
Chapter 5
The Response of Photosynthesis
to Soil Water Stress
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and Hipólito Medrano

Abstract The physiological and molecular basis of photosynthetic responses to
limited soil water availability (water stress) has been intensively examined over
the last decade(s). Therefore, this chapter highlights the major achievements of the
underlying processes of photosynthetic limitation under drought, an increasingly
important issue within the context of climate change. Restricted CO2 diffusion to
the sites of carboxylation inside the chloroplast has been demonstrated to be the
main limiting factor for photosynthesis, particularly during the early phases of
stress. Stomatal (gs) and mesophyll conductance (gm), the two leaf diffusion
components, contribute differently to this limitation, being largely influenced by
the degree of water deficit. Thus, photosynthetic acclimation to drought and its
recovery from drought depend primarily on the capacity to adjust gm and gs

rapidly. The basis of gm and gs regulation is not fully understood, but several
genetic, metabolic, and structural factors involved have been recently described.
Secondary stress factors such as excessive light and elevated temperatures affect
photosynthetic performance too, implying efficient photoprotection a necessary
feature for stress-resistant plants.
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5.1 Introduction

Low water availability is considered as the main environmental factor limiting plant
growth and yield worldwide, especially in semi-arid areas. It is well documented
that one of the primary physiological impacts of drought is on photosynthesis
(Flexas et al. 2004a). Presently, not only in the arid and semiarid zones drought is a
constraint, but it is also increasingly affecting temperate regions occasionally
subjected to severe drought events (Giorgi and Lionello 2008; Battisti and Naylor
2009). Improving the knowledge on photosynthesis responses to water stress is
essential for the development of deficit irrigation programs, as well as for improving
the accuracy of ecosystem productivity predictions from climate data.

There has been some controversy regarding the main physiological targets
responsible for photosynthetic impairment under drought and/or salinity (Chaves
1991; Flexas and Medrano 2002; Lawlor and Cornic 2002). As a consequence of
stomatal closure, CO2 diffusion from the atmosphere to the site of carboxylation is
reduced, and this is often regarded as the main cause for decreased photosynthesis
under drought and salinity (Centritto et al. 2003; Loreto et al. 2003; Chaves and
Oliveira 2004; Flexas et al. 2004a, b, 2009; Grassi and Magnani 2005; Chaves et al.
2009; Peeva and Cornic 2009). On the other hand, some authors have suggested that
metabolic impairment due to water stressinduced decrease of leaf water content and
increased ion concentration is more limiting for photosynthesis than stomatal
closure (Tezara et al. 1999, 2002; Tang et al. 2002). More recently, decreased leaf
internal diffusion of CO2 (i.e., decreased mesophyll conductance, gm) has been
identified as another potential cause for photosynthesis impairment under drought
(Flexas et al. 2002; Galmés et al. 2007a) and salinity (Centritto et al. 2003). No
general consensus exists on the relative importance of each of these factors in
limiting photosynthesis under drought, which could in fact depend on the prevailing
light conditions (Zhou et al. 2007a; Flexas et al. 2009; Gallé et al. 2009), leaf and
plant age (Varone et al. 2012), and differ between different drought intensities, as
well as between drought imposition, acclimation, and recovery upon rewatering
(Flexas et al. 2006a). The aim of this chapter is to review the current state-
of-knowledge on photosynthetic responses of plants to water stress. We will focus
mostly on C3 plants, for which sufficient knowledge has been gained as to build up
some generalizations. Studies are scarcer for C4 plants (Ghannoum 2009) and,
especially, for CAM plants, which should be an important research priority for the
near future.

5.2 Diffusional and Biochemical Limitations During
Drought Imposition in C3 Plants

Because stomatal closure is among the earliest physiological events occurring in
response to drought, and because stomatal conductance (gs) often correlates
strongly with net CO2 assimilation (AN), it has been frequently assumed that
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stomatal closure reduces CO2 uptake in drought leaves. On the other hand,
applying large CO2 concentrations around leaves overcomes diffusion limitations
to CO2 and several reports have shown that very high CO2 fully restores maximum
photosynthesis in water stressed leaves (Kaiser 1987; Cornic et al. 1989). More-
over, by stripping the epidermis—where stomata reside—from leaves, stomatal
limitation is removed, allowing CO2 to freely diffuse into the leaf. Using this
approach, some studies have shown that photosynthesis can be fully restored in
water stressed leaves, supporting the idea of a stomatal limitation (Dietz and Heber
1983; Schwab et al. 1989). In other studies, however, it was not possible to restore
AN in water stressed leaves by either applying high CO2 (Graan and Boyer 1990;
Tezara et al. 1999) or stripping leaf epidermis (Tang et al. 2002). These
discrepancies in the results obtained in similar experiments have fed the contro-
versy as to whether stomatal or non-stomatal limitations—the latter often used as
synonymous of biochemical limitations—are the main cause for decreased
photosynthesis under water stress. One study by Tezara et al. (1999), in particular,
had a strong influence in this debate. These authors suggested that the main
limiting factor for photosynthesis under water stress was impaired photophos-
phorylation due to decreased chloroplast ATPase activity. Despite the important
influence of this paper, the data in Tezara’s study were relatively scarce and not
fully conclusive. The experiment was performed by inducing a progressive water
stress to sunflower plants, and leaf water potential was used as the indicator for
water stress severity. While leaf ATP content decreased progressively along the
entire gradient of water potential used during the experiment, this could be due to
decreased ATP synthesis in the chloroplast or in other cell compartments. Data for
chloroplast ATP content were available only at very low water potentials, when
photosynthesis was already close to zero. Almost immediately after its publication,
some authors claimed against the validity of the conclusions of this study (Cornic
2000), while others showed that impaired Rubisco activity, RuBP regeneration and
even photoinhibition occur at similar levels of water stress as those causing
impaired photophosphorylation (Flexas and Medrano 2002). Indeed, other reports
have suggested that inactivation of Rubisco is the main cause for photosynthesis
limitation under drought (Parry et al. 2002), including another study by Tezara
et al. (2002) in drought stressed sunflower.

In an attempt to solve for the occurrence of this apparent controversy, Lawlor
and Cornic (2002) compiled literature data and reanalyzed them using leaf relative
water content as a common indicator for the intensity of water stress. Unfortu-
nately, such analysis did not solve the controversy, as two clearly opposed patterns
were found. The so-called ‘Type I’ response (see Fig. 5.1a) consisted in
progressive decreases of AN as RWC decreased, mainly as a consequence of
stomatal closure, since the photosynthetic capacity (i.e., after overcoming stomatal
limitations) was unaffected until very low RWC was reached. The ‘Type II’
response, in contrast, consisted in parallel decreases of AN and photosynthetic
capacity as RWC declined, supporting a predominant role for non-stomatal
limitations (Fig. 5.1a). The occurrence of ‘Type I’ or ‘Type II’ responses was not
found to be associated to specific genotypes or conditions during the experiments,
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so that even a single species could display one or another response depending on
the study. In other words, there is no clear evidence on what does each type
depends on, so that the ‘types’ may most likely reflect differences in the definition/
determination method of photosynthetic capacity. In parallel, Flexas et al. (2002)
showed in a study with field-grown grapevines that using daily maximum gs as the
common indicator for water stress intensity homogenized the responses between
genotypes and growing conditions, which were different when using RWC as a
reference. Moreover, it was shown that mesophyll conductance to CO2 (gm)—i.e.,
the facility for internal CO2 diffusion inside leaves—, which had been typically
considered large and constant, progressively decreased as water stress intensified,
just as it does in salt-stressed plants (Centritto et al. 2003). This finding implied
that not only stomatal closure and impaired photosynthetic capacity could be
responsible for drought-induced photosynthesis, but also decreased gm could play a
major role. A limited leaf mesophyll conductance to CO2 implies that removing
leaf epidermis and/or increasing CO2 concentration around leaves may not always
result in fully saturating Rubisco. In this sense, many of the data used to conclude
the occurrence of biochemical impairment of photosynthesis could not be valid.

Flexas and Medrano (2002) extended the use of gs as the common basis for
assessing the degree of drought to literature data on many species, and found
general relationships between gs and AN regardless of the species and experimental
conditions. Flexas et al. (2004b) specifically showed a common response between
Type I, Type II, and even Type III (consisting in very isohydric plants, whose
RWC does not change appreciably during drought imposition, see Fig. 5.1a), when
using gs instead of RWC as the reference parameter indicative of water stress.
More recent studies have further re-analyzed data on a gs basis, from which a large
consensus has been reached as to how progressive water stress sequentially
induces downregulation of the different components associated to photosynthesis
(Flexas et al. 2004a,b, 2006a,b; de Souza et al. 2005; Grassi and Magnani 2005;
Jiang et al. 2006; Galmés et al. 2007a; Zhou et al. 2007a; Liu et al. 2010). The
common pattern consists in three phases, as follows (see Fig. 5.1b):

Phase 1: Mild water stress (gs [ 0.15 mol H2O m-2 s-1). When gs declines
from a maximum to about 0.15 mol H2O m-2 s-1, as a consequence of progres-
sively increasing water shortage, decreased gs is the only cause for reduced AN.
The rate of linear electron transport (ETR), gm, the activities of photosynthetic
enzymes, the maximum quantum efficiency of PSII (Fv/Fm), the maximum
velocity of carboxylation (Vc,max), etc., remain constant during this phase. The rate
of photorespiration (PR) progressively increases, as a consequence of decreased
substomatal (Ci) and chloroplast (Cc) CO2 concentrations. It is remarkable that this
threshold is very common among plants, so that even plants whose maximum gs is
below 0.15 mol H2O m-2 s-1—for instance, slcerophyll species—accomplish this
rule, being never found on phase 1 but starting at phase 2 from field capacity. This
is recognizable by the fact that these plants show linear rather than curvilinear
responses of ETR or gm to gs (Galmés et al. 2007a), i.e., these parameters do not
remain constant at any gs, unlike what happens in phase 1.
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Phase 2: Moderate water stress (0.15 [ gs [ 0.05 mol H2O m-2 s-1). During
this phase, further decreases of gs are accompanied by large decreases of gm. Some
studies suggest that the decrease in gm is associated with changes in the abundance
of some aquaporins (Flexas et al. 2006c; Miyazawa et al. 2008), although further
studies are required to fully elucidate how internal diffusion of CO2 in leaves is
regulated. Still during this phase, small but significant decreases of ETR occur,
which are accompanied by subtle increases of non-photochemical quenching of
chlorophyll fluorescence (NPQ), the activity of antioxidant enzymes, and the
amounts of non-enzymatic antioxidants. These responses suggest that the leaves
are preparing for conditions of severe stress, which can lead to secondary oxidative
stress. The use of traditional gas exchange analysis (i.e., AN-Ci curves) to evaluate
the presence of non-stomatal limitations in this phase leads to the erroneous
conclusion that Vc,max is decreased. In fact, these apparent decreases in Vc,max are
simply an effect of decreased gm, and the analysis of AN -Cc curves shows almost
constant Vc,max during this phase. Neglecting gm also results in erroneous estimates
of the maximum rate of ETR (Jmax, Centritto et al. 2003; Aganchich et al. 2009).

Phase 3: Severe water stress (gs \ 0.05 mol H2O m-2 s-1). When gs drops
below this threshold value the photosynthetic capacity is impaired in many studies,
although not in others. Interestingly, the metabolic impairment generally consists of
the simultaneous inhibition of all photosynthetic enzymes, decreases in chlorophyll
and protein contents, and the appearance of permanent damage to the photosystems,
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Fig. 5.1 a The response of
net photosynthesis (AN) and
photosynthetic capacity
(APOT) to water stress when
using leaf relative water
(RWC) content as the
reference for stress intensity.
Three different Types of
response appear, depending
on the experiment. Modified
after Lawlor and Cornic
(2002) and Flexas et al.
(2004b). b Generalized
response of net
photosynthesis (AN) and
several parameters related to
photosynthetic capacity (see
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which suggest that the leaves are enduring oxidative stress and/or inducing leaf
senescence and remobilization of leaf nutrients (Munne-Bosch et al. 2001). In the
studies where metabolic impairment is not apparent, it remains unclear whether it is
indicative of highly resistant genotypes or because water stress was ameliorated by,
e.g., moderate to low light and/or mild temperature. Metabolic impairment, when it
occurs, follows a tightly regulated system, consisting in an impaired Rubisco
activity at low gs due to reduced Cc (Flexas et al. 2006b; Galmés et al. 2011a, b).
However, whether the impairment was due to reduced activation state of Rubisco,
reduced enzyme concentration and/or increased concentration of tightly bound
inhibitors seems to be dependent on the species and the technique used to impose
water stress (Bota et al. 2004; Flexas et al. 2006c). On the other hand, Zhou et al.
(2007a) found that Rubisco impairment was strongly correlated to the presence of
H2O2 regardless of the light conditions during water stress, suggesting either a role
of H2O2 as a secondary messenger in the regulation of Rubisco activity or as
causing factor of oxidative stress.

This response pattern to progressively declining gs is similar to that often
observed to progressively declining fraction of transpirable soil water (FTSW, e.g.
Centritto et al. 2011), simply because gs responds directly to FTSW rather than to
leaf water potential or RWC (Turner et al. 1985). For this reason, the use of FTSW
instead of RWC or even gs as a tool to assess the general responses of photo-
synthetic capacity-related parameters seems an easy and promising way of
comparing results from different experiments, species, etc.

A similar pattern of response has been described for C4 plants (Hura et al. 2006,
2007; Ghannoun, 2009), except that leaf photosynthetic metabolism of C4 plants—
particularly Rubisco in bundle sheath cells—seems somewhat more sensitive to
water stress than it is in C3 plants (Carmo-Silva et al. 2007, 2008a,b). The response
of photosynthesis to water stress in C4 plants may be to some extent different to
that of C3 plants. Although generally stomatal limitations are also present, and may
be dominant at the very early stages of water stress imposition (Marques da Silva
and Arrabaça 2004), biochemical limitations often appear also at early stages of
drought, immediately after stomatal limitations (Du et al. 1996; Lal and Edwards
1996; Saccardy et al. 1996; Ghannoun et al. 2002, 2003; Carmo-Silva et al. 2007,
2008a, b). In particular, Rubisco seems very sensitive to water stress, declining
linearly with stress intensity in many C4 species (Du et al. 1996; Carmo-Silva et al.
2007) but not in some others (Lal and Edwards 1996). By contrast, PEPC and C4

acid decarboxylases are more resistant to water stress, declining only eventually
under severe stress conditions (Saccardy et al. 1996; Carmo-Silva et al. 2008a).
Although gm is thought to be not limiting in C4 plants because of their CO2-
concentrating mechanisms, it has been suggested that bundle sheath CO2 leakiness
could increase under water stress, leading to reduced CO2 availability and a
contributing to a less efficient fixation (Carmo-Silva et al. 2008b). Potential dif-
ferences in the response to stress among different C4 subtypes remain elusive
(Carmo-Silva et al. 2007, 2008a, b).

In summary, there is a quite general response of photosynthesis to progressive
water stress imposition across C3 plants when gs is used as the normalizing
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reference for the level of water stress intensity. Although gs can respond very
differently to leaf water potential, soil water content, etc., depending on the species
or genotypes and on environmental conditions, the factors limiting photosynthesis
at any given gs can be accurately predicted. Despite the universality of the pattern,
some of the limitations can differ depending on the prevailing light conditions
during drought. For instance, under low light conditions gm is not so highly
depressed by water stress (Flexas et al. 2009, Galle et al. 2009). Moreover,
the extent of the different limitations appear to vary during acclimation in some
cases (Jiang et al. 2006), although not in others (Flexas et al. 2009), and they
certainly vary significantly depending on the prevailing air humidity conditions
(Perez-Martin et al. 2009) and on the age of leaves and plants subjected to water
stress (Varone et al. 2012). Further studies are required in which photosynthesis
responses to water stress are evaluated under different conditions, to improve our
capacity for predicting photosynthesis limitations under water stress.

5.3 Secondary Oxidative Stress Effects on Photosynthesis
Under Combined Excess Light and Water Stress

When CO2 availability in the chloroplasts is drastically reduced under drought, the
use of electrons for CO2 assimilation in the Calvin cycle decreases. Excess of
electrons can be diverted to other processes, such as PR or thermal dissipation; the
latter being considered a major process in plant photoprotection under stress
conditions (Demmig-Adams and Adams 2006). However, when these processes
are saturated, ETR components become overreduced, resulting in electrons being
transferred to oxygen at PSI or via the Mehler reaction. This generates reactive
oxygen species (ROS), such as superoxide (O2

-), hydrogen peroxide (H2O2), and
the hydroxyl radical that can cause oxidative damage to the photosynthetic
apparatus if the plant is not efficient in scavenging these molecules.

Depending on the duration and severity of the stress, the plant species, the
specific tissue/organ and the phase of development, ROS can elicit antioxidant
responses, typically observed under mild stress, or can lead to accelerated
senescence, programmed cell death or necrosis (Levine 1999; Munne-Bosch and
Alegre 2002). Acclimation to stress is generally associated with enhanced activity
of the antioxidant molecules, which are able to remove oxygen radicals or repair
the damage, thus keeping ROS concentration relatively low (Smirnoff 1998; Dat
et al. 2000). Antioxidant activity include enzymatic and non-enzymatic mecha-
nisms such as (a) the superoxide dismutases (SODs), which catalyze the dismu-
tation of O2

- to H2O2, (b) the catalases (CATs), which are responsible for the
removal of H2O2, and (c) the enzymes and metabolites of the ascorbate-glutathione
cycle, which are also involved in the removal of H2O2 (Foyer and Noctor 2003).
Increased activities of plant antioxidant systems under stress have been considered
characteristic of drought-resistant species (e.g., Gao et al. 2009). In a recent work
by Rivero et al. (2007), the expression of isopentenyltransferase (IPT) that
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catalyzes the rate-limiting step in cytokinin (CK) synthesis led to increased
concentrations of enzymes associated with the glutathione-ascorbate cycle in
transgenic plants, and resulted in the suppression of drought-induced leaf senes-
cence and in an outstanding drought-tolerance. In transgenic plants with elevated
CK production that were subjected to drought, a 20 % of the upregulated tran-
scripts were related to ROS metabolism. The efficient scavenging of ROS protects
the photosynthetic apparatus during drought stress, leading to improved water use
efficiency of the transgenic plants during and after stress. The presence of high
light intensity and high ROS levels during water stress have been shown to
exacerbate drought effects on gm (Flexas et al. 2009; Galle et al. 2009), leaf
photochemistry and Rubisco activity (Zhou et al. 2007a). It has been also
hypothesized that oxidative damage to the chloroplast ATPase, which was caused
by ROS under conditions of low CO2 and excess light, resulted in a water stress-
induced decrease of the photosynthetic capacity (Lawlor and Tezara 2009).

In addition to the deleterious effects, ROS can also serve as secondary
messengers in the signaling for the activation of defence responses (Dat et al.
2000). This dual function of ROS, first described in responses to pathogens and
later demonstrated in response to several abiotic stresses, presumably plays an
important role on the acclimation processes (Dat et al. 2000), which may deserve
better attention in future studies.

5.4 Photosynthesis Limitations During Rewatering After
Drought Stress

The carbon balance of a plant following a complete period of water stress and
recovery may depend as much on the velocity and degree of the recovery of
photosynthesis after stress relief, as it certainly depends on the degree and velocity
of photosynthesis decline during stress imposition (Flexas et al. 2006a; Centritto
et al. 2011). In general, plants subject to severe water stress recover only 40–60 %
of the maximum photosynthesis rate during the day after rewatering, and recovery
continues during the next few days, although maximum photosynthesis rates are
not fully recovered in some cases (Kirschbaum 1988; Sofo et al. 2004; Grzesiak
et al. 2006; Bogeat-Triboulot et al. 2007; Gallé et al. 2007). The extent and
velocity of recovery may depend on the severity of the stress endured prior to
rewatering. The influence of previous water stress episodes was illustrated by
Miyashita et al. (2005) and Grzesiak et al. (2006). Here, we grouped data available
from the literature in three intensity levels of previous stress episodes to obtain a
more general picture on how this affects the velocity of recovery after rewatering
(Table 5.1). For the three groups, average gs prior to rewatering was B 0.05 mol
H2O m-2 s-1, i.e., they were all at Phase 3 described in Sect. 5.2. However, the
three groups differed in the endured inhibition of photosynthesis. When AN was, on
average, 36 % of maximum values observed in control plants, total recovery of AN

occurred in 4 days. When AN was only 23 % of control, then full recovery took up
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to 6 days, and when it was as low as 3 % of controls full recovery took up to
18 days (Table 5.1).

Concerning the physiological mechanisms limiting recovery, Kirschbaum
(1988) showed that recovery after a severe dehydration was a two-stage process:
the first stage occurs during the first days upon rewatering, and is associated to
recovery of water status and stomata reopening; the second stage lasts several days
and likely requires de novo synthesis of photosynthetic proteins. Concerning the
first of these two phases, however, in some species a sustained downregulation of
gs after rewatering imposes substantial limitations to photosynthesis, while
increasing intrinsic water-use efficiency (Bogeat-Triboulot et al. 2007; Gallé and
Feller 2007; Gallé et al. 2007, 2009; Galmés et al. 2007a; Flexas et al. 2009; Xu
et al. 2009). Orange trees that endured severe water stress do not fully recover gs

even after two months of rewatering (Fereres et al. 1979). In some of these cases,
limited recovery of leaf-specific hydraulic conductivity is the likely cause for the
long-term downregulation of gs after rewatering (Galmés et al. 2007b; Pou et al.
2008). Resco et al. (2009) have demonstrated specifically that the number of days
necessary to reach maximum photosynthesis after a pulse of rain (i.e., the inverse
of velocity of recovery) depends on antecedent, drought-induced percentage loss
of hydraulic conductance, and Brodribb and Cochard (2009) reached a similar
conclusion in conifers. Alternatively, in beech stomatal occlusions formed during
water stress restrained recovery of gs after rewatering (Gallé and Feller 2007).
During the first days after rewatering, gm remains low in some species (Galmés
et al. 2007a) but it reverses fast in many others (Flexas et al. 2009; Galle et al.
2009, 2011; Varone et al. 2012), for which it is not regarded as a major limiting
factor for photosynthesis recovery.

As for the second phase, Bogeat-Triboulot et al. (2007) showed recently that
recovery after water stress, determined 10 days after rewatering, was accompanied
by increases in some photosynthetic proteins, particularly Rubisco activase and
proteins of the water splitting complex, although increased proteins transcripts
were not detected. In the cases where photosynthesis recovery is slow and/or
incomplete, photoinhibition and/or oxidative stress have been suggested as pos-
sible causes (Sofo et al. 2004; Gallé et al. 2007).

Table 5.1 Time required for achieving full recovery of photosynthesis upon rewatering after
water stress. Water stress intensities (reflected by gs and AN before rewatering) were classified
into 3 different ranges

gs before re-watering
(mol H2O m-2 s-1)

AN before re-watering
(% of control values)

Time to achieve full recovery
of AN (days)

0.018 ± 0.004 3.0 ± 1.2 18.2 ± 6.7
0.046 ± 0.010 22.9 ± 3.2 6.2 ± 2.5
0.048 ± 0.012 36.1 ± 1.8 4.3 ± 1.0

Data from: de Souza et al. (2004), Miyashita et al. (2005), dos Santos et al. (2006), Hura et al.
(2006), Bougeat-Triboulot et al. (2007), Cai et al. (2007), Galle et al. (2007), Montanaro et al.
(2007), Perez-Perez et al. (2007), Pou et al. (2008) and Galle et al. (2009)

5 The Response of Photosynthesis to Soil Water Stress 137



In summary, restricted velocity of photosynthesis recovery after rewatering
causes significant losses of carbon gains in plants, and the precise understanding of
the mechanisms leading to such slow recovery requires further investigation.

5.5 Photosynthesis Acclimation: Genomics and Proteomics

The response of photosynthesis to water stress may differ between acclimated and
non-acclimated plants. Acclimation to water stress may lead to homeostatic
compensation for the initial negative effects of water stress on photosynthesis, and
involves gene expression and modification of plant physiology and morphology,
taking place in days to weeks. Osmotic adjustment is perhaps the best example of
physiological acclimation to water stress (Chaves and Oliveira 2004; see also
Chap. 7). Very few evidences for photosynthetic acclimation to water stress have
been described. For instance, in some studies, leaves unfolded under water stress
show somewhat higher photosynthesis rates than non-acclimated leaves, associ-
ated with morphological adaptations and higher ETR rates (Maury et al. 1996;
Kitao et al. 2003; Galmés et al. 2006). Recently, Galle et al. (2011) observed a
permanent downregulation of gs in Cistus plants subject to periodical cycles of
water stress and recovery, appearing after the first cycle, which can be considered
an acclimation response. However, Quercus plants showed almost identical pho-
tosynthetic responses to each repeated drought cycle, i.e., showing no evidence for
acclimation. Similarly, in many studies with different species in which a constant
level of water stress was kept for a week or more, in order to allow for acclimation,
no clear evidence for photosynthetic acclimation was found (Flexas et al. 2009;
Galle et al. 2009; Varone et al. 2012).

Because acclimation involves gene expression, an alternative approach to
evaluate the mechanisms leading to acclimation may be looking at changes in gene
expression and protein contents, i.e., by genomic and proteomic approaches.
In such studies, photosynthetic pathways are in general not among the most altered
by the stress (Killian et al. 2007; Chaves et al. 2009). For example, in
Thellungiella (a stress tolerant relative of Arabidopsis), only 15 % of all genes
downregulated are involved in photosynthesis (Wong et al. 2006). In rice, alter-
ations in photosynthesis related genes are mostly associated with stress recovery
but not with stress imposition (Zhou et al. 2007b). Even in those photosynthetic
genes responding to stress, the most common trend is a downregulation, i.e., they
would not contribute to acclimation of photosynthesis, but rather to its further
decline. In addition, the alterations found at transcriptomic level are larger
(5–10 %) than at protein level (usually less than 1 %). However, transcriptomic
analysis also in Vitis have shown that some photosynthetic genes, like those of the
Rubisco activase, some Calvin cycle enzymes and some PSI- and PSII-related
genes are instead upregulated during acclimation to water stress (Cramer et al.
2007). Although proteomic analysis showed that some photosynthetic proteins
were downregulated during water stress, it also confirmed that some—notably
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Rubisco and sedoheptulose-1,5-bisphosphatase— were indeed upregulated
(Vincent et al. 2007). Moreover, the number of stress responsive genes or proteins
seems to be related with the stress intensity (Cramer et al. 2007) and with tissue
origin (Zhou et al. 2007b). On the other hand, a recent proteomics study in peanut
cultivars has suggested that the response can also differ in drought-sensitive and
drought-tolerant genotypes (Kottapalli et al. 2009). For instance, while Rubisco
large and small subunits were decreased in both types of cultivars, some PSII
proteins were decreased and ATP synthase increased only in the tolerant genotype
(Kottapalli et al. 2009). Still, precaution has to be taken when analyzing gene
expression data, since they may not necessarily have a reflection in the protein
contents and physiological properties, due to post-transcriptional regulation. For
instance, Bogeat-Triboulot et al. (2007) did not observe any correlation between
the abundance of transcripts and proteins in an experiment with Populus
euphratica subjected to gradual soil water depletion.

In summary, there is little evidence for acclimation of photosynthesis to water
stress conditions in the short term, while the genetic basis of photosynthetic
acclimation needs still to be determined.

5.6 Concluding Remarks

Major progress in the understanding of the physiological and molecular limitations
and the signaling events underlying photosynthetic responses to drought has been
achieved over the last decade(s), which is reviewed in the present chapter. The
available evidence suggests that restricted CO2 diffusion to the carboxylation sites
is the main limiting factor for photosynthesis, especially during the early phases of
stress. This is initially due to reduced stomatal conductance (gs), but it also
involves reduced mesophyll conductance (gm). Under more severe drought con-
ditions, which occur mostly under high irradiance, metabolic impairment (a con-
sequence of oxidative stress) corresponds invariably to, and seems to be caused by,
low gs. Both physiological and molecular approaches suggest that very little
acclimation of photosynthesis to prolonged water stress occurs among most plants.
The extent and velocity of photosynthesis recovery upon rewatering depends on
the intensity of water stress endured, and specifically on the degree of photosyn-
thetic inhibition. The mechanisms limiting rapid recovery appear to diverge
between plants and environmental conditions, but slow recovery of stomatal
conductance seems to be the most common cause.
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