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Abstract. Point cloud simplification has become a vital step in any point-based
surface processing pipeline. This paper describes a fast and effective algorithm
for point cloud simplification with feature preservation. First, feature points are
extracted by thresholding curvatures; Second, for non-feature points, they are
covered by distinct balls, the points in each ball are substituted by an optimized
point. Thus, the simplified point cloud consists of extracted feature points and
optimized points. This algorithm is able to produce coarse-to-fine models by con-
trolling a general error level. But the error level of each ball may be adaptively
adjusted according to the local curvature and density that can avoid holes gen-
eration during the simplification process. Finally, the simplified points are trian-
gulated by Cocone algorithm for surface reconstruction. This algorithm has been
applied to a set of large scanned models. Experimental results demonstrate that it
can generate high-quality surface approximation with feature preservation.

Keywords: Point Cloud Simplification, Surface Reconstruction, Quadric Error
Metrics.

1 Introduction

Due to recent advances in point cloud acquisition techniques, 3D object boundary sur-
faces are now commonly acquired with sub-millimeter accuracy. The initial output of
acquisition devices such as laser range scanners therefore generally consists of point
clouds of considerable redundancy. Unfortunately, the huge numbers of point clouds
will bring us a great deal of trouble in the downstream processing and the data storage,
transmission and rendering. By simplifying the point set first, the surface reconstruction
from simplified point cloud is accelerated significantly and the mesh simplification step
is avoided altogether. Furthermore, with the increasing availability of powerful point-
based modelling[1] and visualisation[2] techniques, the simplification of dense point
clouds for subsequent point-based rather than polygonal mesh-based processing plays
a rather important role by itself. In either case, point cloud simplification represents a
vital step in point-based surface processing pipeline.

Obviously the efficiency of point cloud simplification algorithm is essential for the
large scale input data. Meanwhile, to guarantee the quality of simplification result for
following geometric processing, we must take geometric features into account during
simplification process. Generally, clustering method may achieve high efficiency while
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Fig. 1. Simplification and reconstruction of a Buddha model(543652 points). From a raw scan
with significant point-sampled data, our algorithm extracts the feature points, and calculates the
optimized points for the non-feature points. Those two kinds of points are then blended to produce
a simplified version for surface reconstruction.

losing a lot original features, contrarily, particle simulation method could obtain satis-
fied result while losing some efficiency[12]. So we have to hold the tradeoff carefully
between quality and efficiency of simplification.

Our algorithm is an improved version of the algorithm proposed by Othake [20].
In our implementation, we sufficiently consider the feature preservation and can deal
with the non-uniform point cloud. We first extract the feature points by thresholding
curvatures, and then simplify the non-feature points by solving a collection of error
functions. The feature points and optimized points are assembled to reconstruct mesh
surface using Cocone [21] algorithm. Fig. 1 illustrates the pipeline of our approach.
Experimental results demonstrate that our method could reserve enough original feature
without loss of efficiency. In the rest of this paper, it is organized as follows. Section
2 gives a brief summary of related work and section 3 and 4 detail the preprocessing
and the algorithm. Experimental results and analysis are given in Section 5, followed
by concluding remarks in Section 6.

2 Related Work

In recent years, many researchers have focused on how to simplify redundant point
clouds efficiently and effectively. The re-sampling method calculates a set of new sam-
ples from the original point cloud based on certain rules. Dey et al. [3] present a point
cloud simplification approach, and adopt local curvature to detect the redundancy in
the input point cloud and to ensure relevant point densities; This is accomplished by
exploiting a 3D Voronoi diagram. Alexa et al. [4] uniformly reduce point cloud redun-
dancy by estimating a point’s contribution to the moving least squares (MLS) represen-
tation of the underlying surface. Those points contributing the least are subsequently
removed. This method does not guarantee the absence of insufficiently dense output
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point sets. Scheidegger et al. [5] extended the MLS approach to simplify point set sur-
faces and constructing a high-quality triangulation. Kalaiah and Varshney [6] get rid of
redundancy through measuring the redundancy of each individual point based on the
local geometric properties derived from the surrounding points. Lee et al. [7]presented
a simplification method that reduces the number of points using part geometry infor-
mation. In their work, the points are removed based on their normal vector values us-
ing 3D grids. Miao et al. [8] proposed a curvature-aware adaptive sampling method.
An adaptive mean-shift clustering scheme is designed to generate non-uniformly dis-
tributed sampling points. Bossonnat et al. [9] describe a coarse-to-fine point simplifi-
cation algorithm that randomly calculates a point subset and constructs a 3D Delaunay
triangulation. Moenning et al. [10] propose an intrinsic coarse-to-fine point simplifica-
tion algorithm that guarantees uniform or feature-sensitive distribution. However, their
method requires many computations and a large memory. Wu et al. [11] present a new
sub-sampling technique for dense point clouds which is specially adjusted to the partic-
ular geometric properties of circular or elliptical surface splats. A global optimization
scheme computes an approximately minimal set of splats that covers the entire surface
while staying below a globally prescribed maximum error tolerance.

Generally, re-sampling methods can produce high quality of output models while the
computation complexity is high. Clustering methods split the point cloud into a number
of sub-sets, each of which is replaced by one representative sample. Pauly [12] proposes
two types of clustering simplification algorithms. One type of the algorithms are based
on incremental region-growing starts from a random seed point and a cluster is built by
successively adding nearest neighbors. Such incremental region-growing is terminated
when the size of the cluster reaches a maximum bound. The other type of the algorithms
are hierarchical clusterings which compute the set of clusters recursively splits the point
cloud using a binary space partition. Yu et al. [13] present an Adaptive Simplification
Method (ASM) which is an efficient technique for simplifying point-based complex 3D
models based upon hierarchical cluster tree structure. Shi et al. [14] also present an
ASM by employing the k-means clustering algorithm to gather similar points together
in the spatial domain and uses the maximum normal vector deviation as a measure of
cluster scatter to partition the gathered point sets into a series of sub-clusters in the
feature field. However, the proposed method may generate uniformly distributed sparse
sampling points in the flat areas and necessary higher density in the high curvature
regions.

The clustering methods usually are simple and fast, however, the simplified mod-
els are not satisfied without optimization processing. Another important simplification
strategy for point-based surfaces is iterative reducing the number of points using an
atomic decimation operator. Decimation operations are usually arranged in a priority
queue according to an error metric that quantifies the error caused by the decimation
[12]. This kind of method is similar to mesh-based simplification methods mentioned
in [16]. Quadric error metrics is applied in [16] to measure the error caused by the mesh
contraction. Iterative method can obtain both satisfied quality and speed except a larger
memory consumption. In [17], a geometry-images-based simplification algorithm for
point-sampled surfaces is proposed and the point set surfaces are simplified accord-
ing to the curvature and simplified density fastly. Lee et al. [18] adopt discrete shape
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operator to find the weight of the features of the 3D model and extract the relevant
points for a dense input point set. Jong et al. [19] present a novel rapid and effective
point simplification algorithm using local coplanar analysis on the basis of an octree
data structure. By using the octree data structure, it proposes some hierarchical simpli-
fications and renderings for the base model to suit user demand.

3 Preprocessing

Assuming a piecewise smooth surface Φ that is approximated by a set of sampled points
P = {p1, · · · , pN}, our goal is to fast and effectively simplify it and create a high-
quality surface approximation. Typically, raw point cloud data are obtained by encoding
a group of overlapped range images and the local density is higher at the regions that
correspond to the overlapped regions of the range images. Thus, appropriate weights
are assigned to the points for compensating density irregularities. We assign to each
point pi ∈ P a weight ai defined by

ai =
1

K

K∑

j=1

‖pi − pj‖2 (1)

where {pj}Kj=1 ∈ P are the K nearest neighbors of pi. This weight scheme is sufficient
to compensate the density irregularities.

To extract the feature points, calculate the optimized points and compute the 2D
convex hull, we need to estimate the unit normals ℵ = {n1, · · · , nN} at the points of
P . Generally, unit normals can be directly acquired via photometric stereo [22][23].
If the point cloud data provide no normal information, we employ a method relied on
covariance analysis [24] to estimate them. The 3× 3 covariance matrix C for a sample
pi is given by

C =

⎡

⎣
pi,1 − p

· · ·
pi,K − p

⎤

⎦
T

·
⎡

⎣
pi,1 − p

· · ·
pi,K − p

⎤

⎦ , p =

K∑

j=1

pi,j (2)

where {pi,1, · · · , pi,K} is the K nearest neighbors of the point pi in P . Since C is sym-
metric and positive semi-definite, all eigenvalues are real-values and all eigenvectors
form an orthogonal frame [25]. The eigenvector corresponding to the smallest eigen-
value is taken as the normal vector of the point pi.

4 Point Simplification Algorithm

To simplify the point cloud, we first extract the feature points P f = {p1, · · · , pm}(0 ≤
m ≤ N), by thresholding point curvature, and then generate a collection of balls
centered at {c1, · · · , cn} with adaptive radius {r1, · · · , rn} covering the non-feature
points. The ball generation used in this paper is an improved version of the approach
proposed by Ohtake [20] for creating an approximately minimal set of spheres to cover
the whole point-sampled surface. The algorithm is described as follows:
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1. Extract the feature points according to curvature; The feature points are protected
and do not participate the following processing.

2. Set all non-feature points as uncovered.
3. Select point c from the set of uncovered points without regard to the order of the

selection and label this point as covered.
4. For the selected point c, evaluate r, the radius of ball centered at c, and an optimized

point v.
5. Calculate local curvature cur and density dens at point c. According to the local

properties, adjust the error threshold, and repeat step 4.
6. Project the non-feature set {‖p− c‖ < r} onto the plane tangent to c. Compute the

2D convex hull of the projections of P r
c . Label the points of P r

c which are projected
strictly inside the convex hull as covered.

7. Terminate the process if there are no more uncovered points. Otherwise return to
step 3.

4.1 Feature Points Extraction

Feature points describe the basic shape of the object and have a significant influence
on the quality of surface reconstruction. Thus, in order to avoid geometric information
lost, before simplifying the point cloud, we extract the feature points by thresholding
curvature. In further simplification process, those feature points will not be dealt with.

There are many kinds of feature points, we mainly focus on silhouettes and corners,
and extract them, because they are important visual cues for shape perception [26] and
are very effective at conveying shapes [27][28]. More precisely, silhouettes are those
points positioned at convex or concave boundaries, and corners are located at sharp
regions. If point p is a feature point, the curvature at this point is higher, i.e., the sum
of the distances from the k nearest neighbors of p to the tangent plane at p is higher.
Otherwise if point p is a non-feature point, the curvature is lower, i.e., the sum of the
distances from the k nearest neighbors of p to the tangent plane at p is lower. As seen
in Fig. 2, hollow points refer to the k nearest neighbors of point p, the distance sum is
higher which means the curvature at point p is higher, thus point p in the left image is a
feature point. In contrast, point p in the right image is a non-feature point.

Based on the analysis described above, we construct the measurement function as
follows:

measure(p) =
1

K

K∑

j=1

|(p− pj) · np| (3)

where {pj} are the k nearest neighbors of point p, np is the unit normal at p, (p −
pj) · np refers to the distance from the jth nearest neighbor to the tangent plane at p. If
measure(p) is higher than a threshold δ, this means point p is considered as a feature
point; Otherwise it is a non-feature point. To distinguish feature points and non-feature
points, we set threshold δ as follows:

δ =
α

N

N∑

i=1

measure(pi) (4)
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where N is the number of points, α is the adjustment factor. If measure(p) is higher
than δ, point p is set as a feature point. Otherwise it is a non-feature point. Fig. 3 and
Fig. 4 demonstrate the extracted quality of setting different α for the same models and
same α for different models.

Fig. 2. Measuring feature and non-feature points by curvature

4.2 Point Cloud Density

The extraction methods of point cloud characteristics can be roughly classified into two
categories: based on the point-to-point distance method and based on the clustering
method. We adopt the method based on point-to-point distance to analyze the density
distribution of the point cloud. For non-feature point set P ′ = {p′1, · · · , p′M}(0 < M <
N), we denote the distance between point p′i and p′j by dis(p′i, p

′
j), local density at point

p′i can be defined by

densi = min(dis(p′i, p
′
j)), (1 ≤ j ≤ M, i �= j) (5)

The average density of non-feature point set P ′ is given by

densi =
1

M

M∑

i=1

densi (6)

where M is the number of non-feature points. Thus, when we decrease densi, the al-
gorithm selects more points locally. From the magnified fragment of the left image of
Fig. 5, the density is changing in this region, thus, in the process of simplification, we
will sufficiently consider such region.

4.3 Curvature Estimation

In order to preserve more details, when simplifying the point cloud, we will sufficiently
consider the curvatures of the point cloud. There are many approaches to estimate the
curvatures on discrete points, such as Paraboloid Fitting approach, Circular Fitting ap-
proach, Guass-Bonnet approach and so on. The paraboloid fitting approach is used
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(a) Bunny model (35292points) with α from left to right assigned to 4.5 (278points), 3.5
(702points) and 2.5 (1086points), respectively.

(b) Hand model (39325points) with α from left to right assigned to 4.5 (372points), 3.5
(880points) and 2.5 (2228points), respectively.

Fig. 3. Different parameter values for the same models

in this paper to estimate the mean curvature, because it is more robust when using
paraboloid in the local neighborhood of a point to estimate the curvature, and can result
in most optimized results. Assuming paraboloid equation is

z = ax2 + bxy + cy2 (7)

For each non-feature point p, we fit a paraboloid by least square method using point p
and its k nearest neighbors. The coefficients a, b and c can be computed by solving a
linear equation, i.e., Ax = b, where matrix

A =

⎡

⎢⎣
x2
1 x1y1 y21
...

...
...

x2
K+1 xK+1yK+1 y2K+1

⎤

⎥⎦ , (8)
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(a) Chair model (212634points) and its extracted feature points
(4329points).

(b) Car model (30024) and its extracted feature points (1855).

Fig. 4. Same parameter value (α = 3.0) for different models

x = {a, b, c}T , (9)

b = {z1, z2, · · · , zK+1}T . (10)

This overdetermined equation can be solved by householder transformation to obtain
coefficients. Thus, the mean curvature at p is

Hi = a+ c, (11)

and the mean curvature of the non-feature point set is

H = (

M∑

i=1

Hi)/M. (12)

The right image of Fig. 5 shows the mean curvature visualization.

4.4 Ball Radius and Optimized Point

The core of the algorithm is computing a set of coverage balls with adaptive radius
{r1, · · · , rm} and optimized points {v1, · · · , vm} in each ball. The optimized points
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Fig. 5. Face model with varying local density (magnified fragment) and mean curvature
visualization using different colors

Fig. 6. Lucy model (262909 points) with different initial Terr. From left to right, original
model, extracted feature points (264 points with α = 3.5), coverage balls with Terr =
10−4(4646points), 10−5(21347points), 10−6(91019points), respectively.

will substitute the non-feature points in each ball for simplification. The approach is
based on local quadric error minimization strategy, and is an improved version of the
approach described by Ohtake[20] which set a fixed error threshold. In contrast, our
approach will adjust the error threshold according to local curvature and density.

For each selected ball centered at c, we calculate the adaptive radius r and an op-
timized point v in it. According to[20][16][11], we define a quadric error function for
each point c as follows:

Q(c, r, x) =
∑

j

wjGR(‖pj − c‖)(nj · (x− pj))
2 (13)

where weights {wj} are defined by (1), pj is a non-feature point within a bounding
sphere centered at c with radius R, nj is the unit normal at point pj , x is the potential
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Fig. 7. Children model (724742 points) and simplified model with different error values Terr.
From left to right, original model, models with Terr = 10−4, 10−5 and 10−6, respectively.

optimized point (we need further judge whether x is an optimized point ), nj(x − pj)
denotes the distance from point x to the tangent plane at point pj , r is the radius of
coveraged ball, GR(‖ · · · ‖) is a Gaussian-like function as defined by

Gσ(ρ) =

⎧
⎨

⎩

exp(−8(ρ− σ)2) if |ρ| ≤ σ/2,
16/e2(1− |ρ|/σ)4 ifσ/2 < |ρ| ≤ σ,
0 ifσ < |ρ|.

In practice, we set R = 2r. FunctionQ(c, r, x) computes a weighted sum of the squared
distances from point x to the tangent planes at {pj} within spherical region ‖pj − c‖ ≤
R. If r in (13) is fixed, point xmin = xmin(r), the minimizer of Q(c, r, x) is easily
found by solving a system of linear equations. Thus we set error function

E(r) =
1

L

√
Q(c, r, xmin) (14)

where L is the length of a main diagonal of the bounding box of the point cloud. As
proved in [29], the error function E(r) weighs the curved degree of the reconstructed
surface inside sphere ‖x− c‖ < R. We get r by solving the following equation

E(r) = Terr (15)

where Terr is a user-controlled accuracy. E(r) is monotonically decreasing as r → 0,
thus, we can use bisection method to solve (14).

Once r is fixed, we check whether xmin lies inside or outside of region ‖x− c‖ < r.
If xmin is within this region, we use it as the optimized point v associated with the ball
centered at c. Otherwise, we set v = c, because the surface curvature in this region is
large and c there must be a sharp feature.

As seen, for each center c, the above-mentioned error threshold Terr is unaltered.
Actually, adjusting Terr for different center c will be more desirable according to the
local curvature and density. Thus, we compute the local curvature and density at point
c for regulating the accuracy Terr as follows:

1. If mean curvature Hi at ci is smaller than H and densi is larger than dens, this
fact means that this region is relatively flatter, we can increasingly augment Terr for
extending r to simplify more points.
2. If mean curvature Hi at ci is larger than H and densi is smaller than dens, which
indicates that this region contains more features, we decrease Terr for shrinking r to
save more points.
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Fig. 8. The reconstruction results produced by Cocone algorithm using the simplified points com-
pared with the original models are demonstrated. As seen, controlling different Terr can generate
different levels of detail.

As shown in Fig. 6, the error Terr controls the approximation accuracy, large Terr

results in large radius of coverage balls and simplify more points. Otherwise, small Terr

preserves more points. Fig. 7 demonstrates how different errors Terr control the final
simplified results.

5 Results and Analysis

5.1 Parameter Settings

To use our method, one must set two parameters beforehand, one is adjustment factor
α which determines the number of feature points. If α is larger, the threshold becomes
larger simultaneously, the number of feature points will naturally decrease. Otherwise
if α becomes smaller, there will be more points considered as feature points. Thus,
in the implementation, user can select different factors for different models. The other
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Fig. 9. The execution time of simplification with different error values Terr for different models.
The digital 4, 5, 6 on the abscissa refer to Terr = 10−4, 10−5 and 10−6, respectively.

Fig. 10. Time measurements of three main stages of the suface reconstruction process for the
models considered in Fig. 8

parameter is initial error Terr which controls the approximation accuracy. It determines
the tolerance of the optimized point and the size of radius of coveraged ball. See Fig. 8
for more details.

5.2 Timing and Computational Complexity

The execution time of experimental results is measured on a Pentium 4 (2.99GHz) PC
with 2GB of main memory. In the statistical data shown in Fig. 9 and Fig. 10, our
simplification is fast in obtaining the preferable results. Since we use kd− tree to find
nearest neighbors, the computational complexity is O(NlogN ), where N is the number
of points.

5.3 Simplification Quality

The algorithm first extracts the feature points in the original model, and then gener-
ates adaptive balls covered the non-feature points. We use Cocone algorithm to produce
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meshes, which takes the simplification results as input. Our error-controllable simplifi-
cation algorithm can produce levels-of-detail results with feature preservation, and the
simplification results can be used to generate high-quality meshes using Cocone algo-
rithm.

5.4 Limitations

The proposed algorithm is lack of strict theoretic proof and is basically an application
issue. In addition, this algorithm may not be to handle the sparse-point-set case.

6 Conclusions

We present a fast and robust algorithm for point cloud simplification. The algorithm
is an improved version of Ohtake’s approach. Our algorithm can reconstruct surfaces
from uniform and non-uniform point clouds. In the simplification process, we enable
the local properties to adjust the error threshold. The simplification results can ensure
the surface reconstruction results by using Cocone algorithm.
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