate” (in some
sense) choice, x∗, for the system properties x; (ii) the use that we can make of
historical observations z, observed with error on a subset yh of y, both to test
and to constrain the model; (iii) how informative F (x∗) is for actual system
behaviour, y, particularly for forecasting future system outcomes, yp;(iv) the
optimal assignment of any decision inputs, d, in the model.

For example, in a climate analysis, yh might correspond to historical climate
outcomes over space and time, y to past, current and future climate, and the
“decisions” might correspond to different policy relevant choices such as carbon
emission scenarios.

How can we solve such problems? If observations, z, are made without error
and the model is a perfect reproduction of the system, then, in principle, we can
write z = Fh(x

∗), invert fh to find x∗ and learn about all future components of
y = F (x∗). If x contains some control parameters, then these are set to optimize
properties of future outcomes contained in y.
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However, in practice, the inversion of slow, high dimensional and complex
functions is a very hard problem. Further, the observations z are typically made
with error, and the model always differs from the physical system, so we must
separate the uncertainty representation into two relations, one expressing the
data uncertainty and one expressing the structural uncertainty: for example, the
simplest such representation is of the form

z = yh ⊕ e, y = F (x∗)⊕ ε (1)

where e, ε have some appropriate probabilistic specification, possibly involving
parameters which require estimation, and the notation U ⊕ V denotes the addi-
tion of U + V , in the case where U is probabilistically independent of V , for a
full probabilistic specification or U, V are uncorrelated, if we only make a second
order specification of means, variances and covariances. We therefore need to
make a statistical inversion of the data through the function and make statis-
tical predictions as to future system behaviour. This is a much harder problem
than the deterministic inversion, and we still haven’t accounted for condition
uncertainty, multi-model uncertainty, and so forth.

In practice it is extremely rare to find a serious quantification of the total un-
certainty about a complex system arising from the all of the uncertainties in the
model analysis that we have identified. Therefore, for almost all applications, no-
one really knows the reliability of the model based analysis, so that there can be no
sound basis for identifying appropriate real world decisions based on such analyses.
The space between models and reality arises partly because modellers and scien-
tists don’t think about total uncertainty in a sufficiently systematic way and nor do
most statisticians. Policy makers don’t know how to frame the right questions for
the modellers to identify the gap between their analyses and the likely outcomes in
the real world and there are few funding mechanisms to address such issues. And,
of course , such a full uncertainty analysis is difficult and time consuming.

3 Bayesian Uncertainty Analysis for Complex Models

In the subjectivist Bayesian view, the meaning of any probability statement
is the uncertainty judgement of a specified individual, expressed on the scale of
probability (by consideration of some operational elicitation scheme, for example
by consideration of betting preferences); for a somewhat subjective introduction
to the subjectivist position, see[6]. This interpretation has an agreed testable
meaning, sufficiently precise to act as the basis of a discussion about the meaning
of the analysis. In this interpretation, any probability statement is the judgement
of a named individual, so we should speak not of the probability of rapid climate
change, but instead of Anne’s probability or Bob’s probability of rapid climate
change and so forth.

There is an important practical issue of perception, as most people expect
something more authoritative and objective than a probability which is one per-
son’s judgement. However, the disappointing truth is that, in almost all cases,
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stated probabilities emerging from a complex analysis are not even the judge-
ments of any individual. Nor do they have any other clear and well defined
meaning.

So, it is not unreasonable that the objective of our analysis should be prob-
abilities which are asserted by at least one person (more would be good!). The
Bayesian formalism provides a way, at least in principle, to realize this aim.
In the simplest form, the Bayesian approach requires the specification of the
following ingredients:

– a prior probability distribution for best inputs x∗

– a probabilistic uncertainty description for the computer function F
– a probabilistic discrepancy measure relating F (x∗) to the system y
– a likelihood function relating historical data z to y

This full probabilistic description provides a formal framework to synthesis ex-
pert elicitation, historical data and a careful choice of simulator runs. We may
then use our collection of computer evaluations and historical observations to
analyze the physical process in order to determine appropriate values for sim-
ulator inputs (calibration; history matching), to assess the future behaviour of
the system (forecasting), and to optimize the performance of the system.

There is much current interest in this problem. Good starting points for
entering the Bayesian literature in this area are [10], [12]. A great general
resource, offering references, papers, discussion and a methodological toolkit,
is the Managing Uncertainty in Complex Models (MUCM) web-site,
http://www.mucm.ac.uk/. (MUCM is a consortium between the Universities
of Aston, Durham, LSE, Sheffield, Southampton, developing general methodol-
ogy for this general area with Basic Technology funding.)

This approach is very successful for problems of intermediate size and com-
plexity. For very large scale problems, however, such a full Bayes analysis is very
difficult because (i) it is hard to give a meaningful full prior probability spec-
ification over high dimensional spaces; (ii) the computations for learning from
data (observations and computer runs), particularly for identifying informative
ensembles of choices of parameter values at which to evaluate the simulator, may
be technically difficult; (iii) the likelihood surface is extremely complicated, and
any full Bayes calculation may therefore be extremely non-robust.

4 Bayes Linear Approach

The idea of the Bayesian approach, namely capturing our expert prior judge-
ments in stochastic form and modifying them by appropriate rules given obser-
vations, is conceptually appropriate (and there is no obvious alternative). Bayes
linear analysis is a practical alternative to the fully specified Bayesian approach,
being based on a prior specification only of the means, variances and covariances
of all quantities of interest, where we make expectation, rather than probability,
the primitive for the theory, following de Finetti, [5]. For a full account of the
Bayes linear approach, see [9].de Finetti chooses expectation over probability as,

http://www.mucm.ac.uk/
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if expectation is primitive, then we can choose to make as many or as few expec-
tation statements as we choose (including our choice of probabilities, which are
simply expectations for the corresponding indicator functions), whereas, if prob-
ability is primitive, then we must make all of the probability statements before
we can make any of the expectation statements. When there are many quantities
that we must specify uncertainty judgements for, it is very helpful to have the
option of restricting our attention to that sub-collection of specifications which
we are most interested in analyzing carefully.

Corresponding to Bayes theorem, which is the basic updating tool for full
Bayes analysis, is the operation of belief adjustment. Ez[y],Varz[y] are the ex-
pectation and variance for the vector y adjusted by the vector z, evaluated as

Ez[y] = E(y) + Cov(y, z)Var(z)−1(z − E(z)),

Varz[y] = Var(y)− Cov(y, z)Var(z)−1Cov(z, y).

If Var(z) is not invertible, then we use an appropriate generalized inverse.
Bayes linear adjustmentmay be viewed as an approximation to a full Bayes anal-

ysis or the appropriate analysis given a partial specification based on expectation
as primitive. The foundation for the approach is an explicit treatment of tempo-
ral uncertainty, and the underpinning mathematical structure is the inner product
space, as opposed to the probability space, which is simply a special case. The ad-
justed expectation of y given z is the linear combination of the elements of z, plus
the unit constant, which minimizes the expected squared distance to y. Observe
that de Finetti’s primitive definition for conditional expectation (see [5]) corre-
sponds to this definition in the special case in which the vector z = (z1, . . . , zr)
represents the elements of a partition (so that one and only one of the elements of
z will equal 1, and all other elements will equal 0). In this special case, adjusted
expectation is equivalent to conditional expectation, so that the definition of con-
ditioningmay be viewed as a special case of that for belief adjustment, in which the
vector z is restricted to a partition vector. There are other special cases in which
adjusted expectation and conditional expectation coincide, the most important
being that of the multivariate Gaussian distribution.

Full Bayes analysis can be more informative than the Bayes linear counterpart,
if done extremely carefully, both in terms of the prior specification and the
analysis. Bayes linear analysis is partial but easier, faster, and often more robust
particularly for history matching and forecasting. The examples discussed below
were all carried out within the Bayes linear approach. However, the ideas and
approaches are complementary and there are natural full Bayes counterparts for
each of the analyses that we describe.

5 Function Emulation

Uncertainty analysis, for high dimensional problems, is even more challenging if
the function F (x) is expensive, in time and computational resources, to evaluate
for any choice of x. For example, large climate models can take many weeks to
evaluate on extremely powerful computers.
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In such cases, F (x) must be treated as uncertain for all input choices except
the small subset for which an actual evaluation has been made. Therefore, we
must construct a description of the uncertainty about the value of F (x) for each
possible choice of x. Such a representation is often termed an emulator of the
function - the emulator both suggests an approximation to the function and also
contains an assessment of the likely magnitude of the error of the approximation.
We use the emulator either to provide a full joint probabilistic description of
all of the function values (full Bayes) or to assess expectations variances and
covariances for pairs of function values (Bayes linear).

There are many ways to construct emulators for computer models. A good
introduction to this area is [11]. A common choice of form for the emulator is as
follows. We express the emulator for component Fi of F as

fi(x) =
∑
j

βijgij(x)⊕ ui(x)

where B = {βij} are unknown scalars, gij are known deterministic functions of
x,ui(x) is a weakly second order stationary stochastic process. There are many
choices of correlation function for this process; a common choice is

Corr(ui(x), ui(x
′)) = exp

(
−
(
‖x− x′‖

θi

)2
)

In this representation, Bg(x) expresses global variation, i.e. aspects of the overall
behaviour of the function that we can discover from a design which is well dis-
persed in parameter space, while u(x) expresses local variation, i.e. those aspects
of the behaviour of the function which can only be assessed by making function
evaluations in the neighbourhood of x.

We fit the emulators, given a collection model evaluations, using our favourite
statistical tools, such as generalized least squares, maximum likelihood, full
Bayes or Bayes linear, aided wherever possible by detailed expert judgement.
We need careful (multi-output) experimental design to choose informative model
evaluations, and detailed diagnostics to check emulator validity.

If the simulator is really slow to evaluate, then a practical way to develop the
emulator is to model jointly the simulator with a fast approximate version, F ′.
So, for example, based on many fast simulator evaluations, we build emulator

f ′
i(x) =

∑
j

β′
ijgij(x)⊕ u′

i(x)

We use this form as the prior specification for the emulator fi(x). Then a rela-
tively small number of evaluations of Fi(x), combined with relations such as

βij = αiβ
′
ij + γij

enables us to adjust the prior emulator to an appropriate posterior emulator for
Fi(x). This approach exploits the heuristic that we need many more function
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evaluations to identify the qualitative form of the model (i.e. choose appropriate
forms gij(x), etc) than to assess the quantitative form of all of the terms in the
model - particularly if we fit meaningful regression components to account for a
large component of global variation.

6 History Matching

Model calibration aims to identify “true” input parameters x∗. However full
Bayes calibration analysis may be technically difficult and non-robust. Further,
we may not believe in a unique true input value for the model and, indeed, we
may be unsure whether there are any good choices of input parameters (due to
model deficiencies).

A conceptually simple alternative, or precursor, to calibration is “history
matching”, i.e. finding the collection of all input choices x for which we judge
the match of the model to the data to be acceptable, using some ‘implausibility
measure’ I(x) based on a natural probabilistic metric, accounting for emulator
uncertainty, condition uncertain, structural discrepancy, observational error and
so forth.

We construct the implausibility measure as follows. Using the emulator we can
obtain, for each set of inputs x, the mean and variance, E(Fh(x)) and Var(Fh(x)).
If x = x∗, then , setting F ∗ = F (x∗), we have

zi = yi ⊕ ei, yi = F ∗
i ⊕ εi

so that
Var(zi − E(Fi(x))) = Var(Fi(x)) + Var(εi) + Var(ei)

We can therefore calculate, for each output Fi(x), the ‘implausibility’ if we con-
sider the value x to be the best choice x∗, which is the standardized distance
between zi and E(Fi(x)), given by

I(i)(x) = |zi − E(Fi(x))|2/[Var(Fi(x)) + Var(εi) + Var(ei)]

Large values of I(i)(x) suggest that it is ‘implausible’ that x = x∗.
The implausibility calculation can be performed univariately, or by multivari-

ate calculation over sub-vectors for which we are prepared to make a full joint
covariance specification for the emulator errors and for the structural discrep-
ancy. With such a full joint specification, the implausibility criterion is a form of
Mahalanobis distance between the system observations and the function outputs.
The implausibilities are then combined, such as by using IM (x) = maxi I(i)(x),
and can then be used to identify regions of x with large IM (x) as implausible,
i.e., unlikely to be good choices for x∗.

Using this analysis, we can then refocus our efforts on the ‘non-implausible’
regions of the input space, by making more simulator runs and refitting our
emulator over such sub-regions and repeating the analysis. This process is a
form of iterative global search aimed at finding all choices of x∗ which would
give good fits to historical data.
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We may find no choices at all which give good fits and that is a clear sign
of problems with our physical simulator or with our data. Further, even if our
ultimate goal is Bayesian model calibration, it is good practice to history match
first, to check the model and (massively) reduce the search space for the Bayesian
algorithm.

7 Forecasting

There are two basic sources of uncertainty that we must quantify in order to
predict future system outcomes, yp. Firstly, we are unsure as to the system
prediction, Fp(x

∗), for yp, as we are uncertain about both F and x∗, and secondly
we are uncertain about the model discrepancy, εp, between Fp(x

∗) and yp. The
simplest Bayes linear forecasting system for taking account of these uncertainties
is as follows; for details see [2].

The mean and variance of F (x) are obtained from the mean function and
variance function of the emulator f for F . Using these values, we compute the
mean and variance of F ∗ by first conditioning on x∗ and then integrating out
x∗, typically over the parameter region identified by history matching. Given
E(F ∗),Var(F ∗), and specification of the variances for model discrepancy, ε, and
sampling error, e, it is straightforward to compute the joint mean and variance
of the collection (y, z) (as y = F ∗ ⊕ ε, z = yh ⊕ e).

We can therefore evaluate the mean and variance for yp adjusted by z using
the Bayes linear adjustment formulae. This analysis is fast and tractable even
for large systems. Further, because of the simple structure of the calculations, it
is tractable to identify collections of simulator evaluations which are appropriate
for minimizing adjusted forecast variance. Typically, this will be the second stage
choice of simulator evaluations, as the first stage will be a design appropriate to
identify the form of emulator, estimate coefficient matrices and refocus, once or
several times.

This analysis exploits the global features of the emulator to construct the
joint covariance structure and is effective when the local component of emulator
variation is small. When the local component is large, then a more detailed
analysis is required, either by full Bayes specification or using the approach of
Bayes linear calibrated forecasting; for details, see [7].

8 Example: Emulating a Climate Simulator

(This uncertainty analysis is work with Danny Williamson, with NERC funding;
details in [14].)

One of the aims of the NERC funded RAPID programme is to assess the
risk of shutdown of the AMOC (Atlantic Meridionnal Overturning Circulation),
which transports heat from the tropics to Northern Europe, and how this risk
depends on the future emissions scenario for CO2. The RAPID sub-project aims
to address aspects of this question by use of large ensembles of the UK Met
Office climate model HadCM3, run through climate prediction.net. At an early
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stage of the project, as a preliminary demonstration of concept for the Met
Office, we were asked to develop an emulator for HadCM3, based on 24 runs of
the simulator, with a variety of parameter choices and future CO2 scenarios. We
had access to some runs of FAMOUS (a lower resolution model), which consisted
of 6 scenarios for future CO2 forcing, and between 40 and 80 runs of FAMOUS
under each scenario, with different parameter choices. There was very little time
to do the analysis.

The design that we chose was to match the inputs for 8 of the HadCM3 runs
with corresponding inputs to a FAMOUS run (to help us to compare the models)
and to construct a 16 run Latin hypercube over different parameter choices and
CO2 scenarios (to extend the model across CO2 space). In this experiment only
3 parameters were varied (an entrainment coefficient in the model atmosphere,
a vertical mixing parameter in the ocean, and the solar constant).

Our output of interest was a 170 year time series of AMOC values. The series
is noisy and and the location and direction of spikes in the series was not impor-
tant. Interest concerned aspects such as the value and location of the smoothed
minimum of the series and the amount that AMOC responds to CO2 forcing
and recovers if CO2 forcing is reduced.

To emulate the whole time series, we first smoothed by fitting splines fs(x, t) =
Σjcj(x)Bj(t) where Bj(t) are basis functions over t and cj(x) are chosen to give
the ‘best’ smooth fit to the time series. We emulate fs by emulating each coef-
ficient cj(x) in f s(x, t) = Σjcj(x)Bj(t) (separately for each CO2 scenario). We
test our approach by building emulators leaving out each observed run in turn,
and checking whether the run falls within the stated uncertainty limits.

We now have an emulator for the smoothed version of FAMOUS, for each
of the 6 CO2 scenarios. We extend the FAMOUS emulator across all choices of
CO2 scenario using fast geometric arguments, exploiting the speed of working
in inner product spaces. For example, we have a different covariance matrix for
local variation at each of 6 CO2 scenarios. We extend this specification to all
possible CO2 scenarios by identifying each covariance matrix as an element of
an appropriate inner product space, and adjusting beliefs over covariance matrix
space by projection.

We develop relationships between the elements of the emulator for FAMOUS
and the corresponding emulator for HadCM3, using the paired runs, and ex-
pert judgements. This gives an informed prior for the HadCM3 emulator. We
use the remaining runs of HadCM3 for Bayes linear adjustment of the emulator
for HadCM3, and carry out further leave one out diagnostic checks and vari-
ance tuning. Our Met Office collaborators were happy with the resulting model
emulations as a basis for further analysis given access to the larger ensemble.

9 Example: Oil Reservoir Simulators

(This uncertainty analysis is work with Jonathan Cumming, carried out with
Basic Technology funding as part of the MUCM project; details of the application
are in [4], and of the multi-level inference and design calculations are in [3].)
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An oil reservoir is an underground region of porous rock which contains oil
and/or gas. The hydrocarbons are trapped above by a layer of impermeable rock
and below by a body of water, thus creating the reservoir. The oil and gas are
pumped out of the reservoir and fluids are pumped into the reservoir (to boost
production). The simulator models the flows and distributions of contents of the
reservoir over time.

Each cell in the reservoir has a collection of associated input parameters, such
as permeability and porosity. There are also other parameters, such as fault
transmissibility, aquifer features and saturation properties. Since there are a
huge number of cells in the reservoir, it is common to use scalar multipliers over
subregions, to modify values.

The model outputs comprise the behaviour of the various wells and injectors
in the reservoir Output, typically, is a time series on the following variables for
each well; bottom-hole and tubing head pressure, production/injection rates and
totals, for each of oil, water and gas, and fluid ratios for water cut and gas-oil
ratio.

The term history matching, within the oil industry, refers to the identification
of choices of input parameters for the simulator for which the simulator output
is in close correspondence to the observed reservoir history. Our Bayes linear
approach to reservoir history matching, based on the methodology described
in [1], has been successfully implemented in software widely in use in the oil
industry.

An example that we have provided to illustrate the methodology is given
in [4]. This model, of a reservoir located in the North Sea, is based on grid
size 38 × 87 × 25, with 43 production and 13 injection wells, and simulates
10 years of production, taking up to three hours per simulation. The inputs,
in the illustration, are field multipliers for porosity (φ), permeabilities (kx, kz),
critical saturation (crw), and aquifer properties (Ap, Ah). The outputs that we
use for history matching are oil production rates for a 3-year period, for the 10
production wells active in that period, described by four month averages over
the time series.

The computer model is expensive to evaluate, so we use a ‘coarse’ model,
F c, based on coarsening vertical gridding by factor of 10, to capture qualitative
features of F . F c is substantially faster, allowing 1000 runs of F c in a Latin
Hypercube over the input parameters.

Because of the high level of correlation between the different outputs, we
use the principal variables approach to screen the wells. This method identifies,
sequentially, the output, or group of outputs, which accounts for most of the
variation in the remaining outputs. Applied to the coarse model evaluations, we
retain outputs from 4 of the wells. These capture 87% of the total variation in
all outputs.

We consider the coarse and the full model emulators to have the form

f c
i (x) = gi(x[i])

Tβc
i + wc

i (x), fi(x) = gi(x[i])
Tβi + wc

i (x)βwi + wa
i (x)

where x[i] is a subset of ‘active inputs’, i.e. the inputs which account for most of
the variation in F . We fit emulators to each output individually, using stepwise



Bayes Linear Analysis for Physical Systems 89

regression and generalized least squares for the coarse model runs, to get emula-
tor f c

i (x) for F c
i . We found that the choice of three active inputs was adequate

for expressing global variation in each output, for example achieving R2 values
in excess of 0.96 for all outputs but one. The porosity and critical saturation
turned out to be active for all of the outputs, while each other output was active
in a subset of the outputs. The two emulators are linked via equations relating
corresponding pairs of coefficients as outlined in section (5). Careful choice of a
small design of 20 evaluations for the full simulator, based on informative con-
figuration over the active input collections, followed by Bayes linear adjustment,
leads to the resulting emulator for F .

We now specify the observation and discrepancy variances and carry out the
implausibility calculations for history matching. We find that working to a three
standard deviation implausibility threshold eliminates about 90%of the input
space, and corresponds to imposing a constraint on the upper value of φ. Since
reducing the space, many of the old model runs are no longer relevant, so we
supplement our emulation with further evaluations obeying the parameter con-
straint, namely an extra 100 coarse runs and 20 full simulator runs, and further
adjust the emulator, using the old emulator structure as a starting point.

We now consider the final four time points in the three year period that we
have emulated, and use the observed historical values to forecast the correspond-
ing output values for an additional time point, one year beyond the end of this
period. We have historical observations for the values to be forecast, which act
as a quality check on the forecasts. We use the approach of section (7) effectively
combining each model forecast with a correction for the estimated model dis-
crepancy. In each case, the resulting forecast interval is within the measurement
error of the actual historical measurement.

10 Example: Galaxy Formation Simulation

(This uncertainty analysis is work with Ian Vernon, carried out with with Basic
Technology funding as part of the MUCM project; details in [13])

The Cosmologists at the Institute of Computational Cosmology at Durham
University are interested in modelling galaxy formation in the presence of Dark
Matter. First, a Dark Matter simulation is performed over a volume of (1.63
billion light years)3. This takes 3 months on a supercomputer. Then, the simu-
lator Galform takes the results of this simulation and models the evolution and
attributes of approximately 1 million galaxies. Galform requires the specification
of 17 unknown inputs in order to run. It takes approximately 1 day to complete
1 run (using a single processor).

The Galform model produces many outputs, some of which can be compared
to observed data from the real Universe. Initially, we analyze luminosity functions
giving the number of galaxies per unit volume, for each luminosity. These are Bj
Luminosity, corresponding to density of young (blue) galaxies and K Luminosity,
corresponding to density of old (red) galaxies. We choose 11 outputs that are
representative of the Luminosity functions and emulate the functions fi(x).
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We assess condition uncertainty, structural uncertainty, measurement uncer-
tainty, and so forth. For example, we must account for the uncertainty resulting
from the unknown configuration of dark matter in our universe. We can form
judgements as to the magnitude of this uncertainty by making repeat simula-
tions of Galform with the same input parameters and different choices of dark
matter configuration.

We carry out the iterative history matching procedure, through four waves.
For each wave, we evaluate the simulator many times, restricting parameter
choices to those which have not yet been ruled out by earlier waves, emulate the
simulator within the reduced space and carry out the implausibility calculations
to reduce space further. A summary of the procedure, the number of active
variables at each stage and the space removed at each stage is as follows.

No. Model Runs No. Active Vars Space Remaining

Wave 1 1000 5 14.9 %

Wave 2 1414 8 5.9 %

Wave 3 1620 8 1.6 %

Wave 4 2011 10 0.12 %

In wave five, we evaluate many good fits to data, and we stop. Some of these
choices give simultaneous matches to data sets that the Cosmologists have been
unable to match before.

11 Linking Models to Reality

Each of the above examples, in common with most of the field of computer ex-
periments, takes it as almost self-evident that the computer model is informative
for the physical system. However, in most cases, the reason that the evaluations
of the simulator are informative for the physical system is that the evaluations
are informative about the general relationships between system properties, x,
and system behaviour y. Therefore, our inference from model to reality should
proceed in two parts.

We emulate the relationship between system properties and system behaviour.
We call this relationship, F ∗, the “reified model” (from reify: to treat an abstract
concept as if it were real). We can then decompose the difference between our
model and the physical system into two parts. The first is the difference between
our simulator and the reified form, and the second is the difference between
the reified form at the physically appropriate choice of x and the actual system
behaviour y. We call this the “Reifying principle”, namely that the simulator F
is informative for y, because F is informative for F ∗ and F ∗(x∗) is informative
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for y. Similarly, a collection of simulators F1, F2, ... is jointly informative for y,
as the simulators are jointly informative for F ∗.

We link F and F ∗ using emulators. Suppose that our emulator for F is

f(x) = Bg(x)⊕ u(x)

Our simplest emulator for F ∗ might be

f∗(x,w) = B∗g(x)⊕ u∗(x)⊕ u∗(x,w)

where we might model our judgements as B∗ = CB + Γ and correlate u(x) and
u∗(x), while treating u∗(x,w), with additional parameters, w, as uncorrelated
with the remaining terms in the emulator. Structured reification improves on
this with systematic modelling for all aspects of model deficiency whose effects
we can consider explicitly. For an illustrated treatment of reification, see [8].

All of the Bayes linear history matching and forecasting methodology that
we have described is unchanged by this extra layer of modelling. All that has
changed is our description of the joint covariance structure which underlies each
of the subsequent calculations.

12 Concluding Comments

To assess our uncertainty about complex systems, it is enormously helpful to
have an overall (Bayesian) framework to unify all of the sources of uncertainty.
Within this framework, all of the scientific, technical, computational, statistical
and foundational issues can be addressed in principle. Such analysis poses serious
challenges, but they are no harder than all of the other modelling, computational
and observational challenges involved with studying complex systems.

In particular, Bayes and Bayes linear multivariate, multi-level, multi-model
emulation, careful structural discrepancy modelling and iterative history match-
ing gives a great first pass treatment for most large modelling problems.
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Discussion

Speaker: Michael Goldstein

Kyle Hickmann: Could you speak a little bit more on in what sense the emu-
lator converges to the simulator as more points are observed?

Michael Goldstein: The emulator is exactly equal to the simulator at each ob-
servation point, and uncertainty about the simulator increases for input choices
far from any of the observed values. We reduce uncertainty in any region of
parameter space by making function evaluations in that region, and the more
evaluations that we make, the further will the uncertainty be reduced. How
large a sample we must make to achieve a good measure of convergence across
the whole input space depends on the dimension of the input and output spaces
and the degree of regularity of the function over the range of the input space.
For example, very small regions of input space, in which the function behaves
quite differently from behaviour everywhere else, can be extremely difficult to
identify and emulate appropriately.

Antonio Possolo: We have learned from Lindley that linear polling is one way
of merging the conclusions multiple Bayesian analyses will have produced. What
is the state of the art?

Michael Goldstein: The appropriate way to merge multiple Bayesian analyses
depends on your judgements about the level of, and the relationship between, the
information and expertise contained within each analysis. There is no automatic
way to do this. The reification formalism described in this article is one way of
structuring the joint analysis when dealing with Bayesian analyses based around
computer simulators.

Antonio Possolo: An analysis that starts from expectations, variances, and
covariances, is bound to produces results that are expectations, variances, and
covariances. What additional assumptions would you regard as defensible to be
able to quantify the conclusions probabilistically?

Michael Goldstein: Probabilities are themselves expectations, for the indi-
cator functions corresponding to the events. If the analysis is described at a
sufficient level of detail to identify some of these expectations, then we have a
direct probabilistic inference. Alternately, we can use qualitative probabilistic
judgements to make a low assumption bridge between the Bayes linear and the
full probabilistic analysis. For example, when carrying out a history matching
analysis as described in this article, it is useful to know that, for any continuous,
unimodal probability density function, 95% of the probability will be contained
within three standard deviations of the mean (the so-called 3 sigma rule).

Jeffrey Fong: Regarding Bayesian linear analysis, in your two equations, one
expectation and the second variance, do they allow a user to derive a host of
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relationship (as in classical theory of error propagation) that are used to get
expectation and variance of a sum, product, quotient, etc. . . of a complicated
algebraic form?

Michael Goldstein: Bayes linear inferences obey all of the rules derived from
the linearity of expectation. Therefore, it is necessary to ensure that the ap-
propriate polynomial or other functional forms of the quantities of interest are
introduced as elements of the adjusting vector and of the vector of terms to be
adjusted. The Bayes linear Statistics volume ([9]) contains examples and discus-
sions of this.



Verified Computation with Probabilities

Scott Ferson and Jack Siegrist

Applied Biomathematics

Abstract. Because machine calculations are prone to errors that can
sometimes accumulate disastrously, computer scientists use special
strategies called verified computation to ensure output is reliable. Such
strategies are needed for computing with probability distributions. In
probabilistic calculations, analysts have routinely assumed (i) probabil-
ities and probability distributions are precisely specified, (ii) most or all
variables are independent or otherwise have well-known dependence, and
(iii) model structure is known perfectly. These assumptions are usually
made for mathematical convenience, rather than with empirical justi-
fication, even in sophisticated applications. Probability bounds analysis
computes bounds guaranteed to enclose probabilities and probability dis-
tributions even when these assumptions are relaxed or removed. In many
cases, results are best-possible bounds, i.e., tightening them requires ad-
ditional empirical information. This paper presents an overview of prob-
ability bounds analysis as a computationally practical implementation of
the theory of imprecise probabilities that represents verified computation
of probabilities and distributions.

Keywords: probability bounds analysis, probability box, p-box, veri-
fied computation, imprecise probabilities, interval analysis, probabilistic
arithmetic.

1 Introduction

Many high-profile disasters are attributable to numerical errors in computer
calculations. The self-destruction of the Ariane 5 rocket on its maiden test flight
was caused by integer overflow (ESA 1996). The crash of the Mars Climate
Orbiter during orbital insertion resulted from a units incompatibility (Isbell et
al. 1999). The Sleipner A offshore drilling platform sank because of an inaccurate
finite element approximation (Selby et al. 1997). The Aegis cruiser USS Yorktown
was dead in the water for several hours because of a propagated divide-by-zero
error (Slabodkin 1998). The Flash Crash in which the Dow Jones Industrial
Average plunged 9% almost instantaneously was due to runaway computerized
trading mediated by the interacting algorithms used by high-frequency traders
(CFTC/SEC 2010). These errors can be worse than costly or embarrassing.
The failure of a Patriot missile to intercept the SCUD missile that killed 28
people and injured 100 more was supposedly due to accumulated round-off error
(GAO 1992). Miscalculations arising from a race-condition error in the medical
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software controlling the Therac-25 used for radiation therapy caused multiple
fatal radiation overdoses to patients (Baase 2008, 425).

The corny adage “To err is human, but to really foul things up requires a
computer” is not merely bitterness of the underemployed. Because computers
are so fast, errors can propagate and accumulate very quickly, and because they
often lack a machine analog of human contextual common sense, dramatic er-
rors can go unnoticed until damage is unavoidable. Subtle, even minor features
can, in unlucky situations, interact to create disastrously bad numerical results.
Ironically, the appearance of precision in computer results can often induce a
human error in which users place undue trust in the computer’s output.

To overcome these problems, computer scientists have developed methods for
‘verified computing’ by which users will always get reliably accurate results, or at
least will be made aware of the problem when their results are not reliable. One
basic task in verified computing is to find an enclosure that surely contains the
exact result of a calculation. This problem is often addressed using the methods
of interval analysis, which is a mathematically rigorous form of arithmetic that
can be implemented in software even though computers can represent numbers
with only finite precision (Kulisch et al. 1993; Hammer et al. 1997; Popova 2009;
Tucker 2011). In fact, these interval calculations can have rigor corresponding
to that of a mathematical proof, in spite of the fact that they are done auto-
matically by machine. The approach guarantees that rounding error is limited,
integer overflow is prevented, and division by zero as well as similar impossi-
ble operations are handled appropriately to ensure the integrity of the affected
calculation. Of course, this means that real-valued answers cannot generally be
represented precisely in finite machine number schemes. Instead, the answers
are represented by enclosures consisting of two bounding machine-representable
values. If this enclosure interval is narrow, we know the answer reliably and accu-
rately. If the interval is wide, we have a transparent warning that the associated
uncertainty is large, which implies that a more careful reanalysis may be useful.

Interval analysis is often offered as the primary—and one might think the
only—method for verified computation, but verified computing requires a panoply
of methods. Consistent application of mathematical rigor in the design of the
algorithm, in the arithmetic operations it uses, and in the execution of the pro-
gram allow an analyst to guarantee that a problem has a solution somewhere
in the computed enclosing interval (or that no solution exists). To enable such
consistency, methods must be developed for the wide variety of numerical and
other operations that computers do for us. For instance, basic mathematical op-
erations on floating-point numbers are replaced by interval analysis on intervals
guaranteed to enclose scalar real values. Likewise, methods for vector and ma-
trix operations have been developed that extend and generalize interval analysis
with multidimensional arrays of interval ranges.

Similar methods of verified computing are needed for representing and cal-
culating with probabilities and probability distributions on finite-precision ma-
chines. Unfortunately, the properties of probability distributions and the features
of the laws of probability complicate the effort considerably. For instance, even
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representing a univariate continuous distribution is an infinite-dimensional prob-
lem, because it is a continuous function whose values at an infinity of points must
be captured in the finite storage accessible by the computer. The critical role
of assumptions about the stochastic dependence among variables is particularly
complicating, and this is an issue even for total probabilities that can be repre-
sented by single scalar values. For example, if two events have probabilities 0.2
and 0.3 respectively, the AND operator commonly used in fault trees would only
yield the product 0.06 when the probabilities are independent. Without specify-
ing the dependence between the events, the result of the operator is undefined
(although it can be bounded). The role of dependence assumptions is much more
complicated still for distributions of random variables (Ferson et al. 2004; Nelsen
1999).

Nevertheless, we must undertake the effort, whatever its complexity. There is
a pronounced need for verified computing methods to use with probabilities and
probability distributions because they are becoming more and more pervasively
used in engineering calculations including uncertainty analyses, risk assessments,
sensitivity studies, and modeling of quantities with intrinsic aleatory uncertain-
ties. They are being used across a host of fields as diverse as financial planning
(Hertz 1964; Boyle 1977), human health risk analyses (McKone and Ryan 1989),
ecological risk assessments (Suter 1993), materials and weapons safety calcula-
tions (Elliott 2005; Cooper 1994), extinction risk analysis for endangered species
(Burgman et al. 1993; Ferson and Burgman 2000), and probabilistic risk as-
sessment for nuclear power (Hickman et al. 1983) and other engineered systems
(Vick 2002).

Engineers routinely face three crucial issues when they develop probabilistic
models. The first is that their model uncertainty, i.e., their doubt about the
proper mathematical form the model should have, is almost never articulated,
much less accounted for in any comprehensive way. Modelers may recognize and
acknowledge the limitations induced by this problem, yet they rarely conduct
the sensitivity studies needed to fully assess the consequences of the uncertainty
on model results. The second crucial problem is that there is often little or no
quantitative information about possible correlations among the input variables,
and in many cases the nature of the intervariable dependencies may not have
been empirically studied at all. The typical response of analysts, even if they
are aware of their uncertainty, is to nevertheless assume independence among
variables, even though this assumption may be neither realistic nor conservative.
In fact, using an incorrect assumption about dependence can strongly distort the
output distributions, especially in their tails (Ferson et al. 2004; contra Smith
et al. 1992).

The third crucial problem faced by engineers developing probabilistic models
is that it is often impossible to fully justify a precise probability distribution
to be used as input in the model, and sometimes the family of the distribution
is only a guess. There is a huge literature on the subject of estimating prob-
ability distributions from empirical data, and there are several methods avail-
able for use including the method of matching moments, maximum likelihood
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estimation, the maximum entropy criterion and Bayesian methods to compute
posterior predictive distributions. But these standard approaches are of limited
practical reliability when few relevant data exist. Even when confidence limits
are computed, little use can be made of them without an elaborate sensitivity
study that is cumbersome to organize, computationally intense, and difficult to
interpret. With limited empirical information, all of these methods for select-
ing input distributions require assumptions that cannot be justified by appeal
to evidence and therefore may be false. These unsubstantiated assumptions can
make a difference in the results. As Bukowski et al. (1995) showed, the choice
about distribution shape can have a sizeable effect on the output distributions,
especially at the tails.

It is generally assumed that the only solution to incomplete information is
additional empirical effort to measure correlations, develop input distributions,
and validate the model. As a practical matter, since such empirical information
is typically incomplete—and indeed often quite sparse—analysts are forced to
make assumptions without empirical justifications, leading to diminished credi-
bility for the assessment and any subsequent decisions. There are, however, com-
putational methods that allow analysts to sidestep a lack of information about
the correlation and dependency structure among variables to obtain partial or
complete solutions in many practical cases without having to make unjustified
and possibly false assumptions. Likewise, when empirical information about the
input distributions is limited, far more appropriate representations of uncer-
tainty can be developed than are currently obtainable using techniques such as
the maximum entropy criterion. These new methods allow us to compute bounds
on estimates of probabilities and probability distributions that are guaranteed
to be correct even when one or more of the assumptions is relaxed or removed.
In many cases, the results obtained are the best possible bounds, which means
that tightening them would require additional empirical information. This paper
reviews probability bounds analysis (PBA, Ferson et al. 2003), as a computa-
tionally practical calculus of the theory of imprecise probabilities (IP, Walley
1991), that combines ideas from both interval analysis and probability theory
to sidestep the limitations of each. Probability bounds analysis is logically and
morally equivalent to a sensitivity analysis. Objecting to PBA implies an objec-
tion to sensitivity analysis. PBA uses exactly the same mathematical approach
used in sensitivity analysis, but its computational methods are applicable to
broader questions and are vastly more efficient.

2 Kinds of Uncertainty

In the past, uncertainty analysis considered the source of uncertainty to be its
salient aspect, so modelers talked, for example, about their parametric uncer-
tainty or their model-form uncertainty. A more modern view is that the nature
of the uncertainty, rather than its source, is a more important characteristic. We
can distinguish between two main forms of uncertainty: variability and incerti-
tude. Variability refers to the stochastic fluctuations in a quantity through time,



Verified Computation with Probabilities 99

variation across space, manufacturing differences among components, genetic or
phenotypic differences among individuals, or similar heterogeneity within some
ensemble or population. Engineers often refer to variability as aleatory uncer-
tainty, harkening to alea, the Latin word for dice. This is considered to be a
form of uncertainty because the value of the quantity can change each time one
looks, and one cannot predict precisely what the next value will be (although
the distribution of values may be known). Incertitude, on the other hand, refers
to the lack of full knowledge about a quantity that arises from imperfect mea-
surement, limited sampling effort, or incomplete scientific understanding about
the underlying processes that govern a quantity. Many engineers refer to incer-
titude as epistemic uncertainty. We might simply and non-euphemistically call
it ‘ignorance’, except for the embarrassment or confusion that word might evoke
should professionals need to mention it in front of their bosses or the laity.

These two forms of uncertainty have important differences. Incertitude can in
principle be reduced by empirical effort; investing more in measurement should
yield better precision. Variability, in contrast, can perhaps be better character-
ized, but cannot generally be reduced by empirical effort. Incertitude depends
on the observer and the observations made. Variability does not depend on an
observer at all. It exists whether or not anyone witnesses it, like the sound
waves emanating from the proverbial tree falling unseen in the forest. Although
variability and incertitude can sometimes be like ice and snow in that their dis-
tinction can be difficult to discern through complicating details, and sometimes
one can change into the other depending on the scale and perspective of the
analyst, the macroscopic differences between these two forms of uncertainty are
usually obvious and often significant in practical settings.

There is a crucial difference between a quantity actually varying and our
simply not being sure about its magnitude, and this difference affects how we
should do calculations. Consider, for example, the following elementary ques-
tion: Suppose we are told that a quantity A is some value or values between 2
and 4, and that B is a quantity inside the range between 3 and 5. What can
be said about their sum A + B? When this exemplar question was posed on
the Riskanal electronic mailing list, half the respondents suggested the proper
answer can be computed by modeling A as a uniform distribution between 2
and 4, and modeling B with another uniform distribution between 3 and 5, and
convolving these two uniforms together with Monte Carlo simulation to obtain
the triangular distribution ranging between 5 and 9 with a mode at 7 shown
as a probability density function in Fig. 1. This is the traditional answer from
probabilists for such a question. Indeed, it is the answer that Laplace (1820)
himself would have suggested. This answer says that the value 7 is the most
likely magnitude of the sum, and also that the extreme values of 5 and 9 have
vanishing probabilities. There is more than two-thirds probability that the sum
falls in the middle interval [6.1, 7.9].

But what exactly justifies this concentration of probability mass in the central
range? There is nothing in the statement of the elementary question that suggests
that 2 is not a perfectly possible value of A, and likewise nothing to suggest that
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Fig. 1. Triangular distribution which is the traditional probabilist answer to the ele-
mentary question “What is the sum A+B where A and B are in the respective intervals
[2,4] and [3,5]?”

B might not simply just be 3. If so, then the sum is the scalar value 5, and the
triangular distribution seems hard to explain. Given what is expressly known
about the inputs, there is no reason to deprecate any of the possible values of
the sum, or to distinguish one value as more probable than any other. But that
may be a far cry from saying that all the values are equally probable. The other
half of the respondents to the Riskanal poll said that the proper answer to the
elementary question can be computed simply by adding together the intervals
[2,4] + [3,5] using interval arithmetic (Moore 1966) to yield the interval [5,9].
Notice that this answer offers no concentration of mass in the central range, and
suggests that the sum might simply be 5, and likewise might simply be 9, and
there is nothing to suggest that these values, although extreme, are in any way
unlikely.

The interval answer is a much looser statement than is any probability distri-
bution. For instance, modeling the sum with a uniform probability distribution
would say that all possible values within the range [5,9] are equally probable.
Taking such a model seriously would suggest that one could profitably make bets
about future values of the sum based on the probability. For instance, a prob-
abilist would presumably be disposed to bet favorably, and big, on a gamble
that the sum is larger than 5.01. A more sanguine view is that one had better
not place any such bets, other than those that can be actually justified by the
given knowledge. All that can be justified is that the probability distribution of
the sum has its support within the range [5,9], but this admits a whole host of
possible distributions. The interval answer can be identified with the entire class
of such distributions.

Our view is that only one of these two answers to the elementary question
is correct. We think the right answer is clearly the interval and not the trian-
gular distribution, at least in practical contexts such as risk analysis and most
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uncertainty assessments. The triangular distribution traditionally given by prob-
abilists is wrong because it implies or appears to imply more is known than is
actually justifiable. It is the incertitude in the elementary problem that must
be propagated by interval analysis or other bounding methods. Although these
assertions are commonly met with nodding agreement from engineers and bi-
ologists, they sometimes evoke agitated criticism from probabilists. So let us
hasten to point out some important tempering caveats. We are surely not saying
we should only use intervals in risk or uncertainty analysis. We are not even
saying that all uncertainty is incertitude. In fact, we would not be surprised that
most of the uncertainty in some setting is not incertitude, and we agree that
sometimes incertitude is entirely negligible, in which case probability theory is
perfectly sufficient for modeling uncertainties and risks.

What we are saying, however, is that some analysts face non-negligible incer-
titude and handling this incertitude with standard probability theory requires
assumptions that may not be tenable, including unbiasedness, uniformity or
equiprobability, and independence. Because it will often be useful in practical
situations to know what difference incertitude might make, it is important to
have methods that can make probabilistic calculations without requiring the
traditional assumptions. It turns out that this is possible with the theory of
imprecise probabilities (Walley 1991) and a practical calculus for making com-
putations with imprecisely specified probability distributions such as probability
bounds analysis (Ferson 2002) which combines probability theory with interval
analysis.

3 P-Boxes and Probability Bounds Analysis

A probability box, or p-box, is a characterization of an uncertain number which
may have variability (aleatory uncertainty) or incertitude (epistemic uncertainty),
or both. A p-box is specified by left and right bounds on the cumulative proba-
bility distribution function of a quantity and, optionally, additional information
about the quantity’s mean, variance and distributional shape (family, unimodal-
ity, symmetry, etc.). A p-box represents a class of probability distributions con-
sistent with these constraints. Fig. 2 depicts an example for an uncertain number
X consisting of a left (upper) bound and a right (lower) bound on the proba-
bility distribution for X . The bounds are coincident for values of X below 2
and above 29. The bounds may have almost any shapes, including step func-
tions, so long as they are monotonically increasing and do not cross each other.
A p-box simultaneously expresses incertitude (epistemic uncertainty), which is
represented by the breadth between the left and right edges of the p-box, and
variability (aleatory uncertainty), which is characterized by the overall slant of
the p-box. This p-box suggests that the probability that X is below 10 is less
than 25%. It might be as low as zero. We cannot say more than this because of
the epistemic uncertainty about X ’s distribution function. The 95th percentile
is somewhere between 18.5 and 26. We don’t know where in that range it is
because of the associated incertitude.
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Fig. 2. A p-box specified by left and right bounding cumulative distribution functions
and representing a class of probability distributions whose cumulative distribution
functions can be drawn within the bounds

There are many ways that p-boxes can be constructed from the available
information about uncertain numbers (Ferson et al. 2003). Fig. 3 illustrates six of
these ways. The top, left graph depicts a distributional p-box for which the shape
or family of the distribution is known (e.g., normal, uniform, beta, Weibull, etc.)
but the parameters are known only to within intervals. For example, an analyst
may know from mechanistic or physical considerations that the distribution is
normal, but not be able to precisely identify the two parameters needed to specify
it exactly. If the parameters can be bounded, then a distributional p-box can
easily be constructed from enveloping all the possible distributions.

The top, right graph in Fig. 3 depicts what might be considered the opposite
situation where the analyst is confident about some parameters describing the
uncertain number, but is unsure about what shape or family of distributions
it might be from. Such a situation arises frequently when distributions are de-
veloped from information obtained from scientific publications, where summary
statistics are often reported without further details or the original data. Even
though the available information might seem meager, what is known often suf-
fices to define a nontrivial p-box that can be used in calculation. In some cases,
classical results such as the Markov or Chebyshev inequalities can be used to
derive formulas for p-boxes from a few parameters. In different situations, dif-
ferent sets of parameters may be known. Ferson et al. (2003) gave formulas for
p-boxes for the following common situations:

{min, mean} {min, max, mean}
{min, max, median} {min, max, mean=median}
{min, max, mode} {min, max, median=mode}
{mean, variance} {min, mean, variance}
{min, max, mean, variance} {min, max, mean, variance, mode}

These define what might be called distribution-free p-boxes because they make
no assumption whatever about the family or shape of the uncertain distri-
bution and yet enclose all distributions which match the given parameters.
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Fig. 3. A few ways p-boxes arise

The p-boxes are somewhat wider when the parameters are only known to within
intervals. When qualitative information is available, such as that the distribution
is symmetric or unimodal, the p-boxes can often be tightened substantially.

The middle, right graph in Fig. 3 depicts a situation in which one of two distri-
butions is the correct one, but the analyst cannot discern which. By enveloping
them into a single p-box, the analyst can represent the uncertainty in a single
structure that does not require a cumbersome sensitivity analysis to propagate.
This facility can become very important when there are multiple possible distri-
butions and several variables have such uncertainty because exploring them in
a sensitivity study requires a combinatorially complex effort. Collapsing the un-
certainty into a single p-box per variable can simplify the problem considerably.

The middle, left graph in Fig. 3 shows a p-box from a situation in which there
is no sampling uncertainty because the entire population has been measured,
but there is substantial mensurational uncertainty that comes from our inability
to measure individual values precisely. A similar p-box with both sampling and
mensurational uncertainty can be formed by enclosing the empirical histogram
of interval data with Kolmogorov–Smirnov confidence bands. These bands are
distribution-free and merely assume independence of the sample data. Alterna-
tively, there are potentially tighter confidence bands that can be used which do
make assumptions about the shape of the distribution.

P-boxes include the special cases of intervals and precise probability distribu-
tions too. For example, in some situations an analyst may have no information
about a distribution except its potential range, that is, knowledge that its values
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must be larger than min and smaller than max. In this case, Laplace (1820) used
the Principle of Insufficient Reason (sometimes called the Principle of Indiffer-
ence) to select a uniform distribution for the variable but, as argued above, an
interval is a fuller characterization of this uncertainty than any particular prob-
ability distribution could be. An interval, illustrated in the bottom, left graph of
Fig. 3, is a special case of a p-box whose left and right bounds are step functions
at min and max respectively. Finally, it is also possible that the distribution for
some variable actually is well specified. The bottom, right graph illustrates this
case where the left and right bounds of the p-box are coincident.

This idea of bounding probability has a very long tradition throughout the
history of probability theory. Indeed, George Boole (1854; Hailperin 1986) used
the notion of interval bounds on probability. The classical inequality attributed
to Chebyshev (1874) described bounds on a distribution when only the mean
and variance of the variable are known, and the related inequality attributed to
Markov (1886) found bounds on a positive variable when only the mean is known.
Keynes (1921) argued that probabilities of some propositions cannot be ordered
because they overlap due to uncertainty. Fréchet (1935; 1951) discovered how to
bound calculations with total probabilities without assuming independence or
making other dependence assumptions. Bounding probabilities has continued to
the present day (e.g., Berger 1985; Walley 1991). Kyburg (1999) reviewed the
history of interval probabilities and traced the development of the critical ideas
over the last century.

Several authors have described strategies for computing with bounds on distri-
bution functions (e.g., Makarov 1981; Yager 1986; Frank et al. 1987; Williamson
and Downs 1990; Berleant 1993; 1996; 1998; Ferson 2002; Ferson et al. 2003;
inter alia). Williamson and Downs (1990) described explicit algorithms to com-
pute sums, products, differences and quotients. Since their effort, algorithms for
essentially all the standard mathematical operations have been derived and im-
plemented (Ferson 2002). These methods, collectively called probability bounds
analysis (PBA), have been used to propagate p-boxes through mathematical ex-
pressions of widely varying complexity, ranging from simple arithmetic formulas
common in risk analyses and logical expressions summarizing fault or event trees
to finite-element computations (Zhang et al. 2010; 2012) and evaluations of non-
linear ordinary differential equations (Enszer et al. 2011). The calculations made
with these methods can be shown to be rigorous, i.e., they are guaranteed to
enclose the true outcome distribution whenever the input p-boxes enclose their
respective distributions. In many cases, the calculations can also be shown to be
pointwise best-possible in the sense that they could not be any narrower without
excluding distributions that might arise as results given the inputs.

These calculations account for, and preserve the integrity of, both the incer-
titude and variability expressed by a p-box. Combining a p-box with a scalar,
interval, probability distribution or other p-box in any arithmetic or logical cal-
culation generally yields another p-box. Combining an interval with a probability
distribution also generally yields a p-box, as the incertitude of the interval com-
bines with the variability of the probability distribution. P-boxes also arise when
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two precise probability distributions are combined whenever their intervariable
dependency is unknown or only partially known. Such combinations produce
precise probability distributions only when the dependence function or copula
(Nelsen 1999) is completely specified.

The approach of Williamson and Downs (1990) includes a way to rigorously
represent continuous probability distributions by using outward-directed round-
ing on finitely many interval discretizations of the bounds on cumulative distri-
bution functions. Bounding in the cumulative domain, rather than the density
domain, allows representation error to be completely contained and propagated
using the same algorithms that handle mathematical combinations. When op-
erations on the interval discretizations are handled with interval analysis, the
method constitutes verified computation for probability distributions.

The methods of probability bounds analysis are available in several software
implementations, including multiple free demonstration programs (e.g., Berleant
and Zhang 2004), a full-featured stand-alone commercial program (Ferson 2002),
an advanced add-in for Microsoft Excel developed for NASA (Ferson et al. 2011),
and a package in development for the statistical computing language R (R De-
velopment Core Team 2010).

4 Correlations and Dependencies

Independence can be a dangerous assumption for analysts to make. Stochastic
dependence is far more pervasive—and important—than many analysts seem to
recognize. For instance, placing backup generators side by side makes their fail-
ure probabilities dependent and reduces the redundance they were intended to
provide because they become susceptible to the common-cause failure from flood-
ing, as was realized too late in New Orleans and Fukushima. Even in relatively
sophisticated analyses of uncertainty, the most common assumption about the
dependence among variables is independence, although there may be no actual
empirical evidence or serious theoretical justification to support this assumption.
In truth, despite warnings about falsely assuming statistical independence, some
analysts routinely ignore correlations for the sake of computational convenience.
And conscientious analysts who would like to include them in analyses are often
stymied by the difficulty of measuring correlations when data are sparse. As a
consequence, correlations are commonly omitted from analyses and the default
assumption of independence is used even when there is no evidence whatsoever
in support of this assumption.

Although central tendencies may be generally insensitive to correlations of
small to moderate strength (Smith et al. 1992), the tails of distributions can be
extremely sensitive to even small or moderate correlations. Of course, decision
makers are often especially concerned with these tails. They represent the risks
of extreme events, which might be the probability of some mechanical stress
exceeding the engineered strength intended to resist it, or the probability of
exposing people to large doses of a carcinogen, or perhaps the risk of extinction
for an endangered species. It is these extreme adverse events in the distribution
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tails that are often the whole focus of the analysis, so it may be very important
that the tail probabilities not be underestimated. Unfortunately, the common
practice of assuming independence among all input variables can lead directly
to such underestimations.

Moreover, many analysts seem to be unaware that consideration of correla-
tion is only the tip of the iceberg. The issue of dependence is much broader
than correlation because it includes all nonlinear relationships. This is the rea-
son, of course, that lack of correlation does not guarantee independence. What
we might call linear dependence, which can be fully characterized by a single
correlation coefficient, is only a small subspace of the forms of statistical depen-
dence. Consequently, it is impossible to use a sensitivity study to characterize
the effect of uncertainty about dependence on an uncertainty projection. Varying
correlations, even all the way from +1 to –1, over a single family of dependence
functions does not come close to capturing the diversity of possible interactions
the variables may have. This is similar to supposing that one has characterized
the variability of all possible functions through a point simply by representing
all linear functions through a point. (And there is no analog of Taylor’s theorem
for dependence, so the mistake is severe on all scales.) We note that no popu-
lar software packages for probabilistic calculations support more than a single
family of dependence functions, if they support intervariable dependence at all.

Makarov (1981) and Frank et al. (1987) showed, however, that it is possi-
ble to compute bounds on results of probabilistic calculations no matter what
correlations or statistical dependencies may exist among the variables. The algo-
rithms of Williamson and Downs (1990) include this no-assumptions case. The
top, left-hand graph of Fig. 4 shows an example calculation. In this example, X
and Y are random variables each drawn from uniform distributions between 1
and 25. Any distribution of the sums X+Y that could result from adding these
uniformly distributed random values together must lie entirely inside the p-box
shaped like a parallelogram ranging between 2 and 50. This does not mean of
course that any distribution within the bounds could be the sum of these two
distributions, but the bounds are pointwise best-possible, which means the black
region could not be any smaller without excluding some distributions that could
arise as sums of these two uniform variables. This elementary calculation shows
that the probability that X+Y is smaller than 10 could be as high as one third,
or as low as zero. This is a very different characterization of the distribution
tail than what comes from a conventional Monte Carlo analysis that falsely as-
sumes independence which, in this case, would suggest the chance the sum is
less than 10 is about 5%. The PBA result makes no false assumptions about
independence because it makes no assumptions at all about dependence, which
potentially makes it very useful in applications such as risk analysis where it is
critical not to underestimate tail risks.

The simple parallelogram shape of the example result is a consequence of the
uniformity of the marginal distributions and the simplicity of the addition func-
tion that combines them. The algorithms can be applied equally well to virtually
any finite distributions, including theoretically infinite distributions such as the
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Fig. 4. The effect of various assumptions about the dependence between X and Y on
the convolution X + Y , where X and Y are both uniformly distributed over the range
[1, 25]. For comparison, the no-assumptions p-box is shown in gray.

normal that are truncated to some practical range, and extend beyond addi-
tion to all the basic mathematical operations. Surprisingly, the algorithms for
the no-assumptions cases are computationally less expensive than Monte Carlo
simulation methods that assume independence. More importantly, Monte Carlo
methods cannot generally compute these no-assumptions bounds, no matter how
many replications are used. Strategies that vary the correlation coefficient in a
Monte Carlo sensitivity study will be limited to outputs like the cone shown in
the top, right graph of Fig. 4, which grossly understates the uncertainty including
possible tail risks.

Partial knowledge about the dependence can tighten the output p-box sub-
stantially (Ferson et al. 2004). For example, the left-hand graph in the second
row of Fig. 4 shows the bounds on the distribution that can be inferred from
the qualitative knowledge that the dependence function has positive sign. It is
also possible to compute bounds on the result implied by a given correlation co-
efficient, which might have been reported among summary statistics published
without original data. Berleant and Goodman-Strauss (1998) showed how the
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bounds in this case can be computed using mathematical programming. The
right-hand graph of the second row of Fig. 4 shows an example with correla-
tion zero. Remarkably, the resulting p-box almost fills up the no-assumptions
parallelogram, which confirms the intuition that knowing only that variables are
uncorrelated actually tells us very little about their possible dependence. In fact,
the bounds are widest when the correlation is close to zero. When the correla-
tion is extremal, corresponding to the third row of graphs in the figure, and
the dependence is either perfect (comonotonic) or opposite (countermonotonic),
then the resulting p-box becomes very tight. In the case of the example with
precise addends, the result is also a precise distribution. This is true whenever
the dependence function (copula) is precisely specified, as when it is given by
some particular function such as that yielding the result shown in the bottom,
left graph, or when it is taken to be independence as in the bottom, right graph.
If the addends had been p-boxes rather than precise uniform distributions, the
lower four graphs would also depict p-boxes rather than distributions.

As required in verified computation, all of these outputs are rigorous so they
are sure to enclose the true output distribution even when the dependence is not
precisely known, and their representations are pointwise best-possible so they
could not be any tighter without excluding some possible distributions. It is
possible to mix and match dependence assumptions within an analysis, assuming
independence where it really is appropriate and making weaker assumptions
where it is not.

5 A Calculus for Uncertainty Beyond Probability

It is possible to conceive of probability bounds analysis as an entirely traditional
application of sensitivity analysis for conventional probability theory. Indeed, the
same can be said of the whole of the theory of imprecise probability. Although
this conception should therefore be acceptable even to strict Bayesians, PBA
and IP are sometimes met with distrust by probabilists. The reason is that they
recognize in it an essential heterodoxy: that there exists a kind of uncertainty
that should not be characterized by a unique probability measure, which is a
notion they perceive as wrong, or subversive.

There are many misconceptions about what justifies what we might call the
precisionist school of probability. Some people have argued that probability the-
ory is the only logically possible calculus of uncertainty (e.g., Lindley 1982).
Lindley (2006, 71) asserted, “Whatever way uncertainty is approached, proba-
bility is the only sound way to think about it.” Neapolitan (1992) pointed out,
however, that the arguments about the inevitability of probability theory say
nothing to deny the utility of interval bounding. Some in the precisionist school
mention a ‘proof’ due to Cox (1946), but Cox’s theorem has been proven to be
incorrect (Halpern 1999), and perhaps more importantly it has been shown to
be irrelevant to the question of whether probability is the only possible calculus
for uncertainty because it uses as assumptions the very questions that are at
stake in the debate (Colyvan 2004).
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Some critics of p-boxes and imprecise probabilities in general argue that pre-
cisely specified probability distributions are in any case sufficient to characterize
uncertainty of all kinds. These critics argue that it is therefore meaningless to
talk about ‘uncertainty about probability’ and that traditional probability is a
complete theory. Under this criticism, users of p-boxes have simply not made the
requisite effort to identify the appropriate precisely specified distribution func-
tions. This argument may have been reasonable when probability distributions
were only used to characterize uncertain scalar values, that is, real numbers. In
modern uncertainty analyses, however, the objects of study are often themselves
probability distributions deployed in risk assessments already involving aleatory
uncertainty. In such cases, a richer characterization of uncertainty seems useful.

Other people think that requiring inferences to be consistent and coherent is
logically equivalent to requiring the use of precise probabilities. This is not the
case, as was suggested in the expansive review of the axiomatics of decision the-
ory under subjective probability by Fishburn (1986). Walley (1991) showed how
the theory of imprecise probabilities enjoys the same properties of consistency
and coherence championed by probabilists as the definition of rationality, and
how proper inferences in the IP context also avoid sure losses from Dutch books
just as coherent Bayesian decisions do.

Luce (1992) noted that a major finding in the theory of subjective expected
utilities is that humans do not make decisions according to the theory of subjec-
tive expected utilities. One of the reasons for this is that a traditional probabilist
must always be able to discern which of two events is more probable, unless they
are equally probable, and which of two options is preferable, unless she is in-
different to the choice between them. The axiom that this is always possible is
called “completeness” by Fishburn (1986), or the “ordering postulate” by Sei-
denfeld (1988). A relaxed, more general theory of uncertainty recognizes that
some events or options may be incomparable and does not demand an agent be
able to distinguish between any two, even beyond indifference. The notion that
one might not be able to compare every two probabilities dates back at least to
Keynes (1921), and it is another of his great ideas that has remarkable salience
today.

Getting rid of the completeness axiom—which some might argue is far from
self-evident anyway—induces the theory of imprecise probabilities. In this case,
the definition of the probability of an event can be operationalized as the interval
between the highest buying price and the lowest selling price for a gamble that
pays one dollar if the event occurs (but nothing otherwise). This generalizes
de Finetti’s notion of a fair price to an interval whenever the probability is
uncertain. Traditional Bayesians in principle must agree to either buy or sell any
gamble at the same fair price. Under a relaxed theory, an agent may elect to
neither buy nor sell a gamble if the price is not sufficiently favorable. Of course,
if one knows all the probabilities (and utilities) perfectly, then IP reduces to
Bayes.

Seidenfeld (1988) holds that a relaxed theory based on imprecise probabilities
can provide a unified treatment of group decisions, where Bayesians admit their
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theory does not apply. This is important because most engineering decisions can-
not be described as personal decisions, but rather must be in line with collective
verdicts by teams of collaborators. Under IP, their decisions can be rational and
coherent so long as indecision is admitted occasionally.

A parallel to the status of imprecise probability today can be found in the non-
Euclidean revolution in geometry nearly two hundred years ago (Bardi 2009).
The basic question at the time was this: Given a line in a plane, how many
parallel lines in the plane can be drawn through a point in the plane not on
the line? This was the subject of Euclid’s fifth axiom, which had prescribed the
answer ‘one’. For over twenty centuries in mathematics since Euclid, this was
the only answer to the question. Although the answer ‘one’ was itself never in
doubt, the fifth axiom had long been controversial because it did not seem to be
self-evident in the same way the other axioms were.

Many geometers attempted to prove the fifth axiom as a consequence of the
other Euclidean axioms, and, in the early 1800s, tried a proof by reductio ad
absurdum in which they denied the fifth axiom and looked for logical inconsis-
tencies. But they found no logical inconsistencies from denying the fifth axiom,
and, almost accidentally, they developed non-Euclidean geometries in which the
answer to the question about the number of parallels could also be either ‘zero’
or ‘many’ rather than ‘one’.

The advent of non-Euclidean geometry created a tumult in mathematics. Be-
cause it rests on what seemed to many to be an obvious fallacy, it was contro-
versial and maddening to some mathematicians. Some proponents of the new
geometry were ignored or faced condescension, and others, including even the
eminent Gauss, hid what they had realized for fear of ridicule (Bardi 2009). Nev-
ertheless, the new non-Euclidean geometries were in time accepted as legitimate
and eventually heralded as greatly enriching the discipline of geometry by vastly
expanding its scope and broadening its applications. Famously, Einstein used
non-Euclidean geometry in his general theory of relativity.

We believe that probability theory may be in the early throes of a revolution
similar in some ways to the non-Euclidean revolution in geometry. The debate
today between the traditional precisionists and the imprecise probability com-
munity hinges on the adoption or rejection of a single axiom. Omitting that
axiom relaxes the earlier, unnecessarily strict theory and opens it up to a richer
perspective on a wider array of applications. The new theory, although an ob-
vious generalization of the older theory, has met some strong and sometimes
dismissive criticism. The advantages of the newer theory arise because of its
greater flexibility, and its usefulness will likely be cemented by applications to
significant problems beyond the reach of the older theory, even though the older
theory persists as an important and still extremely widely used special case.

6 Conclusions

Given the increasing and critical use of Monte Carlo simulation and other prob-
abilistic calculations, it is important to be able to assess the reliability of their
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numerical outputs as a function of the error in finite computer representation
of probabilities and distributions, as well as the express uncertainty about the
input distributions, their interdependencies, and model assumptions. Until re-
cently, the only way to assess this reliability has been to develop an elaborate
sensitivity study, which, because of its combinatorial complexity, is rarely even
attempted. Consequently, in practice residual uncertainties about the selection
of input probability distributions and the nature of interdependencies among the
variables in an analysis are usually neglected, and the sufficiency of the numerical
methods used in the calculations is not even addressed.

Practical computational methods in probability bounds analysis now exist to
assess the potential impact on probabilistic calculations from (i) computer repre-
sentation error of distributions, (ii) incomplete knowledge about the parameters
and shapes of input distributions, (iii) imperfect understanding of the correlation
and dependency structure among variables, and (iv) several kinds of model-form
uncertainty. Probability bounds analysis is essentially an efficient and compre-
hensive form of sensitivity analysis that is compatible with both frequentist and
Bayesian perspectives. Its methods allow many analysts to make routine and
relatively inexpensive bounding estimates for calculations involving probabili-
ties or probability distributions. In many cases, the bounds will be exact in the
sense that they are the pointwise best-possible bounds. In all cases, the bounds
will enclose the probability distributions and therefore provide a conservative
expression of the reliability of the results.

The Panglossian view that every probabilistic calculation can be solved with
precisely specified inputs determined from available information does not seem
plausible in many cases, especially in new environments or novel situations
with highly constrained scientific knowledge and limited engineering experience.
When there is insufficient empirical information available to justify precise prob-
abilistic calculations, the methods of probability bounds analysis naturally yield
bounds on output distributions. Different input variables can be specified either
as particular distributions or as wide or narrow bounds on distributions as appro-
priate to represent the state of empirical information, whatever it may be, that
is available about each variable. Likewise, dependence functions can be precisely
modeled with a specific copula, qualitatively modeled with available informa-
tion, or discharged entirely by making no assumptions about the dependence.
The degree of specificity about the marginal distributions and dependencies does
not affect how they are combined in subsequent arithmetic operations, and the
result appropriately represents its own level of uncertainty, rather than a false
precision gained by unjustified assumptions.

Sound scientific and engineering analyses ought to be based on objective,
documented, and verifiable information. Whenever assumptions are used to make
up the difference between what is empirically known and what is needed to
obtain a working answer, those assumptions should be subjected to quantitative
assessment with methods such as probability bounds analysis. Without such
assessment, the calculations are unsound, and the resulting answers are merely
wishful thinking.
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Discussion

Speaker: Scott Ferson

Jon Helton: What is the current status of computational capability to prop-
agate p-boxes through complex models, e.g., long running and/or containing
repeated variables?

Scott Ferson: I would say it is significantly better than the computational ca-
pability currently available for propagating Dempster–Shafer (DS) structures,
and in some instances, better than that for Monte Carlo simulations. There are
several reasons for this. Firstly, as a bounding approach it can effectively prop-
agate some kinds of uncertainties that cannot be comprehensively addressed
by sampling approaches even with infinitely many samples. For instance, if an
analyst does not know the distribution family for some input, she can use a
distribution-free p-box that bounds all possible distribution families consistent
with the other information available about that variable. Zhang et al. (2012)
noted that the computational burden for p-box propagation when no assump-
tions are made about intervariable dependencies is actually smaller than even
that for simple Monte Carlo simulation, because it does not require a full con-
volution of all possible combinations of values for the various input variables.

There are also a variety of tricks and shortcuts available for p-box calcula-
tions, including and extending the conjugacy rules familiar to Bayesians. If a
problem is computationally challenging when p-boxes are used to characterize
the inputs, one or more of the p-boxes can be coarsened in a way that preserves
conservativism yet radically lessens the computational burden. This coarsening
is also possible with DS structures, but it will alter the internal features of the
output uncertainty structure, the elucidation of which is the whole point of using
DS structures in the first place.

The computational capability to propagate p-boxes can be judged by its prac-
tical applications. Probability bounds analysis has been used in cases with many
dozens of inputs, although I have seen no practical applications yetwithmany hun-
dreds of inputs. It has been used in uncertainty analyses of substantial complexity
in a wide variety of contexts ranging from Superfund human health and ecological
risk assessments (EPA 2005a; 2005b; 2006) to finite element models in engineer-
ing (Oberguggenberger et al. 2007; Zhang et al. 2010; 2012), and on scales from
lab bench chemistry and pharmacokinetics (Enszer et al. 2011; Nong and Krish-
nan 2007) to the planet’s climate in global circulation models (Kriegler and Held
2005).

Certainly there are challenges in computing with p-boxes, especially concern-
ing the appearance of repeated uncertain quantities, and developing strategies to
meet these challenges is a current area of research. There are no particular com-
putational challenges associated with “long-running” calculations per se, and p-
box operations can be applied iteratively in a straightforward way. However, in
cases where sequential iterations involve repeated uncertain quantities such as in
calculating solutions to differential equations, difficulties can arise. Enszer et al.
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(2011) described special methods to solve nonlinear ordinary differential equations
with parameters or initial conditions expressed as p-boxes. This is another area
where what we can do computationally with p-boxes exceeds what can be done
with Monte Carlo simulation which quickly runs into instability in such problems.

William Kahan: Your acceptance of diverse bounds upon probabilities (wher-
ever those bounds may come from) reminds me of the “degrees of belonging” of
fuzzy sets and Lotfi Zadeh’s fuzzy logic; but you do not mention fuzzy sets at
all. Why not?

Scott Ferson: The theory I’m talking about here is purely probabilistic and
conforms with the Kolmogorov (1933) axioms. Of course the bounds can come
from many places just because there are many sources of information and data
and many disparate reasons for uncertainty, but the quantities we work with are
bounds on probabilities which are interpreted in only one way, as Kolmogorov
probabilities.

I have considered fuzzy sets and possibility theory in the past, and many
colleagues still use these ideas extensively (Möller and Beer 2004; Beer 2009).
I don’t use them now myself mostly because they evoke such a very negative
reaction among probabilists. I do not think the visceral reaction from probabilists
is legitimate at all, but this is not my battle. My objection to fuzzy numbers and
their arithmetic as proposed by Kaufmann and Gupta (1991) is that there is still
no way to ensure that the result will be meaningful from level-wise combining
fuzzy numbers that came from different formulations with distinct possibility
scales. This is the same objection I have for possibility theory and, by the way,
for info-gap decision theory (Ben-Haim 2001).

Pasky Pascual: How does one use p-boxes to formulate priors within a Bayesian
framework?

Scott Ferson: The most common way is to use p-boxes to characterize an
analyst’s uncertainty about the appropriate prior to employ. Consider, for ex-
ample, the problem of estimating a binomial probability which is perhaps the
most elementary and fundamental problem in all of risk or uncertainty analysis.
Amazingly, Bayesians cannot agree on the prior to use for this problem, even
in the basic case when they all agree no relevant prior information is available
(Tuyl et al. 2009; Berger 1985, page 89). The search for a so-called “uninforma-
tive prior” has produced several candidates, including Haldane’s improper prior
beta(0,0), Jeffreys’ reference prior beta( 12 ,

1
2 ), the uniform distribution favored

by Laplace which can be modeled as beta(1,1), and other distributions such as
Zellner’s binomial prior (which is not from the beta family). Unless the sample
size is pretty large, which is rare in many practical situations, these different
priors yield noticeably different results.

Peter Walley (1991; Walley et al. 1996) has suggested using an imprecise beta
model (IBM) which is effectively a p-box of all beta distributions that could
be good priors. In the degenerate case, when the sample size is zero, the IBM
yields a vacuous posterior that says the probability could be anywhere in the
interval [0,1]. Isn’t that a reasonable result for an analysis that uses no data at
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all? When the sample size is very large, the posterior is a tight p-box that tends
to the observed frequency, as most all Bayesian analyses do. In the practical
intermediate cases of small sample sizes, the posterior from the IBM is a p-box
containing a range of beta distributions whose breadth reflects the uncertainty
about the prior that a traditional Bayesian analysis ignores. Contrary to what
Tony O’Hagan suggests in his comment below, this breadth is not too wide to be
useful, but yields answers whose imprecision is roughly what one might expect
to see across a community of competent Bayesians.

The imprecise beta model generalizes in the multivariate case to an impre-
cise Dirichlet model (IDM, Walley 1996). The IBM and IDM are examples of
Bayesian sensitivity analysis (Lavine 1991) or robust Bayes analysis (Berger
1985), the idea of which originated with Jeffreys (1931) and de Finetti (1974).
Walley (1991) has demonstrated that robust Bayes analysis is part of a more gen-
eral theory based on imprecise probabilities of very broad scope and flexibility,
for which there is a firm theoretical foundation based on respecting consistency
and coherence requirements but which avoids making unwarranted assumptions
to obtain quantitative answers. Probability bounds analysis is a computationally
convenient method within this general theory

Michael Goldstein: While I agree that notions of imprecision have a valuable
role in considering uncertainty, I am not convinced that the approach advocated
by the speaker can be viewed as a complete theory. In particular, it is quite possible
for the analyst to face a situation where there is available data which, for every
possible outcome, will increase uncertainty about some key quantity in such a way
that the information has negative value to the analyst. Effectively, this turns the
analyst into a money-pump, as the analyst appears to need to keep paying to avoid
receiving the data. This is counter-intuitive to me, and makes me uncomfortable
about the notion that the theory is sufficient to deal with all uncertainty models.

Scott Ferson: Michael is talking about a phenomenon described by Seidenfeld
and Wasserman (1993) known as dilation. It occurs when new evidence leads dif-
ferent Bayesian investigators into greater disagreement than they had prior to
their getting the new evidence. Such evidence is not merely surprising in the sense
that it contradicts one’s prior conceptions; it expands everyone’s uncertainty. It
is counterintuitive because it does not depend on what the new information is
actually saying. Michael’s criticism is perhaps the pot calling the kettle black, be-
cause dilation occurs amongBayesians too. They simply don’t recognize it because
Bayesians don’t have to agree with each other (or with the world for that matter).

It’s hard to explain dilation with a simple example, but let me try. Suppose
Lucius Malfoy tosses a fair coin twice, but the second ‘toss’ depends on the
outcome of the first toss. It could be that Malfoy just lets the coin ride, and
the second outcome is exactly the same as the first outcome. Or he could just
flip the coin over so that the second outcome is the opposite of the first. You
don’t know what he will do. The outcome of the first toss is either heads H1
or tails T1. Because the first toss is fair (and no spells are cast midair), you
judge the probability P(H1) = 0.5. Whether Malfoy lets the coin ride or flips
it, you judge the probability the second ‘toss’ ends up heads to be the same,
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P(H2) = 0.5. What happens when you see the outcome of Malfoy’s first toss?
Suppose it was a head. What is your probability now that the second ‘toss’ will
also be a head? It turns out that once you condition on the first observation,
the probability of the second toss being a head dilates. It is now either zero or
one, but you don’t know which. It doesn’t depend on chance now; it depends
on Malfoy’s choice, about which you have no knowledge (unless perhaps you too
dabble in the dark arts). Dilation occurs because the observation H1 has caused
the earlier precise unconditional probability P(H2) = 0.5 to devolve into the
vacuous interval P(H2 | H1) = [0,1].

This issue may be a pretty esoteric theoretical concern. I have yet to see
examples of dilation in practice that would create any problems for analysts or
decision makers. Although dilation seems highly counterintuitive to some people,
others consider it a natural consequence of the interactions of partial knowledge
(Walley 1991, 298f). My attitude is far from Michael’s worry that the theory of
imprecise probabilities might somehow be incomplete because it recognizes this
phenomenon. Instead, I think it is rather evidence of its being a richer theory.

One way to avoid dilation is not to use conditionalization as the updating
rule for new information. Interestingly, it is possible to do this with imprecise
probabilities. Grove and Halpern (1998) point out that the standard justifications
for conditionalization may no longer apply when we consider sets of probabilities.
And it may turn out that conditionalization may not be the most natural way
to update sets of probabilities in the first place. Instead, a constraint-based
updating rule may sometimes be more sensible. We note that dilation does not
occur in interval analysis (Seidenfeld and Wasserman 1993), which is a kind of
constraint analysis.

Anthony O’Hagan: First I would like to thank Scott for an entertaining
presentation. Unfortunately, much of what he says is in my opinion wrong–
entertainingly wrong, but nonetheless wrong. In these comments I would just
like to pick out what seem to me to be the two most important errors.

First he repeatedly confuses epistemic uncertainty with what he calls incer-
titude. Epistemic uncertainty relates to a quantity that has a unique (albeit
unknown) value but which is not random in the usual sense of that word. In
particular, we cannot observe a series of repetitions or ‘trials’ and so its un-
certainty cannot be described by the conventional relative frequency form of
probability. Bayesian statistics quantifies epistemic uncertainty with subjective
probabilities. Frequentist statistics cannot do this because it only acknowledges
relative frequency probability, so its “quantifications” of epistemic uncertainty
are oblique, using such convoluted devices as confidence intervals.

What Scott calls incertitude is not completely clear, but I think I can de-
fine it as those things that he would represent using intervals of probabilities
or p-boxes. His primary idea of a p-box is to express incertitude about a prob-
ability distribution. In his examples, those distributions are often conventional
frequency probability distributions (for quantities with aleatory uncertainty or
randomness), but he also discuss putting p-boxes on Bayesian prior and posterior
distributions, which relate to epistemic uncertainty.
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To my mind, his incertitude is an attempt to do something that is perfectly
sensible, namely to quantify in some way the fact that when we specify probabil-
ity distributions (whether they be aleatory sampling distributions or epistemic
prior distributions, for instance) we can never do so precisely. All judgments are
imprecise, and probability distributions are nearly always specified partly by con-
venience. So what he calls incertitude seems to me to be addressing imprecision
in judgments. And that’s an important issue.

My second point, however, is that I have reservations about whether p-boxes
and interval arithmetic are the way to handle incertitude. His approach is a kind
of half-way house between formal treatment of imprecisionwith a second-order (or
hierarchical) probability quantification on the one hand, and on the other a purely
informal ‘sensitivity analysis’ in whichwe simply explore a few possible alternative
distributions. As such, it is certainly more comprehensive than sensitivity analysis
and may indeed have a role to play. However, it requires one to specify bounds,
and these bounds are almost always arbitrary. If set very wide so as to be quite
sure of encompassingwhatever the ‘true’ distributionsmight be, then the resulting
derived bounds on quantities of interest and decisions are likely to be hopelessly
wide. If set narrower so as to encompass just the more likely ‘true’ distributions,
then he can no longer claim that the p-boxes are exhaustive.

Despite these reservations, I welcome the basic idea of p-boxes and interval
arithmetic. I just wish that Scott would not oversell it. These are not tools for
quantifying epistemic uncertainty (although they may have a role in addressing
the imprecision in subjective distributions that do quantify epistemic uncer-
tainty). I might also add that they have nothing to do with utility theory or
prospect theory.

Scott Ferson: Tony seems to want to dismiss the presentation as wrong, wrong,
wrong, yet he agrees that my concern with incertitude is “perfectly sensible” and
that it is an “important issue”. Moreover he concedes that p-boxes “may indeed
have a role to play” and “welcome[s] the idea of p-boxes”. So let us try to clarify
the sources and details of our differences.

The first of two disagreements that Tony highlights is my use of the phrase
‘epistemic uncertainty’. I’m not at all sure why Tony insists that a quantity
about which we are epistemically uncertain must be a unique, fixed quantity.
There is nothing in the definition of the phrase that requires the quantity to be
fixed underneath all our uncertainty about it. A quantity might be a fixed value,
but it also might not be, and indeed our epistemic uncertainty about a quantity
might often include whether it is in fact fixed or varying. Whether we know it
is fixed or not, we could still have epistemic uncertainty about it.

It is true that Bayesians use probability distributions to model epistemic un-
certainty, but it is simply not true that these objects represent the only possible
way to model epistemic uncertainty. Clearly, intervals and p-boxes are general
and flexible tools to quantify and propagate epistemic uncertainty, the latter
specifically designed to do so, even when the nature of the underlying quantity
is itself unknown. PBA can also handle Tony’s case where the unknown quantity
does have some unique fixed (but unknown) value. A p-box conveniently repre-
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sents this case as extra information that the quantity’s variance is zero. This is
a special case compared to the general situation in which the possible range of
the variance includes zero. Knowing a p-box’s variance is exactly zero may have
implications for the left and right bounds of the p-box, and it will usually have
implications for mathematical results that depend on the p-box. You might also
know the quantity must vary, in which case the p-box’s variance might exclude
zero as a possible value, even though you may not know its distribution precisely.
Knowing a minimum range for the quantity or knowing a lower bound on its
variance can improve the p-box and calculations that depend on it.

I do not know the origin or purpose of Tony’s restrictive definition of ‘epistemic
uncertainty’. Our view is more expansive, and perhaps more useful. In addition
to our not requiring the underlying value to be fixed, our usage of the phrase need
not refer to a quantity at all, but includes uncertainty about the mathematical
form of the model, which can also be captured in probability bounds analysis.

The second of Tony’s two complaints is about whether intervals and p-boxes
are a practical way to handle incertitude (epistemic uncertainty). He asserts
that the bounds of p-boxes are “almost always arbitrary” and suggests that
setting them very wide to be sure to encompass the true distribution will make
the results vacuous, and narrowing them will lose the claim that p-boxes are
comprehensive. In fact, however, there are many ways to construct p-boxes, and
many of these ways constitute constraint analyses that are best-possible and in
no way arbitrary. They don’t even depend on parameters that might be varied
arbitrarily. The subsequent calculations are also essentially constraint analyses
that include no arbitrariness.

There are other ways to construct p-boxes that do involve decisions by the
analyst that might have to be made arbitrarily. For instance, picking the confi-
dence level in a p-box defined as a confidence band. Most analysts consider these
decisions to be part of the modeling task and therefore to be the responsibility of
the analyst, as they are in many exercises involving modeling or analysis. There
are various strategies to avoid arbitrariness including appealing to conventions
such as Fisher’s 0.05 level, or considering would-be arbitrary parameters to be
part of the analysis by nesting p-boxes at different levels (Ferson and Tucker
2008) or enveloping all tenable levels. Whether the uncertainty overwhelms the
analyst’s ability to make decisions depends on the details of the application and
the available empirical information. In practical cases, analysts have generally
found that useful inferences and decisions can be obtained.

One further fundamental point should be emphasized in reaction to Tony’s
complaint. Uncertainty analysis shouldn’t be a game. Analysts are invited to
be honest in expressing what they know and what they don’t know. If it turns
out that so little is known about a system that the p-boxes characterizing it
are wide to the point that the results are vacuous, then it seems to me that a
proper uncertainty analysis should reveal this fact. It is, after all, the very point
of an uncertainty analysis. The alternative—which is to squeeze unwarranted
conclusions or decisions out of a tenuous model that is not actually supported
by evidence—is of course possible, but does not seem desirable, especially in an
engineering context.
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Abstract. Computation has rapidly grown in the last 50 years so that
in many scientific areas it is the dominant partner in the practice of
science. Unfortunately, unlike the experimental sciences, it does not ad-
here well to the principles of the scientific method as espoused by for
example, the philosopher Karl Popper. Such principles are built around
the notions of deniability and reproducibility. Although much research
effort has been spent on measuring the density of software defects, much
less has been spent on the more difficult problem of measuring their ef-
fect on the output of a program. This paper explores these issues with
numerous examples suggesting how this situation might be improved to
match the demands of modern science. Finally it develops a theoretical
model based on Shannon information which suggests that software sys-
tems have strong implementation independent behaviour and presents
supporting evidence.
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tion.

1 Introduction

The thesis of this paper is that many scientific computations are tainted by the
presence of unquantifiable software defects. To understand how this has come to
pass, it is important to realise two things:-

– Computer science is historically not a particularly critical discipline. In ex-
perimental terms, it appears to be considerably less mature than the natural
sciences as for example was demonstrated by [35], [36] when assessing the
degree to which experiment played a part in typical computer science pub-
lications.

– The majority of the empirical research carried out into software defects has
concerned itself with quantifying the density of such defects rather than the
much more difficult problem of quantifying the effects those defects have on
the output of scientific computations. For a thorough review, see [3]. The
end product of this research suggests that typical residual defect densities in
released software seem to be between 1 and 10 per thousand lines of code.
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Some very good systems may be as good as 0.1 per thousand lines of code,
[18], although it is not always clear if like is being compared with like, (for
example, there are numerous ways of measuring lines of code - source with
or without comment, or executable lines - and it is rarely clear which one is
in use).

1.1 A Small Diversion on Lines of Code

I mentioned above that the use of the phrase “line of code” is problematic. It
occurs in a number of guises. The simplest way of counting them is to use the
number of newlines giving a value known as SLOC (Source Line of Code). This
is normally shown in text editors and can be counted very simply indeed.

The presence of comments and language pre-processors complicates this lead-
ing to alternative measures such as PPSLOC, (Pre-Processed Source Line of
Code) and XLOC, (Executable Lines of Code), neither of which are readily
available when code is compiled and require either special tools or hand-coded
tools to measure. As a result, most lines of code measured are SLOC. It is possi-
ble to understand the relationships between them by correlating them for a given
population of code. As a simple example, Fig. 1 illustrates SLOC v. XLOC and
also bytes for a typical C application. Repeating on larger populations reveals
similar relationships allowing us to move between SLOC, PPSLOC, XLOC and
bytes with relative ease normalising defect densities as appropriate.

However, as I will show later in a token-based development using Hartley-
Shannon Information Theory as eloquently described in [4], lines of code is too
crude a measure.

1.2 Software Testing and Deniability

Finally, it is also worth stating the central tenets of Popperian deniability here
cast into a software context.
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Fig. 1. The left hand diagram is a plot of SLOC count against XLOC count for a
typical C application of around 140,000 SLOC in total. The right hand diagram shows
the SLOC count against the object code size in bytes generated by compilation with
the GNU C compiler. For this application, 1 XLOC = 0.8 SLOC very accurately and
1 SLOC = 25 +/- 3 bytes.
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– Truth cannot be verified by software testing, it can only be falsified.
– Falsification requires quantification of computational modelling error.
– Deniability is at the heart of progress in scientific modelling. We are always

seeking to deny the truth of a result and a continued failure to deny such
truth simply adds weight to a result but not verification.

It will become clear that scientific source code plays a key part in this process.

2 Quantification of Defect

I have distinguished above between the relative success of quantifying defect
density, and the much more difficult problem of quantifying their effects. I will
now expand on this.

2.1 Defect Density and Static Program Properties

Even though calculating defect density has been more successful, teasing out any
relationships with statically measurable software properties such as the numerous
software metrics which have been described in the literature, [8], [33], [24] has
been rather less successful.

Complexity. For a long time, a considerable amount of hope has been pinned
on using statically measured structural properties of a program to predict the
occurrence of defect after release, with probably the earliest and most well known
being cyclomatic complexity, [22]. Whilst it has value because of its relationship
with the number of test cases, [8], there remain difficulties and its originally
suggested relationship as a predictor of defect seems illusory at best as can
be seen in a study carried out by [13] on the NAG Fortran library. Figure 2
illustrates the lack of predictive power for these two metrics.

Programming Language. Programming language definitions historically re-
flect the continuing tension between performance and verifiability. Simultane-
ously, they embody elements of fashion in the form of a need to present the
latest features and paradigms to the end-user, even when those features are per-
haps not well understood in terms of their capability for injecting defects. A
perfect example is the inclusion of object-orientated features into virtually all
programming languages in the last twenty years.

The effect of these, coupled with long-term difficulties in removing features of
dubious benefit from internationally-standardised languages because of the need
to preserve backwards compatibility, has resulted in programming languages
which have grown dramatically in size. Furthermore, they are often punctuated
with significant numbers of features which have no defined behaviour and for
which there is no requirement for compiler writers to diagnose. Examples in-
clude the 191 undefined features of ISO/IEC 9899:1999 (C99), (one of the few
languages which actually bothers to list them as an appendix). In addition to
these, languages contain features which often lead to erroneous behaviour as
exemplified in C by [20] for example.
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Fig. 2. The left hand diagram is a plot of historical defect against cyclomatic complex-
ity for approximately 20 years history of the NAG Fortran library leading up to Mark
19 shown here. The right hand plot shows the same defects plotted against occurrences
of the eponymous goto statement. Neither plot presents any significant statistical cor-
relation of any dependability.

Although to my knowledge, there has been no published modern attempt to
quantify the occurrence of these in released code, [9] demonstrated occurrence
rates of around 8 per KSLOC in a study of several MSLOC several years ago,
with a number of these packages still in use, whilst [29] demonstrated that these
failed with some frequency by measuring an air-traffic control system over several
years.

On top of these static fault modes, there are enduring problems with im-
plementations of floating point arithmetic, [17], [16]. These are of fundamental
importance to scientists as floating point arithmetic is at the very heart of sci-
entific computation due to the enormous scale over which physical phenomena
manifest themselves.

2.2 Quantification of the Effect of Defect

Whilst we have been fairly successful at understanding the density of such fault
modes, (if not preventing them), little progress has been made in quantifying
their effect on the computational results themselves, because the problem ap-
pears difficult. Several factors contribute to this.

Delayed Defect Discovery. A surprisingly large number of defects take an
extraordinarily long time to appear for the first time. In a definitive study,
Adams [1] demonstrated in an analysis of faults and failures in a number
of IBM products, that around a third of all faults took longer than 5,000
executable years to fail for the first time. This immediately compromises the
possible effectiveness of dynamic testing. Based on the kinds of product he
analysed, Adams states:

“It may well be that as software engineering techniques improve,
the population of DEs (Design Errors) will balance at a lower level;
but absent development methods that generate truly error-free code,
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the same sort of error rate distribution may well persist in future
large products”

This was written almost thirty years ago and we are certainly still “absent
methods that generate truly error-free code”.

Unknown Answers. In many if not most areas of scientific computation, we
don’t know what the answer is except perhaps in the broadest terms. This
is particularly a problem in remote sensing where corroborating physical
experiments on the target phenomena cannot actually be carried out at
all because they are simply inaccessible, either temporally (for example in
back-casting numerical climate models) or spatially, (seismological data).
This latter will be the topic of an experiment I will describe shortly. In such
cases, rough order of magnitude estimates may be all that is available and as
will be seen, this is insufficient to diagnose significant long-present defects.

Access to Source Code. It is only relatively recently, since the real advent of
open source, that source code has been widely available in any area. However,
in spite of the fact that there is very significant evidence of its pivotal part in
defect discovery, it is still not a requirement to parcel up the source code with
the algorithmic research, the data and the means to reproduce the results,
the very essence of the scientific method. Some research groups, for example,
[5] have led the way but progress is slow and even prestigious journals such
as Nature remain ambivalent, [6] stating:-

“Nature does not require authors to make code available, but we
do expect a description detailed enough to allow others to write their
own code to do similar analysis”

Software Testing. Software testing remains the Cinderella profession in Com-
puting. It is not usually a significant part of the CS curriculum in universities,
[15] and it is unclear whether this deficiency is ever addressed successfully
in organisations.

N-Version. One methodology which at least casts some light on the magnitude
of errors in computation is known as N-version or back-to-back testing. In this
approach, the same program specifications are given to N different groups who
develop one version each independently, sometimes in different programming lan-
guages. These N versions are then given the same input data and any differences
in the outputs must be explained. There are two significant disadvantages.

– Cost. Since they must be independently developed, there are no economies
of scale so the cost of development is effectively N times the cost of a single
version.

– Independence. Important experiments such as those of [19] and [23] have
demonstrated that there are dependent failures even in packages developed
completely independently.

In spite of these deficiencies, N-version experiments have demonstrated their
value in flushing out very long-lived defects which had evaded any other tech-
nique. In [12], nine different seismic data processing packages which had evolved
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Fig. 3. A comparison of nine independently developed packages in the same program-
ming language on the same input seismological data shown by [12]. The y-axis is depth
of burial in the earth and the x-axis is distance along the surface of the earth. The
colourscale shows relative echo intensities derived from acoustic sounding experiments
after significant processing of raw data. The outputs vary in the second and sometimes
first significant digit whereas three digits are desired to position a well reliably.

independently in a commercial environment to very well-specified standard al-
gorithms were tested by giving them an identical set of 32 bit floating point
input data. After an identical processing sequence, the individual results dif-
fered in the 2nd and sometimes 1st significant figure. The results can be seen in
Fig. 3. In the figure, the y-axis is depth of burial in the earth and the x-axis is
distance along the surface of the earth. The colourscale shows relative echo in-
tensities derived from acoustic sounding experiments after significant processing
of raw data. The outputs vary in the second and sometimes first significant digit
whereas three significant digits of accuracy are deemed necessary to resolve the
geological features (in this case an unconformity trap for a gas field in the North
Sea) sufficiently accurately for reliable positioning of a well.

Amongst other things, the paper concluded

– The differences were due to previously undiscovered software faults, in some
cases remaining hidden for many execution years.

– The initial 6 significant figures of agreement had shrunk to 1-2 by the time
the data was passed to the scientist end-user for interpretation.

– The differences in the final datasets were non-random and therefore more
likely to mislead.
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– Each software fault which was identified and corrected caused the differences
to reduce, so there was convergence although of course it is not possible to
say what it was converging to as this is a remote sensing environment with
the end product effectively inaccessible. (Drilling a gas well does not validate
data as the act of drilling itself interferes with the lithology.)

Although conducted almost twenty years ago, the language used by all partic-
ipants is still widely used in one form or another (Fortran), the software and
test processes used by the participants are also still used and software engi-
neers haven’t changed. In other words, it seems likely that the lessons of this
experiment are just as valid today.

Open Source. It is believed that open source has a beneficial ameliorating
effect on defect, [26], [31], [27] and numerous other authors. This is simply an
extension of the quoted effectiveness of code inspections, [7] and [14] amongst
many. Although in some senses obvious, the mechanisms are not clear although
it may be a simple analogue of N-version experiments where there is one version
but N independent sets of eyes rather than N independent versions. This is
coupled in the open source world with a form of Darwinian overturn whereby
the same feature set may appear many times but the best ones are adopted by
the community and further strengthened. As in nature, the unsuccessful ones
simply disappear.

Whatever model we ascribe to this process, there seems little doubt of its
effectiveness. I have included it under the topic of quantifying the effects of
defect as it is also commonly associated with a very close relationship between
development and testing as occurs in the Linux kernel1.

3 A Theory of Defect

One of the things engineers often note about software systems is that the same
things occur again and again, [2]. To take one particular example, it is very
often observed that defects appear to cluster, [34], [2], independently of either
programming language or application area. Following on from [11], I will in-
vestigate this using an information theoretic model to avoid the straitjacket of
dependence on line of code measures. This does require the development of tools
to extract the tokens so is rather more effort than extracting SLOC but that
effort proves to be important.

All languages are specified by such tokens, which are extracted at the lexical
analysis stage of a language compiler or interpreter. In this sense a token of a
programming language takes one of two forms:-

Fixed Token. Fixed tokens of programming languages are those tokens speci-
fied by the language designer whose form cannot be altered - the program-
mer either uses them or not. Examples include language keywords such as

1 http://www.ibm.com/developerworks/linux/library/l-stress/index.html, accessed
18-Oct-2011
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if, then, while; structural tokens such as [, ] and operators such as +, -, *
and so on.

Variable Token. These are the user-specified tokens invented by the program-
mer in order to implement an algorithm. Examples include identifier names,
constants such as 3.14159265 and strings. Apart from some mild lexical con-
straints such as limiting the length of an identifier to 31 characters and its
starting character to be alphabetic, the programmer has complete freedom
to invent what he or she chooses.

From this token model, all algorithms in all programming languages are con-
structed.

3.1 An Information Theoretic Model

Suppose a software system is split up into M components, with the ith component
containing ti tokens altogether from an alphabet consisting of ai tokens. In
simple procedural languages such as Fortran, components would correspond to
a function or a subroutine. In an object-oriented language, they would be the
outer classes. No finer granularity will be used as the mathematical development
considers only one level.

Following the discussion above, the alphabet can be decomposed as

ai = af + av(i) (1)

where af is the alphabet of fixed tokens and av(i) is the alphabet of variable
tokens and is clearly dependent on i, since programmers are free to create them
as and when desired.

The number of ways of arranging the tokens of this alphabet in the ith com-
ponent is therefore atii . Following Hartley, the quantity of information in the ith

component Ii will therefore be defined as

Ii = log(atii ) = ti log ai (2)

We can then see that the total amount of information in a system I, can be
written as

I =
M∑
i=1

Ii =
M∑
i=1

ti

(
Ii
ti

)
≡

M∑
i=1

tiI
′
i (3)

where I ′i is the information density in the ith component. We will see the reason
for this transformation shortly. We can also see that the total system size T is
given by

T =

M∑
i=1

ti (4)

Equations 3 and 4 will provide constraints in the analysis below.
We can envisage a software system as a fixed level of functionality within some

fixed size. Now functionality is intimately related to choice which as Cherry
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points out [4], is itself intimately related to Hartley-Shannon information. It
therefore makes sense to find the most likely way in which tokens can be arranged
in components subject to the twin constraints that total size and total amount of
information are fixed. This can be solved using basic principles from statistical
mechanics as follows.

The total number of different ways of distributing tokens amongst the com-
ponents is given by:

W =
T !

t1!t2!..tM !
(5)

We will now suppose that the information density of the ith component is ex-
ternally imposed by the nature of the algorithm and therefore in common with
variational principles is kept constant during variation.

The most likely distribution of the ti’s is defined as the one maximizing 5
subject to the constraints in equations (4) and (3). Using the method of Lagrange
multipliers this is equivalent to maximising the following

F ≡ T logT −
M∑
i=1

ti log(ti) + λ

(
T −

M∑
i=1

ti

)
+ β

(
I −

M∑
i=1

tiI
′
i

)
(6)

where λ and β are the Lagrange multipliers, and the first term of Sterling’s
Formula is used to simplify the factorials under the assumption that ti � 1.
Setting δF = 0 leads to

0 = −
M∑
i=1

δti (log(ti) + α+ βI ′i) (7)

where α = 1 + λ. This must be true for all variations δti and so

log(ti) = −α− βI ′i (8)

Defining pi =
ti
T using (3), pi can be interpreted as the probability that a com-

ponent is found with a share of I equal to I ′i. Cancelling the common factor of
e−α in numerator and denominator pi is given by

pi ≡
ti
T

=
e−βI′

i∑M
i=1 e

−βI′
i

(9)

In other words, the probability of finding a component with a large amount of
I ′i is correspondingly small. Given the assumed externally imposed nature of I ′i ,
pi can then be taken to be the probability that a component of ti tokens actually
occurs.

Using (3) and (9), we define

Q(β) =

M∑
i=1

e
−β

Ii
ti (10)

and can finally write
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pi =
(ai)

−β

Q(β)
(11)

Thus this information theoretic argument predicts a power-law distribution for
the probability of token number as a function of alphabet length.

So far this is a similar development to that followed in [30] and [10] for ex-
ample, although it generalises the argument by using tokens of programming
languages, which are the natural currency of information theory.

Note that this overall process does not care about the tokens themselves -
all individual microstates are equally likely. It simply says that if total size and
choice in the Hartley-Shannon sense is conserved during the process of distribut-
ing the tokens, (and programming is all about choices), then power-law distri-
bution of component size in tokens is overwhelmingly likely to emerge since it
occupies the vast majority of the microstates. As will be seen in the data analysis,
the specific contribution made by the fact that choice is being made from pro-
gramming language tokens is represented by the behaviour implicit in (1). This
contrasts nicely with monkeys pounding on keyboards as eloquently described
by [25]. The ergodic nature of (11) simply accumulates all possible programmers
pounding on keyboards. Although not shown here, it also works well with much
smaller numbers, i.e. individual systems, a characteristic of classical statistical
mechanics.

Finally, I will observe that every language has a fixed token overhead in order
to implement even the simplest of algorithms. In other words, smaller compo-
nents must use a higher proportion of fixed tokens than variable tokens. In con-
trast, larger components use a higher proportion of user-specified tokens because
the finite fixed token alphabet quickly stabilises. This can easily be measured.
In the very large amount of data reported shortly, the av(i)/af ratio is typically
around 0.2 for smaller components and at least 5 for large components.

It turns out that computing pi is fundamentally noisy in the tail of power-
law distributions and [28] recommends using the equivalent cumulative density
function ci instead. We can then anticipate the final shape of (11) as follows.

Combining (1) and (11) gives

ci ∼ (af + av(i))
−β+1 (12)

For small components, as has been seen, it is reasonable to assume that the
number of fixed tokens will tend to dominate the total number of tokens. In
other words, af � av(i). (12) can then be written

ci ∼ (af )
−β+1(1 +

av(i)

af
)−β+1 (13)

In other words,
ci ∼ (af )

−β+1 (14)

which implies that ci will be tend to a constant for small components on a log-log
plot. For large components, using the same arguments,

ci ∼ (av(i))
−β+1 (15)

The generic shape of the predicted curve on a log-log plot is shown in Figure 4.
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Fig. 4. The predicted cdf using the model described in this paper. The cdf is predicted
to be approximately constant for small components and power-law for large ones with
a merging zone between.

3.2 Results

To give a sufficiently broad analysis, many software systems comprising multi-
ple languages, (Java, C, C++, Ada, Fortran, Tcl-Tk) were analysed. A generic
token extractor was developed for each and calibrated against existing parsing
engines in Fortran and C which I had developed in previous projects and which
had been tested against the appropriate validation suites, (FCVS and FIPS160
respectively). 75 systems totalling 34 million lines of code (around half a billion
tokens) were analysed and the results are shown in Figure 5.

Although the tail of the distribution shown in Figure 5 looks decidely linear,
this was confirmed using the linear modelling function (lm()) in the widely-used
R statistical package, (http://www.r-project.org/) which reported a very high
degree of linearity with a linear-fit correlation of 0.998 between token counts of
30 and 1500, a span of almost two decades. The same analysis reports a slope
of -2.404 +/ 0.004, which is squarely in the range -2 → -3 reported for most
natural phenomena by [28].

If we now use the simplest model of defect, that we make a mistake every N
tokens on average, di ∼ ti ∼ ai (using Zipf’s law [32]), then

ci ∼ (ai)
−β+1 ∼ (ti)

−β+1 ∼ (di)
−β+1 (16)

So defects will also statistically be distributed as a power-law and should ex-
hibit clustering. As discussed above, this has been widely observed, and also
exploited, [21].
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Fig. 5. The measured cdf for 75 systems combining 34 MSLOC into one super-system.
This comprises around 15% Java, 15% C++, 15% Fortran, Ada and Tcl combined and
around 55% C. This very roughly reflects the amount of each language freely available
under open source.

4 Conclusions

This paper gives a guide to some of the problems of quantifying defect in sci-
entific computation. It also demonstrates that software systems appear to have
implementation independent properties in which power-laws strongly figure and
suggests that defects might be fundamentally statistical in nature rather than
predictive. The development gives theoretical support to the observation that
defects cluster and this phenomenon can be exploited.

N-version experiments to measure difference are formidably expensive al-
though can emphasise that we have a problem but perhaps the only real way
forward is through open source and open data so that reproducibility can be
consistently achieved as in other parts of science.

Perhaps I can best sum up this paper by the following aphorism:-

We make progress in science by peer review. To make progress in
scientific computation we must extend this to code review.
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Discussion

Speaker: Les Hatton

William Oberkampf: Experience with the ineffectiveness of unit and regres-
sion testing in the ASC program at Sandia National Labs is similar to your
documented experience in software quality. We have found that the method of
manufactured solutions has been extremely effective at detecting software bugs
and numerical algorithm deficiencies in scientific software. Have you used this
method to detect software bugs and numerical algorithm deficiencies?

Les Hatton: Not in recent times. I actually didn’t know it under this name
although I used something similar to this in studying the flow regime in the core
of a tornado in my Ph.D thesis many years ago, (and it was successful in flushing
out some numerical problems in the non-linear matched boundary value systems
I was trying to solve !). I would imagine that it is not a well-known technique
amongst scientists though.

Philip Starhill: Do you think that testing can have a positive impact on defect
counts or other measures of software quality?

Les Hatton: It depends really on the quality of the testing. It is very variable in
my experience, (from casual and ineffective all the way up to a determined and
highly skilled assault on a program). However, I think there is little doubt that
experienced testers can have an extraordinarily positive impact, particularly if
they are involved as early as the design stage where such experience can be highly
beneficial to the eventual testability. Too often, testing is an afterthought and
I usually picture it as a crumple zone between developer creep and intransigent
delivery deadlines.

William Kahan: Of the 19 languages you have used, you mentioned that 18
were not your own choice. Which was the one you would choose? And was its
capture cross-section for error lower than the others’?

Les Hatton: An interesting question. I finished up with C but its capture cross-
section for error is not one of its most advertised features - a stated philosophy
of “trust the programmer” is in itself a little unnerving. However, I had built by
then a considerable arsenal of tools to control some of its worst excesses and it
remains at heart a simple, elegant and astonishingly versatile language of great
longevity. With this tool support, I can write portably and with a gratifyingly
low defect density but its taken a long time to get there. C is a great tribute to the
skill and insight of its inventor, the late Dennis Ritchie, although like a number
of languages, it has suffered somewhat in the hands of standards committees.
Last but not least it is well-implemented with the redoubtable GNU C compiler.

William Kahan: Have you noticed that effective testing requires rather more
cleverness than writing the program to be tested?
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Les Hatton: Absolutely. For most of my career, I have been struck by this.
For some reason however, it remains the Cinderella of Computing technologies
and is still not considered a good career direction. We don’t really teach it in
universities and we rarely seem to carry it out well in spite of its importance. In
my personal experience, good testers are much rarer than good programmers.

Mladen Vouk: How is the work you describe related to Halstead Theory and
metrics: token counting, fault generation, . . . etc?

Les Hatton: Token extraction and counting is identical in Halstead’s work
and is fundamental in programming languages where it forms the initial lexical
analysis stage of all language translation. Where I take a different slant from Hal-
stead (and later, Shooman), is using variational methods to find the most likely
distribution of tokens under the twin constraints of size and Hartley-Shannon
information. I make no effort to fit defect curves. This approach leads very nat-
urally to the observed implementation independent power-law behaviour and
suggests under a simple model of defect that they are also distributed amongst
components according to a power-law. This adds some theoretical support to
the widely-observed and exploitable phenomenon of defect clustering.

Mladen Vouk: N-version has been extensively studied both as run-time fault
tolerance tool and as a testing tool (called back-to-back testing, BBT). One of
the “blindness” issues with BBT are common-cause and/or correlated faults and
failures. Please comment on this in the context of your work.

Les Hatton: Indeed. There are a number of well-known studies (Knight and
Leveson, 1986, van der Meulen and Revilla 2008), which demonstrate non-
independent behaviour in BBT. However, in spite of this, there appears to
be sufficient independent behaviour that such experiments are very effective at
quantifying and flushing out defects which have evaded other techniques. Having
said that, by far the biggest barrier to BBT is its cost which is basically N times
the cost of a single version. For this reason, as I state in the paper, such methods
only serve to highlight the problem. Open source, which is related to N-version
in subtle ways, is a much more likely general purpose tool although BBT is used
successfully today in some safety-critical systems such as railway signalling and
communication systems.
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1 Introduction

Situations where one is concerned with uncertainty quantification often come in
the following guise: we are investigating some physical system which is modelled
by an evolution equation for its state:

∂

∂t
u(t) = A(p;u(t)) + f(p; t), (1)

where u(t) ∈ V describes the state of the system at time t ∈ [0, T ] lying in a Hil-
bert space V (for the sake of simplicity), A is an operator modelling the physics
of the system, and f is some external influence (action / excitation / loading).
The model depends on some parameter p ∈ P ; in the context of uncertainty
quantification the actual value of p is uncertain. Often this uncertainty is mod-
elled by giving the set P a probability measure. Evaluation and quantification
of the uncertainty will often involve functionals of the state Ψ(u(p; t)), and the
functional dependence of u on p becomes important. Similar situations arise in
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design, where p may be a design parameter still to be chosen, and one may seek
a a design such that a functional Ψ(u(p; t)) is e.g. maximised.

The situation just sketched involves a number of objects which are functions
of the parameter values. While evaluating A(p) of f(p) for a certain p may
be straightforward, one may easily envisage situations where evaluating u(p)
or Ψ(u(p)) may be very costly as it may involve some very time consuming
simulation or computation, like for example running a climate model.

As will be shown in the following Section 2, any such parametric object like
u(p), A(p), or f(p) may be seen as an element of a tensor product space. This in
turn can be used to find very sparse approximations to those objects, and in turn
much cheaper ways to evaluate the for other parameter values. In particular this
may be used in the uncertainty quantification to large advantage, like computing
means, covariances, exceedance probabilities, etc. For this the dependence of
A(p) and f(p) on p has to be propagated to the solution or state vector u(p).
This is called the forward problem, the resolution of which will be sketched in
Section 3, e.g. see [14,15] and the references therein.

The situation we would like to address finally is actually a bit more com-
plicated: In a situation as just described, we observe a function of the state
Y (u(p), p), and from this observation we would like to identify the correspond-
ing p. This is called the inverse problem, and as the mapping p �→ Y is usually
not invertible, it is usually ill-posed. We embed this in a larger class by modelling
our knowledge about p with the help of probability theory, and in a Bayesian
manner our task becomes to estimate conditional expectations, e.g. see [21] and
the references therein. The problem is now well-posed, but at the price of ‘only’
obtaining probability distributions on the possible values of p. The resolution of
the inverse or identification problem will be addressed in Section 4.

2 Parametric Problems

Let r : P → V be a parametric description of one of the objects alluded to in the
introduction, where P is some set, and V for the sake of simplicity is assumed as a
separable Hilbert space with inner product 〈·|·〉U (the meaning of the index U will
soon become clear). What we desire is a simple representation / approximation
of that function, which avoids solving Eq. (1) every time one wants to know
r(p) for a new p ∈ P , i.e. a response surface or surrogate model, sometimes also
called an emulator, whereas the solver for (1) is termed a simulator.

One relatively well-known way, particularly in statistical estimation [9], turns
the problem into one of approximation of a linear mapping: let U = span r(P) =
span im r ⊆ V be the smallest closed subspace of V which is spanned by all the
vectors {r(p)| p ∈ P}. Then to each such function r : P → U one may associate
a linear map

R : U � u �→ 〈r(·)|u〉U ∈ R
P . (2)

By construction, R is injective. This may be used to define an inner product on
imR as

∀φ, ψ ∈ imR : 〈φ|ψ〉R := 〈R−1φ|R−1ψ〉U , (3)
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and let R be the completion of imR with that inner product. It is obvious that
R is a unitary map between the Hilbert spaces U and R.

Up to now, no structure on the set P has been assumed, whereas on U the
inner product is assumed to measure what is important for the state r(p) ∈ U .
This is carried via the map R in (2) onto the space of scalar functions R on the
set P , and the inner product there measures essentially the same thing as the
one on U .

2.1 Reproducing Kernel Hilbert Space

This is a first representation, and R is called a reproducing kernel Hilbert space
(RKHS) [7] with reproducing kernel κ ∈ R

P × R
P

κ(p1, p2) := 〈r(p1)|r(p2)〉U . (4)

It is straightforward to verify that it defines an obviously continuous (on R)
point-evaluation functional R � φ �→ φ(p) = 〈κ(p, ·)|φ〉R ∈ R, hence the name.

In other settings like classification or machine learning, e.g. with support
vector machines, where p ∈ P has to be classified as belonging to certain subsets
of P , the space V and the map r : P → V may often be freely chosen. This
is then referred to as the “kernel trick”, and classification may be achieved by
mapping these subsets with r into U and separating them with hyperplanes—a
linear classifier.

In terms of representation, one may now choose a basis {ϕm}m∈N in R, which
may be assumed to be a complete orthonormal system (CONS). With the CONS
{ym | ym = R−1ϕm}m∈N in U , the operator R, its inverse R−1, and the para-
metric element r(p) become

R =
∑
m

ϕm ⊗ ym; R−1 =
∑
m

ym ⊗ ϕm; r(p) =
∑
m

ymϕm(p), (5)

exhibiting the tensorial nature of the representation mapping. With such a basis
one may define a unitary map from �2 to R and via R−1 further to U :

�2 � a = (a1, a2, . . .) �→
∑
m

amϕm �→
∑
m

amym ∈ U . (6)

Note that this representation is linear in the new ‘parameters’ (a1, a2, . . .) ∈ �2.
Model reductions may be achieved by choosing only subspaces of R or �2, or
by approximating the map R−1. This pattern of (5) or (6) repeats itself for all
representations to follow.

2.2 Spectral Decomposition

As a way of measuring of what is important on the set P , assume that there is
another inner product 〈·|·〉W for scalar functions φ ∈ R

P , and denote the Hilbert
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space of functions with that inner product by W . With this, one may define [9]
a densly defined map C in U through the bilinear form

∀u, v ∈ U : 〈Cu|v〉U := 〈Ru|Rv〉W . (7)

The map C = R∗R (the adjoint is taken w.r.t. the W-inner product, by abuse of
notation we shall still call the map R) may be called the ‘correlation’ operator.
By construction it is injective, positive, and self-adjoint.

Often the inner product 〈·|·〉W comes from a measure � on P , so that W
may be taken as L2(P , �). One important class of problems is when � is a
probability measure on P , i.e. �(P) = 1. Often the set has more structure, like
being in a topological space, differentiable (Riemann) manifold, or a Lie group,
which then may induce the choice of σ-algebra or measure. In all such cases one
has C = R∗R =

∫
P r(p) ⊗ r(p) �(dp). It is the factorisation of C = R∗R which

paves the way for further possibilities of representation. Most common is to use
the spectral decomposition (e.g. [19,3]) of C:

Cu =

∫ ∞

0

λ dEλ(u), (8)

where Eλ is the corresponding projection valued spectral measure, with the
spectrum σ(C) ⊆ R+. For the sake of simplicity assume that C has a pure point
spectrum σp(C) = σ(C)—the important case where C has also a continuous
spectrum requires too many technical tools such as Gel’fand triplets (rigged
Hilbert spaces) [3] and generalised eigenvectors to be treated in this short note—
such that (8) may be written with the CONS of unit-U-norm eigenvectors vm:

Cu =
∑
m

λm〈vm|u〉Uvm =
∑
m

λm(vm ⊗ vm)u. (9)

From this follows the singular value decomposition of R, with λ
1/2
m sm := Rvm:

R =
∑
m

λ
1
2
m(sm⊗vm); R∗ =

∑
m

λ
1
2
m(vm⊗sm); r(p) =

∑
m

λ
1
2
m sm(p)vm, (10)

where the last relation is the so-called Karhunen-Loève or proper orthogonal de-
composition (POD). Observe that r—as well as R∗—is linear in the sm. Similarly
to (6), we have the—linear in a—representation:

�2 � a = (a1, a2, . . .) �→
∑
m

amsm �→
∑
m

λ1/2
m amvm ∈ U . (11)

An alternative formulation of the spectral decomposition (8) is [19] that C is
unitarily equivalent with a multiplication operator:

C = VMkV
∗ = (VM

1/2
k )(VM

1/2
k )∗, (12)

where V is unitary between some L2(T ) and U , Mk is a multiplication operator

on the measure space T with a positive function k(s) > 0, and M
1/2
k = M√

k.
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The essential range of k is the spectrum of C. This gives in the now familiar
manner a representation on L2(T ) through the choice of a CONS {ςm}. Setting
um := VM√

kςm, one obtains

(VM
1/2
k ) = (VM√

k) =
∑
m

um ⊗ ςm (13)

as tensorial representation.

2.3 Other Factorisations of C

Other factorisations C = B∗B—which are all unitarily equivalent—lead to ana-
logous representations. Let B : U → H be an injective mapping into another
Hilbert space H. Pick a CONS {em} in H and set fm := B∗em, then

B∗ =
∑
m

fm ⊗ em, (14)

again a tensorial representation. All the representations considered so far are of
this type. Similarly to (6), we have the—linear in a—representation:

�2 � a = (a1, a2, . . .) �→
∑
m

amem �→
∑
m

amfm ∈ U . (15)

For finite dimensional spaces, a favourite choice for such a decomposition of C
is the Cholesky factorisation C = LLT .

Another often used possibility to consider factorisations of the reproducing
kernel, i.e. kernel decompositions. In an abstract way, one considers Ĉ := RR∗

instead of C = R∗R, and Ĉ : W � φ �→ 〈κ(p, ·), φ〉W ∈ W . In caseW = L2(P , �)
one has here the Fredholm equation (Ĉφ)(p1) =

∫
P κ(p1, p2)φ(p2) �(dp). As this

is similar to the decompositions considered for C it will be omitted for the sake
of brevity.

2.4 Examples and Interpretations

Some examples are now in order, so that one may see that the above description
is in many cases an abstract statement of already very familiar constructions.
For a general parameter space, the constructions provide a ‘response surface’,
but in some cases this is known under a different name:

– If V is a space of centred random variables (RVs), r is a random field or
stochastic process indexed by P , and the reproducing kernel is the covariance
function.

– If the measure � on P is a probability measure (�(P) = 1), and r is a
centred V-valued RV, then C is the covariance operator.

– If P = {1, 2, . . . , n} and R = R
n, then κ is the Gram matrix of the vectors

v1, . . . , vn.
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– If P = [0, T ] and r(t), t ∈ [0, T ], is the response of a dynamical system with
state space V , the R∗ leads to the POD.

– If the two preceeding items are combined, this gives the method of snapshots
for the POD.

– If P = {ωs| ωs ∈ Ω} are samples from some probability space Ω, then one
gets the POD method for samples.

For the sake of simplicity we had restricted ourselves in the spectral decompos-
ition (8) in Subsection 2.2 to the case of a pure point spectrum (9). If in the
first item P = R

d, and the covariance function / reproducing kernel satisfies
κ(r1, r2) = c(r1 − r2) for r1, r2 ∈ R

d, one calls the covariance translation in-
variant, and the random process for d = 1 stationary or the the random field
homogeneous. In that case the eigenvalue equation with the operator Ĉ = RR∗ is
a convolution equation (Ĉφ)(r1) =

∫
Rd c(r1−r2)φ(r2) dr2, which is well-known

to be diagonalised by the (real) Fourier transform. This is an example of the
spectral decomposition in (12), the function k for the multiplication operator
Mk is the Fourier transform of c, and the point spectrum is typically empty [14].

3 Approximation and Propagation

When it comes to computing, two kinds of approximations will usually be em-
ployed: one is that the parametric dependence of the entities in (1) needs to
be simplified to make it computationally accessible—often this is also termed
a representation; the other approximation derives from the fact that even for a
fixed parameter p ∈ P the system modelled by (1) can not be computationally
treated without further approximation, i.e. because it is often an equation in an
infinite dimensional space, e..g. a partial differential equation.

3.1 Representation, Approximation, and Model Reduction

In Section 2 were a number of examples on how to construct representations of
the type

S : S → U (16)

with a Hilbert space S which is used for the representation, such that SS∗ = C,
or equivalently C = B∗B as in Subsection 2.3. At the core of all constructions
was the mapping R in (2) and (10), which led to the operator C = R∗R on U , see
(7). This mapping ‘linearises’ the problem, as one may choose new parameters
on which the representation depends linearly, as was pointed out repeatedly,
e.g. (11). Most representations are connected with the spectral decomposition
in Subsection 2.2 or equivalently with the spectral kernel decomposition. All
the representations shown could be written in a tensor product format. The
possibilities alluded to for S were the RKHS R ⊂ R

P , see Subsection 2.1 and
(3), with the reproducing kernel (4) and representation R−1 in (5), or the Hilbert
spaceQ ⊂ R

P connected with the correlation operator C in (7), or Hilbert spaces
induced by the spectral decomposition like L2(σ(C)) implicitly appearing in (8),
or L2(T ) in (12).
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Other factorisations of C such as in Subsection 2.3, or of the reproducing ker-
nel κ with integral transforms, lead to representations which are not necessarily
connected to the spectral decomposition and may be more convenient in certain
circumstances.

On the other hand, through the magnitude of spectral values the spectral
decomposition gives guidance on the relative importance of different subspaces of
S, and approximations of the representation map which may be computationally
more advantageous, like low-rank approximations.

All these representations may be carried onto �2 in the manner of (14) in
Subsection 2.3. Model reductions may be achieved through choice of a subspace
of S, and / or by approximating the representation map as alluded to above.
Thus the quantity r(p) is in all cases approximated by a tensor expression r ≈∑

j rj ⊗ τj , and the number of terms in the sum is termed the rank of the
tensor, and this kind of versatile sparse approximation is also called a low-rank
approximation [6].

3.2 Discretisation and Propagation

For brevity we follow [14], where more references may be found, cf. also the
recent monograph [11]. For the sake of simplicity, let us concentrate on the time-
independent or stationary version of (1), namely A(p;u) = f(p). Usually this
is some partial differential equation and has to be discretised, approximated,
or somehow projected onto some finite dimensional subspace VN ⊂ V , with
dimVN = N . The entities of (1) which are projected or induced on the cor-
responding R

N will be denoted by boldface, such that the stationary, projected
equation reads as

A(p;u) = f (p). (17)

To propagate the parametric dependence, choose a finite dimensional subspace
of the Hilbert spaces mentioned in Subsection 3.1, say SM ⊂ S for the solution
u(p) in (17). Via Galerkin projection or collocation, or other such techniques, the
still parametric model (17) is thereby formulated on the tensor product VN⊗SM ,
denoted as

A(u) = f . (18)

The solution of (18) is often computationally challenging, as dimVN ⊗ SM =
N ×M may be very large. One possibility for such high-dimensional problems
are the low-rank approximations alluded to at the end of Subsection 3.1, by
representing the entities in (17) such as A, u, and f in a low-rank format.
Several numerical techniques [17,4,10,16] have been developed recently to obtain
an approximation to the solution u ≈

∑
j uj ⊗ zj to (18) in this format by only

ever operating on the data-sparse low-rank representation, thus allowing for an
efficient resolution of the high-dimensional problem.

Once this has been computed, any other functional such as Ψ(u(p)) mentioned
in Section 1 may be computed with relative ease. In case there is a probabil-
ity measure on P as given in the examples in Subsection 3.1, for example to
quantify some uncertainty in the parameters, the functionals usually take the
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form of expectations, such that Ψ(u) = E (ψ(u)) becomes a mean, a variance, an
exceedance probability, or other such quantity needed in an uncertainty quanti-
fication.

4 Identification and Inverse Problems

In the setting of (1) let us pose the following problem: Some components—
let us denote these by q—of the parameters p ∈ P are not only uncertain,
but we would like to infer what they are by making observations yk at times
0 < t1 < · · · < tk · · · ∈ [0, T ]. But we can not observe the entity q directly—like
in Plato’s cave allegory we can only see a ‘shadow’ of it, formally given by

Y : Q× V � (q, u(tk)) �→ zk = Y (q;u(tk)) ∈ Y; (19)

at least this is our model of what we are measuring. Usually the observation will
deviate from what we expect to observe even if we knew the right q as (1) is only
a model—so there is some model error ε, and the measurement will be polluted
by some measurement error ε. Hence we observe yk = zk + ε+ ε. From this one
would like to know what q and u(tk) are.

4.1 Identification

The mapping in (19) is usually not invertible and hence the problem is called
ill-posed. One way to address this is via regularisation, but here we follow a
different track. Modelling out lack-of-knowledge about q and u(tk) in a Bayesian
way [21] by replacing them with a Q- resp. V-valued random variable (RV),
the problem becomes well-posed [20]. But of course one is looking now at the
problem of finding a probability distribution that best fits the data; and one also
obtains a probability distribution, not just one pair q and u(tk).

The mathematical setup then is as follows: we assume that Ω is a measure
space with σ-algebra A and with a probability measure P, and that q : Ω → Q
and u : Ω → U are random variables. For simplicity, we shall also require Q
to be a Hilbert space where each vector is a possible realisation. This is in
order to allow to measure the distance between different q’s as the norm of their
difference, and to allow the operations of linear algebra to be performed.

In case the q’s are not without constraints, or not in a vector space, then they
should be mapped to such quantities. For example, if q is a diffusion tensor field,
then it has to be symmetric and positive definite. The symmetric tensors are
of course a subspace, but the manifold of positive definite ones is not, nor is it
closed. But they can be given the structure of a Lie group and a Riemannian
manifold [1], and then distance is measured as a the length of a path along
a geodesic. But the associated Lie algebra—the tangent space at the neutral
element of group—is in one to one correspondence with the geodesics; hence
one play everything back to a vector space. A simple case of this are positive
scalars; through the logarithm they are transformed into a vector space without
constraints. The computations to be described should be performed in such a
vector space.
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4.2 Bayesian Updating

Bayes’s theorem is commonly accepted as a consistent way to incorporate new
knowledge into a probabilistic description [21]. The textbook statement of the
theorem is about conditional probabilities

P(Iq|My) =
P(My|Iq)
P(My)

P(Iq), (20)

where Iq is some subset of possible q’s, and My is the information provided by
the measurement. As this becomes problematic when the set My has vanish-
ing probability measure, Kolmogorov already defined conditional probabilities
via conditional expectation [2]. But most computational approaches compute
via the measures [13,20] Given the conditional expectation E (·|My), the condi-
tional probability is easily recovered as P(Iq|My) = E

(
χIq |My

)
, where χIq is the

characteristic function of the subset Iq.
The easiest point of departure for conditional expectation in our setting is to

define it not just for one piece of measurement My, but for sub-σ-algebras of
A. The connection with an event My is then that we take σ(Y ), the σ-algebra
generated by Y . Observe that if S ⊆ A is a sub-σ-algebra, then L2(Ω,S,P) is
a closed subspace of L2(Ω,A,P).

For RVs with finite variance (elements of L2(Ω,A,P)) the conditional expect-
ation E (·|S) is defined as the orthogonal projection onto onto L2(Ω,S,P). It
can then be extended as a contraction onto all Lp(Ω,A,P) with p ≥ 1 [2]. In
other words the Bayesian update may now be simply shown to be

E (q|σ(Y )) = PQn(q) = argminq̃∈Qn
‖q̃ − q‖2L2

, (21)

where Qn := L2(Ω, σ(Y ),P) represents the new information, and PQn is the
orthogonal projector onto Qn. Already in [8] it was noted that the conditional
expectation is the best estimate not only for the loss function ‘distance squared’,
but for a much larger range of loss functions under certain distributional con-
straints. But for the above loss function this is independent of what distribution
q might have.

Requiring the derivative of the loss function in (21) to vanish—equivalently
remembering from elementary geometry that the line to the closest point is
perpendicular to the approximating subspace—one arrives at the Galerkin or-
thogonality conditions

∀q̃ ∈ Qn : 〈q − E (q|σ(Y )) , q̃〉L2 = 0. (22)

To continue, note that the Doob-Dynkin lemma [2] assures us that if a RV
like E (q|σ(Y )) is measurable w.r.t. σ(Y ), then E (q|σ(Y )) = ψ(Y ) for some
measurable ψ ∈ L0(Y;P). Hence L2(Ω, σ(Y ),P) = L2(Ω,A,P)∩span{φ(y) | y ∈
Y, φ ∈ L0(Y;Q)}, where L0(Y;Q) is the vector space of measurable maps from
Y to Q. In particular one sees that E (q|σ(Y )) ∈ L0(Y;Q). In the light of (22)
the task of computing ψ(y) := E (q|σ(Y )) may be phrased as: find ψ ∈ L0(Y;Q)
such that

∀φ ∈ L0(Y;Q), y ∈ Y : 〈q − ψ(z), φ(y)〉L2 = 0. (23)
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The value qa := ψ(y) = E (q|σ(Y )) is called the analysis, assimilated, or posterior
value, incorporating the new information. In case one has some prior approx-
imation, also called a forecast qf , this results in an affine shift of the subspaces
involved, and hence qa = qf + ψ(y − zk) with zk = Y (qf ;uf(tk)), e.g. see [8].

We would like to emphasise that it is the vector space setting of Q and Y
which has made this well-known formulation possible, and it will also allow for
easy numerical computation. To work with measures as in (20) is cumbersome, as
probability measures are on the intersection of the unit sphere and the positive
cone in the space of signed finite measures. A bit easier would be to work with
RVs which are in a metric space, the conditional expectation then minimises the
metric distance squared; but the Hilbert space setting is certainly the simplest
instance of this. As we work in a vector space, we make another approximation to
simplify the computations by replacing L0(Y;Q) above by L (Y,Q), the space
of linear continuous maps. The Galerkin orthogonality condition (23) is then
translated to: find K ∈ L (Y,Q) such that [8,12]

∀H ∈ L (Y,Q), y ∈ Y : 〈q −Kz,Hy〉L2 = 0, (24)

and we set E (q|σ(Y ))� := K, a linear approximation to E (q|σ(Y )). As the pro-
jection is now onto the smaller space Q� := L2(Ω,A,P)∩ span{Hy | y ∈ Y, H ∈
L (Y,Q)} ⊂ L2(Ω, σ(Y ),P), we are not using all the information available but
the computation is simpler. In the case of prior information this is extended as
before to [8,12]

qa = qf +K(y − zk), with K = Cq,z(Cz + Cε)
−1. (25)

This includes the errors ε+ε with covariance operator Cε, and it is not difficult to
show [8,12] that the optimal K is given by the well-known Kálmán gain in (25),
where Cz := E (Y (q, u)⊗ Y (q, u)) and Cq,z = E (q ⊗ Y (q, u)). In case Cz + Cε

is not invertible or close to singularity, its inverse in (25) should be replaced by
the Moore-Penrose pseudo-inverse. This update is in some ways very similar to
the ‘Bayes linear’ approach [5].

4.3 Computing the Bayesian Update and an Example

As before in Subsection 3.2 for an actual computation the forward model is
discretised like in (17) and (18). The space of possible measurements is also
discretised by YI ⊂ Y, as is the space of entities to be identified QJ ⊂ Q, giving
a discrete forward model and measurement operator

∂

∂t
u(ω; t) +A(q(ω);u(ω; t)) = f (ω; t); zk = Y (q(ω);u(ω; tk)). (26)

The update (25) is in this way also discretised to

qa(ω) = qf (ω) +K(y(ω)− zk(ω)), with K = Cq,z(Cz +Cε)
−1. (27)

Completely analogous to how the dependence on p ∈ P was treated in Sec-
tion 2 and Section 3, we represent the dependence on ω ∈ Ω through a subspace
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S ⊂ L0(Ω,R) ⊂ R
Ω, i.e. a random variable, and in the discrete form by a finite

dimensional subspace SM ⊂ S. A popular choice for SM is Wiener’s polyno-
mial chaos, orthogonal multi-variate Hermite polynomials in standard Gaussian
RVs [7,14]. Looking at tensor products of these finite dimensional spaces, with
the results of Section 2 and Section 3 the model and measurement equation
(26) change to an analogue of (18), and (27) becomes qa = qf + K(y − zk),
where K = K ⊗ I with K from (27). Hence the update equation is naturally in
a tensorised form, allowing to apply it directly to low-rank approximations as
introduced in Section 3.
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Fig. 1. Updating schema and prior-posterior comparison

The following example of a diffusion equation on an L-shaped domain shows
how the method works, for details and additional references please see [18]. A
schematic view of the process is shown on the left picture in Fig. 1. The diffusion
coefficient κ is the quantity to be identified; this is a positive quantity as alluded
to before, so we consider its logarithm q = log(κ). The forward model in the top
left produces a forecast on the system behaviour, shown on the top right. From
this a forecast for the measurement is deduced, shown on the bottom right, and
then compared with measurements—shown on the bottom left—to produce the
Bayesian update. In the depiction on the right in Fig. 1, one may see how the
prior or forecast distribution for κf = exp(qf ) is updated to the posterior or
assimilated distribution κa = exp(qa). For details please refer to [18].
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Abstract. The Managing Uncertainty in Complex Models project has
been developing methods for estimating uncertainty in complex mod-
els using emulators. Emulators are statistical descriptions of our beliefs
about the models (or simulators). They can also be thought of as inter-
polators of simulator outputs between previous runs. Because they are
quick to run, emulators can be used to carry out calculations that would
otherwise require large numbers of simulator runs, for example Monte
Carlo uncertainty calculations. Both Gaussian and Bayes Linear emu-
lators will be explained and examples given. One of the outputs of the
MUCM project is the MUCM toolkit, an on-line recipe book for emula-
tor based methods. Using the toolkit as our basis we will illustrate the
breadth of applications that can be addressed by emulator methodology
and detail some of the methodology. We will cover sensitivity and un-
certainty analysis and describe in less detail other aspects such as how
emulators can also be used to calibrate complex computer simulators
and how they can be modified for use with stochastic simulators.

Keywords: emulator, Gaussian process, Bayes linear, sensitivity, un-
certainty, calibration.

1 Introduction

The increase in computing power over the last few decades has led to an ex-
plosion in the use of complex computer codes in both science and engineering.
Almost every area of science and engineering now uses complex numerical sim-
ulators to solve problems that could not have been tackled only a few years
ago. Examples include engineering [2], climate science, [4], and oceanography
[12]. At the present time most of these simulators are deterministic but there
is an increasing use of stochastic simulators as well [24]. These computer codes
comprise many thousands (or even millions) of lines of code and take long times
to compute even on the fastest supercomputers available today. Questions we
would like to ask of the simulators include: for a given uncertainty in the inputs
to the simulator what is the uncertainty in the outputs; which inputs have the
most effect on the outputs; are all the inputs important; how can we relate the
simulator to reality? In this paper we look at how emulators can be used to
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address these problems. For a more detailed examination of the background and
theory of what is discussed here see [5].

2 Uncertainty

Assuming for the moment that our simulators are deterministic rather than
stochastic where does the uncertainty come from? We know that the predictions
we make are not exact. (If you are tempted to think of your simulator as perfect,
how much you would be prepared to bet on its result being the same as a phys-
ical experiment?) Some of the ‘error’ may be numerical, running on different
computer architectures or in different precisions will give different answers. But
for well written code these differences will be small. In general the uncertainty
in our simulator outputs comes from two sources: from uncertainty in its inputs
and from uncertainty in its structure. By inputs we mean all the external in-
puts to the simulator; these include the initial conditions, boundary conditions
and parameters. Although these may have very different properties, for example
initial conditions are often spatial fields while the parameters are normally col-
lections of single numbers, we will generally treat them the same. Similarly we
take a Bayesian approach and make no distinction between aleatoric uncertainty,
arising from genuine randomness, and epistemic uncertainty which is a measure
of our ignorance.

The input uncertainty can be thought of as the internal uncertainty within
the simulator. The structural uncertainty is how our particular simulator relates
to other simulators and more importantly to reality. This is discussed further
below and in [5].

3 Quantifying Uncertainty

Before we consider structural uncertainty and the relationship between simu-
lators and reality lets first consider the input uncertainty. We take a Bayesian
approach to the problem, but it can be reformulated in terms of frequentist
statistics [20]. The formulae generally stay the same but the justification is dif-
ferent.

We have some variables (y) that we are interested in and which we will call
outputs. These are related to another set of variables (x), which we will call
inputs. We can find the values of the outputs corresponding to the values of
the inputs by running a complex computer program which we will denote by f .
Mathematically we can write

y = f(x)

We will assume for now that f is deterministic, so if we run f with the same
set of inputs we will obtain the same set of outputs. We assume that any nu-
merical error is small enough to be ignored. Some or all of our inputs might be
uncertain. This might arise from genuine randomness, which we call aleatoric
uncertainty; or the uncertainty could be a result of lack of knowledge, called
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epistemic uncertainty. The distinction between these two forms on uncertainty
is not as clear as might appear. For example consider a coin toss. While the coin
is in the air our uncertainty is aleatoric, but once it has landed, but is hidden
from us, the uncertainty becomes epistemic. Because of this interchangeability
we treat all sources of uncertainty the same and describe them with probability
density functions (π(x)). If we want to know the uncertainty on y given π(x) we
need to calculate the transformation of π(x) induced by f . If f is linear this is
an easy problem and can be solved analytically, but the complex codes we are
interested in are non-linear and an analytical solution does not exist. The naive
solution is to use Monte Carlo methods: draw a sample from π(x), xi, propagate
this through the program to produce yi = f(xi). The resulting yi are then a
sample from π(y) from which we can estimate π(y). Such methods are effective
but large samples are needed, particularly for high dimensional x and y. This
means that Monte Carlo methods are not viable for expensive computer codes.

Our solution to this problem is to build a fast approximation to the full nu-
merical simulator. This is known as an emulator. We not only want fast approx-
imators, we want fast approximators that estimate their own error. It cannot be
stressed too much how useful it is having knowledge of the uncertainty in the
emulator estimate. When we come to validate our emulators it is invaluable as
it gives us a measure against which we can gauge how far the estimator may
be from the truth. Similarly it is very helpful in sequential design, where we
can put the next point at the most uncertain current point and when we come
to estimate the uncertainty of the outputs we need to include the uncertainty
arising from the process of emulation.

4 Gaussian Processes and Emulators

Our requirement that we have an emulator that is fast and contains an esti-
mate of its own uncertainty is satisfied by the Gaussian process, [18]. Gaussian
processes are very adaptable stochastic processes which can be used to fit non-
linear data. A Gaussian process (GP) is the infinite dimensional analogue of a
Gaussian distribution. It is defined by a mean function and a covariance func-
tion. The mean function gives the expected value of the GP at any point. The
covariance function then gives the covariance between any two points. The form
of the covariance function dictates how ‘smooth’ a realisation of the GP is. For
example if we use the ‘exponential’ form of the covariance function

cov(x1, x2) = σ2e−|x1−x2| (1)

we get Brownian motion and any realisation does not possess any derivatives.
On the other hand if we use the squared exponential covariance

cov(x1, x2) = σ2e−(x1−x2)
2

(2)

then all derivatives exist and we get a very smooth set of realisations. There are
other forms of the covariance function, see [18] for further details. For uncertainty
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quantification a limited selection of covariance functions tend to be used. We
rarely believe our simulators do not possess any derivatives so we tend not use
the exponential form. The squared exponential is probably the most used but
this can give rise to numerical problems (see below). Other options include the
Matern and generalised exponential form σ2exp(−||x1 − x2||α).

The smoothness of the GP is dictated by its covariance function but its large
scale properties come from the mean function. In general a linear model is used
as the mean function

μ(x) = h(x)T β (3)

where the h(x) are basis functions and the β’s are coefficients. The h(x) can be
any basis functions but are usually taken to be monomials {1, x, x2, . . .}. However
more complex functions such as Fourier bases could be used if for example our
output was on a circle. There is some discussion within the emulation community
on how much effort should be put into building a good mean, or regression, model
and how much the GP can be allowed to fit the large and small scale variation in
the data. For example [11] make the case for not including a linear model term
at all. However most practitioners do include regression terms even if they are
only low order polynomials.

To analyse our simulator we use a GP as a prior and combine it with the
simulator runs to produce a posterior emulator. Our prior has a mean function
as given above

μ(x) = h(x)T β (4)

where the β are parameters that will need to have their own prior specified. We
then specify a covariance function

cov(x1, x2) = σ2c(x1, x2;C) (5)

where σ2 is a variance term and C is a matrix of ‘smoothing’ terms for the
correlation function, c. For example if we have a squared exponential correlation
function (sometimes called the Gaussian correlation function for obvious reasons)
C might be a diagonal matrix such that

c(x1, x2;C) = exp(−(x1 − x2)
TC(x1 − x2)) (6)

C does not have to be diagonal but it reduces the number of parameters to esti-
mate and making this assumption does not appear to impact on our emulators.

5 Bayes Linear Methods

When we decided to use a Gaussian process as our emulator we made more
assumptions than we needed to. The assumption that all the points on our
stochastic process have a multivariate Normal distribution is not necessary. All
we need assume is that second moments exist and we can then specify the mean
and covariance functions without making any assumptions about the statistical
distribution of the process.
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Such methods that use Bayes theorem but do so in terms of first and second
moments are known as Bayes Linear methods and are described in [6]. The clear
advantage over a full Bayes solution is that the priors are also specified only
in terms of first and second moments so we do not need to elicit full proba-
bility distributions from experts. The second advantage as we shall see is that
the calculations are much simpler and faster. However nothing is free and with-
out adding some distributional assumptions we cannot make realisations of the
process or produce any form of probabilistic credibility or uncertainty limits. Be-
cause Normal distributions are defined by their first two moments there is often
confusion between Bayes linear methods and making an assumption of Normal-
ity. A true Bayes Linear analysis refuses to make any distributional assumptions;
although the results may look similar they are conceptually very different.

As with the GP emulator our basic form is

f(x) =
∑
j

βjhj(x) + w(x) (7)

The regression terms are identical but the w(x) is not a Gaussian process but
rather a general second order process, defined by its covariance function.

The equivalent to Bayes Theorem for Bayes Linear are the Bayes Linear up-
date equations. If θ is a vector of our parameters (in our case this will be the
β’s, σ2 and the length scales) and x are the results of our runs

E(θ|x) = E(θ) + Cov(θ, x)V (x)−1(x−
∑
j

βjhj(x)) (8)

for the adjusted expectation and by

V (θ|x) = V (θ)− Cov(θ, x)V (x)−1Cov(x, θ) (9)

The full equations for the posterior moments of the Bayes Linear emulator are
rather more complicated and are given in full in the Core BL Emulator Thread
of the MUCM toolkit [14]

6 MUCM and the Toolkit

The Managing Uncertainty in Complex Models (MUCM) consortium consists of
five UK research institutions (University of Sheffield, University of Durham, Uni-
versity of Aston, London School of Economics and the National Oceanography
Centre). As part of its research activities MUCM has set up an on-line toolkit.
This consists of more than 300 pages describing most aspects of emulation. The
toolkit is not a software package. The best analogy is a recipe book, one of those
good recipe books that encourage you to experiment. There are worked examples
so you can check that your code works and there are links to existing software
packages. Part of an example page is shown in Fig. 1. The URL for the toolkit
is http://www.mucm.ac.uk/toolkit.

http://www.mucm.ac.uk/toolkit


156 P. Challenor

Fig. 1. The top page for the MUCM toolkit

The toolkit is arranged in thirteen threads plus three large case studies. The
threads include two ‘core’ threads on emulatingwithGaussianprocesses andBayes
linear emulation. Further threads explore how to extend these two core proce-
dures when there are multiple outputs, dynamic emulators, two level emulators
(one more complex than the other), combining multiple, independent emulators
and using and obtaining derivative information. The issues of model discrepancy,
history matching, calibration and sensitivity analysis are also covered as well as
the important problems of experimental design and screening. In the near future
we expect at least one additional thread on emulators for stochastic simulators.
Within what is a relatively short paper it is impossible to cover the breadth of ma-
terial in the toolkit so we will concentrate on a few highlights.

7 Building an Emulator

In the MUCM Toolkit we have two threads that cover what is described as the
core problem. The core problem is in many ways the simplest application for an
emulator. We have a single output of interest, we do have multivariate inputs
but no information on the derivative of the output. There are no real world data
to compare the simulator to and we are not concerned with making inferences
about reality; we are only interested in the simulator. This is not as uncommon
as might be thought. Simulators, particularly relatively simple ones, are often
used to study an idealised version of the system rather than to make inferences
about the real world.

The steps in building an Gaussian process emulator are:

1. Set up the initial GP model. Decide on the form of the regression terms and
the correlation function.
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2. Decide what priors we are going to use for the GP parameters.
3. Design and run the initial experiment. This is sometimes called the training

experiment. Design is an important issue. Computer time is usually limited
and each simulator run is expensive so every run must be made to count.
Design has its own thread on the MUCM toolkit and is discussed further
below.

4. Build the emulator.
5. Validate the emulator. This is a crucial step. Our first attempts at build-

ing good emulators are often failures and we need to establish, and possibly
convince others, that we have built an emulator which we can have confi-
dence in. There are two approaches. The first is to use a leave one out cross
validation. Each point in the training set is left out in turn and an emu-
lator is built using the remaining points. This reduced emulator is used to
predict the left out point. The mean square error of the differences between
these predictions and left out runs gives a global measure of the quality of
the emulator, while a plot of the individual differences may reveal areas of
input space where the emulator is performing badly. The advantage of leave
one out is that we do not need to perform any more runs of the simulator.
The disadvantage is that we are not testing the full emulator but emula-
tors built using reduced datasets. Our carefully crafted space filling design
is continually compromised by having one point at a time omitted.
The alternative is to run a second experiment with an independent set of
simulator runs. These are then used to test the emulator. This can be done
by simply comparing the difference between the predicted values and the
truth (scaled by the predicted uncertainty) similar to the leave out method
or there are more rigorous methods based on regression diagnostics that take
into account the correlation between points [1]. Once we are satisfied that we
have an emulator that validates we can combine the training and validation
runs and create a single emulator.

The procedure for a Bayes linear emulator is similar but the specification of the
priors is in terms of moments rather than full prior distributions.

8 Design

One of the first steps in any experiment is the design. This is as true of com-
puter experiments as it is of field trials. Our methods have been developed with
expensive simulators in mind, so our designs need to minimise the number of
runs required. However we also we wish to cover the complete input space. This
seems like an impossible task. If we were to use a traditional factorial design
with only 2 levels for each input the number of runs required would be 2p where
p is the number of inputs. Two levels of each input gives us very poor coverage
and 2p becomes unaffordable for even a small number of inputs.

We therefore have to look at other designs. There are two main families of
design: those based on the Latin Hypercube and those based on Quasi-Monte
Carlo sequences.
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The traditional design is the Latin Hypercube [13]. In a Latin Hypercube
design we first decide how many evaluations of the simulator we can afford in
total, let this be n. We then divide the range for each input variable into n equal
sections. The simulator is evaluated once, and only once, in each of these settings.
This means that we have good marginal coverage of each of the variables. The
Latin Hypercube design is now produced by permuting the numbers 1, ..., n for
each variable separately. Note the randomisation is to produce a design rather
than to randomise for external factors as it is used in field experiments. All
Latin Hypercubes have good marginal properties but are not necessarily the
space filling. There is no algorithm for an optimal space-filling Latin Hypercube.
In general an additional space-filling criteria, maximising the minimum distance
between points [9] or minimising the sum of inverse distances for example, is
imposed on the design. Alternatively we can use Latin Hypercubes based on
orthogonal arrays [17].

An alternative to the Latin Hypercube is to use a low discrepancy sequence
to define the design points. Such sequences were originally devised to efficiently
compute multidimensional integrals [15]. These sequences are space filling but
for small numbers of simulator runs there can be problems with certain pro-
jections having ‘holes’ in them. Examples include the Halton sequences [7] and
Niederreiter nets. For the design of computer experiments the most commonly
used low discrepancy sequence is the Sobol sequence [22,3].

Current work in the design of computer experiments explored in the MUCM
toolkit [14] includes sequential design where we use an initial space filling design
to learn about the system and then use this information to guide us on where
future runs should be carried out.

9 An Example

As a simple example consider a energy balance model of the Earth’s climate.
The Earth is reduced to a line of grid boxes all ocean with a single box below
to represent the deep ocean. If it becomes cold enough in a box sea ice forms
this has a different albedo to water so a different amount of radiation is reflected
from sea ice. As the surface water becomes colder it becomes denser and can sink
at a variable location in the North. Deep water upwells back to the surface at a
fixed location in the South. Heat is transferred between the surface grid boxes
by both advection and diffusion. The system is driven by incoming short wave
radiation from the Sun. As in the real world this is greater at the equator than
the poles. The total amount of incoming radiation is set by the Solar constant.
As this is a simple example we only vary one input, the Solar constant, and we
only use a single output, the mean surface temperature. Note as is often the case
the output we emulate is a function of the simulator not a state variable.

A space-filling Latin Hypercube in 1-d is simply a set of evenly spaced points.
Using 6 points we get the emulator shown in panel (a) in Fig. 2. The dashed
line shows the expected value of the emulated and the shaded region gives 95%
uncertainty bands. Because we do not have a nugget term in the emulator the
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uncertainty collapses to zero where we have simulator runs. This makes perfect
sense as here we know the value of the simulator output. Note that because this
simulator is very cheap to run we can run it across all of input space and plot
the true simulator value across the range and this is shown by the solid line in
the figure.

We now do a further three runs of the simulator. Fig. 2 shows the standardised
residuals for each of these new points. This is the distance between the expected
value from the emulator and the true value divided by emulator standard de-
viation. If the emulator were correct we expect these numbers to have Normal
distributions (for simplicity we are ignoring correlation here; for a full solution
see [1]). One of the points is outside the limits shown in the figure, indicating
that we do not have a good emulator. We therefore combine our existing points,
both the six original training points and the three new validation points, into
a single dataset and build a new emulator. This is shown in Fig. 2 panel (c).
We now need to validate this new emulator. A further three runs are carried
out and this time all three points are within the bounds for the standard used
residuals. The emulator in panel (c) therefore validates. However we now have
three additional runs which we can use to build an even better emulator. This,
our final emulator, is shown in panel (d) of Fig. 2.

10 Sensitivity Analysis

One important application of emulators is in sensitivity analysis. Although com-
puter simulators may have large numbers of inputs, often the outputs are de-
pendent on only a few. Formally we can look at sensitivity analysis as answering
the question: if the inputs x are changed by a small amount δx what is the effect
on the simulator output f(x). One way of looking at this problem is to vary
each input in turn, run the simulator and see what effect the change has on the
output. This is known as one at a time sensitivity analysis. If we could guarantee
that all the inputs were completely independent of each other it might not be a
bad idea, but we are dealing with large, complex, non-linear simulators and it
would be foolhardy to make such an assumption. Any approach to measuring the
sensitivity of a simulator must acknowledge that there will interactions between
the inputs and should at least estimate not only the effect of single inputs (main
effects) but also at least the first order interactions.

Traditionally this has been tackled by looking at the derivatives of f(.) w.r.to
x. This gives the local sensitivity since ∂f(x)/∂x depends on x and may change
radically as we move around input space. An alternative is to use variance based
sensitivity analyses, see for example [19]. [16] extend these methods so that they
can be used with emulators.

11 History Matching and Calibration

After sensitivity analysis, probably the most important application of emulators
is in comparing simulators with data and calibrating the simulators. We make a
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(a) (b)

(c) (d)

Fig. 2. Panel (a) shows the expected value of the emulator (dashed) and the true
simulator based on six runs (o). The shaded region is a 95% uncertainty band around
the expectation. Panel (b) shows the values for 3 additional validation runs with the
emulator uncertainty. Note that one of the points is outside the uncertainty limits.
Panel (c) shows the emulator built using all nine points (the original training set plus
the three validation points). This emulator validates with an additional three points
(not shown). The final emulator based on 12 points (6+3+3) is shown in panel (d)

distinction between simulator comparison, often referred to as history matching,
where we simply rule out areas of input space that are incompatible with the
data and calibration where we estimate the ‘best’ input values from the data.

Both rely on the concept of ‘model discrepancy’. The simulator is attempting,
in most cases, to simulate some property of the real world. But if we measure that
property do we expect the simulator to give an exact fit to the data? The answer
is almost certainly not. In building simulators we make assumptions, we param-
eterise processes and there are real world processes we do not include, or even no
about. All these omissions and approximations mean that we do not expect our
simulator to explain the data perfectly. We describe this difference between the
real world and the simulator as the model discrepancy. Model discrepancy will
change as the input values change and often will have to be elicited from experts
rather than being estimated from the data. Statistically it is possible to think of
model discrepancy in two ways: as a bias between the simulator/emulator and
the data, or as an increase in variance around the simulator/emulator.

First consider the problem of history matching. Some data are collected and
we wish to know which values if any of the inputs could have produced them.
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Table 1. Table showing the reduction in Not Ruled Out Yet space by application of
an implausibility measure to the Galform simulator of galaxy formation. For details
see [23].

Wave Runs % Space

1 993 14.9%
2 1414 5.9 %
3 1620 1.6 %
4 2011 0.26 %

Translating this into the negative language of statisticians, who only ever reject
hypotheses and never accept them, we are looking for input values that are
implausible given the data. This is done via an implausibility measure

Imp =

√∑
all x

(x− xemul)2

σ2
data + σ2

emul + σ2
discrep

where x is a data point; xemul is the emulator value corresponding to that data
point; σ2

data is the variance of the data; σ2
emul is the variance of the emulator; and

σ2
discrep is the model discrepancy expressed as a variance. Values of implausibility

greater than 3 (or 5 depending on how conservative we want to be) are ruled
to be implausible. Additional simulator runs are then done within the input
space not yet deemed implausible (sometimes to as NROY, Not Ruled Out Yet,
space). By refining the emulator and adding additional runs in waves within
NROY space the volume that hasn’t yet been deemed implausible falls rapidly.
Table 1, taken from [23], shows the volume of NROY space at each wave of the
experiment as well as the number of runs in each wave.

If we want to go beyond history matching to model calibration we need to
reformulate the problem. We follow [10]. First we split the inputs into two:
control inputs and calibration inputs. The calibration inputs are those inputs
we are trying to calibrate. Control inputs on the other hand are inputs that
control the simulation but which can’t or won’t be calibrated. For example in
an environmental simulator we may have inputs that give the spatial position
of the outputs, these would be control inputs. We now say that the simulator
f(xcon, xcal) is the sum of reality y(xcon) and discrepancy d(xcon). Note that
in this formulation both reality and the discrepancy are functions only of the
control inputs not the calibration inputs. We have some measurements of reality,
z(xcon) which are given by

z(xcon) = y(xcon) + ε (10)

We can now build an equation that links the data (z) and the simulator.

z(xcon) = f(xcon, xcal) + d(xcon) + ε (11)

We now use Gaussian processes not only to build an emulator for f(xcon, xcal)
but also for d(xcon). The posterior of xcal is the calibrated distribution inputs.
For full details see the toolkit [14] or [10].



162 P. Challenor

12 Beyond the Core Problem

The core problem as discussed above gives us a basis on which to expand to
more complex problems. Examples dealt with in the toolkit include:

1. Multiple outputs where we are interested in more than a single output from
the simulator.

2. Dynamic emulators, where we are interested in an output that is itself chang-
ing over time.

3. Multiple level emulators, where we have a number of simulators ranging from
a coarse, fast simulator through a hierarchy to a slow, but more accurate,
simulator.

4. Derivatives. Often we have derivative information available from the simula-
tor in the form of an adjoint model. We can use this information to improve
our emulator. However there is a trade off between the extra expense in cal-
culating the derivatives and producing more runs of the simulator without
derivatives. In other cases we may not have derivative information from our
simulator but we are interested in the form of the derivatives. For instance we
may be interested in local sensitivity. Even with the use of automatic differ-
entiating compilers [8] the production of an adjoint for any reasonably sized
simulator is a major undertaking. An alternative is to produce an emulator
for the derivative. This is relatively easy as the derivative of a Gaussian pro-
cess is another Gaussian process. Validating the derivative emulator is more
difficult if we do not have an adjoint to compare with.

13 Conclusions

I hope that I have managed to show in this short introduction that both Gaussian
process and Bayes Linear emulators are powerful tools in the quantification of
uncertainty. The MUCM Toolkit [14] is a good reference for these methods in
sufficient detail to allow code to be developed. The toolkit is not static and is
updated approximately quarterly. In the near future we expect it to be extended
to cover stochastic simulators
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Discussion

Speaker: Peter Challenor

Maurice Cox: This seems a very useful toolkit. I understand you are on your
second grant (MUCM2). I would be interested in hearing plans for your main-
tenance of the toolkit beyond MUCM2.

Peter Challenor: That is a very pertinent question that is at the top of our
agenda. The MUCM2 project runs until October 2012. Maintaining the toolkit
frozen from that point would not be expensive and even further developments
could be done for little cost and we are looking for funding to put the toolkit on a
long term sustainable basis. We would like to encourage non-MUCM participants
to contribute to the toolkit and make it a true community resource.

John Reid: You have said nothing about parallel programming. It strikes me
that you scope for “embarrassingly parallel” (ideal) execution.

Peter Challenor: Because we rely on ensembles of simulator runs it is quite
correct that have an embarrassingly parallel problem. However some of the sim-
ulators we are working with are so large that we do not have the computer
resources to make use of this. Parallel computing brings up some interesting
questions in the design of experiments. I mentioned sequential designs above.
Traditionally sequential designs would involve additional single simulator runs,
but if we have access to parallel computing it is much more efficient to use ‘batch
sequential’ designs where we run n additional simulations at a time.

John Rice: Have you used your simulator to explore the possible sources of the
unusual climate changes observed in historical data? For example, the “little ice
age” that occurred a few centuries ago or the major climate change that occurred
about 12000 years ago and which appears to have occurred several times earlier
with a periodicity of (as I recall) about 125000 years? Historically speaking, we
appear to be near the end of a long warm period if this cycle is persistent.

Peter Challenor: The simple Earth radiation balance simulator we use in the
example is not suitable for reproducing the history of the Earth’s climate. It is
much too simple and is lacking too many process. For a good description of the
Earth’s climate over the last 20000 years see [21]

Will Welch: The MUCM Toolkit provides recipes for developing code. To test
that code it would be useful to have test cases complete with data and results.
What plans do you have to provide such test cases?

Peter Challenor: This is a very good point and it is our intention to supply such
test cases with most, if not all, the pages. We currently have worked examples
for some pages; the example in section 9 is taken from the coreGP pages. We
currently have nine test cases plus the three large case studies. Over the next
year I hope we will see many more being produced.
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Abstract. The test harness, TH, is a tool developed by Numerica 21 to
facilitate the testing and evaluation of scientific software during the de-
velopment and maintenance phases of such software. This paper describes
how the tool can be used to measure uncertainty in scientific computa-
tions. It confirms that the actual behavior of the code when subjected to
changes, typically small, in the code input data reflects formal analysis
of the problem’s sensitivity to its input. Although motivated by studying
small changes in the input data, the test harness can measure the impact
of any changes, including those that go beyond the formal analysis.
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tion, data perturbation, computational sensitivity, test harness tool.

1 Introduction

An article on the website of the National Physical Laboratory on a Framework for
Uncertainty in Measurement, June 5th, 2007 [1] makes the following statement:

“A measurement is meaningless without a quantitative statement of its
quality in the form of an uncertainty.”

This statement is just as true about a scientific computation as it is about a
physical measurement. Software is useless unless the uncertainty in the com-
puted results due to changes in its input or instabilities in the way the results
are computed are measured or analyzed. To believe computational results, it
is essential to demonstrate that the sensitivity of computed results to changes
in input data, precision of computation, and other key data for the software is
consistent with what is predicted from the characteristics of the problem being
solved. Ideally, a measure of the uncertainty of the computed results as a con-
sequence of the uncertainty of data that the results depend upon needs to be
obtained.

In many cases, such a measure of uncertainty is difficult to obtain analytically.
However, uncertainty in software can still be measured by running the software
with perturbed data values to see whether the computed solution changes as
expected. With some thought, a measure can often be devised to indicate how
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the results change with small perturbations in the input and other key data. This
paper is about a tool to help provide an assessment of uncertainty in scientific
software and computation.

The tool is a general-purpose test harness modified to facilitate the measure-
ment of changes in results due to changes in input data and other values key to
the computation.

Presented in this paper is a brief description of the test harness, its design, its
features, and how it was modified to facilitate the measurement of uncertainty
of a computation with respect to changes in its input. A case study is provided
to show how this tool has been used to measure the uncertainty of the solution
of a 3-D magnetostatics computation for the vector potential and magnetic flux
or field. The solution technique used for this magnetostatics case study is a
boundary element package for 3-D magnetostatics problems from a software
firm Accurate Solutions In Applied Physics [2].

2 Motivation – Measuring Uncertainty in Software

Software is at the end of the development chain, depending on mathematical
models of physical problems that become the basis for the numerical computa-
tion. The solutions to these problems depend on the algorithms used and the
data used to drive those algorithms.

Software is the final step. As such, we want to determine if the software is
behaving as the mathematical and physical models are predicted to behave.
The approach proposed here is to provide a tool that allows one to measure
the sensitivity of computed results due to changes in input values or critical
parameters in the models, algorithms, and software. Such a measurement of
sensitivity indicates how uncertain the computational results are with respect to
the uncertainty in the values of such critical data.

3 What Is the Test Harness?

The test harness is a tool to evaluate software. In its initial form, it was a
change-detection tool that measured differences in results of two programs that
were supposed to create the same results. The applications for such a tool are
many: to give a few examples,

– the two programs may be actually the same program compiled by two dif-
ferent sets of compiler flags, such as optimization flags;

– the two programs may be the same but run on different machines;
– one program is an enhancement of one other, enhanced to improve perfor-

mance but compute the same results, enhanced to use different data struc-
tures or organized differently, or enhanced to add some new feature but the
developer wants to show that the other features remain unaffected by the
enhancements.



Measuring Uncertainty in Scientific Computation Using TH 167

The key to the test harness in its original form was to measure “significant”
differences in results, that is, differences that represent errors and not differ-
ences that can be traced to reordering of operations, changing results of stable
computations in minor ways. Therefore, it was essential to have the user provide
both the criteria for the comparison (say, relative or absolute difference) and a
threshold to indicate whether the difference was predicted and thus acceptable,
or unpredicted and thus not acceptable, indicating something was wrong. Also,
in scientific applications, arrays and other aggregates need to be compared and
criteria for them are needed and have in some cases to be specified by the user.

The test harness is designed to support large scientific codes. As such, these
codes involve large collections of data and with such programs, the writing,
reading, and comparisons of large volumes of data can be costly. Consequently,
the test harness allows the user to select which procedures are monitored, which
variables are monitored, which parts of arrays are monitored, how often they are
monitored or when the monitoring begins or ends. The test harness measures
and reports the volume of data it is monitoring so that the user controls how
much is monitored on a given run. It also gives execution counts and execution
times for each procedure monitored.

Without going into all the details, the test harness can address all these is-
sues, as described in a previous paper [3] and in its user’s guide [4]. Enhance-
ments made to the test harness to support uncertainty measurements are de-
scribed below. The test harness is currently written for scientific codes in Fortran
77/90/95/2003.

4 The Design of the Test Harness

The test harness is a collection of modules containing input/output procedures
to read and write the monitored data, a collection of generic INCLUDE files
modified by tools to create application-specific INCLUDE files that include ap-
plication specific source text into the application code, and a collection of proce-
dures to perform data comparisons and report differences in results. Either the
program terminates with the first significant difference or reports its results in a
tabular form for an entire program execution. In addition, described in the next
section, there are a series of tools that read and analyze the application code,
determine default places to monitor results, and build the test harness into the
application. The application code with the test harness installed into it can be
run in one of two modes described below.

The modes for the application code are: generate mode and check mode. In
generatemode, the application code runs to completion, creating data from the
run to be compared in check mode with another version of the application code.
In check mode, the data written into files in generate mode are read at the
point where the corresponding data in the second program is computed and a
comparison of the results is performed. In checkmode, there is the option to ter-
minate the execution at the end of the probe where the first unacceptable result
(difference or evaluation that indicates a problem) is encountered or to tabulate
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the difference and continue execution until the application code completes. Upon
completion in the latter case, a summary of the unacceptable results is printed.

Four types of probes or monitoring can be specified; three of the types, namely
input, output, and specific, probe record data in a file when the test harness
is in generate mode and read recorded data and perform comparisons with
results recorded in generate mode. An input probe can be placed at any entry
point to a procedure; an output probe can be placed just before any exit point
from a procedure; and a probe of type specific can be placed at any place in
the execution part of the application code. The probes are different in what they
record; this enables them to make certain checks to ensure only corresponding
data is being compared. The fourth type of probe is a perturb probe which
perturbs specified data values in specified ways when the test harness is in check

mode, allowing the other probes, if present, to read and compare results between
the application code with the original data and results with perturbed data.

5 Building the Test Harness into an Application Code

Much like a debugger, monitoring probes must be placed into the application
code. The emphasis though with the test harness is to facilitate the comparison
and evaluation of results for floating point (although the test harness supports
the monitoring of any intrinsic type or derived type object). Besides addressing
the added complication of comparing floating point values, test harness must
ensure that the data being compared between the generate and check modes
are comparable values; to do this, it has to trace the execution flow by procedure
and order the data so that comparable values (values of the same entities) are
compared.

Tools have been created to accomplish these tasks and ensure the integrity
of the comparisons. Fig. 1 shows the use of the tools to produce a source code
file that represents the application code with the test harness build into it.
The analyzer tool first analyzes the application code, providing a complete
specification of all variables in all procedures in the application and performs
a simple usage analysis of each variable to determine if it is referenced for its
value before it is written into or is always written before it is referenced. Given
this analysis and a list of procedures to monitor, the installer tool creates a
file readable by the builder tool that specifies the input and output probes for
each entry and exit point for the listed procedures. Also, given the results of the
analyzer tool and a list of procedures, the probe tool creates a version of the
application code with INCLUDE lines inserted into it. The INCLUDE lines will
include source text that will be synthesized by the builder tool that represents
the test harness built into the application code.

At this point, the user is expected to modify both the files created by the
installer and probe tools. The reason is that these files specify default com-
parisons and thresholds, probably specify more probe variables than are appro-
priate for the goal of investigating the code, and may specify more probes than
are desirable or appropriate (the reference/definition analysis is only approxi-
mate and in general includes variables that need not be monitored). In the case
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Fig. 1. The test harness tools showing their input and output connections to install
the test harness into an application code

of the files created by the probe and installer tools, these can be modified
and reused in subsequent runs without rerunning these tools. In the case of the
installer file, the only expected modification is the deletion of INCLUDE lines
that represent unwanted probes. One of the major modifications to the builder
monitoring specification files (created by the probe tool) is also the deletion of
inappropriate monitored variables; changing the default monitoring thresholds
to appropriate thresholds for the computation is unavoidable until further tools
are provided.

Once the builder input files are modified, the builder and includer tools
with the modified files complete the installation of the test harness into the
application code. The monitoring process proceeds by running the application
code with the test harness installed and often involves revisiting the choice of
thresholds and monitoring. The typical situation is that the analyzer and probe

tools are not rerun while investigating the behavior of the code. The user can
change what and how variables are monitored, even what procedures are mon-
itored, without rerunning the analyzer and probe tools. If variables that are
monitored are changed or their comparison criteria or thresholds are changed,
the test harness must be rerun in generate mode (including measurements of
uncertainty or code sensitivity to data).

Fig. 2 shows a typical scenario with the use of the test harness. The top
line represents versions of the code that are run in generate mode. In this
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Fig. 2. A scenario for using the test harness to support code development. The top
line represents the original version of the code compared with the modified version on
the bottom line. The code is enhanced as time progresses to the right and the diagonal
lines down represent comparisons made between the original and enhanced versions
of the monitored variables. The line with the up arrow indicates the modified version
becomes the production version at certain points and the monitoring is changed.

mode, values of variables in procedures specified in the builder file are recorded
for later comparison. Many runs of the test harness in check mode (including
perturbing variables) can be run and compared with the monitoring data created
in the version run in generate mode.

The bottom line of Fig. 2 represents versions of the application with the test
harness built in the application run in check mode. Each of these runs may
have different criterion for comparison or different perturbations specified in the
builder input files but require the builder and installer tools to be rerun
to generate a version to run these different cases. Time progresses towards the
right. The slanted lines down from the same “generate” version indicate different
runs with typically different builder input files. Also, the application source files
with the probes inserted may also be changed as long as the variables that are
monitored or evaluated or the order in which they are generated are not changed.
At some point, it is desirable to use the code as it has been changed or monitor
different items. That process is indicated by the lines with the up arrows in Fig. 2
where the version from the lower line is run is generate mode to create anew
the monitored data file. The process of monitoring and changing codes continues
anew, until the user is satisfied with the results.



Measuring Uncertainty in Scientific Computation Using TH 171

The diagonal line with an up arrow indicates a jump in versions where the code
that is being monitored is changed in some substantial way and no testing of the
changes is made. Hopefully, these kinds of changes do not often occur because
they represent situations where code is enhanced and tests are not performed to
ensure that the existing code still performs the way it used to before the changes.

For uncertainty measurements, the process is much simpler, essentially de-
picted only by the downward arrows and the code is never changed. However,
the builder input files may be changed to measure the sensitivity of the computed
results caused by changes in different variables or combinations of variables. Us-
ing the test harness for uncertainty measurements is described in more detail in
Sect. 7.

6 Brief Summary of the Test Harness Features

When the execution of the application code with the test harness installed in it
is executed, the test harness reads files which specify several options:

– The mode, either generate or check;
– Whether execution performance for each monitored procedure is to be mea-

sured;
– Whether the sizes of the files containing the monitor data for each procedure

are recorded and printed at the completion of the application code, when in
generate mode;

– Whether the application code terminates or continues on the first occurrence
of a difference that violates the comparison threshold;

– Whether a summary report of all comparisons performed during the run
upon completion of the application code is printed;

– The Fortran logical units for diagnostics and for debugging output;
– The Fortran logical unit for the monitored data;
– The maximum number of monitored procedures;
– The name of the main program;
– The maximum number of routines to be monitored; if it is not provided, the

default is 100;
– The default value for the tabulate option. If it is not present, the default

value is no tabulation.

The builder input files allow the following attributes to be provided; if not pro-
vided, a default value is set in all cases:

– The lower bound for array subscripts, when such lower bounds cannot be
determined from the source code, for example, when the array is assumed-
size. The default is a vector of 1’s of the rank of the variable;

– The relative tolerance or threshold used to compare floating point data val-
ues. The default is zero, which implies the compared values must be identical.
For types other than floating point, the relative tolerance test is not made;
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– The norm type, either element or global; the default is element. Element
means the comparisons for an array are element by element and for the
relative threshold, relative to each element. Global means the relative com-
parisons are element by element but relative to the norm of the array;

– The absolute tolerance or threshold used to compare arithmetic data values.
The default is zero, requiring the compared values to be identical;

– The scope of the comparison, either global for all variables of this name, or
local to this procedure. The default is local;

– The section of the array to be compared. The default is the whole array.
However, for assumed-size arrays, a section which specifies the final subscript
value or range is required because the analyzer cannot determine this value;

– Whether to tabulate the comparison results and print the tables at the end
of the execution of the application code when in check mode. The default
is the tabulate option specified in the test harness input file;

– The specification of “how” the perturbation is to be performed. The options
are a relative or absolute perturbation or by a specific value of the specified
variable with the random perturbation at most the size of a specified value,
selected from a uniform distribution. There is no default value; the option
must be specified;

– The name of a procedure that is to perturb the variable. If provided, the
procedure overrides all other specifications of how the variable is to be per-
turbed. The default is no procedure specified;

– The name of a procedure that is to perform the comparison of data values.
The default is no procedure specified.

The output generated when “tabulate=yes” is specified is printed on standard
output after the application completes execution. It is a large table with a col-
lection of lines for each probe for each procedure that is monitored. For each
procedure, there is a line for each variable. The information printed in the table
is:

– The name of the procedure;

– The kind of probe (1 for input probe, 2 for output probe, 3 for a specific
probe, and 4 for a perturb probe);

– The probe name;

– The variable name;

– The flag E or N; E indicates the threshold was exceeded; N indicates the
threshold was never exceeded;

– The type of comparison, when an array; elemental or global;

– Two sub-tables, one for absolute comparisons and one for relative compar-
isons. In each sub-table, 2 or 3 columns are provided for the first, maximum,
and average differences, indicating the value of the difference. Also provided
is the procedure call count for the reported difference and with the linear
position in the array, if an array, where the difference occurred.
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7 How Uncertainty Evaluation of Software Is Performed
with the Test Harness

First, the builder input file is modified to specify the variables to be moni-
tored and perturbed. This includes how they are to be perturbed and how the
results are to be compared. Then the application code with the test harness in
generate mode is executed to create a collection of monitored data. Next, the
application code is rerun with the test harness in check mode, tabulating the
results. Just before the test harness closes in the check mode run, it prints the
results, indicating how the perturbation changed the results.

8 A Case Study – Measuring Uncertainty by Perturbing
Data

The case study to demonstrate how to use the test harness to study uncertainty
of computed results due to changes in input is a package of double precision codes
to solve 3-D magnetostatics problems for the vector potential and magnetic flux
using the boundary element method developed by ASAP LLC [2]. The equations
solved are the 3-D Laplace equations with boundary conditions specified over
the surfaces of 3-D objects. The test problems use spheres, annular cylinders,
cubes, and tori.

The boundary element methods solve the Laplace equation by integrating
Green’s functions over boundary elements to produce a relatively large linear
system of equations. The size of the system is dependent on the number of
boundary elements. The integrands are singular in many cases and are trans-
formed in several ways to remove the singularities, but unless care is taken, the
matrix of the resulting linear system of equations may be near singular; how
singular depends on the shape of the object and the aspect ratio of the elements
as well as the techniques used to avoid the near singular integrands.

The goal of the study is to measure the uncertainty of the computed bound-
ary solutions for these test objects and to show that the uncertainty analysis
could be extended to objects for which the solutions are not known. The per-
turbations of interest were to the boundary conditions and to the weights and
points of the quadrature formulas used to perform the needed surface integrals.
The applications for this software are in cases where the boundary conditions
are likely known to a few digits (usually 3 digits), but we were interested to find
some quantity in the computation that might indicate or measure the sensitivity
of the solution to the boundary conditions that could be computed when the
solution was not known.

The package of software is approximately 50K lines and over 300 procedures.
The test harness has been installed in most of the computational components for
the regular testing of the package but for this study, the test harness was used
only in the solver routine and the procedures involved in the solution, represent-
ing approximately 15K lines and 100 procedures, of which only 24 procedures
and 168 variables were monitored.
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8.1 Measurements

For this study, only the results for the sphere, annular cylinder, and torus are
reported here. In all cases the solution vector, consisting of either the Cartesian
coordinates of the vector potential or the tangential components of magnetic flux
at surface nodes, was examined to study its dependence on boundary data. Solu-
tion variation was measured using the maximum element norm of the difference
between the vector solution computed with the unperturbed and perturbed data.
The vectorial boundary condition data were perturbed by addition of uniform
random variables to their Cartesian coordinates. The magnitude of the pertur-
bations was scaled relative to coordinate value with a change up to 100 units
in the last place of double precision, 1 unit in the last place in single precision,
10,000 units in the last place in single precision (roughly a change in the third
digit), and 100,000 units (roughly a change in the second digit). The boundary
conditions are different for each problem; for the sphere and torus, the boundary
conditions were Dirichlet and for the annular cylinder, the boundary conditions
were mixed Dirichlet and Neumann. The element shapes were quadrilaterals for
the torus and annular cylinder and mixed quadrilaterals and triangles for the
sphere.

Also, measured as part of the case study were perturbations in the Gaussian
weights and points. For all formulas (formulas with more weights and points
are used when the integrand is determined to be near singular), the weights
and points were changed by random perturbations relative to themselves at the
same levels of 100 units in the last place of double precision and 1, 10,000,
and 100,000 units in the last place of single precision. Perturbations to both the
boundary conditions and Gaussian quadrature parameters at the same time were
not performed in the material for this demonstration although this is possible
with the test harness tool.

As a general practice, the Laplace solvers estimate the condition number of
the linear system [5]. The expectation was that the size of the perturbations of
the computed results would depend on the condition number, larger for larger
condition numbers of the linear system. The concern was that other commodities
might contribute, like how close to singularity were the integrands or how often
the higher order quadrature rules or the Telles transformations [6,7] were used
to handle very singular integrands.

8.2 The Results

Fig. 3 to Fig. 7 plot the sizes of the perturbation of the solution with respect to
the perturbations of the boundary conditions and the quadrature weights and
points, tested separately. The plots show that the effect of perturbations of ei-
ther of these quantities on the solution is relatively small in general, roughly
of the size of the perturbation but roughly proportional to and dependent on
the condition number. That is, for Fig. 3 (the sphere), the perturbations in the
solution follow closely the perturbations in the ”input”; for the sphere, the con-
dition number of the linear system is approximately 250. Similarly, in Fig. 5
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Fig. 3. For a sphere, measuring the perturbations of the solution where the boundary
conditions are perturbed by a relative amount of approximately 102, 109, 1013, and
1014 units in the last place of double precision. The solution is perturbed only slightly
more than the perturbation in the boundary conditions (that is, the lines are on top
of one another). The condition number of the linear system is approximately 250.
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Fig. 4. For an annular cylinder, measuring the perturbation of the solution where the
boundary conditions are perturbed by a relative amount of approximately 102, 109,
1013, and 1014 units in the last place of double precision. The solution is perturbed
more than the perturbation in the boundary conditions. The condition number of the
linear system is approximately 6000.
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Fig. 5. For a torus, measuring the perturbations of the solution where the boundary
conditions are perturbed by a relative amount of approximately 102, 109, 1013, and 1014

units in the last place of double precision. The solution is perturbed more than the
perturbation in the boundary conditions. The condition number of the linear system
is approximately 170.
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Fig. 6. For a torus, measuring the perturbations of the solution where the Gaussian
quadrature weights and points are perturbed by a relative amount of approximately
102, 109, 1013, and 1014 units in the last place of double precision. The solution is
perturbed more than the perturbation of the Gaussian parameters and is more sensitive
to weights/points perturbations than boundary condition perturbations. The condition
number of the linear system is approximately 170.
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Fig. 7. For an annular cylinder, measuring the perturbations of the solution where
the Gaussian quadrature weights and points are perturbed by a relative amount of
approximately 102, 109, 1013, and 1014 units in the last place of double precision. The
solution is perturbed more than the perturbation of the Gaussian parameters and is
more sensitive to weights/points perturbations than boundary condition perturbations.
The condition number of the linear system is approximately 6000.

(the torus), the perturbations follow the perturbations in the input; the condi-
tion number approximately 170. However, in Figure 4 (the annular cylinder),
the perturbations in the solution magnify those of the boundary conditions but
still follow the perturbations in the boundary condition; the condition number of
the linear system for the annular cylinder is approximately 6000, 25 to 40 times
larger than that for the sphere and torus, but the perturbation in the solution is
approximately 10 times larger, slightly smaller for the small perturbations and
the factor increasing to slightly more than 10 times for the larger perturbations.
The line labeled “Straight Line” (using square points) plots the perturbation in
the solution as if the perturbation of the input data created the same perturba-
tion in the solution. The line labeled “Data” (using diamond points) plots the
measured perturbation in the solution.

Fig. 6 and Fig. 7 show similar behavior as a consequence of perturbations
in the quadrature parameters for the torus and cylinder, with the magnifica-
tion of the perturbations in the solutions being smaller for the torus where the
condition number is smaller than that for the annular cylinder by a factor of
approximately 40.

9 Conclusions

For this case study, it was relatively straightforward to make perturbations in the
data and to measure the changes in the computed solution. The results of these
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measurements are consistent with the conjecture that the condition number of
the linear system will indicate the sensitivity of the solution to changes in the
input boundary conditions. Further experiments not reported here continue to
confirm the significance of the condition number of the linear system when other
boundary conditions are selected.

The test harness has provided a convenient tool to measure uncertainty due
to data changes. It is conjectured that by changing the application code so that
a version run in generate mode uses a slightly different model than the appli-
cation code run in check mode would allow measurements to be made of the
uncertainty in the solution caused by using a different model. The only require-
ment is that the perturbations in the model can be computed by specifying a
user-supplied procedure to make the perturbations and a second user-supplied
procedure can be written to measure the effect of the perturbations on the com-
puted results.
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Discussion

Speaker: Brian Smith

William Kahan: What if the tool’s INCLUDEs insert statements that should
not, but do, change the arithmetic because of over-agressive compiler optimiza-
tions triggered or inhibited by the INCLUDEs?

Brian Smith: The short answer is that this situation of the included text
disturbing the optimization is very unfortunate but certainly possible. I have
tried to minimize the likelihood of this happening for the default probe insertion
locations where I have some expectation that the included text will not disturb
the optimization. The included text is, in most cases, a CALL statement and
typically the impact of a CALL statement on compiler optimization is predictable
at an entry point or exit point of a procedure. However, when the user inserts
a probe to monitor or change program variable values, the user must be aware
of what impact the probe is having on optimization; the documentation in the
users guide warns the user of this issue. For example, placing a probe in the
middle of a loop will likely change the optimization and the user needs to be
aware of this impact and how it affects the computed results.

John Reid: It looks as if you are working in Fortran 95 and do not support
nested procedures. Is this true?

Brian Smith: No. The test harness supports nested procedures as restricted
by Fortran 90/95/2003; that is, these versions of Fortran prohibit internal pro-
cedures nested in internal procedures so that the installation of a monitoring,
evaluation, or uncertainty probe in an internal procedure must not create an
internal procedure within an internal procedure. This is mainly an annoyance
and inconvenience in that INCLUDE lines representing a probe are replaced by
a CALL statement to an internal procedure that is created and inserted at the
end of the procedure unit in all procedures except an internal procedure. For an
internal procedure, the INCLUDE line is replaced by many lines of code that
implements the probe.

If a version of Fortran removes this restriction, then the test harness code
installer will be modestly modified to replace the INCLUDE line for a probe
with a CALL statement to an internal procedure in all cases in the same way it
treats all other procedures.

So the bottom line is the test harness currently supports nested procedures
in all ways allowed by the Fortran 90/95/2003 standards.
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Abstract. Numerical quantification of the results from a measurement
uncertainty computation is considered in terms of the inputs to that
computation. The primary output is often an approximation to the PDF
(probability density function) for the univariate or multivariate measur-
and (the quantity intended to be measured). All results of interest can
be derived from this PDF. We consider uncertainty elicitation, propa-
gation of distributions through a computational model, Bayes’ rule and
its implementation and other numerical considerations, representation
of the PDF for the measurand, and sensitivities of the numerical results
with respect to the inputs to the computation. Speculations are made
regarding future requirements in the area and relationships to problems
in uncertainty quantification for scientific computing.
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1 Introduction

Metrologists at National Metrology Institutes (NMIs) and industrial laboratories
routinely propagate uncertainties related to input quantities through mathemat-
ical models of measurement to provide uncertainties related to output quantities.
A traditional approach uses model linearization and normality assumptions. Rel-
evant guidance is available and supporting software exists.

The Joint Committee for Guides in Metrology (JCGM) is responsible for the
GUM, the Guide to the expression of uncertainty in measurement [3], and for
supporting documents, e.g., references [2,6]. The JCGM is aware of limitations
of the traditional approach. To overcome such limitations, current JCGM activ-
ity [4,5] characterizes input quantities by probability density functions (PDFs),
which are propagated through the model to obtain a joint PDF for the output
quantities. Best estimates, covariance matrices and coverage intervals and cov-
erage regions for the output quantities (or measurand), all used by metrologists,
can then be obtained.

Models with PDFs for the input quantities can be seen in a broader setting,
where possibly many inputs do not simply relate to measurement. The main con-
sideration here, though, remains measurement uncertainty (MU) quantification,

A. Dienstfrey and R.F. Boisvert (Eds.): WoCoUQ 2011, IFIP AICT 377, pp. 180–194, 2012.
c© IFIP International Federation for Information Processing 2012
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although many of the principles apply more widely. We observe that the result
of a computation represents the effect of uncertainty from all sources considered.
Numerical methods of solution, especially Monte Carlo (MC) methods, are used.

We regard a numerical calculation as modeled by Y = f (X), sometimes
known as a measurement equation (ME) [22], where X denotes N input quanti-
ties, Y the output quantities, and f is a given function, specified by a compu-
tational model, that transforms X to Y . When X is uncertain, Y is uncertain.
Given knowledge about X, knowledge is required about Y . Prior knowledge
of Y may be available. The components of X are characterized by random vari-
ables, and we encode available knowledge about X as a PDF.

p(Z) denotes the PDF for a quantity Z. z denotes an estimate of Z and Uz

the associated covariance matrix (sometimes called uncertainty matrix [4]), taken
respectively as the expectation E(Z) and covariance V (Z). u(zi) denotes the
so-called standard uncertainty associated with the ith component of z. U(zi)
denotes an expanded uncertainty corresponding to a stipulated coverage proba-
bility p.

Consider so-called aleatory uncertainties (due to random effects) and
epistemic uncertainties (due to other effects). Some authors treat aleatory uncer-
tainties as random variables having PDFs, and epistemic uncertainties as inter-
vals with no assumed PDFs. In metrology we encode knowledge of all quantities
by PDFs, a view fully consistent with the GUM [3]. The rules of probability cal-
culus can then be employed. In contrast, in some references, e.g., [24], the two
types of uncertainty are propagated separately and the results combined.

Numerical analysis has a long history in uncertainty quantification (UQ) when
computing in finite-precision arithmetic. Two principal techniques for error prop-
agation are interval analysis [20] and floating-point (FP) error analysis [30]. We
will not consider these techniques here, although we recognize the value of FP er-
ror analysis, especially in making statements about the numerical stability of al-
gorithms used within the computational model. We strongly distinguish between
errors and uncertainties: an error is the difference between the value of a quan-
tity and the true value of that quantity. An uncertainty is a measure of dispersion
(such as the standard deviation determined from the PDF) for that quantity.

This paper reviews numerical tools currently used in MU evaluation. Section
2 makes remarks on the process of assembling and using information about the
input quantities, that is, uncertainty elicitation. Section 3 reviews the propa-
gation of distributions through a computational model. Section 4 considers the
use of Bayes’ rule and Monte Carlo Markov chain (MCMC) methods. Section 5
treats numerical considerations in generating Monte Carlo results and Section 6
considers the representation of such results. Section 7 considers sensitivity issues.
Section 8 gives concluding remarks and speculations on tools needed for MU in
the future in treating more complicated computational models in metrology.

2 Elicitation

Elicitation is the process of obtaining knowledge of an input quantity and trans-
forming that knowledge to a PDF for that quantity. In metrology if the only
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knowledge about a component Xi of X is the endpoints of an interval for Xi, we
use MaxEnt, the maximum entropy principle, to assign a uniform PDF to Xi [4].
If the only knowledge about X is its expectation E(X) and covariance V (X),
we again use MaxEnt to characterize X by a multinormal distribution. Some-
times Bayes’ rule is used to assign a PDF, such as when repeated observations
of a quantity are available. Reference [4, subclause 6.4] gives PDF assignments
for common circumstances in metrology.

Hibbert et al. [12] applied MaxEnt and Bayesian model selection to a fas-
cinating class of decision-making problems in suspected cases of horse-doping.
From a large mass of historical data they constructed PDFs for total carbon
dioxide concentration in pre-race samples of plasma. Separate PDFs were ob-
tained for ‘clean’ horses and horses that were subsequently tested positive. Us-
ing q leading moments of the data, MaxEnt delivers a PDF based on a set of
Lagrangian parameters [19]. Bayesian model selection was used to obtain that
value of q that maximized the Bayesian model probability p, thus avoiding model
over-fitting. For clean horses, values of − log10(p) for q = 2, . . . , 7 were approx-
imately 11, 13, 12, 14, 0, 2, respectively, leading to the conclusion that Bayesian
model selection has strongly settled for a moderately complex model of the
form exp(a1X + · · ·+ a6X

6). This model was chosen in preference to a simple
model such as exp(a1X + a2X

2), which, for a2 < 0, is Gaussian. Measured data
for a further horse can be compared with these PDFs and a decision made on
whether the horse has been subjected to doping.

3 Propagation of Distributions

Obtaining the joint PDF p(Y ) for Y given the joint PDF p(X) for X is known
as ‘propagation of distributions’ [4]. Formally, it constitutes an application of
Markov’s theorem [9],

p(Y ) =

∫ ∞

−∞
· · ·

∫ ∞

−∞
p(X)δ(Y − f (X)) dX , (1)

where δ(·) denotes the Dirac delta function. Figure 1 illustrates the principle
for a univariate model with N = 3 input quantities. p(Y ) is indicated as being
asymmetric, as generally arises for non-linear models or asymmetric p(Xi).

A quadrature rule can be used, albeit inefficiently, to evaluate the integral (1),
so as to provide an approximation p̂(Y ) to p(Y ). p̂(Y ) is often obtained in
metrology using an MC method [4]. Random draws are made from p(X), f
evaluated in each case, and the resulting set of values used to form p̂(Y ).

See GUM Supplement 1 [4] for details of an MC method that implements
the propagation of distributions. These considerations apply when X does not
depend on the measurand.

4 Bayes and MCMC

When observations of a component Xi of X that depend on the value of the
measurand are available, an observation equation (OE) approach is appropriate.
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Fig. 1. Propagation of distributions for N = 3 independent input quantities

Then Bayes’ rule can be used to determine p(Y ). Let W , one of the Xi, be
directly observable. LetX now denote the original X less W . Re-express the ME
as Y = f(W,X) and consider the corresponding OE W = φ(Y ,X) [11,22] and
observations Wi ∈ N(W,σ2). Bayes’ rule can be used to update prior knowledge
of Y , X and σ2 (regarded as random variables) with observations Wi to give a
posterior distribution for these variable, with p(Y ) obtained by marginalization.

An MCMC algorithm can be used to obtain p(Y ). MCMC generates a
sequence {yk}, in which yk is obtained from yk−1 under an iterative operation.
It asymptotically generates draws from p(Y ). A Metropolis-Hastings algorithm
[23, Chapter 6] is an MCMC algorithm that allows p(Y ) to be specified straight-
forwardly. One variant, an ‘independence chain’, can be applied when we have
an approximating PDF p̃(Y ) that is easily sampled. Given yk−1, y

∗ is drawn at
random from p̃(Y ). Then yk is set to y∗ with acceptance probability

min{1, rk}, rk =
p(y∗)p̃(yk−1)

p(yk−1)p̃(y
∗)
. (2)

To implement the acceptance step, draw vk from the uniform distribution R(0, 1)
and set yk = y∗ if vk < rk; otherwise set yk = yk−1. This scheme replicates
samples when p̃(Y ) under-represents p(Y ) at the expense of rejecting samples
when p̃(Y ) over-represents p(Y ). On convergence of the Markov chain, the {yk}
are draws from p(Y ). Implementations typically involve repeat runs (chains)
with different initial samples to gauge convergence.

The ME approach (propagation of distributions with W assigned a PDF
based on the sampling distribution) can be analyzed in terms of a Bayesian
approach [10]. Let ζ denote an observation. If the OE approach is implemented
with prior pOE(Y ,X) ∝ p(X) to produce posterior distribution pOE(Y ,X|ζ),
then, with ∂φ(Y ,X)/∂Y denoted by φ̇(Y ,X), the posterior distribution for
the ME approach is [15]

pME(Y ,X|ζ) ∝ |φ̇(Y ,X)|pOE(Y ,X|ζ),

based on a prior distribution

pME(Y ,X) ∝ |φ̇(Y ,X)|p(X).
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There will be little difference between the ME and OE approaches if |φ̇(Y ,X)|
is approximately constant throughout the region of interest.

Consider a Metropolis-Hastings independence chain with pOE(Y ,X|ζ) play-
ing the role of p(Y ) and pME(Y ,X|ζ) that of p̃(Y ). Expressions (2) then become

min{1, rk}, rk =

∣∣∣∣∣ φ̇(yk−1,xk−1)

φ̇(y∗,x∗)

∣∣∣∣∣ .
For models in which φ̇(Y ,X) ≈ constant over the region of interest, rk ≈ 1
ensuring a high acceptance rate, reflecting the fact that little adjustment has to
be made to the sample generated by the ME approach. The chain {yk} will then
have low autocorrelation so that sample statistics such as means and standard
deviations will converge to their distribution counterparts at rates similar to that
for the MC method of GUM Supplement 1.

5 Numerical Considerations in Generating Monte Carlo
Results

5.1 Random Number Generation

In metrology the PDF p(X) can often be decomposed into univariate PDFs
or joint PDFs involving a smaller number of variables. Procedures for drawing
randomly from a variety of PDFs commonly occurring in metrology such as
normal, multinormal, t and arcsine are summarized in GUM Supplement 1 [4].
These procedures depend on the quality of an underpinning uniform random
number generator (RNG).

An extensive test of the statistical properties of uniform RNGs is carried out
by TestU01 [13], a suite containing many individual tests including the so-called
Big Crush. Several RNGs passing the Big Crush test are listed by Wichmann
and Hill [29], who also considered RNGs on distributed computing systems.

5.2 Practicalities

Rather than carrying out all M Monte Carlo trials and then processing them
to obtain a histogram, the following procedure (where an MC trial constitutes
making a draw from the input joint PDF and providing the corresponding model
value) has benefits in terms of time and memory:

1. Perform a modest number of MC trials, M0 = 104, say;
2. Establish a set of bins based on these M trials;
3. Carry out a further M − M0 trials, allocating values to bins or, if a value

lies outside the set of bins, storing it individually.

The bins, bin frequencies and additional values are used to obtain the required
results. This approach is advantageous when computing coverage intervals and
regions, which typically involve values in the tails of p(Y ). Further details are
available [8, Annex E].
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5.3 Monte Carlo Convergence

Suppose M random draws are made from p(X) and the corresponding output
quantity values are calculated. For any j, the average of these values for the jth
component Yj is a realization of a random variable with expectation E(Yj) and
variance V (Yj)/M . The closeness of agreement between this average and E(Yj)
can be expected to be proportional to M−1/2. This ‘convergence rate’ can be
improved using schemes such as Latin Hypercube sampling (LHS) [18] for certain
classes of problem.

5.4 Adaptive Schemes

The approach in Section 5.2 necessitates specifying M in advance. Thus, the
numerical accuracy of the results obtained is unknown a priori. The aim of an
adaptive scheme is to provide (a) an estimate y of Y , (b) an associated covari-
ance matrix V y, and (c) a coverage region for Y for a stipulated coverage prob-
ability (or their univariate counterparts for an uncertainty evaluation problem
with a single measurand), so as to meet a specified numerical tolerance.

An approach, involving carrying out a sequence of applications of an MC
method, is detailed in references [4,5]. It operates in terms of a specified nu-
merical tolerance δ used to assess the ‘degree of approximation’ required in the
elements of the covariance matrix V y. The approach, which utilizes a sequence
of batches of, say, M0 = 104 MC trials, consists of the following steps:

1. Carry out a batch of MC trials and use the model values to calculate batch
results (averages, standard deviations, etc.);

2. Use updating techniques to calculate results for all batches;
3. Regard the computation as having stabilized when the standard deviations

of the averages of the batch results is no greater than δ.

The test in step 3 regards the averages as realizations of variables distributed
as Student’s t, and corresponds to a coverage probability of 95% [32]. This test
is superior to that in reference [4], which is based on regarding the averages as
realizations of Gaussian variables.

Adaptive schemes such as that above can be tailored to other sampling pro-
cedures such as LHS.

6 Representation of MC Results

6.1 General

Suitable representations of MC results are required for (a) visualization pur-
poses, and (b) subsequent use. In terms of (b) the output of one MU evaluation
should be transferable, that is, usable as an input to another evaluation [3]. In
particular it is not always convenient to retain the M = 106, say, (vector) values
produced by MC and use them subsequently. But, balanced with this, the MC
output is ideal in that it automatically conveys covariance information. Methods
such as kernel density approximation (KDA) can be used for (a) and (b).
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6.2 Density Approximation

Kernel density estimation (or better approximation) can be used to approximate
a PDF from sampled values from that PDF, but it is not greatly used as yet in
metrological applications. A KDA to a univariate PDF p at the point Y is

p̂h(Y ) =
1

Mh

M∑
r=1

K

(
Y − yr

h

)
. (3)

In expression (3), y1, . . . , yM are sampled values with underlying density p,
and K is a kernel function with unit area. Common kernel functions are Gaussian
and B-spline [27,28]. B-splines have appreciable speed advantages when sam-
pling from p̂h(Y ) because of their compact support property [7].

In expression (3) h is a smoothing parameter known as the bandwidth and
plays a similar role to that of bin width in a histogram. Too small a value
of h results in spurious oscillatory behavior. Too large a value results in over-
smoothing, losing local detail. A number of methods are used to determine h
given the yr [27,28]. Figure 2 illustrates such a representation. The bandwidth
in the kernel density approximation and the bin width of the histogram are
identical there.

A (conventional) KDA (3) has the same information content as the data it
represents. With M often of O(106), it is possible to produce KDAs with many
fewer terms. It is also possible to describe the sampled values by some parametric
form with adjustable parameters.

If a complete PDF is not required Willink [31] suggests summarizing the
PDF in terms of a model for its quantile function (the inverse of the distribution
function). Willink proposes an asymmetric form of the ‘lambda distribution’ for

Fig. 2. Representation of a set of observations by a histogram and (right) a KDA, the
broken red line showing true density
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Fig. 3. Contours of the PDF, based on MC results, for a bivariate output quantity and
(right) with contour smoothing

this purpose. The quantile function for this distribution has four free parame-
ters which may be related by non-linear transformations either to the first four
moments of the PDF obtained by Monte Carlo analysis, or, if desired its quan-
tile information. As the extended lambda distribution is defined with respect
to its quantile function, drawing random samples from the resulting model ap-
proximation is straightforward. Should this approximation be inadequate in any
particular case, the more complete KDA can be used.

A bivariate PDF is sometimes represented by a set of contour lines. The con-
tour lines should be faithfully reproduced: as M → ∞, they should converge to
the contours of the corresponding PDF. Doing so requires appropriate smooth-
ing [25,28]. Some contour diagrams can be computed directly from a KDA to
the corresponding PDF. For others an appropriate smoothing algorithm can be
applied to the MC results and the resulting smoothed contours drawn. Figure 3
illustrates the effect of a simple smoothing algorithm.

6.3 Coverage Regions

In metrology, coverage intervals and regions are often required to accompany
measurement results. A procedure included in reference [5], based on work of
Possolo [21], for an approximation to the smallest 100p% coverage region is as
follows:

1. Construct a (hyper-)rectangular region in the space of the output quantities;
2. Subdivide this rectangular region into a mesh of small rectangles;
3. Assign each output quantity value to the small rectangle containing it;
4. Use the fraction of output quantity values assigned to each rectangle as the

approximate probability that Y lies in that rectangle;
5. List the rectangles in terms of decreasing probability;
6. Form the cumulative sum of probabilities for these listed rectangles, stopping

when this sum is no smaller than p;
7. Take the selected rectangles as defining the smallest coverage region.



188 M. Cox et al.

Fig. 4. Coverage regions based on a 10 × 10 mesh and 1 000 points drawn from the
PDF for Y , and (right) for a 100× 100 mesh and 1 000 000 points

A coverage region that is less disjointed and having a smoother boundary would
be expected to be obtained if step 4 were replaced by the use of a more sophisti-
cated approximation to the probability density [26]. In the bivariate case, steps
1 to 4 are also carried out in the initial stages of a typical contouring algorithm
used in visualizing an approximation to the PDF for Y .

As a simple example consider the linear bivariate model Y1 = X1 + X3,
Y2 = X2 +X3, with mutually independent X1 ∼ N(0, 0.1), X2 ∼ N(0, 0.1) and
X3 ∼ R(−(5.7)1/2, (5.7)1/2). Figure 4 shows approximations to the smallest 95%
coverage region, obtained using the above procedure, based on a set of rectan-
gles forming a 10× 10 and a 100× 100 mesh. For comparison the 95% elliptical
coverage region for Y based on Gaussian parameters estimated from the model
values is shown by a solid line. The assumption of normality yields a conservative
coverage region in this example.

7 Sensitivity

7.1 First-Order Sensitivity Coefficients

Consider a univariate computational model Y = f(X). A first-order sensitivity
coefficient is ci = ∂f/∂Xi evaluated at x. Then ui(y) = |ci|u(xi) is the corre-
sponding first-order contribution to u(y). It can readily be obtained using the
complex-step method [17], which in our opinion deserves greater recognition, par-
ticularly when f is complicated. This method is applicable when the real types
in the software that implements the model can be replaced by complex types.

The complex-step method is similar to the use of finite differences but complex
arithmetic is used to obtain first derivatives. It uses the Taylor expansion of a
function f of a complex variable:

f(z + w) =

∞∑
r=0

wr

r!
f (r)(z),
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where z and w are complex. Setting z = x and w = ih where x is real and h is
real and small, and taking real and imaginary parts, we have

�f(x+ih) = f(x)−h2

2
f ′′(x)+O(h4), �f(x+ih) = hf ′(x)−h3

6
f ′′′(x)+O(h5),

from which

f(x) = �f(x+ ih), f ′(x) =
1

h
�f(x+ ih),

with truncation errors of order h2. Unlike the use of a finite-difference formula
for f ′(x), h is chosen to be very small with little concern about the loss of
significant digits through subtraction cancellation. NPL routinely applies the
method with h = 10−100 [1], suitable for all but pathologically-scaled problems.

7.2 The Use of Monte Carlo

MC can be adapted to provide a non-linear counterpart of a sensitivity coeffi-
cient. Hold all input quantities but one, sayXk, at their estimates. Make random
draws from p(Xk) and determine an approximation to the PDF for Y that de-
pends only on Xk. The according standard deviation ũk(y) is an approximation
to the component of the standard uncertainty corresponding to Xk.

The use of ‘non-linear’ sensitivity coefficients in place of ‘linear’ sensitivity
coefficients permits individual non-linear effects to be taken into account. A
‘non-linear’ sensitivity coefficient c̃k is defined by c̃k = ũk(y)/u(xk). It will be
equal to the magnitude of the ‘linear’ sensitivity coefficient ck for f linear in Xk.
The deviation of ũk(y) from uk(y) = |ck|u(xk) is a measure of the influence of
the non-linearity of f with regards to Xk alone. This measure does not account
for interaction (i.e., non-additive) terms in f .

8 Concluding Remarks and Forward Look

8.1 Intensive Computation Beyond GUM

There is in place an infrastructure to deal with MU when expressed as a standard
uncertainty or an expanded uncertainty for some coverage probability. The GUM
goals of having a universal, internally consistent, and transferable framework are
then largely achieved. However, when uncertainty is expressed using PDFs, MU
evaluation then relies on (possibly intensive) numerical computation, and gener-
ates data that need to be represented in some way. Furthermore, measurement
models are becoming more complicated and can only be treated numerically. An
example is a radiation-transport calculation, which is itself an MC calculation.

8.2 Need for Efficiency

With MU evaluation and uncertainty quantification for scientific computing
(UQ) in general there is a need for more efficient techniques for propagating
PDFs through computational models. MC is naturally highly parallelizable; NPL
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uses a grid of PCs to treat the more complex computational models. As all such
techniques are based on MC, it is a matter of tuning those techniques appropri-
ately. For some problems the basic technique can hardly be bettered. Approaches
such as LHS can give appreciable gains for certain classes of problem.

8.3 Embracing Uncertainty Quantification

In the future, MU evaluation will embrace more closely concepts used in UQ.
Model uncertainty is recognized, being termed definitional uncertainty [6]. Elici-
tation uncertainty is already treated in a small way [3,4]. Numerical uncertainty
is considered when computational models constitute FE solvers, for example [16],
or in using adaptive schemes [4]. Within general UQ a main aim is to provide
probabilistic statements about quantities of interest to inform decision makers.
A politician, lawyer or manufacturing production manager needs to consider
available evidence and decide a course of action to achieve some goal. Decisions
might relate to whether a process remains under statistical control or an ath-
lete is regarded as using a banned substance. Such aspects imply that there are
(further) software tools requiring development for MU evaluation.

8.4 Use of MaxEnt

Other metrological applications could benefit from the approach to the horse-
doping problem in Section 2. Numerical difficulties, though, can give rise to
ill-determined PDFs or prevent a PDF from being obtained at all when MaxEnt
is applied to moments as in Section 2 [14]. These difficulties arise when a metro-
logical problem is unreasonable in that it relates to an inadequate measurement
of a quantity. It would be useful to have in place a characterization of such
problems.

8.5 Efficiency of Forms for Kernel Density Approximations

A compact form for an approximation p̂(Y ) to the PDF p(Y ) is desirable
when p̂(Y ) is to be used as input to a subsequent MU evaluation. The use
of kernel density approximations (KDAs) based on B-splines have advantages,
delivering computationally efficient representations because of the many proper-
ties of B-splines [7]. There is a choice here: either (a) assemble MC results as a
histogram and use a KDA, or (b) represent the ordered MC results by a suitable
approximating cumulative density function (CDF), incorporating monotonicity
conditions because of the non-decreasing property of CDFs. For (a), evaluation
of the inverse CDF (quantile function), when generating draws from the distribu-
tion using a B-spline basis, is very efficient because of the compact support of the
B-splines. For (b), the CDF can be differentiated to form the corresponding PDF.

In metrology, the question is raised, and is yet to be addressed, of how calibra-
tion certificates of the future can usefully convey results from an MC calculation,
particularly in the presence of an asymmetric PDF.
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Discussion

Speaker: Maurice Cox

Mark Campanelli:Has there been any discussion on a “bias discovery” method-
ology for metrology?

Maurice Cox: Bias is an important concept in measurement. In the Guide
to the expression of uncertainty in measurement (GUM) [3], concentration is
given to systematic error, and its characterization by a probability density
function (PDF). This distribution is obtained by accounting for available knowl-
edge of the relevant quantity. Bias is regarded as an estimate of a systematic
error. In an interlaboratory comparison, nominally the same measurand is mea-
sured by participating laboratories and a consensus value determined. The de-
viations of the measured values provided by the laboratories from the consensus
value can be regarded as laboratory biases.

Mark Campanelli: How can the reliability of the Monte Carlo method be
checked for computing 99% coverage intervals for high-dimensional problems?

Maurice Cox: For multivariate problems an adaptive method is given in Sup-
plement 2 to the GUM [6], as outlined in our paper. It constitutes a simple exten-
sion of the adaptive scheme in Supplement 1 to the GUM [4]. Further experience
needs to be gained before its performance can be judged in obtaining 99% cov-
erage intervals and 99% coverage regions. At the moment these guidance doc-
uments apply to simple Monte Carlo sampling; different considerations might
apply to Latin Hypercube sampling or importance sampling.

Richard Hanson: The use of pure complex “divided differences” requires an
algorithm for complex continuation of the function. Is this the case for your
application?

Maurice Cox: In metrology, the measurement function, when expressed in
terms of complex variables, is usually analytic, that is, the Cauchy-Riemann
equations apply. In such a case, the replacement of real type by complex types
is virtually all that needs to be done. When, rarely, the measurement function is
specified in terms of functions that are not analytic (such as the absolute value
function, which is not analytic at the origin), the measurement function should
be re-expressed so that the Cauchy-Riemann equations are satisfied.

Jeffrey Fong: For problems involving controls based on “uncooked” models
(i.e., models without a history of baseline data and experimental validation),
and with small M (∼ 102 − 103) do you have any advice on using the approach
you outlined in your talk?

Maurice Cox: The Monte Carlo method given in guidance documents [4,6] is
simple and is not intended for small values of M . If the model is complicated,
perhaps involving the solution of a large finite-element model, because of large
computing times it may not be possible to use a sufficiently large value of M to
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obtain adequate distributional knowledge of the output quantity. In such a case
we give very elementary advice. It involves the use of an approximate approach in
which the PDF for the output quantity is regarded as Gaussian (as in the GUM).
A value of M would be selected that is economically possible. The average and
covariance matrix of the resultingM values of the (vector) output quantity would
be taken respectively as the best estimate and covariance matrix of that quantity.
A Gaussian PDF with these parameters would be used to characterize the output
quantity and a desired coverage region calculated accordingly. Although this use
of a small value of M is inevitably less reliable than that of a large value in
that it does not provide an approximation to the PDF for the output quantity,
it does take account of model non-linearity.

Tony O’Hagan: I suggest that a variance-based sensitivity analysis would be
much more useful than derivatives. This is discussed, and efficient computation
with GP emulators developed in: Oakley, J. and O’Hagan, A. (2004), Proba-
bilistic sensitivity analysis of complex models : a Bayesian approach, J. Royal
Statistical Soc., series B, vol 66, 751–769.

Maurice Cox: We do not use derivatives alone, but in conjunction with the
input standard deviations. Thus, we consider, in the notation of our paper, the
contributions ui(y) = |ci|u(xi). These terms are the first-order contributions to
the standard deviation of the output quantity, and do not account for interac-
tion effects. They are used by metrologists as indications of the input quantities
to which most attention should be paid when there is a need to meet a tar-
get uncertainty. Nevertheless, we intend to examine variance-based sensitivity
analysis.

Jon Helton: Is appropriate consideration given to the problem/inconsistencies
that are present when variables with bounded ranges are represented with dis-
tributions that have infinite ranges (e.g., normal distributions)?

Maurice Cox: Attention is paid to the input quantities by characterizing them
by PDFs that account for knowledge of those quantities. In my opinion too
much reliance is placed on the central limit theorem in representing the output
quantity by a Gaussian distribution. Inconsistencies arise when it it is known
that the output quantity is bounded, such as a mass concentration lying between
0% and 100%, and a coverage interval extends beyond one of these limits. The
Joint Committee for Guides in Metrology, in its work on revising the GUM, will
take account of such knowledge in recommending methods based on forming a
suitable prior distribution and applying Bayes’ theorem rather than using the
propagation of distributions in such a case.

Jon Helton: Has the use of importance sampling been considered for use in the
determination of the extreme tails of distributions?

Maurice Cox: The relevance of importance sampling is recognized, and it is in-
tended that, when sufficient experience on metrology problems has been gained,
appropriate guidance will be given.
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1 Introduction

Three examples are described that illustrate the application of statistical
methods to assess the contribution that model uncertainty makes to the overall
uncertainty when doing interpolations, producing predictions, or building ap-
proximations.

The first example, described in §2, relates to the interpolation of concentra-
tions of CO2 measured in the course of a flight over Indianapolis: two inter-
polants are considered, local regression and kriging, among many others that
could reasonably be entertained, and this suffices to make the point that model
uncertainty can make a sizeable contribution to the overall uncertainty budget.

The second example, reviewed in §3, concerns a measurand (the quantity
intended to be measured [15, 2.3], here the time that elapses after infection with
the influenza A virus, until the viral load peaks in a particular patient) whose
measurement involves the solution of a set of simultaneous differential equations.
Since this depends on several parameters, each set of values assigned to them
in fact defines a particular model. The example characterizes the dispersion of
values that correspond to these multiple, alternative choices.

A. Dienstfrey and R.F. Boisvert (Eds.): WoCoUQ 2011, IFIP AICT 377, pp. 195–211, 2012.
c© IFIP International Federation for Information Processing 2012

http://www.nist.gov/itl/sed/possolo.cfm


196 A. Possolo

The third example, presented in §4, is about the construction of a data-driven
approximant to an unknown function of several variables. The quantity of inter-
est is the same that is considered in the example of §3, the time that elapses after
infection with the influenza A virus until the viral load peaks, but here regarded
as a function of four parameters. The approximants considered all belong to the
class of projection pursuit regressions. In this case, the alternative models under
consideration correspond to the different numbers of “ridge functions” used to
define the structure of the approximant.

These examples were all worked out using the facilities for statistical comput-
ing available in the R programming environment for statistical computing, data
analysis, and graphics [22], which is free and open source. Writing for the New
York Times of January 6, 2009, under the title “Data Analysts Captivated by
R’s Power”, Ashlee Vance explains that R is a popular programming language
used by a growing number of data analysts, and suggests that “it is becoming
their lingua franca”.

Some commercial instruments are identified in this paper accurately to repre-
sent the sources of some of the data that is used. Neither does such identification
imply recommendation or endorsement by the National Institute of Standards and
Technology, nor does it imply that the equipment identified is necessarily the best
available for the purpose, or that it has been properly calibrated or used.

2 Interpolation

2.1 INFLUX Experiment

The Indianapolis Flux Experiment (INFLUX, http://influx.psu.edu/, [24])
serves to develop and assess methods for quantifying greenhouse gas emissions
on an urban scale: it is a joint undertaking of Arizona State University, the Co-
operative Institute for Research in Environmental Sciences (National Oceanic
and Atmospheric Administration and the University of Colorado at Boulder),
the Earth Science Research Laboratory (National Oceanic and Atmospheric Ad-
ministration), the National Institute of Standards and Technology, Penn State
University, and Purdue University.

Figure 1 shows the flight path of a small aircraft, instrumented with a
Picarro greenhouse gas analyzer (http://www.picarro.com/gas_analyzers),
which flew from Purdue University to Indianapolis on June 1, 2011, and then
took measurements of CO2 concentrations at about 17 000 points lying approx-
imately on a vertical curtain about 80km wide and 1.2 km tall, as illustrated in
Figure 2.

We consider the problem of interpolating the observations to create a map
of those concentrations covering the whole vertical flight curtain, which sub-
sequently will be used to compute vertical CO2 flux. Since such interpolation
can reasonably be done in any of several alternative ways, the corresponding
dispersion of results ought to be reflected in the map’s uncertainty budget.

http://influx.psu.edu/
http://www.picarro.com/gas_analyzers
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Fig. 1. Flight path of a small aircraft equipped with a Picarro greenhouse gas analyzer
that made the measurements depicted in Figure 2: map drawn by Paul B. Shepson and
M. Obiminda Cambaliza (Department of Chemistry, Purdue University) [24]

Fig. 2. Locations on the vertical curtain where concentrations of CO2 concentrations
where measured on June 1, 2011, using a Picarro greenhouse gas analyzer, with colors
indicating the measured values: drawn by Paul B. Shepson and M. Obiminda Cambaliza
(Department of Chemistry, Purdue University).
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2.2 Local Regression and Kriging

The data are a set of values y1, . . . , ym of a real-valued, albeit unknown function
θ, which were measured at points x1, . . . , xm in a space X on which there is
defined a distance metric. The objective is to produce an estimate y of θ(x),
for any x “in the middle” of the {xi}, typically but not necessarily different
from these {xi}, and to characterize the uncertainty u(y) associated with the
estimate, conceived as an indication of how close to θ(x) one believes y to be.

According to the Guide to the expression of uncertainty in measurement
(GUM) [13, 3.3.1] measurement uncertainty “reflects the lack of exact knowl-
edge of the value of the measurand” (the value tlike θ(x), this paramater will be
the standard deviation of a probability distribution that describes the dispersion
of values that may reasonably be assigned to y.

The goal of estimating θ(x) is approached by modeling the observations {yi}
probabilistically, so that the interpolation problem becomes a statistical estima-
tion problem. In this conformity we represent the data as yi = θ(xi) + εi for
i = 1, . . . ,m, where the {εi} are regarded as realized values of non-observable
random variables (measurement errors). The objective, then, is to interpolate
the signal θ(xi), not the signal plus the noise, θ(xi) + εi. (The assumption that
the signal and the noise combine additively can often be satisfied by suitably
re-expressing, or transforming, the data before the statistical analysis.)

This goal can be achieved in any one of many different ways, several of
which are comparably reasonable under mild assumptions about θ and about
the probability distribution of the measurement errors. We choose to illustrate
and compare the results of two well-known, widely used procedures: local re-
gression [2,3,17] and kriging [6,16,27]. In both, a model needs to be chosen for
θ, which next needs to be calibrated in light of the data (that is, its adjustable

parameters need to be estimated), the resulting θ̂ finally being used to compute

the interpolated value as y = θ̂(x).
To apply local regression we assume that θ is continuous and locally quadratic.

To apply kriging we assume that θ is a realized value of a stationary Gaussian
random function Θ whose covariance function is a member of a particular para-
metric family. Both methods can be employed under more general assumptions,
but neither of these assumptions already is particularly restrictive. In fact, and
for local regression, assuming that θ is locally constant, linear, or quadratic
makes little difference in most practical applications; and for kriging, the col-
lection of realizations of a Gaussian random function, even a stationary one, is
sufficiently varied to be able to mimic the majority of continuous functions likely
to be encountered in practice.

The methods available to build these interpolants from empirical data are
amply documented in the literature: for example in [4], which discusses inter-
polation of spatial data at great length. We used function locfit from the R
package with the same name [18] to fit the local regression model, and function
automap from the R package intamap [21] to fit the kriging model. Before dis-
cussing the results for the CO2 data, we illustrate them in the context of a very
simple example.
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Figure 3 shows differences between a local regression model and a kriging
model fitted to the same data, for a set of simulated data where X is the real
line and θ is a real-valued function of a real argument. The kriging model is
defined by a constant mean μ = E(Θ(x)) for all x, and by a covariance function
γ such that γ(h) = E[(Θ(x + h)− μ)(Θ(x) − μ)].

The assumption is made that γ depends only on h and not on x (where the
increment h is a scalar when X is the real line, and it is a vector when X is
the Euclidean plane), and that it belongs to the class of covariance functions
introduced by Matérn [19], involving three adjustable parameters. This model
was fitted to the data depicted in Figure 3 using facilities provided by the R
package geoR [23].

Both the local regression and the kriging interpolants do some smoothing
because the goal is to interpolate the signal — that is, values of θ(x) — not the
signal plus the noise, θ(x) + ε. In practice, of course, since neither θ nor ε are
known, a statistical procedure needs to be employed that “guesses” the most
appropriate extent of smoothing: one such procedure is cross-validation, which
will be discussed below.

The results obtained by the two methods are similar but different. Since either
model could have reasonably been selected for the task at hand, these differences
reflect an uncertainty component that is attributable to model selection. Another
uncertainty component relates to model calibration (that is, estimation of model
parameters), and derives from the fact that this calibration is based on only a
finite amount of data.

Kriging is often heralded as providing assessments of uncertainty of its in-
terpolations automatically. However, in many instances of application, kriging’s
built-in assessments underestimate uncertainty because one pretends that the
estimate γ̂ of the covariance function is identical to the covariance function γ
itself. Bayesian kriging provides means to account for this often neglected com-
ponent of uncertainty [6]. Here, we will rely on cross-validation to evaluate the
corresponding uncertainty component.

2.3 Cross-Validation and Model Uncertainty

Cross-validation [11,20] is an established procedure to assess the performance
of statistical procedures realistically. In the context of interpolation, the idea is
to partition the data into two subsets, use one (training subset) to develop and
calibrate the interpolant, and the other (testing subset) to gauge its performance,
by comparing the interpolation results with the observations at those locations
present in the testing subset. The process may be repeated multiple times, over
many different partitions, and some figure of merit (for example, root mean
square of the differences between interpolated and actual values) averaged.

The partitioning may be done at random, or it may include consideration
for the particulars of the situation. For the CO2 data whose measurement loca-
tions are depicted in Figure 2, a random partition may lead to overoptimistic
assessments. Given the fairly high rate at which the measurements were made,
the measurement locations are very closely spaced along the horizontal legs of
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Fig. 3. Illustrative example of differences between a local regression model and a kriging
model fitted to the same data. The red line, marked “Signal” in the legend, depicts the
“true” function θ: this is known in this case because the data are simulated.

the curtain portion of the flight: for this reason, if the testing subset had been
obtained by selecting, say, about one third of the measurement locations chosen
uniformly at random, then there would have been data in the training subset
very close to each of the locations in the testing subset, and the interpolation
accuracy would misleadingly appear to be very high.

The interpolation challenge in this case, however, is mostly in the vertical
direction, at points whose height lies between the heights of any pair of adjacent,
horizontal legs of the flight. A suitable testing subset should then be one of these
horizontal legs (Figure 4), with the rest of the observations being used to build
an interpolant to estimate concentrations of CO2 at all the points in the leg that
will have been set aside. And then to repeat this procedure for each leg in turn.

2.4 INFLUX Experiment – Uncertainty Budget

Figure 5 shows the results of local regression and kriging interpolations for the
INFLUX data. The differences are generally small, being most pronounced along
the edges of the CO2 plume. The cross-validation assessment of their respective
performance indicates that they are quite comparable, and there is hardly any
reason to prefer one over the other.

The uncertainty budget in Table 1 lists the recognized uncertainty components
and the contributions they make to the expanded combined measurement un-
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Fig. 4. Locations on the flight curtain where measurements of CO2 were made, also
depicted in Figure 2. Here the different colors indicate the testing subsets used when
cross-validating the performance of the two interpolation procedures.

Table 1. Uncertainty budget for the map of CO2 concentrations over the curtain flight
plane. To within the single significant digit listed, the interpolation uncertainty is the
same for the local regression and kriging models. The evaluations marked manuf were
drawn from the specification sheet for the Picarro CRDS Analyzer model G2301-m
(http://www.picarro.com/gas_analyzers/flight_co2_ch4_h2o); cv indicates eval-
uation via cross-validation; and lab+cert indicates that the evaluation expresses lab-
oratory calibration uncertainty and the uncertainty in the calibration standards.

source evaluation std. uncert. mg/m3 (ppmv)

Model selection cv 0.36
Interpolation cv 0.9
Instrument calibration lab+cert 0.034
Instrument repeatability manuf 0.2
Instrument drift manuf 0.2
Atmospheric temperature manuf 0.0075
Atmospheric pressure manuf 0.7

Expanded Uncertainty U95% = 2.5mg/m3(ppmv)

certainty in the last line of the table, computed as U95% = 2
√
0.362 + · · ·+ 0.72

= 2.5mg/m3 (ppmv), meaning that, with approximate 95% probability, the true
CO2 concentrations are within ±U95% of the values shown on the map.

3 Prediction

3.1 Viral Load in Influenza a Infection

[1] describe several mathematical models for the progression of influenza A in-
fection within an individual patient. These models capture the principal features

http://www.picarro.com/gas_analyzers/flight_co2_ch4_h2o
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Fig. 5. Results of interpolating the CO2 measurements over a regular grid, then colored
and contoured, using local regression (top panel) and kriging (bottom panel)
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of the underlying viral kinetics: initially the viral load grows exponentially fast,
peaks 2 to 3 days post-infection, and finally decreases, also at an exponental
rate, to undetectable levels within 6 to 8 days post-infection.

Here we will consider the simplest model that [1] describe. The infection is
assumed to be limited by the availability of susceptible epithelial cells rather than
by the patient’s immune response. The number T of uninfected target cells, the
number I of productively infected cells, and the viral load V satisfy the following
system of differential equations, where β is the infection rate, 1/δ is the expected
lifespan of an infected cell, ρ is the increment to viral load contributed by each
infected cell, and γ is the viral clearance rate:

dT

dt
= −βTV,

dI

dt
= βTV − δI,

dV

dt
= ρI − γV. (1)

Figure 6 shows the values of the viral load in patient 4 (from Table 1 of [1])
as measured on seven consecutive post-infection days, and the fit this model
achieves assuming that log10 V is Gaussian, and that V satisfies equations (1).
The differential equations were solved by application of the Livermore Solver
for Ordinary Differential Equations (LSODA) [12], as implemented in R package
deSolve [26]. The model was fitted by minimizing the sum of squares of the
differences between the logarithm of the mean viral load (which is a function
of β, δ, ρ, and γ), and the logarithm of the corresponding measured load: the
unit of measurement is TCID50, that is 50% Tissue Culture Infective Dose per
milliliter of nasal wash.

Consider predicting the post-infection time argmaxt Vt when the viral load
peaks, and estimating the infection’s Basic Reproductive Number R0=ρβT0/(γδ),
which is the average number of second-generation infections produced by a single
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Fig. 6. Observed viral load of patient 4 [1, Table 1] at each of seven days (red dots),
and fitted model (blue curve)
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infected cell placed among susceptible cells: if R0 > 1 the infection progresses to
full course, and if R0 < 1 the infection dies out prematurely.

Predicting the post-infection time argmaxt Vt = ψ(β, δ, ρ, γ) involves solving
the foregoing system of differential equations and assessing the uncertainty of
the result. Estimating R0 involves estimating ρ, β, T0, γ and δ, and propagating
their associated uncertainties to obtain u(R0), the uncertainty associated with
the estimate of R0.

Both tasks can be accomplished using the parametric statistical bootstrap [7]
(cf. [14]), by drawing samples from suitable, joint probability distributions for the
participating quantities. The key ingredient for this is a numerical approximation
to the Hessian H(β, δ, ρ, γ) of the negative log-likelihood used to fit the kinetic
model to the data for Patient 4, which was obtained using function hessian of
the R package numDeriv [10].

The parametric statistical bootstrap then amounts to repeating the following
steps for k = 1, 2, . . . ,K, where K is a suitably large integer: (i) draw a sample

(βk, δk, ρk, γk) from a multivariate Gaussian distribution with mean (β̂, δ̂, ρ̂, γ̂)

and covariance matrix H−1(β̂, δ̂, ρ̂, γ̂), where β̂ denotes the estimate of β, and
similarly for the other parameters; (ii) draw one sample from a uniform distri-
bution for each initial condition T0± 0.1T0 , I0± 0.1I0, and V0± 0.1V0 (the 10%
relative uncertainty assumed here is merely for purposes of illustration of the
general idea that the uncertainty in the initial conditions also ought to be prop-
agated); (iii) solve the kinetic model with perturbed parameters and compute
ψ(βk, δk, ρk, γk).

These steps produce K replicates of argmaxt Vt whose spread is indicative of
the corresponding measurement uncertainty. Figure 7 summarizes the results for
as an estimate of the probability density that encapsulates the state of knowledge
about argmaxt Vt.

These sameK samples that were drawn from the joint probability distribution
of β, δ, ρ, γ, and T0 also yield K replicates of the Basic Reproductive Number
R0, similarly depicted in Figure 8.

4 Approximation

Suppose that we observe values corrupted by non-observable errors, (x1, ψ(x1)+
ε1), . . . , (xm, ψ(xm)+εm), of an unknown function ψ : X �→ R that is “expensive”
to evaluate, and that, based on such data, we wish to develop an approximant
ϕ of ψ, and to assess its quality.

For the influenza example described in 3, the unknown function is
ψ(β, δ, ρ, γ) = argmaxt Vt, and we wish to build ϕ such that ϕ(β, δ, ρ, γ) ≈
ψ(β, δ, ρ, γ), and such that the approximation is reasonably accurate, and less
“expensive” to evaluate than ψ (whose evaluations involve solving a system of
differential equations).

From among the several different methods available to build such approx-
imant, we illustrate projection pursuit regression (PPR) [8,11], which builds
on the idea of projection pursuit, an algorithm that “seeks to find one- and
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Viral Load Peak Time (Post−Infection Days)
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Fig. 7. Kernel probability density estimate [25] based on K = 10 000 replicates of the
values of argmaxt Vt obtained by application of the parametric statistical bootstrap.
The average of these replicates, 2.9 post-infection days (marked with a diamond), is an
estimate of argmaxt Vt, and the associated uncertainty is the corresponding standard
deviation, 0.4 post-infection days (PID). The shortest 95% probability interval (the
footprint of the shaded area under the curve) ranges from 2.3 to 3.7 PID.
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Fig. 8. Kernel probability density estimate [25] based on K = 10 000 replicates of
the values of R0 obtained by application of the parametric statistical bootstrap. The
average of these replicates is ̂R0 = 7.5 with associated standard uncertainty u(R0) =
3.5, and the shortest 95% probability interval is (2, 15), thus suggesting that the basic
reproductive number is greater than 1 with very high probability: in fact, the same
replicates allow estimating Pr(R0 > 5) = 0.76.
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Fig. 9. Ridge functions of the projection pursuit approximant to ψ(β, δ, ρ, γ) =
argmaxt Vt

two-dimensional linear projections of multivariate data that are relatively highly
revealing” [9]. PPR builds predictors out of these “highly revealing” projections,
automatically sets aside variables with little predictive power, and bypasses the
curse of dimensionality by focussing on functions of linear combinations of the
original variables, at the price of intensive computation.

The approximant is of the form ϕ(x) =
∑J

j=1 ϕj(αj · x), where α1, . . . , αJ

are vectors defining the projection directions, αj · x denotes the inner product
of αj and x, and ϕ1, . . . , ϕJ are the so-called ridge functions. Considered for all
values of J , and for appropriate choices of the ridge functions, these functions
form a class of universal approximants capable of approximating any continuous
function [5].

In practice one needs to choose a value for J , and both the projection direc-
tions and the ridge functions are derived from the data by means of a suitable
smoothing procedure, which typically requires copious amounts of data. In this
case we have 10 000 sets of observations wherefrom to build a PPR approxima-
tion to ψ(β, δ, ρ, γ) = argmaxt Vt.

The number of ridge functions, J = 4, was set equal to the number of pre-
dictors: in general, one may like to use cross-validation to select the optimal
number. The R function ppr produces the ridge functions depicted in Figure 9,
when instructed to select the best model with four terms among all such models
with up to eighteen terms.

The cross-validated, relative approximation error is 3% (this is the ratio be-
tween the standard deviation of the cross-validated approximation errors and the
median of the values of the function ψ that is the target of the approximation).
The component of uncertainty attributable to model choice amounts to 0.7%,
which is the mean value of the relative standard deviations of the predictions
made by models with J = 2, . . . , 6, at each element of the testing subset: this is
considerably smaller than the relative approximation error given above.
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5 Conclusions

Models are necessary for measurement. And since a measurement result must
comprise both an estimate of the value of the measurand and an assessment of
the associated measurement uncertainty [15, 2.9], the models that are used to
describe the interplay between all the quantities involved in measurement should
facilitate such assessment. Since, furthermore, probability distributions are gen-
erally regarded as the best means to characterize measurement uncertainty [13,
3.3.4], measurement models ought to be statistical models.

In many measurement situations, however, more than one model may reason-
ably be entertained. The three examples given above all should have sufficed to
make this abundantly clear, each in a particular way that may be common to
many other, similar applications. The dispersion of values that such multiplic-
ity of choices entails ought to be evaluated and expressed in the assessment of
measurement uncertainty, similarly to how the contributions from all the other
recognized sources of uncertainty are so evaluated and expressed.

The assessment of the component of measurement uncertainty related to
model choice generally involves inter-comparing the results corresponding to
alternative, comparably tenable models, done in ways that insulate the results
(of such inter-comparison) from the perils of over-fitting models to data. For this
reason, cross-validation, judiciously employed, presents itself as a valuable tool,
not only for model selection, but also to gauge the impact that such selection
has upon the uncertainty of the results.
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Discussion

Speaker: Antonio Possolo

Mark Campanelli: What can be said about extrapolating the influenza model
to make predictions about higher risk populations (such as asthmatics, children,
and the elderly), when data from lower risk populations were (presumably) used
to generate the time series data from planned infections?

Antonio Possolo: The model reviewed in the presentation is generic in its
formulation, and the simplest of those described by Prasith Baccam and collab-
orators in the 2006 article quoted in my presentation and in my corresponding
contribution to these proceedings. Its purpose is to describe the progression of
the disease in a particular patient, once its adjustable parameters have been
estimated based on observations made of the viral load carried by the patient
on different days post-infection.

Van Snyder: Are the measurements of CO2 in Indianapolis operational in situ
measurements, or for validation of a remote sensing system?

Antonio Possolo: The measurements of the concentration of CO2 made in the
Indianapolis area in the context of the INFLUX experiment, serve to demon-
strate the operation of a multimodal, pilot network to monitor abundances of
greenhouse gases, not to validate a remote sensing system.

Ruth Jacobsen: For the measurements of greenhouse gas emissions: what were
the detection limits of the instrument?

Antonio Possolo: For the measurements of concentration of CO2 that I men-
tioned in my presentation, my colleagues from Purdue University that participate
in the INFLUX experiment, Paul Shepson and Obie Cambaliza, use a Picarro
gas analyzer. The performance specifications of Picarro’s analyzers are listed
in data sheets published at www.picarro.com. Please note that the mention of
specific products, trademarks, or brand names in the answer to this question is
for purposes of identification only, and ought not to be interpreted in any way
as an endorsement or certification of such products or brands by the National
Institute of Standards and Technology.

Mladen Vouk: This presentation emphasizes R. Is there an issue with SAS,
or Genstat, or SPSS (or other packages) regarding functions you used or cus-
tomization?

Antonio Possolo: I have little first-hand knowledge of SAS and SPSS, and
none of Genstat. My understanding, based on the opinions of colleagues who
use them, is that all these products include reliable implementations of many
statistical procedures. I find R very well-suited to my needs as a statistician, not
only for the functionality that it offers, or for how well it facilitates prototyping
new ideas or customizing existing procedures, but also for the scrutiny that a very
large base of sophisticated, inquisitive users, constantly subject R to (including
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its source code), and, in the process, ensure its quality. Please note that the
mention of specific products, trademarks, or brand names in the answer to this
question is for purposes of identification only, and ought not to be interpreted
in any way as an endorsement or certification of such products or brands by the
National Institute of Standards and Technology.

Maurice Cox: On interpolation, you have measurement variances associated
with the data points. You also apply a weight function that decays away from
the point of interest. How can you justify that metrologically/statistically?

Antonio Possolo: Local regression is a statistical procedure with a long his-
tory and commendable performance characteristics. The work of Bill Cleveland,
Susan Devlin, and of Catherine Loader, that I reference in my contribution to
these proceedings, among a large body of related work, include several results
on the optimality of this class of procedures under fairly general conditions.

Jon Helton: An observation: additional examples of the use of nonparametric
regression techniques in uncertainty/sensitivity analysis are given in a sequence
of articles by Curt Storlie et al. in Reliability Engineering and System Safety.
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Abstract. Uncertainty Quantification (UQ) for fluid mixing depends
on the length scales for observation: macro, meso and micro, each with
its own UQ requirements. New results are presented here for macro and
micro observables. For the micro observables, recent theories argue that
convergence of numerical simulations in Large Eddy Simulations (LES)
should be governed by space-time dependent probability distribution
functions (PDFs, in the present context, Young measures) which satisfy
the Euler equation. From a single deterministic simulation in the LES,
or inertial regime, we extract a PDF by binning results from a space
time neighborhood of the convergence point. The binned state values
constitute a discrete set of solution values which define an approximate
PDF. The convergence of the associated cumulative distribution func-
tions (CDFs) are assessed by standard function space metrics.

1 Introduction

LES convergence is an asymptotic description of numerical simulations of the
inertial, or self similar, scaling range of a turbulent flow. In the LES regime we
are not concerned with convergence in a conventional sense. Such mathematical
convergence to a classical or weak solution, as Δx → 0, is a property of direct
numerical simulations (DNS), i.e., simulations with all length scales resolved. For
practical problems of turbulence this goal may be unrealistic. By contrast, in the
following we investigate LES convergence, defined as the behavior of numerical
solutions in the LES (inertial) regime under mesh refinement. In this regime
there is still a type of convergence but it may be weaker than that considered
by traditional DNS analysis. For example, rather than convergence to a weak
solution, it may be useful or even necessary to consider convergence of probability
distribution functions (PDFs) to a measure valued solution (Young measure).
The PDFs capture the local fluctuations of the solution, which are an important
aspect of the solution in the inertial regime.

In this article, we present such a picture, still incomplete, from perspectives
of mathematical theory, simulation and physical reasoning. It allows these two
notions of convergence (DNS and LES; classical and w* Young measure limit)
to coexist.

A. Dienstfrey and R.F. Boisvert (Eds.): WoCoUQ 2011, IFIP AICT 377, pp. 212–225, 2012.
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The main result is a convergence study for PDFs and CDFs for a numerical
mesh refinement study of a Rayleigh-Taylor problem. At present meshes, we
find CDF but not yet PDF convergence, a minimum sampling size (supercell
size) for the stochastic convergence, and suitable norms for the measurement of
convergence.

2 Verification, Validation and Uncertainty Quantification
for RT Mixing

2.1 The RT Mixing Rate α

The Rayleigh-Taylor (RT) instability is a classical hydrodynamical instability
driven by an acceleration force applied across a density discontinuity. The result
is a mixing layer, growing in time with a penetration thickness (of the bubbles,
i.e. the light fluid)

hb = αbAgt2 , (1)

where A is the Atwood number, αb is a dimensionless buoyancy correction factor,
and g is the acceleration force. We have achieved excellent agreement with exper-
iment in our RT simulations; see Table 1. The results of Table 1, being stronger
than LES simulations of others, require detailed examination. A distinctive al-
gorithmic feature of our simulations is the combined use of front tracking and
subgrid scale models for LES, or FT/LES/SGS in brief. A second feature of our
work has been careful modeling of experimental detail. We summarize here two
issues important to this examination: initial conditions and mesh resolution.

2.2 Uncertainty Quantification for Initial Conditions and Mesh
Convergence

For most experiments, the initial conditions were not recorded, and the possi-
bility of influence of long wave length initial perturbations has been a subject
of speculation. We have quantified the allowed long wave length perturbation
amplitudes, by an analysis of the recorded early time data [5,6,4]. Including an

Table 1. Comparison of FT/LES/SGS simulation to experiment. Simulation and ex-
perimental results reported with two significant digits. Discrepancy refers to the com-
parison of results outside of uncertainty intervals, if any, as reported.

Ref. Exp. Sim. Ref. αexp αsim Discrepancy
[21] #112 [8] 0.052 0.055 6%
[21] #105 [4] 0.072 0.076 ± 0.004 0%

[21,20] 10 exp. [3] 0.055-0.077 0.066 0%
[19] air-He [13] 0.065-0.07 0.069 0%
[17] Hot-cold [8,4] 0.070 ± 0.011 0.075 0%
[17] Salt-fresh [4] 0.085 ± 0.005 0.084 0%
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Fig. 1. Plot of the bubble penetration distance hb vs. a scaled acceleration distance
Agt2. The slope is the mixing growth rate αb. We plot the experimental data points and
three simulation results, which have (I) 0× and (II) 2× our best reconstruction of the
initial long wave length perturbations, as extrapolated by backward propagation in time
from the early time experimental plates. (III) Inferred initial conditions for long wave
length perturbations fully resolved, with a mesh Δx = 111μm < lWe = 780μm where
lWe is the critical bubble size (predicted by Weber number theory). The simulation III
is still in progress.

estimate of the uncertainty of this backward extrapolation of data propagated
backward to t = 0, we estimate the uncertainty in αb to be 10% or less, based
on simulations which included (I) no initial long wave length perturbation and
(II) double the reconstructed long wave length perturbation amplitudes. This
range of initial conditions encompasses our estimates in the uncertainty of the
reconstruction. See Figure 1.

3 Young Measures

We explain the concept of a Young measure. For a turbulent flow, in the inertial
regime, i.e, for LES simulations of turbulence, the Young measure description of
the flow is a much deeper and more useful notion than is a classical weak solution
or its numerical approximation. We generalize the notion of test function and of
observation, using expectation values 〈· · ·〉 defined for the integration over the
(state) random variables. See also [9].

To start, we suppress the spatial dependence. Thus we have a random system,
whose state ξ takes on random values. We introduce a measure space Ω with
ξ ∈ Ω and a probability measure (unit total measure) dν(ξ) on Ω. We denote
the result of integrating with respect to ν as 〈· · ·〉. Then 〈1〉 =

∫
Ω
dν(ξ) = 1.

A measurement is defined by a continuous function f of ξ, and defines a mean
or expected value of repeated measurements of f in the random system state
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dν, given by the integral

〈f〉 =
∫
Ω

f(ξ)dν(ξ) . (2)

If the expectation yields the value 1/2, we may conclude that repeated measure-
ments will give a 50% measurement for f , on the average. But we do not know
whether the value 1/2 occurs with each measurement (probability 1), i.e., perfect
mixing with no fluctuations, or whether, at the other extreme, the value 1 occurs
with probability 1/2, that is, no mixing at all and total fluctuations. For fur-
ther information, we look at moments. The second moment of the concentration
(f(ξ) = ξ), useful for chemical reaction kinetics, is

〈f(1− f)〉 =
∫
Ω

f(ξ)(1 − f(ξ))dν(ξ) . (3)

Eq. (3) gives information regarding the spread, or dispersion, of the measure ν.
A common normalization of (3), is the coefficient of variation for f ,

θ =
〈f(1− f)〉
〈f〉〈(1 − f)〉 . (4)

Now we add a spatial and temporal variability to all of the above. The measure
dνx,t(ξ) now depends on x, t. The added value in allowing such a Young measure
as a solution is that the local fluctuations are intrinsically associated with the
space time point x, t.

The measurement defined by the stochastic observable g(x, t, ξ) yields the
expected value 〈g(x, t, ·)〉 at the space time point x, t. We expect this function
of x, t to be a distribution, and so assuming that g is smooth (a test function) in
its dependence on x, t, the outcome of the measurement is

∫
〈g〉dxdt. Through

this formalism, we can apply differential operators to the state dν, and as we
have a governing PDE, we require dν to be a solution of this PDE.

In contrast to multiplication by a test function for a weak solution, the values
of the w* limit test function g multiply probabilities, while the state variable
values (density, momentum, concentration), etc., the usual units for the values
of the test function, now show up as an argument ξ of g. See Table 2.

A natural role for Young measures in a mathematical theory of the Euler equa-
tion and their relation to the Kolmogorov turbulence theory is discussed in [1]

Table 2. Comparison of weak solutions and Young measures in terms of test functions

weak solutions Young measures

g values multiply state variables probabilities
g arguments space, time x, t space, time, x, t; state values ξ
integration domain space-time space-time; state values
example g(x, t) multiplies g(x, t, ξ) multiplies

momentum, energy, concentration probability
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and references cited there. In this reference we assume bounds from Kolmogorov
theory, which serve as a type of Sobelov inequality for the approximations, and
derive strong convergence for solutions of the incompressible Navier-Stokes equa-
tions (after passage to a subsequence) to weak solutions of the Euler equation
limit, and w∗ convergence for passive scalars coupled to the Navier-Stokes ve-
locity field, to an Euler equation Young measure limit.

4 Verification for Stochastic (Young Measure)
Convergence

The point of view presented here – w∗ convergence to a Young measure solution
and the coarse grain and sample algorithm to support this type of convergence
numerically – needs verification and validation. Preliminary results in this di-
rection have been established [11,10,12,7]. To discuss convergence of measures,
we need to introduce function spaces for convergence. The PDFs themselves are
noisy, and convergence of the PDFs directly appear to require difficult levels
of mesh resolution. We introduced [10] for this purpose the indefinite integral
of the PDFs, namely the probability distribution functions, i.e., the cumulative
distribution functions (CDFs). These are better behaved and easier to analyze.
Standard function space norms on the CDFs can be used, such as L1 or the
Kolmogorov-Smirnov norm L∞.

We study nonlinear functions of the solution through analysis of second mo-
ments. The convergence properties of the second moments depend on the specific
variables which enter into the second moment; some converge nicely while others
would benefit from a larger statistical ensemble and/or further mesh refinement.

W ∗ convergence assumes an integration both over the solution state variables
and over space and time. It applies to nonlinear functions of the solution. The
idea of stochastic convergence is naturally appealing to workers versed in tur-
bulence modeling. It is, however, a point of view which has not had extensive
study in the numerical analysis literature, probably due to the requirements or
perceived requirements for mesh resolution and the known limits of practicality
for DNS simulations of many realistic problems. For this reason, it is of con-
siderable interest to document exactly what is needed to achieve exactly which
levels of convergence in exactly which topology.

Here we investigate multiple realizations of these ideas, in that the tradeoffs
and issues related to stochastic convergence appear not to be well documented
in the numerical analysis literature. We study integrated convergence through
an L1 norm (relative to integration both in solution state variables and over
space-time) for the CDFs. We see that the L1 norm for spatial integration is
preferred to an L∞ norm, and that this choice for the CDFs appears to be
showing convergence. Additional mesh refinement, which we anticipate in the
future as a result of increased computing power, will clarify this property.

We also explore the size of the supercell used to define the PDFs and CDFs.
This size defines a tradeoff between enhanced statistical convergence and the
quality of the mesh (supercell mesh) resolution. The L1 norm convergence is
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enhanced with larger supercells. We study convergence of the PDFs directly. The
PDFs do not show convergence in the L1 norm with present levels of numerical
and statistical resolution, but the trend of results suggests that convergence is
possible with further mesh refinement.

4.1 Convergence of Second Moments

Here we show the convergence under mesh refinement of the second moments
for species concentration and velocities, two quantities of interest in a misci-
ble Rayleigh-Taylor experiment [21]. Since the quantities we report were not
measured experimentally, this study is verification only, not validation. A re-
lated simulation study [9] includes comparison to the water channel experiments
[15,16], in which the second moments were measured, and thus for which vali-
dation was studied.

It is commonly believed (and observed in numerical studies) that fluctuating
quantities obey a type of Kolmogorov scaling law. This property, if correct, implies
that the fluctuations are represented by a convergent integral, and should exhibit
convergence under mesh refinement. Thus the convergence we report here should
not be a surprise. Still, our results provide new information with respect to the
level of refinement needed to observe convergent behavior. We generally observe
satisfactory convergence through comparison between the medium and finest of
the three spatial grids considered here, and unsatisfactory (poor agreement with
the refined grid) properties for the coarsest grid. The limits at late time encounter
a varying loss of statistical resolution due to the diminished number of statistically
independent degrees of freedom at late time. The three grids have a size 520 to 130
microns (4 to 8 to 16 cells per elementary initial wave length). Of these, we have
generally used the medium grid in our previous simulations, while the coarse grid
is commonly favored inRT studies [2]. All secondmoments reported here represent
mid plane values, i.e. a slice z = const from the center of the mixing zone with t
fixed, and are averaged over all x, y values.

The second moments of concentration, normalized to define the molecular
mixing correlation θ = 〈f(1− f)〉/〈f〉〈1− f〉, were studied experimentally (dis-
tinct experiments, not reviewed here). Our value for θ ≈ 0.8 is consistent with
values obtained numerically in related problems by others. However, significantly
smaller θ values were observed in the similar fresh-salt water miscible experi-
ments [15,16]. Since these differences are observed even at very early times, we
can attribute the differences to initial conditions, specifically to the thickness of
the initial diffusion layer. Fig. 2 displays numerical results for convergence of θ
which model experiment [21], #112, with the three grids.

We study the turbulent correlations of density with the z component of the
velocity, uz, in Fig. 3. This correlation is related to gradient diffusion models for
subscale turbulence models.

Conventionally, velocity fluctuations are studied using mass weighted aver-
ages, ṽ = 〈ρv〉/ρ, and as such serve to define the Reynolds stress

R = 〈ṽv〉 − 〈ṽṽ〉
ρ

. (5)
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In Fig. 4 we display the simulated Reynolds stress values for [21] experiment
#112. The convergence properties for Rzz appear to be satisfactory (Fig. 4,
left). The medium and fine grid display a reasonable level of agreement, while
the coarse grid shows a significant discrepancy to the fine grid.

A sensitive comparison is that of Rxx to Ryy, see Fig. 4, right frame. These
quantities should be (statistically) identical, so that the solid and dashed curves
of the same mesh level family should coincide. This property holds at early but
not late time, with the period of agreement increasing under mesh resolution.
Moreover, the three curve families should show convergence under mesh refine-
ment, a property which is observed at least up to the time for coincidence of
Rxx and Ryy. The difficulty in the convergence of these quantities appears to be
related to the inherently small size of the correlations relative to the statistical
noise present in their evaluation and to the loss of statistical significance at late
time. As the solution progresses, the correlation length increases, an inherent



Uncertainty Quantification for Turbulent Mixing Flows 219

1 1 1 1 1
1

1

1

1

2 2 2
2

2

2 2 2 2

3 3 3
3

3

3
3 3

time (ms)

R
ey

n
ol

ds
st

re
ss

0 10 20 30 40 50 60 70 80
0

0.002

0.004

0.006

0.008

Rzz 520 micron
Rzz 260 micron
Rzz 130 micron

1
2
3

1 1 1 1
1

1

1

1 1

2 2 2
2

2

2
2

2

2

3 3

3 3
3

3

3 3

1 1 1 1 1
1 1 1 1

2 2
2

2 2 2
2 2

3 3

3 3
3

3 3
3

time (ms)

R
ey

n
ol

ds
st

re
ss

0 10 20 30 40 50 60 70 80
0

0.0004

0.0008

0.0012

0.0016

Rxx 520 micron
Rxx 260 micron
Rxx 130 micron
Ryy 520 micron
Ryy 260 micron
Ryy 130 micron

1
2
3
1
2
3
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feature of RT mixing. See the vz gray scale plot at t = 50 in Fig. 5, right frame.
Thus at late time, the statistical averaging to define R is drawn from a reduced
number of independent degrees of freedom, introducing small sample effects into
these components of R at late time.

Similar behavior is observed for Rxz and Ryz, see Fig. 5. Due to the rotational
symmetry of the statistical formulation, in the case of an infinite x, y domain,
these components should be zero, and any non-zero value is a finite size effect in
the statistical sampling. There is satisfactory agreement with these two quanti-
ties between each other and with zero, up to a time which depends on the mesh.
Because the quantities are sensitive to the sign of vz statistically, they have en-
hanced randomness and decreased convergence properties relative to Rxx and
Ryy; they possibly also show small sample size effects at late time.

4.2 Convergence of PDFs and CDFs

To define w∗ convergence, we need to partition the simulation resolution into re-
sources assigned to the conflicting objectives of spatial resolution and statistical
resolution. We consider again the midplane z = const and t = const, and par-
tition the x, y plane into supercells. We consider several values for the supercell
grid, but show detailed results for an 8× 2 supercell grid. Here the coarsest grid
has for each supercell a resolution 9× 6 with a z resolution of a single cell. For
the medium and fine grids, the supercell partition is unchanged, but the number
of cells in each direction increases by factors of 2 and 4.

For each supercell, we bin the concentration values into 5 bins, and count
the number of values lying in each bin, to obtain a probability. In principle,
the number of bins is another parameter in the analysis, variations in which are
not explored here. The result of this exercise is an 8 × 2 array of PDFs, each
represented in the form of a bar graph. The array is a graphical presentation of
the Young measure at the fixed z, t value. See Fig. 6. From this array of PDFs, we
can observe some level of coherence or continuity in the spatial arrangement of
the PDFs, in that the central supercells have a strong heavy fluid concentration,
while near the top and bottom, there is more of a mixed cell concentration.
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Fig. 5. Left: Plot of Reynolds stress Rxz, Ryz vs. time. Plotting time is restricted to a
maximum of t = 60 as discussed in the text. Right: Plot of vz (fine grid, t = 50) in the
midplane.

Fig. 6. Spatial array of heavy fluid concentrations at t = 50, for z in the midplane, as
PDFs (bar graphs) and as CDFs (line graphs), Left: Medium grid. Right: Fine Grid.
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Fig. 7. Left: Plot of heavy fluid concentration at the midplane, t = 50. Medium grid
(left). Fine grid (right). Right: Spatial array of L1 norms of CDF mesh differences for
heavy fluid concentrations at the midplane. Coarse to fine (left). Medium to fine (right).

Next we study mesh convergence of this 8 × 2 array of PDFs and CDFs. At
the latest time completed for the fine grid, we compare the PDFs and CDFs on
the coarse to fine and medium to fine grids. The comparison is to compute the
L1 norm of the pairwise differences for each of the 8× 2 PDFs or CDFs. These
differences yield an 8× 2 array of norms, i.e. numbers, which is plotted in gray
scale in Fig. 7.

The main results of this paper, namely the PDF and CDF convergence prop-
erties, are presented in Fig. 7. This data is further simplified by use of global
norms. With an L1 norm of the differences of the PDFs or CDFs for concen-
trations in each supercell, we consider both the L1 and L∞ norms relative to
x, y variables. With the convergence properties thus reduced to a single number,
we next explore the consequence of varying the definitions used for convergence.
These are (a) the mesh, (b) PDF vs. CDF, (c) L1 vs. L∞ for a spatial norm and
(d) the size of the supercell used to define the statistical PDF. See Table 3.

We see a convergence trend in all cases under mesh refinement, but useful
results for current meshes are limited to CDF convergence. Generally L1 norms
show better convergence, and generally there is a minimum size for the supercell
to obtain useful convergence. Since our convergence properties are documented
for the medium grid (through comparison to the fine grid), we can speculate
that the errors at the fine grid level would be smaller and that some of the
above restrictions might be relaxed in this case.
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Table 3. Summary norm comparison of convergence for heavy fluid concentration
PDFs and CDFs at fixed values of z, t. In each supercell, an L1 norm is applied to the
difference of the PDFs or CDFs; this x, y dependent set of norms is measured by an
L1 or L∞ norm. The larger supercell sizes, the last four columns of the table, cover
the entire y domain. In this case, the space-time localization of the PDFs/CDFs are
in x, z, t only. We observe convergence for CDFs; while the PDF error is decreasing,
further refinement will be needed for usefully converged PDF errors. We see that a
coarsening of the supercell resolution (increase of the supercell size) to 18× 12 coarse
grid cells per supercell is needed to obtain single digit convergence errors.

coarse grid supercell size 9× 6× 1 18× 12× 1 36× 12× 1
mesh comparison L1 norm L∞ norm L1 norm L∞ norm L1 norm L∞ norm

CDFs: coarse to fine 0.26 0.98 0.16 0.48 0.15 0.39
CDFs: medium to fine 0.18 0.54 0.08 0.16 0.03 0.10
PDFs: coarse to fine 0.93 4.89 0.59 2.40 0.54 1.98
PDFs: medium to fine 0.64 2.66 0.30 0.82 0.15 0.52

5 Turbulent Combustion

Here we explain a primary rationale for our approach to convergence based on
fluctuations, PDFs and Young measures. The stochastic convergence to a Young
measure is certainly an increase in the complexity of the intellectual formalism
in contrast to a more conventional view of convergence to weak solutions.

A simple rationale for the more complicated approach is that pointwise con-
vergence to a weak solution generally fails in turbulent flows. New structures
emerge with each new level of mesh refinement and the detailed (pointwise) flow
properties are statistically unstable and in fact not observed to converge. Rather,
statistical measures of the solutions, of a nature that an experimentalist would
call reproducible, are used for convergence studies and these do generally dis-
play convergence. Thus we believe that our point of view finds roots in common
practices for turbulent study.

In the case of reactive flow (or more generally of a nonlinear process applied to
the flow), the stochastic convergence displays its power. Convergence of averages
is not usable in a study of nonlinear functions, which require an independent
convergence treatment. The LES formulation, moreover, is based on (grid cell or
filter) averages. Thus the primitive quantities of an LES simulation cannot be
used reliably if a nonlinear process (such as combustion) occurs in the fluid.

The conventional cure for LES turbulent combustion is a model of the flame
structure and an assumption that the flame follows a steady state path in
concentration-temperature space, with the partially burned state parametrized
through a reaction progress variable [18]. This assumption leads to a model,
called a flamelet model, imposed on the normal turbulent and mixing mod-
els. The approach adopted here, in contrast, allows direct computation of the
chemistry of a turbulent flame in an LES framework, without the use of (flame
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structure) models. This approach is called finite rate chemistry. Conventionally,
finite rate chemistry is possible for DNS only and the extension to LES is a
major benefit derived from the stochastic convergence ideas advanced here.

Preliminary results are presented in [9] and will not be reviewed here.
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Discussion

Speaker: James Glimm

Bill Oberkampf: You have presented several new ideas in both V&V as well
as UQ that are very innovative. I have two questions. What advantages do you
see in considering temporal and statistical convergence of PDF’s of quantities of
interest, as opposed to convergence of time averaged quantities at a point?

James Glimm: See Sec. 5.

Bill Oberkampf: When you examine mesh and temporal convergence in LES
simulations you are merging changing sub-grid scales (resulting in changes in the
math model) and changing numerical solution error. Since these are very different
sources of uncertainty, what are your ideas for separating these uncertainties?

James Glimm: This is an excellent and deep question, whose answer is context
dependent. For the case of turbulence models, we will address this issue in a sep-
arate publication (manuscript in preparation). Briefly, and for turbulent mixing,
the SGS turbulent terms to be added to the Navier Stokes equations have a
formulation in terms of gradients of primitive solution variables, if the dynamic
subgrid models [14] are used. For this closure, convergence of the turbulence
SGS model terms is a numerical analysis issue, as is already defined from the
perspective of physics and modeling. Verification and validation of these models
(a much studied topic) should be addressed in each separate simulation or flow
regime. See for example, Sec. 4.
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Abstract. Quantifying uncertainty is an increasingly important topic
across many domains. The uncertainties present in data come with many
diverse representations having originated from a wide variety of disci-
plines. Communicating these uncertainties is a task often left to visualiza-
tion without clear connection between the quantification and
visualization. In this paper, we first identify frequently occurring types
of uncertainty. Second, we connect those uncertainty representations to
ones commonly used in visualization. We then look at various approaches
to visualizing this uncertainty by partitioning the work based on the di-
mensionality of the data and the dimensionality of the uncertainty. We
also discuss noteworthy exceptions to our taxonomy along with future
research directions for the uncertainty visualization community.

Keywords: uncertainty visualization.

1 Introduction

In the past few years, quantifying uncertainty has become an increasingly impor-
tant research area, especially in regard to computational science and engineering
applications. Just as we need to quantify simulation accuracy and uncertainty,
we must also convey uncertainty information, often through visualization. As the
number of techniques for visualizing uncertainty grows, the broadening scope of
uses and applications can make classifying uncertainty visualization techniques
difficult. Uncertainty is often defined, quantified, and expressed using models
specific to individual application domains. In visualization however, we are lim-
ited in the number of visual channels (3D position, color, texture, opacity, etc.)
available for representing the data. Thus, when moving from quantified uncer-
tainty to visualized uncertainty, we often simplify the uncertainty to make it fit
into the available visual representations. In this paper, we identify traditional
types of uncertainty quantification and reduce their representations to those that
are familiar to uncertainty visualization researchers. We then give an overview of
different uncertainty visualization approaches targeted at these uncertainty rep-
resentations. We then further differentiate uncertainty visualization approaches
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based on the dimensionality of the data and the dimensionality of the uncer-
tainty. We conclude with a discussion of a few noteworthy exceptions to our
taxonomy. Our main goal throughout is to position previous work on uncer-
tainty visualization within the scope of uncertainty quantification in order to
better connect the two.

2 Quantifying Uncertainty

To begin a discussion of uncertainty quantification, we must first define uncer-
tainty into two overall, broad types: epistemic and aleatoric. Epistemic uncer-
tainty describes uncertainties due to lack of knowledge and limited data which
could, in principle, be known, but in practice are not. Such uncertainties are
introduced through deficient measurements, poor models, or missing data. Quan-
tification and characterization of epistemic uncertainty aims to better under-
stand the underlying processes of the system and use methods such as fuzzy
logic. Aleatoric uncertainty is defined as uncertainties that arise from, for exam-
ple, running an experiment and getting slightly different results each time. This
type of uncertainty is the random uncertainty inherent to the problem and can-
not be reduced or removed by things such as model improvements or increases in
measurement accuracy. Aleatory uncertainty can be characterized statistically
and is often represented as a probability density function (PDF). The visual-
ization of uncertainty focuses enhancing data understanding by unlocking and
communicating the known aleatoric uncertainties present within data.

According to the NIST report on evaluating and expressing uncertainty [88],
aleatoric uncertainty can be classified into two groups: type A and type B. While
the distinction between the two classes may not always be apparent, they can be
described as type A uncertainties arising from a “random” effect, whereas type
B uncertainties arise from a “systematic” effect, where the former can give rise
to a possible random error in the current measurement process and the latter
gives rise to a possible systematic error in the current measurement process.
The main difference between these two is in the evaluation of the uncertainties.
Type A evaluation may be based on any valid statistical measure. However, the
evaluation of type B is based on scientific judgment that will use all relevant
information available, which often can include statistical reasoning.

While these classifications are important to note, and often have great impact
on the quantification of uncertainty, their impact lessens when moving from
quantification to visualization. The most straightforward understanding of un-
certainty is often the easiest to expose visually, and thus uncertainty within the
field of visualization is often thought of as type A - that is entirely statistically
defined. Thus, unless otherwise noted, all of the papers in this taxonomy deal
with statistically quantifiable uncertainty.

3 From Quantification to Visualization

The growing need to understand the effects of errors, randomness, and other un-
knowns within systems has lead to the recent upswing in research on
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uncertainty quantification. This growing body of work is creating an array of
definitions of uncertainty differing in not only the mathematical measures defin-
ing uncertainty, but also in the way the uncertainty is expressed and used. These
differences are often most apparent when crossing boundaries between scientific
fields, but can also arise within the same field through various sources includ-
ing data acquisition, transformation, sampling, interpolation, quantization, and
visualization [70]. While understanding the measurement and propagation of un-
certainty throughout a workflow pipeline is very challenging for quantifying the
overall uncertainty of a system, this complexity can be prohibitive for visualiza-
tion.

Using visualization as a tool for understanding leverages the high bandwidth
of the human visual system, allowing for the fast understanding of large amounts
of data. However our visual channels can be overwhelmed when increasing the
amount and dimensionality of the data. For computational science applications,
visualizing time-dependent, three-dimensional scalar, vector, or tensor field data
is often the goal. However, depending on the complexity of the underlying ge-
ometry, such visual representations can suffer from problems such as occlusion,
which may require user interaction to relieve. Even two-dimensional displays can
suffer from visual clutter and overload leading to ineffective visualizations. Thus,
regardless of additional uncertainty information, the visualization of data alone
can be difficult to visually display in an effective way.

Adding uncertainty information is not only challenging in the design of the
visual abstraction, it is also difficult to fully express the complexity of the un-
certainty itself. While typically expressed as a PDF, very few visualization ap-
proaches can directly display this function, and those that can are restricted to
1D or limited 2D. Thus, to visualize the uncertainty, some type of assumptions
are typically imposed on the data in order to reduce it to a manageable size or
dimension. This is most often done by aggregating the uncertainty into a single
value, such as standard deviation or defining an interval along which the value
could possibly lie. This reduces the uncertainty to one or two values, which
considerably eases its visual expression. However, this can often misrepresent
characteristics of the actual data as mean and standard deviation often imply a
normal distribution whereas an interval can be interpreted as uniform.

For visualization, these types of assumptions are often accepted since there
are not yet readily available visual abstracts to address non normal distribu-
tions nor visual representations of high dimensional PDFs. It is very important
to understand that these problems exist and that beyond the uncertainties as-
sociated with the data, there also exist uncertainties in the visualization - both
in the technical mechanisms used to create the visual presentation, but also in
the perception of the visualization itself. A handful of approaches have looked at
exposing these assumptions by presenting information on the underlying PDF,
however this greatly increases the complexity of the visualization, and most work
to date uses a simplified view of uncertainty.
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Table 1. Our taxonomy of uncertainty visualization approaches. Cells in light yellow
represent categories with no known work. Citations in red refers to work with an
emphasis on evaluation.

Uncertainty Dimensionality

Data Dim. Scalar Vector Tensor

1D [62] [77] [85] [82]

2D [7] [13] [14] [22] [27]
[30] [31] [34] [43] [45]
[44] [49] [53] [51] [56]
[60] [64] [69] [72] [78]
[79] [77] [76] [83] [91]
[95] [16] [17] [28] [82]

[8] [9] [33] [53] [56] [63]
[67] [66] [92] [97]

3D [12] [20] [19] [18] [42]
[46] [47] [50] [54] [55]
[59] [58] [71] [72] [73]
[75] [80] [81] [86] [87]
[93] [96] [15] [82] [61]

[5] [50] [53] [52] [68]
[92]

[11] [35] [37] [41]

ND [2] [23] [26] [32] [90]

4 Taxonomy for Visualization Approaches

A wide array of taxonomies and typologies exist to help understand the field
of uncertainty visualization. One of the first taxonomies to address uncertainty
visualization separates methods by data type (scalar, multivariate, vector, and
tensor) and visualization form (discrete and continuous) and proposes appro-
priate visual representations for each combination [70]. Skeels et al. [84] create
a classification for information visualization which organizes the type of uncer-
tainty by what it is trying to describe as well as commonalities between types
and discusses exemplary visualizations for each type. Uncertainty has been a
major theme in the area of geographic and information systems (GIS) and ty-
pologies have been created to focus on geospatial information visualization in
the context of intelligence analysis [57, 89]. In contrast to these previous works,
we differentiate our taxonomy by focusing on presenting the to-date uncertainty
visualization approaches in as simple of a form as possible. We categorize ap-
proaches by two qualities: data dimension and data uncertainty dimension, and
discuss the various visualization approaches based on these two categories.

4.1 Data Dimension

The data dimension is the most obvious of the categorization attributes. This is
the dimension that the data lives in and may, or may not be the dimension that
the visualization exists, or that the uncertainty is quantified. From a mathemat-
ical standpoint, this typically refers to the range of the function. For example,
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we have a computational science simulation that uses a model characterized by
input parameters. The range refers to the output space of the simulation, which
in many instances is spatial. This is the typical viewpoint for 1D-3D spatial data
dimensions, however when moving to ND the interest may move to understand-
ing the relationship between the parameter space, or domain, or of the function
and the output. These types of questions are often answered by parameter-space
studies and are treated in this work as ND.

1D. A one dimensional data dimension can be thought of as a single variable at
a single point such that the uncertainty describes the variation or possible values
of that single data value. This type of data is rarely found alone, we typically see
it expressed as bar charts where each bar expresses a single independent variable,
however the collection of bars may have some relationship - for example popu-
lations of countries. Here, a bar chart will have a bar for each country, however
there is no intrinsic relationship between country population values. Thus, the
data can be represented by a single 1D PDF and any higher-dimensional aspect
of the data is implied, rather than intrinsic to the data.

2D. In contrast to 1D data, 2D can have a number of possibilities when it comes
to the interpretation of the data. The data may be a 2D PDF, meaning a PDF
defined over two variables, in which case the data is truly multivariate and can
often be simplified to two distinct 1D PDFs. Alternatively, we can think of the
data as having a 2D spatial domain, in which every location across the domain
has a 1D PDF. This can be interpreted as a collection of 1D PDFs in space,
or alternatively as a series of realizations across the 2D space where a single
surface is made up of a sample from each of the PDFs. The term “ensemble”
often comes up in this context and refers to the collection of output realizations,
but may also include the particular parameter set associated with each ensemble
member.

3D. Similarly to 2D, 3D data in general refers to a variable defined across a
spatial volume where a single PDF exists at each position within the volume. In
contrast to much of the work in 2D, 3D often deals with spatial positioning and
boundaries rather than variable value across the space.

ND. Non-spatial, multivariate, and time-varying data is the final category of
data dimension. The most often seen example of ND data is the addition of
time, which can be added to 1,2, or 3D. Alternatively, ND data can refer to
high-dimensional data often seen in parameter space explorations. In this case,
there exists a parameter-space in RM which maps to the target space in RN . The
M parameters can be modeled in some way such that an understanding of the
relationship between the parameters and target is gained. While this relation-
ship is often quite complex, the resulting data set is simply a set of realizations
of the target space, and thus a collection of 1D PDFs across N and measures of
uncertainty can be imposed on those 1D PDFs. While it can be the case that the
dimension of the target space N is limited to 1, 2, or 3D, we are distinguishing
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work focusing on parameter-space uncertainties because the uncertainty in these
works are more often focused on simulations that do not necessarily have a con-
strained dimension - they assume the target dimension as N and thus the actual
value of N is irrelevant. Finally, multivariate data considers many variables si-
multaneously. This type of data may often be viewed as a collection of 1D data
sets, unless there exists an inherent relationship between the variables. For our
categorization, we reserve the ND classification to work which deals specifically
with high-dimensional studies, for multivariate data which cannot be reduced to
a collection of 1D variables, or for time-varying work which is separated from
the lower-dimensional work by more than just animation.

4.2 Uncertainty Dimension

The uncertainty dimension refers to the dimensionality across which the uncer-
tainty is quantified. This can often be a different dimension than the data. For
example, many data sets attach a single value, i.e. a scalar, to points in 1D, 2D,
or beyond. The uncertainty represented by these scalar values is still a 1D PDF.
The data uncertainty dimension includes the categories of scalar, vector, and
tensor representations.

Scalar. The term scalar typically refers to a single data value. For uncertainty,
we can think of the term scalar uncertainty as the uncertainty associated with
a scalar variable. For a scalar variable, we define the scalar uncertainty as a 1D
PDF.

Vector. A vector is usually thought of as consisting of two quantities, such as
a magnitude and direction, defined over a grid and often changing with time.
The uncertainty typically investigated using vectors looks at the quantities not as
precise values, but rather random variables, which can be characterized as PDFs.
These PDFs are influenced locally by noise, measurement and simulation errors,
uncertain parameters, boundary and initial conditions, and inherent randomness
due to turbulence.

Tensor. Tensors are data types that define linear relationships between values
for any dimensionality. While scalars and vectors are both technically low-order
tensor data, we differentiate our discussion of tensors to be higher-order tensors
only. These approaches do not visualize the tensors directly, but instead visualize
some derived representation. For example, in [36], the authors visualize uncer-
tainty in white matter tract reconstruction based upon ensembles of orientation
distribution functions from diffusion tensor images.

5 Scalar Field Uncertainty

5.1 1D Data

As mentioned in Section 4.1, we typically see uncertainty in 1D scalar field
data expressed as error bars or boxplots [74] in charts and graphs. These mech-
anisms typically show the expected value along with a range of possibilities.
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While this often may be enough to express the “unknownness” of the value,
both of these techniques can be misleading by implying a normal or Gaussian
distribution. Most work in 1D scalar fields have been on trying to express the
actual distribution of the variable, in order to get away from the assumption
of a specific distribution and more accurately express the uncertainty. An ex-
ample of visualizing non-Gaussian distributions comes from work on dealing
with bounded uncertainty. This type of uncertainty is defined as an interval in
which the actual data value lies. To express this visually, rather than having a
line for the expected value and the range with error bars, the entire interval is
depicted as fuzzy [62]. Thus, there is no line for expected value and the user
can clearly see the location of where the data may lie. This “ambiguation” can
be used for graphs and charts with an absolute scale, such as bar charts, and
can also be applied to absolute scale charts such as pie charts. The expression
of bounded uncertainty can be thought of as displaying a uniform distribution
within the range, as each value within the range is equally likely, and values
outside of the range are not possible. A similar idea is to express more charac-
teristics of the data in order to fully express the distribution. Potter et al. [77] use
this idea by expressing higher-order statistics of the distribution. As seen in Fig-
ure 1, the summary plot shows not only the traditional box plot (abbreviated to
reduce visual clutter) but also a histogram which shows an approximation of the
probability distribution function, and a glyph-based moment “signature” which
shows the mean, standard deviations, skew, kurtosis, and tail. This hybrid plot
allows for a better understanding of the distribution underlying the uncertainty

(a) (b)

Fig. 1. Construction (a) and application (b) of the Summary Plot used by Potter et
al. [77]. The Summary Plot highlights the variation of a distribution from normal by
combining three glyph-based plots of statistical characteristics of the data. Similar to
error bars, the application of the Summary Plot must be constrained to individual 1D
points to avoid overwhelming visual clutter. Here (b), a clustering technique is used to
select regions of interest for further exploration using the Summary Plot.
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and quickly shows the non-normal behaviour of the data. These characteristics
of 1D uncertainty are also present in tabular data where the cell value may be
interpreted as average, estimated, possible, or likely. These terms express differ-
ent understandings of the value, and may or may not be statistically grounded.
To show the difference between these meanings, different line types are used to
plot the value. For example, a dashed line is used for estimated and possible is
expressed by widening the line to cover all valid values [85]. A few visualization
methods have been developed to explore the characteristics of the PDFs under-
lying the uncertainty in 2D scalar fields. Most of these techniques employ some
sort of dimensionality reduction or abstraction because, even as a low resolution
grid, having a PDF at every point leads to too much visual complexity. Clus-
tering is a common technique for grouping similar things. Bordoli et al. [7] use
clustering techniques to group similar PDFs across the 2D spatial domain or to
group 2D realizations. In a similar manner, Kao et al. [43, 44] use pixel-wise or
feature-wise summaries to reduce the data to groups. Difference measures have
been developed to compare a collection of PDFs against each other [76] to show
the differences or similarities between them (shown in Figure 2b), and a defined
set of operators has been used to reduce the distributions down to scalars [56].
It should be noted that the interpretation of the data as a set of 1D PDFs is
an approximation and that linear interpolation between the points across the
surface may not always be the most accurate or correct representation. Gerharz
et al. [27] advocating looking at full joint PDFs and compare statistical methods
for both marginal and joint PDFs defined across the spatio-temporal domain. All
of the above techniques allow for the application of traditional 2D visualization
techniques such as color mapping, however this leaves the third dimension free
to be leveraged for the exploration of the PDFs. A density estimate volume can
be computed [45] that creates a comparison volume across all PDFs allowing
for the interrogation with cutting planes, local surface graphs, PDF isosurfaces,
and glyphs. Thinking of the data as a set of realization surfaces allows for the
creation of a volume which can be visualized using volume rendering and stream-
lines [78]; however this type of interpretation of the data imposes some sort of
ordering on the realization surfaces which is not actually existent in the data.
While the above techniques attempt to maintain the presence of the PDF in
the visualization, it is often easier to reduce the understanding of uncertainty
down to mean and standard deviation, a range of uncertainty, or a single scalar
value depicting the magnitude of uncertainty. While this type of interpretation
may impose assumptions on characteristics of the uncertainty quantification, it
greatly reduces the difficulty in visualization.

5.2 2D Data

Methods that use this type of approach often employ color maps [13, 51, 60, 79,
83, 91] such as those in Figure 2, texture irregularities, opacity [34, 69], surface
displacement [31], animation [22, 30] and glyphs [13, 51, 60, 83, 91, 95] to show
uncertainty. Modifying contour color, thickness, and opacity [64,72,83] can show
regions of uncertainty across the spatial domain. These types of displays can
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(a)

(b)

Fig. 2. Two examples of the visualization of 2D scalar data. (a) EnsembleVis [79]
uses multiple windows to show various characteristics of the uncertainty and provides
linking and brushing through a gui. (b) PDFVis [76] uses a color map to compare all
PDFs across the 2D spatial domain.
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be augmented with uncertainty annotations [13] which modulate properties of
information external to the data display, such as longitude and latitude lines, in
order to show uncertainty in a way that does not interfere with the data display.
Multiwindow methods can help expose underlying information of the PDF that
these types of approaches hide [79, 83], as shown in Figure 2a, and can also
provide for application specific types of visualizations. Finally, in contrast to 2D
spatial domains, uncertainty can exist in 2D lattice and tree structures. This type
of uncertainty arises as data structures for many statistical processing systems
where the structure usually represents the “best guess” and alternate branches
or leaves are shown with reduced opacity, or variations in positioning, color, or
size [14, 49].

5.3 3D Data

Moving into 3D data, the number of visualization channels available has signif-
icantly diminished which limits the amount of information that can be readily
displayed on the screen. The direct display of each PDF contributing the data
set possible in 1D and less so in 2D, is now greatly diminished. Rather than ex-
pressing these full PDFs in this context, it is necessary to reduce the uncertainty
information into an aggregated form, such a summarizing through a small set
of numbers, or as an interval. The emphasis of 3D techniques is more often on
displaying the location and relative size, rather than the exact quantification of
the uncertainty.

Fig. 3. 3D scalar field uncertainty visualization using glyphs, color maps, isosurfacing,
and volume rendering [78]
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The most commonly found techniques for showing uncertainty in 3D include
color mapping, opacity, texture, and glyphs [15,50,61,82], with Figure 3 showing
some examples. This is used in volume rendering [19] where the transfer function
is used to encode uncertainty with color and opacity, or as a post-processes
composite with texture. This work was later extended to include depth cuing
and improved transfer function selection [18]. Rather than simply encoding a
single value of uncertainty, the transfer function can be used to encode different
measures of uncertainty, such as risk or fuzzy classifications of tissues [47, 81].
This idea can also be applied to the fuzzy classification of isosurfaces [54].

In contrast to mapping a quantity of uncertainty onto a 3D visualization, it is
noteworthy to point out uncertainties created by the visualization itself. Proba-
bilistic marching cubes and uncertain isocontours [72, 73] are techniques which
investigate the uncertainties in calculating underlying 2D and 3D visual repre-
sentations. Djurcilov et al. [20] construct visualization geometries (point-clouds,
contours, isosurfaces & volume rendering) with missing data, and Pauly et al. [71]
investigate surfaces generated from 3D data acquired from scanners. Overlay,
pseudo-coloring, transparency, and glyphs can be used to compare differences in
isosurface generation algorithms and volumetric interpolation techniques [42,80],
and color mapping using flowline curvature [46] can be used to gain knowledge
on the quality of an isosurface for representing the underlying data. Animation
is often used to highlight these discrepancies by vibrating through possible iso-
surface positions [12], or looping through visualization parameter settings [55].

The last body of work on uncertainty in 3D deals with data reliability data
and is most often found in fields such as archeology and virtual architectural
reconstruction [58, 86]. In these works, the uncertainty is defined as the confi-
dence an expert in the field has in the construction of a 3D model. Scientific
judgment is used to fuse what is know about particular archaeological site, such
as existing structures, and historical background of the regions and peoples. The
construction of the 3D models reflects uncertainty or points of contention based
on the way the model is rendered. Opacity [87], sketch-based texture [75], ani-
mated line drawings [59], and temporal animations [96] can be used to express
this type of uncertainty. Because highly-realistic imagery tend to be interpreted
as truth [21], the unifying theme of these works is to add an illustrative quality
to the rendering technique to lower the rendering quality to directly reflect the
reliability of the data [93].

5.4 ND Data

As mentioned in Section 4, ND data deals with high-dimensional data typically
defined as time-varying, multivariate, or parameter space explorations. Most
work on time-varying data simply extends the 2D or 3D using techniques such
as animation, and thus these works have been discussed in the previous sections.
Here, we will focus our discussion on multivariate and parameter space data.

Multivariate data involves many related variables. Simple visualization of mul-
tivariate data is, in itself, a challenge and much work towards visualizing this
type of data has been done [24]. A common approach for this type of data is
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parallel coordinates, which creates a coordinate system and plots the location
of points across all axes. Adding uncertainty to parallel coordinates can be done
through blurring, opacity, and color [23, 25]. While parallel coordinates do in-
deed display many dimensions within the same window, they are often hard
to understand. As an alternative to parallel coordinates, multiple visualization
windows can be used to expose uncertainties in relationships between spatial,
temporal, and other dimensionalities [32]. This type of approach, however, re-
duces the multivariate aspect of the data to a lower dimensional representation
more appropriate to visualization.

Parameter-space explorations expose the uncertainties within systems by
analysing the relationships between input parameters and outcomes and are
often used to better understand and improve simulations. While a full discus-
sion of work in parameter-space analysis is outside the scope of this paper, the
connection to uncertainty visualization is of interest. Here, we discuss a few no-
table works that relate parameter-space analysis to visualization, and we refer
the reader to the papers for a treatment of the underlying mechanics.

The first exemplary work uses a combination of parallel coordinates and scat-
terplots to show the parameter-space sensitivity [2]. For each dimension, a PDF
defines the uncertainty, which is then expressed as a histogram on top of each
axes in the parallel coordinate display, or the user can select two dimensions to be
displayed as a scatterplot with overlaid boxplots. An alternative to parallel coor-
dinates, Gerber et al. [26] propose using the Morse-Smale complex to summarize
the high-dimensional parameter space with a 2D representation that preserves
salient features, and provides an interactive framework for a qualitative un-
derstanding of the effect of simulation parameters on simulation outcomes. The
final example is World Lines which [90], using the demonstrative application of a
flooding scenario, visualizes the multiple output scenarios individually, allowing
the user to interactively explore the various world outcomes of the simulation.

6 Vector Fields

Vector fields are typically found as 2D and 3D with a time component. While
these are different domains, both have equal treatment in the visualization space;
the majority of techniques are either applied to both 2D and 3D or have been
extended from 2D to handle 3D. 1D vector fields equate to a 1D scalar fields
which are discusses in Section 5.1. Both 2D and 3D fields often have a time
component and thus, for sake of our discussion here, we classify data with a
time-component as 2D or 3D and assume any ND vector field work deals with
parameter exploration. This eliminates the discussion of 1D vector fields, and
postpones the consideration of ND vector fields to a later date, as no work in
this area has been done at this time.

The visualization of uncertain vector fields can be classified into four types
and we will assume the description of each type applies to both 2D and 3D,
unless otherwise noted.

A common visualization technique for both 2D and 3D vector fields are
glyphs [68]. Glyphs typically encode the two variables of the vector within their
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construction, such as an arrow pointing towards the direction with length scaled
by magnitude. Expansions of glyphs to uncertainty information include using
area, direction, length, and additional geometry to indicate uncertainty [92],
line segment or barbell glyphs [52], or ellipsoidal glyphs depicting regions of pos-
sible vector positions [50]. Finally, time can be included in the glyph itself [33]
or through animation of the glyphs [97].

Stream and particle lines show the path of flow from a particular seed point
through time. In 2D these can be represented as lines [56] and as ribbons or
tubes in 3D [52], both of which can use color, opacity, width, and animation to
show uncertainties such as interpolation error in meteorological trajectory [5,50]
or differences in integration methods for particle tracing [52]. Texture-based
streakline methods are more often used for 2D vector fields and use attributes
such as noise, color and fog to modulate streaklines with uncertainty as they
move across the domain [8, 9, 63] .

Most recently, Otto et. al. suggested that instead of creating new uncer-
tainty representations for vector fields, we should instead recycle the approaches
used in scalar field visualization. Their approach calculates multiple scalar fields
with probabilities that represent topological features such as sinks, sources, and
basins. Then, scalar field uncertainty approaches can be applied for 2D [66] and
3D [65] or used to analyze uncertainty of motion in video data [67]. In another
topological approach, [3, 4] create a new data structure called the “edge map”
to represent 2D flow and bound error. Once they have quantified the associated
error, they use streamwaves to visualize the fuzzy topological constructions.

A notable break from traditional visualization techniques, sonification is the
use of sound to indicate areas of uncertainty and has been included in the
UFLOW system [53] to visualize flow fields using glyphs and streamlines as
well as a system for visualizing the uncertainty of surface interpolants.

7 Tensor Fields

Most of the work in 3D tensors fields has focused on brain fiber tracking in
diffusion tensor imaging. The first set of methods display the data as a glyph
representation [35, 41], which indicates the fiber directional or fiber crossing
uncertainty at a given location. The other set of approaches track fibers under
uncertain conditions, giving either a color map for confidence [11] or an envelop
of potential fiber routes [37]. Figure 4 shows a recent effort by [36] to use volume
rendering with multi-dimensional transfer functions to visualize the uncertainty
associated with high angular resolution diffusion imaging (HARDI). The authors
use ensembles of orientation distribution functions (ODF) and apply volume
rendering to 3D ODF glyphs, which they term SIP functions of diffusion shapes
to capture their variability due to underlying uncertainty. Beyond these few
approaches, very little work has been performed on visualizing uncertainty within
tensor fields.
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(a) b-value 7000 s/mm2, SNR=10,
(0.6,0.4) 60 degrees

(b) b-value 1000 s/mm2, SNR=20,
(0.5,0.5) 90 degrees

Fig. 4. Visualization of the uncertainty in two diffusion shapes from diffusion tensor
imaging using volume rendering applied to an ensemble of 3D orientation distribution
functions. (a) Two fibers crossing at 60 degrees with relative weight of 0.6:0.4 and SNR
of 10. (b) Two fibers crossing at 90 degrees with equal weight and SNR of 20 (with
much less uncertainty).

8 Evaluation

An often overlooked aspect in the field of visualization is evaluation. This is also
the case in uncertainty visualization, which is doubly problematic in that the
visualizations often represent highly complex phenomenon, and the assessment
of effectiveness must take into account not only good visual design, but also
appropriate understanding, transformation, and expression of the data.

A handful of papers have been dedicated to evaluating visualizations in the
context of uncertainty. Most of these look at the method of visual encoding
such error bars, glyph size, and colormapping in 1 and 2D [82], glyph type in
3D [61], or comparing adjacent, sequential, integrated, and static vs dynamic
displays [28]. While each work identified a “better” technique for their unique
study; surface and glyph color work better than size, multi-point glyphs perform
better than ball, arrow, and cone glyphs, and adjacent displays with simple in-
dications of data and uncertainty were preferred by the users, however none
of the techniques performed well enough to be called the best display of un-
certainty in all circumstances. A more human-centered approach evaluated the
psychophysical sensitivity to contrast and identified particular noise ranges ap-
propriate for uncertainty visualization [15]. Finally, indications of uncertainty in
a visualization were found to influence confidence levels in the context of decision
making [16, 17].
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While each of the above works is significant in improving our understand-
ing of the effectiveness of uncertainty visualizations, much more work must be
done. The number of fields turning to visualization for understanding and deci-
sion making is growing, as well as the range of users, and this again reiterates
both the great challenge in evaluation as well as the great need. While the work
done to date does not necessarily point out specific techniques that will work
in any situation, it does, as a collection, point to the necessity to understand
the perceptual issues in visualization, as well as the needs tailored specifically
to the problem at hand. Thus future work in evaluation should continue to
study in what circumstances particular visual devices work, how overloading vi-
sual displays with information such as uncertainty effect understanding, and the
ramifications of the human visual system. A formal treatment in this regard will
allow future developers of uncertainty visualizations to position work within a
tested set of constraints which, while not guaranteeing a successful visualization,
may help foster good design.

9 Conclusion

Uncertainty visualization has been identified as a top visualization research prob-
lem [38,39]. The increased need for uncertainty visualization is demonstrated not
only by the various taxonomies and typologies referenced in Section 4, but by
the discussions found in numerous positional papers and reports [40], which mo-
tivate the need from the viewpoints of several scientific domains, including GIS
and decision making [1, 10, 29, 48, 69]. This has inspired significant growth of
work in the area of uncertainty visualization and with this amassing number of
emerging works there has also become a need for an organization of that work.
As a compendium to previous surveys on uncertainty visualization [6,57,68], this
paper organizes the state of the art in uncertainty visualization based on the di-
mensionality of the data and of the uncertainty. Our main contribution is the
classification of the work into groups, as well as identifying common visualization
techniques for each group and point out specific unique techniques.

9.1 Directions for Uncertainty Visualization

Below we outline areas of uncertainty visualization we have identified as still
needing further study.

Scalar Fields. The majority of work in uncertainty visualization has focused on
scalar fields. These visualization methods almost always depend upon a single
uncertainty value for their visualization. This limits the uncertainty informa-
tion they can convey. New methods of visualizing the underlying PDF would
allow visualizations to more accurately convey the possibilities for the shape of
the underlying data without increasing visual clutter. We see new glyphs rep-
resentations as one promising direction for solutions. Additionally, clustering of
similar uncertainty might offer a possibility to reign in visual cluster.
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Significant needs also remain for parameter space visualizations of uncer-
tain data, as this type of data are becoming more widespread. The current
approaches most often take standard parameter space visualizations, such as
parallel coordinates, and apply standard scalar field uncertainty approaches.
New abstractions and visual designs are needed to better convey the richness of
this data.

Vector Fields. One of the more intriguing directions of work is that suggested
by Otto et al., recycling scalar field visualization techniques by finding topo-
logical features within the vector field. Topological analysis of vector fields is a
robust field of research. The uncertainty visualizing community could certainly
leverage topological techniques as a way to better communicate uncertain vector
field data, such as that put forth by Bhatia et al. [3].

There has been limited work performed on joint-histograms and correlations
between two variables. While we do not consider this as a vector field within our
taxonomy, it is in some sense related. Most techniques assume an independent
1D PDF for each variable, no matter the number of variables, with higher di-
mensional PDFs only available combinatorially. In fact, multiple variables can
correlated in such a way that the structure of their uncertainty is not separable
into multiple 1D PDFs. Instead they need higher dimensional PDFs and new
visualization methods for those additional dimensions. Potter et al. [77] suggest
some simple techniques for addressing these problems using 2D plots but more
work is still needed.

Tensor Fields. Little work has been done for visualizing uncertainty associ-
ated with tensor field. The small body of work in visualizing uncertainty within
tensors has mostly focused its efforts towards visualizing uncertainty of derived
values, such as white matter fibers. Future work on this problem must focus
on both the uncertainty of derived values and the uncertainty present in the
tensor itself. However, visualizing a tensor directly, irregardless of uncertainty,
is in itself a challenging problem, especially as the order of tensor increases. For
high dimensional uncertainty tensor visualization, one avenue for future research
is to combine traditional tensor field visualization techniques from information
and statistical visualization techniques, such as [94], which combines 3D view of
diffusion tensor fiber tracts with 2D and 3D embedded points along with multi-
ple histograms that show derived quantities including fractional anisotropy, fiber
length, and average curvature.

Acknowledgements. This work was supported in part by grants from the
DOE SciDAC and DOE NETL, Award No. KUS-C1-016-04, made by King Ab-
dullah University of Science and Technology (KAUST), and the NIH Center for
Integrative Biomedical Computing, 2P41 RR0112553-12. We would also like to
thank Samuel Gerber and Mike Kirby for their valuable input.



242 K. Potter, P. Rosen, and C.R. Johnson

References

1. Beard, M.K., Buttenfield, B.P., Clapham, S.B.: Ncgia research initiative 7 visual-
ization of spatial data quality, technical paper 91-26. Tech. rep., Natl Center for
Geographic Information and Analysis (1991)

2. Berger, W., Piringer, H., Filzmoser, P., Gröller, E.: Uncertainty-aware exploration
of continuous parameter spaces using multivariate prediction. CGF 30(3), 911–920
(2011)

3. Bhatia, H., Jadhav, S., Bremer, P.T., Chen, G., Levine, J., Nonato, L., Pascucci,
V.: Edge maps: Representing flow with bounded error. In: Proceedings of IEEE
Pacific Visualization Symposium, pp. 75–82 (2011)

4. Bhatia, H., Jadhav, S., Bremer, P.T., Chen, G., Levine, J., Nonato, L., Pascucci,
V.: Flow visualization with quantified spatial and temporal errors using edge maps.
IEEE TVCG (to appear, 2012)

5. Boller, R.A., Braun, S.A., Miles, J., Laidlaw, D.H.: Application of uncertainty
visualization methods to meteorological trajectories. Earth Science Informatics 3(1-
2), 119–126 (2010)

6. Bonneau, G.P., Hege, H.C., Johnson, C.R., Oliveria, M., Potter, K., Rheingans, P.:
Overview and State-of-the-Art of Uncertainty Visualization (to appear, 2012)

7. Bordoloi, U.D., Kao, D.L., Shen, H.W.: Visualization techniques for spatial prob-
ability density function data. Data Science Journal 3, 153–162 (2004)

8. Botchen, R.P., Weiskop, D., Ertl, T.: Texture-based visualization of uncertainty in
flow fields. In: IEEE Visualization 2005, pp. 647–654 (2005)

9. Botchen, R.P., Weiskopf, D., Ertl, T.: Interactive visualisation of uncertainty in
flow fields using texture-based techniques. In: 12th Iternational Symposium on
Flow Visualisation (2006)

10. Boukhelifa, N., Duke, D.J.: Uncertainty visualization - why might it fail? In: CHI
2009: Proceedings of the 27th International Conference Extended Abstracts on
Human Factors in Computing Systems, pp. 4051–4056 (2009)

11. Brecheisen, R., Platel, B., Vilanova, A., ter Haar Romeny, B.: Parameter sensitivity
visualization for dti fiber tracking. IEEE TVCG 15(6), 1441–1448 (2009)

12. Brown, R.: Animated visual vibrations as an uncertainty visualisation technique.
In: GRAPHITE 2004: Proc. of the 2nd International Conference on Computer
Graphics and Interactive Techniques, pp. 84–89 (2004)

13. Cedilnik, A., Rheingans, P.: Procedural annotation of uncertain information. In:
IEEE Visualization 2000, pp. 77–84 (2000)

14. Collins, C., Carpendale, S., Penn, G.: Visualization of uncertainty in lattices to sup-
port decision-making. In: Proceedings of Eurographics/IEEE VGTC Symposium
on Visualization (EuroVis 2007), pp. 51–58 (2007)

15. Coninx, A., Bonneau, G.P., Droulez, J., Thibault, G.: Visualization of uncertain
scalar data fields using color scales and perceptually adapted noise. In: Applied
Perception in Graphics and Visualization (2011)

16. Deitrick, S., Edsall, R.: The influence of uncertainty visualization on decision mak-
ing: An empirical evaluation. In: Progress in Spatial Data Handling, pp. 719–738.
Springer, Heidelberg (2006)

17. Deitrick, S.A.: Uncertainty visualization and decision making: Does visualizing
uncertain information change decisions? In: Proceedings of the XXIII International
Cartographic Conference (2007)



Uncertainty Visualization Taxonomy 243

18. Djurcilov, S., Kim, K., Lermusiaux, P., Pang, A.: Visualizing scalar volumetric
data with uncertainty. Computers and Graphics 26, 239–248 (2002)

19. Djurcilov, S., Kim, K., Lermusiaux, P.F.J., Pang, A.: Volume rendering data with
uncertainty information. In: Data Visualization (Proceedings of the EG+IEEE
VisSym), pp. 243–252 (2001)

20. Djurcilov, S., Pang, A.: Visualizing sparse gridded data sets. IEEE Computer
Graphics and Applications 20(5), 52–57 (2000)

21. Dooley, D., Cohen, M.F.: Automatic illustration of 3d geometric models: Lines. In:
Proceedings of the Symposium on Interactive 3D Graphics, pp. 77–82 (1990)

22. Ehlschlaeger, C.R., Shortridge, A.M., Goodchild, M.F.: Visualizing spatial data
uncertainty using animation. Computers in GeoSciences 23(4), 387–395 (1997)

23. Feng, D., Kwock, L., Lee, Y., Taylor II, R.M.: Matching visual saliency to confi-
dence in plots of uncertain data. IEEE TVCG 16(6), 980–989 (2010)

24. Fuchs, R., Hauser, H.: Visualization of multi-variate scientific data. Computer
Graphics Forum 28(6), 1670–1690 (2009)

25. Ge, Y., Li, S., Lakhan, V.C., Lucieer, A.: Exploring uncertainty in remotely sensed
data with parallel coordinate plots. International Journal of Applied Earth Obser-
vation and Geoinformation 11(6), 413–422 (2009)

26. Gerber, S., Bremer, P.T., Pascucci, V., Whitaker, R.: Visual exploration of high
dimensional scalar functions. IEEE TVCG 16(6), 1271–1280 (2010)

27. Gerharz, L., Pebesma, E., Hecking, H.: Visualizing uncertainty in spatio-temporal
data. In: Spatial Accuracy 2010, pp. 169–172 (2010)

28. Gerharz, L.E., Pebesma, E.J.: Usability of interactive and non-interactive visuali-
sation of uncertain geospatial information. In: Reinhardt, W., Krüger, A., Ehlers,
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72. Pöthkow, K., Hege, H.C.: Positional uncertainty of isocontours: Condition analysis
and probabilistic measures. IEEE TVCG PP(99), 1–15 (2010)
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Discussion

Speaker: Chris Johnson

Brian Ford: You talked of neurosurgeons not trusting the images you provide
and so not using them in their work. Do you meet these doubts in many fields of
investigation? How do you seek to overcome them, e.g. by seeking an approach
through the mind set of the field of investigation or through explaining the
techniques of the visualization etc.?

Chris Johnson: In the early days of scientific visualization, we could not ad-
dress the tremendous complexity of many biomedical (and other science and en-
gineering) applications. As hardware became faster and software and algorithms
more sophisticated, we have been able to address more and more complexity.
At the same time, we still must make simplifying assumptions in our models
and visual abstractions. Anytime a new visualization technique is created, there
is always a learning curve in understanding how to use it effectively and often
there is initial skepticism that the new technique will prove useful.

The most successful visualization techniques and tools we have created have
often been in close collaboration with scientists, engineers, and biomedical re-
searchers and clinicians. Visualization researchers are not expert in the particular
needs of the application researcher and the application research is not expert in
visualization techniques. Collaborations often start with a presentation by the
application researcher with an overview of the current visualization tools they
use, with emphasis on what current and future needs they have that are not
being satisfied by their current visualization software. We then can follow up
with an overview of recent visualization tools and discuss how such tools might
be modified (or new techniques and tools created) to meet the needs of the
application researcher. We then proceed in an iterative way, moving towards
a successful collaboration, which in my mind is when we can create new visu-
alization techniques that can help solve or better understand the application
researcher’s problem. I get tremendous satisfaction when we can work together
with biomedical, engineering, and science researchers to solve problems together
that neither of us could have solved independently.

Pasky Pascual: Do you have plans to make your visualization tools widely
available? For example, have you considered developing some of your visualiza-
tion tools as R packages?

Chris Johnson: At the Scientific Computing and Imaging (SCI) Institute, we
make all of our software available as open source and usually support the soft-
ware on multiple platforms (OSX, Linux, Windows). You can download our
visualization, image analysis, and scientific computing software from
www.sci.utah.edu/software.html.

Kyle Hickman: Many of the visualizations seem that they would not lend
themselves to publication in current journals. What do you think can be done?
What do you think the future of visualization in scientific publishing will be?

www.sci.utah.edu/software.html
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Chris Johnson: We are making some progress in this regard. High quality color
figures are becoming more the norm in journals and some journals are allowing
authors to submit videos along with their papers. More recently, Adobe has
partnered with Tech Soft 3D to create embedded 3D PDF and geospatial PDF.
One can click on the figure and be presented with a 3D visualization that one
can rotate and interact with. We are also seeing more on-line journals that can
feature more visualization and media capabilities.

Michael Goldstein: I fully agree that visualization of uncertainty is an essential
component of any complex analysis. There are two types of visualization that
are required. Firstly, there is visualization uncertainty for the final outcome of
the analysis, as was beautifully illustrated in your talk. Secondly, there is the
need for uncertainty visualization for the analysis, to understand and criticize
diagnostically the uncertainty flow through each of the stages of the analysis. I
wonder if the speaker has any suggestions for such displays. As a comment, I
have found structuring such a display through graphical overlays on Bayesian
graphical models underlying the analysis to be a very useful tool, but of course
I am no expert in the field of uncertainty visualization.

Chris Johnson: I agree completely. We need visualization for both display and
analysis. In the early days of scientific visualization, many researchers focused
on creating images for display, presentation and publication. As the field of visu-
alization matured, more emphasis is being placed on analysis. I see visualization
techniques and tools being an integral part of the scientific problem solving pro-
cess, along side of, and integrated along with, other important techniques and
tools, e.g. statistics, numerical modeling and simulation.
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Abstract. Data assimilation combines information from an imperfect
model, sparse and noisy observations, and error statistics, to produce a
best estimate of the state of a physical system. Different observational
data points have different contributions to reducing the uncertainty with
which the state is estimated. Quantifying the observation impact is im-
portant for analyzing the effectiveness of the assimilation system, for
data pruning, and for designing future sensor networks. This paper is
concerned with quantifying observation impact in the context of four di-
mensional variational data assimilation. The main computational chal-
lenge is posed by the solution of linear systems, where the system matrix
is the Hessian of the variational cost function. This work discusses iter-
ative strategies to efficiently solve this system and compute observation
impacts.
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impact, nonlinear optimization, preconditioning, adjoint model, iterative
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1 Introduction

This paper discusses a framework for computing the impact of observations in
four dimensional variational (4D-Var) data assimilation. The purpose of this
framework is to reveal the degree of usefulness of the observational data in the
process of correcting the a priori knowledge of the state of the system. From
the analysis of observation impact, certain decisions can be inferred about the
strategy to collect observations. The main computational challenge associated
with estimating observation impact is the solution of a linear system where the
matrix is the Hessian of the 4D-Var cost function. This Hessian matrix is usually
very large and accessible only through matrix-vector products. A high accuracy
solution is typically sought. In applications such as real-time sensor deployment,
this solution needs to be obtained quickly.
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This paper discusses the particular characteristics of the linear system in-
volved in observation impact calculations. We study the use of several itera-
tive linear solvers that use only Hessian-vector products, and propose several
inexpensive preconditioners to improve convergence. Numerical tests using shal-
low water equations illustrate the improvements in efficiency resulting from this
methodology.

The paper is organized as follows. Sect. 2 introduces variational data assim-
ilation. Sect. 3 zooms in on the topic of observation impact in the context of
data assimilation. Sect. 4 presents the shallow water equations test problem and
its implementation. Sect. 5 gives details of the data assimilation experiment. A
discussion of the main computational issues and the proposed solutions can be
found in Sect. 6.

2 Data Assimilation

Data assimilation is the process by which measurements are used to constrain
model predictions [1,2]. The information from measurements can be used to ob-
tain initial and boundary conditions that approximate better the real state of the
model at a particular moment. Variational data assimilation allows the optimal
combination of three sources of information: a priori (background) estimate of
the state of the system, knowledge of the interrelationships among the variables
of the model, and observations of some of the state variables. The optimal initial
state xa (also called the analysis) is obtained by minimizing the cost function

J (x0) =
1

2
(x0 − xb)T · B−1 · (x0 − xb)

+
1

2

N∑
k=1

(Hk(xk)− yk)
T ·R−1

k · (Hk(xk)− yk) (1)

xa = Arg min J

The first term of the sum quantifies the departure from the background state
xb at the initial time t0. The second term measures the distance to the observa-
tions yk, which are taken at N times tk inside the assimilation window. When
assimilating observations only at the initial time t0, the cost function is known
as 3D-Var. Otherwise, when the observations are distributed in time, the cost
function is known as 4D-Var. In this study we will focus on 4D-Var. The block-
diagonal background error covariance matrix B is built to take into account the
spatial correlations of the variables, as well as the periodic boundary conditions.
Hk is the observation operator defined at assimilation time tk. It maps the dis-
crete model state xk ≈ x(tk) to the observation space. Rk is the observations
error covariance matrix. The weighting matrices B and R need be synthesized in
order to have a fully-defined problem and their quality will influence the accuracy
of the analysis.
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The efficient numerical minimization of (1) requires the gradient of the cost
function or second-order derivative information when available. 4D-Var usually
relies on adjoint sensitivity analysis to provide information about the first and
second-order derivatives of the objective function. For instance, the gradient of
the cost function can be given by the first-order adjoint model, while the second-
order information can be computed under the form of a Hessian-vector product
from the second-order adjoint. Variational data assimilation is an example of
PDE-constrained optimization as it is a problem of nonlinear optimization where
the the minimization of the cost function is constrained by a numerical model
associated with a set of PDEs. The minimizer of the 4D-Var cost function can
only be computed iteratively using gradient-based methods, because an analyti-
cal solution is almost impossible to derive. When using 4D-Var to correct initial
and boundary conditions in a real-time operational setting, we have a limited
number of model runs that can be used before the time window expires. This
usually implies the minimization process is halted after a number of iterations,
so the global minimum might not be attained. Although the most significant
decrease in the cost function usually happens during the first iterations, it is
important to take into account that the computed solution might not satisfy the
optimality conditions. For more details, see the studies in [3,4].

3 Observation Impact in 4D-Var Data Assimilation

Methods for computing observation impact have been initially developed for the
framework of 3D-Var data assimilation in [5,6]. The extension of this theory to
address 4D-Var data assimilation was only recently accomplished and the details
can be found in [7,8].

If the 4D-Var problem is defined and solved accurately, then the analysis xa

should provide a better forecast than the background xb. Since one does not
usually have access to the real state of the system (otherwise we would not have
to perform data assimilation), the accuracy of the analysis is verified through a
forecast score against a solution of higher accuracy. LetM be a nonlinear forecast
model that discretizes a system of time-dependent partial differential equations,
while we will denote its tangent linear and first-order adjoint models with M
and MT . A forecast score e(xa) is defined on M as a short-range forecast error
measure:

e(xa) = (xa
f − xv

f )
TC(xa

f − xv
f ) (2)

where xa
f = Mt0→tf (x

a) is the model forecast at verification time tf , x
v
f is the

verifying analysis at tf and C is a matrix that defines the metric in the state
space.

Following the derivations in [7], the equation of forecast sensitivity to obser-
vations is:

∇ye(x
a) = R−1HA∇xe(x

a) (3)

where
A = [∇2

xxJ (xa)]−1 (4)
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denotes the inverse of the Hessian matrix of the cost at xa and it is assumed to
be a positive definite matrix.

The same paper [7] provides an approximation to the impact of observation,
which is defined as the change the observation brings to the value of the 4D-Var
cost function. If we consider the innovation vector as δy = y − h(xb), then a
first-order formula would be

δe = e(xa)− e(xb) = (δy)TR−1HA∇xe(x
a) (5)

The elements of the innovation vector are individual observations that get mul-
tiplied with their corresponding sensitivity. For those observations that con-
tributed to the decrease of the cost function, the impact (individual value of
δe) will be a negative value. The matrix vector product in the matrix A can be
computed as a linear system of the form

A−1 · μ0 = ∇xe(x
a) (6)

The value of μ0 is associated with the sensitivity at the initial time. By initial-
izing the tangent linear model with this vector of sensitivities and integrating
it from this time to the final time of the assimilation window, we can obtain
the sensitivities to observations corresponding to the rest of the assimilation
windows.

The problem of computing observation impact has to be solved in real-time
since these results are used in applications such as sensor network deployment.
Numerical models that simulate the atmosphere are very expensive from a com-
putational standpoint and their adjoint models even more so. Most of the compu-
tation bulk is in computing the solution of the linear system A−1 ·μ0 = ∇xe(x

a).
This linear system has to be solved with a high degree of accuracy because its
solution μ0 is a vector representing a “supersensitivity”. Any errors that it con-
tains can be propagated and amplified by the numerical models used for forecast
or sensitivity analysis. At the same time, there is also a constraint on the num-
ber of model runs one can execute before the results are due for operational use.
The Hessian matrix of a system associated with a numerical model underlined
by PDEs is usually sufficiently complicated that an iterative solver generally will
not converge to a satisfactory solution in a few iterations unless it is tweaked
accordingly. Accuracy of the solution and fast convergence of the solver are two
of the main challenges when computing observation impact in data assimilation,
along with means of computing the second-order information.

4 The Shallow Water Equations Test Case

We consider the two dimensional Saint-Venant PDE system that approximates
fluid flow inside a shallow basin (also known as “Shallow Water Equations”
(SWE)):

∂

∂t
h+

∂

∂x
(uh) +

∂

∂y
(vh) = 0
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∂

∂t
(uh) +

∂

∂x
(u2h+

1

2
gh2) +

∂

∂y
(uvh) = 0

∂

∂t
(vh) +

∂

∂x
(uvh) +

∂

∂y
(v2h+

1

2
gh2) = 0 .

The spatial domain is square shaped (Ω = [−3, 3]2), and the integration window
is t0 = 0 ≤ t ≤ tF = 0.1. Here h(t, x, y) denotes the fluid layer thickness, and
u(t, x, y), v(t, x, y) are the components of the velocity field. g is the standard
value of the gravitational acceleration. The boundary conditions are periodic
in both directions. For ease of presentation, we arrange the n discretized state
variables in a column vector

x =

⎡⎣ ĥ

ûh

v̂h

⎤⎦ ∈ Rn . (7)

In order to solve these equations, we implemented a numerical model that makes
use of a finite volume-type scheme for space discretization and a fourth-order
Runge-Kutta scheme for timestepping. This method was introduced by Liska
and Wendroff in [9]. In the following, forward solves will be denoted by FWD.

The tangent linear model (TLM), first-order (FOA) and second-order (SOA)
adjoints were generated through automatic differentiation of the forward model
using TAMC [10,11]. TAMC is a source-to-source translator that generates For-
tran code for computing the derivatives of a numerical model. For more details
about automatic differentiation see [12]. The FOA and SOA are integrated back-
wards in time and they require the values computed at each timestep for the
FWD and TLM, respectively. There are two ways to generate these numerical
values. The first one is to run the FWD and TLM in advance and to store
their evolution in time; this approach has the disadvantage of taking up a lot
of storage space. The second one is to recompute the FWD and TLM at each
timestep where the FOA and SOA need their values. Theoretically this is nec-
essary at each timestep, which means the latter approach saves storage space at
the expense of increasing demand for computation.

A question that arises naturally is how large is the overhead of the code
generated through automatic differentiation. Table 1 illustrates the CPU times of
TLM, FOA and SOAmodels, normalized with respect to the CPU time of a single
forward model run. It is seen that a full SOA integration is about 3.5 times more
expensive than a single first-order adjoint run, while this FOA takes 3.7 times
longer than the forward run. The time for SOA can be considered to be a large
value as it takes longer time to compute the SOA than to approximate it through
finite differences (two FOA runs ). However, for the purpose of this test they
are computationally feasible. Please note that these values apply only for our
particular implementation (method of lines) and the overhead can greatly vary
with the complexity of the numerical method or the automatic differentiation
tool used.

We mentioned that each time the tangent linear model or first-order adjoint
are run, the forward model is run beforehand for storing its evolution. Similarly,
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Table 1. Ratio between the CPU time of adjoint models and the forward model

FWD 1
TLM 2.5 FWD + TLM 3.5
FOA 3.7 FWD + FOA 4.7
SOA 12.8 FWD + TLM + FOA + SOA 20.0

in order to compute the second-order adjoint one must first run the forward,
first-order adjoint and tangent linear models. As such, the actual timing values
are the ones displayed in the right hand side of the table.

5 Data Assimilation Scenario

Prior to computing observation impact, we have to perform the 4D-Var data
assimilation experiment with the SWE model presented in the previous section.
Following are the parameters of the Data Assimilation System (DAS) we are
using:

– The 2-D grid of the SWE model is divided into 40 grid points on each
direction (1600 in total). The number of time steps for the model runs is
fixed at N = 1000.

– The reference solution is generated component-wise: the height component
h will be a Gaussian pulse of amplitude A = 30 while the velocity fields u
and v are assigned a value of 2 at each grid point.

– The background solution xb is generated by applying a correlated perturba-
tion on the reference profile for h, u and v.

– The background error covariance B was generated for a standard deviation
of 5% with a nondiagonal structure and correlation distance of five grid
points. This will help the 4D-Var method to spread the information from
observations in each cell based on information passed from its neighbors.

– The model was run with the reference as initial condition in order to generate
the synthetic observations yk. The observation frequency is set to once every
20 time steps. In order to simulate the effect of noise over observations, we
apply a normal random perturbation to the perfect synthetic observations.

– The observation error covariance R is a diagonal matrix, based on the as-
sumption that the observational errors are uncorrelated. The standard de-
viation of these errors was set to 1% of the largest absolute value of the
observations for each variable.

The observation operator H is configured to select observations for each variable
at each point of the grid, hence we say the observations are dense in space. In an
operational setting, the operatorH is enforced by the availability of observations
provided by meteorological stations and other types of sensors.

In order to minimize the 4D-Var cost function, the L-BFGS-B iterative solver
will be employed [13]. The optimization parameters of interest were assigned the
following values:
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– The stopping criterion is set to
∥∥∥∇J (x0

[k])
∥∥∥ < 10−6 ·max(1,

∥∥∥x0
[k]

∥∥∥).
– Wolfe conditions parameters are set to c1 = 10−4 and c2 = 0.9.
– A maximum number of 500 iterations is allowed for each optimization.

6 Computing Observation Impact

6.1 Second-Order Information

The matrix of coefficients is the Hessian of the 4D-Var cost function, evaluated
at the analysis. For large-scale models like the atmosphere, this matrix cannot
be manipulated in its full explicit form due to high computational demands,
storage restrictions and I/O bottlenecks. The dimensions of such Hessian matri-
ces, associated with models of many variables, could reach orders of magnitude
of 106 or more. In practice, one usually tries to evaluate directly the action of
the Hessian matrix on a vector, an approach known as “matrix-free”.

Evaluating the Hessian or its action on a vector is itself another computational
issue. The methodology of adjoint models provides ways for the computation of
first-order and second-order derivative information. Second-order adjoint mod-
els are considered to be the best approach to computing Hessian-vector prod-
ucts. Unfortunately, they are not that popular because of the tedious process
of deriving them. At the same time, the adjoint models usually have higher
computational demands than the forward model, unless they are built around
a clever strategy to reuse computation from the forward model [4]. When one
does not have access to the second-order adjoint but only to the first-order ad-
joint, Hessian-vector products can be computed by using finite differences. This
approach might be more economical in terms of computation than using second-
order adjoints, but is also less reliable.

These two arguments indicated to us that there is only a limited class of
methods we can use in order to solve, precondition or transform the system. More
specifically, we will use those methods that need only matrix-vector products.
By elementary analysis, the Hessian of any reasonable system is symmetric.
However, this symmetry can be lost due to numerical inaccuracies. At the same
time, we cannot guarantee the Hessian is positive definite when the 4D-Var first-
order optimality condition is not met and the resulting analysis is far from the
true minimizer. While using iterative methods on our linear systems seems to be
feasible, it appears to be significantly more difficult to obtain preconditioners,
even simple ones based on the diagonal. Also, we can exclude factorizations or
direct solve methods since these usually require the full matrix or at least a
significant portion of it.

In Figs. 1–4 we present some graphical representations of the explicit form of
the Hessian, built through the second-order adjoint methodology from matrix-
vector products with the ei unity vectors. For the scenario presented in Sect. 5 the
size of the Hessian is 4800 rows by 4800 columns. The first 1600 rows correspond
to the variable h, the next 1600 rows to u and the last 1600 to v. The Hessian
thus generated proved to be symmetric. Regarding the minimization of the 4D-
Var cost function, we let L-BFGS run for as many iterations as needed to obtain
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a solution close to the optimum (around 500 iterations). As a result, the Hessian
was indeed positive definite. Although not shown here, we can confirm that early
termination of L-BFGS after 50 or 100 iterations produced an analysis whose
corresponding 4D-Var Hessian was no longer positive definite. As said before,
the mere purpose of generating the full Hessian is to analyze it offline. In an
operational setting it would not be possible, due to constraints imposed by the
computational resources.

The first thing noticed about the Hessian is its somewhat regular structure
that looks near block-Toeplitz. Although the diagonals are not constant, their
values vary inside a well-defined interval. At the same time, we could notice
that these diagonals occur at fixed distance from the main diagonal, spaced at
every 40 or 1600 rows/columns. These patterns can be seen in Figs. 3 and 4,
which are graphical representations of the upper-left corner of the matrix. The
patterns repeat themselves across the whole matrix. Since the 4D-Var Hessian
is the inverse of the covariance matrix of the analysis [14], we can attribute the
patterns in the Hessian to the covariance of each grid point with the grid points in
its discretization scheme stencil. Thus, each point of the grid is correlated to the
points to the East and the West (corresponding to adjacent rows/columns in the
Hessian) but also to the points found to the North and the South (corresponding
to rows/columns situated at a distance of 40) and with the other variables at the
same points (corresponding to a distance of 1600 rows/columns). This can be
verified in Fig. 3 where the diagonal breaks down after 40 cells and is displaced,
due to periodic boundary conditions.

The eigenvalues of the Hessian are displayed in Fig. 5, sorted in ascending
order. Based on their values, the condition number for the matrix is of 7.2095e+3.
The magnitude of the condition number does not indicate the matrix is extremely
ill-conditioned, but the eigenvalues are not clustered together and many of them
are close to zero.

6.2 Solving the Linear System

Next, we will present our results and comments on solving the linear system
with Krylov-based iterative methods when no preconditioner is used to accel-
erate the convergence. For our experiments we used MATLAB and its built-in
linear solvers. We chose three algorithms for our comparison of their efficiency
at solving the system. These three methods are “generalized minimum residual”
(GMRES), “conjugate gradients” (CG) and “quasi-minimum residual” (QMR).
There are many other variations of these methods but these three are each rep-
resentative of one class of such methods. While GMRES and QMR operate on
general matrices, CG needs the matrix to be SPD which might not be true all
the time for the 4D-Var Hessian.

As we can see from Fig. 6 and Table 2, all three solvers converge to a solution
whose norm of the residual is close to zero. GMRES and QMR converge to the
same solution and they take the same iterates. This means they are equivalent
when applied to this problem. CG converges to a more accurate solution from
the perspective of its error norm, but the residual norm is larger. This can
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Fig. 1. The values found on the first row of the Hessian matrix
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Fig. 2. The values found on the diagonal of the Hessian matrix. (Divided into two
scaling groups: first 1600 and last 3200).

cause confusion in practice because we would not have access to the reference
solution. Also, the norm of the residual for CG fluctuates, instead of decreasing
monotonically. Based on these results, we decided to use GMRES for subsequent
tests.

All solvers start with a vector of zeroes as initial solution.

6.3 Preconditioning

The convergence speed of Krylov-based linear solvers depends on the spectrum
of the system matrix. These algorithms perform better when the eigenvalues are
clustered together, but as seen in Fig. 5 the eigenvalues of our Hessian matrix
are scattered across various orders of magnitude. Also, many of these eigenvalues
are close to zero which makes them more difficult to be estimated by the solvers.
Such a matrix is called “ill-conditioned“ and this explains why neither algorithm
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Fig. 3. Density plot of elements in the (100× 100 minor) of the Hessian matrix

Fig. 4. The values found in the upper-left (100× 100 minor) of the Hessian matrix

presented in the comparison of the previous section converged in 100 iterations
to a solution that is highly accurate.

In order to alleviate slow convergence, a linear system can be preconditioned
by multiplying it with a matrix M (called preconditioner) that approximates the
inverse of the systemmatrix or some of its features, but is easier to invert or factor-
ize. One way to use this matrix is to multiply the linear system with it to the left,
which leads to an equivalent linear system. This system should be easier to solve if
the preconditioner approximates the inverse of the systemmatrix, since their mul-
tiplication will yield a new system matrix that is better conditioned. In the ideal
setting when the preconditioner is exactly the inverse of the original system ma-
trix, the new systemmatrix becomes the identity matrix and the linear solver will
converge in one iteration. However, finding the exact inverse of a matrix is usually
a more difficult problem then solving the linear system.

The problem of finding a preconditioner for our system is the fact that we
do not have access to the full system matrix. This means we have to exclude
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Fig. 6. The evolution of the solution residuals with iteration number for different linear
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the possibility of using certain preconditioning techniques such as incomplete
factorizations, wavelet-based, or variations of Schur complement. Moreover, we
cannot just use matrix-vector products to construct basic preconditioners such
as the main diagonal or a diagonal band, unless we construct the full matrix.

Knowing or anticipating the structure of the matrix can be of great help when
trying to devise a preconditioner. For instance, we know our Hessian matrix is
the inverse of the covariance matrix of the 4D-Var analysis. If the data assimila-
tion process is accurate enough, one can observe a near block-diagonal structure
corresponding to each variable. On a 3D grid these blocks correspond to the
vertical levels of each variable. This was noted by Zupanski in [15] who hinted
at the possibility to approximate the diagonal in a block-wise fashion, where the
diagonal values for a certain block are equal to a constant value. We will try to
approximate the diagonal by using Hessian-vector products to “probe” the ma-
trix. A straightforward way of accomplishing this for our three-variable model is
to run three Hessian-vector products with unity vectors that extract one column
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Table 2. Norm of residual and error for solutions computed with different iterative
methods (100 iterations)

Solver GMRES CG QMR

Norm of residual 0.222 0.893 0.222
Norm of error 0.357 0.267 0.357

(row) of the Hessian at one time and then use the value corresponding to the
diagonal element for all diagonal elements in that block. For example, consider
three unity vectors for our 4800 Hessian that have the value 1 at position 1,
1601 and 3201 respectively, and zeros everywhere else. The Hessian-vector prod-
uct realized with these three vectors will extract the columns number 1, 1601
and 3201 which correspond to the three different variables in our Hessian struc-
ture. Building an approximation of the diagonal means using the value found at
coordinates 1,1 for the entire first block (so up to coordinates 1600,1600), the
value found at coordinates 1601,1601 for the entire second block and so forth.
This approximation can be refined by probing for more elements from the same
block. If there are many blocks that have to be probed and the computational
burden increases significantly, one can employ coloring techniques to probe for
more than one element with the same matrix-vector product. We shall refer to
this technique as “block-diagonal preconditioner”.

Another characteristic of covariance matrices is their diagonally dominant
structures and under certain favorable cases, strongly diagonally dominant. In
this former case, an approximation of the diagonal can be computed with just
one matrix-vector product, where the seed vector is composed only of ones. This
is equivalent to computing the sum of each row, which is a good approxima-
tion of the diagonal if the diagonal element supersedes the sum of all other
elements from the same row. This is the second preconditioner we tried in our
experiments.

The Hessian matrix can also be approximated from data collected throughout
the minimization process of 4D-Var. Iterative solvers such as L-BFGS work by
generating approximations of the Hessian evaluated at the analysis in a certain
subspace and minimize the cost function upon it. This approximation is very
efficient as it preserves the properties of the matrix (positive definiteness and
symmetry) and because it is designed for limited storage. We built a precondi-
tioner by reusing the approximation of the Hessian generated over the last 10
iterations of L-BFGS. Our tests showed this to be as accurate as if using more
iterations, a result that confirms the theory.

The norm of the error against the reference solution and that of the resid-
ual are shown in Table 3. We also present the results obtained with the ex-
act diagonal, although this will not be available in practice, as stated before.
The preconditioner obtained from the sum of elements on each row did not
improve the convergence at all. This is due to the fact that in our case, the Hes-
sian was not strongly diagonally dominant so this preconditioner was far from
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Table 3. Norm of residual and error for solutions computed with different precondi-
tioners (100 iterations)

Preconditioner None Diagonal Block-diagonal Row sum L-BFGS

Norm of residual 0.222 0.009 0.009 62.346 0.222
Norm of error 0.357 0.005 0.005 5.301 0.339

approximating the diagonal. The L-BFGS preconditioner brought a slight im-
provement in the solution and has the advantage that no extra computation is
required. The block-diagonal preconditioner improved significantly the accuracy
of the solution and behaved as good as the exact diagonal.

7 Conclusions

This paper presents an adjoint-based framework to compute observation impact
in 4D-Var data assimilation. The observation impact calculations need to be
performed accurately and rapidly in real-time sensor network deployment prob-
lems. The main computational task is solving a linear system whose matrix is
the Hessian of the 4D-Var cost function, evaluated at the analysis state. This
matrix is typically very large, as each row corresponds to one model state, and
it is only accessible through matrix-vector products.

The main contributions of this work are to outline the characteristics of the
linear system, to investigate iterative linear solvers, and to propose three efficient
preconditioners. Two of the preconditioning methods approximate the diagonal
of the Hessian from matrix-vector products, while the third method uses data
generated during the 4D-Var minimization to provide a quasi-Newton approxi-
mation of the Hessian. Our study shows that these inexpensive preconditioners
accelerate convergence. Future work will include the development of improved
preconditioners for the linear system, and will study the use of additional itera-
tive methods such as multigrid.

Acknowledgements. This work was supported by National Science Foun-
dation through the awards NSF DMS-0915047, NSF CCF-0635194, NSF CCF-
0916493 and NSF OCI-0904397.
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Discussion

Speaker: Adrian Sandu

Van Snyder: There are two possibilities to assimilate remote sensing data into
chemical transport models (CTMs). One is to incorporate the measured quantity,
e.g., radiances. The other is to incorporate geophysical quantities that result
from separate analyses. The latter is a nonlinear parameter estimation problem,
which depends upon having a good starting point. Further, the problem is ill-
posed, which requires a priori information or Tikhonov for stabilization. If the
CTM initializes and stabilizes the remote sensing problem, whose results are
then assimilated into the CTM, is there a positive, negative, or neutral effect on
the solution quality?

Adrian Sandu: This is a very good question. In principle the direct assimilation
of measured quantities is to be preferred, since it does not introduce additional
errors/biases in the data. In order to do this, one needs good models of the
instrument, e.g., that produce radiances from the concentration fields computed
by the CTM.

In practice, there are very many instruments that produce data, and for which
good models are not available. For this reason assimilation of geophysical quan-
tities, derived from the raw data through an off line estimation process, is often
employed. To the best of my knowledge no comprehensive tests have been carried
out to date in order to quantify the impact of assimilating geophysical quantities
in lieu of measured quantities.



Interval Based Finite Elements for Uncertainty

Quantification in Engineering Mechanics

Rafi L. Muhanna1 and Robert L. Mullen2

1 School of Civil and Environmental Engineering
Georgia Institute of Technology

Atlanta, GA, USA
rafi.muhanna@gtsav.gatech.edu

2 Department of Civil and Environmental Engineering
University of South Carolina

Columbia, SC, USA
rlm@sc.edu

Abstract. This paper illustrates how interval analysis can be used as a
basis for generalized models of uncertainty. When epistemic uncertainty
is presented as a range and the aleatory is based on available informa-
tion, or when random variables are assigned an interval probability, the
uncertainty will have a Probability Bound (PB) structure. When Interval
Monte Carlo (IMC) is used to sample random variables, interval random
values are generated. Interval Finite Element Method (FEM) is used to
propagate intervals through the system and sharp interval solutions are
obtained. Interval solutions are sorted and PBs of the system response
are constructed. All relevant statistics are calculated characterizing both
aleatory and epistemic uncertainty. The above mentioned sequence is
presented in this work and illustrative examples are solved.

Keywords: interval, finite elements, reliability, aleatory, epistemic,
probability bounds.

1 Introduction

The presence of uncertainty in all aspects of life is evident. However, quanti-
fying uncertainty is always advancing. There are various ways in which types
of uncertainty might be classified. One is to distinguish between “aleatory” (or
stochastic) uncertainty and “epistemic” uncertainty. The first refers to underly-
ing, intrinsic variability of physical quantities, and the latter refers to uncertainty
which might be reduced with additional data or information, or better modeling
and better parameter estimation [1].

Probability theory is the traditional approach to handling uncertainty. This
approach requires sufficient statistical data to justify the assumed statistical
distributions. Analysts agree that, given sufficient statistical data, probability
theory describes the stochastic uncertainty well. However, probabilistic model-
ing cannot handle situations with incomplete or little information on which to
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evaluate a probability, or when that information is nonspecific, ambiguous, or
conflicting [2], [3],and [4]. Many generalized models of uncertainty have been de-
veloped to treat such situations, including fuzzy sets and possibility theory [5],
Dempster-Shafer theory of evidence [6], [7], random sets [8], probability bounds
[9], [2], and [10], imprecise probabilities [4], convex models [11], and others.

These generalized models of uncertainty have a variety of mathematical de-
scriptions. However, they are all closely connected with interval analysis [12].
For example, the mathematical analysis associated with fuzzy set theory can be
performed as interval analysis on different α levels [13] and [14]. Fuzzy arithmetic
can be performed as interval arithmetic on α cuts. A Dempster-Shafer structure
[6] and [7] with interval focal elements can be viewed as a set of intervals with
probability mass assignments, where the computation is carried out using the
interval focal sets. Probability bounds analysis [9], [2], and [10] is a combina-
tion of standard interval analysis and probability theory. Uncertain variables
are decomposed into a list of pairs of the form (interval, probability). In this
sense, interval arithmetic serves as the calculation tool for generalized models
of uncertainty. A short description of probability bounds is given in the next
section.

2 Probability Bounds

Probability Bounds (PB) identifies a specific mathematical framework for anal-
ysis when precise discrete probabilities (or PDF) are not completely known [4].
Probability bounds are normally associated with epistemic sources of uncertainty
where the available knowledge is insufficient to construct precise probabilities.
Calculations on PB can be conducted using Monte Carlo methods combined
with an interval finite element method [15], or by using various discretization
methods.

The arithmetic for piecewise constant discretization on PB can be found in
publications such as [16], [17], [18], [10]. Let the behavior of the system be
modeled by a function y = f(x), where x = (x1, x2, . . . , xn) is the parameter
vector, and each xi is represented by a probability-bounds structure. The CDF
of a particular value y∗, F (y∗), is to be determined. The objective of probability-
bounds analysis is to obtain an interval to bound the precise probability F (y∗)
of interest (in the classical sense). The numerical implementation of probability-
bounds analysis can be done using interval analysis and the Cartesian product
method. The general procedure can be found in publications such as [19], [20],
[21], and [10].

For example, Fig. 1 depicts probability-bounds circumscribing a normal dis-
tribution whose mean is sure to lie within the interval [5.6, 6] and whose standard
deviation is 1. Such bounds can result from the addition of a normally distributed
random variable with a mean of 5.6 and a standard deviation of 1 with a variable
bounded between 0 and 0.4.

Probability-bounds structure can also arise by forming probability distribu-
tions of intervals. In this context, probability-bounds structure is mathemati-
cally analogous to a standard discrete probability distribution except that the
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Fig. 1. Probability-bounds associated with normal distribution with mean = [5.6, 6]
and standard deviation = 1

probability mass is assigned to an interval rather than to a precise point; thus,
the probability-bounds structure can be specified as a list of pairs of the form
(interval, probability mass).

The advantage of the probability-bounds approach is that it can capture a
wider range of uncertainties than the standard probabilistic approach. On the
other hand, the standard probability distribution and interval number are two
degenerate cases of probability-bounds structure; thus the probability-bounds
approach provides a general framework for handling problems with a mixture of
interval-based information and standard probabilistic information.

When and if additional knowledge of a system is obtained, the probability
bounds can be refined. Just as interval and scalar calculations can be easily
mixed, conventional precise probabilities and probability bounds may be mixed
in a single calculation. However, how to accomplish this in a computationally
efficient method for finite element analysis is unresolved. In this work interval
Monte Carlo (IMC) will be used.

3 Interval Monte Carlo

When a random variable is described in a probability-bound structure, one nat-
ural approach for sampling such a random variable is the use of interval Monte
Carlo (IMC). A discretization approach can be used as well [15]; however, this
approach has not yet been developed for the general case. IMC has been pro-
posed to generate fuzzy numbers in [22] and for the first time for structural
reliability in [15].

The first step in the implementation of interval Monte Carlo simulation is the
generation of intervals in accordance with the prescribed probability bounds.
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Fig. 2. Generation of random number from distribution with probability-bound struc-
ture

The inverse transform method is often used to generate random numbers. Con-
sider a random variable x with CDF F (x). If (u1, u2, . . . , um) is a set of values
from the standard uniform variate, then the set of values

xi = F−1
x (ui), i = 1, 2, . . . ,m (1)

will have the desired CDF F (x). The inverse transform method can be extended
to perform random sampling from a probability bound. Suppose that an impre-
cise CDF F (x) is bounded by F (x) and F (x), as shown in Fig. 2. For each ui in
Eq. (1), two random numbers are generated

xi = F
−1

x (ui) and xi = F−1
x (ui) (2)

Such a pair of xi and xi form an interval [xi, xi] which contains all possible
simulated numbers from the ensemble of distributions for a particular ui. The
method is graphically demonstrated in Fig. 2 for the one-dimensional case. The
next step is to solve for the generated interval values using interval finite elements
described in the next section.

4 Interval Finite Element Methods

One of the main features of interval arithmetic is its capability of providing guar-
anteed results. However, it has the disadvantage of overestimation if variables
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have multiple occurrences in the same expression. For example, if x is an interval,
evaluation of the function f(x) = x − x using naive rules of interval arithmetic
will not return zero but rather an interval that contains zero. Such situations
lead to extremely pessimistic results, and have discouraged some researchers of
pursuing further developments using interval representations.

The Finite Element Method (FEM) is a numerical method for solving differ-
ential and partial differential equations with enormous applications in different
fields of the sciences and engineering. Interval Finite Element Methods (IFEM)
have been developed for the last 15 years to handle the analysis of systems
for uncertain parameters described as intervals. Since the early development of
IFEM during the mid-1990s of the last century [23], [24], [25], [26], [27], and
[28], researchers have focused, among other issues, on two major problems: the
first is how to obtain solutions with reasonable bounds on the system response
that make sense from a practical point of view, or in other words, with the least
possible overestimation of their bounding intervals; the second is how to obtain
reasonable bounds on the derived quantities that are functions of the system
response.

The most successful approaches for overestimation reduction are those which
relate the dependency of interval quantities to the physics of the problem being
considered; details on these developments can be found in the works of the
authors and their collaborators [24], [29], [30], and [31].

A brief description of IFEM formulation is presented below, details can be
found in the authors’ work [31]. The two major issues in this formulation are:

1. Reducing overestimation in the bounds on the system response due to the
coupling and transformation in the conventional FEM formulation as well
as due to the nature of used interval linear solvers (Muhanna and Mullen,
2001).

2. Obtaining the secondary (derived) variables such as forces, stresses, and
strains of the conventional displacement FEM along with the primary vari-
ables (displacements) and with the same accuracy of the primary ones. Pre-
vious interval methods calculate secondary variable from interval solutions
of displacement which result in a significant overestimation.

4.1 Discrete Structural Models

In steady-state analysis, the variational formulation for a discrete structural
model within the context of the Finite Element Method (FEM) is given in the
following form of the total potential energy functional [32] and [33].

Π =
1

2
UTKU − UTP (3)

with the conditions
∂Π

∂Ui
= 0 for all i (4)

where Π , K, U , and P are total potential energy, stiffness matrix, displacement
vector, and load vector respectively. For structural problems the formulation



270 R.L. Muhanna and R.L. Mullen

will include both direct and indirect approaches. For the direct approach the
strain ε is selected as a secondary variable of interest, where a constraint can
be introduced as C2U = ε. For the indirect approach constraints are introduced
on displacements of the form C1U = V in such a way that Lagrange multipliers
will be equal to the internal forces. C1 and C2 are matrices of orders m× n and
k×n, respectively, where m is the number of displacements constraints, k is the
number of strains, and n is the number of displacements degrees of freedom. We
note that V is a constant and ε is a function of U . We amend the right-hand
side of Eq. (3) to obtain

Π∗ =
1

2
UTKU − UTP + λT

1 (C1U − V ) + λT
2 (C2U − ε) (5)

where λ1 and λ2 are vectors of Lagrange multipliers with dimensions m and k,
respectively. Invoking the stationarity of Π∗, that is δΠ∗ = 0, we obtain⎛⎜⎜⎝

K CT
1 CT

2 0
C1 0 0 0
C2 0 0 −I
0 0 −I 0

⎞⎟⎟⎠
⎛⎜⎜⎝

U
λ1

λ2

ε

⎞⎟⎟⎠ =

⎛⎜⎜⎝
P
V
0
0

⎞⎟⎟⎠ (6)

The solution of Eq. (6) will provide the values of the dependent variable U and
the derived ones λ1, λ2, and ε at the same time.

The present interval formulation, which will be introduced in the next sec-
tion, is an extension of the Element-By-Element (EBE) finite element technique
developed in the work of the authors [29].

The main sources of overestimation in the formulation of IFEM are the mul-
tiple occurrences of the same interval variable (dependency problem), the width
of interval quantities, the problem size, and the problem complexity, in addition
to the nature of the used interval solver of the interval linear system of equa-
tions. While the present formulation is valid for the FEM models in solid and
structural mechanics problems, the truss model will be used here to illustrate
the applicability and efficiency of the present formulation without any loss of
generality.

The current formulation modifies the displacement constraints used in the
previous EBE formulation to yield the element forces as Lagrange Multipliers
directly and the system strains. All interval quantities will be denoted by non-
italic boldface font. Following the procedures given in [31] we obtain the interval
linear system ⎛⎜⎜⎝

K CT
1 CT

2 0
C1 0 0 0
C2 0 0 −I
0 0 −I 0

⎞⎟⎟⎠
⎛⎜⎜⎝

U
λ1

λ2

ε

⎞⎟⎟⎠ =

⎛⎜⎜⎝
P
0
0
0

⎞⎟⎟⎠ (7)

where K is an interval matrix of dimension (dof × dof), where dof is the sum
of element degrees of freedom and the free node degrees of freedom. It consists
of the individual elements’ local stiffness and zeros at the bottom corresponding
to the free nodes’ degrees of freedom.
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The accuracy of the system solution depends mainly on the structure of Eq. (7)
and on the nature of the used solver. The solution of the interval system (7)
provides the enclosures of the values of dependent variables which are the interval
displacementsU, interval element forces λ1, the multiplier λ2, and the element’s
interval strains ε. An iterative solver is discussed in the next section.

4.2 Iterative Enclosures

The best known method for obtaining very sharp enclosures of interval linear
system of equations that have the structure introduced in Eq. (7) is the itera-
tive method developed in the work of Neumaier and Pownuk [34]. The current
formulation results in the interval linear system of equations given in (7) which
can be transformed to have the following general form:

(K +BDA)u = a+ Fb (8)

where D is diagonal. Furthermore, defining

C := (K +BD0A)
−1 (9)

where D0 is chosen to ensure invertablility (often D0 is selected as the midpoint
of D), the solution u can be written as

u = (Ca) + (CF )b+ (CB)d. (10)

To obtain a solution with tight interval enclosure we define two auxiliary interval
quantities,

v = Au (11)

d = (D0 −D)v

which, given an initial estimate for u, we iterate as follows:

v = {(ACa) + (ACF )b+ (ACB)d} ∩ v, d = {(D0 −D)v} ∩ d (12)

until the enclosures converge, from which the desired solution u can be straight-
forwardly obtained.

This formulation allows obtaining the interval displacement U and the ac-
companied interval derived quantities λ1, λ2, and ε with the same accuracy. A
number of examples are introduced in the next section.

5 Examples

Fig. 3 shows a planar truss. The reliability of this structure using single deflection
criteria has been presented by Zhang, et al. [15]. Two limit states are consid-
ered in this work, the serviceability and the strength. The deflection limit at the
mid-span is set to 2.4 cm, and the allowable stress in any member is set 200
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Fig. 3. Truss structure

Table 1. Sample statistics for the basic random variables (truss in Fig. 3)

Variables Sample mean Sample standard deviation No. of samples

A1 – A6 (cm2) 10.32 0.516 30
A7 – A15 (cm2) 6.45 0.323 30
Ln P1 3.2122 0.071474 20
Ln P2 3.9982 0.071474 20
Ln P3 3.2122 0.071474 20

MPa. Interval linear elastic analyses are performed. The element stress is calcu-
lated using conventional interval methods (stresses are calculated from interval
displacements) as well as the improved algorithm outlined in this paper. The
cross-sectional areas for the 15 members and the three loads are identified as the
basic random variables. All the 18 random variables are assumed to be mutually
statistically independent. Assume that based on experience, the cross-sectional
areas can be modeled by normal distributions, and the loads modeled by lognor-
mal distributions. Suppose the statistics for the random variables were estimated
from limited samples of data. Table 1 gives the available sample statistics for
the cross-sectional areas and the logarithm of the loads (Ln P). The Youngs
modulus is assumed deterministic (200 GPa).

From the sample size, one can calculate confidence bounds on the mean of the
random variables. We will use these bounds to construct the bounding functions
defining the probability bounds for the random variables. Two cases are consid-
ered (1) the uncertain means for the (logarithm of) loads only and (2) uncertain
cross-sectional area as well as loading. The interval Monte Carlo method is used
to obtain probability bounds information on the variables associated with the
limit states as well as interval estimates for the failure probability. All results
are calculated using 10,000 realizations.

Fig. 4 presents the probability bounds for the central deflection of the truss
subject to uncertain loading. Using a limit state for deflection of 2.4 cm, the



Interval Based Finite Elements for Uncertainty Quantification 273

Table 2. Probability bounds for the basic random variables (truss in Fig. 3)

Variables Population means 90% Population standard
confidence interval bounds deviation

A1 – A6 (cm2) [10.160, 10.480] 0.516
A7 – A15 (cm2) [6.3498, 6.5502] 0.323
Ln P1 [3.1846, 3.2398] 0.071474
Ln P2 [3.9706, 4.0259] 0.071474
Ln P3 [3.1846, 3.2398] 0.071474
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bounds on the probability of survival is given by the intersection of a vertical
line at 2.4 cm and the probability bounds. The failure probability bounds are
then calculated from the survival bounds and are [1.34, 1.93]%. Fig. 5 presents
the probability bounds results for the maximum absolute value of the stress the
structure. Two different bounds are presented; the wider bounds are calculated
using standard interval methods while the narrower bounds result from the cur-
rent method. The calculated failure probabilities for the strength-based limit
state are: [0.01, 0.76]% using the current method and [< 0.01, 9.95]% using the
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previous method. While both results bound the failure probability, the previous
method significantly overestimates the bounding values.

Fig. 6 presents the probability bounds for the central deflection of the truss
subject to uncertain load and element cross-sectional areas. Using the same 2.4
cm limit state, the bounds on the probability of failure increase to [0.11, 5.39]%.
It should be expected that increasing the uncertainty associated with the anal-
ysis will increase the width of the bounds on failure probability. Fig. 7 presents
the probability bounds results for the maximum absolute value of the stress in
the structure. Again, two different bounds are presented: the new method of
this work and previous interval method. Using the same limit state, the failure
probabilities bound are: [0.04, 3.71]% using the new method and [< 0.01, 48.88]%
using the previous method. The overestimation using previous method of calcula-
tions of element stress clearly renders the previous method useless in engineering
design.

6 Conclusion

An interval Monte Carlo finite element method with improved calculation of the
bounds of secondary quantities is presented. Using element stress as an example,
the improved sharpness of the bounds is illustrated. This work resolves the is-
sue of engineering design with limit states calculated from secondary quantities
(stress) that existed in previous interval Monte Carlo finite element analyses.
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Discussion

Speaker: Rafi Muhanna

Richard Hanson: Does the use of interval arithmetic in finte element methods
scale to the size of the structure show in your slide (large!)?

Rafi Muhanna: Yes. We have tested that and the results are reported in follow-
ing paper: Muhanna, R., Mullen, R., and Zhang, H., “Interval Finite Element
as a Basis for Generalized Models of Uncertainty in Engineering Mechanics,”
Reliable Computing Journal, Springer Netherlands, Vol. 13, No. 2, pp. 173-194,
April 2007, and it has been found that the computer time scaled cubically to the
number of interval variables which is similar to the conventional finite elements.

William Kahan: This talk illustrates that the use of interval arithmetic to get
bounds not grossly excessive requires close analysis and exploitation of a prob-
lem’s properties. Here the ideas that work on static analysis by finite elements
of elastic structures also works on elliptic partial differential equations. But the
methods presented here do not always succeed on dynamical systems, nor on
solutions of nonlinear systems of equations with interval coefficients. The right
person to ask about interval arithmetic’s successes is Professor Ulrich Kulisch in
attendence here.

Ulrich Kulisch: Yes, for dynamical systems double precision interval and
floating-point arithmetic are not very successful. Here long interval arithmetic
is the appropriate tool. For the logistic equation xn+1 := 3.75xn(1− xn), n ≥ 0,
and the initial value x0 = 0.5 double precision floating-point and interval arith-
metic totally fail (no correct digit) after 30 iterations. Long interval arithmetic
still computes correct digits of a guaranteed enclosure after 2790 iterations.

Rafi Muhanna: Note also that nonlinear structural problems have been
successfuly solved and reported in: ICASP’11: Applications of Statistics and
Probability in Civil Engineering, Faber, Köhler and Nishijima (eds.), Taylor
& Francis Group, London (2011), with the title: “Interval finite elements for
nonlinear material problems.” Linear dynamic problems are addressed in: Modares,
M., Mullen, R., L. and Muhanna, R. L. “Natural Frequency of a Structure
with Bounded Uncertainty,” Journal of Engineering Mechanics, ASCE, Vol. 132,
No. 12, pp. 1363–1371, 2006.

Ronald Boisvert: Have you written your own interval arithmetic software in-
frastructure, or are you using tools developed elsewhere?

Rafi Muhanna: The results in this presentation are calculated using MATLAB
with the INTLAB toolbox.
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Jeffrey Fong: Log normal or normal distributions are not suitable for the mod-
eling of ultimate tensile strength data because they do not predict a minimum
strength. A 3-parameter Weibull distribution with a positive location parameter
is a better model for predicting a minimum strength. Do you have experience
using Weibull in interval finite elements?

Rafi Muhanna: In this work we did not model the material strength. The au-
thors have studied probability bounds using a 3-parameter Weibull distribution.
The results are not yet published.
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Abstract. One can reduce the uncertainty in the quality of an approxi-
mate solution of an ordinary differential equation (ODE) by implement-
ing methods which have a more rigorous error control strategy and which
deliver an approximate solution that is much more likely to satisfy the
expectations of the user. We have developed such a class of ODE meth-
ods as well as a collection of software tools that will deliver a piecewise
polynomial as the approximate solution and facilitate the investigation
of various aspects of the problem that are often of as much interest as
the approximate solution itself. We will introduce measures that can be
used to quantify the reliability of an approximate solution and discuss
how one can implement methods that, at some extra cost, can produce
very reliable approximate solutions and therefore significantly reduce the
uncertainty in the computed results.

Keywords: Numerical methods, initial value problems, ODEs, reliable
methods, defect control.

1 Introduction

In the numerical solution of ODEs, it is now possible to develop efficient tech-
niques that compute approximate solutions that are more convenient to interpret
and understand when used by practitioners who are interested in accurate and
reliable simulations of their mathematical models. When implementing numer-
ical methods for ODEs, there is inevitably a trade-off between efficiency and
reliability that must be considered and most methods that are widely used are
designed to provide reliable results most of the time. The methods we develop
in this paper are designed so that the resulting piecewise polynomial will sat-
isfy a perturbed ODE with an associated defect (or residual) that is reliably
controlled. We also show how these methods can be the basis for implement-
ing effective tools for visualizing an approximate solution, and for performing
key tasks such as sensitivity analysis, global error estimation and parameter fit-
ting. Software implementing this approach will be described for systems of IVPs,
BVPs, DDEs, and VIEs.
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Numerical results will be presented which quantify the improvement in re-
liability that can be expected with the methods we have developed. We will
also show an example of the use of a related software tool for estimation of the
underlying mathematical conditioning of a problem and the global error of the
approximate solution.

Consider an IVP defined by the system

y′ = f(x, y), y(a) = y0, on [a, b]. (1)

When approximating the solution of this problem, a numerical method will in-
troduce a partitioning a = x0 < x1 < · · · < xN = b and determine corresponding
discrete approximations y0, y1 · · · yN where yi ≈ y(xi). The number of and the
distribution of the meshpoints, xi, are determined adaptively as the method at-
tempts to satisfy an accuracy that is consistent with an accuracy parameter,
TOL, that is specified as part of the numerical problem associated with (1).

For many applications it is now recognized that an accurate discrete approxi-
mation is not enough and most numerical methods now provide an accurate ap-
proximation to the solution of (1) that can be evaluated at any value of x ∈ [a, b].
For a discussion of how this is done and how such methods are used see [10], [3]
and [7]. In particular Figures 1 and 2 show the advantage such a method has
when it is used to display (or visualize) the solution of an IVP. [Note that the
particular problem visualized here will be defined and investigated in more detail
in section 3.2.1.] These methods are often called continuous methods (in contrast
to the more traditional discrete methods discussed above). [This name can be
confusing as the approximate solution provided by a continuous method may not
produce an approximate solution S(x) that is in C0[a, b]. ] In this investigation
we will consider a class of numerical methods which produce a computeable ap-
proximation S(x) ≈ y(x) for any x ∈ [a, b] and where the reliability and accuracy
of such methods will be quantified in terms of how accurately and reliably S(x)
agrees with y(x).

In the next section we will introduce and justify a class of continuous explicit
Runge-Kutta methods (SDC-CRKs) that have a rigorously justified error control
strategy and are designed to be very reliable when applied to non-stiff IVPs. We
will introduce suitable measures that can be used to quantify the reliability of
the performance of a CRK method when applied to a particular problem. We
will then use these measures to assess the performance of three methods we have
implemented (of orders five, six and eight) on a standard collection of 25 non-stiff
test problems.

In the third section we will discuss how the approach we have introduced
for IVPs has been used to develop reliable CRK-based methods for bound-
ary value problems (BVPs), delay differential equations (DDEs) and Volterra
integro-differential equations (VIDES). We also discuss how these CRK method
can be used to develop effective software tools to investigate important proper-
ties of the problem and/or its approximate solution when the problem belongs to
one of these classes. As an example we will show how this approach can be used
to develop an effective technique to estimate the mathematical conditioning of
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Fig. 1. Visualizing the approximate solution using an accurate discrete approximation.
A standard solution plot of each component is displayed on the left while a phase plot
of y1(t) vs y2(t) is displayed on the right

0 5 10 15 20 25 30 35 40
0

20

40

60

80

100

120

10 20 30 40 50 60 70 80 90 100 110
2

4

6

8

10

12

14

16

18

20

22

Fig. 2. Visualizing the approximate solution using an accurate continuous approxima-
tion. A standard solution plot of each component is displayed on the left while a phase
plot of y1(t) vs y2(t) is displayed on the right

an IVP as well as an estimate of the global error of an approximate solution.
This technique will be illustrated by applying it to two problems.

In the final section we will make some general observations and discuss some
ongoing and future work that extends the techniques discussed in this paper to
other classes of problems.

2 Continuous Runge-Kutta Methods

A classical, explicit, pth-order, s-stage, discrete Runge-Kutta formula is defined
by the vectors (c1, c2, . . . cs), (w1, w2, . . . ws) and the lower triangular matrix
(ai,j), i = 1, 2 . . . s, j = 1, 2 . . . i − 1. When approximating the solution of (1),
after y0, y1, . . . yi−1 have been generated, the formula determines,
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yi = yi−1 + hi

s∑
j=1

ωjkj ,

where hi = xi − xi−1 and the jth stage is defined by,

kj = f(xi−1 + hicj , yi + hi

j−1∑
r=1

ajrkr).

Let zi(x) be the solution of the local IVP associated with the ith step,

z′i = f(x, zi(x)), zi(xi−1) = yi−1, for x ∈ [xi−1, xi].

A Continuous extension (CRK) of this discrete RK formula is determined by
adding (s̄ − s) additional stages on step i to obtain an order p approximation
for x ∈ (xi−1, xi)

ui(x) = yi−1 + hi

s̄∑
j=1

bj(
x− xi−1

hi
)kj ,

where bj(τ) is a polynomial of degree at least p and τ = x−xi−1

hi
.

The set of polynomials, [ui(x)]
N
i=1, define a piecewise polynomial U(x) for

x ∈ [a, b]. We consider U(x) to be the numerical solution generated by the
CRK method. The particular class of O(hp) extensions considered here, were
introduced in [4].They satisfy,

ui(x) = yi−1 + hi

s̄∑
j=1

bj(τ)kj = zi(x) +O(hp+1
i ).

U(x) ∈ C0[a, b] and will interpolate the underlying discrete RK values, yi,
if bj(1) = ωj for j = 1, 2 · · · s and bs+1(1) = bs+2(1) = · · · bs̄(1) = 0. If
k1 = f(xi−1, yi−1) and ks+1 = f(xi, yi), a similar set of constraints on the
d
d τ (bj(τ)) will ensure U ′(x) interpolates f(xi, yi), f(xi−1, yi−1) and therefore
U(x) ∈ C1[a, b]. All the CRK extensions we consider in this investigation are in
C1[a, b].

2.1 Defect Error Control for CRK Methods

When applied to (1) a CRK method will determine an approximate solution,
U(x). This approximate solution has a defect (or residual) defined by,

δ(x) = f(x, U(x)) − U ′(x). (2)

It can be shown (see [1] for details) that, for such a CRK and x ∈ (xi−1, xi)),

δ(x) = G(τ)hp
i +O(hp+1

i ),

G(τ) = q̃1(τ)F1 + q̃2(τ)F2 + · · ·+ q̃k(τ)Fk , (3)
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Table 1. Cost per step of the explicit SDC CRK formulas we have implemented

Formula p s s̄

SDC5 5 6 12

SDC6 6 7 15

SDC8 8 13 27

where k ≥ 1 depends on the particular CRK formula and the q̃′js are polynomials
in τ that depend only on the coefficients defining the CRK formula, while the
F ′
js are constants (elementary differentials) that depend only on the problem.
CRK Methods can be implemented to adjust hi in an attempt to ensure that

the maximum magnitude of δ(x) is bounded by TOL on each step (see [11] and
[2] for details). The quality of an approximate solution can then be described in
terms of the maximum value of ‖δ(x)‖/TOL. From (3) it is clear that, as hi → 0,
the defect will look like a linear combination of the q̃j(τ) over [xi−1, xi]. Then the
maximum defect will be easier to estimate if k = 1, in which case the maximum
should occur (as hi → 0) at τ = τ∗ where τ∗, is the location in [0, 1] of the
local maximum of q̃1(τ). In this case we call the defect control strategy Strict
Defect Control (SDC) and CRK methods that implement this strategy are
called SDC CRK methods. Figure 3 shows how the defect of an SDC method
has a consistent shape when applied to a typical non-stiff IVP. We will consider
only SDC extensions, ui(x),

SDC : ui(x) = yi−1 + hi

s̄∑
j=1

bj(τ)kj = zi(x) +O(hp+1
i ).

In the next section we will discuss how, for a given discrete RK formula, we can
identify a suitable continuous extension. SDC methods SDC5, SDC6 and SDC8
have been implemented at a cost per step that is given in table 1. We will report
on how well these methods are able to provide reliable and consistent control of
the size of the defect on non-stiff problems over a range of prescribed values of
TOL.

2.2 Optimal SDC Extensions of a Discrete RK Formula

For a particular discrete explicit RK formula, we generally have a family of
possible continuous extensions and we are interested in a continuous extension
with the lowest cost per step (the smallest value of s̄).

In selecting an optimal continuous extension, one should also attempt to avoid
potential difficulties which can arise. Each SDC extension satisfies,

δ(x) = q̃1(τ)F1h
p
i + (q̂1(τ)F̂1 + q̂2(τ)F̂2 + · · · · · · q̂k̂(τ)F̂k̂)h

p+1
i +O(hp+2

i )

and a particular extension might be inappropriate for two reasons,
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Fig. 3. Plot of scaled defect vs τ (ie. δ(τ )/δ(τ∗) vs τ ) for each step required to solve
a typical problem with SDC CRK6 and TOL = 10−6. Note that all components of the
defect have a similar ”shape” on each problem.

– q̃1(τ) may have a large maximum (It is straightforward to show that, for the
SDC extensions we are considering, q̃1(0) = q̃1(1) = 0 and its ‘average’ value
must be one, for τ ∈ (0, 1)).

– The q̂j(τ) may be large in magnitude relative to q̃1(τ) (and therefore hi

would have to be small before the estimate is justified). (That is, before
|hiq̂j(τ)| << |q̃1(τ)| .)

For each p we have identified a particular SDC-CRK that minimizes these dif-
ficulties and uses the fewest number of additional stages, s̄. Note that if |F1| is
zero or very small on isolated steps then the associated error control may still
be unreliable. Figure 4 shows plots of the polynomials q̃1(τ) and q̂j(τ), . . . q̂k̂(τ)
for the particular order 6 SDC extension we have chosen to implement.

2.3 Quantifying Reliability of a SDC Method

Consider two measures of reliability of a CRK method:

– How well does the Method control the maximum magnitude of the defect?
We can measure the ratio of the max defect to TOL on each step (DMAX)
and the fraction of steps where this ratio is greater than 1 (Frac-D).

– How well does the Estimate of the max defect reflect its true value? We can
measure both the ratio of the true maximum defect (on a successful step) to
its estimated value (R-Max) and the fraction of attempted steps where the
estimated maximum is within one percent of the true maximum (Frac-G).

We will use these measures of reliability to demonstrate that SDC error control
significantly reduces the uncertainty of approximate solutions to ODE problems.
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Fig. 4. Plots of q̃1 and q̂2 · · · q̂7 for SDC CRK6. q̃1 is represented by the solid line and
has the highest magnitude

We have implemented SDC RK methods of orders five, six and eight (SDC5,
SDC6 and SDC8) and have run each of these methods on the 25 IVP test prob-
lems of DETEST [6] (all non-stiff), at 9 tolerances from 10−1 to 10−9. The
performance of the methods on the 25 test problems on a subset of the toler-
ances is summarized in Table 2, where we report the above reliability measures,
the total number of steps (NSTP) and the total number of function evaluations
(NFCN) for all the problems.

Table 2. Numerical Results for SDC CRKs on the 25 problems of DETEST

TOL CRK NSTP NFCN DMAX Frac-D R-Max Frac-G

SDC5 625 11709 0.97 .000 1.05 .67
10−2 SDC6 549 12300 1.00 .000 1.43 .71

SDC8 333 12793 1.01 .003 1.65 .35

SDC5 1065 19033 1.01 .001 1.12 .78
10−4 SDC6 931 19819 1.00 .001 1.08 .87

SDC8 465 17319 1.05 .004 1.47 .45

SDC5 2099 35703 1.01 .002 1.08 .86
10−6 SDC6 1748 35073 1.01 .001 1.08 .96

SDC8 712 26253 1.02 .001 1.34 .59

SDC5 4566 66937 1.01 .001 1.07 .95
10−8 SDC6 3547 65148 1.01 .001 1.07 .98

SDC8 1081 38251 1.12 .007 2.60 .62

3 SDC RK Methods for Other Classes of ODEs

In addition to reliable methods for IVPs, we have developed (or are actively
developing) effective and very reliable SDC methods for other important classes
of differential equations. These include,
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– BVPs ( [5]):
y′ = f(x, y), x ∈ [a, b],

with
g(y(a), y(b)) = 0, g : �n ×�n → �n.

– DDEs (both retarded and neutral problems) ( [12]):

y′ = f(x, y(x), y(x− σ1) · · · y(x− σk), y
′(x− σk+1),

· · · y′(x − σk+�)), for x ∈ [a, b],

where y(x) ∈ �n and,
y(x) = φ(x), y′(x) = φ′(x), for x ≤ a,

σi ≡ σi(x, y(x)) ≥ 0 for i = 1, 2 · · ·k + �.

– VIDEs (with a time dependent delay) ( [9]):

y′(x) = f(x, y(x)) +

∫ x

x−σ(x)

K(x, s, y(s), y′(s))ds, (4)

for x ∈ [a, b], f : � × �n → �n and K : � × � × �n × �n → �n and
y(x) = φ(x) for x ≤ a.

For each Class of ODEs we are not only interested in providing effective SDC
methods to approximate the solution of the ODE, but we are also developing
effective software tools to investigating important properties of the problem and
its approximate solution. For example:

– Detecting, Locating and Coping with Discontinuous Problems
– Estimating the Global Error and the Mathematical Conditioning of the Prob-

lem
– Computing a sensitivity analysis of the solution (eg., ∂yi(x)

∂pj
).

– Solving Problems which depend on parameters and parameter determina-
tion.

3.1 Global Error Estimates and Condition Number of an IVP

Assume y(x) satisfies (1) and the computed approximate solution U(x) satisfies
(from (2)) the perturbed IVP,

U ′ = f(x, U)− δ(x), U(x0) = y0 on [a, b], with ‖δ(x)‖ ≤ TOL.

Let ε(x) = y(x)−U(x). From the variation of constants formula, (see for example
[8]), one can show,

‖ε(x)‖ ≤ K(x) TOL,

where K(x) reflects the sensitivity of y(x) to perturbations. Then

K̄ ≡ max
x∈[a,b]

K(x),
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can be viewed as the condition number of this IVP. From the definition of K̄ we
can determine a lower bound, K̂,

K̂ ≡ max
x∈[a,b]

‖ε(x)‖/TOL.

If we compute an accurate approximation E(x), to ε(x), (and the inequality
‖δ(x)‖ ≤ TOL is almost sharp), then an effective estimate of the conditioning
of the IVP is,

K̃ ≡ max
x∈[a,b]

‖E(x)‖/TOL. (5)

We know that, ε(x) = y(x) − U(x), is the exact solution of the IVP,

ε′ = f(x, y)− f(x, U)− δ(x),

= f(x, U(x) + ε(x)) − f(x, U)− δ(x),

= f(x, U(x) + ε(x)) − U ′(x),
≡ g(x, ε).

Therefore if we solve this ’companion’ IVP using the same SDC method used to
determine U(x), we can determine an inexpensive estimate E(x) of the global
error and use this to obtain (from (5)) an estimate of the conditioning of the
IVP. Note that this computed E(x) will satisfy the IVP,

E′ = g(x,E) + δ2(x), where ‖δ2(x)‖ ≤ TOL2.

We can also use this estimate of the global error to improve the accuracy of the
numerical solution since U1(x) = U(x) + E(x) satisfies the perturbed IVP:

U ′
1(x) = U ′(x) + E′(x),

= f(x, U) + δ(x) + g(x,E) + δ2(x),

= f(x, U) + δ(x) + f(x, U(x) + E(x)) − U ′(x) + δ2(x),

= f(x, U(x) + E(x)) + δ2(x),

= f(x, U1(x)) + δ2(x),

where ‖δ2(x)‖ ≤ TOL2 and TOL2 can be determined by sampling ‖δ2(τ∗)‖ on
each step.

3.2 Two Sample Problems

Predator – Prey Problem:.
This is a well known system that models (over time) the populations of two
computing species in an isolated environment. It is a well conditioned problem.

y′1 = y1 − 0.1y1y2 + 0.02x,

y′2 = −y2 + 0.02y1y2 + 0.008x,

with y1(0) = 30, y2(0) = 20, and x ∈ [0, 4].
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Lorenz Problem:
This is a standard example often cited in the literature on dynamical systems
as a system which can exhibit chaotic behaviour. The condition number is ex-
ponential in the length of the integration interval.

y′1 = 10(y2 − y1),

y′2 = y1(28− y3)− y2,

y′3 = y1y2 −
8

3
y3,

with y1(0) = 15, y2(0) = 15, y3(0) = 36, and x ∈ [0, 15].

For each method we monitor performance on these problems over a range of
tolerances and report, in Table 3 and Table 4, the following:

– NS – The number of steps to determine U(x).
– NSE – The number of steps to determine E(x).
– DEFUM – The maximum magnitude of the defect δ(x), (associated with

U(x)), in units of TOL. This is determined by evaluating the defect at several
sample points per step.

– G-ERRM – The maximum global error associated with U(x) in units of
TOL. This is determined by computing the true global error at 100 sample
points per step.

– K-ESTM – The estimate of the conditioning corresponding to the maximum
observed value of ‖E(x)‖/TOL measured over 100 sample values per step.

– DEFEM – The maximum magnitude of the defect δ2(x), (associated with
E(x) ), in units of TOL.

– GE(U+E) – The The maximum global error associated with the improved
solution U(x) + E(x) in units of TOL.

4 Observations and Future Work

The results presented in Table 2 demonstrate the strong reliability of the SDC
IVP methods we have implemented. In particular these tables show, that over a
wide range of non-stiff problems and accuracy requests, the computed approx-
imate solution will almost always satisfy a perturbed ODE with the norm of
the perturbation bounded by the requested accuracy parameter, TOL. Further-
more, our analysis in the previous section shows that, as a result of this strong
reliability property, the maximum global error will be proportional to the tol-
erance and the proportionality constant will be insensitive to the order of the
SDC method. The results reported in Table 3 and Table 4 confirm that this is
true for our two test problems. This allows us to implement and justify a rigor-
ous and inexpensive measure of the underlying mathematical conditioning. For
example, in the case of the Lorenz problem, which is known to be badly condi-
tioned, Table 4 shows, that in order to compute an approximate solution with an
accuracy of two significant figures, one must specify a value for TOL that is less
than 10−7.
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Table 3. Reliability of Error Control and Validity of the Estimate of Conditioning for
SDC on the pred-prey problem

Method TOL : 10−2 10−4 10−6 10−8

SDC5: NS 70 148 315 705
NSE 147 307 644 1412

DEFUM 1.8 1.1 1.2 1.2
G-ERRM 3.7 7.3 11.4 14.4
K-ESTM 3.7 7.3 11.4 14.6
DEFEM .009 .009 .011 .034

GE(U+E) .002 .009 .004 .041

SDC6: NS 65 134 277 585
NSE 132 265 551 1168

DEFUM 1.3 1.0 1.0 1.2
G-ERRM 2.2 4.6 2.5 3.5
K-ESTM 2.2 4.6 2.5 3.6
DEFEM .009 .005 .007 .013

GE(U+E) .0006 .001 .001 .008

SDC8: NS 34 53 83 127
NSE 65 104 177 262

DEFUM 1.3 1.1 0.9 2.1
G-ERRM 9.5 6.1 6.1 14.4
K-ESTM 9.5 6.1 6.1 13.9
DEFEM .012 .010 .018 1.9

GE(U+E) .0009 .002 .003 2.0

It must be acknowledged that the analysis and methods developed in this
paper apply to the usual case where truncation error of the RK formulas domi-
nates the affects of rounding errors when approximating the solution of an ODE.
If one is interested in satisfying severe accuracy requirements and using a high
order SDC method then round-off error can become significant and reduce the
reliability of the computed results. In such cases, an SDC method can (at a small
amount of extra work) detect that the defect estimates are adversly affected by
round-off error (see [4] for details) and signal that this is the case. The remedy,
in this case, would be to use higher precision (if it is available) or to use a lower
order SDC method which is not as sensitive to round-off errors.

The SDC methods investigated in this paper are suitable for non-stiff prob-
lems. We are currently implementing and testing continuous extensions of im-
plicit RK methods that could be suitable for stiff problems. The derivation of
these extensions is straightforward, but the development of an effective adaptive
stepsize control strategy for stiff problems remains a challenge. We are con-
sidering some alternative techniques related to defect control for use on these
problems. We are also considering how to best develop accurate continuous ex-
tensions and reliable defect control for multistep methods.
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Table 4. Reliability of Error Control and Validity of the Estimate of Conditioning for
SDC on the Lorenz problem

Method TOL : 10−2 10−4 10−6 10−8

SDC5: NS 356 751 1738 4304
NSE 834 1591 3470 4306

DEFUM 1.3 1.4 1.4 1.4
G-ERRM 4.4·103 1.9·105 1.9·105 1.8·106
K-ESTM 4.6·103 1.9·105 1.9·105 1.9·106
DEFEM .016 .018 .020 .14

GE(U+E) .47·103 .50·102 .17·103 .68·104
SDC6: NS 316 642 1339 2865

NSE 731 1326 2678 2865
DEFUM 1.4 1.3 1.3 1.2
G-ERRM 4.2·103 2.8·105 1.5·105 1.5·105
K-ESTM 4.2·103 2.8·105 1.5·105 1.3·105
DEFEM .011 .011 .004 .20

GE(U+E) .29·103 .31·103 .32·103 .20·105
SDC8: NS 145 228 371 634

NSE 292 454 803 1349
DEFUM 1.3 1.4 1.6 1.4
G-ERRM 5.5·103 .16·105 .14·105 .20·105
K-ESTM 5.5·103 .16·105 .15·105 .70·105
DEFEM .013 .003 .076 9.0

GE(U+E) .70·102 .82·101 .42·103 .48·105
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Discussion

Speaker: Wayne Enright

Bill Oberkampf: Is the advantage of continuous Runge-Kutta methods over
traditional Runge-Kutta methods that you can relax the assumption on the
solution from C1 to C0?

Wayne Enright: No. If the solution is not not differentiable at x̄ ∈ [a, b] then,
for any numerical method to be effective, it must locate all such points and
force these points to be meshpoints. This can be done automatically by CRK
method which detect such points by observing sudden increases in the magni-
tude of the defect. The main advantage of CRK methods is that they provide
accurate approximations to the solution for any value of x ∈ [a, b], (not just at
the meshpoints, xi ).

The term continuous Runge Kutta method can be misleading. It would per-
haps be better to refer to this class of Runge Kutta methods as continuous-
output Runge Kutta methods (CORK), or dense-output Runge Kutta methods
(DORK).

Van Snyder: Can the ideas underlying continuous Runge-Kutta methods be
applied to Adams method?

Wayne Enright: This is an extension that we have thought about for some
time. The main difficulty in extending the approach is that, for the most natural
piecewise polynomial approximations, the associated defect would depend on
past stepsizes as well as on the current stepsizes. This would make it particularly
challenging to define local interpolants that permit an asymptotically correct
estimate of the maximum defect.



Uncertainties in Predictions of Material

Performance Using Experimental Data That Is
Only Distantly Related to the System of Interest

Wayne E. King1, Athanasios Arsenlis1, Charles Tong2,
and William L. Oberkampf3

1 Physical and Life Sciences Directorate
2 Computations Directorate

Lawrence Livermore National Laboratory
Livermore, CA, USA

{weking,arsenlis,tong10}@llnl.gov
3 Consulting Engineer
Georgetown, TX, USA

wloconsulting@gmail.com

Abstract. There is a need for predictive material “aging” models in
the nuclear energy industry, where applications include life extension of
existing reactors, the development of high burnup fuels, and dry cask
storage of used nuclear fuel. These problems require extrapolating from
the validation domain, where there is available experimental data, to
the application domain, where there is little or no experimental data.
The need for predictive material aging models will drive the need for
associated assessments of the uncertainties in the predictions. Methods
to quantify uncertainties in model predictions, using experimental data
that is only distantly related to the application domain, are discussed in
this paper.

Keywords: uncertainty quantification, model form uncertainty, model
uncertainty, nuclear energy, neutron damage, ion damage, irradiation
effects scaling, extrapolation.

1 Introduction

There is a growing need to make predictions of material performance in extreme
environments and over very long periods of time where there is little or no
experimental data. This is particularly the case in the prediction of the effects
of “aging” on material performance where desired material lifetimes can exceed
by a large margin what is practical for validation under normal application
conditions. In large, complex engineering systems, the costs are often too high
and/or the times too long to carry out desired validation experiments under
actual operating conditions. In the case of aging, the required extrapolations
can be orders of magnitude beyond the validation domain.
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Further, model development can require reliance on accelerated experiments.
Experiments can be accelerated by changing temperature to take advantage of
Arrhenius behavior or the rate of application of the experimental forcing function
can be increased. Results from accelerated experiments, which are also outside of
the application domain, require extrapolation, perhaps over orders of magnitude
in rate, to the actual operating conditions, by way of a model.

The need for predictive models is particularly acute in the nuclear energy
industry, where applications include (i) the desire for life extension of existing
reactors to 80 years, (ii) the development of high burnup fuels, and (iii) the
imperative for dry cask storage possibly to hundreds of years.

The nuclear materials community has adopted an experimental strategy in-
volving experiments that are not conducted in commercial power plants. The
nuclear industry and regulators require a “sound and defensible case for the
relevance of these techniques to actual service conditions” [1]. This implies
the ability (i) to make predictions across diverse irradiation energy spectra, irra-
diation rates, and irradiating particles including thermal neutrons, fast neutrons,
and energetic ions, (ii) to scale the prediction to the relevant reactor conditions,
and (iii) then to extrapolate to the application domain of interest.

Predictions are most useful in the presence of quantified uncertainties. In an en-
gineered system, high uncertainty can lead to excessive conservatism and thus nec-
essarily increased margins, which can adversely affect cost, schedule, and system
performance. Thus, in addition to the predictive model, estimates of uncertainties
in predictions are also required. Uncertainty quantification (UQ) provides a frame-
workwithin which uncertainties for predictions can be estimated. The case that we
are interested in here is uncertainties due to prediction in domains where there is
little or no experimental data. This is generally referred to asmodel extrapolation.

Extrapolations using physics-based models differ from extrapolations using
regression curve fits of the system responses quantities of interest. When making
an assessment of uncertainties, there are several sources that must be considered,
including model inputs and numerical solution approximation. When making an
extrapolation using a model, the assumptions associated with the mathematical
model itself result in a source of uncertainty usually referred to as model form
uncertainty1, and it must also be considered [2,3]. The inclusion of model form
uncertainty represents a specialized field within UQ [3]. Approaches to dealing
with uncertainties in model inputs are well established and can be implemented.
The approach to uncertainties associated with model form is less well established,
particularly for cases where models are assessed in a validation domain that does
not fully overlap or overlap at all with the intended application domain.

In this paper, we discuss a predictive modeling problem in the nuclear energy
area that requires large extrapolation. We also review possible approaches to the
extrapolation problem. Throughout, we focus on the special case of predictions
of models validated with experimental data that are only distantly related to
the system of interest.

1 Model form uncertainty is referred to as model uncertainty, model bias, or structural
uncertainty.
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2 Background

2.1 Accelerated Experimentation for Nuclear Energy Materials
Applications [4]

The nuclear industry needs models that predict the time dependence of mi-
crostructural and fission product evolution in structural materials and fuels.
The most challenging extreme environment to study is that of high irradiation
dose. Models developed to address this extreme are difficult to validate because
of the inability to reach these doses using existing neutron-irradiation facilities
in reasonable amounts of time and at modest costs. Furthermore, reactor facil-
ities are problematic experimental venues for combining the various aspects of
the extreme environments into a quantitative in situ study of material behavior.

Understanding radiation damage using ion irradiation is not a new idea. It
has a long history of significant contributions spanning several decades. In fact,
much of our understanding of material behavior under irradiation comes from
well-controlled ion-irradiation experiments.

However, a key challenge is the scaling, or extension, of ion irradiation exper-
iments and data to actual in-service conditions. Fig. 1 illustrates the particular
case of scaling and extrapolation for the damage rate parameter. Scaling refers
to use of models to bridge two unconnected validation domains. Extrapolation
refers to the use of models to project into an application domain where there
is no experimental data. The plot shows the range of damage expected for ad-
vanced reactors, GEN IV reactors, GEN III reactors, and light water reactors
(LWRs). The plot further shows the damage levels that could be obtained in
a 5-year irradiation experiment in a number of test reactors and the damage
levels that could be obtained by ion irradiation in 5 days [5]. Consequently, a
scientifically defensible argument for the applicability of models developed using
accelerated experiments to neutron irradiation environments is critically needed.
This should include rate scaling, effects of recoil energy spectra, and the ability
to extrapolate to dose regimes not explored by neutrons. This irradiation-effects
scaling is identified as a priority research direction in the Science for Energy
Technology Workshop Report [1]. By definition, models developed for materi-
als under neutron irradiation conditions at the extreme of high irradiation dose
cannot be validated because little or no neutron irradiation data exists in that
domain. Consequently, UQ will be particularly important in dose regimes that
have not been explored using neutrons.

2.2 Other Relevant Science and Technology Application Areas

“Aging” of materials for nuclear energy applications is not the only area requir-
ing scaling across and extrapolation outside of the validation domains. Fusion
energy applications have a similar problem. In fusion machines, materials that
can withstand very high levels of radiation damage are required. Without a
fusion-relevant neutron source, the fusion materials community has adopted a
research strategy similar to the fission community.
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Fig. 1. Plot of radiation damage, measured in displacements per atom (dpa), as a
function of the rate at which the damage is produced [5]

Uncertainty in the calculation of the depletion of nuclear fuels is composed
of a number of individual components. Some of these include uncertainty in the
cross section at a given neutron energy, uncertainty in core composition and
other externally driven parameters such as power level and temperatures, and
model approximations made to accommodate computer modeling capabilities.

These uncertainties will affect the prediction of the evolution of the fuel iso-
topic components in time. The isotopic component distribution at any given
time represents the integration of the depletion conditions and uncertainties
over all previous time. This effect can compound the effects of uncertainty or
approximation. This compounding effect may also be limited by compensating
effects. A common figure of merit for depletion is the energy extraction per mass
of fuel, which is quantified as giga-watt-days per metric tonne of initial heavy
metal (GWD/t). Present commercial fuel is depleted to about 60 GWD/t and
the effects of uncertainties are well benchmarked for this range of operation. Ad-
vanced fuels may go beyond today’s 60 GWd/t burnup. To operate outside the
range of experience will require identifying the compounding effects for a given
fuel type at a specific higher burnup so that they can be applied to the known
uncertainties derived from inside the benchmarked region.

The effects of aging of materials are also of interest in both intermediate and
long-term storage of nuclear waste. Analyses of the possible behavior of radioac-
tive waste in a repository at Yucca Mountain (YM), Nevada, were conducted
between 1982 and 2008. Early analyses (termed performance assessments or PAs)
were for selecting the site and determining the feasibility of the disposal con-
cept. Numerous parameter values for the numerical models were required and
were mostly assigned by individual analysts and scientists for the early analy-
ses. However, in 1987, Congress asked the YM Project (YMP) to evaluate the
viability of a repository at YM [6]. For this viability assessment (PA-VA), the
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YMP formed five panels to examine: (1) groundwater flow in the unsaturated
zone, (2) groundwater flow and radionuclide transport in the saturated zone, (3)
the near-field effects of heat on the region around the engineered barrier system,
(4) waste form degradation, and (5) waste package (WP) degradation. These
five panels assigned parameter values by aggregating disparate data available
in the literature, prior to completion of project experiments, and estimated the
uncertainty present as literature-based information was often for conditions and
spatial and temporal scales that differed from those required for the PA-VA.
The analysis underlying the license application for the Yucca Mountain repos-
itory in 2008 [7] considered a total of 392 uncertain analysis inputs (see Ref.
[8], Table K3-3, for a complete listing of these inputs and additional sources of
detailed information). The Waste Isolation Pilot Plant (WIPP), a repository for
transuranic radioactive waste in southern New Mexico, also had similar needs
[9,10,11].

Another closely related application is the Qualification Alternatives to the
Sandia Pulsed Reactor (QASPR) project at Sandia National Laboratories [12,13].
In this case, pulsed ion beams are being used to understand radiation effects in
semiconducting materials. The challenge is to extrapolate those results to the
relevant pulsed neutron environment in the absence of a relevant neutron source.

There is a related field known as accelerated testing. Accelerated tests are
used to obtain timely information on product-life or performance degradation
over time [14]. Ref. [15] provides a comprehensive discussion of useful models and
statistical methods for accelerated testing. Ideally, predictions from accelerated
tests should be based on models of physics of failure. In practice, however, users
of accelerated tests often use a combination of past experience and empirical
fitting of data to statistical models. Although these procedures seem to have
been adequate in the past, it is generally recognized that the path forward for
large extrapolations must be based on physics-based modeling.

2.3 The Problem Recast in More General Terms

One of the goals of UQ is to provide a means to evaluate a model’s predictive
capability. Fig. 2(a) schematically illustrates the synergistic use of modeling, ex-
periments, and UQ to make a prediction [3]. In this case, the system response
quantity of interest is shown as a function of two system or environmental pa-
rameters. The application domain is highlighted in light brown, is the range of
parameters #1 and #2 that are of interest in the application. The validation
domain, highlighted in burgundy, is the range of parameters #1 and #2 where
validation experimentation are carried out. The response surface is also shown
with the application domain highlighted. In this example, the validation domain
fully contains the application domain and predictions could be obtained through
various types of interpolation over the validation domain. Likewise, uncertain-
ties in predictions could be quantified by interpolation of uncertainties over the
validation domain, or by direct calculation using the input uncertainties in the
model.
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Fig. 2. Possible relations of the validation domain to the application domain. (a) Com-
plete overlap and (b) no overlap [3]

One of the main reasons why we rely on modeling and simulation is to make
predictions in domains where there is little or no experimental or observational
data. Fig. 2(b) shows the situation where the application domain is no longer
within the validation domain and there is no overlap of the application domain
with the validation domain. While there is a clear path to quantify uncertainties
in a prediction when the application domain is inside the validation domain,
the approach to quantifying uncertainties for the case shown in Fig. 2(b) is less
clear.

Although Fig. 2 is illustrative, it fails to capture the complexity inherent in
today’s multiphysics simulations. Another view of the extrapolation issue is given
in Fig. 3, which illustrates the validation hierarchy for a complex engineering
system model [16]. At each level of the hierarchy, the problem is broken down
into smaller and smaller pieces until it is reduced to the unit problem (or unit
mechanism) level. This is a more physics-based, or system-based, perspective
than in Fig. 2. Each box at the unit problem level contains individual physics
models that can be validated using targeted experiments that may not be in the
same conditions as would apply to the next higher level in the hierarchy. At each
higher level, the individual effects are brought together forming coupled physics
and coupled subsystems and systems interactions.

In the case of small extrapolations, we would expect this physics-based
approach to enable extrapolation of uncertainties, including model form un-
certainty, to the application domain. However, for large extrapolations, it is
possible that new physics could appear at higher levels, or that unexpected cou-
pling could emerge at the higher levels. These possibilities are present in the
nuclear materials aging problem, where (i) scaling is required across diverse ir-
radiation energy spectra, irradiation rates, and irradiating particles and (ii) large
extrapolation is required to the application domain. Extrapolation of uncertainty
includes both (a) extrapolation to the application domains where there is little
or no experimental data, Fig. 2, and (b) effects present in higher levels of system
complexity in the validation hierarchy, Fig. 3, that are not anticipated in the
modeling [17].
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2.4 Prediction-Coupling of Accelerated Experiments with Physics
Models [4]

It takes a long time to develop a new material or investigate the properties
of materials that undergo low-dose-rate irradiation, such as the pressure vessel
or core internals including the fuel and cladding. Experiments using neutron
irradiation can take up to 7 years, including the irradiation time, the radioactive
cool-down time, and the post-irradiation examination. Incorporating the effects
of high temperature, stresses and a corrosive environment along with irradiation
make the problemmultidimensional and extremely complicated. Translating that
into a program to satisfy a regulatory requirement for a new material or new
fuel design can lead to a multi-decadal process. Such a timescale is unacceptable
to efficient progress, and yet, it is the present-day norm.

One pathway to accelerate this process is to carry out accelerated experiments
either inside the reactor core (in the case of the low-dose-rate regimes for the
pressure vessel) or using external radiation sources such as ion beams (in the
case of core internals that would see high neutron doses over their lifetimes).
Using ion beams, one can investigate a large parameter space (in terms of ex-
ternal forcing functions) for irradiation effects on microstructure and macroscale
properties. The phase space includes temperature, ion type, ion dose rate, ion
energy, and total dose. It also includes the ability to apply in situ mechanical
loading, chemical environments, and coolant fluids.
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In some special cases, it is possible to create microstructures and material
properties that are very similar to those that would be found in a particular
nuclear reactor irradiation experiment. However, microstructures, mechanical
properties, or other physical properties that deviate from neutron irradiations
significantly, will also be observed. The challenge is to employ all of those obser-
vations to develop a science-based understanding of material degradation and
performance, specifically, to establish a scientific basis for the key mechanisms
of material performance.

The best approach to quantifying such scientific understanding is to build
a model that captures all of the relevant physics, which is where modeling and
simulation come into play. One seeks to understand the ion-beam forcing function
and the material response to that forcing function. With that understanding, if
a different boundary condition was applied (in terms of say temperature, ion
type, or dose rate), it is reasonable to expect to be able to predict the material
response. That is, one could have sufficient confidence that, with this robust
model, interpolation and reproduction of an experimental result is possible.

The question then becomes: How does one extrapolate, given a model, to high-
dose neutron-irradiation environments? Compared with ion irradiations, neutron
dpa rates are much, much lower (∼ 102−103 lower). In addition, physical mecha-
nisms, such as transmutation and chemistry changes, occur simultaneously with
the neutron bombardment and displacements in a material. With a robust model,
the boundary conditions can be altered, while not perturbing any of the model
internals, and an extrapolation can be made to project material performance
to the neutron-irradiation environment. To make that extrapolation, researchers
must also quantify the quality or accuracy of the extrapolation. This forward
extrapolation and the qualification of the quality of the predicted extrapolation
is where uncertainty quantification becomes important.

3 Approaches to Extrapolation of Uncertainty

3.1 Calibrate Model Parameters over the Validation Domain and
Ignore Model Form Uncertainty

This approach uses the physics model as it is (assuming no model form uncer-
tainties) together with available experimental data for validation and calibra-
tion (given a number of model input parameters). The posterior distributions
of the calibration parameters are then used in forward uncertainty propagation
(through the computational model) to predict the extrapolated configuration and
to estimate the corresponding uncertainties. To speed up calibration, response
surface or surrogate modeling using Gaussian process, polynomial regression or
polynomial chaos is often used. This approach has the inherent assumption that
the computational model has captured all essential physics (except that there
are uncertainties about some physics parameters that can be estimated using
data) and the surrogate models are adequate for the extrapolated regime.

A simple example of this method is shown in Fig. 4, where a prediction and an
associated uncertainty are required for the time required for an object to drop
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Fig. 4. A simple UQ example using experimental data and a computational model to
predict drop times from new heights [18]

from yet unconstructed floors of a building [18]. Measurements are made of the
time to drop the object from the first six floors and a model is constructed. Using
the available experimental data from the drops, a Bayesian inference method-
ology is used to update/calibrate the uncertain input parameters in the model.
Once the model is calibrated it is then used for prediction outside the calibration
range. This is the most commonly used form of extrapolation: the model form
uncertainty is assumed to be zero.

Continuing with the example in Fig. 4, when comparing the model against
experimental data, systematic errors are observed which cannot be resolved sat-
isfactorily by calibration. Model bias (or discrepancy) and its dependence on the
drop height are evident. As shown in Fig. 5, an extrapolation would have led to
a predicted time and uncertainty that, in fact, would not have predicted what
would have been observed had an experiment been carried out. This illustrates
that in this case, as in many others, the model form uncertainty can dominate
the extrapolated uncertainties. The experiments revealed the presence of physics
that was not accounted for in the original model.



Uncertainties in Predictions of Material Performance 303

2 4 6 8 10

1

2

3

4

5

6

7

Drop height (floor)

D
ro

p 
tim

e

Extrapolation:
Neglecting model form uncertainty results 
in an extrapolation of the model and the 
uncertainty that does not intersect the 
experimental data.

Fig. 5. The impact of ignoring model form uncertainty on the extrapolation and un-
certainties [18]

3.2 Calibrate Parameters and Identify a Discrepancy Function to
Characterize Model Inadequacy

This approach explicitly assumes a functional form for the discrepancy between
the simulation and the actual physical process. The full method estimates from
data simultaneously both the posteriors for the calibration parameters as well as
the parameters in the discrepancy function. Some simplifications were suggested
to reduce the complexity of the estimation process (see [19] for details). This
approach assumes both the functional forms of the simulation model and the
discrepancy stay the same in the extrapolated regime.

Kennedy and O’Hagan proposed a Bayesian approach that represents the
model form uncertainty using a discrepancy function (in terms of some input
parameters) to characterize model inadequacy [19]. This discrepancy function
is created using experimental data as well as a selected regression or statistical
emulator such as Gaussian process. Predictions are performed by incorporating
the discrepancy function evaluated at the extrapolated points, in addition to
the uncertainty due in posterior distributions of the calibrated parameters. This
approach has the inherent assumption that the discrepancy function essentially
captures the misrepresented physics.

In their approach, the system is modeled by

z = ζ(x) + e = ρη(x,θ) + δ(x) + e (1)

where x is a vector of input parameters; θ is a vector of calibration parame-
ters; η(x,θ) denotes the function for the simulation model; z is the observation;
e is the observation error (independent normal distribution); ζ(x) is the true
value of the process being modeled; ρ is an unknown regression parameter to
be determined; and δ(x) is a function to describe model inadequacy, which is
independent of η(x,θ).

The full Bayesian calibration of this system is very complicated. Instead,
Kennedy and O’Hagan proposed a multi-step approach:

– Build a Gaussian process model for η(x,θ) based on sampling different values
of x and θ (that is, to estimate the “hyper-parameters” used to describe a
Gaussian process model).
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– Use data ({z}) to estimate the regression parameter ρ; the standard deviation
of the observation error e; the hyper-parameters in the Gaussian process
model of the model inadequacy function δ(x).

– Use the data ({z}) and the model (z = ρη(x,θ) + δ(x) + e) for calibration
to get the posterior distribution of θ.

– Use the model (z = ρη(x,θ)+δ(x)+e) and the posteriors of θ for prediction
and uncertainty analysis.

Model inadequacy is defined as “the difference between the true mean value of
the real world process and the code output at the true value of the inputs” [19].
There is debate across the field regarding the use of this definition of model
inadequacy to describe the difference between a simulation and an experiment
(see Sects. 2.2.3, 2.4, and Sects. 12.1-12.3 in [3].

This method is suitable if there is (a) sufficient experimental data from dif-
ferent input parameter configurations to characterize the discrepancy function,
(b) reason to believe that the assumption concerning the discrepancy functional
form will be valid in the extrapolation regime, and (c) that the discrepancy
function is more significant than the observation error.

An alternative approach is where the candidate response surface methods for
η(x,θ) in Eq. (1) and the discrepancy functions are based on generalized poly-
nomial chaos (or stochastic collocation) methods [20]. The advantages of polyno-
mial chaos UQ methods are their efficiency and their utility for representing and
propagating large uncertainties through complex models [21]. Both intrusive and
non-intrusive applications of the polynomial chaos method are reviewed in [21].

This method is suitable if there is sufficient experimental evidence that the
discrepancy function has polynomial form in the input parameters, and that this
form will also be valid in the extrapolation regime. Moreover, another require-
ment is that the discrepancy function be more significant than the observation
error.

3.3 Validation Metric Approach [2,3]

Oberkampf and Roy argue that model form uncertainty should be estimated
as part of the process of model validation. They estimate the model form un-
certainty in the validation domain using a validation metric which they define
as “a mathematical operator that requires two inputs: the experimental mea-
surements of the system response quantities of interest and the prediction of
the system response quantities at the conditions used in the experimental mea-
surements” [2]. Oberkampf and Roy in Sects. 13.2, 13.4, and 13.5 of [3] and in
[22], describe two validation metrics: the confidence interval approach and the
method of comparing cumulative distribution functions (CDFs) from the model
and the experiment. In the confidence interval approach, they define the valida-
tion metric for model form uncertainty as the difference between the mean of
model prediction and the estimated mean of the experimental data. In the CDF
method, the validation metric is defined as the area between the experimental
and simulation CDFs.
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Once a validation metric is estimated over the validation domain, the criti-
cal issue is how this error structure should be extrapolated to the application
conditions of interest. One simple method for extrapolation is to construct a
regression fit of the error structure over the validation domain using a low de-
gree polynomial function [2,3,22]. The regression function is then evaluated at
the application conditions, along with the statistical prediction interval at those
conditions. The estimate of the model form uncertainty is increased by the pre-
diction interval not only because of the imprecision of the regression function
to fully represent the model form uncertainty, but also because of the random
measurement uncertainty that is present in each experimental measurement. A
level of statistical confidence is chosen for the prediction interval, say 90 or 95%,
and the upper bound on the prediction interval is used as the estimate of the
model form uncertainty at the application conditions of interest.

This estimated model form uncertainty is considered as an epistemic uncer-
tainty, i.e., an uncertainty whose source is lack of knowledge as opposed to
randomness, for the prediction of the system response quantities of interest at
the application conditions. It has been found [2,3,22] that even if the model
form uncertainty is relatively small over the validation domain, but the mag-
nitude of the extrapolation is large in the multi-dimensional input space over
which data are available, the estimate of model form uncertainty is typically
quite large at the application conditions of interest. The model form uncertainty
is clearly represented to the user of the simulation results, e.g., a designer or
decision maker, as a probability-box, or p-box. The p-box is an interval-valued
CDF, where the range of possible probabilities of the system response quantity
reflects the epistemic uncertainty due to the model form.

3.4 Method of Alternate Plausible Models [3]

An approach for assessing uncertainty, both model form uncertainty and para-
metric uncertainty, is to compare predictions from alternative plausible models.
This method is also referred to as the method of competing models. While simple
in concept, it is not commonly used because of the time and expense of devel-
oping multiple models for a system. Examples of applications of this method
include hurricane forecasting (Fig. 6) (e.g., see [23,24]), climate prediction, and
long-term storage of nuclear waste.

The approach requires multiple models developed by independent groups.
This approach does not actually provide an estimate of model form uncertainty;
it only provides an indication of the similar or dissimilar nature of each model
prediction. Because of the cost and time involved, this approach will likely be
limited to application in matters of very high priority.

Since in many applications simulating the full physics is very consuming in
terms of time and computational resources, a viable approach is to use simpli-
fied models for some of the physics components in the system (for example, see
[25,26]). For example, in computational fluid dynamics, a popular simplification
is the use of the Reynolds-averaged Navier Stokes (RANS) model in place of the
more complex large eddy simulation (LES) or even direct numerical simulation
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Fig. 6. Superensemble track forecast of Hurricane Lenny with predicted tracks of some
member models and associated superensemble track shown [23]

(DNS). These simplified models are often benchmarked or calibrated against the
more complex counterparts. Outside the benchmark/calibration regime, the pre-
dictions from these two models of different physics fidelity can be compared. As a
result, the model form uncertainty in the lower fidelity model could be estimated
by comparison of the predictions with the higher fidelity model predictions at
a limited number of conditions that are similar to the application conditions
of interest. If it is concluded that the lower fidelity model accuracy is judged
to be inadequate for the application of interest, then one may (a) increase the
modeling fidelity of the lower fidelity model so as to attain the needed accuracy,
or (b) characterize the model form uncertainty in some appropriate way so that
the predictive uncertainty is recognized by the user of the simulation results.

4 Discussion

4.1 The Role of Model Form Uncertainty

For the case of extrapolations to application domains outside of the validation
domain or to a higher level of system model, it is likely that model form un-
certainty will dominate the extrapolated uncertainty. Extrapolating model form
uncertainty is complex because it is extrapolating the error structure of a model,
combined with the uncertainty in the experimental data, in a high dimensional
space.

Uncertainty can be reduced, compared with for example, extrapolating a re-
gression fit of the measured system response quantities, by taking advantage of
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Fig. 7. Model dependence of the extrapolation with equivalent goodness of fit in the
validation domain [27]

the physics incorporated into the model [3]. Take for example Fig. 7, where there
is no physical basis to the quadratic or linear models used to describe the data,
and then extrapolate to large values of x. The fitted models over the range of
the data are indistinguishable but in the range of extrapolation, the quadratic
falls far outside of the confidence interval (CI) of the linear fit. A physics based
model would help constrain the extrapolated uncertainty.

4.2 Use of UQ to Manage Extrapolation Uncertainties

The goal of a simulation is to produce a prediction along with an estimate of
the effect of all of the relevant uncertainties on the system response quantities
of interest. In addition to estimating the uncertainty of an extrapolation, UQ
can serve to reduce that uncertainty through methodologies and mathematical
methods for [28]:

– tuning (or calibrating) a simulation model to match with experimental re-
sults,

– establishing the integrity of (i.e., validate) a simulation model,
– assessing the region of validity of a simulation model,
– characterizing the output uncertainties of a simulation model,
– identifying the major sources of uncertainties of a model,
– providing information on which additional experiments are needed to im-

prove the understanding of a model.

These methodologies can be used to understand how the model performs over the
validation domain and improve it, if necessary. As in Fig. 5, these improvements
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serve to improve the quality of the extrapolation and reduce the uncertainty in
the extrapolation. While there might be significant uncertainty on the magnitude
of extrapolated uncertainties, the fact that the uncertainty has been reduced and
by what fraction is useful in itself.

4.3 Missing Physics (Unknown-Unknowns)

In distant extrapolations, there is always the potential for missing physics to
be present either as new unit mechanisms or as new coupling of mechanisms at
higher levels in the validation hierarchy, see Fig. 3. Therefore, we discuss two
elements aimed at reducing the unquantified uncertainty arising from missing
physics for the case where there is no recognized disagreement between experi-
ment and simulation in the validation domain. (If there is disagreement in the
validation domain, as there is in Fig. 5, an unknown-unknown becomes a known-
unknown).

The Role of Peer Review to Address Missing Physics. Because extrap-
olation is more of a physics endeavor than a statistics endeavor, scientific peer
review plays a critical role in the extrapolation process. A nearly analogous issue
was faced by Theofanous and co-workers in the application of the risk oriented
accident analysis methodology (ROAAM) for low probability, high consequence
hazards [29]. The basic premise is that once the selected sample of the commu-
nity of experts in the problem area is convinced that the model reflects to the
extent possible all of the relevant physics, the problem may be considered char-
acterized. By this we mean that what is obtained is the best that can be done
at the present time with the committed resources. One outcome may be that
additional resources need to be committed to the problem or that additional
resolution simply cannot be obtained, as there is no known path forward to gain
such resolution. This peer review process must be traceable and scrutable [29].

The Importance of Data Assimilation to Mitigate Missing Physics.
Unfortunately, as systems become more complex, a point is reached at which
whole system models simply cannot be validated, in the sense of comparison
with experimental results. The potential for new unit processes or coupling at
higher levels of the validation hierarchy must be acknowledged when making an
extrapolation [17]. This does not diminish the value of the extrapolated uncer-
tainties but requires additional attention through data assimilation.

Take for example the case of hurricane forecasting (see, for example, [17,30]).
These forecasts save millions of dollars by limiting evacuation areas. But in the
early stages of the prediction of the track of a storm, models sometimes predict
tracks that do not coincide with the actual track that the storm eventually fol-
lows. Hurricane forecasters effectively use data assimilation to constantly update
their model predictions and uncertainties. As data is assimilated over time, the
uncertainties decrease because the period of prediction (i.e., extrapolation) be-
comes shorter as a hurricane nears the region of interest (i.e., the location where
it will make landfall).
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The same will be true for prediction of aging of nuclear reactor materials.
As materials are irradiated in a real fission environment, an accompanying data
assimilation effort must be in place, the model must be constantly updated,
missing physics revealed, and as a result, uncertainties in predictions can be
expected to decrease.

5 Conclusions

The problem posed by the nuclear industry, referred to as irradiation effects scal-
ing [1], is an ideal example of a high impact uncertainty quantification problem
requiring scaling across validation domains and extrapolations to application
domains where there is little or no experimental data. The need for predictive
material aging models will drive the need for associated uncertainties in the
predictions.

The case of extrapolation is more of a physics endeavor than a statistics en-
deavor. The goal is to produce a prediction with scientifically defensible and
acceptable uncertainty. Most extrapolation methods do not deal with missing
physics, i.e., they only estimate (extrapolate) the error structure of known-
unknowns. Therefore, the process involves using validating experimentation and
more detailed physics-based models that capture the essential physics thus en-
abling the required scaling and extrapolation and reducing uncertainties.

The idea that uncertainty increaseswhen extrapolating outside of the validation
domain is clear. However, exactly how the uncertainty increases is not well under-
stood, in addition to being model and situation dependent [17]. This is likely due
to the fact that the uncertainty increase is very tightly coupled with the physics-
basis of the model. Inaccuracies inherent to models that approximate the relevant
physics, i.e., model form uncertainty, will likely dominate the uncertainties. Meth-
ods to quantify uncertainties in predictions of models, particularlymodel form un-
certainty, are lacking and are topics requiring further fundamental research.
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Abstract. Today real-time analytics of large data sets is invariably
computer-assisted and often includes a “human-in-the-loop”. Humans
differ from each other and all have a very limited innate capacity to pro-
cess new information in real-time. This introduces statistical and sys-
tematic uncertainties into observations, analyses and decisions humans
make when they are “in the loop”. Humans also have unconscious and
conscious biases, and these can introduce (major) systematic errors into
human assisted or human driven analytics. This note briefly discusses
the issues and the (considerable) implications they can have on real-time
analytics that involves humans, including software interfaces, learning,
and reaction of humans in emergencies.

Keywords: human mind bandwidth, uncertainty, human bias, real-time
analytics, computer-assisted analytics, human-in-the-loop.

1 Introduction

True artificial intelligence is still the “stuff” of science fiction stories and pos-
sibly future. To avoid and mitigate mistakes in computer-driven modeling and
decision making we often include a human into “the loop” — for example, FAA
flight controllers, real-time network and computer security threat identification
and mitigation analysts, inclement weather decision making personnel, or sci-
entists involved in very expensive high-end simulations, e.g., [1]. Well designed
complex computer analytics and decision making systems, and workflows, in-
clude points where humans are inserted into the process to monitor, augment,
direct, take over, or stop processes. This makes a lot of sense, and this can
also be an issue. People have biases [2] and people make mistakes too, lots of
them. An interesting, and often used alternative to “human-in-the-loop” is the
“computer-in-the-loop” where analytics is human-driven and the computer only
augments human decision making by offering suggestions, second opinions, etc.
A recent well publicized example of this approach is the IBM’s Watson project
and its application in medicine [3].

This note provides an overview of some of the uncertainties that humans
can inject into data analysis and interpretations processes. Sect. 2 of this note
discusses information processing limitation of human mind in the context of
new inputs, and in Sect. 3 it very briefly covers some possible systematic biases.
Sect. 4 concludes the note.

A. Dienstfrey and R.F. Boisvert (Eds.): WoCoUQ 2011, IFIP AICT 377, pp. 312–318, 2012.
c© IFIP International Federation for Information Processing 2012
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Fig. 1. Input to humans – data reduction is in the giga-fold range (after [4])

2 Uncertainties

From the perspective of external inputs, a human operates in five principal
outward facing sensory domains - visual, auditory, tactile, olfactory, and taste,
as well as in a number of inward-facing sensory domains [4]. There are a number
of models of how sensory inputs end-up being processed, become actionable and
possibly become memories, and there is a huge amount of literature regarding
the human mind, its capabilities, and its limits. An interesting top-level general
book on the topic of memory is by Thompson and Madigan [5].

2.1 Information Flux

Humans are bombarded with a huge amount of stimuli - as much as a terabit
per second [4]. Fig. 1 illustrates the information flow rates humans might receive
and the principal stages of the related information processing. The scale on the
vertical axis is logarithmic, and in units of bits per second (bps). Horizontal axis
covers some of the basic senses, or sensors, humans have. Estimated upper and
lower bounds are shown for the overall external flux of stimuli, and for short
and long term memory information processing. Also shown are approximate
maximum rates into different senses.

Humans do not process outside stimuli directly but through a multitude of
sensor channels and filters which prepare that information for input into human
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mind. For example, optic channel may carry as much as 10 megabits per second,
acoustic channel as much as a megabit per second, tactile channel is somewhat
below that, thermal is in the range of several kilobits per second, as is the pro-
prioception channel (position of limbs and body), while olfactory and gustatory
channels are in the 10 to 20 bits per second range.

2.2 Information Processing Capacity

While a human brain has considerable capacity, and has very high internal pro-
cessing speeds, conscious processing (pattern matching) of information a person
needs to act upon (either physically or mentally) is considerable slower. Infor-
mation that needs to be actively processed lands in short-term memory where
it is then processed at the rate of 5 to 20 bits per second. Long-term storing of
information (learning), happens at an even slower rate – from zero to perhaps 8
bits per second.

It is obvious that a considerable reduction needs to take place between inputs
and the amount of new data a person “works with”. This means that a lot of that
data is either discarded, or is dynamically codified into patterns that a human
acts upon (based on stored patterns) or stores permanently. The question is
whether there is a loss of useful information in the process. If the processing is
done automatically before presenting data to a human, there could be unintended
loss of information that may bias the outcomes.

In addition, humans often have built-in biases brought on by culture, training,
education, social environments, intent, and so on, and that can exacerbate the
problem.

2.3 Models

As already mentioned, there are a number of models of how sensory inputs end-
up being processed, become actionable and possibly become memories. There
is a huge amount of literature regarding the human mind, its capabilities, and
its limits. For example, one model states that environmental input goes to sen-
sors (vision, auditory, ...), then to short-term temporary working memory, and
depending on what happens there, this “chunk” of information may elicit a re-
action, may become a permanent memory, may be ignored, etc. [5,6]. Baddeley
[7,8,9] developed the theory of working memory that involves the “central ex-
ecutive” — an attention-controlling sub-system, the “visuospatial sketch pad”
which manipulates visual images, and the “phonological loop” which stores and
rehearses speech-based information.

While very large amount of information comes into sensors, the mind is ca-
pable of processing only a limited amount of new information. But, the mind is
also very good at on-the-fly abstraction, and mapping of those abstractions onto
a huge pool of encoded information in its permanent memory. “Chunks” are
associated with the working memory throughput. They were originally proposed
by Miller [10,11], and there appears to be a limited number (between 3 and 7)
that a human can handle/manage at any one time without making an increasing
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number of mistakes. For example, humans may have trouble tracking (without
error) more than four to five visual or auditory “targets”.

Humans appear be able to enumerate quickly up to about five items, beyond
that the process is slower and time taken increases linearly [12]. For example,
counting 50 stars on a flag may take some time, recognizing a flag takes much
less than a second, and retrieving the number of stars that should be on it from
permanent memory is also very quick. Humans also appear to handle about
four dimensions [13] and up to 5-way interactions reasonably well [14]. All this
indicates that it is important to manage complexity of content and interrelations
presented to humans [13,15]. Beyond a comfortable limit (and that limit may
change with age) errors start happening. Most recent examples of sometimes
fatal real-time analytics distractions to humans come from the use of cell phones
and other in-car devices by drivers (see e.g., [21,22]).

“Chunks” can contain a very small amount of information – from a single tone,
to a very detailed and rich visual, auditory and tactile scene. They can contain
raw data, but more often they tend to be abstractions, pattern mappings of
complex objects or scenes onto however this impression is stored/encoded in the
permanent memory of the subject. Different people very likely extract storable
abstractions of the same scene, object, or signal differently. Pattern or “symbol”
recognition appears to be the primary way we think about scenes and situations
which would otherwise overload our working memory, and the question is how
long does it take to map a sensory “chunk” or moment onto a familiar pattern
to possibly elicit a conscious reaction.

Chunks also appear to have an expiration time – they are retained in working
memory for not more than several minutes and, unless processed through action
or permanent memory storage, they are lost. They appear to be constructed
from segments that do not exceed about 100 ms each (but could be shorter).
Some classical work in that domain was done by Stroud [23,24] who noted that
humans appear to have ability to consciously process from about 5 to 20 of such
discrete psychological time slices and effect discriminations based on that. In a
situation where a reaction to such a slice is binary (e.g., yes or no, or ok, not
ok) conscious absorption and reactions rate appears to be in the 5 to 20 bits
per second range. However, in order to match a particular pattern (which could
consist of more than one “psychological moment”), mind may need to do a large
number of comparisons. This number is sometimes known as the Stroud number,
and has been used in attempts to describe software development and software
fault generation processes, e.g., [25,26]. While 5 or 20 bits may not look like
much, to match a 20 bit pattern, for example, may require comparison with as
many as 1,000,000 or so internal patterns.

2.4 Limitations

Unfortunately, there appear to be at least three bottlenecks on the input path.
For example: i) attentional blink (AB), ii) visual short-term memory capacity
(VSTM), and iii) psychological refractory period (PRP) phenomena [11]. Atten-
tion blink relates to the following example, “when subjects attempt to identify
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two targets in a rapid, serial visual presentation of distractors, they are severely
impaired at detecting the second of the two targets when it is presented within
500 ms of the first target [25]. Importantly, the deficit with the second target (T2)
is a result of attending to the first target (T1): subjects have no difficulty in re-
porting T2 when only it is required to be detected” [11,15]. Part of the problem
may lie in the need to move eyes from one spot to another [12,27]. This may also
be related to “change blindness” [5,16]. VSTM (or working memory) capacity of
about 4 to 7 items has already been mentioned. PRP is related to taking action
as a result of a stimulus. This appears to impact our ability to simultaneously
take two actions based on a single stimulus (parallelism).

3 Systematic Bias

By nature of their cultural upbringing, educational training, experiences, mo-
tivation, trust, religion, politics, perceived and real situational awareness and
other mental models, prevailing policies, regulations and laws, etc., humans will
often ignore data and information and make conclusions based on other factors,
or they might interpret the same information differently. This is often called
cognitive bias (see e.g., [2,17]). The list of possible cognitive biases is very long,
e.g. [18], and as expected, there are supporters and critics, e.g., [19]. Of course,
the issue of systematically biasing information, or its interpretations, to fit a
particular purpose has been around since the dawn of time. An iconic phrase
in this context is “lies, damned lies, and statistics”, e.g. [20], which, as large
amounts data become more accessible over internet, is being increasingly used
and re-used in many forms. The concept takes an additional dimension when
deception is considered in the context of information technology security (see
e.g., [28]).

Undeniably, epistemic uncertainty is a very serious issue when doing analytics,
and particularly real-time analytics. Ideally, one would like to reduce epistemic
uncertainty to aleatory uncertainty.

4 Summary

In general, it seems to be well established that humans have a (very) limited
ability to pro-actively process new incoming information and act upon it, and a
very high propensity to unconscious or conscious misinterpretation and misrep-
resentation of new information. Implications on analytics are substantial. Careful
studies need to be made to develop appropriate methods for reduction of epis-
temic uncertainty down to aleatoric, and to allow reduction of new incoming
information to a level appropriate for human consumption. This includes train-
ing of the analysts to work at the appropriate level of abstraction, developing
appropriate computer-based tools and approaches, and for both humans and
machines to handle unexpected anomalies in (large) input streams. How to do
that appears to be an open question, although ideas abound.
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