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Abstract. One of the major components of Agent Based Crowd Sim-
ulation is motion planning. There have been various motion planning
algorithms developed and they’ve become increasingly better and more
efficient at calculating the most optimal path. We believe that this opti-
mality is coming at the price of realism. Certain factors like social norms,
limitations to human computation capabilities, etc. prevent humans from
following their optimal path. One aspect of natural movement is related
to perception and the manner in which humans process information. In
this paper we propose two additions to general motion planning algo-
rithms: (1) Group sensing for motion planning which results in agents
avoiding clusters of other agents when choosing their collision free path.
(2) Filtering of percepts based on interestingness to model limited infor-
mation processing capabilities of human beings.

Keywords: Agent-Based Model, Sensing, Crowd Simulation, Motion
Planning, Visual Cognition, Group Based Perception, Information,
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1 Introduction

Crowd simulation is a field that has recently been gaining significant atten-
tion because of its usefulness in various applications, ranging from simulation of
emergency evacuation to animation of large crowds in movies and games. There
are a number of different approaches which are typically applied to modeling
of human crowds. These include: flow models [21], force-based models [12] and
agent-based models [23]. All models offer different ways of describing human
motion and make different assumptions about how interacting individuals affect
one anothers motion.

In this paper we focus on agent-based models of crowds; one key aspect of
which is navigation. Navigation is defined as the process or activity of accurately
ascertaining one’s position and planning and following a route. In the context of
crowd simulation, navigation is generally considered to be the process of planning
a route towards a destination and following this route. We refer to the former as
path planning and the latter as motion planning. The higher level path planning
is typically done using A-star or other similar algorithms and deals with the
static aspects of the environment. Motion planning is a term borrowed from
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robotics which originally means detailing a task into discrete motions. In the
context of crowd simulation, we use the term motion planning to refer to the
task of finding a collision free velocity to get from the current point to the next
waypoint in a planned path.

There are a number of existing motion planning methods that can effectively
and efficiently calculate trajectories that avoid all collisions for agents, even in
very dense environments. For robots and computer games, this might be the
ideal goal: perfect, smooth and efficient motion. However, for applications like
simulation of emergency evacuations the goal is obtaining realistic motion and
not smooth and efficient motion. While we all thrive to be mechanically efficient,
this is hardly always the case. There exist, among other things, social norms and
limits to mental processing capabilities that prevent individuals from following
their ideal preferred path. Also, humans do not necessarily use optimality (in
any sense) to determine their preferred path. Our approach is a more naturalistic
one [19] in that we feel the navigation models should explicitly consider and
model human inadequacies and limitations.

The agent-based models (ABMs) we consider, consist of large numbers of
heterogeneous, autonomous entities inhabiting a spatially explicit, partially ob-
servable environment; macro-level dynamics are said to emerge through the
asynchronous interactions among these entities [2,6]. Each of these individual
entities will iterate through a sense-think-act cycle, where agents obtain informa-
tion from their environment through sensing, make a decision through thinking
and finally carry out their decision by acting. In many application areas in which
ABMs have been applied, including crowd simulation, the emphasis is generally
on describing thought processes accurately via rules. However, sensing is a crit-
ical aspect in the modeling process and can greatly impact both the individual
and emergent properties of the system. The terms perception and sensing are of-
ten used interchangeably in the simulation literature. For clarity in explanation
we use the term perception to define the complete process of obtaining a set of
(possibly filtered) percepts from the environment. Sensing, on the other hand,
we define as the process of obtaining raw information from the environment. In
this definition, and in our model, sensing is a part of perception.

Miller’s seminal work [24] on human cognition revealed two important charac-
teristics of human cognition: 1. Humans constantly group together similar data
into chunks of information. 2. At any given time, a human can only process
a limited amount of information. In this paper, we make the assumption that
this limited capacity results in humans being attracted towards certain kinds
of information, e.g. a bright light or a celebrity; this, in turn, results in other
information in the environment being unnoticed. By organizing information into
chunks, humans are able to use their limited information processing capability
more efficiently. This ability can manifest itself in different ways. We assume that
during motion planning, humans will process a group of people coming towards
them as a single obstacle rather than many individuals. This grouping not only
helps the person make use of his limited information processing capacity more
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efficiently, it also helps him/ her conform to social norms that instruct him/ her
that walking through a group of interacting people would be rude.

In this paper, we propose an alternative information based naturalistic percep-
tion system, which does not focus on explicit vision, but rather treats the entire
human perception system as an information processing entity. We do eventually
plan to extend the use of this information based perception for higher level path
planning and decision making. However, this is beyond the scope of this paper.
The remainder of this paper is organized as follows: Sect. 2 gives an overview
of the existing work; the theoretical basis of the proposed model is explained in
Sect. 3; in Sect. 4, we show some simulation results that illustrate the effects of
implementing the proposed theory; and finally, Sect. 5 concludes this article and
gives a brief overview of possible future directions of work.

2 Related Work

This section of the paper is divided into two parts: In the first section, we present
some of the existing work in motion planning for virtual crowds and in the
following section, we present some of the work on whose basis the presented
limited information model for agents was developed.

2.1 Motion Planning

There are various different approaches to motion planning in agent based models
with non-discrete space. The earliest agent based approach to collision avoidance
was proposed in Reynolds’ seminal paper [29] on a model of the flocking behavior
of birds. There are various simple approaches to modeling human motion like
Klein and Köster’s [20] use of an electric potential based model; positive charges
are assigned to goals and negative charges to obstacles and agents. Okazaki
and Matsushita [25] uses a similar approach of using magnetic poles instead
of columbic charges. There are also slightly more complicated approaches like
the one proposed by Pettré et al [28] which considers the effect of errors in
perception on motion planning. In this section, only two of the most popular
models for motion planning and collision avoidance used in agent based models,
viz. the Social Forces model and the Reciprocal Velocity Obstacle (RVO) model
are presented.

The social forces model was first introduced in Helbing’s paper [13]. In this
model, each agent is modeled as a particle that has multiple forces acting on it.
Repulsive forces help in collision avoidance and attractive forces model goal di-
rected and grouping behavior. Over the years, this model has been extended and
combined with other higher level behavior models. For example, in [17]more com-
plicated group movement was modeled with an underlying social forces model
for collision avoidance. In his thesis, Still [31] criticized the heavily mathematical
approach which, according to him, is too complicated to be the natural way in
which humans try to avoid crowds.
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Another ABM that is increasingly becoming popular for collision avoidance is
based on the idea of using the relative motion of objects to determine their time
to collision. A velocity is then selected which maximizes this time. This algo-
rithm, based on Reciprocal Velocity Obstacles (RVO) was first extended for use
with multi agent systems in [1]. Since then there have been several modifications
and improvements to the system but the underlying algorithm still remained the
same. CLEARPATH [10] which mathematically optimized RVO was the first to
introduce a change in the underlying algorithm. Later, Guy et al. [8] introduced
an entirely new approach to RVO that was based on computational geometry
and linear programming. They called this new approach RVO2. This method
further improved the efficiency and smoothness of the system. In [11], the intro-
duction of a personal space factor and an observation delay made the algorithm
more appropriate for virtual humans.

In[9], Guy et al. introduced an extension to RVO in the form of a higher level
navigation based on the principle of least effort. While it is obvious that rational
humans would prefer taking the path of least effort, as was explained in Sect. 1,
humans do not have perfect knowledge or perfect calculation. Also, it is arguable
whether humans are always rational enough to choose least effort as their goal.
Another important optimization that was introduced in this paper was using the
idea of clustering very distant objects into KD-trees to reduce computational
cost. While this might sound similar to the idea that is suggested in our paper,
there are two fundamental reasons why this is different from our algorithm:
Firstly, we use multiple levels of clustering which will be explained in more detail
in Sect. 3.1. Secondly, the motivation and hence design is significantly different:
we use clustering as a reflection of how agents perceive their environment and
not an optimization for collision avoidance.

2.2 Limits of Human Perception

Most motion planning systems focus on optimality of motion. This is either
in terms of selecting a path which attempts to avoid collisions with minimal
deviation, or in the sense that they are capable of obtaining accurate information
about the environmental state. While certain extensions have been previously
suggested for making models more realistic, there hasn’t been any approach
to bring about a human like perception system in multi agent based crowd
simulation.

Miller [24] proposed the idea that humans process 7 ± 2 chunks of informa-
tion. Cowan [5] argued that humans can actually only cognitively process 4± 1
chunks at any given time. Also, others [15] have shown that humans try to
group together similar information so that information can be encoded in the
simplest possible format. This is called the simplicity principle [15]. Based on
these ideas, we propose a method that will emulate how humans perceive groups
whenever possible and propose a system in which the agents avoid groups rather
than individuals. We refer to this perception system as Group Based Perception
(GBP). We have done this using the Evolving Clustering Method (ECM) [30] and
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computational geometry based RVO2 [8]. But our approach can, in principle,
use almost any clustering and collision avoidance algorithms.

Some studies[16,26,32] have shown that humans only pay attention to cer-
tain salient features in the objects that they perceive. This results in them not
noticing changes in items that are not of interest to them. In[26], the authors
classify elements as either central interest or marginal interest elements and prove
that the internal representation of the visual world is rather sparse and essen-
tially contains only central interest information and not information of objects
of marginal interest. The factors that influence how interesting a particular ob-
ject is is extensively discussed in[16]. In the present paper, we do not propose to
model all the complexities of human perception and visual cognition, we would
rather like to propose an agent based model for crowds which can not only show
a basic implementation of these ideas but can be easily extended when required,
to model more complicated visual cognition.

Broadbent [3] has extensively discussed the idea of using information theory
for modeling human perception. He introduced various studies that indicate
that humans have an upper bound on their capacity for holding information for
perception. For a single dimension, this limit is roughly estimated to be about 5-
6 percepts. For more than one dimension, the number of discernible alternatives
is larger but not as large as would be expected if each dimension was completely
independent. The idea of humans being able to process only a limited amount
of information is not new to computer animation either. Hill [14] was one of
the first to introduce the importance of cognition in sensing. Courty et al. [4]
used a saliency map based approach and Kim et al[18] used cost-benefit analysis
in a decision theory based approach to determining the interest points. Grillon
and Thalmann [7] automated this process of interest point determination. They
used criteria like proximity, relative speed, relative orientation and periphery
to determine the interestingness of various features. Similar criteria are used in
this paper. However, our application being particularly collision avoidance, the
information which the agents perceive are dynamic obstacles, i.e. other agents
or groups of agents. The proposed Group Based Perception system for humans
differs from traditional perception systems in that, rather than using a level
of perception limited by distance or occlusion of sight, we limit the amount of
information, or number of obstacles, which the agents can cognitively process.

3 The Theory

This section explains the agent perception system that is proposed in this paper.
The sense-think-act cycle of agents was introduced in Sect. 1. Figure 1 illustrates
how motion planning works in an agent in terms of this sense-think-act cycle.
An agent’s perception can be described by a function f : Env → p∗, where
p∗ is the set of percepts. Each percept p is then processed by the agent in its
decision making process, which in turn will determine an appropriate action
for collision avoidance. In our case, the motion planning module is passed a
set of percepts which consists of neighboring agents and static obstacles which it
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Fig. 1. An agent perceives and then acts

processes to find the optimal or most appropriate velocity for reaching the goal.
Typically, this list of neighbors is a set of agents within some cone of vision or
some distance away from the agent. In this paper we propose a modification
to the perception procedure such that it takes place in three phases: clustering,
sensing and filtering. Figure 2 gives an overview of the complete process that is
detailed in the following subsections.

3.1 Clustering

Central to our information based perception system is the definition of infor-
mation units. In traditional crowd simulation each individual agent or obstacle
is considered as a percept, i.e. as an entity which should be processed by the
motion planning system. The first assumption of our approach is that percepts
can be both individuals and groups of other pedestrians. Whether an individ-
ual considers a group or individual is related to the coherence of the group and
also the distance of the perceiving agent from the group. In order to achieve
this, we perform a global clustering across the entire environment of agents. We
create nl layers within the environment, each layer identifies and stores groups
of a particular size, with increasing layer numbers storing groups of increasing
size. The criteria which determines what actually constitutes a group is itself
unknown and probably highly dependent on the individual. We make the as-
sumption that only the proximity of the individuals to one another determine
whether a collection of people is perceived as a group.

For reasons of efficiency we simplify things by performing a single clustering
(for each level) for all agents at every time-step, the consequence is that we are
implicitly assuming all agents have the same notion of what constitutes a group.
In reality this assumption may be too strong, different people may have different
criteria for what they perceive as groups.

While there are various clustering techniques that could be used for grouping
agents, we chose to use ECM [30] because: 1. It does not require the number of
clusters to be predefined and 2. It can restrict the maximum radius of a cluster.
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Fig. 2. Perception in agents takes place through three stages: 1. Clustering is done at
a global level. The dotted line indicates this separation. Agents a0···n form m clusters
ci,0···mi in layer i where m ≤ n and i ≤ K where K is the predetermined number of
layers. 2. Sensing is the process by which the agents perceive only a subset (c0···l) of
these clusters (c0,0···m0 , . . . , cK,0···mK ). 3. Filtering further reduces the size of this list
and models human visual cognition.

It is also important to remember that this clustering is done dynamically at each
step and not as a one time calculation of groups.

First the number of clustering layers iInteresting and well written paper on
navigation and optimality,taking into account cognitive aspects. While the main
premises on which the paper is based might be somewhat schematic, the work is
very sounds decided. In the Fig 3, we illustrate information based perception using
two layers. The algorithm starts by initializing a single agent as the first cluster,
the maximum clustering radius for layer i, rimax is fixed (3 and 4). Each subse-
quent agent is then compared with every existing cluster to assess its suitability
for addition to that cluster. Suitability is determined by the distance of the agent
from the cluster. If the agent lies within an existing cluster, it is simply added to
that cluster without updating either the radius or the cluster center. Otherwise,
the cluster whose center is closest to the agent is determined. If the agent can be
added to this cluster, without exceeding the maximum allowed radius for the clus-
ter, then the agent is added to the cluster and the cluster’s radius, center and ve-
locity are updated. On the other hand, if adding the agent violates the maximum
radius criteria, then a new cluster is created at the location of the agent.
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Once this process is completed for layer i, the process is repeated for layer
i + 1 until the clusters for all the layers are determined. This process is illus-
trated figuratively in Fig. 2. The clustering function for layer i, cfi allocates
one and only one cluster for each agent in each later. This can be represented
mathematically as shown below:

∀ak∈A ∃j ∈ [1,m] cfi : ak→Cij where 1≤m≤n (1)

∀aj ∈ A C0j = aj (2)

r1max = 2α ∗ ar (3)

∀i ≥ 2 rimax = 2α ∗ ri−1
max (4)

Here ar is the average radius of an agent1 in A which is the set of all agents; Cij

indicates cluster j in layer i; m is the number of clusters and n is the number
of agents. α is a parameter that determines the size of clusters and the range
of each region (Fig. 3). Through experimentation we found the most pleasing
results with α = 2.

To correct certain undesirable behavior produced by ECM clustering, a mod-
ification was made to the algorithm. With large values of rmax, there is a chance
that distant agents might be grouped into sparse clusters. To counter this prob-
lem, we define a checking circle as a circle of radius 2αar. If there are no agents
within this checking circle, then the cluster is considered sparse and the cluster
is removed. The sparseness check is done five times. First with the circle centered
at the center of the cluster and subsequently with the checking circles centered
at a distance equal to half the distance from the center of the cluster along each
of the coordinate axes.

3.2 Sensing

Once the agents have been clustered, the next step is to make use of these
clusters for motion planning. As previously explained, existing motion planning
algorithms need a list of nearby agents and obstacles to determine the most
appropriate velocity. The sensing module of our proposed perception mechanism
uses the set of nl layers created in the clustering module. The list of things to
avoid will now consist of agents, obstacles and groups of agents. This list of
nearby objects is now calculated from the multiple clustering layers as shown in
Fig. 3.

From each cluster layer (explained in Sect. 3.1) a ring shaped perception region
pri is defined for each agent. This region can be considered as a modification of
the sensor range which is used in most ABM. In the first region (pr0), imme-
diately surrounding the agent performing the sensing, the agent perceives other
individual agents from the clustering layer 0. This region extends to a distance
rpr0 = 2α∗ar from the agent’s current location. For each subsequent region, the

1 In the experiments in this paper, it is assumed that all agents have the same radius.
Hence, the radius of every agent is the same as the average radius.
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Fig. 3. The figure illustrates how the opaque agent senses objects using 2 clustering
layers. The bottom layer is the original environment and the two planes above show
the two clustering layers. Clusters in layer 2 are generally bigger than in layer 1. Solid
lined circles indicate the normal agents and the clustered agents. The dotted lines show
the regions of perception.

ring shaped region of sensing is from the boundary of the previous layer’s region
to the boundary of a circle of radius 2α times the radius of the preceding region.
So for region pr1 the agent perceives groups of maximum size r1max (Fig. 3). If
the nearest edge of their minimum enclosing circle is within a distance d, such
that rpr0 < d ≤ rpr1 . The result is a list of obstacles which consists of clusters
of various sizes and individual agents.

3.3 Filtering

As explained in Sections 1 and 2.2, a human being does not cognitively process
every single object or obstacle that is within its vision. In other words, an agent
can only process a limited amount of information. The information that is pro-
cessed will be that which is deemed most interesting or important to the agent.
So each object in the list obtained from perception is assigned an interestingness
score of between 0 and 1 (1.5 for exceptional cases). During the sensing process
each agent is given an information limit aIL, indicating the total amount of
information that can be processed by the agent. This limit is a parameter than
can change as the stress level or other characteristics of the agent changes [27].
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Fig. 4. This graph shows the variation of distance score with distance (in metres) used
in experiments. A score of 1.5 if a collision has already occured, a score of 1 if it is
within 7m and an exponentially decreasing score beyond that distance.

For this paper we assume that interestingness of an object depends on two
criteria: 1. The distance of the object from the agent. 2. The angle that the
object currently forms with the direction of motion of the agent. A third factor
indicating the innate interestingness of the object being perceived can also be
used; this can represent a lot of other properties related to interestingness. For
example, an object’s speed, color, action or something more subjective, i.e. it is
of interest only to this agent because of certain properties of the agent. For e.g.,
for a thirsty agent, a water cooler would be interesting whereas it is unlikely to
catch the attention of someone else. A more exact definition of interestingness is
not the focus of this paper, but the general model here should be able to adapt
to more sophisticated definitions.

Based on these criteria, a score is given to each agent. A distance score of 1.5
is given if the distance between two agents is less than or equal to zero. This is
to ensure that in high density scenarios where a collision does occur, a collision
recovery mechanism is forced on the objects regardless of what angle or how
interesting the object is. For other distances the following equation is used to
calculate the score for a distance d. γ and k are parameters which were fixed at
5.0 and 1.11 respectively to get a curve as in Fig 4.

Sd = max(min(1.0, eγ/d − k), 0.1) (5)

An angle score of 1.0 is given to all objects forming an angle of less than amin

with the agent’s direction. For all agents that form an angle of more than amax
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with the agent’s direction, a score of (1 − β) is given. For our experiments a β
value of 0.9 was used and this is illustrated in Fig. 5. For all angles in between,
the angle score linearly decreases to (1 − β) from 1. This is assigned based on
the following equation (Fig. 5). All angles are in radians:

Sθ = 1.0− (β ∗ (a− amin)/(amax − amin)) (6)

The final score for the object is calculated as the product of the Sθ and Sd

(as long as distance score is not 1.5). This list of objects is then sorted on the
basis of the score that is determined. Objects are then removed from the head
of this list in turn and added to the final list of perceived objects as long as the
cumulative score of all the perceived objects does not exceed the information
limit for the agent, aIL. All the remaining objects are dropped from the list of
objects sensed and the final list of percepts p∗ is obtained. In case two objects
have the same score, the objects that are moving towards the perceiving agent
are given precedence, subsequently closer objects are given preference.

For the implementation in this paper we pass the shortened neighbor list to
RVO2 [8] for calculating the velocity at each time step. Our hypothesis is that the
3-step perception process proposed by us in this paper provides an improvement
in two ways: Firstly, there are fewer neighbors and hence, fewer constraints for
a given sensor range. Secondly and more importantly, more human like results
can be obtained as will be illustrated in Sect. 4.

Within 140 
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angle

Upto 180 
degree 

viewing angle
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Fig. 5. This graph shows the variation of angle score with the angle(in radians) formed
by the object with the agent used in experiments. For objects forming an angle of less
than 70◦ (viewing angle 140◦, a score of 1 is given. For objects forming an angle of up to
90◦, the score linearly decreases to 0.1 which is the angle score for all remaining obstacles.
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4 Results

We are currently working towards gathering real world data that would ideally be
used for validation of the proposed model. Nevertheless, in the following sections,
we use the ideas introduced in Sects. 1 and 2.2 as the basis for validating different
aspects of the proposed model. Two quantitative measurements are used to
analyze the model: Effort Expended and Inconvenience Cost. In proposing their
least effort based approach to motion planning [9], Guy et al. used a measure
of effort expended to demonstrate the usefulness of their model. This effort was
calculated as follows:

E = m

∫
(es + ew|v|2) dt2 (7)

In this paper, we use the same measure of effort to analyze and validate our
model. For simplicity, we take all agents to have the same average mass of 70 Kg.
However, this only measures the mechanical effort involved. To measure the
amount of effort spent in decision making, we introduce inconvenience cost. The
inconvenience cost is the number of time steps in which the agent chose a velocity
other than its preferred velocity i.e., the number of times they have to avoid a
collision.

We consider four different scenarios which we consider to be a good way to
evaluate the overall performance. First, we simply demonstrate the effects that
Group Based Perception can have on the trajectory of an agent both in visual
and in quantitative terms. Next, we present the benefits of using a multiple
layers of clustering. Following this, we conduct an experiment to demonstrate
how group based perception is essential if we are to model a human being’s
information processing limits. In the final experiment we analyze the effects

4.1 Group Based Perception

In this experiment we compare the results of using RVO2 with a traditional
simple circular sensor range against RVO2 with a Group Based Perception sys-
tem. The intention is to show the effect of perceiving agents as groups. Our
hypothesis is that by perceiving groups as obstacles the simulation will generate
more visually natural motion. In Fig. 6, there is a single black agent moving to-
wards the right, and a number of groups of red agents moving towards the left.
The black trail shows the path that is taken by the black agent. It can be seen
that in Fig. 6a where GBP was not used, the agent walked through other groups.
Since RVO2 enforces each agent to do half the work to avoid collision, the agents
within the group individually give way through its center for the oncoming agent
to pass.

At present we base our argument on the discussion in Sects. 1 and 2.2, due to
social norms and the human tendency to group information together people gen-
erally try to move around an entire group rather than walking directly through

2 es = 2.23 J
Kgs

and ew = 1.26 Js
Kgm2 for an average human [33].
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(a) Traditional Circular Sensor Range

(b) Group Based Perception

Fig. 6. Experiment 1: The effect of Group Based Perception

Table 1. Quantitative analysis of Group Based Perception

Agent Considered
Effort (∗105) Inconvenience Cost

Without GBP With GBP Without GBP With GBP

Black Agent 71730 71726 120 148
All other agents

(average)
1884 1880 14.28 6.56

a group. As shown in Fig 6b our perception algorithm is capable of generating
motion which avoids entire groups.

An analysis of the effort expended and the inconvenience cost gives some
interesting results. Since the simulation is executed for a given number of time
steps, the effort expended is normalized with the progress towards the agent’s
goal. This is to avoid slow or stationary agents from being considered to be
more efficient despite traveling a lesser distance. On comparing the normalized
effort in the two scenarios of the black agent, it is found that despite having a
much longer path, the GBP enabled agent expends slightly lesser (practically
the same) amount of effort than the other. This is because the non-GBP agent
has to slow down to wait for the other agents to give way before it can proceed
and thus progresses less towards the goal.

The inconvenience cost comparison gives another interesting, though not sur-
prising, result. The inconvenience cost to the black agent of using Group Based
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(a) Using traditional sensing (b) Using Group Based Perception

Fig. 7. Experiment 2: Effect of multi layered clustering

Perception is higher because of the more indirect path that it has to take. How-
ever, the average inconvenience caused to all the other agents is significantly
lesser. This conforms with the general human reluctance to inconvenience oth-
ers. It also gives the interesting idea that even if the same amount of mechanical
effort is expended in following two different paths, the amount of decision making
required for each path might be significantly different.

4.2 Effects of Multi Layered Clustering

In this experiment, we studied the simple scenario where a single (black) agent
had to get past a big group of agents to get to its goal. The same experiment
was performed by keeping the agent at different distances from the group. The
objective of this experiment is two-fold. Firstly, it demonstrates the importance
and the working of the multi-layered clustering (Sect. 3.2) used. Secondly, it
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demonstrates that when agents are very close to each other, where RVO2 al-
ready performs well, the Group Based Perception does not interfere with RVO2’s
functioning.

To recap, the multiple layers are used to describe groups of varying size at
varying ranges of perception. This means agents will perceive other agents as
groups or individuals depending on the distance; as an agent moves towards a
group it will start to perceive the group as individual agents.

When GBP isn’t used, the path followed does not change significantly with
distance. The agents in the path of the black agent, give way to the agent, and
the black agent just proceeds straight through the center of the large group (Path
A in Fig. 7a). In the last few cases (Paths B and C), the path is slightly different
because the black agent does not have enough time to plan for a smooth, straight
path and hence there is a slight deviation. Also, similar to the experiment in
Sect. 4.1 it is forced to slow down in the process.

The result produced when GBP is used is more varied. Four distinctly different
paths (labeled D, E, F and G in Fig. 7b) are produced based on how far the
oncoming black agent is from the big group. At distances between x-y m away,
the agent has enough time to perceive the group and avoid it completely (Path
D). At distances between y-z m away, due to the size of the group, the agent
gets too close to the group such that it then perceives the group as individuals.
At this time (as described in Fig. 3) the agent performs motion planning on all
the individual agents and as a consequence moves through the group, shown by
path E. Path F is obtained in a similar fashion; however, the black agent is too
close to the group to discern the effect of GBP. At distances closer than this,
the path followed by the agent (Path G) is exactly the same as that followed
by the agent not using Group Based Perception (Path C). We argue that this
type of flexibility in the perception of groups is critical to creating more natural
behavior, humans will adapt what they perceive based on success or failure of
their attempt to avoid larger groups.

Figures 8a and 9a show a comparison of the effort expended by the black agent
and the average effort expended by all the remaining agents while using a tradi-
tional sensor range and Group Based Perception. As in the previous experiment
(Sect. 4.1) there is hardly any difference in the effort expended in both scenarios
(except for a slight increase for trail E). However, an interesting pattern can be
observed in the inconvenience measurement. Firstly, the inconvenience for the
rest of the group, is always lesser when GBP is used and almost the same for
the black agent when path D is followed. However, when path E or F is followed
there is a spike in the inconvenience curve. This can be explained by considering
the fact that in both path E and F, the black agent changes its planned path
suddenly and decides to go through the group, thus not only increasing its own
inconvenience but also the inconvenience caused to others in the group who have
to move to give way to the agent. Finally, when path G is followed both the effort
and inconvenience count are exactly the same as for path C.
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(a) Black Agent- Effort

(b) Black Agent- Inconvenience

Fig. 8. Experiment 2: Quantitative Analysis - Black Agent

4.3 Filtering Necessitates Group Based Perception

In Sects. 1 and 2.2, the fact that humans have limited information processing ca-
pacity was explained. In this experiment, we demonstrate that if we are to model
a human being’s limited information processing capability, it is also necessary to
use Group Based Perception. This is done by observing the simple scenario of an
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(a) Remaining Agents- Effort

(b) Remaining Agents- Inconvenience

Fig. 9. Experiment 2: Quantitative Analysis - Remaining Agents

agent moving towards two groups of other agents (Fig. 10). When no information
limit is imposed on the agent, and a normal circular sensor range is used, the
agent, as expected, follows a nice straight path through the center of the group.
However, when an information limit of aIL = 4 is imposed on the agent, the
black agent, does not perceive all the individual agents in the group and as a
result it is forced to reconsider its path mid-route. As a result, the irregular
trail shown in Fig. 10c is obtained. However, in the same situation, when Group
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(a) Initial Scenario

(b) Complete knowledge, without GBP (c) Info limit of 4, without GBP

(d) Info limit of 4, with GBP (e) Info limit of 1, with GBP

Fig. 10. Experiment 3: The necessity of Group Based Perception

Based Perception is used, the agent smoothly avoids the whole group (Fig. 10d).
In fact, this smooth path is obtained for as low a limit as aIL = 1 (Fig. 10e).

4.4 Effect of Filtering of Percept Information

The final experiment (Fig. 11) demonstrates the effect of filtering, i.e. having
limits on the information processing capabilities of the agents. The scenario
consists of an agent moving towards a collection of individuals (moving towards
the agent) followed by a group of agents behind the set of individuals. In the
first case we set an information limit of aIL = 5 so that the agent is continually
capable of perceiving a larger number of other agents and groups. In the second
scenario we use a lower limit of aIL = 3 such that the agent isn’t initially
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(a) Initial Scenario

(b) InfoLimit 3: Step 1 (c) InfoLimit 5: Step 1

(d) InfoLimit 3: Step 2 (e) InfoLimit 5: Step 2

Fig. 11. Experiment 4: Effect of filtering of percept information

capable of perceiving the group behind the individuals. Figure 11c shows how
agents perceive the cluster that is farther away, even when there is an immediate
collision to avoid. Figure 11e shows that the agent manages to move around this
group because it had a head start in planning - i.e. , it considered the group
early when avoiding collisions. In the second scenario we gave a much lower
information limit, such that it could process a maximum of 3 or 4 percepts at
any given time. Due to this, as seen in Fig. 11b, the agent cannot see beyond the
immediate obstacles in front and does not prepare in advance to avoid the larger
group. Once the agent finally perceives this group, it is too late to move around
this group as it perceives the group as individuals and then moves through the
group as in Fig 11d.
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This experiment illustrates how small differences in the information limit can
generate different forms of behavior in the agents3. Clearly the value of the limit
is critical to behavior, we also propose that this limit will change with personal
characteristics and the emotional state of the agents. In fact we feel that this
varying limit of perception is an important factor for collisions in crowds, this
is especially relevant in emergency egress scenarios where stress and collisions
are critically important to safety planning. We plan to attempt to quantify this
information limit through experimentation in future work.

5 Conclusion

In this paper, we have proposed a model of perception based on perceived infor-
mation rather than spatial distance. We argue that this is a more appropriate
model of human perception for crowd and egress simulation. We have illustrated
the behavior of this system through experiments and have shown and argued
that this creates more realistic group avoidance behavior. We also presented a
perception model which incorporated the idea that humans have limited per-
ception capacity such that they only process certain obstacles more relevant to
collision avoidance, which in turn will result in a reduction in efficiency of colli-
sion avoidance. Critical to the model is the quantification of information limits
and appropriate definitions of interest; we plan to conduct real world experiments
to attempt to quantify these parameters.

A more naturalistic system like this is essential for the development of an
accurate model of crowd evacuation in emergencies. In emergency situations,
according to [27], humans start perceiving cues in the environment differently.
In the future, we plan to extend this model by first adding more features to the
measure of interestingness score and also by modeling different cues and their
effect on the agent’s information processing capabilities as suggested in [22]. The
third criteria which we mentioned in section 3, i.e. the inherent interestingness
of the object has not been elaborated on in this paper. Also, in this paper
we have not implemented any memory for the agent. To accurately simulate
virtual humans’ and their motion, the fact that they can remember the positions
of objects should also be taken into consideration. Virtual humans can also
extrapolate the movement of agents that they have perceived previously but are
not in their field of vision at the current time. In this paper, we have considered
the effect that perception can have on cognition. However, as mentioned in papers
like [14] there is also a reciprocal effect of cognition on perception where agents
would turn towards objects of more interest, we plan to incorporate this in future
versions of the model.
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3 Interestingly, the info limit of 3 and 5 correspond to Cowan’s [5] finding that all
humans can cognitively process only 3-5 chunks of information at any given time.
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