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Abstract. We present a Hidden Markov Model (HMM) based stylis-
tic walk synthesizer, where the synthesized styles are combinations or
exaggerations of the walk styles present in the training database. Our
synthesizer is also capable of generating walk sequences with controlled
style transitions. In a first stage, Hidden Markov Models of eleven dif-
ferent gait styles are trained, using a database of motion capture walk
sequences. In a second stage, the probability density functions inside
the stylistic models are interpolated or extrapolated in order to synthe-
size walks with styles or style intensities that were not present in the
training database. A continuous model of the style parameter space is
thus constructed around the eleven original walk styles. Qualitative user
evaluation of the synthesized sequences showed that the naturalness of
motions is preserved after linear interpolation between styles and that
evaluators are sensitive to the interpolation factor.
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1 Introduction

The character animation field covers a lot of different domains, ranging from
the coarse motions seen in video games to the precise humanlike motions of the
last generation of 3D films, and including fields like virtual reality or character
animation for human-computer interactions. In the framework of character ani-
mation, several approaches are available to produce realistic humanlike motion.
There are currently three main kinds of techniques which are used for motion
production in the animation field: traditional keyframe animation, procedural
techniques in which a software based on a set of rules helps the animator for
motion production, and motion capture based approaches where the animator
uses real motions captured on an actor.

Producing natural looking animations of virtual humans is a very challenging
task as human eyes are natural experts of human motion and naturalness. This
is why motion capture, which consists in capturing human motion in the real
world to transfer it to the virtual world under a mathematical form usable by
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computers, is the only way to obtain truly realistic human motion [21]. Motion
capture opens a huge field of study and of potential applications, and has re-
ceived growing interest in the last years, especially since it is becoming more
affordable and reliable. However, this technology suffers from several drawbacks.
Motion capture data have a high dimensionality, the choice of the parameteriza-
tion is not straightforward and motion is highly variable in general. Furthermore,
motion capture is not very flexible. It is hard to reuse recorded motion capture
segments and it is also very difficult to modify natural motion without loos-
ing their naturalness, especially since the human eyes will be very sensitive to
any inconsistency in motions. In this article, we address this last problem, by
interpolating and extrapolating between and beyond the motion styles present
in our motion capture training database. Finally, natural looking transitions
are another challenge of motion capture sequences. For instance, generating a
smooth transition between two separate walk styles is not straightforward if the
transition has not been recorded. This issue is also addressed in this article, as
our model is capable of handling controllable and natural looking transitions
between distinct style models.

Two different approaches coexist about using motion capture data for pro-
ducing animations: the “template-based” and the “model-based” approaches. In
the “template-based” approach, a large database of motion sequences is built
and algorithms are developed to retrieve, edit and blend together motion parts,
to produce new sequences [8]. The “model-based” approach consists in training
models based on motion capture data. The models can later be used to synthesize
new motion sequences without resorting to the database initially used for train-
ing [9,1,31]. If the model is properly trained, the information contained in the
database is summarized in the model parameters. This model gives then more
freedom to the user for producing new plausible sequences, even if they were not
present in the training database. This approach has been used for years in speech
processing for example, first for recognition and more recently for synthesis [14].
Our work falls in the latter category, with the use of model-based techniques
and more precisely of Hidden Markov Models (HMMs) [25], for the modeling
and synthesis of humanlike motion. HMMs have been used for motion modeling
and more especially motion recognition for a long time. The statistical nature of
HMMs makes them perfect candidates for the modeling of spatio-temporal time
series like human motion where both the tempo and the space trajectory can
vary for several realizations of the same motion.

This approach is inscribed at the crossing between motion capture and proce-
dural methods, as we use statistical learning techniques to automatically extract
the underlying rules of human motion, without any prior knowledge, directly
from training on 3D motion data. The position of our current work in the char-
acter animation field is illustrated in Figure 1.

In addition to template- or model-based approaches, other distinctions can be
made between the methods applied to modify motion capture data. Parametric
motion synthesis is a method that can be applied to both approaches and which
consists in producing new motion by interpolating between motions that are
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Fig. 1. Position of the HMM-based motion synthesis in the character animation
hierarchy

visually similar and correspond to the same logical action [24]. In this article,
our approach is parametric and model-based as we aim not only to synthesize a
plausible human walk but also to take into account some kind of “style” compo-
nent. “Style” can refer to emotions, but also to speed, gender (male or female),
age (children or elderly,... ), specific contexts, etc. The “style” studied in this
paper consists of both emotions (like sadness for instance) or particular con-
texts (like “topmodel” walk). In this paper, style-specific models of walks are
first trained over a training motion capture database. The parameters of these
style-specific models are then used to produce new models corresponding to
style combinations or style exaggerations not present in the training database.
Furthermore, the parameters of the style-specific models can be used to build
style-transition models and generate a sequence of walk presenting a smooth
style transition, without jumps nor abrupt and disturbing changes.

The remainder of the paper is organized as follows. Section 2 presents related
work. The motion capture training databases are presented in Section 3. Section
4 describes how the style-specific HMM models of walk were trained, and how
these models can be used to synthesize new walk sequences. Section 5 explains
how new style characteristics can be obtained by interpolation and extrapolation
of the style-specific walk models. The results are presented in Section 6, and
Section 7 describes the qualitative user evaluation. Conclusion and future works
are addressed in Section 8.

2 Related Work

One of the main problems associated with the use of motion capture data to build
animations is that using only the recorded motions can be very limitative. Even if
the sequence of motion wanted by the animator can be found in the database, this
sequence might not present the required style. Recording a database with all the
style options for all the motions is impossible, and recording new motions each
time a new animation has to be produced is very costly and often not materially
possible. The goal is to find ways of parameterizing the style component of the
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motion independently from the functional part of the same motion, in order to
give the user some kind of interactive control on the style of the output motion.

This approach is similar to approaches encountered in other aspects of human
biometrical characteristics modeling or synthesis. Wecker et al. [42] for instance
decompose iris images into basic iris properties and individual biometric charac-
teristics, and use this decomposition in order to synthesize new plausible irises
images not present in the training database. Lu et al. [20] start from a generic
3D face model and project 2D images of real faces on it. From one single image
of each person, using their generic 3D model, their method generates new 2D
images of the same person with different expressions or lighting conditions.

People have taken several approaches to address this problem of decomposi-
tion into a functional basis and variable characteristics. We will focus the present
review of related work on research addressing 3D motion problems.

One approach is to use signal processing techniques to tackle the problem.
Bruderlin and Williams [2] use a multiresolution filtering that decomposes the
motion into several frequency bands whose amplitude can be modified in order
to change the motion style. Unuma et al. [37] apply Fourier transform on the
motion data and can modify the aspect of the motion by changing the weights of
the Fourier transform in the frequency domain. Unfortunately, these approaches
are not easy to use for style control, as changing the weights in the frequency
domain is not an intuitive way of controlling the style of a motion.

The underlying principle of most works, including ours, is to use statistical
learning techniques on a set of stylistic motion capture data. These techniques
separate automatically, without any prior knowledge, the style component from
the fundamental function of the motion. The statistical models can then give
the user some kind of control on the style parameter, and synthesize motion
according to the user’s commands. If the principle is the same, several statistical
approaches have been tested in the last years.

In [26], Rose et al. decompose motion into verb (fundamental of motion, like
“walking”) and adverb (which modifies the basic motion according to emotion,
gender, “uphill” or “downhill”, etc.). They propose a technique for real-time
interpolation of motion sequences, based on radial basis functions and low order
polynomials representation of the motion. Glardon et al. [9], Troje [36], Min
et al. [22] and Tilmanne et al. [31] all use principal component analysis (PCA)
not only for reducing the dimensionality of the problem, but to separate the
influence of style from the functional part of the motion. In a similar way, Shapiro
et al. [27] use Independent Component Analysis (ICA) for the same purpose.
Min et al. [23] conduct a multilinear motion analysis to extract separately style
and individuality variations, after time warping and PCA for dimensionality
reduction.

Another interesting approach is to use Hidden Markov Models (HMMs) to
synthesize motion, and to integrate a style variable into the HMM parameter-
ization. One of the advantages of using Hidden Markov Models is that they
exempt from using time warping procedures, needed in most approaches in or-
der to align sequences prior to analyze them or extract the style component
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among them. HMMs integrate directly in their modeling the time variability
of the motion. In their work, Wang et al. [41,40] present an HMM that can be
trained as a parametric HMM incorporating a “style” parameter in the probabil-
ity density functions (these densities are represented by SOMN (self organizing
mixture networks) in [41] and by mix-SDTG (stylized decomposable triangu-
lated graphs) in [40]). Brand and Hertzmann [1] include a style variable which is
automatically extracted during the training process of the HMM and that can
vary during the synthesis of a motion sequence. However, in their “Style Ma-
chine”, the style variable is not explicit, and changes some intrinsic style-related
parameters which can make it hard to use as a style controller. In a work closely
related to ours, Yamazaki et al. [46] model walk using a Hidden Semi-Markov
Model (HSMM). Their model takes into account speed and stride length as a
“style” variation using multiple regression. However, this method can only be
use to model quantitative variations, and is thus not suited to model emotions or
expressivity that can hardly be described by numerical values. In their approach,
the whole training has to be done again if one wants to add a new style in the
model.

3 Databases

In this work, two databases recorded with an inertial motion tracking system
(IGS-190 from Animazoo [15]) were used. Our two databases, respectively called
“eNTERFACE’08 3D” and “Mockey”, were recorded with the same motion cap-
ture suit but with different aims, subjects and settings.

The eNTERFACE’08 3D database is described in details in [33]. This database
contains, among others, three sequences of straight “free” walk for 41 different
subjects. In the “free” walk, subjects were invited to walk at their usual comfort
speed. In the present work, the three free walk sequences of the 41 subjects
were used to train our “neutral” walk model. In that database, the motion was
captured at a frame rate of 60 frames per second (fps).

The Mockey Database aims to study the “expressivity” of walk [31]. All the
different walks were performed by the same actor. He was given instructions
about the “walking style” he had to act before each walk sequence recording.
The eleven different acted styles were the following: proud, decided, sad, top-
model, drunk, cool, afraid, tiptoeing, heavy, in a hurry and manly. Our “style”
component consists thus in exaggerated variations that can be far from a plain
walk. In this second database, motion was recorded at a frame rate of 30 fps.
These eleven styles were arbitrarily chosen as they all have a recognizable influ-
ence on walk, as illustrated in Figure 2.

The walk sequences were manually segmented into left and right steps. The
boundaries of the steps were arbitrarily defined as the moment the heel touches
the ground. Depending on the style of walk performed and its corresponding
step length, a different number of walk steps was recorded for each style. Each
motion file contains two parts: the skeleton definition and the motion data. In the
motion data part, the first three values of each frame give the 3D position of the
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Fig. 2. Four example postures taken from the motion capture database (sad, afraid,
drunk and decided walks)

root of the skeleton. They were discarded, as they depend on the displacement
and orientation of the walk and can be recalculated given the foot contact with
the ground and the leg segments lengths. The pose of the skeleton at each frame
is then described by 18 tridimensional joint angles, which gives 54 values per
frame to describe the motion.

No dimensionality reduction was conducted on the original set of 54 param-
eters in order to build a generic style interpolation procedure in which any new
walk style could be added in the future without having anything to modify in
the previously trained models. This would not have been the case if principal
component analysis (PCA) had been used for dimensionality reduction for in-
stance, since the PCA space would depend on the styles present in the training
database. By keeping the 54 original motion observations, we avoid our model-
ing procedure from being dependent on the set of styles present in the training
database.

In this paper, our 3D angles were converted from their original Euler angle
representation into the exponential map angle parameterization which is locally
linear and where singularities can be avoided [11,16]. Exponential maps represent
each 3D rotation by 3 values.

4 Style Models Training

Our approach for stylistic model training is to start from a procedure originally
developed for speaker adaptation in speech synthesis and to adapt it to our
motion problem. This HMM-based procedure is presented in more details in [32]
and is based on functions originally implemented for speech within the “HMM-
based Speech Synthesis System” (HTS) framework, publicly available on the
HTS website [14]. The dynamical aspect of the data is taken into account by
integrating the first and second derivatives of our parameters both for reference
and stylistic model training and for synthesis [35]. By adding these derivatives to
our 54 original parameters, we obtain a 162 dimensional vector of observations
to model. The time spent in each state of the HMM is explicitly modeled in
duration probability density functions thanks to Hidden Semi-Markov Models
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Fig. 3. A three-states HSMM with no skips (with pi(d) representing the density
probability of the duration d of state i)

(HSMM) [47]. The schematic representation of the state duration modeling in a
three-states HSMM is represented in Figure 3.

The first stage of the procedure consists in the training of a multi-walkers
“reference” model, with the “neutral” walk sequences from the 41 subjects of
the “eNTERFACE’08 3D” database. That reference HSMM model is trained
using the HTS framework, with a procedure called SAT (for “speaker adaptive
training” as it was designed for speech processing [44]) that removes the influence
of the subject-specific variations in the final model.

Both steps (left or right) are modeled by separate left-right five-states HSMMs
with no skips. Furthermore, contextual factors related to the position of the step
in the whole walk sequence were taken into account during the training, thereby
multiplying the number of models to train. We made the contextual distinction
between five positions in the walk sequence for each step: the first, second, last,
last-but-one steps of the sequence, and all the other steps. The training began
thus with ten models to train (five for each step). These ten models can be
clustered using decision trees. The decision tree is a binary tree, and in each
of its nodes, a question splits contextual models into two groups. All possible
contextual combinations can be found by traversing the tree. Once the decision
tree is constructed, unseen contexts can be prepared and leave nodes containing
little or very similar data can be merged (for more information on how the trees
are built and used, please refer to [48]). After the decision tree clustering, six out
of the ten originally possible contextual HSMMs remained to model the reference
walk.

The reference model is used in the second stage of the training, as a basis from
which the adaptive training is conducted in order to adapt the reference model to
a specific style, using the stylistic walks from the Mockey database. The adaptive
training is a method from the latest results of the HMM speech synthesis field,
adapted to our motion synthesis problem [32]. Using this adaptation procedure
for each style of the Mockey database, we obtain eleven style-specific HSMM
models, with each stylistic walk model containing 6 contextual HSMMs.

Using these models, an HMM-based walk synthesis can be conducted and new
sequences of walk can be calculated for each one of our eleven walk styles. First
a model of the new sequence is obtained by concatenating HMMs corresponding
to the succession of steps to be synthesized. This complete model is then used to
calculate the corresponding optimal observation sequence, taking into account
the dynamics of the synthesized data (thanks to the first and second derivatives
of the parameters), which ensures the continuity of the synthesized sequence.
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The model gives us joint angles and the cartesian coordinates of the root of
the skeleton can then be computed. Using our knowledge of the boundaries of
the synthesized walk cycles and calculating the height of each foot thanks to
the known leg segment lengths, we determine which foot is in contact with the
ground. From that fixed 3D position, we calculate the position of the whole body
until the other foot becomes the reference, and so on for the whole sequence.
This method enables us to ensure that no foot sliding effect can occur, as the
displacement of the whole body is driven by the foot contact point with the
ground.

5 Interpolation

Once our eleven style-dependent HSMM models are built, we can synthesize
as many stylistic walk sequences as we want, for each one of the eleven styles.
So far, each style is modeled separately, and in the synthesis step, the user’s
control on the output sequence is only the choice of one among the eleven pos-
sible styles. In this work, we want to go further in the style modeling and study
how the styles can be controlled with more freedom and how the models behave
outside of the styles trained from the database. In the model training stage pre-
sented in Section 4, each stylistic walk is modeled by six five-states HSMMs,
and each HSMM model contains both state duration and 162-dimensional ob-
servation modeling. For each state of each HSMM, duration is modeled by one
Gaussian probability density function (mean and variance) and observations
are modeled by single Gaussian probability density functions (multidimensional
Gaussian with diagonal covariance matrix). The set of parameters of one whole
style model consists thus in 9780 parameters for 4890 probability density func-
tions (pdfs), as each pdf consists in a Gaussian model (mean + variance) and
( 162 (observation parameters) + 1 (duration of one state) )
∗ 5 (number of states) ∗ 6 (number of HSMMs) = 4890 pdfs.

Among these 4890 probability density functions, 4860 pdfs model the obser-
vations and 30 pdfs model the state durations.

In this work, we use these model parameters as a basis for obtaining new
or exaggerated styles by extrapolation or interpolation. To do so, a simple pro-
cedure was applied. New models were obtained by linear combinations of the
means of the probability density functions of each style-specific model. The 4890-
dimensional model pdfs space is thus considered as a continuous space in which
new styles can be produced by taking points in the space between two existing
styles or slightly beyond these styles. Since the new style is obtained through a
simple linear interpolation between two vectors, the high dimensionality of the
model parameters is not an issue. The known styles are used as landmarks in
the continuous model parameter space, around which new style possibilities can
be produced by going further away or coming closer to another known style.

In this continuous space, combinations of styles can be obtained, but the
intensity of the eleven styles can also be controlled in a continuous manner,
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even though no control was available in the eleven style models themselves.
An average walk model was calculated by taking the mean model parameters
over the eleven style models, and used as a basis for controlling the intensity of
each style separately. This average model corresponds to some kind of “neutral”
style for the actor recorded in the stylistic database. Figure 4 illustrates the
linear operations in the 4890-dimensional model space. In our previous work
[32], eleven separate style models were obtained and could be used separately
(Figure 4.A). In this work, we generalize the motion space by interpolating and
extrapolating between two styles (Figure 4.B) or by continuously controlling the
amplitude of a given style by interpolation and extrapolation with respect to the
average style (mean of our eleven styles, (Figure 4.C)).

a b c 

Fig. 4. Schematic representation of the interpolation/extrapolation procedure in the
4890-dimensional model space. Green dots represent the separate stylistic models, red
lines the interpolation between models and the red dot is the averaged style model.

6 Results

Our first approach in building new models consists in linearly interpolating the
whole set of 9780 parameters between two styles:

pdfnew = pdfstyle1 + interp ∗ (pdfstyle2 − pdfstyle1). (1)

Where pdf is the 4890-dimensional vector of the probability density function
means (i.e. the parameters of the model), and interp is a scalar value that
gives the interpolation ratio between style 1 and style 2. The difference between
style 2 and the reference style 1 is thus multiplied by a factor interp before
being added to style 1. Figure 5 shows an example of interpolation between the
original sad and decided walks, and illustrates that both postures and durations
are interpolated. This approach can easily be generalized to a linear combination
of any number of original styles.

The second approach aims at controlling the intensity of expression for each
style separately. Style interpolation and exaggeration were obtained by using the
averaged walk model as a reference (style 1 in equation 1), and the style whose
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Synthesized sad walk

Fig. 5. Synthesized left step for original proud walk (first subfigure, interp = 1), 0.75
proud and 0.25 sad walk (second subfigure, interp = 0.75), half sad/half proud walk
(third subfigure, interp = 0.5), 0.25 proud and 0.75 sad walk (fourth subfigure, interp
= 0.25), original sad walk (last subfigure, interp = 0), . Synthesized skeleton poses are
displayed every 0.1 second.

intensity we want to control (style 2) as an interpolation direction. The strength
of the style can be diminished by decreasing the interp value from 1 to 0. For
values of interp greater than 1, the style is exaggerated. Our synthesized walk
sequences remained natural for values of interp lower than 2. For values around
2 and above, the quality of the synthesized walk depended on the original style as
some exaggerated styles were affected by impossible movements (knees bending
backwards or awkward bending of the spine for instance). These problems could
be avoided in future studies by adding constraints to the joint angles so that
they cannot take values beyond what is physically possible for a human being.

Another interesting result is obtained by giving negative values to the interp
parameter. The difference between the controlled style and the average walk
model is substracted to that average walk instead of being added. The obtained
style then presents characteristics at the opposite of the controlled style. For
instance the sad walk which is slower than the average model and where the
pose of the character tends to bend inwards with respect to the average posture
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will give an opposite model where the character walks faster and looks much
more “open” by its posture. We are thus able to synthesize styles that do not
appear in our database but that show style characteristics that are opposite
to the ones of recorded styles. A left step synthesized with the original sad
walk model and with three new style intensities obtained by interpolation or
extrapolation is illustrated in Figure 6. The figure shows that both poses and
durations are affected by the interpolation process.

Synthesized sad walk

Synthesized opposite of sad style walk

Synthesized half intensity sad walk

Synthesized exaggerated sad walk

Fig. 6. Synthesized left step for original sad walk (first subfigure, interp = 1), inter-
polated opposite model (second subfigure, interp = -1), half sadness intensity (third
subfigure, interp = 0.5) and exaggerated sad walk (last subfigure, interp = 2). Syn-
thesized skeleton poses are displayed every 0.1 second.

In the first two approaches presented, a new model is calculated by interpo-
lation of the original style models. The interpolated model represents a single
new style and is used to synthesize a sequence of walk with a style not present
in the original database. The HMM model takes into account the dynamics of
the data, and the continuity between the steps of the walk sequence is hence
ensured. But it also enables us to synthesize a sequence presenting style tran-
sitions. During the synthesis process, step models are concatenated in order to
form a complete model of the entire walk sequence. If the concatenated step
models represent different walks, the resulting synthesized sequence will display
the corresponding style change. As the synthesis process takes into account the
dynamics of the data to calculate the optimal parameter sequence corresponding
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to the concatenated walk model, the style transition will occur without abrupt
jerks. This result is similar to the blending procedures applied to smooth the
transition between two different mocap files over a few frames as it is usually
done in pure mocap approaches. However, even if no jerks are present in the
angle data and that the motion continues smoothly when the character goes
from a step with style A to a step with style B, the transition will not appear
as “natural” for all style transitions. If they are not surprised by something,
humans do not abruptly change the style of their walk from one step to the next
one. The change will rather occur continuously over a few steps.

Rather than concatenating directly a sequence of “style 1” step models to
“style 2” step models, our interpolation procedure is able to produce step models
corresponding to styles between style 1 and style 2. The style transition can thus
be distributed over as many steps as the user wants. The steps concatenated in
the whole sequence correspond to gradual interpolations, starting from style 1
and going to style 2. The walk sequence produced this way is thus a smooth and
gradual transition between style 1 and style 2, transiting by in-between styles
that were not present in the original database. The resulting transition looks
more natural than a brutal style change occurring between one step and the
next one, as illustrated in Figure 7.

 

 

Synthesized walk sequence with brutal style change

 

 

Synthesized walk sequence with gradual style transition

Fig. 7. Synthesized walk sequence with abrupt proud to sad style transition (first
subfigure), and synthesized walk sequence with gradual proud to sad style transition
(second subfigure). Synthesized skeleton poses are displayed every 0.5 second.

7 User Evaluation

Evaluating the quality of motion sequences is an open problem common to the
whole character animation field, independently from the studied approach. Re-
sults are often illustrated with a video displaying some motion examples, but
most works are presented without any kind of subjective evaluation by the user.
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In [32], we proposed three tests to assess the quality of the synthesis results.
These tests evaluated the naturalness of the synthesized motion, the style recog-
nition of our eleven original styles and the comparison between original motion
capture and synthesized examples. In one of the tests, users were asked to clas-
sify the original walk styles (without any modification) among 11 possibilities,
and the results showed that the styles were correctly perceived most of the time,
even if some close styles were sometimes switched. In this paper, a similar eval-
uation approach was chosen. Our evaluation consisted in two tests, evaluating
respectively the quality of the interpolation between two styles (Section 7.1) and
the style intensity control (Section 7.2).

Participants accessed to the evaluation tests through a web browser. They
were presented one video at a time and asked to evaluate its content. Once their
answer was selected and saved, they could not come back to previous videos. If
they did not complete the test thoroughly, they could come back later, but the
participant’s results were saved even if the two tests were not completely finished.
They had to start the video themselves by clicking on it, and could watch it as
many times as they wanted. In the video sequences, motion was performed by a
basic blue stick-figure character as shown in the previous figures.

Fifty-two naive evaluators took part in the evaluation, 22 females and 30
males, from 16 to 66 years old, with an average and standard deviation of 32
and 11 years, respectively. Every evaluator was presented a set of 10 videos
or couples of videos for each test. Those videos were randomly picked by the
evaluation program, and the evaluated set was thus different for each evaluator.
The result of each test for each evaluator were taken into account only if the user
completed all the evaluations of the given test. The final number of evaluators
taken into account is not the same for both test as some users dropped the
evaluation after taking the first test.

7.1 Style Interpolation Evaluation

In the first test, the evaluator was presented one video displaying three walk
sequences with different styles, in a row. In the video, the first sequence was
a walk with style A, the second one was a walk with style B, and the third
sequence was an interpolation between styles A and B. The evaluation sequences
corresponded to five possible pairs of A and B styles, and to five interpolation
factors (0, 0.25, 0.5, 0.75 or 1) for each A and B pair. The set of evaluation
videos for this first test thus contained 25 videos from which ten were randomly
picked for each user to evaluate.

The user was asked to position the interpolated walk between style A and
style B, by choosing between five possible answers:

– identical to style A (100% A + 0% B)
– close to style A (75% A + 25% B)
– in the middle between style A and style B (50% A + 50% B)
– close to style B (25% A + 75% B)
– identical to style B (0% A + 100% B)
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Table 1. Confusion matrix of interpolation factor recognition test. The recognition
rate is expressed in percents of the actual interpolation factor sequences presented to
the evaluators, rounded to the unit.

Evaluators classification (%)
of interpolation factor

0 0.25 0.5 0.75 1

Actual interpolation factor

0 31 47 17 3 2
0.25 3 48 39 8 2
0.5 2 13 41 39 5
0.75 3 5 22 46 24
1 1 1 8 43 47

He was also asked to assess the naturalness of the interpolated walk by choosing
if it seemed “Real”, “Synthetic”, or “I don’t know”.

Fifty-two participants completed this first test. Table 1 presents the confusion
matrix of the interpolation factor recognition.

The interpolation factor was properly recognized by the evaluator in 42.7%
of the cases, much higher than the 20% of mere chance. And in 46% of the
cases, the interpolation factor was misidentified for one of its direct neighbors
(for instance 0.5 or 0 instead of 0.25). In 60.6% of the cases, the evaluator
was not capable of recognizing that the same file was displayed twice (when
interp = 0 or 1), which demonstrates that even if the evaluators were capable
of recognizing the trend (more like A or more like B), he is not very good at
assessing small style variations. This poor recognition of the original styles can
also be explained by the fact that even if the answers “identical to style A
(or B)” were proposed to the evaluators, our formulation of the question asked
to position the interpolated walk “between” styles A and B which might have
mislead some people.

The mean value of the interpolation factor evaluated by the user for each
one of the actual interpolation factor is presented in Figure 8, along with a 95%
confidence interval. It can be observed that the confidence interval of the different
interpolation factors do not overlap. Even if the exact interpolation factor was
not always recognized, especially at the extremities (interp = 0 or 1), the global
trend of the interpolation is very clear to the user who can make the distinction
between each one of the interpolation factors even if he does not evaluate them
at their exact value.

Figure 9 presents the results of the naturalness evaluation of the interpolated
sequence. It can be observed that the value of the interpolation factor did not
influence the naturalness of the sequence as perceived by the user, and our
interpolated style models were seen in the same way as models of the original
style (interp = 0 or 1).
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Fig. 8. Mean value of the evaluated interpolation factor (with .95 confidence intervals)
for each one of the actual interpolation factor

7.2 Style Intensity Control Evaluation

In this second test, the displayed video contained two walk sequences in a row.
The first sequence was a walk with style A, and the second sequence was a walk
presenting a variation of style A. The evaluation sequences corresponded to five
possible “A” styles, and to five interpolation factors between the style and the
averaged style (-1, 0, 0.5, 1 or 2). The set of evaluation videos contained thus
25 files, from which ten were randomly picked for each user. The evaluator was
asked to position the gradation of the style intensity of the interpolated walk in
comparison to the original style A. The five possible answers he had to choose
from were:

– Opposite of style A
– Neutral style
– Half intensity of style A
– Identical to style A
– Exaggeration of style A

The participant was also asked to assess the naturalness of the style intensity
variation sequence, in the same manner as in the first test.

Forty-one users completed this second test. Table 2 presents the confusion
matrix of the style intensity factor recognition.

The style intensity factor was properly recognized by the evaluator in 69% of
the cases, which is much higher than the 20% of mere chance and even better
than the result obtained in the first evaluation test. These results show that it
was easier for the evaluator to quantify the intensity of a given single style than
to evaluate the interpolation factor between two styles that might have been an
improbable mix. In 27% of the cases, the interpolation factor was misidentified
for one of its direct neighbors (for instance 0.5 or -1 instead of 0). Figure 10
presents the average intensity factor evaluated by the participants for each one of
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Fig. 9. Results of the naturalness test comparing the perception (real, synthetic or I
dont know) of interpolated style sequences with each interpolation factor

Table 2. Confusion matrix of style intensity factor recognition test. The recognition
rate is expressed in percents of the actual intensity factor sequences presented to the
evaluators, rounded to the unit.

Evaluators classification (%)
of interpolation factor

-1 0 0.5 1 2

Actual interpolation factor

-1 92 6 0 0 2
0 16 31 47 4 2
0.5 0 4 52 45 0
1 0 0 5 89 6
2 11 0 3 4 82

the actual style intensities. It can be noticed that even if the exact interpolation
factor was not always recognized, the global trend of the interpolation is very
clear to the user, as it was also observed in the first test.

Figure 11 presents the results of the naturalness evaluation of the style inten-
sity control. It can be observed that as long as the style intensity factor stayed in
the 1 to 0 range, it did not influence the naturalness of the sequence as perceived
by the user. Our averaged sequence (corresponding to interp = 0) seems thus
as natural to the user as styles from the original database. However, the per-
ceived naturalness decreases dramatically when we exaggerate the style or when
we take its opposite. This can easily be explained as, by taking styles outside
of the range of value of the walk present in our database (which were already
exaggerated styles performed by an actor), the synthesis gives angles values that
are outside of the range of possible humans movements and completely ruin the
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Fig. 10. Mean value of the evaluated style intensity factor (with .95 confidence
intervals) for each one of the actual style intensity factors

Real Synthetic I don’t know
0

10

20

30

40

50

60

70

80

90

100

Evaluator answer (for each style intensity factor)

P
er

ce
n

ta
g

e 
o

f 
th

e 
an

sw
er

s

 

 
−1
0
0.5
1
2

Fig. 11. Results of the naturalness test comparing the perception (real, synthetic or I
dont know) of interpolated style sequences with each style intensity factor

naturalness of the motion. This issue will have to be further investigated in the
future, and adding rules that constrain the angle values to stay in a plausible
human range might be a way of dealing with this problem.

8 Conclusion

In this work, a set of eleven stylistic walk models based on Hidden Semi Markov
Models was used as a basis for style interpolation and extrapolation, giving the
user continuous control on the style of the synthesized motion while preserv-
ing its naturalness. New walk styles not present in the original database could
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be synthesized by interpolating the model parameters between different original
styles. An average style model was also calculated by computing the mean of the
parameters of the eleven style models. By taking this average model as a refer-
ence and changing the values of the interpolation factor, we were able to control
the intensity of the style expression (values of interp between zero and one), to
exaggerate the controlled style (values of interp greater than one), and to obtain
new styles with characteristics at the opposite of the controlled style (values of
interp lower than zero). Our model also enabled us to synthesize smooth and
natural looking transitions between two different styles by progressive interpo-
lation. Some examples of walk sequences synthesized with our method can be
found at http://tcts.fpms.ac.be/~tilmanne. Qualitative user evaluation as-
sessed that the trend of the interpolation factor was perceived by the user and
that the naturalness of the motion was preserved for styles between the original
styles.

In future works, constraints on the range of variation of the angles should also
be added for style extrapolation, so that the synthesized styles remain physically
plausible. The interpolation and extrapolation was conducted on 4890 parame-
ters without any feature selection, but the influence of these parameters on the
stylistic variations could be investigated, as some of them might be of lesser or
greater influence than others on the perceived style. Our next step will be to
implement our continuous style control and HMM synthesis procedure into a
real-time framework, giving the user the possibility to control the synthesized
walk in real time. We will also study how the style characteristics could be added
directly on plain motion capture walk sequences.
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l’industrie et l’agriculture” (FRIA) during part of this work. We gratefully ac-
knowledge Alexis Moinet for his help in designing the online evaluation procedure
and all our evaluators for their participation.

References

1. Brand, M., Hertzmann, A.: Style machines. In: Proceedings of the 27th Annual
Conference on Computer Graphics and Interactive Techniques, pp. 183–192 (2000)

2. Bruderlin, A., Williams, L.: Motion signal processing. In: SIGGRAPH 1995 Pro-
ceedings, pp. 97–104 (1995)

3. Calinon, S., Guenter, F., Billard, A.: On Learning, Representing, and Generalizing
a Task in a Humanoid Robot. IEEE Transactions on Systems, Man and Cybernet-
ics 37(2), 286–298 (2007)

4. Chiu, C., Marsella, S.: A style controller for generating virtual human behaviors. In:
Proceedings of AAMAS 2011, The 10th International Conference on Autonomous
Agents and Multiagent Systems, vol. 3, pp. 1023–1030 (2011)

5. Elgammal, A., Lee, C.S.: The Role of Manifold Learning in Human Motion Analysis
Human Motion Understanding, Modeling, Capture and Animation, pp. 1–29 (2008)

http://tcts.fpms.ac.be/~tilmanne


52 J. Tilmanne and T. Dutoit

6. Forbes, K., Fiume, E.: An efficient search algorithm for motion data using weighted
PCA. In: Proceedings of the 2005 ACM SIGGRAPH/Eurographics Symposium on
Computer Animation, pp. 67–76 (2005)

7. Forsyth, D.A., Arikan, O., Ikemoto, L., O‘Brien, J., Ramanan, D.: Computational
Studies of Human Motion: Part 1, Tracking and Motion Synthesis. Foundations
and Trends in Computer Graphics and Vision 1(2/3) (2006)

8. Geng, W., Yu, G.: Reuse of Motion Capture Data in Animation: A Review. In:
Kumar, V., Gavrilova, M.L., Tan, C.J.K., L’Ecuyer, P. (eds.) ICCSA 2003. LNCS,
vol. 2669, pp. 620–629. Springer, Heidelberg (2003)

9. Glardon, P., Boulic, R., Thalmann, D.: PCA-based walking engine using motion
capture data. In: Computer Graphics International, pp. 292–298 (2004)

10. Glardon, P., Boulic, R., Thalmann, D.: A Coherent Locomotion Engine Extrap-
olating Beyond Experimental Data. In: Proceedings of Computer Animation and
Social Agent (CASA), Geneva, Switzerland, pp. 73–84 (2004)

11. Grassia, F.S.: Practical parameterization of rotations using the exponential map.
Journal of Graphics Tools 3, 29–48 (1998)

12. Grudzinski, T.: Exploiting Quaternion PCA in Virtual Character Motion Analy-
sis. In: Bolc, L., Kulikowski, J.L., Wojciechowski, K. (eds.) ICCVG 2008. LNCS,
vol. 5337, pp. 420–429. Springer, Heidelberg (2009)

13. Hsu, E., Pulli, K., Popovic, J.: Style Translation for Human Motion. In: SIG-
GRAPH 2005 Proceedings, pp. 1082–1089 (2005)

14. HTS working group: The HMM-based speech synthesis system (HTS) Version 2.1,
http://hts.sp.nitech.ac.jp/ (accessed 2010)

15. IGS-190. Animazoo (2010), http://www.animazoo.com
16. Johnson, M.P.: Exploiting quaternions to support expressive interactive character

motion. PhD Thesis (2002)
17. Jolliffe, I.T.: Principal Component Analysis, 2nd edn. Springer Series in Statistic.

Springer, New York (2002)
18. Lau, M., Bar-Joseph, Z., Kuffner, J.: Modeling Spatial and Temporal Variation

in Motion Data. ACM Transactions on Graphics (SIGGRAPH ASIA ) 28(5), 171
(2009)

19. Li, Y., Wang, T., Shum, H.: Motion texture: a two-level statistical model for char-
acter motion synthesis. In: Proc. of SIGGRAPH 2002, New York, NY, USA, pp.
465–472 (2002)

20. Lu, X., Hsu, R.-L., Jain, A.K., Kamgar-Parsi, B., Kamgar-Parsi, B.: Face Recogni-
tion with 3D Model-Based Synthesis. In: Zhang, D., Jain, A.K. (eds.) ICBA 2004.
LNCS, vol. 3072, pp. 139–146. Springer, Heidelberg (2004)

21. Menache, A.: Understanding motion Capture for Computer Animation and Video
Games. Morgan Kauffman Publishers Inc., San Francisco (1999)

22. Min, J., Chan, Y., Chai, J.: Interactive generation of human animation with de-
formable motion models. ACM Trans. Graph. 29(1), 9:1–9:12 (2009)

23. Min, J., Liu, H., Chai, J.: Synthesis and editing of personalized stylistic human
motion. In: Proceedings of SI3D, pp. 39–46 (2010)

24. Pejsa, T., Pandzic, I.S.: State of the Art in Example-Based Motion Synthesis for
Virtual Characters in Interactive Applications. Computer Graphics Forum 29(1),
202–226 (2010)

25. Rabiner, L.R.: A tutorial on hidden markov models and selected applications in
speech recognition. Proc. of IEEE 77(2), 257–286 (1989)

26. Rose, C., Cohen, M.F., Bodenheimer, B.: Verbs and Adverbs: Multidimensional
Motion Interpolation. IEEE Comput. Graph. Appl. 18(5), 32–40 (1998)

http://hts.sp.nitech.ac.jp/
http://www.animazoo.com


Continuous Control of Style and Style Transitions 53

27. Shapiro, A., Cao, Y., Faloutsos, P.: Style components. In: Proceedings of Graphics
Interface, Quebec, Canada, pp. 33–39 (2006)

28. Shoemake, K.: Animating Rotations with Quaternion Curves. In: Proc. of SIG-
GRAPH 2005, San Francisco, vol. 19(3), pp. 245–254 (1985)

29. Tanco, L.M., Hilton, A.: Realistic synthesis of novel human movements from a
database of motion capture examples. In: Proc. of the Workshop on Human Motion
(HUMO 2000), Washington DC, USA, pp. 137–142 (2000)

30. Taylor, G.W., Hinton, G.E.: Factored conditional restricted Boltzmann Machines
for modeling motion style. In: ICML 2009 Proceedings of the 26th Annual Inter-
national Conference on Machine Learning, pp. 1025–1032 (2009)

31. Tilmanne, J., Dutoit, T.: Expressive Gait Synthesis Using PCA and Gaussian
Modeling. In: Boulic, R., Chrysanthou, Y., Komura, T. (eds.) MIG 2010. LNCS,
vol. 6459, pp. 363–374. Springer, Heidelberg (2010)

32. Tilmanne, J., Moinet, A., Dutoit, T.: Stylistic gait synthesis based on hidden
Markov models. EURASIP Journal on Advances in Signal Processing, 72 (2012)

33. Tilmanne, J., Sebbe, R., Dutoit, T.: A Database for Stylistic Human Gait Modeling
and Synthesis. In: Proceedings of the eNTERFACE 2008 Workshop on Multimodal
Interfaces, Paris, France, pp. 91–94 (2008)

34. Toda, T., Tokuda, K.: A Speech Parameter Generation Algorithm Considering
Global Variance for HMM-Based Speech Synthesis. IEICE-Transactions on Infor-
mation and Systems 90(5), 816–824 (2007)

35. Tokuda, K., Yoshimura, T., Masuko, T., Kobayashi, T., Kitamura, T.: Speech
parameter generation algorithms for HMM-based speech synthesis. In: Proc. of
ICASSP (June 2000)

36. Troje, N.F.: Retrieving information from human movement patterns. In: Under-
standing Events: How Humans See, Represent, and Act on Events, pp. 308–334.
Oxford University Press (2008)

37. Unuma, M., Anjyo, K., Takeuchi, R.: Fourier principles for emotion-based human
figure animation. In: SIGGRAPH 1995 Proceedings, pp. 91–96 (1995)

38. Urtasun, R., Glardon, P., Boulic, R., Thalmann, D., Fua, P.: Style-based Motion
Synthesis. Computer Graphics Forum 23(4), 799–812 (2004)

39. Wang, Y., Liu, Z., Zhou, L.: Automatic 3D Motion Synthesis with Time-Striding
Hidden Markov Model. In: Yeung, D.S., Liu, Z.-Q., Wang, X.-Z., Yan, H. (eds.)
ICMLC 2005. LNCS (LNAI), vol. 3930, pp. 558–567. Springer, Heidelberg (2006)

40. Wang, Y., Liu, Z., Zhou, L.: Learning Style-directed Dynamics of Human Mo-
tion for Automatic Motion Synthesis. In: IEEE Conference on Systems, Man, and
Cybernetics 2006, Taiwan, pp. 4428–4433 (2006)

41. Wang, Y., Xie, L., Liu, Z., Zhou, L.: The SOMN-HMM Model and Its Applica-
tion to Automatic Synthesis of 3D Character Animation. In: IEEE Conference on
Systems, Man, and Cybernetics 2006, Taiwan, pp. 4948–4952 (2006)

42. Wecker, L., Samavati, F., Gavrilova, M.: A multiresolution approach to iris syn-
thesis. Computers & Graphics 34(4), 468–478 (2010)

43. Yamagishi, J., Nose, T., Zen, H., Ling, Z.H., Toda, T., Tokuda, K., King, S.,
Renals, S.: Robust speaker-adaptive HMM-based text-to-speech synthesis. IEEE
Transactions on Audio, Speech, and Language Processing 17(6), 1208–1230 (2009)

44. Yamagishi, J., Kobayashi, T.: Average-voice-based speech synthesis using HSMM-
based speaker adaptation and adaptive training. IEICE TRANSACTIONS on In-
formation and Systems 90(2), 533–543 (2007)



54 J. Tilmanne and T. Dutoit

45. Yamagishi, J., Kobayashi, T., Nakano, Y., Ogata, K., Isogai, J.: Analysis of
speaker adaptation algorithms for HMM-based speech synthesis and a constrained
SMAPLR adaptation algorithm. IEEE Transactions on Audio, Speech, and Lan-
guage Processing 17(1), 66–83 (2009)

46. Yamazaki, T., Niwase, N., Yamagishi, J., Kobayashi, T.: HumanWalking Motion
Synthesis Based on Multiple Regression Hidden Semi-Markov Model. In: 2005 In-
ternational Conference on Cyberworlds (CW 2005), pp. 445–452 (2005)

47. Yoshimura, T., Tokuda, K., Masuko, T., Kobayashi, T., Kitamura, T.: Duration
modeling for HMM-based speech synthesis. In: Fifth International Conference on
Spoken Language Processing (ICSLP), pp. 29–32 (1998)

48. Young, S., Evermann, G., Gales, M., Hain, T., Kershaw, D., Liu, X., Moore, G.,
Odell, J., Ollason, D., Povey, D., Valtchev, V., Woodland, P.: The HTK Book (for
HTK Version 3.4) (2009)


	Continuous Control of Style and Style Transitions through Linear Interpolation in Hidden Markov Model Based Walk Synthesis
	Introduction
	Related Work
	Databases
	Style Models Training
	Interpolation
	Results
	User Evaluation
	Style Interpolation Evaluation
	Style Intensity Control Evaluation

	Conclusion
	References




