

Lecture Notes in Computer Science 7461
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Germany

Madhu Sudan
Microsoft Research, Cambridge, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbruecken, Germany

Marco Dorigo Mauro Birattari
Christian Blum Anders Lyhne Christensen
Andries P. Engelbrecht Roderich Groß
Thomas Stützle (Eds.)

Swarm Intelligence
8th International Conference, ANTS 2012
Brussels, Belgium, September 12-14, 2012
Proceedings

13

Volume Editors

Marco Dorigo
Mauro Birattari
Thomas Stützle
Université Libre de Bruxelles
1050 Brussels, Belgium
E-mail: {mdorigo, mbiro, stuetzle}@ulb.ac.be

Christian Blum
Universitat Politècnica de Catalunya
Llenguatges i 08034 Barcelona, Spain
E-mail: cblum@lsi.upc.edu

Anders Lyhne Christensen
Instituto Universitário de Lisboa (ISCTE-IUL)
1649-026 Lisboa, Portugal
E-mail: anders.christensen@iscte.pt

Andries P. Engelbrecht
University of Pretoria
Pretoria 0002, South Africa
E-mail: engel@cs.up.ac.za

Roderich Groß
The University of Sheffield
Sheffield S1 3JD, UK
E-mail: r.gross@sheffield.ac.uk

ISSN 0302-9743 e-ISSN 1611-3349
ISBN 978-3-642-32649-3 e-ISBN 978-3-642-32650-9
DOI 10.1007/978-3-642-32650-9
Springer Heidelberg Dordrecht London New York

Library of Congress Control Number: 2012943942

CR Subject Classification (1998): I.2.6, I.2.8-9, F.2.2, I.2.11, F.1, H.4.2

LNCS Sublibrary: SL 1 – Theoretical Computer Science and General Issues

© Springer-Verlag Berlin Heidelberg 2012
This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.
The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply,
even in the absence of a specific statement, that such names are exempt from the relevant protective laws
and regulations and therefore free for general use.

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Preface

These proceedings contain the papers presented at ANTS 2012, the 8th Inter-
national Conference on Swarm Intelligence, held at IRIDIA, Université Libre de
Bruxelles, Brussels, Belgium, during September 12–14, 2012. The ANTS series
started in 1998 with the First International Workshop on Ant Colony Optimiza-
tion (ANTS 1998), which attracted more than 50 participants. Since then ANTS,
which is held bi-annually, has gradually become an international forum for re-
searchers in the wider field of swarm intelligence. In 2004, this development was
acknowledged by the inclusion of the term “Swarm Intelligence” (next to “Ant
Colony Optimization”) in the conference title. Since 2010, the ANTS conference
is officially devoted to the field of swarm intelligence as a whole, without any bias
toward specific research directions. This is reflected in the title of the conference:
“International Conference on Swarm Intelligence.”

This volume contains the best papers selected out of 81 submissions. Of these,
15 were accepted as full-length papers, while 20 were accepted as short papers.
This corresponds to an overall acceptance rate of 43%. Also included in this
volume are seven extended abstracts.

All the contributions were presented as posters. The full-length papers were
also presented orally in a plenary session. Extended versions of the best papers
presented at the conference will be published in a special issue of the Swarm
Intelligence journal.

We take this opportunity to thank the large number of people that were in-
volved in making this conference a success. We express our gratitude to the au-
thors who contributed their work, to the members of the International Program
Committee, to the additional referees for their qualified and detailed reviews,
and to the staff at IRIDIA for helping with organizational matters. We thank
Nigel R. Franks, Vijay Kumar, and Dirk Helbing for their inspiring keynote talks.
Finally, we thank AntOptima, ECCAI–the European Coordinating Committee
for Artificial Intelligence, the European Research Council, the French Commu-
nity of Belgium (through the ARC research project META-X), and the Fund for
Scientific Research–FNRS for their gracious support.

We hope the reader will find this volume useful both as a reference to current
research in swarm intelligence and as a starting point for future work.

July 2012 Marco Dorigo
Mauro Birattari
Christian Blum

Anders Lyhne Christensen
Andries P. Engelbrecht

Roderich Groß
Thomas Stützle

Organization

ANTS 2012 was organized by IRIDIA, Université Libre de Bruxelles, Belgium.

General Chair

Marco Dorigo Université Libre de Bruxelles, Belgium

Technical Program Chairs

Christian Blum Universitat Politècnica de Catalunya, Spain
Andries P. Engelbrecht University of Pretoria, South Africa
Roderich Groß The University of Sheffield, UK

Publication Chair

Anders Lyhne Christensen Instituto de Telecomunicações & Instituto
Universitário de Lisboa (ISCTE-IUL),
Lisbon, Portugal

Organization Chairs

Mauro Birattari Université Libre de Bruxelles, Belgium
Thomas Stützle Université Libre de Bruxelles, Belgium

Local Arrangements

Andreagiovanni Reina Université Libre de Bruxelles, Belgium
Arne Brutschy Université Libre de Bruxelles, Belgium

Program Committee

Andy Adamatzky University of the West of England, UK
Abbas Ahmadi Amirkabir University of Technology, Iran
Daniel Angus University of Queensland, Australia
Ronald Arkin Georgia Institute of Technology, USA
Jacob Beal BBN Technologies, USA
Gerardo Beni University of California, USA
Spring Berman Arizona State University, USA

VIII Organization

Tim Blackwell Goldsmiths, University of London, UK
Maria J. Blesa Universitat Politècnica de Catalunya, Spain
Alfred Bruckstein Technion–Israel Institute of Technology, Israel
Fernando Buarque Universidade de Pernambuco, Brazil
Leticia Cagnina Universidad Nacional de San Luis, Argentina
Emilio Fortunato Campana Consiglio Nazionale delle Ricerche, Italy
Marco Chiarandini University of Southern Denmark, Denmark
David Johan Christensen Technical University of Denmark, Denmark
Maurice Clerc Independent Consultant, France
Carlos Coello Coello CINVESTAV-IPN, Mexico
Oscar Cordon European Centre for Soft Computing, Spain
Iain Couzin Princeton University, USA
Sanjoy Das Kansas State University, USA
Kusum Deep Indian Institute of Technology Roorkee, India
Gianni Di Caro IDSIA, USI-SUPSI, Switzerland
Luca Di Gaspero University of Udine, Italy
Karl Doerner Johannes Kepler Universität Linz, Austria
Leandro Dos Santos Coelho Pontifical Catholic University of Parana, Brazil
Haibin Duan Beihang University, China
Frederick Ducatelle IDSIA, USI-SUPSI, Switzerland
Mohammed El-Abd American University in Kuwait, Kuwait
Susana Cecilia Esquivel Universidad Nacional de San Luis, Argentina
Jonathan Fieldsend Exeter University, UK
Luca Maria Gambardella IDSIA, USI-SUPSI, Switzerland
Simon Garnier Princeton University, USA
Veysel Gazi Istanbul Kemerburgaz University, Turkey
Deborah Gordon Stanford University, USA
Frédéric Guinand Université du Havre, France
Walter Gutjahr Universität Wien, Austria
Saman Halgamuge University of Melbourne, Australia
Heiko Hamann Karl-Franzens-Universität Graz, Austria
Julia Handl The University of Manchester, UK
Richard Hartl Universität Wien, Austria
Poul Heegaard Norwegian University of Science and

Technology, Norway
Marde Helbig Council for Scientific and Industrial Research,

South Africa
Ani Hsieh Drexel University, USA
Thomas Jansen University College Cork, Ireland
Mark Jelasity University of Szeged, Hungary
Yaochu Jin University of Surrey, UK
Serge Kernbach Universität Stuttgart, Germany
Joshua Knowles The University of Manchester, UK
Oliver Korb Cambridge Crystallographic Data Centre, UK
Xiaodong Li RMIT University, Australia
Manuel López-Ibáñez Université Libre de Bruxelles, Belgium

Organization IX

Patricia Lutu University of Pretoria, South Africa
Kevin Lynch Northwestern University, USA
Katherine Malan University of Pretoria, South Africa
Vittorio Maniezzo Università di Bologna, Italy
Yannis Marinakis Technical University of Crete, Greece
Franco Mascia Université Libre de Bruxelles, Belgium
Bernd Meyer Monash University, Australia
Martin Middendorf Universität Leipzig, Germany
Francesco Mondada EPFL, Switzerland
Nicolas Monmarché Université de Tours, France
Roberto Montemanni IDSIA, USI-SUPSI, Switzerland
Marco A. Montes de Oca University of Delaware, USA
Sanaz Mostaghim Karlsruhe Institute of Technology, Germany
Frank Neumann The University of Adelaide, Australia
Giuseppe Nicosia University of Catania, Italy
Ann Nowé Vrije Universiteit Brussel, Belgium
Beatrice Ombuki-Bernman Brock University, Canada
Mahamed Omran Gulf University for Science and Technology,

Kuwait
Ender Özcan The University of Nottingham, UK
Rafael Stubs Parpinelli Universidade do Estado de Santa Catarina,

Brazil
Konstantinos Parsopoulos University of Ioannina, Greece
H. Van Dyke Parunak Jacobs Technology, USA
Kevin M. Passino The Ohio State University, USA
Paola Pellegrini IFSTTAR, Lille, France
Jorge Peña University of Basel, Switzerland
Günther Raidl Vienna University of Technology, Austria
Marc Reimann University of Graz, Austria
Dustin Reishus University of Colorado Boulder, USA
Aristides Requicha University of Southern California, USA
Andrea Roli Alma Mater Studiorum Università di Bologna,

Italy
Erol Şahin Middle East Technical University, Turkey
Michael Sampels Université Libre de Bruxelles, Belgium
Thomas Schmickl Karl-Franzens-Universität Graz, Austria
Kevin Seppi Brigham Young University, USA
Wei-Min Shen University of Southern California, USA
Jurij Silc Jozef Stefan Institute, Ljubljana, Slovenia
Christine Solnon INSA Lyon, France
Kasper Stoy University of Southern Denmark, Denmark
Ponnuthurai Suganthan Nanyang Technological University, Singapore
Guy Theraulaz Université Paul Sabatier, France
Jon Timmis The University of York, UK
Kohji Tomita AIST, Japan

X Organization

Vito Trianni ISTC, CNR, Roma, Italy
Elio Tuci Aberystwyth University, UK
Willem S. van Heerden University of Pretoria, South Africa
Richard T. Vaughan Simon Fraser University, Canada
Mario Ventresca University of Toronto, Canada
Michael Vrahatis University of Patras, Greece
Alan Winfield University of the West of England, UK
Carsten Witt Technical University of Denmark, Denmark
Xiao-Feng Xie Carnegie Mellon University, USA
Daniela Zaharie West University of Timisoara, Romania

Additional Referees

Alexandre Campo Université Libre de Bruxelles, Belgium
Cyrille Bertelle University of Le Havre, France
Nikolaus Correll University of Colorado Boulder, USA
Melvin Gauci The University of Sheffield, UK
Carlos Gershenson IIMAS, UNAM, Mexico
Jane Hillston The University of Edinburgh, UK
Jerome Le Ny École Polytechnique de Montréal, Canada
Joel Lehman University of Central Florida, USA
Wenguo Liu Bristol Robotics Lab, UK
Yan Meng Stevens Institute of Technology, USA
Mac Schwager Boston University, USA
Valerio Sperati ISTC, CNR, Rome, Italy
Lovekesh Vig Jawaharlal Nehru University, New Delhi, India

Table of Contents

A Particle Swarm Embedding Algorithm for Nonlinear Dimensionality
Reduction . 1

Oliver Kramer

ABC-Miner: An Ant-Based Bayesian Classification Algorithm 13
Khalid M. Salama and Alex A. Freitas

Analysing Robot Swarm Decision-Making with Bio-PEPA 25
Mieke Massink, Manuele Brambilla, Diego Latella,
Marco Dorigo, and Mauro Birattari

Automatic Generation of Multi-objective ACO Algorithms for the
Bi-objective Knapsack . 37

Leonardo C.T. Bezerra, Manuel López-Ibáñez, and Thomas Stützle

Bare Bones Particle Swarms with Jumps . 49
Mohammad Majid al-Rifaie and Tim Blackwell

Hybrid Algorithms for the Minimum-Weight Rooted Arborescence
Problem . 61

Sergi Mateo, Christian Blum, Pascal Fua, and Engin Türetgen

Improving the cAnt-MinerPB Classification Algorithm 73
Matthew Medland, Fernando E.B. Otero, and Alex A. Freitas

Introducing Novelty Search in Evolutionary Swarm Robotics 85
Jorge Gomes, Paulo Urbano, and Anders Lyhne Christensen

Measuring Diversity in the Cooperative Particle Swarm Optimizer 97
Adiel Ismail and Andries P. Engelbrecht

Multi-armed Bandit Formulation of the Task Partitioning Problem in
Swarm Robotics . 109

Giovanni Pini, Arne Brutschy, Gianpiero Francesca,
Marco Dorigo, and Mauro Birattari

Scalability Study of Particle Swarm Optimizers in Dynamic
Environments . 121

Barend J. Leonard and Andries P. Engelbrecht

Self-reconfigurable Modular e-pucks . 133
Lachlan Murray, Jon Timmis, and Andy Tyrrell

XII Table of Contents

Task Partitioning via Ant Colony Optimization for Distributed
Assembly . 145

James Worcester and M. Ani Hsieh

The Self-adaptive Comprehensive Learning Particle Swarm
Optimizer . 156

Adiel Ismail and Andries P. Engelbrecht

Towards Swarm Calculus: Universal Properties of Swarm Performance
and Collective Decisions . 168

Heiko Hamann

Short Papers

A Hybrid Particle Swarm Optimization Algorithm for the Open Vehicle
Routing Problem . 180

Yannis Marinakis and Magdalene Marinaki

A Self-adaptive Heterogeneous PSO Inspired by Ants 188
Filipe V. Nepomuceno and Andries P. Engelbrecht

A“Thermodynamic”Approach to Multi-robot Cooperative Localization
with Noisy Sensors . 196

Yotam Elor and Alfred M. Bruckstein

AcoSeeD: An Ant Colony Optimization for Finding Optimal Spaced
Seeds in Biological Sequence Search . 204

Dong Do Duc, Huy Q. Dinh, Thanh Hai Dang,
Kris Laukens, and Xuan Huan Hoang

Analysis of Ant-Based Routing with Wireless Medium Access
Control . 212

Rui Fang, Zequn Huang, Louis Rossi, and Chien-Chung Shen

Ant-Based Approaches for Solving Autocorrelation Problems 220
Ilias S. Kotsireas, Konstantinos E. Parsopoulos,
Grigoris S. Piperagkas, and Michael N. Vrahatis

Collision-Induced “Priority Rule” Governs Efficiency of Pheromone-
Communicating Swarm Robots . 228

Ryusuke Fujisawa, Shigeto Dobata, Yuuta Sasaki,
Riku Takisawa, and Fumitoshi Matsuno

Dynamic Load Balancing Inspired by Cemetery Formation in Ant
Colonies . 236

Ronald Klazar and Andries P. Engelbrecht

Table of Contents XIII

Feasibility of an Ant Colony Optimization Algorithm for Multi-leaf
Collimator (MLC) Aperture Definition and Beam Weighting in
Volumetric Modulated Arc Therapy (VMAT) Radiotherapy Treatment
Planning . 244

Owen Clancey and Matthew Witten

Formica ex Machina: Ant Swarm Foraging from Physical to Virtual
and Back Again . 252

Joshua P. Hecker, Kenneth Letendre, Karl Stolleis,
Daniel Washington, and Melanie E. Moses

Improving Peer Review with ACORN: ACO Algorithm for Reviewer’s
Network . 260

Mark Flynn and Melanie Moses

Learning Finite-State Machines with Ant Colony Optimization 268
Daniil Chivilikhin and Vladimir Ulyantsev

Mobbing Behavior and Deceit and Its Role in Bio-inspired Autonomous
Robotic Agents . 276

Justin Davis and Ronald Arkin

Performance of Bacterial Foraging Optimization in Dynamic
Environments . 284

Jade Abbott and Andries P. Engelbrecht

Piecewise Linear Approximation of n-Dimensional Parametric Curves
Using Particle Swarms . 292

Christopher Wesley Cleghorn and Andries P. Engelbrecht

Probabilistic Stochastic Diffusion Search . 300
Mahamed G.H. Omran and Ayed Salman

Self-organized Clustering of Square Objects by Multiple Robots 308
Yong Song, Jung-Hwan Kim, and Dylan A. Shell

Self-reproduction versus Transition Rules in Ant Colonies for Medical
Volume Segmentation . 316

Robert Haase, Hans-Joachim Böhme, Rosalind Perrin,
Klaus Zöphel, and Nasreddin Abolmaali

Swarm Interpolation Using an Approximate Chebyshev Distribution 324
Joshua Kirby, Marco A. Montes de Oca, Steven Senger,
Louis F. Rossi, and Chien-Chung Shen

Using MOPSO to Solve Multiobjective Bilevel Linear Problems 332
Maria João Alves

XIV Table of Contents

Extended Abstracts

Clustering Moodle Data via Ant Colony Optimization 340
Päivi Suomalainen

Continuous Trait-Based Particle Swarm Optimisation (CTB-PSO) 342
Ed Keedwell, Mark Morley, and Darren Croft

Exploring Different Functions for Heuristics, Discretization, and Rule
Quality Evaluation in Ant-Miner . 344

Khalid M. Salama and Fernando E.B. Otero

Fuzzy-Based Aggregation with a Mobile Robot Swarm 346
Farshad Arvin, Ali Emre Turgut, and Shigang Yue

Maturity of the Particle Swarm as a Metric for Measuring the Particle
Swarm Intelligence . 348

Zdenka Winklerová

Multi-objective Firefly Algorithm for Energy Optimization in Grid
Environments . 350

Maŕıa Arsuaga-Rı́os and Miguel A. Vega-Rodŕıguez

Particle Swarm Optimization with Random Sampling in Variable
Neighbourhoods for Solving Global Minimization Problems 352

Gonzalo Nápoles, Isel Grau, and Rafael Bello

Author Index . 355

A Particle Swarm Embedding Algorithm

for Nonlinear Dimensionality Reduction

Oliver Kramer

University of Oldenburg, Germany
oliver.kramer@uni-oldenburg.de

Abstract. To cope with high-dimensional data dimensionality reduc-
tion has become an increasingly important problem class. In this paper
we propose an iterative particle swarm embedding algorithm (PSEA)
that learns embeddings of low-dimensional representations for high-di-
mensional input patterns. The iterative method seeks for the best latent
position with a particle swarm-inspired approach. The construction can
be accelerated with k-d-trees. The quality of the embedding is evaluated
with the nearest neighbor data space reconstruction error, and a co-
ranking matrix based measure. Experimental studies show that PSEA
achieves competitive or even better embeddings like the related methods
locally linear embedding, and ISOMAP.

1 Introduction

The world is high-dimensional. Efficient and robust dimensionality reduction
(DR) methods are required to process high-dimensional patterns, e.g., for visu-
alization or post processing with symbolic algorithms. With increasing data sets
DR becomes an important problem class in machine learning, and a variety of
methods has been introduced. Surprisingly, not many swarm-based algorithms
for DR are known. DR methods compute a mapping from high-dimensional data
space to a latent space of lower dimensionality. Latents point in this space should
preserve the topological characteristics of their high-dimensional pendants like
neighborhood and distance relations.

In this work we present a novel iterative swarm-inspired approach for DR
tasks, a popular problem class in machine learning. First, this paper combines
the iterative construction of solutions with particle swarm movement equations.
Second, it shows that particle swarm optimization (PSO) approaches can be effi-
cient methods for data mining tasks. PSO is inspired by the movement of swarms
in nature like fish schools or flocks of birds, and simulates the movement of can-
didate solutions using flocking-like equations with locations and velocities [7,17].
The paper is structured as follows. In Section 2 related work is presented. Sec-
tion 3 introduces the swarm-inspired iterative embedding approach, which is
experimentally analyzed and compared to locally linear embedding (LLE) and
ISOMAP in Section 4. Conclusions are drawn in Section 5.

M. Dorigo et al. (Eds.): ANTS 2012, LNCS 7461, pp. 1–12, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

2 O. Kramer

2 Related Work

2.1 Dimensionality Reduction

The idea of DR methods is to learn low-dimensional representations of high-
dimensional patterns losing as little information as possible. Many DR meth-
ods seek for a mapping F : R

d → R
q from a high-dimensional data space

R
d to a latent space of lower dimensionality R

q with q < d. Non-parametric
dimensionality reduction methods compute a set of low-dimensional represen-
tations X = (x1, . . . ,xN) ∈ R

q×N for N high-dimensional observed patterns
Y = (y1, . . . ,yN) ∈ R

d×N .
The decision, which information can be lost, and which has to be preserved

in the mapping F depends on the purpose of the DR process, and the error
function defined for the employed method. Many DR methods use an implicit
definition of the optimization problem they solve. However, the problem to learn
the functional model F can be a hard optimization problem, because the latent
variables X are unknown. Learning a reconstruction mapping f : R

q → R
d

back from latent to data space can also be desirable. Some methods learn this
mapping automatically. Famous DR methods are PCA [5] that is restricted to
linear manifolds. Locally linear embedding (LLE) [16], and ISOMAP [20] are
famous for non-linear dimensionality reduction.

2.2 Unsupervised Regression

The framework for unsupervised regression has been introduced by Meinicke [13].
It is based on optimizing latent variables to reconstruct high-dimensional data.
Unsupervised regression has first been applied to kernel density regression [14],
and later to radial basis function networks (RBFs) [18], Gaussian processes [11],
and neural networks [19]. Recently, we fitted nearest neighbor regression to the
unsupervised regression framework [9], and introduced extensions w.r.t. robust
loss functions [10]. Unsupervised nearest neighbors (UNN) is a fast approach
that allows to iteratively construct low-dimensional embeddings in O(N2), and
has been introduced for latent sorting [9,10]. The approach we introduce in
this work extends UNN with a PSO-like mechanism to handle arbitrary latent
dimensionalities, i.e., 1 ≤ q < d. An introduction to UNN will be given in
Section 3.

2.3 Swarm Intelligence and Unsupervised Learning

In nature systems can be observed, in which comparatively simple units orga-
nize in groups. This form of collective and coordinated organization is known
as swarm intelligence. The disadvantage of simple behaviors is compensated by
their large number, and massive parallelism. Swarms consist of a large num-
ber of simple entities that cooperate to act goal-oriented. Natural and artificial
system have shown to implement successful solution strategies. To the best of

PSEA for Nonlinear Dimensionality Reduction 3

our knowledge no swarm-based methods have yet been proposed for embedding
of patterns in low-dimensional latent spaces. But related work in other fields
of unsupervised learning with swarm methods has been published, e.g., meth-
ods for PSO and ant colony optimization-based clustering. Kao and Cheng [6]
have introduced an ACO algorithm for clustering that employs pheromones,
and distances between elements as heuristic clustering information. The combi-
nation of population-based search and stochastic elements allows to overcome
local optima, and find optimal clustering results. Further methods for swarm-
based clustering can be found in the book by Abraham et al. [1]. O’Neill and
Brabazon [15] have introduced a hybrid approach of PSO, and self-organizing
maps (SOMs) by Kohonen [8] that control the weights of a SOM employing a
PSO-similar update rule. Also ant colony optimization has been employed to
improve the topographic SOM mapping [4].

3 Iterative Particle Swarm Embeddings

The iterative particle swarm embedding algorithm is introduced in the following.
It is based on K-nearest neighbor regression, and the concept of unsupervised
regression.

3.1 Nearest Neighbors

Functional regression models map patterns to continuous labels, i.e., to a sub-
space of Rd. The problem is to predict output values y ∈ R

d of given input values
x ∈ R

q based on sets of N input-output examples (x1,y1), . . . , (xN ,yN). The
goal is to learn a functional model f : Rq → R

d known as regression function.
We assume a data set consisting of observed pairs (xi,yi) ∈ X×Y is given. For
a novel pattern x′ K-nearest neighbors (KNN) for regression computes the mean
of the function values of its K-nearest patterns:

fKNN (x′) :=
1

K

∑
i∈NK(x′)

yi (1)

with set NK(x′) containing the indices of the K-nearest neighbors of x′. The
idea of KNN is based on the assumption of locality in data space: In local
neighborhoods of x patterns are expected to have similar label information f(x)
like observed patterns y. Consequently, for an unknown x′ the label must be
similar to the labels of the closest patterns, which is modeled by the average
of the output value of the K nearest samples. KNN has been proven well in
various applications, e.g., in the detection of quasars based on spectroscopic
data [3]. We define the output of function fKNN given the pattern matrix X as
a matrix fKNN (X) = (fKNN (x1), . . . , fKNN (xN)), collecting all KNN mappings
from patterns in X to R

d.

4 O. Kramer

3.2 Unsupervised Nearest Neighbors

The idea in unsupervised regression [13] is to reverse the regression approach:
we map from latent space to data space, and the latent variables are the free
parameters we want to optimize to optimally reconstruct the observed patterns
in data space, i.e., the objective is to minimize the data space reconstruction
error (DSRE):

minimize E(X) =
1

N
‖Y − fKNN (X)‖2F , (2)

with Frobenius norm ‖ · ‖2F . We define e(x,y,X) as the contribution of latent
position x′ to the DSRE.

e(x′,y,X) = ‖y − fKNN (x′)‖2 (3)

As functional model fKNN we employ KNN regression. The question comes up
how to optimize the functional model. In [9] and [10] we have introduced a latent
sorting approach for embedding high-dimensional patterns on a line.

Figure 1(a) illustrates the UNN variant we proposed for sorting high-di-
mensional data [9,10]. It shows the N̂ +1 possible embeddings of a data sample
into an existing order of points in latent space (yellow/bright circles). The posi-
tion of element x3 results in a lower DSRE (cf. Section 3.2) with K = 2 than the

x

y

y

1

2

latent space

data space

x x x x x
1 2 3 4 5 6

f(x)
3

f(x)
5y

(a) (b)

Fig. 1. Left: Illustration of UNN embedding of a low-dimensional point to a fixed latent
space topology testing all N̂ +1 positions [9]. Right: Example of UNN result of a 3D-S
before (upper right) and after embedding (lower right) with UNN and K = 10 [9,10].

PSEA for Nonlinear Dimensionality Reduction 5

position of x5, as the mean of the two nearest neighbors of x3 is closer to y than
the mean of the two nearest neighbors of x5. Figure 1(b) shows an example of a
UNN embedding of the 3D-S (upper part shows colorization of the unsorted S,
lower part after UNN embedding), similar colors correspond to neighbored po-
sitions in latent space, i.e., a meaningful neighborhood preserving embedding
has been computed. In the following, we extend the approach to arbitrary la-
tent dimensionalities, in which the latent variables can be placed in latent space
without geometric constraints.

3.3 Particle Swarm Embedding Algorithm

There are two reasons to employ a direct search method to solve the UNN
optimization problem. First, the problem is highly multimodal, second, E(X) is
not steady, and not differentiable due to the employment of KNN. To illustrate
the search for optimal latent positions, we visualize the DSRE space in Figure 2.
It shows the DSRE w.r.t. the first pattern y1 for two neighborhood sizes, i.e.,
K = 5 (left), and K = 30 (right) after a run of UNN with N = 300. Bright
areas represent parts of latent space with low errors, while dark colors represent
a large DSRE. The comparison of both figures shows that in case of increasing
neighborhood sizes the problem has larger, but less areas with similar fitness. The
number of local optima decreases, and the optimization problem becomes easier.
In the experimental section we will observe that the variance of the outcome of
multiple experiments is smaller for large neighborhood sizes.

The PSEA optimization approach is based on the following two ideas:

1. Iteratively construct a solution (an embedding X) to cope with the large
number of free parameters, and

2. perform PSO-like blackbox search steps in each iteration to embed the latent
point at an optimal position.

(a) (b)

Fig. 2. Visualization of DSRE space e(·,y1,X) w.r.t. the first pattern y1 for K = 5,
and K = 30 after a run of UNN with N = 300 embedded patterns

6 O. Kramer

Note that the approach does not treat the latent points as swarm, and does
not evolve them freely in latent space. As the problem to minimize E(X) scales
linearly with the number of patterns N , which may be a very large number in
practice, the iterative solution construction is the key concept for efficiently learn
the manifold. The approach is described in the following (cf. Algorithm 1.1). In

Algorithm 1.1. Particle Swarm Embedding Algorithm

1: input: Y, K, κ
2: repeat
3: choose y ∈ Y
4: look for closest pattern y∗ with latent position x∗

5: for i = 1 to κ do
6: update velocity (cf. Equation 5)
7: update latent position (cf. Equation 4)
8: evaluate E(X) or e(x′,y,X)
9: update best position x̃
10: end for
11: embed x̃
12: Y = Y\y
13: until Y = ∅

each step the pattern that has to be embedded is randomly chosen y ∈ Y. In
the particle swarm step we seek for the optimal position, where the particle x
should be embedded. For this reason, a loop of PSO-like steps is repeated for κ
iterations:

x′ = x+ v′ (4)

with velocity
v′ = v + c1r1(x̃− x) + c2r2(x

∗ − x) (5)

Here, x̃ is the best position w.r.t. the DSRE the latent particle has found so far,
and x∗ is the latent position of the embedded pattern y∗ ∈ Ŷ that is closest to
the pattern y that we want to embed:

x∗ = arg min
i=1,...,|Ŷ|

δ(y,yi), (6)

with distance measure δ(·), for which we will employ the Euclidean distance in
the experimental part. The parameters c1, c2 ∈ [0, 1] are constants that define
the orientation to the best latent particle, and the closest already embedded
one. Variables r1, r2 ∈ [0, 1] are uniform random values. Figure 3 illustrates the
particle swarm embedding step. The new candidate latent point x′ is generated
with velocity v′, and the two scaled vectors.

In the following, we analyze the PSEA variant that takes into account the
reconstruction error e(·,y,X) (cf. Equation 3) of the pattern y that has to be
embedded. A greedy, but slower variant of PSEA is possible that employs the
overall DSRE (cf. Equation 2) for each latent position.

PSEA for Nonlinear Dimensionality Reduction 7

x

x

1

2
latent space

x

x*

x~ x’

x-x~

x -x*

closest embedded
point

best past
point

new candidate

old
candidate

v

Fig. 3. Illustration of particle swarm embedding: The new candidate latent point x′ is
generated with velocity v′, and the two scaled vectors x̃− x and x∗ − x

3.4 Runtime

The embedding has a complexity of O(N2), but can be accelerated with k-
d-trees [2] in data and latent space. A k-d-tree allows efficient neighborhood
queries: not N elements have to be considered, but O(logN) steps are sufficient
to reach the closest pattern. A k-d-tree is a space partitioning data structure
for a k-dimensional data space based on axis-aligned splitting planes. The basic
k-d-tree cycles through the coordinate axes. Employing k-d-trees in data and
latent space allows the PSEA to constructs a solution in O(N logN) time, if
we assume that the PSO-based search in each step takes constant time. The
search for the closest pattern y∗ of y takes O(log N̂) (if N̂ is the increasing
number of embedded patterns when y is being embedded) employing a k-d-tree
in data space. The search for the optimal embedding takes κ ·K-neighborhood
computations in latent space, i.e. O(κ · K · log N̂) = O(log N̂). Insertion of
x to the latent space k-d-tree, and y to the data space k-d-tree each take
O(log N̂). Hence, the overall runtime of the approach can be accelerated to
O(N logN).

4 Experimental Analysis

In this section we analyze the results of the novel PSEA experimentally. To eval-
uate the quality of the embeddings we employ the DSRE and a co-ranking matrix
measure introduced by Lee and Verleysen [12]. It is based on the comparison of
ranks (sorting w.r.t. distances from patterns) in data space and latent space. It
defines a co-ranking matrix Q that explicitly states the deviations of ranks in
data and latent space, see [12] for a definition of Q. In this matrix rank errors
correspond to off-diagonal entries. A point yj with lower rank w.r.t. a point yi

8 O. Kramer

in latent space is called intrusion, a higher rank is called extrusion. From the
co-ranking matrix the following quality measure can be derived that counts the
number of proper ranks within a neighborhood of size K:

QNX(K) :=
1

KN

K∑
k=1

K∑
l=1

qkl (7)

This term restricts the measure to neighborhoods of size K. High values for QNX

show that the high-dimensional neighborhood relations are preserved in latent
space, a perfect embedding achieves a value of one.

4.1 Neighborhood Sizes

First, we analyze the influence of neighborhood size K on the results of PSEA,
LLE and ISOMAP on two test data sets, i.e., Digits and Boston. For PSEA
we choose the following settings. The particle swarm embedding process runs
κ = 50 iterations. The initial velocity is randomly generated with a Gaussian
distribution v0 = N (0, 1), the initial position starts from the latent position of
the closest embedded point x0 = x̃. The constants are both set to c1 = c2 = 0.5.

Table 1. Comparison of DSRE and ENX with PSEA (mean values of 25 runs with
standard deviation), LLE, and ISOMAP on the two test data sets Digits, and Boston

Digits PSEA LLE ISOMAP

K DSRE ENX DSRE ENX DSRE ENX

5 15.87 ± 0.23 0.47 ± 0.01 24.17 0.25 16.67 0.41
10 18.77 ± 0.29 0.42 ± 0.01 19.29 0.41 18.96 0.42
15 20.89 ± 0.64 0.40 ± 0.01 19.98 0.44 19.52 0.47
30 24.17 ± 0.48 0.39 ± 0.01 25.511 0.34 21.97 0.51

Boston PSEA LLE ISOMAP

K DSRE ENX DSRE ENX DSRE ENX

5 29.81 ± 1.86 0.45 ± 0.01 45.29 0.30 34.06 0.42
10 37.35 ± 6.40 0.43 ± 0.03 62.81 0.29 81.57 0.35
15 53.59 ± 2.94 0.40 ± 0.03 69.35 0.20 44.24 0.43
30 53.03 ± 3.23 041 ± 0.04 33.32 0.55 27.69 0.66

Table 1 shows the experimental results w.r.t. the DSRE and ENX for the
settings K = 5, 10, 15, and 30. Each PSEA experiment has been repeated 25
times. The best results, i.e., low DSRE and high ENX are shown in bold, the
second best are shown in italic numbers. The results show that a low DSRE
correlates with a high ENX . The DSRE is increasing with the neighborhood size.
PSEA achieves the best results of all methods in case of small neighborhood sizes
K = 5, and K = 10 on both data sets. In case of larger neighborhoods ISOMAP
shows better results, but PSEA still computes competitive embeddings, and
achieves the second best results in half of the cases. LLE and ISOMAP win

PSEA for Nonlinear Dimensionality Reduction 9

in performance for larger neighborhoods. The results of LLE are worse than
the results of PSEA in three of the four cases, in particular ENX tends to be
much worse. Surprising is the bad result of ISOMAP on the Boston data set for
K = 10.

Our experiments with varying data set sizes have shown that ISOMAP, and
LLE do not scale well in terms of runtime with an increasing number of patterns.
The runtime of the PSEA scales slower with the number of patterns. This can be
a major advantage of PSEA over the other methods in large-scale data mining
scenarios, one of the most important open problems in machine learning.

4.2 Comparison of Embeddings

In Figure 4 we compare PSEA results employing varying neighborhood sizes. The
figures show that reasonable embeddings have been computed for all neighbor-
hood sizes. Similar digits, e.g., the same classes, are mapped to neighbored latent

K = 5

(a)

K = 10

(b)

K = 15

(c)

K = 30

(d)

Fig. 4. Comparison of embeddings of 750 data points, and 6 classes of the Digits data
set. PSEA results for (a) K = 5, and (b) K = 10, (c) K = 15, and (d) K = 30.

10 O. Kramer

areas. The distribution of latent points is broader (and similar to ISOMAP, see
Figure 5) for small neighborhood sizes, e.g. K = 5, while for larger neighbor-
hoods, e.g. K = 30, the whole manifold becomes narrow. For comparison, the
figures show that the embedding gets worse for K = 30 with outliers. The reason
for outliers in case of large neighborhood sizes is that the DSRE function has
more plateaus, i.e., areas with the same neighborhoods, and equal or at least
similar DSRE values.

(a) (b)

Fig. 5. Comparison of embeddings of 750 data points, and 6 classes of the Digits data
set for (a) LLE, and (b) ISOMAP embeddings with K = 15

Figure 5 shows the embeddings of LLE and ISOMAP of the same data set.
Both embeddings also separate the classes and fulfill topological requirements
like neighborhood preservation. ISOMAP distributes the latent embeddings cir-
cularly in latent space, which leads to better shapes than LLE. The plots show
that the embeddings of PSEA show similar characteristics like the results of
ISOMAP, and distribute the latent points better than LLE.

5 Conclusion

In unsupervised regression the optimization problem of placing latent variables
scales with the number of patterns, and becomes impractical for large data sets.
In this paper we have introduced a novel optimization approach that is based
on the hybridization of iteratively constructing a solution, and PSO-like op-
timization in each iteration. The proposed method belongs to the first parti-
cle swarm approach that allows learning of low-dimensional embeddings from
high-dimensional patterns. The results are competitive to embeddings of es-
tablished methods like ISOMAP, and LLE. The experiments have shown that
the PSEA embedding fulfills conditions like neighborhood preservation, and
low DSRE.

PSEA for Nonlinear Dimensionality Reduction 11

As extension of the PSEA approach it is reasonable to parallelize the embed-
ding process, and thus allow to learn embeddings of large data sets. Another
prospective research direction is to employ further DR criteria for the fitness
evaluation of the optimization process like kernel density regression criteria. A
promising research direction will be to employ the hybridization of an itera-
tive approach, and PSO optimization for the construction of solutions in related
domains.

References

1. Abraham, A., Grosan, C., Ramos, V. (eds.): Swarm Intelligence in Data Mining.
SCI, vol. 34. Springer (2006)

2. Bentley, J.L.: Multidimensional binary search trees used for associative searching.
Communications of the ACM 18(9), 509–517 (1975)

3. Gieseke, F., Polsterer, K.L., Thom, A., Zinn, P., Bomanns, D., Dettmar, R.-J.,
Kramer, O., Vahrenhold, J.: Detecting quasars in large-scale astronomical surveys.
In: International Conference on Machine Learning and Applications (ICMLA), pp.
352–357 (2010)

4. Herrmann, L., Ultsch, A.: The Architecture of Ant-Based Clustering to Improve
Topographic Mapping. In: Dorigo, M., Birattari, M., Blum, C., Clerc, M., Stützle,
T., Winfield, A.F.T. (eds.) ANTS 2008. LNCS, vol. 5217, pp. 379–386. Springer,
Heidelberg (2008)

5. Jolliffe, I.: Principal component analysis. Springer series in statistics. Springer, New
York (1986)

6. Kao, Y., Cheng, K.: An ACO-Based Clustering Algorithm. In: Dorigo, M.,
Gambardella, L.M., Birattari, M., Martinoli, A., Poli, R., Stützle, T. (eds.) ANTS
2006. LNCS, vol. 4150, pp. 340–347. Springer, Heidelberg (2006)

7. Kennedy, J., Eberhart, R.: Particle swarm optimization. In: Proceedings of IEEE
International Conference on Neural Networks, pp. 1942–1948 (1995)

8. Kohonen, T.: Self-Organizing Maps. Springer (2001)
9. Kramer, O.: Dimensionalty reduction by unsupervised nearest neighbor regression.

In: International Conference on Machine Learning and Applications (ICMLA), pp.
275–278. IEEE (2011)

10. Kramer, O.: On unsupervised nearest-neighbor regression and robust loss functions.
In: International Conference on Artificial Intelligence, pp. 164–170 (2012)

11. Lawrence, N.D.: Probabilistic non-linear principal component analysis with gaus-
sian process latent variable models. Journal of Machine Learning Research 6, 1783–
1816 (2005)

12. Lee, J.A., Verleysen, M.: Quality assessment of dimensionality reduction:
Rank-based criteria. Neurocomputing 72(7-9), 1431–1443 (2009)

13. Meinicke, P.: Unsupervised Learning in a Generalized Regression Framework. PhD
thesis, University of Bielefeld (2000)

14. Meinicke, P., Klanke, S., Memisevic, R., Ritter, H.: Principal surfaces from unsu-
pervised kernel regression. IEEE Transactions on Pattern Analysis and Maching
Intelligence 27(9), 1379–1391 (2005)

15. O’Neill, M., Brabazon, A.: Self-organizing swarm (SOSwarm) for financial credit-
risk assessment (2008)

16. Roweis, S.T., Saul, L.K.: Nonlinear dimensionality reduction by locally linear
embedding. Science 290, 2323–2326 (2000)

12 O. Kramer

17. Shi, Y., Eberhart, R.: A modified particle swarm optimizer. In: Proceedings of the
International Conference on Evolutionary Computation, pp. 69–73 (1998)

18. Smola, A.J., Mika, S., Schölkopf, B., Williamson, R.C.: Regularized principal man-
ifolds. Journal of Machine Learning Research 1, 179–209 (2001)

19. Tan, S., Mavrovouniotis, M.: Reducing data dimensionality through optimizing
neural network inputs. AIChE Journal 41(6), 1471–1479 (1995)

20. Tenenbaum, J.B., Silva, V.D., Langford, J.C.: A global geometric framework for
nonlinear dimensionality reduction. Science 290, 2319–2323 (2000)

ABC-Miner: An Ant-Based

Bayesian Classification Algorithm

Khalid M. Salama and Alex A. Freitas

School of Computing, University of Kent, Canterbury, UK
kms39@kent.ac.uk, a.a.freitas@kent.ac.uk

Abstract. Bayesian networks (BNs) are powerful tools for knowledge
representation and inference that encode (in)dependencies among ran-
dom variables. A Bayesian network classifier is a special kind of these
networks that aims to compute the posterior probability of each class
given an instance of the attributes and predicts the class with the high-
est posterior probability. Since learning the optimal BN structure from a
dataset is NP-hard, heuristic search algorithms need to be applied effec-
tively to build high-quality networks. In this paper, we propose a novel
algorithm, called ABC-Miner, for learning the structure of BN classifiers
using the Ant Colony Optimization (ACO) meta-heuristic. We describe
all the elements necessary to tackle our learning problem using ACO,
and experimentally compare the performance of our ant-based Bayesian
classification algorithm with other algorithms for learning BN classifiers
used in the literature.

1 Introduction

Classification is a data mining task where the goal is to build, from labeled
cases, a model (classifier) that can be used to predict the class of unlabeled
cases. Learning classifiers from datasets is a central problem in data mining and
machine learning research fields. While different approaches for tackling this
problem exist, such as decision trees, artificial neural networks and rule list [20],
our focus in this paper is on the Bayesian approach for classification.

Näıve-Bayes is the first Bayesian classifier in the literature. Although it is
a very simple kind of Bayesian networks that assumes the attributes are in-
dependent given the class label, Näıve-Bayes classifiers showed effective pre-
dictive performance under the aforementioned assumption [10]. However, since
the independency assumption amongst the dataset attributes is not realistic,
extended versions were developed to improve the performance of Näıve-Bayes,
namely Tree Augmented Näıve-Bayes (TANs), Bayesian networks Augmented
Näıve-Bayes (BANs) and General Bayesian Networks (GBNs) [10]. These algo-
rithms consider dependencies between the attributes in the learning process to
build more complex and hopefully more accurate BN classifiers. Nonetheless,
algorithms used in the literature for building such BNs utilize greedy and deter-
ministic techniques. Since learning the optimal BN structure from a dataset is

M. Dorigo et al. (Eds.): ANTS 2012, LNCS 7461, pp. 13–24, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

14 K.M. Salama and A.A. Freitas

NP-hard [5], several stochastic search algorithms can be effectively applied to
build high-quality BN classifiers in an acceptable computational time.

Ant Colony Optimization (ACO) [9] is a meta-heuristic for solving combi-
natorial optimization problems, inspired by observations of the behavior of ant
colonies in nature. ACO has been successful in solving several problems, includ-
ing classification rule induction [13,14,15,18] and general purpose BN construc-
tion [2,8,17,21]. However, as far as we know, it has not been used for learning
Bayesian network classifiers.

In this paper, we propose a novel ant-based Bayesian classification algo-
rithm, called ABC-Miner, which learns the structure of a BAN with at most
k-dependencies from a dataset using ACO technique for optimization. The rest
of the paper is organized as follows. In Section 2 a brief overview on Bayesian
networks’ basic concepts is given as well as a discussion of various Bayesian
network classifiers is shown. Section 3 exhibits the related work on the use of
ACO algorithms for building BNs in the literature. In Section 4, we introduce
our proposed ABC-Miner algorithm and describe each of the elements neces-
sary to tackle our learning problem using the ACO meta-heuristics. After that,
section 5 discusses our experimental methodology and results. Finally, we con-
clude with some general remarks and provide directions for future research in
section 6.

2 Bayesian Networks Background

2.1 Overview on Bayesian Networks

Bayesian networks are knowledge representation tools that aim to model de-
pendence and independence relationships amongst random variables [12]. In
essence, BNs are used to describe the joint probability distribution of n ran-
dom variables X = {X1, X2, X3, ..., Xn}. A directed acyclic graph (DAG) is
used to represent the variables as nodes and statistical dependencies between
the variables as edges between the nodes – child nodes (variables) depend on
their parent ones. In addition, a set of conditional probability tables (CPTs),
one for each variable, is obtained to represent the parameters Θ of the network.
The graphical structure of the network along with its parameters specifies a joint
probability distribution over the set of variables X that is formulated in the
product form:

p(X1, X2, ..., Xn) =

n∏
i=1

p(Xi|Pa(Xi), Θ,G) (1)

where Pa(Xi) are the parents of variable Xi in G (the DAG that represents the
structure of the BN).

Learning a Bayesian network from a dataset D with {d1, d,2 , ..., dm} in-
stances is decomposed into two phases; learning the network structure, and
then learning the parameters of the network. As for parameter learning, it is

ABC-Miner: An Ant-Based Bayesian Classification Algorithm 15

considered a straightforward process for any given BN structure with speci-
fied (in)dependencies between variables. Simply, a conditional probability table
(CPT) is computed for each variable with respect to its parent variables. CPT
of variable Xi encodes the likelihood of this variable given its parents Pa(Xi)
in the network graph G, and the marginal likelihood of the dataset D given a
structure G is denoted by P (D|G). The purpose is to find G that maximizes
P (D|G) for a given D, which is the role of BN structure learning phase. The
common approach to this problem is to introduce a scoring function, f , that
evaluates each G with respect to D, searching for the best network structure
according to f . Various scoring metrics are usable for this job [6,12].

A well-known greedy approach for building BN structure is Algorithm B [1].
It starts with an empty DAG (edge-less structure) and at each step it adds the
edge with the maximum increase in the scoring metric f , whilst avoiding the
inclusion of directed cycles in the graph. The algorithm stops when adding any
valid edge does not increase the value of the scoring metric. K2, a metric based
on uniform prior scoring, is one of the most used scoring metrics for building
and evaluating Bayesian networks [6].

For further information about Bayesian networks, the reader is referred to
[11,12], which provide a detailed discussion of the subject.

2.2 Bayesian Networks for Classification

Bayesian network classifiers are a special kind of BNs where the class attribute
is treated as a unique variable in the network. The purpose is to compute the
probability of each value of the class variable given an instance of the predictor
attributes and assign this instance to the class that has the highest posterior
probability value. The following are various types of BN classifiers studied in
the literature.

• Näıve-Bayes: The classifier consists of a simple BN structure that has the
class node as the only parent node of all other nodes. This structure assumes
that all attributes are independent of each other given the class. In spite of
its simplicity, Näıve-Bayes has surprisingly outperformed many sophisticated
classifiers over a large number of datasets, especially where the attributes
are not strongly correlated [10].

• Tree Augmented Näıve-Bayes (TAN): As an extension to Näıve-Bayes,
TAN allows a node in a BN to have more than one parent, besides the class
variable. This produces a tree-like structure BN. A variation of the Chow-Liu
algorithm [3] is the best known method for building TANs. First, it computes
the conditional mutual information I(X,Y |C) between each pair of variables
X and Y given class variable C. Then it builds a complete undirected graph
connecting all the input variables to find the maximum weighted spanning
tree from the graph, where the weight of edge X → Y is annotated with
I(X,Y |C). After that, it chooses a root variable and sets the direction of all
edges to be outwards of it. Finally, it adds one edge from the class node to
each of the other variables, building a TAN classifier.

16 K.M. Salama and A.A. Freitas

• BN Augmented Näıve-Bayes (BAN): It is an elaborated version of
Näıve-Bayes, in which no restrictions (or at most k-dependencies) are en-
forced on the number of the parents that a node in the network can depend
on. In other words, while each node in TAN can have only one parent be-
sides the class node, and in Näıve-Bayes only the class node is allowed to be
the parent, each node in BAN can have k of parents (dependencies) besides
the class node. Another variation of the Chow-Liu algorithm that is used to
build TANs, is utilized to BANs as well [4].

• General Bayesian Network (GBN): Unlike the other BN classifier learn-
ers, the GBN treats the class variable node as an ordinary node. The idea is
to build a general purpose Bayesian network, find the Markov blanket of the
class node, delete all the other nodes outside it and use the resulting network
as a Bayesian classifier. One Markov blanket of a node n is the union of the
n’s parents, n’s children, and the parents of n’s children.

Friedman et al. provided an excellent study of these algorithms in [10]. A com-
prehensive investigation and comparisons of these various Bayesian classifiers by
Cheng and Greiner are found in [3,4] .

3 ACO Related Work

Ant Colony Optimization has an effective contribution in tackling the classifi-
cation problem. Ant-Miner [15] is the first ant-based classification algorithm.
Several extensions on this algorithm have been introduced in the literature,
such as AntMiner+ [13], cAnt-Miner [14], and multi-pheromone Ant-Miner [18].
However, the Ant-Miner algorithm as well as its various versions handles the clas-
sification problem by building a list of <IF Antecedent THEN Class> classifi-
cation rules. On the other hand, this paper proposes a new ant-based algorithm
that handles classification problems, yet with a different approach; learning a
Bayesian network to be used as classifier.

As for the use of ACO for building Bayesian networks, to date, there has
been only a few research utilizing such a heuristic in learning BN structure,
namely: ACO-B [2], MMACO [16,17], ACO-E [7,8] and CHAINACO - K2ACO
[21]. Moreover, none of them has been used for building BN classifiers. As far
as we know, our proposed ABC-Miner is the first algorithm to use ACO, or any
evolutionary algorithm, in the task of learning Bayesian networks specific for the
classification problem.

Campos et al. introduced the first ant-based algorithm for learning Bayesian
networks, ACO-B [2], where each ant iteratively constructs a complete Bayesian
network from scratch by selecting edges to be added to the network and up-
dates the pheromone on the construction graph according to the quality of the
constructed BN. Edge selection is carried out in stochastic fashion, according to
the pheromone and the heuristic values associated with the edge. The heuristic
function used is the same function used for evaluating the quality of the BN,
which is the K2 scoring metric [6].

ABC-Miner: An Ant-Based Bayesian Classification Algorithm 17

Pinto et al. used a different local discovery approach for learning BNs in
[16,17]. This is hybrid approach, MMACO, based on the local discovery algo-
rithm Max-Min Parents and Children (MMPC) and ant colony optimization
(ACO). MMPC is used to construct the skeleton of the Bayesian network and
then ACO is used to orientate its edges, thus returning the final structure. Here
all the ants are involved in building a single solution by testing several possible
edge additions and orientation at the same iteration. BDEu [12] is the function
used by MMACO to calculate the heuristics and evaluates the BN quality.

Daly et al. studied learning the structure of a Bayesian network by performing
a search through the space of its equivalence classes via extending traditional
ACO-based algorithm, ACO-E [7,8]. An equivalence class includes all network
structures where changing the orientation (dependency relationship) of one or
more edges in a BN obtains the same quality according to a given scoring metric.
In which case, not all the edges in an equivalence class of a BN are oriented,
since the direction of the dependencies of some edge does not change the quality
of the network.

Yanghui et al. proposed two novel ACO approaches for Bayesian network
structure learning, CHAINACO and K2ACO [21]. The former is based on a
GA algorithm. It consists of two phases; constructing chains (the order of nodes
according to dependencies) using ACO instead of GA, then applies K2 to the best
ordering found and returns the best structure. K2ACO is also based on another
algorithm, K2GA, which only consists of a single phase. The quality of each node
ordering chosen by an ant is evaluated by running the K2 search algorithm to
construct a BN calculating the score of the network structure found. The best
structure returned is that generated by K2 from the best ordering evaluated in
this fashion.

Note that the goal of the aforementioned algorithms is to build general pur-
poses BNs. In other words, the selection of the heuristics, quality evaluation
metric and other elements of the algorithm are suitable for this aim, but not
for building BN classifiers. Hence, in spite of having some similarities, essential
aspects of our algorithm are different due to the diversion in the target; our
algorithm is only focused on learning BN classifiers. Next we will explore these
aspects as we describe our novel Ant-based Bayesian Classifier.

4 A Novel ACO Algorithm for Learning BN Classifiers

4.1 ABC-Miner Algorithm

The overall process of ABC-Miner is illustrated in Algorithm 1. The core ele-
ment of any ACO-based algorithm is the construction graph that contains the
decision components in the search space, with which an ant constructs a candi-
date solution. As for the problem at hands, the decision components are all the
edges X → Y where X �= Y and X,Y belongs to the input attributes of a given
training set. These edges represent the variable dependencies in the resulting
Bayesian network classifier.

18 K.M. Salama and A.A. Freitas

At the beginning of the algorithm, the pheromone amount is initialized for
each decision component with the same value. The initial amount of pheromone
on each edge is 1/|TotalEdges|. In addition, the heuristic value for each edge
X → Y is set using the conditional mutual information, which is computed as
follows:

I(X,Y |C) =
∑
c∈C

p(c)
∑
x∈X

∑
y∈Y

p(x, y|c) log p(x, y|c)
p(x|c)p(y|c) (2)

where C is the class variable. p(x, y|c) is the conditional probability of value x ∈
X and y ∈ Y given class value c, p(x|c) is the conditional probability of x given c,
p(y|c) is the conditional probability of y given c and p(c) is the prior probability
of value c in the class variable. Conditional mutual information is a measure
of correlation between two random variables given a third one. In our case, we
want to lead the ant during the search process to the edges between correlated
variables given the class variable, and so we use such a function as heuristic
information associated with the selectable edges. Note that the procedure of
heuristic calculation is called only once at the beginning and its calculations
used throughout the algorithm.

Algorithm 1. Pseudo-code of ABC-Miner

Begin ABC-Miner
BNCgbest = φ; Qgbest = 0
InitializePheromoneAmounts();
InitializeHeuristicV alues();
t = 0;
repeat

BNCtbest = φ; Qtbest = 0;
for i = 0 → colony size do

BNCi = CreateSolution(anti);
Qi = ComputeQuality(BNCi);
if Qi > Qtbest then

BNCtbest = BNCi;
Qi = Qtbest;

end if
end for
PerformLocalSearch(BNCtbest);
UpdatePheromone(BNCtbest);
if Qtbest > Qgbest then

BNCgbest = BNCtbest;
end if
t = t+ 1;

until t = max itrations or Convergence()
return BNCgbest;
End

ABC-Miner: An Ant-Based Bayesian Classification Algorithm 19

The outline of the algorithm is as follows. In essence, each anti in the colony
creates a candidate solution BNCi, i. e. a Bayesian network classifier. Then
the quality of the constructed solution is evaluated. The best solution BNCtbest

produced in the colony is selected to undergo local search before the ant updates
the pheromone trail according to the quality of its solution Qtbest. After that,
we compare the iteration best solution BNCtbest with the global best solution
BNCgbest to keep track of the best solution found so far. This set of steps
is considered an iteration of the repeat − until loop and is repeated until the
same solution is generated for a number of consecutive trials specified by the
conv iterations parameter (indicating convergence) or until max iterations

is reached. The values of conv iterations, max iterations and colony size

are user-specified thresholds. In our experiments (see section 5), we used 10, 500
and 5 for each of these parameters respectively.

4.2 Solution Creation

Instead of having the user selecting the optimum maximum number of depen-
dencies that a variable in the BN can have (at most k parents for each node), this
selection is carried out by the ants in ABC-Miner. Prior to solution creation, the
ant selects the maximum number of dependencies (k) as a criterion for the cur-
rently constructed BN classifier. This selection of k value is done probabilistically
from a list of available numbers. The user only specifies max parents parameter
(that we set to 3 in our experiments), and all the integer values from 1 to this
parameter are available for the ant to use in the BN classifier construction. The
various values of the k are treated as decision components as well. More precisely,
the ant updates the pheromone on the value k of the maximum number of par-
ents after solution creation according to the quality of this solution, which used
value k as a criterion in the BN classifier construction. This pheromone amount
represents the selection probability of this value by subsequent ants, leading
to convergence on an optimal value of k dependencies. Algorithm 2 shows the
outline of the solution creation procedure.

Algorithm 2. Pseudo-code of Solution Creation Procedure

Begin CreateSolution()
BNCi ← {Näıve-Bayes structure};
k = anti.SelectMaxParents();
while GetV alidEdges() <> φ do

{i → j} = anti.SelectEdgeProbablistically();
BNCi = BNCi ∪ {i → j};
RemoveInvalidEdges(BNCi, k);

end while
BNCi.LearnParameters();
return BNCi;
End

20 K.M. Salama and A.A. Freitas

Each ant starts with the network structure of the Näıve-Bayes classifier, i. e. a
BN in which all the variables have only the class variable as a parent. From that
point, it starts to expand this Näıve-Bayes network into a Bayesian Augmented
Näıve-Bayes (BAN) by adding edges to the network. The selection of the edges
is performed according to the following probabilistic state transition formula:

Pij =
[τij(t)]

α · [ηij]β∑I
a

∑J
b [τab(t)]

α · [ηab]β
(3)

In this equation, Pij is the probability of selecting the edge i → j, τij(t) is
the amount of pheromone associated with edge i → j at iteration t and ηij is
the heuristic information for edge i → j computed using conditional mutual
information (equation 2). The edge a → b represents a valid selection in the
available edges. The exponents α and β are used to adjust the relative emphases
of the pheromone (τ) and heuristic information (η), respectively. Note that edges
available for selection are directed, i. e. i → j �= j → i .

ABC-Miner adapts the “ants with personality” approach, proposed by the
author in [18]. Each anti is allowed to have its own personality by allowing
it to have its own values of the αi and βi parameters. In other words, some
ants will give more importance to pheromone amount, while others will give
more importance to heuristic information. The αi and βi parameters are each
independently drawn from a Gaussian distribution centered at 2 with a standard
deviation of 1. This approach aims to advance exploration and improve search
diversity in the colony.

An edge i → j is valid to be added in the BN classifier being constructed if
the following two criteria are justified: 1) its inclusion does not create a directed
cycle, 2) the limit of k parents (chosen by the current ant) for the child variable
j is not violated by the inclusion of the edge. After the ant adds a valid edge
to the BN classifier, all the invalid edges are eliminated from the construction
graph. The ant keeps adding edges to the current solution until no valid edges are
available. When the structure of BNCi is finished, the parameters Θ are learnt
by calculating the CPT for each variable, according to the network structure,
producing a complete solution. Afterward, the quality of the BN classifier is
evaluated, and all the edges become available again for the next ant to construct
another candidate solution.

4.3 Quality Evaluation and Pheromone Update

Unlike the traditional Bayesian networks, the target of our algorithm is to build
an effective BN in terms of predictive power with respect to a specific class
attribute. In other words, BN learning algorithms aim to maximize a scoring
function that seeks a structure that best represents the dependencies between
all the attributes of a given dataset. This structure should fit the knowledge
representation and inference purposes of a BN, which treats all the variables
in the same way, without distinguishing between the predictor and the class
attributes. On the other hand, the purpose of learning a BN classifier is to build

ABC-Miner: An Ant-Based Bayesian Classification Algorithm 21

a structure that can calculate the probability of a class value given an instance
of the input predictor variables, and predict the class value with the highest
probability to label the instance.

Therefore, using traditional scoring functions to evaluate the quality of a BN
classifier should not fit the purpose of building a classifier [10]. According to this
reasoning, we evaluate the quality of the constructed network directly as a clas-
sifier, where the predictive efficiency is the main concern. We use the accuracy,
a conventional measure of predictive performance, to evaluate the constructed
BN model, computed as follows:

Accuracy =
|Correctly Classified Cases|

|V alidation Set| (4)

The best BN classifier BNCtbest constructed amongst the ants in the colony
undergoes local search, which aims to improve the predictive accuracy of the
classifier. The local search operates as follows. It temporarily removes one edge
at a time in a reverse order (removing last the edge that was added to the net-
work first). If the quality of the BN classifier improves, this edge is removed
permanently from the network, otherwise it is added once again. Then we pro-
ceed to the next edge. This procedure continues until all the edges are tested to
be removed from the BN classifier and the BN classifier with the highest quality
– with respect to classification accuracy – is obtained.

After BNCtbest is optimized via local search, pheromone levels are increased
on decision components (edges) in the construction graph included in the struc-
ture of the constructed BN classifier, using the following formula:

τij(t+ 1) = τij(t) + τij(t).Qtbest(t) (5)

To simulate pheromone evaporation, normalization is then applied as in [15]; each
τij is divided over the total pheromone amounts in the construction graph. Note
that pheromone update is carried out for the decision components representing
the number of dependencies used for building the BN classifier structure as well.

5 Experimental Methodology and Results

The performance of ABC-Miner was evaluated using 15 public-domain datasets
from the UCI (University of California at Irvine) dataset repository [19]. Datasets
containing continuous attributes were discretized in a pre-possessing step, using
the C4.5-Disc [20] algorithm. The main characteristics of the datasets are shown
in Table 1. We compare the predictive accuracy of our proposed ant-based algo-
rithm with three other widely used algorithms for learning Bayesian classifiers.
In our experiment, we used Weka [20] implementations for these algorithms.
Table 2 presents the main characteristics of the used algorithms.

The experiments were carried out using 10-fold cross validation procedure. In
essence, a dataset is divided into 10 mutually exclusive partitions, were each time
a different partition is used as the test set and the other 9 partitions are used

22 K.M. Salama and A.A. Freitas

Table 1. Description of Datasets Used in Experimental Results

Dataset Size Attributes Classes

balance scale 625 4 3

breast cancer (wisconsin) 286 9 2

car evaluation 1,728 6 4

contraceptive method choice 1,473 9 3

statlog credit (australian) 690 14 2

statlog credit (german) 1,000 20 2

dermatology 366 33 6

hayes-roth 160 4 3

heart (cleveland) 303 12 3

iris 150 4 3

monks 432 6 2

nursey 12,960 8 5

soybean 307 35 19

tic-tac-to 958 9 2

voting records 435 16 2

Table 2. Summary of the BN Classifier Learning Algorithms Used in the Experiments

Algorithm Type Search Strategy Optimization

Näıve-Bayes Deterministic - -

TAN Deterministic Finding Max. Spanning Tree Cond. Mutual Info.

GBN Deterministic Greedy Hill Climbing K2 Function

ABC-Miner Stochastic Ant Colony Optimization Predictive Accuracy

as the training set. The results (accuracy rate on the test set) are then averaged
and reported in Table 3 as the accuracy rate of the classifier. Since ABC-Miner
is a stochastic algorithm, we run it 10 times – using a different random seed to
initialize the search each time – for each cross-validation fold. In the case of the
deterministic algorithms, each is run just once for each fold.

Table 3 reports the mean and the standard error of predictive accuracy values
obtained by 10-fold cross validation for the 15 datasets, where the highest accu-
racy for each dataset is shown in bold face. As shown, ABC-Miner has achieved
the highest predictive accuracy amongst all algorithms in 12 datasets (with 2
ties), while Näıve-Bayes achieved the highest accuracy in 3 datasets (with 2 ties),
TAN in 2 datasets (both are ties) and finally GBN in 4 datasets (with 3 ties).

Ranking the algorithms in descending order of accuracy for each dataset and
taking the average ranking for each algorithm across all 15 datasets, ABC-
Miner obtained a value of 1.6, which is the best predictive accuracy average

ABC-Miner: An Ant-Based Bayesian Classification Algorithm 23

Table 3. Predictive Accuracy % (mean± standard error) Results

Dataset Näıve-Bayes TAN GBN ABC-Miner

bcw 92.1 ± 0.9 95.4 ± 0.9 93.8 ± 0.9 95.4 ± 0.6

car 85.3 ± 0.9 93.6 ± 0.6 86.2 ± 0.9 97.2 ± 0.3

cmc 52.2 ± 1.2 49.8 ± 1.2 49.8 ± 1.2 67.3 ± 0.6

crd-a 77.5 ± 1.2 85.1 ± 0.9 85.7 ± 0.9 87.3 ± 0.6

crd-g 75.6 ± 0.9 73.7 ± 1.2 75.6 ± 1.2 69.5 ± 0.9

drm 96.2 ± 0.6 97.8 ± 0.9 97.2 ± 0.6 99.1 ± 0.3

hay 80.0 ± 2.8 67.9 ± 3.1 83.1 ± 2.5 80.0 ± 3.1

hrt-c 56.7 ± 2.2 58.8 ± 2.5 56.7 ± 2.2 73.3 ± 0.9

iris 96.2 ± 1.5 94.2 ± 1.8 92.9 ± 1.8 96.2 ± 0.9

monk 61.6 ± 0.6 58.8 ± 0.6 61.6 ± 0.9 51.9 ± 0.9

nurs 90.1 ± 0.9 94.3 ± 0.9 90.1 ± 0.9 97.0 ± 0.9

park 84.5 ± 2.5 91.7 ± 2.2 84.5 ± 2.5 94.2 ± 2.8

pima 75.4 ± 1.2 77.8 ± 1.5 77.8 ± 1.5 77.8 ± 1.5

ttt 70.3 ± 0.3 76.6 ± 0.6 70.3 ± 0.3 86.4 ± 0.6

vot 90.3 ± 0.6 92.1 ± 0.4 90.3 ± 0.6 94.6 ± 0.9

rank amongst all algorithms. On the other hand Näıve-Bayes, TAN and GBN
have obtained 3.1, 2.5, 2.8 in predictive accuracy average rank respectively. Note
that the lower the average rank, the better the performance of the algorithm.

Statistical test according to the non-parametric Friedman test with the Holm’s
post-hoc test was performed on the average rankings. Comparing to Näıve-Bayes
and GBN, ABC-Miner is statistically better with a significance level of 5% as the
tests obtained p - values of 0.0018 and 0.013 respectively. Comparing to TAN,
ABC-Miner is statistically better with a significance level of 10% as the tests
obtained p -value of 0.077.

6 Concluding Remarks

In this paper, we introduced a novel ant-based algorithm for learning Bayesian
network classifiers. Empirical results showed that our proposed ABC-Miner sig-
nificantly out performs the well-known Näıve-Bayes, TAN, and GBN algorithms
in term predictive accuracy. Moreover, the automatic selection of the maximum
number of k-parents value makes ABC-Miner more adaptive and autonomous
than conventional algorithms for learning BN classifiers. As a future work, we
would like to explore the effect of using different scoring functions for computing
the heuristic value used by ABC-Miner, as well as other scoring functions to
evaluate the quality of a constructed BN classifier. Another direction is to ex-
plore different methods of choosing the value of k parents for building a network
structure for the Bayesian classifier.

24 K.M. Salama and A.A. Freitas

References

1. Buntine, W.: Theory refinement on Bayesian networks. In: 17th Conference on
Uncertainty in Artificial Intelligence, pp. 52–60. Morgan Kaufmann (1991)

2. De Campos, L.M., Gámez, J.A., Puerta, J.M.: Learning Bayesian network by ant
colony optimisation. Mathware and Soft Computing, 251–268 (2002)

3. Cheng, J., Greiner, R.: Comparing Bayesian network classifiers. In: 15th Annual
Conference on Uncertainty in Artificial Intelligence, pp. 101–108 (1999)

4. Cheng, J., Greiner, R.: Learning Bayesian Belief Network Classifiers: Algorithms
and System. In: 14th Biennial Conference: Advances in Artificial Intelligence, pp.
141–151 (2001)

5. Chickering, D., Geiger, M., Heckerman, D.: Learning Bayesian networks is NP-
complete. Advanced Technologies Division, Microsoft Corporation, Redmond, WA,
Technical Report (1994)

6. Cooper, G.F., Herskovits, E.: A Bayesian method for the induction of probabilistic
networks from data. Machine Learning Journal, 309–348 (1992)

7. Daly, R., Shen, Q., Aitken, S.: Using ant colony optimization in learning Bayesian
network equivalence classes. In: Proceedings of UKCI, pp. 111–118 (2006)

8. Daly, R., Shen, Q.: Learning Bayesian network equivalence classes with ant colony
optimization. Journal of Artificial Intelligence Research, 391–447 (2009)

9. Dorigo, M., Stützle, T.: Ant Colony Optimization. MIT Press (2004)
10. Friedman, N., Geiger, D., Goldszmidt, M.: Bayesian Network Classifiers. Machine

Learning Journal, 131–161 (1997)
11. Friedman, N., Goldszmidt, M.: Learning Bayesian networks with local structure.

Learning in Graphical Models, pp. 421–460. Kluwer, Norwell (1998)
12. Heckerman, D., Geiger, D., Chickering, D.M.: Learning Bayesian networks: the

combination of knowledge and statistical data. Machine Learning Journal, 197–
244 (1995)

13. Martens, D., Backer, M.D., Haesen, R., Vanthienen, J., Snoeck, M., Baesens, B.:
Classification with ant colony optimization. In: IEEE TEC, pp. 651–665 (2007)

14. Otero, F.E.B., Freitas, A.A., Johnson, C.G.: cAnt-Miner: An Ant Colony Classifi-
cation Algorithm to Cope with Continuous Attributes. In: Dorigo, M., Birattari,
M., Blum, C., Clerc, M., Stützle, T., Winfield, A.F.T. (eds.) ANTS 2008. LNCS,
vol. 5217, pp. 48–59. Springer, Heidelberg (2008)

15. Parpinelli, R.S., Lopes, H.S., Freitas, A.: Data mining with an ant colony opti-
mization algorithm. In: IEEE TEC, pp. 321–332 (2002)

16. Pinto, P.C., Nägele, A., Dejori, M., Runkler, T.A., Costa, J.M.: Learning of
Bayesian networks by a local discovery ant colony algorithm. In: IEEE World
Congress on Computational Intelligence, pp. 2741–2748 (2008)

17. Pinto, P.C., Nägele, A., Dejori, M., Runkler, T.A., Costa, J.M.: Using a Local
Discovery Ant Algorithm for Bayesian Network Structure Learning. In: IEEE TEC,
pp. 767–779 (2009)

18. Salama, K.M., Abdelbar, A.M., Freitas, A.A.: Multiple pheromone types and other
extensions to the Ant-Miner classification rule discovery algorithm. Swarm Intelli-
gence Journal, 149–182 (2011)

19. UCI Repository of Machine Learning Databases,
http://archive.ics.uci.edu/ml/index.html (retrieved October 2011)

20. Witten, H., Frank, E.: Data Mining: Practical Machine Learning Tools and Tech-
niques, 2nd edn. Morgan Kauffman (2005)

21. Yanghui, W., McCall, J., Corne, D.: Two novel Ant Colony Optimization ap-
proaches for Bayesian network structure learning. In: IEEE World Congress on
Evolutionary Computation, pp. 1–7 (2010)

http://archive.ics.uci.edu/ml/index.html

Analysing Robot Swarm Decision-Making

with Bio-PEPA

Mieke Massink1, Manuele Brambilla2, Diego Latella1,
Marco Dorigo2, and Mauro Birattari2

1 Istituto di Scienza e Tecnologie dell’Informazione ‘A. Faedo’ (ISTI),
CNR Pisa, Italy

{massink,latella}@isti.cnr.it
2 IRIDIA, Université Libre de Bruxelles, Brussels, Belgium

{mbrambil,mdorigo,mbiro}@ulb.ac.be

Abstract. We present a novel method to analyse swarm robotics sys-
tems based on Bio-PEPA. Bio-PEPA is a process algebraic language
originally developed to analyse biochemical systems. Its main advantage
is that it allows different kinds of analyses of a swarm robotics system
starting from a single description. In general, to carry out different kinds
of analysis, it is necessary to develop multiple models, raising issues of
mutual consistency. With Bio-PEPA, instead, it is possible to perform
stochastic simulation, fluid flow analysis and statistical model checking
based on the same system specification. This reduces the complexity of
the analysis and ensures consistency between analysis results. Bio-PEPA
is well suited for swarm robotics systems, because it lends itself well to
modelling distributed scalable systems and their space-time characteris-
tics. We demonstrate the validity of Bio-PEPA by modelling collective
decision-making in a swarm robotics system and we evaluate the result
of different analyses.

1 Introduction

Swarm robotics is a novel approach to multi-robots systems. Swarm robotics
systems (SRSs) are composed by tens or hundreds of robots which cooperate to
perform a task, without a centralized controller or global knowledge. The goal
of swarm robotics is to develop systems that are robust, scalable and flexible [7].

Analysing large and complex SRSs using physics-based simulations or directly
with robots is often difficult and time consuming. For this reason, a common way
to study these systems is by using models [16]. Models allow the developer to
abstract from the complexity of a system and its implementation details and
focus on the aspects that are relevant for the analysis. Different approaches
are available to model a SRS. Macroscopic modelling [16] is commonly used for
describing the collective behaviour of a system. Another approach, namely mi-
croscopic modelling [8], focuses instead on the behaviour of individual robots.
Finally, model checking has been used to verify formal properties of a SRS [13].
These approaches allow a developer to obtain different “views” of the system

M. Dorigo et al. (Eds.): ANTS 2012, LNCS 7461, pp. 25–36, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

26 M. Massink et al.

behaviour. However, for each of these views, a different model is necessary. Pro-
ducing different models greatly increases the complexity of the analysis process.
Moreover, when dealing with different models, the issue of mutual consistency
must be addressed.

In this paper we present a novel approach to model SRSs based on Bio-
PEPA [6] which allows to obtain different consistent views of a system from
the same formal specification. Bio-PEPA is a process algebraic language for bio-
chemical and distributed systems. It has also been used1 to analyse emergency
egress [18] and crowd dynamics [19] which are systems characterized by a high
number of individuals and lack of a centralized controller, aspects common also
to SRSs. Bio-PEPA is well suited to analyse and develop SRSs; it provides for
a clear specification at the microscopic level while providing also primitives for
spatial description (e.g. locations) and for composition of individual robots (e.g
cooperation operator). Moreover, Bio-PEPA allows to easily define species, which
can be used to characterize groups of robots with specific attributes and actions;
for instance, they can be used to differentiate between groups of robots perform-
ing different tasks at the same location. We use Bio-PEPA to develop a formal
specification and analyse a collective decision-making behaviour which has been
extensively studied in [21,22]. The case study consists of a swarm of robots that
have to collectively identify the shortest path between two possible choices. We
validate our results against those presented in [21].

The outline of the paper is as follows. In Section 2, we present related work. In
Section 3, we give a brief presentation of Bio-PEPA. In Section 4, we present the
case study and its Bio-PEPA specification. In Section 5, we present and validate
our results. Some conclusions are drawn in Section 6.

2 Related Work

The most common approaches to modelling in swarm robotics are based on mi-
croscopic and macroscopic models. The main advantage of microscopic modelling
is that it allows to study in detail the robot-to-robot and robot-to-environment
interactions that are the key components of any SRS. Microscopic modelling,
through stochastic simulation, can be used to analyse a system both in its equi-
librium and far-from-equilibrium states. An example of a microscopic model of
a SRS can be found in [11]. Macroscopic modelling, instead, considers only the
swarm and its time evolution, ignoring the individual behaviour of the robots
composing it. For this reason, it can be used to analyse systems composed by
thousands of robots using fluid flow (Ordinary Differential Equations) approx-
imation. Macroscopic modelling provides an important technique to address
equilibrium analysis, but is focussed on the average behaviour of the system, ab-
stracting from local stochastic fluctuations. A review on macroscopic modelling
in swarm robotics can be found in [16]. A comparison between the microscopic
and macroscopic models of a swarm robotics system is presented in [17].

1 See http://www.biopepa.org for a complete list of publications.

http://www.biopepa.org

Analysing Robot Swarm Decision-Making with Bio-PEPA 27

A further way to model a SRS models is through mathematical logic. Mod-
els developed through mathematical logic can be used to formally verify given
properties of a SRS by automated model checking (e.g. [2]). Up to now this ap-
proach has not been explored extensively in swarm robotics. Examples of model
checking in swarm robotics can be found in [13,3].

To perform stochastic simulation, fluid flow (ODE) approximation and model
checking different models of a system are necessary. Our approach, instead, re-
quires only a single Bio-PEPA specification permitting different kinds of system
analyses.

3 Bio-PEPA

Bio-PEPA [6] is a process algebraic language that originally was developed for
the stochastic analysis of biochemical systems. Bio-PEPA specifications consist
of two main kinds of components. The first kind is called the “species” com-
ponent, specifying the behaviour of individual entities. The second kind is the
model component, specifying the interactions between the various species. In
the context of this paper, the individual entities are the robots, and the model
component defines how they interact.

The syntax of Bio-PEPA components is defined as:

S ::= (α, κ) op S | S + S | C with op = ↓ | ↑ | ⊕ |
 | � and P ::= P ��
L P | S(x)

where S is a species component and P is a model component.
The prefix combinator “op” in the prefix term (α, κ) op S represents the im-

pact that action α has on species S. Specifically, ↓ indicates that the number of
entities of species S reduces when α occurs, and ↑ indicates that this number in-
creases. The amount of the change is defined by the coefficient κ. This coefficient
captures the multiples of an entity involved in an occurring action. We will see
an example of its use in the next section. The default value of κ is 1, in which
case we simply write α instead of (α, κ). Action durations are assumed to be
random variables with negative exponential distributions, characterised by their
rates. The rate of action α is defined by a so called functional rate or kinetics
rate. Action rates are defined in the context section of a Bio-PEPA specification.

The symbol ⊕ denotes an activator,
 an inhibitor and � a generic modifier,
all of which play a role in an action without being produced or consumed and
have a defined meaning in the biochemical context. The operator “+” expresses
the choice between possible actions, and the constant C is defined by the equa-
tion C=S. The process P ��

L Q denotes synchronisation between components P
and Q, the set L determines those actions on which the components P and Q
are forced to synchronise. The shorthand P ��∗ Q denotes synchronisation on all
actions that P and Q have in common. In S(x), the parameter x ∈ IR represents
the initial amount of the species. A Bio-PEPA system with locations consists of
a set of species components, a model component, and a context containing defi-
nitions of locations, functional/kinetics rates, parameters, etc.. The prefix term
(α, κ) op S@l is used to specify that the action is performed by S in location l.

28 M. Massink et al.

Bio-PEPA is given a formal operational semantics [6] which is based on Con-
tinuous Time Markov Chains (CTMCs). It is supported by a suite of software
tools which automatically process Bio-PEPA models and generate internal rep-
resentations suitable for different types of analysis [6,4]. These tools include
mappings from Bio-PEPA to differential equations (ODE) supporting a fluid
flow approximation [10], stochastic simulation models [9], CTMCs with levels [5]
and PRISM models [15] amenable to statistical model checking. Consistency of
the analyses is supported by a rich theory including process algebra, and the
relationships between CTMCs and ODE.

4 Collective Decision-Making: A Bio-PEPA Specification

In this paper, we analyse a collective decision-making system originally proposed
by Montes de Oca et al. [21]. The task of the robots is to transport objects from
a start area to a goal area. The objects to transport are too heavy for a single
robot, thus the robots have to form groups of three in order to transport a single
object. There are two possible paths between the start and the goal area and the
robots can choose between the two. This is similar to what ants do in the well
known double bridge experiment with the difference that ants use pheromones
while in our setup robots use voting.

Each individual robot has a preferred path. When a group of three robots
is formed in the start area, the robots choose the path that is preferred by the
majority of them. The chosen path becomes the preferred one for all the robots
in the group. More details are given in Sections 4.1. An analysis of the system
is presented in Montes de Oca et al. [21] and in Scheidler [22].

This collective decision-making system is a good benchmark for testing Bio-
PEPA since it displays two important aspects of swarm robotics: cooperation and
space-time characteristics. Cooperation can be direct and indirect: the robots
cooperate directly to transport the objects, and indirectly to select a path via
the dynamics of their preferences. Space-time characteristics are displayed in the
voting process itself, as it involves only the robots that are in the start area at a
given time, and in the fact that the collective decision-making process depends
on the time taken to navigate over the two different paths.

4.1 The Bio-PEPA Specification

In the remaining part of this section we present the Bio-PEPA specification of
the system. The full specification can be found in the supplementary material
[20]. As shown in Fig. 1, the system is described by eight Bio-PEPA locations :
two boundary locations, start and goal; two choice locations, A and B, where
the robots decide which path to take; and two locations for each path, L1 and
L2 for the long path and S1 and S2 for the short one. We also define a set of
Bio-PEPA species to specify the behaviour of the robots. For example in start

we distinguish two species of robots: those that last time returned via the short
path, denoted as Robo start fromS , and those that returned via the long path,

Analysing Robot Swarm Decision-Making with Bio-PEPA 29

start A

L1

S1

L2

S2

B goal

go start A go goal Bgo A L1

go A S1

go L1 L2

go S1 S2
go S2 goal

go L2 goal

go B S2

go B L2

go L1 start

go S1 start

go L2 L1

go S2 S1

Fig. 1. Locations and transitions of robots in the Bio-PEPA specification

denoted as Robo start fromL. In the sequel we will refer to these two groups also
as the S-population and the L-population, respectively. Similarly, other locations
contain populations of teams of robots that move in the direction from the start
area to the goal area and those that move in the opposite direction. For example,
in location S1 we can have Teams S1 StoG and Teams S1 GtoS , where StoG
denotes the direction from the start area to the goal area and GtoS the opposite
direction.

The Bio-PEPA fragment below specifies the behaviour of a robot. Robots
leave the start area in groups of three. Each group is randomly composed by
either three robots from the S-population, three from the L-population or two
from S and one from L or two from L and one from S. These combinations are
modelled as four different actions: allS , allL, S2L1 and S1L2 . In Bio-PEPA the
formation of teams of robots is modelled by the coefficient that indicates how
many entities are involved in an action. For example, upon action allS three
robots of the S-population leave start (indicated by (allS , 3)↓), to form an
additional team of robots in choice point A (indicated by (allS , 1)↑ in Teams A S)
which is ready to take the short path when the team continues its journey towards
the goal area (population Teams A S@A). Since action allS is shared between
the species components Robo start fromS and Teams A S this movement occurs
simultaneously with the rate of action allS that will be defined later on.

Robo start fromS = (allS , 3)↓Robo start fromS@start+
(S2L1, 2)↓Robo start fromS@start+
(S1L2, 1)↓Robo start fromS@start+
(go S1 start , 3)↑Robo start fromS@start ;

Teams A S = (allS, 1)↑Teams A S@A+
(S2L1, 1)↑Teams A S@A+
go A S1↓Teams A S@A;

In a similar way, upon action S2L1, which is present in three components
(Robo start fromS , Teams A S and Robo start fromL, the latter is not shown),
all three components synchronize, resulting in two robots from the S-population
and one from the L-population leaving the start area and forming at the same

30 M. Massink et al.

time 1 new team in choice point A in the population Teams A S . The synchro-
nization pattern of the components is given by the model component shown later
on. The excerpt above only shows the behaviour of teams voting for the short
path. The behaviour of those voting for the long path is similar and omitted
for reasons of space. For the same reason also the behaviour of teams moving
between different locations is not shown.

The actions denoting groups of robots leaving the start area need to occur
with appropriate rates. For example, a group of three robots all from the S-

population has a probability of (RSS)
(RSS)+(RSL) ∗

(RSS−1)
(RSS−1)+(RSL) ∗

(RSS−2)
(RSS−2)+(RSL)

times the rate of leaving the start area, where RSL (RSS resp.) abbreviates
Robo start fromL@start (Robo start fromS@start resp.). A similar probability
can be defined for a group of three from the L-population.

When considering mixed groups also the order in which the elements are
extracted from the population in the start area is of influence. This is particularly
true when relatively small populations of robots are considered. For example, the
probability to extract two robots from the S-population in the start area and
then one from the L-population is:

pSSL = (RSS)
(RSS)+(RSL)

∗ (RSS−1)
(RSS−1)+(RSL)

∗ (RSL)
(RSS−2)+(RSL)

Similarly we define probabilities for pSLS, pLSS, pLLS, pLSL and pSLL. The
rates of actions S2L1 and S1L2 can now be defined as (pSSL+pSLS+pLSS)∗
move and (pSLL + pLSL + pLLS) ∗ move, respectively. Note that the sum of
these six probabilities and the probability of the combination of three S or three
L is 1. So the total rate at which groups of robots leave the start area is constant
and given by the parameter ‘move’. The rate at which groups move from A to
S1 and to L1 is also dependent on the number of groups present in A and are
walk normal ∗ Teams A S@A and walk normal ∗ Teams A L@A, respectively.
The rate parameter walk normal specifies the time it takes a group of robots to
move from choice-point A to the first section of a path.

Finally, the overall system definition shows the initial size of robot popula-
tions in each location. The overall robot behaviour is defined using multi-part
synchronization on shared actions:

Robo start fromS@start(SS) ��∗ Robo start fromL@start(SL) ��∗
Teams A S@A(0) ��∗ Teams A L@A(0)��∗
Teams S1 StoG@S1 (0)��∗ Teams S1 GtoS@S1 (0)��∗
Teams S2 StoG@S2 (0)��∗ Teams S2 GtoS@S2 (0)��∗
Teams L1 StoG@L1 (0)��∗ Teams L1 GtoS@L1 (0)��∗
Teams L2 StoG@L2 (0)��∗ Teams L2 GtoS@L2 (0)��∗
Teams goal fromS@goal(0) ��∗ Teams goal fromL@goal(0)��∗
Teams B fromS@B(0) ��∗ Teams B fromL@B(0)

where the number SS in Robo start fromS@start(SS) (resp. SL) is the initial
size of the robot S (resp. L)-population present in the start area (@start). There
is a further issue to consider which is the way to model the length of the paths.
This can be done in two ways. The first is to model each path by two sections, as

Analysing Robot Swarm Decision-Making with Bio-PEPA 31

illustrated above, and vary the time it takes teams to traverse these sections by
choosing a different rate for the movement between sections on the short and the
long path. However, as also discussed in [21], this model has the disadvantage
that the duration of path traversal is essentially modelled by a short series of
exponential distributions which in general approximates the average duration
well, but not the variability. It therefore does not reflect very well realistic robot
behaviour. An alternative is to choose the same rate for each section and to vary
the number of sections on each path to model their difference in length. This way
the traversal time of a path is modelled by a sequence of say m exponentially
distributed random variables with rate λ, also known as an Erlang distribution,
using the well-known method of stages [12] (p. 119).2 We model the two paths
of the environment with 8 S-sections and 15 L-sections. Each section takes, on
average, ten time units to traverse. This is modelled in the system by defining
the rate walk normal = 0.1. Considering also the movements from the choice
points to the path and those from the path to the start area and the goal area,
in this way the short path takes on average 100 time units to traverse, and
the long one 170. This is comparable to the latency periods used in [21] (end
of Section 4). Other free variables of the model not provided in [21] have been
selected by us.

5 Analysis

For the analysis in this section we consider a Bio-PEPA voting specification
with a population of 32 robots. In [21] the analysis results make reference to
the number of teams, k, that are active in the system at any time. We specify
this in Bio-PEPA by making sure that at any time at least min start robots
are in the start area, corresponding to k = (32−min start)/3.3 We furthermore
consider the following parameters for the specification: N = 32, of which initially
SS = 16 and SL = 16, move = 0.28, walk normal = 0.1.

In the following we illustrate three different forms of analysis of the same Bio-
PEPA specification and validate their results with those from the literature [21].

5.1 Stochastic Simulation

The first kind of analysis uses stochastic simulation to check the average num-
ber of active teams in the system over time for different assumptions on the
minimal number of robots that remain in the start area. Fig. 2 presents two
stochastic simulation results (average over 10 simulation runs) for min start = 5

2 For m going to infinite, an Erlang distribution [m,λ] converges to a normal distribu-
tion with mean m/λ and variance m/λ2. So, in general, the larger m is, the better
the Erlang distribution [m,λ] approximates a normal distribution.

3 In Bio-PEPA, one can make use of a predefined function H which takes a rate as
argument. If the rate is zero, H returns zero, otherwise it returns 1. To guarantee a
minimum number,min start, in the start area, the rate of, e.g., action S2L1 can then
be defined as: S2L1 = (pSSL+pSLS+pLSS)∗move∗H((RSS+RSL)−min start).

32 M. Massink et al.

0 1000 2000 3000 4000

Time

0

5

10

15

20

25
P

op
ul

at
io

n
si

ze

Robo_start_fromL@start
Robo_start_fromS@start
Robots on path L
Robots on path S
Total teams on paths

0 1000 2000 3000 4000

Time

0

5

10

15

20

25

P
op

ul
at

io
n

si
ze

Robo_start_fromL@start
Robo_start_fromS@start
Robots on path L
Robots on path S
Total teams on paths

Fig. 2. Number of active teams for min start = 5 (left) and min start = 2 (right)

(Fig. 2 left) and min start = 2 (Fig. 2 right). The figure shows that the number
of active teams on the paths quickly increases to 9 (resp. 10) and then stabilizes
at that level. This means that the rate at which robots leave the start area, i.e.
move = 0.28, is sufficiently high to quickly reach a situation with the desired
number of active teams. This makes it possible to compare the results of this
analysis with the results obtained with the physics-based simulation and Monte
Carlo simulation as reported in [21] which will be discussed later on. The figures
show the number of robots on the paths and in the start area and the total
number of teams on the paths.

5.2 Statistical Model Checking

Another way to analyse the system is via statistical model checking provided, for
example, by the model-checker PRISM [15]. In particular, the Bio-PEPA spec-
ification can be exported automatically [4] to the PRISM input language. The
PRISM specification can be found in the supplementary material [20]. Statistical
model checking is an analysis method in which a logical formula, formalizing a
particular property of the system, can be automatically checked against a set
of randomly generated simulation runs of a model of the system via statisti-
cal analysis. For example, if we denote convergence on the short path by the
shorthand “Convergence on S”, and convergence on the long path by “Conver-
gence on L”, the statement “what is the probability that the system did not
converge on the long path until it converges on the short path” can be expressed
in the Continuous Stochastic temporal Logic (CSL) [1,2] as:

P =? [!“Convergence on L′′ U “Convergence on S ′′] (1)

where P =? is used to compute a probability, ! stands for negation and U reads
as “until”. “Convergence on S” can be defined as the situation in which all the
32 robots are either in a team on the short path or in the S-population in the
start area or at the goal area. “Convergence on L” can be defined similarly, but
requiring that the above sum is equal to 0 instead of 32.

In a similar way, the model can be analysed to obtain the expected number
of team formations and the expected time until convergence. For the number of

Analysing Robot Swarm Decision-Making with Bio-PEPA 33

team formations, one needs to count the number of times the actions ‘go A S1’
and ‘go A L1’ occur until convergence happens. Let us assume that the vari-
able teams accumulates the number of teams formed until convergence, and the
variable total time the total time that passed until convergence in the various
simulation runs4. The question “what is the expected number of teams formed
until eventually convergence has taken place on the short or the long path” can
then be answered by statistical model checking with the logical reward formula:

R{“teams”} =? [F (“ Convergence on S”|“ Convergence on L”)] (2)

where F reads as “eventually”, | denotes logical disjunction and R =? is used
to compute the expected value, commonly called ‘reward’, of specific events. A
similar analysis using the same formula, but substituting teams with total time,
gives the expected time until convergence. The following analyses have been
based on 100 random samples and a confidence level of 99%, except where ex-
plicitly indicated. In the figures the confidence intervals are shown as error-bars.

Figure 3 (a), (b) and (c) show the result of statistical model checking of the
above formulas for models that only differ in the number of active teams k, where
k = {1, 2, ..., 10}. In particular, Fig. 3(a) shows the probability of convergence
on the short path (i.e. Formula (1)). The data are compared to those obtained
via physics-based simulation and Monte Carlo simulation of the same case-study
reported in [21]. The latter are close to the results obtained with the Bio-PEPA
specification and well within the error-margins. Fig. 3(b) shows results on the
expected number of team formations until convergence on the short or long path
(i.e. Formula (2)) using 1000 samples. The data correspond very well for k from
1 to 7, but diverge for higher values of k perhaps caused by strong stochastic
fluctuations due to the small number of robots present in the start location.
Fig. 3(c) shows the expected convergence time. No data from the literature
concerning this aspect is available for comparison. The total model-checking
time to produce the data in Fig. 3(a) was ca. 10 minutes, those in Fig. 3(b)
ca. 48 minutes and those in Fig. 3(c) ca. 5 minutes. Due to space limits we limit
our analysis to the shown properties. However, other interesting properties of
the system could be analysed this way. For example it can be shown that for any
value of k from 1 to 10 the probability that convergence occurs is equal to 1.

5.3 Fluid Flow Analysis

The third kind of analysis is a fluid flow approximation or numerical analysis
of the ODE underlying the Bio-PEPA specification. Based on the Bio-PEPA
syntax, the underlying ODE model can be generated automatically and in a
systematic way [10] using the Bio-PEPA tool suite [4]. This provides yet another
view on the behavioural aspects of the system. One can, for example, explore
numerically the sensitivity of the system to initial values and discover stationary

4 In terms of Markov theory such ‘counting’ is defined by reward structures In statisti-
cal model checking these numbers are used in the statistical analysis of the generated
simulation runs.

34 M. Massink et al.

2 4 6 8 10

k

0

0.2

0.4

0.6

0.8

1
E

xp
ec

te
d

co
nv

er
ge

nc
e

pr
ob

ab
ili

ty

Prob. convergence on S stat. mod. chk. (100 samples)
Prob. convergence on S physics-based sim. (100 samples)
Prob. convergence on S Monte Carlo sim. (100 samples)

(a) Probability of convergence on the short
path (100 samples)

2 4 6 8 10

k

0

50

100

150

200

250

E
xp

ec
te

d
cu

m
ul

at
iv

e
nr

. o
f t

ea
m

s

Avg. teams statistical model checking (1000 samples)
Avg. teams physics-based simulation (100 samples)
Monte Carlo simulation (100 samples)

(b) Expected number of team formations
until convergence

2 4 6 8 10

k

0

2000

4000

6000

8000

10000

E
xp

ec
te

d
co

nv
er

ge
nc

e
tim

e

Conv. time stat. mod. chk. (100 samples)

(c) Expected convergence time (100 sam-
ples)

0 1000 2000 3000 4000

Time

0

0.2

0.4

0.6

0.8

1

F
ra

ct
io

n
S

-p
op

ul
at

io
n

ODE: N=32, move=0.03
G100: N=32, move=0.03
G1: N=32*100,000, move=0.03*100,000

(d) Fraction in S-population

Fig. 3. Results with Erlang distribution of path length

points and other aspects related to stability analysis. As an example, here we
show the relation between stochastic simulation and fluid approximation results.

In Fig. 3(d) a fluid flow analysis (ODE) is shown of the total fraction of robots
in the S-population over time, i.e. both those present in the start area and those
in the teams5. Clearly, the fluid approximation predicts that the system con-
verges in 100% of the cases to the short path. Stochastic simulation over 100
independent runs (G100) shows that such convergence happens only in 85% of
the cases, which corresponds to what we found with statistical model checking
for a comparable value of k (see Fig. 3(a)). The difference can be explained by the
larger effect of stochastic fluctuations when the population is small. The proba-
bility that the system ‘accidentally’ converges on the long path is then relatively
high. For large populations such a probability tends to zero, as stochastic sim-
ulation trajectories start to approximate the deterministic ODE solution when
the specification satisfies certain scaling conditions (see [14]). This phenomenon

5 To guarantee continuity of the ODE model the H-function has been removed and
replaced by setting move = 0.03 to approximate a scenario in which k = 7.

Analysing Robot Swarm Decision-Making with Bio-PEPA 35

can be observed in Fig. 3(d) from the curve labelled G1. This insight provides a
way to interpret results obtained with fluid approximation.

6 Conclusions

Bio-PEPA [6] is a process algebraic language originally developed for the
stochastic modelling and analysis of biochemical systems. In this paper we used
Bio-PEPA to specify and analyse a robot swarm decision-making behaviour,
originally presented in [21]. We showed that with Bio-PEPA issues relevant to
SRS modelling can be addressed at the microscopic level. Among these issues are:
robot team-formation, voting, certain spatial and temporal aspects, species of
robots with particular behavioural characteristics, and direct and indirect inter-
action. The main advantage is that a single microscopic Bio-PEPA specification
of the system lends itself to a variety of analyses methods such as stochastic
simulation, fluid flow (ODE) approximation and statistical (stochastic) model
checking. This provides an efficient way to obtain different views of the system
behaviour, while preserving their mutual consistency. The results were shown to
be largely comparable with those obtained in [21] via physics-based simulation
and Monte Carlo simulation of the same case study. A limit of Bio-PEPA is
its limited capability to tackle sophisticated spatial and temporal concepts. In
future work, we plan to address this and develop facilities to further explore
non-linear behavioural aspects using numerical techniques. Our goal is to extend
Bio-PEPA to ease the modelling and analysis process of SRS. We believe that
this could facilitate the more widespread uptake of modelling and analysis in
swarm robotics.

Acknowledgements. The research leading to the results presented in this pa-
per has received funding from the European Research Council under the Eu-
ropean Union’s Seventh Framework Programme (FP7/2007-2013) / ERC grant
agreement n 246939, and by the EU project ASCENS, 257414. Manuele Bram-
billa, Mauro Birattari and Marco Dorigo acknowledge support from the F.R.S.-
FNRS of Belgium’s Wallonia-Brussels Federation. The authors would like to
thank Stephen Gilmore and Alan Clark (Edinburgh University) for their help
with the Bio-PEPA tool suite and templates.

References

1. Aziz, A., Sanwal, K., Singhal, V., Brayton, R.: Model checking Continuous Time
Markov Chains. ACM Transactions on Computational Logic 1(1), 162–170 (2000)

2. Baier, C., Katoen, J.-P., Hermanns, H.: Approximate Symbolic Model Checking of
Continuous-Time Markov Chains (Extended Abstract). In: Baeten, J.C.M., Mauw,
S. (eds.) CONCUR 1999. LNCS, vol. 1664, pp. 146–162. Springer, Heidelberg
(1999)

3. Brambilla, M., Pinciroli, C., Birattari, M., Dorigo, M.: Property-driven design for
swarm robotics. In: Proceedings of 11th International Conference on Autonomous
Agents and Multiagent Systems, AAMAS 2012. IFAAMAS (in press, 2012)

36 M. Massink et al.

4. Ciocchetta, F., Duguid, A., Gilmore, S., Guerriero, M.L., Hillston, J.: The Bio-PEPA
Tool Suite. In: Proc. of the 6th Int. Conf. on Quantitative Evaluation of Systems
(QEST 2009), pp. 309–310. IEEE Computer Society, Washington, DC (2009)

5. Ciocchetta, F., Hillston, J.: Bio-PEPA: An extension of the process algebra PEPA
for biochemical networks. ENTCS 194(3), 103–117 (2008)

6. Ciocchetta, F., Hillston, J.: Bio-PEPA: A framework for the modelling and analysis
of biological systems. TCS 410(33-34), 3065–3084 (2009)

7. Şahin, E.: Swarm Robotics: From Sources of Inspiration to Domains of Applica-
tion. In: Şahin, E., Spears, W.M. (eds.) Swarm Robotics 2004. LNCS, vol. 3342,
pp. 10–20. Springer, Heidelberg (2005)

8. Dixon, C., Winfield, A., Fisher, M.: Towards Temporal Verification of Emergent
Behaviours in Swarm Robotic Systems. In: Groß, R., Alboul, L., Melhuish, C.,
Witkowski, M., Prescott, T.J., Penders, J. (eds.) TAROS 2011. LNCS, vol. 6856,
pp. 336–347. Springer, Heidelberg (2011)

9. Gillespie, D.T.: Exact stochastic simulation of coupled chemical reactions. The
Journal of Physical Chemistry 81(25), 2340–2361 (1977)

10. Hillston, J.: Fluid flow approximation of PEPA models. In: Proceedings of the 2th
International Conference on Quantitative Evaluation of SysTems (QEST 2005),
pp. 33–43. IEEE Computer Society, Washington, DC (2005)

11. Ijspeert, A., Martinoli, A., Billard, A., Gambardella, L.M.: Collaboration through
the exploitation of local interactions in autonomous collective robotics: The stick
pulling experiment. Autonomous Robots 11, 149–171 (2001)

12. Kleinrock, L.: Queueing Systems. Theory, vol. 1. Wiley, New York (1975)
13. Konur, S., Dixon, C., Fisher, M.: Analysing robot swarm behaviour via probabilis-

tic model checking. Robotics and Autonomous Systems 60(2), 199–213 (2012)
14. Kurtz, T.: Solutions of ordinary differential equations as limits of pure jump

Markov processes. Journal of Applied Probability 7, 49–58 (1970)
15. Kwiatkowska, M., Norman, G., Parker, D.: PRISM 4.0: Verification of Probabilistic

Real-Time Systems. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS,
vol. 6806, pp. 585–591. Springer, Heidelberg (2011)

16. Lerman, K., Martinoli, A., Galstyan, A.: A Review of Probabilistic Macroscopic
Models for Swarm Robotic Systems. In: Şahin, E., Spears, W.M. (eds.) Swarm
Robotics 2004. LNCS, vol. 3342, pp. 143–152. Springer, Heidelberg (2005)

17. Martinoli, A., Easton, K., Agassounon, W.: Modeling swarm robotic systems: a
case study in collaborative distributed manipulation. The International Journal of
Robotics Research 23(4-5), 415–436 (2004)

18. Massink, M., Latella, D., Bracciali, A., Harrison, M., Hillston, J.: Scalable context-
dependent analysis of emergency egress models. Formal Aspects of Comput-
ing 24(2), 267–302 (2012)

19. Massink, M., Latella, D., Bracciali, A., Hillston, J.: Modelling Non-linear Crowd
Dynamics in Bio-PEPA. In: Giannakopoulou, D., Orejas, F. (eds.) FASE 2011.
LNCS, vol. 6603, pp. 96–110. Springer, Heidelberg (2011)

20. Massink, M., Brambilla, M., Latella, D., Dorigo, M., Birattari, M.: Analysing robot
swarm decision-making with Bio-PEPA: Complete data (2012), Supplementary
information page at http://iridia.ulb.ac.be/supp/IridiaSupp2012-012/

21. Montes de Oca, M.A., Ferrante, E., Scheidler, A., Pinciroli, C., Birattari, M.,
Dorigo, M.: Majority-rule opinion dynamics with differential latency: A mecha-
nism for self-organized collective decision-making. Swarm Intelligence 5(3-4), 305–
327 (2011)

22. Scheidler, A.: Dynamics of majority rule with differential latencies. Phys. Rev.
E 83, 031116 (2011)

http://iridia.ulb.ac.be/supp/IridiaSupp2012-012/

Automatic Generation of Multi-objective ACO

Algorithms for the Bi-objective Knapsack

Leonardo C.T. Bezerra, Manuel López-Ibáñez, and Thomas Stützle

IRIDIA, Université Libre de Bruxelles, Brussels, Belgium
leonardo@iridia.ulb.ac.be, {manuel.lopez-ibanez,stuetzle}@ulb.ac.be

Abstract. Multi-objective ant colony optimization (MOACO) algo-
rithms have shown promising results for various multi-objective prob-
lems, but they also offer a large number of possible design choices. Often,
exploring all possible configurations is practically infeasible. Recently,
the automatic configuration of a MOACO framework was explored and
was shown to result in new state-of-the-art MOACO algorithms for the
bi-objective traveling salesman problem. In this paper, we apply this ap-
proach to the bi-objective bidimensional knapsack problem (bBKP) to
prove its generality and power. As a first step, we tune and improve the
performance of four MOACO algorithms that have been earlier proposed
for the bBKP. In a second step, we configure the full MOACO frame-
work and show that the automatically configured MOACO framework
outperforms all previous MOACO algorithms for the bBKP as well as
their improved variants.

1 Introduction

Multi-objective ant colony optimization (MOACO) algorithms have been ap-
plied to multi-objective combinatorial optimization problems (MCOPs) since
more than 10 years [7,3,1,10,12,9]. The interest in MOACO algorithms may
be explained by the practical relevance of multi-objective problems and by the
positive results that have been achieved with these algorithms. The available
MOACO algorithms provide a large number of different design choices that allow
the instantiation of a huge number of structurally different MOACO algorithms.
Recently, López-Ibáñez and Stützle [13] proposed a MOACO framework that
implements most of those design possibilities. The automatic configuration tool
Iterated F-race (I/F-Race) [2,11] was used to automatically generate MOACO
algorithms for the bi-objective traveling salesman problem (bTSP). The authors
showed that the automatic configuration of a generic MOACO framework pro-
duced better results than the MOACO algorithms from the literature used to
build the framework. In this paper, we continue the investigation of the effec-
tiveness of this approach by extending the MOACO framework to deal with the
bi-objective bidimensional knapsack problem (bBKP).

The bBKP is a popular benchmark problem in multi-objective optimiza-
tion [16,14]. Moreover, four different MOACO algorithms have been proposed
for the bBKP [1]. The bBKP has also some properties that make it interesting

M. Dorigo et al. (Eds.): ANTS 2012, LNCS 7461, pp. 37–48, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

38 L.C.T. Bezerra, M. López-Ibáñez, and T. Stützle

for further exploring the possibilities of the automatic design of MOACO algo-
rithms from a flexible framework. In particular, the representation of solutions
is different from the TSP, pheromone information is represented by a vector in-
stead of a matrix, and the structure of the solution space is quite different from
the TSP.

This paper shows that the proposed method for the automatic design of
MOACO algorithms also works for the bBKP. The proposed method is able to
generate, with little effort from the human designer, MOACO algorithms that
are clearly better than those proposed earlier for the bBKP, even after tuning
the ACO settings of the MOACO algorithms from the literature and improving
significantly their performance.

2 The Bi-objective Bidimensional Knapsack Problem

In an MCOP, the quality of solutions is evaluated based on a D-dimensional
objective vector. Given two different candidate solutions x1 and x2 of a maxi-
mization problem, the Pareto dominance relation states that x1 dominates x2 iff
∀d = 1, . . . , D fd(x1) ≥ fd(x2), and ∃j ∈ {1, . . . , D} such that fd(x1) > fd(x2).
The goal in MCOPs that are tackled according to Pareto dominance is to iden-
tify the Pareto-optimal set, i.e., the solutions that are nondominated w.r.t. all
feasible solutions. Since most of such MCOPs are NP-hard, this goal is typically
relaxed towards finding an as good as possible approximation to the Pareto set.

In this paper, we tackle the bBKP, which is a widely used bi-objective bench-
mark problem [16,14]. The bBKP is a special case of the general multi-objective
multidimensional knapsack problem (moMKP), which is formalized as follows:

max fd(x) =

n∑
i=1

pdi xi d = 1, . . . , D s.t.

n∑
i=1

wj
i xi ≤ Wj j = 1, . . . ,m

where each item i has D profits and m costs, fd is the d-th component of the D-
dimensional objective vector f , n is the number of items, pdi is the d-th profit of

item i, wj
i is the j-th cost of item i, Wj is the j-th capacity of the knapsack, and

xi is a decision variable in {0, 1} that controls whether item i is included in the
knapsack (xi = 1) or not (xi = 0). The set of feasible solutions is X ⊆ {0, 1}n.
The bBKP is a special case of the moMKP where D = m = 2.

3 ACO Algorithms for the bBKP

When applying ACO to the single-objective multidimensional knapsack problem,
the pheromone information is defined as a vector, where each component τi gives
the desirability of adding item i to the knapsack. Each ant k constructs a solution
by adding, at each step, item i to the knapsack with a probability pi

pi =

⎧⎨
⎩

τα
i ·ηβ

i∑
j∈Nk τα

j ·ηβ
j

∀i ∈ Nk,

0 otherwise,
(1)

Multi-objective ACO Algorithms for the Bi-objective Knapsack 39

where ηi is a heuristic estimation of the benefit of adding item i, and Nk is
a set of candidate items. After each step, the item added to the current solu-
tion and those items that do not fit anymore in the remaining capacity of the
knapsack are removed from the candidate set. The solution construction stops
when the candidate set is empty. After the constructed solutions are evaluated,
the pheromone information is updated in two steps. First, pheromone values
are evaporated, that is, decreased by a factor ρ. Second, the pheromone values
corresponding to items present in the best solutions are updated by depositing
an amount of pheromone Δτ , thus increasing the probability that newly con-
structed solutions contain those items. Alaya et al. [1] proposed four different
algorithms that extend the ACO metaheuristic to the bBKP.

mACO1 has one pheromone vector for each objective, that is, τ1 and τ2. Ants
are divided in three groups λ ∈ {0, 0.5, 1} according to the weight λ they use
for aggregating the two pheromone vectors when constructing solutions. The
solution construction uses random aggregation, that is, at each step the phero-
mone information to be used is chosen as τ1 with a probability (1 − λ), and as
τ2, otherwise. This means that ants using λ = 0 or λ = 1 use only τ1 or τ2,
respectively. The heuristic information is aggregated by means of weighted sum
aggregation, that is, η = (1 − λ) · η1 + λ · η2, where η1 and η2 are the heuristic
information corresponding to each objective.

The pheromone update method used by mACO1 is a particular case for λ ∈
{0, 0.5, 1} of a method called best-of-objective-per-weight (BOW) [13]. In BOW,
those solutions generated with the same weight λ are kept in the same list. For
the lists of λ �∈ {0, 1}, the best solution according to each objective updates the
pheromone vector of the corresponding objective. For the list of λ = 0, only the
best solution according to the first objective updates τ1, whereas for the list of
λ = 1, only the best solution according to the second objective updates τ2.

Finally, mACO1 uses a particular pheromone deposit. Given the best solution
constructed in the current iteration and the best-so-far solution according to
objective d (sdib and sdbf, respectively), the amount of pheromone deposited is
given by Δτd = 1

1+fd(sd
bf
)−fd(sd

ib
)
. We refer to this method as fobj-mACO.

mACO2 is identical to mACO1 except for how the multiple pheromone vectors
are aggregated. Instead of a random aggregation, mACO2 uses a weighted sum
aggregation, that is, τ = (1 − λ) · τ1 + λ · τ2.
mACO3 uses only a single pheromone vector. The heuristic information is also
a single vector, which is statically computed at the start of the algorithm as
ηi = η1i +η2i . Pheromone information is updated using all nondominated solutions
found since the start of the algorithm, that is, the best-so-far archive. Every
solution component is rewarded a constant Δτ = 1 only once per iteration,
regardless of how many times it is present on different solutions.

mACO4 follows mACO1: one pheromone vector per objective, which are aggre-
gated by weighted random aggregation; BOW pheromone update, and phero-
mone deposit is fobj-mACO. However, there is only one weight λ = 0.5, and one
heuristic vector defined as in mACO3.

40 L.C.T. Bezerra, M. López-Ibáñez, and T. Stützle

Algorithm 1. MOACO framework

1: for each colony c ∈ {1, . . . , Ncol} do
2: InitializePheromoneInformation()
3: Λc := MultiColonyWeights()
4: InitializeHeuristicInformation()
5: Abf := ∅
6: iter := 0
7: while not termination criteria met do
8: Aiter := ∅
9: for each colony c ∈ {1, . . . , Ncol} do

10: for each ant k ∈ {1, . . . , Na} do
11: λ := NextWeight(Λc, k, iter)

12: τ :=

{
Aggregation(λ, {τ 1

c , τ
2
c }) if multiple [τ]

τc if single [τ]

13: η :=

{
Aggregation(λ, {η1, η2}) if multiple [η]

η if single [η]

14: s := ConstructSolution(τ, η)
15: Aiter := RemoveDominated(Aiter ∪ {s})
16: Abf := RemoveDominated(Abf ∪ Aiter)

17: Aupd := ChooseUpdateSet(Aiter, Abf)
18: for each colony c ∈ {1, . . . , Ncol} do
19: Aupd

c := MultiColonyUpdate(Aupd)
20: PheromoneUpdate(Aupd

c , Nupd)
21: iter := iter + 1
22: Output: Abf

The mACO algorithms can be instantiated as described above by our MOACO
framework [13]. We have confirmed this approach is equivalent to the original [1].

4 A Flexible MOACO Framework for the bBKP

In this paper, we extend the flexible MOACO framework proposed for the bTSP
by López-Ibáñez and Stützle [13] to also tackle the bBKP and we automatically
instantiate MOACO algorithms. The MOACO framework is able to replicate
most MOACO designs proposed in the literature and can generate new MOACO
designs by combining components in novel ways. However, its application to the
bBKP requires extending it concerning the solution representation and other
problem-specific features. Here, we briefly summarize the high-level structure of
the framework and its components (see [13] for further details).

The high-level algorithmic scheme of the MOACO framework is given in
Algorithm 1. The MOACO framework is a multi-colony algorithm, where each
colony c of ants has its own pheromone information and its own set of weights
Λc for possibly aggregating information. The assignment of weights to colonies
is defined by MOACO component MultiColonyWeights. Within each colony, each
ant constructs a solution according to pheromone information τ and heuristic

Multi-objective ACO Algorithms for the Bi-objective Knapsack 41

information η. Either τ or η may be the result of aggregation. That is, if the
pheromone information consists of multiple pheromone vectors, one for each
objective, these are aggregated into a single pheromone vector τ by means of
MOACO component Aggregation (line 12), using a particular weight λ. If mul-
tiple heuristic vectors are used, they are aggregated in a similar way. Which
weight is used by each ant may depend on the set of weights of each colony,
the particular ant, and the particular iteration. The different possibilities are
encapsulated by MOACO component NextWeight (line 11). Once all ants have
constructed a solution, the resulting iteration-best archive of nondominated so-
lutions (Aiter) is merged into the best-so-far archive (Abf) (line 16). After this
step, the pheromone information of each colony is updated in two steps. First,
the set of solutions for update (either Aiter or Abf), is partitioned among colonies
according to component MultiColonyUpdate (line 19). Next, a number of solu-
tions from each set is used to update the pheromone information of each colony
in a way defined by component PheromoneUpdate (line 20). The algorithm stops
when a termination criterion is met, typically a maximum number of iterations
or a time limit, and returns the best-so-far archive.

The flexibility of the MOACO framework is given by the alternative defini-
tions of the algorithmic components that specify the key steps in the algorithm.
Defining these components in particular ways allows the framework to replicate
most of the MOACO algorithms in the literature. A summary of the available
alternatives is given in Table 1. The complete description of all components and
their alternatives can be found in the original publication [13]. For brevity, we
restrict ourselves here to the new extensions implemented for the bBKP.

Following [13], we use MAX -MIN Ant System (MMAS) [15] as the un-
derlying ACO algorithm that defines details such as the pheromone deposit Δτ ,
and maximum and minimum pheromone levels (τmax and τmin). Here, we have
adapted MMAS to the bBKP, but making more flexible the definition of Δτ ,
τmax and τmin to be able to replicate faithfully the original mACO algorithms
for the bBKP. The alternatives implemented for the definition of the pheromone
deposit (Δτ) are:

fobj, that is, Δτd = fd(s), where τd is the pheromone information correspond-
ing to objective d. If only one pheromone vector is used instead of multiple,
thenΔτ = f1(s)+f2(s). This method is the one used in the originalMMAS.

constant, that is, Δτd = 1 − rd(s)−1
Nupd , where rd(s) is the rank of solution s

ordered according to objective d and Nupd is the number of solutions used
to update τd. This method is inspired by rank-based ant system [5].

fobj-mACO, this is the method used in mACO1, mACO2 and mACO4.
MACS, that is, Δτ = f1(s) · f2(s), which is adapted from MACS [3].

For the definition of the pheromone levels we consider two possibilities. The

first is the default setting of MMAS, which uses τmax = maxiter(Δτ)
ρ , where

maxiter(Δτ) is the maximum amount of pheromone deposited at iteration iter
for a single pheromone component, and τmin = τmax

ν·n , where ν ∈ R
+ is a param-

eter (ν = 2 in MMAS). The second is the value setting, where τmax and τmin

42 L.C.T. Bezerra, M. López-Ibáñez, and T. Stützle

Table 1. Algorithmic components of the MOACO framework

Component Domain Description

[τ] { single, multiple } Num. pheromone vectors

[η] { single, multiple } Num. heuristic vectors

Nweights
N

+ Number of weights

Aggregation

⎧⎪⎨⎪⎩
weighted sum,

weighted product,

random

How weights are used to aggregate mul-
tiple [τ] or [η]

NextWeight

{
one weight per iteration (1wpi),

all weights per iteration (awpi)
How weights are used at each iteration

PheromoneUpdate

⎧⎪⎨⎪⎩
nondominated solutions (ND),

best-of-objective (BO),

best-of-objective-per-weight (BOW)

Which solutions are selected to update
the pheromone information

Nupd
N

+ Num. solutions that update each [τ]

ChooseUpdateSet

⎧⎪⎨⎪⎩
best-so-far (BSF),

iteration-best (IB),

mixed

Whether the solutions used for update
are taken from Abf, Aiter or using both
alternately

The following components have an effect only when using multiple colonies.

Ncol
N

+ Number of colonies

MultiColonyWeights

⎧⎪⎨⎪⎩
same (∩100%),

overlapping (∩50%),

disjoint (∩0%

Whether colonies share all, 50% or no
weights.

MultiColonyUpdate { origin, region } How solutions are assigned to colonies

New components added in this work for the bBKP.

τmax method { default, value } Method for calculating τmax

τmin method { default, value } Method for calculating τmin

Δτ { constant, fobj-mACO, fobj, MACS } Method for calculating Δτ

ηi { profit
cost

,
∑

profits
cost

, profit∑
costs

} Heuristic information used

are set to two different constant values τmax > τmin. A value setting is used in
all mACO algorithms.

In addition, we have implemented three alternatives for the heuristic informa-
tion. For a given objective d and item i, the heuristic information can be either
profit divided by cost (η1di), which is the one used in the mACO algorithms [1],
sum profits divided by cost (η2di), or profit divided by sum costs (η3di) [14],
that is,

η1di =
pdi
wd

i

η2di =

∑D
k=1 p

k
i

wd
i

η3di =
pdi∑m
l=1 w

l
i

(2)

Multi-objective ACO Algorithms for the Bi-objective Knapsack 43

5 Experimental Setup

Our experiments are divided in two stages. In a first stage, we automatically
configure the ACO settings of the mACO algorithms and compare the resulting
configurations with the original settings. This is done to avoid a bias by possibly
poor ACO parameter settings of the mACO algorithms. In the second stage, we
compare the best configurations with an algorithm automatically instantiated
from the MOACO framework.

As the automatic algorithm configuration tool, we use I/F-Race [2,11]. The
input of I/F-Race is a definition of the parameter space, which may contain cat-
egorical and numerical parameters, and a set of training instances. I/F-Race was
originally designed for single-objective algorithms, but it has been extended to
handle the multi-objective case by using the hypervolume quality measure [13]
(IH). The hypervolume is a well-known quality measure in multi-objective op-
timization [17]. It computes for each approximation set, the volume in the ob-
jective space weakly dominated by the approximation set and bounded by a
reference point; hence, the larger the hypervolume the better. We use the hy-
pervolume (concretely, the implementation provided by Fonseca et al. [8]) not
only in combination with I/F-Race, but also to compare the various MOACO
algorithms.

For the application of I/F-Race, we create a training set of 100 randomly
generated instances of the bBKP, following the method proposed by Zitzler and
Thiele [16]. These instances have random sizes in the range n ∈ {100, . . . , 750}.
For comparing the algorithms, we generate a different test set of 50 bBKP in-
stances for each size n ∈ {100, 250, 500, 750}. We include in our test set also the
four instances by Zitzler and Thiele [16] of sizes n ∈ {100, 250, 500, 750}, called
ZTZ instances. All algorithms are implemented in C and all experiments are run
on a single core of Intel Xeon E5410 CPUs, running at 2.33GHz with 6MB of
cache size under Cluster Rocks Linux version 4.2.1/CentOS 4.

The mACO algorithms were originally run with different termination criteria,
that is, a different number of iterations, for each variant [1]. To replicate the
original mACO experiments, we consider four different computation time limits
in our experiments, which correspond to the mean time taken by each of the four
mACO variants measured across 25 independent runs on the four ZTZ instances
using the corresponding number of iterations (see Table 2). Then, we compute a
formula that approximates the computation time obtained for each termination
criterion. The four resulting termination criteria are given in Table 2, sorted
from the shortest to the longest time.

Table 2. Termination criteria used in our experiments

TIME 1 TIME 2 TIME 3 TIME 4

Time (s) 0.00001 · n2 0.00003 · n2 0.0001 · n2 0.001 · n2

Equivalent to 9000 solutions 3000 solutions 30000 solutions 300000 solutions
of mACO2 of mACO1 of mACO3 of mACO4

44 L.C.T. Bezerra, M. López-Ibáñez, and T. Stützle

Comparisons are conducted using empirical attainment functions (EAFs),
boxplots of the hypervolume (IH) and the unary additive epsilon (Iε+) indi-
cators [17], and the Friedman non-parametrical test. In the paper, only few
representative results are given; for the complete set of results and the test and
training instances we generated, we refer to the supplementary material [4].

6 Experimental Analysis

6.1 Improving the ACO Settings of the mACO Algorithms

In the first stage of our analysis, we automatically configure the ACO settings
of the four mACO variants. The parameter space given to I/F-Race is shown
in Table 3. Parameter af is a surrogate parameter of the total number of ants,
which is given by Na = af · (0.12 · n+ 36). Na is rounded to the closest smaller
number divisible by three, because mACO1 and mACO2 divide the ants into
three groups. We apply I/F-Race with a budget of 5 000 independent runs in
the tuning phase for each mACO algorithm and for each termination criterion
TIME i. Here, the mACO algorithms use their original heuristic information
η1 [1]. The resulting 16 configurations of mACO are provided as supplementary
material [4]. Here, we focus on the configurations obtained when using TIME 4,
which are shown in Table 4.

We compare all algorithms (original and tuned versions) in terms of the hy-
pervolume. We run all algorithms for all four termination criteria 10 independent
times on each of the 200 randomly generated bBKP instances (50 instances per
instance size n ∈ {100, 250, 500, 750}). We normalize the objective values per in-
stance to the interval [1, 2], with 1 corresponding to the maximum value and 2 to
the minimum, and compute the hypervolume using the reference point (2.1, 2.1).
To analyze the results, we apply the Friedman test, and its associated post-hoc
test for multiple comparisons [6], using the median hypervolume obtained by

Table 3. Parameter space for tuning the ACO settings of the mACO algorithms

Parameter α β ρ q0 af τmax method τmin method

Domain {0, . . . , 10} {0, . . . , 15} [0.01, 1] [0, 0.99] {1, . . . , 30} {default, value} {default, value}
value ∈ [6, 100] value ∈ [0.01, 6]

ν ∈ [1.5, 15]

Table 4. Settings chosen by irace for mACOi-tuned under TIME 4

Variant
α

{0, ..., 10}
β

{0, ..., 15}
ρ

[0.01, 1]
q0

[0, 0.99]

τmax method
{default,
value}

τmin method
{default, value}

af

{1, ..., 30}

mACO1-tuned 8 1 0.03 0.03 value = 65 value = 0.33 27

mACO2-tuned 3 1 0.07 0.10 default default, ν = 6 26

mACO3-tuned 3 1 0.08 0.18 value = 49 value = 0.34 2

mACO4-tuned 2 1 0.19 0.19 default default, ν = 8 5

Multi-objective ACO Algorithms for the Bi-objective Knapsack 45

each algorithm on each instance as values, the instances as the blocking factor
and the different mACO algorithms as the treatment factor. In all cases, the
Friedman test rejects the null hypothesis of equal performance at a significance
level of 0.05. Those algorithms whose ranks differ by more than the critical
difference are considered to be significantly different. Table 5 summarizes the
results of applying this statistical analysis for each termination criterion. Ranks
obtained by each algorithm are shown in parenthesis. The minimum significant
rank difference is displayed between parenthesis on the header of each column.
The best algorithm and those that are not significantly different from the best
are marked in boldface.

From Table 5, we observe that mACO2-tuned is the best performing algorithm
for all different TIMEi, whereas mACO4 performs the worst. This seems to
contradict the results reported by Alaya et al. [1], which considered mACO4 as
the best performing variant. The different results are explained because, in their
case, mACO4 constructed 100 times more solutions than mACO2, which roughly
requires 100 times more computational time (Table 2). By contrast, we compare
algorithms using the same computation time limit.

The main conclusion we take from these results is that each tuned mACO
algorithm clearly outperforms its corresponding original version for each stop-
ping criterion. Hence, we use these tuned variants for comparing against the
automatically generated MOACO algorithm in the next section.

Table 5. Friedman test results for IH obtained by the mACO algorithms

Rank IH TIME 1 (32.957) IH TIME 2 (31.793) IH TIME 3 (35.433) IH TIME 4 (40.745)

1 mACO2-tuned (293) mACO2-tuned (208) mACO2-tuned (220) mACO2-tuned (227)

2 mACO1-tuned (319) mACO1-tuned (402) mACO1-tuned (380) mACO1-tuned (373)

3 mACO2 (591) mACO2 (610) mACO2 (644) mACO3-tuned (757)

4 mACO4-tuned (958) mACO3-tuned (973) mACO1 (987) mACO2 (779)

5 mACO3-tuned (1005) mACO1 (1036) mACO3-tuned (1040) mACO4-tuned (1076)

6 mACO3 (1202) mACO4-tuned (1087) mACO4-tuned (1073) mACO1 (1238)

7 mACO1 (1268) mACO3 (1301) mACO3 (1287) mACO3 (1282)

8 mACO4 (1564) mACO4 (1583) mACO4 (1569) mACO4 (1468)

6.2 Automatically Generating MOACO Algorithms for the bBKP

In this second stage of our analysis, we automatically configure all parameters
of the MOACO framework. In particular, for the parameters specific to the un-
derlying ACO algorithms, we use the same parameter space as for the mACO
algorithms (Table 3). For the multi-objective components, we consider all al-
ternatives described in Table 1, plus the following ranges: N col ∈ {1, 2, 5} and
Nupd ∈ {1, . . . , 10}. Since Na, the number of ants, has to be divisible by N col,
and the result be divisible by Nweights (when awpi is used), Na was always
rounded to the largest smaller number divisible by 10. The weights are defined
as, Nweights ∈ {0.2, 5, Na}, when N col = 2, and Nweights ∈ {0.5, 2, Na}, when
N col = 5. For single colony versions, only two values were allowed: 0.2 and 0.5.

46 L.C.T. Bezerra, M. López-Ibáñez, and T. Stützle

As in the previous section, we apply I/F-Race four times, once for each stop-
ping criterion. The budget of each run of I/F-Race is 5 000 runs of the MOACO
framework. The four resulting configurations are given as supplementary mate-
rial [4]. Here, we focus on the configuration obtained for TIME4 (Table 6).

The analysis of the AutoMOACO configurations shows several commonalities.
First, heuristic η3 is always chosen, which is different from the one used in the
mACO algorithms. Second, the parameter β is always close to the maximum
value allowed, thus giving very high importance to the heuristic information.
Third, the parameter value of q0 is also high. This together with the high value
of the parameter β implies that most of the items are chosen greedily. Fourth, the
number of ants is always very large. For example, 1000 ants are used for instance
size 750. As a result, the number of iterations executed by the MOACO algorithm
in the given time limits is rather small. It reaches from at most two iterations for
the shortest time limits (TIME1 and TIME2) to about 60 to 85 iterations for the
larger time limit (TIME4). In the first case, if very few iterations are executed,
the algorithm actually behaves as a greedy construction procedure that performs
multiple scalarizations of the bi-objective problem. For the longer time limits,
we confirmed that excluding the pheromone information (that is, setting α = 0)
makes the performance become significantly worse (see supplementary material
[4]). This implies that for the larger computation time limits, despite the low
number of iterations, the ACO component is effective.

Finally, we compare the performance obtained by the automatically config-
ured MOACO algorithms and the mACO algorithms. Given the high impact of
using heuristic information η3, we repeated the tuning of each of the mACO
variants as described above, but this time leaving open also the choice of the
heuristic information. In the following comparison, we consider only the original
and the two tuned variants of mACO2, which are the best mACO variants for

Table 6. Parameter settings chosen by I/F-Race for AutoMOACO: TIME4

Parameter α β ρ q0 af τmax τmin Ncol Nweights MCWeights NextWeight MCUpdate

Value 1 12 0.12 0.57 8 83 2.49 5 Na ∩50% awpi origin

Parameter Nupd Selection Ref. Δτ [τ] [η] [τ]-Aggreg. [η]-Aggreg. Heuristic

Value 10 BO BSF constant multiple multiple product sum η3

AutoMOACO

mACO2−tuned−heu

mACO2−tuned

mACO2

0.7 0.8 0.9 1.0

●

●

●

●

●●●●●

●●

ZTZ.100

●

●

●

●

●●

ZTZ.250

0.7 0.8 0.9 1.0

●

●

●

●

●●●

ZTZ.500

●

●

●

●

●●●

ZTZ.750

Fig. 1. Boxplots of the IH indicator for several MOACO algorithms with TIME4

Multi-objective ACO Algorithms for the Bi-objective Knapsack 47

Table 7. Friedman test results for IH for various MOACO algorithms

Rank IH TIME 1 (14.74) IH TIME 2 (11.416) IH TIME 3 (7.635) IH TIME 4 (5.987)

1 AutoMOACO (236) AutoMOACO (228) AutoMOACO (212) AutoMOACO (204)

2 mACO2-tuned-heu (365) mACO2-tuned-heu (373) mACO2-tuned-heu (388) mACO2-tuned-heu (399)

3 mACO2-tuned (611) mACO2-tuned (599) mACO2-tuned (600) mACO2-tuned (597)

4 mACO2 (688) mACO2 (800) mACO2 (800) mACO2 (800)

each of the time limits. In Fig. 1 we show boxplots of the hypervolume distribu-
tion for the algorithm automatically instantiated from the MOACO framework
(AutoMOACO), the original mACO2, mACO2 tuned with η1 and mACO2 tuned
leaving open the choice of the heuristic information (mACO2-tuned-heu). The
instances shown are the four ZTZ instances. Finally, Table 7 gives the results of
the Friedman test, which is applied as described in Section 6.1. Clearly, the Au-
toMOACO algorithm is the top performer, outperforming significantly the other
variants. For complete results, we again refer to the supplementary material [4].

7 Conclusions and Future Work

We have extended the MOACO framework [13] to the bBKP and automatically
generated MOACO algorithms. The results reported here for the bBKP confirm
the previous conclusions obtained in the bTSP, that is, the automatically config-
uredMOACOalgorithms outperform theMOACOalgorithms from the literature,
even after the ACO parameters of the latter have been tuned with the same effort.
Interestingly, the MOACO algorithm tuned for very short time limit is rather a
repeated stochastic greedy construction procedure than an ACO algorithm. Al-
though this result may seem counter-intuitive at first, it is, however, a strength
of automatic configuration procedures, because they are not biased towards our
expectations. The fact that the resulting algorithm is better than the MOACO al-
gorithms proposed in the literature, indicates that the automatic design works as
desired, that is, it provides a high-performing algorithm for the given termination
criterion. For higher computation time limits, the ACO component of the finally
configured algorithm works and contributes to its high performance.

Future work should extend the MOACO framework, and apply the proposed
automatic design method, to new problems in order to further confirm the above
conclusions. The method is not restricted to MOACO algorithms, and, hence,
extensions to other metaheuristics are possible.

Acknowledgments. The research leading to the results presented in this paper
has received funding from the European Research Council under the European
Union’s Seventh Framework Programme (FP7/2007-2013) / ERC grant agree-
ment no 246939, and from the Meta-X project from the Scientific Research Di-
rectorate of the French Community of Belgium. Leonardo C. T. Bezerra, Manuel
López-Ibáñez and Thomas Stützle acknowledge support from the Belgian F.R.S.-
FNRS, of which they are a FRIA doctoral fellow, a postdoctoral researcher and
a research associate, respectively.

48 L.C.T. Bezerra, M. López-Ibáñez, and T. Stützle

References

1. Alaya, I., Solnon, C., Ghédira, K.: Ant colony optimization for multi-objective op-
timization problems. In: ICTAI 2007, vol. 1, pp. 450–457. IEEE Computer Society
Press, Los Alamitos (2007)

2. Balaprakash, P., Birattari, M., Stützle, T.: Improvement Strategies for the F-Race
Algorithm: Sampling Design and Iterative Refinement. In: Bartz-Beielstein, T.,
Blesa Aguilera, M.J., Blum, C., Naujoks, B., Roli, A., Rudolph, G., Sampels, M.
(eds.) HCI/ICCV 2007. LNCS, vol. 4771, pp. 108–122. Springer, Heidelberg (2007)

3. Barán, B., Schaerer, M.: A multiobjective ant colony system for vehicle routing
problem with time windows. In: Proceedings of the Twenty-first IASTED Intern.
Conf. on Appl. Informat., Insbruck, Austria, pp. 97–102 (2003)

4. Bezerra, L.C.T., López-Ibáñez, M., Stützle, T.: Automatic Generation of MOACO
Algorithms for the Biobjective Bidimensional Knapsack Problem: Supplementary
material (2012), http://iridia.ulb.ac.be/supp/IridiaSupp2012-008/

5. Bullnheimer, B., Hartl, R., Strauss, C.: A new rank-based version of the Ant
System: A computational study. Cen. Eur. J. for Oper. Res. and Econ. 7(1), 25–38
(1999)

6. Conover, W.J.: Practical Nonparametric Statistics, 3rd edn. John Wiley & Sons,
New York (1999)

7. Doerner, K.F., Hartl, R.F., Reimann, M.: Are Competants more competent for
problem solving? The case of a multiple objective transportation problem. Cen.
Eur. J. for Oper. Res. and Econ. 11(2), 115–141 (2003)

8. Fonseca, C.M., Paquete, L., López-Ibáñez, M.: An improved dimension-sweep
algorithm for the hypervolume indicator. In: CEC 2006, pp. 1157–1163. IEEE
Press, Piscataway (2006)

9. Garćıa-Mart́ınez, C., Cordón, O., Herrera, F.: A taxonomy and an empirical analy-
sis of multiple objective ant colony optimization algorithms for the bi-criteria TSP.
Eur. J. of Oper. Res. 180(1), 116–148 (2007)

10. Iredi, S., Merkle, D., Middendorf, M.: Bi-Criterion Optimization with Multi Colony
Ant Algorithms. In: Zitzler, E., Deb, K., Thiele, L., Coello Coello, C.A., Corne,
D.W. (eds.) EMO 2001. LNCS, vol. 1993, pp. 359–372. Springer, Heidelberg (2001)

11. López-Ibáñez, M., Dubois-Lacoste, J., Stützle, T., Birattari, M.: The irace package,
iterated race for automatic algorithm configuration. Tech. Rep. TR/IRIDIA/2011-
004, IRIDIA, Université Libre de Bruxelles, Belgium (2011)

12. López-Ibáñez, M., Stützle, T.: The impact of design choices of multi-objective ant
colony optimization algorithms on performance: An experimental study on the
biobjective TSP. In: Pelikan, M., Branke, J. (eds.) GECCO 2010, pp. 71–78. ACM
press, New York (2010)

13. López-Ibáñez, M., Stützle, T.: The automatic design of multi-objective ant colony
optimization algorithms. IEEE Trans. on Evol. Comput. (in press, 2012)

14. Lust, T., Teghem, J.: The multiobjective multidimensional knapsack problem: a
survey and a new approach. Arxiv preprint arXiv:1007.4063 (2010)

15. Stützle, T., Hoos, H.H.: MAX −MIN Ant System. Future Generat. Comput.
Systems 16(8), 889–914 (2000)

16. Zitzler, E., Thiele, L.: Multiobjective evolutionary algorithms: A comparative case
study and the strength Pareto evolutionary algorithm. IEEE Trans. on Evol.
Comput. 3(4), 257–271 (1999)

17. Zitzler, E., Thiele, L., Laumanns, M., Fonseca, C.M., Grunert da Fonseca, V.:
Performance assessment of multiobjective optimizers: an analysis and review. IEEE
Trans. on Evol. Comput. 7(2), 117–132 (2003)

http://iridia.ulb.ac.be/supp/IridiaSupp2012-008/

Bare Bones Particle Swarms with Jumps

Mohammad Majid al-Rifaie and Tim Blackwell

Goldsmiths, University of London, New Cross, London, UK
{m.majid,tim.blackwell}@gold.ac.uk

Abstract. Bare Bones PSO was proposed by Kennedy as a model of
PSO dynamics. Dependence on velocity is replaced by sampling from
a Gaussian distribution. Although Kennedy’s original formulation is not
competitive to standard PSO, the addition of a component-wise jumping
mechanism, and a tuning of the standard deviation, can produce a com-
parable optimisation algorithm. This algorithm, Bare Bones with Jumps,
exists in a variety of formulations. Two particular models are empirically
examined in this paper and comparisons are made to canonical PSO and
standard Bare Bones.

1 Introduction

There has been many attempts to understand the behaviour of the swarms
in Particle Swarm Optimisation algorithm (PSO). This proved to be difficult
due the presence of many moving parts (e.g. the effects of various parame-
ters on the trajectory of the particle, particles’ oscillation around constantly
changing centres, the effects of swarm topology on its performance, etc.). A
number of theoretical studies have tried to understand the dynamics of PSO,
mainly concentrating on particle trajectories, swarm equilibria and formal con-
vergence to local optima proofs [1,2,3]. In 2003, in one such attempt, Kennedy
[4] proposed a minimised version of PSO – Bare Bones (BB) swarm optimi-
sation – where the velocity update is eliminated. In this paper, after briefly
describing BB, the Bare Bones with Jumps (BBJ1) algorithm [5] is presented
alongside a second model, BBJ2. The performance of the newly introduced al-
gorithms are compared against a standard PSO (which is taken here to be the
Clerc and Kennedy (CK) [1] formulation), as well as Bare Bones (BB) swarm
optimisation.

2 Bare Bones Swarm

It is known that particles converge to a weighted average between their per-
sonal best and neighbourhood best positions [6], but in order to understand
the behaviour of particles and identify the similarity it has with other stochastic
population-based optimiser, Kennedy [4] proposed a modified algorithm without

M. Dorigo et al. (Eds.): ANTS 2012, LNCS 7461, pp. 49–60, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

50 M.M. al-Rifaie and T. Blackwell

the velocity formula in the update equation. The standard Bare Bones swarm
(BB) has the following update formula:

xid = g + σidN (0, 1) (1)

g =
1

2
(gid + pid) (2)

σid = |gid − pid| (3)

where N (0, 1) is the Gaussian distribution between 0 and 1; gi is the best in-
former in the neighbourhood of particle i and pid is the personal best position
of particle i in dimension d.

In the next section, two new variants of this minimised algorithm are pre-
sented. The main differences are: a component-wise jumping method, and the
presence of an implicit scale parameter that multiplies the standard deviation of
the sampling distribution.

3 Bare Bones with Jumps

Bare Bones swarm can be generalised [5] so that the search focus g (centre of the
search volume at stagnation) and the search spread σ can each be chosen from
local or global neighbourhoods. This idea is embodied in the following rules:

gi = BEST (pi ∈ Ni) (4)

δid = |pi−1 d − pi+1 d| –local neighbouthood (5)

δid = |gid − pid| –global neighbourhood (6)

xid = gid + αδidN (0, 1) (7)

where α is an arbitrary number and Ni denotes the search neighbourhood of
particle i. Ni, the μ-neighbourhood can be global, or any local structure. The
separation factor δi which controls search concentration, can be taken from a
local or a global informer neighbourhood (the σ-neighbourhood). Theoretically,
it is shown that for the sphere function, there is a critical value, αc = 0.65, such
that, for α > αc the swarm resists collapse. Fastest convergence occurs at the
critical value, but larger values promote exploration [5]. The Bare Bones with
Jumps algorithm, Algorithm 1, includes a probabilistic jumping mechanism: a
particle may jump uniformly in any dimension with probability pJ . This can
be viewed as a partial re-initialisation (since in general not every component
undergoes a jump) or, alternatively, as a tail broadening mechanism, allowing
further search in areas where the Gaussian distribution tails are thin.

The investigations reported in [5] propose that a small jump probability pJ =
0.01 enhances performance over standard test set of 30D problems. This paper
proposes a second Bare Bones with Jumps algorithm, model 2 (BBJ2), with an
altered search spread component, and a smaller jump probability (pJ = 0.001):

xid = gi + αδidN (0, 1) (8)

δid = |gi − xid| (9)

Bare Bones PSO with Jumps 51

Algorithm 1. Bare Bones with Jumps Models 1 and 2

r ∼ U(0, 1)
if (r < pJ)

xid = U (−Xd, Xd)
else

xid = gi + αδidN (0, 1)

This algorithm utilises the difference between the neighbourhood best with the
current position (in |gi − xid|, Equation 9) rather than the difference between
either the left and right neighbours’ bests (in local neighbourhood; see Equa-
tion 5) or the particle’s personal best and the neighbourhood best (in global
neighbourhood; see Equation 7). The reason behind proposing this alternation
is to increase the influence of the current positions of the particles in the update
equation on the assumption that this might offer a wider search capability.

In the next section, a set of experiments is designed to compare the perfor-
mance of the algorithms referred to in this paper followed by some statistical
analysis.

4 Experiments

The aim of this set of experiments is to compare the performance of the new BBJ
variant, BBJ2, to BBJ1 and Bare Bones swarm (BB) and standard PSO (CK)
[1]. The effect of the jumping mechanism is isolated by running experiments on
BBJ2 without jumps (BBNJ), which is simply accomplished by setting pJ to
zero. In order to determine the quality of each algorithm, three performance
measures are used (accuracy, efficiency and reliability which are presented next,
in section 4.1).

4.1 Performance Measures

Three different performance measures [7] are used in the experiments conducted
in this paper. These performance measures are accuracy, reliability and efficiency.

Accuracy of the swarms is defined by the quality of the best position in terms
of its closeness to the optimum position. If knowledge about the optimum posi-
tion is known a priori (which is the case here), the following would define the
accuracy:

Accuracy =
∣∣f (ptg)− f (xopt)

∣∣ (10)

where ptg is the best position at time t and xopt is the position of the known
optimum solution.

If no information exists about the optimum solution, the fitness of the best
position will be the accuracy of the swarm.

Another measure used is reliability which is the percentage of trials where
swarms converge with a specified accuracy; this is defined by:

Reliability =
n

′

n
× 100 (11)

52 M.M. al-Rifaie and T. Blackwell

where n is the total number of trials in the experiment and n
′
is the number of

successful trials.
Finally, efficiency is the number of iterations or objective function evaluations

needed to converge with a specified accuracy (i.e. 10−8):

Efficiency =
1

n

n∑
i=0

FEs (12)

where n is the total number of trials and FEs is the number of function evalua-
tions before convergence.

4.2 Experiment Setup

The algorithms used are tested over a number of benchmarking functions from
Jones et al. [8] and De Jong [9] test suite, preserving different dimensionality and
modality (see Tables I and II in [10]). The first two functions (Sphere/Parabola
and Schwefel 1.2) have a single minimum and are unimodal functions; Gener-
alised Rosenbrock for dimension D, where D > 3, is multimodal; Generalised
Schwefel 2.6, Generalized Rastrigin, Ackley, Generalized Griewank, Penalised
Function P8 and Penalised Function P16 are complex high-dimensional multi-
modal problems with many local minima and a single global optimum; Six-hump
Camel-back, Goldstein-Price, Shekel 5, 7 and 10 are lower-dimensional multi-
modal problems with fewer local minima. Goldstein-Price, Shekel 5, 7 and 10
have one global optimum and Six-hump Camel-back has two global optima sym-
metric about the origin. In order not to initialise the particles on or near a region
in the search space known to have the global optimum, region scaling technique
is used [11], which makes sure particles are initialised at a corner of the search
space where there are no optimal solutions. The experiments are conducted with
a population of 50 particles in global and local neighbourhoods independently.
However, the halting criterion for this experiment is either to reach the optima
(with function errors less than 10−8) or to exceed the 300, 000 function evalua-
tions (FEs). There are 30 independent runs for each benchmarking function and
results are averaged over these independent trials.

4.3 BB, PSO and BBJ Parameter Values

Bare Bones enjoys the luxury of having no adjustable parameters. The param-
eters defined by Bratton [12] were used for the CK trials. α was set to 0.75 for
both BBJ models, and, following the recommendations in [5] pJ was fixed at
0.01 for BBJ1. Preliminary experiments suggested that BBJ2 performs better
with a smaller pJ and a value of 0.001 was used in the following. A global μ
neighbourhood is used for BBJ in every experiment.

4.4 Results

In this experiment two types of σ-neighbourhoods (global and local) are tested.
The results are shown in the following tables and figures:

Bare Bones PSO with Jumps 53

– Global neighbourhood:

• Table 1a reflects the accuracy of each algorithm over each function and
the reliability of each algorithm averaged over all benchmarks in global
neighbourhood. Table 1b highlights any significant difference in the ac-
curacy of the algorithms over each function.

• Table 2a shows the efficiency of each algorithm over each benchmark.
Table 2b underlines any existing significant difference between any two
algorithms over the benchmarks in the global neighbourhood.

• Figure 1 shows the plots for the accuracy and efficiency measures.

– Local neighbourhood:

• Table 3 displays the results using the same measures (accuracy and re-
liability) as Tables 1 but in the local neighbourhood topology.

• Table 4 displays the results using the same measure (efficiency) as Table
2 but in a local neighbourhood topology.

• Figure 2 shows the plots for the accuracy and efficiency measures.

Observing the reliability of the algorithms both in global and local neighbour-
hoods (see the last rows of Tables 1a and 3a), shows that on average BB is the
least reliable algorithm. This finding does not come as a surprise as BB was
proposed for understanding PSO rather than being deployed for optimisation
purposes; the result of this experiment confirms this view empirically. Among
other algorithms, BBJ2 shows the most reliable performance in both local and
global neighbourhood. Additionally, BBJ2 shows better reliability in global vs.
local neighbourhood, which is not always the expectation (as global neighbour-
hood is usually criticised for its premature convergence [13]. CK and BBJ1 show
contradicting results in different neighbourhoods: BBJ1 is more reliable than
CK in the global neighbourhood, but less reliable in the local neighbourhood.

In terms of the accuracy of the algorithms in the global neighbourhood (see
Table 1b), BB shows significantly worse accuracy. When there exists conver-
gence, in most cases, BBJ1 and BBJ2 outperform CK significantly. Over all
benchmarks, BBJ1 and BBJ2 do not outperform each other significantly (ex-
cept in f11). As for the efficiency of the algorithms in the global neighbourhood
(see Table 2), when there exists a significant difference BBJ2 outperform all al-
gorithms over all benchmarks significantly. The second best algorithm is BBJ1.

In the local neighbourhood (see Table 3), compared to other algorithms, BB
and BBJ1, are significantly worse in terms of accuracy. When functions with
convergence are considered, BBJ2 outperform other algorithms. In terms of effi-
ciency in the local neighbourhood (see Table 4b), CK is outperformed by BB in
most significant cases. Observing functions with successful convergence, BBJ1
and BBJ2 are the least and the most efficient algorithms respectively.

In order to investigate the role of jumping in BBJ2, this mechanism is removed
in a control algorithm – BBJ2 with No Jumps (BBNJ) – which uses the same
parameters and update equations as BBJ2 but with pJ = 0. This algorithm, in
terms of efficiency, outperforms BBJ2 in local neighbourhood in all 3 significant
cases; however in global neighbourhood, BBNJ is outperformed by BBJ2 in all 4
significant cases. In terms of accuracy, both in global and local neighbourhood,

54 M.M. al-Rifaie and T. Blackwell

Table 1. Accuracy Details; Global Neighbourhood

(a) Accuracy± Standard Error is shown with two decimal places after 30 trials of
300,000 function evaluations. Total number of convergence of each algorithm over the

benchmarks can be found in the last row.

Fn CK BB BBJ1 BBJ2 BBNJ

f1 0.0 ±0.0 0.0 ±0.0 0.0 ±0.0 0.0 ±0.0 4.14E-05±4.13E-05

f2 0.0 ±0.0 6.34E+03±4.69E+02 8.51E-04±7.86E-04 0.0 ±0.0 2.72E+03±5.03E+02

f3 9.14E+00±3.18E+00 5.86E+01±1.80E+01 1.08E+01±4.47E+00 1.28E-06±6.09E-07 6.18E+00±2.80E+00

f4 3.60E+03±8.50E+01 3.46E+03±2.29E+01 8.32E-02±1.43E-02 0.0 ±0.0 4.61E+03±9.40E+01

f5 6.33E+01±2.57E+00 1.59E+02±4.93E+00 9.93E-03±3.37E-03 0.0 ±0.0 3.47E+02±9.56E+00

f6 1.17E+00±1.95E-01 1.92E+01±8.43E-02 2.07E-05±1.69E-05 0.0 ±0.0 1.98E+01±1.39E-02

f7 2.88E-02±6.13E-03 9.40E-02±3.39E-02 4.42E-02±7.18E-03 3.37E-02±6.43E-03 4.64E+00±2.18E+00

f8 6.22E-02±2.03E-02 4.16E+00±1.36E+00 0.0 ±0.0 0.0 ±0.0 6.44E+00±2.40E+00

f9 3.00E-02±1.44E-02 4.13E+00±3.23E+00 0.0 ±0.0 0.0 ±0.0 3.66E+01±1.92E+01

f10 0.0 ±0.0 0.0 ±0.0 0.0 ±0.0 0.0 ±0.0 2.72E-02±2.72E-02

f11 0.0 ±0.0 4.86E+01±7.37E+00 1.89E+01±6.36E+00 4.32E+01±7.50 5.67E+01±6.52E+00

f12 1.85E+00±4.97E-01 5.05E+00±0.00E+00 5.05E+00±7.38E-17 5.05E+00±1.13E-16 5.05E+00±9.99E-17

f13 2.39E+00±5.95E-01 5.27E+00±3.01E-17 5.35E+00±7.92E-02 5.27E+00±8.52E-17 5.27E+00±1.35E-16

f14 1.11E+00±4.68E-01 5.36E+00±6.02E-17 5.36E+00±9.03E-17 5.36E+00±9.52E-17 5.47E+00±1.11E-01

∑
(180) (99) (198) (268) (93)

42.68% 23.57% 47.14% 63.81% 22.14%

(b) Based on TukeyHSD Test, if the difference between each pair of algorithms is
significant, the pairs are marked. X–o shows that the left algorithm is significantly
better than the right one; and o–X shows that the right one is significantly better

than the left algorithm.

Fn BBJ1-BB BBJ2-BB CK-BB BBJ2-BBJ1 CK-BBJ1 CK-BBJ2 BBNJ-BBJ2

f1 – – – – – – –

f2 X – o X – o X – o – – – o – X

f3 X – o X – o X – o – – – o – X

f4 X – o X – o – – o – X o – X o – X

f5 X – o X – o X – o – o – X o – X o – X

f6 X – o X – o X – o – o – X o – X o – X

f7 – – – – – – o – X

f8 X – o X – o X – o – – – o – X

f9 – – – – – – –

f10 – – – – – – –

f11 X – o – X – o o – X – X – o –

f12 – – X – o – X – o X – o –

f13 – – X – o – X – o X – o –

f14 – – X – o – X – o X – o –

Bare Bones PSO with Jumps 55

Table 2. Efficiency Details; Global Neighbourhood

(a) Mean FEs (±standard error) is shown with two decimal places after 30 trials of
300,000 function evaluations.

Fn CK BB BBJ1 BBJ2 BBNJ

f1 23224±194 12262±164 13270±148 22685±119 14454±244

f2 – 160358±2920 89637±575 191064±1290 –

f3 – – – 276020±7039 213310±7324

f4 – – – 63399±3805 –

f5 – 124701±12900 124701±12900 54825±3182 –

f6 – 41811±870 37004±318 47486±2226 –

f7 22786±259 11518±136 13807±335 24006±259 14036±833

f8 44735±567 20194±1701 15013±285 33627±744 21554±383

f9 49228±1309 39656±3719 18855±981 31147±720 26835±563

f10 1458±17 516±4 551±5 3515±37 534±8

f11 5876±397 61199±11951 663±10 3929±39 649±10

f12 – – – – –

f13 – – – – –

f14 – – – – –

(b) Based on TukeyHSD Test, if the difference between each pair of algorithms is
significant, the pairs are marked. X–o shows that the left algorithm is significantly
better than the right one; and o–X shows that the right one is significantly better

than the left algorithm.

Fn BBJ1-BB BBJ2-BB CK-BB BBJ2-BBJ1 CK-BBJ1 CK-BBJ2 BBNJ-BBJ2

f1 X – o X – o – – o – X o – X o – X

f2 NP NP NP X – o o – X o – X NP

f3 NP NP NP NP NP NP o – X

f4 NP NP NP NP NP NP NP

f5 NP NP NP X – o NP NP NP

f6 NP NP NP X – o o – X o – X NP

f7 X – o X – o – – o – X o – X –

f8 X – o X – o – – o – X o – X o – X

f9 – X – o – X – o – – o – X

f10 X – o X – o o – X – o – X o – X –

f11 o – X – – X – o X – o – –

f12 NP NP NP NP NP NP NP

f13 NP NP NP NP NP NP NP

f14 NP NP NP NP NP NP NP

56 M.M. al-Rifaie and T. Blackwell

Table 3. Accuracy Details; Local Neighbourhood

(a) Accuracy ± Standard Error is shown with two decimal places after 30 trials of
300,000 function evaluations. Total number of convergence of each algorithm over each
benchmark is shown in brackets after the accuracy and standard error. Total number
of convergence of each algorithm over the benchmarks can be found in the last row.

Fn CK BB BBJ1 BBJ2 BBNJ

f1 0.0 ±0.0 0.0 ±0.0 0.0 ±0.0 0.0 ±0.0 9.57E-09±1.14E-10

f2 7.84E-02±1.09E-02 9.66E+01±8.68E+00 3.93E+02±4.38E+01 1.87E-01±3.02E-02 2.55E-01±2.02E-01

f3 1.33E+01±3.73E+00 1.27E+01±5.50E-01 2.88E+01±3.20E+00 2.59E+01±5.73E+00 2.99E+01±6.02E+00

f4 4.14E+03±7.11E+01 3.26E+03±3.10E+01 1.92E+03±6.89E+01 0.0 ±0.0 4.03E+03±4.77E+01

f5 5.87E+01±1.88E+00 2.46E+01±3.04E+00 9.22E+01±4.47E+00 0.0 ±0.0 2.85E+02±6.11E+00

f6 0.0 ±0.0 1.96E+01±2.24E-02 1.89E-06±1.55E-06 0.0 ±0.0 1.98E+01±1.27E-02

f7 1.07E-03±6.10E-04 1.41E-05±1.04E-05 2.48E-04±2.46E-04 1.19E-02±2.96E-03 1.95E-02±4.65E-03

f8 0.0 ±0.0 2.76E-02±1.92E-02 0.0 ±0.0 0.0 ±0.0 7.01E-01±2.69E-01

f9 0.0 ±0.0 5.27E-02±5.27E-02 3.62E-07±2.84E-07 0.0 ±0.0 2.05E-01±6.39E-02

f10 0.0 ±0.0 8.16E-02±4.55E-02 0.0 ±0.0 0.0 ±0.0 5.84E-09±5.17E-10

f11 0.0 ±0.0 7.92E+01±2.71E+01 1.27E-05±1.27E-05 2.79E+01±7.03E+00 4.86E+01±7.37E+00

f12 3.70E-06±1.27E-07 5.05E+00±0.00E+00 5.05E+00±0.00E+00 5.05E+00±4.26E-17 5.05E+00±1.13E-16

f13 1.22E-04±0.00E+00 5.27E+00±0.00E+00 5.10E+00±1.76E-01 5.27E+00±0.00E+00 5.27E+00±4.26E-17

f14 1.26E-04±1.12E-16 5.36E+00±5.22E-17 5.18E+00±1.79E-01 5.36E+00±1.09E-16 5.36E+00±6.02E-17

∑
(208) (145) (199) (241) (108)

49.52% 34.52% 47.38% 57.38% 25.71%

(b) Based on TukeyHSD Test, if the difference between each pair of algorithms is
significant, the pairs are marked. X–o shows that the left algorithm is significantly
better than the right one; and o–X shows that the right one is significantly better

than the left algorithm.

Fn BBJ1-BB BBJ2-BB CK-BB BBJ2-BBJ1 CK-BBJ1 CK-BBJ2 BBNJ-BBJ2

f1 – – – – – – –

f2 o – X X – o X – o X – o X – o – –

f3 o – X – – – X – o – –

f4 X – o X – o o – X X – o o – X o – X o – X

f5 o – X X – o o – X X – o X – o o – X o – X

f6 X – o X – o X – o – – – o – X

f7 – o – X – o – X – X – o –

f8 – – – – – – o – X

f9 – – – – – – o – X

f10 – – – – – – –

f11 X – o – X – o – – – o – X

f12 – – X – o – X – o X – o –

f13 – – X – o – X – o X – o –

f14 – – X – o – X – o X – o –

Bare Bones PSO with Jumps 57

Table 4. Efficiency Details; Local Neighbourhood

(a) Mean FEs ±Standard Error is shown with two decimal places after 30 trials of
300,000 function evaluations.

Fn CK BB BBJ1 BBJ2 BBNJ

f1 47589±97 98383±327 67968±213 73090±196 49574±260

f2 – – – – –

f3 – – – – –

f4 – – – 139118±3975 –

f5 – – – 134816±2801 –

f6 – 189139±4687 175902±944 118098±389 –

f7 84612±4962 146979±4494 72048±332 95680±4051 49970±396

f8 79067±765 121186±1035 69658±489 103658±1287 68597±1434

f9 61328±374 122631±853 75080±392 86281±480 71144±1217

f10 5389±100 1891±31 2161±161 4935±53 1716±31

f11 46300±2012 9030±2367 2536±75 5063±51 2891±184

f12 – – – 8895±0 –

f13 – – – – –

f14 – – – – –

(b) Based on TukeyHSD Test, if the difference between each pair of algorithms is
significant, the pairs are marked. X–o shows that the left algorithm is significantly
better than the right one; and o–X shows that the right one is significantly better

than the left algorithm.

Fn BBJ1-BB BBJ2-BB CK-BB BBJ2-BBJ1 CK-BBJ1 CK-BBJ2 BBNJ-BBJ2

f1 o – X o – X o – X X – o X – o o – X X – o

f2 NP NP NP NP NP NP NP

f3 NP NP NP NP NP NP NP

f4 NP NP NP NP NP NP NP

f5 NP NP NP NP NP NP NP

f6 NP NP NP X – o X – o X – o NP

f7 o – X – – X – o X – o – X – o

f8 o – X X – o o – X X – o X – o o – X –

f9 o – X o – X o – X X – o X – o o – X X – o

f10 X – o X – o – – o – X o – X –

f11 X – o X – o X – o – – – –

f12 NP NP NP NP NP NP NP

f13 NP NP NP NP NP NP NP

f14 NP NP NP NP NP NP NP

58 M.M. al-Rifaie and T. Blackwell

● ●

●

●

●

●

●

●

●

● ●

●
●

●

1 2 3 4 5 6 7 8 9 10 11 12 13 14

1e
−0

8
1e

−0
5

1e
−0

2
1e

+0
1

1e
+0

4
(a) Accuracy − Global Neighbourhood

Benchmark

A
cc

ur
ac

y

● CK
BB
BBJ1
BBJ2

● ●

●
●

●
●

1 2 3 4 5 6 7 8 9 10 11 12 13 14

0
10

00
00

20
00

00
30

00
00

(b) Efficiency − Global Neighbourhood

Benchmark

F
un

ct
io

n
E

va
ul

at
io

n

● CK
BB
BBJ1
BBJ2

Fig. 1. Accuracy and efficiency in global neighbourhood

whenever there is a difference, BBJ2 outperforms BBNJ in the entire cases, 12
of which are significantly better. Also in terms of reliability, BBNJ is the least
reliable algorithm.

4.5 Discussion

More experiments are needed in order to form a concrete theoretical idea as to
why BBJ2 outperforms the other algorithms. The initial thought behind this
outperformance is the reliance on the difference between the particles’ current
positions and their neighbourhood best position. This effectively eliminates the
direct influence of the particles’ personal bests from the update equations. On
the other hand, in the rest of the algorithms (used in this paper), each particle’s
personal best leaves a direct impact on the update equations. This presence of
many influencing factors – which is one of the reasons why understanding PSO
is complicated – in the update process might be counter-productive.

BB and BBJ, in contrast to CK, are distinguished by the absence of particle
position information in the update rule. Search always begins at a point deter-
mined by particle informers g or gi and the extent of the search is determined by
informer separation, |pi−gi| or |pi−1−pi−1|. A trial position xi ∼ gi+σiN(0, 1)
is ignored if an informer pi is not bettered. The particle, figuratively speak-
ing, returns to pi after a single trial at search centre gi. On the other hand,
BBJ2 retains information of an unsuccessful attempt since search spread is deter-
mined by the difference between xi and gi. This provides a convergence inhibition

Bare Bones PSO with Jumps 59

●

●

●

●

●

●

●

● ● ● ●

●

● ●

1 2 3 4 5 6 7 8 9 10 11 12 13 14

1e
−0

8
1e

−0
5

1e
−0

2
1e

+0
1

1e
+0

4
(a) Accuracy − Local Neighbourhood

Benchmark

A
cc

ur
ac

y

● CK
BB
BBJ1
BBJ2

●

●
●

●

●

●

1 2 3 4 5 6 7 8 9 10 11 12 13 14

0
10

00
00

20
00

00
30

00
00

(b) Efficiency − Local Neighbourhood

Benchmark

F
un

ct
io

n
E

va
ul

at
io

n

● CK
BB
BBJ1
BBJ2

Fig. 2. Accuracy and efficiency in local neighbourhood

mechanism: informers will crowd together as the swarm converges, with a conse-
quent decrease, for BBJ1, in diversity. However in BBJ2, a trial position xi may
lie beyond the informer group. This will lead to a broader search at the next
iteration since δBBJ2 = |gi − xi|.

Finally, we note the significance of jumping: the probability of jumping in
one or more dimensions is 1 − (1 − pJ)

D = 0.03 (30 dimensions, pJ = 0.001).
Even this small figure appears to be enough for enhanced performance. A law
of diminishing returns applies since excessive jumping slows convergence. The
fact that jumping appears to be less necessary in BBJ2 than in BBJ1 is perhaps
attributable to the greater search diversity inherent in the formation of δ. The
efficacy of tail broadening for distribution based swarm optimisers has already
been observed in a study of Lèvy bare bones [14]. We remark that tail broadening
is a more subtle effect than re-initialisation. The latter is equivalent to jumping
in each of the D dimensions, occurring with only a very small probability (prob =
pDJ) in the BBJ models.

5 Conclusion

This paper briefly describes Bare Bones swarm optimisation which was proposed
to provide better understanding of the behaviour of particle swarm algorithms.
Although this algorithm does not intend to enhance the optimisation capability
of standard PSO of Clerc-Kennedy (CK), the other variations (Bare Bones with

60 M.M. al-Rifaie and T. Blackwell

Jumps Model 1 & 2) explained and introduced respectively in this paper offer
promising results. The algorithms used in this paper are compared against each
other using three performance measures (i.e. accuracy, efficiency and reliability).
Using these measures, it is shown that in terms of accuracy, when benchmarks
with successful convergence are considered, the accuracy of BBJ2 compared to
all other algorithms is significantly better. Additionally, BBJ2 is empirically
shown to be both the most efficient and the most reliable algorithm in both
local and global σ neighbourhoods. A brief discussion is also presented with the
possible reasons which might boost the outperformance of BBJ2 compared to
other algorithms, and an experiment is conducted to demonstrate that despite
the very small jump probability of BBJ2, this mechanism plays a crucial role.

References

1. Clerc, M., Kennedy, J.: The particle swarm-explosion, stability, and convergence
in amultidimensional complex space. IEEE Transactions on Evolutionary Compu-
tation 6(1), 58–73 (2002)

2. Yang, Y., Kamel, M.: Clustering ensemble using swarm intelligence. In: Proceedings
of the 2003 IEEE Swarm Intelligence Symposium, SIS 2003, pp. 65–71. IEEE (2003)

3. van den Bergh, F., Engelbrecht, A.P.: A study of particle swarm optimization
particle trajectories. Information Sciences 176(8), 937–971 (2006)

4. Kennedy, J.: Bare bones particle swarms. In: Proceedings of Swarm Intelligence
Symposium (SIS 2003), pp. 80–87. IEEE (2003)

5. Blackwell, T.: A study of collapse in bare bones particle swarm optimisation. IEEE
Transactions on Evolutionary Computing (99) (2012)

6. Trelea, I.C.: The particle swarm optimization algorithm: convergence analysis and
parameter selection. Information Processing Letters 85(6), 317–325 (2003)

7. Engelbrecht, A.P.: Fundamentals of Computational Swarm Intelligence. Wiley
(2006)

8. Jones, D.R., Perttunen, C.D., Stuckman, B.E.: Lipschitzian optimization without
the lipschitz constant. J. Optim. Theory Appl. 79(1), 157–181 (1993)

9. Jong, K.A.D.: An analysis of the behavior of a class of genetic adaptive systems.
PhD thesis, University of Michigan, Ann Arbor, MI, USA (1975)

10. al-Rifaie, M.M., Bishop, M., Blackwell, T.: Resource allocation and dispensation
impact of stochastic diffusion search on differential evolution algorithm. In: Nature
Inspired Cooperative Strategies for Optimisation (NICSO 2011). Springer (2011)

11. Gehlhaar, D., Fogel, D.: Tuning evolutionary programming for conformationally
flexible molecular docking. In: Evolutionary Programming V: Proc. of the Fifth
Annual Conference on Evolutionary Programming, pp. 419–429 (1996)

12. Bratton, D., Kennedy, J.: Defining a standard for particle swarm optimization. In:
Proc. of the Swarm Intelligence Symposium, Honolulu, Hawaii, USA, pp. 120–127.
IEEE (2007)

13. Clerc, M.: From theory to practice in particle swarm optimization. In: Handbook
of Swarm Intelligence, pp. 3–36 (2010)

14. Richer, T., Blackwell, T.: The lévy particle swarm. In: IEEE Congress on Evolu-
tionary Computation, pp. 3150–3157 (2006)

Hybrid Algorithms for the Minimum-Weight

Rooted Arborescence Problem

Sergi Mateo1, Christian Blum1, Pascal Fua2, and Engin Türetgen2

1 ALBCOM Research Group, Universitat Politécnica de Catalunya, Barcelona, Spain
sergi.mateo.bellido@est.fib.upc.edu, cblum@lsi.upc.edu

2 Computer Vision Lab, Ecole Polytechnique Fédérale de Lausanne, Switzerland
{pascal.fua@,engin.turetken}@epfl.ch

Abstract. Minimum-weight arborescence problems have recently
enjoyed an increased attention due to their relation to imporant prob-
lems in computer vision. A prominent example is the automated recon-
struction of consistent tree structures from noisy images. In this paper,
we first propose a heuristic for tackling the minimum-weight rooted ar-
borescence problem. Moreover, we propose an ant colony optimization
algorithm. Both approaches are strongly based on dynamic program-
ming, and can therefore be regarded as hybrid techniques. An extensive
experimental evaluation shows that both algorithms generally improve
over an exisiting heuristic from the literature.

1 Introduction

The minimum-weight rooted arborescence (MWRA) problem, which is consid-
ered in this work, is a generalization of the problem proposed by Venkata Rao
and Sridharan in [10]. It can technically be described as follows. Given is a di-
rected acyclic graph G = (V,A) with integer weights on the arcs, that is, for
each a ∈ A exists a corresponding weight w(a) ∈ Z. Moreover, a vertex vr ∈ V
is designated as the root node. Let A be the set of all arborescences in G that
are rooted in vr. In this context, note that an arborescence is a directed, rooted
tree in which all arcs point away from the root vertex (see also [9]). Moreover,
note that A contains all arborescences, not only the ones with maximal size. The
objective function value (that is, the weight) f(T) of an arboresence T ∈ A is
defined as follows:

f(T) :=
∑
a∈T

w(a) . (1)

The goal of the MWRA problem is to find an arboresence T ∗ ∈ A such that
the weight of T ∗ is smaller or equal to all other arborescences in A. In other
words, the goal is to minimize objective function f(·). An example of the MWRA
problem is shown in Figure 1.

The differences to the problem proposed in [10] are as follows. The authors
of [10] require the root vr to have only one single outgoing arc. Moreover, num-
bering the vertices from 1 to |V |, the given acyclic graphG is restricted to contain

M. Dorigo et al. (Eds.): ANTS 2012, LNCS 7461, pp. 61–72, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

62 S. Mateo et al.

vr

5 6 -4

-2 3

-2 -3 1

-1 3 -4

6 -6

-12
(a) Example input graph

vr

-4

-3 1

-1

-12
(b) Optimal solution. Value: -19

Fig. 1. (a) shows an input DAG with eight vertices and 14 arcs. The uppermost vertex
is the root vertex vr. (b) shows the optimal solution, that is, the arborescence rooted
in vr which has the minimum weight among all arborescence rooted in vr that can be
found in the input graph.

only arcs ai,j such that i < j. These restrictions do not apply to the MWRA
problem. Nevertheless, as a generalization of the problem proposed in [10], the
MWRA problem is NP -hard. Concerning existing work, the literature only of-
fers the heuristic proposed in [10], which can also be applied to the more general
MWRA problem.

The definition of the MWRA problem as outlined above is inspired by a novel
method which was recently proposed in [8] for the automated reconstruction of
consistent tree structures from noisy images, which is an important problem,
for example, in Neuroscience. Tree-like structures, such as dendritic, vascular, or
bronchial networks, are pervasive in biological systems. Examples are 2D retinal
fundus images and 3D optical micrographs of neurons. The approach proposed
in [8] builds a set of candidate arborescences over many different subsets of
points likely to belong to the optimal delineation and then chooses the best
one according to a global objective function that combines image evidence with
geometric priors (see Figure 2 for an example). The solution of the MWRA
problem (with additional hard and soft constraints) plays an important role in
this process. Therefore, developing better algorithms for the MWRA problem
may help in composing better techniques for the problem of the automated
reconstruction of consistent tree structures from noisy images.

The contribution of this work is as follows. First, a new heuristic for the
MWRA problem is presented which is based on the deterministic construction
of an arborescence of maximal size, and the subsequent application of dynamic
programming for finding the best solution within this constructed arborescence.
The second contribution is to be found in the application of ant colony opti-
mization (ACO) [4] to the MWRA problem. As both the heuristic and the ACO
approach are based on a sub-ordinate dynamic programming procedure, both

Hybrid Algorithms for the MWRA Problem 63

(a) Original 2D retinal image (b) Reconstruction of the vascu-
lar structure

Fig. 2. (a) shows a 2D image of the retina of a human eye. The problem consists in
the automatic reconstruction (or delineation) of the vascular structure. (b) shows the
reconstruction of the vascular structure as produced by the algorithm proposed in [8].

algorithms can be seen as hybrid (meta-)heuristics [3]. An extensive experimen-
tal evalution of both algorithms shows their superiority to the only exisiting
heuristic proposed in [10].

The outline of this paper is as follows. Section 2 is dedicated to the new heuris-
tic proposed in this work. Furthermore, in Section 3 our ant colony optimiza-
tion approach is outlined. Finally, an extensive experimental study is described
in Section 4 and conclusions as well as an outlook to future work is given in
Section 5.

2 A New Heuristic Approach

In the following we describe a new heuristic approach for solving the MWRA
problem. First, starting from root vertex vr, an arborescence T ′ of maximal size
in G is constructed as outlined in lines 2–9 of Algorithm 1. Second, a dynamic
programming (DP) algorithm is applied to T ′ in order to obtain the minimum-
weight arborescence T that is contained in T ′ and rooted in vr. The DP algo-
rithm from [1] is used for this purpose. Given an undirected tree T = (VT , ET)
with vertex and/or edge weights, and any integer number k ∈ [0, |VT | − 1],
this DP algorithm provides—among all trees with exactly k edges in T—the
minimum-weight tree T ∗. The first step of the DP algorithm consists in arti-
ficially converting the input tree T into a rooted arborescence. Therefore, the
DP algorithm can directly be applied to arborescences. Morever, as a side prod-
uct, the DP algorithm also provides the minimum-weight arborescences for all
l with 0 ≤ l ≤ k, as well as the minimum-weight arborescences rooted in vr
for all l with 0 ≤ l ≤ k. Therefore, given an arborescence of maximal size T ′,
which has t ≤ |V | − 1 arcs (where V is the vertex set of the input graph G),
the DP algorithm is applied with k = t. Then, among all the minimum-weight

64 S. Mateo et al.

Algorithm 1. Heuristic DP-Heur for the MWRA problem

1: input: a DAG G = (V,A), and a root node vr
2: T ′ := (V ′ = {vr}, A′ = ∅)
3: Apos := {a = (vi, vj) ∈ A | vi ∈ V ′, vj /∈ V ′}
4: while Apos �= ∅ do
5: a∗ = (vi, vj) := argmin{w(a) | a ∈ Apos}
6: A′ := A′ ∪ {a∗}
7: V ′ := V ′ ∪ {vj}
8: Apos := {a = (vi, vj) ∈ A | vi ∈ V ′, vj /∈ V ′}
9: end while
10: T := Dynamic Programming(T ′, k = |V | − 1)
11: output: arborescence T

arborescences rooted in vr for l ≤ t, the one with minimum weight is chosen as
the output of the DP algorithm. In this way, the DP algorithm is able to gen-
erate the minimum-weight arborescence T (rooted in vr) which can be found in
arborescence T ′. The heuristic described above is henceforth labelled DP-Heur.

3 Ant Colony Optimization for the MWRA Problem

The ant colony optimization (ACO) approach for the MWRA problem which is
described in the following is a MAX–MIN Ant System (MMAS) [6] imple-
mented in the Hyper-Cube Framework (HCF) [2]. The algorithm, whose pseudo-
code can be found in Algorithm 2, works roughly as follows. At each iteration, a
number of na solutions to the problem is probabilistically constructed based both
on pheromone and heuristic information. Each solution construction consists of
a first phase in which a rooted arborescence of maximal size T ′ in input graph
G is probabilistically constructed, starting from the root vertex vr. Moreover, in
a second phase, the minimum-weight arborescence T rooted in vr which exists
in T ′ is obtained by dynamic programming. The second algorithmic component
which is executed at each iteration is the pheromone update. Hereby, some of the
constructed solutions—that is, the iteration-best solution T ib, the restart-best
solution T rb, and the best-so-far solution T bs—are used for a modification of the
pheromone values. This is done with the goal of focusing the search over time
on high-quality areas of the search space. Just like any other MMAS algorithm,
our approach employs restarts consisting of a re-initialization of the pheromone
values. Restarts are controlled by the so-called convergence factor (cf) and a
Boolean control variable called bs update. The main functions of our approach
are outlined in detail in the following.

Construct Arborescence Of Maximal Size(G, vr): This function contructs a solu-
tion in the way which is shown in lines 2–9 of Algorithm 1. The only difference
is in the choice of the next arc to be added to the current arborescence T ′ at
each step (line 5 of Algorithm 1). Instead of deterministically choosing from Apos

the arc which has the smallest weight value, the choice is done probabilistically,

Hybrid Algorithms for the MWRA Problem 65

Algorithm 2. Ant Colony Optimization for the MWRA Problem

1: input: a DAG G = (V,A), and a root node vr
2: T bs := ({vr}, ∅), T rb := ({vr}, ∅), cf := 0, bs update := false
3: τa := 0.5 for all a ∈ A
4: while termination conditions not met do
5: for i = 1, · · · , na do
6: T ′ := Construct Arborescence Of Maximal Size(G, vr)
7: Ti := Dynamic Programming(T ′, k = |V | − 1)
8: end for
9: T ib := argmin{f(Ti) | T1, . . . , Tna}
10: if T ib < T rb then T rb := T ib

11: if T ib < T bs then T bs := T ib

12: ApplyPheromoneUpdate(cf ,bs update ,T ,T ib,T rb,T bs)
13: cf := ComputeConvergenceFactor(T)
14: if cf > 0.99 then
15: if bs update = true then
16: τa := 0.5 for all a ∈ A
17: T rb := ({vr}, ∅)
18: bs update := false
19: else
20: bs update := true
21: end if
22: end if
23: end while
24: output: T bs, the best solution found by the algorithm

based on pheromone and heuristic information. The pheromone model T that
is used for this purpose contains a pheromone value τa for each arc a ∈ A. The
heuristic information η(a) of an arc a is computed as follows. First, let

wmax := max{w(a) | a ∈ A}. (2)

Based on this maximal weight of all arcs in G, the heuristic information is defined
as follows:

η(a) := wmax + 1− w(a) (3)

In this way, the heuristic information of all arcs is a positive number. Moreover,
the arc with minimal weight will have the heighest value concerning the heuristic
information. Given an arborescence T ′, and the non-empty set of arcs Apos that
may be used for extending T ′, the probability for choosing arc a ∈ Apos is defined
as follows:

p(a | T ′) :=
τa · η(a)∑

â∈Apos
τâ · η(â)

(4)

However, instead of choosing an arc from Apos always in a probabilistic way, the
following scheme is applied at each construction step. First, a value r ∈ [0, 1] is
chosen uniformly at random. Second, r is compared to a so-called determinism

66 S. Mateo et al.

Table 1. Setting of κib, κrb, κbs, and ρ depending on the convergence factor cf and
the Boolean control variable bs update

bs update = false bs update

cf < 0.4 cf ∈ [0.4, 0.6) cf ∈ [0.6, 0.8) cf ≥ 0.8 = true

κib 1 2/3 1/3 0 0

κrb 0 1/3 2/3 1 0

κbs 0 0 0 0 1

ρ 0.1 0.1 0.1 0.1 0.1

rate δ ∈ [0, 1], which is a fixed parameter of the algorithm. If r ≤ δ, arc a∗ ∈ Apos

is chosen to be the one with the maximum probability, that is:

a∗ := argmax{p(a | T ′) | a ∈ Apos} (5)

Otherwise, that is, when r > δ, arc a∗ ∈ Apos is chosen probabilistically accord-
ing to the probability values.

ApplyPheromoneUpdate(cf ,bs update,T ,T ib,T rb,T bs): The pheromone update is
performed in the same way as in all MMAS algorithms implemented in the
HCF. The three solutions T ib, T rb, and T bs (as described at the beginning of
this section) are used for the pheromone update. The influence of these three
solutions on the pheromone update is determined by the current value of the
convergence factor cf, which is defined later. Each pheromone value τa ∈ T is
updated as follows:

τa := τa + ρ · (ξa − τa) , (6)

where

ξa := κib ·Δ(T ib, a) + κrb ·Δ(T rb, a) + κbs ·Δ(T bs, a) , (7)

where κib is the weight of solution T ib, κrb the one of solution T rb, and κbs

the one of solution T bs. Moreover, Δ(T, a) evaluates to 1 if and only if arc a
is a component of arborescence T . Otherwise, the function evaluates to 0. Note
also that the three weights must be chosen such that κib + κrb + κbs = 1. After
the application of Equation 6, pheromone values that exceed τmax = 0.99 are
set back to τmax, and pheromone values that have fallen below τmin = 0.01 are
set back to τmin. This prevents the algorithm from reaching a state of complete
convergence. Finally, note that the exact values of the weights depends on the
convergence factor cf and on the value of the Boolean control variable bs update.
The standard schedule as shown in Table 1 has been adopted for our algorithm.

ComputeConvergenceFactor(T): The convergence factor cf is computed on the
basis of the pheromone values:

cf := 2

⎛
⎝
⎛
⎝

∑
τa∈T

max{τmax − τa, τa − τmin}

|T | · (τmax − τmin)

⎞
⎠− 0.5

⎞
⎠

Hybrid Algorithms for the MWRA Problem 67

This results in cf = 0 when all pheromone values are set to 0.5. On the other
side, when all pheromone values have either value τmin or τmax, then cf = 1.
In all other cases, cf has a value in (0, 1). This completes the description of all
components of the proposed algorithm, which is henceforth labelled Aco.

4 Experimental Evaluation

The algorithms proposed in this work—that is, DP-Heur and Aco—were im-
plemented in ANSI C++ using GCC 4.4 for compiling the software. Moreover,
we reimplemented the heuristic proposed in [10]. As mentioned in the introduc-
tion, this heuristic—henceforth labelled VenSri—is the only existing algorithm
which can directly be applied to the MWRA problem. All three algorithms were
experimentally evaluated on a cluster of PCs equipped with Intel Xeon X3350
processors with 2667 MHz and 8 Gigabyte of memory. In the following, we first
describe the set of benchmark instances that have been used to test the three
algorithms. Afterwards, the experimental results are described in detail.

4.1 Benchmark Instances

Due to the lack of a publicly availabe set of benchmark instances, a benchmark
set was generated. The construction of each DAG G(V,A) from this benchmark
set was based on a pre-defined number of vertices (n) and a pre-defined number
of arcs (m). First, a random arborescence T with n vertices was generated. The
root node of T is called vr. Each one of the remainingm−n+1 arcs was generated
by randomly choosing two vertices vi and vj , and adding the corresponding arc
a = (vi, vj) to T . In this context, a = (vi, vj) may be added to T , if and only
if by its addition no directed cycle is produced, and neither (vi, vj) nor (vj , vi)
form already part of the graph. In order to generate a diverse set of benchmark
instances we considered n ∈ {20, 50, 100, 500, 1000, 5000} and m ∈ {2n, 4n, 6n}.
A total of 10 problem instances was generated for each combination of n and
m. This resulted in a total of 180 problem instances. The arc weights for all
instances were chosen uniformly at random from [−100, 100].

4.2 Results

The three algorithms considered for the comparison were applied exactly once
to each of the 180 problem instances of the benchmark set. Although Aco is a
stochastic search algorithm, this is a valid choice, because results are averaged
over groups of instances that were generated with the same parameters.Aco was
applied with na = 10—that is, 10 solution constructions per iteration—, with
a determinism rate of δ = 0.9, and with a stopping criterion of 10.000 solution
evaluations per run. Table 2 presents the results of each algorithm averaged over
the 10 instances for each combination of n and m (as indicated in the first two
table columns). Four table columns are used for presenting the results of each
algorithm. The column with heading value provides the average of the objective

68 S. Mateo et al.

T
a
b
le

2
.
E
x
p
er
im

en
ta
l
re
su
lt
s.

A
c
o

is
co
m
p
a
re
d

to
th
e
h
eu

ri
st
ic

p
ro
p
o
se
d

in
th
is

w
o
rk

(D
P
-H

e
u
r
),

a
n
d

th
e
a
lg
o
ri
th
m

fr
o
m

[1
0
]

(V
e
n
S
r
i)
.

n
m

D
P
-H

e
u
r

V
e
n
S
r
i

A
c
o

v
a
lu
e

st
d

si
z
e
ti
m
e
(s
)

v
a
lu
e

st
d

si
z
e
ti
m
e
(s
)

v
a
lu
e

st
d

si
z
e

e
v
a
ls

ti
m
e
(s
)

2
0

2
n

-5
2
4
.5
0

(1
3
4
.1
6
)

1
2
.6
0

<
0
.0
1

-5
6
9
.1
0

(1
5
6
.6
9
)

1
4
.9
0

<
0
.0
1

-6
0
5
.2
0

(1
6
2
.6
1
)

1
4
.3
0

3
9
4
.8
0

1
.1
0

4
n

-8
3
1
.6
0

(2
3
0
.6
8
)

1
5
.9
0

<
0
.0
1

-8
0
6
.3
0

(1
0
8
.1
4
)

1
7
.4
0

<
0
.0
1

-9
9
6
.6
0

(1
5
3
.1
2
)

1
7
.3
0
5
2
4
3
.8
0

1
.1
3

6
n

-1
0
3
1
.1
0

(1
9
7
.5
0
)

1
7
.7
0

<
0
.0
1

-9
4
7
.1
0

(1
5
1
.0
5
)

1
7
.8
0

<
0
.0
1

-1
1
9
6
.5
0

(1
5
1
.6
3
)

1
7
.9
0
2
6
6
6
.2
0

1
.2
6

5
0

2
n

-1
2
4
6
.3
0

(2
7
3
.8
8
)

3
3
.6
0

<
0
.0
1

-1
4
7
6
.7
0

(2
9
5
.1
1
)

3
8
.5
0

<
0
.0
1

-1
5
7
1
.0
0

(2
8
8
.5
2
)

3
8
.9
0
4
6
3
5
.0
0

4
.4
1

4
n

-1
9
1
2
.3
0

(4
3
2
.7
9
)

3
9
.7
0

<
0
.0
1

-1
8
1
2
.3
0

(2
0
8
.4
3
)

4
3
.8
0

<
0
.0
1

-2
4
0
4
.6
0

(3
1
2
.1
8
)

4
3
.4
0
7
0
9
3
.4
0

4
.8
6

6
n

-2
3
7
2
.7
0

(3
6
8
.0
3
)

4
3
.6
0

<
0
.0
1

-2
1
6
6
.1
0

(3
0
7
.7
5
)

4
5
.7
0

<
0
.0
1

-2
8
8
4
.9
0

(2
5
1
.0
8
)

4
4
.7
0
7
4
7
4
.4
0

5
.0
0

1
0
0

2
n

-2
5
2
3
.1
0

(4
4
2
.9
1
)

6
7
.1
0

<
0
.0
1

-2
8
2
8
.7
0

(4
0
9
.7
3
)

7
6
.2
0

0
.0
1

-3
1
3
0
.4
0

(4
4
5
.6
2
)

7
5
.0
0
5
7
1
4
.7
0

1
9
.2
1

4
n

-3
9
0
3
.0
0

(6
5
9
.6
9
)

8
2
.3
0

<
0
.0
1

-3
8
7
1
.7
0

(3
0
5
.2
9
)

8
9
.9
0

0
.0
2

-4
9
5
5
.9
0

(3
2
1
.7
5
)

8
8
.9
0
8
2
0
4
.4
0

1
7
.6
8

6
n

-4
8
1
9
.4
0

(5
8
2
.1
8
)

8
7
.3
0

<
0
.0
1

-4
0
5
9
.7
0

(3
7
4
.2
2
)

9
3
.1
0

0
.0
2

-5
7
8
2
.7
0

(3
9
1
.2
2
)

9
0
.6
0
7
6
4
2
.7
0

1
8
.1
4

5
0
0

2
n

-1
2
4
0
4
.5
0

(1
3
0
8
.7
4
)

3
4
8
.9
0

0
.0
6

-1
4
0
8
5
.5
0

(6
0
8
.5
9
)

3
9
8
.7
0

2
.1
2

-1
5
4
8
9
.0
0

(6
3
7
.2
6
)

3
7
8
.0
0
8
5
3
6
.6
0

4
6
0
.2
5

4
n

-1
8
3
2
1
.8
0

(2
2
2
2
.1
9
)

4
0
2
.0
0

0
.0
6

-1
7
2
5
6
.0
0

(7
0
3
.4
6
)

4
4
9
.2
0

2
.2
8

-2
2
6
4
4
.8
0
(1
5
3
7
.4
9
)

4
3
7
.9
0
8
9
0
2
.2
0

6
7
5
.3
7

6
n

-2
2
3
8
6
.6
0

(2
2
0
2
.2
3
)

4
3
4
.9
0

0
.0
6

-1
8
8
9
6
.4
0

(7
3
9
.6
5
)

4
7
1
.6
0

2
.3
8

-2
7
2
7
9
.5
0

(4
4
6
.9
2
)

4
5
8
.1
0
8
6
2
0
.7
0

6
8
8
.3
0

1
0
0
0

2
n

-2
4
4
9
3
.8
0

(1
5
7
7
.3
0
)

6
7
1
.6
0

0
.2
3

-2
6
9
9
5
.8
0

(9
9
5
.4
0
)

7
7
0
.1
0

1
7
.4
0

-2
9
9
1
5
.4
0
(1
2
6
8
.6
4
)

7
4
2
.9
0
9
4
5
1
.9
0

3
0
1
6
.3
4

4
n

-3
7
7
1
5
.4
0

(3
0
3
0
.5
9
)

8
1
1
.8
0

0
.2
3

-3
4
3
1
7
.5
0
(1
4
6
1
.8
9
)

9
0
5
.1
0

1
8
.6
9

-4
5
4
8
9
.8
0
(1
4
6
3
.9
1
)

8
7
6
.8
0
8
3
3
2
.5
0

4
9
4
8
.0
0

6
n

-4
5
2
8
0
.1
0

(2
3
7
6
.7
6
)

8
7
5
.0
0

0
.2
7

-3
6
7
9
0
.5
0

(8
4
6
.7
8
)

9
4
1
.4
0

1
9
.4
1

-5
4
3
5
2
.1
0
(1
0
0
1
.7
7
)

9
2
0
.0
0
7
4
0
9
.3
0

4
7
2
6
.8
1

5
0
0
0

2
n

-1
1
9
1
2
2
.9
0

(4
9
8
0
.7
4
)
3
3
7
1
.6
0

5
.2
3

-1
3
5
3
3
3
.8
0
(2
2
9
6
.5
6
)
3
9
2
1
.1
0

2
4
4
0
.7
0

-1
4
6
0
8
1
.8
0
(2
3
7
7
.7
9
)
3
7
5
8
.5
0
8
5
3
2
.8
0
1
7
4
3
2
9
.9
0

4
n

-1
7
7
6
0
5
.6
0

(7
3
8
8
.5
3
)
4
0
4
5
.1
0

6
.4
2

-1
6
3
3
8
5
.6
0
(2
1
5
3
.9
2
)
4
5
5
0
.0
0

2
5
8
5
.6
5

-2
1
6
5
6
4
.2
0
(4
4
2
5
.3
8
)
4
3
7
2
.5
0
8
5
9
2
.4
0
3
2
1
0
9
9
.2
0

6
n

-2
1
7
1
1
2
.0
0
(1
2
6
6
7
.3
7
)
4
3
2
5
.6
0

7
.2
9

-1
7
1
4
8
3
.7
0
(2
8
3
9
.8
1
)
4
7
0
7
.2
0

2
6
7
9
.9
9

-2
5
8
9
6
5
.2
0
(3
9
4
7
.9
1
)
4
5
6
6
.7
0
8
1
7
6
.8
0
3
5
4
7
1
8
.9
0

Hybrid Algorithms for the MWRA Problem 69

Fig. 3. Average improvement (in %) of Aco and DP-Heur over VenSri. Positive
values correspond to an improvement, while negative values indicate that the respective
algorithm is inferior to VenSri. The improvement is shown for the three different arc-
densities that are considered in the benchmark set, that is, m = 2n, m = 4n, and
m = 6n.

function values of the best solutions found by the respective algorithm for the
10 instances of each combination of n and m. The second column (with heading
std) contains the corresponding standard deviation. The third column (with
heading size) indicates the average size (in terms of the number or arcs) of the
best solutions found by the respective algorithm.1 Finally, the fourth column
(with heading time (s)) contains the average compution time (in seconds). For
all three algorithms, the computation time indicates the time of the algorithm
termination. In the case of Aco, an additional table column (with heading evals)
indicates at which solution evaluation, on average, the best solution of a run was
found. Finally, for each combination of n andm, the result of the best-performing
algorithm is indicated in bold font.

The results allow to make the following observations. First, Aco is for all com-
binations of n and m the best-performing algorithm. Averaged over all problem
instances Aco obtains an improvement of 31.9% over VenSri. Figure 3 shows
the average improvement of Aco overVenSri for three groups of input instances
concerning the different arc-densities. It is interesting to observe that the advan-
tage of Aco over VenSri seems to grow when the arc-density increases. On
the downside, these improvements are obtained at the cost of a significantly in-
creased computation time. Concerning heuristic DP-Heur, we can observe that
it improves in all 12 combinations of n and m where m ∈ {4n, 6n} over VenSri.
Interestingly, however,DP-Heur is inferior to VenSri for all combinations with
m = 2n. In other words, DP-Heur seems to be inferior to VenSri when rather
sparse input graphs are concerned, whereas the opposite is the case for more

1 Remember that solutions—that is, arborescences—may have any number of arcs
between 0 and |V | − 1, where |V | is the number of the input DAG G = (V,A).

70 S. Mateo et al.

dense input graphs. Averaged over all problem instances, DP-Heur obtains an
improvement of 8.87% over VenSri. The average improvement of DP-Heur
over VenSri is shown for the three groups of input instances concerning the
different arc-densities in Figure 3. Concerning a comparison of the computation
times, we can state thatDP-Heur has a clear advantage overVenSri especially
for large-size problem instances.

Figure 4 presents the information which is contained in the columns of Table 2
that have headings size and evals. Concerning the average size of the solutions

(a) Average solution size

(b) Average number of solution evaluations at which the best solution of an
Aco run is found

Fig. 4. (a) shows, for each combination of n and m, information about the average
size—in terms of the number of arcs—of the solutions produced by DP-Heur, Aco,
and VenSri. (b) shows for each combination of n and m the average number of solution
evaluations at which the best solution of a run of Aco is found.

Hybrid Algorithms for the MWRA Problem 71

produced by the three algorithms (as shown in Figure 4(a)) it is interesting to
observe that the solutions produced by DP-Heur consistently seem to be the
smallest ones, while the solutions produced by VenSri seem generally to be the
largest ones. The size of the solutions produced by Aco is generally inbetween
these two extremes. We currently have no explanation for this aspect, which
certainly deserves further examination.

Finally, Figure 4(b) presents the average number of solution evaluations at
which the best solution of a run of Aco is found. Not surprisingly, when large
graphs are concerned, significantly more solution evaluations are necessary for
reaching the best solutions than when rather small graphs are tackled. Con-
cerning a comparison between the groups of graphs characterized by different
arc-densities, it can be observed that when rather small graphs are concerned
Aco seems to faster in obtaining good solutions for sparse graphs. However,
when the size of the input graph grows, this difference disappears.

5 Conclusions and Future Work

In this work we have proposed a heuristic and an ant colony optimization ap-
proach for the minimum-weight rooted arboresence problem. Both algorithms
make use of dynamic programming as sub-ordinate procedure. Therefore, they
may be regarded as hybrid algorithms. The experimental results show that both
approaches improve (on average) over an existing heuristic from the literature.
Interestingly, the advantage of the proposed algorithm over the existing heuristic
grows with increasing arc-density of the input graph.

Concerning future work, we plan to apply both approaches to other types of
problem instances. For example, we plan to generate problem instances in which
the number of arcs with negative weights is significantly higher than the number
of arcs with positive weights, or vice versa. Moreover, we plan to implement an
integer programming model for the tackled problem—in the line of the model
proposed in [5] for a related problem—and to solve the model with an efficient
integer programming solver. In [7] we already proposed an extension of this
model for the problem of reconstructing tree structures.

Acknowledgments. This work was supported by grant TIN2007-66523
(FORMALISM) of the Spanish government.

References

1. Blum, C.: Revisiting dynamic programming for finding optimal subtrees in trees.
European Journal of Operational Research 177(1), 102–114 (2007)

2. Blum, C., Dorigo, M.: The hyper-cube framework for ant colony optimization.
IEEE Transactions on Systems, Man and Cybernetics – Part B 34(2), 1161–1172
(2004)

3. Blum, C., Puchinger, J., Raidl, G., Roli, A.: Hybrid metaheuristics in combinatorial
optimization: A survey. Applied Soft Computing 11(6), 4135–4151 (2011)

72 S. Mateo et al.

4. Dorigo, M., Stützle, T.: Ant Colony Optimization. MIT Press, Cambridge (2004)
5. Duhamel, C., Gouveia, L., Moura, P., Souza, M.: Models and heuristics for a min-

imum arborescence problem. Networks 51(1), 34–47 (2008)
6. Stützle, T., Hoos, H.H.: MAX −MIN Ant System. Future Generation Computer

Systems 16(8), 889–914 (2000)
7. Türetken, E., Benmansour, F., Fua, P.: Automated reconstruction of tree structures

using path classifiers and mixed integer programming. In: Proceedings of CVPR
2012 – 25th IEEE Conference on Computer Vision and Pattern Recognition. IEEE
Press (in press, 2012)

8. Türetken, E., González, G., Blum, C., Fua, P.: Automated reconstruction of den-
dritic and axonal trees by global optimization with geometric priors. Neuroinfor-
matics 9(2-3), 279–302 (2011)

9. Tutte, W.T.: Graph Theory. Cambridge University Press, Cambridge (2001)
10. Venkata Rao, V., Sridharan, R.: Minimum-weight rooted not-necessarily-spanning

arborescence problem. Networks 39(2), 77–87 (2002)

Improving the cAnt-MinerPB

Classification Algorithm

Matthew Medland, Fernando E.B. Otero, and Alex A. Freitas

School of Computing, University of Kent, Canterbury, UK
{mm443,f.e.b.otero,a.a.freitas}@kent.ac.uk

Abstract. Ant Colony Optimisation (ACO) has been successfully ap-
plied to the classification task of data mining in the form of Ant-Miner.
A new extension of Ant-Miner, called cAnt-MinerPB, uses the ACO pro-
cedure in a different fashion. The main difference is that the search in
cAnt-MinerPB is optimised to find the best list of rules, whereas in Ant-
Miner the search is optimised to find the best individual rule at each
step of the sequential covering, producing a list of best rules. We aim to
improve cAnt-MinerPB in two ways, firstly by dynamically finding the
rule quality function which is used while the rules are being pruned, and
secondly improving the rule-list quality function which is used to guide
the search. We have found that changing the rule quality function has lit-
tle effect on the overall performance, but that by improving the rule-list
quality function we can positively affect the discovered lists of rules.

1 Introduction

Data mining is the automatic search for useful, usable, and preferably interesting
patterns in data [3,13]. These patterns are used by anyone with an interest in
what their data holds—e.g., businessmen or scientists. There are multiple data
mining tasks, of which classification is the most studied.

The classification task seeks to create a model that places objects (exam-
ples) into groups. A class value (group name) is then assigned by analysing
common traits (attributes’ values) between objects of that class. Classification
problems can therefore be viewed as optimisation problems, where the intended
outcome is to find the best model that represents the predictive relationships
in the data. There are many different ways to represent these models, such as
‘black-box’ models produced by support vector machines (SVM) and artificial
neural networks, which are difficult to interpret, and ‘white-box’ decision tree
and classification rule models, which are more readily interpreted [11]. ‘White-
box’ methods have the advantage of being easier to comprehend, and so they are
used to provide further understanding of the data. This enhanced understanding
leads to a greater degree of trust in the models produced and enables decision
makers to make the best possible decisions.

Ant Colony Optimization (ACO) algorithms have successfully been applied
to the classification task in the form of Ant-Miner [2,10]. Ant-Miner seeks to
extract a list of classification rules of the form IF antecedent THEN consequent

M. Dorigo et al. (Eds.): ANTS 2012, LNCS 7461, pp. 73–84, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

74 M. Medland, F.E.B. Otero, and A.A. Freitas

from a data set, where the antecedent is composed by predictor attribute-value
conditions, and the consequent corresponds to the class value to be predicted.

Several extensions of Ant-Miner have been proposed in the literature and
have been reviewed in [8]. The majority of these extensions maintain the overall
structure of the algorithm—i.e., the algorithm employs an ACO-based procedure
to create individual rules which are joined to create a complete classification
model (list of rules). This strategy to produce a list of classification rules is known
as sequential covering (or separate-and-conquer), where each rule is discovered
individually. An improved strategy has recently been proposed in the cAnt-
MinerPB algorithm [9], where an ACO-based procedure is used not to construct
individual rules, but a full list of rules. One of the main differences between the
cAnt-MinerPB and Ant-Miner algorithms is that in cAnt-MinerPB the search is
performed and optimised to find the best list of rules, whereas in Ant-Miner (and
its extensions) the search is performed and optimised to find the best individual
rule at each step of the sequential covering, resulting in the list of best rules.
In other words, in cAnt-MinerPB the search is governed by the quality of a
candidate list of rules, while in Ant-Miner the search is guided by the quality of
an individual rule.

One of the main components of Ant-Miner is the rule quality function used
to guide the search. The use of different rule quality functions in sequential
covering algorithms has been studied in [5,7] and in Ant-Miner algorithm in
[12]. Improving the rule quality function of sequential covering algorithms tends
to improve the overall performance of the algorithm. Although the search in
cAnt-MinerPB is guided by the quality of a list of rules, the algorithm uses a
rule quality function to prune (i.e., remove irrelevant terms) from a candidate
rule. Therefore, there are two quality functions involved in the search for the best
list of rules in cAnt-MinerPB: the rule quality function used during pruning and
the rule-list quality function used to guide the search (i.e., update pheromones).

In this paper we propose to improve the search of the cAnt-MinerPB algorithm
by (1) allowing the algorithm to dynamically choose a rule quality evaluation
function for a candidate rule and (2) using a new rule-list quality function to
guide the search. The extension (1) is possible since the rule quality function has
a smaller role in cAnt-MinerPB—it is only used during pruning—and it is not
used as a criterion to compare different rules. A dynamic rule quality function
selection would not be possible in Ant-Miner, as the rule quality function needs
to be consistent throughout to ensure that the algorithm is comparing like-to-
like. The extension (2) aims at preventing overfitting—the case where the list of
rules is too tailored to the training set and has poor generalisation performance.
We evaluate the effect of these extensions using 14 data sets from the UCI
Machine Learning repository [4] in terms of both predictive accuracy and size of
the discovered classification model.

The remainder of this paper is organised as follows. In Section 2 we discuss the
differences in the search strategy of Ant-Miner and cAnt-MinerPB algorithms.
In Section 3 we discuss our proposed improvements to cAnt-MinerPB. Then we
present and discuss our results in Section 4. Section 5 then concludes this paper.

Improving the cAnt-MinerPB Classification Algorithm 75

2 Background

Separate-and-conquer, also known as sequential covering, classification algo-
rithms are data mining algorithms that employ two steps to create a classifi-
cation model. First, the algorithm classifies part of the dataset (conquer) and
then removes the classified data from the dataset (separate). This process is re-
peated until the number of unclassified examples falls below a set threshold. At
each stage, the data which is classified depends on the classification rule cho-
sen, and which classification rule is chosen depends on the quality of possible
rules. To calculate this, a rule quality function is used and it is this function
which determines the success of most sequential covering algorithms. There are
multiple aspects of a rule which can affect its quality. For example, a rule may
never misclassify an example (high consistency) but only cover a small subset of
examples (low coverage). Deciding which rule quality function to use always has
the problem of finding an effective trade-off between consistency and coverage.

The Ant-Miner algorithm follows a sequential covering strategy using an ACO
procedure to create individual rules. First, a construction graph is created where
each node is a value for a given attribute, with every attribute-value pair from
the data set represented. Each ant then moves from a start node (with an empty
rule) and stochastically chooses a vertex with a probability based upon the
pheromone value and a heuristic value. The visited vertex is a rule term as
a [attribute, value] pair. The ant will continue to add new terms until either
all attributes have been used or adding another would decrease the number of
covered examples below a predefined threshold. After a rule has been created, a
pruning algorithm removes irrelevant terms from the newly created rule. Once
every ant in the colony has traversed the graph, the best rule based on a quality
function is selected and the pheromone levels are adjusted. The pheromone on
the terms included in the best rule increase and the pheromone on the others
(unused terms) decrease. After a rule has been created by the ACO procedure,
all of the examples which it covers are removed from the data set and the next
rule is created. The algorithm finishes once the training set has less than a
predefined number of training examples remaining and the list of best rules is
returned as the discovered classification model. Most of the proposed extensions
of Ant-Miner follow this same strategy to create a list of rules [8].

cAnt-MinerPB is an ACO classification algorithm that employs a different
search strategy than Ant-Miner. Rather than searching for the list of best rules
as Ant-Miner does, cAnt-MinerPB instead searches for the best list of rules. This
change may sound minor, but it has a dramatic effect on the algorithm. In Ant-
Miner each ant creates an individual rule, whereas in cAnt-MinerPB each ant
creates an entire list of rules. Once the best candidate list of rules has been
created, the pheromones are updated which affects the lists that will be created
in the future iterations. The best list of rules chosen throughout the execution
of the algorithm is returned as the discovered classification model.

The high-level pseudocode of cAnt-MinerPB is presented in Figure 1. At each
iteration, an ant in the colony starts with an empty list and the full training
set. An ant then creates a rule, prunes the rule using the rule quality function,

76 M. Medland, F.E.B. Otero, and A.A. Freitas

Input: training examples
Output: best discovered list of rules
1. InitialisePheromones();
2. listgb ← {};
3. m ← 0;
4. while m < maximum iterations and not stagnation do
5. listib ← {};
6. for n ← 1 to colony size do
7. examples ← all training examples;
8. listn ← {};
9. while |examples| > maximum uncovered do
10. ComputeHeuristicInformation(examples);
11. rule ← CreateRule(examples);
12. Prune(rule);
13. examples ← examples− Covered(rule, examples);
14. listn ← listn + rule;
15. end while
16. if Quality(listn) > Quality(listib) then
17. listib ← listn;
18. end if
19. end for
20. UpdatePheromones(listib);
21. if Quality(listib) > Quality(listgb) then
22. listgb ← listib;
23. end if
24. m ← m+ 1;
25. end while
26. return listgb;

Fig. 1. High-level pseudocode of the cAnt-MinerPB algorithm [9]

and removes all of the covered examples from the training set. The ant then
repeats these steps until the number of remaining examples lies below a prede-
fined threshold. It is important to note that at no point are rules compared to
each other, and that the only time the rule quality function is used is during
the pruning stage. The list of rules created by the ant is then compared to the
current best list of rules and if it is better than the current best, it replaces it
as the current best. Once all ants in the colony have finished creating candidate
list of rules, the pheromones are updated. This entire process repeats until ei-
ther the maximum number of iterations has been reached or until the algorithm
converges.

There is a clear difference in the search strategy between Ant-Miner (and its
extensions) and cAnt-MinerPB algorithms. The search in Ant-Miner is guided
by the quality of the individual rules, as in (traditional) sequential covering
algorithms. The best rule found is always used, regardless of how it affects the
list of rules. The search in cAnt-MinerPB algorithm, however, is not concerned
by the quality of the individual rules as long as the quality of the complete list
of rules is improving, since the entire list is created at once and the best list is
chosen to guide the search. Therefore, the rule quality function has a smaller
role—only used to decide whether or not to prune a rule—and the rule-list
quality function guides the search.

Improving the cAnt-MinerPB Classification Algorithm 77

3 Proposed Improvements to cAnt-MinerPB

This paper presents two extensions of the cAnt-MinerPB algorithm in order to
improve the search for the best list of rules. The first extension consists of al-
lowing the algorithm to dynamically choose the rule quality function to be used
during the pruning procedure (per rule fashion), where different rules can be
pruned using different rule quality functions. As has been previously studied
[5,7,12], rule quality functions have different bias and capture different aspects
of the rule (e.g., some might favour consistency over coverage). The second ex-
tension consists of using a pessimistic error rate rule-list quality function to
evaluate a candidate list of rules and, consequently, to guide the search.

3.1 Dynamically Choosing Rule Evaluation Functions

In cAnt-MinerPB, ants find routes through a fully connected graph of all possible
rule terms (attribute-value pairs) in order to construct rules. Our initial approach
to dynamically choose the rule quality function was based around adding extra
vertices to the construction graph containing the candidate rule terms to repre-
sent the available rule quality functions, resulting in one large graph. This simple
approach had the benefits that it was an easy concept to grasp and it fits very
nicely into cAnt-MinerPB with very few modifications to the existing algorithm.
However, we have found that using this approach, the same rules can be created
by the pruning procedure but with different rule quality functions. This affected
the convergence of the algorithm, since the choices of the rule quality functions
were not unique and, consequently, there was no selective pressure towards a
particular rule quality function. This meant that the algorithm would rarely
converge.

These results led us to realise that the convergence tests had to purely rely
upon the terms selected to create the rules. To enable this behaviour, we used
two separate construction graphs: one purely consisting of different rule quality
functions, and the other consisting of rule terms. When creating a rule, an ant
will first visit the rule quality functions graph to select an evaluation function,
and then visit the rule terms graph to create the rule.

This process can be implemented adding only a few lines to the algorithm
presented in Figure 1. The first addition would be the creation of a rule qual-
ity functions graph and initialise its pheromones (line 1). Next, each ant would
choose the rule quality function before creating a rule (line 11), and then store
the rule quality for later use in the pruning stage (line 12). The selection of the
rule quality function is only based on pheromone levels, no heuristic informa-
tion is used. Once the iteration-best list of rules has been determined, the two
pheromone matrices would be updated (line 20) to reflect the chosen rule quality
functions as well as the list of rule terms used in the list of rules.

Though the rule quality functions and rule terms graphs are independent, the
pheromones in cAnt-MinerPB are retained in sequence. In other words, the first
rule being chosen in a list has a list of pheromones which is saved and updated
across iterations, as does the second and so forth. This means that the first rule

78 M. Medland, F.E.B. Otero, and A.A. Freitas

IF petal-width <= 0.8 THEN Iris-setosa USING F-measure function

IF petal-width > 1.75 THEN Iris-virginica USING Error-based function

IF sepal-length <= 6.15 THEN Iris-versicolor USING M-Estimate function

IF <empty> THEN Iris-virginica

Fig. 2. An example of a list of rules with associated rule quality functions. The default
rule (with an empty antecedent) does not have a function associated.

is now converging to the list of terms, which was affected by the choice of the rule
quality function, both of which may be vastly different to the terms and quality
function used by the second rule. Convergence is only determined by analysing
the rule terms graph, since different rule quality functions can lead to the same
rule and the choice of the rule quality function does not affect the quality of
the list of rules (as long as they produce the same rules). Figure 2 presents an
example of a list of rules with associated rule quality functions.

In order for our dynamic rule quality function selection process to be of any use
we needed a wide selection of different rule quality functions. We have selected
previously used rule quality functions described in [7,12], as well as the original
rule quality function used in cAnt-MinerPB (Sensitivity × Specificity) and a rule
quality function based on C4.5’s error-based measure [11, p. 41]. The chosen
functions can be found in Table 1. For the parametric quality functions, we have
used their default parameter values [7] (shown in the ‘Parameter’ column in
Table 1). In the function definitions we make use of a series of shorthands to
condense the formulae. These are defined as below:

TP The number of examples covered by the rule that belong to the class pre-
dicted by the rule (true positives).

FP The number of examples covered by the rule that do not belong to the class
predicted by the rule (false positives).

TN The number of examples not covered by the rule that do not belong to the
class predicted by the rule (true negatives).

FN The number of examples not covered by the rule that belong to the class
predicted by the rule (false negatives).

S The total number of training examples (TP + FP + TN + FN).

3.2 Error-Based Rule-List Function

After a candidate list of rules is created in cAnt-MinerPB, its quality is measured
in terms of predictive accuracy in the training set. It is expected that a list of
rules that perform well in the training set will also perform well in the test set
(the set of unseen examples). However, the use of the predicted accuracy can
lead to overfitting—the case where the list of rules created is too tailored to the
training set and does not generalise well, i.e., it has a lower predictive accuracy
in the test set. In order to mitigate the possibility of overfitting, we propose the

Improving the cAnt-MinerPB Classification Algorithm 79

Table 1. The rule quality functions used in the dynamic selection process

Function Name Parameter Formula

Accuracy - TP+TN
TP+FP+TN+FN

Confidence + Coverage - TP
TP+FP

+ TP
S

Cost Measure c = 0.437 (c · TP)− ((1− c) · FP)

F-measure β = 0.5
(1+β2)· TP

TP+FN
· TP
TP+FP

β2· TP
TP+FN

+ TP
TP+FP

Jaccard - TP
TP+FP+FN

Klösgen ω = 0.4323
(
TP+FP

S

)ω ·
(

TP
TP+FP

− TP+FN
S

)
M-Estimate m = 22.466

TP+m·TP
S

TP+FP+m

C4.5’s Error-based function* - UCF(FP, TP + FP)

Relative Cost Measure cr = 0.342 (cr · recall)− ((1− cr) · FP
FP+TN

)

Sensitivity × Specificity - TP
TP+FN

· TN
TN+FP

*The UCF function corresponds to the upper limit of the probability of an error (FP) over the
examples covered by a rule (TP + FP). More details can be found in [11, p. 41]

use of a function based on C4.5’s pessimistic error rate (UCF) to measure the
quality of a candidate list of rules, given by

1−

L∑
r=1

(TPr + FPr) · UCF(FPr , TPr + FPr)

S
, (1)

where FPr and TPr are the number of false positives and true positives of the
r-th rule, respectively, L is the number of rules in the candidate list and S is
the number of training examples. According to (1), the quality of a list of rules
corresponds to 1 minus the sum of the predicted errors (the number of examples
classified by a rule times its associated UCF error rate [11, p. 41]) of the rules
divided by the number of examples in the training set—the lower the sum of
predicted errors, the higher the quality of the list.

4 Results

In order to evaluate the proposed extensions of the cAnt-MinerPB algorithm,
we have selected 14 datasets from the UCI Machine Learning repository [4].
Table 2 presents a summary of the data sets used in our experiments. We have

80 M. Medland, F.E.B. Otero, and A.A. Freitas

Table 2. Summary of the data sets used in the experiments

Data set # Attributes # Classes # Examples

Nominal Continuous

balance-scale 4 0 3 625
breast-l 9 0 2 286
breast-w 0 30 2 569
credit-a 8 6 2 690
dermatology 33 1 6 366
glass 0 9 7 214
heart-c 6 7 5 303
hepatitis 13 6 2 155
ionosphere 0 34 2 351
iris 0 4 3 150
liver-disorders 0 6 2 345
parkinsons 0 22 2 195
wine 0 13 3 178
zoo 16 0 7 101

evaluated four different variations of cAnt-MinerPB: the original cAnt-MinerPB;
the cAnt-MinerPB with the proposed dynamic rule quality function selection (de-
noted with a ‘[D]’ marking); the cAnt-MinerPB with the proposed error-based
rule-list quality function (denoted with a ‘[E]’ marking); and cAnt-MinerPB with
both dynamic rule quality function selection and error-based list quality function
(denoted with a ‘[D+E]’ marking). We carried out a tenfold cross-validation pro-
cedure and the cAnt-MinerPB default parameters were used [9]: colony size of
5, maximum number of iterations of 500 and evaporation factor of 0.90 (i.e.,
the evaporation rate is equal to 1 − factor, therefore the pheromone values
are decreased by 10% during evaporation). Since cAnt-MinerPB is a stochastic
algorithm, it was run 10 times for each of the cross-validation folds.

The results of our experiments are presented in Table 3, for predictive accu-
racy, and Table 4, for the size of the discovered model (measured as the total
number of terms in the list of rules). A value on those tables corresponds to
the average value measured over the tenfold cross-validation. Table 5 presents
the results of the non-parametric Friedman statistical test with the post-hoc
Hommel’s test [1,6]. The information presented in Table 5 corresponds to the
average rank (first column), where the lower the rank the better the algorithm’s
performance, and the adjusted pHomm value. Statistically significant differences
among the algorithm with the highest rank (the control ‘(c)’ algorithm) are de-
termined by the pHomm value: if the p value is less than 0.1, the difference in
the rank is statistically significant at the α = 0.1 level; if the p value is less
than 0.05, the difference in the rank is statistically significant at the α = 0.05
level.

Improving the cAnt-MinerPB Classification Algorithm 81

Table 3. Average predictive accuracy (average ± standard error) measured over
tenfold cross-validation. The highest predictive accuracy for a given data set is shown
in bold.

cAMPB cAMPB [E] cAMPB [D] cAMPB [D+E]

balance-scale 76.83 ± 0.24 76.26 ± 0.29 76.69 ± 0.17 76.28 ± 0.21
breast-l 72.32 ± 0.31 75.27 ± 0.35 70.59 ± 0.42 73.77 ± 0.36
breast-w 94.29 ± 0.16 94.34 ± 0.16 94.09 ± 0.33 94.60 ± 0.20
credit-a 85.68 ± 0.15 86.10 ± 0.23 85.19 ± 0.31 85.77 ± 0.22
dermatology 92.46 ± 0.31 92.40 ± 0.40 91.72 ± 0.35 91.97 ± 0.28
glass 73.94 ± 0.49 73.11 ± 0.61 72.73 ± 0.65 73.52 ± 0.42
heart-c 55.50 ± 0.37 55.21 ± 0.41 54.57 ± 0.63 54.83 ± 0.62
hepatitis 78.78 ± 0.43 78.55 ± 0.66 79.50 ± 0.61 78.83 ± 0.55
ionosphere 89.65 ± 0.31 89.95 ± 0.23 89.32 ± 0.30 90.58 ± 0.45
iris 93.24 ± 0.20 93.13 ± 0.26 94.33 ± 0.25 94.47 ± 0.14
liver-disorders 66.72 ± 0.40 66.71 ± 0.41 67.10 ± 0.49 67.98 ± 0.53
parkinsons 86.98 ± 0.65 88.42 ± 0.50 87.88 ± 0.29 87.72 ± 0.55
wine 93.57 ± 0.32 94.51 ± 0.31 94.18 ± 0.56 95.04 ± 0.33
zoo 88.59 ± 0.50 88.67 ± 0.26 89.19 ± 0.41 88.57 ± 0.49

Table 4. Average number of terms (average ± standard error) measured over tenfold
cross-validation. The lowest number of terms for a given data set is shown in bold.

cAMPB cAMPB [E] cAMPB [D] cAMPB [D+E]

balance-scale 12.64 ± 0.03 12.66 ± 0.05 15.45 ± 0.16 14.32 ± 0.13
breast-l 19.15 ± 0.40 8.65 ± 0.17 34.65 ± 0.82 11.85 ± 0.62
breast-w 8.55 ± 0.12 8.03 ± 0.19 11.90 ± 0.21 9.50 ± 0.28
credit-a 17.54 ± 0.32 13.71 ± 0.38 35.53 ± 0.74 25.23 ± 0.64
dermatology 44.47 ± 0.63 43.93 ± 0.63 42.39 ± 0.66 41.89 ± 0.57
glass 10.73 ± 0.14 9.99 ± 0.15 13.24 ± 0.25 12.61 ± 0.22
heart-c 27.65 ± 0.58 25.10 ± 0.57 38.66 ± 0.68 29.90 ± 0.71
hepatitis 10.87 ± 0.17 10.36 ± 0.40 12.71 ± 0.43 11.47 ± 0.20
ionosphere 11.04 ± 0.17 9.96 ± 0.25 15.35 ± 0.38 11.38 ± 0.32
iris 4.92 ± 0.08 4.17 ± 0.13 5.04 ± 0.11 4.13 ± 0.05
liver-disorders 11.78 ± 0.08 11.49 ± 0.12 29.66 ± 0.30 23.70 ± 0.50
parkinsons 7.02 ± 0.11 5.96 ± 0.08 7.94 ± 0.15 7.00 ± 0.15
wine 4.75 ± 0.08 3.83 ± 0.07 5.66 ± 0.14 4.42 ± 0.07
zoo 6.70 ± 0.09 7.12 ± 0.10 6.97 ± 0.10 7.41 ± 0.19

The use of the dynamic rule quality function selection combined with the
error-based rule-list quality function (cAnt-MinerPB [D+E]) led to an over-
all improvement in predictive accuracy and achieved the highest average rank,
although the differences are not statistically significant according to the Fried-
man test. The use of the error-based rule-list quality (cAnt-MinerPB [E]) had
a similar predictive accuracy to the original cAnt-MinerPB, achieving a similar

82 M. Medland, F.E.B. Otero, and A.A. Freitas

Table 5. Statistical test results according to the non-parametric Friedman test with
the Hommel’s post-hoc test. Statistically significant differences at the α = 0.1 level are
tabulated in bold and differences at the α = 0.05 level are underlined.

Configuration Average Rank Adjusted pHomm

(i) Predictive Accuracy

cAnt-MinerPB [D+E] (c) 2.07 –

cAnt-MinerPB [E] 2.43 0.4642

cAnt-MinerPB 2.57 0.4642

cAnt-MinerPB [D] 2.93 0.2369

(ii) Model Size

cAnt-MinerPB [E] (c) 1.43 –

cAnt-MinerPB 2.29 0.0789

cAnt-MinerPB [D+E] 2.57 0.0383

cAnt-MinerPB [D] 3.71 8.4E-6

average rank. The use of the dynamic rule quality function (cAnt-MinerPB [D])
has not led to an improvement in predictive accuracy, achieving the lowest aver-
age rank. In terms of the discovered model size, the use of the error-based rule-list
quality (cAnt-MinerPB [E]) led to a statistically significant improvement in the
size of the discovered lists, reducing the average number of terms in the lists.
The use of the dynamic rule quality function selection (cAnt-MinerPB [D] and
cAnt-MinerPB [D+E]) resulted in longer lists and achieved the lowest rank.

The error-based rule-list function has shown significant improvement in terms
of the size of the discovered lists of rules, without a drop in accuracy. This is
a very useful finding as the cAnt-MinerPB algorithm suffered from increased
list size, which now can be avoiding by the use of the new error-based rule-list
function. The dynamic rule quality function selection, however, has shown no
significant gain in accuracy while performing much worse in terms of size.

During the experiments using the dynamic rule quality function selection we
monitored which rule quality functions were being chosen. The frequency of each
rule quality function being chosen per dataset can be found in Figure 3. The top
image (Figure 3a) shows the results when using the dynamic search alongside
the traditional predictive accuracy rule-list function, whereas the bottom image
(Figure 3b) shows the results when the proposed error-based rule-list function
was used. In Figure 3a, it appears that four rule quality functions were being used
more often quite consistently, except in the case of the zoo dataset, suggesting
that the use of these functions can lead to improvements in the accuracy during
training and potentially overfitting. In Figure 3b, however, the pattern is much
less clear and no rule quality function stands out.

Improving the cAnt-MinerPB Classification Algorithm 83

(a) Using the predictive accuracy rule-list function.

(b) Using the error-based rule-list function.

Fig. 3. Heatmaps showing the frequency at which different rule quality functions were
chosen per dataset—the darker the colour the more often the rule quality function was
used

84 M. Medland, F.E.B. Otero, and A.A. Freitas

5 Conclusion

We have found that the error-based rule-list evaluation function produces a sta-
tistically significant improvement in terms of the size of the discovered lists, and
that there is no detriment to the predictive accuracy. Our second finding was
that the dynamic selection of rule quality functions did not yield any improve-
ments. This leads us to believe that the characteristics of an individual rule
quality function have little effect on the final quality of the discovered lists, and
that any sensible rule quality function can be used.

We have shown that the dynamic selection of rule quality function (used
purely for pruning) has little effect on the quality of the lists, therefore as a
future research direction, it may be interesting to investigate the use of different
pruning strategies within cAnt-MinerPB that are not necessary dependent on
the rule quality and more related to the quality of a list of rules.

References

1. Demšar, J.: Statistical Comparisons of Classifiers over Multiple Data Sets. JMLR 7,
1–30 (2006)

2. Dorigo, M., Stüzle, T.: Ant Colony Optimization. The MIT Press (2004)
3. Fayyad, U., Piatetsky-Shapiro, G., Smith, P.: From data mining to knowledge

discovery: an overview. In: Advances in Knowledge Discovery & Data Mining, pp.
1–34. MIT Press (1996)

4. Frank, A., Asuncion, A.: UCI Machine Learning Repository (2010),
http://archive.ics.uci.edu/ml

5. Fürnkranz, J., Flach, P.: ROC ‘n’ Rule Learning—Towards a Better Understanding
of Covering Algorithms. Machine Learning 58, 39–77 (2005)

6. Garćıa, S., Herrera, F.: An Extension on ‘Statistical Comparisons of Classifiers
over Multiple Data Sets’ for all Pairwise Comparisons. JMLR 9, 2677–2694 (2008)

7. Janssen, F., Fürnkranz, J.: On the quest for optimal rule learning heuristics. Ma-
chine Learning 78, 343–379 (2010)

8. Martens, D., Baesens, B., Fawcett, T.: Editorial survey: swarm intelligence for data
mining. Machine Learning 82, 1–42 (2011)

9. Otero, F., Freitas, A., Johnson, C.: A New Sequential Covering Strategy for Induc-
ing Classification Rules with Ant Colony Algorithms. To Appear in IEEE Trans.
on Evolutionary Computation (2012)

10. Parpinelli, R., Lopes, H., Freitas, A.: Data Mining with an Ant Colony Optimiza-
tion Algorithm. IEEE Trans. on Evolutionary Computation 6(4), 321–332 (2002)

11. Quinlan, J.R.: C4.5: Programs for Machine Learning. Kaufmann Publishers Inc.,
San Francisco (1993)

12. Salama, K., Abdelbar, A.: Exploring Different Rule Quality Evaluation Functions
in ACO-based Classification Algorithms. In: IEEE Symposium on Swarm Intelli-
gence (SIS), pp. 1–8 (2011)

13. Witten, I., Frank, E., Hall, M.: Data Mining: Practical Machine Learning Tools
and Techniques, 3rd edn. Morgan Kaufmann (2011)

http://archive.ics.uci.edu/ml

Introducing Novelty Search

in Evolutionary Swarm Robotics

Jorge Gomes1,3, Paulo Urbano1, and Anders Lyhne Christensen2,3

1 LabMAg, Faculdade de Ciências da Universidade de Lisboa, Portugal
2 Instituto Universitário de Lisboa (ISCTE-IUL), Lisboa, Portugal

3 Instituto de Telecomunicações, Lisboa, Portugal
{jgomes,pub}@di.fc.ul.pt, anders.christensen@iscte.pt

Abstract. Novelty search is a recent and promising evolutionary tech-
nique. The main idea behind it is to reward novel solutions instead of
progress towards a fixed goal, in order to avoid premature convergence
and deception. In this paper, we use novelty search together with NEAT,
to evolve neuro-controllers for a swarm of simulated robots that should
perform an aggregation task. In the past, novelty search has been ap-
plied to single robot systems. We demonstrate that novelty search can
be applied successfully to multirobot systems, and we discuss the chal-
lenges introduced when moving from a single robot setup to a multirobot
setup. Our results show that novelty search can outperform the fitness-
based evolution in swarm robotic systems, finding (i) a more diverse set
of successful solutions to an aggregation task, (ii) solutions with higher
fitness scores earlier in the evolutionary runs, and (iii) simpler solutions
in terms of the topological complexity of the evolved neural networks.

1 Introduction

Novelty search [10] is a divergent evolutionary technique. In traditional evolu-
tionary computation, candidate solutions are scored by an objective function
that has been derived directly from the task or problem for which a solution is
sought. Novelty search does not drive the evolutionary process toward a fixed
goal. In novelty search, candidate solutions are scored based on how different
they are from solutions seen so far and the evolutionary process is therefore con-
tinuously driven towards novelty. As a result, novelty search has the potential to
overcome deception [4]. Deception can be a challenging problem in evolutionary
computation and occurs when the evolutionary process converges prematurely to
a local optimum because the objective function fails to reward the intermediate
steps needed to achieve the final goal. Lehman and Stanley [10] have shown that,
although novelty search does not pursue a goal directly, it may be able to find
the goal faster and more consistently than traditional fitness-based evolution.
Novelty search has also proven to be able to find a greater diversity of solutions
to a problem than traditional fitness-based evolution [11].

Novelty search has been successfully applied to many domains, including non-
collective evolutionary robotics in tasks such as maze navigation [10,13], T-maze

M. Dorigo et al. (Eds.): ANTS 2012, LNCS 7461, pp. 85–96, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

86 J. Gomes, P. Urbano, and A.L. Christensen

tasks that require lifetime learning [14], biped walking [10], and the deceptive
tartarus problem [3]. There are many motivations behind the use of evolution-
ary techniques for the design of a control system for a robot [5]. In a multirobot
domain in particular, the dynamical interactions among robots and the environ-
ment make it difficult to hand-design a control system for the robots that yields
the desired macroscopic swarm behaviours. However, artificial evolution has been
shown capable of exploiting these dynamic features and synthesise self-organised
behaviours [18].

In this paper, we use novelty search to evolve neural controllers for swarm
robotic systems, where fitness-based evolutionary approaches has been previ-
ously used. Our motivation for applying novelty search to swarm robotic systems
is their high level of complexity, resulting from the intricate dynamics between
many interacting units. As the complexity of a task or a system increases, artifi-
cial evolution is more likely to get affected by deception [19], and novelty search
has been shown capable of overcoming deception [10]. The drive of novelty search
towards behavioural diversity is also valuable because it can generate a diversity
of solutions in a single evolutionary run, as opposed to fitness-based evolution,
in which a particular run often converges to a single solution.

There are many works that describe the evolution of robot swarms with neu-
roevolution methods that optimise only the weights of the neural network. How-
ever, the evolution of the network topology along with the weights has proved to
be beneficial in other domains [19,16]. In this paper, we use NEAT (NeuroEvolu-
tion of Augmenting Topologies) [17] to evolve the neural controllers used by the
robots in a swarm. NEAT is a method that evolves both the network topology
and weights, allowing solutions to become gradually more complex as they be-
come better [17]. The use of novelty search together with NEAT is motivated by
the complexifying nature of NEAT, which imposes some order in the exploration
of the behaviour space, because simple controllers are explored before moving
on to more complex ones.

We use an aggregation task for the experiments in this study. In this task,
the robots should move around in an environment to search for each other and
ultimately form a single aggregate. Aggregation is of particular interest since it
stands as a prerequisite for other forms of cooperation in swarm robotics sys-
tems [18]. This task has been used in previous works in evolutionary swarm
robotics [2,18,1]. In our experiments, the domain was made challenging by in-
creasing the size of the arena and by reducing the sensors capabilities, compared
to the previous studies on aggregation in robots.

2 Background

In this section, we review the related work on aggregation in evolutionary robotics,
the NEAT neuroevolution method used in our experiments, and the novelty
search method.

Introducing Novelty Search in Evolutionary Swarm Robotics 87

2.1 Evolution of Aggregation Behaviours

Several works describe the evolution of aggregation behaviours in swarms of
robots, where neural networks with fixed topologies are evolved via evolutionary
algorithms guided by fitness. Baldassarre et al. [2] successfully evolved controllers
for a swarm of robots to aggregate and move towards a light source in a clus-
tered formation. Trianni et al. [18] describe the evolution of a swarm of simple
robots to perform aggregation in a square arena. In this experiment, two differ-
ent behaviours were evolved: a static clustering which forms compact and stable
aggregates and a dynamic clustering which creates loose but moving aggregates.
Bahgeçi et al. [1] used a similar experimental setup as [18], and studied how
some parameters of the evolutionary methods affect the performance and the
scalability of the behaviours in swarm robotic systems.

In these studies, the robots used directional sound sensors and sound signalling
to identify other robots in the environment. Sound signalling enabled robots to
follow sound gradients in order to aggregate. In fact, these works show that
neural networks without any hidden neurons are sufficient to successfully solve
the task. In our work, we make the aggregation task more challenging: we remove
the sound gradient, decrease the range of the sensors, and increase the size of the
arena. These modifications increase the difficulty of the task and may require
quite different strategies for aggregation because it is harder for the robots to
find each other [15].

2.2 NEAT

NEAT [17] is a neuroevolution method that optimises both the weighting pa-
rameters and the structure of artificial neural networks. It begins the evolu-
tion with a population of small, simple networks and complexifies the network
topology into diverse species over generations, potentially leading to increasingly
sophisticated behaviour. A key feature in NEAT is its distinctive approach to
maintaining a healthy diversity of growing structures simultaneously. Unique
historical markings are assigned to each new structural component. During
crossover, genes with the same historical markings are aligned, producing valid
offspring efficiently, without having to rely on complex topological comparisons.
Speciation in NEAT protects new structural innovations by reducing competition
between differing networks, giving time for newer and more complex structures
to have their weights optimised. Networks are assigned to species based on the
extent to which they share historical markings. Complexification is thus sup-
ported by both historical markings and speciation, allowing NEAT to establish
high-level features early in evolution and then later elaborate on them. In effect,
NEAT searches for a compact, appropriate network topology by incrementally
complexifying existing structures.

2.3 Novelty Search

In novelty search [10], individuals in an evolving population are selected based
exclusively on how different their behaviour is when compared to the other

88 J. Gomes, P. Urbano, and A.L. Christensen

behaviours discovered so far. Implementing novelty search requires little change
to any evolutionary algorithm aside from replacing the fitness function with a
domain dependent novelty metric. This metric measures how different an indi-
vidual is from the other individuals with respect to their behaviour. The use of
a novelty measure creates a constant pressure to evolve individuals with novel
behaviour features.

The novelty of a newly generated individual is computed with respect to the
behaviours of an archive of past individuals and to the current population, giving
a comprehensive sample of where the search has been and where it currently is.
However, the archive does not contain all of the behaviours previously explored,
in order to minimise the impact in the algorithm’s computational complexity.
The archive is initially empty, and behaviours are added to it if they are sig-
nificantly different from the ones already there, i.e., if their novelty is above
some threshold. The purpose of the archive is to allow the penalisation of future
individuals that exhibit previously explored behaviours.

The novelty metric characterises how far away the new individual is from the
rest of the population and its predecessors in behaviour space, determining the
sparseness at any point in that space. A simple measure of sparseness at a point
is the average distance to the k-nearest neighbours of that point, where k is a
fixed parameter empirically determined. The sparseness ρ at point x is given by

ρ(x) =
1

k

k∑
i=1

dist(x, μi) (1)

where μi the ith-nearest neighbour of x with respect to the distance metric
dist, which is a domain-dependent measure of behavioural difference between
two individuals in the search space. Candidates from more sparse regions of the
behaviour space thus receive higher novelty scores, guiding the search towards
what is new, with no other explicit objective.

3 Aggregation Experiments

In this section, we apply novelty search to the aggregation task and compare it
with fitness-based evolution. Three experiments were performed using different
novelty measures: one highly correlated with the fitness function, an alternative
measure only weakly correlated, and finally a combination of the two. In each
experiment, the performance of novelty search was compared to the performance
of traditional fitness-based evolution. NEAT with random selection is used as a
baseline for performance comparisons.

3.1 Experimental Setup

The simulated environment is modelled in a customised version of the Simbad 3d
Robot Simulator [7]. The environment is a 5m by 5m square arena bounded by
walls. The robots are modelled based on the the e-puck educational robot [12],

Introducing Novelty Search in Evolutionary Swarm Robotics 89

but do not strictly follow its specification. Each simulated robot has 8 IR sensors
evenly distributed around its chassis for the detection of obstacles (walls or other
robots) within a range of 10 cm, and 8 sensors dedicated to the detection of
other robots within 25 cm range. An additional sensor calculates the percentage
of nearby robots, relative to the size of the swarm, within a radius of 25 cm.

The swarm is homogeneous and the controllers of the robots are time recurrent
neural networks. For fitness-based evolution, we used the NEAT implementation
available in the Encog 3.0.1 library [6]. For novelty search, we extended the same
NEAT implementation following the description and parameters in [10], with a k
value of 15 and a dynamic archive threshold [9]. This dynamic threshold ensures
a constant and reasonable flow of individuals to the archive, at an average rate
of 2 individuals per generation. The NEAT parameters were the same in both
evolutionary methods: the crossover rate was 25%, the mutation rate 10%, the
population size 200, and each evolution runs for 250 generations. The rest of the
parameters were the default of the Encog implementation.

To evaluate each controller, 10 simulations are run with it, varying the number
of robots and their starting positions and orientations. The starting positions and
orientations are random but ensure a minimum distance between the robots. The
group size varies from 3 to 10, with each controller being run at least once with
every group size. Each simulation lasts for 500 s of simulated time.

The fitness function that evaluates each simulation is based on the average
distance to the centre of mass, also used in [18]. The average distance is sampled
throughout the simulation at regular intervals of 10 s. The samples are then
combined in a single fitness value using a weighted average, with linearly more
weight towards the end of the simulation. The fitness F of a simulation with T
time steps and N robots is defined as:

F = 1− 1∑
t
T

T∑
t=1

t

T

N∑
i=1

dist(Rt, rit)

N
(2)

where Rt is the centre of mass at each instant, and rit is the position of each
robot. The fitness values obtained in each of the 10 simulations are combined in
a single value using the harmonic mean, which gives more weight to the lower
values, as advocated in [1].

As mentioned above, the novelty measure characterises the distance between
one controller and the others in behaviour space. We use the Euclidian distance
between vectors that represent the level of aggregation along time. These vectors
are built by measuring behaviour features at regular intervals throughout the
simulation (every 10 s). We devised three ways of measuring the group behaviour,
which will be explained in the next sections. As 10 simulations are conducted
to evaluate each controller, its behaviour vector is the average of the vectors
obtained in each of the simulations. In order to compare novelty search with
the fitness-based evolution, the controllers evolved by novelty search were also
evaluated with the fitness function F . It is important to note that the fitness
scores did not have any influence in the novelty search experiments.

90 J. Gomes, P. Urbano, and A.L. Christensen

3.2 The First Experiment

The first behaviour measure uses the same metric as the fitness function; a
vector is built with the average distance to centre of mass, sampled throughout
the simulation. Considering a simulation with N robots and T temporal samples,
the behaviour vector bcm that characterises a controller is given by:

bcm =
1

N

[
N∑
i=1

dist(R1, ri1), · · · ,
N∑
i=1

dist(RT , riT)

]
. (3)

In our experiments, the sampling rate was 10 s and the simulation time 500 s,
resulting in a behaviour vector of length 50.

The fitness scores of the highest scoring individuals evolved using novelty search
and fitness driven evolution, respectively, are listed in Table 1. There is not a signif-
icant difference between the fitness of the controllers evolved in these experiments,
but both methods are significantly better than the random evolution (Student’s t-
testwith p-value< 0.05). If we look at the behaviours of the best controllers evolved
by both methods, significant differences are found, despite the similar fitness val-
ues. In the fitness-based evolution, the highest scoring controllers were always very
similar, displaying only one distinctive behaviour: the robots explore the environ-
ment in large circles, and form static clusters when they encounter one another. If
the cluster is small, the robots abandon it after a while and start exploring again.

Novelty search, on the other hand, found several distinct high-scoring controllers
that could perform the aggregation task: (1) The robots go straight forward until
they hit the wall, and then, depending on the impact angle, they stay there for a
while or start moving along the wall until they find other robots; (2) Similar to (1),
but when they meet each other they continue to follow the wall until they hit a cor-
ner, aggregating there; (3) Similar to the behaviour evolved by fitness, but without
splitting the small clusters; (4) Similar to (3) but navigating in the environment
only in straight trajectories instead of curves. It is important to note that each
evolutionary run of novelty search could evolve several different solutions, finding
many (if not all) of the solutions described above and variants of them.

The main difference between the behaviours was that novelty search evolved
controllers that exploited the wall to achieve better solutions, while in the
fitness-based evolution robots always avoided navigating near the walls. Our
hypothesis is that learning to navigate along the walls requires going against the

Table 1. Highest fitness found with each evolutionary method. The values were ob-
tained with 10 runs for each experiment. Individuals with fitness value over 0.8 are
considered to be solutions to the task. Note that in practice the minimum fitness value
is not 0, since an initial random population has an average fitness of around 0.6.

Evolutionary Setup Average Max. Min.

Fitness-based NEAT 0.863 0.892 0.826
NEAT with novelty search 0.864 0.906 0.828
NEAT with random selection 0.725 0.752 0.706

Introducing Novelty Search in Evolutionary Swarm Robotics 91

fitness gradient. If the robots go towards the walls, they will often end up in
different ones, and staying there will result in a low fitness because the centre of
mass will be in the centre of the arena, far from the robots. On the other hand,
avoiding the walls results in better fitness because they will be on average closer
to the centre. If the fitness evolution misses the stepping stone of being close to
the walls, it will hardly be able to reach behaviours that require the use of walls
to achieve aggregation. This is an important result because it demonstrates that
the fitness function is preventing the evolution of certain types of solutions.

To confirm our hypothesis, we analysed the behaviour space explored in novelty
search and in fitness evolution.To facilitate this analysis, all the individuals evolved
in fitness evolution were also evaluated with the same behaviour measure that was
used in novelty search. Since each behaviour description is a long vector, we ap-
plied a dimensionality reduction method in order to visualise the behaviour space.
We used a Kohonen self-organising map [8], a type of neural network trained us-
ing unsupervised learning to produce a two-dimensional discretisation of the input
space of the training samples, preserving the topological relations. The map was
trained with all the behaviours found both in novelty search and in fitness evolu-
tion, and then the behaviours found by each method were mapped individually to
the trained map. The resulting maps can be seen in Figure 1.

As it can be seen in the maps, the fitness-based evolution avoids the zones
where the average distance to the centre of mass rises beyond the initial value,
preventing the evolution of good solutions that might require traits found only
in those behaviour zones. The evolution is much more focused in behaviours
that express a monotonic fall of the average distance to the centre of mass,
which is consistent with the observable performances of the best controllers. On
the other hand, novelty search is not subject to this fitness pressure, and can
therefore explore and discover a wide range of solutions to the task.

Fig. 1. Kohonen maps representing the explored behaviour space in fitness evolution
(left) and in novelty search (right). Each circle is a neuron that is characterised by
the vector depicted by the line inside (the average distance to the centre of mass
over time). Each behaviour vector is mapped to the most similar neuron. The darker
the background of a neuron is, the more behaviours were mapped to it. The neurons
corresponding to the best behaviours have a bold circle.

92 J. Gomes, P. Urbano, and A.L. Christensen

3.3 The Alternative Novelty Measure

We devised a new behaviour description, based on the metric used in [1], in
order to determine how the novelty measure influences the evolved solutions.
The new description consists of measuring the number of robot clusters along the
simulation. Two robots belong to the same cluster if the distance between them
is less than 30 cm. Applying this iteratively we can obtain the number of clusters.
The number of samples was the same as in our previous experiments (50). The
behaviour vector bcl is described by:

bcl =
1

N
[clustersCount(1), · · · , clustersCount(T)] . (4)

The best fitness found in each evolutionary run was 0.83 on average, which is
significantly lower (p-value < 0.05) than the novelty search with the centre of
mass behaviour measure (0.864 on average). This might be explained by the use
of a novelty measure that is less related to the fitness function. But again, we have
to look at the evolved behaviours to determine the significant differences. The
following distinct successful behaviours were evolved: (1) The robots go towards
walls, navigate along it and when they find another one, they form a single
file, keeping a fixed distance; (2) They navigate in circles in the environment,
forming a static cluster when they meet each other; (3) Similar to (2), but they
randomly abandon their respective clusters; (4) They navigate in circles and
when two robots meet at some distance, one tries to follow the other. When
robots collide, they form a cluster and remain aggregated.

Most behaviours were quite different from the ones found in the previous ex-
periment. The reason the previous experiment did not find these behaviours (and
vice-versa) is conflation (see [10]). Conflation occurs when individuals with distinct
observable behaviours have very similar behaviour descriptions. The consequence
is that an individual with a distinct observable behaviour might not be considered
novel by the novelty measure, thus eventually disappearing from the population.
Conflationcanrepresentbothanadvantagebecause it reduces the searchspace, and
a disadvantage, when different successful solutions or important stepping stones
are dismissed. In our experiments, what happens is that the centre of mass novelty
measure is conflating some solutions that are not conflated in the clusters measure
and vice-versa, thus evolving different solutions in both the experiments.

Two examples of behaviours that can be conflated are shown in Figure 2.
When the centre of mass measure is used, for example, the clustering of the
robots is irrelevant. The search will therefore avoid behaviours that have an
already explored centre of mass progression but differ in the clustering of the
robots, possibly bypassing interesting solutions. This effect can also be seen in the
evolved behaviours: with the centre of mass measure, there were more solutions
that exploited the use of the walls, because navigating near them has a great
impact in that novelty measure; while with the number of clusters measure, the
solutions focused on the interactions between the agents and clusters, including
following each other and leaving the cluster.

Introducing Novelty Search in Evolutionary Swarm Robotics 93

Fig. 2. An illustration of conflation in the centre of mass measure (left) and in the
number of clusters measure (right). In both cases, if the robots evolved from the
left configuration to the right, that change would not be captured by the respective
behaviour description, despite potentially being relevant.

3.4 Combining Novelty Measures

In order to reduce conflation, we setup a new experiment with a richer behaviour
description, by combining the novelty measures proposed in the two previous
experiments. To combine the two behaviour descriptions presented before in
Equations 3 and 4, we simply concatenate the two vectors. But as the novelty
measure is based on the Euclidean distance between the vectors, caution must
be displayed to ensure that both components have similar contributions to this
distance. Namely, we want the vectors to have the same length and the items in
the vectors to have the same range, which can be achieved by normalising each
of the components. The new behaviour description bcomb is thus defined as:

bcomb = (bcm,bcl) . (5)

The fitness performance of the search with this new measure was improved,
evolving individuals with high fitness scores much sooner than in the other ex-
periments, as seen in Figure 3. The fitness values in novelty search were higher
than fitness-based evolution until generation 150. It is also interesting to look
at the explored behaviour space (Figure 4). We can see that there was a greater
diversity of solutions, exploring many combinations of the progression of the
number of clusters and the distance to the centre of mass. Observing the best
controllers in action, we notice that this combined measure evolved all the be-
haviours that were generated using the previous two measures independently.

To determine why novelty search with the combined measure was faster than
fitness-based evolution in finding good individuals, we evaluated the network
complexity of the solutions. On average, novelty search finds the first good in-
dividual (with fitness value over 0.8) at the generation 33 with a network of 1
hidden neuron and 39 links, while the fitness evolution finds the first good in-
dividual at the generation 83 with a network of 4 hidden neurons and 44 links.
Looking at the early solutions found by novelty search, we discovered that in
some cases they are the ones that the fitness-based evolution could not evolve
at all (behaviours that used the wall). In other cases, they were apparently the
same solutions that the fitness-based evolution would find in later generations
with more complex networks. Due to the incremental nature of NEAT, more
complex networks take more generations to evolve. If fitness starts to converge
to more complex structures, it takes more time to evolve effective controllers.

94 J. Gomes, P. Urbano, and A.L. Christensen

Fig. 3. Fitness value of the best individual found so far in each generation. The values
are averaged over 10 evolutionary runs for each experiment. Individuals with fitness
value over 0.8 are considered to be solutions to the task. The evolution was tested with
more generations but there is no change in the fitness values after the 250th generation.

Fig. 4. The explored behaviour space in novelty search with the combined novelty mea-
sure and in the fitness-based evolution. In each neuron, the left half is the number of
clusters measure and the right half is the centre of mass. The darker the neuron back-
ground is, the more behaviours were mapped to it. Neurons with the best behaviours
have a bold circle.

4 Discussion

Our experiments revealed that novelty search could outperform fitness-based
evolution in respect to the fitness values of the evolved individuals. Other works
have shown that novelty search can perform better than fitness-based evolution
in deceptive tasks, but fails to be better as the task gets less deceptive [10,13].
Our results suggest that the task is not notably deceptive, as fitness evolution can
always find high-scoring solutions. Still, novelty search managed to outperform
the fitness-based evolution.

Looking beyond the fitness of the solutions, we showed that the diversity found
by novelty search can produce many different solutions to the same task. This
can be used to provide a range of different solutions to the experimenter that is
using the evolutionary process. This is especially relevant in the swarm robotics
domain, because there are many behaviour possibilities and non-obvious rela-
tions between the agents that might be revealed. Another advantage of novelty

Introducing Novelty Search in Evolutionary Swarm Robotics 95

search was that it found solutions with simpler neural networks than the ones
found by fitness evolution, confirming the results reported in [10].

The Kohonen maps proved to be useful in the visualisation of the behaviour
search space. They allow the understanding of the behaviour zones that were
explored by novelty search and the zones where the fitness-based evolution gets
stuck. We verified that controllers mapped to different neurons typically have dif-
ferent observable behaviours. This suggests that analysing the differences in the
behaviour vectors might be a way of automatically identifying distinct solutions.

The biggest challenge in using novelty search in the domain of swarm robotics
was the definition of the novelty measure. Our experiments suggest that confla-
tion can be a serious issue when evolving collective behaviours with novelty
search. While in single robot systems, conflation can be mitigated by describing
the full behaviour of the robot, for example its position in space over time [10],
in swarm robotics that is not possible. Describing the behaviour of all the robots
individually would open the search space too much. It would also introduce scal-
ability issues, for example if the number of robots varies or if the swarm is very
large. It is necessary to devise measures that evaluate the swarm as whole. Con-
flation is essential to cope with the greater diversity of collective behaviours, but
caution must be displayed in order not to conflate aspects of the swarm that are
relevant to the solution. Our last experiment showed that by combining different
novelty measures, we can reduce conflation and improve the performance of nov-
elty search. This combination can simply be the concatenation of the behaviour
vectors associated with each measure, which was effective in our case.

5 Conclusion

This study showed that novelty search is a promising technique for evolving
controllers for swarm robotic systems. Compared to the fitness-based evolution,
novelty search could find a greater diversity of solutions, solutions with higher
fitness earlier in the evolution, and solutions based on simpler neural networks.
We studied the impact of the novelty measure in the evolved behaviours and
showed how conflation can be mitigated by combining different novelty measures.
In future research, we will use other novelty search variants that combine the
fitness value and the novelty measure [3,9] to investigate if our results can be
further improved. We will also use novelty search to evolve controllers for other
swarm robotics tasks, to evaluate if the results presented in this paper generalise.

Acknowledgments. This work was supported by FCT project PEst-OE/EEI/
LA-0008/2011.

References

1. Bahgeçi, E., Şahin, E.: Evolving aggregation behaviors for swarm robotic systems:
A systematic case study. In: Swarm Intelligence Symposium, pp. 333–340. IEEE,
New York (2005)

96 J. Gomes, P. Urbano, and A.L. Christensen

2. Baldassarre, G., Nolfi, S., Parisi, D.: Evolving mobile robots able to display collec-
tive behaviors. Artificial Life 9(3), 255–268 (2003)

3. Cuccu, G., Gomez, F.: When Novelty Is Not Enough. In: Di Chio, C., Cagnoni,
S., Cotta, C., Ebner, M., Ekárt, A., Esparcia-Alcázar, A.I., Merelo, J.J., Neri,
F., Preuss, M., Richter, H., Togelius, J., Yannakakis, G.N. (eds.) EvoApplications
2011, Part I. LNCS, vol. 6624, pp. 234–243. Springer, Heidelberg (2011)

4. Goldberg, D.E.: Simple genetic algorithms and the minimal, deceptive problem.
In: Genetic Algorithms and Simulated Annealing. Research Notes in Artificial In-
telligence, pp. 74–88. Pitman Publishing, London (1987)

5. Harvey, I., Husbands, P., Cliff, D., et al.: Issues in evolutionary robotics. In: Second
Int. Conf. on Simulation of Adaptive Behavior, pp. 364–373. MIT Press, Cambridge
(1993)

6. Heaton, J.: Programming Neural Networks with Encog3 in Java. Heaton Research,
Chesterfield (2011)

7. Hugues, L., Bredeche, N.: Simbad: An Autonomous Robot Simulation Package for
Education and Research. In: Nolfi, S., Baldassarre, G., Calabretta, R., Hallam,
J.C.T., Marocco, D., Meyer, J.-A., Miglino, O., Parisi, D. (eds.) SAB 2006. LNCS
(LNAI), vol. 4095, pp. 831–842. Springer, Heidelberg (2006)

8. Kohonen, T.: The self-organizing map. Proc. of the IEEE 78(9), 1464–1480 (1990)
9. Lehman, J., Stanley, K.O.: Revising the evolutionary computation abstraction:

minimal criteria novelty search. In: Genetic and Evolutionary Computation Conf.,
pp. 103–110. ACM, New York (2010)

10. Lehman, J., Stanley, K.O.: Abandoning objectives: Evolution through the search
for novelty alone. Evolutionary Computation 19(2), 189–223 (2011)

11. Lehman, J., Stanley, K.O.: Evolving a diversity of virtual creatures through novelty
search and local competition. In: Genetic and Evolutionary Computation Conf.,
pp. 211–218. ACM, New York (2011)

12. Mondada, F., Bonani, M., Raemy, X., Pugh, J., Cianci, C., Klaptocz, A., Magne-
nat, S., Zufferey, J.C., Floreano, D., Martinoli, A.: The e-puck, a robot designed
for education in engineering. In: 9th Conf. on Autonomous Robot Systems and
Competitions, pp. 59–65. IPCB, Castelo Branco (2009)

13. Mouret, J.: Novelty-based multiobjectivization. New Horizons in Evolutionary
Robotics, pp. 139–154. Springer, Berlin (2011)

14. Risi, S., Vanderbleek, S.D., Hughes, C.E., Stanley, K.O.: How novelty search es-
capes the deceptive trap of learning to learn. In: Genetic and Evolutionary Com-
putation Conf., pp. 153–160. ACM, New York (2009)

15. Soysal, O., Bahgeçi, E., Şahin, E.: Aggregation in swarm robotic systems: Evolution
and probabilistic control. Turkish Journal of Electrical Eng. 15(2), 199–225 (2007)

16. Stanley, K.O.: Efficient Evolution of Neural Networks Through Complexification.
Ph.D. thesis, Dep. of Computer Sciences, The University of Texas, Austin (2004)

17. Stanley, K.O., Miikkulainen, R.: Evolving neural network through augmenting
topologies. Evolutionary Computation 10(2), 99–127 (2002)

18. Trianni, V., Groß, R., Labella, T.H., Şahin, E., Dorigo, M.: Evolving Aggregation
Behaviors in a Swarm of Robots. In: Banzhaf, W., Ziegler, J., Christaller, T.,
Dittrich, P., Kim, J.T. (eds.) ECAL 2003. LNCS (LNAI), vol. 2801, pp. 865–874.
Springer, Heidelberg (2003)

19. Whitley, L.D.: Fundamental principles of deception in genetic search. In: Founda-
tions of Genetic Algorithms, pp. 221–241. Morgan Kaufmann, San Mateo (1991)

Measuring Diversity in the Cooperative

Particle Swarm Optimizer

Adiel Ismail1,2 and Andries P. Engelbrecht2

1 Department of Computer Science, University of the Western Cape, South Africa
aismail@uwc.ac.za

2 Department of Computer Science, University of Pretoria, South Africa
engel@cs.up.ac.za

Abstract. Diversity is an important aspect of population-based search
algorithms such as particle swarm optimizers (PSO) since it influences
their performance. Diversity is closely linked to the exploration-
exploitation tradeoff. High diversity facilitates exploration, which is usu-
ally required during the initial iterations of the optimization algorithm.
A low diversity is indicative of exploitation of a small area of the search
space, desired during the latter part of the optimization process. The
success of the Cooperative Particle Swarm Optimizer (CPSO), a variant
of PSO which has outperformed the basic PSO on numerous multi-modal
functions, has been ascribed to its increased diversity. Although numer-
ous population diversity measures have been proposed for the basic PSO,
not all can be readily applied to the CPSO. This paper proposes a mea-
surement of diversity for the CPSO which is compared with three other
diversity measures to establish the most appropriate diversity measure
for CPSO. The proposed diversity measure is applied to the CPSO on
a few well known test functions and compared with the diversity of the
basic global best PSO with the objective to justify the claim that the
CPSO increases diversity. The paper also investigates whether diversity
increases with an increase in the number of subswarms of the CPSO.

1 Introduction

Particle swarm optimization (PSO) is an effective and efficient population based
stochastic optimization approach which was originally developed by Eberhart
and Kennedy [3]. The basic PSO exhibits good performance on well-known test
functions, but tends to converge prematurely on strongly multi-modal test func-
tions [8]. One of the causes of premature convergence in the basic PSO is poor
swarm diversity [11]. Numerous diversity measures have been developed for PSO
[1], [9], [11], [13] with each approach having numerous variations. Some diver-
sity measures are sensitive to outliers which may result in the diversity not to
accurately reflect the search behavior of the swarm with regards to exploration
and exploitation.

Diversity has also been used to guide the search in PSO. Several diver-
sity guided PSOs have been developed such as the Attractive-Repulsive PSO

M. Dorigo et al. (Eds.): ANTS 2012, LNCS 7461, pp. 97–108, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

98 A. Ismail and A.P. Engelbrecht

(ARPSO) [11], the modified ARPSO of Pant et al [10] and the diversity guided
PSO of Cui and Ju [2] amongst others. The accuracy of the diversity measure
can therefore influence the performance of the diversity guided PSOs.

The Cooperative Particle Swarm Optimizer (CPSO), a variant of the PSO,
differs from the basic PSO in that values for different components of the solution
vector are stored in different subswarms. The diversity measures of PSO referred
to above cannot readily be applied to CPSO due to the subswarms solving only
a section of the original optimization problem. It is not always clear how sub-
swarms which contain partial solution vectors should be treated in the diversity
measures.

This paper proposes an alternative measure of diversity for the CPSO and
investigates how the proposed method compares with three other diversity mea-
sures. The claim that CPSO improves diversity is tested by comparing the diver-
sity of the CPSO with the diversity of the PSO on 9 well-known test problems.
This paper also investigates whether the diversity increases with an increase in
the number of subswarms of the CPSO.

The rest of the paper is organized as follows: Section 2 provides an overview of
PSO and CPSO. Section 3 presents a brief overview of diversity measures. The
diversity measures for CPSO are presented in section 4. The experiments and
their results are presented and discussed in section 5. The paper is concluded in
section 6.

2 Overview of PSO and CPSO

2.1 PSO

PSO is a nature-based stochastic optimization algorithm that emulates the
swarm behaviors of bird flocks [7]. PSO consists of a swarm of particles where
the position of each particle of the swarm represents a potential solution to the
optimization problem. PSO searches for an optimum solution by merely drawing
the position of each particle in the swarm toward its own historical best position
and toward the position of the historical best particle in a defined neighborhood
[6]. The position and velocity of each particle are updated over time. Each par-
ticle is viewed as a point in D-dimensional space and has a fitness. The best
position in a defined neighbourhood is the position yielding the best fitness.
The position and velocity of particle i are denoted by xi and vi, respectively.
The best position of particle i since the start of optimization is referred to as the
personal best position and is represented as yi and ‘pbest’ its corresponding
fitness. The best position of all personal best positions in the entire swarm is
represented by ŷ with ‘gbest’ as its corresponding fitness. This PSO is known
as the global best PSO. The position and velocity are updated as follows:

vdi (t+ 1) = w · vdi (t) + c1 · rd1(t) · (yd
i (t)− xd

i (t)) + c2 · rd2(t) · (ŷd(t)− xd
i (t)) (1)

xd
i (t+ 1) = xd

i (t) + vdi (t+ 1) (2)

where d = 1, 2, ..., n, i = 1, 2, ..., S, and S is the size of the swarm; w is the
inertia weight with 0 ≤ w < 1; constants c1 and c2 are called acceleration

Measuring Diversity in the Cooperative Particle Swarm Optimizer 99

coefficients; r1 and r2 are two vectors containing random numbers uniformly
distributed in (0, 1); and t denotes the iteration number. The second and third
terms in equation (1) are respectively referred to as the cognitive and the social
components.

2.2 Cooperative Particle Swarm Optimizer (CPSO)

In PSO, a position vector of a particle serves as a complete solution vector
for the optimization problem. In CPSO the solution vector of the optimization
problem is split intoK components with each component optimized in a separate
subswarm. This CPSO is denoted as CPSO-SK . If K = n, then each subswarm
consists of 1-dimensional particles. This special case is denoted by CPSO-S. A
particle in a subswarm represents only part of the complete solution vector and
its fitness cannot be calculated in isolation from the other subswarms. All swarms
will have to share their information, i.e. cooperate, to form a complete solution
vector [14]. To represent the n-dimensional solution a context vector is required.
One way of constructing a context vector is to simply concatenate the global
best positions from all K subswarms, arranged in the order 1 to K.

The rest of the discussion focuses on the CPSO-S, but it is easily applicable
to CPSO-SK . The fitness of particle i in subswarm j is equal to the function
value after applying the objective function to a temporarily updated context
vector where the j-th component of the context vector has been replaced with
the position of particle i in subswarm j, but only for the duration of the fitness
calculation. Note, that for the evaluation of the fitness of particle i in subswarm
j, all components of the context vector except component j retained the global
best positions of the other (n− 1) subswarms.

The algorithm for the CPSO-S as defined in [14] appears in Algorithm 1, where
Rj , Rj .xi, Rj .vi and Rj .yi refer, respectively, to subswarm j and the position,
velocity and personal best position of particle i in subswarm j. The global best
particle in subswarm j is denoted by Rj .ŷ. The context vector is defined as
(R1.ŷ, R2.ŷ, ..., Rn.ŷ). The operator b(j, z) replaces the j-th component of the
context vector with z to produce (R1.ŷ, R2.ŷ, ..., Rj−1.ŷ, z, Rj+1.ŷ, ..., Rn.ŷ).

3 Diversity Measures

Population diversity can be used to monitor swarm behaviour, i.e. the degree of
convergence or divergence [16]. It is therefor important that a measurement of
population diversity provide accurate information about the swarm’s behaviour,
with regards to exploration and exploitation. However, not all diversity mea-
sures accurately reflect such information as a result of the diversity measures’
sensitivity to outliers [9].

3.1 Characteristics of Diversity Measure

Given a PSO with an initial high diversity and a sequence of global best solutions
{ŷt}Kt=0, then the PSO is said to converge to point p, a weighted average of the

100 A. Ismail and A.P. Engelbrecht

Algorithm 1. The CPSO algorithm

Create and initialize n one-dimensional PSOs: Rj , j ∈ [1..n]
repeat

for each swarm j ∈ [1..n]
for each particle i ∈ [1..s]

if f(b(j, Rj .xi)) < f(b(j, Rj .yi))
then Rj .yi = Rj .xi

if f(b(j, Rj .yi)) < f(b(j, Rj .ŷ))
then Rj .ŷ = Rj .yi

endfor
Update all particles in Rj using equations (1) and (2)

endfor
until stopping condition is true

global best and personal best positions, if lim(t→+∞) ŷt = p, where t denotes
time step [15]. In this case the diversity of the swarm at time step t approaches
zero as t approaches infinity. Under these conditions an accurate measure of
diversity should reflect an average decrease proportional with time to a value
that approaches zero [9].

3.2 Diversity Measures for PSO

Olorunda and Engelbrecht [9] investigated a number of diversity measures which
included (a) the swarm diameter and swarm radius, (b) the average distance
around the swarm center, (c) the normalized average distance around the swarm
center, (d) the average of the average distance around all particles in the swarm,
and (e) swarm coherence (defined as the swarm center divided by the average
speed of all particles in the swarm). Olorunda and Engelbrecht concluded that
the average distance around the swarm center is a more robust measure than
the other diversity measures in the presence of outliers. The ‘average distance
around the swarm center’ is defined as,

diversity1(R) =
1

S
·

S∑
i=1

√√√√ n∑
j=1

(xj
i − x̄j)2 (3)

with

x̄j =
1

S

S∑
i=1

xj
i (4)

where R denotes the swarm, S is the size of the swarm, n is the dimensionality
of the optimization problem, xj

i is the value of dimension j of particle i, and x̄j

is the average value for dimension j over all particles.
The diversity formula in equation (3) is used in the experiments of this study

to calculate the diversity of the PSO. A normalized version of the average

Measuring Diversity in the Cooperative Particle Swarm Optimizer 101

distance around the swarm center was successfully used to guide the search
in Attractive-Repulsive PSO (ARPSO) developed in [11].

Shi and Eberhart [13] defined several population diversity measures based
on a particle’s (a) position, (b) velocity and (c) cognitive term. Position di-
versity is measured using either an element-wise or a dimension-wise approach.
A simple example indicated that element-wise diversity could not differentiate
between two vastly different diversity situations. Results in [13] also confirmed
that the element-wise approach could not provide accurate information about
the distribution of particles. Dimension-wise diversity has a clearer geometric
interpretation than the element-wise diversity measure, while velocity diversity
provides dynamic information of particles and measures the distribution of the
current velocities of the particles. The formula for cognitive diversity measure-
ment is similar to the position diversity measurement except that all references
to the particle’s current position are replaced with its personal best position.

In the knowledge-based cooperative particle swarm optimizer (KCPSO) of Jie
et al [5], a distinction is made between diversity of a subswarm and diversity of
the entire swarm. Jie et al describes the distribution of the particles locally in
a subswarm using a formula similar to equation (3). The diversity of the entire
swarm in KCPSO is calculated using a formula similar to that in equation (3)
except that, (a) all references to a particle’s current position are replaced with
the particle’s personal best position, (b) the average of all particles in the entire
swarm is replaced with the average of all personal best positions, and (c) the
diversity is normalized by dividing the diversity by the distance of the longest
diagonal in the search space. The diversity measure of Jie et al [5] uses only
the personal best position of a subswarm, while ignoring all other particles in
each subswarm. This approach may not accurately reflect the diversity of the
subswarm.

4 Diversity Measures for CPSO

The ‘average distance around the swarm center’, as a proven robust diversity
measure, is applied in this paper to calculate the diversity of the CPSO, unless
stated otherwise. Applying this formula to the CPSO poses a problem, since the
formula assumes that each particle in the swarm is a complete solution vector.
This is not the case in the CPSO. Each particle in a subswarm represents only
a part of a solution vector. To address this problem four methods, denoted by
CPSO-Div 1 to CPSO-Div 4, are used to calculate the diversity of the CPSO.

The approach that generates solution vectors for fitness evaluation in CPSO
is also used in the first method, i.e. CPSO-Div 1, to generate solution vectors
which are subsequently used to calculate the diversity of the CPSO. CPSO uses
the method outlined in section 2.2 to calculate a fitness value for each particle
in each subswarm. This approach generates a solution vector for each particle
in each CPSO subswarm. Since there are n subswarms, each of size m, the total
number of particles in all subswarms is equal to m×n. Hence, the total number
of complete solution vectors generated during each iteration of the CPSO algo-
rithm is m×n. These solution vectors will subsequently be used to calculate the

102 A. Ismail and A.P. Engelbrecht

population diversity of CPSO. In the implementation of the proposed diversity
measure the diversity of the CPSO is calculated immediately before the end of
each iteration. In this approach the formula in equation (3) is applied to all
m × n solution vectors. Note, as the swarm converges, (xj

i − x̄j)2 → 0 for all
dimensions j for all particles i, the diversity measure, CPSO-Div 1, reduces to
zero with time.

The second method does not use complete solution vectors and the diversity
is calculated based on the particles in each subswarm. This method uses the
dimension-wise definition based on the L1 norm in [13]. The center x̄ of the
entire swarm is computed. Then an n-dimensional vector is computed as follows:
For each dimension of the n-dimensional vector, corresponding to a subswarm,
the average of the absolute difference between each particle in the subswarm and
corresponding dimension of the swarm center is calculated. The average of all
dimensions of the computed vector is subsequently returned as the diversity of
the CPSO. This approach is referred to as CPSO-Div 2, computed using,

diversity2(R) =
1

n
·

n∑
j=1

(
1

S
·

S∑
i=1

|xj
i − x̄j |

)
(5)

Note, as the swarm converges |xj
i − x̄j | → 0 for all dimensions j for all particles

i. Although the diversity measure, CPSO-Div 2, reduces to zero with time the
actual solution vectors used for evaluation of fitness are not taken into account
when calculating the diversity. Since the diversity is not directly based on the
solution vectors of the CPSO, CPSO-Div 2 may inaccurately reflect the diversity
of the swarm.

In the third method, instead of using a context vector which consists of the
global best particles from each of the subswarms, all possible combinations of all
particles in all subswarms are used to form n-dimensional solution vectors. The
solution vectors can be generated using n nested for-loops, with each for-loop
associated with one of the n subswarms consisting of 1-dimensional particles.
The value of the running variable of each for-loop indexes a particle in the
specific subswarm whose position is copied to the corresponding component of
the solution vector. This approach will be referred to as CPSO-Div 3.

The fourth method called CPSO-Div 4 corresponds to the approach proposed
by Jie et al in section 3. Diversity is calculated based on the personal best
positions and not on the current positions of the particles. This approach is
reminiscent of the normalized average distance around the swarm center, except
that the pool of current positions is replaced with the pool of personal best
positions. As the swarm converges, (yji − ȳj)2 → 0 for all dimensions i of all
particles j, resulting in the diversity measure, CPSO-Div 4, to reduce to zero
with time.

5 Experiments and Results

The objective of this section is to describe and report on the experiments per-
formed in this paper. For this purpose, section 5.1 describes the experiments

Measuring Diversity in the Cooperative Particle Swarm Optimizer 103

and defines the test functions and its parameters, while section 5.2 reports the
results of the experiments.

5.1 Experimental Procedure

The goal of this paper is to answer the following research questions:

1. Which diversity measures are appropriate for CPSO?
2. Which diversity measure is the best to use for CPSO?
3. Does CPSO increase diversity compared to global best PSO?
4. Does diversity increase with an increase in the number of subswarms?

To answer questions (1) and (2) the four diversity measures in section 4 were
applied to the 9 well-known optimization test problems defined in table 1. The
dimension of the test functions was set to five, since a relatively large value for
the dimension makes the application of CPSO-Div 3 infeasible as pointed out in
section 4.

To answer question (3) the diversity values produced by the best diversity
measure approach as identified by question (2) are compared with the diversity
values of the global best PSO. The dimension of the test functions was set to 30.

To answer question (4) the diversity of a few CPSO variants is investi-
gated. The best diversity measure as identified by question (2) was then used
to calculate the diversity of the CPSO-SK where K varies from 3 to 30, i.e.
K = 3, 6, 10, 15, 30. The dimension of the test functions was set to 30.

In the experiments the size of each subswarm for the five dimensional test
functions was set to 10 and the CPSO was executed for a total of 10000 func-
tion evaluations or 200 (=10000/(5 (number of subswarms) × 10 (number of
particles)) iterations. For the 30 dimensional test functions the size of each sub-
swarm was set to 20 and all variants of the CPSO were executed for 200000
function evaluations, bearing in mind that the CPSO-S require 600 (= number
of subswarms (30) × number of particles (20)) function evaluations per itera-
tion. The CPSO-S2, CPSO-S3, CPSO-S5 and CPSO-S10 require respectively 40,
60, 100 and 200 function evaluations per iteration. Results plotted are averages
calculated over 30 simulations.

The inertia weight, w, and acceleration coefficients c1 and c2 were set as
suggested by Shi and Eberhart [4] to 0.72, 1.49 and 1.49, respectively, for both
the global best PSO and all the CPSO variants.

The Sphere function is unimodal, while the remaining test functions are multi-
modal. In general, to prevent n one dimensional searches on separable test func-
tions, functions are rotated. In this paper the Griewank test function was rotated.
For rotation, Salomon’s method [12] was used to construct an n-dimensional or-
thogonal matrix which was then left multiplied by the particle’s position vector.
The resulting vector was used to determine a particle’s fitness.

5.2 Experimental Results

Investigating Research Question 1: The average diversity values calculated
over 30 simulations for each of the four diversity measures as defined in section 4

104 A. Ismail and A.P. Engelbrecht

Table 1. Definitions and parameters of test functions

Function Domain Name
(where D = 30)

f1(x) =
∑D

i=1
x2
i

[−100, 100]D Sphere

f2(x) =
∑D

2
i=1

100(x2i − x2
2i−1

)2 + (1 − x2i−1)2 [-10, 10]D Rosenbrock

f3(x) = −20 · exp

(
−0.2 ·

√
1
D

∑n
i=1

x2
i

)
[−32, 32]D Ackley

− exp
(

1
n

∑D
i=1

cos(2πxi)
)

+ 20 + e

f4(x) = 1
4000

∑
D
i=1

x2
i

−
∏

D
i=1

cos(
xi√
i
) + 1 [−600, 600]D Griewank

f5(x) =
∑

D
i=1

(x2
i

− 10 cos(2πxi) + 10) [−5.12, 5.12]D Rastrigin

f6(x) =
∑D

i=1
(y2

i
− 10 cos(2πyi) + 10) [−5.12, 5.12]D Non-

where continuous

yi =

{
xi if |xi| < 1

2
round(2xi)

2
if |xi| ≥ 1

2

Rastrigin

f7(x) = −
∑D

i=1
xi sin

(√
|xi|

)
[−500, 500]D Schwefel

f8(x) = 1
4000

∑
D
i=1

x2
i

−
∏

D
i=1

cos(
xi√
i
) + 1 [−600, 600]D Rotated

y = M ∗ x Griewank

f9(x) = π
D

(10 sin2(π · yi) Generalized

+
∑D−1

i=1
(yi − 1)2 · (1 + 10 sin2(π · yi+1)) [−50, 50]D Penalized

+(yD − 1)2) +
∑

D
i=1

u(x, 10, 100, 4) function

where yi = 1 + 1
4
(xi + 1),

u(x, a, k, m) =

{
k(xi − a)m, if xi > a
0, if −a ≤ xi ≤ a
k(−xi − a)m,if xi < −a

on the five-dimensional test functions are plotted in figure 1. Firstly, an impor-
tant observation is that all the diversity measures of CPSO-S decrease towards
zero on all functions. Secondly, plots in figure 1 indicate that the rate of reduc-
tion is the same. All four diversity measures satisfy the criteria as indicated in
section 4. Although the CPSO-Div 3 maintained the highest average diversity
its applicability to functions with higher dimensions is infeasible as indicated in
section 4. Hence, the plots in figure 1 indicate that the remaining diversity mea-
sures are all appropriate for CPSO-S, except CPSO-Div 3 for high dimensional
functions.

Investigating Research Question 2: From subfigures (a) to (i) in figure 1,
CPSO-Div 3 maintained the highest average diversity for each iteration except
for the Griewank (f4) function. CPSO-Div 4 generally maintained a high diver-
sity except on the Sphere and Ackley functions, where the diversity was the small-
est of all the diversity methods for a larger part of the duration of optimization.
CPSO-Div 1 and CPSO-Div 2 maintained identical diversities for functions f1
and f3 to f8, while CPSO-Div 1 exceeded the diversity values reached by CPSO-
Div 2 midway through optimization on function f2. Although the CPSO-Div 3
maintained the highest average diversity its applicability to functions with higher
dimensions is infeasible as indicated in section 4. Hence, the plots in figure 1 in-
dicate that the remaining diversity measures are all appropriate for CPSO. The
best diversitymeasure(s) on higher dimensional test functions areCPSO-Div 1 and
CPSO-Div 2, with CPSO-Div 1 achieving slightly better diversity than CPSO-Div
2 on the Rosenbrock function (f2). The best diversity measure for CPSO based on
diversity plots of the test functions in this paper is CPSO-Div 1.

Measuring Diversity in the Cooperative Particle Swarm Optimizer 105

 1e-006

 1e-005

 0.0001

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 0 20 40 60 80 100 120 140 160 180 200

lo
g(

di
ve

rs
ity

)

iterations

Sphere

Method 1
Method 2
Method 3
Method 4

 0.0001

 0.001

 0.01

 0.1

 1

 10

 100

 0 20 40 60 80 100 120 140 160 180 200

lo
g(

di
ve

rs
ity

)

iterations

Rosenbrock

Method 1
Method 2
Method 3
Method 4

 1e-006

 1e-005

 0.0001

 0.001

 0.01

 0.1

 1

 10

 100

 0 20 40 60 80 100 120 140 160 180 200

lo
g(

di
ve

rs
ity

)

iterations

Ackley

Method 1
Method 2
Method 3
Method 4

(a) f1 (Sphere) (b) f2 (Rosenbrock) (c) f3 (Ackley)

 0.1

 1

 10

 100

 1000

 0 20 40 60 80 100 120 140 160 180 200

lo
g(

di
ve

rs
ity

)

iterations

Griewank

Method 1
Method 2
Method 3
Method 4

 1e-005

 0.0001

 0.001

 0.01

 0.1

 1

 10

 0 20 40 60 80 100 120 140 160 180 200

lo
g(

di
ve

rs
ity

)

iterations

Rastrigin

Method 1
Method 2
Method 3
Method 4

 1e-006

 1e-005

 0.0001

 0.001

 0.01

 0.1

 1

 10

 0 20 40 60 80 100 120 140 160 180 200

lo
g(

di
ve

rs
ity

)

iterations

Non-cont. Rastrigin

Method 1
Method 2
Method 3
Method 4

(d) f4 (Griewank) (e) f5 (Rastrigin) (f) f6 (Non-cont. Rastrigin)

 0.0001

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 0 20 40 60 80 100 120 140 160 180 200

lo
g(

di
ve

rs
ity

)

iterations

Schwefel

Method 1
Method 2
Method 3
Method 4

 0.01

 0.1

 1

 10

 100

 1000

 0 20 40 60 80 100 120 140 160 180 200

lo
g(

di
ve

rs
ity

)

iterations

Rotated Griewank

Method 1
Method 2
Method 3
Method 4

 1e-006

 1e-005

 0.0001

 0.001

 0.01

 0.1

 1

 10

 100

 0 20 40 60 80 100 120 140 160 180 200

lo
g(

di
ve

rs
ity

)

iterations

Gen. penalized

Method 1
Method 2
Method 3
Method 4

(g) f7 (Schwefel) (h) f8 (Rotated Griewank) (i) f9 (Gen. penalized)

Fig. 1. Plots of average diversity for each of the four diversity methods for 5D functions

Investigating Research Question 3: The diversity of the global best PSO
and the CPSO-S on the 30 dimensional test functions listed in table 1 was also
investigated. CPSO-Div 1 as the best diversity approach for CPSO was used
to calculate the diversity of the CPSO-S, while the diversity of the PSO was
calculated using equation 3. Figure 3 contains plots of the average diversity for
each of the 9 test functions. CPSO-S maintained a higher average diversity than
global best PSO throughout the optimization process except for the Rosenbrock
function (f2), where the low diversity maintained by the CPSO-S can be ascribed
to the CPSO-S converging much quicker than the global best PSO. From the
plots it is clear that CPSO-S generally maintained a higher average diversity
than global best PSO. This proves the claim that CPSO-S (or CPSO) maintains
a higher diversity than the global best PSO.

Investigating Research Question 4: The effect of an increased number of
swarms in CPSO on diversity was also investigated. CPSO-Div 1 was used
to calculate the diversity of the CPSO-SK where K varies from 3 to 30, i.e.
K = 3, 6, 10, 15, 30. The experiments were performed on the test functions listed
in table 1 with dimension 30. Plots of the average diversity for each of the 9 test
functions appear in figure 3. The plots indicate that an increase in number of
swarms generally resulted in an increase in diversity except for the Rosenbrock

106 A. Ismail and A.P. Engelbrecht

 1e-160

 1e-140

 1e-120

 1e-100

 1e-080

 1e-060

 1e-040

 1e-020

 1

 1e+020

 0 40000 80000 120000 160000 200000

lo
g(

gl
ob

al
 b

es
t)

function evaluations

Sphere

No. of subswarms = 30
No. of subswarms = 15
No. of subswarms = 10
No. of subswarms = 6
No. of subswarms = 3

Gbest PSO............

 1

 10

 100

 1000

 10000

 100000

 1e+006

 1e+007

 0 40000 80000 120000 160000 200000

lo
g(

gl
ob

al
 b

es
t)

function evaluations

Rosenbrock

No. of subswarms = 30
No. of subswarms = 15
No. of subswarms = 10
No. of subswarms = 6
No. of subswarms = 3

Gbest PSO............

 1e-014

 1e-012

 1e-010

 1e-008

 1e-006

 0.0001

 0.01

 1

 100

 0 40000 80000 120000 160000 200000

lo
g(

gl
ob

al
 b

es
t)

function evaluations

Ackley

No. of subswarms = 30
No. of subswarms = 15
No. of subswarms = 10
No. of subswarms = 6
No. of subswarms = 3

Gbest PSO............

(a) f1 (Sphere) (b) f2 (Rosenbrock) (c) f3 (Ackley)

 0.01

 0.1

 1

 10

 100

 1000

 0 40000 80000 120000 160000 200000

lo
g(

gl
ob

al
 b

es
t)

function evaluations

Griewank

No. of subswarms = 30
No. of subswarms = 15
No. of subswarms = 10
No. of subswarms = 6
No. of subswarms = 3

Gbest PSO............

 1e-018

 1e-016

 1e-014

 1e-012

 1e-010

 1e-008

 1e-006

 0.0001

 0.01

 1

 100

 10000

 0 40000 80000 120000 160000 200000

lo
g(

gl
ob

al
 b

es
t)

function evaluations

Rastrigin

No. of subswarms = 30
No. of subswarms = 15
No. of subswarms = 10
No. of subswarms = 6
No. of subswarms = 3

Gbest PSO............

 1e-018

 1e-016

 1e-014

 1e-012

 1e-010

 1e-008

 1e-006

 0.0001

 0.01

 1

 100

 10000

 0 40000 80000 120000 160000 200000

lo
g(

gl
ob

al
 b

es
t)

function evaluations

Non-cont. Rastrigin

No. of subswarms = 30
No. of subswarms = 15
No. of subswarms = 10
No. of subswarms = 6
No. of subswarms = 3

Gbest PSO............

(d) f4 (Griewank) (e) f5 (Rastrigin) (f) f6 (Non-cont. Rastrigin)

-14000

-12000

-10000

-8000

-6000

-4000

-2000

 0 40000 80000 120000 160000 200000

gl
ob

al
 b

es
t

function evaluations

Schwefel

No. of subswarms = 30
No. of subswarms = 15
No. of subswarms = 10
No. of subswarms = 6
No. of subswarms = 3

Gbest PSO............

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 0 40000 80000 120000 160000 200000

lo
g(

gl
ob

al
 b

es
t)

function evaluations

Rotated Griewank

No. of subswarms = 30
No. of subswarms = 15
No. of subswarms = 10
No. of subswarms = 6
No. of subswarms = 3

Gbest PSO............

 1e-035

 1e-030

 1e-025

 1e-020

 1e-015

 1e-010

 1e-005

 1

 100000

 1e+010

 0 40000 80000 120000 160000 200000

lo
g(

gl
ob

al
 b

es
t)

function evaluations

Gen. penalized

No. of subswarms = 30
No. of subswarms = 15
No. of subswarms = 10
No. of subswarms = 6
No. of subswarms = 3

Gbest PSO............

(g) f7 (Schwefel) (h) f8 (Rotated Griewank) (i) f9 (Gen. penalized)

Fig. 2. Plots of average global best for subswarms of different sizes for 30D functions

function (f2) where the opposite is observed. As shown in figure 3(b) the CPSO-S
and CPSO-S15 converged quickly to the minimum indicating excellent exploita-
tion which resulted in lower diversity on the Rosenbrock function (f2), while the
other CPSO variants were still exploring the search space thus reflecting a larger
diversity. The same behaviour is also observed in figure 3(d) on the Griewank
function (f4). In figure 3(e) the CPSO-S and CPSO-S15 maintained a high diver-
sity while exploring the search space and managed to find the optimum, while
all other CPSO variants converged prematurely as reflected in figure 2(e). In
figure 2(e) the premature convergence to local optima by all CPSO-S variants,
except CPSO-S and CPSO-S15, lead to a lower diversity of the swarm. For the
Rastrigin function (f5) the low diversity maintained by the CPSO-S - with the
largest number of subswarms - can be ascribed to quicker convergence which
is experienced earlier than all other CPSO variants. The plots indicate that an
increase in the number of subswarms results in an increased diversity.

A comparison of plots in figures 2 and 3 also indicates that an increase in
diversity, increased performance of the CPSO as reflected for functions f4 to
f8 functions, while the increased diversity of the CPSO-S resulted in slower
convergence on functions f1. However, the decreasing graphs in figures 2(a) and
(i) indicate that with increased optimization time the optima could be found by

Measuring Diversity in the Cooperative Particle Swarm Optimizer 107

 1e-080

 1e-070

 1e-060

 1e-050

 1e-040

 1e-030

 1e-020

 1e-010

 1

 1e+010

 0 40000 80000 120000 160000 200000

lo
g(

di
ve

rs
ity

)

function evaluations

Sphere

No. of subswarms = 30
No. of subswarms = 15
No. of subswarms = 10
No. of subswarms = 6.
No. of subswarms = 3.

Gbest PSO............

 0.0001

 0.001

 0.01

 0.1

 1

 10

 100

 0 40000 80000 120000 160000 200000

lo
g(

di
ve

rs
ity

)

function evaluations

Rosenbrock

No. of subswarms = 30
No. of subswarms = 15
No. of subswarms = 10
No. of subswarms = 6
No. of subswarms = 3

Gbest PSO............

 1e-016

 1e-014

 1e-012

 1e-010

 1e-008

 1e-006

 0.0001

 0.01

 1

 100

 0 40000 80000 120000 160000 200000

lo
g(

di
ve

rs
ity

)

function evaluations

Ackley

No. of subswarms = 30
No. of subswarms = 15
No. of subswarms = 10
No. of subswarms = 6
No. of subswarms = 3

Gbest PSO............

(a) f1 (Sphere) (b) f2 (Rosenbrock) (c) f3 (Ackley)

 1e-008

 1e-006

 0.0001

 0.01

 1

 100

 10000

 0 40000 80000 120000 160000 200000

lo
g(

di
ve

rs
ity

)

function evaluations

Griewank

No. of subswarms = 30
No. of subswarms = 15
No. of subswarms = 10
No. of subswarms = 6
No. of subswarms = 3

Gbest PSO............

 1e-010

 1e-008

 1e-006

 0.0001

 0.01

 1

 100

 0 40000 80000 120000 160000 200000

lo
g(

di
ve

rs
ity

)

function evaluations

Rastrigin

No. of subswarms = 30
No. of subswarms = 15
No. of subswarms = 10
No. of subswarms = 6
No. of subswarms = 3

Gbest PSO............

 1e-016

 1e-014

 1e-012

 1e-010

 1e-008

 1e-006

 0.0001

 0.01

 1

 100

 0 40000 80000 120000 160000 200000

lo
g(

di
ve

rs
ity

)

function evaluations

Non-cont. Rastrigin

No. of subswarms = 30
No. of subswarms = 15
No. of subswarms = 10
No. of subswarms = 6
No. of subswarms = 3

Gbest PSO............

(d) f4 (Griewank) (e) f5 (Rastrigin) (f) f6 (Non-cont. Rastrigin)

 1e-007

 1e-006

 1e-005

 0.0001

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 10000

 0 40000 80000 120000 160000 200000

lo
g(

di
ve

rs
ity

)

function evaluations

Schwefel

No. of subswarms = 30
No. of subswarms = 15
No. of subswarms = 10
No. of subswarms = 6
No. of subswarms = 3

Gbest PSO............

 1e-010

 1e-008

 1e-006

 0.0001

 0.01

 1

 100

 10000

 0 40000 80000 120000 160000 200000

lo
g(

di
ve

rs
ity

)

function evaluations

Rotated Griewank

No. of subswarms = 30
No. of subswarms = 15
No. of subswarms = 10
No. of subswarms = 6
No. of subswarms = 3

Gbest PSO............

 1e-016

 1e-014

 1e-012

 1e-010

 1e-008

 1e-006

 0.0001

 0.01

 1

 100

 10000

 0 40000 80000 120000 160000 200000

lo
g(

di
ve

rs
ity

)

function evaluations

Gen. penalized

No. of subswarms = 30
No. of subswarms = 15
No. of subswarms = 10
No. of subswarms = 6
No. of subswarms = 3

Gbest PSO............

(g) f7 (Schwefel) (h) f8 (Rotated Griewank) (i) f9 (Gen. penalized)

Fig. 3. Plots of average diversity of the CPSO-SK for K = 3, 6, 10, 15, 30 (30D test
functions)

the CPSO-S on these two functions. Thus, increased diversity generally improves
performance of the CPSO-S.

6 Conclusion

This paper proposed an alternative measure of diversity for the CPSO and com-
pared the proposed method with 3 other diversity measures. The best diversity
measure of the four approaches was identified and used to compare the diver-
sity of the CPSO-S with the diversity of the global best PSO to test the claim
that CPSO improves diversity. This paper also investigated whether diversity
increases with an increase in the number of subswarms of the CPSO. Applica-
tion of the four diversity measures to nine well-known test functions indicated
that the diversity measure, which is based on solution vectors generated by using
all possible combinations of particles in all subswarms, maintained the highest
diversity during optimization. This approach becomes infeasible for objective
functions with a relatively large dimension and large swarm size. According to
the diversity plots the proposed diversity measure which is based on the same
context vector used for fitness evaluations in CPSO managed to maintain a di-
versity which is at least as good as the diversity of the dimension-wise approach

108 A. Ismail and A.P. Engelbrecht

proposed in [13]. Results of experiments also indicated that the higher diversity
maintained by the CPSO-S on multi-modal functions lead to improved solutions
compared to other CPSO variants and that in general diversity increased with
an increase in the number of subswarms of CPSO.

References

1. Cheng, S., Shi, Y.: Diversity Control in Particle Swarm Optimization. In: IEEE
Symposium on Swarm Intelligence (SIS), pp. 1–9 (2011)

2. Cui, Y., Ju, S.-G.: A diversity guided PSO combined with BP for feedforward
neural networks. In: 3rd International Congress on Image and Signal Processing,
CISP 2010, Yantai, pp. 1538–1542 (2010)

3. Eberhart, R.C., Kennedy, J.: A New Optimizer Using Particle Swarm Theory. In:
6th International Symposium on Micro Machine and Human Science, pp. 39–43.
IEEE Service Center, Piscataway (1995)

4. Eberhart, R.C., Shi, Y.: Comparing inertia weights and constriction factors in
particle swarm optimization. In: IEEE Congress on Evolutionary Computation
(CEC 2000), San Diego, CA, pp. 84–88 (2000)

5. Jie, J., Zeng, J., Han, C., Wang, Q.: Knowledge-based cooperative particle swarm
optimization. Journal of Applied Mathematics and Computation 205, 861–873
(2008)

6. Kennedy, J., Eberhart, R.C.: Particle Swarm Optimization. In: IEEE International
Conference on Neural Networks, vol. 4, pp. 1942–1948 (1995)

7. Kennedy, J.F., Kennedy, J., Eberhart, R.C.: Swarm Intelligence. Morgan
Kaufmann Publishers (2001)

8. Liang, J.J., Qin, A.K., Suganthan, P.N., Baskar, S.: Comprehensive Learning Par-
ticle Swarm Optimizer for Global Optimization of Multimodal Functions. IEEE
Trans. Evol. Comput. 10(3) (June 2006)

9. Olorunda, O., Engelbrecht, A.P.: Measuring Exploration/Exploitation in Particle
Swarms using Swarm Diversity. In: IEEE World Congress on Computational In-
telligence (CEC 2008), pp. 1128–1134 (2008)

10. Pant, M., Radha, T., Singh, V.P.: A Simple Diversity Guided Particle Swarm
Optimization. In: IEEE Congress on Evolutionary Computation (CEC 2007), pp.
3294–3299 (2007)

11. Riget, J., Vesterstrøm, J.S.: A Diversity-Guided Particle Swarm Optimizer - the
ARPSO, Technical report, EVALife, Denmark (2002)

12. Salomon, R.: Reevaluating genetic algorithm performance under coordinate rota-
tion of benchmark functions. BioSystems 39, 263–278 (1996)

13. Shi, Y., Eberhart, R.: Population diversity of particle swarms. In: Congress on
Evolutionary Computation (CEC 2008), pp. 1063–1067 (2008)

14. Van den Bergh, F., Engelbrecht, A.P.: A Cooperative Approach to Particle Swarm
Optimization. IEEE Transactions on Evolutionary Computation 8(3), 225–239
(2004)

15. Van den Bergh, F.: An analysis of particle swarm optimizers. PhD Thesis, Depart-
ment of Computer Science, University of Pretoria (2002)

16. Zhan, Z., Zhang, J., Li, Y., Chung, H.S.: Adaptive Particle Swarm Optimization.
IEEE Transactions on Systems, Man and Cybernetics - Part B: Cybernetics 139(6),
1362–1381 (2009)

Multi-armed Bandit Formulation of the Task

Partitioning Problem in Swarm Robotics

Giovanni Pini, Arne Brutschy, Gianpiero Francesca,
Marco Dorigo, and Mauro Birattari

IRIDIA, Université Libre de Bruxelles, Brussels, Belgium
{gpini,arne.brutschy,gianpiero.francesca,mdorigo,mbiro}@ulb.ac.be

Abstract. Task partitioning is a way of organizing work consisting in
the decomposition of a task into smaller sub-tasks that can be tackled
separately. Task partitioning can be beneficial in terms of reduction of
physical interference, increase of efficiency, higher parallelism, and ex-
ploitation of specialization. However, task partitioning also entails costs
in terms of coordination efforts and overheads that can reduce its bene-
fits. It is therefore important to decide when to make use of task parti-
tioning. In this paper we show that such a decision can be formulated as
a multi-armed bandit problem. This is advantageous since the theoret-
ical properties of the multi-armed bandit problem are well understood
and several algorithms have been proposed for tackling it. We carry out
our study in simulation, using a swarm robotics foraging scenario as a
testbed. We test an ad-hoc algorithm and two algorithms proposed in
the literature for multi-armed bandit problems. The results confirm that
the problem of selecting whether to partition a task can be formulated
as a multi-armed bandit problem and tackled with existing algorithms.

1 Introduction

Task partitioning refers to the act of dividing a task into a sequence of sub-
tasks that can be tackled separately [9]. Many social insects, such as ants, bees,
and wasps employ task partitioning for organizing their work. The benefits that
insects draw from task partitioning are many: decrease of physical interference
between individuals, higher exploitation of specialization, higher parallelism and
efficiency in performing tasks [17]. Swarms of robots could benefit from task
partitioning in the same ways. However, task partitioning also entails costs that
are mainly a consequence of the coordination required to link different sub-tasks
one to another. Therefore, task partitioning should be employed only when the
benefits overcome the costs. In the rest of the paper, we will refer to the problem
of selecting whether to employ task partitioning as the task partitioning problem.

In a previous work, we proposed a method that allows the robots to choose
when to employ task partitioning, on the basis of the costs involved [16]. In
this paper, we extend the work by reformulating the task partitioning problem
as a multi-armed bandit problem [3]. The multi-armed bandit problem consists
in repeatedly selecting actions to be performed in order to maximize a reward

M. Dorigo et al. (Eds.): ANTS 2012, LNCS 7461, pp. 109–120, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

110 G. Pini et al.

that depends on the actions taken. In terms of the multi-armed bandit, the
task partitioning problem can be reformulated as the problem of choosing be-
tween partitioning the overall task and performing it as an unpartitioned task,
with the goal of minimizing the resulting costs. Each robot tackles the multi-
armed bandit problem independently of the other robots: it selects its actions on
the basis of its individual estimate of the costs. The advantage of formulat-
ing the task partitioning problem as a multi-armed bandit stems from the fact
that the latter is widely studied in statistics. Consequently, its theoretical prop-
erties are well understood and, most importantly, one can select among several
existing algorithms, without the need of implementing ad-hoc solutions every
time. The approach presented in this paper can be used to solve the task parti-
tioning problem in situations in which the robots can measure or estimate the
costs associated to employing task partitioning.

Multi-armed bandit problems are characterized by a tradeoff between ex-
ploitation and exploration. A balance has to be found between “exploring the
environment to find profitable actions” [2] and “taking the empirically best ac-
tion as often as possible” [2]. Also in the task partitioning problem there is such
a tradeoff. Task partitioning should be exploited as much as possible, if the ex-
pected resulting costs are low. However, changes in the environment can affect
costs. Therefore, the option of using task partitioning should be reconsidered in
time, in order to detect such changes.

The rest of the paper is organized as follows. In Section 2 we review the ex-
isting work on task partitioning in swarm robotics. In Section 3 we describe the
specific problem tackled in this work and present the three algorithms that we
consider for tackling the problem. In Section 4 we briefly describe the experimen-
tal setup and the tools used to carry out the research. In Section 5 we present
and comment the results of the experiments. Finally, in Section 6 we summarize
the contribution of the work and we describe directions for future research.

2 Related Work

The biology literature is rich in studies devoted to task partitioning. In partic-
ular, task partitioning has been observed in social insects in the organization of
tasks such as material transportation, nest excavation, and waste removal [17].
Swarm robotics draws inspiration from the world of social insects in the imple-
mentation of robotic systems composed of a large number of relatively simple
cooperating robots [5]. The tasks performed by swarms of robots have often a
counterpart in the world of social insects. As social insects draw benefits from
task partitioning, it is interesting to study the application of task partitioning
to swarms of robots performing similar tasks.

While in biology the body of literature on task partitioning is large, few works
in swarm robotics have been devoted to this topic. In the majority of the works,
the focus is on the use of task partitioning as a means for reducing physical
interference. In [7], a foraging task is partitioned into sub-tasks developing in
separate areas, each one assigned a-priori to a different robot. A similar work is

Multi-armed Bandit Formulation of the Task Partitioning Problem 111

presented in [14], with the difference that in this case the areas are not assigned
statically and several robots can share the same working area. In [18], a swarm
of robots has to forage for objects. Objects are progressively moved towards the
nest by different robots, each working in an area of a given radius. The study
shows that the higher the number of robots, the smaller the working area radius
should be. The work as been extended to allow for a dynamical regulation of
the working areas size [10] and to relocate the working areas depending on the
objects distribution in the environment [11]. In [12], a swarm of robots has to
perform foraging in an environment composed of several corridors. The authors
show that task partitioning improves performance when the corridors are too
narrow for two robots traveling in opposite directions to pass at the same time.

In a previous work we studied task partitioning in a foraging task and proposed
a simple method that allows a swarm of robots to tackle the task partitioning
problem [8]. In a follow up research the method has been extended to explicitly
take into account costs linked to task-partitioning [16].

3 Problem Description and Methodology

We study the task partitioning problem: how to choose whether to partition a
given task, or to perform it as a whole, unpartitioned task. When task partition-
ing is employed, the given task is partitioned into a sequence of sub-tasks. In
this paper, we focus on the case in which there are two sub-tasks. The sub-tasks
are linked by an interface of finite capacity. The output of the first sub-task can
be stored at the interface and be subsequently used as the input for the second
sub-task. In this paper we use a swarm robotics foraging scenario as testbed.

Figure 1 provides a schematic representation of the environment and the prob-
lem we study in this work. In the foraging scenario, the robots repeat an object
retrieval task: harvesting an object from the source, and storing it at the nest.
The environment is composed of two areas, one containing the source and the
other containing the nest, separated by a cache. The robots cannot cross the
cache, but they can use it to transfer objects from one area to the other. A
corridor links the two areas and allows the robots to reach one from the other.

In the setup described, using the cache allows the robots to partition the object
retrieval task into two sub-tasks: the first consists in harvesting an object from
the source and drop it in the cache, the second in picking up an object from the
cache and storing it at the nest. Therefore, the cache acts as an interface between
sub-tasks. Conversely, the use of the corridor allows the robots to perform object
retrieval as an unpartitioned task: a robot can directly reach the source from the
nest and the other way around, harvesting and storing objects.

Each robot chooses whether to employ task partitioning in two situations,
represented by a question mark in Fig. 1. First, after taking an object from the
source, a robot decides whether to use the cache to drop the object, or to use
the corridor and store the object at the nest. Second, after storing an object
in the nest, a robot decides whether to pick up an object from the cache, or to
use the corridor and harvest an object from the source.

112 G. Pini et al.

Fig. 1. Representation of the studied foraging problem. Foraging consists in harvesting
objects from the source and storing them at the nest. Robots choose between using
task partitioning (i.e., use the cache) or not (i.e., use the corridor) in two cases, marked
with “?” in the figure. After taking an object from the source, a robot chooses between
store it at the nest or drop it at the cache. Upon storing an object in the nest, a
robot chooses between pick up the next at the cache or harvest one from the source.
The dashed arrows represent cost estimates t̂i that the robot associates to each action.

In this work, we show that the task partitioning problem can be formulated
as a multi-armed bandit problem. In the multi-armed bandit problem, the goal
is to maximize a reward. If the dual problem of minimizing costs is tackled,
algorithms and techniques for the bandit problem can be employed for the task
partitioning problem as well. The nature of the costs depends on the specific task
and on the characteristics of the environment. Typically costs are represented
by resources needed to perform the task. Examples are: energy, time required to
complete a task, or materials employed. In the foraging scenario studied in this
paper, the goal is to maximize the number of objects delivered to the nest. This
can be done by maximizing the throughput; we therefore express costs in terms
of time.

Each robot keeps a cost estimate for each of the possible four actions: i)
harvest an object from the source (using the corridor), ii) pick up an object
from the cache, iii) drop an object in the cache, and iv) store an object in the
nest (using the corridor). Each estimate t̂i is computed as:

t̂i ← (1− α) t̂i + α tM , (1)

where α ∈ (0, 1] is a weight factor. tM is the measure of the time taken by the last
action performed by the robot, its meaning depending on the specific estimate
being updated (refer to the dashed arrows in Fig. 1). When estimating the cost
t̂H of harvesting an object from the source, tM measures the time from the
moment an object is stored in the nest till the moment a new object is harvested
from the source. Analogously, when estimating the cost t̂S of storing an object
in the nest, tM denotes the time measured from the moment an object is taken
from the source to the moment it is deposited in the nest. When estimating

Multi-armed Bandit Formulation of the Task Partitioning Problem 113

the cost t̂D of dropping objects in the cache, tM measures the time from the
moment an object is taken from the source, to the moment the following one
is taken from the source, after dropping the first in the cache. Analogously, for
the cost t̂P of picking up, tM accounts for the time between two objects being
stored in the nest, with the second one taken from the cache. These estimates
are used by the robots to decide between using the cache or the corridor.

In this work we compare three algorithms, used by the robots to make this de-
cision. The first is an ad-hoc algorithm that we proposed in a previous work [16].
Using the ad-hoc algorithm, after taking an object from the source, a robot has
a probability Pp of dropping it in the cache:

Pp =

⎧⎪⎨
⎪⎩
[
1 + e−S((t̂H+t̂S)/(t̂P+ t̂D)−1)

]−1

, if t̂H + t̂S > (t̂P + t̂D)[
1 + e−S(1−(t̂P+ t̂D)/(t̂H+t̂S))

]−1

, if t̂H + t̂S ≤ (t̂P + t̂D)
, (2)

where S is a steepness factor. The higher its value, the higher the degree of
exploitation of the algorithm. Analogously, after delivering an object to the nest,
a robot has the same probability Pp of picking up the following one from the
cache. Thus, the object retrieval task is performed as a partitioned task with
a probability of Pp and performed as an unpartitioned task with a probability
1− Pp.

We compare the ad-hoc algorithm with two other algorithms that have been
previously proposed in the literature to tackle multi-armed bandit problems.
The first of the two, which we will refer to as UCB , is a modified version of
the UCB1 policy presented in [2] that, in turn, is derived from the index-based
policy described in [1]. Using UCB, after taking an object from the source, a
robot drops it in the cache if:

t̂D − γ

√
2 ln(nD + nS)

nD
< t̂S − γ

√
2 ln(nD + nS)

nS
, (3)

otherwise it takes the corridor to store the object in the nest. nD is the number
of times that the robot selected the cache for dropping an object, nS the number
of times the robot used the corridor for storing an object in the nest. γ is a
parameter that allows to tune the degree of exploration of the algorithm: the
higher the value, the higher the exploration. An analogous formula is used to
choose between picking up an object from the cache or harvest it from the
source using the corridor.

The third algorithm studied in this work, is the ε-greedy algorithm, a simple
algorithm widely employed in reinforcement learning [19]. With the ε-greedy
algorithm, the action perceived as the less costly is selected with a probability
1− ε, otherwise a random action is selected. ε defines the degree of exploration
of the algorithm: the higher the value, the higher the exploration.

Notice the difference between the ad-hoc algorithm and the other two. In the
former, no distinction is made between the two decision points: both at the nest
and at the source there is the same probability Pp of employing task partitioning.

114 G. Pini et al.

In the UCB and the ε-greedy algorithms, the robots discriminate between the
two cases when making their choice.

For all the algorithms, a give up mechanism allows the robots to abandon
the choice of using the cache. Without this mechanism, deadlocks could occur
in two cases. The first case happens if all the robots are trying to drop objects
in the cache and the cache is full. The second case happens if all the robots are
trying to pick up objects from the cache, and the cache is empty. Giving up is
implemented using a timeout: the robot measures the time it has been trying
to access the cache, and abandons its choice when the time reaches a given
threshold. Details about how the threshold is computed can be found in the
online supplementary material [15]. When a robot gives up, its current waiting
time updates the respective estimate t̂D or t̂P using Equation 1.

4 Experimental Setup

This section briefly describes the experimental tools and the environment in
which we run the experiments presented in the paper. A more detailed descrip-
tion can be found in [16], of which the research presented here is a follow up.

All the experiments presented in this work have been carried out in simulation
using ARGoS [13], a simulator developed within the Swarmanoid1 project [6].
We simulate the e-puck2, a small wheeled robot that has been used in many
studies in swarm robotics. As the e-puck does not have the capability of grasping
objects, we abstract this process by using a device called Task Allocation Module
(TAM) [4]. Each TAM is a small booth in which an e-puck can enter. In the
experiments, we simulate the TAM and its basic functionalities: two RGB LEDs
that can be perceived by the e-pucks and a light barrier that can detect the
presence of a robot within the TAM. In the experiments presented in this article,
we implement the source, the nest, and the cache using TAMs.

The experiments take place in the environment represented in Fig. 2. The
source is located at the top-left, the nest at the top-right, and the cache between
the source and the nest. The nest and the source are implemented using four
TAMs on one side; the cache is implemented with eight TAMs, four on each
side, organized in pairs facing opposite directions3. The corridor links the areas
containing the source and the nest.

We perform the experiments in two environments, called short-corridor and
long-corridor environments. In both environments, the source is 1.5m away from
the nest. The environments differ in terms of the total length of the corridor:
5.0m in the short-corridor and 7.5m in the long-corridor environment. We also
impose a cache processing time Π that the robots have to spend in the cache
when dropping or picking up an object. The length of the corridor and the value
of Π determine whether it is more advantageous to perform the object retrieval

1 http://www.swarmanoid.org
2 http://www.e-puck.org
3 Avideo showing the behavior of the cache can be found in the online supplementaryma-
terial at the following url: http://iridia.ulb.ac.be/supp/IridiaSupp2012-005/

http://www.swarmanoid.org
http://www.e-puck.org
http://iridia.ulb.ac.be/supp/IridiaSupp2012-005/

Multi-armed Bandit Formulation of the Task Partitioning Problem 115

Fig. 2. Representation of the experi-
mental environment. Nest, source and
cache are implemented using TAMs. The
different ground colors are used by the
robots for localization in the arena. Light
sources, marked with “L”, provide di-
rectional information. The short-corridor
and long-corridor environments differ in
the total length of the corridor.

task as unpartitioned task, or to partition it into two sub-tasks. By changing
the value of Π , we can tune the relation between the performance obtained by
using the cache and the one obtained by using the corridor. Consequently, we
can also define how advantageous it is to employ task partitioning.

5 Experiments and Results

We run all the experiments in both the short-corridor and long-corridor environ-
ments, with swarms of 10 and 20 robots. Every experiment lasts 10 simulated
hours. At the beginning of each experiment, half of the swarm is positioned in
the area containing the source and the other half in the area containing the nest.
The value of α, used for computing the time estimates in Equation 1, has been
set to 0.5. Notice that, in order to reduce the parameter space, we do not tune
the value of α with systematic experiments. We select this value of α since low
values are likely to render the algorithms poor in reacting to changes, while high
values increase sensitivity to noise. The values of the cost estimates are initial-
ized randomly: t̂H and t̂S are uniformly sampled in the interval [40, 80], t̂P and
t̂D in [20, 40].

116 G. Pini et al.

Table 1. Selected parameters for the exploiting and exploring versions of the three
algorithms

Algorithm parameter exploiting version exploring version

ad-hoc S 6.0 1.0
UCB γ 100 1000
ε-greedy ε 0.01 0.11

We run two sets of experiments. The goal of the first set of experiments is to
select the parameters for each algorithm. Details about these experiments and
the complete results can be found in the online supplementary material. Follow-
ing these experiments, we selected two parameters settings for each algorithm,
one corresponding to an exploring version and one to an exploiting version of
the algorithm.

In the second set of experiments, the goal is to test whether, by employing
the different algorithms, the robots are able to choose properly when to use task
partitioning and when not to. Additionally, we test if the choice made by the
robot adapts to variations occurring in the environment. In each experiment,
the value of the cache interfacing time Π is initialized to 0, it switches to 160 s
after 2.5 hours, and then it switches back to 0 when the experiment reaches half
of its duration. The robots are expected to choose between the cache and the
corridor and to adapt their choice in time.

Figure 3 reports the results of the experiments, for a swarm composed of 20
robots, in the long-corridor environment. Plots on the same row refer to the
same algorithm (from top to bottom: ad-hoc, UCB, ε-greedy). The plots in the
left column report the results for the exploiting version of the corresponding
algorithm, the ones on the right for the exploring version. Each box reports the
percentage of usage of the cache in the 30 minutes preceding the time reported
on the X axis. The grey horizontal lines report the optimal cache usage, that
changes depending on the value of Π . The grey slanted lines report percentages
of cache usage that lead to a performance of at least 95% of the optimal. Per-
formance is measured as average total number of objects retrieved at the end of
the experiment. To determine the optimal way of using the cache, we performed
experiments in which some of the robots were forced to always use the cache.
For each value of Π and the two swarm sizes, we exhaustively tested all the
possible values of the number of robots forced to use the cache and recorded the
corresponding performance. The performance of the different algorithms is re-
ported in Fig. 4. The optimal performance and the performance of an algorithm
randomly selecting between cache and corridor are also reported for reference.

A comparison between the two versions of each algorithm highlights the trade-
off between exploration and exploitation, typical in multi-armed bandit prob-
lems. When the exploiting versions of the algorithms are employed, the robots
can select when to use the cache and when to use the corridor, but are unable
to detect changes occurring in the environment. This can be seen in the near

Multi-armed Bandit Formulation of the Task Partitioning Problem 117

Π = 0 s Π = 160 s Π = 0 s

0 1 2 3 4 5 6 7 8 9 10

Time (hours)

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Π = 0 s Π = 160 s Π = 0 s

0 1 2 3 4 5 6 7 8 9 10

Time (hours)

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

C
ac

he
us

ag
e

(%
)

Π = 0 s Π = 160 s Π = 0 s

0 1 2 3 4 5 6 7 8 9 10

Time (hours)

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Π = 0 s Π = 160 s Π = 0 s

0 1 2 3 4 5 6 7 8 9 10

Time (hours)

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

C
ac

he
us

ag
e

(%
)

Π = 0 s Π = 160 s Π = 0 s

0 1 2 3 4 5 6 7 8 9 10

Time (hours)

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Π = 0 s Π = 160 s Π = 0 s

0 1 2 3 4 5 6 7 8 9 10

Time (hours)

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

C
ac

he
us

ag
e

(%
)

Fig. 3. Percentage of usage of the cache for the ad-hoc (first row), the UCB (second
row), and the ε-greedy (third row) algorithm. In each row, the plot on the left reports
the results for the exploiting version, the one on the right for the exploring version
of the corresponding algorithm. We report the results obtained in the long-corridor
environment, with a swarm composed of 20 robots. The cache interfacing time Π is
initialized to 0. After 2.5 hours of experiment, the value is changed to 160 seconds, and
returns to 0 at half experiment. Vertical dashed lines mark the moments in which the
value of Π changes. Each box reports the percentage of usage (over 25 experimental
runs) of the cache in the 30 minutes preceding the time reported on the X axis. The
grey horizontal line reports the cache usage that maximizes the number of objects
retrieved, which varies with the value of Π . The grey slanted lines report percentages
of cache usage that lead to a number of objects retrieved that is at least 95% of the
maximum.

118 G. Pini et al.

●
●

●

●●

Ad−Hoc UCB ε−greedy Optimal Random

Algorithm

30
00

40
00

50
00

60
00

70
00

80
00

O
bj

ec
ts

 r
et

rie
ve

d

Algorithm version

Exploiting
Exploring

Fig. 4. Total number of objects retrieved by a swarm of 20 robots in the long-corridor
environment

optimal behavior in the first half of the experiment, which degrades in the sec-
ond half. Notice that the first change in the value of Π is detected also when
employing the exploiting version of the algorithms. The reason is that initially
the cache is selected often by the robots. Consequently, they can detect changes
in Π independently of the version of the algorithm being employed. Detecting
the opposite transition in the value of Π is harder and it only happens when the
exploring version of the algorithms is employed.

The overall results (see online supplementary material) indicate that, in gen-
eral, the algorithms perform better, more consistently, and with higher reactivity
to changes, when the swarm is larger. This highlights that cooperation is required
in order to render task partitioning effective. When the robots are many, it is
more likely that robots are present on both sides of the cache, which is critical
in order to exploit the cache properly. The length of the corridor seems to have
little effect on the behavior of algorithms.

The results confirm that the task partitioning problem can be formulated as a
multi-armed bandit problem. General algorithms for tackling bandit problems,
such as the UCB and the ε-greedy, can be successfully employed to tackle the task
partitioning problem, with results comparable with those of an ad-hoc algorithm.
In particular the ε-greedy is a suitable candidate, since it is simple and its only
parameter is easy to understand and tune manually.

6 Conclusions

In this paper, we studied the problem of choosing whether to tackle a task as a
whole, or to partition it into a sequence of two sub-tasks. We show that the prob-
lem can be formulated as a multi-armed bandit problem. This is advantageous
since the problem is well studied and understood, and its theoretical properties
are known. Most importantly, several algorithms have been proposed in the lit-
erature for tackling the problem. This allows one to select an algorithm knowing
its strengths and weaknesses and apply it to task partitioning problems without
the need of designing ad-hoc solutions each time. The approach can be applied
to situations in which costs can be measured or estimated by the robots. We

Multi-armed Bandit Formulation of the Task Partitioning Problem 119

pointed out that the tradeoff between exploration and exploitation, typical of
multi-armed bandit problems, also arises in the task partitioning problem. This
tradeoff has to be taken into account when choosing an algorithm and its param-
eters. Directions for future work aim at investigating more complex cases with
more than two sub-tasks, as well as cases in which the location of the sub-tasks
interface is not predefined, but must be decided by the robots autonomously.
Additionally, in this work each robot tackles the task partitioning problem in-
dividually. As future work, we also plan to enhance the system with explicit
communication. The robots could exchange information about the environment
and compute cost estimates also on the basis of the information received.

Acknowledgements. The research leading to the results presented in this
paper has received funding from the European Research Council under the
European Union’s Seventh Framework Programme (FP7/2007-2013) / ERC
grant agreement n◦ 246939. Marco Dorigo, Mauro Birattari, and Arne Brutschy
acknowledge support from the Belgian F.R.S.–FNRS. Giovanni Pini acknowl-
edges support from Université Libre de Bruxelles through the “Fonds David &
Alice Van Buuren”.

References

1. Agrawal, R.: Sample mean based index policies with O(log n) regret for the multi-
armed bandit problem. Advances in Applied Probability 27, 1054–1078 (1995)

2. Auer, P., Cesa-Bianchi, N., Fischer, P.: Finite-time analysis of the multiarmed
bandit problem. Machine Learning 47(2), 235–256 (2002)

3. Berry, D.A., Fristedt, B.: Bandit problems: Sequential allocation of experiments.
Chapman & Hall, London (1985)

4. Brutschy, A., Pini, G., Baiboun, N., Decugnière, A., Birattari, M.: The
IRIDIA TAM: A device for task abstraction for the e-puck robot. Tech. Rep.
TR/IRIDIA/2010-015, IRIDIA, Université Libre de Bruxelles, Brussels, Belgium
(2010)

5. Dorigo, M., Şahin, E.: Guest editorial. Special Issue: Swarm robotics. Autonomous
Robots 17(2-3), 111–113 (2004)

6. Dorigo, M., Floreano, D., Gambardella, L.M., Mondada, F., Nolfi, S., Baaboura,
T., Birattari, M., Bonani, M., Brambilla, M., Brutschy, A., Burnier, D., Campo, A.,
Christensen, A.L., Decugnière, A., Caro, G.D., Ducatelle, F., Ferrante, E., Förster,
A., Gonzales, J.M., Guzzi, J., Longchamp, V., Magnenat, S., Mathews, N., de Oca,
M.M., O’Grady, R., Pinciroli, C., Pini, G., Rétornaz, P., Roberts, J., Sperati, V.,
Stirling, T., Stranieri, A., Stützle, T., Trianni, V., Tuci, E., Turgut, A.E., Vaussard,
F.: Swarmanoid: a novel concept for the study of heterogeneous robotic swarms.
IEEE Robotics & Automation Magazine (in press, 2012)

7. Fontan, M.S., Matarić, M.J.: A study of territoriality: The role of critical mass
in adaptive task division. In: Maes, P., Matarić, M.J., Meyer, J.A., Pollack, J.,
Wilson, S. (eds.) From Animals to Animats 4: Proceedings of the Fourth Inter-
national Conference of Simulation of Adaptive Behavior, pp. 553–561. MIT Press,
Cambridge (1996)

120 G. Pini et al.

8. Frison, M., Tran, N.-L., Baiboun, N., Brutschy, A., Pini, G., Roli, A., Dorigo, M.,
Birattari, M.: Self-organized Task Partitioning in a Swarm of Robots. In: Dorigo,
M., Birattari, M., Di Caro, G.A., Doursat, R., Engelbrecht, A.P., Floreano, D.,
Gambardella, L.M., Groß, R., Şahin, E., Sayama, H., Stützle, T. (eds.) ANTS
2010. LNCS, vol. 6234, pp. 287–298. Springer, Heidelberg (2010)

9. Jeanne, R.L.: The evolution of the organization of work in social insects. Monitore
Zoologico Italiano 20, 119–133 (1986)

10. Lein, A., Vaughan, R.: Adaptive multi-robot bucket brigade foraging. In: Bullock,
S., Noble, J., Watson, R., Bedau, M.A. (eds.) Artificial Life XI: Proceedings of
the Eleventh International Conference on the Simulation and Synthesis of Living
Systems, pp. 337–342. MIT Press, Cambridge (2008)

11. Lein, A., Vaughan, R.T.: Adapting to non-uniform resource distributions in robotic
swarm foraging through work-site relocation. In: 2009 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS 2009), pp. 601–606. IEEE
Press, Piscataway (2009)

12. Østergaard, E.H., Sukhatme, G.S., Matarić, M.J.: Emergent bucket brigading: A
simple mechanisms for improving performance in multi-robot constrained-space
foraging tasks. In: AGENTS 2001: Proceedings of the Fifth International Confer-
ence on Autonomous Agents, pp. 29–30. ACM Press, New York (2001)

13. Pinciroli, C., Trianni, V., O’Grady, R., Pini, G., Brutschy, A., Brambilla, M.,
Mathews, N., Ferrante, E., Di Caro, G.A., Ducatelle, F., Stirling, T., Gutiérrez,
A., Gambardella, L.M., Dorigo, M.: ARGoS: A modular, multi-engine simulator
for heterogeneous swarm robotics. In: Proceedings of the 2011 IEEE/RSJ Interna-
tional Conference on Intelligent Robots and Systems (IROS 2011), pp. 5027–5034.
IEEE Computer Society Press, Los Alamitos (2011)

14. Pini, G., Brutschy, A., Birattari, M., Dorigo, M.: Task Partitioning in Swarms of
Robots: Reducing Performance Losses Due to Interference at Shared Resources.
In: Cetto, J.A., Filipe, J., Ferrier, J.-L. (eds.) Informatics in Control Automation
and Robotics. LNEE, vol. 85, pp. 217–228. Springer, Heidelberg (2011)

15. Pini, G., Brutschy, A., Francesca, G., Dorigo, M., Birattari, M.: Multi-armed bandit
formulation of the task partitioning problem in swarm robotics – Online supple-
mentary material (2012), http://iridia.ulb.ac.be/supp/IridiaSupp2012-005/

16. Pini, G., Brutschy, A., Frison, M., Roli, A., Birattari, M., Dorigo, M.: Task par-
titioning in swarms of robots: An adaptive method for strategy selection. Swarm
Intelligence 5(3–4), 283–304 (2011)

17. Ratnieks, F.L.W., Anderson, C.: Task partitioning in insect societies. Insectes
Sociaux 46(2), 95–108 (1999)

18. Shell, D.J., Matarić, M.J.: On foraging strategies for large-scale multi-robot sys-
tems. In: Proceedings of the 19th IEEE/RSJ International Conference on Intelli-
gent Robots and Systems (IROS), pp. 2717–2723. IEEE Press, Pitscataway (2006)

19. Sutton, R., Barto, A.: Reinforcement learning, an introduction. MIT Press,
Cambridge (1998)

http://iridia.ulb.ac.be/supp/IridiaSupp2012-005/

Scalability Study of Particle Swarm Optimizers

in Dynamic Environments

Barend J. Leonard and Andries P. Engelbrecht

Department of Computer Science,
University of Pretoria, South Africa
{bleonard,engel}@cs.up.ac.za

Abstract. This study investigates the scalability of three particle swarm
optimizers (PSO) on dynamic environments. The charged PSO (CPSO),
quantum PSO (QPSO) and dynamic heterogeneous PSO (dHPSO) algo-
rithms are evaluated on a number of DF1 and moving peaks benchmark
(MPB) environments that differ with respect to the severity and fre-
quency of change. It is shown that dHPSO scales better to high severity
and high frequency DF1 environments. For MPB environments, similar
scalability results are observed, with dHPSO obtaining the best average
results over all test cases. The good performance of dHPSO is ascribed
to its ability to explore and exploit the search space more efficiently than
CPSO and QPSO.

1 Introduction

Many real-world problems are dynamic in the sense that the search landscape
changes over time. Landscape changes can be due to changes in the objective
function(s) and/or problem constraints. When such changes occur, a known solu-
tion to a problem may no longer be good or valid. A new solution must therefore
be found to reflect the landscape changes. This study focusses on single-objective
dynamic optimization problems, where only the objective function changes.

Two commonly used benchmarks to generate dynamic optimization problems
are the moving peaks benchmark (MPB) [5] and the DF1 function generator
[11]. By using these generators, optimization techniques can be evaluated on
problems that accurately reflect real-world situations.

The particle swarm optimization (PSO) algorithm [9] is a well known op-
timization technique. PSO has been successfully applied to a wide variety of
problems since its introduction and is known to perform well on static optimiza-
tion problems. However, PSO faces two obstacles when dynamic problems are
considered. The first is a problem referred to as outdated memory. The second,
more severe problem, is that of diversity loss.

In order to solve dynamic problems using PSO, both of the above-mentioned
problems must be overcome. Two variants of the PSO algorithm, known as the
charged PSO (CPSO) and quantum PSO (QPSO), were designed to address
these problems [2], [3]. Both variants prohibit particles in a swarm to com-
pletely converge, thereby ensuring that some particles are always distributed in

M. Dorigo et al. (Eds.): ANTS 2012, LNCS 7461, pp. 121–132, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

122 B.J. Leonard and A.P. Engelbrecht

the search landscape within a region around the best known solution. There-
fore, the distributed particles are able to detect when the optimum moves to
a new location within the covered region. In this way, the problem of diversity
loss is addressed. Additionally, particles are forced to re-evaluate the function
value at their current positions, either periodically or whenever a change in the
environment is detected, thereby addressing the problem of outdated memory.

Recently, another variant of PSO, known as dynamic heterogeneous PSO
(dHPSO), was developed [7]. The dHPSO was first proposed to address the
exploration-exploitation trade-off problem on static optimization problems, but
it was later shown that dHPSO could also be successfully applied to dynamic
problems [10]. The dHPSO allows particles in a swarm to follow different position-
and velocity update rules from one another. In addition, the algorithm allows
particles to select new update rules from a behaviour pool of update rules if the
particle stagnates at any time during execution.

This study investigates the scalability of CPSO, QPSO and dHPSO in dy-
namic environments. Experiments are conducted to show how the performance
of the algorithms deteriorate as the severity and frequency of changes in the
environment increase.

The rest of this paper is structured as follows: Section 2 gives an overview
of the PSO algorithm. Section 3 discusses the problems associated with apply-
ing PSO to dynamic function optimization. In addition, the PSO variants that
address those problems are explained. The experimental procedure is given in
section 4 and the results are discussed in section 5. The study is concluded in
section 6.

2 Particle Swarm Optimization

Particle swarm optimization is a stochastic, population-based optimization al-
gorithm [9]. The algorithm maintains a population (or a swarm) of candidate
solutions (known as particles) to some optimization problem. Each particle i has
a position xi and velocity vi in an nx-dimensional search space. A particle’s posi-
tion xi represents the solution proposed by particle i. In addition to its position
and velocity, each particle also keeps track of the best position yi that it has
found during the search process, known as the particle’s personal best position.
The best position ŷ found by the swarm is called the global best position.

At every time step, each particle’s velocity is updated using

vi(t+ 1) = ωvi(t) + c1r1(t)[yi(t)− xi(t)] + c2r2(t)[ŷ(t)− xi(t)] (1)

where ω is the inertia weight [14], c1 and c2 are acceleration constants, and
r1j(t) and r2j(t) are random values, sampled from U(0, 1) in each dimension
j = 1, . . . , nx.

The second and third terms in equation (1) are referred to as the cognitive
component and the social component, respectively.

Once a particle’s velocity has been updated, its new position is calculated as

xi(t+ 1) = xi(t) + vi(t+ 1). (2)

Scalability Study of Particle Swarm Optimizers in Dynamic Environments 123

The resulting behaviour is that particles stochastically return to regions of the
search space that are known to contain promising solutions.

3 Particle Swarm Optimization in Dynamic Environments

For the purpose of this study, a dynamic environment is a function f whose
optima may move around the function domain during the search process. An
optimum can move in two distinct ways. Firstly, the position x∗ of an optimum
may change in any or all dimensions. Secondly, the value f(x∗) of the optimum
may increase or decrease. Furthermore, the magnitude (or severity) and the
frequency of changes may vary. The consequences of the changes are that optima
may appear or disappear during the search process. In addition, a local optimum
may become a global optimum and vice versa.

To perform optimization in dynamic environments, the goal is to find the op-
timum, and then track its movement over time. When considering environments
with multiple optima, it may also be necessary to detect when an optimum being
tracked is no longer the global optimum. In such a case it the new global opti-
mum must be found and tracked instead. Assuming that environmental changes
occur only at known intervals, the PSO algorithm is subject to two problems
when applied to dynamic functions: outdated memory and diversity loss.

Outdated memory occurs whenever the environment changes. Recall that each
particle in the swarm keeps track of its personal best position yi. When a change
occurs, the value f(yi) associated with a particle’s personal best may no longer
be correct. This could cause particles to be attracted to regions of the search
space that used to contain good solutions, but are no longer desirable. To solve
the problem of outdated memory, Eberhart and Shi [6] showed that it is sufficient
to re-evaluate f at the particles’ personal best positions, as well as at the global
best position ŷ whenever the environment changes.

A subsequent study by Blackwell and Bentley [2] identified the problem of
diversity loss. Diversity loss occurs when the swarm converges on a point in the
search space. If the swarm is too highly converged, there is no way to detect
optima outside the region where particles are present. Therefore, if an optimum
moves or appears outside this small area, the PSO algorithm is unable to find
and track it [1], [2], [3]. It was further shown in [2] that particle swarms in this
situation are prone to oscillation on a line perpendicular to the true optimum in a
phenomenon known as linear collapse. To overcome diversity loss, it is necessary
to control the diversity of the swarm in some way. That is, either prevent particles
from converging, or provide a way for the swarm to diverge if necessary.

Three variants of the PSO algorithm that have been successfully applied to
dynamic environments are discussed below.

3.1 PSO with Charged Particles

Blackwell and Bentley [2] proposed the use of charged particles to prevent swarm
convergence. The approach was later modified by Blackwell and Branke [4].

124 B.J. Leonard and A.P. Engelbrecht

A charged particle has an electrostatic charge Qi > 0. A particle with no
charge is referred to as a neutral particle. Swarm convergence is then prevented
by introducing a Coulomb repulsion force ai in equation (1). The repulsion force
acting on a particle i at time t is given by

ai(t) =
∑
k
=i

QiQk

(δik(t))3
δik(t), pcore < δik(t) < p (3)

where δik(t) = xi(t)− xk(t), and δik(t) = ‖xi(t)− xk(t)‖. The lower limit pcore
prevents the repulsion force from becoming too large between particles that are
very close to each other. Equation (1) then becomes

vi(t+ 1) = ωvi(t) + c1r1(t)[yi(t)− xi(t)] + c2r2(t)[ŷ(t)− xi(t)] + ai(t). (4)

A charged particle i is therefore repelled by all other charged particles k �= i
where pcore < δik < p.

Outdated memory is addressed by re-evaluating the personal best positions
of all particles whenever the environment changes.

By using both charged particles and neutral particles in a single swarm, the
neutral particles converge in order to exploit an optimum, while the charged
particles remain distributed in a region around the neutral particles. Thus, the
problem of diversity loss is solved. However, the computational complexity of this
approach is much higher than that of the standard PSO, because of the need to
calculate euclidean distances between all pairs of particles at each iteration.

This approach is often referred to as charged PSO (CPSO).

3.2 PSO with Quantum Particles

The use of quantum particles was proposed by Blackwell and Branke [3]. In this
approach, a quantum particle i samples a new position xi(t + 1) at each time
step, such that xi(t+ 1) ∈ B(φcloud), where B(φcloud) is an nx-dimensional ball
with radius φcloud around ŷ(t).

The problem of diversity loss is therefore solved in the same way as charged
PSO (by partially preventing swarm convergence), but without the need to cal-
culate euclidean distances between particles.

A re-evaluation strategy is used to address the problem of outdated memory.
This variant is known as Quantum PSO (QPSO).

3.3 Dynamic Heterogeneous PSO

The dHPSO was introduced by Engelbrecht [7] and was first applied to dynamic
environments by Leonard et al. [10].

The dHPSO maintains a collection of position- and velocity update equations.
The collection is known as the behaviour pool and velocity- and position updates
are grouped together to form behaviours that particles may choose to follow. In
addition, particles are monitored for stagnation. When stagnation is detected,

Scalability Study of Particle Swarm Optimizers in Dynamic Environments 125

the particle in question is forced to randomly select a new behaviour from the
behaviour pool. In [7], a particle was deemed to be stagnating whenever its
personal best position did not change for ten consecutive iterations.

It was shown in [10] that dHPSO is able to diversify by selecting exploratory
behaviours when exploitative behaviours begin to stagnate. In this way, random
behaviour selection in dHPSO contributes to addressing the problem of diversity
loss.

Leonard et al. [10] further showed that, in order to apply dHPSO to dy-
namic environments, it is necessary to combine the approach with the peri-
odic re-initialization of a portion of the particles in the swarm. The reason for
this is that particles in dHPSO converge and are therefore not capable of de-
tecting changes in the environment. By re-initializing a portion of the particles
when a change occurs, the re-initialized particles are able to observe the change.
However, for this reason, the current implementation of dHPSO only works on
dynamic environments for which the changes occur at known intervals.

To address outdated memory, the personal best positions of all particles are
re-evaluated whenever the environment changes.

In Engelbrecht’s work [7], the following five behaviours were included in the
behaviour pool:

– Standard PSO behaviour, where equations (1) and (2) were used. The
cognitive acceleration constant c1 was linearly decreased from 2.5 to 0.5
throughout the search process, while the social acceleration constant c2 was
linearly increased from 0.5 to 2.5. This behaviour promotes exploration dur-
ing the initial stages of the search process, while promoting exploitation
towards the end of the search process.

– Cognitive PSO behaviour, where the social acceleration constant c2 in
equation (1) is set to 0.0, so that a particle is only attracted to its own
personal best position yi. This behaviour facilitates exploration by turning
the particle that follows this behaviour into an independent hill-climber.

– Social PSO behaviour, where the cognitive acceleration constant c1 in
equation (1) is set to 0.0, so that a particle is only attracted to the global
best position ŷ. This behaviour facilitates exploitation by effectively turning
all particles that follow it into a single stochastic hill-climber.

– Bare bones PSO behaviour, introduced by Kennedy [8]. The bare bones
behaviour after he observed that a single particle, attracted to its personal
best position yi and the global best position ŷ, exploits the point α in the
middle along a straight line between these two positions. He further observed
that the positions visited by the particle are normally distributed around the
point α. In a bare bones PSO, a particle’s velocity is not calculated using
equation (1), but is sampled from a Gaussian distribution such that

vij(t+ 1) ∼ N

(
yij(t) + ŷj(t)

2
, σ2

)
(5)

where the variance σ2 = |yij(t)− ŷj(t)|. The position update rule in equation
(2) then changes to

xi(t+ 1) = vi(t+ 1). (6)

126 B.J. Leonard and A.P. Engelbrecht

(a) Moving Peaks benchmark
function

(b) DF1 function generator

Fig. 1. Example 2-dimensional environments with 10 optima

Initially, this behaviour will promote exploration, because the personal best
positions of particles are widely distributed around the search space. As the
personal best positions converge, this behaviour will become more exploita-
tive.

– Modified bare bones PSO behaviour, which is a slightly modified ver-
sion of bare bones PSO, also proposed by Kennedy [8]. In this approach,
equation (5) is changed to

vij(t+ 1) =

{
yij(t) if U(0, 1) < 0.5

ϕ otherwise.
(7)

where

ϕ ∼ N

(
yij(t) + ŷj(t)

2
, σ2

)
. (8)

Equation (6) is still used for position updates. This behaviour facilitates
better initial exploration and later exploitation than the standard bare bones
PSO, because particles exploit their personal best positions 50% of the time.

4 Experimental Procedure

For this study, a number of dynamic environments were generated using the
DF1 function generator [11], as well as the Moving Peaks Benchmark (MPB)
[5]. Example 2-dimensional environments are shown in figure 1.

All problems and algorithms were implemented using the open source com-
putation intelligence library, CIlib [13].

4.1 Problems

The problems used for this study were generated using the MPB function [5]
and the DF1 function generator [11]. Each of the two generators were used to
create environments with the change severity settings shown in table 1. The
position and height severities were chosen to correspond to percentages of the

Scalability Study of Particle Swarm Optimizers in Dynamic Environments 127

Table 1. MPB Severity Parameters

Shift severity Height Severity % Shift severity Height Severity %

0.5 0.2 0.5% 20.0 8.0 20.0%
1.0 0.4 1.0% 30.0 12.0 30.0%
2.0 0.8 2.0% 40.0 16.0 40.0%
5.0 2.0 5.0% 50.0 20.0 50.0%
10.0 4.0 10.0%

range within which they were allowed to move. In addition, all environments were
also generated with the following change frequencies: 10, 50, 100, 200 and 500
iterations. Finally, each environment was created in a unimodal and multimodal
fashion, with all multimodal environments having 10 optima. This gave rise to
320 unique problems.

For all the environments, optima moved around a 2-dimensional domain in
the range [−50, 50]2. The heights of the optima oscillated in the range [10, 50],
while the widths and slopes of the peaks and cones were set to a constant value
of 5.0. These parameters are the same as those used for dynamic environments
in [10], except for the dimensionality. Scalability to higher dimensions will be
examined in future studies.

4.2 Algorithms

For this study, the QPSO, CPSO and dHPSO algorithms described in section
3 were tested on a range of dynamic environments. For all experiments, the
algorithms ran for 2000 iterations and all reported results are averages over 30
independent samples.

Unless otherwise stated, all chosen parameter values correspond to the
parameters used by Leonard et al. [10].

Charged PSO: For CPSO, the acceleration constants c1 and c2 were both set
to 1.496180. The parameter pcore was set to 1, while p had a value of 30. The
values yi and ŷ of all particles were re-evaluated at each change interval.

In [10], 50% of the particles in CPSO were also re-initialized at each change
interval. However, since the algorithm maintains swarm diversity throughout
the search process, there is no need to include a re-initialization strategy that
is designed to re-introduce diversity into converged swarms. Therefore, no
re-initialization was performed for CPSO in this study.

Quantum PSO: The acceleration constants c1 and c2 were both set to 1.496180.
The radius φcloud was set to 30. At each change interval, the values of yi and ŷ,
were re-evaluated for all particles.

No re-initialization of particles was performed for QPSO in this study for the
same reason explained in section 4.2.

128 B.J. Leonard and A.P. Engelbrecht

Dynamic Heterogeneous PSO: For this study, the behaviour pool was pop-
ulated with the same five behaviours that were used in [7] and [10]. However,
one change was made to the initialization of dHPSO swarms in this study:

The cognitive PSO behaviour in the previous studies suffered from immediate
stagnation in the first ten iterations of the search process. The reason for this is
that particle velocities were initialized to 0.0, and that particles’ initial personal
best positions yi(0) and their initial positions xi(0) were the same. This resulted
in a zero attraction force on particles with zero velocity (cognitive particles
are only attracted towards their own personal best positions). Because of the
stagnation detection in dHPSO, those particles would, however, change their
behaviours after the first ten iterations and would gain velocity as new attraction
forces were introduced.

To prevent the immediate stagnation of cognitive particles, the personal best
positions of all particles in the swarm were initialized randomly in the range
[−50, 50]2 for this study. Doing so meant that the cognitive components of all
particles were initially a random point within the search domain. However, since
the personal best positions of particles are updated after each iteration, any
inferior personal best positions that may have resulted from random initialization
only persisted for one iteration. In addition, cognitive particles gained initial
velocity, solving the problem of immediate stagnation.

4.3 Measurements

To quantify the performance of the different algorithms with respect to the
quality of the solutions found, the collective mean error [12] was recorded. The
collective mean error at iteration t is the average of all actual error measurements
that have been recorded up to iteration t since the beginning of the search
process. The actual error is taken as the difference between the global best fitness
f(ŷ) and the global maximum value (assuming a maximization problem).

Since the aim of this study is to investigate the ability of algorithms to find
good solutions in environments with varying change severities and change fre-
quencies, no other performance criteria are reported. However, the actual error
measurements and the diversity of swarms will likely provide further insight into
how swarms are affected by environmental changes. Those measurements were
therefore recorded to be studied in future work.

5 Results and Discussion

The scalability results of dHPSO are reported in table 2. For comparison with
other algorithms, figures 2 and 3 illustrate the scalability trends for DF1 envi-
ronments and MPB environments, respectively.

For unimodal DF1 environments, all algorithms showed a decrease in per-
formance as the severity and frequency of changes increased, as was expected.
Initially, QPSO mostly obtained the lowest collective mean error, but at

Scalability Study of Particle Swarm Optimizers in Dynamic Environments 129

Table 2. DHPSO Collective Mean Errors

Multimodal DF1 Frequency (iterations)

Severity (%) 10 50 100 200 500

0.5 1.57±0.29 0.87±0.36 0.63±0.44 0.67±0.64 0.57±0.52
1 2.03±0.24 1.18±0.42 0.99±0.4 0.59±0.29 0.85±0.76
2 3.08±0.27 1.50±0.23 1.29±0.33 0.95±0.34 0.69±0.56
5 5.46±0.18 2.39±0.3 1.58±0.36 1.09±0.4 0.94±0.56
10 6.72±0.28 2.87±0.29 1.98±0.39 1.56±0.43 1.14±0.68
20 7.89±0.35 3.34±0.38 2.28±0.44 1.40±0.46 0.95±0.56
30 7.30±0.29 2.98±0.49 2.13±0.39 1.45±0.36 0.99±0.45
40 8.51±0.3 3.99±0.49 2.90±0.49 2.30±0.54 1.85±1.07
50 6.45±0.26 3.15±0.34 2.45±0.34 1.92±0.33 0.92±0.51

Unimodal DF1 Frequency (iterations)

Severity (%) 10 50 100 200 500

0.5 0.5±0.04 0.41±0.04 0.29±0.05 0.21±0.05 0.13±0.04
1 0.84±0.05 0.6±0.05 0.43±0.11 0.26±0.04 0.15±0.04
2 1.51±0.07 0.83±0.05 0.58±0.10 0.32±0.41 0.18±0.04
5 2.86±0.12 1.13±0.12 0.69±0.07 0.33±0.06 0.2±0.05
10 4.09±0.11 1.22±0.14 0.74±0.11 0.35±0.04 0.22±0.05
20 4.8±0.07 1.13±0.05 0.7±0.10 0.42±0.05 0.25±0.05
30 5.04±0.2 1.11±0.09 0.75±0.09 0.47±0.07 0.2±0.04
40 5.74±0.25 1.23±0.11 0.84±0.08 0.54±0.07 0.31±0.05
50 5.25±0.26 1.17±0.10 0.75±0.07 0.54±0.07 0.32±0.05

Multimodal MPB Frequency (iterations)

Severity (%) 10 50 100 200 500

0.5 2.28±1.82 2.4±1.68 2.15±1.47 1.92±1.62 2.45±1.96
1 2.09±2.01 2.19±1.79 2.12±1.77 2.53±2.03 2.28±2.11
2 3.41±2.20 1.68±1.73 2.97±1.84 2.46±1.95 2.55±3.5
5 2.98±1.89 2.01±1.71 2.45±1.85 2.89±1.95 2.12±2.12
10 2.8±2.04 2.44±2.28 1.99±1.41 2.18±1.97 1.94±2.11
20 2.78±2.07 1.93±1.67 2.31±1.90 2.02±1.69 1.9±1.75
30 3.24±1.85 2.24±1.87 2.62±1.98 2.19±1.92 2.62±1.94
40 2.96±2.02 2.12±1.75 1.94±1.54 2.26±2.28 2.4±1.83
50 2.64±2.08 1.96±1.60 2.18±1.86 2.65±1.86 2.06±1.43

Unimodal MPB Frequency (iterations)

Severity (%) 10 50 100 200 500

0.5 0.21±0.04 0.21±0.05 0.2±0.05 0.19±0.06 0.22±0.04
1 0.21±0.05 0.2±0.05 0.2±0.06 0.2±0.05 0.21±0.06
2 0.24±0.06 0.22±0.04 0.21±0.04 0.2±0.05 0.21±0.03
5 0.22±0.05 0.19±0.07 0.2±0.06 0.21±0.04 0.21±0.05
10 0.23±0.06 0.2±0.05 0.21±0.05 0.22±0.04 0.2±0.05
20 0.22±0.06 0.2±0.05 0.2±0.05 0.2±0.06 0.19±0.04
30 0.21±0.05 0.2±0.05 0.21±0.07 0.21±0.05 0.21±0.03
40 0.19±0.04 0.18±0.04 0.2±0.04 0.2±0.04 0.21±0.04
50 0.23±0.06 0.2±0.04 0.21±0.04 0.23±0.04 0.23±0.05

130 B.J. Leonard and A.P. Engelbrecht

Fig. 2. DF1 Environments Severity Results

Fig. 3. MPB Environments Severity Results

higher severities, dHPSO showed lower errors over all frequencies. The dHPSO
algorithm also showed a better scalability to high severity changes at high
frequencies.

The inferior performance of dHPSO on low severity unimodal DF1 problems
can be attributed to the fast convergent behaviour of dHPSO, as shown in [10],
when compared to CPSO and QPSO. When changes in the environment occur,
dHPSO needs time to diverge in order to exploit the moved optimum. Since the
neutral particles of CPSO and QPSO take longer to converge, they are in a better
position to locate the shifted optimum. However, as the severity increase, CPSO
and QPSO begin to struggle. Leonard et al. [10] suggested that the inability of
charged and quantum particles to converge may prevent them from thoroughly
exploring the search space. The results presented here support their suggestion.
The re-initialized particles of dHPSO are capable of converging on solutions and
may therefore begin to exploit a shifted optimum even before the rest of the
particles have diverged.

For multimodal DF1 problems, dHPSO obtained a lower error in almost all
test cases. Again, all algorithms showed a decrease in performance as the severity
and frequency of changes increased. The lower collective mean error of dHPSO
on low severity multimodal DF1 environments is attributed to the algorithm’s
superior exploration abilities, as shown in [10]. In unimodal environments, the

Scalability Study of Particle Swarm Optimizers in Dynamic Environments 131

exploring particles in dHPSO served little purpose, because the optimum was still
close to its previous position. However, in the case of multimodal functions, it is
likely that new optima appear elsewhere in the search space. The re-initialized
particles of dHPSO are then better equipped to find and exploit these new
optima than the charged or quantum particles in the other algorithms.

Figure 3 shows that dHPSO produced lower collective mean errors in all test
cases on MPB environments. In both the unimodal and multimodal cases, all
algorithms showed a less pronounced effect as the severity and change frequency
increased. The peaks in MPB environments are much narrower that the cones
in DF1 and are therefore difficult to locate. Once CPSO or QPSO has located
a shifted peak, additional time is required for the neutral particles to diverge.
The diverging process in dHPSO is much quicker, because particles are able to
switch to exploratory behaviours independently from the re-initialized particles.
The neutral particles in CPSO and QPSO will only diverge once a better solu-
tion has been found elsewhere in the search space. Figure 3 shows a correlation
between the frequency and severity of changes in that the performance of the
algorithms decrease as both the frequency and severity increase. However, when
only the severity or only the frequency of changes increased, all three algorithms
showed similar performance across all test cases, with the exception of very high
severities and very high frequencies. Again, the difference in performance be-
tween the two environments is attributed to the different shapes of the search
landscapes.

6 Conclusion and Future Work

This study investigated the scalability of three particle swarm optimization
(PSO) algorithms on dynamic optimization problems. The charged PSO (CPSO),
quantum PSO (QPSO) and dynamic heterogeneous PSO (dHPSO) algorithms
were tested on a variety of functions, generated with the moving peaks
benchmark (MPB) and the DF1 function generator.

It was shown that dHPSO scales better to high severities and frequencies of
changes on DF 1 environments. When considering MPB environments, the algo-
rithms showed similar scalability results, but dHPSO obtained the best average
results in all test cases. The bad performance of CPSO and QPSO was attributed
to the inability of charged and quantum particles to exploit viable solutions.
Charged and quantum particles can only explore, while the neutral particles
must first diverge and reach an optimum before exploitation can take place. In
the case of dHPSO, the exploring particles may change their behaviour to be-
come exploiting particles. The only cases where CPSO and QPSO performed well
was on low severity DF 1 environments. In these cases, the environment changes
occurred within the range of the neutral particles and the shape of the search
landscape allowed the neutral particles to easily locate the shifted optimum. The
observed differences in performance between DF 1 and MPB environments were
caused by the different shapes of the functions.

132 B.J. Leonard and A.P. Engelbrecht

Future studies will investigate the scalability of the algorithms to higher
dimensional problems and also consider the effects on swarm diversity. Self-
adaptive models, where the stagnation detection of dHPSO is replaced with
probabilistic selection of behaviours, based on their past performance should
also be compared to the standard dHPSO in order to observe the effect that
different selection schemes have on the algorithm’s performance. Finally, the ef-
fect of including different behaviours in the behaviour pool might also produce
interesting studies.

References

1. Blackwell, T.: Particle swarms and population diversity. Soft Computing – A Fusion
of Foundations, Methodologies and Applications 9(11), 793–802 (2005)

2. Blackwell, T., Bentley, P.: Dynamic search with charged swarms. In: Proceedings
of the Genetic and Evolutionary Computation Conference, pp. 19–26 (2002)

3. Blackwell, T., Branke, J.: Multi-swarm Optimization in Dynamic Environments. In:
Raidl, G.R., Cagnoni, S., Branke, J., Corne, D.W., Drechsler, R., Jin, Y., Johnson,
C.G., Machado, P., Marchiori, E., Rothlauf, F., Smith, G.D., Squillero, G. (eds.)
EvoWorkshops 2004. LNCS, vol. 3005, pp. 489–500. Springer, Heidelberg (2004)

4. Blackwell, T., Branke, J.: Multiswarms, exclusion, and anti-convergence in dynamic
environments. IEEE Transactions on Evolutionary Computation 10(4), 459–472
(2006)

5. Branke, J.: Memory enhanced evolutionary algorithms for changing optimization
problems. In: Proceedings of the IEEE Congress on Evolutionary Computation,
vol. 3. IEEE (1999)

6. Eberhart, R., Shi, Y.: Tracking and optimizing dynamic systems with particle
swarms. In: Proceedings of the IEEE Congress on Evolutionary Computation, vol.
1, pp. 94–100. IEEE (2001)

7. Engelbrecht, A.P.: Heterogeneous Particle Swarm Optimization. In: Dorigo, M.,
Birattari, M., Di Caro, G.A., Doursat, R., Engelbrecht, A.P., Floreano, D.,
Gambardella, L.M., Groß, R., Şahin, E., Sayama, H., Stützle, T. (eds.) ANTS
2010. LNCS, vol. 6234, pp. 191–202. Springer, Heidelberg (2010)

8. Kennedy, J.: Bare bones particle swarms. In: Proceedings of the IEEE Swarm
Intelligence Symposium, pp. 80–87. IEEE (2003)

9. Kennedy, J., Eberhart, R.: Particle swarm optimization. In: Proceedings of the
IEEE International Conference on Neural Networks, vol. 4, pp. 1942–1948 (1995)

10. Leonard, B., Engelbrecht, A., van Wyk, A.: Heterogeneous particle swarms in dy-
namic environments. In: Proceedings of the IEEE Swarm Intelligence Symposium,
pp. 1–8. IEEE (2011)

11. Morrison, R., De Jong, K.: A test problem generator for non-stationary environ-
ments. In: Proceedings of the IEEE Congress on Evolutionary Computation, vol. 3,
IEEE (1999)

12. Morrison, R.: Performance measurement in dynamic environments. In: GECCO
Workshop on Evolutionary Algorithms for Dynamic Optimization Problems, pp.
5–8 (2003)

13. Pamparà, G., Engelbrecht, A., Cloete, T.: Cilib: A collaborative framework for
computational intelligence algorithms – part i. In: Proceedings of the International
Joint Conference on Neural Networks, pp. 1750–1757. IEEE (2008)

14. Shi, Y., Eberhart, R.: A modified particle swarm optimizer. In: Proceedings of the
IEEE Congress on Evolutionary Computation, pp. 69–73. IEEE (2002)

Self-reconfigurable Modular e-pucks

Lachlan Murray1, Jon Timmis1,2, and Andy Tyrrell1

1 Department of Electronics, University of York, UK
2 Department of Computer Science, University of York, UK

{ljm505,jt517,amt}@ohm.york.ac.uk

Abstract. We present the design of a new structural extension for the
e-puck mobile robot. The extension may be used to transform what is a
swarm robotics platform into a self-reconfigurable modular robotic sys-
tem. As a proof of concept, we present an algorithm for controlling the
collective locomotion of a group of e-pucks that are equipped with the
extension. Our approach proves itself to be an effective method of coordi-
nating the movement of a group of physically connected e-pucks. Further-
more, the system shows robustness in its ability to self-reconfigure and
self-assemble following a disruption which alters the group’s structure.

1 Introduction

Swarm robotics and self-reconfigurable modular robotics are two closely related
areas within the larger field of autonomous mobile robotics. Swarm robotics
concerns the study of how a collection of relatively simple embodied agents may
coordinate their behaviour in a distributed and self-organising manner, whilst
relying exclusively on local sensing and communication [17]. Modular robotic
systems are also composed of several relatively simple units, however, unlike
robotic swarms, the individuals in a modular robotic system may physically
connect with one another to form larger robotic structures. An advantage of such
systems is that by varying the connectivity of neighbouring units, structures may
dynamically transform their morphology to suit their task or environment [19].

The field of swarm robotics is currently far more accessible than that of modu-
lar robotics. As is reflected in the availability of both types of hardware. Several
swarm robotic platforms are available to buy or have been released as open
hardware projects [14,13,9,3,11,2]. In contrast, the authors are not aware of any
modular robots that are available commercially, and know of only a single open
source project [21]. This may, at least partially, be attributed to the differ-
ing complexity of the required hardware. Swarm robots are purposefully simple
units, whereas modular robots, although simple in comparison to the structures
that they may form, require complex electrical and mechanical hardware to fa-
cilitate the processes of docking, reconfiguration and inter-robot communication.

To help redress the balance between the two fields and encourage research into
modular robotic systems, here we present a low-cost, low-technology extension
that may be used to transform an existing swarm robotics platform into a mod-
ular robotic system. Our chosen platform is the e-puck robot [14]. As an open

M. Dorigo et al. (Eds.): ANTS 2012, LNCS 7461, pp. 133–144, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

134 L. Murray, J. Timmis, and A. Tyrrell

hardware project, the e-puck robot is a highly flexible platform. Over recent
years a number of extensions have been developed, including an omnidirectional
vision turret, a range-bearing board [7], colour LEDs, a ZigBee radio module [1],
and even an embedded Linux implementation [12].

In this paper we describe a purely structural extension that allows each
equipped e-puck to physically connect with up to four other modules through
passive magnetic docking interfaces. The extension may serve as a low-cost and
accessible platform for research into the control of 2-dimentional modular robotic
systems. As a proof of concept, we present an algorithm for coordinating the mo-
tion of a collection of physically connected e-puck robots and observe that our
approach is not only amenable to the task, but exhibits robust behaviour in the
face of perturbations that disrupt the arrangement of the robots.

The remainder of this paper is structured as follows. In section 2 we provide
a short review of existing modular robotics hardware. In section 3 we describe
the design of our extension. In section 4 we introduce a proof of concept con-
trol algorithm. In section 5 we present results of some preliminary experiments
utilising our modular extension. Finally, in section 6 we present our conclusions.

2 Self-reconfigurable Modular Robotics

In 2007, Yim et al. produced a review of the state of the art in modular robotics
[19]. The review includes a ‘taxonomy of architectures’ which classifies platforms
as either: chain, lattice, mobile, or if they combine elements of more than one
of the previous three, hybrid. Platforms may further be classified according to
the number of degrees of freedom that the individual units posses, the number
of dimensions in which structures can be formed and the method by which they
reconfigure themselves, which may be described as deterministic or stochastic.

In chain-based architectures modules are connected to one another in series
but may branch to form tree like structures or fold and reconnect to form loops.
The CKBot is one such example. Each of the cube shaped modules possess only
a single degree of freedom, but as a collective have been shown demonstrate a
wide range of movements, notably, including the ability to self-repair following
a high impact event that breaks the system into multiple sub-structures [20].
The open source Molecubes platform is another example, similar to our goal, the
platform was designed to encourage research into modular robotics [21].

Lattice architectures are more restrictive than chain-based systems, with mod-
ules only able to occupy discrete positions within a conceptual grid. The Miche
[4] and subsequent Smart Pebble systems [5] are two examples of lattice archi-
tectures. Envisaged as a test bed for future systems of programmable matter,
these small, immobile, cube shaped modules may self-assemble with the help
an external stocastic force, for example a vibrating table. Once assembled in a
densely packed arrangement, a distributed strategy of self-disassembly is used
to ‘sculpt’ the desired object from the robotic substrate.

In a mobile architecture, as well being able to form collective robotic struc-
tures, modules are able to move freely around their environment as individuals.

Self-reconfigurable Modular e-pucks 135

The s-bot platform [15], developed as part of the Swarm-bot project, and the
robots of the succeeding Swarmanoid project represent the best example of a
mobile self-reconfigurable robotic system. The individual robots can physically
connect to one another using grippers. Although unable to create structures as
complex as those produced by other modular robotic systems, the platforms have
been used to developed several distributed control strategies for tackling tasks
such as self-assembly [6] and collective recovery [16].

The term “hybrid” is commonly used to describe systems which combine el-
ements from both chain and lattice based architectures. Recently, a new type
of hybrid has emerged which also shares some of the properties of mobile ar-
chitectures. The Sambot platform [18], and the robots being developed by the
SYMBRION and REPLICATOR projects [10] are two good examples of such
mobile-hybrids. Like the Swarm-bot and Swarmanoid projects, the individual
robots are independently mobile. However, unlike the s-bot and its derivatives,
the modules are also designed to be capable of forming complex 3D structures.

3 Modular e-puck Extension

In this section we present the design of our modular e-puck extension. The ex-
tension may be used to transform the existing e-puck platform into what can be
described as a hybrid mobile-lattice modular robotic system. Robots equipped
with the extension remain independently mobile, but through passive magnetic
docking interfaces may physically connect with other modules within a 2D grid.

As shown in figure 1a, the extension consists of three parts: a circular base
plate which sits directly on top of the e-puck, a central frame which rests on top
of the base plate, and a second circular plate which sits on top of the frame.

To ensure that there is enough room to clear the selector switch on the default
extension board, and to allow access to the reset button, the base plate is posi-
tioned on top of three 15mm hexagonal spacers. A small overhang on the base
plate allows the inner ring of the central frame to rest on the base plate with-
out being permanently attached. This lip allows the frame to rotate unhindered
around the central axis of the e-puck. To enable separate modules to connect
with one another, two magnets are fitted on each internal edge of the central
frame, with opposing poles facing outwards. The strength and positioning of the
magnets were chosen such that if connected modules coordinate their motion
they will remain attached, but if they do not, they will break apart. Therefore
ensuring that the extension provides a suitable platform for investigating both
collective behaviour and self-reconfiguration. Screws which pass through the two
circular plates secure the extension to the epuck and an arrow shaped window
in the top plate allows the current heading of the robot to be easily recognised.

To date, four prototype modules have been produced. The three structural
parts of the extension were fabricated using a MakerBot 3D printer. The com-
plete set of parts required to construct a single extension are displayed in figure
1b, we estimate the total cost to be around �5 per unit. Figure 1c shows a po-
tential arrangement of four e-pucks equipped with the fully assembled extension.

136 L. Murray, J. Timmis, and A. Tyrrell

(a) (b) (c)

Fig. 1. A schematic of the main structural components of the modular e-puck extension
(a) and photographs of unassembled (b) and assembled prototypes (c)

4 Collective Locomotion

In this section we present an algorithm for controlling the collective locomotion
of a group of e-pucks that are physically connected using the modular e-puck
extension. Through a behaviour-based approach every robot in the group is
motivated to move forward, to align with its neighbours and to avoid obstacles.
The summation of these three objectives determines the speed of the robot’s
motors. Regardless of their position within the larger structure, each robot runs
the same controller and exchanges information only via local communication.

As a collective, the robots are able to exhibit continuous coordinated motion
within an enclosed arena, whilst at the same time demonstrating robustness to
perturbations in the overall structure. Following the removal of one or more
modules from a group, whether deliberate or accidental, the system is able to
self-reconfigure and re-form either the original structure, or an entirely new one.
This process of self-assembly is not pre-programmed but emerges due to a com-
bination factors including: the design of the structural extension, the design of
the locomotion controller, and the nature of the robot’s environment.

The two primary objectives of the controller, to align with neighbouring robots
and to avoid obstacles, both make use of the e-puck’s infrared (IR) sensors. The
arrangement of the eight sensors on a single e-puck is shown in figure 2a. The
obstacle avoidance behaviour uses the IR sensors for proximity detection whilst,
with the help of the LibIrcom library [8], the alignment behaviour uses them for
short-range communication.

The alignment behaviour is based upon the same principle of exchanging
relative bearings as both the LibIrcom library’s ‘synchronize’ example, and the
alignment technique described in [7]. We begin this section by describing this
method of alignment, from this point on referred to as static synchronisation,
due to the fact that the robots remain stationary throughout. We identify some
problems with this approach when considering non-stationary alignment and
whilst introducing a new alignment behaviour propose some solutions. Following
which we introduce the obstacle avoidance behaviour and describe how the two
parts are combined with a forward bias to produce the desired overall locomotion.

Self-reconfigurable Modular e-pucks 137

0

1

2

34

5

6

7

i

j

k

(a)

a

b

h

robot 1 robot 2

(b)

Fig. 2. The positioning of the infrared sensors on board an e-puck robot (a) and the
mechanism for exchanging relative bearings between two modules (b)

4.1 Static Synchronisation

The static synchronisation example shows how, by exchanging relative bearings,
a group of stationary robots may converge to and maintain a common heading.

Every robot broadcasts its ID and listens for the IDs of others. Based upon
the sensor at which a message is received, robots are able to estimate the position
of their neighbours as an angle relative to their own heading. For every ID that
a robot receives, a message is sent to the corresponding neighbour, notifying it
of the angle at which it was detected. As shown in figure 2b, using the angle at
which robot 2 was detected (a), and the angle at which robot 2 detected robot 1
(b), robot 1 may calculate the relative heading of robot 2 as h = a+ π − b. The
relative heading of each of a robot’s neighbours is used to incrementally update
the robot’s own desired heading, which consequently determines whether a robot
should turn left, turn right, or remain stationary at each control cycle.

The approach is effective at synchronising the alignment of stationary robots,
but we observe two problems which make it unsuitable for the alignment of
mobile robots connected using the modular e-puck extension. Both problems are
a consequence of the arrangement of the IR sensors on board the e-puck robot.

Firstly, because the angle between neighbouring sensors ranges from around
30◦ to 60◦, unless two sensors are perfectly aligned, the estimate of angles a and
b is often inaccurate. Although the static synchronisation approach incorporates
mechanisms for reducing this uncertainty, it is still present. As is evident in the
behaviour of the robots, which continuously switch between turning left and
right, even once the robots have converged to approximately the same heading.

The second problem is a result of the large gaps between sensors 2, 3, 4 and 5.
When two robots are physically connected, the close proximity of the modules
and the gaps between the sensors can create blind spots in some orientations
(marked i, j and k in figure 2a). As a result of these blind spots, in certain
configurations the time taken to converge to a common heading is increased.

The two problems are further highlighted in figure 3. When sending messages
via infrared, it is possible to estimate the distance between the sending and
receiving sensors by measuring the intensity of the light received. Figure 3a
maps the intensity of the infrared signal for messages sent between two robots

138 L. Murray, J. Timmis, and A. Tyrrell

� � �
a b c

0 π
2

π 3π
2

Rotation of robot 2 (θ′)

0

π
2

π

3π
2

R
o
ta
ti
o
n
o
f
ro
b
o
t
1
(θ
)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

M
ea
n
in
te
n
si
ty

(a)

robot 1 robot 2

θ θ′

(b)

Fig. 3. A map of the intensity of the IR messages sent between two modules at various
orientations (a) and a diagram of the setup used to gather the data (b)

arranged at various orientations. The setup used to gather this data is shown in
figure 3b where robot 1 is the receiving module and robot 2 is the sender. The
intensity of the signal associated with five received messages was recorded at
10◦ intervals for every 1296 (36× 36) possible configurations of the two robots.
Where no message was received within a certain time limit an intensity of 0 was
assigned. The mean value of the five measurements is plotted. It can be noted
from figure 3a that, due to the distribution of the sensors, when the two robots
are facing each other (bottom right) the intensity of the received signals is high,
but when two robots are facing away from each other (top left) the intensity is
often low. A high intensity value indicates that the sending and receiving sensors
are closely aligned, so when two robots are facing each other the measurement
of angle a and b is likely to be more accurate than when they are facing away.

4.2 Alignment

We now present an alternative approach to alignment which aims to tackle the
problems identified in the previous section by making use of the information
available in figure 3a. Building upon the static synchronisation approach, robots
still broadcast their IDs and track the relative orientation of their neighbours,
but as well as making use of the content and direction of the messages they
receive, the intensity of the signals also influences their behaviour.

In figure 3a the lines at x = a, x = b and x = c correspond respectively to the
configurations at which the blind spots i, j and k of robot 2 are directly aligned
with robot 1. As shown in figure 3a, the intensity values of the messages received
along and adjacent to the lines a, b and c are low. It is possible to make use of
this fact to infer when the blind spot of a robot is aligned with its neighbour, and
hence to determine the position of the neighbour more accurately. Specifically, as
shown in figure 4a we may infer that the blind spot k of robot 1 is facing robot 2,

Self-reconfigurable Modular e-pucks 139

a′

a

robot 1 robot 2

2.5

m

(a)

robot 1 robot 2

3 7

(b)

Fig. 4. Diagrams showing the strategy for correcting misalignment using ‘virtual’
sensors (a) and alignment based upon paired sensors (b)

when the message m received at sensor 2 reports a low intensity. Whilst it is
true that sensor 2 will also report low intensity values when the point between
sensors 1 and 2 is aligned with robot 2, because this gap is smaller, these values
will never drop as far they do in blind spot k.

A similar inference can be applied to blind spot i and its relation to sensor
5. Notionally then we may define two virtual sensors ‘2.5’ and ‘4.5’ which lie
between sensors 2-3 and 4-5 respectively. As shown in figure 4a if a message is
detected at sensor 2.5, rather than assume it to have originated from a point at
an angle a, we may more accurately assume that it originated from an angle a′

half way between sensors 2 and 3. Note that it is not possible to define a virtual
sensor ‘3.5’ which lies between sensors 3 and 4 because from the perspective of
these sensors the blind spots i, j and k are indistinguishable.

It should be noted that, using intensity values alone, it is difficult for a robot
to differentiate between the scenarios in which its own blind spot is facing its
neighbour, its neighbour’s blind spot is facing it, or both blind spots are facing
each other. This is not a major concern, however, since in either scenario the re-
action is the same, the robots will turn towards each other. Furthermore we may
note that messages received from neighbours that are not directly connected,
i.e. neighbours positioned at a diagonal, will always have lower intensity values.
However, since the LibIrcom library preferentially processes high intensity mes-
sages, the proportion of messages received from indirect neighbours, and thus
the influence they exert, will be lower than that of direct neighbours. In the
worst case scenario robots will over eagerly turn towards each other, and as will
become apparent in section 5, this is not always a bad thing.

In an attempt to reduce the constant changes in direction witnessed in the
static synchronisation example, and to improve the time taken for the robots to
converge upon a common heading, we also implement a new method for translat-
ing the relative headings of neighbouring modules into motor commands. Rather
than incrementally updating an internal desired heading, at each control cycle
we calculate the average direction of all the most recently detected headings.
This value, h, which belongs to the range −π < h ≤ π is used to determine the
speed of the robot’s motors. For values of h < 0 the robot will turn left and for
values of h > 0 will turn right, the speed at which the robot turns is proportional

140 L. Murray, J. Timmis, and A. Tyrrell

to the magnitude of h. For values of h = 0 and for control cycles in which no
messages are received, the turning speed of the robot’s motors is set to zero.

In communicating the relative angle at which a neighbour was detected, the
robots transmit the number of the sensor, rather than the angle itself. Further-
more, if |h| > π

2 , indicating that the robot will make a fast turn, to preempt
this movement the number of the sensor that is transmitted is incremented or
decremented depending upon whether the robot is turning left or right.

Finally, based upon the knowledge that a high intensity signal is indicative of a
close alignment between two sensors, we can define certain sensor pairings which,
when the intensity of the signal is high, should not influence the movement of
the robots. For example, in figure 4b, if robot 1 receives a high intensity message
on sensor 3, that was sent from sensor 7 of robot 2, the relative heading of robot
2 will be set to 0. Note that although the alignment between robots 1 and 2 in
this scenario is not perfect, it is considered ‘good enough’ for the task at hand,
and preferential to the robots continuously changing direction.

4.3 Obstacle Avoidance

Every sensor which has not recently received a message from another robot, and
does not neighbour with a sensor that has recently received a message from an-
other robot, contributes to obstacle avoidance. At each control cycle, the sensors
which have detected the presence of an obstacle each create a new desired head-
ing, based upon the position of the sensor. The distance to the detected object
is used to assign a weight in the range (0, 1) to each of these new headings,
where the closer the obstacle is, the larger the weight. These weighted headings
are added to the relative headings of the robots neighbour’s, and as before, the
average heading h is used to determine the speed of the robots motors. In effect,
this is equivalent to assuming that there is a neighbouring robot directly facing
every sensor which perceives an obstacle. As well as attempting to align with
their neighbours, robots attempt to ‘align’ with obstacles, with closer obstacles
exerting a greater influence over the alignment.

Finally, to ensure that the robots always continue to move forward, we add a
small positive bias to the speed of each of the robot’s motors.

5 Results

In this section we present the results of a series of experiments conducted using
groups of between two and four e-pucks, each equipped with the modular e-puck
extension. In the first set of experiments, using a group of stationary robots, we
compare the performance of the static synchronisation strategy with our own
approach to alignment. After showing our approach to be amenable to the task
of stationary alignment, we demonstrate its ability to control a group of mobile
robots. At the same time, we observe the robustness of our approach in terms
of its ability to recover from perturbations which cause the group to split apart.

Self-reconfigurable Modular e-pucks 141

5.1 Stationary Alignment

In this set of experiments we compare our approach with the static synchroni-
sation strategy from the LibIrcom library. Experiments were conducted using
groups of two, three and four stationary robots, arranged as shown in figure 5a.

For each controller and each of the three arrangements, 20 individual runs
were conducted. The orientation of the robots was randomised at the start of
each run and the absolute heading of each robot was recorded at one second
intervals over a period of 100 seconds. Throughout all of the experiments, data
was collected using an overhead camera and computer tracking software.

To assess the effectiveness of the approaches in terms of the ability of the
robots to converge towards a common heading, we use the same polarisation
metric as the authors of [7]. The polarisation P (G) of a group of robots G is
defined as the sum of the distance between the heading of every robot and its
angular nearest neighbour θann. More formally shown by equation 1.

P (G) =
∑
i∈G

θann(i). (1)

Figures 5b-d plot the mean polarisation of the two approaches for each of the
three module configurations. As is evident by the eventual low polarisation values
in all of the figures, in every experimental run the modules were observed to
converge to and maintain a common heading. In comparing the two approaches,
there is no statistically significant difference between the eventual polarisation
of each set of experiments. However, in every configuration, we can observe that
convergence is faster for the experiments utilising the new approach to alignment.
Furthermore, during the convergence phase (between around 0 and 30 seconds)
the variance in the polarisation of the static synchronisation approach greater.

5.2 Collective Locomotion

With the integration of the obstacle avoidance behaviour, we now apply our
approach to the task of controlling the collective locomotion of a group of mobile
units. The approach was tested for the same configurations used in section 5.1
and, in an enclosed arena (∼ 0.5× 0.7m), was shown to be capable of effectively
coordinating the motion of all three groups. A single run, lasting 30 minutes, was
conducted for each configuration. The average position of the robots over the
full period is plotted in figure 6. Videos of the experiments are provided online1.

In all three scenarios the robots were able to successfully navigate the arena
without colliding with the arena walls. For the two and four robot configurations
all of the modules remained attached to one another throughout. In the three
module configuration, for a short period of time one module broke away from the
group, only to rejoin soon after. The ability of the module to rejoin the group
highlights an important property of our approach, that it is robust to pertur-
bations in the group structure. To further examine this property we conducted

1 http://www-users.york.ac.uk/~ljm505/modular_epucks.html.

http://www-users.york.ac.uk/~ljm505/modular_epucks.html

142 L. Murray, J. Timmis, and A. Tyrrell

(a)

0

2

4

6

0 20 40 60 80 100

P
o
la
ri
sa
ti
o
n

Time (s)

(b) 2 modules

0

2

4

6

0 20 40 60 80 100

P
o
la
ri
sa
ti
o
n

Time (s)

(c) 3 modules

0

2

4

6

0 20 40 60 80 100

P
o
la
ri
sa
ti
o
n

Time (s)

(d) 4 modules

Fig. 5. Figures (b-d) plot the mean polarisation ± one standard deviation, for each of
the three configurations in (a). The static synchronisation approach is represented by
the dashed line and the lighter grey region, and our new approach is represented by
the solid line and the darker region.

another experiment in which three robots were placed in different corners of the
arena and left to operate for 10 minutes.

In figure 6d the average pairwise distance between each of the robots is plotted
over the 10 minute period. As can be seen in the figure, the robots start far away
from one another and gradually converge to a close proximity at around the 5
minute mark. For the remainder of the experiment they remain within close
proximity of each other. As shown in figure 6e, what happened in this particular
experiment was that at point i two of the modules physically joined together to
form a two module structure. Shortly after, at point j the third module joined
to complete the three module configuration shown in figure 5a. The robots then
remained in this configuration until the end of the run.

It is important to note that this self-assembly behaviour was not pre-
programed, it emerges purely due to the interaction of the robots and their
environment. Specifically, it can be said to result from a combination of at three
factors. Firstly the enclosed arena ensures that robots never stray too far away
from one another. Secondly, the alignment behaviour ensures that robots all
head in a similar direction. Finally, the design of the e-puck extension ensures
that if two robots come into close proximity their magnetic docking interfaces
will cause them to ‘snap’ together. Furthermore, although there is no explicit
cohesion behaviour, the implementation of virtual sensors introduced in section
4 may cause robots to move towards each other when they mistakenly believe
themselves to be aligned with the blind spot of another robot. These factors
combine to produce the semi-stochastic self-assembly behaviour observed in
figure 6e.

Self-reconfigurable Modular e-pucks 143

(a) (b) (c)

��
i j

0

2

4

6

8

0 100 200 300 400 500 600

D
is
ta
n
ce

Time (s)

(d)

i j

(e)

Fig. 6. The average position of groups of two (a), three (b) and four (c) e-pucks
equipped with the modular extension, recorded over a 30 minute period, and the
pairwise distance between three robots recorded over a 10 minute period (d-e)

6 Conclusions

We have presented the design of a structural extension that may be used to
transform the e-puck platform into a mobile-lattice modular robotic system.
As a proof of concept we described a controller for coordinating the collective
locomotion of a group of e-pucks equipped with the extension. The controller
was shown to be capable of synchronising the alignment of the group, as well as
exhibiting robustness to perturbations which threaten the group’s integrity. We
conclude that our modular e-puck extension represents a viable low cost platform
for research into the control of self-reconfigurable modular robotic systems.

Acknowledgments. The authors would like to thank James Hilder and Martin
Trefzer for their invaluable input. The SYMBRION project is funded by the Eu-
ropean Commission, within the 7th Framework Programme. FP7-ICT-2007.8.2.

References

1. Cianci, C.M., Raemy, X., Pugh, J., Martinoli, A.: Communication in a Swarm
of Miniature Robots: The e-Puck as an Educational Tool for Swarm Robotics.
In: Şahin, E., Spears, W.M., Winfield, A.F.T. (eds.) SAB 2006 Ws 2007. LNCS,
vol. 4433, pp. 103–115. Springer, Heidelberg (2007)

2. English, S., Gough, J., Johnson, A., Spanton, R., Sun, J.: Formica (2012),
http://formica.srobo.org

3. GCtronic: Elisa 3 (2012), http://www.gctronic.com/doc/index.php/Elisa_3

http://formica.srobo.org
http://www.gctronic.com/doc/index.php/Elisa_3

144 L. Murray, J. Timmis, and A. Tyrrell

4. Gilpin, K., Kotay, K., Rus, D., Vasilescu, I.: Miche: Modular shape formation by
self-disassembly. Int. J. Rob. Res. 27, 345–372 (2008)

5. Gilpin, K., Rus, D.: Self-disassembling robot pebbles: New results and ideas for
self-assembly of 3d structures. In: IEEE International Conference on Robotics and
Automation Workshop “Modular Robots: The State of the Art”, pp. 94–99 (2010)

6. Groß, R., Bonani, M., Mondada, F., Dorigo, M.: Autonomous self-assembly in
swarm-bots. IEEE Transactions on Robotics 22(6), 1115–1130 (2006)

7. Gutierrez, A., Campo, A., Dorigo, M., Donate, J., Monasterio-Huelin, F.,
Magdalena, L.: Open e-puck range & bearing miniaturized board for local com-
munication in swarm robotics. In: IEEE International Conference on Robotics and
Automation, ICRA 2009, pp. 3111–3116 (May 2009)

8. Gutiérrez, Á., Tuci, E., Campo, A.: Evolution of neuro-controllers for robots align-
ment using local communication. International Journal of Advanced Robotic Sys-
tems 6(1), 25–34 (2009)

9. K-Team Corporation: K-Team Mobile Robotics (2012), http://www.k-team.com
10. Kernbach, S., Scholz, O., Harada, K., Popesku, S., Liedke, J., Raja, H., Liu, W.,

Caparrelli, F., Jemai, J., Havlik, J., Meister, E., Levi, P.: Multi-Robot Organisms:
State of the Art. In: ICRA10, Workshop on “Modular Robots: State of the Art”,
Anchorage, pp. 1–10 (2010)

11. Kernbach, S.: Jasmine swarm robot platform (2012), http://www.swarmrobot.org
12. Liu, W., Winfield, A.F.: Open-hardware e-puck linux extension board for experi-

mental swarm robotics research. Microprocessors and Microsystems 35(1), 60–67
(2011)

13. Rubenstein, M., Hoff, N., Nagpal, R.: Kilobot: A low cost scalable robot system
for collective behaviors. Tech. Rep. TR-06-11, Harvard University (June 2011),
ftp://ftp.deas.harvard.edu/techreports/tr-06-11.pdf

14. Mondada, F., Bonani, M., Raemy, X., Pugh, J., Cianci, C., Klaptocz, A., Magne-
nat, S., Christophe Zufferey, J., Floreano, D., Martinoli, A.: The e-puck, a robot
designed for education in engineering. In: Proceedings of the 9th Conference on
Autonomous Robot Systems and Competitions, pp. 59–65 (2009)

15. Mondada, F., Pettinaro, G.C., Guignard, A., Kwee, I.W., Floreano, D.,
Deneubourg, J.L., Nolfi, S., Gambardella, L.M., Dorigo, M.: Swarm-bot: A new
distributed robotic concept. Autonomous Robots 17, 193–221 (2004)

16. O’Grady, R., Pinciroli, C., Groß, R., Christensen, A.L., Mondada, F., Bonani, M.,
Dorigo, M.: Swarm-Bots to the Rescue. In: Kampis, G. (ed.) ECAL 2009, Part I.
LNCS, vol. 5777, pp. 165–172. Springer, Heidelberg (2011)

17. Şahin, E., Spears, W.: Swarm Robotics: SAB 2004 International Workshop, Santa
Monica, CA, USA, July 17 (2004); revised selected papers. LNCS. Springer (2005)

18. Wei, H., Cai, Y., Li, H., Li, D., Wang, T.: Sambot: A self-assembly modular
robot for swarm robot. In: 2010 IEEE International Conference on Robotics and
Automation (ICRA), pp. 66–71 (2010)

19. Yim, M., Shen, W.M., Salemi, B., Rus, D., Moll, M., Lipson, H., Klavins, E.,
Chirikjian, G.: Modular self-reconfigurable robot systems [grand challenges of
robotics]. IEEE, Robotics Automation Magazine 14(1), 43–52 (2007)

20. Yim, M., Shirmohammadi, B., Sastra, J., Park, M., Dugan, M., Taylor, C.: Towards
robotic self-reassembly after explosion. In: IEEE/RSJ International Conference on
Intelligent Robots and Systems, IROS 2007, pp. 2767–2772 (2007)

21. Zykov, V., Chan, A., Lipson, H.: Molecubes: An open-source modular robotics kit.
In: IROS 2007 Self-Reconfigurable Robotics Workshop (2007)

http://www.k-team.com
http://www.swarmrobot.org
ftp://ftp.deas.harvard.edu/techreports/tr-06-11.pdf

Task Partitioning via Ant Colony Optimization

for Distributed Assembly

James Worcester and M. Ani Hsieh

Drexel University, Philadelphia, USA
{jbw68,mhsieh1}@drexel.edu

Abstract. We address the distributed assembly of a structure by a team
of homogeneous robots. We present an ant-colony-optimization (ACO)
based algorithm to partition general 2- and 3-D assembly tasks into N
separate subtasks. The objective is to determine an allocation or par-
titioning strategy that minimizes the workload imbalance between the
robots that allow for maximum assembly parallelization. This objective
is achieved by extending ACO to apply to a team of ants dividing a set
of tasks, with pheromone marking connections between tasks guiding de-
cisions on task allocation. We present simulation results for various 2-D
and 3-D structures and discuss the advantages of the ACO formulation
in the context of other existing approaches.

1 Introduction

The challenge in distributed autonomous assembly of general two and three-
dimensional structures lies in the complex interplay between the demands on
global planning and coordination and local manipulation and perception. Suc-
cessful autonomous and distributed assembly systems must have the ability to
1) sense and manipulate the various assembly elements; 2) interact with the
desired structure at all stages of the assembly process while ensuring correct-
ness of each assembly step; and 3) satisfy global structural properties such as
static stability and structural integrity. Existing approaches to the distributed
assembly problem generally fall under three categories: self-assembly, assembly
task partitioning, and the synthesis of complete assembly strategies that can be
executed with limited sensing and actuation capabilities.

In the self-assembly approach, the components mix freely until an appropriate
combination occurs, at which point a robot performs the appropriate action to
combine them [7,10]. This area is generally analyzed with chemical reaction net-
works, and deals with concentrations of various parts present in the workspace.
As such, it is ideally suited to problems that have large numbers of parts and
robots, where many copies of a completed structure are desired. It also has the
advantage of dealing with multiple types of materials by considering them to be
different chemical species. We are interested in the development of distributed
autonomous assembly strategies for application in the areas of macro-scale man-
ufacturing and automation. In this problem space, distributed autonomous as-
sembly is representative of the general class of tightly-coupled tasks that is of
much interest in multi-agent robotics research [3].

M. Dorigo et al. (Eds.): ANTS 2012, LNCS 7461, pp. 145–155, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

146 J. Worcester and M.A. Hsieh

In recent years, the execution of tightly-coupled tasks by multi-robot teams
has mostly focused on cooperative grasping and manipulation of a single object
by a team of robots [1, 5, 9, 11, 14]. However, automated assembly involves the
coordination of many robots and their interactions with various assembly com-
ponents whose placements must respect certain precedence constraints to ensure
the final integrity of the desired structure. Existing approaches addressing dis-
tributed macro-scale assembly include [8,15,17,18]. In [15], the strategy consists
of designing local attachment rules for the assembly components and assem-
bly is achieved by robots endowed with the ability to communicate locally with
the components in the assembly structure to determine whether a placement is
allowed. Mass-based partitioning of a desired structure is achieved through iter-
ative applications of Voronoi decomposition in [17, 18]. Each robot in the team
is then tasked to assemble the components located within each Voronoi cell. The
advantage of this approach is that workload allocation can be further improved
during the assembly process based on the amount of assembled components in
each cell and employing the robot’s positions as the new Voronoi centers. While
this method works well for two dimensional structures, it is not clear how this
strategy extends to three dimensions. Lastly, the synthesis of assembly instruc-
tions for special cubic structures by a team of quadrotors is discussed in [8].
While the assembly instructions can be executed by quadrotor teams of any
size, correctness of the assembly strategy is achieved through serial execution
of the assembly instructions. As such, this approach does not take advantage of
the potential for parallelization afforded by a multi-robot team.

In this work, we present an ant-colony-optimization (ACO) [4, 13] based so-
lution to the assembly partitioning problem . The primary contribution of this
work is the modification of ACO to manage teams of cooperating agents, rather
than to determine a policy for a single agent. Where traditional ACO uses groups
of ants exploring the search space of solutions for a single ant, we use groups of
teams of ants to explore the search space of solutions for a single team. We create
N teams of M ants each. Each team acts independently during a generation,
but pheromone is shared across teams, allowing them to learn from each others’
experience. Each team has a manager which directs the interaction of the team
members, orchestrating a sequential node-claiming sequence.

The remainder of the paper is organized as follows: Section 2 describes our
methodology. Section 3 outlines our results, and Section 4 provides discussion of
the results and directions for future work.

2 Methodology

We determine the set of starting nodes by computing the angular density of the
structure about the center of mass, and then spacing the starting nodes such
that the wedge mapped out between any two starting nodes has the same por-
tion of the mass of the overall structure, subject to the restriction that starting
nodes must be on the exterior of the top surface of the structure. The same set
of starting nodes is then provided to all team managers so that pheromone can

Task Partitioning via Ant Colony Optimization for Distributed Assembly 147

be meaningfully shared between teams, allowing them to learn from each others’
experiences. The algorithm is then run for a prespecified number of generations.
In each generation, the ants within a team will collectively divide the task ac-
cording to the pheromone present, then score their proposed solution according
to a metric based on workload variance, deposit their own pheromone in propor-
tion to the quality of their solution, and finally reset their states in preparation
for the next generation. This is shown in Alg. 2.1.

Algorithm 2.1. Algorithm Overview

0: choose starting nodes
for i = 1 to number of generations do

for j = 1 to N do
Team j plans a task allocation (Alg. 2.2)
Team j scores its solution

end for
for j = 1 to N do

Team j deposits pheromone
Team j resets its plan to hold only starting nodes

end for
end for

2.1 Baseline Strategy

We begin by describing our baseline strategy, which we label DAACO (Dis-
tributed Assembly by Ant Colony Optimization). In each generation, we use
the existing pheromone to plan a decomposition of the structure into individual
tasks. This is achieved by each ant sequentially claiming a single node, contin-
uing until no unclaimed nodes remain. An individual ant makes its decision on
which node to claim based on summing the total amount of pheromone leading
to each potential target node from all nodes currently part of its task. That is,
for each target node j, it computes a probability of taking that node according
to equation 1:

pj = ((
∑
i

xij) + pmin)/
∑
k

((
∑
i

xik) + pmin) (1)

where pj is the probability of claiming node j, xij is the pheromone on the edge
between i and j, and pmin is a constant that provides a small chance of claiming
each node, even in the absence of pheromone. The sums only consider nodes for
j that are adjacent to the ant’s current task, and only consider nodes for i that
are within the ant’s current task. By considering all edges leading to the target
node, we make it more likely that an ant will claim new tasks that share multiple
adjacencies with the current task, leading to a more compact overall task for
the ant.

148 J. Worcester and M.A. Hsieh

The purpose of pmin is to introduce a possibility of exploring previously un-
tried assignments. Effectively this provides a noise term to the exploration of the
search space, giving a possibility of exiting a local minimum. The pheromone is
globally initialized to a value of zero, meaning that initial decisions are chosen
from a uniform distribution over all adjacent nodes. To increase solution diver-
sity, an ordering of the ants is randomly generated by the team manager for
each cycle (each ant claims at most one node during a cycle). The manager also
determines when all nodes have been claimed, at which point the solution is
scored. This process is summarized in Alg. 2.2.

Algorithm 2.2. Planning for a team

while There are unclaimed nodes do
order = randomized permutation of ants within team
for i = order do

for k = neighbors of current task do
scores(k) =

∑
pheromone between k and current task

end for
choose a node with probability proportional to scores(k) + pmin

if Ant i found a claimable node then
mark that node as claimed

end if
end for

end while

Between the planning and scoring phases, the pheromone graph is subjected
to a global decay, removing a set fraction of the old pheromone each gener-
ation. This has the effect of attaching more importance to more recent gen-
erations. The reason for the timing between planning and scoring is to allow
pheromone deposited in generation i to be used in generation i + 1 before it is
subjected to decay. This means it is possible to increase the decay to a point
where all pheromone is erased before new pheromone is deposited, making each
generation dependent only on the results of the immediately preceding gener-
ation. A decay rate of d means (d ∗ 100)% of the pheromone is removed at
this step.

A metric based on the variance of the workload of each ant is employed by the
team manager to score the solution. The metric is given by Eq. 2. This metric
will provide a score scaled between 0 and 1, with a higher score indicating a
better performance. This score is based on the entire team’s performance, and
is then passed to each individual ant to be used in depositing pheromone.

score = 1/(1 + var(WL)) (2)

After the team’s manager has computed a team score, each ant deposits an
amount of pheromone equal to the score to each edge connecting a pair of nodes
within the ant’s task. Finally, at the end of each generation every ant is reset to
contain only its assigned start node before the next generation begins.

Task Partitioning via Ant Colony Optimization for Distributed Assembly 149

After all generations are concluded, a solution is extracted from the popula-
tion of ants by having one team run one last generation with a slight difference.
Rather than stochastically choosing nodes according to the probabilities de-
scribed above, each ant selects a node by deterministically selecting the node
that would have the maximum probability, described by equation 3, where c
is the choice made. This allows us to extract a solution that from the best
knowledge the pheromone represents without adding the stochasticity found in
a typical generation.

cj = max
j

(
∑
i

xij) (3)

2.2 Variant Strategies

We consider two variants on the baseline strategy. The first, which we label
DAACO-D, provides an alternative way of depositing pheromone. As the baseline
strategy deposits pheromone on all connections within the current task, it does
not designate a direction, so the pheromone graph is undirected. This means that
an ant claiming a node on either side of an edge with a high value is likely to take
the node on the other side. Since this may not be desirable behavior for nodes
near one of the starting points, DAACO-D uses a directed pheromone graph.
To determine where to deposit pheromone on this directed graph, Dijkstra’s
algorithm is run on an ant’s complete task assignment to determine a distance
back to the start for every node. Pheromone is then only deposited on edges
leading from a lower distance to a higher distance.

Our second variant, DAACO-S, allows ants to claim nodes that have already
been taken by another ant, in order to more quickly reach an equal workload
by not forcing an ant to stop taking nodes in a situation where all adjacent
nodes have been claimed. In order to avoid ants repeatedly trading nodes back
and forth, three restrictions are placed on this behavior. First, an ant will only
consider stealing a node if there are no unclaimed nodes adjacent to its cur-
rent task. Second, an ant will only steal nodes if its current workload is be-
low the target workload (based on an equal distribution of the total). Finally,
ant i will only steal a node from ant j if j has at least as much work as
i. In order to encourage fewer stolen nodes in successive generations, an ant
that loses a node will remove a fraction of the pheromone connecting it to
that node.

3 Results

We test the algorithm on types of structures consisting of towers connected by
paths, with holes between the paths where nothing is to be built. We vary the
number of robots dividing the structure and the decay rate of the pheromone.
Each map is also compared against the results of the algorithm described in [16]

150 J. Worcester and M.A. Hsieh

run on the same map. In this algorithm, the assembly task is initially divided by
running Dijkstra’s algorithm with multiple starting nodes, one for each robot.
This leaves each robot with a tree representation of its task, where the root
(the starting node) is guaranteed to be on the external boundary of the struc-
ture. By successively building leaves and removing built nodes from its tree, a
robot can complete its task without the danger of becoming trapped in a par-
tially built structure. The algorithm then goes through a node-trading phase
which attempts to equalize the workload by exchanging leaves or branches while
maintaining the tree property of each task. This is a deterministic algorithm,
and hence generates only one solution for a given assembly task, in contrast to
DAACO and its variants, which explore the solution space by varying pheromone
levels.

Results are compared using the variance of the workload between different
robots, with the goal being that this variance should be minimized in an effec-
tive plan. Our base structure consists of 9 3x3 towers, built out of 351 pieces,
shown in Fig. 1(a). Each reported result for DAACO and its variants is the
average of five runs, with each run lasting 20 generations. If parameters are
not explicitly stated, the experiment is done with 8 robots, using a decay rate
of 0.1.

(a) (b)

Fig. 1. (a) The base structure, consisting of nine towers connected by ground paths.
(b) A typical decomposition, in this case by DAACO-S using 8 robots. Different colors
represent the tasks of different robots.

First, we analyze the effects of using different numbers of robots to build
this structure. For each number, we apply DAACO, DAACO-S, DAACO-D,
and the Dijkstra-based algorithm from [16]. Results are shown in Table 1. Each
entry is the variance of the workloads of the robots. Generally the deterministic
Dijkstra-based algorithm has the best performance, closely followed by DAACO-
S, while the basic DAACO has higher workload variance, and DAACO-D is
consistently the worst. A typical decomposition is shown in Fig. 1(b), generated
by DAACO-S for eight robots. However, the deterministic algorithm, as it only
generates one solution per problem, will occasionally encounter a situation that

Task Partitioning via Ant Colony Optimization for Distributed Assembly 151

provides a poor result. One instance of this can be seen for 6 robots dividing the
base structure. Although the deterministic algorithm generally produces slightly
better results than DAACO-S, in this case DAACO-S vastly outperforms the
poor solution chosen by the deterministic algorithm. These solutions are shown
in Fig. 2.

Table 1. Performance as a Function of Team Size

Algorithm Number of Robots

2 3 4 5 6 7 8

DAACO 0.50 0.8 6.83 2.80 109.5 34.3 9.84

DAACO-S 0.50 0.20 0.78 0.40 3.5 1.01 0.98

DAACO-D 198.9 964.6 379.2 368.4 351.1 223.5 50.9

Dijkstra-based Algorithm 0.50 0 0.25 0.20 81.1 0.48 0.13

(a) (b)

Fig. 2. Solutions for six robots, as solved by DAACO-S (a) and the deterministic
algorithm (b). Tasks are delineated by different colors.

(a) (b)

Fig. 3. Two asymmetric structures. (a) Tower structure with one tower triple the height
of the rest (b) 2-d structure with lopsided areas.

152 J. Worcester and M.A. Hsieh

Next, we examine the results of the two structures shown in Fig. 3 to determine
the algorithm’s robustness to asymmetry. In one structure, one of the towers is
much taller than the others, while the second is a 2-D structure with lopsided
areas. Table 2 shows a direct comparison between these cases. We note that
these asymmetric cases can cause problems for the deterministic algorithm, while
DAACO-S still performs well. The plans generated for these structures are shown
in Figs. 4 and 5.

Varying the decay rate of the pheromone (what percentage evaporates between
each generation) has little effect on the resulting workload variance, as shown in
Table 3. These results were generated on the base structure.

Table 2. Results on Asymmetric Structures

Algorithm One Tall Tower 2-d asymmetric

DAACO 48.3 10.2

DAACO-S 6.73 4.97

DAACO-D 79.8 65.0

Dijkstra-based Algorithm 41.1 29.4

(a) (b)

(c) (d)

Fig. 4. Plans created for asymmetric tower structure by (a) DAACO, (b) DAACO-S,
(c) DAACO-D, and (d) deterministic algorithm.

Task Partitioning via Ant Colony Optimization for Distributed Assembly 153

(a) (b)

(c) (d)

Fig. 5. Plans created for 2-D structure with lopsided areas by (a) DAACO, (b)
DAACO-S, (c) DAACO-D, and (d) deterministic algorithm.

Table 3. Performance with Different Decay Rates

Algorithm Decay Rate

0 0.1 0.5 0.75 1

DAACO 5.50 9.84 6.24 5.73 6.75

DAACO-S 0.58 0.98 0.41 0.53 0.47

DAACO-D 46.4 45.5 45.8 44.7 49.7

4 Discussion and Future Work

The results show that allowing ants to steal nodes from each other greatly im-
proves the performance of DAACO-S on this task, giving it comparable per-
formance to the Dijkstra-based algorithm from [16] in most cases, and superior
performance in some. This performance appears to be largely independent of
how much pheromone decay is present. Breaks in symmetry tend to be prob-
lematic for the deterministic approach, but are handled well by DAACO-S. In
contrast, DAACO-D displays performance generally worse than DAACO. This
may be because not adding pheromone between nodes at the same distance from
the starting point weakens the incentive to tightly cluster the tasks chosen, and

154 J. Worcester and M.A. Hsieh

allows claiming of more distant tasks which can block off other ants, leaving
them with smaller workloads.

One aspect of this algorithm worth noting is that it can be used to maintain
connectivity back to an external node, similar to the Dijkstra-based algorithm.
By requiring the starting points to be on the exterior of the structure and limiting
newly claimed nodes to be adjacent to already possessed nodes, DAACO and
DAACO-D provide contiguous tasks that contain part of the exterior of the
structure. This means each robot can plan a way to build its own part that
avoids being trapped in a partially complete structure. As discussed in [6], when
using Voronoi methods, robots can have entirely internal tasks, leaving them no
way to escape the structure if other robots build a wall around them.

DAACO-S in our implementation is not guaranteed to maintain a contiguous
task as another robot could steal a node that disconnects some part of the
task. However, this can be fixed by explicitly checking for each stolen node
whether contiguouity would be broken. One direction for future work is to add a
method to perform this check in constant time regardless of task size. This will
be done by having each node maintain a distance from the root, which can be
easily calculated when the node is added to the task. One direct method would
then be to only allow stealing of nodes that do not have any neighbors with a
higher distance. This would prevent tasks from being separated, but would also
greatly limit the number of nodes available. A more promising direction is to
apply a local Dijkstra starting from each neighbor with a higher distance, which
terminates at the first node other than the stolen node which has a distance no
higher than the stolen node. Essentially what this is doing is checking for an
alternate path back to the root.

Another area for future work is to apply an idea from Simulated Annealing,
and allow pmin to decay over time, starting with a high value to encourage early
exploration of the solution space, with the best solution being further refined as
the noise represented by pmin decreases.

Finally, we would like to apply these methods to our experimental testbed,
described in [16], where it was used with the deterministic approach presented
in that paper. Other hardware platforms that could be used with this approach
include those used in [8], [12], [2].

References

1. Berman, S., Lindsey, Q., Sakar, M.S., Kumar, V., Pratt, S.: Experimental study
and modeling of group retrieval in ants as an approach to collective transport in
swarm robotic systems. Proceedings of the IEEE, Special Issue on Swarming in
Natural and Engineered Systems (2011)

2. Bolger, A., Faulkner, M., Stein, D., White, L., Yun, S., Rus, D.: Experiments
in decentralized robot construction with tool delivery and assembly robots. In:
IEEE/RSJ International Conference on Intelligent Robots and Systems (2010)

3. Chaimowicz, L., Sugar, T., Kumar, V., Campos, M.F.M.: An Architecture for
Tightly Coupled Multi-Robot Cooperation. In: Proc. IEEE Int. Conf. on Rob. &
Autom., Seoul, Korea, pp. 2292–2297 (May 2001)

Task Partitioning via Ant Colony Optimization for Distributed Assembly 155

4. Dorigo, M., Caro, G.D., Gambardella, L.M.: Ant algorithms for discrete optimiza-
tion. Artificial Life, 137–172 (1999)

5. Fink, J., Hsieh, M.A., Kumar, V.: Multi-robot manipulation via caging in environ-
ments with obstacles. In: Proc. IEEE International Conference on Robotics and
Automation (ICRA 2008), Pasadena, CA, pp. 1471–1476 (May 2008)

6. Hsieh, M., Rogoff, J.: Complexity measures for distributed assembly tasks. In:
Proc. of the 2010 Performance Metrics for Intelligent Systems Workshop (PerMIS
2009), Baltimore, Maryland (September 2010)

7. Klavins, E., Burden, S., Napp, N.: Optimal rules for programmed stochastic self-
assembly. In: Proc. Robotics: Science and Systems II, Atlanta, GA, pp. 9–16 (2007)

8. Lindsey, Q.J., Mellinger, D., Kumar, V.: Construction of cubic structures with
quadrotor teams. Robotics: Science and Systems (June 2011)

9. Mataric, M.J., Nilsson, M., Simsarian, K.: Cooperative Multi-Robot Box-Pushing.
In: Proc. IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS 1995), Pittsburgh, Pennsylvania, pp. 556–561 (August 1995)

10. Matthey, L., Berman, S., Kumar, V.: Stochastic Strategies for a Swarm Robotic
Assembly System. In: Proc. 2009 IEEE International Conference on Robotics and
Automation (ICRA 2009), Kobe, Japan, pp. 1953–1958 (2009)

11. Pereira, G.A.S., Kumar, V., Campos, M.F.M.: Decentralized Algorithms for Mul-
tirobot Manipulation via Caging. International Journal of Robotics Research 23,
783–795 (2004)

12. Peterson, K., Nagpal, R., Werfel, J.: Termes: an autonomous robotic system for
three-dimensional collective construction. In: Robotics: Science and Systems (2011)

13. Sauter, J.A., Matthews, R., Parunak, H.V.D., Brueckner, S.: Evolving adaptive
pheromone path planning mechanisms. In: Autonomous Agents and Multi-Agent
Systems (AAMAS 2002), Bologna, Italy, pp. 434–440 (2002)

14. Sugar, T., Kumar, V.: Multiple Cooperating Mobile Manipulators. In: Proc. 1999
IEEE International Conference on Robotics and Automation (ICRA 1999), Detroit,
Michigan, pp. 1538–1543 (May 1999)

15. Werfel, J., Bar-Yam, Y., Nagpal, R.: Building patterned structures with robot
swarms. In: Proc. of the 19th Int. Joint Conf. on Artificial Intelligence (IJCAI
2005), Pasadena, CA USA, pp. 1495–1502 (July 2009)

16. Worcester, J., Rogoff, J., Hsieh, M.: Constrained Task Partitioning for Distributed
Assembly. In: Proc. IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS 2011), San Francisco, California (September 2011)

17. Yun, S.K., Rus, D.: Adaptation to robot failures and shape change in decentralized
construction. In: Proc. of the Int. Conf. on Robotics & Automation (ICRA 2010),
Anchorage, AK, USA, pp. 2451–2458 (May 2010)

18. Yun, S.-k., Schwager, M., Rus, D.: Coordinating Construction of Truss Struc-
tures Using Distributed Equal-Mass Partitioning. In: Pradalier, C., Siegwart, R.,
Hirzinger, G. (eds.) Robotics Research. STAR, vol. 70, pp. 607–623. Springer, Hei-
delberg (2011)

The Self-adaptive Comprehensive Learning

Particle Swarm Optimizer

Adiel Ismail1,2 and Andries P. Engelbrecht2

1 Department of Computer Science, University of the Western Cape, South Africa
aismail@uwc.ac.za

2 Department of Computer Science, University of Pretoria, South Africa
engel@cs.up.ac.za

Abstract. Particle swarm optimization (PSO) has been applied suc-
cessfully to a wide range of optimization problems. Appropriate values
for control parameters of the particle swarm optimization (PSO) algo-
rithm are critical to its success. This paper proposes that the control
parameters of PSO be embedded in the position vector of particles and
dynamically adapted while the search is in progress, relieving the user
from specifying appropriate values before the search commences. Ap-
plication of the Self-Adaptive Comprehensive Learning Particle Swarm
Optimizer (SACLPSO) to 9 well known test functions show an improve-
ment in performance on most of the functions compared to CLPSO and
a tuned PSO.

1 Introduction

Particle swarm optimization (PSO) is a nature inspired population based
stochastic optimization approach which was originally developed by Eberhart
and Kennedy [3]. PSO is appealing to optimization because it is easy to imple-
ment, no gradient information is required, and it is computationally inexpensive
due to low memory and CPU requirements [3].

Despite its simplicity, the success of PSO largely depends on selecting ap-
propriate values for its control parameters, i.e. the inertia weight, w, and ac-
celeration coefficients c1 and c2. Incorrectly chosen parameter values may lead
to suboptimal solutions, premature convergence, stagnation of the algorithm,
slower convergence, or even to divergent or cyclic behaviour [13],[14]. Optimal
control parameter values are also problem dependent and may be different for
different particles in the swarm. Determining optimal static control parameters
manually for the PSO is time consuming.

Numerous PSO variants dynamically adapt the control parameters to improve
the performance of the PSO. These include the time-varying parameter control
strategies such as the linearly decreasing inertia weight [10] and maximum ve-
locity [12], the non-linearly adjusted inertia weight [1], and the time-varying
acceleration coefficients [7]. A fuzzy system adapts the inertia weight in [11].
Two swarms alternate in optimizing the objective function and the PSO control
parameters separately in [5]. Control parameters are self-adapted by growing

M. Dorigo et al. (Eds.): ANTS 2012, LNCS 7461, pp. 156–167, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

The Self-adaptive Comprehensive Learning Particle Swarm Optimizer 157

and shrinking the swarm respectively based on under or improved performance
of individual particles in ‘Tribes’ of Clerc [2].

Despite exhibiting good performance on well-known test functions, the basic
PSO tends to converge prematurely in strongly multi-modal test functions. Poor
swarm diversity has been identified as one of the causes of premature convergence
of the basic PSO [8]. Correctly chosen parameter values ensure swarm diversity
and thus exploration which is vital for the PSO in reaching an optimal solution.
Preferably, the PSO search should start with a high diversity and maintain it
for a longer period while a lower diversity is desirable when approaching conver-
gence. Results reported for the Comprehensive Learning PSO (CLPSO) of Liang
et al [4] on multi-modal functions indicate that the CLPSO generally strikes a
good balance between high and low diversity when fine-tuning a solution.

This paper proposes the Self-Adaptive Comprehensive Learning PSO
(SACLPSO) which is a modification to the CLPSO by dynamically determin-
ing appropriate values for the CLPSO control parameters. The position vectors
are augmented to also contain the inertia weight and the acceleration coefficient
which are adjusted together with the decision variables using the PSO update
equations. Velocity, personal best position and global best position are also aug-
mented to (D+2)-dimensional vectors. This approach of including the control
parameters in an augmented position vector can easily be applied to other PSO
variants.

The rest of the paper is organized as follows: Section 2 provides an overview
of PSO. An overview of the CLPSO is presented in section 3. The SACLPSO
is presented in section 4. The experiments and their results are presented and
discussed in section 5. The paper is concluded in section 6.

2 Overview of PSO

A swarm of particles in PSO fly through the search space to find an optimal
solution to an optimization problem. Each particle represents a potential solution
to the optimization problem and is equipped with a position and a velocity. When
PSO starts, the particles are randomly distributed throughout the search space.
Each particle subsequently adjusts its velocity in relation to the best position
found so far and in relation to the best position of all particles in a defined
neighborhood. The position of a particle is updated using the particle’s velocity.
The best position of particle i is denoted by xi and the velocity by vi. The
personal best position of particle i is represented as xpbesti. The best position
in the entire swarm is referred to as xGbest. The global best and personal
best positions are also updated over time. The position and velocity update
equations are:

vdi (t+ 1) = w · vdi (t) + c1 · rd1(t) · (xpbestdi (t)− xd
i (t)) (1)

+c2 · rd2(t) · (xGbestd(t)− xd
i (t))

xd
i (t+ 1) = xd

i (t) + vdi (t+ 1) (2)

158 A. Ismail and A.P. Engelbrecht

where d = 1, 2, ..., D, i = 1, 2, ..., S, and S is the size of the swarm; w is the
inertia weight with 0 ≤ w < 1; c1 and c2 are two positive constants, called the
acceleration constants; r1 and r2 are two vectors containing random numbers,
with each random number uniformly distributed in (0, 1); and t indicates the
iteration number. The second and third terms in equation (1) are respectively
referred to as the cognitive and the social components.

3 Comprehensive Learning Particle Swarm Optimizer

The Comprehensive Learning Particle Swarm Optimizer (CLPSO) of Liang et
al [4] addresses the problem associated with premature convergence in the ba-
sic PSO by removing the social component from velocity update equation (1),
and by allowing each position vector component of a particle to be attracted
stochastically to the corresponding personal best position vector component of
any other particle in the swarm. Velocity is updated using

vdi (t+ 1) = w vdi (t) + c rd1(t)(xpbest
d
fi(d)(t)− xd

i (t)) (3)

where fi = [fi(1), fi(2), fi(3), ..., fi(D)] and fi(d) = i1, with d ∈ {1, 2, 3, ..., D}
and i1 ∈ {1, 2, 3, ..., S}; S denotes the size of the swarm and fi defines which
particles’ personal best positions to use when updating each dimension of the
velocity of particle i.

The basic PSO updates a particle’s velocity using the particle’s personal best
and the swarm’s global best positions, while in the extreme case equation (3) may
result in a particle’s velocity to be updated by using information from as many
as D distinct particles when each vector component refers to a different particle,
i.e. {fi(d) | d = 1, 2, 3, ..., D} = {i1 | i1 = 1, 2, 3, ..., S}, where i1 refers to the
index of the particle. The decision whether to use a particle’s own personal best
position or that of another particle depends on a learning probability, LPi. The
learning probabilities which range from 0.05 to 0.5 were empirically developed
by Liang et al and were computed using,

LPi = 0.05 + 0.45 ·
(exp(10·(i−1)

S−1)− 1)

(exp(10)− 1)
(4)

Experiments conducted by Liang et al indicated that different learning proba-
bilities equip particles with different exploration/exploitation abilities. Liang et
al subsequently proposed a different learning probability for each particle in the
swarm. The learning probability assigned to a particle is fixed to the particle for
the entire execution of the CLPSO algorithm.

CLPSO updates the velocity of each particle using a set of particles referred
to as exemplars [4]. Exemplars are selected as follows: A random number uni-
formly distributed in (0, 1) is generated for each dimension of particle i. If this
random number exceeds the corresponding learning probability, LPi, then the
corresponding dimension will be updated using the particle’s own personal best,

The Self-adaptive Comprehensive Learning Particle Swarm Optimizer 159

otherwise the dimension will be updated using the personal best of another par-
ticle as determined by a tournament selection procedure. In the latter approach
two particles are randomly chosen from the swarm, excluding the particle be-
ing updated. The particle with a better personal best value is subsequently se-
lected to update the corresponding dimension of the velocity of particle i. This
procedure is repeated for all dimensions of particle i.

If all dimensions of the position of particle i refer to its own personal best
positions, then one dimension of particle i is randomly chosen and updated by
the corresponding dimension of another randomly selected particle’s personal
best position.

If a particle’s personal best does not improve for a predetermined period (also
referred to as the refreshing gap, m), a new set of exemplars is selected for the
particle. Liang et al empirically determined 7 as a good value for m on their
set of test functions. To keep track of the number of consecutive iterations that
showed no improvement in a particle’s personal best, each particle i is assigned
a counter, flagi. For a detailed description of CLPSO refer to [4].

Liang et al reported that the CLPSO performed better than a number of
modified PSO algorithms in 10 of their 16 test functions. This makes the CLPSO
algorithm a good candidate for self-adapting the control parameters of PSO.

4 Self-adaptive Comprehensive Learning PSO

The Self-Adaptive Comprehensive Learning PSO (SACLPSO) is an adapta-
tion of the CLPSO where the inertia weight and acceleration coefficient are
self-adapted during the search process. The position vector of each particle in
SACLPSO is augmented to contain both the inertia weight, w, and the accel-
eration coefficient, c. The first D dimensions of the position vector represent
a potential solution to the optimization problem, while the particle’s inertia
weight and acceleration coefficient are stored in dimensions D+1 and D+2 of
the position vector, respectively. Thus, each particle in SACLPSO has its own
inertia weight and acceleration coefficient. Note that only the first D dimensions
of the position vector are used when evaluating a particle’s fitness. Velocity,
personal best position and global best position vectors are also augmented to
(D+2)-dimensional vectors. When a swarm is created the vector components
corresponding to the decision variables are initialized to random values in a
defined domain, while the vector components for the inertia weight and the ac-
celeration coefficient values of each particle are initialized to random values in
the acceptable ranges [0.1, 1.0] and [0.1, 3.0], respectively. The learning proba-
bilities which are fixed during the entire execution of SACLPSO are initialized
using equation (4).

The following operations apply to each particle in the swarm: A new set of
exemplars for a particle is selected as outlined in CLPSO when the SACLPSO
commences or as soon as flagi is equal to or greater than the refreshing gap m.
When a new set of exemplars is selected for particle i, the counter flagi is reset
to zero. The control parameters, w and c, are extracted from the position vector

160 A. Ismail and A.P. Engelbrecht

and used to update the velocity of a particle using equation (3) and clamped
if required. The position of a particle is subsequently updated using equation
(2). The personal best and global best positions are only updated if the position
of the particle lies within the search domain. An update of the personal best
signals an improvement, and hence flagi is reset. If the personal best of particle
i is not updated, flagi is incremented. To prevent the SACLPSO algorithm
from searching for potential solutions outside the search space, a value for any
dimension of an updated position that exceeds the boundary of the search space
is immediately reassigned to a random value in the domain. The SACLPSO
algorithm appears in Algorithm 1 where maxiter refers to the maximum number
of iterations.

The SACLPSO requires additional storage space for the weight and accelera-
tion coefficients of each particle. Additional processing is also required to access,
extract and update these additional two vector components compared to the
CLPSO.

Algorithm 1. SACLPSO algorithm

Create a swarm of D+2-dimensional particles with

position vector augmented to contain w and c

Initialize learning probabilities, LPi, using equation (4)

Repeat maxiter times (k = 1 to maxiter)

Repeat S times (i = 1 to S)

if(flagi ≥ m) or (k = 1) then

select a set of exemplars for particle i

reset counter, flagi ← 0

Endif

Extract w from position vector of particle i

Extract c from position vector of particle i

Repeat D times (d = 1 to D + 2)

Update vd
i

using equation (3)

Clamp velocity if necessary

Update xd
i

using equation (1)

Next D

if xi ∈ [xmin, xmax] then

if fitness(xi) < fitness(xpbesti) then

xpbesti = xi
flagi = 0

if fitness(xi) < fitness(gBest) then

gBest = xi
Endif

Else

flagi = flagi + 1

Endif

else

Reassign vector position components

that exit search space randomly

to search domain

Endif

Next i

Next k

5 Experiments and Results

The aim of this section is to describe and report on the experiments performed
in this paper. For this purpose, section 5.1 describes the experiments and defines
the test functions and its parameters, while section 5.2 reports the results of the
experiments.

The Self-adaptive Comprehensive Learning Particle Swarm Optimizer 161

5.1 Experimental Procedure

The principle goal of this paper is to investigate the performance of the proposed
SACLPSO which self-adapts the control parameters of CLPSO, bearing in mind
that the SACLPSO searches a larger dimensional space of D + 2 compared to
the D dimensional space searched by the CLPSO. Performance was based on
the fitness of particles. To compare the performance of the SACLPSO with the
CLPSO and a tuned PSO, 9 test functions listed in table 1 were used. The
test set consisted of the unimodal Sphere function and 8 multi-modal functions
including the Rotated Ackley, which has been rotated using Salomon’s method
[9]. The domain refers to the space in which the optimum was searched for.

Table 1. Definitions and parameters of test functions

Function Domain Name
(where D = 30)

f1(x) =
∑D

i=1
x2
i

[−100, 100]D Sphere

f2(x) =
∑D

2
i=1

100(x2i − x2
2i−1

)2 + (1 − x2i−1)2 [-10, 10]D Rosenbrock

f3(x) = −20 · exp

(
−0.2 ·

√
1
D

∑n
i=1

x2
i

)
[−32, 32]D Ackley

− exp
(

1
n

∑D
i=1

cos(2πxi)
)

+ 20 + e

f4(x) = 1
4000

∑D
i=1

x2
i

−
∏D

i=1
cos(

xi√
i
) + 1 [−600, 600]D Griewank

f5(x) =
∑D

i=1

(∑kmax
k=0

[ak cos(2πbk(xi + 0.5)]
)

[−0.5, 0.5]D Weierstrass

−D
∑kmax

k=0
[akcos(2πbk · 0.5)

a = 0.5, b = 3, kmax = 20

f6(x) =
∑

D
i=1

(x2
i

− 10 cos(2πxi) + 10) [−5.12, 5.12]D Rastrigin

f7(x) =
∑D

i=1
(y2

i
− 10 cos(2πyi) + 10) [−5.12, 5.12]D Non-

where continuous

yi =

{
xi if |xi| < 1

2
round(2xi)

2
if |xi| ≥ 1

2

Rastrigin

f8(x) = 418.98 × D −
∑

D
i=1

xi sin

(√
|xi|

)
[−500, 500]D Schwefel

f9(x) = −20 · exp

(
−0.2 ·

√
1
D

∑n
i=1

x2
i

)
[−32, 32]D Rotated

− exp
(

1
n

∑
D
i=1

cos(2πxi)
)

+ 20 + e Ackley

y = M ∗ x

The optimal set of parameters for the tuned PSO was determined by compar-
ing the average global best values yielded by a limited number of combinations
of w, c1 and c2 on the test functions after 1000 iterations. The inertia weight
ranged from 0.4 to 1.0 in increments of 0.025, while both acceleration coefficients
ranged from 0.6 to 2.4 in increments of 0.075. The average of the global best
values over 50 independent simulations was used to evaluate the performance
for each set of PSO control parameters. The best yielding set of parameters for
each test function was chosen as parameters for the PSO. The parameters for
the tuned PSO for each function are listed in table 2.

The performance of the SACLPSO, as measured by the average global best
value over 30 simulations, was compared to that of the CLPSO and a tuned PSO
using the parameters listed in Table 2. For all experiments, each swarm consisted
of 40 particles. All experiments were run for 2×105 function evaluations, noting
that 40 function evaluations are required per iteration by all PSO approaches.
The swarm size and maximum number of function evaluations are similar to that
chosen by Liang et al for their experiments in [4].

162 A. Ismail and A.P. Engelbrecht

Table 2. Parameter settings of tuned
PSO for each test function

Function PSO
w c1 c2

f1 0.525 2.025 1.80

f2 0.625 1.20 2.025

f3 0.60 1.875 2.025

f4 0.60 2.10 1.65

f5 0.725 1.475 1.85

f6 0.775 2.10 1.05

f7 0.75 2.025 1.20

f8 0.45 2.40 1.875

f9 0.70 2.175 1.275

Table 3. Average values for control pa-
rameters for SACLSPO and p-values

SACLPSO SACLPSO
Function average average vs vs

w c CLPSO PSO
p-value p-value

f1 0.482 1.103 0.032 2.87E-11

f2 0.490 1.325 0.013 2.87E-11

f3 0.428 1.140 5.43E-05 2.87E-11

f4 0.445 1.147 1.05E-05 0.917

f5 0.399 1.207 2.87E-11 2.87E-11

f6 0.283 1.268 4.29E-11 2.87E-11

f7 0.264 1.254 6.17E-10 2.87E-11

f8 0.385 1.275 1.12E-09 2.87E-11

f9 0.409 0.964 2.28-07 1.14E-7

The effect of SACLPSO on diversity was also investigated in this paper.
Olorunda and Engelbrecht investigated a number of diversity measures in [6]
and concluded that the average distance around the swarm center is a more ro-
bust measure than swarm diameter or radius in the presence of outliers. Hence,
the diversity measure used in this paper is the ‘average distance around the
swarm center’ as defined in [6].

5.2 Experimental Results

The average values for the inertia weight, w, and the acceleration coefficient,
c, for the SACLPSO were calculated at each iteration over the 30 simulations;
results are given in table 3. In order to establish whether the results produced by
the SACLPSO algorithm are statistically different from the results produced by
CLPSO and the PSO, the non-parametric Mann-Whitney U-test was conducted.
The p-values from the test are included in table 3. A p-value less than 0.05
indicates that the performance of the two algorithms are statistically different
with 95% confidence. Entries in bold in table 3 indicate that the SACLPSO has
outperformed the other algorithm. The SACLPSO has outperformed the CLPSO
and the PSO in 7 and 5 of the 9 test functions, respectively.
The average global best values over 30 simulations are tabulated in table 4 for
the tuned PSO, CLPSO and SACLPSO for each of the 9 test functions.

Subfigures (a) to (j) in figure 1 plot the logarithm of the average global best
values over 30 simulations for the various test functions for each of the three
PSO approaches. The logarithm of the average diversity over 30 simulations for
the various test functions are plotted for the tuned PSO, CLPSO and SACLPSO
in subfigures (a) to (i) in figure 2.

The basic PSO with optimized parameters performed much better than
CLPSO and SACLPSO on function f1, the unimodal Sphere function. The
tuned PSO also converged much faster than both the CLPSO and SACLPSO.
Both the CLPSO and SACLPSO improved their minimum, although extremely
slowly. The CLPSO and SACLPSO achieved fairly similar results on the Sphere
function. Figure 2(a) indicates that the SACLPSO maintained a slightly higher
diversity than CLPSO, with a corresponding slightly lower performance as re-
flected in figure 1(a). The continued high diversity maintained by both CLPSO

The Self-adaptive Comprehensive Learning Particle Swarm Optimizer 163

and SACLPSO towards the end of the search could have resulted in their
poor performance. The CLPSO and SACLPSO could not successfully move
from exploration to exploitation when convergence is reached on the simple
unimodal functions. The omission of the global best term from the velocity
update equation in CLPSO and SACLPSO resulted in particles not being at-
tracted explicitly to the single global minimum when applied to the simple uni-
modal Sphere function. Particles were instead attracted to positions which were
constructed from personal best positions. Omission of the global best term from
the velocity update equation caused delayed attraction and subsequent slowed
convergence to the local minimum in the case of unimodal functions.

Table 4. Average global best over 30 simulations for tuned PSO, CLPSO and
SACLPSO

Function PSO CLPSO SACLPSO
Mean Mean Mean

f1 7.73E − 95 ± 2.93E − 94 6.44E − 13 ± 2.92E − 13 7.45E − 12 ± 2.63E − 11

f2 6.05E + 00 ± 2.23E + 00 2.12E + 01 ± 2.54E + 00 2.62E + 01 ± 1.27E + 01

f3 9.80E − 15 ± 3.30E − 15 2.88E − 07 ± 6.76E − 08 1.87E − 07 ± 1.60E − 07

f4 2.11E − 02 ± 4.56E − 02 7.79E − 09 ± 1.08E − 08 1.45E − 08 ± 4.98E − 08

f5 2.90E + 00 ± 1.84E + 00 4.74E − 06 ± 2.26E − 06 1.04E − 08 ± 1.10E − 08

f6 2.27E + 01 ± 6.41E + 00 8.94E − 05 ± 1.00E − 04 2.38E − 13 ± 2.67E − 13

f7 1.33E + 01 ± 8.01E + 00 1.06E − 03 ± 6.86E − 04 6.21E − 10 ± 3.06E − 09

f8 2.57E + 03 ± 5.96E + 02 1.69E − 09 ± 1.49E − 09 7.84E − 11 ± 1.50E − 10

f9 2.08E + 00 ± 8.61E − 01 1.54E − 02 ± 4.29E − 02 1.46E − 02 ± 7.50E − 02

-100

-90

-80

-70

-60

-50

-40

-30

-20

-10

 0

 10

 0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

A
ve

 lo
g(

gb
es

t)
 o

ve
r

30
 r

un
s

iteration

f1

"PSO"
"CLPSO"

"SACLPSO"

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

A
ve

 lo
g(

gb
es

t)
 o

ve
r

30
 r

un
s

iteration

f2

"PSO"
"CLPSO"

"SACLPSO"

-14

-12

-10

-8

-6

-4

-2

 0

 2

 0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

A
ve

 lo
g(

gb
es

t)
 o

ve
r

30
 r

un
s

iteration

f3

"PSO"
"CLPSO"

"SACLPSO"

(a) f1 (Sphere) (b) f2 (Rosenbrock) (c) f3 (Ackley)

-10

-8

-6

-4

-2

 0

 2

 4

 0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

A
ve

 lo
g(

gb
es

t)
 o

ve
r

30
 r

un
s

iteration

f4

"PSO"
"CLPSO"

"SACLPSO"

-9

-8

-7

-6

-5

-4

-3

-2

-1

 0

 1

 2

 0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

A
ve

 lo
g(

gb
es

t)
 o

ve
r

30
 r

un
s

iteration

f5

"PSO"
"CLPSO"

"SACLPSO"

-14

-12

-10

-8

-6

-4

-2

 0

 2

 4

 0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

A
ve

 lo
g(

gb
es

t)
 o

ve
r

30
 r

un
s

iteration

f6

"PSO"
"CLPSO"

"SACLPSO"

(d) f4 (Griewank) (e) f5 (Weierstrass) (f) f6 (Rastrigin)

-10

-8

-6

-4

-2

 0

 2

 4

 0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

A
ve

 lo
g(

gb
es

t)
 o

ve
r

30
 r

un
s

iteration

f7

"PSO"
"CLPSO"

"SACLPSO"

-12

-10

-8

-6

-4

-2

 0

 2

 4

 6

 0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

A
ve

 lo
g(

gb
es

t)
 o

ve
r

30
 r

un
s

iteration

f8

"PSO"
"CLPSO"

"SACLPSO"

-2

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

A
ve

 lo
g(

gb
es

t)
 o

ve
r

30
 r

un
s

iteration

f9

"PSO"
"CLPSO"

"SACLPSO"

(g) f7 (Non-cont. Rastrigin) (h) f8 (Schwefel) (i) f9 (Rotated Ackley’s)

Fig. 1. Plots of average gbest for functions f1 to f9

164 A. Ismail and A.P. Engelbrecht

The tuned PSO also performed much better than both the CLPSO and the
SACLPSO on function f2, the Rosenbrock function as reflected in figure 1(b).
The tuned PSO improved its minimum fitness value quickly over the first 300
iterations, with a corresponding reduction in diversity, whereafter the minimum
fitness continued to decrease at a much slower rate. As illustrated in figure 2(b),
the diversity of the tuned PSO on Rosenbrock also increased from iteration
350 as some particles were drawn away from the global minimum towards local
minima. An inspection also revealed that more particles were exiting the search
domain after 2000 iterations, which also lead to an increase in the diversity, since
particles were not re-initialized to the domain. The CLPSO reached a slightly
lower fitness than the SACLPSO.

For function f3, the Ackley function, a tuned PSO converged initially much
faster than the CLPSO and SACLPSO, but was eventually exceeded by CLPSO
and SACLPSO (i.e. around 10000 iterations or 40000 evaluations, not shown in
graph). The small spikes in the graph depicting the diversity for PSO on the
Ackley function in figure 2(c) showed that particles wandered off or explored
the search areas around the minimum but were subsequently drawn back to the
minimum. The tuned PSO performed the best for the Ackley function.

The tuned PSO converged much faster than both CLPSO and SACLPSO on
functions f1, f2 and f3 (i.e. the Sphere, Rosenbrock and the Ackley functions,
respectively) as reflected in figures 1(a) to 1(c) and managed to reach much lower
fitness values compared to CLPSO and SACLPSO within the 2 × 105 function
evaluations.

The SACLPSO outperformed the tuned PSO on the multi-modal functions, f4
to f9 (i.e. Griewank, Weierstrass, Rastrigin, Non-continuous Rastrigin, Schwefel
and Rotated Ackley functions, respectively) based on the Mann-Whitney U-
Test (refer to table 3). Figures 1(d) to 1(i) indicate that the tuned PSO had
difficulty optimizing these functions. The tuned PSO converged prematurely on
the Weierstrass and Rastrigin functions as reflected in figures 1(e) and 1(f),
while the CLPSO and SACLPSO continued to improve their solutions. A higher
diversity is maintained for longer by SACLPSO and CLPSO compared to the
tuned PSO on the multi-modal functions as reflected in figures 2(d) and 2(e).
Oscillation or wandering of particles are indicated by the spikes in figure 2(d)
in the case of the tuned PSO applied to the Griewank function, which however
lead to no corresponding improvement of the solution as reflected in figure 1(d).
This implies that the tuned PSO was not able to successfully escape from local
minima in search of the global minimum. The tuned PSO was also unsuccessful in
escaping from local minima in the case of the Weierstrass and Rastrigin functions
with behaviour similar to that exhibited by the Griewank function. The graphs of
multi-modal functions f5 and f6 in figures 1(e) and 1(f) also show that SACLPSO
converged much quicker than the CLPSO with the additional advantage that no
parameter tuning was required for both the inertia weight and the acceleration
coefficient. The poor performance of the tuned PSO is accompanied by much
lower diversity compared to SACLPSO and CLPSO on functions f4, f5 and f8
(i.e. Griewank, Weierstrass, Schwefel functions, respectively).

The Self-adaptive Comprehensive Learning Particle Swarm Optimizer 165

-50

-45

-40

-35

-30

-25

-20

-15

-10

-5

 0

 5

 0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

A
ve

 lo
g

(d
iv

er
si

ty
)

ov
er

 3
0

ru
ns

iteration

f1

"PSO"
"CLPSO"

"SACLPSO"

-1.5

-1

-0.5

 0

 0.5

 1

 0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

A
ve

 lo
g

(d
iv

er
si

ty
)

ov
er

 3
0

ru
ns

iteration

f2

"PSO"
"CLPSO"

"SACLPSO"

-14

-12

-10

-8

-6

-4

-2

 0

 2

 0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

A
ve

 lo
g

(d
iv

er
si

ty
)

ov
er

 3
0

ru
ns

iteration

f3

"PSO"
"CLPSO"

"SACLPSO"

(a) f1 (Sphere) (b) f2 (Rosenbrock) (c) f3 (Ackley)

-8

-6

-4

-2

 0

 2

 4

 0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

A
ve

 lo
g

(d
iv

er
si

ty
)

ov
er

 3
0

ru
ns

iteration

f4

"PSO"
"CLPSO"

"SACLPSO"

-14

-12

-10

-8

-6

-4

-2

 0

 2

 0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

A
ve

 lo
g(

di
ve

rs
ity

)
ov

er
 3

0
ru

ns

iteration

f5

"PSO"
"CLPSO"

"SACLPSO"

-2

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

A
ve

 lo
g

(d
iv

er
si

ty
)

ov
er

 3
0

ru
ns

iteration

f6

"PSO"
"CLPSO"

"SACLPSO"

(d) f4 (Griewank) (e) f5 (Weierstrass) (f) f6 (Rastrigin)

-6

-5

-4

-3

-2

-1

 0

 1

 2

 0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

A
ve

 lo
g

(d
iv

er
si

ty
)

ov
er

 3
0

ru
ns

iteration

f7

"PSO"
"CLPSO"

"SACLPSO"

-6

-5

-4

-3

-2

-1

 0

 1

 2

 3

 4

 0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

A
ve

 lo
g

(d
iv

er
si

ty
)

ov
er

 3
0

ru
ns

iteration

f8

"PSO"
"CLPSO"

"SACLPSO"

-1

-0.5

 0

 0.5

 1

 1.5

 2

 0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

A
ve

 lo
g

(d
iv

er
si

ty
)

ov
er

 3
0

ru
ns

iteration

f9

"PSO"
"CLPSO"

"SACLPSO"

(g) f7 (Non-cont. Rastrigin) (h) f8 (Schwefel) (i) f9 (Rotated Ackley’s)

Fig. 2. Plots of average diversity for functions f1 to f9

 0.4

 0.45

 0.5

 0.55

 0.6

 0.65

 0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

w
 (

a
v
e
ra

g
e
 o

v
e
r

3
0
 r

u
n
s
)

iteration

f1

"w"

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 1.2

 1.3

 1.4

 1.5

 1.6

 0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

c
 (

a
v
e
ra

g
e
 o

v
e
r

3
0
 r

u
n
s
)

iteration

f1

"c"

 0.35

 0.4

 0.45

 0.5

 0.55

 0.6

 0.65

 0.7

 0.75

 0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

w
 (

a
v
e
ra

g
e
 o

v
e
r

3
0
 r

u
n
s
)

iteration

f8

"w"

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 1.2

 1.3

 1.4

 1.5

 1.6

 1.7

 0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

c
 (

a
v
e
ra

g
e
 o

v
e
r

3
0
 r

u
n
s
)

iteration

f8

"c"

(a) w (Sphere) (b) c (Sphere) (c) w (Schwefel) (d) c (Schwefel)

 0.38

 0.4

 0.42

 0.44

 0.46

 0.48

 0.5

 0.52

 0.54

 0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

w
 (

a
v
e
ra

g
e
 o

v
e
r

3
0
 r

u
n
s
)

iteration

f3

"w"

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

c
 (

a
v
e
ra

g
e
 o

v
e
r

3
0
 r

u
n
s
)

iteration

f3

"c"

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 0.55

 0.6

 0.65

 0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

w
 (

a
v
e
ra

g
e
 o

v
e
r

3
0
 r

u
n
s
)

iteration

f6

"w"

 1

 1.1

 1.2

 1.3

 1.4

 1.5

 1.6

 1.7

 1.8

 1.9

 2

 0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

c
 (

a
v
e
ra

g
e
 o

v
e
r

3
0
 r

u
n
s
)

iteration

f6

"c"

(e) w (Ackley) (f) c (Ackley) (g) w (Rastrigin) (h) c (Rastrigin)

Fig. 3. Plots for average of parameters w and c of all particles for functions f1, f3, f6
and f8

166 A. Ismail and A.P. Engelbrecht

Figures 1(g) and 1(h) show that the SACLPSO outperformed the CLPSO on
functions f7 and f8. In these cases the PSO converged prematurely.

Figure 3 visualizes the average values of the inertia weight, w, and the accel-
eration coefficient, c, of the SACLPSO for functions f1, f3, f6 and f8. The graph
in figure 3(a) indicates a decrease in the inertia weight up to 1300 iterations,
whereafter it increased, indicating that particles changed from exploitation to
exploration after the 1300 iterations, however without much success as indicated
in figure 1(a). Figures 3(c) and 3(d) show that w decreased to a low value of 0.37,
while c decreased initially followed by an increase and subsequent exploration of
the search space as confirmed by the corresponding diversity in figure 2(h). In
figure 3(e), w decreased until approximately 3000 iterations, followed by a sud-
den increase to enable SACLPSO to escape from local minima in search of better
optima as reflected in figure 1(c). Figure 3(g) and 3(h) show that both w and
c decreased rapidly. The small value of w indicates that successful exploration
and exploitation of the search space was achieved by the larger c value.

The results showed that the SACLPSO performed at least as well as the
CLPSO on most of the multi-modal functions and in seven cases much better
than the CLPSO, despite having to search a larger D + 2 dimensional space
compared to the smaller D dimensional space searched by CLPSO.

6 Conclusion

This paper presented the Self-Adaptive Comprehensive Learning PSO
(SACLPSO) where the control parameters (i.e. inertia weight, w, and accelera-
tion coefficient, c) are self-adapted by extending particles of the CLPSO. Each
particle is equipped with its own set of control parameters which are dynami-
cally adapted by the SACLPSO process. The CLPSO’s strategy does not restrict
updating of a particle’s velocity to its own personal best and that of the global
best particle, but extends updating to include the best positions of all other par-
ticles in the swarm. This approach contributed to the success of the SACLPSO
in self-adapting the control parameters. The Mann-Whitney U-Test results indi-
cate that the SACLPSO outperformed the CLPSO in 7 of the 9 test functions.
The SACLPSO algorithm produced sensible values for the control parameters
as reflected in table 3 and the plots of averages of the control parameter values.

The SACLPSO succeeded in optimizing the multi-modal functions at least
as good as the CLPSO and outperformed the tuned PSO. The results of the
experiments have indicated that the SACLPSO converged much faster than the
CLPSO on most of the multi-modal functions. Unfortunately, poorer perfor-
mance on unimodal functions is the price paid for improved performance on
multi-modal functions in accordance to the ‘no free lunch theorem’ [15].

The SACLPSO algorithm relieves the user from specifying appropriate control
parameters for optimization using CLPSO and requires the user to only specify
(a) the function to optimize, (b) the domain to search, and (c) the terminating
condition(s) presented. This effectively reduces the optimization involving a PSO
to optimization using a black box.

The Self-adaptive Comprehensive Learning Particle Swarm Optimizer 167

References

1. Chatterjee, A., Siarry, P.: Nonlinear inertia weight variation for dynamic adapta-
tion in particle swarm optimization. Comput. Oper. Res. 33(3), 859–871 (2004)

2. Clerc, M.: TRIBES, A parameter free particle swarm optimizer, Math stuff for
PSO (2002), http://www.mauriceclerc.net

3. Eberhart, R.C., Kennedy, J.: A New Optimizer Using Particle Swarm Theory. In:
6th International Symposium on Micromachine and Human Science, pp. 39–43.
IEEE Service Center, Piscataway (1995)

4. Liang, J.J., Qin, A.K., Suganthan, P.N., Baskar, S.: Comprehensive Learning Par-
ticle Swarm Optimizer for Global Optimization of Multimodal Functions. Trans-
actions on Evolutionary Computation 10(3) (June 2006)

5. Meissner, M., Schmuker, M., Schneider, G.: Optimized Particle Swarm Optimiza-
tion (OPSO) and its application to artificial neural network training. BMC Bioin-
formatics 2006 7, 125 (2006)

6. Olorunda, O., Engelbrecht, A.P.: Measuring Exploration/Exploitation in Particle
Swarms using Swarm Diversity. In: IEEE World Congress on Computational In-
telligence (CEC 2008), pp. 1128–1134 (2008)

7. Ratnaweera, A., Halgamuge, S.M., Watson, H.: Self-Organizing hierarchical parti-
cle swarm optimiser with time-varying acceleration coefficients. IEEE Transactions
on Evolutionary Computation 8(3), 240–255 (2004)

8. Riget, J., Vesterstrøm, J.S.: A Diversity-Guided Particle Swarm Optimizer - the
ARPSO. Technical report, EVALife, Denmark (2002)

9. Salomon, R.: Reevaluating genetic algorithm performance under coordinate rota-
tion of benchmark functions. BioSystems 39, 263–278 (1996)

10. Shi, Y., Eberhart, R.C.: Parameter selection in particle swarm optimization. In:
7th Annual Conference on Evolutionary Programming, New York, pp. 591–600
(1998)

11. Shi, Y., Eberhart, R.C.: Fuzzy adaptive particle swarm optimization. In: IEEE
Congress on Evolutionary Computation (CEC 2001), vol. 1, pp. 101–106. IEEE
Press (2001)

12. Schutte, F., Groenwold, A.A.: A study of Global Optimization using Particle
Swarms. Journal of Global Optimization 31, 93–108 (2005)

13. Trelea, I.C.: The Particle Swarm Optimization Algorithm: Convergence Analysis
and Parameter Selection. Information Processing Letters 85(6), 317–325 (2003)

14. Van den Bergh, F., Engelbrecht, A.P.: A Study of Particle Swarm Optimization
Particle Trajectories. Information Sciences 176(8), 937–971 (2006)

15. Wolpert, D.H., Macready, W.G.: No free lunch theorems for optimization. IEEE
Transactions on Evolutionary Computation 4, 67–82 (1997)

http://www.mauriceclerc.net

Towards Swarm Calculus: Universal Properties

of Swarm Performance and Collective Decisions

Heiko Hamann

Artificial Life Laboratory of the Department of Zoology
Karl-Franzens University Graz, Austria

heiko.hamann@uni-graz.at

Abstract. The search for generally applicable methods in swarm in-
telligence aims to gain new insights about natural swarms and to de-
velop design methodologies for artificial swarms. The ideal would be a
‘swarm calculus’ that allows to calculate key features such as expected
swarm performance and robustness on the basis of a few parameters.
A path towards this ideal is to find methods and models that have max-
imal generality. We report two models that might be examples of ex-
ceptional generality. First, we present an abstract model that describes
the performance of a swarm depending on the swarm density based on
the dichotomy between cooperation and interference. Second, we give
an abstract model for decision making that is inspired by urn models.
A parameter, that controls the feedback based on the current consensus,
allows to understand the effects of an increasing probability for positive
feedback over time in a decision making system.

1 Introduction

Research in the context of swarm intelligence is important in biology to gain new
insights about natural swarms and also in fields aiming for artificial swarms, such
as swarm robotics, to obtain sophisticated design methodologies. The ideal tools
would allow to calculate swarm behavior, performance, stability, and robustness
based on few observed parameters in case of a natural swarm system or based
on few designed parameters in case of an artificial swarm. We call this highly
desired set of tools ‘swarm calculus’ (calculus in its general sense).

Models will surely be an important part of swarm calculus. In order to define
a general methodology of understanding and designing swarm systems, general
properties and generally applicable models need to be found. Today only few
models exist that have the potential to become general swarm models. Biolog-
ical swarm models are particularly distinguished by their variety [23,22,27,6,5].
Typically each biological challenge is answered by a specialized model. The de-
sire for a model with applicability to all natural swarms seems to be small in that
community. In the field of artificial swarms, such as robot swarms, the desire for
generality seems to be bigger which is, for example, expressed by several models
of swarm robotics [10,1,24,18]. The idea of these models is to support the design
of swarm robotic systems within a maximal range of applications. They focus

M. Dorigo et al. (Eds.): ANTS 2012, LNCS 7461, pp. 168–179, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Towards Swarm Calculus 169

on features that describe quantities of the swarm behavior, such as robot dis-
tributions or required times for certain tasks and typically struggle between the
intended generality and having direct connections between the model and the
robot behavior. If we abandon, however, the demand for a detailed description of
behavioral features and focus only on high-level features such as overall perfor-
mance or the macroscopic process of a collective decision then a higher degree of
generality is achievable. In this paper, we identify two models of universal prop-
erties of swarm systems concerning the dependence of swarm performance on
swarm density and the dependence of collective decisions on positive feedback.

2 Universal Properties of Swarm Performance

It is quite clear that a function of swarm performance depending on swarm den-
sity cannot be a simple linear function. For a true swarm scenario a very low
density (e.g., corresponding to one agent in the whole area) has to result in low
performance because there is no cooperation. With increasing density the perfor-
mance increases because more and more cooperation is possible (assuming that
cooperation is an essential beneficial part of swarms). Even a superlinear perfor-
mance increase is possible in this interval [20]. At some critical/optimal density
the improvement in cooperation possibilities will be lower than the drawback
of high densities, namely interference [15]. With further increase of the density
the performance is decreasing. Hence, swarms generally face a tradeoff between
beneficial cooperation and obstructive interference.

It turns out that not only these qualitative properties are similar in many
swarm systems but also the actual shapes of swarm performance over swarm
size plots (see Fig. 1(a)). Examples are the performance of foraging in a group of
robots (Fig. 1(b) and Fig. 10a in [15]), the activation dynamics and information
capacity in an abstract cellular automaton model of ants (Figs. 1b and 1c in [19]),
and even in the sizes of social networks (Fig. 8b in [26]). Furthermore, notice that
these shapes are typical in probability distributions such as Weibull, Wigner, and
log-normal. A related set of models are traffic models of flow over density. The
‘fundamental diagram’ of traffic flow [16] is symmetric, more realistic models
propose at least two asymmetric phases of free and synchronized flow. Actual
measurements on highways show curves with shapes similar to Fig. 1(a) (e.g.,
see Fig. 6-4 in [17]). In these models, there exist two densities for a given flow
(except for the maximum flow) similar to the situation here where we have two
swarm densities for a given swarm performance.

Having identified the two main components (cooperation and interference)
and the typical shape of these plots we can define a simple model. The idea is
to fit this model to empirical data for verification and predictions.

2.1 Simple Model of Swarm Performance

For a given bounded, constant area A the swarm density ρ is defined by the
swarm size N according to ρ = N/A. We define the swarm performance P
depending on swarm size N by

170 H. Hamann

P (N) = C(N)(I(N)− d) = a1N
ba2 exp(cN), (1)

for parameters c < 0, a1, a2, b > 0, and d ≥ 0 (see Fig. 1(a)). Parameter d is
subtracted to force a decrease to zero (limN→∞ I(N)− d = 0). The swarm per-
formance depends on two components C and I. First, the swarm effort without
negative feedback is defined by the cooperation function (see also Fig. 1(a))

C(N) = a1N
b. (2)

This function can be interpreted as the potential for cooperation in a swarm
that would exist without certain constraints, such as physical collisions. The
same formula was used by Breder [4] to model the cohesiveness of a fish school
and by Bjerknes and Winfield [2] to model swarm velocity in emergent taxis.
However, they used parameters of b < 1 while we are using mostly values of
b > 1. Second, the interference function (see also Fig. 1(a)) is defined by

I(N) = a2 exp(cN) + d, (3)

with d used for scaling (e.g., limN→∞ I(N) = d). The exponential decrease seems
to be a reasonable choice, for example, compare Fig. 10b in [15] which shows an
exponentially decreasing efficiency per robot in a foraging task.

2.2 Examples

To prove the wide applicability of this simple model we fit it to some swarm
performance plots that were available. We briefly investigate four scenarios:
foraging in a group of robots [15], collective decision making [12] based on
BEECLUST [25], aggregations in tree-like structures and reduction to short-
est paths [9] similar to [14], and the emergent taxis scenario (also sometimes
called ‘alpha algorithm’) [21,3].

Given the data of the the overall performance, the four parameters of eq. 1
can be directly fitted to it. That is what we do for the first three of our four
examples in Fig. 1. The equation can be well fitted to the empirical data. In case
of the foraging scenario (Fig. 1(b)) we also have data about the efficiency per
robot. We can use the model parameters, that were obtained by fitting the model
to the overall performance, to predict the efficiency per robot. This is done by
scaling the interference function linearly and plotting it against the efficiency
per robot. The satisfying result is shown in Fig. 1(b).

We analyze the forth example, emergent taxis, in more detail. The following
empirical data is based on a simple simulation. This simulation is noise-free
and therefore robots move in straight lines except for u-turns according to the
emergent taxis algorithm. First, we measure the performance that is achieved
without cooperation. This is done by defining a random behavior that ignores any
characteristic feature of the actual emergent taxis algorithm. For example, in the
emergent taxis algorithm, robots count the number of neighbors and do u-turns if
this number drops below a threshold α. To obtain the cooperation-free behavior
we have set this parameter to α = 0 in the simulation. Hence, no robot will

Towards Swarm Calculus 171

 0

 0.25

 0.5

 30 60

P

N

swarm performance

cooperation

interference

(a) Model of cooperation and interfer-
ence, examples of swarm performance
(eq. 1), cooperation (eq. 2), and inter-
ference (eq. 3) depending on swarm size.

 0

 0.002

 0.004

 0.006

 0.008

 0 5 10 15 20

P

N

efficiency
per robot

group efficiency

(b) Foraging in a group of robots, eq. 1 fit-
ted to group efficiency (upper solid line),
prediction of interference (lower solid line,
efficiency per robot, linearly rescaled), data
points extracted from Fig. 10 in Lerman
et al. [15]; P gives group/robot efficiency

 0

 0.5

 1

 0 50 100

P

N
(c) Collective decision making [12]
based on BEECLUST [25]; values of
P = 1 would indicate that 100% of the
swarm have found a decision; P = 0 in-
dicates symmetry between options

 0

 0.5

 1

 0 0.025 0.05

P

ρ
(d) Aggregation in tree-like structures and
reduction to shortest path [9]; P gives the
ratio of successful runs

Fig. 1. Model of cooperation and interference and three scenarios with fitted
performance P according to eq. 1

ever u-turn and they basically disperse in the arena. A simulation run is stopped
once a robot touches a wall. The performance of the swarm P is measured by
the total distance covered by the swarm’s barycenter multiplied by the swarm
size (i.e., an estimate of how much distance was effectively covered summed over
all robots). The performance obtained by this random behavior can be fitted
using the interference function of eq. 3. The well fitted interference function
and the empirically obtained data is shown in Fig. 2(a) labeled ‘random’. In
a second step, we keep the interference function fixed and fit the full model
of swarm performance P (eq. 1) to the data from the actual emergent taxis
scenario by only varying the cooperation function (i.e., fitting a1 and b while

172 H. Hamann

 0

 0.25

 0.5

 0.75

 1

 0 25 50 75 100

P

N

random

emergent taxis

(a) Model fitted to data of random and
emergent–taxis behavior; P is covered
distance by barycenter times N .

 10 20 30 40
-0.002

 0

 0.002

 0.004

 0.006

 0

 200

N

v

fr
eq

u
en

cy

(b) Histogram of barycenter speeds v for
different swarm sizes. Note the bimodality
about in the interval N ∈ [16, 40].

Fig. 2. Performance of a random behavior and the actual self-organized emergent taxis
behavior (also sometimes called ‘alpha algorithm’) [21,3] with fitted model (eq. 1);
histogram showing two phases

keeping a2, c and d fixed). The fitted swarm performance model1 is shown in
Fig. 2(a) labeled ‘emergent taxis’. This simple model is capable of predictions, if
the interference function has been fitted and we fit the cooperation function only
to a small interval of, for example, N ∈ [15, 25] (i.e., including the maximum
performance).

Note that we are working with a single value (average) to describe the per-
formance which does not fully catch the system’s behavior. At least in some
scenarios, as here in the emergent taxis scenario, the performance does not just
decrease due to increasing interference. Instead, two coexisting phases of be-
haviors emerge: functioning swarms moving forward and pinned swarms with
extreme numbers of u-turns. In emergent taxis this is shown, for example, by
a histogram of barycenter speeds in Fig. 2(b). For N < 15 the mean of a uni-
modal distribution increases with increasing N . Starting at about N = 15 a
second phase of slowly moving swarms emerges generating a bimodal distribu-
tion. Hence, given the fully deterministic implementation of our simulation, there
are two classes of initial states (robot positions and orientations) that determine
the two extremes of success or total failure. In other scenarios the interference
might be increased in a different process continuously, for example, by saturation
of target areas with robots.

3 Universal Properties of Collective Decisions

In the following we investigate macro models of collective decisions. One of the
most general and at the same time simplest model of collective decisions is a
model of only one state variable s(t) which gives the temporal evolution of a

1 Fitted parameters: a1 = 0.01061, b = 3.237, a2 = 0.2138, c = −0.1823, d = 0.075.

Towards Swarm Calculus 173

swarm fraction that is in favor of one of the options in a binary decision process.
If we assume that there is no initial bias to either option (i.e., full symmetry),
then we need a tie breaker for s = 0.5. A good choice for the tie breaker is
noise because any real swarm will be noisy. The average change of s depending
on itself per time (Δs(s)/Δt) is of interest. Given that the system should be
able to converge to one of two options plus the symmetric case of s = 0.5 we
end up with at least three zeros for Δs(s)/Δt and consequently at least a cubic
function. Instead of developing a model, that predefines such a function, we
prefer a model that allows this function to emerge from a simple process. In
swarms the tendency to a certain option once symmetry is overcome (say, for
s = 0.5 + ε towards s = 1) is typically a result of positive feedback. Hence, we
define such a process depending on probabilities of positive feedback next.

3.1 Simple Model of Collective Decisions

We use simple models inspired by the urn model of the Ehrenfests [7] which
they introduced in the context of statistical mechanics and entropy. Eigen and
Winkler reported similar models to show the effect of positive feedback [8]. Here
we use an urn model that has optionally positive or negative feedback depending
on the system’s current state and depending on a stochastic process. The urn is
filled with N marbles which are either red or blue. The game’s dynamics is turn-
based. First a marble is drawn with replacement followed by replacing a second
one influenced by the color of the first marble. The probability of drawing a blue
marble is implicitly determined by the current number of blue marbles B(t) in
the urn. The subsequent replacement of a second marble effects either a positive
or a negative feedback. The feedback is determined explicitly by a probability

P (s, ϕ) = ϕ sin(πs) (4)

that is based on the current ratio s of either the blue marbles in the urn s = b(t)
or the ratio of red marbles s = r(t). The constant ϕ ∈ [0, 1] defines the ‘sign’
and the intensity of the feedback. For ϕ < 0.5 negative feedback is predominant
and for ϕ > 0.5 an interval around s = 0 emerges for which positive feedback is
predominant. Say we draw a blue marble, we notice the color, and put it back into
the urn. Then our model defines that with probability P (b(t), ϕ) a red marble will
be replaced by a blue one (i.e., a positive feedback event because drawing a blue
one increased the number of blue marbles) and with probability 1 − P (b(t, ϕ))
a blue one will be replaced by a red one (i.e., a negative feedback event because
now drawing a blue one decreased the number of blue marbles). Hence, the
probability P (s, ϕ) gives the probability of positive feedback. P (s, ϕ) is plotted
for different settings of ϕ in Fig. 3(a). There is maximum probability for positive
feedback for the fully symmetric case of s = 0.5 as clearly seen in Fig. 3(a). For
s = 0 and s = 1 we have P (s, ϕ) = 0 because no positive feedback is possible
(either all marbles are already blue or all marbles are red and therefore no blue
one can be drawn). For ϕ ≤ 0.5 the probability of positive feedback is small
(ϕ ≤ 0.5, ∀s : P (s, ϕ) ≤ 0.5), consequently the system is stable and kept around

174 H. Hamann

s = 0.5. The analogy of this model to a collective decision making scenario is the
following. The initial drawing resembles the frequency of individual decisions in
the swarm proportional to s within the turn-based model. The replacement of
the second marble resembles the effect of a swarm member convincing another
one about its decision or of being convinced of the opposite. Based on the above
definitions the average expected change ΔB of blue marbles B can be calculated
by summing over the four cases: drawing a blue or red marble, followed by
positive or negative feedback, multiplied by the ‘payoff’ in terms of blue marbles
respectively. Using the symmetry P (b, ϕ) = P (1− b, ϕ) we get

ΔB(b) = bP (b, ϕ)(+1) + b(1− P (b, ϕ))(−1)

+ (1− b)P (1− b, ϕ)(−1) + (1 − b)(1− P (1− b, ϕ))(+1)

= 4(P (b, ϕ)− 0.5)(b− 0.5). (5)

In Fig. 3(b) we compare the theoretical average change per round ΔB/Δt ac-
cording to eq. 5 to the empirically obtained average change of B(t) in terms of
number of marbles for the different settings of ϕ. The agreement between theory
and empiric data is close to perfect as expected. Two zeros s1 and s2 emerge
additionally to s0 = 0.5 for ϕ > 0.5: s1 = 1

π arcsin(1
2ϕ) and s2 = 1− 1

π arcsin(1
2ϕ).

Positive values of ΔB(s)/Δt for s < 0.5 represent dynamics that has a bias to-
wards s = 0.5 and negative values represent dynamics with a bias towards s = 0
and vice versa for the other half (s > 0.5).

Fig. 3(c) gives an estimate of the asymptotic behavior of this urn model for
varied feedback intensity ϕ. It shows a pitchfork bifurcation at ϕ = 0.5 which
is to be expected based on Fig. 3(b). Between ϕ = 0.5 and ϕ = 0.75 the curve
defined by ΔB(s)/Δt becomes cubic and generates two new stable fixed points
while the former at s = 0.5 becomes unstable.

3.2 Examples

Next we want to compare the data from our urn model (Fig. 3(b)) to data from
more complex models, such as the density classification scenario [13]. First we
need a more general equation than eq. 5. We obtain it by introducing a scaling
constant c that scales the average change for payoffs different from 1.

Δs(s) = 4c(P (s, ϕ)− 0.5)(s− 0.5) (6)

The density classification scenario [13] is about a swarm of red and green agents
moving around randomly. Their only interaction is constantly keeping track of
those agents’ colors they bump into. Once an agent has seen five agents of either
color it changes its own color to that it has encountered most. Here, s gives the
ratio of red agents. The name of this scenario is due to the idea that the swarm
should converge to that color that was initially superior in numbers. It turns out
that the averaged change Δs(s)/Δt (see Fig. 3(d)) starts with a curve similar to
that of ϕ = 0 in Fig. 3(b) and then converges slowly to a curve that is similar to
that of ϕ = 0.75. Early in the simulation there is mostly negative feedback forcing

Towards Swarm Calculus 175

values close to s = 0.5. With increasing time the negative feedback decreases
which results finally in positive feedback for s ∈ [0.23, 0.77]. Comparing Fig. 3(b)
to Fig. 3(d) indicates a good qualitative agreement between our urn model and
the density classification scenario. Given that the curves in Fig. 3(d) converge
over time to the final shape which is resembled by our model for increasing ϕ in
Fig. 3(b), one can say that positive feedback builds up slowly over time in the
density classification scenario. By fitting eq. 6 to the data shown in Fig. 3(d)
we get estimates for the feedback intensity ϕ. From the earliest and steepest
line to the latest and only curve with positive slope in s = 0.5 we get values
of ϕ ∈ [0, 0, 0, 0.007, 0.304, 0.603] for times t ∈ [100, 200, 400, 800, 1600, 3200]. By
continuing this fitting for additional data not shown in Fig. 3(d), we are able
to investigate the temporal evolution of feedback intensity ϕ according to our
model. In Fig. 3(e), the data points of feedback intensity ϕ obtained by fitting
are shown and also a negative exponential function that was fitted to the data.
This result supports the assumption of a negative exponential increase of positive
feedback in this system as already stated in [11].

Other examples showing similarities to the ϕ = 0.75-graph in Fig. 3(b) are
Figs. 2B and 3B in Yates et al. [28] which show the drift coefficient dependent
on the current alignment of a swarm (average velocity). While the data obtained
from experiments with locusts (Fig. 2B in [28]) is too noisy, we use the data from
their model (Fig. 3B in [28]) to fit our model. The result is shown in Fig. 3(f).
We obtain a maximal positive feedback of ϕ = 1.

4 Discussion and Conclusion

We have reported two abstract swarm models with high generality because we
would like to get towards a swarm calculus. The first model describes the de-
pendency of swarm performance on swarm density by separation into two parts:
cooperation and interference. It explains the existence of an optimal or critical
swarm density at which the peak performance is reached. The second model de-
scribes the dynamics of collective decision processes based on the existence and
intensity of feedback. It explains how the cubic functions of decision revision
emerge by an increase of positive feedback over time.

The first model is simple and somewhat obvious because the existence of op-
timal swarm densities is well known. However, the authors are not aware of any
explicit introduction of a similar model combined with a validation by fitting
the model to data from diverse swarm applications. Despite its simplicity the
model has the capability to give predictions of swarm performance, especially, if
the available data, to which it is fitted, includes an interval around the optimal
density. That way this model might serve as a swarm calculus of swarm perfor-
mance. In addition, we want to draw attention to the problem of masking special
density-dependent properties by only investigating the mean performance. The
example shown in Fig. 2(b) documents the existence of phases in swarm systems.

The second model is also abstract but has a higher complexity and is more
conclusive because it allows for mathematical derivations. Based on our urn

176 H. Hamann

 0

 0.5

 1

 0 0.5 1
s

s1 s2

P

ϕ = 0

ϕ = 0.125

ϕ = 0.25

ϕ = 0.5

ϕ = 0.75

(a) Examples of setting the
probability of positive feedback
for intensities of feedback ϕ ∈
{0, 0.125, 0.25, 0.5, 0.75}.

-1

 0

 1

 0 0.5 1
s

s1 s2

Δ
B
(s
)/
Δ
t

ϕ = 0

��
ϕ = 0.125

ϕ = 0.25

�
�

ϕ = 0.5

ϕ = 0.75

(b) Average change of B(t) in
terms of marbles, lines according
to eq. 5, squares give empirical
data, number of samples is 8×105

for each possible s, 64 marbles.

 0 0.5 1
 0

 32

 64

 0

 0.05

 0.1

ϕ

B

(c) Normalized histogram of blue
marbles B over intensity of
feedback ϕ after t = 200 steps,
initialized to B(0) ∈ {32, 33}, in-
dicating a pitchfork bifurcation at
ϕ = 0.5.

-0.001

 0

 0.001

 0 0.5 1
s

Δ
s(
s)
/Δ

t

(d) Density classification sce-
nario [13], change of the ratio of
red robots for different times dur-
ing simulation, squares give em-
pirical data (from [11]), lines are
fitted according to eq. 6.

 0

 0.5

 0 2500 5000 7500
t

ϕ

(e) Negative exponential function
ϕ(t) = 0.786 − exp(−5 × 10−4t)
fitted to feedback intensities ob-
tained from the density classifica-
tion scenario.

-0.004

 0

 0.004

 0 0.5 1
s

Δ
s(
s)
/Δ

t

(f) Model fitted to data from
Fig. 3B of Yates et al. [28] (local
model of swarm alignment in lo-
custs) by ϕ = 1 (and c = 4.134 ×
10−3); data scaled to s ∈ [0, 1].

Fig. 3. Settings of the positive feedback probabilities, resulting average change in B(t)
in the urn model over the ratio of marbles s, histogram of blue marbles for varied
intensity of feedback ϕ, comparison of model and results from the density classification
scenario [13], increase of positive feedback over time, and comparison of model and
results from Yates et al. [28]

Towards Swarm Calculus 177

model for positive feedback decision processes the emerging cubic function of
decision revision can be derived (see eq. 5). Here this ‘cubic function’ is actu-
ally trigonometric but alternatively one can choose P (s, ϕ) = ϕ(1− 4(s− 0.5)2)
yielding Δs(s) = 2(s − 0.5) − 16(s − 0.5)3. Hence, we generate the function of
decision revision based on our urn model which allows for an interpretation of
how the function emerges while, for example, in [28] this function is measured
in a local model. Our model of collective decisions might qualify as a part of
swarm calculus because those decision revision functions seem to be a general
phenomenon in swarms.An interesting result is also the negatively exponential
increase of the positive feedback over time in the density classification task (see
Fig. 3(e)). Note that this increase seems to be independent from respective values
of s. Furthermore, values close to the bounds (s ≈ 1 or s ≈ 0) are not observed.
An investigation of the underlying processes is beyond this paper but we want to
state two ideas. First, the final saturation phase (limt→∞ ϕ = 0.8) is most likely
caused by explicit noise in the simulation. The agent–agent recognition rate was
set to 0.8 which keeps P (s = 0.5, ϕ) < 1. Second, the initial fast increase of ϕ
(after a transient which might also be caused by the simulation because agents
revise their color only after a minimum of five agent–agent encounters) might be
caused by locally emerging sub-groups of homogeneous color within small areas
that generate ‘islands’ of early positive feedback. Time-variant positive feedback
was also observed in BEECLUST-controlled swarms as reported before [12].
Hence, a feedback system as given in Fig. 4 seems to be a rather common sit-
uation in swarm systems. In terms of the above urn model we can mimic this
situation, say A is the number of blue marbles (w.l.o.g.), B is the probability
of drawing a blue marble, P is the probability of positive feedback (i.e., this
edge can also negatively influence A), and C is an unspecified state variable that
increases feedback (ϕ) over time and is influenced by an additional, unknown
process. This triggers the question of what C can be and how it influences the
feedback process independent of the current swarm consensus s.

We get maximally positive feedback ϕ = 1 for the data of [28] (see Fig. 3(f))
with the effect that situations of low alignment (s ≈ 0.5) are left as fast as
possible. This reinforces the findings of Yates et al. [28] about the diffusion
coefficient. A major feature of the self-organizing processes in the swarm seems

+

P(s,φ)

+

Fig. 4. Time-variant feedback system; here for increasing probability of pos. feedback

178 H. Hamann

to be that times in states of low aligned are minimized by the system (Yates
et al.: “A higher diffusion coefficient at lower alignments suggests that the locusts
‘prefer’ to be in a highly aligned state”).

The result of this paper is that generally applicable swarm models, that have
simple preconditions, exist. To apply the model of swarm performance, only
a concept of swarm density is necessary and to apply the model of collective
decisions only a consensus variable of a binary decision is necessary. Despite
their simplicity, both models have enough explanatory power to give insights
about swarm processes such as the interplay of cooperation and interference and
the installation of positive feedback. Hence, we contend that it is possible to
generate a set of models and methods of general applicability for swarm science,
that is, to create a swarm calculus.

Acknowledgments. The author thanks Payam Zahadat, Jürgen Stradner
and the anonymous reviewers for very helpful comments that improved the
manuscript.

References

1. Berman, S., Kumar, V., Nagpal, R.: Design of control policies for spatially inhomo-
geneous robot swarms with application to commercial pollination. In: IEEE Intern.
Conf. on Robotics and Automation (ICRA 2011), pp. 378–385 (2011)

2. Bjerknes, J.D., Winfield, A.: On fault-tolerance and scalability of swarm robotic
systems. In: Proc. Distributed Auton. Robotic Syst, DARS 2010 (2010)

3. Bjerknes, J.D., Winfield, A., Melhuish, C.: An analysis of emergent taxis in a wire-
less connected swarm of mobile robots. In: IEEE Swarm Intelligence Symposium,
pp. 45–52. IEEE Press, Los Alamitos (2007)

4. Breder, C.M.: Equations descriptive of fish schools and other animal aggregations.
Ecology 35(3), 361–370 (1954)

5. Camazine, S., Deneubourg, J.L., Franks, N.R., Sneyd, J., Theraulaz, G., Bonabeau,
E.: Self-Organizing Biological Systems. Princeton Univ. Press (2001)

6. Edelstein-Keshet, L.: Mathematical models of swarming and social aggregation.
Robotica 24(3), 315–324 (2006)

7. Ehrenfest, P., Ehrenfest, T.: Über zwei bekannte Einwände gegen das
Boltzmannsche H-Theorem. Physikalische Zeitschrift 8, 311–314 (1907)

8. Eigen, M., Winkler, R.: Laws of the game: how the principles of nature govern
chance. Princeton University Press (1993)

9. Hamann, H.: Modeling and Investigation of Robot Swarms. Master’s thesis,
University of Stuttgart, Germany (2006)

10. Hamann, H.: Space-Time Continuous Models of Swarm Robotics Systems:
Supporting Global-to-Local Programming. Springer (2010)

11. Hamann, H., Meyer, B., Schmickl, T., Crailsheim, K.: A Model of Symmetry
Breaking in Collective Decision-Making. In: Doncieux, S., Girard, B., Guillot, A.,
Hallam, J., Meyer, J.-A., Mouret, J.-B. (eds.) SAB 2010. LNCS (LNAI), vol. 6226,
pp. 639–648. Springer, Heidelberg (2010)

12. Hamann, H., Schmickl, T., Wörn, H., Crailsheim, K.: Analysis of emergent symme-
try breaking in collective decision making. Neural Computing & Applications 21(2),
207–218 (2012)

Towards Swarm Calculus 179

13. Hamann, H., Wörn, H.: Embodied computation. Parallel Processing Letters 17(3),
287–298 (2007)

14. Hamann, H., Wörn, H.: Aggregating Robots Compute: An Adaptive Heuristic
for the Euclidean Steiner Tree Problem. In: Asada, M., Hallam, J.C.T., Meyer,
J.-A., Tani, J. (eds.) SAB 2008. LNCS (LNAI), vol. 5040, pp. 447–456. Springer,
Heidelberg (2008)

15. Lerman, K., Galstyan, A.: Mathematical model of foraging in a group of robots:
Effect of interference. Autonomous Robots 13, 127–141 (2002)

16. Lighthill, M.J., Whitham, G.B.: On kinematic waves. II. A theory of traffic flow
on long crowded roads. Proceedings of the Royal Society of London A 229(1178),
317–345 (1955)

17. Mahmassani, H.S., Dong, J., Kim, J., Chen, R.B., Park, B.: Incorporating weather
impacts in traffic estimation and prediction systems. Tech. Rep. FHWA-JPO-09-
065, U.S. Department of Transportation (September 2009)

18. Milutinovic, D., Lima, P.: Cells and Robots: Modeling and Control of Large-Size
Agent Populations. Springer (2007)

19. Miramontes, O.: Order-disorder transitions in the behavior of ant societies. Com-
plexity 1(1), 56–60 (1995)

20. Mondada, F., Bonani, M., Guignard, A., Magnenat, S., Studer, C., Floreano,
D.: Superlinear Physical Performances in a SWARM-BOT. In: Capcarrère, M.S.,
Freitas, A.A., Bentley, P.J., Johnson, C.G., Timmis, J. (eds.) ECAL 2005. LNCS
(LNAI), vol. 3630, pp. 282–291. Springer, Heidelberg (2005)

21. Nembrini, J., Winfield, A.F.T., Melhuish, C.: Minimalist coherent swarming of
wireless networked autonomous mobile robots. In: Hallam, B., et al. (eds.) Proc.
of the 7th Intern. Conf. on Simulation of Adaptive Behavior (SAB), pp. 373–382.
MIT Press, Cambridge (2002)

22. Okubo, A.: Dynamical aspects of animal grouping: Swarms, schools, flocks, and
herds. Advances in Biophysics 22, 1–94 (1986)

23. Okubo, A., Levin, S.A.: Diffusion and Ecological Problems: Modern Perspectives.
Springer, Berlin (2001)

24. Prorok, A., Correll, N., Martinoli, A.: Multi-level spatial models for swarm-robotic
systems. The International Journal of Robotics Research 30(5), 574–589 (2011)

25. Schmickl, T., Hamann, H.: BEECLUST: A swarm algorithm derived from hon-
eybees. In: Xiao, Y. (ed.) Bio-inspired Computing and Communication Networks.
CRC Press (March 2011)

26. Strogatz, S.H.: Exploring complex networks. Nature 410(6825), 268–276 (2001)
27. Vicsek, T., Zafiris, A.: Collective motion. arXiv:1010.5017v1 (2010)
28. Yates, C.A., Erban, R., Escudero, C., Couzin, I.D., Buhl, J., Kevrekidis, I.G.,

Maini, P.K., Sumpter, D.J.T.: Inherent noise can facilitate coherence in collective
swarm motion. PNAS 106(14), 5464–5469 (2009)

A Hybrid Particle Swarm Optimization

Algorithm for the Open Vehicle
Routing Problem

Yannis Marinakis1 and Magdalene Marinaki2

1 Decision Support Systems Laboratory,
Department of Production Engineering and Management,

Technical University of Crete, Chania, Greece
marinakis@ergasya.tuc.gr

2 Industrial Systems Control Laboratory,
Department of Production Engineering and Management,

Technical University of Crete, Chania, Greece
magda@dssl.tuc.gr

Abstract. This paper introduces a new hybrid algorithmic nature in-
spired approach based on Particle Swarm Optimization, for successfully
solving one of the most popular supply chain management problems,
the Open Vehicle Routing Problem. The Open Vehicle Routing Problem
(OVRP) is a variant of the classic vehicle routing problem in which the
vehicles do not return in the depot after the service of the customers.
The proposed algorithm for the solution of the Open Vehicle Routing
Problem, the Hybrid Particle Swarm Optimization (HybPSO), combines
a Particle Swarm Optimization (PSO) Algorithm, the Variable Neighbor-
hood Search (VNS) Strategy and a Path Relinking (PR) Strategy. The
algorithm is suitable for solving large-scale open vehicle routing prob-
lems within short computational time. Two sets of benchmark instances
are used in order to test the proposed algorithm.

1 Introduction

Particle Swarm Optimization (PSO) is a population-based swarm intel-
ligence algorithm that was originally proposed by Kennedy and Eberhart [9].
PSO simulates the social behavior of social organisms by using the physical
movements of the individuals in the swarm. Its mechanism enhances and adapts
to the global and local exploration. Most applications of PSO have concentrated
on the optimization in continuous space but in the last years the PSO algorithm
is used also in discrete optimization problems.

The Open Vehicle Routing Problem (OVRP) is the variant of the classic
vehicle routing problem where the vehicles do not return in the depot after
the service of the customers [14]. The real life application of the Open Vehicle
Routing Problem concerns the case where either the company does not have
vehicles at all or the vehicles owned by the company are not enough in order
to use them for the distribution of the products to the customers. In both cases

M. Dorigo et al. (Eds.): ANTS 2012, LNCS 7461, pp. 180–187, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

HybPSO Algorithm for OVRP 181

the company has to hire a number of vehicles in order to realize the distribution
of the products. When the vehicles finish their jobs they do not return to the
company. This problem also belongs in the category of the third party logistics
(3PL) problems. From the combinatorial optimization point of view, the main
difference between the Vehicle Routing Problem and the Open Vehicle Routing
Problem is that in the first case the route is a hamiltonian cycle while in the
second case the route is a hamiltonian path [1]. Usually two different objectives
are used in OVRP, the first one is the minimization of the required number of
vehicles and, then, for this number of vehicles the total travel distance is, also,
minimized and the second one is the minimization of the corresponding total
traveled distance. The Open Vehicle Routing Problem was first published in [15]
but since then for the following twenty years it received little study. In the last
ten years, a number of publications using different heuristic and metaheuristic
algorithms for the OVRP have been published. It should be noted that the Open
Vehicle Routing Problem is an NP-hard problem, and, thus, the instances with
a large number of customers can not be solved in optimality within reasonable
time. For this reason, a large number of approximation techniques has been
proposed for its solution. These techniques are classified into three main ca-
tegories: the classical heuristics, the single solution based metaheuristics and
the population based metaheuristics. For analytical descriptions of the solution
algorithms for the Open VRP please see [10,13,18].

In this paper, we would like to develop a competitive Nature Inspired me-
thod based on Particle Swarm Optimization for the solution of the Open Vehicle
Routing Problem and to test its efficiency compared to other Nature Inspired
and Classic Metaheuristic algorithms. Thus, in this paper, we demonstrate how
a nature inspired intelligent technique, the Particle Swarm Optimization (PSO)
[9] and two metaheuristic techniques, the Variable Neighborhood Search (VNS)
[8] and the Path Relinking (PR) [7] can be incorporated in a hybrid scheme in
order to give very good results for the Open Vehicle Routing Problem (OVRP).
The rest of the paper is organized as follows: In the next section the proposed
algorithm, the Hybrid Particle Swarm Optimization (HybPSO) is presented and
analyzed in detail. Computational results are presented and analyzed in the third
section while in the last section conclusions and future research are given.

2 Hybrid Particle Swarm Optimization Algorithm

In this paper, a hybrid PSO (HybPSO) algorithm is used for the solution of the
OVRP. In PSO algorithm, initially a set of particles is created randomly where
each particle corresponds to a possible solution. Each particle has a position in
the space of solutions and moves with a given velocity. One of the key issues in
designing a successful PSO for the Open Vehicle Routing Problem is to find a
suitable mapping between Open Vehicle Routing Problem solutions and particles
in PSO. Each particle is recorded via the path representation of the tour, that
is, via the specific sequence of the nodes.

182 Y. Marinakis and M. Marinaki

For example, if we have a particle (solution) with ten nodes, a possible path
representation is the following:

1 3 8 5 4 10 1 6 9 7 2
with node number 1 is denoted the depot and nodes 2 through 10 denote the
customers. The difference between the Open Vehicle Routing Problem and the
Capacitated Vehicle Routing Problem is that in the first the vehicles do not
return to the depot. Thus, the difference in the calculation of a cost function
for each particle is that we do not add the cost between the last customer and
the depot, i.e. in the previous example the cost (distances) between customer 10
and the depot and customer 2 and the depot are omitted.

As the calculation of the velocity of each particle is performed by Equation
(1) (see below), the above mentioned representation should be transformed ap-
propriately. We transform each element of the solution into a floating point in
the interval (0,1], calculate the velocities and the positions of all particles and,
then, convert back the particles’ positions into the integer domain using relative
position indexing [11].

Thepositionof each individual (calledparticle) is representedbyad-dimensional
vector in problem space xi = (xi1, xi2, ..., xid), i = 1, 2, ..., N (N is the population
size and n is the number of the vector’s dimension), and its performance is eva-
luated on the predefined fitness function. The velocity vij represents the changes
that will be made to move the particle from one position to another. Where the
particlewillmove depends on the dynamic interaction of its own experience and the
experience of the whole swarm. There are three possible directions that a particle
can follow: to follow its ownpath, tomove towards thebestposition ithadduring the
iterations (pbestij) or to move to the best particle’s position (gbestj). The velocity
and position equations are updated as follows (constriction PSO) [3]:

vij(t+ 1) = χ(vij(t) + c1rand1(pbestij − xij(t)) + c2rand2(gbestj − xij(t))) (1)

and

xij(t+ 1) = xij(t) + vij(t+ 1) (2)

where

χ =
2

|2− c−
√
c2 − 4c|

and c = c1 + c2, c > 4 (3)

t is the iterations counter, c1 and c2 are the acceleration coefficients, rand1 and
rand2 are two random variables in the interval (0, 1). A local search strategy
based on the Variable Neighborhood Search (VNS) algorithm [8] is applied in
each particle in the swarm in order to improve the solutions produced from
the particle swarm optimization algorithm. In this paper, the VNS algorithm is
used with the following way. Initially, the number of local search algorithms is
selected. The local search strategies for the Open Vehicle Routing Problem are
distinguished between local search strategies for a single route and local search
strategies for multiple routes. The local search strategies that are chosen and

HybPSO Algorithm for OVRP 183

belong to the category of the single route interchange are the well known methods
for the TSP, the 2-opt and the 3-opt. In the single route interchange all the
routes have been created in the initial phase of the algorithm. The Local Search
Strategies for Single Route Interchange try to improve the routing decisions.
The Local Search Strategies for Multiple Route Interchange try to improve the
assignment decisions. This, of course, increases the complexity of the algorithms
but gives the possibility to improve even more the solution. The multiple route
interchange local search strategies that are used are the 1-0 relocate, 2-0 relocate,
1-1 exchange and 2-2 exchange [6].

As we do not want to increase the complexity of the algorithm, it is decided to
apply in each particle one local search combination of algorithms per iteration.
For this reason, a VNS operator CV NS is selected that controls which local search
algorithm is applied. The CV NS value is compared with the output of a random
number generator, randi(0, 1). If the random number is less or equal to the
CV NS , then, the first local search algorithm is used. Then, if the random number
is less or equal to the 2 ∗CV NS , then, the second local search algorithm is used,
and so on. As we would like to have not only simple local search algorithms but
also their combinations we select ten local search algorithms, the six previously
mentioned methods (2-opt, 3-opt, 1-0 relocate, 2-0 relocate, 1-1 exchange and
2-2 exchange) and four combinations (2-opt with 1-0 relocate, 2-opt with 1-1
exchange, 2-opt with 3-opt and 1-1 exchange and 2-opt with 3-opt, 1-0 relocate
and 1-1 exchange). Thus, the CV NS operator is set equal to 0.1 and only for 10%
of the cases a time consuming local search procedure is applied in the problem.

Finally, after the completion of an iteration, a path relinking strategy [7] for
exploring trajectories between the best particle and a number of other particles of
the swarm is applied. During the path relinking procedure, if a better solution than
the current best solution is found, then, the current best solution is replaced by this
solution. In this algorithm the best particle plays the role of the starting solution
and in each iteration the other random particles play the role of target solutions.
We are using random particles for the target solutions in order to give to the best
particle more exploration abilities by combining not only the best particle with
its neighbor particles but also with equal probabilities with all the particles in the
swarm. If a better solution than the current best solution is found, then, the current
best solution is replaced by this solution. In each iteration of the algorithm the
optimal solution of the whole swarm and the optimal solution of each particle are
kept. The algorithm stopswhen amaximumnumber of iterations has been reached.

3 Results and Discussion

The algorithm was implemented in Fortran 90 and was compiled using the Lahey
f95 compiler on a Intel Core 2 DUO CPU T9550 at 2.66 GHz, running Suse
Linux 9.1. The algorithm was tested on two sets of benchmark problems, the
14 benchmark problems proposed by Christofides [2] and the 8 large scale open
vehicle routing problems proposed by Li et al. [10]. Each instance of the first set
contains between 51 and 200 nodes including the depot. The location of the nodes

184 Y. Marinakis and M. Marinaki

is defined by their Cartesian co-ordinates and the travel cost from node i to j is
assumed to be the respective Euclidean distance. Each problem includes capacity
constraints while the problems 6-10, 13 and 14 have, also, maximum route length
restrictions (mtl) and non zero service times (st). For the first ten problems,
nodes are randomly located over a square, while for the remaining ones, nodes are
distributed in clusters and the depot is not centred. The maximum allowed route
length has been multiplied by 0.9 compared to the one considered for the VRP
[13]. The second set of instances contains between 200 and 480 nodes including
the depot. Each problem instance includes capacity constraints. In Table 1 in
columns 2-5 the most important characteristics (number of nodes (n), Capacity
of Vehicles (Q), maximum route length restrictions (mtl) and service times (st))
of each of the data sets are presented. The parameters of the proposed algorithm
are selected after thorough testing. A number of different alternative values were
tested and the ones selected are those that gave the best computational results
concerning both the quality of the solution and the computational time needed
to achieve this solution. The selected parameters are: number of particles equal
to 50, number of generations equal to 1000 and c1 = c2 = 2.05. The efficiency of
the HybPSO algorithm is measured by the quality of the produced solutions. The
quality is given in terms of the relative deviation from the best known solution,

that is ω =
(cHybPSO−cBKS)

cBKS
%, where cHybPSO denotes the cost of the solution

found by HybPSO and cBKS is the cost of the best known solution.
To test the performance of the proposed algorithm we applied HybPSO 10

times to each test problem. In Table 1, two different best solutions are presented.
The first best known solution (BKS1) is obtained using first the minimization of
the number of vehicles and, then, the minimization of the total distance traveled.
The other best solution (BKS2) is obtained by minimizing only the total distance
traveled. As it has, already, been mentioned in the description of the problem
it is very important to use the smallest number of vehicles as in the real life
application of the Open Vehicle Routing Problem the finding of the best routes
by hiring as less as possible number of vehicles is the main concern. Thus, ini-
tially the Open Vehicle Routing Problem is solved with the proposed algorithm
using the hierarchical objective function, where initially the number of vehicles
is minimized and, then, for this number of vehicles the total travel distance is,
also, minimized. The number of vehicles (NV), the best results (BR), the quality
of the best solution (ω), the average results (AR), the median, the standard de-
viation (stdev), the variance (var) and the CPU time in minutes are presented in
the first part of Table 1 in columns 7 to 14 for Christofides benchmark instances.
Afterwards, the Open Vehicle Routing Problem is solved for Christofides bench-
mark instances with the single objective function (the total distance traveled)
and the results are presented in the second part of Table 1. It should be noted
that in the second part of Table 1, there are only the instances in which the
algorithm with the use of the single objective function produced different results
from the ones produced from the algorithm when the hierarchical objective func-
tion was used. In the last part of Table 1, the results for Li et al. benchmark
instances with hierarchical objective function are given.

HybPSO Algorithm for OVRP 185

Table 1. Results of HybPSO

Results with hierarchical objective function in Christofides benchmark instances

n Q mtl st BKS1 NV BR ω AR median stdev var CPU

C1 51 160 ∞ 0 416.06 [1] 5 416.06 0.00 416.37 416.23 0.39 0.15 0.10

C2 76 140 ∞ 0 567.14 [5] 10 567.14 0.00 567.28 567.31 0.12 0.01 0.35

C3 101 200 ∞ 0 639.74 [10] 8 639.74 0.00 639.83 639.86 0.09 0.01 1.10

C4 151 200 ∞ 0 733.13 [12] 12 735.29 0.29 735.77 735.91 0.32 0.10 2.17

C5 200 200 ∞ 0 893.39 [18] 16 895.79 0.27 895.95 895.92 0.14 0.01 3.28

C6 51 160 180 10 412.96 [1] 6 412.96 0.00 413.26 413.28 0.27 0.07 0.21

C7 76 140 144 10 583.19 [12] 10 583.19 0.00 583.56 583.53 0.32 0.10 0.37

C8 101 200 207 10 644.63 [1] 9 644.79 0.02 645.02 645.03 0.15 0.02 0.58

C9 151 200 180 10 757.84 [12] 13 759.81 0.26 759.91 759.87 0.10 0.01 1.42

C10 200 200 180 10 875.67 [12] 17 878.49 0.32 879.02 878.94 0.41 0.17 3.25

C11 121 200 ∞ 0 682.12 [12] 7 682.12 0.00 682.36 682.43 0.15 0.02 1.19

C12 101 200 ∞ 0 534.24[12] 10 535.49 0.23 535.65 535.61 0.15 0.02 1.35

C13 121 200 648 50 904.04 [4] 11 904.04 0.00 904.39 904.43 0.20 0.04 1.28

C14 101 200 936 90 591.87 [12] 11 592.58 0.12 592.70 592.67 0.12 0,01 1.52

Results with minimization of the total distance in Christofides benchmark instances

n Q mtl st BKS2 NV BR ω AR median stdev var CPU

C1 51 160 ∞ 0 412.96 [16] 6 412.96 0.00 413.13 413.09 0.18 0.03 0.17

C2 76 140 ∞ 0 564.06 [16] 11 564.06 0.00 564.27 564.28 0.18 0.03 0.37

C3 101 200 ∞ 0 639.26 [18] 9 639.26 0.00 639.83 639.86 0.09 0.02 0.47

C5 200 200 ∞ 0 869 [18] 17 872.28 0.38 872.55 872.51 0.18 0.03 2.59

C7 76 140 144 10 568.49 [10] 11 569.12 0.11 569.48 569.51 0.24 0.05 0.47

C9 151 200 180 10 756.38 [10] 14 758.15 0.23 758.42 758.45 0.17 0.03 1.23

C11 121 200 ∞ 0 678.54 [17] 10 678.54 0.00 678.89 678.90 0.26 0.06 1.39

C13 121 200 648 50 896.5 [10] 12 897.25 0.08 897.52 897.51 0.23 0.05 1.52

Results with hierarchical objective function in Li et al. benchmark instances

n Q mtl st BKS1 NV BR ω AR median stdev var CPU

O1 200 900 ∞ 0 6018.52 [10] 5 6023.25 0.08 6023.53 6023.53 0.14 0.02 2.37

O2 240 550 ∞ 0 4557.38 [18] 9 4557.89 0.01 4558.14 4558.13 0.24 0.06 3.12

O3 280 900 ∞ 0 7731 [18] 7 7734.28 0.04 7735.01 7735.11 0.42 0.18 3.35

O4 320 700 ∞ 0 7253.2 [18] 10 7268.23 0.21 7268.45 7268.4 0.20 0.04 3.45

O5 360 900 ∞ 0 9193.15 [18] 8 9201.28 0.09 9201.68 9201.48 0.60 0.36 3.57

O6 400 900 ∞ 0 9793.72 [18] 9 9797.28 0.04 9798.03 9798 0.47 0.22 4.14

O7 440 900 ∞ 0 10347.7 [18] 10 10352.29 0.04 10352.58 10352.53 0.18 0.03 4.32

O8 480 1000 ∞ 0 12415.36 [18] 10 12419.25 0.03 12419.62 12419.65 0.15 0.02 4.51

It can be seen from Table 1, that the HybPSO algorithm for Christofides
benchmark instances, in seven out of fourteen instances in the first case and in
five out of fourteen instances in the second case has reached the best known
solution. For the rest instances, in the first case (when a hierarchical objective
function is used) the quality of the solutions is between 0.02% and 0.32% and the
average quality for the fourteen instances is 0.11%. For the second case (when
only the travel distance is minimized) the quality of the solutions is between
0.02% and 0.38% and the average quality for the fourteen instances is 0.13%.
The standard deviation in both cases is between 0.09 and 0.41. The variance in

186 Y. Marinakis and M. Marinaki

both cases is between 0.01 and 0.17. Also, in this Table the computational time
needed (in minutes) for finding the best solution by HybPSO is presented. The
CPU time needed is significantly low and only for the instances with number
of nodes equal to 200 is larger than 3 minutes. The algorithm is also tested for
the large scale benchmark instances proposed by Li et al [10]. The results of the
second data set are presented in the last part of Table 1. In this data set, we
present only results for the hierarchical objective function where first the number
of vehicles is minimized and, afterwards, the total distance traveled is minimized.
The quality of the solutions for the 8 instances is between 0.01% and 0.21% and
the average quality is 0.07%. The standard deviation is between 0.14 and 0.60
and the variance is between 0.02 and 0.36. Also, in this Table the computational
time needed (in minutes) for finding the best solution by HybPSO is presented.
The CPU time needed is significantly low and is never larger than 5 minutes.

4 Conclusions

In this paper, a new algorithm based on the Particle Swarm Optimization for
the solution of the Open Vehicle Routing Problem is presented. This algorithm
is a hybridization of the Particle Swarm Optimization algorithm with the Vari-
able Neighborhood Search algorithm and with the Path Relinking Strategy. As
a number of different variants of the Particle Swarm Optimization algorithm
have been published, mainly using a different equation for the calculation of the
velocities, we used the constriction Particle Swarm Optimization. Another issue
that we have to deal with was the fact that the PSO algorithm is suitable for
continuous optimization problems. Thus, it was a challenge to find an effective
transformation of the solutions of PSO in discrete values without loosing in-
formation from this procedure. The algorithm was tested in the two benchmark
instances that are usually used in the literature. As some publications use a hier-
archical objective function and others only the minimization of the total distance
traveled we test our algorithm in both cases taking efficient results for both of
them. Our future research will be focused in two different directions, the solu-
tion of the OVRP using other nature inspired techniques like Clonal Selection
Algorithm, Artificial Bee Colony etc. and the use of the proposed algorithm for
solving even more complicated problems like the Open Vehicle Routing Problem
with Stochastic Demands or the Open Vehicle Routing with Time Windows.

References

1. Brandao, J.: A tabu search algorithm for the open vehicle routing problem. Euro-
pean Journal of Operational Research 157(3), 552–564 (2004)

2. Christofides, N., Mingozzi, A., Toth, P.: The vehicle routing problem. In:
Christofides, N., Mingozzi, A., Toth, P., Sandi, C. (eds.) Combinatorial Optimiza-
tion. Wiley, Chichester (1979)

3. Clerc, M., Kennedy, J.: The particle swarm: explosion, stability and conver-
gence in a multi-dimensional complex space. IEEE Transactions on Evolutionary
Computation 6, 58–73 (2002)

HybPSO Algorithm for OVRP 187

4. Fleszar, K., Osman, I.H., Hindi, K.S.: A variable neighbourhood search algo-
rithm for the open vehicle routing problem. European Journal of Operational
Research 195, 803–809 (2009)

5. Fu, Z., Eglese, R., Li, L.: A new tabu search heuristic for the open vehicle routing
problem. Journal of the Operational Research Society 56(2), 267–274 (2005)

6. Gendreau, M., Laporte, G., Potvin, J.-Y.: Vehicle routing: modern heuristics. In:
Aarts, E.H.L., Lenstra, J.K. (eds.) Local Search in Combinatorial Optimization,
pp. 311–336. Wiley, Chichester (1997)

7. Glover, F., Laguna, M., Marti, R.: Scatter search and path relinking: Advances and
applications. In: Glover, F., Kochenberger, G.A. (eds.) Handbook of Metaheuris-
tics, pp. 1–36. Kluwer Academic Publishers, Boston (2003)

8. Hansen, P., Mladenovic, N.: Variable neighborhood search: Principles and applica-
tions. European Journal of Operational Research 130, 449–467 (2001)

9. Kennedy, J., Eberhart, R.: Particle swarm optimization. In: Proceedings of 1995
IEEE International Conference on Neural Networks, vol. 4, pp. 1942–1948 (1995)

10. Li, F., Golden, B., Wasil, E.: The open vehicle routing problem: Algorithms,
large-scale test problems, and computational results. Computers and Operations
Research 34, 2918–2930 (2007)

11. Lichtblau, D.: Discrete optimization using Mathematica. In: Callaos, N., Ebisuzaki,
T., Starr, B., Abe, J.M., Lichtblau, D. (eds.) World Multi-Conference on Systemics,
Cybernetics and Informatics (SCI 2002). International Institute of Informatics and
Systemics, vol. 16, pp. 169–174 (2002)

12. Pisinger, D., Ropke, S.: A general heuristic for vehicle routing problems. Computers
and Operations Research 34, 2403–2435 (2006)

13. Repoussis, P.P., Tarantilis, C.D., Braysy, O., Ioannou, G.: A hybrid evolution strat-
egy for the open vehicle routing problem. Computers and Operations Research 37,
443–455 (2010)

14. Sariklis, D., Powell, S.: A heuristic method for the open vehicle routing problem.
The Journal of the Operational Research Society 51(5), 564–573 (2000)

15. Schrage, L.: Formulation and structure of more complex realistic routing and
scheduling problem. Networks 11, 229–232 (1981)

16. Tarantilis, C., Diakoulaki, D., Kiranoudis, C.: Combination of geographical infor-
mation system and efficient routing algorithms for real life distribution operations.
European Journal of Operational Research 152(2), 437–453 (2004)

17. Tarantilis, C., Ioannou, G., Kiranoudis, C., Prastacos, G.: Solving the open vehicle
routing problem via a single parameter metaheuristic algorithm. Journal of the
Operational Research Society 56, 588–596 (2005)

18. Zachariadis, E.E., Kiranoudis, C.T.: An open vehicle routing problem meta-
heuristic for examining wide solution neighborhoods. Computers and Operations
Research 37, 712–723 (2010)

A Self-adaptive Heterogeneous PSO

Inspired by Ants

Filipe V. Nepomuceno and Andries P. Engelbrecht

Department of Computer Science, University of Pretoria, Pretoria, South Africa
filinep@gmail.com, engel@cs.up.ac.za

Abstract. Heterogeneous particle swarm optimizers have been prop-
osed where particles are allowed to implement different behaviors. A
selected behavior may not be optimal for the duration of the search pro-
cess. Since the optimality of a behavior depends on the fitness landscape
it is necessary that particles be able to dynamically adapt their behav-
iors. This paper introduces two new self-adaptive heterogeneous particle
swarm optimizers which are influenced by the ant colony optimization
meta-heuristic. These self-adaptive strategies are compared with three
other heterogeneous particle swarm optimizers. The results show that
the proposed models outrank the existing models overall.

1 Introduction

Particle swarm optimization (PSO) is a stochastic optimization technique in-
troduced by Kennedy and Eberhart [6,11]. PSOs contain a swarm of particles
that move around in an n-dimensional search space trying to find an optimal
solution to an optimization problem. Each particle’s position represents a can-
didate solution and each particle has a velocity which determines the particle’s
next position. Homogeneous PSOs use the same position update and the same
velocity update for all particles. This means that all the particles exhibit the
same search patterns.

One of the problems that PSOs face is the exploration versus exploitation
problem [8]. By making the PSO heterogeneous, the swarm can have multiple
search patterns. This allows a better balance between exploration and exploita-
tion. Previous work done on heterogeneous PSO (HPSO) includes experiments
by Montes de Oca et al [15], the TRIBES PSO [3], the static HPSO (sHPSO) and
dynamic HPSO (dHPSO) models [8], the adaptive learning PSO-II (ALPSO-II)
[13], and the difference proportional probability PSO (DPP-PSO) [18]. Some of
these approaches have shortcomings, e.g. the ALPSO-II is computationally ex-
pensive, and the DPP-PSO, sHPSO and dHPSO cannot adapt to the changing
search landscape characteristics as the particles move through the search space.

This paper aims to overcome these shortcomings by proposing two self-
adaptive heterogeneous models inspired by the foraging behavior of ants mod-
eled with the ant colony optimization meta-heuristic (ACO-MH) [5]. The swarm
contains a behavior pool which contains different behaviors (update equations).

M. Dorigo et al. (Eds.): ANTS 2012, LNCS 7461, pp. 188–195, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

A Self-adaptive Heterogeneous PSO Inspired by Ants 189

The behaviors have an associated pheromone concentration which determines
the probability of a particle choosing that behavior.

The proposed strategies are evaluated on a subset of the CEC 2005 benchmark
functions and compared to the dHPSO, ALPSO-II and DPP-PSO. The results
show that the proposed self-adaptive HPSO strategies perform well on unimodal
and multimodal functions.

The rest of this paper is organized as follows: Section 2 provides background
on PSOs and existing HPSO algorithms used for comparison in this paper.
Section 3 introduces the proposed self-adaptive strategies. Section 4 details the
experimental procedure followed and the results are presented and analyzed in
Section 5. The paper is concluded in Section 6.

2 Background

This section provides details on the original PSO and heterogeneous PSO.

2.1 Particle Swarm Optimization

The original PSO is based on the papers by Kennedy and Eberhart [6,11]. Each
particle keeps track of the best position it has found called the particle’s personal
best or pbest. Particles are grouped together into neighborhoods and the best
position of all the particles’ pbests, called the neighbourhood best or nbest, is
recorded. Particles initially start in random positions in the search space and
iteratively update their velocity and position. The following equations, with the
addition of the inertia weight introduced by Shi and Eberhart [17], are used:

vij(t+ 1) = wvij(t) + c1r1j(t) (yij(t)− xij(t)) + c2r2j(t) (ŷj(t)− xij(t)) (1)

xij(t+ 1) = xij(t) + vij(t+ 1) (2)

where vij(t) represents the ith particle’s velocity in the jth dimension at itera-
tion t, xij(t) is the particle’s position, yij(t) is the particle’s pbest, ŷ(t) is the
neighborhood’s nbest, w is the inertia weight to avoid sudden changes in direc-
tion, r1j , r2j ∼ U(0, 1) and c1 and c2 are constant acceleration coefficients. The
velocity and position updates define a particle’s search behavior.

2.2 Heterogeneous Particle Swarm Optimization

HPSO algorithms have a behavior pool and a behavior selection strategy.
Behaviors which have been used in behavior pools are

– Original PSO with inertia weight (PSO) [6,11,17]
– Cognitive-only model (Cog-PSO) [9]
– Social-only model (Soc-PSO) [9]
– Bare-bones (BB-PSO) and modified bare-bones (BBMod-PSO) [10]

190 F.V. Nepomuceno and A.P. Engelbrecht

– Quantum PSO (QSO) [1]
– Time-varying inertia weight PSO (TVIW-PSO) [17]
– Time-varying acceleration coefficients (TVAC-PSO) [16]
– Fully informed particle swarm (FIPS) [14]

The dynamic HPSO (dHPSO), proposed by Engelbrecht [8], selects behaviors
randomly from the behavior pool if the particle’s pbest has not improved for
ten iterations. A critique against the dHPSO is that the behavior selection is
random and no information about the search process is used to guide the selection
towards the most promising behaviors.

Spanvello and Montes de Oca’s [18] difference proportional probability PSO
(DPP-PSO) allows particles to change their behaviors to the nbest’s behavior
based on a probability calculated by how much better the nbest’s fitness is com-
pared to their own. Additionally, the DPP-PSO has a number of rigid particles
for each behavior which do not change their behavior at all. This is to ensure
that all behaviors occur in the swarm. One of the issues with the DPP-PSO
is that it only contains two behaviors (FIPS and the original PSO with inertia
weight) so there is not an adequate range of behavioral diversity to help in the
swarm’s search.

Li and Yang’s [13] adaptive learning particle swarm optimizer-II (ALPSO-II)
works as follows: progress values are kept for each particle and rewards are cal-
culated based on the progress. A new behavior is then chosen probabilistically
based on a selection ratio calculated using the rewards. The ALPSO-II also con-
tains an archive position, abest, which stores the best solution found throughout
the whole search. Every iteration each particle has a chance to update the abest
position by replacing each element of the abest individually. If the replacement
results in a better fitness, then the abest keeps that element. The main issue with
ALPSO-II is that it is overly complex and computationally expensive. The abest
update procedure can increase the number of function evaluations per iteration
drastically for higher dimensional problems.

3 Pheromone Based Particle Swarm Optimizer

This section introduces the two proposed self-adaptive HPSO strategies.
Both the strategies’ behavior pools consist of the original PSO with iner-

tia weight, Cog-PSO, Soc-PSO, BB-PSO, BBMod-PSO, QSO, TVIW-PSO and
TVAC-PSO.

The self-adaptive strategies are inspired by the foraging behavior of ants as
modeled in the ant colony optimization meta-heuristic (ACO-MH) [5]. Ants are
able to find the shortest route to a food source by secreting pheromone on the
trails to the food source. Ants probabilistically follow the routes with the higher
concentrations of pheromone. Over time, the pheromone evaporates making the
routes less likely to be chosen if the ants do not continue using the route.

The pheromone heterogeneous particle swarm optimizer (pHPSO) uses these
concepts to select a behavior for a particle. Each behavior, b, in the behavior pool
represents a candidate route, the particles represent ants and the pheromone

A Self-adaptive Heterogeneous PSO Inspired by Ants 191

concentration, pb, represents the fitness of a behavior. Fitter behaviors have
higher pheromone concentrations.

Each particle is initially assigned a random behavior from the behavior pool
with the probability 1

B where B is the total number of behaviors in the behavior
pool. The initial pheromone concentration of each behavior is also 1

B . Each
iteration consists of four phases: behavior selection, particle update, pheromone
update and pheromone evaporation.

During behavior selection, a new behavior is probabilistically chosen using
probabilities computed using the pheromone concentrations when a particle
stagnates. A particle is considered stagnant if its pbest does not improve for
ten iterations as per [12]. The probability for choosing behavior b is

probb(t) =
pb∑B
i=1 pi

(3)

The particles then update their positions and velocities using their assigned
behaviors during the particle update phase.

The next phase is updating the pheromone concentrations. Assuming min-
imization, the pheromone concentration is updated using one of the following
strategies:

– Constant strategy (pHPSO-const)

pb(t) = pb(t) +

Sb∑
i=1

⎧⎪⎨
⎪⎩
1.0 if f (xi(t)) < f (xi(t− 1))

0.5 if f (xi(t)) = f (xi(t− 1))

0.0 if f (xi(t)) > f (xi(t− 1))

(4)

where Sb is the number of particles using behavior b. This strategy rewards
behaviors if they improve or maintain a particle’s fitness regardless of the
magnitude of the improvement. The update values were chosen as a starting
point and other values will be investigated in the future.

– Performance based (linear) strategy (pHPSO-lin)

pb(t) = pb(t) +

Sb∑
i=1

(f (xi(t− 1))− f (xi(t))) (5)

Using this strategy behaviors are rewarded in proportion to the improvement of
a particle’s fitness over two iterations. A minimum concentration of 0.01 is used
to prevent zero and negative concentrations.

Roulette wheel selection is biased to the more successful behaviors. To main-
tain diversity in behavior space and enhance its exploration, pheromone concen-
trations of all behaviors evaporate using

pb(t+ 1) =

(∑B
i=1,i
=b pi

)
∑B

i=1 pi
× pb (6)

192 F.V. Nepomuceno and A.P. Engelbrecht

The amount of evaporation is proportional to a behavior’s pheromone concentra-
tion, e.g. if pb(t) is 90% of the total pheromone concentrations then evaporation
will decrease it by 90%.

In comparison to the heterogeneous strategies discussed in Section 3, the
pheromone-based self-adaptive HPSO strategies have the following advantages:

– computationally less expensive than the ALPSO-II with less control
parameters,

– behaviors are self-adapted based on the success of individual behaviors, and
– better exploration of the behavior space by using pheromone evaporation

4 Experimental Setup

This section provides information on the functions used to compare the dif-
ferent heterogeneous PSO strategies as well as the control parameters used
for the algorithms. All functions and algorithms were implemented in CIlib
(http://www.cilib.net). The test functions used to compare the different algo-
rithms are functions f1 − f14 of the CEC 2005 benchmark functions [19]. The
experiments were run 50 times on each function for 1000 iterations in dimensions
10 to 100 in increments of ten. Each swarm contained 30 particles.

The behaviors used an inertia weight, w, of 0.729844 and acceleration coef-
ficients, c1 and c2, of 1.496180 [2]. The QSO used a cloud radius of 5, a value
in between the values used in [12] and [1]. The TVIW-PSO decreased its inertia
weight from 0.9 to 0.4 [7] and the TVAC-PSO increased its social acceleration
coefficient from 0 to 2.5 and decreased its cognitive acceleration coefficient from
2.5 to 0 [16]. The value of 0 for the minimums was used for the behavior to
mimic the Cog-PSO and Soc-PSO. The DPP-PSO used five rigid particles per
behavior and β = 5 [18].

5 Results and Analysis

This section analyzes the results obtained for the experiments.
Table 1 summarizes the average rank of each algorithm over all the functions

for each dimension. The numbers in bold indicate the highest rankings. In terms
of scalability, the pHPSOs obtained the highest ranks for each dimension with
the pHPSO-const obtaining the best overall rank. The linear pHPSO achieved
better ranks in the lower dimensions and the constant pHPSO in the higher
dimensions. The other algorithms ranked very similarly to each other overall
with the DPP-PSO ranking the best of the three followed by the dHPSO then
the ALPSO-II.

Figure 1 visualizes the scalability results for certain functions. The pHPSO
strategies appeared to be unaffected by the increase in dimensionality for func-
tions f1, f2, f4, f6, f7 and f11. For functions f3, f5, f10, f13 and f14 the pHPSO
strategies scaled linearly, and exponentially for functions f9 and f12. The f8
function was the only one with a logistic trend. Compared to the ALPSO-II, the

A Self-adaptive Heterogeneous PSO Inspired by Ants 193

Table 1. Average Ranks Over All Functions per Dimension

Dimensions ALPSO-II DPP-PSO dHPSO pHPSO-const pHPSO-lin

10 4.15±1.64 3.07±0.88 3.14±1.55 2.43±0.72 2.21±1.15
20 3.86±1.68 3.36±1.11 3.07±1.33 2.75±1.24 1.96±0.77
30 3.57±1.68 3.5±1.05 3.43±1.45 2.36±0.97 2.14±1.06
40 3.57±1.68 3.64±0.97 3.29±1.39 2.07±0.88 2.43±1.24
50 3.43±1.63 3.43±0.98 3.64±1.44 2.36±1.29 2.14±0.83
60 3.43±1.64 3.71±0.88 3.43±1.45 2.0±0.93 2.43±1.18
70 3.36±1.67 3.29±1.03 3.64±1.34 2.21±1.32 2.5±1.05
80 3.5±1.68 3.29±0.88 3.71±1.39 2.0±0.85 2.5±1.3
90 3.36±1.67 3.5±0.91 3.79±1.42 2.0±1.07 2.35±0.89
100 3.5±1.68 3.43±0.82 3.57±1.45 2.29±1.28 2.21±0.94

Mean 3.57±0.23 3.42±0.18 3.47±0.23 2.24±0.23 2.3±0.17

(a) f3 (b) f5 (c) f10

(d) f11 (e) f12 (f) f13

Fig. 1. Scalability for Functions f3, f5 and f10 to f13

pHPSO strategies scaled better on five of the functions, worse on three functions
and the same on six of the functions. The DPP-PSO algorithm scaled better on
nine of the functions, worse on two of the functions and the same on two of
the functions. Compared to the dHPSO the pHPSO strategies scaled better on
five of the functions and the same on the rest of the functions. The scalability
patterns of the dHPSO were similar to the pheromone HPSO strategies.

The Friedman test with the Bonferroni-Dunn post-hoc test [4] was used to
show that, with 95% confidence, the pHPSO strategies perform significantly bet-
ter than the other strategies over all dimensions and functions. Figure 2 visual-
izes the comparison of the algorithms with the Bonferroni-Dunn test. Algorithms

194 F.V. Nepomuceno and A.P. Engelbrecht

Fig. 2. Critical difference (CD) diagram comparing the algorithms with the Bonferroni-
Dunn post-hoc test

grouped with a bold line indicate that there is no significant difference between
them.

6 Conclusion

This paper proposed two new strategies based on the pheromone updates of
the ant colony optimization meta-heuristic (ACO-MH) to self-adapt behaviors
in a heterogeneous particle swarm optimizer (HPSO). The two strategies select
behaviors based on whether those behaviors are performing well in the current
search landscape. Compared to existing HPSO algorithms the new strategies are
computationally simpler and are self-adaptive.

Comparisons with the dynamic HPSO (dHPSO), difference proportional prob-
ability PSO (DPP-PSO) and adaptive learning PSO-II (ALPSO-II) showed that
the new strategies outranked the others when evaluated on a number of unimodal
and multimodal functions and that they scale relatively well with an increase in
dimensionality.

Future studies include an analysis of the behavior pool, using different be-
havioral change triggers, a sensitivity analysis of the pheromone-based HPSO’s
parameters and comparing the behavior selection capabilities with other models
using the same behavior pool.

References

1. Blackwell, T., Branke, J.: Multi-swarm Optimization in Dynamic Environments. In:
Raidl, G.R., Cagnoni, S., Branke, J., Corne, D.W., Drechsler, R., Jin, Y., Johnson,
C.G., Machado, P., Marchiori, E., Rothlauf, F., Smith, G.D., Squillero, G. (eds.)
EvoWorkshops 2004. LNCS, vol. 3005, pp. 489–500. Springer, Heidelberg (2004)

2. Clerc, M., Kennedy, J.: The Particle Swarm - Explosion, Stability, and Conver-
gence in a Multidimensional Complex Space. IEEE Transactions on Evolutionary
Computation, 58–73 (2002)

3. Cooren, Y., Clerc, M., Siarry, P.: Performance Evaluation of TRIBES, an Adaptive
Particle Swarm Optimization Algorithm. Swarm Intelligence 3, 149–178 (2009)

4. Demšar, J.: Statistical Comparisons of Classifiers Over Multiple Data Sets. The
Journal of Machine Learning Research, 1–30 (2006)

5. Dorigo, M.: Optimization, Learning and Natural Algorithms (in Italian). Ph.D.
thesis, Dipartimento di Elettronica, Politecnico di Milano, Milan, Italy (1992)

A Self-adaptive Heterogeneous PSO Inspired by Ants 195

6. Eberhart, R., Kennedy, J.: A New Optimizer using Particle Swarm Theory. In:
Proceedings of the Sixth International Symposium on Micro Machine and Human
Science, pp. 39–43 (1995)

7. Eberhart, R., Shi, Y.: Comparing Inertia Weights and Constriction Factors in Par-
ticle Swarm Optimization. In: Proceedings of the IEEE Congress on Evolutionary
Computation, pp. 84–88 (2000)

8. Engelbrecht, A.P.: Heterogeneous Particle Swarm Optimization. In: Dorigo, M.,
Birattari, M., Di Caro, G.A., Doursat, R., Engelbrecht, A.P., Floreano, D., Gam-
bardella, L.M., Groß, R., Şahin, E., Sayama, H., Stützle, T. (eds.) ANTS 2010.
LNCS, vol. 6234, pp. 191–202. Springer, Heidelberg (2010)

9. Kennedy, J.: The Particle Swarm: Social Adaptation of Knowledge. In: Proceedings
of the IEEE International Congress on Evolutionary Computation, pp. 303–308
(1997)

10. Kennedy, J.: Bare Bones Particle Swarms. In: Proceedings of the IEEE Swarm
Intelligence Symposium, pp. 80–87 (2003)

11. Kennedy, J., Eberhart, R.: Particle Swarm Optimization. In: Proceedings of the
IEEE International Joint Conference on Neural Networks, pp. 1942–1948 (1995)

12. Leonard, B., Engelbrecht, A., van Wyk, A.: Heterogeneous Particle Swarms in Dy-
namic Environments. In: Proceedings of the IEEE Swarm Intelligence Symposium,
pp. 1–8 (2011)

13. Li, C., Yang, S.: Adaptive Learning Particle Swarm Optimizer-II for Global Opti-
mization. In: Proceedings of the Congress on Evolutionary Computation, pp. 1–8
(2010)

14. Mendes, R., Kennedy, J., Neves, J.: The Fully Informed Particle Swarm: Simpler,
Maybe Better. IEEE Transactions on Evolutionary Computation, 204–210 (2004)

15. Montes de Oca, M., Peña, J., Stützle, T., Pinciroli, C., Dorigo, M.: Heterogeneous
Particle Swarm Optimizers. In: Proceedings of the IEEE Congress on Evolutionary
Computation, pp. 698–705 (2009)

16. Ratnaweera, A., Halgamuge, S., Watson, H.: Self-Organizing Hierarchical Particle
Swarm Optimizer with Time-Varying Acceleration Coefficients. IEEE Transactions
on Evolutionary Computation, 240–255 (2004)

17. Shi, Y., Eberhart, R.: A Modified Particle Swarm Optimizer. In: Proceedings of
the IEEE Congress on Evolutionary Computation, pp. 69–73 (1998)

18. Spanevello, P., Montes de Oca, M.: Experiments on Adaptive Heterogeneous PSO
Algorithms. In: Proceedings of the Doctoral Symposium on Engineering Stochastic
Local Search Algorithms, pp. 36–40 (2009)

19. Suganthan, P.N., Hansen, N., Liang, J.J., Deb, K., Chen, Y.P., Auger, A., Tiwari,
S.: Problem Definitions and Evaluation Criteria for the CEC 2005 Special Session
on Real Parameter Optimization. Tech. rep., Nanyang Technological University
(2005)

A “Thermodynamic” Approach to Multi-robot

Cooperative Localization with Noisy Sensors

Yotam Elor and Alfred M. Bruckstein

Department of Computer Science and the Goldstein UAV and Satellite Center,
Technion, Haifa, Israel

{yotame,freddy}@cs.technion.ac.il

Abstract. In a previous paper [1], we proposed a new approach to the
simultaneous cooperative localization of a very large group of simple
robots capable of performing dead-reckoning and sensing the relative
position of nearby robots. The idea behind the proposed averaging pro-
cess is the following: every time two robots meet, they simply average
their location estimates. This paper extends the results of [1] by con-
sidering noisy relative location measurements and by presenting a novel
analysis based on the Well Mixing Movement Pattern assumption. The
results of this paper are more precise than what was previously reported.
Nevertheless, when considering the limit of a large group of robots, and
after a long “stabilization” time, the final results turn out to be identical.

1 Introduction

Localization is the task of estimating a robot’s self location in space and has been
identified as one of the key problems in robotics. In the variant of the localization
problem that we shall consider, it is assumed that, initially, every robot knows
its precise location in a commonly agreed upon coordinate system. Every robot
then uses only odometry in order to track its location, by a process which is
sometimes called “dead-reckoning”. However, due to noisy sensor readings, in
time, the self location estimate diverges from the robot’s real location. When a
group of robots perform localization, the localization error can be reduced by
sharing information between them. In order to do so, some simple exteroceptive
capabilities are needed. We shall assume that a robot is able to sense the relative
location of nearby robots and to communicate with them.

The proposed cooperative localization algorithm is denoted by “Encounter
Averaging” (EA). In EA, every robot moves in the area while maintaining an
estimate of its location using odometry and whenever two robots are within sens-
ing and communication range they “meet”, i.e. average their location estimates.
In this work, we consider movement patterns which are “well mixing” in the
sense defined below.

Definition 1 (Well Mixing Movement Pattern, WMMP). If the proba-
bility of a meeting between any two robots at any given time is constant then the
robots follow a well mixing movement pattern.

M. Dorigo et al. (Eds.): ANTS 2012, LNCS 7461, pp. 196–203, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

A “Thermodynamic” Approach to Multi-robot Cooperative Localization 197

Let p (ri, rj ; t) be the probability that robots ri and rj meet at time t. The
movement pattern is WMMP, by definition, if for any two robots ri �= rj and
any time t, we have p (ri, rj ; t) = p where p is a constant. As an example of a
movement pattern which is well mixing, we proposed in [1] the “random billiard
walk” (RBW). Due to space limitations the analysis of RBW is omitted from
this paper and can be found in the TR [2]. A simple “independent error” model
(IEM) is considered. In IEM, the odometry errors incurred at each step are
independent from the state of the robot. The localization errors accumulate as
two-dimensional Gaussian variables with linearly increasing variance.

Due to space limitations the proofs of the theorems and many other details
are omitted from this paper, they can be found in our readily available technical
report [2].

2 The Encounter Averaging Process

In our work time is discrete i.e. t = 0, 1, 2... A group of M identical indepen-
dent robots is considered. The robots are modeled as points on the plane. Let J
be the matrix of all ones of size M × M and I - the identity matrix of size
M × M . The location of robot ri at time t in respect to a fixed reference
frame is denoted by the vector Xi (t) = [xi (t) , yi (t)]

T
where xi (t), yi (t) are

the robot’s coordinates. Let v (t) be the robot speed and φi (t) its direction
at time t. The robot coordinates are readily updated as follows: Xi (t+ 1) =

Xi (t) + [cos (φi (t)) , sin (φi (t))]
T
v (t). The location estimate of robot ri at time

t is denoted by X̂i (t) = [x̂i (t) , ŷi (t)]
T
. Initially X̂ (0) = X (0). The estimate

error is given by the vector X̃ = X̂ − X = [x̃i (t) , ỹi (t)]
T
. According to IEM,

the localization errors added at each time step are distributed normally, i.e.
X̂i (t+ 1) = X̂i (t)+Xi (t+ 1)−Xi (t)+[ni,x (t) , ni,y (t)]

T
where ni,x (t) (ni,y (t))

is the normal noise with variance σ2
0 added to x̂i (ŷi) at time t.

Average Upon Meeting

Let Zij be the relative location of robot ri in respect to rj , i.e. Zij = Xi −Xj .
In our previous work [1] it was assumed that upon meeting the robots sense
the relative location of each other (Zij and Zji) accurately. In this work, we

consider the case where the measurements of Zijand Zji are noisy. Let Ẑij be Zij

as measured by robot rj . The measurement errors are modeled as independent

normal noise i.e. Ẑij (t) = Zij (t) + nij (t) where nij (t) = [nij,x (t) , nij,y (t)]
T
,

nij,x (t) (nij,y (t)) is the normal noise with variance σ2
Z added to the x-component

(y-component) of Ẑij at time t. Let CZ = E [nij (t)nji (t)] /σ
2
Z . Two cases are

considered:

1. Ẑij and Ẑji are independent i.e. robots ri and rj estimate the relative position
independently. In this case we have CZ = 0.

2. Ẑij = −Ẑji i.e. the relative location estimates of robots ri and rj agree. In
this case we have CZ = −1. Agreement can be achieved by the following

198 Y. Elor and A.M. Bruckstein

process: Each of the robots measure the relative position of the other robot.
Denote the results of this measurement by Ẑ0

ij and Ẑ0
ji. The robots transmit

their estimations to each other and each of the robots average it’s estimation
with the additive inverse of the value just received. The resulting estimations

are Ẑji =
1
2

(
Ẑ0
ij − Ẑ0

ji

)
and Ẑji =

1
2

(
Ẑ0
ji − Ẑ0

ij

)
i.e. the estimates agree.

In our proposed cooperative self-localization scheme, whenever two robots meet,
they apply the following meeting protocol. Let ri, rj be the two robots that
meet at time t. The meeting protocol is described for robot ri; rj simultaneously
follows the same procedure. Upon meeting, ri asks rj “what is your estimate of

my location?”. rj replies with X̂j (t
−) + Ẑij (t) i.e.[

x̂j (t
−)

ŷj (t
−)

]
︸ ︷︷ ︸

X̂j(t−)

+

[
xi (t)
yi (t)

]
−
[
xj (t)
yj (t)

]
+

[
nij,x (t)
nij,y (t)

]
︸ ︷︷ ︸

Ẑij(t)

(1)

where the values of t− are the values before the meeting. Then, ri sets his location
estimate to be the average of his previous estimate and the coordinates received
from rj , i.e.

x̂i (t) =
x̂i (t

−) + (x̂j (t
−) + xi (t)− xj (t) + nij,x (t))

2
(2)

x̃i (t) = x̂i (t)− xi (t) =
x̃i (t

−) + x̃j (t
−)

2
+

1

2
nij,x (t) (3)

and the same for ŷ. Therefore the new error of each of the robots is the average
of their old errors plus half of the error in estimating the relative location.

3 Analysis: The Covariance Evaluation Process

The IEM assumption is that x̃i and ỹi are independent therefore they can be
analyzed separately. Hence only one coordinate, the x-error will be analyzed
here. The same results apply to y as well.

Let Pt be the covariance matrix of the localization errors in x at time t.
Where the components of Pt are denoted by σij (t) and given by σij (t) =
Cov [x̃i (t) , x̃j (t)]. Let P̄t = E [Pt] where the expectation is over all robot meet-
ings prior to time t. The time course of P̄t under EA is described in the following
theorem.

Theorem 1. Under the WMMP assumption, P̄t is given by

P̄t �
[
σ2
0

M
+

p

4
(1 + CZ)σ

2
Z

]
· J · t+

[
2σ2

0

Mp
+

σ2
Z

2

]
· I (4)

To examine the optimality of EA, a lower bound on any cooperative localization
algorithm is presented. The bound is obtained by applying the optimal Kalman
Filter.

A “Thermodynamic” Approach to Multi-robot Cooperative Localization 199

Theorem 2. Considering IEM and any cooperative localization algorithm, the
expected variance of the localization error of any robot is bounded by

E
[
x̃i (t)

2
]
≥ σ2

0

M
t (5)

where M is the number of robots and x̃i (0) = 0.

The Effect of a Landmark

Consider a landmark placed in a fixed point in the environment. The robots
know the exact coordinates of the landmark. Every robot that is within the
landmark sensing range senses the relative location of the landmark accurately
and updates his localization accordingly. Similarly to the WMMP assumption,
it is assumed that the probability that any robot will sense the landmark at any
time t is constant. That probability is denoted by pl and derived in [2]. In case
the system comprise a landmark, P̄t converges to the steady state provided in
the following theorem.

Theorem 3. Under the WMMP assumption, when the system comprises a land-
mark, the steady state of P̄t is given by

P̄∞ �
[

1

2Mpl
σ2
0 +

Mp (1 + CZ) + 2CZpl
8Mpl

σ2
Z

]
· J (6)

+

[
2

Mp
σ2
0 +

1

2
σ2
Z

]
· I

4 Discussion and Simulations

The time course of P̄t can be roughly described by the following: While moving,
the robots accumulate localization error. Since errors accumulated by different
robots are statistically independent, only the values of the main diagonal of P̄t

increase. Upon meeting, and applying EA, the robots spread the error from the
main diagonal to the rest of the matrix. Actually, EA does not decrease, and
might even increase the sum of all elements of P̄t. Nevertheless, the EA process
“spreads the error” from the main diagonal to the rest of the matrix. Since
the robots’ localization errors are determined solely by the values of the main
diagonal, spreading some of the error from the main diagonal is desired.

When there is no landmark, according to Theorem 1, P̄t is given by Equation
4 i.e. all elements of P̄t grow linearly in time with the same pace while the
elements of the main diagonal are slightly larger. The constant gap between the
values of the main diagonal and the rest of P̄t is due to the time required for
the errors to average over the robots.

Denote by σ2
diag (t) the value of the main diagonal of P̄t and recall that the

expected localization error of a robot is normal with zero mean and variance of
σ2
diag (t). Since we are mainly interested in the expected localization error, the

discussion will focus on the value of σ2
diag (t). For brevity, consider four cases:

200 Y. Elor and A.M. Bruckstein

Case 1. (no landmark, σ2
Z = 0). Considering the case with no landmark and

no relative location measurement error, by Theorem 1, σ2
diag (t) is given by

σ2
diag (t) � σ2

0

M · t + 2σ2
0

Mp i.e. σ2
diag (t) comprises a time dependent component

and a constant component. Recall that when no error correction mechanisms
are applied, σ2

diag (t) = σ2
0 · t. Hence by applying EA, the error growth rate is re-

duced by a factor of M . However, a constant component is added. This constant
component is a result of the time the odometry errors require to average over
the robots and is inversely proportional to the frequency of meetings (Mp). By
Theorem 2, the optimal cooperative localization algorithm employing a Kalman

filter based on all possible relative location observations yields σ2
diag (t) =

σ2
0

M · t.
Hence, rather surprisingly, the localization estimates provided by EA are optimal
up to a constant i.e. asymptotically optimal.

Case 2. (no landmark, σ2
Z > 0, CZ = 0). When the relative location measure-

ments are independent (CZ = 0), by Theorem 1, σ2
diag (t) is given by σ2

diag (t) �[
σ2
0

M + p
4σ

2
Z

]
· t+ 2σ2

0

Mp +
σ2
Z

2 . Due to the noisy relative location measurements, both

the slope and the constant component of σ2
diag are larger in comparison to Case

1. The slope is larger since, in this case, the relative location measurement errors
incurring at every meeting increase the total amount of noise in the system. The
addition to the time dependent component is given by p

4σ
2
Z · t i.e. proportional to

the amount of error added in each meeting (σ2
Z) and to the frequency of meetings

(p). Hence, in the long term, frequent meeting will increase the localization error
rather than decrease it.

Case 3. (no landmark, σ2
Z > 0, CZ = −1). When the relative location mea-

surements agree (CZ = −1), by Theorem 1, σ2
diag (t) is given by σ2

diag (t) �
σ2
0

M · t+ 2σ2
0

Mp +
σ2
Z

2 i.e. the slope of σ2
diag (t) equals to the slope of Case 1. Recall

that the slope of σ2
diag (t) equals to the rate of noise accumulation in the system.

When the relative location measurements agree, a meeting does not add noise to
the system. Hence these errors do not affect the slope of σ2

diag (t). Comparing to
the optimal cooperative localization algorithm employing a Kalman filter based
on all possible relative location observations (Theorem 2) we have asymptotically
optimal expected error.

A comparison between cases 2 and 3 reveals relative location measurements
which agree (CZ = −1) yields a significantly better localization error than un-
correlated errors (CZ = 0). Furthermore, CZ = −1 can be easily achieved by
the simple relative measurement averaging process described in the beginning of
Section 3. Hence it is recommended to apply the process in every meeting prior
to applying EA.

Case 4. (with landmark, σ2
Z > 0, CZ = −1). In all three cases above, σ2

diag

increases linearly in time. The error can be made bounded by introducing a
landmark. By Theorem 3, with a landmark, the stable state localization error is

given by σ2
diag (∞) � σ2

0

2Mpl
+

2σ2
0

p + 1
2σ

2
Z . Whenever a robot sense the landmark,

some localization error is removed from P̄t. The amount of error removed is

A “Thermodynamic” Approach to Multi-robot Cooperative Localization 201

0 2000 4000 6000 8000 10000
0

0.5

1

1.5

2

t

σ di
ag

2

σ
Z
2 = 0

σ
Z
2 = 0.2, C

Z
 = 0

σ
Z
2 = 0.2, C

Z
 = −1

with landmark

(a) σ2
diag

0 2000 4000 6000 8000 10000

0.6

0.8

1

1.2

1.4

1.6

t

E
(|

e|
)

σ
Z
2 = 0

σ
Z
2 = 0.2, C

Z
 = 0

σ
Z
2 = 0.2, C

Z
 = −1

with landmark

(b) E[|e|] averaged over 50 runs.

Fig. 1. Comparison of the four cases on a torus. The solid lines are the theoretical
predictions and the markers are the simulation results.

proportional to the localization error of the robot. Therefore, as P̄t contains
more error, more error will be removed each time a robot sense the landmark.
Since error is accumulated at a constant rate, the process converges to a steady
state in which the error accumulation rate equals the error removal rate.

Extensive simulations were performed in order to validate the above presented
analytical results. The following parameters were computed from experimental
data: σ2

diag (t) =
1
M

∑M
i=1 [Pt]ii and E [e (t)] = 1

M

∑M
i=1

√
x̃2
i (t) + ỹ2i (t) i.e. σ

2
diag

is the variance of the localization error averaged over the robots and E [e] is the
localization error averaged over the robots. Observe Figure 1 for a comparison
between the four cases discussed above. The values of σ2

diag, measured in a single
run for each of the cases are presented in Figure 1a. The experiments show that
the predictions of σ2

diag are accurate for all cases. This is expected since RBW
is indeed WMMP on the torus, as shown in [2]. The average error was found
to be very noisy for a single run. Hence the mean of the average error over 50

0 5000 10000
0

0.5

1

1.5

t

σ di
ag

(a) Torus

0 5000 10000
0

0.5

1

1.5

t

σ di
ag

(b) Box

0 5000 10000
0

0.5

1

1.5

t

σ di
ag

(c) Ring

0 5000 10000
0

0.5

1

1.5

t

σ di
ag

(d) 9-rooms

Fig. 2. σ2
diag for a single run in every environment. The solid lines are the theoretical

predictions and the markers are the simulation results.

202 Y. Elor and A.M. Bruckstein

runs is presented in Figure 1b. It can be observed that the expected error is also
predicted well.

The simulations have shown that the predictions are accurate when the envi-
ronment is a torus. We have experimented with several additional environments.
Sketches of the environments can be found in [2]. Experiment results for a single
run in every environment are presented in Figure 2. For all tested environment,
the growth rate of σ2

diag was predicted well but the constant component was
found to be higher then expected. Recall that this gap is the result of the time
required to average the error over the robots and is given by 2σ2

0/Mp+ 1
2σ

2
Z (for

case 3). On the torus, the robots travel freely hence at every time step there is
a probability of Mp to meet a “fresh” robot i.e. a robot with relatively low co-
variance. In other words, on the torus, RBW is WMMP. On the contrary, when
the environment is fragmented, there is a higher probability to meet a “dirty”
robot i.e. a robot with high shared covariance due to a recent meeting. Putting
it another way, RBW is less WMMP. Meeting a “fresh” robot reduces the local-
ization error much more efficiently that meeting a “dirty” one. Hence the error
spreads less efficiently and the gap between σ2

diag and the optimal Kalman filter
is larger than predicted.

5 Relation to Previous Work

Due to space limitations, only the most relevant work is presented here, for
a wider survey, see [1] and the TR [2]. About ten years ago, Sanderson[7] pro-
posed a cooperative localization mechanism based on a central (non-distributed)
Kalman Filter. Roumeliotis and colleagues[5,4] presented a distributed version
of KF in which the computation required to maintain the covariance matrix
is distributed between the robots. However, every meeting between two robots
implies an update of at least 2M components of the covariance matrix. Further-
more, all robots must be aware of every update of the covariance matrix thus
every meeting implies a computation complexity of Θ

(
M2

)
and communication

between all robots.
In distinction from the previous work, in EA, the computation complexity

implied by a meeting is Θ (1) and the only communication required is between
the two meeting robots. Furthermore, since EA is asymptotically optimal, the
benefits of using variants of KF are limited to reducing the constant gap between
EA and the optimum achievable. These benefits diminish when considering long
time scales.

Roumeliotis and Rekleitis were the first to analyze the performance of KF[6].
Later, Mourikis and Roumeliotis [3,4] analyzed KF assuming a fixed RPMG i.e.
every robot averages its location with a fixed set of other robots. By fixing the
RPMG, they have been able to obtain an exact analysis of the localization pro-
cess. They also considered changes of the RPMG, but discuss the system state
after stabilization. The model used by Mourikis and Roumeliotis is more con-
ventional than IEM. Nevertheless, the analysis of both models produces similar
results, see the discussion in [1].

A “Thermodynamic” Approach to Multi-robot Cooperative Localization 203

6 Conclusion

We presented the error averaging (EA) localization scheme inspired by the op-
timal Kalman filter (KF) proposed by Sanderson[7] and Roumeliotis et al.[5].
The idea behind EA is simple: Whenever two robots meet, they average their lo-
cation estimates. While being asymptotically optimal, EA requires considerably
less communication and computation then KF.

While performing EA, during every meeting, the two meeting robots are re-
quired to know their relative location. Noisy relative location measurements were
considered. Generally, these errors increase the localization error. However, we
have shown that in case the relative location measurements of the two robots
agree, the localization error is (almost) unaffected by these errors. A simple av-
eraging process which makes the relative location estimates agree was proposed.
Applying this process prior to EA is highly recommended.

We analyzed the expected localization quality of EA assuming the movement
pattern of the robots is random and well mixing (WMMP) i.e. the probability
of a meeting between any two robots at any time is constant. As an example of
such a movement pattern, we presented the random billiard walk (RBW). Simu-
lations have shown that the analysis is accurate when the environment is a torus.
Hence, RBW is indeed well mixing on the torus. When the environment includes
obstacles, RBW is less WMMP. In that case, the time dependent component of
the error propagation is predicted well however the constant is somewhat higher
than expected.

Acknowledgements. This research was supported by the Technion Goldstein
UAV and Satellite Center.

References

1. Elor, Y., Bruckstein, A.M.: A Thermodynamic Approach to the Analysis of Multi-
robot Cooperative Localization under Independent Errors. In: Dorigo, M., Birattari,
M., Di Caro, G.A., Doursat, R., Engelbrecht, A.P., Floreano, D., Gambardella, L.M.,
Groß, R., Şahin, E., Sayama, H., Stützle, T. (eds.) ANTS 2010. LNCS, vol. 6234,
pp. 36–47. Springer, Heidelberg (2010)

2. Elor, Y., Bruckstein, A.M.: A thermodynamic approach to multi-robot cooperative
localization with noisy sensors. Tech. rep., Computer Science Department, Technion
Haifa, Israel (2012)

3. Mourikis, A., Roumeliotis, S.: Performance analysis of multirobot cooperative local-
ization. IEEE Trans. on Robotics 22(4), 666–681 (2006)

4. Mourikis, A.I., Roumeliotis, S.I.: Predicting the performance of cooperative simul-
taneous localization and mapping. The Int. J. of Robotics Research 25(12) (2006)

5. Roumeliotis, S., Bekey, G.: Distributed multirobot localization. IEEE Trans. on
Robotics and Automation 18(5), 781–795 (2002)

6. Roumeliotis, S.I., Rekleitis, I.M.: Propagation of uncertainty in cooperative multi-
robot localization: Analysis and experimental results. Auton. Robots 17(1) (2004)

7. Sanderson., A.C.: A distributed algorithm for cooperative navigation among multi-
ple mobile robots. Advanced Robotics 12(15), 335–349 (1997)

AcoSeeD: An Ant Colony Optimization

for Finding Optimal Spaced Seeds
in Biological Sequence Search

Dong Do Duc1, Huy Q. Dinh2, Thanh Hai Dang3,
Kris Laukens3,4, and Xuan Huan Hoang5

1 Institute of Information Technology, Vietnam National University, Hanoi, Vietnam
2 Center for Integrative Bioinformatics, Max F Perutz Laboratories,

University of Vienna and Medical University, Vienna, Austria
3 Biomina - Biomedical Informatics Research Center Antwerp, Antwerp University

Hospital / University of Antwerp, Edegem, Belgium
4 Advanced Database Research and Modelling (ADReM),

University of Antwerp, Belgium
5 University of Technology (UET), Vietnam National University, Hanoi, Vietnam

dongdoduc@vnu.edu.vn, huy.dinh@univie.ac.at

Abstract. Similarity search in biological sequence database is one of
the most popular and important bioinformatics tasks. Spaced seeds have
been increasingly used to improve the quality and sensitivity of search-
ing, for example, in seeded alignment methods. Finding optimal spaced
seeds is a NP-hard problem. In this study we introduce an application of
an Ant Colony Optimization (ACO) algorithm to address this problem
in a metaheuristics framework. This method, called AcoSeeD, builds op-
timal spaced seeds in an elegant construction graph that uses the ACO
standard framework with a modified pheromone update. Experimental
results demonstrate that AcoSeeD brings a significant improvement of
sensitivity while demanding the same computational time as other state-
of-the-art methods. We also introduces an alternative way of using local
search that exerts a fast approximation of the objective function in ACO.

1 Introduction

The revolution of sequencing technologies is increasingly yielding a tremendous
number of biological sequences, which are stored in numerous databases (e.g
NCBI gene bank). As a consequence, searching for similarity or local alignments
between biological sequences from large databases is among the most popular
bioinformatics tasks. It is therefore crucial to develop search algorithms that
are highly sensitive and time-efficient. The pioneer work for sequence similarity
search, which has been proposed by Smith and Waterman [10], uses dynamic
programming to generate the exact solution but demands a quadratic running
time. Nevertheless, the current growth of data sets does not allow this class of
methods to work sufficiently efficient in terms of computional time. Heuristic al-
ternatives, such as BLAST [1], have been used instead. Those methods are based

M. Dorigo et al. (Eds.): ANTS 2012, LNCS 7461, pp. 204–211, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

AcoSeeD: Ant Colony Optimization for Spaced Seeds 205

on an approximate match between two biological sequences (namely genes, pro-
teins or even the whole genome) that is called a seed. A seed is a string denoting
the similarity between biological sequences. Seeded-alignment is widely-used in
biological sequence searching applications, recently for example in short-read
mapping and genome assembly algorithms for next-generation sequencing data.
To obtain search results with high sensitivity, the spaced seed finding method
proposed by ([9], [12]) allows for relax matching, thus allows for much more
flexibility in alignments. Related methods such as Mandala [12] and Iedera [8]
were developed and successfully implemented in a number of alignment meth-
ods (e.g BFAST[5], PatternHunter II [9], SHRiMP[2]). To evaluate the quality of
a spaced seed, Li et al. [9] introduced dynamic programming for computing its
sensitivity (i.e the probability of that a seed set matches an alignment) of a given
multiple spaced seeds. Furthermore, Ilie et al. [6] proposed a heuristic approach
called Overlap Complexity (OC) that approximates this sensitivity in polynom-
inal computational time. More recently, the state-of-the-art method for finding
the optimal spaced seed, called SpEED [7], has been introduced. SpEED uses a
popular meta-heuristic method, i.e. hill climbing, together with OC heuristics. It
was demonstrated to improve the sensitivity and running time in comparison to
previous existing methods. In this regard, we propose an application of ACO for
finding multiple spaced seeds. Ant Colony Optimization [4] is a meta-heuristic
technique based on simulating the behaviors of a real ant colony. Our method is
called AcoSeeD and uses an adaption of the MAX-MIN Ant system that allows
an ant colony to travel in a useful construction graph to build spaced seeds.
The experimental results demonstrate that the method outperforms the existing
state-of-the-art method for finding space seeds, namely SpEED, in all configu-
ration settings of test cases given the same number of intermediate solutions.

2 Spaced Seed Optimization Problem

Under the assumption of the Bernoulli model, a random sequence R of length
N consisting of either 0(mismatch) or 1(match) is used to represent a sequence
alignment with a matching probability [1]. A spaced seed s of 1(match) and
∗(match/mismatch) is said to hit R if s can be aligned with R at the 1 position. A
set S of k spaced seeds is said to hit R if at least one of these hits R. For example,
a set of seeds {11 ∗ 1, 1 ∗ 11} can hit the following sequences {100110100001,
1000010110001,1000011110001, 1101001011001}. A spaced seed s is associated
with a weight w, indicating the number of 1 in the string. The problem of finding
multiple spaced seeds is described as follows: Given a matching sequence R of
length N and p being the matching probability between two biological sequences,
find a set of k spaced seeds of weight w that maximize the hit to R. This problem
is NP-hard [9]. It remains valid either in the case of given or unknown seed length.
In this paper, we also present an ACO application to find the corresponding seed
length with respect to the sensitivity.

206 D. Do Duc et al.

3 AcoSeeD: Ant Colony Optimization for Spaced Seeds

3.1 Construction Graph

A construction graph (Fig. 1A)) is defined to have k rectangles of size w×(lmax−
w). Each ant builds k seeds by traveling on each rectangle either up or right (Fig.
1B) from the start node at the coordinate (i, 0, 0) for rectangle i, i = 1 . . . k.
Such a travel corresponds to adding ’1’(right) or ’*’(up) to the current seed. The
process stops when ant i travels to the node (i, w, lengthi −w) where lengthi ≤
lmax is the respective length of seed i. We note that lengthi can be given or found
by another ACO procedure that will be presented later in this paper. Thanks
to its special orientation, it is always guaranteed that the ant colony builds
the seed of weight w (an example in Fig. 1C). The pheromone concentration τ
denotes how likely the ant colony building seed i at coordinate (x, y) by choosing

(C)

Start

)

)

)

End

(A) (B)

Fig. 1. Construction graph and seed building procedure. (A) Construction
graph for building a set of k spaced seeds of length w. (B) The direction of an ant’s
travel path. (C) An example of building spaced seeds of weight 4 and length 7. The
path (RURUURR) of an ant as depicted represents the seeds 1 ∗ 1 ∗ ∗11.

AcoSeeD: Ant Colony Optimization for Spaced Seeds 207

either orientation Up(τ∗, coordinate (x, y+1)) or Right(τ1, coordinate (x+1, y))
(Fig. 1B) probabilistically according to the following probability

P i
(x,y)(v) =

τ ix,y,v
τ ix,y,∗ + τ ix,y,1

, v ∈ {∗, 1} (1)

The pheromone is updated following the adapted MAX-MIN Ant System rule
[11], [3]. In more detail, the path si−best of the i-best ant at which the highest
sensitivity is obtained at current iteration is used for updating the pheromone
in the construction graph as follows

τ ix,y,v ← (1− ρ)τ ix,y,v +Δτ, v ∈ {∗, 1}, Δτ =

{
ρτmax (x, y, v) ∈ si−best

ρτmin otherwise
(2)

3.2 ACO-Based Seed Length Identification

We also apply ACO to identify the optimal length for each seed separately
based on the construction graph described in Fig. 2. Ants choose the next nodes
according to

Pi(l) =
τi,lηi,l∑lmax

h=v τi,hηi,h
, v =

{
lmin i = 1

lengthi−1 i > 1
(3)

Seed 2

Seed 1 Seed

Fig. 2. ACO construction graph for the identification of seed lengths. From
the starting node in the construction graph, each ant chooses one of the following nodes
(1, lmin), (1, lmin + 1), . . . , (1, lmax) as such that the seed 1 has the respective length
lmin, lmin +1, . . . , lmax. Because the seed length is increased, the ant chooses the node
(i, lengthi−1), (i, lmin + 1), . . . , (i, lmax) where i = 2, .., k.

208 D. Do Duc et al.

where τi,l indicates how likely these ants choose as such that the seed i has a
length l. Heuristic information is computed as follows⎧⎪⎨

⎪⎩
0.5 (i > 1)&(l = lengthi−1)

1.0 (i = 1)‖((l > lengthi−1)&(l ≤ lmax − (k − i)))

0.1 otherwise

(4)

Here the seed i with a length equal to the length of seed (i − 1) will be chosen
with the priority of 0.5. The seed with a length larger than the length of its
preceding seed (i.e, (i− 1)) and smaller than lmax − (k− i) (for k− i succeeding
seeds still have chance to be chosen) will be chosen with the priority of 1.0.
Otherwise the priority is 0.1. The pheromone update rule is similarly applied
using the rule described above (see formula 2).

3.3 AcoSeeD Algorithm

Overall, AcoSeeD works as outlined in the following scheme:

Algorithm 1. Pseudo code of the AcoSeeD algorithm

Data: w, k, p,N
Output: The optimal spaced seed sbest set w.r.t the sensitivity

begin
sg−best ← null ; Estimating lmin, lmax;
while stop conditions not satisfied do

foreach i = 1..Nant do
Determine the seed length; {section 3.2}
si ← SolutionConstruction(); {seed built by the ant ith}
si ← LocalSearch(si); {using OC heuristics}
Computing sensitivity for si: F (si) ;

si−best ← argmax(F (s1), F (s2), .., F (sna));
ApplyPheromoneUpdate (si−best);
Update the global best seed sg−best;

Output sg−best;
end

3.4 Local Search Using Overlap Complexity

After each ant completes building a spaced seed, due to the running time of the
original sensitivity computation, the local search exerted in [7] is performed using
an objective function based on the OC heuristic. The OC is an approximation
function for the sensitivity that can speed up the computational time, compared
to the exponential computational time of the dynamic programming algorithm
[9]. Starting from the spaced seed built by the current ant, the local search tries
to swap between 1 and * for each seed without changing its weight to obtain a
new spaced seed with a better approximated sensitivity.

AcoSeeD: Ant Colony Optimization for Spaced Seeds 209

4 Experimental Results

4.1 Datasets

To compare with existing methods including the state-of-the-art method SpEED,
we experimentally evaluated the spaced seed identification based on the parame-
ter settings that were practically used in a number of popular biological sequence
alignment/search programs such as SHRiMP[2], PatternHunter II [9], BFAST[5].
SHRiMP consists of 15 datasets with a small number of seeds (i.e. k = 4) whereas
each of the two others uses 3 datasets with a large set of seeds (k = 10, 16). Pat-
ternHunter II is the largest dataset with a matching pattern of length N = 64
whereas for the two others N = 50. These datasets have a seed weight w ranging
from 10 to 20 and a matching probability p from 0.70 to 0.95.

4.2 Comparison Results

To obtain a fair comparison with the state-of-the-art work [7], we performed
AcoSeeD search forNsolutions = 5000 solutions as done in [7], each was generated
once and was then used in the OC-based local search to improve sensitivity.

Specifically, in total Nants = 50 ants were used for each of Nloops = 100
loops to determine Nsolutions = Nants ∗ Nloops sets of spaced seeds. Hence, the
computational complexity of both two methods are O(Nsolutions∗(ls+o)), where

Table 1. Experimental comparison using the SHRiMP dataset: Results be-
tween AcoSeeD and the existing methods (Mandala [12], Iedera [8], SpEED [7] (in
italic) for a small number of seeds. The column “ACO-best” and “ACO-worst” repre-
sents the AcoSeeD sensitivity for the best and the worst seed, respectively. In addition,
the average AcoSeeD sensitivity value over 10 runs is given in the last column. The
sensitivity of other methods are retrieved from the SpEED paper [7].

w p Mandala Iedera SpEED-best ACO-best ACO-worst ACO-average

SHRiMP: 4 seeds (N = 50)

0.75 90.6608 90.6802 90.9098 90.9757 90.9104 90.9513
10 0.8 97.7316 97.7586 97.8337 97.8584 97.8467 97.8521

0.85 99.7283 99.7437 99.7569 99.7624 99.7599 99.7614

0.75 83.0512 83.2413 83.3793 83.5349 83.4207 83.4728
11 0.8 94.7845 94.935 94.9861 95.0636 95.0144 95.037

0.85 99.1929 99.2189 99.2431 99.2498 99.2451 99.2478

0.8 90.258 90.3934 90.575 90.6576 90.6147 90.6328
12 0.85 98.0786 98.0781 98.1589 98.1786 98.1682 98.1766

0.9 99.8633 99.8773 99.8821 99.8866 99.8845 99.8853

0.85 84.3838 84.5795 84.8212 85.0328 84.915 84.9829
16 0.9 97.3023 97.2806 97.4321 97.483 97.464 97.4712

0.95 99.9287 99.9331 99.9388 99.9429 99.9414 99.9419

0.85 72.1954 72.1695 73.1664 73.3357 73.2432 73.27
18 0.9 93.0855 93.0442 93.712 93.7912 93.7597 93.7778

0.95 99.6603 99.669 99.75 99.7617 99.7575 99.7599

210 D. Do Duc et al.

ls and o are the complexity of the local search and sensitivity computating
procedure as the objective function, respectively. We further set other ACO
parameters for AcoSeeD, being: (1) the pheromone evaporation factor ρ = 0.3,
(2) the upper bound of pheromone trail τmax = 1.0, (3) the lower bound of
pheromone trail τmin = τmax/W where W = 2 ∗w ∗k for the seed length finding
and W = 2 ∗ w ∗ w ∗ k for the seed building process. The difference between
pheromone bounds is thus set proportionally to the number of graph nodes.

Table 1 demonstrates that the performance in terms of sensitivity increases
from 0.007% to 0.134% in all test cases of the SHRiMP dataset. As noted by
Illie et al. (2011) in the SpEED paper [7], a 1% sensitivity improvement is sig-
nificant. This indicates that using a better seed can help bringing in additional
3 billion nucleotides to be mapped for the 100× coverage of the human genome.
The difference between AcoSeeD and SpEED indicates that a significant num-
ber of nucleotides can be additionally added to the information extracted from
the sequencing data. Futhermore, AcoSeeD gained a higher sensitivity for all
10 runs compared to the best result obtained with SpEED. Interestingly, for
all datasets the worst solution (i.e spaced seed) among 10 runs has a higher
sensitivity compared to the best result obtained from SpEED. Fig. 3 shows a
performance comparison in terms of sensitivity between AcoSeeD and SpEED
(both the first and the last run) after running on the PatternHunter II and
BFAST dataset. Even though the SpEED shows good performances from the
first to the last result based on the OC heuristics, AcoSeeD still yields improved
performances compared to SpEED. Our method yielded an improvement of up
to 0.89% for the PatternHunter II dataset and 2.33% for the BFAST. This al-
lows us to conclude that the AcoSeeD approach can significantly boost sequence
alignment mapping for high coverage sequencing of large genomes.

Fig. 3. Experimental performance comparison for large size datasets

AcoSeeD: Ant Colony Optimization for Spaced Seeds 211

5 Conclusions

In this paper, we proposed an ACO-based approach for tackling the problem of
finding spaced seeds for biological sequence searching. Our method, AcoSeeD,
used a construction graph in which each spaced seed is built as a forward-
only path in a separate rectangle graph and integrated the refined MAX-MIN
pheromone update procedure [3]. A flexible and quick local search procedure
based on the Overlap Complexity heuristic is also applied to boost the quality
of the seed. The experimental results and comparisons based on several bench-
mark datasets demonstrate that AcoSeeD outperforms existing methods in terms
of sensitivity without consuming extra computing time.

Acknowledgments. We would like to thank Prof. von Haeseler for the intro-
duction of the spaced seed problem. This work is partially supported by Vietnam
National Foundation for Science & Technology Development (NAFOSTED) and
the TRIG project at University of Engineering and Technology, VNU Hanoi.

References

1. Altschul, S.F., Gish, W., Miller, W., Myers, E.W., Lipman, D.J.: Basic local align-
ment search tool. J. Mol. Biol. 215(3), 403–410 (1990)

2. David, M., Dzamba, M., Lister, D., Ilie, L., Brudno, M.: SHRiMP2: sensitive yet
practical SHort Read Mapping. Bioinformatics 27(7), 1011–1012 (2011)

3. Do Duc, D., Dinh, H.Q., Hoang Xuan, H.: On the Pheromone Update Rules of
Ant Colony Optimization Approaches for the Job Shop Scheduling Problem. In:
Bui, T.D., Ho, T.V., Ha, Q.T. (eds.) PRIMA 2008. LNCS (LNAI), vol. 5357, pp.
153–160. Springer, Heidelberg (2008)

4. Dorigo, M., Stutzle, T.: Ant Colony Optimization. The MIT Press, Cambridge
(2004)

5. Homer, N., Merriman, B., Nelson, S.F.: BFAST: an alignment tool for large scale
genome resequencing. PLoS ONE 4(11), e7767 (2009)

6. Ilie, L., Ilie, S.: Multiple spaced seeds for homology search. Bioinformatics 23(22),
2969–2977 (2007)

7. Ilie, L., Ilie, S., Bigvand, A.M.: SpEED: fast computation of sensitive spaced seeds.
Bioinformatics 27(17), 2433–2434 (2011)

8. Kucherov, G., Noe, L., Roytberg, M.: A unifying framework for seed sensitivity and
its application to subset seeds. J. Bioinform. Comput. Biol. 4(2), 553–569 (2006)

9. Li, M., Ma, B., Kisman, D., Tromp, J.: PatternHunter II: highly sensitive and fast
homology search. Genome Inform. 14, 164–175 (2003)

10. Smith, T.F., Waterman, M.S.: Identification of common molecular subsequences.
J. Mol. Biol. 147(1), 195–197 (1981)

11. Stuetzle, T., Hoos, H.: Max-min ant system. Future Gener. Comp. Sy. 16, 889–914
(2000)

12. Sun, Y., Buhler, J.: Designing multiple simultaneous seeds for DNA similarity
search. J. Comput. Biol. 12(6), 847–861 (2005)

Analysis of Ant-Based Routing

with Wireless Medium Access Control

Rui Fang1, Zequn Huang2, Louis Rossi1, and Chien-Chung Shen2

1 Mathematical Sciences
2 Computer & Information Sciences

University of Delaware, Newark, DE, USA
{ruifang,rossi}@math.udel.edu, {zehuang,cshen}@cis.udel.edu

Abstract. Although ant-based routing protocols have been shown em-
pirically to perform well in multi-hop wireless networks, there lack mathe-
matical frameworks to rigorously characterize their behaviors. The paper
takes the first and a modest step by modeling the cross-layer interaction
between a basic ant-based routing protocol and a realistic medium access
control protocol on a simple topology. The merit of the model is validated
via comparison between the Matlab numerical analysis of equilibrium be-
havior and theQualNet simulation with realistic wireless communications.

1 Introduction

Ant-based routing protocols have been successfully applied to exploit routes in
multi-hop networks [2,3,6,4]. In these protocols, there are a number of protocol
parameters that control the deposition and evaporation of pheromone as well as
the exploratory routing of the ants. However, the mathematical modeling and
analysis of ant-based protocols was limited to wired networks because the models
did not include particular pathological features of wireless networks such as the
hidden terminal problem. In this paper, we present a study using a rigorous model
of the ant-based routing protocol BARP (Basic Ant-based Routing Protocol)
on top of a mathematical model of the wireless medium access control (MAC)
protocol MACA (Multiple Access with Collision Avoidance). Given the intrinsic
complexity of wireless medium access control and its cross-layer interaction with
ant-based routing, we take the first and a modest step by modeling and analyzing
the integrated behavior on a simple six-node topology shown in Figure 3.

2 Related Work and Background

Previous Work. There have been a variety of contributions in the study of
biologically inspired networking algorithms. Yoo, La and Makowski rigorously
studied a simple two router ant-based system with multiple parallel routes [9].
The study rigorously determined the long-time asymptotics for the system. This
work was augmented by Punyaslok and Baras [5] who modeled the arrival times
of data and control packets along parallel routes between two routers. Similar to

M. Dorigo et al. (Eds.): ANTS 2012, LNCS 7461, pp. 212–219, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Analysis of Ant-Based Routing with Wireless Medium Access Control 213

our work, the stochastic problem is mapped to a system of ordinary differential
equations (ODEs). The authors identify stationary states and analyze their sta-
bility. For larger networks, Bean and Costa developed a framework for studying
ant-based systems, connecting equilibrium solutions with Wardrop equilibrium,
a special case of Nash equilibrium, from traffic flow theory [1]. Saleem et al. have
developed mathematical frameworks for the analysis and measurement of colli-
sion probabilities to routing overhead, route optimality and energy consumption
[7]. Along similar lines, Zhahid et al. have developed a mathematical framework
for analyzing beehive based protocols. [10].

MACA MAC Protocol. To address the hidden terminal problem, MACA
adopts virtual carrier sensing to replace physical carrier sensing, where a sender
and a receiver handshake via RTS (Request To Send) and CTS (Clear To Send)
control packets before sending data. After the handshake, the sender can send
its data packet without incurring collisions with neighboring nodes. Although
collisions may occur between RTS packets, MACA can reduce the chance of
collisions between data packets as long as RTS packets are significantly shorter
than data packets. However, data packets can still collide with RTS packets.

BARP Ant-Based Routing Protocol. BARP models a network as a directed
graph. Each link is weighted by pheromone values, which determine how ants
will travel in the network along multi-hop routes. BARP uses two different types
of ants. Ants traveling from source s, seeking route to destination d. are called
“forward ants.” Once a forward ant reaches the destination, it becomes a “back-
ward ant,” and will trace back to the source from the destination, depositing
pheromone along the route it takes. Using pheromone tables on each node, ant-
based routing protocols deploy forward ants to discover possible routes between
pairs of nodes, and optimize routing tables to enhance shorter, desirable routes
via pheromone deposition by backward ants and discard longer, less efficient
routes via evaporation of pheromone.

Analytical Framework for BARP. In our modeling framework, the behaviors
of ant-based routing are characterized by three general rules: route discovery,
route reinforcement (deposition) and route decay (evaporation). By considering
ant-based routing as a dynamic process, we further identify three critical time
increments. The increment h1 is the amount of time between evaporation events
on each node. The increment h2 is the amount of time between deployment
of ants from a source node s. The increment h3 is the time required for an ant
control packet to move from one node to the next. We assume that h1 < h3 < h2.
An ant at node i will move to node j with probability pij

pij = (τij)
β/

∑
h∈Ni

(τih)
β (1)

where τij represents the pheromone values on the link from node i to node j, Ni

is the set of all connected neighbors of nodes i and β is the routing exponent,
which controls whether single-path routes or multi-path routes are selected. The
forward ants then traverse the network following the Markov process according
to a transition matrix P (n)(β) =

[
pij

]
at the nthh3 time step,

214 R. Fang et al.

y(n+1) = y(n)P (n)(β). (2)

Here the kth component of the density vector y(n) is the probability of finding an
ant on the kth node of the network. The routing protocol defines how the matrix
P (n)(β) evolves from one iteration to the next through pheromone deposition
and evaporation.

The behavior of this ant-based routing protocol are elaborated in [8], and in
particular, an analytic model is derived:

τ
(n+1)
ij = (1− h1κ1)

(h2/h1)τ
(n)
ij︸ ︷︷ ︸

evaporation

+ h2κ2

∞∑
k=1

1
kp p̃

sd
ij (k)︸ ︷︷ ︸

deposition

, (3)

where κ1 is an evaporation rate, κ2 is a deposition rate and p̃sdij (k) is the proba-
bility of an ant following a k-hop route from source node s to destination node d
passing through link ij without any cycles. The link undergoes h2/h1 evapora-
tion events between step 1 and step 5, and it is understood that many transitions
of (2) occur for every one transition of (3). Also, the summation is the expected

inverse hop count,
〈

1
Hsd

〉
for a single ant. A stationary state occurs when (2)

and (3) are independent of the time step n and satisfy the system,

Λτij =
∑∞

k=1
1
k p̃

sd
ij (k) (4)

where τij is an equilibrium pheromone distribution and Λ = κ1

κ2
is called pheromone

deposition number. Note that p̃sdij (k) depends upon τij .

3 Stochastic Modeling of BARP with MACA

In Sections 3.1 and 3.2, we first explore the operational details of MACA with
RTS/CTS handshakes and data transmissions. The objective is to understand
how MACA manages packet collision. In particular, we model the behavior of
MACA in both two-sender and three-sender scenarios. In Section 3.3, we inte-
grate the MACA model with the analytical model of BARP.

3.1 Two-Sender Scenario with MACA

We start from a two-sender scenario with following assumptions: (i) senders are
hidden from each other; (ii) senders are synchronized at the beginning; (iii)
RTS and CTS packets have the same size; (iv) no path loss and packet loss
during the propagation. Figure 1 illustrates the topology for the scenario and
the associating MACA timeline: sender 1 randomly chooses a time t1 (e.g. t1=λ1

in the timeline) between 0 and CW to send a RTS packet RTS1 by broadcasting;
after a delay of σ+TD, receiver obtains RTS1, then sends a CTS packet CTS1 by
broadcasting immediately; when the sender receives CTS1 after another delay
of σ + TD, it begins to transmit data packet by broadcasting immediately.

Based on the results of QualNet simulation using realistic communication
models, we make three key observations:

Analysis of Ant-Based Routing with Wireless Medium Access Control 215

Fig. 1. σ denotes the propagation delay; TD denotes the transmission delay; λ1,2,3 are
three critical moments; CW denotes the back-off window size

#1. If one terminal is receiving a packet while another packet arrives, then both
packets will be corrupted.

#2. If one terminal is sending a packet while another packet arrives, then both
packets will be dropped (inward packet is ignored, the signal of outward
packet is weakened).

#3. In the PHY layer, sending has a higher priority than receiving.

Thus, given the second sender also randomly choosing a time t2 (assume t2 > t1
here) between 0 andCW to send a RTS packetRTS2, there are three possibilities:

1) If t2 < λ2 = λ1 + 2TD, RTS2 either collides with RTS1, according to ob-
servation #1, or interrupts the sending of CTS1, based on the observation
#2. No data packet will be sent and both senders will resend RTS packet
following the rules of exponential back-off mechanism (back-off window size
doubles) after a period of RTS timeout.

2) If λ2 < t2 < λ2 + 2σ = λ3, CTS1 will successfully arrive at sender 1 but not
at sender 2 according to the observation #3. Sender 1 then sends the data
packet which will collide with RTS2 provided the size of the data packet �
the size of RTS packet.

3) If t2 > λ3, both senders will successfully receive CTS1. Then sender 2 will
become silence so that sender 1 successfully sends the data packet.

For the case of t2 < t1, by symmetry the analysis is the same. We define the
time that j-th sender sends RTS packets with back-off window size 2n−1CW as

T
(n)
j = (n− 1)T̃ +

∑n
k=1 t

(k)
j , t

(n)
j ∼ U(0, 2n−1CW) i.i.d, t

(0)
j = 0 (5)

where T̃ is the length of RTS timeout.
From the analysis above, we develop a stochastic model for the two-senders

case. Figure 2 shows the directed diagram of states. In particular, the transi-
tion possibilities are given by the aggregating behaviors of the RTS-competing
process. By symmetry we only give the probabilities for node 1. All the other
transition probabilities unlabeled in the figure are equal to 1 because there are
only two senders in this scenario.

216 R. Fang et al.

MACA - Two sources

Two Successes

One Success

RTS Competing

One Fail

One Fail and One Success

S, S

S, C2C2, S S, C3C3, S S, C4C4, S

F, C2

F, S

C2, F

S, F

F, C3C3, F F, C4C4, F

C1, C1

P1,1P2,1

P5,1P4,1

C2, C2
P3,1

P1,2P2,2

P5,2P4,2

C3, C3
P3,2

P1,3P2,3

P5,3P4,3

...
P3,3

Fig. 2. Directed diagram for the Markov chain: S represents the data packet is suc-
cessfully sent. F corresponds to data packet being corrupted, and Ci’s, i = 1, 2, 3, · · ·
mean sender is competing with others (if any) by randomly sending RTS packet
within period of back-off window size 2i−1CW . The states, (s1(t), s2(t)), where s1, s2 ∈
{S, F, C1, C2, C3, · · · }, show the status of (sender1, sender2) at time t.

P1, n = P

(
T

(n)
2 − T

(n)
1 > 2(TD + σ)

∣∣∣∣∣∣T (m)
2 − T

(m)
1

∣∣ < 2TD ,m = 0, 1, 2, · · · , n − 1

)

P3, n = P

(∣∣T (n)
2 − T

(n)
1

∣∣ < 2TD

∣∣∣∣∣∣T (m)
2 − T

(m)
1

∣∣ < 2TD ,m = 0, 1, 2, · · · , n − 1

)

P5, n = P

(
2TD < T

(n)
2 − T

(n)
1 < 2(TD + σ)

∣∣∣∣∣∣T (m)
2 − T

(m)
1

∣∣ < 2TD ,m = 0, 1, 2, · · · , n − 1

)

3.2 Three-Sender Scenario with MACA

We also generalize the mathematical model for MACA to a scenario with three
senders and one receiver. Following the notation in Figure 2, a form of 3-tuple(

s1(t), s2(t), s3(t)
)
, s1, s2, s3 ∈ {S, F,N,C1, C2, C3, · · · }

is used to represent the states of (sender1, sender2, sender3) at time t. Here a new
status ’N ’ is added, which represents that a sender receives other CTS packet
so that it freezes for a specific amount of time. By symmetry, we only consider
sender 1. Theoretically, starting from any state, (Ci1 , Ci2 , Ci3) in one transition
we have six new possible states:

(Ci1+1, Ci2+1, Ci3+1) : No data packets will be sent due to the collision of RTS
packets, or failing to receive a CTS.

(Ci1 , Ci2+1, Ci3+1) : Senders 2 and 3 send RTS packets and fail while sender 1
is still waiting to send.

(S,N,N) : Sender 1 delivers the packet successfully while the other two freeze.
(F,N,Ci3+1) : The RTS packet from sender 3 collides with the data packet from

sender 1 and sender 2 freezes.

Analysis of Ant-Based Routing with Wireless Medium Access Control 217

(F,Ci2+1, N) : The RTS packet from sender 2 collides with the data packet from
sender 1 and sender 3 freezes.

(F,Ci2+1, Ci3+1) : Both RTS packets from sender 2 and 3 collide with the data
packet from sender 1.

Once sender 1 gets to the states ’S’ or ’F ’, we go back to the two-sender case. We
point out that the Markov process of the system with three senders is much more
complicated, and it is unlikely that we will find a regular repeating structure as
in the two-sender case.

3.3 Analysis of BARP with MACA

Given the simple topology in Figure 3, we now integrate MACA protocol into
BARP. Since the maximum neighbors for each node is two, we only consider the
MACA model for the two-sender scenario. Also, we assume that the probability
of a sender successfully sending packet only relates to whether other nodes, in
the communicating range of the receiver, have packets to send. Thus, we define a

new component, y
(n)
D which represents the probability of finding an ant dropped

at the n-th time step in the network, to the original density vector of ants y(n).
Based on the MACA modeling in Section 3.1, if we set the RTS retransmis-

sion limit as L times and let δ be the probability of sender 1 fails to deliver
data packet, then δ ≈

∑L
n=1

∏
i<n(P3, i)(P5, n)+

∏L
i=1(P3, i), P3, 0 := 0. This

approximation is accurate in general when L > 5. The corresponding transition
matrix for the forward ants now becomes

P̄ (n)(β,y(n)) =

((
p
(n)
ij ∗ Sj(y

(n)
l)

))
, Sj(y

n
l) =

{
1− δy

(n)
l , l ∈ Nj , l �= d

1, otherwise.

By the definition of y
(n)
D , we get:

y
(n)
D =

∑
i,j y

(n)
i (1− p

(n)
ij Sj(y

(n)
l)) (6)

For modeling the backward ants and the existence of equilibrium solution, we
add one link from d back to s and one link from D back to s both with transition
probability of 1, that is,

y(n+1)
s = y

(n)
d + y

(n)
D and y(n) · 1+ y

(n)
D = 1 (normalization) (7)

Finally, our stationary solutions for both pheromone and density of ants satisfy
y = y ∗ P̄ (β,y) as well as (4), (6), and (7).

4 Evaluation and Validation

We validate the developed model by comparing the Matlab numerical results of
solving its steady state solution with the QualNet simulation results of executing

218 R. Fang et al.

4

5

6

3

2

1 ds

�����β
path

1→2→3→4→5 1→6→5

0 0.178177
0.137059

0.356880
0.297402

0.5 0.118665
0.117521

0.476191
0.470853

2 0
0

0.714286
0.713762

�
��
β

0 0.5 2

Matlab 3.68 2.92 0.00

Qualnet 5.12 3.01 0.00

Fig. 3. At left, a simple network topology. At center and right, pheromone distribution
and drop rate (×104) comparisons.

MACA and BARP protocols with realistic wireless communications, using the
six-node topology of Figure 3.

By using Matlab’s fsolve subroutine, we compute the steady state solution
for both the pheromone distribution and the ant drop rate. The initial value of
pheromone on each link is 1, and the starting probability density vector of ants
is (1, 0, 0, 0, 0, 0).

The QualNet simulation uses the parameters summarized in Table 1. Along
the two paths (1→2→3→4→5 and 1→6→5) from the source to the destination,
forward ants sent from nodes 4 and 6 will collide at node 5. The source originates
one forward ant every two seconds. In the simulation, after receiving an ant, a
node does not forward the ant until the next integer second. In this way, we
ensure that node 4 and node 6 will compete sending packet to the destination at
exactly the same time, which corresponds to the modeled two-sender scenario.
The proposed analysis only models the behavior of forward ants. Backward ants
trace their steps back to the source through a ‘wired’ interface at each hop to
avoid colliding with forward ants sent wirelessly. We perform Matlab numeri-
cal computation and QualNet simulation with different β values, as they affect
pheromone distribution and ant drop rate.

Both Matlab numerical results and QualNet simulation results of pheromone
distribution (τij on the link from node i to node j) are presented together in
Figure 3 (center). Each entry has the format x

y where x denotes the Matlab result

and y denotes the QualNet result. Figure 3 (right) compares the Matlab and the
QualNet results of ant drop rate with different β values. When β = 0, ants choose
the two paths with equal probability, which then results in more collisions at
the destination. As β increases, ants favor the shorter path 1→6→5 with higher
pheromone concentration, which leads to less collisions at the destination. When
β is 2, all the ants choose the path 1→6→5 with no collisions at the destination.

Table 1. Qualnet (left) and BARP parameters (right) used for simulations

Terrain size 1500×1500 m2

Number of nodes 6
Mobility none
Radio range up to 500 m
PHY protocol 802.11b
Bandwidth 2 Mbps
MAC protocol MACA

Ant interval 2 second
Decay interval 2 second
β 0, 0.5, 2
h1 0.3
k1 1
h2 1
k2 1

Analysis of Ant-Based Routing with Wireless Medium Access Control 219

5 Conclusion

Modeling of ant-based routing in the context of multi-hop wireless networks is
challenged by the intrinsic complexity of wireless medium access control (such
as the hidden terminal problem) and its cross-layer interaction. Leveraging our
previous work of modeling and analyzing ant-based routing protocols on wired
networks, this paper investigates the integration of such model with a mathemat-
ical model of a practical wireless medium access control protocol. Comparable
results from the numerical analysis of the equilibrium solution to the integration
model and the QualNet simulation with realistic protocol models and wireless
communications validate the efforts.

Acknowledgments. The work is supported by Army SBIR Contract
#W911QX-09-C-0076.

References

1. Bean, N., Costa, A.: An analytic modelling approach for network routing algo-
rithms that use “ant-like” mobile agents. Comp. Networks 49(2), 243–268 (2005)

2. Di Caro, G., Dorigo, M.: AntNet: Distributed Stigmergetic Control for Communi-
cations Networks. Journal of Artificial Intelligence Research 9, 317–365 (1998)

3. Di Caro, G., Ducatelle, F., Gambardella, L.: AntHocNet: An Adaptive Nature-
Inspired Algorithm for Routing in Mobile Ad Hoc Networks. European Transac-
tions on Telecommunications, Special Issue on Self-organization in Mobile Net-
working 16(5), 443–455 (2005)

4. Ducatelle, F., Di Caro, G., Gambardella, L.: Principles and applications of swarm
intelligence for adaptive routing in telecommunications networks. Swarm Intelli-
gence 4(3), 173–198 (2010)

5. Purkayastha, P., Baras, J.S.: Convergence results for ant routing algorithms via
stochastic approximation and optimization. In: Proceedings of the 46th IEEE Con-
ference on Decision and Control, pp. 340–345. IEEE, Piscataway (2007)

6. Rajagopalan, S., Shen, C.C.: ANSI: A Swarm Intelligence-based Unicast Routing
Protocol for Hybrid Ad hoc Networks. Journal of System Architecture, Special
issue on Nature Inspired Applied Systems 52(8-9), 485–504 (2006)

7. Saleem, M., Khayam, S., Farooq, M.: A formal performance modeling framework
for bio-inspired ad hoc routing protocols. In: ACM Genetic and Evolutionary Com-
putation Conference (GECCO), pp. 103–110. ACM, New York (2008)

8. Torres, C.E., Rossi, L.F., Keffer, J., Li, K., Shen, C.C.: Modeling, analysis and
simulation of ant-based network routing protocols. Swarm Intelligence 4(3), 221–
244 (2010), http://www.springerlink.com/index/10.1007/s11721-010-0043-7

9. Yoo, J.H., La, R.J., Makowski, A.M.: Convergence results for ant routing. In: Conf.
Info. Sci. and Systems. IEEE, Piscataway (2004)

10. Zahid, S., Shahzad, M., Ali, S., Farooq, M.: A comprehensive formal framework
for analyzing the behavior of nature-inspired routing protocols. In: IEEE Congress
on Evolutionary Computation, CEC 2007, pp. 180–187. IEEE, Piscataway (2007)

http://www.springerlink.com/index/10.1007/s11721-010-0043-7

Ant-Based Approaches

for Solving Autocorrelation Problems

Ilias S. Kotsireas1, Konstantinos E. Parsopoulos2,
Grigoris S. Piperagkas2, and Michael N. Vrahatis3

1 Department of Physics and Computer Science, Wilfrid Laurier University,
Waterloo, Canada
ikotsire@wlu.ca

2 Department of Computer Science, University of Ioannina, Greece
{kostasp,gpiperag}@cs.uoi.gr

3 Department of Mathematics, University of Patras, Greece
vrahatis@math.upatras.gr

Abstract. We propose two ant–based formulations for solving autocor-
relation problems. The formulations are combined with different ACO
variants. Preliminary experiments of the derived approaches are con-
ducted on two hard instances of the problem. Their performance is com-
pared to an efficient Tabu Search algorithm, offering useful conclusions
and motivation for further investigation.

1 Introduction

Several difficult combinatorial problems can be defined in a succinct way via
the concepts of periodic and non–periodic autocorrelation functions (PAF and
NPAF, respectively) associated with a finite binary or ternary sequence. Vari-
ous metaheuristics have been previously employed in the search for solutions of
similar combinatorial problems, with varying degrees of success.

The present paper aims at triggering the interest of the Ant Colony Opti-
mization (ACO) research community in solving such combinatorial problems
through ant–based approaches. For this purpose, we propose two ant–based for-
mulations. To the best of our knowledge, this is the first attempt of formulating
such problems in the specific algorithmic framework. As case study, we use our
formulations to find Hadamard matrices with two circulant cores, a problem that
can be defined via the PAF associated to two binary sequences. Nevertheless,
the proposed ant–based formulations can be applied with minor modifications
to any combinatorial problem defined via PAF and NPAF.

The sequences that arise as solutions to these problems are useful in a wide va-
riety of applications, ranging from code–division multiple–access (CDMA) com-
munication systems to pulse compression of radar signals. The reader is referred
to [6] and [8] for further details and application areas. Additional applications in
Coding Theory can be found in [3]. The rest of the paper is organized as follows:
Section 2 offers brief descriptions of the problems while Section 3 introduces our
ant–based formulations. Experimental results are presented in Section 4. The
paper concludes with Section 5.

M. Dorigo et al. (Eds.): ANTS 2012, LNCS 7461, pp. 220–227, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Ant-Based Approaches for Solving Autocorrelation Problems 221

2 Autocorrelation Problems

Let n be an odd positive integer. A finite sequence of length n with elements from
the alphabet {−1,+1} is called a binary sequence. Similarly, a finite sequence
of length n with elements from the alphabet {−1, 0,+1} is called a ternary
sequence. The PAF associated to a finite sequence a = (a1, . . . , an) of length n,
is a sequence (PAF(a, 0),PAF(a, 1), . . . ,PAF(a, n− 1)), also of length n where,

PAF(a, s) =

n∑
i=1

aiai+s, s = 0, 1, . . . , n− 1. (1)

The quantity i+s is taken modulo n whenever i+s > n. On the other hand, the
NPAF associated to the finite sequence a is defined as (NPAF(a, 0),NPAF(a, 1),
. . . ,NPAF(a, n− 1)) where,

NPAF(a, s) =

n−s∑
i=1

aiai+s, s = 0, 1, . . . , n− 1. (2)

Chapter 7 of [3] contains a comprehensive description of the properties of the
two autocorrelation functions defined above.

Given two finite (binary or ternary) sequences a and b of length n, we can
request that their respective PAF or NPAF values (with the exception of the
value at s = 0) add up to a constant, i.e.:

PAF(a, s) + PAF(b, s) = cPAF, NPAF(a, s) +NPAF(b, s) = cNPAF, (3)

where s = 1, 2, . . . , n − 1. In general, sequences that satisfy these requirements
are called complementary. When the values of the constants cPAF and cNPAF are
small, i.e., less than 2 in absolute value, such sequences are said to exhibit low
(auto)correlation and they have important engineering applications [6].

There are some particularly important cases of combinatorial problems that
can be defined via the aforementioned setup. In our work, we focused on the case
of binary sequences with cPAF = −2, which are related to Hadamard matrices
with two circulant cores or equivalently to Generalized Legendre pairs [5]. The
solution sequences of the aforementioned problems are also subject to Diophan-
tine Equations (DEs) that shall be satisfied by the solutions. For instance, in
our case study the corresponding DE is:

sa2 + sb2 = 1, (4)

where sa = a1 + · · ·+ an and sb = b1 + · · ·+ bn. Equation (4) has four solutions,
up to sign. In our study we focus on the case where sa = 1 and sb = 1.

3 Proposed Ant–Based Approaches

In the following paragraphs, we introduce two different formulations of autocor-
relation problems within the framework of ant–based algorithms.

222 I.S. Kotsireas et al.

3.1 Approach Based on Binary Ants

Let n be the length (positive odd integer) of each one of the two sequences and
let N = 2n. Then, a candidate solution has the following form:

x =

⎛
⎜⎝x1, x2, . . . , xn︸ ︷︷ ︸

sequence a

, xn+1, xn+2, . . . , xN︸ ︷︷ ︸
sequence b

⎞
⎟⎠

�

. (5)

The corresponding optimization problem is N–dimensional and it is defined as
the minimization of the objective function:

F (x) =

∣∣∣∣∣
n∑

i=1

ai − 1

∣∣∣∣∣+
∣∣∣∣∣

n∑
i=1

bi − 1

∣∣∣∣∣+
(n−1)/2∑

s=1

∣∣∣PAF(a, s) + PAF(b, s) + 2
∣∣∣, (6)

where PAF(a, s) and PAF(b, s) are defined according to Eq. (1). In order to put
the problem in the ACO framework we shall define a table of pheromones, i.e.,
weights for the possible component values of a candidate solution. The proba-
bilities of selecting −1 or +1 for the component xi of a new candidate solution
x, are defined as follows:

pi,(−) =
wα

i,(−)η
β
i,(−)

wα
i,(−)η

β
i,(−) + wα

i,(+)η
β
i,(+)

, pi,(+) =
wα

i,(+)η
β
i,(+)

wα
i,(−)η

β
i,(−) + wα

i,(+)η
β
i,(+)

, (7)

where wi,(−), wi,(+), are the corresponding pheromone levels (weights) for the
values −1 and +1; α and β are user–defined parameters controlling the strength
of each term; and η is a function of desirability of the corresponding component,
i.e., it defines its significance in the solution vector.

The value of the component xi is determined by drawing a uniformly dis-
tributed random number, i.e., xi = −1, if rand() < pi,(−), otherwise xi = +1.
The same selection procedure is independently applied for all components. In-
stead of one, K ants can be used to construct K candidate solutions at each
iteration. We will call this set the colony in our approach. Nevertheless, the
construction procedure is identical for all ants.

If t denotes the iteration number, the colony can be denoted as S(t) ={
x
(t)
1 ,x

(t)
2 , . . . ,x

(t)
K

}
with x

(t)
i =

(
x
(t)
1,i, x

(t)
2,i, . . . , x

(t)
N,i

)�
, i = 1, 2, . . . ,K. After

generating the K candidate solutions of the t–th iteration, their evaluation with
the objective function F (x) of Eq. (6) takes place and the pheromones are up-
dated as follows:

w
(t+1)
i,j = (1− ρ)w

(t)
i,j +Δw

(t)
i,j,k, j ∈ {−1,+1}, i = 1, 2, . . . ,K, (8)

where Δw
(t)
i,j,k = V

(t)
k , if x

(t)
k,i = j; otherwise Δw

(t)
i,j,k = 0, k = 1, 2, . . . , N . The

increment V
(t)
k can be either fixed for all ants or inversely proportional to the

objective value of each contributing ant, i.e., V
(t)
k = 1/F (x

(t)
i) or V

(t)
k = Q.

Ant-Based Approaches for Solving Autocorrelation Problems 223

Different ant–based algorithms are distinguished by considering different
groups of contributing ants. In Ant Colony Optimization [1] (ACO) only new
ants produced at each iteration contribute to the pheromone update. In Elitist
Ant System [4] (EAS), in addition to the currently constructed ants, also the
overall best ant contributes to the pheromones. In the Max–Min Ant System [7]
(MMAS) scheme the pheromones are bounded within a range [wmin, wmax] and
initialized to their maximum values. Also, they are re–initialized to their max-
imum value whenever stagnation is detected. In contrast to the previous vari-
ants, only the best ant of the current iteration or the overall best ant deposits
pheromones (we considered only the latter case).

These three popular variants were also considered in our experiments with
two minor modifications. Specifically, we adopted a fixed lower bound for the
pheromones in all variants (not only for MMAS). This decision aimed at avoid-
ing the actual elimination of component values with very small pheromones in
the selection procedure. Also, the algorithm was restarted whenever there was
no improvement of the overall best solution for a predefined number of function
evaluations. This number was defined as a fraction of the maximum available
computational budget. Apart from these modifications, some additional alter-
ations proved to enhance the algorithm’s performance and they are described in
the following section.

3.2 Performance Enhancing

The construction of candidate solutions can be modified to ensure that the pro-
duced solutions will be feasible with respect to the DEs, i.e., the sums of their
components will be equal to 1 for both their sequences. Specifically, each sequence
has length n and constitutes of values in {−1,+1}. Hence, we can build a candi-
date solution by determining its components in pairs of complementary values,
i.e., if one component receives −1 then another randomly selected component
automatically receives +1. At the end, there will be one remaining component
that is set directly to +1. Thus, −1 appears in (n− 1)/2 components while +1
appears in (n+ 1)/2 components.

This procedure produces candidate solutions that, by construction, satisfy
the DEs. Therefore, the first two terms terms in the objective function can be
dropped, resulting in the following form:

F (x) =

(n−1)/2∑
s=1

∣∣∣PAF(a, s) + PAF(b, s) + 2
∣∣∣, (9)

that replaces the one defined in Eq. (6). The performance of the algorithm can
be further enhanced by incorporating local search. We adopted the procedure
used in [2] within the framework of a very efficient Tabu Search approach.

3.3 Approach Based on Components Permutation

An alternative ant–based approach, yet closer to the general principles of the
original ACO algorithms, is based on the formulation of the problem as a search

224 I.S. Kotsireas et al.

procedure for the best permutation of components. More specifically, we can
define a candidate solution as a permutation of solution components indices:

x =

⎛
⎜⎝ ca1 , ca2 , . . . , can︸ ︷︷ ︸

permutation for seq. a

, cb1 , cb2 , . . . , cbn︸ ︷︷ ︸
permutation for seq. b

⎞
⎟⎠

�

, (10)

where caj = i, i ∈ {1, . . . , n}, denotes that the i–th component of the actual (bi-
nary) sequence a possesses the j–th position in the specific permutation defined
by x. Then, we build a binary vector by translating x, assuming that compo-
nents that appear in the first (n+1)/2 positions of the permutation are assigned
the value +1, while the rest are assigned the value −1, i.e.:

yx =

⎛
⎜⎝a1, a2, . . . , an︸ ︷︷ ︸

sequence a

, b1, b2, . . . , bn︸ ︷︷ ︸
sequence b

⎞
⎟⎠

�

, ai, bi ∈ {−1,+1}, i = 1, 2, . . . , n.

(11)
where ai (resp. bi) = +1, if caj (resp. c

b
j) = i for j such that 1 � j � (n + 1)/2;

otherwise ai (resp. bi) = −1. Apparently, this permutation–based representation
of the ants requires also different pheromone table representation than that of
Section 3.1. Indeed, a pheromone entry wa

i,j for sequence a defines the weight
(pheromone level) for the case where component index j appears immediately
after index i in the permutation of sequence a of a candidate solution. The
corresponding quantities are defined by weights wb

i,j for sequence b.
The objective value of the ant x is defined through its corresponding binary

translation yx, i.e., F (x) = F (yx). Since, by definition, the DEs hold for the
produced translated vectors yx, we can use the objective function defined in
Eq. (9) instead of Eq. (6). The same ant–based variants along with all modifica-
tions and performance enhancing techniques mentioned in the previous section,
were also used with this formulation.

4 Experimental Results

We report indicative experimental results for the ant–based approaches defined
in the previous sections for PAF problems of length n = 29 and 39. We shall
mention that n = 77 is the smallest value for which this is an open problem.
Henceforth, we will denote as “Bin” the approach based on binary ants and
“Per” the one based on permutations. The basic ACO algorithm will be denoted
as “A”, the EAS as “B” and the MMAS as “C”. Finally, the fixed pheromone
increment approach will be denoted as “a”, while the proportional one as “b”.

Regarding the parameter setting, the maximum function evaluations was
fevmax = 200× 106, while the maximum evaluations for restart (if no improve-
ment) was R = fevmax/5. The pheromone scaling factor of Eq. (8) was ρ = 0.1
and the fixed pheromone increment was set to Q = 0.001. The pheromones were
bounded in the range [0.01, 1.0], while the parameters η, α and β in Eq. (7) were

Ant-Based Approaches for Solving Autocorrelation Problems 225

(a) (b)

(c) (d)

Fig. 1. Success percentages per problem and swarm size

all set to 1. Finally, two numbers of ants were considered, namely 5 and 30. The
number of experiments conducted per approach was 20. Each experiment was
terminated as soon as a global minimizer was found or the available computa-
tional budget was exceeded. An experiment was considered as successful only if
an optimal solution was detected.

In order to provide a measure of performance for the proposed ant–based ap-
proaches, we performed the same number of independent experiments also for
the TS approach proposed in [2] for the same computational budget. For com-
parison purposes, we also conducted Wilcoxon rank–sum tests for each pair of
algorithms per problem and swarm size, and we recorded the number of favorable
(denoted with “+”), unfavorable (denoted with “-”) and neutral (denoted with
“=”) comparisons for 95% significance level. However, we shall underline that
no effort was paid in fine–tuning the ant–based approaches in the comparisons,
because a thorough comparison among the different methodologies was out of
the scope of the present paper. Thus, we used the TS performance mostly as a
reference point for a preliminary assessment of the proposed methods.

The results are graphically illustrated in Figs. 1 and 2. Specifically, Fig. 1
illustrates the success percentage of each algorithm per problem and swarm size,
i.e., the percentage of experiments where it managed to detect a global optimizer
within the available computational budget. The bars refer to the Bin and Per
ant–based approaches, while the corresponding TS performance for the same
experimental setting is depicted as a horizontal line. On the other hand, each bar

226 I.S. Kotsireas et al.

(a) (b)

(c) (d)

Fig. 2. Statistical comparison tests among the algorithms

in Fig. 2 illustrates the percentage of positive, negative and equal comparisons
of the corresponding approach with the rest of the algorithms.

A close inspection of the results offers intuition on the algorithms’ perfor-
mance. Regarding the success percentages of the algorithms, as we see in Fig. 1,
all approaches were completely successful for the case of sequence length n = 29.
However, the picture radically changes for the (much harder) problem of n = 39.
The performance of all algorithms, including TS, plunges by at least 40%. More-
over, the ant–based approaches exhibit also different behavior with respect to
the swarm size. For the case of K = 5 ants, the Bin approaches have superior
performance than Per for the 4 out of 6 variants, as depicted in Fig. 1(c). Yet,
the Per approaches outperformed Bin for the A–a (ACO with fixed pheromone
increments) and B–b (EAS with proportional increments) cases. Increasing the
swarm size to K = 30, significantly improves the performance of Per approaches,
especially for the C variant (MMAS). Also, Per remains better than Bin for A–a
and B–b. However, even the Bin approaches achieve better performance in 3 out
of 6 variants, compared to the 5 ants case. Thus, the first impression is that
higher swarm size can rise the probability of successful experiments.

Inspecting Fig. 2, we can verify that the case n = 29 can be efficiently solved
by all algorithms. In most cases, the algorithms exhibit statistically insignificant
differences in performance but outperformed by TS in almost 60% of the cases.
Again, increasing swarm size seems to produce essentially identical performance
among ant–based approaches. However, the picture becomes more complicated

Ant-Based Approaches for Solving Autocorrelation Problems 227

in the n = 39 case. In this cases, the approaches with fixed pheromone incre-
ments have a clear increasing trend of positive comparisons for ACO and EAS.
On the other hand, some of the approaches with proportional increments seem
to loose part of their efficiency, especially for Bin. This behavior can be ascribed
to the faster biasing towards the best performing ants offered due to the propor-
tional increments, in combination with the higher dimensionality and degree of
difficulty.

5 Conclusions

We presented two different ant–based formulations for tackling autocorrelation
problems. Various combinations with different ACO–based approaches were con-
sidered and tested on two problems of different dimensionality and degree of
difficulty. The proposed approaches were compared against a specialized TS
approach with verified efficiency. The results are promising, offering space for
further improvement by proper fine–tuning of the ant–based approaches. Also,
they reveal that swarm size can play a role in the algorithms’ performance pro-
files. However, the exact tendency of each approach remains to be investigated
in depth. This will be the main subject of our future work.

References

1. Bonabeau, E., Dorigo, M., Théraulaz, G.: Swarm Intelligence: From Natural to
Artificial Systems. Oxford University Press, New York (1999)

2. Chiarandini, M., Kotsireas, I.S., Koukouvinos, C., Paquete, L.: Heuristic algorithms
for Hadamard matrices with two circulant cores. Th. Com. Sc. 407, 274–277 (2008)

3. Colbourn, C.J., Dinitz, J.H. (eds.): Handbook of combinatorial designs. Discrete
Mathematics and its Applications. Chapman & Hall/CRC, Boca Raton (2007)

4. Dorigo, M., Maniezzo, V., Colorni, A.: Ant system: Optimization by a colony of
cooperating agents. IEEE Trans. SMC – Part B 26(1), 29–41 (1996)

5. Fletcher, R.J., Gysin, M., Seberry, J.: Application of the discrete Fourier transform
to the search for generalised Legendre pairs and Hadamard matrices. Australas. J.
Combin. 23, 75–86 (2001)

6. Golomb, S.W., Gong, G.: Signal design for good correlation. Cambridge University
Press, Cambridge (2005)

7. Stützle, T., Hoos, H.H.: Max–min ant system. Future Generation Computer Sys-
tems 16, 889–914 (2000)

8. Tran, L.C., Wysocki, T.A., Mertins, A., Seberry, J.: Complex Orthogonal Space-
Time Processing in Wireless Communications. Springer (2006)

Collision-Induced “Priority Rule” Governs

Efficiency of Pheromone-Communicating
Swarm Robots

Ryusuke Fujisawa1, Shigeto Dobata2, Yuuta Sasaki1,
Riku Takisawa1, and Fumitoshi Matsuno3

1 Hachinohe Institute of Technology, Aomori, Japan
swarm.ant@gmail.com

2 University of the Ryukyus, Okinawa, Japan
dobatan@gmail.com

3 Kyoto University, Kyoto, Japan
matsuno@me.kyoto-u.ac.jp

Abstract. The recruiting system in foraging ant colonies is a typical
example of swarm intelligence. The system is underpinned by the use
of volatile pheromones which form a trail connecting from nest to food.
We have incorporated this property into the behavior of the swarm of
real robots. Because the trail is narrow, avoiding overcrowding on the
trail, as well as in the environment, is a critical issue in maintaining
efficiency of the swarm behavior. In this paper, we studied how “prior-
ity rule,h a behavioral rule under which a robot is given priority over
the other robot in collision, affect the group-foraging performance of
pheromone-mediated swarm robots. Using real robot experiments, we
found that the alteration in the priority rules can have substantial effects
on the group-foraging performance. Our results highlight the importance
of implementing “fine-tuningh algorithms to improve the performance of
complex swarm systems.

1 Introduction

1.1 Swarm and Pheromone Communication in Ants

We define the term “swarmh as a distributed autonomous system, in which
each individual acts autonomously only according to local information in the
given environment without any global information [1]. A global-level behaviour
of the swarm emerges through frequent local interactions among individuals. This
emergence has two remarkable properties: robustness through which a swarm can
adapt to changes in its internal states, and flexibility through which it can adapt
to changes in its external states (e.g., the environment) [2].

Individuals of social insects communicate with one another to form a swarm,
known as a colony. Among others, ants and termites are known to form es-
pecially complex societies, and their formation is often facilitated by using
pheromones [3].

M. Dorigo et al. (Eds.): ANTS 2012, LNCS 7461, pp. 228–235, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

“Priority Rule” Governs Efficiency of Swarm Robots 229

A pheromone is a chemical or set of chemicals produced by a living organism
that transmits information to other members of the same species [3]. In this
paper, we focus on foraging behaviour of ants using a pheromone. When an ant
finds food and brings it back to the nest, it secretes a pheromone that forms a
trail. Other ants trace the pheromone trail and can reach the food. An ant stops
to lay down the pheromone trail when it cannot find the food. Consequently,
the pheromone trail volatilizes (or diffuses) into the environment, making the
previous information meaningless to the ants. The algorithm of this indirect
recruiting system is a simple but advanced communication method. Indeed, “Ant
Colony Optimization” [4] was inspired by the above-explained mechanism.

1.2 Related Studies

In swarm robotics, several studies using real or virtual pheromones have been
reported previously. Sugawara et al. [5] and Garnier et al. [6] achieved the forag-
ing behaviour of ants using a swarm of robots and a virtual pheromone (with a
projector and screen). These studies represented a well-conceived measurement
system. Pheromone diffusion is an important factor in real pheromone studies,
and implementing it is a very difficult problem. To adjust the duration of the
pheromone signal, the pheromone should be, for example, mixed with other sub-
stance(s) to change concentration of the pheromone. In addition, there are few
high-performance chemical sensors available; these difficulties have led the re-
searchers to use a virtual pheromone. Shimoyama et al. [7] achieved pheromone
tracking behaviour using a “chimeric” system implementing real insect anten-
nae and pheromone, but they did not consider swarm behaviour, and the use
of biomaterials is usually difficult for swarm robotics. Purnamadjaja et al. [8]
studied swarm robots that communicate using two real chemical substances. The
latter regulates a gas sensor in a refined way. However, only one robot secretes
the pheromone, so this system allows for only one-sided communication. In the
previous study, we focused on the effect of concentration of the pheromone on
the performance of group-foraging [9].

1.3 Priority on the Pheromone Trail

A critical issue in managing the swarm system is how to control for overcrowding.
The negative impact of overcrowding on swarm performance becomes crucial
especially in a larger swarm size (Kriger et. al [10]), even though direct and
thus potentially damaging collision itself could be avoided in some way (e.g.
[11]). In real ant colonies, the existence of priority rules like the one in the
present study has been demonstrated ([12, 13, 14]). Also in ants, the priority
rules are induced when two ants collide; such a situation most likely occurs on
the pheromone trail. Moreover, some studies showed experimentally that the
rule contributes to efficient transportation ([13, 14]). These findings suggest
that a “fine-tuning” of the trail-foraging system have played a crucial role in the
adaptive evolution of the ant colony systems. Implementing similar condition-
dependent fine-tuning may sometimes improve the performance of robot swarm,

230 R. Fujisawa et al.

as well as the swarm algorithm itself. Although collision-avoiding algorithms are
routinely implemented in swarm robotics, to our knowledge, previous studies
have not assessed directly how they could contribute to the group performance.
In this experimental study, we implemented collision-induced “priority rules” in
our trail pheromone-based robot swarm and assessed the effects of the alteration
in the rules on the group-foraging performance.

2 Swarm Behaviour Algorithm

2.1 Basic Algorithm

S3

E3

S2

E2

S1

E1

Collision

Processing [3]

Collision

Processing [1]

Collision

Processing [2]

P1

P1

P2

P3 P4

P5

P6

P5

P6

P5

P6

Pj
Percptual cue [j = 1, …, 6]
and direction of state transition

:

S3

E3

S2

E2

S1

E1

Collision

Processing [3]

Collision

Processing [1]

Collision

Processing [2]

P1

P1

P2

P3 P4

P5

P6

P5

P6

P5

P6

Pj
Percptual cue [j = 1, …, 6]
and direction of state transition

:

Fig. 1. State transition rule for swarm be-
haviour

We assumed a finite experimental field
with only agents, a food and a nest.
The task of the swarm is to find
a food in the field, just like forag-
ing ant colonies. To accomplish this
task, an agent can attract other agents
indirectly using a pheromone secre-
tion. We used the swarm behaviour
algorithm for group foraging using
pheromone communication [9], which
is described as a deterministic finite
automaton. The algorithm shown in
Fig. 1 can read as follows: We de-
fined the following three states Si(i =
1, 2, 3), six perceptual cues (stimuli)
Pj(j = 1, · · · , 6) and three effector cues
(actions) Ek(k = 1, 2, 3). The agent whose state is Si selects the action Ek

(i = k). If the agent in state Si detects the perceptual cue Pj , the state of the
agent transits to Sk (Fig. 1). The details of Si, Pj , and Ek are as follows. Si:
S1, Search (Agent does not have any information of the food); S2, Attraction
(Agent has the location information of the food); S3, Tracking (Agent has only
the direction information of the location of the food). Pj : P1, Contact with food;
P2, Arrival at nest; P3, Presence of pheromone; P4, Timeout; P5, Collision with
object; P6, Completion of collision processing. Ek: E1, Random walk; E2, Secrete
pheromone along the nest direction; E3, Follow the pheromone path toward the
food. We assumed that all agents can detect the direction of the nest, which we
feel is a reasonable assumption.

2.2 Collision Processing and “Priority Rules”

We propose the following interaction rules. When colliding, an robot is designed
to take one of the following two reactions, “Stay” and “Back”, according to its
current internal states(Si) that are perceived by the robot itself. During the re-
action “Stay”, the robot stops moving for a given time (1[sec]) and then regains

“Priority Rule” Governs Efficiency of Swarm Robots 231

Table 1. Description of the “priority rules”

Patterns BSB BBS BBB SBB SBS SSB BSS SSS

S1 Back Back Back Stop Stop Stop Back Stop

S2 Stop Back Back Back Back Stop Stop Stop

S3 Back Stop Back Back Stop Back Stop Stop

Actions after collision are described. “Backh means disengagement from collision point,
keeping the head in the same direction as before. “Stayh means temporary stop. See
the main text for details.

the same internal state as it took when colliding. During the reaction “Back”,
the robot moves directly backward (10[cm]) from its position, and then regains
the same internal state. This behavior was originally implemented to avoid po-
tential collision-induced congestion [1]. The robot can take different reactions
depending on each of the three internal states (S1-S3), so that there arise eight
possible combinations of reaction rules (Table 1). The term “priority rules” is
most suitable when the combinations are NBS and NSB (N = S,B hereafter),
i.e., when the reaction rules are invoked on the pheromone trail. Nevertheless,
we hereafter use this term to indicate the total set of these combinations.

3 Hardware and Experimental Design

Front Rear

Nest sensor

Battery boxes(×3)

Liquid tanks(×2)

Touch sensors(×8)

Full color LEDs(×16)

Color sensors(×6)

Wheels and motors(×2)

Alcohol sensors(×2)

Liquid pumps(×2)

Fig. 2. Overview of a developed robot (AR-
GOS02)

We have developed robots which
can tune the duration of pheromone
activity [15]. The robot is shown
in Fig. 2. The robot is cylinder
shape, diameter 150 [mm], height
225 [mm], weight 1.45 [kg] and
speed 0.1 [m/s]. Power source is
six series-connected Ni-MH batter-
ies (1.2 [V] 4500 [mAh]). The robot
is constructed by four layers, and
each layer is supported by spacers.
At first (bottom) layer, there are
two DC motors, two alcohol sen-
sors, two micro pump and discharge
spout for alcohol. There are color
sensors, full-color LEDs and push switches for detecting collision at second layer.
There are tank for alcohol and six batteries at third layer. At fourth layer, there
are system circuit board, LED, and LCD indicator, Wireless USB, power circuit
and nest sensor. Batteries are connected on power circuit at fourth layer. The
system has eight micro-computers(CY8C29466), two masters and six slaves.

232 R. Fujisawa et al.

3600mm

3
6
0
0
m
m

Nest φ600mm

Robot φ150mm

Food φ300mm

Fig. 3. Experimental field for
pheromone comm. robots

Figure 3 shows the experimental field. A nest
and a food are set on the opposite side. The
field size is 3600 [mm] × 3600 [mm], and is sur-
rounded by walls. Nest size is φ600 [mm], food
size is φ300 [mm], and food detection area is
φ600 [mm]. Initial positions of the robots were
set randomly on the field. The duration of ex-
periment was 20 [min]. We ran experiments ten
times for each of the eight priority rules (Table
1), and the number of foraging was recorded as
a measure of swarm performance. The effects
of swarm size and reaction rules on the swarm
performance were analyzed statistically using
multiple Poisson regression.

In order to assess the effects of alteration of reaction rules at each state, we
compared 12 pairs of priority rules which differ only at one of the three states.
The effects of swarm size - 2 (denoted as x1), change of reaction rules from S to
B (denoted as x2; S=0, B=1), and the interaction of x1 and x2, on the swarm
performance (denoted as y) were analyzed statistically using multiple regression
with the model: y = β0 + β1x1 + β2x2 + β1×2(x1 × x2) + ε. The intercept β0

and the slopes (β1, β2, β1×2) of the variables were tested against β = 0 using
t -tests.

4 Results

Figure 4, 5 shows some typical results of the experiments with ten robots. Under
the priority rule BSB (Fig. 4), the robots communicate with one another, indi-
cating that the priority rule is effective for foraging behavior. In stark contrast,
under the priority rule SSB (Fig. 5), we observed many clusters of colliding robots
on the experimental field (indicated by black circles in Fig. 5), which developed
during the run (ca. 5 [min] after the onset). In the cluster, the robots were stuck
at each other and could not disengage from it. This comparison highlights the
fact that an alteration of the reaction rule at only one state can drastically affect
the swarm performance.

Figure 6 shows the performance of the swarm (number of times of foraging per
20 min trial, n = 10 each) for each priority rule and the swarm size (i.e., number
of robots). For statistical analyses, we paired these priority rules based on the
presence/absence of rule B at each of the three states, so as to assess how rule B
affects the swarm performance at each of these states. Table 2 shows the results
of multiple regression analyses with the model described in Section 3.2. (Note
that x2 and thus β2 correspond to different states for different pairs.). Briefly,
for each comparison, β0 corresponds to the extrapolated intercept at swarm
size = 2 under the reaction rule N = S, β1 corresponds to the slope of swarm
performance against swarm size under the reaction rule N = S, β2 measures how
the alteration of the reaction rule N from S to B affects the swarm performance

“Priority Rule” Governs Efficiency of Swarm Robots 233

0min

FoodNest

Robot

0min

FoodNest

Robot

20min

Fig. 4. Snapshots of swarm behavior under
the priority rules BSB

20min

Fig. 5. Snapshots of swarm behavior under
the priority rules SSB

0

10

20

30

40

4 7 10
4 7 10

4 7 10
4 7 10

4 7 10
4 7 10

4 7 10
4 7 10

SSS SBS SSB SBB BSS BBS BSB BBB

Priority rules

Number of robots

Priority rules

N
um

be
r o

f t
im

es
 o

f f
or

ag
in

g

Fig. 6. Experimental result (Horizontal axis is number of robots, vertical axis is number
of foraging)

(measured at the extrapolated intercept at swarm size = 2), and β1×2 measures
how the alteration of the reaction rule N from S to B affects the slope against
swarm size. Our aim is to assess the effects of the change of a reaction rule at each
state, so hereafter we consider only β2 and β1×2. In the comparisons of reaction

234 R. Fujisawa et al.

Table 2. Statistical analyses of the effects of reaction rule change at each stage assessed
by multiple regressions

Test Comparison β0 t β1 t β2 t β1×2 t

Rule change
at S1

SSS to BSS 3.57 7.224*** -0.267 -3.007** -2.07 -2.960** 0.867 6.911***

SBS to BBS 9.65 17.612*** -0.450 -4.573*** 0.117 0.151 4.283 30.778***

SSB to BSB 0.85 0.663 1.483 6.440*** 10.12 5.578*** 2.517 7.726***

SBB to BBB 11.75 13.826*** -0.417 -2.730** -0.900 -0.749 3.633 16.832***

Rule change
at S2

SSS to SBS 3.57 7.616*** -0.267 -3.170** 6.083 9.185*** -0.183 -1.541

BSS to BBS 1.50 2.633* 0.600 5.863*** 8.267 10.259*** 3.233 22.341***

SSB to SBB 0.85 0.673 1.483 6.536*** 10.90 6.099*** -1.900 -5.920***

BSB to BBB 10.96 12.497*** 4.000 25.38*** -0.117 -0.094 -0.783 -3.514***

Rule change
at S3

SSS to SSB 3.57 3.122** -0.267 -1.300 -2.716 -1.681 1.750 6.031***

BSS to BSB 1.50 1.964 0.600 4.374*** 9.467 8.765*** 3.400 17.527***

SBS to SBB 9.65 13.50*** -0.450 -3.505*** 2.100 2.077* 0.033 0.184

BBS to BBB 9.77 13.65*** 3.833 29.846*** 1.083 1.071 -0.617 -3.395**

The coefficients of the regression model βs are shown, which were tested against β = 0
using t-tests. *: p < 0.05, **: p < 0.01, ***: p < 0.001.

rules at S1, the signs of β2 varied among comparisons, whereas β1×2 was always
positive (and significantly different from 0). In contrast, in the comparisons of
reaction rules at S2 and S3, the signs of β2 were mostly significantly positive (at
least not different from 0), whereas β1×2 varied among comparisons.

5 Discussion and Conclusion

We found that the alteration of reaction rules from S to B had substantial
(mostly positive) effects on group-foraging performance. Moreover, statistical
analyses revealed that the alteration affects the group-foraging performance in
different ways depending on the states. The alterations at S2 and S3 improved the
group-foraging performance. This result has an intuitive interpretation: robots
take these states on the pheromone trail, and efficient use of the pheromone
trail is directly linked to foraging success. Meanwhile, these alterations showed
no constant effect on an increasing group size. This result might be attributed
to the fact that the trail length on which robots can exist increases only as the
square-root of the field size. The alteration at S1 improved the group-foraging
performance under increased group size (i.e., altered the slope of group-foraging
performance against group size from negative to positive), but not the perfor-
mance itself. In our observation, local clustering of the searching robots (Fig. 5)
was observed mainly under the priority rules SNN. Therefore, this result sug-
gests that the collision-induced priority rule has an important role in avoiding
the negative impact of overcrowding on the field.

In this paper, we studied how gpriority rulesh affect the group-foraging per-
formance of pheromone-mediated swarm robots. The priority rules are induced
when two robots collide on the pheromone trail and/or on the field. Using real

“Priority Rule” Governs Efficiency of Swarm Robots 235

robot experiments, we found that the alteration in the reaction rules, compo-
nents of a priority rule, can have substantial effects on the performance. Our
results highlight the importance of implementing “fine-tuning” algorithms to
improve the performance of complex swarm systems. In future study, the scala-
bility of the improving effects of priority rules on group performance should be
investigated by numerical simulations.

References

1. Fujisawa, R., Imamura, H., Hashimoto, T., Matsuno, F.: Communication using
pheromone field for multiple robots. In: Proc. IEEE/RSJ 2008 International Con-
ference on Intelligent Robots and Systems (2008)

2. Bonabeau, E., Dorigo, M., Theraulaz, G.: Swarm Intelligence. Oxford University
Press (1999)

3. Hölldobler, B., Wilson, E.: The superorganism: the beauty, elegance, and
strangeness of insect societies. WW Norton & Company (2009)

4. Dorigo, M., Stützle, T.: Ant Colony Optimization. Bradford Books (2004)
5. Sugawara, K., Kazama, T., Watanabe, T.: Foraging behavior of interacting robots

with virtual pheromone. In: Proc. IEEE/RSJ Int. Conf. on Intelligent Robots and
Systems (IROS 2004), vol. 3, pp. 3074–3079 (2004)

6. Garnier, S., Tache, F., Combe, M., Grimal, A., Theraulaz, G.: Alice in pheromone
land: An experimental setup for the study of ant-like robots. In: Proc. IEEE Swarm
Intelligence Symposium (SIS 2007), April 1-5, pp. 37–44 (2007)

7. Shimoyama, I., Kanzaki, R.: Biological type micromachine. Journal of Society of
Biomechanisms 22, 152–157 (1998) (in Japanese)

8. Purnamadjaja, A.H., Russell, R.A.: Guiding robots behaviors using pheromone
communication. Autonomous Robots 23, 113–130 (2007)

9. Fujisawa, R., Dobata, S., Kubota, D., Imamura, H., Matsuno, F.: Dependency by
Concentration of Pheromone Trail for Multiple Robots. In: Dorigo, M., Birattari,
M., Blum, C., Clerc, M., Stützle, T., Winfield, A.F.T. (eds.) ANTS 2008. LNCS,
vol. 5217, pp. 283–290. Springer, Heidelberg (2008)

10. Krieger, M., Billeter, J., Keller, L.: Ant-like task allocation and recruitment in
cooperative robots. Nature 406, 992–995 (2000)

11. Chang, D., Shadden, S., Marsden, J., Olfati-Saber, R.: Collision avoidance for
multiple agent systems. In: Proceedings of 42nd IEEE Conference on Decision and
Control, 2003, vol. 1, pp. 539–543. IEEE (2003)

12. Burd, M., Archer, D., Aranwela, N., Stradling, D.: Traffic dynamics of the leaf-
cutting ant, atta cephalotes. The American Naturalist 159, 283–293 (2002)

13. Dussutour, A., Fourcassié, V., Helbing, D., Deneubourg, J.: Optimal traffic orga-
nization in ants under crowded conditions. Nature 428, 70–73 (2004)

14. Dussutour, A., Beshers, S., Deneubourg, J., Fourcassié, V.: Priority rules govern
the organization of traffic on foraging trails under crowding conditions in the leaf-
cutting ant atta colombica. Journal of Experimental Biology 212, 499–505 (2009)

15. Fujisawa, R., Shimizu, Y., Matsuno, F.: Effectiveness of tuning of pheromone trail
lifetime in attraction of robot swarm. In: Proc. on International Symposium on
System Integration, SII 2011, D2–2 (2011)

Dynamic Load Balancing Inspired

by Cemetery Formation in Ant Colonies

Ronald Klazar and Andries P. Engelbrecht

Department of Computer Science, Faculty of Engineering, Built Environment
and Information Technology, University of Pretoria, Pretoria, South Africa

{rklazar,engel}@cs.up.ac.za

Abstract. Loosely connected distributed computing systems present a
changing environment to the programs that they execute. Dynamic load
balancing (DLB) algorithms are employed to address the problem of re-
locating tasks when parts of a distributed computing system become
unavailable while other parts become idle. This paper presents a novel
DLB algorithm based on cemetery formation in ant colonies. The algo-
rithm builds on previous work to formulate ant-inspired DLB algorithms
that aim to reduce the time needed to complete the parallel execution of
multiple, independent tasks, where resources as well as tasks are diverse
with respect to their performances and durations, respectively. The new
algorithm is compared with its predecessors, based on division of labour
in ant colonies, and pure, opportunistic load balancing, established as
the baseline.

1 Introduction

Dynamic task allocation (DTA) is a continuous process that aims to reduce
the time required to complete a set of tasks by a set of workers operating in
a changing environment. Reduction in completion time is achieved at the cost
incurred by the switching of workers’ tasks.

Within a distributed computing system, the environment is transformed by
the availability of individual computing resources and the process of reallocating
tasks manifests as dynamic load balancing (DLB). Load balancing is here syn-
onymous with load sharing, as described by Wang and Morris [10], and DLB is
categorised, according to Casavant and Kuhl’s taxonomy [4], as a global schedul-
ing algorithm that operates within a changing (dynamic) environment, consisting
of physically distributed, cooperative resources.

Earlier work [7] showed that a distributed computing system that employed
only opportunistic load balancing (OLB) [6], or cycle soaking, would exhibit de-
teriorating performance as the resources diverged increasingly with respect to
individual performance. The authors introduced a DLB algorithm (DLBDL),
based on division of labour in ant colonies, that aims to effect a better (though
not necessarily optimal) distribution of tasks by making use of a load character-
isation heuristic. DLBDL improved overall task completion time, relative to the

M. Dorigo et al. (Eds.): ANTS 2012, LNCS 7461, pp. 236–243, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Dynamic Load Balancing Inspired by Cemetery Formation in Ant Colonies 237

established baseline and, as expected, utilized more network bandwidth than the
OLB algorithm.

Returning to existing work on modelling the behaviours of real ants, another
method presents itself as a possible inspiration for a DLB strategy. To wit,
certain species of ant group the dead members of their colonies in cemeteries,
which the living members of the colony organize without centralized coordination
or direct communication between participating workers. Experiments conducted
by Deneubourg et al. [5] have led to a simple model of this behaviour that is
described in detail in [2] and is commonly referred to as cemetery formation. A
subsequent, rigorous analysis of the cemetery formation model was conducted
by Theraulaz et al. in [9].

This paper presents an alternative to the approach by division of labour
and introduces a variation of the DLBDL algorithm, referred to as DLBCF

herein, that is inspired by the formation of cemeteries in ant colonies. The vi-
ability of DLBCF is herein discussed and the algorithm is compared with its
predecessor.

Related work by Montresor et al. [8] describes a DLB algorithm that is based
on a variation of cemetery formation. The algorithm is used by Messor, which
is an application that supports the parallel execution of independent subtasks
on a computational grid. Ants in the Messor application wander the network
and distribute tasks instead of clustering them. This is achieved by altering the
normal behaviour of a cemetery formation algorithm such that an ant drops a
task only once it has observed a low frequency of similar tasks over a period
of time.

Cao [3] describes a DLB algorithm that draws inspiration from the random
walk performed by ants that form cemeteries. In this case, an ant visits resources
at random and for a certain number of steps. In so doing, the ant records the
location of a single resource with the highest load amongst those resources that
were visited. The ant then performs another walk of equal length to locate a
node with a low load, after which it brokers a transfer of tasks between the two
nodes it has recorded.

Bertelle et al. [1] present a DLB algorithm for distributed computing systems
that is based on the same principles as Ant Colony Optimization. The targeted
application takes into account tasks that exhibit dependencies amongst each
other and must communicate during their execution.

The DLB algorithm presented in this paper is aimed at a distributed comput-
ing system that executes independent tasks in parallel. The algorithm does not
employ agents and, instead, the idle, potentially faster resources themselves per-
form the task of wandering the network by sending queries to other, potentially
slower resources to acquire the tasks that the slower resources host.

The remainder of the paper is structured as follows. Section 2 rationalizes the
task allocation mechanism, Section 3 describes the method used to analyse the
new algorithm and discusses the results of the analysis, and Section 4 ends the
paper with some concluding remarks.

238 R. Klazar and A.P. Engelbrecht

2 Task Allocation Inspired by Cemetery Formation

The multiple, independent tasks that constitute a single, larger problem, here
termed the project, may either outnumber the independent resources in a dis-
tributed computing system or they may not. In the former case, an OLB strategy
is sufficient to distribute tasks to all resources (one task per resource), as this
approach will maximise the utilization of the computing system. However, once
fewer tasks than resources remain, some resources will be idle while others will
continue to finish the remaining tasks. In this case, the idle resources may either
be faster processors than the busy resources or the busy resources may become
unavailable due to being engaged by their actual owners or users.

A DLB strategy is employed to determine when an idle resource would be
able to perform a task in a shorter period of time than a busy resource and then
to broker a migration of the task, hosted by the slower resource, to the faster
resource.

The approach taken in this study is inspired by cemetery formation. While
busy resources continue to execute tasks, idle resources wander the network
in search of resources with sufficiently lower processing capabilities to warrant
the reallocation of a task. However, unlike the model described in [2], idle re-
sources are not represented by an actual agent that wanders from one host to an-
other. Instead, an idle resource searches the network by sending queries to other
resources in the computing system.

The determination of the difference in processing performance between two
resources is expressed by a normalized scalar value, referred to as the shortfall.
The shortfall calculation was introduced in [7] and is briefly repeated here. The
shortfall, s, is

s = exp

(
−a

WS(T)

WmaxD

)
(1)

where S and D are the potential source and destination of a task, respectively,
Wmax is the maximum work that can be done by a resource per unit of time,
W (T) is the amount of work being done at time T , and a determines the steep-
ness. The specific values of WS(T) and WmaxD may vary arbitrarily.

When a resource becomes idle and the only remaining tasks to process are
already allocated to other resources, the idle resource begins to search the net-
work for a task that it will be able to execute faster than the resource currently
hosting the task.

The idle resource chooses another, remote resource in the network at random
and sends a query to the chosen resource. The query message includes WmaxD,
the maximum processing capability of the idle resource. If the remote resource
hosts a task, then the resource will compute a shortfall value based on the value
of WmaxD, obtained from the query message, and its own, current performance
value, WS(T).

Dynamic Load Balancing Inspired by Cemetery Formation in Ant Colonies 239

The remote resource uses the shortfall value in place of the item frequency
to compute Pd, as in [2]. If the remote resource drops its task, then the task is
transmitted to the idle resource that issued the causal query.

The probability to pick up a task is not calculated by DLBCF because the
pick-up action is implicit in the exchange of a task between two resources.

DLBCF is not a direct mapping of the original cemetery formation model
described in [2] to a distributed computing system. Nevertheless, the effect of
DLBCF on task allocation is to gather tasks dispersed over all resources and
cluster those tasks at only the fastest resources in the system.

3 Analysis

Testing of the new DLB algorithm was conducted using the simulation system
described in [7]. No specific network topology was tested and the overheads of
a particular network stack, including application protocols, were not taken into
account. Instead, only the time taken to complete a project and the bandwidth
usage characteristics of the DLB algorithm were recorded and analyzed. This
section describes the DLBCF algorithm, the parameters that control the per-
formance of the new algorithm, details the design of the empirical study, and
presents the results of the experimental tests.

3.1 The Experimental Model

The experimental test bed used to simulate the load balancing strategies is
identical to that described in [7]. A resource operating according to DLBCF

operates as follows. The resource first queries the project server for a task. The
resource executes its task to completion and submits the result to the project
server, after which the resource requests another task. If no task is available
from the project server, then the resource begins to prospect for tasks amongst
other resources in the distributed computing system. The resource will continue
to prospect until either it finds and acquires a task from another resource or the
time limit for prospecting has been reached. When prospecting times out, the
resource once again queries the project server for a task.

3.2 Simulation Control Parameters

The parameters that control the composition and performance of the simulated
distributed computing system are as described in [7]. The parameters that affect
the DLB algorithm are described next.

Performance Data Size: The performance data is the value of WmaxD,
as transmitted by an idle resource. The bandwidth usage of these messages is
recorded by the simulator and the performance data size stipulates the size of
the performance data message.

240 R. Klazar and A.P. Engelbrecht

Maximum Prospecting Range: An idle resource is not guaranteed to find
a busy resource, that happens to be slower, due to the fact that it chooses
resources randomly when looking for a task. Consequently, the idle resource
must repeat its query to other resources as long as it has not acquired a task.
The maximum prospecting range determines the upper bound for the number of
resources to query per time step. Increasing this parameter increases the amount
of bandwidth required to effect the search for suboptimal task distributions.

Maximum Prospecting Duration: At some point in time, an idle resource
must check for the possibility of a new project having been deployed on the
project server. Were idle resources not to perform this check, they would not
become aware of the case that a project was completed and a new project should
be processed next. The maximum prospecting duration determines the upper
bound for the number of time steps that an idle resource searches for tasks
amongst other resources in the system before it queries the project server for a
new task.

3.3 Design of the Empirical Test

The aim of the empirical analysis is: 1) to show that the employment of DLBCF

in a distributed computing system reduces the time taken to complete a project,
as compared with the baseline result, which is derived by the employment of
an OLB strategy only; 2) to compare the performance of DLBCF with that of
DLBDL; and 3) to determine the bandwidth usage characteristics of both DLB
algorithms.

The tests are performed to produce a trend in completion time with respect
to an increasing diversity of resource performances. Likewise, as it is unrealistic
to assume that all tasks will require exactly the same amount of computation
to produce a result, each test considers an increasing diversity of task durations
as well.

Each degree of resource diversity is obtained by randomly selecting an incre-
mental number of resources that deviate from the mean performance of resources
in the range of possible performance values. The average absolute deviation is
computed over 30 such samples to produce the resource performance dispersion
value. The task duration diversities are computed similarly.

To simulate the effects of users engaging the resources they control, thus pre-
empting the execution of tasks hosted by those resources, a processor variance is
introduced to the tests. At each time step, and for each resource, a new proces-
sor performance is computed by multiplying a resource’s maximum processing
performance by a randomly chosen factor, v, for v ∈ [0, 1].

Each simulation is run 30 times to produce a mean turnaround time (project
completion time) and mean bandwidth usage.

The parameter values used to specify the distributed computing system as well
as the DLBDL algorithm were taken from [7], with the following exceptions. The
maximum prospecting range and stimulus period of DLBDL were changed to

Dynamic Load Balancing Inspired by Cemetery Formation in Ant Colonies 241

99 and 1, respectively. The former is a correction of the previous value and the
latter is used to set resources to broadcast a stimulus as often as possible. A
detailed description of these parameters can be found in [7].

The parameter values used to specify the DLBCF algorithm were set as fol-
lows. Performance data size, maximum prospecting range and maximum
prospecting duration were set to 64.0 × 10−6, 99, and 1, respectively. a, θ2,
and n were set to 9, 0.0001, and 9, respectively.

The algorithms were were tested for viability. Consequently, the stimulus pe-
riod of DLBDL and the maximum prospecting range of DLBCF were set to
their respective logical limits, such that the lowest possible turnaround time and
the highest possible bandwidth usage could be measured.

3.4 Results of the Viability Test

The results are presented here as surface plots, depicting, for each algorithm, in-
cluding the baseline, the turnaround time and bandwidth usages against
increasing resource performance dispersion and increasing task duration dis-
persion. Significance testing was conducted to determine whether or not the
algorithms could be reliably distinguished by their performance. A discussion of
the results follows.

Turnaround Time: Figure 1a shows the turnaround time when DLBDL was
employed. The DLBDL distribution differs significantly from the baseline distri-
bution by Mann-Whitney with U = 1299.0, n1 = n2 = 100 at a significance level
of 0.05 (two-tailed). The mean turnaround time of DLBDL is 231.246, with a
standard deviation of 7.332. However, the shape of the DLBDL surface suggests
that DLBDL is susceptible to the same flaw as an OLB algorithm, with respect
to scalability.

Figure 1b shows the turnaround time when DLBCF was employed. The
DLBCF distribution differs significantly from the baseline distribution with
U = 55.0, n1 = n2 = 100, and differs from the DLBDL distribution with
U = 57.0, n1 = n2 = 100 at a significance level of 0.05 (two-tailed). DLBCF

was superior to DLBDL in terms of mean performance, with a mean turnaround
time of 211.224 and standard deviation of 1.844. Additionally, DLBCF exhibited
a more consistent turnaround time as resource performance and task duration
dispersions increased, suggesting that DLBCF is more scalable than DLBDL.

The mean turnaround time of the baseline is 253.761, with a standard
deviation of 17.341, showing that both DLBDL

Bandwidth Usage: Figure 2a shows the bandwidth usage for DLBDL. The
mean bandwidth usage is 0.00220, with a standard deviation of 0.00013. The
DLBDL distribution differs from that of the baseline with U = 1011.0, n1 =
n2 = 100 at a significance level of 0.05 (two-tailed). As expected, turnaround
time decreased at the cost of an increase in bandwidth usage.

242 R. Klazar and A.P. Engelbrecht

(a) DLBDL (b) DLBCF

Fig. 1. Turnaround Time vs. Resource Performance Dispersion, Task Duration
Dispersion

(a) DLBDL (b) DLBCF

Fig. 2. Bandwidth Usage vs. Resource Performance Dispersion, Task Duration
Dispersion

Figure 2b shows the bandwidth usage forDLBCF . The mean bandwidth usage
is 0.00283, with a standard deviation of 0.00011. TheDLBCF distribution differs
from the baseline distribution with U = 0.0, n1 = n2 = 100 and from theDLBDL

distribution with U = 0.0, n1 = n2 = 100 at a significance level of 0.05 (two-
tailed). Once again, bandwidth usage costs were higher with a correspondingly
lower turnaround time.

The mean bandwidth usage of the baseline is 0.00177 with a standard
deviation of 0.00026.

Of note is that DLBCF exhibited the lowest bandwidth usage deviation
amongst the baseline and DLBDL, supporting the observation that the band-
width usage of DLBCF remained consistent even as resource performances and
task durations became more diverse.

4 Conclusion

The results of the viability test showed that both ant-inspired DLB algorithms
improved upon turnaround time in the parallel execution of multiple,

Dynamic Load Balancing Inspired by Cemetery Formation in Ant Colonies 243

independent tasks. However, while the algorithm inspired by division of labour ef-
fected an improvement in performance, the DLB algorithm inspired by cemetery
formation showed the most promise. The deciding factor was the consistency of
performance in turnaround time as the differences amongst resources and tasks
increased.

Even so, a real application will have to consider the performance capabilities
of its particular network topology. While both of the DLB algorithms presented
in this paper have the potential to lower turnaround time, the crucial difference
between the two algorithms lies in the means that each employs to search for
tasks. To wit, DLBDL broadcasts queries, while DLBCF queries the members
of the network iteratively.

References

1. Bertelle, C., Dutot, A., Guinand, F., Olivier, D.: Organization detection for dy-
namic load balancing in individual-based simulations. Multiagent and Grid Sys-
tems 3(1), 141–163 (2007)

2. Bonabeau, E., Dorigo, M., Theraulaz, G.: Swarm Intelligence: From Natural to
Artificial Systems, 1st edn. Oxford University Press (1999)

3. Cao, J.: Self-organizing agents for grid load balancing. In: Proceedings of the 5th
IEEE/ACM International Workshop on Grid Computing, pp. 388–395. IEEE Com-
puter Society (2004)

4. Casavant, T., Kuhl, J.: A taxonomy of scheduling in general-purpose distributed
computing systems. IEEE Transactions on Software Engineering 14(2), 141–154
(1988)

5. Deneubourg, J.L., Goss, S., Franks, N., Sendova-hanks, A., Detrain, C., Chrtien, L.:
The dynamics of collective sorting: robot-like ants and ant-like robots. In: Meyer,
J.A., Wilson, S. (eds.) Proceedings of the First International Conference on Simu-
lation of Adaptive Behavior: From Animals to Animats, pp. 356–363 (1991)

6. Freund, R.F., Siegel, H.J.: Guest editor’s introduction: Heterogeneous processing.
Computer 26, 13–17 (1993)

7. Klazar, R., Engelbrecht, A.P.: Dynamic load balancing inspired by division of
labour in ant colonies. In: IEEE Symposium on Swarm Intelligence (SIS), pp. 1–8
(April 2011)

8. Montresor, A., Meling, H., Babaoğlu, Ö.: Messor: Load-Balancing through a Swarm
of Autonomous Agents. In: Moro, G., Koubarakis, M. (eds.) AP2PC 2002. LNCS
(LNAI), vol. 2530, pp. 125–137. Springer, Heidelberg (2003)

9. Theraulaz, G., Bonabeau, E., Nicolis, S.C., Sol, R.V., Fourcassi, V., Blanco, S.,
Fournier, R., Joly, J.L., Fernndez, P., Grimal, A., Dalle, P., Deneubourg, J.L.:
Spatial patterns in ant colonies. Proceedings of the National Academy of Sci-
ences 99(15), 9645–9649 (2002)

10. Wang, Y.T., Morris, R.J.: Load sharing in distributed systems. IEEE Transactions
on Computers C-34(3), 204–217 (1985)

Feasibility of an Ant Colony Optimization

Algorithm for Multi-leaf Collimator (MLC)
Aperture Definition and Beam Weighting

in Volumetric Modulated Arc Therapy (VMAT)
Radiotherapy Treatment Planning

Owen Clancey and Matthew Witten

Witten Clancey Partners, LLC, Great Neck, New York, USA
owen.clancey@gmail.com, witten@earthlink.net

Abstract. Volumetric Modulated Arc Therapy (VMAT) is a sophisti-
cated radiotherapy treatment delivery modality in which a medical linear
accelerator arcs around a patient, with concurrent dynamic variation of
multi-leaf collimator aperture, dose rate, and gantry speed, to produce a
radiation dose distribution which delivers a highly conformal dose to the
target while minimizing the incidental irradiation of normal tissue. Treat-
ment planning for VMAT is an inverse problem, requiring optimization
of the linear accelerator parameters to produce the desired radiation dose
distribution, which is specified by dose-volume objectives. In this study,
the feasibility of an ant colony algorithm for VMAT treatment planning
is demonstrated by the ability of the algorithm to produce a treatment
plan, which satisfies given dose-volume objectives, for a phantom tar-
get/critical structure geometry. Three experiments were conducted: one
in which the optimization included only heuristic information, one in
which there was exclusively a pheromone trail update, and one where
there was both a pheromone trail update and an applied heuristic. The
results indicate that the use of both a pheromone trail update and heuris-
tic information during the optimization yields solutions of the highest
quality.

1 Introduction

1.1 Radiation Therapy Treatment Delivery

Modern external beam radiation therapy, for treatment of malignant cancers,
benign lesions, and functional conditions, is delivered via a medical linear accel-
erator (linac). The linac is a gantry-mounted system, with the gantry rotating
about a single point in space, called the isocenter. Linacs are capable of produc-
ing megavoltage photon beams, which are collimated using a tertiary (i.e. after
both the primary collimator and secondary jaws) beam aperture-defining device,
the multi-leaf collimator (MLC). The MLC consists of many pairs of tungsten
leaves, which can be accurately and precisely driven to prescribed positions by

M. Dorigo et al. (Eds.): ANTS 2012, LNCS 7461, pp. 244–251, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

ACO for VMAT 245

the treatment delivery software. The MLC allows for the conformal shaping
of the radiation beam, such that the shape of the beam can be made to match
the contours of an irregularly-shaped tumor, while shielding adjacent critical
organs-at-risk (OARs), thereby minimizing the probability of sequelae induced
by the incidental irradiation of these structures.

1.2 Volumetric Modulated Arc Therapy(VMAT)

VMAT is an extension of so-called intensity modulated radiation therapy (IMRT)
[6]. In IMRT, the MLC leaves are adjusted dynamically to produce a modula-
tion in photon fluence, allowing steep dose gradients to be produced throughout
the treatment field. VMAT is also a dynamic treatment; the gantry continu-
ously moves in an arc about the patient, and the MLC leaves, gantry speed,
and dose rate are varied simultaneously to produce a highly conformal radiation
dose distribution. The treatment is quite rapid, with a duration of delivery of
approximately 70-160 sec [1].

1.3 Ant Colony Optimization for VMAT Treatment Planning

Treatment planning for VMAT is an inverse problem, wherein the desired dose
distribution is specified, and the machine parameters necessary to produce the
dose distribution are determined via optimization. There are currently several
different approaches to VMAT treatment planning [2] - [8]. It is the observation
of the authors of the present work that such methods tend to be slow, when
patient throughput is considered in the clinical setting. The user interfaces may
be somewhat awkward. Finally, direct inspection of the solutions reveals that the
MLC leaf trajectories tend to include many noisy jumps throughout the gantry
rotation. Clearly, a new approach might offer some improvement. The analogy
between the path an MLC leaf may take as the gantry rotates around the patient,
and the path of an ant on its search for a food source, motivates the application
of an ant colony approach to the VMAT treatment planning problem.

In the present work, an ACO algorithm for the optimization of MLC leaf
trajectories and dose rates is proposed, and its feasibility is demonstrated. The
algorithm was used to produce an optimized treatment plan for a phantom
containing volumes representing a target and a critical OAR. The algorithm was
able to produce optimized MLC leaf trajectories and dose rates, and consequently
a treatment plan satisfying the specified dose objectives, in a clinically relevant
optimization time.

2 Materials and Methods

2.1 Objective Function

A dosimetric objective function was used to score the treatment plans derived
from the ant paths. The objective function was of a quadratic form, including

246 O. Clancey and M. Witten

terms expressing the deviation in the doses at optimization points from the de-
sired doses, summed in quadrature, with the contribution from each volume of
interest multiplied by a user-selectable weight. The DVH constraints were imple-
mented in the manner of Spirou and Chui [7]. The objective function included
terms representing the target, as well as terms representing the OARs, as shown
in Eq. 1:

f(x,w,d,v) = H(vp,min − vt,min)wt,min

nt∑
i=1

H(δthres,min −
b∑

j=1

DDCijxj)

× (
b∑

j=1

DDCijxj − dp,min)
2 +H(vt,max − vp,max)

× wt,max

nt∑
i=1

H(

b∑
j=1

DDCijxj − δthres,max)

× (

b∑
j=1

DDCijxj − dp,max)
2 +

org∑
l=1

[

clm∑
m=1

H(vlm − vp,lm)wlm

×
nl∑
k=1

H(

b∑
j=1

DDCkjxj − δthres,lm)

× (

b∑
j=1

DDCkjxj − δthres,lm)2] , (1)

where x is a vector of beam weights, d is a vector of doses associated with
the dose-volume objectives, v is a vector of volumes associated with the dose-
volume objectives (paired with the vector of doses), H is the Heaviside func-
tion, subscript t refers to the target, subscript p refers to the prescription
dose, nt is the number of points within the target, b is the number of beam
weights, org is the number of critical organs, clm is the mth DVH objective
for the lth critical organ, and nl is the number of points in the lth critical
organ.

In addition, δthres,min is the dose to that point in the target such that when
all points in the target are sorted, points for which the dose is less than or
equal to δthres,min cause the minimum dose-volume objective for the target to
be violated, δthres,max is the dose to that point in the target such that when
all points in the target are sorted, points for which the dose is greater than or
equal to δthres,max cause the maximum dose-volume constraint for the target to
be violated, and δthres,lm is the dose to that point in the lth critical organ such
that when all points in the organ are sorted, points for which the dose is greater
than or equal to δthres,lm cause the mth dose-volume objective for the organ to
be violated.

ACO for VMAT 247

2.2 Algorithmic Structure

The Ant System algorithm [3] was used for the optimization. The pseudocode
for the algorithm appears below:

Procedure VMAT

Set parameters

Calculate heuristic and pheromone values

While (Termination condition not met) do

Construct apertures using random proportional rule

Weight apertures using SQP

Fitness evaluation of weighted apertures

Update pheromones

End

End

Each ant traced out a tour which was mapped, via a linear mapping, to a possible
leaf path trajectory. A treatment plan was constructed by using all the leaf
paths of all the leaves of the MLC to create the apertures for dose delivery.
The beam weights (or dose rates) were then optimized with sequential quadratic
programming, before being scored using the dosimetric fitness function of Eq. 1.
A fitness-based pheromone update was then applied before the next iteration.
In all cases, the algorithm was terminated when the fitness value was < 1 or a
run-time of 600 sec was reached.

The gantry rotation of a full 360 degrees was subdivided into 5 separate
arcs of 72 degrees each, for which distinct MLC apertures were optimized. As
discussed previously, there were 24 leaf pairs, i.e. there were 2 banks, right and
left, of 12 leaves each. For each leaf, the range of possible MLC leaf positions
was discretized into 10 equally-spaced intervals. The number of ants per leaf was
m = 100 , and the evaporation constant was ρ0 = 0.5. Each treatment plan was
a set {Ai}5i=1 of MLC apertures constructed from the leaf trajectories, which
were derived from the ant paths. There were thus 100 treatment plans generated
per iteration.

In order to set initial pheromone values, it was noted that open apertures
have an objective function value of on the order of f0 = 103, which was used to
set the initial pheromone values to

τ0 = m/f0 . (2)

Some problem-specific knowledge was applied to determined the starting MLC
leaf positions, namely: as a first approximation to the solution, it was possible to
construct open apertures which simply ensure target coverage. To convert this
knowledge into a heuristic, η was represented by a monotonically nondecreasing
function of leaf position, with η increasing as the leaf was positioned further from
the isocenter. Each leaf was constrained such that it could not allow irradiation
beyond 3 mm further from the isocenter than the target, which accounted for
the penumbra of the beam produced by the leaf edge. Tour construction used
the Random Proportional Rule [4]:

248 O. Clancey and M. Witten

pijkl = [τijkl]
α[ηijkl]

β/(
∑

n∈Nijk

[τijkn]
α[ηijkn]

β) if n ∈ Nijk , (3)

where i is the index of the aperture number of the plan, j indicates the jth MLC
leaf, k is an index denoting the position, in the (ith − 1), aperture of the jth
MLC leaf, and l is an index denoting the position, in the ith aperture, of the jth
MLC leaf.

The pheromone update was fitness-based [4], where,

τijkl ← (1− ρ)τijkl +

b∑
n=1

Δτnijkl,

whereΔτnijkl = 1/f,

if arc (i, j, k, l) belongs toAn,

otherwiseΔτnijkl = 0 . (4)

Note that in Eq. 4, An is the nth aperture of treatment plan A, b is the total
number of apertures, and f is the objective function value of treatment plan A.
In this manner, the pheromone update reinforced those tours which produced
dosimetrically favorable treatment plans.

2.3 Phantom Geometry

The phantom was an infinite cylinder of 300 mm diameter. The target was
cylinder concentric with the phantom, of 100 mm diameter and 100 mm height.
The critical structure was a cylinder abutting the target, of diameter 60 mm.

2.4 DVH Constraints

All treatment plans were optimized to meet the following DVH objectives, listed
in Tab. 1. Note that “Ring 10 mm” and “Ring 50 mm” are annular structures, at
distances of 10 mm and 50 mm from the target respectively, that were introduced
to control the lower isodoses of the radiation dose distribution, restricting the
“bleeding out” of dose.

Table 1. DVH Objectives

Structure Volume (%) Dose (cGy) Weight

Target 95 100 1
Target 0 105 1
Critical Organ 10 100 0.5
Critical Organ 50 50 0.5
Ring 10 mm 0 100 0.5
Ring 50 mm 0 65 0.5

ACO for VMAT 249

3 Results and Discussion

Cumulative DVH graphs are shown for each case in subsequent subsections.
The cumulative DVH is a clinical tool that plots the volume of a structure that
receives at least a certain dose against the radiation dose received.

3.1 Heurstic Information Only

This was the case where α = 0 and β = 1. The cumulative DVH for this case is
shown in Fig. 1.

Fig. 1. Cumulative DVH for heuristic-only optimization. Note that the target (in red)
is not well-covered at all.

3.2 Learning Only

This was the case where α = 1 and β = 0. The cumulative DVH for this case is
shown in Fig. 2.

Fig. 2. Cumulative DVH for learning-only optimization. The stigmergy has helped to
improve target coverage.

250 O. Clancey and M. Witten

3.3 Learning and Heuristic Information

This was the case where α = 1 and β = 1. The cumulative DVH for this case is
shown in Fig. 3.

Fig. 3. Cumulative DVH for learning and heuristic information. The combination prod-
ces a plan that covers the target quite well.

3.4 Fitness-Based Comparison of Treatment Plans

The plot in Fig. 4 compares the average objective function values of the treat-
ment plans as a function of time. Clearly, the convergence of the case where both
heurstic information and learning are used in the optimization is superior.

Fig. 4. Plot of average objective function values as a function of time. The convergence
properties of the heuristic + learning case are clearly superior.

4 Conclusion

As has been demonstrated, ACO shows much promise for application to the
problem of MLC leaf trajectory sequencing and dose rate optimization in VMAT.

ACO for VMAT 251

Clearly, heuristic information acts in a synergistic fashion with the natural stig-
mergy of the algorithm to produce dosimetrically superior plans.

The authors intend to develop the ACO for VMAT treatment planning opti-
mization more thoroughly in future work. It needs to be applicable to problems
of a wide variety of geometries, not the simple one of the phantom in this study.
It must admit the use of a much finer subdivision of the whole 360 degree arc of
gantry rotation. There must also be further development of the heuristic infor-
mation applied to the problem, to aid in the creation of initial MLC apertures.

References

1. Bzdusek, K., Friberger, H., Eriksson, K., Hardemark, B., Robinson, D., Kaus, M.:
Development and Evaluation of an Efficient Approach to Volumetric Arc Therapy
Planning. Med. Phys. 36, 2328 (2009)

2. Craft, D., McQuaid, D., Wala, J., Chen, W., Salari, B.T.: Multicriteria VMAT
Optimization. Med. Phys. 39, 686 (2012)

3. Dorigo, M.: Optimization, Learning and Natural Algorithms. PhD Thesis. Diparti-
mento di Ellettronica, Politecnico di Milano, Milan (1992)

4. Dorigo, M., Stuetzle, T.: Ant Colony Optimization. MIT, Cambridge (2004)
5. Hoegele, W., Loeschel, R., Merkle, N., Zygmanski, P.: An Efficient Inverse Radio-

therapy Planning Method for VMAT Using Quadratic Programming Optimization.
Med. Phys. 39, 444 (2012)

6. Otto, K.: Volumetric Modulated Arc Therapy: IMRT in a Single Gantry Arc. Med.
Phys. 35, 310 (2008)

7. Spirou, S., Chui, C.: A Gradient Inverse Planning Algorithm with Dose-Volume
Constraints. Med. Phys. 25, 321 (1998)

8. Vanetti, E., Nicolini, G., Nord, J., Peltola, J., Clivio, A., Fogliata, A., Cozzi, L.: On
the Role of the Optimization Algorithm of RapidArc Volumetric Modulated Arc
Therapy on Plan Quality and Efficiency. Med. Phys. 38, 5844 (2011)

9. Yang, Y., Xing, L.: Optimization of Radiotherapy Dose-Time Fractionation with
Consideration of Tumor Specific Biology. Med. Phys. 32, 3666 (2005)

Formica ex Machina: Ant Swarm Foraging
from Physical to Virtual and Back Again

Joshua P. Hecker1, Kenneth Letendre1,2, Karl Stolleis1,
Daniel Washington1, and Melanie E. Moses1,2

1 Department of Computer Science, University of New Mexico, Albuquerque, USA
2 Department of Biology, University of New Mexico, Albuquerque, USA

{jhecker,melaniem}@cs.unm.edu, {kletendr,stolleis}@unm.edu

Abstract. Ants use individual memory and pheromone communication
to forage efficiently. We implement these strategies as distributed search
algorithms in robotic swarms. Swarms of simple robots are robust, scal-
able and capable of exploring for resources in unmapped environments.
We test the ability of individual robots and teams of three robots to
collect tags distributed in random and clustered distributions in sim-
ulated and real environments. Teams of three real robots that forage
based on individual memory without communication collect RFID tags
approximately twice as fast as a single robot using the same strategy.
Our simulation system mimics the foraging behaviors of the robots and
replicates our results. Simulated swarms of 30 and 100 robots collect tags
8 and 22 times faster than teams of three robots. This work demonstrates
the feasibility of programming large robot teams for collective tasks such
as retrieval of dispersed resources, mapping, and environmental monitor-
ing. It also lays a foundation for evolving collective search algorithms in
silico and then implementing those algorithms in machina in robust and
scalable robotic swarms.

1 Introduction

One goal of swarm robotics is to engineer groups of simple, low-cost robots that
can cooperate as a cohesive unit to accomplish collection and exploration tasks
such as mapping, monitoring, search and rescue, and foraging for resources in
unmapped environments [4,5,8]. Ideally, robotic swarms are capable of exploring
unknown environments without the benefit of prior knowledge to guide them.
Individuals must adapt to sensor error and motor drift, and the swarm must
function given variation, errors, and failures in individual robots.

Biology often provides inspiration for approaches to achieve these design goals
[4,6,8,18]. Biologically-inspired decentralized approaches have enhanced scala-
bility and robustness by removing single points of failure from communication
bottlenecks and rigid control structures. Such approaches have not yet reached
the level of emergent coordination observed in natural systems [24].

Our robots are designed to mimic colonies of seed harvester ants who forage
using a combination of individual memory and pheromone trails. Robots are

M. Dorigo et al. (Eds.): ANTS 2012, LNCS 7461, pp. 252–259, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Formica ex Machina 253

equipped with a sensor suite which mimics the real ants: time-based odometry
approximates physical location analogous to the ants’ stride integration [26], and
ultrasound ranging measures distance to objects and corrects for drift similar to
an ant’s landmark-based navigation [13]. Pheromone-like communication of pre-
viously successful search locations is used to improve search performance. Robots
search for radio-frequency identification (RFID) tags, and upon finding them,
return to a central ‘nest.’ Robot locations are transmitted over one-way wireless
communication to a server for data logging; occasional two-way communication
allows virtual pheromones to direct robots to previously found tag locations.

We program our robots with search algorithms derived from our previous work
that used an agent-based model (ABM) guided by genetic algorithms (GA) to
replicate foraging behaviors of seed harvester ants [11,15]. We duplicate param-
eters from the ant model in the robots. We modified the ABM to replicate the
constraints of the robot hardware, and to model the behavior and environment
of the robots in their search for RFID tags. This parallel physical and simu-
lated implementation allows us to compare results from analogous experiments
in machina as implemented in physical robots and in silico in the ABM (as in
[7,16]). In additional ABM experiments we scale up the size of the swarm, the
number of tags, and the size of the area in which the simulated robots search.

2 Background

Swarm Robotics: Like ant colonies and other complex biological systems,
robotic swarms have potential to utilize efficient, robust, distributed approaches
to physical tasks. Effective algorithms for swarm robotics must extend beyond
simulation to intelligently deal with the complexities of navigating in real envi-
ronments [7,16,17]. Our approach balances the benefit of centralized information
exchange with the scalability of decentralized autonomous search [2,19,23]. We
use evolutionary algorithms to determine the parameters of individual behavior
that result in effective collective action, as in [9,11,22,25].

Biological Ants: Our algorithms are largely inspired by foraging in Pogon-
omyrmex desert seed-harvester ants [10]. These foragers typically leave their
colony’s single nest, travel in a relatively straight line to some location on their
territory, and then switch to a correlated random walk to search for seeds.

When a forager finds a seed, it brings it directly back to the nest. Foragers of-
ten return to the location where they previously found a seed in a process called
site fidelity [3,10,20], which reduces future search times. It is unclear exactly how
often these ants lay and follow pheromone trails [12,13,21], but our recent work
indicates occasional laying of pheromone trails to dense piles of food may be an
effective component of these ants’ foraging strategies [11,15].

Models: We used GAs to find the optimal balance of site fidelity and
pheromone communication in simulated ant colonies [15]. We simulated ant for-
aging using a set of ABMs of foragers on a grid, with parameters that specify how
ants travel from the nest, search, and use site fidelity and pheromone communi-
cation. These parameters are optimized by a GA to maximize seed intake rate.

254 J. Hecker et al.

Previous simulations show that ants increase foraging rates with rare pheromone
use (< 10% of foraging trips), particularly in the clustered distribution where
the intake rate doubles with the addition of pheromone [15].

The ant foraging ABM was modified to model our swarm robots and our ex-
perimental setup. The simulation provides both a theoretical benchmark and a
basic architecture for using GAs to optimize simulated robots within the con-
straints imposed by the physical hardware. All in machina experiments have
been duplicated in silico.

3 Methods

3.1 Hardware

Our robots use an Arduino microcontroller with a compass, ultrasound, wireless
card, and RFID reader. These allow the robots to localize at a central ‘nest,’
measure distance (object 100 cm away: mean error = 2.7 cm, σ = 2.24), and
calculate odometry (round trip of 10 m: mean error = 21 cm, σ = 6.6). Robots
avoid collisions by rotating clockwise until the object has been cleared.

3.2 Search Algorithm

The search behavior used by the robots to locate RFID tags is shown in Fig. 1.

1. Set Search Location: Robots begin at the nest in the center and randomly
select an initial search site location, encoded as a distance d and heading h.

2. Travel to Search Site (yellow path) Traveling robots go straight to the search
location while avoiding collisions with other robots, correcting for motor
drift, and communicating events to the server for later analysis.

3. Search for Tag (blue path): The robot moves in a correlated random walk
with direction θ at time t drawn from a normal distribution centered around
direction θt−1 and standard deviation SD = ω + γ/tδs. ω determines the de-
gree of turning during an uninformed search. In a search informed by memory
or communication, γ/tδs determines an initial additional degree of turning
which decreases over time spent searching. This mimics ants’ tight turns in
an initially small area that expand to explore a larger area over time [11].

4. Travel to Nest (pink path): The robot returns to the known nest location. In
pheromone experiments, the tag location (d, h) is reported to the server if C
> 1, where C is the count of other tags detected in the 8-cell neighborhood
of the collected tag in the simulation or discovered in one 360◦ rotation of
the real robot.

5. Set Next Search Location: On subsequent trips, d and h are determined by
either returning to the previously found tag location if C > 0, otherwise d
and h are communicated from the pheromone list on the server.

Formica ex Machina 255

Fig. 1. A robot begins its search at a globally shared central nest site (center circle)
and sets a search location. The robot then travels to the search site (yellow
line). Upon reaching the search location, the robot searches for tags (blue line)
until tags (red squares) are found. After searching, the robot travels to the nest
(purple line).

3.3 Experimental Design

Each experimental trial on a concrete surface runs for a maximum of one hour.
A cylinder marks the center ‘nest’ to which the robots return once they have
located a tag. This center point is used for localization and error correction by
the robots’ ultrasonic sensors. All robots involved in a trial are initially placed
near the cylinder. We program each robot to stay within a 3 m radius ‘virtual
fence’. In every experiment, 32 RFID tags are arranged in one of three different
patterns: random, clustered, or power law (Fig. 2). Experiments are replicated
under identical conditions for individual robots and for groups of three bots.

Robot locations are continually transmitted over one-way WiFi communica-
tion to a central server and logged for analysis. When a tag is found, its unique
identification number is transmitted back to the server, providing us with a
detailed record of tag discovery. Tags can only be read once, simulating seed re-
trieval. The central server also acts as a coordinator for virtual pheromone trails
using two-way communication. Locations deemed important enough to require
a pheromone value (i.e. those with two or more tags discovered by the robot)
are added to a list data structure with a pheromone value of 1. Each location’s
associated pheromone value pi is decayed exponentially over time by the server:
pt+1 = pt ∗ .995η, where η is the number of seconds between time t and t + 1.
When a location’s pheromone value has dropped below a threshold of 0.001, it
is removed from the list. As each robot returns to the nest, the server selects a
location from the list (if available) and transmits it to the robot.

Our simulations replicate the physical dimensions of the robots, their speed
while traveling and searching, and the area over which they can detect an RFID
tag, with spatial dimensions that reflect the distribution of tags in the 3 m area.
Like the real robots, simulated robots avoid collisions by turning to the right to
move past other robots, and search for a simulated hour.

We also simulated the behavior of the robots in a much larger area in which
tags are distributed in the same density but in such large numbers that even
large swarms of robots collect only a fraction of the available tags. We simulated
1, 3, 30, and 100 robots to observe the scaling properties of the system.

256 J. Hecker et al.

(a) Random (b) Clustered (c) Power law

Fig. 2. 32 RFID tags scattered in a ring between 50 cm and 200 cm in (a) the uniform
random distribution. The clustered distribution (b) has four piles of eight tags placed
at 90◦ intervals at 50, 100, 150, and 200 cm in relation to the central nest. The power
law distribution (c) uses piles of varying size and number: one large pile of eight tags
at 125 cm, two medium piles of four tags at 75 and 175 cm, four small piles of two tags
at 50, 100, 150, and 200 cm, and eight randomly placed tags.

4 Results

We analyze the rates at which robots retrieve tags from each distribution, indi-
vidually or in teams of three, in real robots and in simulation. Unless otherwise
noted, results for each experimental treatment are averaged over five robot ex-
periments and twenty simulations. Error bars indicate one standard deviation.

Time to collect 32 tags is shown in Fig. 3. In robots and in simulation, three
robots collect tags faster than one robot, however, the speedup varies over the
course of the experiments (i.e., the red and blue lines are not parallel). When
we average time to collect n tags, where n varies between 1 and the maximum
number of tags collected, we find that 3 robots collect tags approximately twice
as fast as 1 robot.

0 10 20 30
0

10

20

30

40

50

Number of tags

T
im

e
(m

in
ut

es
)

1 real
3 real
1 sim
3 sim

(a) Random

0 10 20 30
0

10

20

30

40

50

Number of tags

T
im

e
(m

in
ut

es
)

1 real
3 real
1 sim
3 sim

(b) Power law

0 10 20 30
0

10

20

30

40

50

Number of tags

T
im

e
(m

in
ut

es
)

3 real
3 sim

(c) Power law w/ pheromones

Fig. 3. Time for 1 and 3 robots, real and simulated, to collect tags arranged in (a)
random and (b) power law distributions using only site fidelity, and (c) for 3 robots on
a power law distribution using pheromones and site fidelity.

Formica ex Machina 257

Random Cluster Power law
0

0.2

0.4

0.6

0.8

T
ag

s
pe

r
m

in
ut

e

1 robot
3 robots

(a) Physical

Random Cluster Power law
0

0.2

0.4

0.6

0.8

T
ag

s
pe

r
m

in
ut

e

1 robot
3 robots

(b) Simulated

0

10

20

30

T
ag

s
pe

r
m

in
ut

e

1 robot
3 robots
30 robots
100 robots

(c) Simulated, large world

Fig. 4. Rate of tag discovery per minute of experiment time for 1 and 3 (a) physical
and (b) simulated robots in the 3 m area using only site fidelity, as well as (c) 1, 3,
30, and 100 simulated robots collecting tags in a large world with site fidelity and
pheromones.

Figure 4 shows the the rate of tag collection per minute of experiment time
for physical and simulated robots. Each bar denotes the collection rate over a
particular tag distribution. We were not able to distinguish a significant effect
of tag distribution on tag collection rate by the robots (General Linear Model
[GLM]: p > 0.1; n = 18); but we did find a significant effect of distribution on
tag collection rate using the larger sample size in simulation (GLM: p < 0.001;
n = 120). In the simulations, the fastest tag collection was in the clustered
distribution, followed by power law and then random distributions.

5 Discussion

We used ABMs and GAs to translate foraging behaviors of seed harvesting ants
into algorithms for teams of RFID tag–seeking robots. We tested two algorithms:
one in which robots rely on individual memory of locations of previously found
tags (mimicking site fidelity), and one in which robots share tag locations as
waypoints (mimicking pheromones) via a server that acts as the robots’ nest.

Three robots find tags approximately twice as fast as 1 robot when using
site fidelity. Site fidelity is an effective foraging strategy in ants and robots.
It is extremely simple and easily encoded into very simple devices, including
devices much simpler than the robots we used here. The approach is also highly
parallelizable because it requires no communication among robots or the server.

Our approach, similar to [7], lays a foundation to explore the interplay between
simulation and experiments with real robots. Simulated and real experiments
with 1 and 3 robots using site fidelity show similar foraging rates (Fig. 3(a),(b)
and Fig. 4(a),(b)), although simulated robots are slightly faster. This results from
real robots having more difficulty with avoiding each other, physical hardware
limitations, imperfect localization, and the possibility that real robots confuse
each other with the nest.

Simulated foraging is highly scalable whether using site fidelity alone, or site
fidelity augmented with pheromones when multiple tags are found in the same

258 J. Hecker et al.

location. When we scale up to 100 robots in unbounded environments with many
tags, teams of 100 robots collect resources 66 times faster than a single robot
(Fig. 4(c)). This 34% decline in per-robot efficiency results from increased travel
distance–an unavoidable consequence of central place foraging [14].

We implemented pheromone communication in real robots by having robots
report found tag locations to a central server. Mimicking a strategy that was
effective in our ant simulations, robots communicated a location as a waypoint
to the server if the robot saw at least 2 additional tags in the vicinity. The
server implements a simple pheromone algorithm and reports those locations
to other robots. When we add this pheromone-like behavior to our robots, we
observe robots clearing large clusters of tags faster; however, pheromones de-
creased the average tag collection rate in real robots relative to tag collection
using only site fidelity. We attribute the lack of success primarily to error propa-
gation: pheromones decrease performance when robots get lost and communicate
incorrect locations to other robots, similar to [1].

Our results suggest that the approach of combining individual memory with
communication at a central nest can transform simple robots into effective
swarms that are scalable and robust to the loss or malfunction of a few indi-
viduals. Results of our 3 robot experiments include several instances in which
one robot became lost or malfunctioned, but the other two robots continued their
task. Such systems could be used for search and rescue, searching for resources
or obstacles, and even biomedical applications using nano-robots.

Our next steps are to use a GA to optimize parameters that maximize effi-
ciency and/or robustness in the robot ABM, and then import those parameters
into the robots. For example, currently the robots report a pheromone to the
server if there are 2 or more additional tags in the local neighborhood of the last
tag found. We will use the GA to optimize the decision to lay pheromone and
follow pheromone trails vs. returning to the last site food was found, optimiz-
ing the balance between shared and private information. Preliminary analysis
suggests that the GA can evolve a pheromone-laying rule that significantly im-
proves foraging over our current implementation. We will also extend analysis
to different distributions, and will increase scalability by mimicking features of
large ant colonies such as the use of mobile nests and of multiple nests.

Acknowledgments. This work was funded by NSF EF #1038682 and DARPA
CRASH #P-1070-113237.

References

1. Bailis, P., Nagpal, R., Werfel, J.: Positional communication and private information
in honeybee foraging models. Swarm Intelligence, 263–274 (2010)

2. Banerjee, S., Moses, M.: Scale invariance of immune system response rates and
times: perspectives on immune system architecture and implications for artificial
immune systems. Swarm Intelligence 4(4), 301–318 (2010)

3. Beverly, B., McLendon, H., et al.: How site fidelity leads to individual differences in
the foraging activity of harvester ants. Behavioral Ecology 20(3), 633–638 (2009)

Formica ex Machina 259

4. Bonabeau, E., Dorigo, M., Theraulaz, G.: Swarm intelligence: from natural to
artificial systems. Oxford University Press, USA (1999)

5. Cao, Y., Fukunaga, A., Kahng, A.: Cooperative mobile robotics: Antecedents and
directions. Autonomous Robots 4(1), 7–27 (1997)

6. Deneubourg, J., Goss, S., Franks, N., Sendova-Franks, A., et al.: The dynamics of
collective sorting robot-like ants and ant-like robots. In: From Animals to Animats:
Proc. of the 1st Int’l Conf. on Simulation of Adaptive Behavior, pp. 356–363 (1991)

7. Dorigo, M., Floreano, D., et al.: Swarmanoid: a novel concept for the study of
heterogeneous robotic swarms. Tech. rep., Technical Report TR/IRIDIA/2011-014,
IRIDIA, Université Libre de Bruxelles, Brussels, Belgium (2011)

8. Dorigo, M., Sahin, E.: Swarm robotics–special issue editorial. Autonomous
Robots 17(2-3), 111–113 (2004)

9. Dorigo, M., Trianni, V., Şahin, E., Groß, R., Labella, T., et al.: Evolving self-
organizing behaviors for a swarm-bot. Autonomous Robots 17(2), 223–245 (2004)

10. Flanagan, T., Letendre, K., Moses, M.E.: Quantifying the Effect of Colony Size
and Food Distribution on Harvester Ant Foraging. PLoS ONE (in review)

11. Flanagan, T., Letendre, K., et al.: How Ants Turn Information into Food. In:
Proceedings of the 2011 IEEE Conference on Artificial Life, pp. 178–185 (2011)

12. Gordon, D.: The spatial scale of seed collection by harvester ants. Oecologia 95(4),
479–487 (1993)

13. Hölldobler, B.: Recruitment behavior, home range orientation and territoriality in
harvester ants, Pogonomyrmex. Behav. Ecol. and Sociobio. 1(1), 3–44 (1976)

14. Krieger, M., Billeter, J., Keller, L.: Ant-like task allocation and recruitment in
cooperative robots. Nature 406, 992–995 (2000)

15. Letendre, K., Moses, M.E.: Ant foraging strategies: Site fidelity and recruitment
alone and in combination (in review)

16. Mayet, R., Roberz, J., Schmickl, T., Crailsheim, K.: Antbots: A feasible visual
emulation of pheromone trails for swarm robots. Swarm Intell., 84–94 (2011)

17. Moeslinger, C., Schmickl, T., Crailsheim, K.: Emergent flocking with low-end
swarm robots. Swarm Intelligence, 424–431 (2011)

18. Mondada, F., Pettinaro, G., Kwee, I., Guignard, A., Gambardella, L., Floreano,
D., Nolfi, S., Deneubourg, J., Dorigo, M.: SWARM-BOT: A swarm of autonomous
mobile robots with self-assembling capabilities. In: Proc. of the Intl. Workshop on
Self-organisation and Evolution of Social Behaviour, pp. 307–312 (2002)

19. Moses, M., Banerjee, S.: Biologically Inspired Design Principles for Scalable, Ro-
bust, Adaptive, Decentralized Search and Automated Response (RADAR). In: Pro-
ceedings of the 2011 IEEE Conference on Artificial Life, pp. 30–37 (2011)

20. Moses, M.: Metabolic scaling from individuals to societies. Ph.D. thesis, University
of New Mexico (2005)

21. Mull, J., MacMahon, J.: Spatial variation in rates of seed removal by harvester
ants (Pogonomyrmex occidentalis) in a shrub-steppe ecosystem. Am. Nat. (1997)

22. Nolfi, S., Florin, D.: Evolutionary robotics: The biology, intelligence, and technol-
ogy of self-organizing machines. MIT Press (2000)

23. Parker, L.: Designing control laws for cooperative agent teams. In: IEEE Interna-
tional Conference on Robotics and Automation, pp. 582–587. IEEE (1993)

24. Sharkey, A.: Robots, insects and swarm intelligence. Artificial Intelligence Re-
view 26(4), 255–268 (2006)

25. Trianni, V., Nolfi, S.: Engineering the Evolution of Self-Organizing Behaviors in
Swarm Robotics: A Case Study. Artificial Life 17(3), 183–202 (2011)

26. Wittlinger, M., Wehner, R., Wolf, H.: The ant odometer: stepping on stilts and
stumps. Science 312(5782), 1965 (2006)

Improving Peer Review with ACORN: ACO

Algorithm for Reviewer’s Network

Mark Flynn and Melanie Moses

Computer Science Department
University of New Mexico, Albuquerque, NM, USA

mflynn@unm.edu, melaniem@cs.unm.edu

Abstract. Peer review, our current system for determining which pa-
pers to accept for journals and conferences, has limitations that impair
the quality of scientific communication. Under the current system, each
paper receives an equal amount of attention regardless of how good the
paper is. We propose to implement a new system for conference peer re-
view based on ant colony optimization (ACO) algorithms. In our model,
each reviewer has a set of ants that goes out and finds articles. The
reviewer assesses the paper that the ant brings and the reviewer’s ants
deposit pheromone that is proportional to the quality of the review.
Subsequent ants select the next article based on pheromone strength.
We used an agent-based model to determine that an ACO-based paper
selection system will direct reviewers’ attention to the best articles and
correctly rank them based on the papers’ quality.

1 Introduction

The peer review system is the cornerstone of the vast majority of modern scien-
tific communication. It is the method for determining which research is suitable
for dissemination and where it should appear. Despite the success of the cur-
rent system, there are some disadvantages of peer review. There are questions of
fairness and bias towards established authors, and how big a role chance plays
in determining whether a paper is accepted[15]. Computer science publishing is
based on conference proceedings. A small group of reviewers is tasked with de-
termining which papers are suitable for presentation at the conference and later
inclusion in the proceedings and also assigning them to groups based on the
paper’s topic. The restricted pool of reviewers means that each reviewer must
assess many papers and each paper can only be seen by a few reviewers. Fur-
thermore, each paper receives the same amount of attention from the reviewers
regardless of how good the paper is. Peer review purports to objectively deter-
mine which papers are suitable for publication. However, when this has been
tested experimentally, the probability that reviewers agree with each other is no
better than chance[17] and that the process is very poor at identifying flaws[8].

ACO algorithms have been used to efficiently allocate limited resources, such
as for the traveling salesperson problem (TSP)[19], engineering applications such
as the design of VLSI chips[1] network routing[12] and data mining[16]. The

M. Dorigo et al. (Eds.): ANTS 2012, LNCS 7461, pp. 260–267, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

ACORN: ACO Algorithm for Reviewer’s Network 261

ACO algorithm is a metaheuristic that has been used to solve combinatorial
optimization problems.

We propose to implement a new system for computer science peer review based
on ant colony optimization (ACO) algorithms. In our model, each reviewer has
a set of ants that goes out and finds articles. The reviewer assesses the paper
that the ant brings according to the criteria specified by the conference organizers
and the ant deposits pheromone that is proportional to the quality of the review.
Each subsequent ant then samples the pheromones and probabilistically selects
the next article based on the strength of the pheromones. We used an agent-
based model (ABM) to determine if an ACO-based paper selection system will
direct reviewers’ attention to the best articles and if the average quality of papers
increases with each round of reviews. Additionally, if the goal is to determine
which papers will be accepted, the model can also be used to determine which
papers exceed a given cutoff. For example, if the conference can only accept the
top 40% of the papers they receive; those papers that are closest to the cutoff
would receive the most scrutiny. We also looked at the sensitivity of the model
to amount of agreement on paper quality and the degree of trust among the
reviewers on convergence of the model on the target paper quality. To assess the
utility of our approach, we compared our algorithm to a recommender system
based on latent factor analysis.

2 Methods

To test whether our ACO network would be useful for evaluating and sorting
papers for a CS conference, we simulated the peer review process using an agent-
based model. The agents in this model are ants that search through the papers
and bring them to the reviewers. Paper quality was modeled as a normal distri-
bution. The mean of the distribution was a quality score which could be consid-
ered the ground truth. This would be the paper’s score if it was reviewed by a
large number of reviewers such that further reviews would be unlikely to change
the score. Each of these means was drawn from an overall normal distribution
in order to reflect the diversity of papers a conference is likely to receive, and
the amount of diversity was determined by the distributions standard deviation.
This overall standard deviation controlled how dissimilar the paper qualities
were. Each paper had its own standard deviation, for its own distribution which
determines how widely the reviews for the paper can vary. The higher the pa-
per’s standard deviation, the less likely different reviewers will agree with each
other. This was a parameter of the model that we varied to examine the effect
of reviewer agreement on the ability of the network to converge on the target
paper score.

Another factor we considered was reviewer bias; each reviewer may have a
tendency to rate papers either higher or lower than the mean. We modeled this
by skewing the normal distribution from which the paper scores were drawn
by a factor that was unique for each reviewer. This skew factor was chosen by
randomly selecting a factor from a normal distribution with a 0 mean and a

262 M. Flynn and M. Moses

standard deviation which was varied from 0 to 4 to determine the effect of the
amount of bias on the algorithm’s ability to pick the best papers. Each review
consisted of selecting a score from this skewed normal distribution.

To ensure that each paper was reviewed at least once, each ant randomly
selected a paper until all papers had received one review. The reviewers selected
the score (on a scale of 1 to 10) from the skewed normal distribution and placed a
pheromone trail to the paper that is equal to the reviewers score. For subsequent
rounds of reviews, the ants sample the pheromone trails and select the next
paper for review probabilistically based on the average quality of the reviews for
each paper up to that point. Since paper quality is static, we did not include
evaporation as has been done for other implementations of the ACO algorithm
[18]. The probability of a paperi being selected by reviewerj was determined
using an exponential equation:

pij =

⎧⎨
⎩

b(τ̄i−τμ)∑
i∈Nj

b(τ̄i−τμ) if i ∈ Nj ,

0 otherwise.
(1)

Where Nj is the list of unread papers for reviewerj , τ̄i is the mean pheromone
value for the ith paper, τμ is the average pheromone value for all papers. The
base factor, b, reflects how much the reviewers trust the opinions of the other
reviewers. The effect of this equation is that the higher the base factor, the more
likely that the papers other reviewers rated highly are selected. The exponential
form was chosen for (1) to implicitly model the positive feedback effect of ants
reinforcing pheromone trails. The base factor was the same for each paper. We
varied b between 1 and 2 to investigate the role of trust in directing reviewers
attention to the best papers.

To assess how our algorithm matches up to other methods for selecting pa-
pers, we compared our algorithm with other methods for selecting papers to be
reviewed. First we used a greedy algorithm that always selected the best paper
that the reviewer has not reviewed yet. Unlike our ant-based algorithm, papers
were selected deterministically based on the quality of the previous reviews, in-
stead of probabilistically. Next, we tried recommender system algorithms, which
are used extensively by online retailers to direct customers to products they
might like[14]. We used a type of recommender system called collaborative fil-
tering where the previous history of reviews is used to predict whether a user
will like other items. We used a type of collaborative filtering called latent factor
analysis[3] to detect underlying patterns in the user-response matrix (URM) to
predict ratings for un-reviewed papers. Reviewers were directed to the papers
that the algorithm predicted would get the highest score for that reviewer. One
problem inherent to collaborative filtering is making recommendations when
there is no history. We used the greedy algorithm when the recommender al-
gorithm was unable to select a new paper. This is not a problem for the ACO
algorithm since it assumes that all users will have similar opinions about all of
the items.

ACORN: ACO Algorithm for Reviewer’s Network 263

We compared the ability of each algorithm (ACO, greedy and SVD) to pick the
best paper given the variability of the papers and the biases of the reviewers. We
determined the correlations between the a priori paper quality (the ground truth
that was determined before the simulation was run) and the number of reviews
the paper received. We also determined the correlation between paper quality
and the average quality of the papers reviewed for each round of reviews. Each
round was considered one time step and the pheromone trails were updated after
each review. Each simulation was run 20 times to average the variability due to
the stochastic elements of the simulations. We analyzed the response of the three
algorithms to varying levels of reviewer bias by varying the standard deviation
of the zero-mean normal distribution from which the skew factors were drawn
and the effects of paper quality variability by varying the standard deviation
of the distribution from which the paper means are drawn. The skew factor for
each reviewer determines the amount the paper score distribution deviates from
the normal distribution, while the standard deviation determines the width of
the normal distribution. Each paper would then consist of a unique distribution
for each reviewer determined by the mean and standard deviation for that paper
and the skew factor for the reviewer.

3 Results

Our goal was to determine whether an ACO algorithm could direct reviewers’
attention to the simulated papers that were deemed most important. First, we
tested the ability of our algorithm to determine which papers were the best
(based on the quality assigned at the beginning of the simulation) and how
sensitive this determination was to variation in the parameters. The base factor
(b) was set to 2 and the standard deviation of the paper reviews was set to 2.
We found that there was a positive correlation between the quality of a paper
and the number of reviews it receives (Fig. 1).

To determine the interaction between base factor and the standard deviation
of the paper scores, the Pearson product-moment correlation coefficient was
computed for each combination of base factor and standard deviation. Figure 2
shows the effects of these interactions on the correlation of the number of papers
a reviewer has evaluated up to that point and the quality of the papers reviewed.
There was a large increase in this correlation between 1 and 1.25 and then the
correlation plateaued above 1.5. This correlation was less sensitive to decreasing
the amount of agreement among reviewers.

The number of reviews a paper received was also very dependent on the b
for values between 1 and 1.25 and plateaued above 1.5. However, the effect of
increasing the variability of the reviews was much less; there were only significant
decreases for values of b equal to 1.5 or below (Table 1).

We compared the performance of the ACO, greedy and recommender algo-
rithms in their ability to find the best paper. Figure 3 shows that all three were
able to direct the ants to the best papers, with the ACO and greedy algorithms
outperforming the recommender system.

264 M. Flynn and M. Moses

11

10

9

8

7

6

5

4

3

2

1

0
11109876543210

N
u

m
b

er
 o

f r
ev

ie
w

s

Paper quality

Fig. 1. Plot of number of reviews (±SEM) for each paper of a given quality. Higher
quality papers receive more reviews.

C
o

rr
el

at
io

n
 b

et
w

ee
n

 p
ap

er
 q

u
al

it
y

an
d

n
u

m
b

er
 o

f r
ev

ie
w

s
(M

ea
n

 ±
 S

EM
)

Mean of distribution for paper standard deviations

1

0.5

0

-0.5
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

b=1
b=1.5
b=1.75
b=2

Fig. 2.Decreasing the influence of other reviewers opinions on paper selection decreases
correlation between paper quality and the number of reviews a paper receives

Table 1. correlations (r) and significance values (p) for paper quality vs. number of
reviews

b = 1 b= 1.25 b = 1.5 b = 1.75 b = 2

r -0.1313 -0.6248 -0.4827 -0.1910 0.0431
p 0.4131 0.0000 0.0014 0.2316 0.7891

ACORN: ACO Algorithm for Reviewer’s Network 265

ACO
Greedy
SVD

12

10

8

6

4

2

0
0 2 4 6 12108

N
u

m
b

er
 o

f r
ev

ie
w

s

Paper quality

Fig. 3. Comparison of ACO, greedy and recommender algorithms

None of the algorithms were affected by the amount of skew in the range that
was tested (p= 0.6344, 0.1632, 0.3079, respectively). Both the ACO and greedy
algorithms were significantly different from the recommender algorithm (p <
0.0001 for both) while the ACO algorithm was better than the greedy algorithm
(p < 0.001). When we tested the ability of all three algorithms to correctly rank
papers, however, we found that the ACO algorithm was better at determining
where the papers should be ranked (Fig. 4).

4 Conclusion

We found that our system for changing the peer review process can successfully
direct reviewers attention to the best papers. The best papers received the most
reviews and the algorithm could rank the papers correctly. We found that the
ACO algorithm was robust to decreasing reviewer agreement while remaining
sensitive to changes in the base factor necessary for emphasizing the best pa-
pers. Changing the goal to selecting papers nearest to a cutoff for acceptance is
equivalent to selecting the best paper, since it is only a matter of rescaling the
paper scores by distance from the cutoff. This would favor the papers nearest
the cutoff instead of the papers that received the best reviews.

While all three algorithms were able to find the best papers, the ACO-based
algorithm was more robust to inaccurate reviews. The probablistic nature of
the ACO algorithm was less sensitive to errors. While both algorithms use pos-
itive feedback to increase the likelihood that the best papers are selected for
reviews[7], the greedy algorithm is more susceptible to errors since it always
takes the best paper available and if a low quality paper is given an overly gen-
erous first review the network is less able to recover. The probabilistic ACO

266 M. Flynn and M. Moses

ACO
Greedy
SVD

A
ve

ra
g

e
ra

n
kd

 d
iff

er
en

ce
 p

er
 p

ap
er

 (±
 S

EM
)

Review number
0 5 10 15 20 25 30 35 40 45

1.1

1

0.9

0.8

0.7

Fig. 4. Comparison of paper ranking by ACO, greedy and recommender algorithms

algorithm exhibits better fault-tolerance because in a sense it is exploring mul-
tiple solutions in parallel[7], while the greedy algorithm converges on the best
solution at the time, even if it is not close to the optimal. While the reason for
the poor performance by the recommender system has not been determined, one
possibility could be a problem inherent to this type of algorithm. Collaboration-
based recommender systems rely on patterns in the user-item matrix. Especially
in the beginning, the user-response matrix is very sparse and so it is unlikely
that the performance of the recommender system could be improved.

Acknowledgments. This work was funded by NSF EF #1038682 and DARPA
CRASH #P-1070-113237.

References

1. Arora, T., Moses, M.: Using ant colony optimization for routing in VLSI. In: 1st
International Conference on Bio-Inspired Computational Methods Used for Dif-
ficult Problem Solving: Development of Intelligent and Complex Systems. AIP
Conference Proceedings, pp. 145–156 (2009)

2. Beckers, R., Deneubourg, J.L., Goss, S.: Trails and U-turns in the Selection of a
Path by the Ant Lasius niger. J. Theor. Biol. 159, 397–415 (1992)

3. Bell, R., Koren, Y., Volinsky, C.: Matrix Factorization Techniques for Recom-
mender Systems. IEEE Computer Society 42, 30–37 (2009)

4. Chubin, D.E., Hackett, E.J.: Peer review and the printed word. In: Peerless Science:
Peer Review and U.S. Science Policy. SUNY Press, Albany (1990)

5. Deneubourg, J.L., Lioni, A., Detrain, C.: Dynamics of aggregation and emergence
of cooperation. Biol. Bull. 202, 262–267 (2002)

6. Deneubourg, J.L., Pasteels, J.M., Verhaeghe, J.C.: Probablistic Behaviour in Ants:
A Strategy of Errors? J. Theor. Biol. 105, 259–271 (1983)

ACORN: ACO Algorithm for Reviewer’s Network 267

7. Dorigo, M., Maniezzo, V., Colorni, A.: The Ant System: Optimization by a colony
of cooperating agents. IEEE Transactions on Systems, Man, and Cybernetics Part
B: Cybernetics 26, 29–41 (1996)

8. Godlee, F., Gale, C.R., Martyn, C.N.: Effect on the quality of peer review of blind-
ing reviewers and asking them to sign their reports: a randomized controlled trial.
JAMA 280, 237–240 (1998)

9. Goss, S., Aron, S., Deneubourg, J.L., Pasteels, J.M.: Self-organized shortcuts in
the Argentine ant. Naturwissenschaften 76, 579–581 (1989)

10. SVD Recommendation System in Ruby,
http://www.igvita.com/2007/01/15/svd-recommendation-system-in-ruby

11. Grimm, V.B., et al.: Ecological Modelling 198, 115-126 (2006)
12. Kwang, M.S., Weng, H.S.: Ant colony optimization for routing and load-balancing:

survey and new directions. IEEE Transactions on Systems, Man and Cybernetics,
Part A: Systems and Humans 33, 560–572 (2003)

13. Melville, P., Mooney, R.J., Nagarajan, R.: Content-Boosted Collaborative Filter-
ing for Improved Recommendations. In: Proceedings of the Eighteenth National
Conference on Artificial Intelligence, AAAI 2002, pp. 187–192 (2002)

14. Melville, P., Sindhwani, V.: Recommender Systems. In: Sammut, G., Webb, G.
(eds.) Encyclopedia of Machine Learning. Springer, Berlin (2010)

15. Neff, B.D., Olden, J.D.: Is Peer Review a Game of Chance? Bioscience 56, 333–340
(2006)

16. Parpinelli, R.S., Lopes, H.S., Freitas, A.A.: Data mining with an ant colony opti-
mization algorithm. IEEE Transactions on Evolutionary Computation 6, 321–332
(2002)

17. Rothwell, P.M., Martyn, C.N.: Reproducibility of peer review in clinical neuro-
science. Is agreement between reviewers any greater than would be expected by
chance alone? Brain 123(pt 9), 1964–1969 (2000)

18. Dorigo, M., Birattari, M., Stützle, T.: Ant Colony Optimization: Artificial Ants as
a Computational Intelligence Technique. IEEE Computational Intelligence Maga-
zine 1, 39 (2006)

19. Dorigo, M., Gambardella, L.M.: Ant colony system: a cooperative learning ap-
proach to the traveling salesman problem. IEEE Transactions on Evolutionary
Computation 1, 53–66 (1997)

http://www.igvita.com/2007/01/15/svd-recommendation-system-in-ruby

Learning Finite-State Machines

with Ant Colony Optimization

Daniil Chivilikhin and Vladimir Ulyantsev

Saint-Petersburg National Research University of Information Technologies,
Mechanics and Optics, Saint-Petersburg, Russia

chivilikhin.daniil@gmail.com

Abstract. In this paper we present a new method of learning Finite-
State Machines (FSM) with the specified value of a given fitness function,
which is based on an Ant Colony Optimization algorithm (ACO) and a
graph representation of the search space. The input data is a set of events,
a set of actions and the number of states in the target FSM and the goal
is to maximize the given fitness function, which is defined on the set of
all FSMs with given parameters. Comparison of the new algorithm and
a genetic algorithm (GA) on benchmark problems shows that the new
algorithm either outperforms GA or works just as well.

1 Introduction

Finite-state machines can be applied to various problems. FSMs have proven
to be a good representation of agent strategies [1]. They are also used as effi-
cient representations of large dictionaries [2]. In a programming paradigm called
automata-based programming [3] FSMs are used as key components of software
systems.

The problem of inducting finite-state machines for a given fitness function
has drawn the attention of many researchers. The common approach to this
problem is the use of various evolutionary algorithms (EA). In [1] Spears and
Gordon used evolutionary strategies (ES) to learn FSMs for the Competition
for Resources problem. In [4] and [5] a GA was used for inducting a FSM from
test examples with a special crossover operator based on tests. In [2] Lucas and
Reynolds used an EA to learn deterministic finite automata from labeled data
samples. Another GA was used in [6] to build an optimal solution of the John
Muir food trail problem. EA have proven to be efficient in cases when FSMs
cannot be built heuristically.

The optimization problem we are solving is formulated in the following way:
given the number of states N , a set of events Σ and a set of actions Δ build a
FSM with the specified target value of the fitness function f .

We propose a new local-search heuristic method of learning FSMs based on
ACO and compare it with GA in terms of performance.

M. Dorigo et al. (Eds.): ANTS 2012, LNCS 7461, pp. 268–275, 2012.
© Springer-Verlag Berlin Heidelberg 2012

Learning FSMs with ACO 269

2 ACO Overview

In ACO, the solutions are built by a set of artificial ants which use a stochas-
tic strategy. The solutions can be represented either as paths in the graph, or
simply by graph vertices. Each edge (u, v) of the graph (u and v are vertices of
the graph) has an assigned pheromone value τuv and can also have an associ-
ated heuristic distance ηuv. The pheromone values are modified by the ants in
the process of solution construction, while the heuristic distances are assigned
initially and are not changed. An ACO algorithm consists of three major steps
which are repeated until a viable solution is found or a stop criterion is met. In
the first step — ConstructSolutions— each ant explores the graph following a
certain path. The ant chooses the next edge to visit according to the pheromone
value and heuristic distance of this edge. When an edge has been selected, the
ant appends it to its path and moves to the next node. In the next stage —
UpdatePheromones — the pheromone values of all graph edges are modified.
A particular pheromone value can increase if the edge it is associated with has
been traveled by an ant or it can decrease due to evaporation. The amount of
pheromone that each ant deposits on a graph edge depends on the quality of the
solution built by this ant, which is measured by the fitness function value of this
solution. On the last (optional) stage — DaemonActions — some procedure is
executed performing actions that cannot be performed by individual ants.

When we apply ACO to FSM generation we have to deal with huge graphs,
sometimes consisting of several millions vertices. In our work we apply a variation
of the expansion technique introduced in [7] – we limit the ant path lengths to
reduce the size of the graph we store in memory.

3 Finite-State Machines and Search Space Representation

We formally define a finite-state machine as a sextuple (S,Σ,Δ, δ, λ, s0). Here,
S is a set of states, Σ is a set of input events, Δ is a set of output actions.
δ is a transition function mapping a state and an event to another state, i.e.
δ(s, e) = t, where s, t ∈ S , e ∈ Σ. λ is a transition function mapping a state
and an event to an output action, i.e. λ(s, e) = a, where s ∈ S, e ∈ Σ, a ∈ Δ
and s0 is the initial state.

Informally speaking, a mutation of a FSM is a small change in its structure.
In this work we consider two FSM mutation types:

– Change transition end state. For a random transition in the FSM, the
transition’s end state is set to another state selected uniformly randomly
from the set of all states S.

– Change transition action. For a random transition in the FSM, the tran-
sition’s output action is set to another action selected uniformly randomly
from the set of actions Δ.

The search space, which is a set of all FSMs with the specified parameters, is
represented in the form of a directed graph G with the following properties:

270 D. Chivilikhin and V. Ulyantsev

– the vertices of G are associated with FSMs;
– let u be a vertex associated with FSM A1 and v be a vertex associated with

FSM A2. If machine A2 lays within one mutation from A1 then G contains
edges u → v and v → u. Otherwise, nodes u and v are not connected with
an edge.

For each pair of FSMs A1 and A2 and the corresponding pair of vertices u and
v, there exists a path in G from u to v and also from v to u.

4 The Proposed Algorithm

The overall scheme of our algorithm complies with the classical ant colony opti-
mization algorithm with a few modifications. First we generate an initial random
solution. While stagnation is not reached, the artificial ants select paths in the
graph, building it in process and deposit pheromone on the graph edges.

4.1 Path Construction

First we need to select a node for each ant to start from. If the graph is empty,
we generate a random initial solution (a FSM) and place all the ants into the
node associated with that solution. This random initial solution is generated
by randomly defining the transition functions of a FSM with a fixed number
of states. If the number of nodes in the graph is greater than zero, then the
start nodes for the ants are selected randomly from the list of nodes in the best
path — a path traveled by a certain ant leading to the solution with the highest
fitness function value.

Let the artificial ant be located in a node u associated with FSM A. If this
node has successors, then the ant selects the next node v to visit according to the
rules discussed below — search space expansion and stochastic path selection.

Search Space Expansion. With a probability of pnew the ant attempts to
construct new edges of the graph by making Nmut mutations of A. The proce-
dure of processing a single mutation of machine A is as follows:

– construct a mutated FSM Amutated;
– find a node t in graph G associated with Amutated. If G does not contain

such a node, construct a new node and associate it with Amutated;
– add an edge (u, t) to G.

After all Nmut mutations have been made, the ant selects the best newly con-
structed node v and moves to that node.

Stochastic Path Selection. With a probability of (1 − pnew) the ant stochas-
tically selects the next node from the existing successors set Nu of node u. Node
v is selected with a probability defined by the classical ACO formula:

puv =
ταuv · ηβuv∑

w∈Nu
ταuw · ηβuw

, (1)

Learning FSMs with ACO 271

where v ∈ Nu and α, β ∈ [0, 1]. In our algorithm all the heuristic distances
ηuv are considered to be equal and do not influence path selection, β does not
influence path selection and α equals one at all times.

If u does not have any successors, then the next node is selected according to
the search space expansion rule with a probability of 1.0.

4.2 Controlling Graph Growth

We use the following mechanisms for controlling the graph growth rate:

– each ant is given at most nstag steps to make without an increase in its best
fitness value. When the ant exceeds this number, it is stopped;

– the whole colony of artificial ants is given at most Nstag iterations to run
without an increase in the best fitness value. After this number of iterations
is exceeded, the algorithm is restarted.

4.3 Pheromone Update

For each graph edge (u, v) we store Δτbestuv – the best pheromone value that any
ant has ever deposited on edge (u, v). For each ant path, a sub-path is selected
that spans from the start of the path to the best node in the path. The values

of Δτbestuv are updated for all edges along this sub-path. Next, for each graph
edge (u, v), the pheromone value is updated according to the classical formula:

τuv = ρτuv +Δτbestuv , (2)

where ρ ∈ [0, 1] is the evaporation rate.

5 Experimental Evaluation

To evaluate the efficiency of our algorithm, we applied it to the following
problems:

– inducting finite-state transducers based on test examples [4] [5];
– inducting a finite-state machine for the John Muir food trail problem [6].

5.1 Inducting FSMs from Test Examples

Fitness Evaluation Method. The input data for this problem is the set of
possible events, the set of possible actions, the number of states in the target
FSM and a set of test examples. Each of the test examples consists of an events
sequence Inputs[i] and a corresponding actions sequence Actions[i]. For fit-
ness function evaluation, each events sequence Inputs[i] is given as input to the
FSM, and the resulting output sequence Outputs[i] is recorded. After running
the FSM on all test examples, the following value is calculated:

FF1 =
1

n

n∑
i=1

(
1− ED (Outputs[i], Actions[i])

max (|Outputs[i]| , |Actions[i]|)

)
(3)

272 D. Chivilikhin and V. Ulyantsev

Here, n is the number of test examples and ED (s1, s2) denotes the edit distance
between strings s1 and s2. The final expression for the fitness function has the
form:

FF2 = 100 · FF1 +
1

100

(
100− ntransitions

)
(4)

Here, ntransitions is the number of transitions in the FSM. Note that we do
not evolve the output sequences on the FSM transitions — we use a technique
introduced in [5] and used in [4] called smart transition labeling. The idea is
to evolve the numbers of output actions for each transition instead of the out-
put sequences themselves. The output sequences for each transition are selected
optimally using a simple algorithm based on test examples.

Alarm Clock Problem Description. An alarm clock has three buttons for
setting the current time, setting the alarm to a specific time and turning it on or
off. The alarm clock has two operation modes – one mode for setting the current
time and another one for setting the alarm time. When the alarm is off, the
user can push the buttons H and M to increment the hours and minutes of the
current time respectively. If the user presses the A button, the clock is switched
to the alarm setting mode. In this mode the same buttons H and M are used
to adjust the time when the alarm should sound. When the user presses the A
button in this mode, the alarm is set to go off when the current time will be
equal to the alarm time. When the alarm is ringing, the user can press the A
button to switch it off, however it will automatically turn off after one minute.
The alarm clock also contains a timer that increments the current time each
minute. This system has four input events and seven output actions.

We compare the efficiency of our algorithm with the results obtained in [6]
using a GA. The goal of the experiment was to generate a heuristically built
FSM that satisfies all the test examples, has three states and 14 transitions.

Experiment. In the experiment we searched for the solution among FSMs with
four nominal states following the experimental setup in [5]. Our algorithn had
the following values of parameters: N — 5, ρ — 0.5, nstag — 20, Nstag — 4,
Nmut —20, pnew — 0.6.

We have performed 1000 runs of our algorithm and also 1000 runs of the GA
and measured the average number of fitness evaluations used to generate the
target FSM. Results show that the ACO algorithm required an average of 53944
fitness evaluations, while GA required more than twice as much — an average
of 117977 fitness evaluations. The transition diagram of one of the constructed
FSMs is shown on Figure 1. The start state on this diagram and all the other
diagrams in this paper is always state 1.

5.2 The Food Trail Problem

Problem Description. The food trail problem, described in [8], is considered
to be a benchmark problem for testing the performance of evolutionary algo-
rithms. The objective is to find a program controlling an agent (called an ant) in

Learning FSMs with ACO 273

H / z1 M / z2

A

H / z1 M / z2

AA / z7

H / z3 M / z4

T / z5 T / z5

T [x1] /z5z6 T [x2] / z5z7

T[~x1&~x2] / z5

1 2

3

Fig. 1. Finite-state machine for the alarm clock problem

a game performed on a square toroidal field 32 by 32 cells. There are 89 pieces
of food (apples) distributed along a certain trail in this field. In the beginning of
the game, the ant is located in the leftmost upper cell and is looking east. The
field, food trail and the ant's position at the beginning of the game are shown
on Figure 2. The black squares indicate the food, the white squares are empty
and the gray squares show the trail.

The ant can determine whether the next cell contains a piece of food or not.
On each step it can turn left, turn right or move forward, eating a piece of food
if the next cell contains one. The target controlling program must allow the ant
to eat all 89 apples in no more than 200 steps.

In this problem there are two input events – N (the next cell does not contain
an apple) and F (the next cell contains an apple) and three output actions: L
(turn left), R (turn right) and M (move forward).

The solution proposed in [3] is to build a finite-state machine controlling the
ant. The authors of [6] achieved the best-known solution of this problem using
GA. The generated FSMs contained seven states and allowed the ant to eat all
89 apples in less than 200 steps. The construction of such a FSM in two different
experiments took the GA 160 and 250 million fitness evaluations respectively.

Experiments. We have performed two different experiments on this problem.
In the first experiment we tried to search for the solution among FSMs with
seven states, copying the experimental setup of [6]. Our algorithm produced two
valid solutions after 143 and 221 million fitness evaluations correspondingly. For
the second experiment, we chose to expand the search space and search for the
target FSM among FSMs with 12 states. We still wanted the solution FSM to
contain only seven states, therefore we modified the classical fitness function:

f(A) = n+
200− nsteps

200
(5)

Here, A is the FSM, n is the number of eaten apples and nsteps is the number of
the step on which the ant ate the last apple. Our modified fitness function takes

274 D. Chivilikhin and V. Ulyantsev

into account the number of states visited by the FSM in the process of fitness
evaluation:

f(A) = n+
200− nsteps

200
+ 0.1 · (M −N) (6)

Here, M is the number of states in the initial FSM and N is the number of
visited states. We have performed 30 runs of our algorithm with the following
values of parameters: N — 10, ρ — 0.5, nstag — 40, Nstag — 200, Nmut —
40, pnew — 0.5. This experiment was performed for the ACO algorithm only,
because an experiment with the GA algorithm would require certain changes in
its code, which we did not have access to.

Results show that in this case our algorithm only requires an average of 37.29
million fitness evaluations to reach the desired solution. The transition diagram
of one of the generated FSMs is shown on Figure 3. This machine allows an ant
to eat all food in 189 steps.

Start

Fig. 2. The field in the food trail
problem (John Muir trail)

Fig. 3. Finite-state machine for the
food trail problem

6 Conclusion

We have developed an ACO-based local-search heuristic method of learning
finite-state machines for a given fitness function. ACO is used to find an op-
timal vertex in a graph, where vertices are associated with FSMs and edges are
associated with mutations of FSMs. The efficiency of the proposed algorithm
has been compared to GA on the problem of inducting FST from test examples
and on the John Muir food trail problem. On both problems our method has
either outperformed GA or worked just as well.

References

1. Spears, W.M., Gordon, D.E.: Evolving finite-state machine strategies for protecting
resources. In: Proceedings of the International Symposium on Methodologies for
Intelligeng Systems, pp. 166–175 (2000)

Learning FSMs with ACO 275

2. Lucas, S., Reynolds, J.: Learning dfa: Evolution versus evidence driven state merg-
ing. In: The 2003 Congress on Evolutionary Computation (CEC 2003), vol. 1, pp.
351–348 (2003)

3. Polykarpova, N., Shalyto, A.: Automata-based programming. Piter (2009) (in Rus-
sian)

4. Tsarev, F., Egorov, K.: Finite-state machine induction using genetic algorithm
based on testing and model checking. In: Proceedings of the 2011 GECCO
Conference Companion on Genetic and Evolutionary Computation (GECCO
2011), pp. 759–762 (2011), http://doi.acm.org/10.1145/2001858.2002085,
doi:10.1145/2001858.2002085

5. Tsarev, F.: Method of finite-state machine induction from tests with genetic pro-
gramming. Information and Control Systems (Informatsionno-upravljayushiye sis-
temy, in Russian) (5), 31–36 (2010)

6. Tsarev, F., Shalyto, A.: Use of genetic programming for finite-state machine gener-
ation in the smart ant problem. In: Proceedings of the IV International Scientific-
Practical Conference ”Integrated Models and Soft Calculations in Artificial Intelli-
gence”, vol. (2), pp. 590–597 (2007)

7. Alba, E., Chicano, F.: Acohg: dealing with huge graphs. In: Proceedings of
the 9th Annual Conference on Genetic and Evolutionary Computing (GECCO
2007), pp. 10–17 (2007), http://doi.acm.org/10.1145/1276958.1276961,
doi:10.1145/1276958.1276961

8. Koza, J.: Genetic Programming: On the Programming of Computers by Natural
Selection. MIT Press, Cambridge (1992)

http://doi.acm.org/10.1145/2001858.2002085
http://doi.acm.org/10.1145/1276958.1276961

Mobbing Behavior and Deceit and Its Role

in Bio-inspired Autonomous Robotic Agents

Justin Davis and Ronald Arkin

Mobile Robotics Lab, Georgia Institute of Technology, Atlanta, GA, USA
{justindavis,arkin}@cc.gatech.edu

Abstract. Arabian babblers are highly preyed upon avians living in the
Israeli desert. The survival of this species is contingent upon successful
predator deterrence known as mobbing. Their ability to successfully de-
fend against larger predators is the inspiration for this research with the
goal of employing new models of robotic deception. Using Grafen’s Dis-
honesty Model [8], simulation results are presented, which portend the
value of this behavior in military situations.

1 Introduction

Mobbing is an anti-predator behavior mainly displayed in cooperative birds but
can also be found in animals such as meerkats [7] and squirrels [10]. This behav-
ior is a prime example of the handicap principle which claims that signals with
a high cost must be honest [13]. One such model that incorporates deceit into
the handicap principle is Grafen’s Dishonesty Model [8]. Our research has cre-
ated a model based on Grafen’s approach. In our researchwe replicate situations
encountered during the mobbing process and determine when it is advantageous
to deceive. This research extends and expands our previous research in deceptive
behavior that focused on human models of cognition [11]. In that earlier work,
deception was defined simply as a false communication that benefits the com-
municator (from [4]), and we continue to use that definition in this paper. One
species often associated with the handicap principle that exhibits this mobbing
behavior is the Arabian Babbler. The observed behavior of this bird will serve
as the inspiration for the robotic simulation that follows.

In this research we model the mobbing process, most importantly group for-
mation during mobbing, integrate Grafen’s dishonesty model, and examine its
utility in the context of multiagent robotics. Our preliminary results are provided
via simulation studiesThe motivation behind this research is for determining
when to invoke robotic deception based on principles that transcend individual
biological species, specifically in situations when the reward for deceit outweighs
the cost of being caught. This can pertain to military operation. For example,
a robot that is threatened might feign the ability to combat adversaries: being
honest about the robot’s abilities risks capture or destruction while deception
could possibly drive away the threat. Feigning strength is a tactic used regularly
in military combat [2].

M. Dorigo et al. (Eds.): ANTS 2012, LNCS 7461, pp. 276–283, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Mobbing Behavior and Deceit in Bio-inspired Autonomous Robotic Agents 277

(a) (b)

Fig. 1. Mobbing Process for the Sentinel and the Individual Babbler

2 Mobbing Behavior

In this section, we develop the underlying behavior for the deception scenario
within which our model is tested. Mobbing is defined as the gathering of mem-
bers of a group around a potentially dangerous individual. The purpose of this
behavior is to deter and drive away potential predators [9]. While it is exhib-
ited by many different species, it is most commonly associated in avians. The
mobbing birds react to a perceived threat by surrounding it and cooperatively
harassing it, usually by making noises and flapping their wings.

A popular example of mobbing is displayed in the Arabian Babbler (Turdoides
squamiceps). In babblers, the behavior is determined by group makeup and
individual fitness. A group of babblers can consist of anywhere from 2 to 14
birds [13]. When a group begins to forage in a feeding area, a single babbler
assumes the role of sentinel [13]. The sentinel perches in the tree that gives it
the best view of its group and approaching predators [12].

The mobbing processes for the sentinel and individual babbler are shown
in figures 1a and 1b respectively. It begins when the sentinel spies a potential
danger. It responds by emitting an alarm. Upon hearing this alarm call, individ-
ual babblers congregate in the sentinel’s tree and assist in issuing these alarm
calls. If the predator still approaches the group and perches nearby, the babblers
approach and mob the predator. The predator responds by either leaving or
attacking one of the mobbing birds [13].

While there are several factors in determining the flock’s decision to mob,
the work described here focuses on an individual babbler’s perceived ability to
escape. This is the aspect of the mobbing process where deception will be injected
into the system. Here, a babbler may deceive regarding its fitness in order to

278 J. Davis and R. Arkin

deter the predator. While there is no direct evidence to suggest this occurs
in nature, it presents an interesting variation for robotic decisions regarding
feigning behavior.

2.1 Sentinel

The role of sentinel is usually assumed by the alpha male or another high-ranking
male [13]. For each group of babblers, there is only one sentinel at any given time.
In a natural setting, the sentinels change, but for the purposes of this simulation,
the sentinel will be predetermined and static.

2.2 Handicap Principle

The Handicap Principle, developed by Zahavi [13], states that if an animal wastes
its personal resources to produce a signal, then that signal must be honest. Its
application to mobbing is that babblers will not approach a predator if they do
not believe they can escape it. If the babbler does approach, it is wasting the
resources of cover from the trees and a head start to escape from the predator.
By wasting these resources, it is demonstrating that it can survive without them.
If it could not tolerate losing these resources and attempts to mob the predator
anyway, that babbler becomes vulnerable to an attack. In that case, the babbler
would not be able to survive should the predator decide to attack it, and thus
deceiving with respect to its low fitness was not the appropriate choice according
to the handicap principle.

2.3 Deception

The purpose of this research is to model the mobbing behavior and determine
what value it affords robots and what value is added by injecting deception
into the process. While Zahavi maintains that signals produced through wasted
resources must be honest, Grafen claims there can exist an acceptable level of
cheating that will keep the system stable [8]. Grafen details inequalities in which
cheating would be the best strategy for the signaler. The derived model is based
upon the Philip Sydney game [8].

2.4 Group Control

Mob formation does not have an exact spatial layout and positioning as was
the case in our earlier work on formations [3], but some spatial constraints de-
fine the mob structure. In earlier work [6], bird lekking behavior was used for
group formation in a different context. Utilizing this pre-existing group formation
behavior is an easy solution for implementation.

Mobbing Behavior and Deceit in Bio-inspired Autonomous Robotic Agents 279

3 Computational Model

3.1 Sentinel and Individual Behavior

The computational model for the sentinel behavior is shown in figures 2a and 2b,
and is derived from the behavioral processes shown in figures 1a and 1b. Each
component behavioral assemblage (an aggregation of primitive behaviors [1])
and their associated transitions (behavioral triggers) are described extensively
in the computational model section of [5](including for the predator).

(a) (b)

Fig. 2. Computational Model for the Sentinel and Indvidual Babbler

3.2 Grafen’s Dishonesty Model

Equation 1 is derived from Grafen’s dishonesty model [8].

X = 1 + t+ 2r(Sd− 1)

Mob

{
Yes Sb > X
No Sb ≤ X

(1)

where Sb is the individual babbler’s fitness, Sd is the predator’s fitness as per-
ceived by the individual babbler, r is the relatedness coefficient, and t is the cost
of signaling. X represents the risk associated with mobbing this predator. The
bounds of all parameters presented, with the exception of X, are 0 and 1. It
is important to note that the parameter Sd represents perceived fitness rather
than the actual fitness, which will be represented differently in the data analy-
sis. If the inequality is not satisfied, the individual remains in the tree until the
predator leaves.

280 J. Davis and R. Arkin

3.3 Deception in Mobbing

Dishonesty is incorporated into the computational model (after [8]) and is used
when the individual makes the choice whether to participate in mobbing or not.
If the system was entirely honest then the only factors involved in mobbing
would be the fitness of the predator and prey and the cost of the signaling. In
the honest situation, if the individual has fitness greater than the predator after
factoring in signaling cost, then it would always mob. Similarly, if the individual
was fitness deficient after subtracting the signal cost, then it would never partici-
pate in the completely honest situation. However, when incorporating deception,
a relatedness coefficient is included, which allows and influences deceptive be-
havior. The purpose is to determine when it is the most appropriate strategy
for an agent to engage in mobbing independent of whether it is an honest or
dishonest signal. Equation 1 assesses the risk of being attacked and devoured by
the predator. The higher the risk, the less likely the babbler will mob.

The relatedness coefficient, r, drives the decision to mob and expresses the
cooperation between predator and prey. The prey does not want to be chased,
and the predator wants an easy meal and to not waste energy during a chase [13].
As r increases, the agents are more likely to cooperate, the risk of being attacked
decreases, and the chance of mobbing should increase. This is in agreement with
equation 1, because predator fitness, Sd, is between 0 and 1. Subtracting 1 from
Sd means that r will be multiplied by a negative quantity, implying an inversely
proportional relationship. Figure 6 in [5] shows the relationship of each parameter
assuming a linear model.

4 Implementation

The computational model has been implemented in MissionLab1. This specific
research has only utilized the simulation aspect of MissionLab thus far but we
expect to port this model to Pioneer robots in the near future.

The implementation of mob behavior is constructed from multiple previously
developed behaviors (Appendices A-C in [5]). Mob formation around the preda-
tor is emulated using a sub-FSA containing the lek behavior [6]. For the ha-
rassment aspect of mobbing, the change-color behavior is utilized rather than
implementing any extravagant motor display. The transition between the mob
and harass state is probabilistic. This value is empirically assigned, as we have
not found supporting biological data regarding the frequency of harassment dur-
ing mobbing. After harassing is complete, its color returns to the original state,
and the agent is considered back in the mob state.

When being harassed, the predator detects green harassers. During each time
cycle, the predator’s current frustration value is incremented by 1 for each
harassing agent:

fcurrent = fprevious + n (2)

1 MissionLab is freely available for research and educational purposes at:
http://www.cc.gatech.edu/ai/robot-lab/research/MissionLab/.

http://www.cc.gatech.edu/ai/robot-lab/research/MissionLab/

Mobbing Behavior and Deceit in Bio-inspired Autonomous Robotic Agents 281

where fcurrent is the current frustration value, fprevious is the previous frustra-

tion value, and n is the number of harassing agents in a fixed time cycle. If the
frustration value exceeds a specified frustration threshold (ft =100, 125, or 150),
the predator leaves and the simulation terminates. If, however, s seconds elapse
(in this case arbitrarily 10) and the frustration threshold has not been exceeded,
the predator selects a random mobbing prey individual to attack. If the preda-
tor has a higher perceived fitness value than the prey individual it selects, then
that agent is considered to be bluffing, and the probability of that agent being
killed, Dl, is 95%. Conversely if the predator selects an honest mobbing agent,
the probability of this agent being killed, Dh, is set to either 5%, 10%, or 15%.
The chance of the predator killing an honest mobber is increased across different
analyses to represent the effect of a fitter predator.

Each non-sentinel prey evaluates equation 1 whenever in the presence of a
predator. Every agent that satisfies this inequality participates in mobbing upon
receiving the alarm call from the sentinel. In the results that follow, parameters
t, r, and Sd are held constant (t=0.1, r=0.75, Sd=0.5) while the parameters Sb
(fitness), ft (frustration threshold), and Dh (death probability for honest agents)
vary. The assigned value for Sb was either 0 (no participation), 0.4 (deceitful
participation), or 0.6 (honest participation). All combinations of honest and
dishonest mob groups were analyzed for group sizes of 2 through 7 babblers. ft
was assigned a value of 100, 125, or 150 with greater values representing a more
patient predator. Finally, the probability of an honest mobber being killed was
varied from 0.05, 0.10, and 0.15. As previously mentioned, there is a difference
between the perceived fitness, Sd, and the actual fitness. Varying Dh represents
changing actual fitness. Using the assumption that fitter predators are more
likely to catch prey, increases in Dh indicate increases in actual predator fitness.
This is more desirable than changing Sd, as changing perceived fitness alters the
number of mobbing agents.

5 Simulation Results

The simulation data was analyzed for the aforementioned values of parameters
Sb, ft, and Dh. Figures 3a, 3b, and 3c show the mortality rate for each combina-
tion of mob sizes and deception rates present in the group, when Dh was held
constant at .05; while ft=100 in 3a, 125 in 3b, and 150 in 3c. Figures 9a, 9b,
and 9c (from [5]) demonstrate the same combinations but where Dh = .10, and
figures 10a, 10b, and 10c (from [5]) show this data when Dh = .15.

For each frustration threshold, there exists a minimum number of mobbing
agents (Mm), for which the predator’s frustration always exceeded its ft and fled.
The minimum number of mobbers for which zero attacks occur across each ft
is shown in table 1 (from [5], for reference Mm = 3 for ft=100). Attacks being
reduced to 0 results in a 0% mortality rate. Deceiving in groups smaller than
these minimum mob sizes is lethal. The deadliest conditions for lying, when
ft=125 and 150, was a mob formation consisting of 2 deceiving agents and a
sentinel. Mobbing a predator with these frustration thresholds and only deceiving

282 J. Davis and R. Arkin

agents, resulted in a mortality rate of approximately 70%. When ft=100, the
highest mortality rate occurs when 1 deceiving agent and a sentinel participate.

It is desirable to discover if adding deceiving agents to a purely honest situa-
tion would result in fewer fatalities. Obviously when adding enough deceivers to
exceed or equal Mm for each frustration threshold value, the mortality rate drops
to zero. However it is more interesting to investigate critical mob sizes (Mc) that
can result in both the predator attacking or fleeing. Mc for each frustration value
is presented in table 1 found in [5] (for reference Mc = 3 for ft=100). Figure 3
shows that a purely honest mob group has a higher survival rate than any group
containing a deceiver, with two exceptions. Other results can be found in figures
9-11 of [5]. As evidenced in figure 9b in (ft=125 Dh=0.10), a group of 3 honest
mobbers yields a mortality rate of 0.16. Adding one deceiving babbler to this
group reduces the mortality rate by 25%. Similarly, as seen in figure 10c (ft=150
Dh=0.15), 3 honest mobbing babblers have a mortality rate of 0.20. Adding one
deceiving babbler drops the mortality rate by 30%.

Fig. 3. Surface plot of number of agents, deception rate in non-sentinel group mem-
bers, and the mortality rate from the group makeup. The sentinel is always an honest
mobber. Dh=.05 and the probability that a lying agent is killed, Dl , is 95% for all
above figures. A, B, and C simulate values of 100, 125, and 150 for ft respectively.

Since these are the only two incidents in the entire data set in which the
addition of a single deceiver decreases the mortality rate, it can be concluded
that lying with Dl = .95, is not a strategic decision in mob groups less than Mm.
Figure 11, found in [5], shows the result of reducing Dl to 50% and increasing
Dh to 30% while ft was 150. Under these new conditions, deception improves
survivability in group sizes of Mc. Adding one deceiving member to mob size of
3 with any deception rate decreased the mortality rate by an average of 16%.
While this may not be realistic, it proves that there is a set of conditions in
which deceiving can improve survival rate consistently.

6 Conclusion

Mobbing behavior, in nature, has clearly proven to be an effective method of
predator deterrence. Our research shows the ability to transfer this biologically

Mobbing Behavior and Deceit in Bio-inspired Autonomous Robotic Agents 283

inspired behavior to robotic behavior in simulation, where the robotic agents
emulate the ethology of mobbing birds. The addition of deception to the hand-
icap principle returns mixed results. For this simulation, deception is the best
strategy when adding a single agent pushes the mob size to Mm. In this case, the
predator is driven away and no member is attacked. For mob sizes smaller than
Mm, complete honesty yields the lowest mortality rate. This is because the pun-
ishment for bluffing is high. If the price of bluffing is reduced, adding deception
can reduce motrality rates.Mobbing permits the agents working in teams to cre-
ate multiple formations and allows them to group in specific areas. Future work
will investigate the impact of varying Dl on mortality rate and implementing
this simulation on physical robotic systems. Understanding how many honest
and dishonest prey agents are required to successfully drive a predator away
has value in the hope of understanding the effectiveness in making this defen-
sive strategy effective for relevant robotic applications when agent survival is at
stake.

Acknowledgements. This research was supported by the Office of Naval Re-
search under MURI Grant #N00014-08-1-0696.

References

1. Arkin, R.C.: Behavior–based Robotics. MIT Press, Boston (1998)
2. Army, U.: Field manual 90-2, battlefield deception (1998), http://www.enlisted.

info/field-manuals/fm-90-2-battlefield-deception.shtml/

3. Balch, T., Arkin, R.C.: Behavior–based formation control for multi–robot teams.
IEEE Transactions on Robotics and Automation 14(6), 926–939 (1998)

4. Bond, C.F., Ronbinson, M.: The evolution of deception. Journal of Nonverbal Be-
havior 12(4), 295–307 (1988)

5. Davis, J.E., Arkin, R.C.: Mobbing behavior and deceit and its role in bio-inspired
autonomous robotic agents (long form technical report). Tech. Rep. GIT–MRL–
12–02, Georgia Institute of Technology, Atlanta, GA, USA (2012)

6. Duncan, B., Ulam, P., Arkin, R.C.: Lek behavior as a model for multi-robot sys-
tems. In: Proc. IEEE International Symposium on Computational Intelligence in
Robotics and Automation, pp. 25–32. IEEE Press, Piscataway (2009)

7. Graw, B., Manser, M.B.: The function of mobbing cooperative meerkats. Animal
Behaviour 73(3), 507–517 (2007)

8. Johnstone, R.A., Grafen, A.: Dishonesty and the handicap principle. Animal Be-
haviour 46(4), 759–764 (1993)

9. Lorenz, K.: On Agression. Harcourt, Brace and World Inc., New York (1966)
10. Owings, D.H., Coss, R.G.: Snake mobbing by california ground squirrels: Adaptive

variation and ontogeny. Behaviour 62(1-2), 50–68 (1977)
11. Wagner, A.R., Arkin, R.C.: Acting deceptively: Providing robots with the capacity

for deception. International Journal of Social Robotics 3(1), 5–26 (2011)
12. Wright, J., Berg, E., De Kort, S.R., Khazin, V., Maklakov, A.A.: Cooperative

sentinel behaviour in the arabian babbler. Animal Behaviour 62(5), 973–979 (2001)
13. Zahavi, A., Zahavi, A.: The Handicap Principle:A Missing Piece of Darwin’s Puzzle,

pp. 125–175. Oxford University Press, Oxford (1997)

http://www.enlisted.info/field-manuals/fm-90-2-battlefield-deception.shtml/
http://www.enlisted.info/field-manuals/fm-90-2-battlefield-deception.shtml/

Performance of Bacterial Foraging Optimization

in Dynamic Environments

Jade Abbott and Andries P. Engelbrecht

CIRG, Department of Computer Science
University of Pretoria, South Africa
{jabbott,engel}@cs.up.ac.za

Abstract. The bacterial foraging optimization (BFO) algorithm is a
new complex, swarm-based optimization algorithm. The algorithm has
shown to be successful in static environments; however there is little re-
search available on analysis of its performance in dynamic environments.
The aim of this article is to conduct an elaborate empirical analysis
of BFO in a number of dynamic environments. Additionally, a modifi-
cation to BFO is proposed to improve BFO’s performance in dynamic
environments.

1 Introduction

Bacterial foraging optimization (BFO) is a stochastic, swarm-based optimization
method based on the foraging behaviour of E-coli bacteria [12] which has been
successfully applied to a wide range of problems in [9,8,4], mostly in stationary
environments. BFO’s nature suggests that it is designed to perform well in dy-
namic environments. However, little substantial research has been performed to
evaluate the performance of BFO in dynamic environments.

This paper examines the performance of BFO in a range of dynamic envi-
ronments and modifies the BFO algorithm to improve BFO’s performance in
dynamic environments. The modified BFO, dynamic BFO (DBFO), is bench-
marked against a number of swarm-based algorithms developed for dynamic
optimization.

The remainder of the paper is organized as follows: BFO is described in
Section 2, and background on dynamic environments is given in Section 3. Sec-
tion 4 describes the PSO algorithms used to benchmark against, and issues
with BFO in static environments and the new DBFO algorithm is discussed in
Section 5. The experimental procedure is described in Section 6, while
Section 7 presents and discusses results.

2 Bacterial Foraging

Passino [11] developed BFO which models the foraging behaviour of E coli. bacte-
ria. BFO is a complex algorithm and thus for brevity a summary of the algorithm
is provided. Full details of BFO are in [11]. BFO consists of 3 phases organized in

M. Dorigo et al. (Eds.): ANTS 2012, LNCS 7461, pp. 284–291, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Performance of BFO in Dynamic Environments 285

a triple nested loop: chemotaxis, reproduction and elimination/dispersal, where
chemotaxis occurs in the innermost loop, reproduction occurs in the middle loop
and elimination dispersal occurs in the outermost loop. The following aspects of
the BFO algorithm are discussed:

– Chemotactic Step. Chemotaxis is the integral phase of the algorithm,
modelling how bacteria move up the nutrient gradient. It consists of two
parts: (i) tumble and (ii) swim. A tumble is simply a reorientation of the
bacteria to a random direction. A swim is a movement of the bacterium in the
tumble direction of a specific step size Ci for each bacteria i.
Chemotaxis consists of a tumble, then repetition of the swim step until
a decrease in the nutrient gradient is observed. Included as part of the nu-
trient gradient calculation is the effect of cell-to-cell attractant that occurs
between bacteria. Bacteria are attracted to other bacteria based on proxim-
ity but also repel each other at short range, resulting in bacterial swarming
behaviour.

– Reproductive Step. Bacteria are sorted by health and the unhealthy half
of the bacteria is removed and the remaining half of the bacteria is copied
to create a population of original size.

– Elimination-dispersal Step. With a certain probability bacteria are reini-
tialized to a new position modelling the natural disturbances in the environ-
ment of E. coli. bacteria.

3 BFO for Dynamic Environments

This section analyses BFO’s weaknesses and a new dynamic BFO algorithm is
proposed.

3.1 Issues of BFO in Dynamic Environments

Due to the triple nested loop structure of BFO, the frequency each operation
occurs is inconveniently dependant to the frequency of the outermost operation
loops. For example, the frequency of reproduction is dependant on frequency
that reproduction occurs but also on frequency that elimination-dispersal occurs.
Since the frequency of each operation effects behaviour of the algorithm, three
simple running time control variables have the bad side effect of changing the
behaviour of the algorithm.

Also, if a large environmental change occurs, the optimum may move outside
the bounds of the area covered by bacteria. Finding the optimum may be slow as
the bacteria are concentrated in one area of the search space, increasing chances
of getting stuck in local optima.

Lastly, BFO is unable to fine tune good solutions due to the constant step
size for each bacterium.

286 J. Abbott and A.P. Engelbrecht

3.2 Related Work on BFO in Dynamic Environments

The performance of BFO in dynamic environments has been explored by [13],
focussing on a technique for maintaining diversity in the reproductive step of
the algorithm. The results were not reproducible, given the description in [13],
and thus were not compared to the algorithm proposed in this paper.

3.3 Structure for Dynamic BFO Algorithm

To solve the structural problems of BFO, the algorithm is factored out into
a single loop with three sequential operational steps. Chemotaxis, reproduc-
tion, and elimination-dispersal operations are set specific frequency parame-
ters: Fc, Fre, and Fed, allowing for fine-grained management of operations. For
example, the reproduction operation will occur once each only Fre iterations.
In terms of the original BFO, chemotaxis should occur every iteration with a
frequency of 1.

3.4 Diversity of DBFO

Section 2 states that elimination-dispersal of bacteria is caused as a response
to disturbances to the environment. When a large environmental change is de-
tected in BFO, it is appropriate for an elimination-dispersal event to occur. An
elimination-dispersal event would spread the bacteria across the search space,
allowing for improved search abilities. In DBFO, if a substantial change in the
environment is detected, then an elimination-dispersal event occurs. A substan-
tial change is any operation which causes an abrupt decrease in average health
of the bacteria by ε. The best value of ε requires further research.

3.5 Change in Step Sizes

In order to improve exploitation of good solutions, DBFO includes a step size
modification, such that step size, Ci, is changed over time, allowing the bacterium
to initially explore but exploit good solutions. The change will occur as follows
for each bacterium si

Ci(t) =

{
μ if Ci(t− 1) ≥ τ

Ci(t− 1) if Ci(t− 1) < τ
(1)

where μ = 0.9 and τ = 0.01. These values were empirically chosen to work well
over a variety of problems, but further research needs to be done to determine
their behaviour. In DBFO, the step size is reset to the initial value of 1, to enable
the bacteria to explore more after an environmental change. The elimination-
dispersal event is extended with this reset step. The modified BFO algorithm is
given in Algorithm 1.

Performance of BFO in Dynamic Environments 287

Algorithm 1. DBFO

Initialize parameters
Initialize bacteria
for t = 1, ..., maxit do

chemotaxis step
if t mod Fre = 0 then

reproduction step
end if
if environmental change is detected then

elimination-dispersal step
for all bacterium si ∈ S do

Calculate Ci(t) as in equation (1)
end for

end if
end for

4 Experimental Procedure

This section gives configurations for the moving peaks dynamic environment
generator, the bacterial foraging algorithms BFO and DBFO, and the PSO
benchmark algorithms used.

4.1 Algorithm Setup

The collective mean error (CME), which is the average of the error measurement
over all iterations performed, is measured [10]. For both BFO and DBFO, the
swarm size S is 50, δ =1 and Ped = 0.75, the cell-to-cell attractant parameters
dattract, wattract, hrepel, and wrepel were set to 0.1, 0.2, 0.1 and 10 respectively
and Ns was set to 8. For BFO, Nc, Nre and Ned were set to 500, 2 and 2
respectively. The frequency of reproduction, Fre, was set to 1000 and ε = 25%,
for DBFO. The total number of iterations for each algorithm was calculated to
be 2000. The configurations for BFO were shown to work well on a variety of
problems as in [11].

The BFO algorithms were compared with PSO algorithms using 50 particles
and acceleration constants, c1 and c2, were set to 1.496180. The dynamic PSO
algorithms used were:

– Charged PSO (CPSO)[2]: Swarms consisted of 50% charged and 50% neu-
tral particles with a charge magnitude of 16 [3]. The lower cut off value pcore
was set to 1 and p is set to 30.

– Quantum PSO (QPSO)[1]: Swarms consisted of 50% quantum and 50%
standard particles. The radius of the cloud, φcloud, was set to 30.

– Reinitializing PSO (RPSO) [6]: 10% of particles reinitialize when an en-
vironmental change is detected.

– Multi-swarm PSO (MPSO) [2]: 5 sub-swarms of 10 particles of 50%
quantum and 50% neutral particles were used.

288 J. Abbott and A.P. Engelbrecht

4.2 Dynamic Environment Setup

Four classes of dynamic environments are used: quasi-static/static environments,
progressively changing environments, abruptly changing environments and
chaotic environments as proposed by [5]. The moving peaks dynamic environ-
ment generator [7] is used to generate the dynamic environments of the required
classes for the purposes of this paper. The position, height, and shape (width)
of the optima change at predetermined intervals

The width severity (ws) and height severity (hs) were set to 0.1 and 0.7
respectively. The peak heights fall in the range [30, 70], while the peak width
were in the range [0.08, 1]. Dimensionalities of d = 2, 5, 10, 30 where considered
and the function domain for all functions was [0, 100]d. The λ value was set to
0.75 and random seed was fixed for all algorithms (seed = 1). The algorithm
was tested for a number of severities, s, and frequencies, f , specifically s =
0, 1, 10, 20, 30, 40, 50 and f = 1, 5, 50, 100, 200, 2000. Each algorithm was run for
2000 iterations. Each experiment was repeated on 30 generated environments for
each setting combination. Figure 1a demonstrates how the environment types
discussed in Section 3 relate to the grid layout in Figure 1b.

5 Results

Results are summarized using 3-dimensional plots of the CME after 2000 itera-
tions for all algorithms. Additionally, tables are given to summarize performance
after 2000 iterations for severity, frequency, and dimensionality.

Tables 1a to 1c shows BFO performed generally worse than all the PSOs.
However, further examination shows BFO performance was within an accept-
able range of the average PSO performance, indicating that BFO has inherent
properties suitable to dynamic environments. However, the standard deviations
of the CME for all experiments for BFO was high indicating instability of BFO.
Instability may be attributed to the stochastic manner that search directions
were chosen or that BFO performance was dependent on the initial bacteria
positions. High standard deviation may show that BFO is sensitive to local
minima.

Figure 1b shows that BFO performance improved in the progressive quadrant
compared to other quadrants, demonstrating that BFO tracked optima better
in highly progressive environments. BFO’s improved ability to optimize in pro-
gressive environments may be because the cell-to-cell repellent force maintains a
small amount of diversity around the optimum. If the optimum moves within the
small area covered by the swarmed bacteria, bacteria are more likely to locate
the new optimum position; thus, BFO has the ability to track small but frequent
changes distinct to progressive environments.

Performance of BFO is worse in the abrupt quadrant. The BFO algorithm
shows slow convergence, and thus if the optimum has moved significantly then
BFO will take time to move the bacteria to the newly positioned optimum.

Figure 1c and Figure 1d indicate that, as dimensions increase, BFO
performance decreased showing that BFO is highly sensitive to increases in

Performance of BFO in Dynamic Environments 289

(a) Dynamic Environment Types

BFO
DBFO
CPSO
QPSO
MPSO
RPSO

 0
 10

 20
 30

 40
 50

Severity

 0
 20

 40
 60

 80
 100

 120
 140

 160
 180

 200

Frequency (iterations)

 0
 5

 10
 15
 20
 25
 30
 35
 40
 45
 50

CME

(b) The final CME for each algorithm for
each severity and for each frequency over
all dimensions

BFO
DBFO
CPSO
QPSO
MPSO
RPSO

 0

 10

 20

 30

 40

 50

Severity

 0
 5

 10
 15

 20
 25

 30

Dimension

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

CME

(c) The final CME for each algorithm for
each severity and for each frequency over
all dimensions

BFO
DBFO
CPSO
QPSO
MPSO
RPSO

 0
 20

 40
 60

 80
 100

 120
 140

 160
 180

 200

Frequency (iterations)

 0 5 10 15 20 25 30

Dimension

 0

 20

 40

 60

 80

 100

 120

CME

(d) The final CME for each algorithm for
each dimension for each frequency over all
dimensions

Fig. 1. 3-dimensional plots of the CME after 2000 iterations for all algorithms

dimensionality. BFO’s lack of scalability may be the result of the bacterial posi-
tion update strategy employed by BFO. The update strategy forces the bacteria
to move the same distance in all dimensions, regardless of optimality of the spe-
cific dimension. Supposing a bacterium has located the optimal position in a
single dimension, but has a sub-optimal position in the remaining dimensions,
after the position update, the position will be moved in all dimensions, regardless
of optimality of a single dimension.

Conclusively, BFO suffers from sensitivity to dimensionality, instability and
slow convergence, but BFO has the ability to track optima in progressive envi-
ronments, but requires further improvement.

Tables 1a to 1c show that DBFO generally performed better than BFO and is
only outperformed by BFO in isolated circumstances. DBFO had greater ability
to exploit good solutions as well as re-diversify in the event of an abrupt change,
thus resulting in improved performance. Although it is evident that the changes
made to BFO have improved performance, DBFO still suffered from sensitivity
to dimensionality, instability and slower convergence.

290 J. Abbott and A.P. Engelbrecht

Table 1. CME for each algorithm over all peaks

(a) CME for each algorithm for each severity

Algorithm
Severity

0 1 10 20 40 50

BFO 16.32(141) 27.72(240.2) 37.95(328.6) 43.068(372.1) 45.12(391.08) 45.26(392.1)
DBFO 15.87(137) 28.15(243.5) 39.2(338.7) 41.3(357.5) 42.84(370.34) 43.06(372.2)
CPSO 8.35(2.54) 18.5(4.54) 32.91(3.15) 36.7(4.583) 38.91(3.84) 39.60(3.56)
QPSO 8.86(2.74) 17.28(3.52) 32.48(5.71) 34.15(2.474) 36.83(5.21) 37.30(4.52)
MPSO 15.67(4.48) 22.62(4.27) 34.05(3.85) 37.04(4.796) 39.2(4.26) 40.145(3.88)
RPSO 18.59(3.63) 24.27(4.35) 34.45(3.46) 37.16(3.711) 38.94(2.77) 39.781(2.86)

(b) CME for each algorithm for each frequency

Algorithm
Frequency

1 5 50 100 200

BFO 48.405(418.18) 43.964(380.86) 37.296(322.99) 33.747(292.77) 30.214(261.24)
DBFO 47.325(409.81) 42.741(370.58) 36.006(311.69) 32.828(282.9) 28.286(244.48)
CPSO 48.263(7.9237) 38.504(2.206) 24.361(2.4297) 19.639(2.7402) 15.048(3.2196)
QPSO 47.602(8.3217) 37.512(3.26) 22.242(2.4406) 17.824(2.8246) 13.925(3.3217)
MPSO 49.377(7.5864) 40.292(3.3093) 26.386(3.0823) 22.213(3.3897) 19.032(3.9077)
RPSO 55.089(6.9221) 44.692(2.632) 25.668(2.1753) 20.267(2.5534) 15.277(3.0453)

(c) CME for each algorithm for each dimension

Algorithm
Dimensionality

2 5 10 30

BFO 17.966(155.48) 34.519(299.05) 43.306(374.8) 59.11(511.5)
DBFO 12.323(107.19) 34.169(296.01) 44.456(384.38) 58.801(507.99)
CPSO 14.339(3.0798) 24.988(4.4022) 32.787(4.5392) 44.539(2.7942)
QPSO 14.61(3.294) 24.439(4.1113) 29.724(4.2919) 42.51(4.4376)
MPSO 20.99(3.996) 27.398(3.9485) 32.999(4.2521) 44.453(4.8236)
RPSO 14.648(2.3923) 28.78(3.8114) 37.333(3.844) 48.034(3.8147)

Figure 1c and Figure 1d show that the PSO algorithms performed better than
DBFO in all dimensions save for a few select configurations. It is evident in Fig-
ure 1c that, problems of low dimensions and low severity DBFO outperformed
the PSO algorithms and Figure 1d shows that DBFO outperforms all PSO al-
gorithms in low dimensions with extremely high severity. DBFO is therefore
more suited to the highly progressive or quasi-static environments, and abrupt
environments than the PSO algorithms, but only in problems of few dimen-
sions. This implies DBFO must be modified to improve sensitivity to increases
in dimensionality.

Figure 1b shows that all algorithms demonstrated decrease in performance
in the chaotic quadrant, thus struggling to track the movements of optima in
chaotic environments. It is difficult to track an optimum in chaotic environments
and thus all algorithms performance chaotic environment was inconclusive.

6 Conclusion

This paper evaluated the performance of bacterial foraging optimization (BFO)
on a variety of dynamic environments. A new dynamic BFO (DBFO) algorithm
was proposed for dynamic environments and was included in the evaluation. The
results were compared to that of dynamic PSO algorithms which have been de-
veloped specifically for dynamic environments. BFO appears, on an algorithmic
level, to be suited towards dynamic environments with properties such as the
ability to maintain diversity.

Performance of BFO in Dynamic Environments 291

However, in practice, a number of flaws in the algorithm, such as sensitivity
to dimensionality, instability and susceptibility to local optima, inhibit the al-
gorithm, rather than assist it in dynamic environments. In an attempt to solve
those problems, DBFO was proposed which attempts to solve the downfalls of
the original BFO algorithm. DBFO is a slightly modified version of BFO, which
increased the accuracy of solutions in certain types of dynamic environments
and improved the flexibility and intuitiveness of the BFO structure. Although
the DBFO improved on the BFO in many environments, it still did not entirely
overcome the problems identified in BFO.

Although the PSO algorithms outperformed BFO and DBFO, BFO has shown
potential in dynamic environments and further research needs to be done to
further refine DBFO to overcome the identified problems.

References

1. Blackwell, T., Branke, J.: Multiswarms, exclusion, and anti-convergence in dynamic
environments 10, 459–472 (2006)

2. Blackwell, T.M.: Swarms in Dynamic Environments. In: Cantú-Paz, E., Foster,
J.A., Deb, K., Davis, L., Roy, R., O’Reilly, U.-M., Beyer, H.-G., Kendall, G.,
Wilson, S.W., Harman, M., Wegener, J., Dasgupta, D., Potter, M.A., Schultz,
A., Dowsland, K.A., Jonoska, N., Miller, J., Standish, R.K. (eds.) GECCO 2003,
Part I. LNCS, vol. 2723, pp. 1–12. Springer, Heidelberg (2003)

3. Blackwell, T., Branke, J.: Multi-swarm optimization in dynamic environments, pp.
489–500. Springer (2004)

4. Chatterje, A.: Bacterial foraging techniques for solving EKF-based slam problems.
In: Control Conference

5. Duheim, J.: Particle Swarm Optimization in Dynamically Changing Environment
An Empirical Study. Master’s thesis, Department of Computer Science, University
of Pretoria (2011)

6. Eberhart, R.C., Shi, Y.: Comparing inertia weights and constriction factors in
particle swarm optimization, vol. 1, pp. 84–88. IEEE (2000)

7. Krink, T., Vesterstrom, J.S., Riget, J.: Particle swarm optimisation with spatial
particle extension, vol. 2, pp. 1474–1479. IEEE (2002)

8. Majhi, B., Panda, G.: Recovery of Digital Information Using Bacterial Foraging
Optimization Based Nonlinear Channel Equalizers, pp. 367–372 (2007)

9. Mishra, S., Bhende, C.N., Lai, L.L., Delhi, N., Group, E.S.: Optimization of a
distribution static compensator by bacterial foraging technique, pp. 13–16 (August
2006)

10. Morrison, R.W.: Performance measurement in dynamic environments. Foundations
and Trends in Accounting 2(3), 175–240 (2003)

11. Passino, K.M.: Biomimicry of bacterial foraging for distributed optimization and
control, vol. 22, pp. 52–67. IEEE (2002)

12. Ramos, V., Fernandes, C., Rosa, A.C.: On ants, bacteria and dynamic environments
(2005)

13. Tang, W.J., Wu, Q.H., Saunders, J.R.: Bacterial foraging algorithm for dynamic
environments, pp. 1324–1330. IEEE (2006)

Piecewise Linear Approximation

of n-Dimensional Parametric Curves
Using Particle Swarms

Christopher Wesley Cleghorn and Andries P. Engelbrecht

Department of Computer Science
University of Pretoria

{ccleghorn,engel}@cs.up.ac.za

Abstract. This paper derives a new algorithm for piecewise linear ap-
proximation of n-dimensional parametric curves, specifically to be used
with particle swarm optimization. The aim of the algorithm is to find
the optimal piecewise linear approximation for a predefined number of
segments. The performance of this algorithm is evaluated on a set of
functions of varying dimensionality.

1 Introduction

In many real world situations functions are encountered that are not explicitly
known, but it would still be useful to able to infer meaning from the analysis
of said function. The first step is often to try and approximate the function. A
common approach is that of piecewise linear approximation (PWLA) [1]. The
main issue with PWLA when the explicit function is known is that explicit
parameters for the linear segments can be obtained only if the ideal partitions
of the independent variables of the PWLA are known. However, knowledge of
the function and ideal partitions are usually not known.

This paper proposes a particle swarm optimization (PSO) approach to
PWLA, without assuming knowledge of the function nor the ideal partitions.
The PSO approach to PWLA used is to analytically solve for segment coeffi-
cients and then to utilize the PSO to find the ideal partitions. To the authors’
knowledge this is the first population-based approach to PWLA of parametric
curves.

Background is given in section 2. A derivation of the closed formulas for the
algorithm is given in section 3. The algorithm is presented in section 4. The
experimental set up is discussed in section 5, and the results in section 6.

2 Background

This section provides the reader with an overview of the techniques used through-
out the paper. PWLA is defined in section 2.1. Section 2.2 overviews PSO, and
Section 2.3 discusses related works.

M. Dorigo et al. (Eds.): ANTS 2012, LNCS 7461, pp. 292–299, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Piecewise Linear Approximation Using Particle Swarms 293

2.1 Piecewise Linear Approximation

In one dimension, PWLA can be formalized as, given the non-linear relationship,
y ≈ f(x) for i0 ≤ x ≤ ip to obtain an approximation of f using p segments of
the form

y(x) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
a1 + b1x for i0 ≤ x ≤ i1

a2 + b2x for i1 ≤ x ≤ i2

· · · · · ·
ap + bpx for ip−1 ≤ x ≤ ip

(1)

where ai and bi are the y intersect and the gradient of the line segment on the
interval ii−1 ≤ x ≤ ii respectively. The objective is to find a piecewise mapping
that minimizes the least squares error (LSE) between the function f and y:

LSE =

∫ ip

i0

(f(x)− y(x))2dx =

p∑
j=1

(f(x)− (aj + bjx))
2dx (2)

The problem is solved by assigning optimal values to the coefficients ak, bk∀k :
1 ≤ k ≤ p and ik∀k : 0 < k < p. The dimensionality of the optimization problem
is therefore 2p+ p− 1 (the end points i0 and ip are known quantities).

2.2 Particle Swarm Optimization

Particle Swarm Optimization (PSO)[2] is a population-based search algorithm,
based on simple models of bird flocks. The fundamental principle of PSO is to
update the position of a particle based on: the momentum of the particle, the
cognitive component, and the social component. The momentum is a fraction
of the current velocity. The cognitive component attracts a particle to it’s best
found solution. The social component attracts each particle to the best solution
found by its neighbourhood.

PSO is formalised as follows: let lk (t) be particle k’s position at discrete time
step t (often called iteration t). A particle’s position and velocity update using

lk (t+ 1) = lk (t) + vk (t+ 1) (3)

vk (t+ 1) = wvk (t) + c1r1(t)(bk − lk (t)) + c2r2(t)(nbk − lk (t)) (4)

where w, c1, and c2 are the inertia weight, cognitive and social coefficients re-
spectively; r1, r2 : ∀i, r1,i, r2,i ∈ U (0, 1); bk is the best position obtained by
particle k; and nbk is best position obtained in the neighbourhood of k.

The neighbourhood of a particle is determined by a social network topology
[3].This paper uses the Von Neumann topology, where particles are connected to
form an multidimensional grid structure. The Von Neumann topology has been
shown in a number of empirical studies [3,4] to outperform other neighbourhood
topologies.

294 C.W. Cleghorn and A.P. Engelbrecht

2.3 Related Work

Many non-population based approaches to linear approximation exist, primarily
designed for application to digital curves [5,6]. Many of the classical approaches
to PWLA [7,8] either place requirements on the form of the function being ap-
proximated, and/or require an explicit definition of the function. As a result,
research is done on special cases. A recent example is the recursive descent ap-
proach of Imamoto and Tang [9], which, while highly efficient, requires knowledge
of the explicit function that is being approximated (to enable the derivation of
the actual derivative, not just an approximation of the derivative) in addition to
the requirement that the function is convex.

This paper assumes that the explicit function is unknown, and that no knowl-
edge of the function’s form is available. Research that has similar assumptions
is PWLA of digitized curves (DC). Some DC algorithms differ slightly from the
definition in that the line segments of the approximation need not join, i.e the
resulting PWL approximation is not guaranteed to be continuous on the function
domain. A well known example is the algorithm of Manis et al [10]. In contrast,
the objective of this paper is to obtain a continuous PWLA.

Some DC algorithms do closely match the assumption on the explicit function:
Horst and Beichl [11] designed their DC algorithm for efficiency with respect to
running time, and Pavlidis [12] and Dunham [13], focused on optimality of the
PWLA. These algorithms share the general approach to finding the optimal
PWLA: starting with a very high segment count and continually remove seg-
ments until a point is reached where any continued segment removal will push
the error over an acceptable threshold. This is very different from the approach
taken in this paper, where the number of segments must be specified by the user,
while no error threshold need be given. This is due to the fact that the approach
in this paper is to find an optimal segment arrangement, not to find the lowest
segment count possible while remaining above an error threshold.

3 Derivations of Analytical Component

The problem to be solved is that of PWLA of a n-dimensional parametric func-
tion. Specifically, the area between the target (though explicitly unknown func-
tion) and the approximated function must be minimized. This paper uses the
n-dimensional version of equation (2) to minimize the square of the area, MF,
between the two functions.

MF =

∫ ip

i0

(‖f(t)− x(t)‖2) 2dx (5)

given

−→x (t) =

⎛⎜⎜⎜⎝
y1(t)
y2(t)
...

yn(t)

⎞⎟⎟⎟⎠ , yj(t) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
aj,1 + bj,1t for i0 ≤ t ≤ i1

aj,2 + bj,2t for i1 ≤ t ≤ i2

· · · · · ·
aj,p + bj,pt for ip−1 ≤ t ≤ ip

(6)

Piecewise Linear Approximation Using Particle Swarms 295

Minimization of MF is done by finding optimal values for aj,k, bj,k∀k : 1 ≤ k ≤
p, ∀j : 1 ≤ j ≤ n and ik∀k : 0 < k < p. The minimum of the function MF is
where all of its partial derivatives are zero.

It was shown by Stone [14] that, for equation (2), if the partition points are
not fixed, a closed form solution does not exist in general, and more complicated
techniques for approximating the solution that require the explicit function have
to be used. Given that the closed form solution with non-fixed partition points
cannot be analytically solved in general, it is assumed that the partition points
are fixed. The system of partial derivatives can then be explicitly solved using
an extension of Stones approach:

∂MF

∂aj,k
= 0 = −2

∫ ik
ik−1

fj(t)dt+ 2aj,k(ik − ik−1) + bj,k(i
2
k − i2k−1) (7)

∂MF

∂bj,k
= 0 = −2

∫ ik
ik−1

tfj(t)dt+ aj,k(i
2
k − i2k−1) +

2
3bj,k(ik − ik−1) (8)

This results in nj simultaneous pairs of equations which are solved to obtain

aj,k =
3

(ik − ik−1)3
(
4

3
(i2k+ikik−1+i2k−1)

∫ ik

ik−1

fj(t)dt−2(ik+ik−1)

∫ ik

ik−1

tfj(t)dt) (9)

bj,k =
6

(ik − ik−1)3

(
2

∫ ik

ik−1

tfj(t)dt− (ik + ik−1)

∫ ik

ik−1

fj(t)dt

)
(10)

The above integrals are approximated using the composite Simpson rule[1]:

∫ b

a

g(x)dx ≈ h

3

⎛⎝g(a) + 2

n
2
−1∑

j=1

g(x2j) + 4

n
2∑

j=1

g(x2j−1) + g(b)

⎞⎠ (11)

h =
b− a

s
, xj = a+ jh (12)

and s is the sample count.

4 Particle Swarm Algorithm for PWLA

The ideal partition points can be found quite naturally with the PSO algo-
rithm. Using equation (9) and (10), only the values for the intervals are required,
and since the only independent variable is t, regardless of the dimensionality of
the space mapped to by the parametric function, the search space size remains
unchanged under dimension alteration.

Each particle represents a set of partition points between the two end points
i0, ip. If an approximation using N segments is required, then N − 1 dimensions
are used. The particle’s components are sorted in ascending order of value to
ensure that the resulting PWLA is in fact a function (each element of the domain
maps to only one element of the range). The update of a particle’s position
and velocity is different from the standard approach. Application of equation

296 C.W. Cleghorn and A.P. Engelbrecht

(3) on a particle’s position may alter the ordering of the particle’s position’s
components. This is rectified by sorting the position’s components after the
completed application of equations (3) and (4).

Particles often leave the search space in the initial iterations, and later move
back within the search space [15]. This behaviour results in the problem that,
if a particle leaves the boundaries of the search space, the resulting PWLA is
meaningless as the evaluation of equation (5) is potentially invalid as a dis-
tance measure cannot be defined if the values of the true function are un-
known. To rectify this problem, components of a particle position that violate
boundary constraints are removed. A new valid component is then randomly
generated and inserted into the particle position vector in an order preserving
manner.

The fitness function is MF as defined in equation (5), using the composite
Simpson rule in equation (11) to approximate MF . The PWLA approxima-
tion for a given partition point set is calculated using equations (9) and (10).
The stopping condition is to halt once a predefined number of iterations have
elapsed.

5 Experimental Procedure

The algorithm is evaluated on the six functions in Table 1. For each function, the
PSO was used to produce 5, 10, 20, and 30 line segments. The average fitness and
standard deviation of fitness are displayed for each segment number. Results are
given as average fitnesses over 30 independent runs of the PSO. The efficiency of
the PSO is analysed by comparing the median sampled PWLA obtained against
the actual function.

For each function, samples are computed as {xj = a+jh, j ∈ R : xj ≤ b}, h =
b−a
s where a,b are the left and right most end points respectively, and s is the

sample density. For all simulations, s = 1000. The PSO control parameter values
used on all runs for every function are population size=64, iterations used= 2000,
w=0.7, c1=0.6, c2=0.5. These settings have been chosen after extensive testing,
and performed well for all chosen functions.

Table 1. Test Functions

1 x(t) = cos(t) + sin(t), t ∈ [−4, 4] (13)

2 x(t) = sin(t) + tcos(t)sin(t), t ∈ [−10, 10] (14)

3
x(t) = 20e − 20e

−0.2
√

t2 − e
cos(2πt)

, t ∈ [−4, 4] (15)

4 f(t) =

(
x1(t)
x2(t)

)
=

(
tcos(2t)
tsin(2t)

)
, t ∈ [−3, 3] (16)

5 f(t) =

(
x1(t)
x2(t)

)
=

(
sin(t)
cos(t)

)(
e
cos(t) − 2cos(4t) − sin

5
(t

12

))
, t ∈ [0, 2π] (17)

6 f(t) =

⎛
⎜⎜⎜⎜⎜⎝

x1(t)
x2(t)

.

.

.
xn(t)

⎞
⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎝

x

x + x2

.

.

.∑n
i=1 xi

⎞
⎟⎟⎟⎟⎟⎟⎠

, t ∈ [−1, 1] (18)

Piecewise Linear Approximation Using Particle Swarms 297

6 Results

The PWLA obtained for function 1 to 5 are displayed in figure 1 to 5 respectively.
Table 2 contains all the fitness evaluations and standard deviations. Functions
2 to 5 required a higher segment count than functions 1 did to obtain a good
PWLA of the explicit function. Function 1 experienced negligible improvement
with increased segment count. This is illustrated in figure 1(a) for function 1,
where a good approximation was obtained using only 10 segments. No significant
improvement was obtained with more segments(see 1(b)).

However, on functions 2, 3, 4 and 5, when given a sufficient number of seg-
ments, the approximation accuracy increased drastically as show in figures 2
to 5. Function 2, when only 5 segments were used, is of particular interest: it

(a) 10 Segments (b) 30 Segments

Fig. 1. Function 1

(a) 10 Segments (b) 30 Segments

Fig. 2. Function 2

(a) 10 Segments (b) 30 Segments

Fig. 3. Function 3

298 C.W. Cleghorn and A.P. Engelbrecht

(a) 10 Segments (b) 30 Segments

Fig. 4. Function 4

(a) 10 Segments (b) 30 Segments

Fig. 5. Function 5

Table 2. Average fitness and deviations obtained using the PSO for PWLA

Segments 5 10 20 30
1 0.102738±0.0000710 0.003087±0.0000471 0.000408±0.0000283 0.000181±0.0000106
2 40.74514±3.0119749 7.209360±0.6965713 0.515423±0.0720595 0.143820±0.0095007
3 4.794305±0.0062657 2.450909±0.0935256 0.322576±0.0039322 0.128684±0.0042731
4 1.355459±0.0013390 0.082165±0.0001007 0.007494±0.0001478 0.007494±0.0000455
5 6.900478±0.0101289 0.535711±0.0081520 0.067585±0.0024342 0.017286±0.0009005
6(n=2) 0.000087±0.0000000 0.000067±0.0000001 0.000060±0.0000006 0.000058±0.0000015
6(n=3) 0.000874±0.0000000 0.000245±0.0000003 0.000223±0.0000008 0.000220±0.0000013
6(n=4) 0.002912±0.0000000 0.000600±0.0000006 0.000527±0.0000020 0.000521±0.0000023
6(n=5) 0.007547±0.0000002 0.001109±0.0000026 0.000926±0.0000032 0.000919±0.0000041
6(n=6) 0.014951±0.0000001 0.001872±0.0000053 0.001496±0.0000058 0.001486±0.0000056
6(n=7) 0.026646±0.0000011 0.002874±0.0000191 0.002179±0.0000073 0.002167±0.0000087
6(n=8) 0.041858±0.0000009 0.004162±0.0000274 0.003038±0.0000122 0.003013±0.0000098
6(n=9) 0.062087±0.0000013 0.005770±0.0000531 0.004022±0.0000157 0.003986±0.0000148
6(n=10) 0.083246±0.0000053 0.007678±0.0000696 0.005179±0.0000281 0.005129±0.0000232

illustrates a limitation in PWLA in general, which occurs when a function has
substantially more turning points than available segments. A poor approxima-
tion results, as shown in figure 2(a). This problem is alleviated with an increase
in segment count, specifically, doubling the segment count from 10 to 20 resulted
in a 92.9% fitness improvement.

The PSO also handled the increase in dimensionality effectively(refer to
table 2). The performance degradation on dimensionality increase on function
6 appears to be linearly. The PSO also exhibited small levels of performance
deviation over the 30 runs, implying that the approach used in this paper to
preform PWLA is quite robust.

Piecewise Linear Approximation Using Particle Swarms 299

7 Conclusion

The aim of this paper was to design a way of using a PSO algorithm to solve the
problem of piecewise linear approximation of n-dimensional parametric curves.
The problem of finding line segment parameters aj, p and bj, p as defined in
equation (6) were solved analytically using the method described in section 3.
The remaining task of finding optimal partition points was achieved using a
PSO as described in section 4. The approach explained in this paper achieved
this aim, by obtaining very accurate PWLAs of the test functions.

Future work can include approaches to optimize the number of segments. The
approach can also be adapted to deal with multi-variate vector functions.

References

1. Burden, R.L. and Faires, J.D.: Numerical Analysis. Brooks Cole (2007)
2. Kennedy, J., Eberhart, R.C.: Particle Swarm Optimization. In: Proceedings of the

IEEE International Joint Conference on Neural Networks, pp. 1942–1948 (1995)
3. Kennedy, J., Mendes, R.: Population Structure and Particle Performance. In:

Proceedings of the IEEE Congress on Evolutionary Computation, pp. 1671–1676
(2002)

4. Peer, E.S., van den Bergh, F., Engelbrecht, A.P.: Using Neighborhoods with the
Guaranteed Convergence PSO. In: Proceedings of the IEEE Swarm Intelligence
Symposium, pp. 235–242 (2003)

5. Sklansky, J., Gonzalez, V.: Fast polygonal approximation of digitized curves. Pat-
tern Recognition 12(5), 327–331 (1980)

6. Salotti, M.: An efficient algorithm for the optimal polygonal approximation of
digitized curves. Pattern Recognition Letters 22(2), 215–221 (2001)

7. do Carmo, M.: Differential Geometry of Curves and Surfaces. Prentice-Hall (1976)
8. Velho, L., de Figueiredo, L.H., Gomes, J.: Journal of the Brazilian Computer So-

ciety 3(3), 1–14 (1997)
9. Imamoto, A., Tang, B.: A Recursive Descent Algorithm for Finding the Optimal

Minimax Piecewise Linear Approximation of Convex Functions. In: Advances in
Electrical and Electronics Engineering, pp. 287–289 (2008)

10. Manis, G., Papakonstantinou, G., Tsanakas, P.: Optimal Piecewise Linear Approx-
imation of Digitized Curves. In: Proceedings of International Conference on Digital
Signal Processing, pp. 1079–1081 (1997)

11. Horst, J.A., Beichl, I.: A Simple Algorithm for Eficient Piecewise Linear Approx-
imation of Space Curves. In: Proceedings of International Conference on Image
Processing, pp. 744–747 (1997)

12. Pavlidis, T.: Polygonal Approximations by Newton’s Method. IEEE Transactions
on Computers 25(8), 800–807 (1977)

13. Dunham, J.G.: Optimum uniform piecewise linear approximation of planar curves.
IEEE Transactionson Pattern Analysis and Machine Intelligence PAMI-8(1), 67–75
(1986)

14. Stone, H.: Approximation of Curves by Line Segments. Mathematics of Computa-
tion 15(73), 40–47 (1961)

15. Engelbrecht, A.P.: Particle Swarm Optimization: Velocity Initialization. Accepted
for IEEE Congress on Eevolutionary Computation (2012)

Probabilistic Stochastic Diffusion Search

Mahamed G.H. Omran1 and Ayed Salman2

1 Department of Computer Science,
Gulf University for Science and Technology, Kuwait

omran.m@gust.edu.kw
2 Computer Engineering Department, Kuwait University, Kuwait

ayed.salman@ku.edu.kw

Abstract. Stochastic Diffusion Search (SDS) is a population-based, nat-
urally inspired search and optimization algorithm. It belongs to a family
of swarm intelligence (SI) methods. SDS is based on direct (one-to-one)
communication between agents. SDS has been successfully applied to a
wide range of optimization problems. In this paper we consider the SDS
method in the context of unconstrained continuous optimization. The
proposed approach uses concepts from probabilistic algorithms to en-
hance the performance of SDS. Hence, it is named the Probabilistic SDS
(PSDS). PSDS is tested on 16 benchmark functions and is compared
with two methods (a probabilistic method and a SI method). The re-
sults show that PSDS is a promising optimization method that deserves
further investigation.

1 Introduction

Swarm Intelligence (SI) is the collective behavior of decentralized and self-
organized systems. SI systems are typically made up of a population of agents or
particles interacting with each other and with their environment. Interaction be-
tween agents yields collective intelligent behavior. Typical SI algorithms are ant
colony optimization (ACO), particle swarm optimization (PSO) and stochastic
diffusion search (SDS).

Stochastic Diffusion Search [2] is an efficient resource allocation algorithm
that has been applied to a wide range of applications [4]. However, there is little
work on using SDS to solve continuous nonlinear function optimization defined
as follows,

Minimize (or maximize)f(−→x)such that Li ≤ xi ≤ Ui, for i = 1, . . . , D.

Where f(−→x) is the objective function, −→x is a candidate solution consisting of
D parameters (xi), and Li and Ui are the lower and upper bounds for each
parameter, respectively.

A new class of optimization methods is Probabilistic algorithms. Probabilistic
methods search a problem space using an explicit probabilistic model of candi-
date solutions. Thus, in probabilistic methods a population is approximated with
a probability distribution and new potential solutions are generated by sampling

M. Dorigo et al. (Eds.): ANTS 2012, LNCS 7461, pp. 300–307, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Probabilistic Stochastic Diffusion Search 301

this distribution. Two representative probabilistic algorithms are the Estimation
of Distribution Algorithm (EDA) [6] and the more recent Cross-Entropy (CE)
method [12]. Probabilistic algorithms have been successfully applied to a wide
range of optimization problems (see [11]).

In this paper, we propose a probabilistic SDS (PSDS) method that explic-
itly uses a probability distribution to tackle unconstrained continuous function
optimization. Several well-known benchmark functions are used to compare the
proposed method against CE and PSO.

The remainder of the paper is organized as follows: Section 2 provides an
overview of SDS. The proposed approach is presented in Section 3. Benchmark
functions to measure the performance of the different approaches are provided
in Section 4. Results of the experiments are presented and discussed in Section
5. Finally, Section 6 concludes the paper.

2 Stochastic Diffusion Search (SDS)

Stochastic Diffusion Search (SDS) [2] is a population-based, swarm intelligence
optimization algorithm that is based on direct (one-to-one) communication be-
tween agents. The SDS algorithm consists of two phases, a test phase and a
diffusion phase. In the test phase, each agent tests its hypothesis (a potential
solution to the problem). In the diffusion phase, agents share information about
hypotheses via one-to-one communication. The test and diffusion phases are
repeated until a swarm of agents converge to the optimum hypothesis. SDS con-
vergence to global optimum has already been studied by Nasuto and Bishop
in [8] and its time complexity has been analyzed by Nasuto et al. in [7]. SDS
has been successfully applied to a wide range of optimization problems (e.g.
object recognition [3], site selection for wireless networks [14], amongst others
[4]). Little work has been done in the context of continuous optimization. Two
recent attempts have been made in this area but by hybridizing SDS with other
methods (e.g. PSO [1], a local search method [10]).

3 The Proposed Method

In this paper, we propose a new variant of SDS that can be used as a continu-
ous global optimizer. In the proposed approach, each agent has hypothesis and
status. Hypotheses are defined as candidate solutions to a problem while status
is a Boolean variable used to distinguish between active and inactive agents.

The general algorithm of the proposed method is shown in Alg. 1. The algo-
rithm starts by initializing a population of N agents. The fitness of each agent
is then determined. As in the CE method, The Ne best performing agents (rep-
resenting an elite sample) are used to estimate the parameters of a probability
distribution. In this study, normal distribution is used, hence, the parameters are
μ and σ2. These two parameters are estimated (i.e. μ̂ and σ̂2) using the sample
mean and sample variance of the elite samples. In the test phase, each agent

302 M.G.H. Omran and A. Salman

is compared against another randomly chosen agent. If it has a better fitness
function than the selected agent, it is set as active, otherwise it is set as inactive.

In the diffusion phase, if an agent, (−→xi), is inactive, a random agent, (−→xr), is
chosen. If (−→xr) is active, it communicates its hypothesis to (−→xi). This could be
done in many ways. In this paper, (−→xi) is set to a solution in the neighborhood
of (−→xr) as follows,

−→xi ∼ N(−→xr, k1.σ̂
2)

Where k1 is a user-defined constant.
On the other hand, if the selected agent, (−→xr), is inactive, (−→xi) is re-initialized.

Re-initialization can be done at random or in a more intelligent way. In this
paper, (−→xi) is set to a random sample generated from theN(μ̂, k2.σ̂

2) distribution
as follows,

−→xi ∼ N(μ̂, k2.σ̂
2)

Where k2 is another user-specified constant. Intuitively, k1 should be less than
or equal to 1 to intensify the search around an active (i.e. good) solution while
k2 should be greater than or equal to 1 to avoid premature convergence (i.e. to
improve diversification). A good balance between intensification and diversifica-
tion is needed for any search method and this balance is achieved by our PSDS.
After a fixed number of iterations PSDS terminates.

4 Experimental Setup

To test the performance of the proposed PSDS method, we have chosen 16 func-
tions (ten functions from the CEC 2005 benchmark set (namely, F1-F10) and
six canonical test functions). The ten CEC functions have different characteris-
tics (e.g. rotated, non-separable, shifted, unimodal, multimodal, etc.). For more
details about these functions, the reader is referred to [13]. The six canonical
functions are Rastrigin, Normalized Schwefel, Levy, Ackley, Shifted Griewank
and Step. Rastrigin, Normalized Schwefel, Levy, Ackley and Shifted Griewank
functions are difficult multimodal functions while the Step function is a discon-
tinuous unimodal function. The definition of these functions could be found in
many papers [9].

For the CEC functions we use 100,000 function evaluations (FEs), D = 10,
admissible error is 10−6 for F1-F5 and 10−2 for F6-F10 and run each method
for 25 independent simulations as suggested by Suganthan et al. in [13]. For
the canonical functions we use 100,000 FEs, D = 30, admissible error is 10−4

and we use 50 runs (to get more accurate statistical results). To measure the
effectiveness of a method we use two metrics:

1. The mean and the standard deviation of the best-of-run error which is defined
as the absolute difference between the best-of-the-run f(−→x best) value and the
actual optimum f(−→x ∗) of a given function. Avg. err. = f(−→x best)− f(−→x ∗)

2. 2) Success rate (SR): The number of successful runs (a run is successful if
avg. err. ≤ admissible error).

Probabilistic Stochastic Diffusion Search 303

Initialize agents and calculate their fitness;
repeat

/* Estimation of distribution */
Let I be the indices of the Ne best performing agents;
for j=1 to D do

μ̂j =
∑
j∈I

xij

Ne ;

σ̂2
j =

∑
j∈I

(xij−μj)
2

Ne ;

end
/*Test-phase */
for i=1 to N do

randomly choose an agent, (−→xr), from the swarm ;
if f(−→xi) ≤ f(−→xr) then

activei = true;
else

activei = false ;
end

end
/* Diffusion-phase */
for i=1 to N do

if activei = false then
randomly choose an agent, (−→xr), from the swarm;
if activer = true then

set (−→xi) to a solution randomly chosen from the
neighborhood of (−→xr) as follows,;
−→xi ∼ N(−→xr, k1.σ̂

2)
else

Set (−→xi) to a random sample generated from the
N(μ̂, k2.σ̂

2) distribution, i.e. ;
−→xi ∼ N(μ̂, k2.σ̂

2)
end

end

end

until Until a stopping criterion is met ;

Algorithm 1. The proposed PSDS algorithm

5 Experimental Results

In this section, PSDS is compared with the CE method and Standard Parti-
cle Swarm Optimization 2011 (SPSO2011) (http://www.particleswarm.info). CE
has been chosen as a recent example of probabilistic algorithms while SPSO as
a representative of SI methods. For CE and SPSO2011 we use the recommended
settings defined in [5] and (http://www.particleswarm.info), respectively. For

304 M.G.H. Omran and A. Salman

PSDS, we set N = 100, Ne = 10, k1 = 0.5 and k2 = 1.5. To be fair, we did not
adjust each set of parameter to each problem.

All the tests are run on an Apple MacBook Pro computer with Intel Core i7
processor running at 2.7 GHz with 4GB of RAM. Mac OS X 10.7 (Lion) is the
operating system used. All programs are implemented using MATLAB version
7.11.0.584 (R2010b) environment. The statistically significant best solutions have
been shown in bold (using the non-parametric statistical test called Wilcoxon’s
rank sum test for independent samples [15] with α = 0.05).

The effectiveness of CE, SPSO2011 and PSDS is shown on Table 1 and Table
2 for the CEC and canonical functions, respectively. Table 1 shows that PSDS
performs better than CE and SPSO2011 on F4, F5, F6 and F9. SPSO2011 out-
performs the other methods on F3, F8 and F10. While CE performs better on one
function, F7. PSDS and SPSO2011 perform comparably on F1 and F2. An inter-
esting observation regarding F10 is that F10 is actually a rotated F9. SPSO2011
is rotationally invariant (”almost” since there is no 100% rotationally invariant
method unless the search space is a hyper-sphere), thus, its performance has not
deteriorated when rotation occurs. This is not the case for CE and PSDS (actu-
ally many popular metaheuristics are not rotationally invariant, e.g. SPSO2007,
GA, DE.) that treat each parameter independently. For the canonical functions,
Table 2 shows that PSDS performs better than CE and SPSO2011 on two func-
tions (i.e. Ackley and Step) while CE performs better on one function only (i.e.
Normalized Schwefel). For the Levy function, although SPSO2011 achieves the
smallest error, PSDS achieves the highest SR. Hence, the results of Tables 1 and
2 show that PSDS generally performs better than CE and performs comparably
to SPSO2011. However, PSDS is relatively easier to code than SPSO2011.

Table 1. Comparing the effectiveness of CE, SPSO2011 and PSDS on the 10 CEC
functions

CE SPSO2011 SDSP

Avg. Err.(SD) SR(%) Avg. Err.(SD) SR(%) Avg. Err.(SD) SR(%)

F1 1.20e + 00(3.68e − 01) 0 8.09e − 07(1.23e − 07) 100 7.89e − 07(1.83e − 07) 100

F2 6.95e + 01(2.00e + 01) 0 8.57e − 07(1.19e − 07) 100 8.81e − 07(1.20e − 07) 100

F3 2.00e + 07(1.11e + 07) 0 3.79e + 04(2.75e + 04) 0 1.15e + 05(9.69e + 04) 0

F4 1.05e + 02(3.07e + 01) 0 8.95e − 07(1.03e − 07) 100 7.92e − 07(1.48e − 07) 100

F5 6.21e + 02(1.57e + 02) 0 9.18e − 07(6.86e − 08) 100 8.52e − 07(8.73e − 08) 100

F6 9.05e + 02(3.17e + 02) 0 2.84e + 01(6.37e + 01) 0 9.93e + 00(1.87e + 01) 0

F7 8.30e − 01(8.34e − 02) 0 1.27e + 03(3.16e + 00) 0 1.27e + 03(3.97e − 02) 0

F8 2.03e + 01(8.03e − 02) 0 2.03e + 01(9.85e − 02) 0 2.04e + 01(5.44e − 02) 0

F9 2.25e + 01(3.07e + 00) 0 5.76e + 00(2.16e + 00) 0 2.31e + 00(1.37e + 00) 4

F10 2.37e + 01(2.95e + 00) 0 4.90e + 00(2.27e + 00) 0 2.40e + 01(7.69e + 00) 0

Table 2. Comparing the effectiveness of CE, SPSO2011 and PSDS on the 6 canonical
functions

CE SPSO2011 SDSP

Avg. Err.(SD) SR(%) Avg. Err.(SD) SR(%) Avg. Err.(SD) SR(%)

Rastrigin 2.92e + 02(1.66e + 01) 0 2.51e + 01(7.08e + 00) 0 4.16e + 01(3.68e + 01) 0

Normalized
Schwefel

8.24e − 03(8.08e − 03) 0 1.75e + 02(2.22e + 01) 0 1.11e + 02(4.42e + 00) 0

Levy 1.63e + 02(2.92e + 01) 0 7.55e − 01(4.93e − 01) 2 1.54e + 00(1.68e + 00) 8

Ackley 2.10e + 01(4.44e − 02) 0 1.07e + 00(6.76e − 01) 24 9.55e − 05(4.34e − 06) 100

Shifted
Griewank

1.69e + 02(2.04e + 01) 0 6.99e − 03(8.41e − 03) 46 1.36e + 00(9.50e + 00) 48

Step 1.84e + 04(2.14e + 03) 0 1.10e + 00(1.27e + 00) 38 0(0) 100

Probabilistic Stochastic Diffusion Search 305

(a) (b)

(c) (d)

(e) (f)

Fig. 1. Typical convergence curves for representative functions

306 M.G.H. Omran and A. Salman

The convergence characteristics of a set of representative functions are de-
picted in Fig. 1 in terms of the average error (in logarithmic scale) vs. FEs.
For unimodal functions (i.e. F1 and F5), the convergence curves of PSDS de-
scend much faster and reach better solutions than that of CE and SPSO2011.
For multimodal function, PSDS has generally a slower convergence (compared
to SPSO2011) and it reaches better solutions.

6 Conclusions and Future Work

This paper presented a probabilistic stochastic diffusion search (PSDS) method
for solving unconstrained continuous optimization problems. A probabilistic
model (normal distribution in this study) was used to generate points in the
SDS diffusion phase. The parameters of the normal distribution were updated
in each iteration. The proposed method has been tested on 16 functions and has
been compared with CE and SPSO2011 with good results. Our future work will
investigate the performance of PSDS on constrained and real-world applications.
Moreover, the use of other distributions (e.g. beta, double exponential) needs to
be investigated. The effect of k1 and k2 needs also to be investigated. In addition,
the generalization of the proposed method to solve discrete and mixed problems
will be studied.

References

1. Al-Rifaie, M., Bishop, M., Blackwell, M., An, T.: An investigation into the merger
of stochastic diffusion search and particle swarm optimization. In: Proc. of the
13th Annual Conference on Genetic and Evolutionary Computation, GECCO 2011
(2011)

2. Bishop, J.M.: Stochastic Searching Networks. In: Proc. 1st IEE Conf. on Artificial
Neural Networks, London, pp. 329–331 (1989)

3. Bishop, J.M., Torr, P.: The Stochastic Search Network. In: Linggard, R., Myers,
D.J., Nightingale, C. (eds.) Neural Networks for Images, Speech and Natural Lan-
guage, pp. 370–387. Chapman & Hall (1992)

4. SDS: Stochastic Diffusion Search (2011), http://www.doc.gold.ac.uk/∼mas02mb/

sdp/index.html (access date: August 9, 2011)
5. Kroese, D., Porotsky, S., Rubinstein, R.: The Cross-Entropy Method for Continu-

ous Multi-extremal Optimization. Methodology and Computing in Applied Prob-
ability 8, 383–407 (2006)

6. Larranaga, P., Lozano, J.: Estimation of Distribution Algorithms: a new tool for
evolutionary computation. Kluwer Academic editors (2002)

7. Nasuto, S.J., Bishop, J.M., Lauria, L.: Time Complexity of Stochastic Diffusion
Search. In: Neural Computation, Vienna, Austria (1998)

8. Nasuto, S.J., Bishop, J.M.: Convergence Analysis of Stochastic Diffusion Search.
Journal of Parallel Algorithms and Applications 14(2), 89–107 (1999)

9. Omran, M., Engelbrecht, A.: Free Search Differential Evolution. In: The Proc.
of the IEEE Congress on Evolutionary Computation (CEC 2009), Norway,
pp. 110–117 (2009)

http://www.doc.gold.ac.uk/~mas02mb/sdp/index.html
http://www.doc.gold.ac.uk/~mas02mb/sdp/index.html

Probabilistic Stochastic Diffusion Search 307

10. Omran, M., Moukadem, I., Al-Sharhan, S., Kinawi, M.: Stochastic Diffusion Search
for Continuous Global Optimization. In: The Proc. of the International Conference
on Swarm Intelligence (ICSI 2011), Cergy, France (June 2011)

11. Pelikan, M., Sastry, K., Cantu-Paz, E.: Scalable Optimization via Probabilistic
Modeling: From Algorithms to Applications. Springer (2006)

12. Robinstein, R., Kroese, D.: The cross-entropy method: a unified approach to com-
binatorial optimization. Monte-Carlo simulations and machine learning. Springer-
Verlag (2004)

13. Suganthan, P., Hansen, N., Liang, J., Deb, K., Chen, Y., Auger, A., Tiwari, S.:
Problem definitions and evaluation criteria for the CEC2005 special session on
real-parameter optimization. Technical report, Nanyang Technology University,
Singapore (2005)

14. Whitaker, R.M., Hurley, S.: An agent based approach to site selection for wireless
networks. In: Proc. ACM Symposium on Applied Computing, Madrid, pp. 574–577
(2002)

15. Wilcoxon, F.: Individual comparisons by ranking methods. Biometrics 1, 80–83
(1945)

Self-organized Clustering of Square Objects

by Multiple Robots

Yong Song, Jung-Hwan Kim, and Dylan A. Shell

Dept. of Computer Science and Engineering, Texas A&M University
{porawn,jnk3355,dshell}@cse.tamu.edu

Abstract. Object clustering is a widely studied task in which self-
organized robots form piles from dispersed objects. Although central
clusters are usually desired, workspace boundaries can cause perime-
ter cluster formation to dominate. This research demonstrates successful
clustering of square boxes—an especially challenging instance since flat
edges exacerbate adhesion to boundaries—using simpler robots than pre-
vious published research. Our solution consists of two novel behaviors,
Twisting and Digging, which exploit the objects’ geometry to pry boxes
free from boundaries. We empirically explored the significance of differ-
ent divisions of labor by measuring the spatial distribution of robots and
the system performance. Data from over 40 hours of physical robot ex-
periments show that different divisions of labor have distinct features,
e.g., one is reliable while another is especially efficient.

1 Introduction

Object clustering involves gathering spatially distributed objects into a single
central pile. This operation, akin to raking leaves, simplifies subsequent han-
dling and is useful within a longer manipulation pipeline. The task is ideal for
studying the role of physics and environmental interactions in producing com-
plex collective behavior. This paper is concerned with clustering square objects,
which is an important direction because (i) such objects have greater relevance
for applications (specifically construction involving bricks), (ii) radically different
packings result, which challenge existing geometry-based clustering theories, and
(iii) sensitivity to environment boundaries, which may cause existing approaches
to fail in forming central clusters, is exacerbated.

We introduce two simple behaviors Twisting and Digging exploiting objects’
shape to pry boxes away from boundaries. A group of robots executing mixture of
these two behaviors is able to repeatedly form central clusters. Through over 40
hours of experiments, we examined the effect of different numbers of twisters and
diggers on the system’s performance, empirically determining the most reliable
and most efficient divisions of labor. This paper’s primary contributions are:

• Assessment of Kazadi’s cluster growth theory [1]: Experimental data verifies
the theory, previously only validated with simulations of hypothetical robots.

• Division of labor: This is the first examination of the division of labor for
clustering tasks; this paper illustrates that it can play an important role.

M. Dorigo et al. (Eds.): ANTS 2012, LNCS 7461, pp. 308–315, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Self-organized Clustering of Square Objects by Multiple Robots 309

• New way to address boundary effects: This paper describes an open-loop mo-
tion to limit cluster formation on the boundaries. The motion does not depend
on the robot disambiguating particular circumstances, but rather it is the con-
text within which the actions are executed that produces the desired outcome.
From a self-organization perspective, this is a particularly satisfying solution
to the boundary problem since it depends primarily on the physics of the
robot-environment interaction for its success.

• Illustrating that spatial distribution matters:While existing techniques for deal-
ing with boundaries, (e.g., using sophisticated rules for releasing objects [2]), our
approach simply modifies the spatial distribution of robots. Thus far, analysis
techniques (e.g., [1,3]) only consider spatially homogeneous distributions.

2 Motivation and Related Work

Multi-robot object clustering has been widely studied: Deneubourg et al. [4] pre-
sented an early distributed algorithm which achieved “sorting” with a local den-
sity sensor and no direct communication between agents. Inspired by biological
models, Beckers et al. [5] carried out the first physical robot experiments and
also demonstrated clustering without a density sensor. They gave an initial ex-
planation for the emergence of clusters on the basis of the geometry of the piles.
Martinoli [6] further quantified this geometric notion. Thereafter, Kazadi et al. [1]
introduced a model which gives conditions for cluster formation to occur.

Holland and Melhuish [2] extended the clustering task to include spatial sort-
ing. They conducted several experiments in which clusters formed at the edge of
their arena, since flat boundaries have geometric properties similar to very large
clusters. A similar “preference” for cluster formation along boundaries has been
noted within a biological system [7]. Some authors [4,5,2] explained clustering
through stigmergy [8], a process wherein the environment, modified by agents’
previous actions, affects subsequent task performance. More recent connections
between robot clustering and biological models have been published [9].

Almost all previously published work in robotic clustering considers cylindri-
cal pucks. However, square objects have flat edges which exacerbate adhesion to
boundary walls. It is particularly difficult for a cylindrical robot to move a box
positioned against a wall into the center of the workspace. This is observable
in the video posted by Vaughan’s Autonomy Lab1 in which 36 iRobot Creates
successfully cluster square objects; most of the clusters form on the boundary.

Table 1 is a comparative summary of robots’ capabilities and experimental
environments in the most closely related literature. Our robots are much simpler
than others, except for Vaughan’s demo. They recognize the existence of an ob-
stacle (via IR), but cannot ascertain its type. Interestingly, the rows in the table
with the simplest robots either produced boundary clusters or have a special
way of treating them, e.g., Maris and Boeckhorst [10] define objects to be “lost”
once they were pushed against a wall.

1 We thank Vaughan’s Autonomy Lab at SFU for posting this video as it inspired this
paper. The video can be seen at http://www.youtube.com/watch?v=b_kZmatqAaQ

http://www.youtube.com/watch?v=b_kZmatqAaQ

310 Y. Song, J.-H. Kim, and D.A. Shell

Table 1. A comparison of robot capabilities for clustering tasks

Work
Pucks/Seeds/Cubes/Boxes Environment
Sensing Manipulation Sensing Boundary & Effects

Beckers
et al. [5]

♦Detect circular
pucks with force
sensor in C-shaped
scoop

♦Push circular ob-
jects
♦Control the num-
ber of carried pucks
with a microswitch

♦Two IR sensors
for obstacle avoid-
ance

♦A square arena
♦ Side-steps the effect of
boundary by using a de-
formable boundary

Note: The robots can push pucks trapped on the boundary due to a deformable wall.

Marti-
noli
[3]

♦Discriminate be-
tween circular seeds
and obstacles with
distinct IR sensor
signatures

♦Grasp, carry and
release seeds

♦ Six IR proxim-
ity sensors for de-
tecting obstacles

♦A square arena
♦Effect of the boundary
ignored

Note: The robots can recognize and access clusters geometrically.

Holland
& Mel-
huish [2]

♦Detect circular
pucks by sensing
backward force on
gripper

♦Grip, retain, and
release circular
pucks with semicir-
cular gripper

♦Four IR prox-
imity sensors
for sensing the
boundary

♦An octagonal shaped
arena with rigid boundary
♦Use the probability of
detecting a wall

Note: Robots cannot discriminate between other robots and the boundary.
The strategy of varying the wall probability introduces the false positive.
The robots overcome the effect of boundary with sensors.

Maris
et al. [10]

♦No sensing of the
cubes

♦Cubes pushed
until obstacle
detected

♦ Six IR proxim-
ity sensors for ob-
stacle detection

♦A square arena
♦Consider pushed cubes
against the boundary as
”lost”

Note: The robots manipulate cubes by only pushing behavior for clustering task.
Robots pass over cubes on the boundary.

Vaughan
[unpubl.]

♦Detect square
boxes with
bumpers

♦Push and leave a
box by a bumper’s
threshold

♦No sensor for
detecting objects
except for boxes

♦A rectangular arena
♦Effect of the boundary
ignored

Note: Several clusters formed on the boundary.

This
paper

♦Detect square
boxes with
bumpers

♦Push and leave a
box by a bumper’s
threshold

♦A single IR
proximity sensor
for sensing the
objects on the
right side

♦An octagonal shaped
arena with rigid boundary
♦Overcome the effect of
boundary using motion
strategies

Note: No puck manipulator.
Limited sensor information (1-bit IR sensor, 1-bit bumper).
Boundary effect overcome without explicit sensing of it (self-organization).

3 Materials and Methods

We used iRobot Creates robots having only two sensors: a bumper and a prox-
imity sensor. We consider 35cm×35cm square boxes as the objects to cluster;
although a box has an insufficient mass to activate the bump sensor, two or
more boxes together have adequate mass. Similar to Melhuish and his group
(e.g., [2,9]), we used an octagonal shaped workplace (4.5m×4.5m). Figure 1 (left)
shows the initial configuration. We used 5 robots and 20 boxes. Three trials, each
lasting 90 minutes, were conducted for each condition. All experiments were
videotaped and annotated by observing frames every 5 seconds. A cluster is a
group of more than three boxes, each touching at least one other. We distinguish
between boundary and central clusters, and the goal being to produce only the
latter. A boundary cluster is a group which has at least one box touching a wall.

Self-organized Clustering of Square Objects by Multiple Robots 311

Fig. 1. (left) initial configuration, (center) an example final configuration using the
basic strategy, and (right) an example final configuration using the mixed strategy (2
Twisters and 3 Diggers). Video clips are available at http://students.cse.tamu.edu/
jnk3355/experiments.html.

Start

Bumper
Pressed?

Make a
Random Turn

Go Straight

Yes

No

Fig. 2. Flowchart show-
ing the basic behavior

4 The Basic Strategy

Based on the controllers in [5,2], we implemented the
simple algorithm shown in Figure 2. The robots move
straight but make a random turn when their bumpers
are pressed. All operations depend only on local infor-
mation. Figure 1 (center) shows the final configuration
of the first trial of the basic strategy. In all three runs,
the robots produced clusters of square boxes, but most
clusters formed on the boundary (cf. Experiment 2 in
[5]). The results underscore the earlier statement: the boundary influences clus-
ter formation since walls have the properties comparable to a large cluster. The
workspace walls buttress partial structures and the motion required to dislodge
boxes only occurs infrequently.

5 The Mixed Strategy

We propose two new behaviors to overcome the effect of the boundary and to
increase the formation of a single central cluster of boxes. Our approach exploits
the mechanics of square objects. As shown in Figure 3 (left), striking the corner
of a box can pry it loose from a tight packing. This reduces the area in con-
tact with the wall and makes subsequent separation more likely when repeated.
Using this prying motion, we introduce two complementary behaviors, twisting
and digging. We call a robot executing the twisting behavior a twister (T) and a
robot performing digging a digger (D). A group comprising both types of robots
is said to employ a mixed strategy. We stress the simplicity of both operations:
only one IR proximity sensor is added to the basic strategy’s requirements. Fig-
ure 3 (right) shows trajectories of both behaviors on the boundary after a bump
or time out (the latter, only for twisters). Diggers move along a curved arc to
find a wall, while twisters go into the central region, potentially pushing a box.
Intuitively, the twisters are more likely to convey objects, while the diggers form
gaps between boxes and the boundary.

http://students.cse.tamu.edu/jnk3355/experiments.html
http://students.cse.tamu.edu/jnk3355/experiments.html

312 Y. Song, J.-H. Kim, and D.A. Shell

BoxBox BoBox

Detect
Box

45˚ Digger

Twister

To the central region

To the boundary

Boundary

Fig. 3. (left) prying boxes away from the wall, and (right) trajectories of the twisters
and diggers after the prying motion

Twisting Behavior. The prying motion shifts a box, and robots reaching the
twisted box subsequently butt and bring it into the center, as shown in Figure 4a.
To raise the probability of contact with boundary boxes, the robot operates in
a wall following mode when its IR sensor detects an object on the robot’s side.
However, a robot will keep pushing it if one boundary box exists. Since it can
be counter-productive to continue wall following, the robots only do so for 5 sec-
onds, then perform a prying motion. The robot’s motion in the center is the same
as the basic strategy. Figure 4b shows the flowchart of the detailed algorithm.

Digging Behavior. The digging behavior was developed to improve overall
performance, by increasing the chance to detecting a wall, and further separate
twisted boxes from walls. Unlike twisters, the robot remains in a wall-following
mode when its IR sensor detects an object. Also, the robot tries to find a bound-
ary with the movement in a curved path instead of a straight trajectory. Apart
from these two exceptions, the digging robots perform the same as the prying
motion as twisters. The behavior is depicted in Figure 5b.

Resulting Cluster Dynamics. We carried out experimental trials under the
condition identical to the basic strategy case in order to verify the clustering
performance of the mixed strategy. Five robots were used, two twisters and
three diggers. Although twisting and digging are complementary, the division of
labor affects the overall performance; we present the details in Section 6.

Figure 1 (right) shows the final configuration of the first trial in the mixed
strategy. Unlike to the basic strategy, a single large cluster emerged in the

45˚

(a)

Start

Bumper
Pressed?

Timer On?

Object
Detected?

Timer On?

Reduce Timer

Follow Object

Time Out?

Turn On Timer

Turn Off Timer

Rotate & Push

Make a
Random TurnNo Yes

No Yes

Yes

Yes
No

No

Yes

Go Straight

No

Object
Detected?

Yes

No

Rotate & Push

Make a
Random TurnYes

Go Straight

Object
DDetected??

Yes

No

(b)

Fig. 4. (a) Motion on the boundary and (b) Flowchart of the digging behavior

Self-organized Clustering of Square Objects by Multiple Robots 313

Box

Wall
Following

Wall
Following

(a)

Start

Bumper
Pressed?

Object
Detected?

Follow
Object

Rotate &
Push

Make a
Random TurnNo Yes

Yes

Move Along
Curved Arc

Object
Detected?

Yes

No

No

Rotate &
Push

Make a
Random Turnes

Move Along
Curved Arc

Object
DDetected??

Yes

No

(b)

Fig. 5. (a) Motion on the boundary and (b) Flowchart of the digging behavior

middle of the arena in all three trials. Figure 6 shows the average size of the
biggest central clusters and their standard deviations through the time for the
basic and mixed strategies. The results verify that our proposed motion strategy
can successfully overcome the boundary effect and collect spatially distributed
objects into a single pile at the designated position, the center of the workspace.

Fig. 6. A comparison of clustering performance.
Vertical axis is the size of the largest central
cluster (essentially the same performance met-
ric employed by [5]). The horizontal axis is time
measured in minutes.

6 Analysis of Division of Labor

The most significant difference between twisting and digging behaviors is the
spatial distribution of robots. Figure 7 shows the averaged spatial distributions
of robots for particular divisions of labor (these data were collected without boxes
as a baseline). The numbers of robots for each case are normalized by area (via
basic case numbers). As the ratio of diggers increases, boxes on the boundary
are more likely to be separated from the wall. However, it does not guarantee
that the separated objects will be brought into central clusters since diggers will
remain along the wall after the prying operation. From this analysis, we consider
how differences in spatial distribution might affect clustering progress.

6.1 Clustering Performances of Differing Divisions of Labor

We conducted three trials for all possible combinations of the twister and the
digger. Only few trials succeeded in forming a single central cluster having all

314 Y. Song, J.-H. Kim, and D.A. Shell

0

20

40

60

80

100

Basic 0T5D 1T4D 2T3D 3T2D 4T1D 5T0D

Di
st

rib
ut

io
n

Ra
tio

 (%
)

Central
Region

Boundary
Region

Fig. 7. Averaged spatial distribution of robots
(central versus boundary regions) with re-
spect to division of labor. Note: basic strat-
egy robots are assumed to be uniformly
distributed due to their random turn.

20 boxes within 90 minutes. Despite single central clusters not being completely
formed in all cases, it appeared as if the robots could achieve the goal if given
more time. We are interested in the question of whether, given unlimited time,
all combinations would form a single central cluster. This question is examined
using Cluster Growth Theory in the next section.

Fig. 8. Averaged performance of differ-
ent Divisions of Labor

Figure 8 shows the averaged size of
the largest central clusters for each case.
As a summary, showing means of the
three trials hides a few interesting facts.
For example, the 1T4D case appears to
perform poorly compared to 2T3D. In
fact, it was a very capable division of la-
bor and once formed a complete central
cluster in the shortest observed time of
25 minutes. However, 1T4D also failed
in one of its trials. This illustrates that
while 2T3D is to be preferred for reli-
able clustering, 1T4D may be preferred
for efficient clustering.

6.2 Cluster Dynamics under Differing Divisions of Labor

According to the theoretical dynamics of clustering systems, proposed by Kazadi
et al. [1], a sufficient condition for the convergence of puck clustering systems is
that the ratio of puck removal and puck deposit is monotonically decreasing.
The cluster formation function was defined as below,

g(n) =
Total number of box removal in cluster size, n

Total number of box deposit in cluster size, n
. (1)

To identify the effect of differing divisions of labor on generating a single central
cluster, we examine g(n) for the central boxes here. Except for the 0T5D case, all
values of g(n) for all cases are monotonically decreasing and are located below
1. On the basis of Kazadi et al.’s result, this would prove that each division
of labor guarantees forming a single central cluster if sufficient time is allowed.
The case of 0T5D can be explained by the spatial distribution of the robots: the
diggers effectively generate gaps between boxes and boundaries, but the objects
are rarely brought into the central region.

Self-organized Clustering of Square Objects by Multiple Robots 315

7 Conclusion

This paper described a multi-robot system in which agents employ simple local
interaction rules to gather square objects into a single pile in the center of their
workspace. As an existence proof, the work has two important aspects: First,
we employ less capable robots than previous work. Secondly, the objects are
square, making them more challenging to cluster and more functional than pre-
vious cases. We examined cluster growth properties through theoretical model
of clustering of Kazadi et al. [1]. This work is the first empirical verification of
cluster formation functions for physical robots we are aware of.

Through physical experiments, we demonstrated that the combination of two
complementary behaviors, twisting and digging, allows robots to overcome the
influence of the boundary. Our approach uses mechanical interactions with boxes
on the perimeter, and emphasizes action rather than sensing. It is closer to
the spirit underlying the self-organized clustering process itself than previous
approaches to lessen formation of boundary clusters. This work also focuses on
managing the spatial distribution of robots rather than specialized manipulation
of the objects. In this regard, it is a departure from the focus within the literature,
which assumes a uniform distribution of robots. It suggests that one way to direct
such self-organized systems might be to influence where they spend their time.

References

1. Kazadi, S., Abdul-Khaliq, A., Goodman, R.: On the convergence of puck clustering
systems. Robotics and Autonomous Systems 38(2), 93–117 (2002)

2. Holland, O., Melhuish, C.: Stigmergy, self-organization, and sorting in collective
robotics. Artif. Life 5(2), 173–202 (1999)

3. Martinoli, A., Ijspeert, A.J., Mondada, F.: Understanding collective aggrega-
tion mechanisms: From probabilistic modelling to experiments with real robots.
Robotics and Autonomous Systems 29(1), 51–63 (1999)

4. Deneubourg, J., Goss, S., Franks, N., Sendova-Franks, A., Detrain, C., Chrétien,
L.: The dynamics of collective sorting robot-like ants and ant-like robots. In: Proc.
of Simulation of Adaptive Behavior (SAB), pp. 356–363 (1991)

5. Beckers, R., Holland, O., Deneubourg, J.: From Local Actions to Global Tasks:
Stigmergy and Collective Robotics. In: Proc. of Artificial Life IV, pp. 181–189
(1994)

6. Martinoli, A.: Swarm Intelligence in Autonomous Collective Robotics from Tools
to the Analysis and Synthesis of Distributed Control Strategies. PhD thesis, École
Polytechnique Fédérale de Lausanne (1999)

7. Bonabeau, E., Theraulaz, G., Fourcassié, V., Deneubourg, J.L.: Phase-ordering
kinetics of cemetery organization in ants. Phys. Rev. E 57(4), 4568–4571 (1998)

8. Grassé, P.: La reconstruction du nid et les coordinations interindividuelles chez-
bellicositermes natalensis etcubitermes sp. la théorie de la stigmergie. Insectes so-
ciaux 6(1), 41–80 (1959)

9. Scholes, S.R., Sendova-Franks, A.B., Swift, S.T., Melhuish, C.: Ants can sort their
brood without a gaseous template. Behav. Ecology & Sociobiology 59, 531 (2005)

10. Maris, M., Boeckhorst, R.: Exploiting physical constraints: Heap formation through
behavioral error in a group of robots. In: Proc. of Conference on Intelligent Robots
and Systems (IROS), pp. 1655–1660 (1996)

Self-reproduction versus Transition Rules in Ant

Colonies for Medical Volume Segmentation

Robert Haase1, Hans-Joachim Böhme2, Rosalind Perrin1,
Klaus Zöphel3, and Nasreddin Abolmaali1,3

1 OncoRay, Medical Faculty Carl Gustav Carus, TU Dresden, Germany
{robert.haase,nasreddin.abolmaali}@oncoray.de,

2 Faculty of Computer Science/Mathematics, HTW Dresden, Germany
3 University Hospital Carl Gustav Carus, TU Dresden, Germany

Abstract. Target volume delineation in image stacks resulting from low
contrast positron emission tomography (PET) remains a hot topic in
the field of medical image processing. We propose an algorithm based
on artificial ants moving in three dimensional image space controlled by
transition rules which are able to self-reproduce. This investigation shows
by variation of the transition rules that the impact on segmentation
results is small because self-reproduction is the overwhelming effect in
the simulation.

1 Introduction

Diagnostic imaging increasingly includes modern data processing techniques to
support physicians in analysis of the resulting image data. In some specific ar-
eas, such as positron emission tomography (PET) development of specialized
segmentation algorithms remains a hot topic. While there is a number of auto-
matic segmentation algorithms available for PET in general, most of them were
developed for standard high contrast PET and to solve specific tasks, such as
target volume delineation in lung cancer [7] or head and neck cancer [6]. However
especially for low contrast PET there is currently a lack of automatic routines
for target volume delineation. Two example images of standard PET and low
contrast PET are shown in Figure 1. For the automatic segmentation of such low
contrast PET images we developed a segmentation algorithm based on virtual
ant colonies. This investigation focuses on variation of the ants’ transition rules
to determine the effects on segmentation results.

2 Materials and Methods

2.1 Related Work

The first utilisation of virtual ant colonies for solving combinatorical problems
[1] appeared in the early ninetees. Lately ant-based medical image processing

M. Dorigo et al. (Eds.): ANTS 2012, LNCS 7461, pp. 316–323, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Self-reproduction versus Transition Rules in Ant Colonies 317

Fig. 1. Exemplary PET images of a head and neck cancer patient: a)
[18F]fluorodeoxyglucose (FDG) PET shows increased glucose metabolism in tumour
and brain in black. b) In the same spatial position as in the tumour in the
FDG PET image there is increased hypoxia expressed in black in a low contrast
[18F]fluoromisonidazole (FMISO) PET image.

was proposed for example to detect microcalcifications in digital mammograms
[5]. Another ant-based approach to image segmentation used self-reproduction
to automatically vary the colony population [3]. Our proposed algorithm, called
PETACS, is based on the same principle: ants in regions with high signal inten-
sity reproduce and thus ants accumulate inside the target object.

2.2 Proposed Algorithm

The proposed segmentation algorithm consists of two main procedures, shown
in figure 2. The ant colony of PETACS is separated in two castes: scout ants for
locating the target object in the PET volume (exploration) and worker ants for
segmenting the target object from the background (exploitation). At the begin-
ning of every iteration scout ants are seeded randomly on 4% of the voxels of
a spherical region of interest (ROI) manually defined by an experienced radiol-
ogist. Worker ants only appear through self-reproduction. After the simulation,
only the distribution of worker ants is analysed to determine the segmentation
of the target object. The randomly seeded scout ants do not influence the re-
sult directly. For a detailed report on how to extract the binary image from ant
distribution and pheromone field, the reader is referred to [4].

Fig. 2. Schematic overview of the proposed algorithm: Figure a) Shows the embedding
of PETACS in an image processing pipeline leading from the original PET image to
the target object delineation. Figure b) shows the sub procedures of the simulation
comprising of two loops.

318 R. Haase et al.

Ant Motion The motion of the ants is based on the transition rule proposed
for Ant Colony based systems [1] adapted to handle voxels of three dimensional
imaging data instead of edges and vertices in graphs:

pij =
[Aj]

α · [τj]β∑
k/M(i)[Ak]α · [τk]β

(1)

The probability pij that an ant moves from voxel i to j is calculated using grey
values A (a PET scanner measures activity A) and pheromone intensities τ of
voxels. The term

∑
k/M(i) expresses the fact, that the sum is calculated over all

voxels k in the Moore-neighbourhood of voxel i. If the sum is zero, the ant is
constrained to stay at its current location. The weighting exponents α and β are
used to make ants more attracted by either activity A or pheromone τ . Both
ant castes are algorithmically identical, but α and β may differ allowing to give
ants a different behaviour. Thus αscout, βscout, αworker and βworker are defined
to induce different behavior of the ants belonging to both castes. An example
for this implementation of division of labour is shown in figure 3.

Fig. 3. Division of labour: Figure a) shows an image with the target object in black.
Figure c) shows the corresponding pheromone field. Zoomed views in b) and d) show
an ant and its transition probabilities to neighbouring voxels expressed as thickness
of the arrows. If the ant only perceives activity (α = 1, β = 0) as implied in b)
transition probabilites to all directions are mostly uniform. If the ant only perceives
the pheromone (α = 0, β = 1) as implied in d) the ant is more attracted by the target
object.

Self-Reproduction As an approach for filling target objects with ants the
paradigms of ageing and self-reproduction as proposed by Fernandez et al. [3]
are introduced. The process of ageing describes the limitation of the life span
of ants. Every ant has an initial survival probability pS = 1, which is decreased
after every iteration by a given parameter 0 ≤ ΔpS ≤ 1. In our simulation
is ΔpS = 0.33. Respecting current pS values of every single ant, after every
iteration a number of ants are eliminated. The process of self-reproduction is the
only chance for the colony to grow. This effect seems to be decisive for image
segmentation by filling an object with ants. If the number of ants is defined a
priori, the size of the object that can be filled is limited. Thus the colony needs a
way to control the population size autonomously. Furthermore self-reproduction

Self-reproduction versus Transition Rules in Ant Colonies 319

is an alternate approach for ant motion, because descendants are deposited in
neighbouring voxels and thus the relative position of the colony changes. An
exemplary simulation showing how an ant colony moves in space only by self-
reproduction is shown in figure 4. In PETACS self-reproduction is allowed for
ants occupying voxels i fullfilling the conditions

Ai − Āmax(1..t) > 0, with Āmax(1..t) = max(Ā1, ..., Āt) (2)

τi > P · tA,max · τmax. (3)

Condition (2) ensures that only ants on voxels with activity above a thresh-
old Āmax(1..t) are allowed to seed descendants. This threshold is calculated by
determining the maximum of the average activity Āt of all voxels occupied by
ants after any previous iteration t. Condition (3) further restricts the group of
self-reproducing ants to ants occupying voxels with pheromone intensity above a
certain threshold. This threshold depends on a constant P = 0.015, the number
tA,max of iterations passed by until the maximum average activity was reached
and the current maximum pheromone intensity τmax. This threshold ensures that
the ants can not spread over the whole ROI at the end of the simulation.

Fig. 4. Visualization of self-reproducing ants on a one-dimensional image during five
iterations (t = 1...5): Ants occupying voxels with activity above average seed descen-
dants (arrow). After two iterations every ant is eliminated (cross). In this example the
ant-density inside the target object stabilizes in iteration t = 4 and t = 5. Note that
none of the shown ants moves, the ’colony motion’ is a result of self-reproduction.

Pheromone Update The pheromone field, which is used for the transition rule
given above, is sampled onto a matrix of the same size as the processed PET
volume data set (512 x 512 x 50 voxels) and initialized with zeros. After every
iteration t all ants emit pheromone Δτi,t to the voxel i where it is located. The
amount of pheromone is calculated from activity Ai in the voxel and the average
activity Āt of all voxels being occupied by ants after iteration t:

Δτi,t = max(0, Ai − Āt) (4)

320 R. Haase et al.

τ ′i,t = (1− ρ)τi,t + ρΔτi,t (5)

τi,t+1 =
∑

k/N(i)

τ ′k,t/7 (6)

Equation 4 ensures that only ants on voxels with activity above the average
emit pheromone. The pheromone intensity τ ′ of voxel i after iteration t is then
calculated using the evaporation constant ρ = 0.1 in equation 5. This so called
local pheromone update is well established in Ant Colony System-based algo-
rithms [2]. Afterwards in equation 6 the pheromone intensity τi,t+1 of the next
iteration is calculated by blurring the pheromone field using a mean filter on
the von-Neumann-neighbourhood N(i) of voxel i including voxel i. Thus, after
several iterations all voxels in the pheromone field are assigned non-zero values
even if no ant has ever emitted pheromone on them. The result is a pheromone
field with a gradient in almost all voxels aiding the ant in finding regions with
high activity.

2.3 Experimental Setup

A collection of low contrast [18F]fluoromisonidazole PET images from 46 head
and neck cancer patients were further processed using the following procedure.
Three experienced observers delineated the PET data sets searching for pre-
sumptive positive regions. In 35 data sets all observers defined a target object.
The remaining 11 data sets were excluded for the further analysis. The PET data
sets were segmented three times by PETACS using varying α and β parameters.
Automatic and manual segmentation results were transformed to binary image
stacks afterwards. The Jaccard Index J , a degree of delineation overlap, was
then used as similarity metric for comparison of the binary image stacks:

J(A,B) =
|A ∩B|
|A ∪B| (7)

A and B represent the binary image stacks as sets. A is the set of all positive
segmented voxels of one segmentation result, B represents the set of positive
voxels of the other result. If J = 0, there is no overlap, if J = 1 the contours
match perfectly in three dimensions.

After segmentation, there were three manually generated contours for every
patient data set. These contours were compared to each other pair wise result-
ing in three JIOV measurements of inter-observer-variability. The average of
these measures is denoted as J̄IOV . Comparing the three automatically gener-
ated contours of every single α-β-configuration pair wise with each other resulted
in a measure of reproducibility J̄R. Segmentation quality J̄SQ is retrieved from
comparison of automatically generated delineations with manually generated de-
lineation. Analogously the symmetrical mean contour distance D̄ is determined.
Assuming the set C(A) ⊆ A contains all voxels on the boundary of A and the
Euclidean distance d(a, b) of two contour elements a and b is given in millimeters,

Self-reproduction versus Transition Rules in Ant Colonies 321

the mean contour distance d̄ between sets A and B is given. Because this measure
is not commutative, the symmetrical mean contour distance D̄ is defined:

d̄(A,B) =

∑
∀a∈C(A)min(d(a, b))

|C(A)| , b ∈ C(B) (8)

D̄(A,B) =
1

2
(d̄(A,B) + d̄(B,A)) (9)

Seven different α-β-configurations for scout and worker ants were tested to sim-
ulate ant colonies with scouts and workers following the same transition rules
(αScout = αWorker and βScout = βWorker), ant colonies where ants used different
transition rules depending on which caste they belonged to, ants moving ran-
domly (αScout = αWorker = βScout = βWorker = 0) and ants which were not
allowed to move.

The Wilcoxon Matched Pairs Test was applied to the JSQ and DSQ values
of the tests pair wise. For example JSQ values of all data sets of test 1 were
compared to the corresponding values of test 2. The criterion for significant
differences between these values was p < 0.05.

3 Results

After execution of 735 simulations (35 patients, 3 times, 7 configurations) and
3045 contour comparisons the average J̄ and D̄ values were calculated. Compar-
ing the manually generated delineations resulted in J̄IOV = 0.46 and D̄IOV =
6.39mm. Exemplary contours from PETACS and observers is shown in figure
5. The resulting J̄ and D̄ measures of contour comparisons and corresponding
α and β values are shown in table 1. Firstly J̄SQ and D̄SQ values suggest that
the automatic segmentation results match the manual delineations slightly worse
than manual delineations match each other. Test 1 yielded the highest segmenta-
tion quality (J̄SQ = 0.43 and D̄SQ = 7.40mm) even though the ants are moving
randomly in image space (αScout = αWorker = βScout = βWorker = 0). The
highest reproducibility measures were observed in test 2 (D̄R = 1.16 mm) and
test 3 (J̄R = 0.70). Disabling ant motion (test 7) led to segmentation results
that were worst reproducible (J̄R = 0.72 and D̄R = 1.82 mm) compared to all
other tests. Figure 6 shows exemplary simulations of test 6 and 7 in comparison.
In both cases ants accumulated inside the target objects even though ants were
not allowed to move in test 7.

The Wilcoxon Matched Pairs Test on JSQ showed significant differences (p <
0.05) for test 3 versus 4 and test 7 versus 2, 3 and 6. The corresponding analysis
on DSQ values showed significant differences in the same cases and additionally
in tests 1 versus 2 and 3 and test 3 versus 4. In all other cases differences are
not significant (p ≥ 0.05), even though α and β vary.

4 Discussion

The presentend algorithm delineated target objects with a segmentation qual-
ity comparable to experienced observers, but did not outperform them in any

322 R. Haase et al.

Table 1. List of performed tests: Varied α and β parameters are given as well as the
resulting segmentation quality J̄SQ, D̄SQ and reproducibility J̄R, D̄R measures. Under-
lined measures highlight the best value of the corresponding metric in all experiments.
*In test 7 ant motion was disabled. Thus α and β are not given.

Test αScout βScout αWorker βWorker J̄SQ D̄SQ [mm] J̄R D̄R [mm]

1 0 0 0 0 0.43 7.40 0.76 1.60
2 1 0 0 1 0.40 7.61 0.79 1.16
3 1 1 1 1 0.40 7.65 0.80 1.17
4 1 0 1 0 0.41 7.54 0.75 1.52
5 0 1 0 1 0.40 7.64 0.78 1.31
6 0 1 1 0 0.41 7.55 0.79 1.21
7* - - - - 0.42 7.52 0.72 1.82

Fig. 5. ROI shown in a) was segmented. The resulting delineations of PETACS shown
in b) are compared to target object delineations of observers in c). The PETACS based
delineations match the manually generated delineations better (J̄SQ = 0.46) than the
manually generated contours match each other (J̄IOV = 0.43).

Fig. 6. Observing PETACS during a) test 6 and b) test 7 after 1, 3, 5, 10 and 20
iterations (from left to right) shows no obvious differences in development of worker
ant distribution (upper row) or pheromone field (lower row). Even though ant motion
was disabled in b), segmentation results (right) appear very similar.

case. Nevertheless, further improvement is needed before it can be applied in
clinical routine. Segmentation results of randomly moving ants compared to
ants controlled by transition rules show slightly increased segmentation quality.
This fact poses the question as to whether transition rules are needed in this
algorithm. The reason for the higher J̄SQ and D̄SQ values may be seen in the
gap-filling purpose of ant motion. Through elimination of ants after every iter-
ation, unoccupied voxels appear inside the target object. These voxels can be
occupied again by reproduction or by ant motion. If the algorithm provides both,
the probability of a gap being filled is higher and thus J̄SQ and D̄SQ may be
higher.

Self-reproduction versus Transition Rules in Ant Colonies 323

5 Conclusion

The proposed ant based segmentation algorithm was able to delineate target
objects in low contrast FMISO PET data. Variation of the transition rules influ-
enced the segmentation results only to a small degree. Ants using transition rules
induced the best reproducible results and randomly moving ants induced results
best matching to experienced observers. However removing the transition rules
from the algorithm is not worthwhile, because an increase of segmentation qual-
ity should not be achieved by a method decreasing segmentation reproducibility.

Acknowledgements. The authors RH and NA are supported by grants from
the Sächsische Landesexzellenzinitiative (Project 100066308) and the Federal
Ministry of Education and Research of Germany (BMBF-03ZIK042).

References

1. Colorni, A., Dorigo, M., Maniezzo, V.: Distributed Optimization by Ant Colonies.
In: European Conference on Artificial Life, pp. 134–142. MIT Press, Cambridge
(1992)

2. Dorigo, M., Birattari, M., Stützle, T.: Ant Colony Optimization - Artificial Ants as a
Computational Intelligence Technique. IEEE Computational Intelligence Magazine,
28–39 (2006)

3. Fernandes, C., Ramos, V., Rosa, A.C.: Varying the Population Size of Artificial
Foraging Swarms on Time Varying Landscapes. In: Duch, W., Kacprzyk, J., Oja, E.,
Zadrożny, S. (eds.) ICANN 2005. LNCS, vol. 3696, pp. 311–316. Springer, Heidelberg
(2005)

4. Haase, R., Böhme, H.-J., Hietschold, V., Andreeff, M., Abolmaali, N.: A New Seg-
mentation Algorithm for Low Contrast Positron Emission Tomography based on
Ant Colony Optimization. In: Proceedings of the 55th IWK Crossing the Borders
with ABC, Automation, Biomedical Engineering and Computer Science, pp. 505–
510. TU Ilmenau (2010)

5. Jevtić, A., Quintanilla-Domı́nguez, J., Barrón-Adame, J.M., Andina, D.: Image Seg-
mentation Using Ant System-Based Clustering Algorithm. In: Corchado, E., Snášel,
V., Sedano, J., Hassanien, A.E., Calvo, J.L., Ślȩzak, D. (eds.) SOCO 2011. AISC,
vol. 87, pp. 35–45. Springer, Heidelberg (2011)

6. Nehmeh, S.A., El-Zeftawy, H., Greco, C., Schwartz, J., Erdi, Y.E., Kirov, A.,
Schmidtlein, C.R., Gyau, A.B., Larson, S.M., Humm, J.L.: An iterative technique
to segment PET lesions using a Monte Carlo based mathematical model. Med.
Phys. 38, 4803–4809 (2009)

7. Schaefer, A., Kremp, S., Helbig, D., Rübe, C., Kirsch, C.-M., Nestle, U.: A contrast-
oriented algorithm for FDG-PET based delineation of tumour volumes for the ra-
diotherapy of lung cancer: derivation from phantom measurements and validation
in patient data. Eur. J. Nucl. Med. Mol. Imaging 35, 1989–1999 (2008)

Swarm Interpolation Using

an Approximate Chebyshev Distribution

Joshua Kirby1, Marco A. Montes de Oca2, Steven Senger2, Louis F. Rossi2,
and Chien-Chung Shen1

1 Department of Computer and Information Sciences,
University of Delaware, Newark, USA

2 Department of Mathematical Sciences, University of Delaware, Newark, USA
jothki@udel.edu, {mmontes,senger,rossi}@math.udel.edu,

cshen@mail.eecis.udel.edu

Abstract. In this paper, we describe a novel swarming framework that
guides autonomous mobile sensors into a flexible arrangement to inter-
polate values of a field in an unknown region. The algorithm is devised
so that the sensor distribution will behave like a Chebyshev distribution,
which can be optimal for certain ideal geometries. The framework is de-
signed to dynamically adjust to changes in the region of interest, and
operates well with very little a priori knowledge of the given region.

For comparison, we interpolate a variety of nontrivial fields using a
standard swarming algorithm that produces a uniform distribution and
our new algorithm. We find that our new algorithm interpolates fields
with greater accuracy.

1 Introduction

The capability for a swarm of robots for tracking the location of a contamina-
tion or other hazard has been well understood for some time [6] [4], but once a
primary body has been identified, or if its location is obvious from the start as
for a large oil spill, mapping out the distribution of the field, the swarm interpo-
lation problem is a different matter. Bertozzi et. al. presented a system for edge
tracking, using a linked chain of robots that shape themselves to the outside con-
tours of the region [2]. This method is sufficient for gathering information about
the shape of a contaminated region, but not about the distribution of contami-
nants within it. Turduev et. al. developed a system for coordinating movement
towards areas of higher concentration, but is designed more for identifing loca-
tions of maximum concentrations than for complete coverage of the region [10].
Cortes et. al. put forth a system for coverage via managing the configuration of
Voronoi partitions, but it is optimized to detect events rather than gather data
[3] . Finally, Krause et. al. presented an algorithm using the concept of mutual
information to optimize placement, but assumes a fixed network rather than a
mobile swarm [8] .

Kalentar et. al. proposed a solution involving dividing the robots present into
two mutually exclusive groups [7] . One group acts to orient itself with the edge

M. Dorigo et al. (Eds.): ANTS 2012, LNCS 7461, pp. 324–331, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Swarm Interpolation Using an Approximate Chebyshev Distribution 325

of the region, in a manner similar to Bertozzi’s work. The second group acts to
fill out the middle of the group, using a more conventional swarming algorithm
to maintain a uniform distribution. The goal of this paper is to demonstrate a
technique for improvement upon the distribution of robots within such a region.

When interpolating fields with a large number of measurements, the distribu-
tion of interpolating nodes is crucial for minimizing error. An effective distribu-
tion for this is based on the roots of a Chebyshev polynomial. (See [1], [9], and
the references contained therein for a general discussion.) The following system
yields the roots of the desired Chebyshev polynomial.

T0(x) = 1, T1(x) = x, Tn+1(x) = 2xTn(x) − Tn−1(x) (n ≥ 1) (1)

Restricting the domain to [-1,1], for instance, Chebyshev polynomials can be
specified by

Tn(x) = cos(n cos−1 x) (n ≥ 0) (2)

where n is the desired number of roots for the polynomial. Using the positions of
the roots of a Chebyshev polynomial as interpolation nodes for a 1D field leads
to an error formula of

|f(x)− p(x)| ≤ 1

2n(n+ 1)!
max|t|≤1|f (n+1)(t)|, (3)

where f(x) is the function being interpolated and p(x) is the interpolation poly-
nomial based on the Chebyshev roots. This distribution is optimal for polynomial
interpolation. The distribution can be further extended from 1D into a 2D circle
by applying the Chebyshev distribution along the radial axis while distributing
points uniformly along the angular axis.

Aligning a swarm to a grid is a difficult problem when the area to be covered
is not known in advance, but generating a similar but meshless distribution is
a simpler matter. Typical swarming algorithms will produce meshless uniform
distributions of robots, so we finesse a standard swarming algorithm by altering
the distances measured between robots. If the perceived positions of the robots
are transformed such that a Chebyshev distribution appears to the robots to
be a uniform distribution, then the robots will naturally settle into an arrange-
ment which is extremely close to an appropriate Chebyshev distribution as they
swarm. In this paper, we present a model for achieving this distribution.

2 Force-Based Swarming Model

The simulation is carried out by a modified version of the Qualnet simulation
platform, which handles actions and communications as discrete events, and
simulates delay and signal loss in communications.

The algorithm utilizes a force-based model, where each robot has attractive
or repulsive forces exerted on it by other nearby robots. In order to simulate a
more realistic environment with limited communication ranges, and to limit the
amount of computation required, a cutoff based on physical distance is applied,

326 J. Kirby et al.

with robots that fall outside that distance being ignored by each other when
forces are calculated. The overall force for a robot is given by

Fn =
∑

j∈rnear

Force(n, j) (4)

where Fn is the total force vector for robot n, rnear is the set of nearby robots,
and Force(n, j) is a function giving the force vector felt between two robots
n and j.

In order to allow the robots to rapidly spread across a region while being
constrained by its edge, we used an algorithm that alters the behavior of robots
based on the difference between their current sensor readings and a set field
strength, with the force felt by the robots directly proportional to that differ-
ence. Robots within the region thus feel repulsive forces and robots outside the
region feel attractice forces, which approach zero as robots approach the edges
of the region. In addition, a small field-independent repulsive force is included.
This serves both to prevent robots on the outside from overly converging, and
to prevent robots directly on the edge from becoming completely locked into
position. The equation for the forces is

Force(n, j) = (Fscalene
−Ffactor

√
(xn−xj)2 +Rscalee

−Rfactor

√
(xn−xj)2)

× (cos(arg(xn − xj)), sin(arg(xn − xj))) (5)

where Ffactor, Rscale, and Rfactor are scaling factors, and Fscalen is given by

Fscalen = a(φn − edgevalue) (6)

where a is a scaling factor, φn is the value sensed by robot n at its current
position, and edgevalue is the value that is sensed on the boundary of the region.

Unlike for physical forces, the net force does not indicate an acceleration, but
rather a target velocity. The equation for acceleration is

An = κ(Fn − Vn) (7)

where Vn is the current velocity of robot n as measured at the time of compu-
tation and κ is a factor determining the rate at which acceleration occurs.

This model will yield a uniform spread across the region of interest. The
modifications necessary to produce a Chebyshev distribution are described in
the next section.

3 Applying Chebyshev Distribution

In order to move from a uniform distribution to a Chebyshev distribution, the
coordinates can be remapped in such a way that they appear uniform when the
nodes are properly distributed. The equation for forces then becomes

Force(n, j) = (Fscalene
−Ffactor

√
(vxn−vxj)2 +Rscalee

−Rfactor

√
(xn−xj)2)

× (cos(arg(xn − xj)), sin(arg(xn − xj))) (8)

Swarm Interpolation Using an Approximate Chebyshev Distribution 327

while the formula for vx, assuming that the points lie along the x axis, is

vx =
xmax − xmin

2
(π − cos−1(x− xmax + xmin

2
)) (9)

where xmax is the high endpoint of the region, xmin is the low endpoint of the
region, x is the set of true positions of the robots, and vx is the set of virtual
positions of the robots, which will be used for generating forces.

The concept of a Chebyshev distribution can be extended to a circular region,
with a dense outer edge and a sparse middle. An example of such a distribution
is given in Figure 1. Extending a Chebyshev distribution in such a manner
requires a shift in the way coordinates are handled, above and beyond simply
adding an additional dimension. The same basic density distribution is present,
but rather than simply remapping both the x and y axes, the coordinates need
to be remapped along every line passing through the midpoint of the region.

(a) Circular Chebyshev Distribution (b) Starlike Chebyshev Distribution

Fig. 1. 2D Chebyshev Distributions

This can be accomplished by converting the coordinates of the robots from
Cartesian to polar, centered on the midpoint of the region. Once this is done,
the necessary coordinate shifts will all be parallel to the radial axis, and the
magnitude of the shifts will be based solely on the radial positions. The equations
for the shifts are

r =
√
(x− xmid)2 + (y − ymid)2 (10)

θ = tan−1((y − ymid), (x − xmid)) (11)

vr = redge cos
−1(r

redge
) (12)

vθ = θ, vx = vr cos(vθ), vy = vr sin(vθ) (13)

where xmid is the x coordinate of the midpoint of the region, ymid is the y
coordinate of the midpoint of the region, and redge is the radius of the region.

Perfectly circular regions are unlikely to exist under realistic conditions, but
the concept of a Chebyshev-like distribution can be extended by allowing the

328 J. Kirby et al.

value of redge to vary across the region. As a result, each robot will have its
own idea of how its distribution should work based on its angular position. The
formula for this is

vr = rlocaledge cos
−1(

r

rlocaledge
) (14)

where rlocaledge is an array containing the local edge distances for each node. An
example of such a distribution is given in Figure 1.

Ideally, rlocaledge would contain the exact values for the edge distances, but in
this algorithm, the only information available is the reported positions and sen-
sor readings of the other nodes. In order to approximate the true distance to the
nearest edge, the nodes on the outside of the region are self-selected to act as rep-
resentatives for a section of the edge, based on whether there is at least a 90 degree
arc between any of the node’s neighbors. Nodes on the inside look for the edge rep-
resentative with the closest angular distance, and base their value for rlocaledge on
the distance between the representative node and the swarm, while nodes on the
outside adopt their own distance, canceling out any shift in position.

4 Experiment Design

Four sets of experiments were performed with the algorithm, each based on a
different sensed field. The equations for the four fields are given below, with
(15) generating a circular level set, (16) generating a square, (17) generating a
perturbed circle, and (18) generating a concave level set.

φ(x, y) = e−8((x−.5)2+(y−.5)2) (15)

φ(x, y) = e(−8max(|x−.5|,|y−.5|)2) (16)

φ(x, y) = (.05 ∗ (sin(15(x− .5)) + sin(15(y − .5))))

× e(−8((x−.5)2+(y−.5)2)) (17)

φ(x, y) = e(−8((x−.15)2+(y−.5)2))

+ e(−8((x−.85)2+(y−.5)2)) (18)

Each set consisted of multiple experiments, across which the number of nodes
varied, with each experiment run using 50, 100, 200, or 400. In addition, the
same configurations were used for a version of the algorithm with the virtual
coordinate remapping, yielding uniform distributions of robots across the region,
with the same exterior edge but different interior node density. Each set therefore
contained four Chebyshev runs and four corresponding uniform runs.

For all of the runs, the robots were initially placed in a uniform rectangular
grid spanning from the coordinates [0,0] to [1000,1000], though they flowed be-
yond those boundaries during the runs. The parameters used for the swarming
algorithm were Ffactor = .01, a = 200, Rscale = .02, and Rfactor = 100. The target
edge strength for all fields was edgevalue = .5. The scaling factor for acceleration
was κ = 1.

Swarm Interpolation Using an Approximate Chebyshev Distribution 329

5 Interpolation

In the kinds of applications we are envisioning, all the data we will have at
our disposal are measurements at the robots’ locations. Thus, our input is a set
{(x1, φ1), (x2, φ2)), . . . , (xN , φN))}, where N is the number of robots, xn ∈ R

2

represents the location of the nth robot, and φn = f(xn) is the nth robot’s
measurement of the variable of interest (represented by the evaluation of the
function f , whose definition is not known). Our goal is to find a function g such
that g(x) = φ and that the difference between g and f at locations different from
xn, n = 1, . . . , N is as small as possible. This problem is known as scattered data
interpolation [5].

In this paper, we tackle this problem using radial basis function interpolation.
The goal is to find the values of the coefficients ck, k = 1, . . . , N such that

g(x) =

N∑
i=1

ciϕ(||x− xi||2) , (19)

where ϕ is a radial basis function, and ||·||2 is the Euclidean norm. The radial
basis functions used in our experiments are Gaussians of the form

ϕ(r) = e−(ar)2 , (20)

where a is a parameter called shape parameter. By enforcing the condition
g(xi) = yi, the coefficients ci, i = 1, . . . , N can be found by solving the linear sys-
tem Ac = φ where the entries Ajk of the matrix A are equal to ϕ(||xj − xk||2),
j, k = 1, . . . , N , c = [c1, c2. . . . , cN]T , and φ = [φ1, φ2. . . . , φN]T .

We use two error measures. The first measure is the root-mean-square error
(RMS-error) and is computed as follows

RMS-error =

√√√√ 1

M

M∑
j=1

(g(Ej)− f(Ej))
2
, (21)

where Ej , j = 1, . . . ,M are the evaluation points. The second measure is the
maximum error (MAX-error) and is given by

MAX-error = max{|g(Ej)− f(Ej)|} . (22)

6 Results and Conclusions

We generated a rectangular grid of 500 × 500 points to sample a function f ,
which represents the fields described in Section 4, in the region [−0.2, 1.2]2 and
selected the points where x ∈ [−0.2, 1.2]2 to compute the RMS and MAX errors.

The positions of the robots were rescaled so that the boundary of the swarm
matched the level curves corresponding to f(x) = 0.5 in all the tested fields, re-
sulting in a slightly smaller evaluation domain. The shape parameter of the radial

330 J. Kirby et al.

Spatial error with 400 robots. Uniform (left), Chebyshev (right).

Fig. 2. Spatial distribution of the error on the irregular field (Eq. 17)

Table 1. Error Ratios

Robots
RMS Error MAX Error

Circular Rectilinear Perturbed Concave Circular Rectilinear Perturbed Concave
field field field field field field field field

50 6.28e−01 8.35e−01 7.78e−01 7.20e−01 7.36e−01 5.68e−01 1.15e+00 1.17e+00
100 1.21e+00 9.65e−01 1.29e+00 9.81e−01 1.47e+00 3.76e−01 2.30e+00 2.04e+00
200 7.00e−01 5.79e−01 1.08e+00 1.38e+00 8.59e−01 5.39e−01 2.36e+00 3.82e+00
400 1.11e+00 8.37e−01 2.36e+00 2.31e+00 2.06e+00 5.80e−01 2.98e+00 3.60e+00

basis function used in our experiments was set to 7. Videos and results of the exper-
iments can be found at http://degas.cis.udel.edu/SwarmInterpolation/.

Fig. 2, shows the spatial distributions of the error on the perturbed field with
400 robots. While the uniform distribution shows high error regions close to the
edges of the evaluation domain, which confirms the observation made in Section
1 about the tendency of the error to grow near the boundaries of the domain,
the Chebyshev-like distribution of robots results in the error being more evenly
distributed across the domain.

In Table 1, we report the ratio of the errors obtained with the uniform dis-
tribution to the Chebyshev-like distribution using RMS and maximum metics.
A ratio greater than one (highlighted in boldface) means that the error ob-
tained with the uniform distribution is greater than the error obtained with the
Chebyshev-like distribution.

In the majority of test cases, the RMS and MAX errors were greater than one,
meaning that the Chebyshev-like distribution outperformed the uniform distri-
bution. This effect was particularly pronounced for the more complex perturbed
and concave fields, and with greater numbers of robots within the fields. The
primary exception to this was the rectilinear field, which we assume is due to
issues our swarming algorithm has with reaching the corners of the level curves.

http://degas.cis.udel.edu/SwarmInterpolation/

Swarm Interpolation Using an Approximate Chebyshev Distribution 331

Spatial error with 100 robots. Uniform (left), Chebyshev (right).

Fig. 3. Spatial distribution of the error on the rectilinear field

Acknowledgments. The authors thank Sherry Vaughan for her contributions
to this project. This material is based upon work supported by the National
Science Foundation under grant CCF-0916035.

References

1. Battles, Z., Trefethen, L.N.: An extension of matlab to continuous functions and
operators. SIAM J. Sci. Comput. 25(5) (May 2004),
http://dx.doi.org/10.1137/S1064827503430126

2. Bertozzi, A., Kemp, M., Marthaler, D.: Determining environmental boundaries:
Asynchronous communication and physical scales. LNCIS, vol. 309, pp. 403–405
(2005)

3. Cortes, J., Martinez, S., Karatas, T., Bullo, F.: Coverage control for mobile sensing
networks. IEEE Trans. on Robotics and Automation 20(2), 243–255 (2004)

4. Cui, X., Hardin, T., Ragade, R.K., Elmaghraby, A.S.: A swarm-based fuzzy logic
control mobile sensor network for hazardous contaminants localization. In: 2004
IEEE Int. Conf. on Mobile Ad-hoc and Sensor Systems, pp. 194–203 (October
2004)

5. Fasshauer, G.E.: Meshfree Approximation Methods with MATLAB. Interdisci-
plinary Math. Sci., vol. 6. World Scientific Publishing, Singapore (2007)

6. Kadrovach, B.A., Lamont, G.B.: A particle swarm model for swarm-based net-
worked sensor systems. ACM, New York (2002)

7. Kalantar, S., Zimmer, U.: Distributed shape control of homogeneous swarms of
autonomous underwater vehicles. Autonomous Robots 22(1), 37–53 (2007)

8. Krause, A., Singh, A., Guestrin, C.: Near-optimal sensor placements in gaus-
sian processes: Theory, efficient algorithms and empirical studies. J. Mach. Learn.
Res. 9, 235–284 (2008), http://dl.acm.org/citation.cfm?id=1390681.1390689

9. Trefethen, L.: Spectral Methods in MATLAB. SIAM, Philadelphia (2000)
10. Turduev, M., Atas, Y., Sousa, P., Gazi, V., Marques, L.: Cooperative chemical

concentration map building using decentralized asynchronous particle swarm op-
timization based search by mobile robots. In: 2010 IEEE/RSJ International Con-
ference on Intelligent Robots and Systems (IROS), pp. 4175–4180 (October 2010)

http://dx.doi.org/10.1137/S1064827503430126
http://dl.acm.org/citation.cfm?id=1390681.1390689

Using MOPSO to Solve Multiobjective

Bilevel Linear Problems

Maria João Alves

Faculty of Economics, University of Coimbra / INESC Coimbra, Portugal
mjalves@fe.uc.pt

Abstract. In this paper we propose a multiobjective particle swarm
optimization (MOPSO) algorithm to solve bilevel linear programming
problems with multiple objective functions at the upper level. A strat-
egy based on an achievement scalarizing function is proposed for the
global best selection and its performance is compared with other selec-
tion techniques. The outcomes of the algorithm on some bi-objective
instances are compared with those obtained by an exact procedure that
we developed before. The results indicate that the algorithm seems to be
effective in solving this type of problems. In particular, the proposed se-
lection technique provides a good convergence towards the Pareto front.

1 Introduction

Bilevel programming is useful to model decentralized planning problems with
two levels in a hierarchy. In bilevel programs there are two decision makers, the
leader (in the upper level) and the follower (in the lower level), which pursue
different objectives in a non-cooperative manner and control different sets of
variables subject to interdependent constraints. Thus, the decision of each part
affects the decision space and the objective value of the other. A bilevel program
is very difficult to solve, even the linear case. Multiple objectives at one or both
levels add further complexities, thus posing new challenges in handling such
problems.

Although the bilevel programming problem has been widely studied, little
research has been conducted on multiobjective bilevel problems, either using
classical methods, evolutionary algorithms, swarm intelligence or other types of
approaches. Recent work on this field includes the developments of Eichfelder
[6] on the nonlinear multiobjective bilevel problem. Interactive algorithms have
been proposed, e.g. by Shi and Xia [13] and Alves et. al [2]. The latter is de-
voted to bilevel linear problems with multiple objectives at the upper level and
is based on the reformulation of the problem as a multiobjective mixed 0-1 lin-
ear programming problem. It can be used in an interactive way and can also
determine the whole Pareto front for bi-objective problems. A few evolutionary
algorithms have also been proposed, e.g. the co-evolutionary algorithm of Deb
and Sinha [4] and the genetic algorithm of Osman et al. [10]. In the context of
bilevel multiobjective optimization using particle swarm optimizers, a study of
a real-world application problem was carried out by Halter and Mostaghim [7].

M. Dorigo et al. (Eds.): ANTS 2012, LNCS 7461, pp. 332–339, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Using MOPSO to Solve Multiobjective Bilevel Linear Problems 333

In this paper we propose a Multi-Objective Particle Swarm Optimization
(MOPSO) algorithm to solve bilevel linear problems with multiple objectives at
the upper level and a single objective function at the lower level. This MOPSO
algorithm is intended to generate a good approximation set of the Pareto front
of the problem. We test and compare different techniques to select the global
best guides, which are used (together with the personal best guides) to define
the direction of movement of the particles of the swarm, at each generation.
This is a crucial step in a MOPSO algorithm as it affects both the convergence
and the diversity of solutions yielded by the algorithm [11]. We consider random
selection, selection based on crowding distance values using binary tournaments
[12] and a new selection scheme based on an achievement scalarizing function.
The results of the algorithm considering the different selection techniques are
compared with the exact Pareto optimal solutions yielded by the procedure of
Alves et al. [2] applied on bi-objective problems.

The remainder of this paper is organized as follows. In Section 2 we state the
problem, introduce the notation and some basic concepts. The proposed MOPSO
algorithm is described in Section 3. Computational tests and a discussion of the
results are presented in Section 4. In Section 5 we draw some conclusions.

2 Problem Formulation, Basic Concepts and Notation

Consider the following formulation of the bilevel linear programming problem
with k objective functions at the upper level:

Maximize
x,y

F (x, y) = (F1(x, y),, Fk(x, y)) = Cx+Dy (1)

Subject to x ∈ X

y ∈ argmax
y

{f(y) = dy : Ax+By ≤ b, y ∈ Y }

where x ∈ IRn1 and y ∈ IRn2 are the variables controlled by the leader and
by the follower, respectively. C ∈ IRk×n1 , D ∈ IRk×n2 , d ∈ IRn2 , A ∈ IRm×n1 ,
B ∈ IRm×n2 and b ∈ IRm. The sets X and Y place additional linear constraints
on x and y, in particular upper and lower bounds such that xL ≤ x ≤ xU and
yL ≤ y ≤ yU .

Let w represent a solution (x, y) to (1). A solution w′ dominates w′′ if Fj(w
′) ≥

Fj(w
′′) for all j=1,. . . ,k and Fj(w

′) > Fj(w
′′) for at least one j=1,. . . ,k. A

feasible solution w is called Pareto optimal if there is no other feasible solution
w′ that dominates it. The set of all objective vectors F (w) corresponding to the
Pareto optimal solutions is called the Pareto front (P*). In this paper we refer
to as nondominated solution any potentially nondominated solution found by
the algorithm and we denote by Q the corresponding set.

3 The Proposed MOPSO Algorithm

The MOPSO algorithm we propose herein is intended to approximate the Pareto
front of the multiobjective bilevel problem (1). A particularity of the algorithm

334 M.J. Alves

stems from the fact that each particle of the swarm is composed by two different
parts: x and y. For each wi=(xi,yi), the position of xi is updated according to
the principles of particle swarm optimization, while y is given afterwards through
the resolution of the lower-level optimization problem with x fixed to xi.

The algorithm can be described in the following steps, where the nondomi-
nated archive Q is the final output of the algorithm. Different techniques for the
global best selection are discussed below.

Step 1. Initialization

t = 0
Initialize the swarm Pt: for each particle i=1,. . . ,N , randomly generate xi

t ∈ X
and solve the linear program (2) to obtain yi

t

max
{
f(y) = dy : By ≤ b− Axi

t, y ∈ Y
}

(2)

If (2) is unfeasible, generate another xi
t ∈ X and repeat the computation of

yi
t. Let w

i
t = (xi

t, y
i
t), i=1,. . . ,N

Initialize velocity vectors and the personal bests for all particles: vit = 0 and
pit = wi

t, i = 1, . . ., N .
Initialize the external archive Q with the nondominated solutions of Pt.

Step 2. New generation (generate Pt+1 and update Q)

For each wi
t ∈ Pt (i = 1, . . ., N) do:

– Select a global best among the particles in Q
git =Select gbest(Q, wi

t)
– Update velocity (which only concerns part x of the particle)

vij,t+1 = ω.vij,t + r1c1(p
i
j,t − xi

j,t) + r2c2(g
i
j,t − xi

j,t), j =1,. . . ,n1

with r1, r2 random values in [0,1] and ω, c1 and c2 constants.
– Update position of the particle i, first part x and then part y

Part x:
xi
t+1 = xi

t + vit+1

Apply turbulence (mutation) to xi
t+1 with a given probability

Push x up/down to limits, if necessary: for each j =1,. . . ,n1, if
xi
j,t+1 < xL

j then xi
j,t+1 = xL

j , and if xi
j,t+1 > xU

j then xi
j,t+1 = xU

j

Part y:
Solve (2) with xi

t+1 to obtain yi
t+1

If (2) is unfeasible, then xi
t+1 = xi

t, y
i
t+1 = yi

t and vit+1 = 0.
Let wi

t+1 = (xi
t+1, y

i
t+1).

– Update pi: if wi
t+1 dominates pit then pit+1 = wi

t+1; else if pit dominates
wi

t+1 then pit+1 = pit; else randomly select pit or wi
t+1 to assign to pit+1.

Update Q with Pt+1

Step 3. t = t+ 1
If t = T , stop. Else, go to Step 2.

Return archive Q.

We adopt a mutation rate (in step 2) of 1/n1 [12], with a maximum of 0.1.
Uniform mutation is applied, in which a random value for the variable is chosen
within its range of values.

Using MOPSO to Solve Multiobjective Bilevel Linear Problems 335

At each generation, the archive Q is updated. The procedure to update Q
aims to meet a principal goal of maintaining a diverse nondominated solution
set, while controlling the size of the archive. Archive size control is important
because the number of nondominated solutions can grow very fast, in particular
in multiobjective bilevel linear problems whose Pareto fronts are composed by
continuous solutions often distributed across disconnected regions. The technique
adopted herein to filter Q is based on the crowding distance in the objective
space [3], which has already been used in other MOPSO algorithms with good
results (e.g. [11]). Accordingly, after Q has been updated by inserting the new
nondominated particles of the swarm and removing the elements that became
dominated, if the size of Q exceeds a maximum size M , then the crowding
distances of all solutions in Q are computed. Then the most crowded solution
(the one with the lowest value) is eliminated until the limit size M of the archive
is reached.

During the algorithm, the maximum and the minimum values taken by each
objective function (Fmax

j and Fmin
j , j=1,. . . ,k) are also kept and updated. They

are used for normalization purposes in the computation of the crowding distances
and in the scalarizing function described below.

3.1 Selecting the Global Best for Each Particle

The procedure Select gbest(Q,wi
t) selects a member of Q to be the global best git

for particle i with current position wi
t. The selection of global best guides may

have a strong impact on both convergence and diversity of the solutions yielded
by the algorithm, thus a careful option must be taken. For this purpose, we try
three alternative techniques, which we call gRand, gCrowd and gScalarf.

– gRand : randomly choose a point from Q. Random selection is the simplest
strategy to select a global best and can provide some diversity.

– gCrowd : first, the crowding distances according to [3] are computed for all
solutions in Q; then, for each particle i, a binary tournament is run and the
least crowded solution is assigned to git [12]. Crowding distance has been
extensively applied in evolutionary multiobjective algorithms and also in
some MOPSO algorithms to promote diversity. The gCrowd scheme follows
the one used by [12] (one of the best MOPSO algorithms according to [5]).

– gScalarf : choose a point of Q according to the function (3) that uses F (wi
t) as

reference point. This does not minimize a Tchebycheff distance but rather
optimizes an achievement scalarizing function (in the sense of Wierzbicki
[14]) that aims at improving the reference point. Function (3) selects an
a′ ∈ Q that dominates wi

t, or is nondominated in relation to wi
t if the former

does not exist.

git ∈ argmin
∀a′∈Q

{
max

j=1,...,k

(
Fj(w

i
t)− Fj(a

′)
)}

(3)

In order to use equalized ranges, normalized objective values are used in (3),
so Fj(·) is replaced with Fj(·)

/(
Fmax
j − Fmin

j

)
.

336 M.J. Alves

This new selection technique is intended to promote convergence. Note that solu-
tions in Q that dominate the current particle wi

t are always preferred to solutions
that are nondominated in relation to wi

t (a property already supported by [1]).
In our case, this preference exists because the operator max(.) in function (3)
gives negative value for any a′ that strictly dominates wi

t, zero for a′ that weakly
dominates (or is equal to) wi

t, and positive value otherwise. Then, the operator
min(.) selects the minimum among them. Figure 1 illustrates this technique:
a1 is chosen to be the global best for particle w because it dominates w and
a2 does not, although the latter is ‘closer’ to w. Note that it may happen that
git = wi

t more often than with the other selection techniques, and specially at the
beginning of the algorithm. However, a throughout monitoring of this situation
during experiences indicated that this did not happen too often. In addition,
excluding a′ = wi

t from consideration in function (3) did not lead to improved
results, so the formulation in (3) was kept. Finally, it should be remarked that
minimax (or maximin) functions have already been used in MOPSO, but in a
different way (e.g. [8]).

Fig. 1. Illustration of the gScalarf technique

The impact of these strategies is tested and compared in the computational
experiment reported in section 4.

4 Computational Experiment

The proposed MOPSO algorithm was implemented and tested on multiobjective
bilevel problems with formulation (1). It was implemented in Delphi for Win-
dows using the revised simplex method (by calling the free lpsolve) to solve the
lower level linear programs. To our knowledge, there is no standard set of test
problems for multiobjective bilevel linear optimization, so randomly generated
instances were used. The rules of [9] were applied to construct a bounded con-
straint region. Rational numbers with one decimal place were considered. The
elements of the matrices C, D, A and B were randomly generated in [−10, 10],
except the last row of the constraint matrices whose elements were required to
be positive, being generated in (0, 10]; the elements of d were also generated in
(0, 10]; bi =

∑n1

j=1 Aij +
∑n2

j=1 Bij +2μi, i=1,. . . ,m with μi ∈ [0,n1] random val-
ues. In addition, sets X and Y impose that 0 ≤ xj ≤ 1, j=1,. . . ,n1 and yj ≥ 0,
j=1,. . . ,n2.

Using MOPSO to Solve Multiobjective Bilevel Linear Problems 337

In this experiment we considered only bi-objective instances in order to com-
pare the algorithm’s outcomes with the true Pareto fronts obtained by the exact
procedure in [2]. That procedure can fully determine the Pareto front of bi-
objective problems, except for a gap (in objective space) between continuous
solutions, which can be set as small as the user wishes. Since we wanted to pro-
duce a thorough representation of the whole Pareto front (P*), and the exact
procedure is computationally expensive, we did not consider large problems. We
generated 7 instances (called P1 to P7) with 20 to 40 variables and 10 to 20 con-
straints. Information on the problem size of each instance is included in table 1
in the format n1−n2−m. For each instance we performed two scans (directional
searches) with the procedure of Alves et al. [2], one from the optimum of F1 to
the optimum of F2, and the reverse scan, both with a maximum gap of 1%. The
number of Pareto optimal solutions obtained for each instance varied from about
200 to more than 1000.

To assess the performance of the MOPSO algorithm and the techniques for the
global best selection we considered two unary and one binary measures of qual-
ity: Inverted Generational Distance (IGD), Hypervolume (HV) [15], which can
assess both convergence and spread of solutions, and Coverage of two sets (C)
[15] which compares two approximation sets. The IGD from P* to Q is defined as
in [12]: IGD(P ∗, Q) = 1

|P∗|
∑

p∈P∗
d(p,Q), where d(p, Q) is the Euclidean distance

(measured in the objective space) between p and the nearest element in Q. Lower
values of IGD are preferred. The HV measure considers the volume of the region
of the objective space that is dominated by the approximation set Q. It was com-
puted using the code from http://iridia.ulb.ac.be/~manuel/hypervolume,
setting the reference point to the true nadir point (which was determined by the
algorithm [2]). The higher the HV value, the better the approximation set is.
The set coverage measure C(Qa, Qb) gives the fraction of points in Qb that are
dominated or equal to points in Qa.

For each each problem, we made 30 runs of the MOPSO algorithm with each
selection technique (gRand, gCrowd and gScalarf). We chose parameter values
for the swarm size (N), archive size (M) and number of iterations (T) similar
to those chosen by Durillo et al. [5] in their comparison study of MOPSOs:
N = M = 100, T = 250. We considered c1 = c2 = 1 and ω = 0.4 (as in other
MOPSOs, e.g. [11]).

For each quality indicator, IGD, HV and C, the median and interquartile
range were computed, as measures of central tendency and statistical dispersion.
These values are presented in Table 1. For a better assessment of the quality of
the approximation sets, the HV of P* is also included. Table 1 only shows set
coverage values (C) between the approximations obtained with gScalarf and
gCrowd, the two variants that revealed better performance according to the
previous indicators. The best median value of each indicator in each problem is
in bold face. In addition, a best median value that is also better than 75% of
the values of that indicator in the other variants has gray background.

We believe that the MOPSO algorithm showed an overall good performance
in this set of problems. Although the indicator values do not differ very much

http://iridia.ulb.ac.be/~manuel/hypervolume

338 M.J. Alves

Table 1.Median and interquartile range (in subscript) of the IGD, HV and C indicators

Problem
10-10-10 10-15-10 15-10-10 15-15-15 15-20-15 20-15-15 20-20-20

P1 P2 P3 P4 P5 P6 P7
gRand 2.34 0.52 0.72 0.22 0.28 0.08 4.18 0.73 14.15 7.14 4.26 1.71 10.19 3.49

IGD gCrowd 1.88 0.44 0.52 0.05 0.29 0.11 3.84 0.86 11.32 6.13 2.50 1.31 7.60 2.20

gScalarf 1.94 0.58 0.43 0.07 0.19 0.05 3.79 0.56 15.94 6.43 3.25 1.19 6.34 1.62

P* 5866 3517 580 8295 6401 1758 8094
HV gRand 5782 13.1 3470 10.5 576 0.6 7314 133.9 5663 164.2 1582 44.7 7383 102.3

gCrowd 5790 12.5 3480 6.9 576 0.7 7362 221.2 577979.3 1627 20.8 7543 139.1

gScalarf 5790 14.6 3489 2.7 577 0.7 7450 157.8 5500 174.5 1642 28.6 7655132.5

C (gCrowd,gScalarf) 0.13 0.05 0.13 0.04 0.13 0.06 0.10 0.05 0.49 0.16 0.03 0.04 0.07 0.08

((gScalarf,gCrowd) 0.29 0.07 0.27 0.07 0.19 0.06 0.39 0.08 0.16 0.09 0.79 0.14 0.82 0.12

among the selection techniques, we can conclude that gRand was outperformed
by the other variants. In addition, gScalarf provided a particularly good con-
vergence to the Pareto front in most cases. gScalarf presented the best coverage
measure in all problems except in P5, with a great distinction in P6 and P7.
However, some IGD and HV values were better with gCrowd than with gScalarf.
Actually, we could better understand these values by observing the graphical
representations of the solutions in the objective space (omitted herein for space
reasons). They showed that the approximation sets were generally very close to
P* in a vast area of the Pareto front, but the algorithm sometimes had difficulty
to reach the extreme parts of the Pareto front. gScalarf could not overcome
this weakness better than the others, being still slightly worse in a few cases.
The worst performance case for gScalarf was problem P5. Nevertheless, it was
the only variant that could get very close to the extreme part of P* near the
optimum of F1.

5 Conclusions and Future work

In this paper we presented a specific MOPSO algorithm for bilevel linear pro-
gramming problems with multiple objectives at the upper level. A new technique
for the global best selection was proposed. This selection mechanism revealed a
good performance when compared with two other techniques usually used in
MOPSO algorithms (random selection and a crowding-based selection). It is
very promising because it showed better convergence features than the other
techniques. However, in some cases the algorithm had difficulty in reaching the
extreme parts of the Pareto front. As future work we intend to address this is-
sue, by exploring the combination of different selection techniques in order to
provide more diversity without destroying convergence. Properties of the lin-
ear constraints will also be exploited and computational experiments will be
performed on problems with more than two objective functions.

Acknowledgements. This work has been partially supported by FCT under
project grant Pest-C/EEI/UI0308/2011.

Using MOPSO to Solve Multiobjective Bilevel Linear Problems 339

References

1. Alvarez-Benitez, J.E., Everson, R.M., Fieldsend, J.E.: A MOPSO Algorithm Based
Exclusively on Pareto Dominance Concepts. In: Coello Coello, C.A., Hernández
Aguirre, A., Zitzler, E. (eds.) EMO 2005. LNCS, vol. 3410, pp. 459–473. Springer,
Heidelberg (2005)

2. Alves, M.J., Dempe, S., Júdice, J.J.: Computing the Pareto frontier of a bi-
objective bilevel linear problem using a multiobjective mixed-integer programming
algorithm. Optimization 61(3), 335–358 (2012)

3. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective
genetic algorithm: NSGA-II. IEEE Trans. Evolut. Comput. 6(2), 182–197 (2002)

4. Deb, K., Sinha, A.: An efficient and accurate solution methodology for bilevel
multi-objective programming problems using a hybrid evolutionary-local-search-
algorithm. Evol. Comput. J. 18(3), 403–449 (2010)

5. Durillo, J.J., Garćıa-Nieto, J., Nebro, A.J., Coello Coello, C.A., Luna, F., Alba,
E.: Multi-Objective Particle Swarm Optimizers: An Experimental Comparison. In:
Ehrgott, M., Fonseca, C.M., Gandibleux, X., Hao, J.-K., Sevaux, M. (eds.) EMO
2009. LNCS, vol. 5467, pp. 495–509. Springer, Heidelberg (2009)

6. Eichfelder, G.: Multiobjective bilevel optimization. Math. Program. 123(2), 419–
449 (2010)

7. Halter, W., Mostaghim, S.: Bilevel optimization of multi-component chemical sys-
tems using particle swarm optimization. In: Proc. of the 2006 Congress on Evolu-
tionary Computation (CEC 2006), pp. 1240–1247. IEEE Press (2006)

8. Li, X.: Better Spread and Convergence: Particle Swarm Multiobjective Optimiza-
tion Using the Maximin Fitness Function. In: Deb, K., et al. (eds.) GECCO 2004.
LNCS, vol. 3102, pp. 117–128. Springer, Heidelberg (2004)

9. Moshirvaziri, K., Amouzegar, M.A., Jacobsen, S.E.: Test problem construction for
linear bilevel programming problems. J. Global Optim. 8, 235–243 (1996)

10. Osman, M.S., Abd El-Wahed, W.F., El Shafei, M.M., Abd El Wahab, H.B.: An
approach for solving multi-objective bi-level linear programming based on genetic
algorithm. J. Appl. Sci. Res. 6(4), 336–344 (2010)

11. Raquel, C.R., Naval Jr., P.C.: An effective use of crowding distance in multiobjec-
tive particle swarm optimization. In: Beyer, H.-G., Reilly, U.-M.O. (eds.) GECCO
2005, pp. 257–264. ACM Press (2005)

12. Reyes-Sierra, M., Coello Coello, C.A.: Improving PSO-Based Multi-objective Op-
timization Using Crowding, Mutation and ε-Dominance. In: Coello Coello, C.A.,
Hernández Aguirre, A., Zitzler, E. (eds.) EMO 2005. LNCS, vol. 3410, pp. 505–519.
Springer, Heidelberg (2005)

13. Shi, X., Xia, H.: Model and interactive algorithm of bi-level multi-objective
decision-making with multiple interconnected decision makers. J. Multi-Criteria
Decsion Analysis 10, 27–34 (2001)

14. Wierzbicki, A.: Reference points in vector optimization and decision support. Tech.
Rep. IR-98-017, IIASA, Laxenburg, Austria (1998)

15. Zitzler, E., Thiele, L.: Multiobjective evolutionary algorithms: A comparative case
study and the strength Pareto approach. IEEE Trans. Evolut. Comput. 3(4), 257–
271 (1999)

Clustering Moodle Data

via Ant Colony Optimization

Päivi Suomalainen

Department of Mathematics and Statistics, Faculty of Science,
University of Helsinki, Finland
paivi.suomalainen@gmail.com

Moodle1 is a virtual learning environment that keeps track of the activities of
students in the learning environment. The amount of data in Moodle is vast and
it contains, for example, the whole learning material, information on completed
assignments, and records of when a student accesses the learning material. By
clustering the students based on the material we can learn to understand the
different learning strategies of students in the virtual Moodle environment.

The idea of this article is to study the clustering problem via ant colony op-
timization (ACO) [2]. ACO has been used before in the context of clustering
(see eg. [4], [1]). In this article, we present a novel ACO approach to cluster-
ing based on a probabilistic clustering model. That is, we decided to choose a
probabilistic clustering framework based on the well-known naive Bayes model.
In order to avoid overfitting and underfitting, we use the minimum description
length (MDL) principle [3] as our model selection scheme.

Ant Colony Optimization

We try to minimize the MDL code length [3]. At each iteration, the ants build
solutions by adding one cluster label at a time to the data items. The local
probability models are learned from the previous solution of the ant and used
as heuristic information of the current iteration. After an ant has completed the
solution, an optimization step is performed: local probability models are learned
from the current solution and cluster labels are set again so that they maximize
the total probability of the data and the clustering. We use Bayesian predictive
probabilities as our probability models with all Dirichlet hyperparameters equal
unity. After the optimization steps the ants update the pheromone trails, and
after that the pheromones are evaporated. Only the three best scoring ants of the
iteration and the all-time best scoring ant are allowed to update the pheromones.

Experiments

We tested our algorithm with the Moodle data. The number of observation vec-
tors to be clustered was 178. We experimented with ten and twenty ants, and we
compared the results (see Table 1) with several alternative optimization meth-
ods: Expectation-Maximization (EM), Markov Chain Monte Carlo (MCMC),

1 http://moodle.org.

M. Dorigo et al. (Eds.): ANTS 2012, LNCS 7461, pp. 340–341, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

http://moodle.org

Clustering Moodle Data via Ant Colony Optimization 341

Table 1. Comparison of our ACO algorithm with several different optimization
methods. The code lengths are measured in bits.

Method 2 clusters 3 clusters 4 clusters 5 clusters
ACO 10 2797.25 2771.71 2791.58 2816.01
ACO 20 2797.25 2770.92 2796.28 2824.52
EM 2801.15 2822.03 2878.93 2928.46
MCMC 2817.21 2991.20 3034.74 3101.19
GA 2852.46 2898.56 3067.43 3060.77
TS 2798.29 2771.54 2794.39 2824.32
SA 2797.25 2771.53 2813.09 2919.66

genetic algorithms (GA), Tabu search (TS), and simulated annealing (SA). In
the light of the results the optimal number of clusters was three and the MDL
cost kept on increasing after three clusters. The numbers in the table are bits,
and they represent the total code length with uniform code length for the mod-
els. We present only the results for the cluster numbers from two to five. The
code length for a one cluster model was 2933.98 bits.

When we examined the best clustering found we noticed that the students had
divided into the three clusters based on the following: the first cluster included
students who had not performed well according to their grade and were inac-
tive, the second cluster included mostly students who had performed mediocre
and vere moderately active, and the third cluster included students who had
performed well and were active.

Conclusions

The results show that the ant-based approach can compete with other optimiza-
tion methods. In fact, the ant-based approach achieved the best results with the
Moodle data compared to other optimization methods in terms of minimizing
the code length. Next, we will test our algorithm with artificial data and with
some existing databases. In addition, some more complex models and a factored
NML cost are worth examining.

References

1. Chen, L., Xu, X.-H., Chen, Y.-X.: An adaptive ant colony clustering algorithm. In:
Proc. 3rd Int. Conf. Machine Learning and Cybernetics (2004)

2. Dorigo, M., Stützle, T.: Ant Colony Optimization. The MIT Press (2004)
3. Grünwald, P.D.: The Minimum Description Length Principle. The MIT Press (2007)
4. Runkler, T.A.: Ant colony optimization of clustering models. Int. J. Intelligent Sys-

tems 20 (2005)

Continuous Trait-Based Particle Swarm

Optimisation (CTB-PSO)

Ed Keedwell, Mark Morley, and Darren Croft

University of Exeter, UK
{e.c.keedwell,m.s.morley,d.p.croft}@exeter.ac.uk

In natural flocks, individuals are often of the same species, but there exists con-
siderable variation in the traits possessed by each individual. In much the same
way as humans display varied levels of aggression, gregariousness and inquis-
itiveness, so do the animals on which PSO is based [1]. Recent research has
shown that this disparity of behaviour is very important in the ability of the
flock to solve problems effectively, which might have profound implications for
PSO. One of the key aspects is that although certain behaviour types (e.g. more
adventurous individuals) might individually be better at problem solving; se-
lecting for a group that all have adventurous traits has been shown to reduce
the performance of the flock as a whole [1]. Therefore a flock that has a variety
of behaviours leads to better performance in natural systems and it is this that
motivates the work here. This paper explores a variant of PSO known as Con-
tinuous Trait-Based PSO (CTB-PSO) where individuals within a swarm have
traits based on a continuous scale as opposed to discrete behaviour groupings.

There is a considerable body of work that explores behaviour variation
through the use of multiple species, but the most relevant single-species work is
that of Andries Engelbrecht [2] and the Heterogenous PSO algorithm(HPSO).
HPSO is similar in motivation to CTB-PSO but exploits intra-species variation
via a discrete ’behaviour’ pool. CTB-PSO differs from HPSO as it achieves het-
erogeneity through the generation of c1 and c2 coefficient values from a Gaussian
distribution with known mean and standard deviation to determine different be-
haviours for each of the particles in the initialisation stage, in line with what is
known about behavioural traits in animals. Once determined, these coefficient
selections remain constant for each particle for the duration of the optimisation
and the remainder of the PSO algorithm is then run in a standard fashion.

Method

CTB modifies standard PSO by varying the extent to which each particle is
influenced by the global and personal best positions within the group.

1. Generate a random population of particles.

2. For each particle, randomly select c1 and c2 coefficient values drawn from a
Gaussian distribution with a specified mean and standard deviation.

3. Execute remainder of PSO as normal.

M. Dorigo et al. (Eds.): ANTS 2012, LNCS 7461, pp. 342–343, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Continuous Trait-Based Particle Swarm Optimisation (CTB-PSO) 343

Experimental Setup and Results

The algorithm was run for 1000 generations with a swarm size of 50, and for
30 repeated trials to account for the effect of the random seed. CTB-PSO was
tested on four test functions taken from the literature: Absolute Value, Spherical,
Griewank and Ackley and results for 2 functions are shown below. For further
information on the functions see [2]. Experiments were conducted on problem
sizes from 10 to 100 dimensions. The mean and standard deviation of the Gaus-
sian applied to c1 and c2 was modified, with best performance observed with
mean=2.0 and stddev=0.5. The standard PSO operates with fixed c1 and c2
coefficients of 2.0 and HPSO results are taken from [2].

Table 1. Comparison with HPSO on Two Test Functions From the Literature

Dimensions HPSO-Griewank CTB-PSO-Griewank HPSO-Ackley CTB-PSO-Ackley

10 0.0782 0.130 3.99E-15 2.01E-18

30 0.0407 0.0085 1.20 0.27

50 0.154 0.0048 2.87 1.94

100 3.61 0.02 2.87 3.58

The results for all four functions (not shown) show that CTB-PSO improves
on our standard PSO formulation at smaller dimensionalities. The comparison
in Table 1 shows that in the majority of cases, CTB-PSO also improves on the
performance of HPSO in both functions indicating that trait-based PSO could
offer improved performance over homogeneous and discrete-heterogeneous PSO.

Acknowledgements. This work was funded by the ‘Bridging the Gaps: Exeter
Science Exchange’ project funded by the EPSRC (EP/I001433/1).

References

1. Croft, D.P., Krause, J., Darden, S.K., Ramnarine, I.W., Faria, J.J., James, R.: Be-
havioural trait assortment in a social network: patterns and implications. Behavioral
Ecology and Sociobiology 63, 1495–1503 (2009)

2. Engelbrecht, A.P.: Heterogeneous Particle Swarm Optimization. In: Dorigo, M., Bi-
rattari, M., Di Caro, G.A., Doursat, R., Engelbrecht, A.P., Floreano, D., Gam-
bardella, L.M., Groß, R., Şahin, E., Sayama, H., Stützle, T. (eds.) ANTS 2010.
LNCS, vol. 6234, pp. 191–202. Springer, Heidelberg (2010)

Exploring Different Functions for Heuristics,

Discretization, and Rule Quality
Evaluation in Ant-Miner

Khalid M. Salama and Fernando E.B. Otero

School of Computing, University of Kent, Canterbury, UK
{kms39@kent.ac.uk,f.e.b.otero}@kent.ac.uk

Data mining is a process that supports knowledge discovery by finding hidden
patterns, associations and constructing analytical models from databases. Clas-
sification is one of the widely studied data mining tasks in which the aim is to
discover, from labelled cases, a model that can be used to predict the class of
unlabelled cases. Ant-Miner, proposed by Parpinelli et al. [3], is the first ACO
algorithm for discovering classification rules. Ant-Miner has been shown to be
competitive with well-known classification algorithms, in terms of producing
comprehensible model with high predictive accuracy. Therefore, there has been
an increasing interest in improving the Ant-Miner algorithm [1].

Otero et al. [2] presented cAnt-Miner as a variation of the original Ant-Miner
algorithm, which is able to cope with continuous-valued attributes during the
rule construction process through the creation of discrete intervals on-the-fly.
Salama et al. recently introduced an efficient version of the algorithm, μAnt-
Miner [4], based on selecting the consequent class of the rule before constructing
its antecedent and utilizing multiple pheromone types, one for each permitted
rule class. This idea gives the motivation of utilizing the pre-selected class in
term heuristic information calculation and continuous attribute discretization
using different measure functions.

In this paper, we utilize the μAnt-Miner idea of selecting the class before
the rule construction to extend cAnt-Miner in three essential aspects. First, we
use a class-based measure function to compute heuristic information for a term.
Second, we use this function as criteria to carry out the dynamic discretization
of the continuous attributes and select the best created interval with respect to
the pre-selected class. Third, we use the same measure function used for both
previous operations to evaluate the quality of the constructed rule for the sake
of pheromone update.

Since we evaluate the quality of a constructed rule with a given function fx,
there is no need to select terms that maximize another function fy. Intuitively,
the selection of terms that maximize fx should lead to construct a high qual-
ity rule with respect to fx. Moreover, using class-based evaluation function for
heuristic information and discretization leads to the selection of terms that are
relevant to the prediction of a specific class, rather than selecting terms simply
to reduce the entropy among the class distribution on the dataset as in the origi-
nal cAnt-Miner. Therefore, we use a unified quality evaluation function QEF to
compute the heuristic information of a term, to create intervals from continuous

M. Dorigo et al. (Eds.): ANTS 2012, LNCS 7461, pp. 344–345, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Exploring Different Functions for Heuristics, Discretization 345

attributes in the discretization, with respect to the pre-selected class value, and
to evaluate the quality constructed rule as well.

First, in order to compute heuristic value for termij given class k, we construct
a temporary rule with only termij in its antecedent and labelled with class k,
and we evaluate the quality of this rule using the unified QEF .

Unlike cAnt-Miner, where the threshold value is selected only to minimize
the entropy among the classes, we aim to select a threshold value that generates
partitions with more relevance for predicting that class by taking the advan-
tage of the class pre-selection. In essence, we calculate the absolute difference in
quality (measured in terms of QEF) between the upper and the lower intervals
for each candidate value vi. The idea is to select the threshold value vbest that
maximizes the quality discrimination—with respect to the current selected class
value—between the two intervals.

Finally, the QEF function is used to evaluate the constructed rules, where
the best rule created in the colony is used to update the pheromone.

We explore the use of 10 different functions—for heuristics information calcu-
lation, continuous attributes discretization and rule quality evaluation. The set of
functions is {Certainty Factor, Collective Strength, f-Measure, Jaccard,
Kappa, klosgen, m-Estimate, R-Cost, Sensitivity × Specificity, Support
+ Confidence}.

Concerning the predictive accuracy, there is no algorithm that performs abso-
lutely best. Our results show a great diversity amongst the performance of dif-
ferent quality evaluation functions. This suggests that combining the measures
of multiple quality evaluation functions can lead to improvements in the search
of the algorithm, since the use of different measures can capture different aspects
of the performance of a candidate rule and provide a more robust measure of
quality across multiple datasets. Moreover, different quality evaluation functions
can be used for each component of the algorithm—i.e., for heuristic, dynamic
discretization and rule evaluation. These ideas present research directions worth
further exploration.

References

1. Martens, D., Baesens, B., Fawcett, T.: Editorial survey: swarm intelligence for data
mining. Machine Learning 82(1), 1–42 (2011)

2. Otero, F.E.B., Freitas, A.A., Johnson, C.G.: cAnt-Miner: An Ant Colony Classi-
fication Algorithm to Cope with Continuous Attributes. In: Dorigo, M., Birattari,
M., Blum, C., Clerc, M., Stützle, T., Winfield, A.F.T. (eds.) ANTS 2008. LNCS,
vol. 5217, pp. 48–59. Springer, Heidelberg (2008)

3. Parpinelli, R., Lopes, H., Freitas, A.: Data mining with an ant colony optimization
algorithm. IEEE Transactions on Evolutionary Computation 6(4), 321–332 (2002)

4. Salama, K., Abdelbar, A., Freitas, A.: Multiple pheromone types and other exten-
sions to the ant-miner classification rule discovery algorithm. Swarm Intelligence 5(3-
4), 149–182 (2011)

Fuzzy-Based Aggregation

with a Mobile Robot Swarm

Farshad Arvin1, Ali Emre Turgut2, and Shigang Yue1

1 School of Computer Science, University of Lincoln, UK
{farvin,syue}@lincoln.ac.uk

2 IRIDIA, Université Libre de Bruxelles, Belgium
aturgut@iridia.ulb.ac.be

Aggregation is a widely observed phenomenon in social insects and animals
such as cockroaches, honeybees and birds. From swarm robotics perspective [3],
aggregation can be defined as gathering randomly distributed robots to form
an aggregate. Honeybee aggregation is an example of cue-based aggregation
method that was studied in [4]. In that study, micro robots were deployed in
a gradually lighted environment to mimic the behavior of honeybees which
aggregate around a zone that has the optimal temperature (BEECLUST). In
our previous study [2], two modifications on BEECLUST – dynamic velocity
and comparative waiting time – were applied to increase the performance of
aggregation.

In this paper, we proposed a fuzzy-based aggregation algorithm for cue-
based aggregation with a mobile robot swarm (AMiR [1] and simulation
software [6]). We compared the performance of our fuzzy-based aggregation
algorithm with the state-of-the-art cue-based aggregation strategy BEECLUST
and an extension of BEECLUST algorithm that we called the näıve method.
BEECLUST aggregation [4] follows a simple algorithm. When a robot detects
another robot in the environment, it stops and measures the magnitude of
the ambient audio signal and waits based on this magnitude. The higher the
magnitude is the longer the waiting time becomes. When the waiting time is over,
the robot rotates φ degree, which is a random variable drawn uniformly within
[−180◦, 180◦]. In the näıve aggregation method [5], we employ a deterministic
decision making mechanism based on both the intensity and the direction of
the sound signal. In the fuzzy method [5], which is the main contribution of the
paper, we calculate the waiting time using the same way as in the BEECLUST
and the näıve algorithms, whereas φ is estimated using the intensity of the sound
signals using a fuzzy logic controller. The fuzzy logic controller has four inputs
that are connected to the microphones and one output to estimate the direction
of the sound source, hence the turning angle of the robot.

Fig. 1 illustrates the results of experiments with real and simulated robots.
In general, when the number of robots increases, the aggregation time reduces
significantly, since increasing the population size increases the number of
collisions eventually causing faster aggregation. Results show that, fuzzy
aggregation is faster than näıve and BEECLUST owing to more precise estimates
φ values after each collision, which increases the performance of the aggregation.
In addition, the fuzzy algorithm is more robust to noise than näıve algorithm.

M. Dorigo et al. (Eds.): ANTS 2012, LNCS 7461, pp. 346–347, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Fuzzy-Based Aggregation with a Mobile Robot Swarm 347

Fig. 1. Aggregation
time and total
number of inter-robot
collisions as functions
of population size
for fuzzy, näıve, and
BEECLUST methods
with (a) real robot
and (b) simulated
robot experiments.
(c) Effects of different
noise values in
different populations
for (left) fuzzy
and (right) näıve
algorithms. Noise
is modeled as a
uniformly distributed
random variable
within range [−σ, σ].

Acknowledgments. This work is supported by EU FP7-IRSES project EYE2E
(269118) and LIVCODE (295151).

References

1. Arvin, F., Samsudin, K., Ramli, A.R.: Development of a Miniature Robot for
Swarm Robotic Application. International Journal of Computer and Electrical
Engineering 1, 436–442 (2009)

2. Arvin, F., Samsudin, K., Ramli, A.R., Bekravi, M.: Imitation of Honeybee
Aggregation with Collective Behavior of Swarm Robots. International Journal of
Computational Intelligence Systems 4(4), 739–748 (2011)

3. Şahin, E., Girgin, S., Bayındır, L., Turgut, A.E.: Swarm Robotics. In: Blum, C.,
Merkle, D. (eds.) Swarm Intelligence, vol. 1, pp. 87–100. Springer, Heidelberg (2008)

4. Schmickl, T., Thenius, R., Moeslinger, C., Radspieler, G., Kernbach, S., Szymanski,
M., Crailsheim, K.: Get in touch: cooperative decision making based on robot-
to-robot collisions. Autonomous Agents and Multi-Agent Systems 18(1), 133–155
(2009)

5. Supplementary Data,
http://webpages.lincoln.ac.uk/farvin/Supplementary.htm

6. Vaughan, R.: Massively multi-robot simulation in stage. Swarm Intelligence 2(2),
189–208 (2008)

http://webpages.lincoln.ac.uk/farvin/Supplementary.htm

Maturity of the Particle Swarm as a Metric

for Measuring the Particle Swarm Intelligence

Zdenka Winklerová

Brno University of Technology, Dept. of Intelligent Systems, Brno, Czech Republic
iwin@fit.vutbr.cz

The PSO (Particle Swarm Optimization) algorithm is known primarily as a
stochastic algorithm which shows signs of intelligent behaviour. In this paper,
a maturity model of the particle swarm operational space as a metric for the
swarm intelligence is introduced and then, the swarm intelligence is assessed
according to this model.

The model is proposed as a combination of the Maturity Model of the C2
(Command and Control) operational space and the model of Collaborating Soft-
ware. The swarm particles are considered for a system’s software modules, and
the PSO algorithm for the system. Then, the whole particle swarm is assessed
according to generic characteristics of the collaborative behaviour. These at-
tributes are: (i) an appropriate representation of information, (ii) the existence
of awareness, (iii) investigation, (iv) interaction, (v) integration, and (vi) coor-
dination.

A three-dimensional maturity vector determines the resulting maturity of the
swarm operational space. The coordinates of the maturity vector determine the
degrees of allocation of decision rights, information sharing, and social interac-
tion among particles. Depending on the values of the coordinates, the result-
ing maturity of the operational space then takes one of the values (conflicted,
de-conflicted, coordinated, collaborative, agile).

While analyzing the maturity of the swarm, the cooperative swarming strate-
gies directly derived from the original version of the algorithm published in
1995 were examined. The subject of discussion was to determine what values
should take the coordinates in the maturity model so that the swarm could be
considered as coordinated or collaborative.

The highest achieved level of information sharing has been evaluated as shared
projection: While conducting its activity, each particle has an opportunity to
learn the accessible information about the global best position, to estimate the
situation and to update the shared information if it becomes the global best
particle, and to move in the estimated direction. The swarm particles control
their activities according to the best position yet discovered, i.e. they project
this global information into their activities.

In terms of social interaction as the particle’s ability to combine its own results
with the results of the other swarm particles, the swarm can be considered as
an integrated system, since the swarm particles in all examined variants of the
PSO algorithm are able to operate simultaneously and react continuously on the
intermediate results.

M. Dorigo et al. (Eds.): ANTS 2012, LNCS 7461, pp. 348–349, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Maturity of the Particle Swarm as a Metric 349

In terms of allocation of decision rights, the particles are not completely au-
tonomous, since the particle’s velocity during its flight through the hyperspace
is artificially regulated from outside the system. It follows from the discussion
that the method of the particles’ coordination based on the application of tuning
parameters established externally, namely by external inertia weight and external
acceleration coefficients, is a way of control which is inconsistent with the princi-
ple of self-organization as an autonomous activity of the individual entities that
deal with their own individual tasks and communicate in order to coordinate
their activities while solving a common task.

The conclusion from the maturity assessment of the particle swarm is that
the swarm system as a whole is not mature enough: A swarm particle does not
have the ability of learning from its own experience or from the experience of
the other particles, or from some observer inside the search space, to get all
the information needed to update its velocity, and if a particle has a problem,
the other particles do not know about it. Lack of the system’s awareness seems
to be the main cause of the persistent unreliability of the PSO algorithm and
its variants in optimization of multimodal functions with many local optima.
In order to improve the system’s awareness, the decision making autonomy of
individual particles should be enhanced so that the swarm could be considered
as coordinated or collaborative, eventually.

A solution would be a continual adjustment of the particle’s velocity as a func-
tion of its level of confidence in its actual direction. However, such approach
involves adaptation of behavioural rules so that the particle could use only the
coefficients whose value would be provided from inside the system, without ex-
ternal control. It means to understand the meaning of the coefficients and the
objective function through the swarm operation. Stochastic stability analysis
has become a method to understand the PSO convergence properties from this
point of view. A study has been published in 2009 referring to previous studies
in this area showing that the PSO algorithm performs well in certain areas of
coefficient space. These regions are similar for different objective functions and
are dependent on the number of dimensions of the objective function. Given the
stochastic nature of the swarm, a more precise adjustment of particle’s velocity
according to the actual influence of the objective function in a particular location
of the search space thus requires continuing research for a deeper understanding,
from which the swarm derives its intelligent behaviour.

Multi-objective Firefly Algorithm for Energy

Optimization in Grid Environments

Maŕıa Arsuaga-Rı́os1 and Miguel A. Vega-Rodŕıguez2

1 Beams Department, European Organization for Nuclear Research, CERN,
Geneva, Switzerland

maria.arsuaga.rios@cern.ch
2 ARCO Research Group, University of Extremadura, Dept. Technologies
of Computers and Communications, Escuela Politecnica, Cáceres, Spain

mavega@unex.es

Current researches are focusing on optimizing energy consumption in Grid com-
puting [1], being the job scheduling a challenging task. These researches reduce
the energy consumption by heuristics or greedy algorithms and some of them
try to balance this reduction regarding the execution time using weights for
evaluating these objectives. In this work, a new approach is studied related to
the multi-objective optimization for these two conflictive objectives, considering
them with the same importance. The obtained solutions show the suitable re-
sources for each job and their order of execution. This new approach is called
MO-FA (Multi-Objective Firefly Algorithm) and it is based on the recent FA
(Firefly Algorithm)[2] adding multi-objective properties to the preceding ver-
sions. The scheduler is implemented in the well-known grid simulator, GridSim
to recreate the performance of grid infrastructures and compare MO-FA with
other schedulers like Workload Management System (WMS) from the most used
European middleware Lightweight Middleware for Grid Computing (gLite) and
also the well-known Deadline Budget Constraint (DBC) from Nimrod-G.

MO-FA: Multi-Objective Firefly Algorithm

This multi-objective approach is defined as the minimization of two objective
functions. These functions represent criteria that are in conflict each other -
execution time and energy consumption-. Because of that, MO-FA returns not
only one solution, but a set of them, called non-dominated solutions. When
this set of solutions are represented in the objective function value space, they
form a Pareto front. MO-FA is an adaptation of FA designed to solve multi-
objective problems. FA is based on the fireflies behaviour which its location
represents a solution. The main feature is the attraction among fireflies due to
their brightness. Fireflies with more intensity of brightness attract with more
force other fireflies with less brightness, causing their movement to the first
ones. Fireflies with major brightness represent the best solutions for the problem
and their location is represented by the union of two vectors, indicating the
job allocation in the available grid resources and the order of their execution.
Execution time and energy consumption compose the main firefly properties.
In the adaptation of FA to MO-FA, fireflies need to be compared each other

M. Dorigo et al. (Eds.): ANTS 2012, LNCS 7461, pp. 350–351, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Multi-objective Firefly Algorithm for Energy Optimization 351

according to the dominance. Once all the fireflies are compared and the updated
movements are carried out, a stagnation checking method is applied to the new
firefly population. This method is an improvement with respect to the original
FA in order to avoid the population stagnation in case that MO-FA suffered
it along several iterations. Finally, when the time limit comes the fireflies are
classified per Pareto fronts and the first Pareto front is returned as the set of
best solutions for the tackled problem.

Results and Conclusions

The obtained results are divided into two complementary studies. On the one
hand, the behavior of MO-FA, as a multi-objective algorithm, is studied. Ref-
erence point, average hypervolume and its standard deviation [3] are calculated
in order to consider them in future improvements from this algorithm or oth-
ers. These results show that hypervolume percent arises more than 50%, thus
it is a good point with respect to the solutions found. Standard deviation also
presents a minimum value, so it might be considered that the solutions are quite
reliable. On the other hand, MO-FA, WMS and DBC are compared and eval-
uated. The results prove that MO-FA solutions always dominate the solutions
offered by the WMS and DBC reducing their energy consumption around a 50%
and 30% respectively, obtaining MO-FA always better response time than the
real schedulers. In addition, WMS and DBC algorithm reports unsuccessful jobs
when the deadline is more restrictive. While, MO-FA always executes all the
jobs required. In conclusion, it might be said that MO-FA is a good competitor
respect to WMS and DBC in all the cases. Also, due to their multi-objective
qualities, MO-FA offers a good range of solutions for decision support.

References

1. Lee, Y.C., Zomaya, A.Y.: Energy conscious scheduling for distributed comput-
ing systems under different operating conditions. IEEE Trans. Parallel Distrib.
Syst. 22(8), 1374–1381 (2011)

2. Yang, X.-S.: Firefly Algorithms for Multimodal Optimization. In: Watanabe, O.,
Zeugmann, T. (eds.) SAGA 2009. LNCS, vol. 5792, pp. 169–178. Springer, Heidel-
berg (2009)

3. Zitzler, E., Thiele, L.: Multiobjective Optimization Using Evolutionary Algorithms
- A Comparative Case Study. In: Eiben, A.E., Bäck, T., Schoenauer, M., Schwefel,
H.-P. (eds.) PPSN 1998. LNCS, vol. 1498, pp. 292–304. Springer, Heidelberg (1998)

Particle Swarm Optimization with Random

Sampling in Variable Neighbourhoods
for Solving Global Minimization Problems

Gonzalo Nápoles, Isel Grau, and Rafael Bello

Centro de Estudios de Informática
Universidad Central “Marta Abreu” de Las Villas, Santa Clara, Cuba

{gnapoles,igrau,rbellop}@uclv.edu.cu

Particle Swarm Optimization (PSO) is a bio-inspired evolutionary meta-heuristic
that simulates the social behaviour observed in groups of biological individuals
[4]. In standard PSO, the particle swarm is often attracted by sub-optimal so-
lutions when solving complex multimodal problems, causing premature conver-
gence of the algorithm and swarm stagnation [5]. Once particles have converged
prematurely, they continue converging to within extremely close proximity of
one another so that the global best and all personal bests are within one minus-
cule region of the search space, limiting the algorithm exploration. This paper
presents a modified variant of constricted PSO [1] that uses random samples
in variable neighbourhoods for dispersing the swarm whenever a premature
convergence state is detected, offering an escaping alternative from local optima.

PSO-RSVN Algorithm

The Variable Neighbourhood Search (VNS) is a simple and effective meta-
heuristic for combinatorial problems and global optimization [2] which is based
on the systematic change of the neighbourhood in the search process. Inspired
by this idea, we present a procedure called Random Sampling in Variable Neigh-
bourhoods (RSVN) which aims to disperse the swarm when it detects the pre-
mature convergence state. The main idea of this procedure is to restructure the
particle swarm from the selection of random samples uniformly distributed in
several neighbourhoods generated around the global best particle of the swarm.
In this procedure m neighbourhoods with parameters ξj ∈ (0, 1] are computed;
where the neighbourhood factor ξj is used for controlling the j-th neighbourhood
proportion to the size of the search space. After collecting the samples in each
partition, a selection process of the particles takes place. These agents will form
the new swarm as shown below:

β = Φ1 ∪ Φ2 ∪ ... ∪ Φm =

m⋃
j=1

Φj |Φj ⊆ Ψj , ∀j . (1)

where β represents the particle swarm and Φj is a subset of good enough par-
ticles compared to all samples Ψj using an elitist criterion. In this procedure
each generated particle is a candidate to replace the best global particle, which

M. Dorigo et al. (Eds.): ANTS 2012, LNCS 7461, pp. 352–353, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

PSO with Random Sampling in Variable Neighbourhoods 353

complements the swarm dispersion process. The diversity introduced by the dis-
persion mechanism ensures the exploration of new areas of the solution space,
increasing the possibility of escape from sub-optimal solutions. Moreover, due to
the elitist replacement, simplicity and low computational cost the RSVN proce-
dure could be adapted and integrated into several evolutionary paradigms.

Performance Study

We compared PSO-RSVN against five approaches evaluated in [3]: constricted
PSO, Gaussian Mutation based PSO (GMPSO), Hybrid PSO and Simulated An-
nealing (HPSO-SA), Quadratic Interpolation based PSO (QIPSO), and Attrac-
tion Repulsion based PSO (ATREPSO) by using nine well-known benchmark
function taken from [3]. These functions are minimization problems including
unimodal, multimodal and noisy functions that helps in deciding the credibility
of an optimization algorithm. In each simulation we used 30 particles and 300.000
objective function evaluations in a 20-dimensional search space. In addition, we
used two variable neighbourhoods with factors ξ1 = 0.05 and ξ2 = 0.1. Finally,
the fitness value for each algorithm was averaged over 30 independent trials.

From the numerical results of the experiments some conclusions came out:
PSO-RSVN always finds the global optimum satisfactorily for Sphere, Rastri-
gin, Griewank, Himmelblau and Shubert functions, whereas for Rosenbrock and
Quartic it provides acceptable estimations. For Schwefel function, HPSO-SA lo-
cates the best solutions; however, PSO-RSVN finds better approximations than
the others. Finally, QIPSO has the best results reported for Ackley function,
followed by PSO-RSVN. These results reveal that PSO-RSVN is a competitive
and very promising approach for solving global optimization problems. Future
work will incorporate a more rigorous statistical analysis to explore significantly
differences among these approaches and there will be studied the algorithm
performance using other well-known benchmark functions.

References

1. Clerc, M., Kennedy, J.: The particle swarm - explosion, stability, and convergence
in a multidimensional complex space. IEEE Transactions on Evolutionary Compu-
tation 6, 58–73 (2002)

2. Hansen, P., Mladenovic, N.: Variable neighbourhood search: Principles and appli-
cations. European Journal of Operations Research 130, 449–467 (2001)

3. Idoumghar, L., et al.: Hybrid PSO-SA type algorithms for multimodal function op-
timization and reducing energy consumption in embedded systems. Applied Com-
putational Intelligence and Soft Computing 2011, 12 pages (2011)

4. Kennedy, J., Eberhart, R.: Particle swarm optimization. In: Proceedings of the 1995
IEEE International Conference on Neural Networks, pp. 1942–1948 (1995)

5. Kennedy, J., Russell, C.E.: Swarm Intelligence. Morgan Kaufmann (2001)

Author Index

Abbott, Jade 284
Abolmaali, Nasreddin 316
al-Rifaie, Mohammad Majid 49
Alves, Maria João 332
Arkin, Ronald 276
Arsuaga-Ŕıos, Maŕıa 350
Arvin, Farshad 346

Bello, Rafael 352
Bezerra, Leonardo C.T. 37
Birattari, Mauro 25, 109
Blackwell, Tim 49
Blum, Christian 61
Böhme, Hans-Joachim 316
Brambilla, Manuele 25
Bruckstein, Alfred M. 196
Brutschy, Arne 109

Chivilikhin, Daniil 268
Christensen, Anders Lyhne 85
Clancey, Owen 244
Cleghorn, Christopher Wesley 292
Croft, Darren 342

Dang, Thanh Hai 204
Davis, Justin 276
Dinh, Huy Q. 204
Dobata, Shigeto 228
Do Duc, Dong 204
Dorigo, Marco 25, 109

Elor, Yotam 196
Engelbrecht, Andries P. 97, 121, 156,

188, 236, 284, 292

Fang, Rui 212
Flynn, Mark 260
Francesca, Gianpiero 109
Freitas, Alex A. 13, 73
Fua, Pascal 61
Fujisawa, Ryusuke 228

Gomes, Jorge 85
Grau, Isel 352

Haase, Robert 316
Hamann, Heiko 168
Hecker, Joshua P. 252
Hoang, Xuan Huan 204
Hsieh, M. Ani 145
Huang, Zequn 212

Ismail, Adiel 97, 156

Keedwell, Ed 342
Kim, Jung-Hwan 308
Kirby, Joshua 324
Klazar, Ronald 236
Kotsireas, Ilias S. 220
Kramer, Oliver 1

Latella, Diego 25
Laukens, Kris 204
Leonard, Barend J. 121
Letendre, Kenneth 252
López-Ibáñez, Manuel 37

Marinaki, Magdalene 180
Marinakis, Yannis 180
Massink, Mieke 25
Mateo, Sergi 61
Matsuno, Fumitoshi 228
Medland, Matthew 73
Montes de Oca, Marco A. 324
Morley, Mark 342
Moses, Melanie E. 252, 260
Murray, Lachlan 133

Nápoles, Gonzalo 352
Nepomuceno, Filipe V. 188

Omran, Mahamed G.H. 300
Otero, Fernando E.B. 73, 344

Parsopoulos, Konstantinos E. 220
Perrin, Rosalind 316
Pini, Giovanni 109
Piperagkas, Grigoris S. 220

Rossi, Louis F. 212, 324

356 Author Index

Salama, Khalid M. 13, 344
Salman, Ayed 300
Sasaki, Yuuta 228
Senger, Steven 324
Shell, Dylan A. 308
Shen, Chien-Chung 212, 324
Song, Yong 308
Stolleis, Karl 252
Stützle, Thomas 37
Suomalainen, Päivi 340

Takisawa, Riku 228
Timmis, Jon 133
Türetgen, Engin 61
Turgut, Ali Emre 346
Tyrrell, Andy 133

Ulyantsev, Vladimir 268

Urbano, Paulo 85

Vega-Rodŕıguez, Miguel A. 350

Vrahatis, Michael N. 220

Washington, Daniel 252

Winklerová, Zdenka 348

Witten, Matthew 244
Worcester, James 145

Yue, Shigang 346

Zöphel, Klaus 316

	Title

	Preface
	Organization
	Table of Contents
	A Particle Swarm Embedding Algorithm for Nonlinear Dimensionality Reduction

	Introduction
	Related Work
	Dimensionality Reduction
	Unsupervised Regression
	Swarm Intelligence and Unsupervised Learning

	Iterative Particle Swarm Embeddings
	Nearest Neighbors
	Unsupervised Nearest Neighbors
	Particle Swarm Embedding Algorithm
	Runtime

	Experimental Analysis
	Neighborhood Sizes
	Comparison of Embeddings

	Conclusion
	References

	ABC-Miner: An Ant-Based Bayesian Classification Algorithm

	Introduction
	Bayesian Networks Background
	Overview on Bayesian Networks
	Bayesian Networks for Classification

	ACO Related Work
	A Novel ACO Algorithm for Learning BN Classifiers
	ABC-Miner Algorithm
	Solution Creation
	Quality Evaluation and Pheromone Update

	Experimental Methodology and Results
	Concluding Remarks
	References

	Analysing Robot Swarm Decision-Making with Bio-PEPA

	Introduction
	Related Work
	Bio-PEPA
	Collective Decision-Making: A Bio-PEPA Specification
	The Bio-PEPA Specification

	Analysis
	Stochastic Simulation
	Statistical Model Checking
	Fluid Flow Analysis

	Conclusions
	References

	Automatic Generation of Multi-objective ACO Algorithms for the Bi-objective Knapsack

	Introduction
	The Bi-objective Bidimensional Knapsack Problem
	ACO Algorithms for the bBKP
	A Flexible MOACO Framework for the bBKP
	Experimental Setup
	Experimental Analysis
	Improving the ACO Settings of the mACO Algorithms
	Automatically Generating MOACO Algorithms for the bBKP

	Conclusions and Future Work
	References

	Bare Bones Particle Swarms with Jumps

	Introduction
	Bare Bones Swarm
	Bare Bones with Jumps
	Experiments
	Performance Measures
	Experiment Setup
	BB, PSO and BBJ Parameter Values
	Results
	Discussion

	Conclusion
	References

	Hybrid Algorithms for the Minimum-Weight Rooted Arborescence Problem

	Introduction
	A New Heuristic Approach
	Ant Colony Optimization for the MWRA Problem
	Experimental Evaluation
	Benchmark Instances
	Results

	Conclusions and Future Work
	References

	Improving the cAnt-MinerPB Classification Algorithm

	Introduction
	Background
	Proposed Improvements to
	Dynamically Choosing Rule Evaluation Functions
	Error-Based Rule-List Function

	Results
	Conclusion
	References

	Introducing Novelty Search in Evolutionary Swarm Robotics

	Introduction
	Background
	Evolution of Aggregation Behaviours
	NEAT
	Novelty Search

	Aggregation Experiments
	Experimental Setup
	The First Experiment
	The Alternative Novelty Measure
	Combining Novelty Measures

	Discussion
	Conclusion
	References

	Measuring Diversity in the Cooperative Particle Swarm Optimizer

	Introduction
	Overview of PSO and CPSO
	PSO
	Cooperative Particle Swarm Optimizer (CPSO)

	Diversity Measures
	Characteristics of Diversity Measure
	Diversity Measures for PSO

	Diversity Measures for CPSO
	Experiments and Results
	Experimental Procedure
	Experimental Results

	Conclusion
	References

	Multi-armed Bandit Formulation of the Task Partitioning Problem in Swarm Robotics

	Introduction
	Related Work
	Problem Description and Methodology
	Experimental Setup
	Experiments and Results
	Conclusions
	References

	Scalability Study of Particle Swarm Optimizers in Dynamic Environments

	Introduction
	Particle Swarm Optimization
	Particle Swarm Optimization in Dynamic Environments
	PSO with Charged Particles
	PSO with Quantum Particles
	Dynamic Heterogeneous PSO

	Experimental Procedure
	Problems
	Algorithms
	Measurements

	Results and Discussion
	Conclusion and Future Work
	References

	Self-reconfigurable Modular e-pucks

	Introduction
	Self-reconfigurable Modular Robotics
	Modular e-puck Extension
	Collective Locomotion
	Static Synchronisation
	Alignment
	Obstacle Avoidance

	Results
	Stationary Alignment
	Collective Locomotion

	Conclusions
	References

	Task Partitioning via Ant Colony Optimization for Distributed Assembly

	Introduction
	Methodology
	Baseline Strategy
	Variant Strategies

	Results
	Discussion and Future Work
	References

	The Self-adaptive Comprehensive Learning Particle Swarm Optimizer

	Introduction
	Overview of PSO
	Comprehensive Learning Particle Swarm Optimizer
	Self-adaptive Comprehensive Learning PSO
	Experiments and Results
	Experimental Procedure
	Experimental Results

	Conclusion
	References

	Towards Swarm Calculus: Universal Properties of Swarm Performance and Collective Decisions

	Introduction
	Universal Properties of Swarm Performance
	Simple Model of Swarm Performance
	Examples

	Universal Properties of Collective Decisions
	Simple Model of Collective Decisions
	Examples

	Discussion and Conclusion
	References

	Short Papers

	A Hybrid Particle Swarm Optimization Algorithm for the Open Vehicle Routing Problem

	Introduction
	Hybrid Particle Swarm Optimization Algorithm
	Results and Discussion
	Conclusions
	References

	A Self-adaptive Heterogeneous PSO Inspired by Ants

	Introduction
	Background
	Particle Swarm Optimization
	Heterogeneous Particle Swarm Optimization

	Pheromone Based Particle Swarm Optimizer
	Experimental Setup
	Results and Analysis
	Conclusion
	References

	A “Thermodynamic” Approach to Multi-robot Cooperative Localization with Noisy Sensors

	Introduction
	The Encounter Averaging Process
	Analysis: The Covariance Evaluation Process
	Discussion and Simulations
	Relation to Previous Work
	Conclusion
	References

	AcoSeeD: An Ant Colony Optimization for Finding Optimal Spaced Seeds in Biological Sequence Search

	Introduction
	Spaced Seed Optimization Problem
	AcoSeeD: Ant Colony Optimization for Spaced Seeds
	Construction Graph
	ACO-Based Seed Length Identification
	AcoSeeD Algorithm
	Local Search Using Overlap Complexity

	Experimental Results
	Datasets
	Comparison Results

	Conclusions
	References

	Analysis of Ant-Based Routing with Wireless Medium Access Control

	Introduction
	Related Work and Background
	Stochastic Modeling of BARP with MACA
	Two-Sender Scenario with MACA
	Three-Sender Scenario with MACA
	Analysis of BARP with MACA

	Evaluation and Validation
	Conclusion
	References

	Ant-Based Approaches for Solving Autocorrelation Problems

	Introduction
	Autocorrelation Problems
	Proposed Ant–Based Approaches
	Approach Based on Binary Ants
	Performance Enhancing
	Approach Based on Components Permutation

	Experimental Results
	Conclusions
	References

	Collision-Induced “Priority Rule” Governs Efficiency of Pheromone-Communicating Swarm Robots

	Introduction
	Swarm and Pheromone Communication in Ants
	Related Studies
	Priority on the Pheromone Trail

	Swarm Behaviour Algorithm
	Basic Algorithm
	Collision Processing and ``Priority Rules"

	Hardware and Experimental Design
	Results
	Discussion and Conclusion
	References

	Dynamic Load Balancing Inspired by Cemetery Formation in Ant Colonies

	Introduction
	Task Allocation Inspired by Cemetery Formation
	Analysis
	The Experimental Model
	Simulation Control Parameters
	Design of the Empirical Test
	Results of the Viability Test

	Conclusion
	References

	Feasibility of an Ant Colony Optimization Algorithm for Multi-leaf Collimator (MLC) Aperture Definition and Beam Weighting in Volumetric Modulated Arc Therapy (VMAT) Radiotherapy Treatment Planning

	Introduction
	Radiation Therapy Treatment Delivery
	Volumetric Modulated Arc Therapy(VMAT)
	Ant Colony Optimization for VMAT Treatment Planning

	Materials and Methods
	Objective Function
	Algorithmic Structure
	Phantom Geometry
	DVH Constraints

	Results and Discussion
	Heurstic Information Only
	Learning Only
	Learning and Heuristic Information
	Fitness-Based Comparison of Treatment Plans

	Conclusion
	References

	Formica ex Machina: Ant Swarm Foraging from Physical to Virtual and Back Again

	Introduction
	Background
	Methods
	Hardware
	Search Algorithm
	Experimental Design

	Results
	Discussion
	References

	Improving Peer Review with ACORN: ACO Algorithm for Reviewer’s Network

	Introduction
	Methods
	Results
	Conclusion
	References

	Learning Finite-State Machines with Ant Colony Optimization

	Introduction
	ACO Overview
	Finite-State Machines and Search Space Representation
	The Proposed Algorithm
	Path Construction
	Controlling Graph Growth
	Pheromone Update

	Experimental Evaluation
	Inducting FSMs from Test Examples
	The Food Trail Problem

	Conclusion
	References

	Mobbing Behavior and Deceit and Its Role in Bio-inspired Autonomous Robotic Agents

	Introduction
	Mobbing Behavior
	Sentinel
	Handicap Principle
	Deception
	Group Control

	Computational Model
	Sentinel and Individual Behavior
	Grafen's Dishonesty Model
	Deception in Mobbing

	Implementation
	Simulation Results
	Conclusion
	References

	Performance of Bacterial Foraging Optimization in Dynamic Environments

	Introduction
	Bacterial Foraging
	BFO for Dynamic Environments
	Issues of BFO in Dynamic Environments
	Related Work on BFO in Dynamic Environments
	Structure for Dynamic BFO Algorithm
	Diversity of DBFO
	Change in Step Sizes

	Experimental Procedure
	Algorithm Setup
	Dynamic Environment Setup

	Results
	Conclusion
	References

	Piecewise Linear Approximation of n-Dimensional Parametric Curves Using Particle Swarms

	Introduction
	Background
	Piecewise Linear Approximation
	Particle Swarm Optimization
	Related Work

	Derivations of Analytical Component
	Particle Swarm Algorithm for PWLA
	Experimental Procedure
	Results
	Conclusion
	References

	Probabilistic Stochastic Diffusion Search

	Introduction
	Stochastic Diffusion Search (SDS)
	The Proposed Method
	Experimental Setup
	Experimental Results
	Conclusions and Future Work
	References

	Self-organized Clustering of Square Objects by Multiple Robots

	Introduction
	Motivation and Related Work
	Materials and Methods
	The Basic Strategy
	The Mixed Strategy
	Analysis of Division of Labor
	Clustering Performances of Differing Divisions of Labor
	Cluster Dynamics under Differing Divisions of Labor

	Conclusion
	References

	Self-reproduction versus Transition Rules in Ant Colonies for Medical Volume Segmentation

	Introduction
	Materials and Methods
	Related Work
	Proposed Algorithm
	Experimental Setup

	Results
	Discussion
	Conclusion
	References

	Swarm Interpolation Using an Approximate Chebyshev Distribution

	Introduction
	Force-Based Swarming Model
	Applying Chebyshev Distribution
	Experiment Design
	Interpolation
	Results and Conclusions
	References

	Using MOPSO to Solve Multiobjective Bilevel Linear Problems

	Introduction
	Problem Formulation, Basic Concepts and Notation
	The Proposed MOPSO Algorithm
	Selecting the Global Best for Each Particle

	Computational Experiment
	Conclusions and Future work
	References

	Extended Abstracts

	Clustering Moodle Data via Ant Colony Optimization

	References

	Continuous Trait-Based Particle Swarm Optimisation (CTB-PSO)

	References

	Exploring Different Functions for Heuristics, Discretization, and Rule Quality Evaluation in Ant-Miner

	References

	Fuzzy-Based Aggregation with a Mobile Robot Swarm

	References

	Maturity of the Particle Swarm as a Metric for Measuring the Particle Swarm Intelligence

	Multi-objective Firefly Algorithm for Energy Optimization in Grid Environments

	References

	Particle Swarm Optimization with Random Sampling in Variable Neighbourhoods for Solving Global Minimization Problems

	References

	Author Index

