Marco Dorigo Mauro Birattari

Christian Blum Anders Lyhne Christensen
Andries P. Engelbrecht Roderich Grof§
Thomas Stiitzle (Eds.)

LNCS 7461

Swarm Intelligence

8th International Conference, ANTS 2012
Brussels, Belgium, September 2012
Proceedings

@ Springer

Lecture Notes in Computer Science

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison

Lancaster University, UK
Takeo Kanade

Carnegie Mellon University, Pittsburgh, PA, USA
Josef Kittler

University of Surrey, Guildford, UK
Jon M. Kleinberg

Cornell University, Ithaca, NY, USA
Alfred Kobsa

University of California, Irvine, CA, USA
Friedemann Mattern

ETH Zurich, Switzerland
John C. Mitchell

Stanford University, CA, USA
Moni Naor

Weizmann Institute of Science, Rehovot, Israel
Oscar Nierstrasz

University of Bern, Switzerland
C. Pandu Rangan

Indian Institute of Technology, Madras, India
Bernhard Steffen

TU Dortmund University, Germany
Madhu Sudan

Microsoft Research, Cambridge, MA, USA
Demetri Terzopoulos

University of California, Los Angeles, CA, USA
Doug Tygar

University of California, Berkeley, CA, USA
Gerhard Weikum

Max Planck Institute for Informatics, Saarbruecken, Germany

7461

Marco Dorigo Mauro Birattari

Christian Blum Anders Lyhne Christensen
Andries P. Engelbrecht Roderich Grof3
Thomas Stiitzle (Eds.)

Swarm Intelligence

8th International Conference, ANTS 2012
Brussels, Belgium, September 12-14, 2012
Proceedings

@ Springer

Volume Editors

Marco Dorigo

Mauro Birattari

Thomas Stiitzle

Université Libre de Bruxelles

1050 Brussels, Belgium

E-mail: {mdorigo, mbiro, stuetzle} @ulb.ac.be

Christian Blum

Universitat Politecnica de Catalunya
Llenguatges i 08034 Barcelona, Spain
E-mail: cblum@lsi.upc.edu

Anders Lyhne Christensen

Instituto Universitario de Lisboa (ISCTE-IUL)
1649-026 Lisboa, Portugal

E-mail: anders.christensen @iscte.pt

Andries P. Engelbrecht
University of Pretoria
Pretoria 0002, South Africa
E-mail: engel@cs.up.ac.za

Roderich Grof3

The University of Sheffield
Sheffield S1 3JD, UK

E-mail: r.gross @sheffield.ac.uk

ISSN 0302-9743 e-ISSN 1611-3349

ISBN 978-3-642-32649-3 e-ISBN 978-3-642-32650-9
DOI 10.1007/978-3-642-32650-9

Springer Heidelberg Dordrecht London New York

Library of Congress Control Number: 2012943942
CR Subject Classification (1998): 1.2.6,1.2.8-9, F.2.2,1.2.11, F.1, H4.2
LNCS Sublibrary: SL 1 — Theoretical Computer Science and General Issues

© Springer-Verlag Berlin Heidelberg 2012

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply,
even in the absence of a specific statement, that such names are exempt from the relevant protective laws
and regulations and therefore free for general use.

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Preface

These proceedings contain the papers presented at ANTS 2012, the 8th Inter-
national Conference on Swarm Intelligence, held at IRIDIA, Université Libre de
Bruxelles, Brussels, Belgium, during September 12-14, 2012. The ANTS series
started in 1998 with the First International Workshop on Ant Colony Optimiza-
tion (ANTS 1998), which attracted more than 50 participants. Since then ANTS,
which is held bi-annually, has gradually become an international forum for re-
searchers in the wider field of swarm intelligence. In 2004, this development was
acknowledged by the inclusion of the term “Swarm Intelligence” (next to “Ant
Colony Optimization”) in the conference title. Since 2010, the ANTS conference
is officially devoted to the field of swarm intelligence as a whole, without any bias
toward specific research directions. This is reflected in the title of the conference:
“International Conference on Swarm Intelligence.”

This volume contains the best papers selected out of 81 submissions. Of these,
15 were accepted as full-length papers, while 20 were accepted as short papers.
This corresponds to an overall acceptance rate of 43%. Also included in this
volume are seven extended abstracts.

All the contributions were presented as posters. The full-length papers were
also presented orally in a plenary session. Extended versions of the best papers
presented at the conference will be published in a special issue of the Swarm
Intelligence journal.

We take this opportunity to thank the large number of people that were in-
volved in making this conference a success. We express our gratitude to the au-
thors who contributed their work, to the members of the International Program
Committee, to the additional referees for their qualified and detailed reviews,
and to the staff at IRIDIA for helping with organizational matters. We thank
Nigel R. Franks, Vijay Kumar, and Dirk Helbing for their inspiring keynote talks.
Finally, we thank AntOptima, ECCAI-the European Coordinating Committee
for Artificial Intelligence, the European Research Council, the French Commu-
nity of Belgium (through the ARC research project META-X), and the Fund for
Scientific Research—FNRS for their gracious support.

We hope the reader will find this volume useful both as a reference to current
research in swarm intelligence and as a starting point for future work.

July 2012 Marco Dorigo
Mauro Birattari

Christian Blum

Anders Lyhne Christensen

Andries P. Engelbrecht

Roderich Grof3

Thomas Stiitzle

Organization

ANTS 2012 was organized by IRIDIA, Université Libre de Bruxelles, Belgium.

General Chair

Marco Dorigo

Université Libre de Bruxelles, Belgium

Technical Program Chairs

Christian Blum
Andries P. Engelbrecht
Roderich Grof

Publication Chair

Anders Lyhne Christensen

Organization Chairs

Mauro Birattari
Thomas Stiitzle

Local Arrangements

Andreagiovanni Reina
Arne Brutschy

Program Committee

Andy Adamatzky
Abbas Ahmadi
Daniel Angus
Ronald Arkin
Jacob Beal
Gerardo Beni
Spring Berman

Universitat Politecnica de Catalunya, Spain
University of Pretoria, South Africa
The University of Sheffield, UK

Instituto de Telecomunicagoes & Instituto
Universitario de Lisboa (ISCTE-IUL),
Lisbon, Portugal

Université Libre de Bruxelles, Belgium
Université Libre de Bruxelles, Belgium

Université Libre de Bruxelles, Belgium
Université Libre de Bruxelles, Belgium

University of the West of England, UK
Amirkabir University of Technology, Iran
University of Queensland, Australia
Georgia Institute of Technology, USA
BBN Technologies, USA

University of California, USA

Arizona State University, USA

VIII Organization

Tim Blackwell

Maria J. Blesa

Alfred Bruckstein
Fernando Buarque
Leticia Cagnina

Emilio Fortunato Campana
Marco Chiarandini
David Johan Christensen
Maurice Clerc

Carlos Coello Coello
Oscar Cordon

Tain Couzin

Sanjoy Das

Kusum Deep

Gianni Di Caro

Luca Di Gaspero

Karl Doerner

Leandro Dos Santos Coelho
Haibin Duan

Frederick Ducatelle
Mohammed El-Abd
Susana Cecilia Esquivel
Jonathan Fieldsend

Luca Maria Gambardella
Simon Garnier

Veysel Gazi

Deborah Gordon
Frédéric Guinand

Walter Gutjahr

Saman Halgamuge

Heiko Hamann

Julia Handl

Richard Hartl

Poul Heegaard

Marde Helbig

Ani Hsieh

Thomas Jansen
Mark Jelasity
Yaochu Jin

Serge Kernbach
Joshua Knowles
Oliver Korb
Xiaodong Li

Manuel Lépez-Ibanez

Goldsmiths, University of London, UK

Universitat Politecnica de Catalunya, Spain

Technion—Israel Institute of Technology, Israel

Universidade de Pernambuco, Brazil

Universidad Nacional de San Luis, Argentina

Consiglio Nazionale delle Ricerche, Italy

University of Southern Denmark, Denmark

Technical University of Denmark, Denmark

Independent Consultant, France

CINVESTAV-IPN, Mexico

European Centre for Soft Computing, Spain

Princeton University, USA

Kansas State University, USA

Indian Institute of Technology Roorkee, India

IDSIA, USI-SUPSI, Switzerland

University of Udine, Italy

Johannes Kepler Universitit Linz, Austria

Pontifical Catholic University of Parana, Brazil

Beihang University, China

IDSIA, USI-SUPSI, Switzerland

American University in Kuwait, Kuwait

Universidad Nacional de San Luis, Argentina

Exeter University, UK

IDSTA, USI-SUPSI, Switzerland

Princeton University, USA

Istanbul Kemerburgaz University, Turkey

Stanford University, USA

Université du Havre, France

Universitdt Wien, Austria

University of Melbourne, Australia

Karl-Franzens-Universitidt Graz, Austria

The University of Manchester, UK

Universitdt Wien, Austria

Norwegian University of Science and
Technology, Norway

Council for Scientific and Industrial Research,
South Africa

Drexel University, USA

University College Cork, Ireland

University of Szeged, Hungary

University of Surrey, UK

Universitat Stuttgart, Germany

The University of Manchester, UK

Cambridge Crystallographic Data Centre, UK

RMIT University, Australia

Université Libre de Bruxelles, Belgium

Patricia Lutu

Kevin Lynch

Katherine Malan
Vittorio Maniezzo
Yannis Marinakis

Franco Mascia

Bernd Meyer

Martin Middendorf
Francesco Mondada
Nicolas Monmarché
Roberto Montemanni
Marco A. Montes de Oca
Sanaz Mostaghim

Frank Neumann
Giuseppe Nicosia

Ann Nowé

Beatrice Ombuki-Bernman
Mahamed Omran

Ender Ozcan
Rafael Stubs Parpinelli

Konstantinos Parsopoulos
H. Van Dyke Parunak
Kevin M. Passino

Paola Pellegrini

Jorge Pena

Giinther Raidl

Marc Reimann

Dustin Reishus

Aristides Requicha
Andrea Roli

Erol Sahin
Michael Sampels
Thomas Schmickl
Kevin Seppi
Wei-Min Shen
Jurij Sile
Christine Solnon
Kasper Stoy
Ponnuthurai Suganthan
Guy Theraulaz
Jon Timmis
Kohji Tomita

Organization X

University of Pretoria, South Africa

Northwestern University, USA

University of Pretoria, South Africa

Universita di Bologna, Italy

Technical University of Crete, Greece

Université Libre de Bruxelles, Belgium

Monash University, Australia

Universitdt Leipzig, Germany

EPFL, Switzerland

Université de Tours, France

IDSTA, USI-SUPSI, Switzerland

University of Delaware, USA

Karlsruhe Institute of Technology, Germany

The University of Adelaide, Australia

University of Catania, Italy

Vrije Universiteit Brussel, Belgium

Brock University, Canada

Gulf University for Science and Technology,
Kuwait

The University of Nottingham, UK

Universidade do Estado de Santa Catarina,
Brazil

University of Ioannina, Greece

Jacobs Technology, USA

The Ohio State University, USA

IFSTTAR, Lille, France

University of Basel, Switzerland

Vienna University of Technology, Austria

University of Graz, Austria

University of Colorado Boulder, USA

University of Southern California, USA

Alma Mater Studiorum Universita di Bologna,
Ttaly

Middle East Technical University, Turkey

Université Libre de Bruxelles, Belgium

Karl-Franzens-Universitit Graz, Austria

Brigham Young University, USA

University of Southern California, USA

Jozef Stefan Institute, Ljubljana, Slovenia

INSA Lyon, France

University of Southern Denmark, Denmark

Nanyang Technological University, Singapore

Université Paul Sabatier, France

The University of York, UK

AIST, Japan

X Organization

Vito Trianni

Elio Tuci

Willem S. van Heerden
Richard T. Vaughan
Mario Ventresca
Michael Vrahatis

Alan Winfield

Carsten Witt
Xiao-Feng Xie

Daniela Zaharie

Additional Referees

Alexandre Campo
Cyrille Bertelle
Nikolaus Correll
Melvin Gauci
Carlos Gershenson
Jane Hillston
Jerome Le Ny
Joel Lehman
Wenguo Liu

Yan Meng

Mac Schwager
Valerio Sperati
Lovekesh Vig

ISTC, CNR, Roma, Italy

Aberystwyth University, UK

University of Pretoria, South Africa

Simon Fraser University, Canada
University of Toronto, Canada

University of Patras, Greece

University of the West of England, UK
Technical University of Denmark, Denmark
Carnegie Mellon University, USA

West University of Timisoara, Romania

Université Libre de Bruxelles, Belgium
University of Le Havre, France
University of Colorado Boulder, USA
The University of Sheffield, UK
IIMAS, UNAM, Mexico

The University of Edinburgh, UK
Ecole Polytechnique de Montréal, Canada
University of Central Florida, USA
Bristol Robotics Lab, UK

Stevens Institute of Technology, USA
Boston University, USA

ISTC, CNR, Rome, Italy

Jawaharlal Nehru University, New Delhi, India

Table of Contents

A Particle Swarm Embedding Algorithm for Nonlinear Dimensionality
Reduction.
Oliver Kramer

ABC-Miner: An Ant-Based Bayesian Classification Algorithm
Khalid M. Salama and Alex A. Freitas

Analysing Robot Swarm Decision-Making with Bio-PEPA
Mieke Massink, Manuele Brambilla, Diego Latella,
Marco Dorigo, and Mauro Birattar:

Automatic Generation of Multi-objective ACO Algorithms for the
Bi-objective Knapsack
Leonardo C.T. Bezerra, Manuel Lopez-Ibdnez, and Thomas Stiitzle

Bare Bones Particle Swarms with Jumps
Mohammad Majid al-Rifaie and Tim Blackwell

Hybrid Algorithms for the Minimum-Weight Rooted Arborescence
Problem e
Sergi Mateo, Christian Blum, Pascal Fua, and Engin Tiretgen

Improving the cAnt-Minerpg Classification Algorithm
Matthew Medland, Fernando E.B. Otero, and Alex A. Freitas

Introducing Novelty Search in Evolutionary Swarm Robotics
Jorge Gomes, Paulo Urbano, and Anders Lyhne Christensen

Measuring Diversity in the Cooperative Particle Swarm Optimizer
Adiel Ismail and Andries P. Engelbrecht

Multi-armed Bandit Formulation of the Task Partitioning Problem in
Swarm Robotics
Giovanni Pini, Arne Brutschy, Gianpiero Francesca,
Marco Dorigo, and Mauro Birattari

Scalability Study of Particle Swarm Optimizers in Dynamic
Environments
Barend J. Leonard and Andries P. Engelbrecht

Self-reconfigurable Modular e-pucks
Lachlan Murray, Jon Timmis, and Andy Tyrrell

XII Table of Contents

Task Partitioning via Ant Colony Optimization for Distributed
ASSembly ...
James Worcester and M. Ani Hsieh

The Self-adaptive Comprehensive Learning Particle Swarm
OPEIMIZET . .« .« ot e
Adiel Ismail and Andries P. Engelbrecht

Towards Swarm Calculus: Universal Properties of Swarm Performance
and Collective DeciSionsot
Heiko Hamann

Short Papers

A Hybrid Particle Swarm Optimization Algorithm for the Open Vehicle
Routing Problem
Yannis Marinakis and Magdalene Marinaki

A Self-adaptive Heterogeneous PSO Inspired by Ants.................
Filipe V. Nepomuceno and Andries P. Engelbrecht

A “Thermodynamic” Approach to Multi-robot Cooperative Localization
with Noisy Sensors
Yotam Elor and Alfred M. Bruckstein

AcoSeeD: An Ant Colony Optimization for Finding Optimal Spaced
Seeds in Biological Sequence Search
Dong Do Duc, Huy Q. Dinh, Thanh Hai Dang,
Kris Laukens, and Xuan Huan Hoang

Analysis of Ant-Based Routing with Wireless Medium Access
o3 0175 'e Y
Rui Fang, Zequn Huang, Louis Rossi, and Chien-Chung Shen

Ant-Based Approaches for Solving Autocorrelation Problems
Ilias S. Kotsireas, Konstantinos E. Parsopoulos,
Grigoris S. Piperagkas, and Michael N. Vrahatis

Collision-Induced “Priority Rule” Governs Efficiency of Pheromone-
Communicating Swarm Robots
Ryusuke Fujisawa, Shigeto Dobata, Yuuta Sasaki,
Riku Takisawa, and Fumitoshi Matsuno

Dynamic Load Balancing Inspired by Cemetery Formation in Ant
COlOMIES .« . vttt e
Ronald Klazar and Andries P. Engelbrecht

Table of Contents XIII

Feasibility of an Ant Colony Optimization Algorithm for Multi-leaf

Collimator (MLC) Aperture Definition and Beam Weighting in

Volumetric Modulated Arc Therapy (VMAT) Radiotherapy Treatment

Planningo 244
Owen Clancey and Matthew Witten

Formica ex Machina: Ant Swarm Foraging from Physical to Virtual

and Back Again 252
Joshua P. Hecker, Kenneth Letendre, Karl Stolleis,
Daniel Washington, and Melanie E. Moses

Improving Peer Review with ACORN: ACO Algorithm for Reviewer’s
Network . ..o 260
Mark Flynn and Melanie Moses

Learning Finite-State Machines with Ant Colony Optimization 268
Daniil Chivilikhin and Viadimir Ulyantsev

Mobbing Behavior and Deceit and Its Role in Bio-inspired Autonomous
Robotic Agentst 276
Justin Davis and Ronald Arkin

Performance of Bacterial Foraging Optimization in Dynamic
Environments e 284
Jade Abbott and Andries P. Engelbrecht

Piecewise Linear Approximation of n-Dimensional Parametric Curves
Using Particle Swarms i 292
Christopher Wesley Cleghorn and Andries P. Engelbrecht

Probabilistic Stochastic Diffusion Search 300
Mahamed G.H. Omran and Ayed Salman

Self-organized Clustering of Square Objects by Multiple Robots........ 308
Yong Song, Jung-Hwan Kim, and Dylan A. Shell

Self-reproduction versus Transition Rules in Ant Colonies for Medical

Volume Segmentation 316
Robert Haase, Hans-Joachim Bdéhme, Rosalind Perrin,
Klaus Ziophel, and Nasreddin Abolmaali

Swarm Interpolation Using an Approximate Chebyshev Distribution.... 324
Joshua Kirby, Marco A. Montes de Oca, Steven Senger,
Louis F. Rossi, and Chien-Chung Shen

Using MOPSO to Solve Multiobjective Bilevel Linear Problems 332
Maria Joao Alves

XIV Table of Contents

Extended Abstracts

Clustering Moodle Data via Ant Colony Optimization
Pdaivi Suomalainen

Continuous Trait-Based Particle Swarm Optimisation (CTB-PSO)
Ed Keedwell, Mark Morley, and Darren Croft

Exploring Different Functions for Heuristics, Discretization, and Rule
Quality Evaluation in Ant-Miner............. i,
Khalid M. Salama and Fernando E.B. Otero

Fuzzy-Based Aggregation with a Mobile Robot Swarm
Farshad Arvin, Ali Emre Turgut, and Shigang Yue

Maturity of the Particle Swarm as a Metric for Measuring the Particle
Swarm Intelligence

Zdenka Winklerovd

Multi-objective Firefly Algorithm for Energy Optimization in Grid
Environments i e
Maria Arsuaga-Rios and Miguel A. Vega-Rodriguez

Particle Swarm Optimization with Random Sampling in Variable
Neighbourhoods for Solving Global Minimization Problems............
Gonzalo Ndapoles, Isel Grau, and Rafael Bello

Author Index

A Particle Swarm Embedding Algorithm
for Nonlinear Dimensionality Reduction

Oliver Kramer

University of Oldenburg, Germany
oliver.kramer@uni-oldenburg.de

Abstract. To cope with high-dimensional data dimensionality reduc-
tion has become an increasingly important problem class. In this paper
we propose an iterative particle swarm embedding algorithm (PSEA)
that learns embeddings of low-dimensional representations for high-di-
mensional input patterns. The iterative method seeks for the best latent
position with a particle swarm-inspired approach. The construction can
be accelerated with k-d-trees. The quality of the embedding is evaluated
with the nearest neighbor data space reconstruction error, and a co-
ranking matrix based measure. Experimental studies show that PSEA
achieves competitive or even better embeddings like the related methods
locally linear embedding, and ISOMAP.

1 Introduction

The world is high-dimensional. Efficient and robust dimensionality reduction
(DR) methods are required to process high-dimensional patterns, e.g., for visu-
alization or post processing with symbolic algorithms. With increasing data sets
DR becomes an important problem class in machine learning, and a variety of
methods has been introduced. Surprisingly, not many swarm-based algorithms
for DR are known. DR methods compute a mapping from high-dimensional data
space to a latent space of lower dimensionality. Latents point in this space should
preserve the topological characteristics of their high-dimensional pendants like
neighborhood and distance relations.

In this work we present a novel iterative swarm-inspired approach for DR
tasks, a popular problem class in machine learning. First, this paper combines
the iterative construction of solutions with particle swarm movement equations.
Second, it shows that particle swarm optimization (PSO) approaches can be effi-
cient methods for data mining tasks. PSO is inspired by the movement of swarms
in nature like fish schools or flocks of birds, and simulates the movement of can-
didate solutions using flocking-like equations with locations and velocities [717].
The paper is structured as follows. In Section 2] related work is presented. Sec-
tion [introduces the swarm-inspired iterative embedding approach, which is
experimentally analyzed and compared to locally linear embedding (LLE) and
ISOMAP in Section [l Conclusions are drawn in Section Bl

M. Dorigo et al. (Eds.): ANTS 2012, LNCS 7461, pp. 1-[[2, 2012.
(© Springer-Verlag Berlin Heidelberg 2012

2 O. Kramer

2 Related Work

2.1 Dimensionality Reduction

The idea of DR methods is to learn low-dimensional representations of high-
dimensional patterns losing as little information as possible. Many DR meth-
ods seek for a mapping F : RY = R? from a high-dimensional data space
R? to a latent space of lower dimensionality R? with ¢ < d. Non-parametric
dimensionality reduction methods compute a set of low-dimensional represen-
tations X = (xq,... ,XN]\Q c RN for N high-dimensional observed patterns
Y = (yla"'ayN) GRdX :

The decision, which information can be lost, and which has to be preserved
in the mapping F depends on the purpose of the DR process, and the error
function defined for the employed method. Many DR methods use an implicit
definition of the optimization problem they solve. However, the problem to learn
the functional model F can be a hard optimization problem, because the latent
variables X are unknown. Learning a reconstruction mapping f : R? — R?
back from latent to data space can also be desirable. Some methods learn this
mapping automatically. Famous DR methods are PCA [5] that is restricted to
linear manifolds. Locally linear embedding (LLE) [16], and ISOMAP [20] are
famous for non-linear dimensionality reduction.

2.2 Unsupervised Regression

The framework for unsupervised regression has been introduced by Meinicke [13].
It is based on optimizing latent variables to reconstruct high-dimensional data.
Unsupervised regression has first been applied to kernel density regression [14],
and later to radial basis function networks (RBFs) [18], Gaussian processes [11],
and neural networks [19]. Recently, we fitted nearest neighbor regression to the
unsupervised regression framework [9], and introduced extensions w.r.t. robust
loss functions [I0]. Unsupervised nearest neighbors (UNN) is a fast approach
that allows to iteratively construct low-dimensional embeddings in O(N?), and
has been introduced for latent sorting [9[10]. The approach we introduce in
this work extends UNN with a PSO-like mechanism to handle arbitrary latent
dimensionalities, i.e., 1 < ¢ < d. An introduction to UNN will be given in
Section Bl

2.3 Swarm Intelligence and Unsupervised Learning

In nature systems can be observed, in which comparatively simple units orga-
nize in groups. This form of collective and coordinated organization is known
as swarm intelligence. The disadvantage of simple behaviors is compensated by
their large number, and massive parallelism. Swarms consist of a large num-
ber of simple entities that cooperate to act goal-oriented. Natural and artificial
system have shown to implement successful solution strategies. To the best of

PSEA for Nonlinear Dimensionality Reduction 3

our knowledge no swarm-based methods have yet been proposed for embedding
of patterns in low-dimensional latent spaces. But related work in other fields
of unsupervised learning with swarm methods has been published, e.g., meth-
ods for PSO and ant colony optimization-based clustering. Kao and Cheng [6]
have introduced an ACO algorithm for clustering that employs pheromones,
and distances between elements as heuristic clustering information. The combi-
nation of population-based search and stochastic elements allows to overcome
local optima, and find optimal clustering results. Further methods for swarm-
based clustering can be found in the book by Abraham et al. [I]. O’Neill and
Brabazon [I5] have introduced a hybrid approach of PSO, and self-organizing
maps (SOMs) by Kohonen [8] that control the weights of a SOM employing a
PSO-similar update rule. Also ant colony optimization has been employed to
improve the topographic SOM mapping [4].

3 Iterative Particle Swarm Embeddings

The iterative particle swarm embedding algorithm is introduced in the following.
It is based on K-nearest neighbor regression, and the concept of unsupervised
regression.

3.1 Nearest Neighbors

Functional regression models map patterns to continuous labels, i.e., to a sub-
space of RY. The problem is to predict output values y € RY of given input values
x € R? based on sets of N input-output examples (x1,y1),. .., (Xn,yn). The
goal is to learn a functional model f : R? — R known as regression function.
We assume a data set consisting of observed pairs (x;,y;) € X x Y is given. For
a novel pattern x” K-nearest neighbors (KNN) for regression computes the mean
of the function values of its K-nearest patterns:

1
frnn(x') =g >y (1)
iENK(x’)

with set Mg (x') containing the indices of the K-nearest neighbors of x’. The
idea of KNN is based on the assumption of locality in data space: In local
neighborhoods of x patterns are expected to have similar label information f(x)
like observed patterns y. Consequently, for an unknown x’ the label must be
similar to the labels of the closest patterns, which is modeled by the average
of the output value of the K nearest samples. KNN has been proven well in
various applications, e.g., in the detection of quasars based on spectroscopic
data [3]. We define the output of function fx yx given the pattern matrix X as
a matrix fr vy (X) = (frnn(x1), ..., fx v N (XN)), collecting all KNN mappings
from patterns in X to R®.

4 O. Kramer

3.2 Unsupervised Nearest Neighbors

The idea in unsupervised regression [I3] is to reverse the regression approach:
we map from latent space to data space, and the latent variables are the free
parameters we want to optimize to optimally reconstruct the observed patterns

in data space, i.e., the objective is to minimize the data space reconstruction
error (DSRE):

s 1
minimize F(X) = N 1Y — fenn(X)||7, (2)

with Frobenius norm || - ||%. We define e(x,y, X) as the contribution of latent
position x’ to the DSRE.

e(x',y, X) = |ly — frnn ()| 3)

As functional model fx v we employ KNN regression. The question comes up
how to optimize the functional model. In [9] and [I0] we have introduced a latent
sorting approach for embedding high-dimensional patterns on a line.

Figure illustrates the UNN variant we proposed for sorting high-di-
mensional data [9T0]. It shows the N+1 possible embeddings of a data sample
into an existing order of points in latent space (yellow/bright circles). The posi-
tion of element x5 results in a lower DSRE (cf. Section B2) with K = 2 than the

Y,

data space

(a) (b)

Fig. 1. Left: Illustration oprN embedding of a low-dimensional point to a fixed latent
space topology testing all N + 1 positions [9]. Right: Example of UNN result of a 3D-S
before (upper right) and after embedding (lower right) with UNN and K = 10 [9/10].

PSEA for Nonlinear Dimensionality Reduction 5

position of x5, as the mean of the two nearest neighbors of x3 is closer to y than
the mean of the two nearest neighbors of x5. Figure shows an example of a
UNN embedding of the 3D-S (upper part shows colorization of the unsorted S,
lower part after UNN embedding), similar colors correspond to neighbored po-
sitions in latent space, i.e., a meaningful neighborhood preserving embedding
has been computed. In the following, we extend the approach to arbitrary la-
tent dimensionalities, in which the latent variables can be placed in latent space
without geometric constraints.

3.3 Particle Swarm Embedding Algorithm

There are two reasons to employ a direct search method to solve the UNN
optimization problem. First, the problem is highly multimodal, second, E(X) is
not steady, and not differentiable due to the employment of KNN. To illustrate
the search for optimal latent positions, we visualize the DSRE space in Figure 2
It shows the DSRE w.r.t. the first pattern y; for two neighborhood sizes, i.e.,
K =5 (left), and K = 30 (right) after a run of UNN with N = 300. Bright
areas represent parts of latent space with low errors, while dark colors represent
a large DSRE. The comparison of both figures shows that in case of increasing
neighborhood sizes the problem has larger, but less areas with similar fitness. The
number of local optima decreases, and the optimization problem becomes easier.
In the experimental section we will observe that the variance of the outcome of
multiple experiments is smaller for large neighborhood sizes.
The PSEA optimization approach is based on the following two ideas:

1. Tteratively construct a solution (an embedding X) to cope with the large
number of free parameters, and

2. perform PSO-like blackbox search steps in each iteration to embed the latent
point at an optimal position.

DSRE Space K =5 DSRE Space, K = 30

Fig. 2. Visualization of DSRE space e(-,y1,X) w.r.t. the first pattern y; for K = 5,
and K = 30 after a run of UNN with N = 300 embedded patterns

6 O. Kramer

Note that the approach does not treat the latent points as swarm, and does
not evolve them freely in latent space. As the problem to minimize E(X) scales
linearly with the number of patterns IV, which may be a very large number in
practice, the iterative solution construction is the key concept for efficiently learn
the manifold. The approach is described in the following (cf. Algorithm [[T)). In

Algorithm 1.1. Particle Swarm Embedding Algorithm
1: input: Y, K, k
2: repeat
3: choosey €Y
look for closest pattern y* with latent position x*
for i =1 to x do
update velocity (cf. Equation [
update latent position (cf. Equation HI)
evaluate E(X) or e(x’,y, X)
9: update best position x
10: end for
11: embed x
122 Y=Yy
13: until’ Y =0

each step the pattern that has to be embedded is randomly chosen y € Y. In
the particle swarm step we seek for the optimal position, where the particle x
should be embedded. For this reason, a loop of PSO-like steps is repeated for k
iterations:
x' =x+v (4)
with velocity
vi=v+aeri(x —x) + cora(x* — x) (5)

Here, x is the best position w.r.t. the DSRE the latent particle has found so far,
and x* is the latent position of the embedded pattern y* € Y that is closest to
the pattern y that we want to embed:

x" = arg 1min‘ A‘5(y,yi), (6)
i=1,...,

with distance measure 4(-), for which we will employ the Euclidean distance in
the experimental part. The parameters ci,ca € [0,1] are constants that define
the orientation to the best latent particle, and the closest already embedded
one. Variables r1, 72 € [0, 1] are uniform random values. Figure [illustrates the
particle swarm embedding step. The new candidate latent point x’ is generated
with velocity v/, and the two scaled vectors.

In the following, we analyze the PSEA variant that takes into account the
reconstruction error e(-,y,X) (cf. Equation B]) of the pattern y that has to be
embedded. A greedy, but slower variant of PSEA is possible that employs the
overall DSRE (cf. Equation [2]) for each latent position.

PSEA for Nonlinear Dimensionality Reduction 7

X A latent space

new candidate

best past
point 5 ,

closest embedded
point

old
candidate

Fig. 3. Illustration of particle swarm embedding: The new candidate latent point x’ is
generated with velocity v', and the two scaled vectors x — x and x* — x

3.4 Runtime

The embedding has a complexity of O(N?), but can be accelerated with k-
d-trees [2] in data and latent space. A k-d-tree allows efficient neighborhood
queries: not N elements have to be considered, but O(log N) steps are sufficient
to reach the closest pattern. A k-d-tree is a space partitioning data structure
for a k-dimensional data space based on axis-aligned splitting planes. The basic
k-d-tree cycles through the coordinate axes. Employing k-d-trees in data and
latent space allows the PSEA to constructs a solution in O(Nlog N) time, if
we assume that the PSO-based search in each step takes constant time. The
search for the closest pattern y* of y takes O(log N) (if N is the increasing
number of embedded patterns when y is being embedded) employing a k-d-tree
in data space. The search for the optimal embedding takes x - K-neighborhood
computations in latent space, i.e. O(k - K - log N) = O(log N) Insertion of
x to the latent space k-d-tree, and y to the data space k-d-tree each take
O(log N). Hence, the overall runtime of the approach can be accelerated to
O(NlogN).

4 Experimental Analysis

In this section we analyze the results of the novel PSEA experimentally. To eval-
uate the quality of the embeddings we employ the DSRE and a co-ranking matrix
measure introduced by Lee and Verleysen [12]. It is based on the comparison of
ranks (sorting w.r.t. distances from patterns) in data space and latent space. It
defines a co-ranking matrix Q that explicitly states the deviations of ranks in
data and latent space, see [I2] for a definition of Q. In this matrix rank errors
correspond to off-diagonal entries. A point y; with lower rank w.r.t. a point y;

8 O. Kramer

in latent space is called intrusion, a higher rank is called extrusion. From the
co-ranking matrix the following quality measure can be derived that counts the
number of proper ranks within a neighborhood of size K:

Qnx(K) == KlN > am (7)

k=11=1

This term restricts the measure to neighborhoods of size K. High values for Q v x
show that the high-dimensional neighborhood relations are preserved in latent
space, a perfect embedding achieves a value of one.

4.1 Neighborhood Sizes

First, we analyze the influence of neighborhood size K on the results of PSEA,
LLE and ISOMAP on two test data sets, i.e., Digits and Boston. For PSEA
we choose the following settings. The particle swarm embedding process runs
k = 50 iterations. The initial velocity is randomly generated with a Gaussian
distribution vy = N(0, 1), the initial position starts from the latent position of
the closest embedded point xg = X. The constants are both set to ¢; = ¢35 = 0.5.

Table 1. Comparison of DSRE and Enxx with PSEA (mean values of 25 runs with
standard deviation), LLE, and ISOMAP on the two test data sets Digits, and Boston

Digits PSEA LLE ISOMAP
K DSRE Enx DSRE Enx DSRE Enx
5 15.87 £ 0.23 0.47 £ 0.01 24.17 0.25 16.67 0.41

10 18.77 £ 0.29 0.42 £ 0.01 19.29 0.41 18.96 0.42
15 20.89 £ 0.64 0.40 £ 0.01 19.98 0.44 19.52 0.47
30 24.17 £ 0.48 0.539 £ 0.01 25.511 0.34 21.97 0.51

Boston PSEA LLE ISOMAP
K DSRE FEnx DSRE Enxx DSRE Enx
5 29.81 + 1.86 0.45 + 0.01 45.29 0.30 34.06 0.42

10 37.35 £ 6.40 0.43 £ 0.03 62.81 0.29 81.57 0.35
15 53.59 £2.94 0.40 £ 0.03 69.35 0.20 44.24 0.43
30 53.03 £ 3.23 041 £ 0.04 33.32 0.55 27.69 0.66

Table [Il shows the experimental results w.r.t. the DSRE and Eyx for the
settings K = 5,10,15, and 30. Each PSEA experiment has been repeated 25
times. The best results, i.e., low DSRE and high Fxnx are shown in bold, the
second best are shown in italic numbers. The results show that a low DSRE
correlates with a high En x. The DSRE is increasing with the neighborhood size.
PSEA achieves the best results of all methods in case of small neighborhood sizes
K =5, and K = 10 on both data sets. In case of larger neighborhoods ISOMAP
shows better results, but PSEA still computes competitive embeddings, and
achieves the second best results in half of the cases. LLE and ISOMAP win

PSEA for Nonlinear Dimensionality Reduction 9

in performance for larger neighborhoods. The results of LLE are worse than
the results of PSEA in three of the four cases, in particular Fnx tends to be
much worse. Surprising is the bad result of ISOMAP on the Boston data set for
K =10.

Our experiments with varying data set sizes have shown that ISOMAP, and
LLE do not scale well in terms of runtime with an increasing number of patterns.
The runtime of the PSEA scales slower with the number of patterns. This can be
a major advantage of PSEA over the other methods in large-scale data mining
scenarios, one of the most important open problems in machine learning.

4.2 Comparison of Embeddings
In Figure[we compare PSEA results employing varying neighborhood sizes. The

figures show that reasonable embeddings have been computed for all neighbor-
hood sizes. Similar digits, e.g., the same classes, are mapped to neighbored latent

PSEA K=10

(a) (b)

PSEA K=15 PSEA K=30

(c) (d)

Fig. 4. Comparison of embeddings of 750 data points, and 6 classes of the Digits data
set. PSEA results for (a) K =5, and (b) K =10, (¢) K = 15, and (d) K = 30.

10 O. Kramer

areas. The distribution of latent points is broader (and similar to ISOMAP, see
Figure [) for small neighborhood sizes, e.g. K = 5, while for larger neighbor-
hoods, e.g. K = 30, the whole manifold becomes narrow. For comparison, the
figures show that the embedding gets worse for K = 30 with outliers. The reason
for outliers in case of large neighborhood sizes is that the DSRE function has
more plateaus, i.e., areas with the same neighborhoods, and equal or at least
similar DSRE values.

ISOMAP

(a) (b)

Fig. 5. Comparison of embeddings of 750 data points, and 6 classes of the Digits data
set for (a) LLE, and (b) ISOMAP embeddings with K = 15

Figure [shows the embeddings of LLE and ISOMAP of the same data set.
Both embeddings also separate the classes and fulfill topological requirements
like neighborhood preservation. ISOMAP distributes the latent embeddings cir-
cularly in latent space, which leads to better shapes than LLE. The plots show
that the embeddings of PSEA show similar characteristics like the results of
ISOMAP, and distribute the latent points better than LLE.

5 Conclusion

In unsupervised regression the optimization problem of placing latent variables
scales with the number of patterns, and becomes impractical for large data sets.
In this paper we have introduced a novel optimization approach that is based
on the hybridization of iteratively constructing a solution, and PSO-like op-
timization in each iteration. The proposed method belongs to the first parti-
cle swarm approach that allows learning of low-dimensional embeddings from
high-dimensional patterns. The results are competitive to embeddings of es-
tablished methods like ISOMAP, and LLE. The experiments have shown that
the PSEA embedding fulfills conditions like neighborhood preservation, and
low DSRE.

PSEA for Nonlinear Dimensionality Reduction 11

As extension of the PSEA approach it is reasonable to parallelize the embed-

ding process, and thus allow to learn embeddings of large data sets. Another
prospective research direction is to employ further DR criteria for the fitness
evaluation of the optimization process like kernel density regression criteria. A
promising research direction will be to employ the hybridization of an itera-
tive approach, and PSO optimization for the construction of solutions in related
domains.

References

®

10.

11.

12.

13.

14.

15.

16.

Abraham, A., Grosan, C., Ramos, V. (eds.): Swarm Intelligence in Data Mining.
SCI, vol. 34. Springer (2006)

Bentley, J.L.: Multidimensional binary search trees used for associative searching.
Communications of the ACM 18(9), 509-517 (1975)

Gieseke, F., Polsterer, K.L., Thom, A., Zinn, P., Bomanns, D., Dettmar, R.-J.,
Kramer, O., Vahrenhold, J.: Detecting quasars in large-scale astronomical surveys.
In: International Conference on Machine Learning and Applications (ICMLA), pp.
352-357 (2010)

Herrmann, L., Ultsch, A.: The Architecture of Ant-Based Clustering to Improve
Topographic Mapping. In: Dorigo, M., Birattari, M., Blum, C., Clerc, M., Stiitzle,
T., Winfield, A.F.T. (eds.) ANTS 2008. LNCS, vol. 5217, pp. 379-386. Springer,
Heidelberg (2008)

Jolliffe, I.: Principal component analysis. Springer series in statistics. Springer, New
York (1986)

Kao, Y., Cheng, K.: An ACO-Based Clustering Algorithm. In: Dorigo, M.,
Gambardella, L.M., Birattari, M., Martinoli, A., Poli, R., Stiitzle, T. (eds.) ANTS
2006. LNCS, vol. 4150, pp. 340-347. Springer, Heidelberg (2006)

Kennedy, J., Eberhart, R.: Particle swarm optimization. In: Proceedings of IEEE
International Conference on Neural Networks, pp. 1942-1948 (1995)

Kohonen, T.: Self-Organizing Maps. Springer (2001)

Kramer, O.: Dimensionalty reduction by unsupervised nearest neighbor regression.
In: International Conference on Machine Learning and Applications (ICMLA), pp.
275-278. IEEE (2011)

Kramer, O.: On unsupervised nearest-neighbor regression and robust loss functions.
In: International Conference on Artificial Intelligence, pp. 164-170 (2012)
Lawrence, N.D.: Probabilistic non-linear principal component analysis with gaus-
sian process latent variable models. Journal of Machine Learning Research 6, 1783—
1816 (2005)

Lee, J.A., Verleysen, M.: Quality assessment of dimensionality reduction:
Rank-based criteria. Neurocomputing 72(7-9), 1431-1443 (2009)

Meinicke, P.: Unsupervised Learning in a Generalized Regression Framework. PhD
thesis, University of Bielefeld (2000)

Meinicke, P., Klanke, S., Memisevic, R., Ritter, H.: Principal surfaces from unsu-
pervised kernel regression. IEEE Transactions on Pattern Analysis and Maching
Intelligence 27(9), 1379-1391 (2005)

O’Neill, M., Brabazon, A.: Self-organizing swarm (SOSwarm) for financial credit-
risk assessment (2008)

Roweis, S.T., Saul, L.K.: Nonlinear dimensionality reduction by locally linear
embedding. Science 290, 2323-2326 (2000)

12

17.

18.

19.

20.

O. Kramer

Shi, Y., Eberhart, R.: A modified particle swarm optimizer. In: Proceedings of the
International Conference on Evolutionary Computation, pp. 69-73 (1998)

Smola, A.J.; Mika, S., Schélkopf, B., Williamson, R.C.: Regularized principal man-
ifolds. Journal of Machine Learning Research 1, 179-209 (2001)

Tan, S., Mavrovouniotis, M.: Reducing data dimensionality through optimizing
neural network inputs. AIChE Journal 41(6), 1471-1479 (1995)

Tenenbaum, J.B., Silva, V.D., Langford, J.C.: A global geometric framework for
nonlinear dimensionality reduction. Science 290, 2319-2323 (2000)

ABC-Miner: An Ant-Based
Bayesian Classification Algorithm

Khalid M. Salama and Alex A. Freitas

School of Computing, University of Kent, Canterbury, UK
kms39Q@kent.ac.uk, a.a.freitas@kent.ac.uk

Abstract. Bayesian networks (BNs) are powerful tools for knowledge
representation and inference that encode (in)dependencies among ran-
dom variables. A Bayesian network classifier is a special kind of these
networks that aims to compute the posterior probability of each class
given an instance of the attributes and predicts the class with the high-
est posterior probability. Since learning the optimal BN structure from a
dataset is NP-hard, heuristic search algorithms need to be applied effec-
tively to build high-quality networks. In this paper, we propose a novel
algorithm, called ABC-Miner, for learning the structure of BN classifiers
using the Ant Colony Optimization (ACO) meta-heuristic. We describe
all the elements necessary to tackle our learning problem using ACO,
and experimentally compare the performance of our ant-based Bayesian
classification algorithm with other algorithms for learning BN classifiers
used in the literature.

1 Introduction

Classification is a data mining task where the goal is to build, from labeled
cases, a model (classifier) that can be used to predict the class of unlabeled
cases. Learning classifiers from datasets is a central problem in data mining and
machine learning research fields. While different approaches for tackling this
problem exist, such as decision trees, artificial neural networks and rule list [20],
our focus in this paper is on the Bayesian approach for classification.
Naive-Bayes is the first Bayesian classifier in the literature. Although it is
a very simple kind of Bayesian networks that assumes the attributes are in-
dependent given the class label, Naive-Bayes classifiers showed effective pre-
dictive performance under the aforementioned assumption [10]. However, since
the independency assumption amongst the dataset attributes is not realistic,
extended versions were developed to improve the performance of Naive-Bayes,
namely Tree Augmented Naive-Bayes (TANs), Bayesian networks Augmented
Naive-Bayes (BANs) and General Bayesian Networks (GBNs) [I0]. These algo-
rithms consider dependencies between the attributes in the learning process to
build more complex and hopefully more accurate BN classifiers. Nonetheless,
algorithms used in the literature for building such BNs utilize greedy and deter-
ministic techniques. Since learning the optimal BN structure from a dataset is

M. Dorigo et al. (Eds.): ANTS 2012, LNCS 7461, pp. 13-E4] 2012.
(© Springer-Verlag Berlin Heidelberg 2012

14 K.M. Salama and A.A. Freitas

NP-hard [5], several stochastic search algorithms can be effectively applied to
build high-quality BN classifiers in an acceptable computational time.

Ant Colony Optimization (ACO) [9] is a meta-heuristic for solving combi-
natorial optimization problems, inspired by observations of the behavior of ant
colonies in nature. ACO has been successful in solving several problems, includ-
ing classification rule induction [I3IT4/T5/18] and general purpose BN construc-
tion [2BIT7I21]). However, as far as we know, it has not been used for learning
Bayesian network classifiers.

In this paper, we propose a novel ant-based Bayesian classification algo-
rithm, called ABC-Miner, which learns the structure of a BAN with at most
k-dependencies from a dataset using ACO technique for optimization. The rest
of the paper is organized as follows. In Section 2 a brief overview on Bayesian
networks’ basic concepts is given as well as a discussion of various Bayesian
network classifiers is shown. Section 3 exhibits the related work on the use of
ACO algorithms for building BNs in the literature. In Section 4, we introduce
our proposed ABC-Miner algorithm and describe each of the elements neces-
sary to tackle our learning problem using the ACO meta-heuristics. After that,
section 5 discusses our experimental methodology and results. Finally, we con-
clude with some general remarks and provide directions for future research in
section 6.

2 Bayesian Networks Background

2.1 Overview on Bayesian Networks

Bayesian networks are knowledge representation tools that aim to model de-
pendence and independence relationships amongst random variables [12]. In
essence, BNs are used to describe the joint probability distribution of n ran-
dom variables X = {Xi, X2, X3,..., Xn}. A directed acyclic graph (DAG) is
used to represent the variables as nodes and statistical dependencies between
the variables as edges between the nodes — child nodes (variables) depend on
their parent ones. In addition, a set of conditional probability tables (CPTs),
one for each variable, is obtained to represent the parameters @ of the network.
The graphical structure of the network along with its parameters specifies a joint
probability distribution over the set of variables X that is formulated in the
product form:

p(X1, X, .., Xn) = [[p(Xi[Pa(X;),0,G) (1)

=1

where Pa(X;) are the parents of variable X; in G (the DAG that represents the
structure of the BN).

Learning a Bayesian network from a dataset D with {d',d,%,...,d™} in-
stances is decomposed into two phases; learning the network structure, and
then learning the parameters of the network. As for parameter learning, it is

ABC-Miner: An Ant-Based Bayesian Classification Algorithm 15

considered a straightforward process for any given BN structure with speci-
fied (in)dependencies between variables. Simply, a conditional probability table
(CPT) is computed for each variable with respect to its parent variables. CPT
of variable X; encodes the likelihood of this variable given its parents Pa(X;)
in the network graph G, and the marginal likelihood of the dataset D given a
structure G is denoted by P(D|G). The purpose is to find G that maximizes
P(D|G) for a given D, which is the role of BN structure learning phase. The
common approach to this problem is to introduce a scoring function, f, that
evaluates each G with respect to D, searching for the best network structure
according to f. Various scoring metrics are usable for this job [6/12].

A well-known greedy approach for building BN structure is Algorithm B [I].
It starts with an empty DAG (edge-less structure) and at each step it adds the
edge with the maximum increase in the scoring metric f, whilst avoiding the
inclusion of directed cycles in the graph. The algorithm stops when adding any
valid edge does not increase the value of the scoring metric. K2, a metric based
on uniform prior scoring, is one of the most used scoring metrics for building
and evaluating Bayesian networks [6].

For further information about Bayesian networks, the reader is referred to
[11T2], which provide a detailed discussion of the subject.

2.2 Bayesian Networks for Classification

Bayesian network classifiers are a special kind of BNs where the class attribute
is treated as a unique variable in the network. The purpose is to compute the
probability of each value of the class variable given an instance of the predictor
attributes and assign this instance to the class that has the highest posterior
probability value. The following are various types of BN classifiers studied in
the literature.

e Naive-Bayes: The classifier consists of a simple BN structure that has the
class node as the only parent node of all other nodes. This structure assumes
that all attributes are independent of each other given the class. In spite of
its simplicity, Naive-Bayes has surprisingly outperformed many sophisticated
classifiers over a large number of datasets, especially where the attributes
are not strongly correlated [10].

e Tree Augmented Naive-Bayes (TAN): As an extension to Naive-Bayes,
TAN allows a node in a BN to have more than one parent, besides the class
variable. This produces a tree-like structure BN. A variation of the Chow-Liu
algorithm [3] is the best known method for building TANs. First, it computes
the conditional mutual information I(X,Y|C) between each pair of variables
X and Y given class variable C. Then it builds a complete undirected graph
connecting all the input variables to find the maximum weighted spanning
tree from the graph, where the weight of edge X — Y is annotated with
I(X,Y|C). After that, it chooses a root variable and sets the direction of all
edges to be outwards of it. Finally, it adds one edge from the class node to
each of the other variables, building a TAN classifier.

16 K.M. Salama and A.A. Freitas

e BN Augmented Naive-Bayes (BAN): It is an elaborated version of
Naive-Bayes, in which no restrictions (or at most k-dependencies) are en-
forced on the number of the parents that a node in the network can depend
on. In other words, while each node in TAN can have only one parent be-
sides the class node, and in Naive-Bayes only the class node is allowed to be
the parent, each node in BAN can have k of parents (dependencies) besides
the class node. Another variation of the Chow-Liu algorithm that is used to
build TANs, is utilized to BANs as well [4].

e General Bayesian Network (GBN): Unlike the other BN classifier learn-
ers, the GBN treats the class variable node as an ordinary node. The idea is
to build a general purpose Bayesian network, find the Markov blanket of the
class node, delete all the other nodes outside it and use the resulting network
as a Bayesian classifier. One Markov blanket of a node n is the union of the
n’s parents, n’s children, and the parents of n’s children.

Friedman et al. provided an excellent study of these algorithms in [I0]. A com-
prehensive investigation and comparisons of these various Bayesian classifiers by
Cheng and Greiner are found in [3/4] .

3 ACO Related Work

Ant Colony Optimization has an effective contribution in tackling the classifi-
cation problem. Ant-Miner [I5] is the first ant-based classification algorithm.
Several extensions on this algorithm have been introduced in the literature,
such as AntMiner+ [I3], cAnt-Miner [14], and multi-pheromone Ant-Miner [I8].
However, the Ant-Miner algorithm as well as its various versions handles the clas-
sification problem by building a list of <IF Antecedent THEN Class> classifi-
cation rules. On the other hand, this paper proposes a new ant-based algorithm
that handles classification problems, yet with a different approach; learning a
Bayesian network to be used as classifier.

As for the use of ACO for building Bayesian networks, to date, there has
been only a few research utilizing such a heuristic in learning BN structure,
namely: ACO-B [2], MMACO [16/17], ACO-E [7l8] and CHAINACO - K2ACO
[21]. Moreover, none of them has been used for building BN classifiers. As far
as we know, our proposed ABC-Miner is the first algorithm to use ACO, or any
evolutionary algorithm, in the task of learning Bayesian networks specific for the
classification problem.

Campos et al. introduced the first ant-based algorithm for learning Bayesian
networks, ACO-B [2], where each ant iteratively constructs a complete Bayesian
network from scratch by selecting edges to be added to the network and up-
dates the pheromone on the construction graph according to the quality of the
constructed BN. Edge selection is carried out in stochastic fashion, according to
the pheromone and the heuristic values associated with the edge. The heuristic
function used is the same function used for evaluating the quality of the BN,
which is the K2 scoring metric [6].

ABC-Miner: An Ant-Based Bayesian Classification Algorithm 17

Pinto et al. used a different local discovery approach for learning BNs in
[I6/17]. This is hybrid approach, MMACO, based on the local discovery algo-
rithm Max-Min Parents and Children (MMPC) and ant colony optimization
(ACO). MMPC is used to construct the skeleton of the Bayesian network and
then ACO is used to orientate its edges, thus returning the final structure. Here
all the ants are involved in building a single solution by testing several possible
edge additions and orientation at the same iteration. BDEu [12] is the function
used by MMACO to calculate the heuristics and evaluates the BN quality.

Daly et al. studied learning the structure of a Bayesian network by performing
a search through the space of its equivalence classes via extending traditional
ACO-based algorithm, ACO-E [7f§]. An equivalence class includes all network
structures where changing the orientation (dependency relationship) of one or
more edges in a BN obtains the same quality according to a given scoring metric.
In which case, not all the edges in an equivalence class of a BN are oriented,
since the direction of the dependencies of some edge does not change the quality
of the network.

Yanghui et al. proposed two novel ACO approaches for Bayesian network
structure learning, CHAINACO and K2ACO [2I]. The former is based on a
GA algorithm. It consists of two phases; constructing chains (the order of nodes
according to dependencies) using ACO instead of GA, then applies K2 to the best
ordering found and returns the best structure. K2ACO is also based on another
algorithm, K2GA, which only consists of a single phase. The quality of each node
ordering chosen by an ant is evaluated by running the K2 search algorithm to
construct a BN calculating the score of the network structure found. The best
structure returned is that generated by K2 from the best ordering evaluated in
this fashion.

Note that the goal of the aforementioned algorithms is to build general pur-
poses BNs. In other words, the selection of the heuristics, quality evaluation
metric and other elements of the algorithm are suitable for this aim, but not
for building BN classifiers. Hence, in spite of having some similarities, essential
aspects of our algorithm are different due to the diversion in the target; our
algorithm is only focused on learning BN classifiers. Next we will explore these
aspects as we describe our novel Ant-based Bayesian Classifier.

4 A Novel ACO Algorithm for Learning BN Classifiers

4.1 ABC-Miner Algorithm

The overall process of ABC-Miner is illustrated in Algorithm 1. The core ele-
ment of any ACO-based algorithm is the construction graph that contains the
decision components in the search space, with which an ant constructs a candi-
date solution. As for the problem at hands, the decision components are all the
edges X — Y where X # Y and X,Y belongs to the input attributes of a given
training set. These edges represent the variable dependencies in the resulting
Bayesian network classifier.

18 K.M. Salama and A.A. Freitas

At the beginning of the algorithm, the pheromone amount is initialized for
each decision component with the same value. The initial amount of pheromone
on each edge is 1/|Total Edges|. In addition, the heuristic value for each edge
X — Y is set using the conditional mutual information, which is computed as
follows:

I(X,YIC) = p(e) Y > pla,yle)log (Z;(i’yﬁ

ceC rzeX yeyY

where C is the class variable. p(z, y|c) is the conditional probability of value x €
X and y € Y given class value ¢, p(z|c) is the conditional probability of = given ¢,
p(y|c) is the conditional probability of y given ¢ and p(c) is the prior probability
of value ¢ in the class variable. Conditional mutual information is a measure
of correlation between two random variables given a third one. In our case, we
want to lead the ant during the search process to the edges between correlated
variables given the class variable, and so we use such a function as heuristic
information associated with the selectable edges. Note that the procedure of
heuristic calculation is called only once at the beginning and its calculations
used throughout the algorithm.

Algorithm 1. Pseudo-code of ABC-Miner
Begin ABC-Miner
BNCgbest = ¢7 ngest =0
Initialize Pheromone Amounts();
InitializeHeuristicValues();
t=0;
repeat
BNCtbest = (;b; thest = 0;
for i =0 — colony size do
BNC; = CreateSolution(ant;);
Qi = ComputeQuality(BNC;);
if Q¢ > thest then
BNCtbest = BNCZ’
Qi = thest;
end if
end for
Per formLocalSearch(BN Cipest);
Update Pheromone(BN Cipest);
if thest > ngest then
BNCgbest = BNCtbest;
end if
t=t+1;
until ¢ = max itrations or Convergence()
return BNCgpest;
End

ABC-Miner: An Ant-Based Bayesian Classification Algorithm 19

The outline of the algorithm is as follows. In essence, each ant; in the colony
creates a candidate solution BNC}, i. e. a Bayesian network classifier. Then
the quality of the constructed solution is evaluated. The best solution BN Cipest
produced in the colony is selected to undergo local search before the ant updates
the pheromone trail according to the quality of its solution Qpest. After that,
we compare the iteration best solution BN Cypesy with the global best solution
BNCgpest to keep track of the best solution found so far. This set of steps
is considered an iteration of the repeat — until loop and is repeated until the
same solution is generated for a number of consecutive trials specified by the
conv iterations parameter (indicating convergence) or until max iterations
is reached. The values of conv iterations, max iterations and colony size
are user-specified thresholds. In our experiments (see section 5), we used 10, 500
and 5 for each of these parameters respectively.

4.2 Solution Creation

Instead of having the user selecting the optimum maximum number of depen-
dencies that a variable in the BN can have (at most k parents for each node), this
selection is carried out by the ants in ABC-Miner. Prior to solution creation, the
ant selects the maximum number of dependencies (k) as a criterion for the cur-
rently constructed BN classifier. This selection of k value is done probabilistically
from a list of available numbers. The user only specifies max parents parameter
(that we set to 3 in our experiments), and all the integer values from 1 to this
parameter are available for the ant to use in the BN classifier construction. The
various values of the k are treated as decision components as well. More precisely,
the ant updates the pheromone on the value k& of the maximum number of par-
ents after solution creation according to the quality of this solution, which used
value k as a criterion in the BN classifier construction. This pheromone amount
represents the selection probability of this value by subsequent ants, leading
to convergence on an optimal value of k dependencies. Algorithm 2 shows the
outline of the solution creation procedure.

Algorithm 2. Pseudo-code of Solution Creation Procedure

Begin CreateSolution()

BNC; < {Naive-Bayes structure};

k = ant;.Select MaxParents();

while GetValidEdges() <> ¢ do
{i — j} = ant;.Select Edge Probablistically();
RemovelnvalidEdges(BNC;, k);

end while

BNC;.LearnParameters();

return BNC;;

End

20 K.M. Salama and A.A. Freitas

Each ant starts with the network structure of the Naive-Bayes classifier, i. e. a
BN in which all the variables have only the class variable as a parent. From that
point, it starts to expand this Naive-Bayes network into a Bayesian Augmented
Naive-Bayes (BAN) by adding edges to the network. The selection of the edges
is performed according to the following probabilistic state transition formula:

(i3 (0] - 35"

TS (8])

In this equation, P;; is the probability of selecting the edge i — j, 7;(t) is
the amount of pheromone associated with edge ¢ — j at iteration ¢ and n;; is
the heuristic information for edge i — j computed using conditional mutual
information (equation 2). The edge a — b represents a valid selection in the
available edges. The exponents a and 3 are used to adjust the relative emphases
of the pheromone (7) and heuristic information (), respectively. Note that edges
available for selection are directed, i.e. i — j# j — i .

ABC-Miner adapts the “ants with personality” approach, proposed by the
author in [I§]. Each ant; is allowed to have its own personality by allowing
it to have its own values of the a; and (3; parameters. In other words, some
ants will give more importance to pheromone amount, while others will give
more importance to heuristic information. The «; and §; parameters are each
independently drawn from a Gaussian distribution centered at 2 with a standard
deviation of 1. This approach aims to advance exploration and improve search
diversity in the colony.

An edge i — j is valid to be added in the BN classifier being constructed if
the following two criteria are justified: 1) its inclusion does not create a directed
cycle, 2) the limit of k parents (chosen by the current ant) for the child variable
j is not violated by the inclusion of the edge. After the ant adds a valid edge
to the BN classifier, all the invalid edges are eliminated from the construction
graph. The ant keeps adding edges to the current solution until no valid edges are
available. When the structure of BNC} is finished, the parameters @ are learnt
by calculating the CPT for each variable, according to the network structure,
producing a complete solution. Afterward, the quality of the BN classifier is
evaluated, and all the edges become available again for the next ant to construct
another candidate solution.

3)

j

4.3 Quality Evaluation and Pheromone Update

Unlike the traditional Bayesian networks, the target of our algorithm is to build
an effective BN in terms of predictive power with respect to a specific class
attribute. In other words, BN learning algorithms aim to maximize a scoring
function that seeks a structure that best represents the dependencies between
all the attributes of a given dataset. This structure should fit the knowledge
representation and inference purposes of a BN, which treats all the variables
in the same way, without distinguishing between the predictor and the class
attributes. On the other hand, the purpose of learning a BN classifier is to build

ABC-Miner: An Ant-Based Bayesian Classification Algorithm 21

a structure that can calculate the probability of a class value given an instance
of the input predictor variables, and predict the class value with the highest
probability to label the instance.

Therefore, using traditional scoring functions to evaluate the quality of a BN
classifier should not fit the purpose of building a classifier [10]. According to this
reasoning, we evaluate the quality of the constructed network directly as a clas-
sifier, where the predictive efficiency is the main concern. We use the accuracy,
a conventional measure of predictive performance, to evaluate the constructed
BN model, computed as follows:

|Correctly Classified Cases|
|Validation Set|

Accuracy = (4)
The best BN classifier BNCipest constructed amongst the ants in the colony
undergoes local search, which aims to improve the predictive accuracy of the
classifier. The local search operates as follows. It temporarily removes one edge
at a time in a reverse order (removing last the edge that was added to the net-
work first). If the quality of the BN classifier improves, this edge is removed
permanently from the network, otherwise it is added once again. Then we pro-
ceed to the next edge. This procedure continues until all the edges are tested to
be removed from the BN classifier and the BN classifier with the highest quality
— with respect to classification accuracy — is obtained.

After BN Cypest 1s optimized via local search, pheromone levels are increased
on decision components (edges) in the construction graph included in the struc-
ture of the constructed BN classifier, using the following formula:

Tig(t +1) = 735 (t) + 75 (1) Qtpest (1) (5)

To simulate pheromone evaporation, normalization is then applied as in [I5]; each
7;5 is divided over the total pheromone amounts in the construction graph. Note
that pheromone update is carried out for the decision components representing
the number of dependencies used for building the BN classifier structure as well.

5 Experimental Methodology and Results

The performance of ABC-Miner was evaluated using 15 public-domain datasets
from the UCI (University of California at Irvine) dataset repository [19]. Datasets
containing continuous attributes were discretized in a pre-possessing step, using
the C4.5-Disc [20] algorithm. The main characteristics of the datasets are shown
in Table 1. We compare the predictive accuracy of our proposed ant-based algo-
rithm with three other widely used algorithms for learning Bayesian classifiers.
In our experiment, we used Weka [20] implementations for these algorithms.
Table 2 presents the main characteristics of the used algorithms.

The experiments were carried out using 10-fold cross validation procedure. In
essence, a dataset is divided into 10 mutually exclusive partitions, were each time
a different partition is used as the test set and the other 9 partitions are used

22 K.M. Salama and A.A. Freitas

Table 1. Description of Datasets Used in Experimental Results

Dataset Size Attributes Classes
balance scale 625 4 3
breast cancer (wisconsin) 286 9 2
car evaluation 1,728 6 4
contraceptive method choice 1,473 9 3
statlog credit (australian) 690 14 2
statlog credit (german) 1,000 20 2
dermatology 366 33 6
hayes-roth 160 4 3
heart (cleveland) 303 12 3
iris 150 3
monks 432 2
nursey 12,960 5
soybean 307 35 19
tic-tac-to 958 9 2
voting records 435 16 2

Table 2. Summary of the BN Classifier Learning Algorithms Used in the Experiments

Algorithm Type Search Strategy Optimization
Naive-Bayes Deterministic - -

TAN Deterministic Finding Max. Spanning Tree Cond. Mutual Info.
GBN Deterministic Greedy Hill Climbing K2 Function
ABC-Miner Stochastic Ant Colony Optimization Predictive Accuracy

as the training set. The results (accuracy rate on the test set) are then averaged
and reported in Table 3 as the accuracy rate of the classifier. Since ABC-Miner
is a stochastic algorithm, we run it 10 times — using a different random seed to
initialize the search each time — for each cross-validation fold. In the case of the
deterministic algorithms, each is run just once for each fold.

Table 3 reports the mean and the standard error of predictive accuracy values
obtained by 10-fold cross validation for the 15 datasets, where the highest accu-
racy for each dataset is shown in bold face. As shown, ABC-Miner has achieved
the highest predictive accuracy amongst all algorithms in 12 datasets (with 2
ties), while Naive-Bayes achieved the highest accuracy in 3 datasets (with 2 ties),
TAN in 2 datasets (both are ties) and finally GBN in 4 datasets (with 3 ties).

Ranking the algorithms in descending order of accuracy for each dataset and
taking the average ranking for each algorithm across all 15 datasets, ABC-
Miner obtained a value of 1.6, which is the best predictive accuracy average

ABC-Miner: An Ant-Based Bayesian Classification Algorithm

Table 3. Predictive Accuracy % (mean + standard error) Results

Dataset Naive-Bayes TAN GBN ABC-Miner
bew 92.1 £ 0.9 954+ 0.9 938+09 954+0.6
car 85.3 £0.9 936 £ 06 862+09 97.2+0.3
cmc 52.2 + 1.2 498 £12 498+ 1.2 67.3 £ 0.6
crd-a 775 £ 1.2 8.1+ 09 85709 87.3 £ 0.6
crd-g 75.6 £ 0.9 737+12 75.6 +£1.2 69.5+09
drm 96.2 £ 0.6 978 £09 972+£06 99.1 + 0.3
hay 80.0 £ 2.8 679 +£31 83.1+25 80.0+31
hrt-c 56.7 + 2.2 588 £ 25 56.7+22 73.3+09
iris 96.2 £ 1.5 942+ 18 929+1.8 96.2 £ 0.9
monk 61.6 + 0.6 588+ 06 61.6 +£0.9 51.9+09
nurs 90.1 £ 0.9 943 +£09 90.1+£09 97.0+ 0.9
park 84.5 £ 2.5 91.7 +£ 22 845+ 25 94.2 + 2.8
pima 754 +£ 1.2 778+ 1.5 Tr.8+1.5 77.8+ 1.5
ttt 70.3 £ 0.3 766 £ 06 70.3 0.3 86.4+ 0.6
vot 90.3 £ 0.6 921+ 04 90.3 0.6 94.6 £ 0.9

rank amongst all algorithms. On the other hand Naive-Bayes, TAN and GBN
have obtained 3.1, 2.5, 2.8 in predictive accuracy average rank respectively. Note
that the lower the average rank, the better the performance of the algorithm.

Statistical test according to the non-parametric Friedman test with the Holm’s
post-hoc test was performed on the average rankings. Comparing to Naive-Bayes
and GBN, ABC-Miner is statistically better with a significance level of 5% as the
tests obtained p - values of 0.0018 and 0.013 respectively. Comparing to TAN,
ABC-Miner is statistically better with a significance level of 10% as the tests
obtained p -value of 0.077.

6 Concluding Remarks

In this paper, we introduced a novel ant-based algorithm for learning Bayesian
network classifiers. Empirical results showed that our proposed ABC-Miner sig-
nificantly out performs the well-known Naive-Bayes, TAN, and GBN algorithms
in term predictive accuracy. Moreover, the automatic selection of the maximum
number of k-parents value makes ABC-Miner more adaptive and autonomous
than conventional algorithms for learning BN classifiers. As a future work, we
would like to explore the effect of using different scoring functions for computing
the heuristic value used by ABC-Miner, as well as other scoring functions to
evaluate the quality of a constructed BN classifier. Another direction is to ex-
plore different methods of choosing the value of k£ parents for building a network
structure for the Bayesian classifier.

24 K.M. Salama and A.A. Freitas
References
1. Buntine, W.: Theory refinement on Bayesian networks. In: 17th Conference on

2.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

Uncertainty in Artificial Intelligence, pp. 52-60. Morgan Kaufmann (1991)

De Campos, L.M., Gadmez, J.A., Puerta, J.M.: Learning Bayesian network by ant
colony optimisation. Mathware and Soft Computing, 251-268 (2002)

Cheng, J., Greiner, R.: Comparing Bayesian network classifiers. In: 15th Annual
Conference on Uncertainty in Artificial Intelligence, pp. 101-108 (1999)

Cheng, J., Greiner, R.: Learning Bayesian Belief Network Classifiers: Algorithms
and System. In: 14th Biennial Conference: Advances in Artificial Intelligence, pp.
141-151 (2001)

Chickering, D., Geiger, M., Heckerman, D.: Learning Bayesian networks is NP-
complete. Advanced Technologies Division, Microsoft Corporation, Redmond, WA,
Technical Report (1994)

Cooper, G.F., Herskovits, E.: A Bayesian method for the induction of probabilistic
networks from data. Machine Learning Journal, 309-348 (1992)

Daly, R., Shen, Q., Aitken, S.: Using ant colony optimization in learning Bayesian
network equivalence classes. In: Proceedings of UKCI, pp. 111-118 (2006)

Daly, R., Shen, Q.: Learning Bayesian network equivalence classes with ant colony
optimization. Journal of Artificial Intelligence Research, 391-447 (2009)

Dorigo, M., Stiitzle, T.: Ant Colony Optimization. MIT Press (2004)

. Friedman, N., Geiger, D., Goldszmidt, M.: Bayesian Network Classifiers. Machine

Learning Journal, 131-161 (1997)

Friedman, N., Goldszmidt, M.: Learning Bayesian networks with local structure.
Learning in Graphical Models, pp. 421-460. Kluwer, Norwell (1998)

Heckerman, D., Geiger, D., Chickering, D.M.: Learning Bayesian networks: the
combination of knowledge and statistical data. Machine Learning Journal, 197—
244 (1995)

Martens, D., Backer, M.D., Haesen, R., Vanthienen, J., Snoeck, M., Baesens, B.:
Classification with ant colony optimization. In: IEEE TEC, pp. 651-665 (2007)
Otero, F.E.B., Freitas, A.A., Johnson, C.G.: cAnt-Miner: An Ant Colony Classifi-
cation Algorithm to Cope with Continuous Attributes. In: Dorigo, M., Birattari,
M., Blum, C., Clerc, M., Stiitzle, T., Winfield, A.F.T. (eds.) ANTS 2008. LNCS,
vol. 5217, pp. 48-59. Springer, Heidelberg (2008)

Parpinelli, R.S., Lopes, H.S., Freitas, A.: Data mining with an ant colony opti-
mization algorithm. In: IEEE TEC, pp. 321-332 (2002)

Pinto, P.C., Négele, A., Dejori, M., Runkler, T.A., Costa, J.M.: Learning of
Bayesian networks by a local discovery ant colony algorithm. In: IEEE World
Congress on Computational Intelligence, pp. 2741-2748 (2008)

Pinto, P.C., Nagele, A., Dejori, M., Runkler, T.A., Costa, J.M.: Using a Local
Discovery Ant Algorithm for Bayesian Network Structure Learning. In: IEEE TEC,
pp. 767-779 (2009)

Salama, K.M., Abdelbar, A.M., Freitas, A.A.: Multiple pheromone types and other
extensions to the Ant-Miner classification rule discovery algorithm. Swarm Intelli-
gence Journal, 149-182 (2011)

UCI Repository of Machine Learning Databases,
http://archive.ics.uci.edu/ml/index.html| (retrieved October 2011)

Witten, H., Frank, E.: Data Mining: Practical Machine Learning Tools and Tech-
niques, 2nd edn. Morgan Kauffman (2005)

Yanghui, W., McCall, J., Corne, D.: Two novel Ant Colony Optimization ap-
proaches for Bayesian network structure learning. In: IEEE World Congress on
Evolutionary Computation, pp. 1-7 (2010)

http://archive.ics.uci.edu/ml/index.html

Analysing Robot Swarm Decision-Making
with Bio-PEPA

Mieke Massink!, Manuele Brambilla?, Diego Latella',
Marco Dorigo?, and Mauro Birattari?

! TIstituto di Scienza e Tecnologie dell'Informazione ‘A. Faedo’ (ISTT),
CNR Pisa, Italy
{massink,latella}@isti.cnr.it
2 IRIDIA, Université Libre de Bruxelles, Brussels, Belgium
{mbrambil,mdorigo,mbiro}@ulb.ac.be

Abstract. We present a novel method to analyse swarm robotics sys-
tems based on Bio-PEPA. Bio-PEPA is a process algebraic language
originally developed to analyse biochemical systems. Its main advantage
is that it allows different kinds of analyses of a swarm robotics system
starting from a single description. In general, to carry out different kinds
of analysis, it is necessary to develop multiple models, raising issues of
mutual consistency. With Bio-PEPA, instead, it is possible to perform
stochastic simulation, fluid flow analysis and statistical model checking
based on the same system specification. This reduces the complexity of
the analysis and ensures consistency between analysis results. Bio-PEPA
is well suited for swarm robotics systems, because it lends itself well to
modelling distributed scalable systems and their space-time characteris-
tics. We demonstrate the validity of Bio-PEPA by modelling collective
decision-making in a swarm robotics system and we evaluate the result
of different analyses.

1 Introduction

Swarm robotics is a novel approach to multi-robots systems. Swarm robotics
systems (SRSs) are composed by tens or hundreds of robots which cooperate to
perform a task, without a centralized controller or global knowledge. The goal
of swarm robotics is to develop systems that are robust, scalable and flexible [7].

Analysing large and complex SRSs using physics-based simulations or directly
with robots is often difficult and time consuming. For this reason, a common way
to study these systems is by using models [I6]. Models allow the developer to
abstract from the complexity of a system and its implementation details and
focus on the aspects that are relevant for the analysis. Different approaches
are available to model a SRS. Macroscopic modelling [16] is commonly used for
describing the collective behaviour of a system. Another approach, namely mi-
croscopic modelling [8], focuses instead on the behaviour of individual robots.
Finally, model checking has been used to verify formal properties of a SRS [13].
These approaches allow a developer to obtain different “views” of the system

M. Dorigo et al. (Eds.): ANTS 2012, LNCS 7461, pp. 25-B6] 2012.
(© Springer-Verlag Berlin Heidelberg 2012

26 M. Massink et al.

behaviour. However, for each of these views, a different model is necessary. Pro-
ducing different models greatly increases the complexity of the analysis process.
Moreover, when dealing with different models, the issue of mutual consistency
must be addressed.

In this paper we present a novel approach to model SRSs based on Bio-
PEPA [6] which allows to obtain different consistent views of a system from
the same formal specification. Bio-PEPA is a process algebraic language for bio-
chemical and distributed systems. It has also been used! to analyse emergency
egress [18] and crowd dynamics [I9] which are systems characterized by a high
number of individuals and lack of a centralized controller, aspects common also
to SRSs. Bio-PEPA is well suited to analyse and develop SRSs; it provides for
a clear specification at the microscopic level while providing also primitives for
spatial description (e.g. locations) and for composition of individual robots (e.g
cooperation operator). Moreover, Bio-PEPA allows to easily define species, which
can be used to characterize groups of robots with specific attributes and actions;
for instance, they can be used to differentiate between groups of robots perform-
ing different tasks at the same location. We use Bio-PEPA to develop a formal
specification and analyse a collective decision-making behaviour which has been
extensively studied in [2T)22]. The case study consists of a swarm of robots that
have to collectively identify the shortest path between two possible choices. We
validate our results against those presented in [21].

The outline of the paper is as follows. In Section 2l we present related work. In
Section B, we give a brief presentation of Bio-PEPA. In Section] we present the
case study and its Bio-PEPA specification. In Section Bl we present and validate
our results. Some conclusions are drawn in Section

2 Related Work

The most common approaches to modelling in swarm robotics are based on mi-
croscopic and macroscopic models. The main advantage of microscopic modelling
is that it allows to study in detail the robot-to-robot and robot-to-environment
interactions that are the key components of any SRS. Microscopic modelling,
through stochastic simulation, can be used to analyse a system both in its equi-
librium and far-from-equilibrium states. An example of a microscopic model of
a SRS can be found in [I1I]. Macroscopic modelling, instead, considers only the
swarm and its time evolution, ignoring the individual behaviour of the robots
composing it. For this reason, it can be used to analyse systems composed by
thousands of robots using fluid flow (Ordinary Differential Equations) approx-
imation. Macroscopic modelling provides an important technique to address
equilibrium analysis, but is focussed on the average behaviour of the system, ab-
stracting from local stochastic fluctuations. A review on macroscopic modelling
in swarm robotics can be found in [I6]. A comparison between the microscopic
and macroscopic models of a swarm robotics system is presented in [17].

! Seehttp://www.biopepa.org| for a complete list of publications.

http://www.biopepa.org

Analysing Robot Swarm Decision-Making with Bio-PEPA 27

A further way to model a SRS models is through mathematical logic. Mod-
els developed through mathematical logic can be used to formally verify given
properties of a SRS by automated model checking (e.g. [2]). Up to now this ap-
proach has not been explored extensively in swarm robotics. Examples of model
checking in swarm robotics can be found in [I33].

To perform stochastic simulation, fluid flow (ODE) approximation and model
checking different models of a system are necessary. Our approach, instead, re-
quires only a single Bio-PEPA specification permitting different kinds of system
analyses.

3 Bio-PEPA

Bio-PEPA [6] is a process algebraic language that originally was developed for
the stochastic analysis of biochemical systems. Bio-PEPA specifications consist
of two main kinds of components. The first kind is called the “species” com-
ponent, specifying the behaviour of individual entities. The second kind is the
model component, specifying the interactions between the various species. In
the context of this paper, the individual entities are the robots, and the model
component defines how they interact.
The syntax of Bio-PEPA components is defined as:

S:u=(a,k)opS|S+S|C withop=||1|D|O]|0O andP:::PD§P|S(x)

where S is a species component and P is a model component.

The prefiz combinator “op” in the prefix term («,) op S represents the im-
pact that action « has on species S. Specifically, | indicates that the number of
entities of species S reduces when « occurs, and 1 indicates that this number in-
creases. The amount of the change is defined by the coefficient k. This coefficient
captures the multiples of an entity involved in an occurring action. We will see
an example of its use in the next section. The default value of x is 1, in which
case we simply write « instead of («, k). Action durations are assumed to be
random variables with negative exponential distributions, characterised by their
rates. The rate of action « is defined by a so called functional rate or kinetics
rate. Action rates are defined in the context section of a Bio-PEPA specification.

The symbol & denotes an activator, & an inhibitor and ® a generic modifier,
all of which play a role in an action without being produced or consumed and
have a defined meaning in the biochemical context. The operator “+” expresses
the choice between possible actions, and the constant C' is defined by the equa-
tion C=S. The process P D§ @ denotes synchronisation between components P
and @, the set £ determines those actions on which the components P and Q)
are forced to synchronise. The shorthand P X1 Q denotes synchronisation on all
actions that P and @ have in common. In S(z), the parameter x € IR represents
the initial amount of the species. A Bio-PEPA system with locations consists of
a set of species components, a model component, and a context containing defi-
nitions of locations, functional/kinetics rates, parameters, etc.. The prefix term
(a, k) op SQI is used to specify that the action is performed by S in location .

28 M. Massink et al.

Bio-PEPA is given a formal operational semantics [6] which is based on Con-
tinuous Time Markov Chains (CTMCs). It is supported by a suite of software
tools which automatically process Bio-PEPA models and generate internal rep-
resentations suitable for different types of analysis [6l4]. These tools include
mappings from Bio-PEPA to differential equations (ODE) supporting a fluid
flow approximation [10], stochastic simulation models [9], CTMCs with levels [3]
and PRISM models [I5] amenable to statistical model checking. Consistency of
the analyses is supported by a rich theory including process algebra, and the
relationships between CTMCs and ODE.

4 Collective Decision-Making: A Bio-PEPA Specification

In this paper, we analyse a collective decision-making system originally proposed
by Montes de Oca et al. [21]. The task of the robots is to transport objects from
a start area to a goal area. The objects to transport are too heavy for a single
robot, thus the robots have to form groups of three in order to transport a single
object. There are two possible paths between the start and the goal area and the
robots can choose between the two. This is similar to what ants do in the well
known double bridge experiment with the difference that ants use pheromones
while in our setup robots use voting.

Each individual robot has a preferred path. When a group of three robots
is formed in the start area, the robots choose the path that is preferred by the
majority of them. The chosen path becomes the preferred one for all the robots
in the group. More details are given in Sections [£.Jl An analysis of the system
is presented in Montes de Oca et al. [2I] and in Scheidler [22].

This collective decision-making system is a good benchmark for testing Bio-
PEPA since it displays two important aspects of swarm robotics: cooperation and
space-time characteristics. Cooperation can be direct and indirect: the robots
cooperate directly to transport the objects, and indirectly to select a path via
the dynamics of their preferences. Space-time characteristics are displayed in the
voting process itself, as it involves only the robots that are in the start area at a
given time, and in the fact that the collective decision-making process depends
on the time taken to navigate over the two different paths.

4.1 The Bio-PEPA Specification

In the remaining part of this section we present the Bio-PEPA specification of
the system. The full specification can be found in the supplementary material
[20]. As shown in Fig. [the system is described by eight Bio-PEPA locations:
two boundary locations, start and goal; two choice locations, A and B, where
the robots decide which path to take; and two locations for each path, L1 and
L2 for the long path and S1 and S2 for the short one. We also define a set of
Bio-PEPA species to specify the behaviour of the robots. For example in start
we distinguish two species of robots: those that last time returned via the short
path, denoted as Robo start fromS, and those that returned via the long path,

Analysing Robot Swarm Decision-Making with Bio-PEPA 29

go L1 L2 go L2 goal

go L1 start

go B L2

go S2 S1 go B S2

go S1 start 4o S1 52 go S2 goal

Fig. 1. Locations and transitions of robots in the Bio-PEPA specification

denoted as Robo start fromL. In the sequel we will refer to these two groups also
as the S-population and the L-population, respectively. Similarly, other locations
contain populations of teams of robots that move in the direction from the start
area to the goal area and those that move in the opposite direction. For example,
in location S1 we can have Teams S1 StoG and Teams S1 GtoS, where StoG
denotes the direction from the start area to the goal area and GtoS the opposite
direction.

The Bio-PEPA fragment below specifies the behaviour of a robot. Robots
leave the start area in groups of three. Each group is randomly composed by
either three robots from the S-population, three from the L-population or two
from S and one from L or two from L and one from S. These combinations are
modelled as four different actions: allS, allL, S2L1 and S1L2. In Bio-PEPA the
formation of teams of robots is modelled by the coefficient that indicates how
many entities are involved in an action. For example, upon action allS three
robots of the S-population leave start (indicated by (allS,3)]), to form an
additional team of robots in choice point A (indicated by (allS, 1)1 in Teams A S)
which is ready to take the short path when the team continues its journey towards
the goal area (population Teams A S@QA). Since action allS is shared between
the species components Robo start fromS and Teams A S this movement occurs
simultaneously with the rate of action allS that will be defined later on.

Robo start fromS = (allS,3){Robo start fromSQstart+

(S2L1,2)| Robo start fromSQstart+
(S1L2,1)) Robo start fromSQstart+
(

go S1 start,3)TRobo start fromSQstart;

Teams A S = (allS, 1)1t Teams A SQA+
(S2L1,1)1 Teams A SQA+
go A S1]Teams A SQA;

In a similar way, upon action S2L1, which is present in three components
(Robo start fromS, Teams A S and Robo start fromL, the latter is not shown),
all three components synchronize, resulting in two robots from the S-population
and one from the L-population leaving the start area and forming at the same

30 M. Massink et al.

time 1 new team in choice point A in the population Teams A S. The synchro-
nization pattern of the components is given by the model component shown later
on. The excerpt above only shows the behaviour of teams voting for the short
path. The behaviour of those voting for the long path is similar and omitted
for reasons of space. For the same reason also the behaviour of teams moving
between different locations is not shown.

The actions denoting groups of robots leaving the start area need to occur
with appropriate rates. For example, a group of three robots all from the S-
(RSS) (RSS—1) (RSS—2)
RSS)+(RSL) ™ (RSS—1)+(RSL) ™ (RSS—2)+(RSL)
times the rate of leaving the start area, where RSL (RSS resp.) abbreviates
Robo start fromLQstart (Robo start fromSQstart resp.). A similar probability

can be defined for a group of three from the L-population.

When considering mixed groups also the order in which the elements are
extracted from the population in the start area is of influence. This is particularly
true when relatively small populations of robots are considered. For example, the
probability to extract two robots from the S-population in the start area and
then one from the L-population is:

population has a probability of (

pSSL = (Rs(s?ifésm * (Rs(s]iﬁf;(léu) * (RSSSI%Z?JI:zRSL)

Similarly we define probabilities for pSLS, pLSS, pLLS, pLSL and pSLL. The
rates of actions S2L1 and S1L2 can now be defined as (pSSL+pSLS+pLSS)
move and (pSLL + pLSL + pLLS) x move, respectively. Note that the sum of
these six probabilities and the probability of the combination of three S or three
L is 1. So the total rate at which groups of robots leave the start area is constant
and given by the parameter ‘move’. The rate at which groups move from A to
S1 and to L1 is also dependent on the number of groups present in A and are
walk normal x Teams A SQA and walk normal x Teams A LQA, respectively.
The rate parameter walk normal specifies the time it takes a group of robots to
move from choice-point A to the first section of a path.

Finally, the overall system definition shows the initial size of robot popula-
tions in each location. The overall robot behaviour is defined using multi-part
synchronization on shared actions:

Robo start fromS@start(SS) B Robo start fromL@start(SL) <
Teams A SQA(0) D] Teams A LQA(0) <

Teams S1 StoG@QS1(0) B] Teams S1 GtoSQS1(0) B]

Teams S2 StoG@QS2(0) B] Teams S2 GtoSQS2(0) B

Teams L1 StoGQL1(0) B Teams L1 GtoSQL1(0) B

Teams L2 StoGQL2(0) BX] Teams L2 GtoSQL2(0) B

Teams goal fromSQgoal(0)] Teams goal fromL@goal(0)]
Teams B fromSQB(0) D] Teams B fromLQ@B(0)

where the number SS in Robo start fromSQstart(SS) (resp. SL) is the initial
size of the robot S (resp. L)-population present in the start area (Qstart). There
is a further issue to consider which is the way to model the length of the paths.
This can be done in two ways. The first is to model each path by two sections, as

Analysing Robot Swarm Decision-Making with Bio-PEPA 31

illustrated above, and vary the time it takes teams to traverse these sections by
choosing a different rate for the movement between sections on the short and the
long path. However, as also discussed in [21], this model has the disadvantage
that the duration of path traversal is essentially modelled by a short series of
exponential distributions which in general approximates the average duration
well, but not the variability. It therefore does not reflect very well realistic robot
behaviour. An alternative is to choose the same rate for each section and to vary
the number of sections on each path to model their difference in length. This way
the traversal time of a path is modelled by a sequence of say m exponentially
distributed random variables with rate A, also known as an Erlang distribution,
using the well-known method of stages [12] (p. 119)E We model the two paths
of the environment with 8 S-sections and 15 L-sections. Each section takes, on
average, ten time units to traverse. This is modelled in the system by defining
the rate walk normal = 0.1. Considering also the movements from the choice
points to the path and those from the path to the start area and the goal area,
in this way the short path takes on average 100 time units to traverse, and
the long one 170. This is comparable to the latency periods used in [21I] (end
of Section 4). Other free variables of the model not provided in [21I] have been
selected by us.

5 Analysis

For the analysis in this section we consider a Bio-PEPA voting specification
with a population of 32 robots. In [2I] the analysis results make reference to
the number of teams, k, that are active in the system at any time. We specify
this in Bio-PEPA by making sure that at any time at least min start robots
are in the start area, corresponding to k = (32 —min start)/SE We furthermore
consider the following parameters for the specification: N = 32, of which initially
5SS =16 and SL = 16, move = 0.28, walk normal = 0.1.

In the following we illustrate three different forms of analysis of the same Bio-
PEPA specification and validate their results with those from the literature [21].

5.1 Stochastic Simulation

The first kind of analysis uses stochastic simulation to check the average num-
ber of active teams in the system over time for different assumptions on the
minimal number of robots that remain in the start area. Fig. 2] presents two
stochastic simulation results (average over 10 simulation runs) for min start =5

2 For m going to infinite, an Erlang distribution [m, A] converges to a normal distribu-
tion with mean m/\ and variance m/A%. So, in general, the larger m is, the better
the Erlang distribution [m, \] approximates a normal distribution.

3 In Bio-PEPA, one can make use of a predefined function H which takes a rate as
argument. If the rate is zero, H returns zero, otherwise it returns 1. To guarantee a
minimum number, min start, in the start area, the rate of, e.g., action S2L1 can then
be defined as: S2L1 = (pSSL+pSLS+pLSS)*movexH((RSS+RSL)—min start).

32 M. Massink et al.

25 25 T
A =TS ANV = —— Robo_start_fromL@start
NN AV - Robo_start_fromS @start
2 A i 2 Robots on path L
wywvi Robots on path S
° M —— |Robo_start_fromL@start ° Total teams on paths
/ MU e
N ~ Robo_start_fromS@start N Ay PN
D 15 [—— Robots-onpathL D 15 n PN P A e =y
S = Bttty Robots on path S 5 PNAVAYN M A e eV e
= N e Total teams on paths =
© ©
E S0
Q Q
o o
o o
5 5
[o
0 1000 2000 3000 4000 0 1000 2000 3000 4000
Time Time

Fig. 2. Number of active teams for min start = 5 (left) and min start = 2 (right)

(Fig. Aleft) and min start = 2 (Fig. RIright). The figure shows that the number
of active teams on the paths quickly increases to 9 (resp. 10) and then stabilizes
at that level. This means that the rate at which robots leave the start area, i.e.
move = 0.28, is sufficiently high to quickly reach a situation with the desired
number of active teams. This makes it possible to compare the results of this
analysis with the results obtained with the physics-based simulation and Monte
Carlo simulation as reported in [21] which will be discussed later on. The figures
show the number of robots on the paths and in the start area and the total
number of teams on the paths.

5.2 Statistical Model Checking

Another way to analyse the system is via statistical model checking provided, for
example, by the model-checker PRISM [15]. In particular, the Bio-PEPA spec-
ification can be exported automatically [4] to the PRISM input language. The
PRISM specification can be found in the supplementary material [20]. Statistical
model checking is an analysis method in which a logical formula, formalizing a
particular property of the system, can be automatically checked against a set
of randomly generated simulation runs of a model of the system via statisti-
cal analysis. For example, if we denote convergence on the short path by the
shorthand “Convergence on S”, and convergence on the long path by “Conver-
gence on L7, the statement “what is the probability that the system did not
converge on the long path until it converges on the short path” can be expressed
in the Continuous Stochastic temporal Logic (CSL) [12] as:

P =7 ['“Convergence on L" U “Convergence on S"] (1)

where P =7 is used to compute a probability, ! stands for negation and U reads
as “until”. “Convergence on S” can be defined as the situation in which all the
32 robots are either in a team on the short path or in the S-population in the
start area or at the goal area. “Convergence on L” can be defined similarly, but
requiring that the above sum is equal to 0 instead of 32.

In a similar way, the model can be analysed to obtain the expected number
of team formations and the expected time until convergence. For the number of

Analysing Robot Swarm Decision-Making with Bio-PEPA 33

team formations, one needs to count the number of times the actions ‘go A S1’
and ‘go A L1’ occur until convergence happens. Let us assume that the vari-
able teams accumulates the number of teams formed until convergence, and the
variable total time the total time that passed until convergence in the various
simulation rundd. The question “what is the expected number of teams formed
until eventually convergence has taken place on the short or the long path” can
then be answered by statistical model checking with the logical reward formula:

R{“teams”} =7 [F (“ Convergence on S”|“ Convergence on L”)] (2)

where F' reads as “eventually”, | denotes logical disjunction and R =7 is used
to compute the expected value, commonly called ‘reward’, of specific events. A
similar analysis using the same formula, but substituting teams with total time,
gives the expected time until convergence. The following analyses have been
based on 100 random samples and a confidence level of 99%, except where ex-
plicitly indicated. In the figures the confidence intervals are shown as error-bars.
Figure Bl (a), (b) and (c) show the result of statistical model checking of the
above formulas for models that only differ in the number of active teams k, where
k = {1,2,...,10}. In particular, Fig. shows the probability of convergence
on the short path (i.e. Formula (I)). The data are compared to those obtained
via physics-based simulation and Monte Carlo simulation of the same case-study
reported in [21]. The latter are close to the results obtained with the Bio-PEPA
specification and well within the error-margins. Fig. shows results on the
expected number of team formations until convergence on the short or long path
(i.e. Formula (2])) using 1000 samples. The data correspond very well for &k from
1 to 7, but diverge for higher values of k perhaps caused by strong stochastic
fluctuations due to the small number of robots present in the start location.
Fig. 3(c)| shows the expected convergence time. No data from the literature
concerning this aspect is available for comparison. The total model-checking
time to produce the data in Fig. [3(a)| was ca. 10 minutes, those in Fig.
ca. 48 minutes and those in Fig. . 5 minutes. Due to space limits we limit
our analysis to the shown properties. However, other interesting properties of
the system could be analysed this way. For example it can be shown that for any
value of k from 1 to 10 the probability that convergence occurs is equal to 1.

5.3 Fluid Flow Analysis

The third kind of analysis is a fluid flow approximation or numerical analysis
of the ODE underlying the Bio-PEPA specification. Based on the Bio-PEPA
syntax, the underlying ODE model can be generated automatically and in a
systematic way [10] using the Bio-PEPA tool suite [4]. This provides yet another
view on the behavioural aspects of the system. One can, for example, explore
numerically the sensitivity of the system to initial values and discover stationary

4 In terms of Markov theory such ‘counting’ is defined by reward structures In statisti-
cal model checking these numbers are used in the statistical analysis of the generated
simulation runs.

34 M. Massink et al.

1 250
B ,{ _ o
Fo8 \ < 200 i+
© \ o H
S 2 7
8 5 /I\\
o = /
Bos < H
g g 150 7
=3 s /
2 :
go4 3100
3 R S R R S
3 ER

o
So2 £ 50
w — Prob. convergence on S stat| mod. chk. (100 samples) w — Avg. teams statistical model checking (1000 samples)
-1 Prob. convergence on § phy b; i sim. 61 00 sampl -1 Avg. teams physics-based simulation (100 samples)
——————— Prob. convergence on S Monte Carlo sim. (100 samples) -------1- Monte Carlo 1 (100
0 0
2 4 6 8 10 2 4 6 8 10
k k

(a) Probability of convergence on the short (b) Expected number of team formations

path (100 samples) until convergence
10000

1

£

= 8000

3 s°°

g kS

[} p=3

= 6000 2.0.6

g \ g

s ()

o T c

§ 4000 l\ 20»4

g —F— &

& 2000 e woz2 ODE: N=32, move=0.03

L T T T T e G100: N=32, move=0.03

—— Conv. time stat. mod. chk. (100 samples) | | || === G1: N=32100,000, move=0/03*100,000
0
0 2 4 6 8 10 0 1000 2000 3000 4000
k Time
(c) Expected convergence time (100 sam- (d) Fraction in S-population

ples)

Fig. 3. Results with Erlang distribution of path length

points and other aspects related to stability analysis. As an example, here we
show the relation between stochastic simulation and fluid approximation results.

In Fig. a fluid flow analysis (ODE) is shown of the total fraction of robots
in the S-population over time, i.e. both those present in the start area and those
in the teamsd. Clearly, the fluid approximation predicts that the system con-
verges in 100% of the cases to the short path. Stochastic simulation over 100
independent runs (G100) shows that such convergence happens only in 85% of
the cases, which corresponds to what we found with statistical model checking
for a comparable value of k (see Fig. . The difference can be explained by the
larger effect of stochastic fluctuations when the population is small. The proba-
bility that the system ‘accidentally’ converges on the long path is then relatively
high. For large populations such a probability tends to zero, as stochastic sim-
ulation trajectories start to approximate the deterministic ODE solution when
the specification satisfies certain scaling conditions (see [14]). This phenomenon

® To guarantee continuity of the ODE model the H-function has been removed and
replaced by setting move = 0.03 to approximate a scenario in which k = 7.

Analysing Robot Swarm Decision-Making with Bio-PEPA 35

can be observed in Fig. from the curve labelled G1. This insight provides a
way to interpret results obtained with fluid approximation.

6 Conclusions

Bio-PEPA [6] is a process algebraic language originally developed for the
stochastic modelling and analysis of biochemical systems. In this paper we used
Bio-PEPA to specify and analyse a robot swarm decision-making behaviour,
originally presented in [21]. We showed that with Bio-PEPA issues relevant to
SRS modelling can be addressed at the microscopic level. Among these issues are:
robot team-formation, voting, certain spatial and temporal aspects, species of
robots with particular behavioural characteristics, and direct and indirect inter-
action. The main advantage is that a single microscopic Bio-PEPA specification
of the system lends itself to a variety of analyses methods such as stochastic
simulation, fluid flow (ODE) approximation and statistical (stochastic) model
checking. This provides an efficient way to obtain different views of the system
behaviour, while preserving their mutual consistency. The results were shown to
be largely comparable with those obtained in [2I] via physics-based simulation
and Monte Carlo simulation of the same case study. A limit of Bio-PEPA is
its limited capability to tackle sophisticated spatial and temporal concepts. In
future work, we plan to address this and develop facilities to further explore
non-linear behavioural aspects using numerical techniques. Our goal is to extend
Bio-PEPA to ease the modelling and analysis process of SRS. We believe that
this could facilitate the more widespread uptake of modelling and analysis in
swarm robotics.

Acknowledgements. The research leading to the results presented in this pa-
per has received funding from the European Research Council under the Eu-
ropean Union’s Seventh Framework Programme (FP7/2007-2013) / ERC grant
agreement n 246939, and by the EU project ASCENS, 257414. Manuele Bram-
billa, Mauro Birattari and Marco Dorigo acknowledge support from the F.R.S.-
FNRS of Belgium’s Wallonia-Brussels Federation. The authors would like to
thank Stephen Gilmore and Alan Clark (Edinburgh University) for their help
with the Bio-PEPA tool suite and templates.

References

1. Aziz, A., Sanwal, K., Singhal, V., Brayton, R.: Model checking Continuous Time
Markov Chains. ACM Transactions on Computational Logic 1(1), 162-170 (2000)

2. Baier, C., Katoen, J.-P., Hermanns, H.: Approximate Symbolic Model Checking of
Continuous-Time Markov Chains (Extended Abstract). In: Baeten, J.C.M., Mauw,
S. (eds.) CONCUR 1999. LNCS, vol. 1664, pp. 146-162. Springer, Heidelberg
(1999)

3. Brambilla, M., Pinciroli, C., Birattari, M., Dorigo, M.: Property-driven design for
swarm robotics. In: Proceedings of 11th International Conference on Autonomous
Agents and Multiagent Systems, AAMAS 2012. IFAAMAS (in press, 2012)

36

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

M. Massink et al.

Ciocchetta, F., Duguid, A., Gilmore, S., Guerriero, M.L., Hillston, J.: The Bio-PEPA
Tool Suite. In: Proc. of the 6th Int. Conf. on Quantitative Evaluation of Systems
(QEST 2009), pp. 309-310. IEEE Computer Society, Washington, DC (2009)
Ciocchetta, F., Hillston, J.: Bio-PEPA: An extension of the process algebra PEPA
for biochemical networks. ENTCS 194(3), 103-117 (2008)

Ciocchetta, F., Hillston, J.: Bio-PEPA: A framework for the modelling and analysis
of biological systems. TCS 410(33-34), 3065-3084 (2009)

Sahin, E.: Swarm Robotics: From Sources of Inspiration to Domains of Applica-
tion. In: Sahin, E., Spears, W.M. (eds.) Swarm Robotics 2004. LNCS, vol. 3342,
pp. 10-20. Springer, Heidelberg (2005)

Dixon, C., Winfield, A., Fisher, M.: Towards Temporal Verification of Emergent
Behaviours in Swarm Robotic Systems. In: Grof, R., Alboul, L., Melhuish, C.,
Witkowski, M., Prescott, T.J., Penders, J. (eds.) TAROS 2011. LNCS, vol. 6856,
pp. 336-347. Springer, Heidelberg (2011)

Gillespie, D.T.: Exact stochastic simulation of coupled chemical reactions. The
Journal of Physical Chemistry 81(25), 2340-2361 (1977)

Hillston, J.: Fluid flow approximation of PEPA models. In: Proceedings of the 2th
International Conference on Quantitative Evaluation of SysTems (QEST 2005),
pp. 33-43. IEEE Computer Society, Washington, DC (2005)

Ijspeert, A., Martinoli, A., Billard, A., Gambardella, L.M.: Collaboration through
the exploitation of local interactions in autonomous collective robotics: The stick
pulling experiment. Autonomous Robots 11, 149-171 (2001)

Kleinrock, L.: Queueing Systems. Theory, vol. 1. Wiley, New York (1975)

Konur, S., Dixon, C., Fisher, M.: Analysing robot swarm behaviour via probabilis-
tic model checking. Robotics and Autonomous Systems 60(2), 199-213 (2012)
Kurtz, T.: Solutions of ordinary differential equations as limits of pure jump
Markov processes. Journal of Applied Probability 7, 49-58 (1970)

Kwiatkowska, M., Norman, G., Parker, D.: PRISM 4.0: Verification of Probabilistic
Real-Time Systems. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS,
vol. 6806, pp. 585-591. Springer, Heidelberg (2011)

Lerman, K., Martinoli, A., Galstyan, A.: A Review of Probabilistic Macroscopic
Models for Swarm Robotic Systems. In: Sahin, E.; Spears, W.M. (eds.) Swarm
Robotics 2004. LNCS, vol. 3342, pp. 143-152. Springer, Heidelberg (2005)
Martinoli, A., Easton, K., Agassounon, W.: Modeling swarm robotic systems: a
case study in collaborative distributed manipulation. The International Journal of
Robotics Research 23(4-5), 415-436 (2004)

Massink, M., Latella, D., Bracciali, A., Harrison, M., Hillston, J.: Scalable context-
dependent analysis of emergency egress models. Formal Aspects of Comput-
ing 24(2), 267-302 (2012)

Massink, M., Latella, D., Bracciali, A., Hillston, J.: Modelling Non-linear Crowd
Dynamics in Bio-PEPA. In: Giannakopoulou, D., Orejas, F. (eds.) FASE 2011.
LNCS, vol. 6603, pp. 96-110. Springer, Heidelberg (2011)

Massink, M., Brambilla, M., Latella, D., Dorigo, M., Birattari, M.: Analysing robot
swarm decision-making with Bio-PEPA: Complete data (2012), Supplementary
information page at http://iridia.ulb.ac.be/supp/IridiaSupp2012-012/
Montes de Oca, M.A., Ferrante, E., Scheidler, A., Pinciroli, C., Birattari, M.,
Dorigo, M.: Majority-rule opinion dynamics with differential latency: A mecha-
nism for self-organized collective decision-making. Swarm Intelligence 5(3-4), 305—
327 (2011)

Scheidler, A.: Dynamics of majority rule with differential latencies. Phys. Rev.
E 83, 031116 (2011)

http://iridia.ulb.ac.be/supp/IridiaSupp2012-012/

Automatic Generation of Multi-objective ACO
Algorithms for the Bi-objective Knapsack

Leonardo C.T. Bezerra, Manuel Lépez-Ibanez, and Thomas Stiitzle

IRIDIA, Université Libre de Bruxelles, Brussels, Belgium
leonardo@iridia.ulb.ac.be, {manuel .lopez-ibanez, stuetzle}@ulb .ac.be

Abstract. Multi-objective ant colony optimization (MOACO) algo-
rithms have shown promising results for various multi-objective prob-
lems, but they also offer a large number of possible design choices. Often,
exploring all possible configurations is practically infeasible. Recently,
the automatic configuration of a MOACO framework was explored and
was shown to result in new state-of-the-art MOACO algorithms for the
bi-objective traveling salesman problem. In this paper, we apply this ap-
proach to the bi-objective bidimensional knapsack problem (bBKP) to
prove its generality and power. As a first step, we tune and improve the
performance of four MOACO algorithms that have been earlier proposed
for the bBKP. In a second step, we configure the full MOACO frame-
work and show that the automatically configured MOACO framework
outperforms all previous MOACO algorithms for the bBKP as well as
their improved variants.

1 Introduction

Multi-objective ant colony optimization (MOACO) algorithms have been ap-
plied to multi-objective combinatorial optimization problems (MCOPs) since
more than 10 years [7BITII0IT2/9]. The interest in MOACO algorithms may
be explained by the practical relevance of multi-objective problems and by the
positive results that have been achieved with these algorithms. The available
MOACO algorithms provide a large number of different design choices that allow
the instantiation of a huge number of structurally different MOACO algorithms.
Recently, Lopez-Ibdnez and Stiitzle [13] proposed a MOACO framework that
implements most of those design possibilities. The automatic configuration tool
Iterated F-race (I/F-Race) [2T1] was used to automatically generate MOACO
algorithms for the bi-objective traveling salesman problem (bTSP). The authors
showed that the automatic configuration of a generic MOACO framework pro-
duced better results than the MOACO algorithms from the literature used to
build the framework. In this paper, we continue the investigation of the effec-
tiveness of this approach by extending the MOACO framework to deal with the
bi-objective bidimensional knapsack problem (bBKP).

The bBKP is a popular benchmark problem in multi-objective optimiza-
tion [16J14]. Moreover, four different MOACO algorithms have been proposed
for the bBKP [I]. The bBKP has also some properties that make it interesting

M. Dorigo et al. (Eds.): ANTS 2012, LNCS 7461, pp. 37-£3] 2012.
(© Springer-Verlag Berlin Heidelberg 2012

38 L.C.T. Bezerra, M. Lépez-Ibanez, and T. Stiitzle

for further exploring the possibilities of the automatic design of MOACO algo-
rithms from a flexible framework. In particular, the representation of solutions
is different from the TSP, pheromone information is represented by a vector in-
stead of a matrix, and the structure of the solution space is quite different from
the TSP.

This paper shows that the proposed method for the automatic design of
MOACO algorithms also works for the bBKP. The proposed method is able to
generate, with little effort from the human designer, MOACO algorithms that
are clearly better than those proposed earlier for the bBKP, even after tuning
the ACO settings of the MOACO algorithms from the literature and improving
significantly their performance.

2 The Bi-objective Bidimensional Knapsack Problem

In an MCOP, the quality of solutions is evaluated based on a D-dimensional
objective vector. Given two different candidate solutions x; and x5 of a maxi-
mization problem, the Pareto dominance relation states that xy dominates o iff
Vd=1,...,D fi(z1) > f¥(x2), and 35 € {1,..., D} such that f¢(x1) > f(z2).
The goal in MCOPs that are tackled according to Pareto dominance is to iden-
tify the Pareto-optimal set, i.e., the solutions that are nondominated w.r.t. all
feasible solutions. Since most of such MCOPs are NP-hard, this goal is typically
relaxed towards finding an as good as possible approximation to the Pareto set.
In this paper, we tackle the bBKP, which is a widely used bi-objective bench-
mark problem [I6JI4]. The bBKP is a special case of the general multi-objective
multidimensional knapsack problem (moMKP), which is formalized as follows:

max fd(x):prxi d=1,...,D s.t. Zw{xigwj j=1,....,m
i=1

=1

where each item ¢ has D profits and m costs, f? is the d-th component of the D-
dimensional objective vector f, n is the number of items, p¢ is the d-th profit of
item 1, wf is the j-th cost of item ¢, W is the j-th capacity of the knapsack, and
x; is a decision variable in {0, 1} that controls whether item ¢ is included in the
knapsack (x; = 1) or not (z; = 0). The set of feasible solutions is X C {0,1}".
The bBKP is a special case of the moMKP where D = m = 2.

3 ACO Algorithms for the bBKP

When applying ACO to the single-objective multidimensional knapsack problem,
the pheromone information is defined as a vector, where each component 7; gives
the desirability of adding item ¢ to the knapsack. Each ant k constructs a solution
by adding, at each step, item ¢ to the knapsack with a probability p;

«. B

T Vi € N*,
Pi = { Zjenk 75} (1)

0 otherwise,

Multi-objective ACO Algorithms for the Bi-objective Knapsack 39

where 7; is a heuristic estimation of the benefit of adding item i, and N* is
a set of candidate items. After each step, the item added to the current solu-
tion and those items that do not fit anymore in the remaining capacity of the
knapsack are removed from the candidate set. The solution construction stops
when the candidate set is empty. After the constructed solutions are evaluated,
the pheromone information is updated in two steps. First, pheromone values
are evaporated, that is, decreased by a factor p. Second, the pheromone values
corresponding to items present in the best solutions are updated by depositing
an amount of pheromone A7, thus increasing the probability that newly con-
structed solutions contain those items. Alaya et al. [I] proposed four different
algorithms that extend the ACO metaheuristic to the bBKP.

mACQO; has one pheromone vector for each objective, that is, 71 and 72. Ants
are divided in three groups A € {0,0.5,1} according to the weight A they use
for aggregating the two pheromone vectors when constructing solutions. The
solution construction uses random aggregation, that is, at each step the phero-
mone information to be used is chosen as 7! with a probability (1 — \), and as
72, otherwise. This means that ants using A = 0 or A = 1 use only 7' or 72,
respectively. The heuristic information is aggregated by means of weighted sum
aggregation, that is, n = (1 — \) - n' + X - n%, where ! and n? are the heuristic
information corresponding to each objective.

The pheromone update method used by mACO; is a particular case for A €
{0,0.5,1} of a method called best-of-objective-per-weight (BOW) [13]. In BOW,
those solutions generated with the same weight A are kept in the same list. For
the lists of A ¢ {0, 1}, the best solution according to each objective updates the
pheromone vector of the corresponding objective. For the list of A = 0, only the
best solution according to the first objective updates 7!, whereas for the list of
A = 1, only the best solution according to the second objective updates 72.

Finally, mACO; uses a particular pheromone deposit. Given the best solution
constructed in the current iteration and the best-so-far solution according to
objective d (sidb and sgf, respectively), the amount of pheromone deposited is

given by Ar¢ = 1 fa (s ﬁffd(sd . We refer to this method as fobj-mACO.
bf ib

mACO; is identical to mACQO; except for how the multiple pheromone vectors
are aggregated. Instead of a random aggregation, mACQO- uses a weighted sum
aggregation, that is, 7= (1 — \) - 71 + X - 72.

mACOj3 uses only a single pheromone vector. The heuristic information is also
a single vector, which is statically computed at the start of the algorithm as
n; = n}+n2. Pheromone information is updated using all nondominated solutions
found since the start of the algorithm, that is, the best-so-far archive. Every
solution component is rewarded a constant A7 = 1 only once per iteration,
regardless of how many times it is present on different solutions.

mACO, follows mACQO;: one pheromone vector per objective, which are aggre-
gated by weighted random aggregation; BOW pheromone update, and phero-
mone deposit is fobj-mACO. However, there is only one weight A = 0.5, and one
heuristic vector defined as in mACOs3.

40 L.C.T. Bezerra, M. Lépez-Ibanez, and T. Stiitzle

Algorithm 1. MOACO framework

1: for each colony c € {1,...,N°'} do

2 InitializePheromonelnformation()

3: A := MultiColonyWeights()

4: InitializeHeuristicInformation()

5: Abf =10

6: iter := 0

7: while not termination criteria met do
8 Azter = @

9: for each colony ¢ € {1,...,N°'} do
10 for each ant k € {1,...,N*} do
11: A := NextWeight(A., k, iter)

. s Aggregation(\, {7}, 72}) if multiple [r]
' T if single [7]
s,] Aggregation(, {771,772}) if multiple [n]
' = n if single [n]

14: s := ConstructSolution(7,7)
15: A" .= RemoveDominated(A““" U {s})

16: A" := RemoveDominated(A"" U A™°")
17: AP .= ChooseUpdateSet(A", AP
18: for each colony c € {1,..., N°'} do
19: AP .= MultiColonyUpdate(A"PY)
20: PheromoneUpdate(AtPd, NuPd)

21: dter :=iter +1

22: Output: A

The mACO algorithms can be instantiated as described above by our MOACO
framework [13]. We have confirmed this approach is equivalent to the original [I].

4 A Flexible MOACO Framework for the bBKP

In this paper, we extend the flexible MOACO framework proposed for the bTSP
by Lépez-Ibanez and Stiitzle [13] to also tackle the bBBKP and we automatically
instantiate MOACO algorithms. The MOACO framework is able to replicate
most MOACO designs proposed in the literature and can generate new MOACO
designs by combining components in novel ways. However, its application to the
bBKP requires extending it concerning the solution representation and other
problem-specific features. Here, we briefly summarize the high-level structure of
the framework and its components (see [13] for further details).

The high-level algorithmic scheme of the MOACO framework is given in
Algorithm [[I The MOACO framework is a multi-colony algorithm, where each
colony c of ants has its own pheromone information and its own set of weights
A, for possibly aggregating information. The assignment of weights to colonies
is defined by MOACO component MultiColonyWeights. Within each colony, each
ant constructs a solution according to pheromone information 7 and heuristic

Multi-objective ACO Algorithms for the Bi-objective Knapsack 41

information 7. Either 7 or n may be the result of aggregation. That is, if the
pheromone information consists of multiple pheromone vectors, one for each
objective, these are aggregated into a single pheromone vector 7 by means of
MOACO component Aggregation (line [[Z), using a particular weight A. If mul-
tiple heuristic vectors are used, they are aggregated in a similar way. Which
weight is used by each ant may depend on the set of weights of each colony,
the particular ant, and the particular iteration. The different possibilities are
encapsulated by MOACO component NextWeight (line [[T]). Once all ants have
constructed a solution, the resulting iteration-best archive of nondominated so-
lutions (A™¢") is merged into the best-so-far archive (AP!) (line). After this
step, the pheromone information of each colony is updated in two steps. First,
the set of solutions for update (either A®¢" or AP, is partitioned among colonies
according to component MultiColonyUpdate (line [[9)). Next, a number of solu-
tions from each set is used to update the pheromone information of each colony
in a way defined by component PheromoneUpdate (line 20). The algorithm stops
when a termination criterion is met, typically a maximum number of iterations
or a time limit, and returns the best-so-far archive.

The flexibility of the MOACO framework is given by the alternative defini-
tions of the algorithmic components that specify the key steps in the algorithm.
Defining these components in particular ways allows the framework to replicate
most of the MOACO algorithms in the literature. A summary of the available
alternatives is given in Table[Il The complete description of all components and
their alternatives can be found in the original publication [I3]. For brevity, we
restrict ourselves here to the new extensions implemented for the bBKP.

Following [13], we use MAX-MZN Ant System (MMAS) [15] as the un-
derlying ACO algorithm that defines details such as the pheromone deposit Ar,
and maximum and minimum pheromone levels (Tiax and Tyin). Here, we have
adapted MMAS to the bBKP, but making more flexible the definition of A,
Tmax and Tmin to be able to replicate faithfully the original mACO algorithms
for the bBKP. The alternatives implemented for the definition of the pheromone
deposit (A1) are:

fobj, that is, A7? = f9(s), where 7¢ is the pheromone information correspond-
ing to objective d. If only one pheromone vector is used instead of multiple,
then AT = f1(s)+f2(s). This method is the one used in the original MMAS.
constant, that is, A% = 1 — ij(il,gl,
ordered according to objective d and NP4 is the number of solutions used
to update 7¢. This method is inspired by rank-based ant system [5].
fobj-mACO, this is the method used in mACO;, mACO3 and mACOQOy.
MACS, that is, AT = f1(s) - f?(s), which is adapted from MACS [3].

where 79(s) is the rank of solution s

For the definition of the pheromone levels we consider two possibilities. The
max*t°" (A1)

first is the default setting of MMAS, which uses Tyax = P , where
max‘‘®" (A7) is the maximum amount of pheromone deposited at iteration iter
for a single pheromone component, and Ty, = "%, where v € R* is a param-
eter (v =2 in MMAS). The second is the value setting, where Ty,.x and Tiin

42 L.C.T. Bezerra, M. Lépez-Ibanez, and T. Stiitzle

Table 1. Algorithmic components of the MOACO framework

Component Domain
(7] { single, multiple }
] { single, multiple }
Nweights N+
weighted sum,
Aggregation weighted product,
random
NextWeight one W?ight per 'itcrat.ion (lwp'i),
all weights per iteration (awpi)
nondominated solutions (ND),
PheromoneUpdate ¢ best-of-objective (BO),
best-of-objective-per-weight (BOW)
Nupd N+
best-so-far (BSF),
ChooseUpdateSet iteration-best (IB),

mixed

Description
Num. pheromone vectors

Num. heuristic vectors

Number of weights

How weights are used to aggregate mul-
tiple [7] or [n]

How weights are used at each iteration

Which solutions are selected to update
the pheromone information

Num. solutions that update each [7]

Whether the solutions used for update
are taken from APt A™°" or using both

alternately

The following components have an effect only when using multiple colonies.

Neot Nt Number of colonies

same (N100%),

overlapping (Nso%),
disjoint (Ngg

MultiColonyWeights Whether colonies share all, 50% or no

weights.

MultiColonyUpdate { origin, region } How solutions are assigned to colonies

New components added in this work for the bBKP.
{ default, value }
{ default, value }

Tmax method Method for calculating Tmax

Tmin Method Method for calculating Tmin

AT { constant, fobj-mACO, fobj, MACS } Method for calculating Ar
s { profit | Rprofite i’:’o‘zta } Heuristic information used

are set to two different constant values Tmax > Tmin. A value setting is used in
all mACO algorithms.

In addition, we have implemented three alternatives for the heuristic informa-
tion. For a given objective d and item ¢, the heuristic information can be either
profit divided by cost (71%), which is the one used in the mACO algorithms [I],
sum profits divided by cost (n2¢), or profit divided by sum costs (13¢) [14],
that is,

d Dk
Cowy ' wf YL v

(2)

Multi-objective ACO Algorithms for the Bi-objective Knapsack 43

5 Experimental Setup

Our experiments are divided in two stages. In a first stage, we automatically
configure the ACO settings of the mACO algorithms and compare the resulting
configurations with the original settings. This is done to avoid a bias by possibly
poor ACO parameter settings of the mACO algorithms. In the second stage, we
compare the best configurations with an algorithm automatically instantiated
from the MOACO framework.

As the automatic algorithm configuration tool, we use I/F-Race [2[T1]. The
input of I/F-Race is a definition of the parameter space, which may contain cat-
egorical and numerical parameters, and a set of training instances. I/F-Race was
originally designed for single-objective algorithms, but it has been extended to
handle the multi-objective case by using the hypervolume quality measure [13]
(Iz). The hypervolume is a well-known quality measure in multi-objective op-
timization [I7]. It computes for each approximation set, the volume in the ob-
jective space weakly dominated by the approximation set and bounded by a
reference point; hence, the larger the hypervolume the better. We use the hy-
pervolume (concretely, the implementation provided by Fonseca et al. [8]) not
only in combination with I/F-Race, but also to compare the various MOACO
algorithms.

For the application of I/F-Race, we create a training set of 100 randomly
generated instances of the bBKP, following the method proposed by Zitzler and
Thiele [16]. These instances have random sizes in the range n € {100,...,750}.
For comparing the algorithms, we generate a different test set of 50 bBKP in-
stances for each size n € {100, 250, 500, 750}. We include in our test set also the
four instances by Zitzler and Thiele [I6] of sizes n € {100, 250, 500, 750}, called
Z7T7Z instances. All algorithms are implemented in C and all experiments are run
on a single core of Intel Xeon E5410 CPUs, running at 2.33GHz with 6MB of
cache size under Cluster Rocks Linux version 4.2.1/CentOS 4.

The mACO algorithms were originally run with different termination criteria,
that is, a different number of iterations, for each variant [I]. To replicate the
original mACO experiments, we consider four different computation time limits
in our experiments, which correspond to the mean time taken by each of the four
mACQO variants measured across 25 independent runs on the four ZTZ instances
using the corresponding number of iterations (see Table 2l). Then, we compute a
formula that approximates the computation time obtained for each termination
criterion. The four resulting termination criteria are given in Table 2] sorted
from the shortest to the longest time.

Table 2. Termination criteria used in our experiments

TIME, TIME , TIME 5 TIME 4
Time (s) 0.00001-n> 0.00003 - n? 0.0001 - n? 0.001 - n?

Equivalent to 9000 solutions 3000 solutions 30000 solutions 300000 solutions
of mACO» of mACO; of mACO3 of mACOy4

44 L.C.T. Bezerra, M. Lépez-Ibanez, and T. Stiitzle

Comparisons are conducted using empirical attainment functions (EAFSs),
boxplots of the hypervolume (I#) and the unary additive epsilon (I°T) indi-
cators [I7], and the Friedman non-parametrical test. In the paper, only few
representative results are given; for the complete set of results and the test and
training instances we generated, we refer to the supplementary material [4].

6 Experimental Analysis

6.1 Improving the ACO Settings of the mACO Algorithms

In the first stage of our analysis, we automatically configure the ACO settings
of the four mACO variants. The parameter space given to I/F-Race is shown
in Table Bl Parameter ar is a surrogate parameter of the total number of ants,
which is given by N* = a¢- (0.12-n + 36). N? is rounded to the closest smaller
number divisible by three, because mACQO; and mACOQO5 divide the ants into
three groups. We apply I/F-Race with a budget of 5000 independent runs in
the tuning phase for each mACO algorithm and for each termination criterion
TIME,. Here, the mACO algorithms use their original heuristic information
nl [1]. The resulting 16 configurations of mACO are provided as supplementary
material [4]. Here, we focus on the configurations obtained when using TIME 4,
which are shown in Table [l

We compare all algorithms (original and tuned versions) in terms of the hy-
pervolume. We run all algorithms for all four termination criteria 10 independent
times on each of the 200 randomly generated bBKP instances (50 instances per
instance size n € {100, 250, 500, 750}). We normalize the objective values per in-
stance to the interval [1, 2], with 1 corresponding to the maximum value and 2 to
the minimum, and compute the hypervolume using the reference point (2.1, 2.1).
To analyze the results, we apply the Friedman test, and its associated post-hoc
test for multiple comparisons [6], using the median hypervolume obtained by

Table 3. Parameter space for tuning the ACO settings of the mACO algorithms

Parameter a 153 P qo ag Tmax Method Tmin Method

Domain {0, ..., 10} {0,...,15} [0.01,1] [0,0.99] {1,..., 30} {default, value} {default, value}
value € [6,100] value € [0.01, 6]
v € [L5,15]

Table 4. Settings chosen by irace for mACO;-tuned under TIME 4

Tmaz Method

. o p qo . Tmin Method ay
Variant {0,..,10} {0,..,15} [0.01,1] [0,0.99] {jgzgf {default, value} {1,...,30}
mACO; -tuned 8 1 0.03 0.03 value = 65 value = 0.33 27
mACOz-tuned 3 1 0.07 0.10 default default, v = 6 26
mACOs-tuned 3 1 0.08 0.18 value = 49 value = 0.34 2
mACOs-tuned 2 1 0.19 0.19 default default, v = 8 5

Multi-objective ACO Algorithms for the Bi-objective Knapsack 45

each algorithm on each instance as values, the instances as the blocking factor
and the different mACO algorithms as the treatment factor. In all cases, the
Friedman test rejects the null hypothesis of equal performance at a significance
level of 0.05. Those algorithms whose ranks differ by more than the critical
difference are considered to be significantly different. Table Bl summarizes the
results of applying this statistical analysis for each termination criterion. Ranks
obtained by each algorithm are shown in parenthesis. The minimum significant
rank difference is displayed between parenthesis on the header of each column.
The best algorithm and those that are not significantly different from the best
are marked in boldface.

From Table[Bl we observe that mACOz-tuned is the best performing algorithm
for all different TIME;, whereas mACQ4 performs the worst. This seems to
contradict the results reported by Alaya et al. [1], which considered mACO, as
the best performing variant. The different results are explained because, in their
case, mACOQy constructed 100 times more solutions than mACOs, which roughly
requires 100 times more computational time (Table2]). By contrast, we compare
algorithms using the same computation time limit.

The main conclusion we take from these results is that each tuned mACO
algorithm clearly outperforms its corresponding original version for each stop-
ping criterion. Hence, we use these tuned variants for comparing against the
automatically generated MOACQO algorithm in the next section.

Table 5. Friedman test results for Iy obtained by the mACO algorithms

Rank Iy TIME; (32.957) Iy TIME, (31.793) Iy TIME; (35.433) In TIME, (40.745)
1 mACO;-tuned (293) mACO;-tuned (208) mACO;-tuned (220) mACO;-tuned (227)

2 mACO;-tuned (319) mACO;-tuned (402) mACO;-tuned (380) mACO;-tuned (373)
3 mACO; (591) mACO; (610) mACO; (644) mACOs-tuned (757)
4 mACO4-tuned (958) mACOs-tuned (973) mACO; (987) mACO; (779)
5 mACOs3-tuned (1005) mACO; (1036) mACOs-tuned (1040) mACOy-tuned (1076)
6 mACO3 (1202) mACO4-tuned (1087) mACO4-tuned (1073) mACO; (1238)
7 mACO; (1268) mACO; (1301) mACO; (1287) mACO; (1282)
8 mACO4 (1564) mACO, (1583) mACO4 (1569) mACO4 (1468)

6.2 Automatically Generating MOACO Algorithms for the bBKP

In this second stage of our analysis, we automatically configure all parameters
of the MOACO framework. In particular, for the parameters specific to the un-
derlying ACO algorithms, we use the same parameter space as for the mACO
algorithms (Table B]). For the multi-objective components, we consider all al-
ternatives described in Table [l plus the following ranges: N°°! € {1,2,5} and
Nwd ¢ f1...,10}. Since N?, the number of ants, has to be divisible by N¢°!,
and the result be divisible by N“e#hts (when awpi is used), N* was always
rounded to the largest smaller number divisible by 10. The weights are defined
as, NWeishts ¢ 102 5 N8} when N = 2, and NWei8lts ¢ [0.5 2 N2}, when
Neol = 5. For single colony versions, only two values were allowed: 0.2 and 0.5.

46 L.C.T. Bezerra, M. Lépez-Ibanez, and T. Stiitzle

As in the previous section, we apply I/F-Race four times, once for each stop-
ping criterion. The budget of each run of I/F-Race is 5000 runs of the MOACO
framework. The four resulting configurations are given as supplementary mate-
rial [4]. Here, we focus on the configuration obtained for TIME, (Table []).

The analysis of the AutoMOACO configurations shows several commonalities.
First, heuristic 3 is always chosen, which is different from the one used in the
mACO algorithms. Second, the parameter 8 is always close to the maximum
value allowed, thus giving very high importance to the heuristic information.
Third, the parameter value of qq is also high. This together with the high value
of the parameter 8 implies that most of the items are chosen greedily. Fourth, the
number of ants is always very large. For example, 1000 ants are used for instance
size 750. As a result, the number of iterations executed by the MOACO algorithm
in the given time limits is rather small. It reaches from at most two iterations for
the shortest time limits (TIME; and TIMEs) to about 60 to 85 iterations for the
larger time limit (TIME,). In the first case, if very few iterations are executed,
the algorithm actually behaves as a greedy construction procedure that performs
multiple scalarizations of the bi-objective problem. For the longer time limits,
we confirmed that excluding the pheromone information (that is, setting o = 0)
makes the performance become significantly worse (see supplementary material
[4]). This implies that for the larger computation time limits, despite the low
number of iterations, the ACO component is effective.

Finally, we compare the performance obtained by the automatically config-
ured MOACO algorithms and the mACO algorithms. Given the high impact of
using heuristic information 13, we repeated the tuning of each of the mACO
variants as described above, but this time leaving open also the choice of the
heuristic information. In the following comparison, we consider only the original
and the two tuned variants of mACO5, which are the best mACO variants for

Table 6. Parameter settings chosen by I/F-Race for AutoMOACO: TIME,4

Parameter &« B p g0 Gf Tmax Tmin IV col pyweights MCWeights NextWeight MCUpdate

Value 1 12 0.120.57 8 83 249 5 N? Ns50% awpi origin
Parameter N"P? Selection Ref. At (7] [n] [7]-Aggreg. [n]-Aggreg. Heuristic
Value 10 BO BSF constant multiple multiple product sum n3

‘ ZfZ.']Ob ‘ ‘ ZfZ.ZSb ‘ ‘ ZfZ.50b ‘ ‘ ZfZ.756
maco2 o 8 B | rE o]
MACO2-tuned o @ o ot pofel e b
MACO2-tuned-heu ® o] o# o
AutoMOACO] o o .
T T T T T T T T T T T T T T T T
0.7 08 09 10 0.7 08 09 10

Fig. 1. Boxplots of the Iy indicator for several MOACO algorithms with TIME4

Multi-objective ACO Algorithms for the Bi-objective Knapsack 47

Table 7. Friedman test results for Iy for various MOACO algorithms

Rank Iy TIME; (14.74) Iy TIME, (11.416) I TIME; (7.635) Iy TIME, (5.987)
1 AutoMOACO (236) AutoMOACO (228) AutoMOACO (212) AutoMOACO (204)

2 mACO;-tuned-heu (365) mACOz-tuned-heu (373) mACO2-tuned-heu (388) mACO;-tuned-heu (399)
3 mACO2-tuned (611) mACO2-tuned (599) mACO2-tuned (600) mACO2-tuned (597)
1 mACO, (688) mACOs (800) mACO; (800) mACO, (800)

each of the time limits. In Fig. [l we show boxplots of the hypervolume distribu-
tion for the algorithm automatically instantiated from the MOACO framework
(AutoMOACO), the original mACO3, mACO; tuned with n1 and mACO; tuned
leaving open the choice of the heuristic information (mACOz-tuned-heu). The
instances shown are the four ZTZ instances. Finally, Table [7 gives the results of
the Friedman test, which is applied as described in Section Clearly, the Au-
toMOACO algorithm is the top performer, outperforming significantly the other
variants. For complete results, we again refer to the supplementary material [4].

7 Conclusions and Future Work

We have extended the MOACO framework [I3] to the bBKP and automatically
generated MOACO algorithms. The results reported here for the bBBKP confirm
the previous conclusions obtained in the bTSP, that is, the automatically config-
ured MOACO algorithms outperform the MOACO algorithms from the literature,
even after the ACO parameters of the latter have been tuned with the same effort.
Interestingly, the MOACO algorithm tuned for very short time limit is rather a
repeated stochastic greedy construction procedure than an ACO algorithm. Al-
though this result may seem counter-intuitive at first, it is, however, a strength
of automatic configuration procedures, because they are not biased towards our
expectations. The fact that the resulting algorithm is better than the MOACO al-
gorithms proposed in the literature, indicates that the automatic design works as
desired, that is, it provides a high-performing algorithm for the given termination
criterion. For higher computation time limits, the ACO component of the finally
configured algorithm works and contributes to its high performance.

Future work should extend the MOACO framework, and apply the proposed
automatic design method, to new problems in order to further confirm the above
conclusions. The method is not restricted to MOACO algorithms, and, hence,
extensions to other metaheuristics are possible.

Acknowledgments. The research leading to the results presented in this paper
has received funding from the European Research Council under the European
Union’s Seventh Framework Programme (FP7/2007-2013) / ERC grant agree-
ment n° 246939, and from the Meta-X project from the Scientific Research Di-
rectorate of the French Community of Belgium. Leonardo C. T. Bezerra, Manuel
Lépez-Ibanez and Thomas Stiitzle acknowledge support from the Belgian F.R.S.-
FNRS, of which they are a FRIA doctoral fellow, a postdoctoral researcher and
a research associate, respectively.

48 L.C.T. Bezerra, M. Lépez-Ibanez, and T. Stiitzle
References
1. Alaya, 1., Solnon, C., Ghédira, K.: Ant colony optimization for multi-objective op-

10.

11.

12.

13.

14.

15.

16.

17.

timization problems. In: ICTAI 2007, vol. 1, pp. 450-457. IEEE Computer Society
Press, Los Alamitos (2007)
Balaprakash, P., Birattari, M., Stiitzle, T.: Improvement Strategies for the F-Race
Algorithm: Sampling Design and Iterative Refinement. In: Bartz-Beielstein, T.,
Blesa Aguilera, M.J., Blum, C., Naujoks, B., Roli, A., Rudolph, G., Sampels, M.
(eds.) HCI/ICCV 2007. LNCS, vol. 4771, pp. 108-122. Springer, Heidelberg (2007)
Barédn, B., Schaerer, M.: A multiobjective ant colony system for vehicle routing
problem with time windows. In: Proceedings of the Twenty-first IASTED Intern.
Conf. on Appl. Informat., Insbruck, Austria, pp. 97-102 (2003)
Bezerra, L.C.T., Lépez-Ibdnez, M., Stiitzle, T.: Automatic Generation of MOACO
Algorithms for the Biobjective Bidimensional Knapsack Problem: Supplementary
material (2012), http://iridia.ulb.ac.be/supp/IridiaSupp2012-008/
Bullnheimer, B., Hartl, R., Strauss, C.: A new rank-based version of the Ant
System: A computational study. Cen. Eur. J. for Oper. Res. and Econ. 7(1), 25-38
1999)
g]onover7 W.J.: Practical Nonparametric Statistics, 3rd edn. John Wiley & Sons,
New York (1999)
Doerner, K.F., Hartl, R.F., Reimann, M.: Are Competants more competent for
problem solving? The case of a multiple objective transportation problem. Cen.
Eur. J. for Oper. Res. and Econ. 11(2), 115-141 (2003)
Fonseca, C.M., Paquete, L., Lépez-Ibanez, M.: An improved dimension-sweep
algorithm for the hypervolume indicator. In: CEC 2006, pp. 1157-1163. IEEE
Press, Piscataway (2006)
Garcia-Martinez, C., Cordén, O., Herrera, F.: A taxonomy and an empirical analy-
sis of multiple objective ant colony optimization algorithms for the bi-criteria TSP.
Eur. J. of Oper. Res. 180(1), 116-148 (2007)
Iredi, S., Merkle, D., Middendorf, M.: Bi-Criterion Optimization with Multi Colony
Ant Algorithms. In: Zitzler, E., Deb, K., Thiele, L., Coello Coello, C.A., Corne,
D.W. (eds.) EMO 2001. LNCS, vol. 1993, pp. 359-372. Springer, Heidelberg (2001)
Lépez-Ibanez, M., Dubois-Lacoste, J., Stiitzle, T., Birattari, M.: The irace package,
iterated race for automatic algorithm configuration. Tech. Rep. TR/IRIDIA /2011-
004, IRIDIA, Université Libre de Bruxelles, Belgium (2011)
Lépez-Ibanez, M., Stiitzle, T.: The impact of design choices of multi-objective ant
colony optimization algorithms on performance: An experimental study on the
biobjective TSP. In: Pelikan, M., Branke, J. (eds.) GECCO 2010, pp. 71-78. ACM
press, New York (2010)
Lépez-Ibanez, M., Stiitzle, T.: The automatic design of multi-objective ant colony
optimization algorithms. IEEE Trans. on Evol. Comput. (in press, 2012)
Lust, T., Teghem, J.: The multiobjective multidimensional knapsack problem: a
survey and a new approach. Arxiv preprint arXiv:1007.4063 (2010)
Stiitzle, T., Hoos, H.H.: MAX — MZN Ant System. Future Generat. Comput.
Systems 16(8), 889-914 (2000)
Zitzler, E., Thiele, L.: Multiobjective evolutionary algorithms: A comparative case
study and the strength Pareto evolutionary algorithm. IEEE Trans. on Evol.
Comput. 3(4), 257271 (1999)
Zitzler, E., Thiele, L., Laumanns, M., Fonseca, C.M., Grunert da Fonseca, V.:
Performance assessment of multiobjective optimizers: an analysis and review. IEEE
Trans. on Evol. Comput. 7(2), 117-132 (2003)

http://iridia.ulb.ac.be/supp/IridiaSupp2012-008/

Bare Bones Particle Swarms with Jumps

Mohammad Majid al-Rifaie and Tim Blackwell

Goldsmiths, University of London, New Cross, London, UK
{m.majid,tim.blackwell}@gold.ac.uk

Abstract. Bare Bones PSO was proposed by Kennedy as a model of
PSO dynamics. Dependence on velocity is replaced by sampling from
a Gaussian distribution. Although Kennedy’s original formulation is not
competitive to standard PSO, the addition of a component-wise jumping
mechanism, and a tuning of the standard deviation, can produce a com-
parable optimisation algorithm. This algorithm, Bare Bones with Jumps,
exists in a variety of formulations. Two particular models are empirically
examined in this paper and comparisons are made to canonical PSO and
standard Bare Bones.

1 Introduction

There has been many attempts to understand the behaviour of the swarms
in Particle Swarm Optimisation algorithm (PSO). This proved to be difficult
due the presence of many moving parts (e.g. the effects of various parame-
ters on the trajectory of the particle, particles’ oscillation around constantly
changing centres, the effects of swarm topology on its performance, etc.). A
number of theoretical studies have tried to understand the dynamics of PSO,
mainly concentrating on particle trajectories, swarm equilibria and formal con-
vergence to local optima proofs [TJ2/3]. In 2003, in one such attempt, Kennedy
[4] proposed a minimised version of PSO — Bare Bones (BB) swarm optimi-
sation — where the velocity update is eliminated. In this paper, after briefly
describing BB, the Bare Bones with Jumps (BBJ1) algorithm [5] is presented
alongside a second model, BBJ2. The performance of the newly introduced al-
gorithms are compared against a standard PSO (which is taken here to be the
Clerc and Kennedy (CK) [1] formulation), as well as Bare Bones (BB) swarm
optimisation.

2 Bare Bones Swarm

It is known that particles converge to a weighted average between their per-
sonal best and neighbourhood best positions [6], but in order to understand
the behaviour of particles and identify the similarity it has with other stochastic
population-based optimiser, Kennedy [4] proposed a modified algorithm without

M. Dorigo et al. (Eds.): ANTS 2012, LNCS 7461, pp. 49-B0] 2012.
(© Springer-Verlag Berlin Heidelberg 2012

50 M.M. al-Rifaie and T. Blackwell

the velocity formula in the update equation. The standard Bare Bones swarm
(BB) has the following update formula:

Zig = g+ 0iqaN (0,1) (1)
1

9= 4 (9id + pia) (2)

Oid = |gid — Pid| (3)

where N (0, 1) is the Gaussian distribution between 0 and 1; g; is the best in-
former in the neighbourhood of particle ¢ and p;q is the personal best position
of particle ¢ in dimension d.

In the next section, two new variants of this minimised algorithm are pre-
sented. The main differences are: a component-wise jumping method, and the
presence of an implicit scale parameter that multiplies the standard deviation of
the sampling distribution.

3 Bare Bones with Jumps

Bare Bones swarm can be generalised [5] so that the search focus g (centre of the
search volume at stagnation) and the search spread o can each be chosen from
local or global neighbourhoods. This idea is embodied in the following rules:

gi = BEST(p; € N;) (4)
0id = |pi—1d — Pi+14| —local mneighbouthood (5)
0id = |gid — Didl —global neighbourhood (6)
Tig = gia + adigN (0,1) (7)

where « is an arbitrary number and N; denotes the search neighbourhood of
particle ¢. N;, the p-neighbourhood can be global, or any local structure. The
separation factor §; which controls search concentration, can be taken from a
local or a global informer neighbourhood (the o-neighbourhood). Theoretically,
it is shown that for the sphere function, there is a critical value, a. = 0.65, such
that, for a > a, the swarm resists collapse. Fastest convergence occurs at the
critical value, but larger values promote exploration [5]. The Bare Bones with
Jumps algorithm, Algorithm [includes a probabilistic jumping mechanism: a
particle may jump uniformly in any dimension with probability p;. This can
be viewed as a partial re-initialisation (since in general not every component
undergoes a jump) or, alternatively, as a tail broadening mechanism, allowing
further search in areas where the Gaussian distribution tails are thin.

The investigations reported in [5] propose that a small jump probability p; =
0.01 enhances performance over standard test set of 30D problems. This paper
proposes a second Bare Bones with Jumps algorithm, model 2 (BBJ2), with an
altered search spread component, and a smaller jump probability (p; = 0.001):

Tid = gi + ad;qN (0,1) (8)
0id =|gi — Tid| (9)

Bare Bones PSO with Jumps 51

Algorithm 1. Bare Bones with Jumps Models 1 and 2
r ~ U(0,1)
if (r<ps)
Xid = U (—Xd, Xd)
else
Tid = gi + adiaN (0,1)

This algorithm utilises the difference between the neighbourhood best with the
current position (in |g; — 24/, Equation [@) rather than the difference between
either the left and right neighbours’ bests (in local neighbourhood; see Equa-
tion [B)) or the particle’s personal best and the neighbourhood best (in global
neighbourhood; see Equation [7]). The reason behind proposing this alternation
is to increase the influence of the current positions of the particles in the update
equation on the assumption that this might offer a wider search capability.

In the next section, a set of experiments is designed to compare the perfor-
mance of the algorithms referred to in this paper followed by some statistical
analysis.

4 Experiments

The aim of this set of experiments is to compare the performance of the new BBJ
variant, BBJ2, to BBJ1 and Bare Bones swarm (BB) and standard PSO (CK)
[1]. The effect of the jumping mechanism is isolated by running experiments on
BBJ2 without jumps (BBNJ), which is simply accomplished by setting p; to
zero. In order to determine the quality of each algorithm, three performance
measures are used (accuracy, efficiency and reliability which are presented next,

in section E.T]).

4.1 Performance Measures

Three different performance measures [7] are used in the experiments conducted
in this paper. These performance measures are accuracy, reliability and efficiency.

Accuracy of the swarms is defined by the quality of the best position in terms
of its closeness to the optimum position. If knowledge about the optimum posi-
tion is known a priori (which is the case here), the following would define the
accuracy:

Accuracy = |f (ptg) —f (:Eopt)’ (10)
where pfq is the best position at time ¢ and zy is the position of the known
optimum solution.

If no information exists about the optimum solution, the fitness of the best
position will be the accuracy of the swarm.

Another measure used is reliability which is the percentage of trials where
swarms converge with a specified accuracy; this is defined by:

’

Reliability = "~ x 100 (11)
n

52 M.M. al-Rifaie and T. Blackwell

where n is the total number of trials in the experiment and n’ is the number of
successful trials.

Finally, efficiency is the number of iterations or objective function evaluations
needed to converge with a specified accuracy (i.e. 107%):

1 n
Efficiency = FE
y=_ Z s (12)
=0
where n is the total number of trials and F'FEs is the number of function evalua-
tions before convergence.

4.2 Experiment Setup

The algorithms used are tested over a number of benchmarking functions from
Jones et al. [§] and De Jong [0 test suite, preserving different dimensionality and
modality (see Tables I and IT in [I0]). The first two functions (Sphere/Parabola
and Schwefel 1.2) have a single minimum and are unimodal functions; Gener-
alised Rosenbrock for dimension D, where D > 3, is multimodal; Generalised
Schwefel 2.6, Generalized Rastrigin, Ackley, Generalized Griewank, Penalised
Function P8 and Penalised Function P16 are complex high-dimensional multi-
modal problems with many local minima and a single global optimum; Six-hump
Camel-back, Goldstein-Price, Shekel 5, 7 and 10 are lower-dimensional multi-
modal problems with fewer local minima. Goldstein-Price, Shekel 5, 7 and 10
have one global optimum and Six-hump Camel-back has two global optima sym-
metric about the origin. In order not to initialise the particles on or near a region
in the search space known to have the global optimum, region scaling technique
is used [I1], which makes sure particles are initialised at a corner of the search
space where there are no optimal solutions. The experiments are conducted with
a population of 50 particles in global and local neighbourhoods independently.
However, the halting criterion for this experiment is either to reach the optima
(with function errors less than 10~%) or to exceed the 300,000 function evalua-
tions (FEs). There are 30 independent runs for each benchmarking function and
results are averaged over these independent trials.

4.3 BB, PSO and BBJ Parameter Values

Bare Bones enjoys the luxury of having no adjustable parameters. The param-
eters defined by Bratton [12] were used for the CK trials. a was set to 0.75 for
both BBJ models, and, following the recommendations in [5] p; was fixed at
0.01 for BBJ1. Preliminary experiments suggested that BBJ2 performs better
with a smaller p; and a value of 0.001 was used in the following. A global p
neighbourhood is used for BBJ in every experiment.

4.4 Results

In this experiment two types of o-neighbourhoods (global and local) are tested.
The results are shown in the following tables and figures:

Bare Bones PSO with Jumps 53

— Global neighbourhood:

e Table[Ih reflects the accuracy of each algorithm over each function and
the reliability of each algorithm averaged over all benchmarks in global
neighbourhood. Table [[b highlights any significant difference in the ac-
curacy of the algorithms over each function.

e Table Zh shows the efficiency of each algorithm over each benchmark.
Table @b underlines any existing significant difference between any two
algorithms over the benchmarks in the global neighbourhood.

e TFigure [[l shows the plots for the accuracy and efficiency measures.

— Local neighbourhood:

e Table [displays the results using the same measures (accuracy and re-
liability) as Tables [l but in the local neighbourhood topology.

e Table [l displays the results using the same measure (efficiency) as Table
but in a local neighbourhood topology.

e Figure [2] shows the plots for the accuracy and efficiency measures.

Observing the reliability of the algorithms both in global and local neighbour-
hoods (see the last rows of Tables [Tk and [Bk), shows that on average BB is the
least reliable algorithm. This finding does not come as a surprise as BB was
proposed for understanding PSO rather than being deployed for optimisation
purposes; the result of this experiment confirms this view empirically. Among
other algorithms, BBJ2 shows the most reliable performance in both local and
global neighbourhood. Additionally, BBJ2 shows better reliability in global vs.
local neighbourhood, which is not always the expectation (as global neighbour-
hood is usually criticised for its premature convergence [I3]. CK and BBJ1 show
contradicting results in different neighbourhoods: BBJ1 is more reliable than
CK in the global neighbourhood, but less reliable in the local neighbourhood.

In terms of the accuracy of the algorithms in the global neighbourhood (see
Table [[b), BB shows significantly worse accuracy. When there exists conver-
gence, in most cases, BBJ1 and BBJ2 outperform CK significantly. Over all
benchmarks, BBJ1 and BBJ2 do not outperform each other significantly (ex-
cept in f11). As for the efficiency of the algorithms in the global neighbourhood
(see Table 2]), when there exists a significant difference BBJ2 outperform all al-
gorithms over all benchmarks significantly. The second best algorithm is BBJ1.

In the local neighbourhood (see Table B]), compared to other algorithms, BB
and BBJ1, are significantly worse in terms of accuracy. When functions with
convergence are considered, BBJ2 outperform other algorithms. In terms of effi-
ciency in the local neighbourhood (see Table @b), CK is outperformed by BB in
most significant cases. Observing functions with successful convergence, BBJ1
and BBJ2 are the least and the most efficient algorithms respectively.

In order to investigate the role of jumping in BBJ2, this mechanism is removed
in a control algorithm — BBJ2 with No Jumps (BBNJ) — which uses the same
parameters and update equations as BBJ2 but with p; = 0. This algorithm, in
terms of efficiency, outperforms BBJ2 in local neighbourhood in all 3 significant
cases; however in global neighbourhood, BBNJ is outperformed by BBJ2 in all 4
significant cases. In terms of accuracy, both in global and local neighbourhood,

54

M.M. al-Rifaie and T. Blackwell

Table 1. Accuracy Details; Global Neighbourhood

(a) Accuracy+ Standard Error is shown with two decimal places after 30 trials of
300,000 function evaluations. Total number of convergence of each algorithm over the
benchmarks can be found in the last row.

Fn
f1
f2
f3
fa
fs
fe
f7
f8
fo
f1o
f11
f12
f13
f1a

=

CK

0.0 £0.0

0.0 £0.0
9.14E+4+00+3.18E+00
3.60E+03+8.50BE-+01
6.33E401+2.57E+00
1.17E400+1.95E-01
2.88E-02+6.13E-03
6.22E-02+2.03E-02
3.00BE-02+1.44E-02
0.0 £0.0

0.0 £0.0
1.85E4+00+4.97E-01
2.39E+00+5.95E-01
1.11E400+4.68E-01
(180)

42.68%

BB

0.0 £0.0
6.34E+03+4.69E402
5.86E4+01+1.80E+401
3.46E+03+2.29E401
1.59E+4024+4.93E+00
1.92E+401+8.43E-02
.40E-02+3.39E-02

.16E4+00£1.36E400

B R ©

.13E400+3.23E4-00
0.0 £0.0
4.86E+01£7.37TE400
5.05E4+00£0.00E4-00
5.27E4+00+£3.01E-17
5.36E400+£6.02E-17
(99)

23.57%

BBJ1

0.0 £0.0
8.51E-04+7.86E-04
1.08E+401+4.47E+00
8.32E-02+1.43E-02
9.93E-03+3.37E-03
2.07E-05+1.69E-05
4.42B-02+7.18E-03
0.0 £0.0

0.0 £0.0

0.0 £0.0
1.89E40146.36E+00
5.05E+00+7.38E-17
5.35E+00+7.92E-02
5.36E+00+9.03E-17
(198)

47.14%

BBJ2

0.0 +£0.0

0.0 +£0.0
1.28E-06+6.09E-07
0.0 +£0.0

0.0 +£0.0

0.0 +£0.0
3.37E-02+6.43E-03
0.0 +£0.0

0.0 £0.0

0.0 +£0.0
4.32E+01+£7.50
5.05E+00+1.13E-16
5.27E+00+8.52E-17
5.36E4+00+£9.52E-17
(268)

63.81%

BBNJ
4.14E-05+4.13E-05
2.72E+03+5.03E402
6.18E+0042.80E+00
4.61E+03+9.40E+01
3.47E+0249.56E+00
1.98E+401+1.39E-02
4.64E+00+2.18E+00
6.44E+00+2.40E+00
3.66E+01+1.92E+01
2.72E-0242.72E-02
5.67E+01+6.52E+00
5.05E+00+9.99E-17
5.27E+00+1.35E-16
5.47E+00+1.11E-01
(93)

22.14%

(b) Based on TukeyHSD Test, if the difference between each pair of algorithms is
significant, the pairs are marked. X—o shows that the left algorithm is significantly
better than the right one; and 0—X shows that the right one is significantly better
than the left algorithm.

Fn BBJ1-BB BBJ2-BB CK-BB BBJ2-BBJ1 CK-BBJ1 CK-BBJ2 BBNJ-BBJ2

f1
f2
f3
fa
fs
fe
fr
fs
fo
f1o
S
fi2
fi3
fia

X -o X
X -o X
X -o X
X -o X
X -o X
X -o X
X -o

- o - o
—o X -o
o

—o X - o
—o X -o
—o X -o
- X -o

X -o
- X -o
— X -o

o—-X o—-X
o-X o-X
o—-X o—-X
- X -o
X - o X -o
X - o X -o
X -o X -o

o —

o
|
e A

Bare Bones PSO with Jumps 55

Table 2. Efficiency Details; Global Neighbourhood

(a) Mean FEs (+standard error) is shown with two decimal places after 30 trials of
300,000 function evaluations.

CK

232244194

227861259
447351567
4922841309
1458417

5876+£397

BB
122624164
16035842920

1247014+£12900
418114870
115184136
2019441701
396561+3719
51644

61199+11951

BBJ1
13270+£148
896371575
124701412900
370044318
13807+£335
15013+£285
18855+981
55145

663+10

BBJ2
226854119
191064+1290
27602047039
6339943805
54825+3182
47486+2226
240064259
336274744
311474720
3515437

3929+39

BBNJ

144544244

213310+£7324

14036+833
215544383
268351563
53448

649410

(b) Based on TukeyHSD Test, if the difference between each pair of algorithms is
significant, the pairs are marked. X—o shows that the left algorithm is significantly
better than the right one; and o-X shows that the right one is significantly better
than the left algorithm.

Fn BBJ1-BB BBJ2-BB CK-BB BBJ2-BBJ1

fi
f2
f3
fa
fs
fe
fr
fs
fo
fio
fi1
fi2
fi3
fia

X -o
NP
NP
NP
NP
NP

X -o

X -o

X -o
o—-X
NP
NP

NP

X -o
NP
NP
NP

NP

NP

NP

NP

NP

NP

X -o

NP

NP

X -o

X -o

NP

NP

NP

o—-X
o—-X
NP
NP

NP

X -o
NP
NP

NP

o—-X

o—-X

NP

NP

NP

CK-BBJ1 CK-BBJ2 BBNJ-BBJ2

o—-X
NP
o—-X
NP
NP
NP
o—-X

o—-X

56

M.M. al-Rifaie and T. Blackwell

Table 3. Accuracy Details; Local Neighbourhood

(a) Accuracy + Standard Error is shown with two decimal places after 30 trials of
300,000 function evaluations. Total number of convergence of each algorithm over each
benchmark is shown in brackets after the accuracy and standard error. Total number
of convergence of each algorithm over the benchmarks can be found in the last row.

Fn
f1
f2
I3
fa
fs
fe
f7

CK

0.0 £0.0
7.84E-0241.09E-02
1.33E401+3.73E+00
4.14E+03+7.11E401
5.87TE+0141.88E+400
0.0 £0.0
1.07E-03+£6.10E-04
0.0 £0.0

0.0 £0.0

0.0 £0.0

0.0 £0.0
3.70E-06+1.27E-07
1.22E-0440.00E400
1.26E-04+1.12E-16
(208)

49.52%

BB

0.0 £0.0
9.66E+01+8.68E+00
1.27E+01+£5.50E-01
3.26E+03+3.10E401
2.46E+014+3.04E+00
1.96E+01+2.24E-02
1.41E-054+1.04E-05
2.76E-02+1.92E-02
5.27E-02+5.27E-02
8.16E-02+4.55E-02
7.92E40142.71E401
5.05E+00£0.00E+00
5.27E+00%0.00E+00
5.36E4+0045.22E-17
(145)

34.52%

BBJ1

0.0 £0.0
3.93E+02+4.38E+01
2.88E+01+3.20E400
1.92E+403+6.89E+01
9.22E+01+4.47TE+00
1.89E-06+1.55E-06
2.48E-04+2.46E-04
0.0 £0.0
3.62E-07+2.84E-07
0.0 £0.0
1.27E-05+1.27E-05
5.05E+0040.00E400
5.10E4+0041.76E-01
5.18E+0041.79E-01
(199)

47.38%

BBJ2

0

1

2

0

0

0

1

0

0

0

2

5

5

5

.0 +£0.0
.87E-011+3.02E-02
.59E+401+5.73E400
.0 £0.0

.0 £0.0

.0 £0.0
.19E-02+2.96E-03
.0 +£0.0

.0 +£0.0

.0 +£0.0
.79E+401+7.03E400
.05E400+£4.26E-17
.27E+400£0.00E+4-00
.36E4-00+1.09E-16

(241)

5

7.38%

BBNJ

.57E-09+1.14E-10

©

2.55E-014+2.02E-01
2.99E4+01+6.02E+00
4.03E4034+4.77E+401

N

.85E+402+6.11E+00

-

.98E+401+1.27E-02
1.95E-024+4.65E-03
7.01E-014+2.69E-01

2.05E-01+6.39E-02

o

.84E-09+5.17E-10

4.86E+01+7.37TE+400

5.05E+00+1.13E-16
5.27E+0044.26E-17
5.36E+0046.02E-17
(108)

25.71%

(b) Based on TukeyHSD Test, if the difference between each pair of algorithms is
significant, the pairs are marked. X—o shows that the left algorithm is significantly
better than the right one; and o-X shows that the right one is significantly better
than the left algorithm.

Fn BBJ1-BB BBJ2-BB CK-BB BBJ2-BBJ1

f1
f2
f3
fa
fs
fe
fr
fs
fo
fio
f11
fi2
fi3
fia

o—-X X -o X -o
o-X - -
X -o X -o o—-X
o—-X X -o o—-X
X -o X -o X -o
— o - X —
X -o - X -o
— - X -o
- - X -o

X -o

X -o
X -o
X -o
o—-X

X -o
X -o -
o—-X o—-X
X -o o—-X
- X -o
X -o X -o
X -o X -o
X -o X -o

CK-BBJ1 CK-BBJ2 BBNJ-BBJ2

o—-X
o—-X
o—-X
o—-X
o—-X
o—-X

Bare Bones PSO with Jumps 57

Table 4. Efficiency Details; Local Neighbourhood

(a) Mean FEs £Standard Error is shown with two decimal places after 30 trials of
300,000 function evaluations.

CK

47589497

84612144962
79067765
61328+374
5389+100

4630012012

BB

983834327

18913944687
14697944494
12118641035
1226314853
1891431

9030+2367

BBJ1

67968+213

1759024944
720484332
69658+489
75080392
2161+161

2536+75

BBJ2

73090+196

13911843975
13481642801
1180984389
9568044051
10365841287
862814480
4935453
5063+51

8895+0

BBNJ

495744260

49970+396
6859711434
7114441217
1716+31

2891+184

(b) Based on TukeyHSD Test, if the difference between each pair of algorithms is
significant, the pairs are marked. X—o shows that the left algorithm is significantly
better than the right one; and o-X shows that the right one is significantly better
than the left algorithm.

Fn BBJ1-BB BBJ2-BB CK-BB BBJ2-BBJ1

fi
f2
f3
fa
fs
fe
fr
fs
fo
fio
fi1
fi2
fi3
fia

o—-X o—-X
NP NP
NP NP
NP NP
NP NP
NP NP
o-X -
o—-X X -o
o—-X o—-X
X -o X -o
X -o X - o
NP NP
NP NP
NP NP

o—-X
NP
NP
NP
NP

NP

X -o

NP

NP
NP

NP

X -o
NP
NP
NP
NP

X -o

NP
NP

NP

o—-X
NP
NP
NP

NP

CK-BBJ1 CK-BBJ2 BBNJ-BBJ2

X -o
NP
NP
NP
NP

NP

58 M.M. al-Rifaie and T. Blackwell

(a) Accuracy - Global Neighbourhood (b) Efficiency — Global Neight hood

1e+04

- CK
- BB

< BBJI
& BB

300000
1

1e+01
|
200000

1e-02

Accuracy
Function Evaulation

1e-05

1e-08

T T T T T T T T T T T T T T T T T T T
10 11 12 13 14 1.2 3 4 5 6 7 8 9 10 11 12 13 14

A-A--A
T T T
4 5 6

Benchmark Benchmark

Fig. 1. Accuracy and efficiency in global neighbourhood

whenever there is a difference, BBJ2 outperforms BBNJ in the entire cases, 12
of which are significantly better. Also in terms of reliability, BBNJ is the least
reliable algorithm.

4.5 Discussion

More experiments are needed in order to form a concrete theoretical idea as to
why BBJ2 outperforms the other algorithms. The initial thought behind this
outperformance is the reliance on the difference between the particles’ current
positions and their neighbourhood best position. This effectively eliminates the
direct influence of the particles’ personal bests from the update equations. On
the other hand, in the rest of the algorithms (used in this paper), each particle’s
personal best leaves a direct impact on the update equations. This presence of
many influencing factors — which is one of the reasons why understanding PSO
is complicated — in the update process might be counter-productive.

BB and BBJ, in contrast to CK, are distinguished by the absence of particle
position information in the update rule. Search always begins at a point deter-
mined by particle informers g or g; and the extent of the search is determined by
informer separation, |p; — ¢;| or |pi—1 — pi—1|. A trial position x; ~ ¢g; + ;N (0,1)
is ignored if an informer p; is not bettered. The particle, figuratively speak-
ing, returns to p; after a single trial at search centre g;. On the other hand,
BBJ2 retains information of an unsuccessful attempt since search spread is deter-
mined by the difference between x; and g;. This provides a convergence inhibition

Bare Bones PSO with Jumps 59

(a) Accuracy - Local Neighbourhood (b) Efficiency — Local Neighbourhood

- CK

- CK

- BB
< BBJI
& BB

1e+04
|

< BBJI
& BB

300000
1

1e+01
|
200000

1e-02

Accuracy
Function Evaulation

100000
1
IR

1e-05

1e-08

/4

T T T T T T T T T T 1T T T T T T T T 1
1.2 3

Aot
I —
4 5 6 7 8 9 10 11 12 13 14 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Benchmark Benchmark

Fig. 2. Accuracy and efficiency in local neighbourhood

mechanism: informers will crowd together as the swarm converges, with a conse-
quent decrease, for BBJ1, in diversity. However in BBJ2, a trial position z; may
lie beyond the informer group. This will lead to a broader search at the next
iteration since 68872 = |g;, — z,|.

Finally, we note the significance of jumping: the probability of jumping in
one or more dimensions is 1 — (1 — p;)? = 0.03 (30 dimensions, p; = 0.001).
Even this small figure appears to be enough for enhanced performance. A law
of diminishing returns applies since excessive jumping slows convergence. The
fact that jumping appears to be less necessary in BBJ2 than in BBJ1 is perhaps
attributable to the greater search diversity inherent in the formation of §. The
efficacy of tail broadening for distribution based swarm optimisers has already
been observed in a study of Levy bare bones [14]. We remark that tail broadening
is a more subtle effect than re-initialisation. The latter is equivalent to jumping
in each of the D dimensions, occurring with only a very small probability (prob =
p?) in the BBJ models.

5 Conclusion

This paper briefly describes Bare Bones swarm optimisation which was proposed
to provide better understanding of the behaviour of particle swarm algorithms.
Although this algorithm does not intend to enhance the optimisation capability
of standard PSO of Clerc-Kennedy (CK), the other variations (Bare Bones with

60 M.M. al-Rifaie and T. Blackwell

Jumps Model 1 & 2) explained and introduced respectively in this paper offer
promising results. The algorithms used in this paper are compared against each
other using three performance measures (i.e. accuracy, efficiency and reliability).
Using these measures, it is shown that in terms of accuracy, when benchmarks
with successful convergence are considered, the accuracy of BBJ2 compared to
all other algorithms is significantly better. Additionally, BBJ2 is empirically
shown to be both the most efficient and the most reliable algorithm in both
local and global o neighbourhoods. A brief discussion is also presented with the
possible reasons which might boost the outperformance of BBJ2 compared to
other algorithms, and an experiment is conducted to demonstrate that despite
the very small jump probability of BBJ2, this mechanism plays a crucial role.

References

1. Clerc, M., Kennedy, J.: The particle swarm-explosion, stability, and convergence
in amultidimensional complex space. IEEE Transactions on Evolutionary Compu-
tation 6(1), 58-73 (2002)

2. Yang, Y., Kamel, M.: Clustering ensemble using swarm intelligence. In: Proceedings
of the 2003 IEEE Swarm Intelligence Symposium, SIS 2003, pp. 65-71. IEEE (2003)

3. van den Bergh, F., Engelbrecht, A.P.: A study of particle swarm optimization
particle trajectories. Information Sciences 176(8), 937-971 (2006)

4. Kennedy, J.: Bare bones particle swarms. In: Proceedings of Swarm Intelligence
Symposium (SIS 2003), pp. 80-87. IEEE (2003)

5. Blackwell, T.: A study of collapse in bare bones particle swarm optimisation. IEEE
Transactions on Evolutionary Computing (99) (2012)

6. Trelea, I1.C.: The particle swarm optimization algorithm: convergence analysis and
parameter selection. Information Processing Letters 85(6), 317-325 (2003)

7. Engelbrecht, A.P.: Fundamentals of Computational Swarm Intelligence. Wiley
(2006)

8. Jones, D.R., Perttunen, C.D., Stuckman, B.E.: Lipschitzian optimization without
the lipschitz constant. J. Optim. Theory Appl. 79(1), 157-181 (1993)

9. Jong, K.A.D.: An analysis of the behavior of a class of genetic adaptive systems.
PhD thesis, University of Michigan, Ann Arbor, MI, USA (1975)

10. al-Rifaie, M.M., Bishop, M., Blackwell, T.: Resource allocation and dispensation
impact of stochastic diffusion search on differential evolution algorithm. In: Nature
Inspired Cooperative Strategies for Optimisation (NICSO 2011). Springer (2011)

11. Gehlhaar, D., Fogel, D.: Tuning evolutionary programming for conformationally
flexible molecular docking. In: Evolutionary Programming V: Proc. of the Fifth
Annual Conference on Evolutionary Programming, pp. 419-429 (1996)

12. Bratton, D., Kennedy, J.: Defining a standard for particle swarm optimization. In:
Proc. of the Swarm Intelligence Symposium, Honolulu, Hawaii, USA, pp. 120-127.
IEEE (2007)

13. Clerc, M.: From theory to practice in particle swarm optimization. In: Handbook
of Swarm Intelligence, pp. 3-36 (2010)

14. Richer, T., Blackwell, T.: The lévy particle swarm. In: IEEE Congress on Evolu-
tionary Computation, pp. 3150-3157 (2006)

Hybrid Algorithms for the Minimum-Weight
Rooted Arborescence Problem

Sergi Mateo!, Christian Blum!, Pascal Fua?, and Engin Tiiretgen?

1 ALBCOM Research Group, Universitat Politécnica de Catalunya, Barcelona, Spain
sergi.mateo.bellido@est.fib.upc.edu, cblum@lsi.upc.edu
2 Computer Vision Lab, Ecole Polytechnique Fédérale de Lausanne, Switzerland
{pascal.fua@,engin.turetken}@epfl.ch

Abstract. Minimum-weight arborescence problems have recently
enjoyed an increased attention due to their relation to imporant prob-
lems in computer vision. A prominent example is the automated recon-
struction of consistent tree structures from noisy images. In this paper,
we first propose a heuristic for tackling the minimum-weight rooted ar-
borescence problem. Moreover, we propose an ant colony optimization
algorithm. Both approaches are strongly based on dynamic program-
ming, and can therefore be regarded as hybrid techniques. An extensive
experimental evaluation shows that both algorithms generally improve
over an exisiting heuristic from the literature.

1 Introduction

The minimum-weight rooted arborescence (MWRA) problem, which is consid-
ered in this work, is a generalization of the problem proposed by Venkata Rao
and Sridharan in [I0]. It can technically be described as follows. Given is a di-
rected acyclic graph G = (V, A) with integer weights on the arcs, that is, for
each a € A exists a corresponding weight w(a) € Z. Moreover, a vertex v, € V
is designated as the root node. Let A be the set of all arborescences in G that
are rooted in v,-. In this context, note that an arborescence is a directed, rooted
tree in which all arcs point away from the root vertex (see also [9]). Moreover,
note that 4 contains all arborescences, not only the ones with maximal size. The
objective function value (that is, the weight) f(T") of an arboresence T € A is
defined as follows:

A1) = w(a) - (1)
acT

The goal of the MWRA problem is to find an arboresence T* € A such that
the weight of T* is smaller or equal to all other arborescences in A. In other
words, the goal is to minimize objective function f(-). An example of the MWRA

problem is shown in Figure [
The differences to the problem proposed in [I0] are as follows. The authors
of [10] require the root v, to have only one single outgoing arc. Moreover, num-
bering the vertices from 1 to |V|, the given acyclic graph G is restricted to contain

M. Dorigo et al. (Eds.): ANTS 2012, LNCS 7461, pp. 61-[(3, 2012.
(© Springer-Verlag Berlin Heidelberg 2012

62 S. Mateo et al.

U, U

5 /I\-4 -4
<-2 ->+<— 3 \7

-2 -3 1

/
r— 6 —L 6& T °
_12 _
(a) Example input graph (b) Optimal solution. Value: -19

Fig. 1. (a) shows an input DAG with eight vertices and 14 arcs. The uppermost vertex
is the root vertex vr. (b) shows the optimal solution, that is, the arborescence rooted
in v, which has the minimum weight among all arborescence rooted in v, that can be
found in the input graph.

only arcs a; ; such that ¢ < j. These restrictions do not apply to the MWRA
problem. Nevertheless, as a generalization of the problem proposed in [10], the
MWRA problem is N P-hard. Concerning existing work, the literature only of-
fers the heuristic proposed in [I0], which can also be applied to the more general
MWRA problem.

The definition of the MWRA problem as outlined above is inspired by a novel
method which was recently proposed in [§] for the automated reconstruction of
consistent tree structures from noisy images, which is an important problem,
for example, in Neuroscience. Tree-like structures, such as dendritic, vascular, or
bronchial networks, are pervasive in biological systems. Examples are 2D retinal
fundus images and 3D optical micrographs of neurons. The approach proposed
in [8] builds a set of candidate arborescences over many different subsets of
points likely to belong to the optimal delineation and then chooses the best
one according to a global objective function that combines image evidence with
geometric priors (see Figure Pl for an example). The solution of the MWRA
problem (with additional hard and soft constraints) plays an important role in
this process. Therefore, developing better algorithms for the MWRA problem
may help in composing better techniques for the problem of the automated
reconstruction of consistent tree structures from noisy images.

The contribution of this work is as follows. First, a new heuristic for the
MWRA problem is presented which is based on the deterministic construction
of an arborescence of maximal size, and the subsequent application of dynamic
programming for finding the best solution within this constructed arborescence.
The second contribution is to be found in the application of ant colony opti-
mization (ACO) [] to the MWRA problem. As both the heuristic and the ACO
approach are based on a sub-ordinate dynamic programming procedure, both

Hybrid Algorithms for the MWRA Problem 63

(a) Original 2D retinal image (b) Reconstruction of the vascu-
lar structure

Fig. 2. (a) shows a 2D image of the retina of a human eye. The problem consists in
the automatic reconstruction (or delineation) of the vascular structure. (b) shows the
reconstruction of the vascular structure as produced by the algorithm proposed in [§].

algorithms can be seen as hybrid (meta-)heuristics [3]. An extensive experimen-
tal evalution of both algorithms shows their superiority to the only exisiting
heuristic proposed in [10].

The outline of this paper is as follows. Section[2lis dedicated to the new heuris-
tic proposed in this work. Furthermore, in Section [our ant colony optimiza-
tion approach is outlined. Finally, an extensive experimental study is described
in Section @ and conclusions as well as an outlook to future work is given in
Section

2 A New Heuristic Approach

In the following we describe a new heuristic approach for solving the MWRA
problem. First, starting from root vertex v,., an arborescence T’ of maximal size
in G is constructed as outlined in lines 2-9 of Algorithm [l Second, a dynamic
programming (DP) algorithm is applied to 7" in order to obtain the minimum-
weight arborescence T' that is contained in 7" and rooted in v,. The DP algo-
rithm from [I] is used for this purpose. Given an undirected tree T' = (Vr, Er)
with vertex and/or edge weights, and any integer number k € [0, |Vp| — 1],
this DP algorithm provides—among all trees with exactly k& edges in T—the
minimum-weight tree T*. The first step of the DP algorithm consists in arti-
ficially converting the input tree T into a rooted arborescence. Therefore, the
DP algorithm can directly be applied to arborescences. Morever, as a side prod-
uct, the DP algorithm also provides the minimum-weight arborescences for all
I with 0 < I < k, as well as the minimum-weight arborescences rooted in v,
for all [with 0 < I < k. Therefore, given an arborescence of maximal size T”,
which has ¢ < |V| — 1 arcs (where V' is the vertex set of the input graph G),
the DP algorithm is applied with k& = ¢t. Then, among all the minimum-weight

64 S. Mateo et al.

Algorithm 1. Heuristic DP-HEUR for the MWRA problem

1: mput a DAG G = (V, A), and a root node v,
2T =V ={v},A =0)

3: Apos = {a = (vi,v;) € A|vi € V' jv; ¢ V'}
4: while Apos # 0 do

5. a" = (v4,v5) := argmin{w(a) | a € Apos}

6: A :=AU{a"}

7. V=V Uu{v}

8 Apos:={a= (vi,v;) €A|vi eV, v; ¢ V'}
9: end while

10: T := Dynamic Programming(T",k = |V| — 1)
11: output: arborescence T'

arborescences rooted in v, for [< ¢, the one with minimum weight is chosen as
the output of the DP algorithm. In this way, the DP algorithm is able to gen-
erate the minimum-weight arborescence T' (rooted in v,.) which can be found in
arborescence T”. The heuristic described above is henceforth labelled DP-HEUR.

3 Ant Colony Optimization for the MWRA Problem

The ant colony optimization (ACO) approach for the MWRA problem which is
described in the following is a MAX-MIN Ant System (MMAS) [6] imple-
mented in the Hyper-Cube Framework (HCF) [2]. The algorithm, whose pseudo-
code can be found in Algorithm [2] works roughly as follows. At each iteration, a
number of n, solutions to the problem is probabilistically constructed based both
on pheromone and heuristic information. Each solution construction consists of
a first phase in which a rooted arborescence of maximal size T” in input graph
G is probabilistically constructed, starting from the root vertex v,.. Moreover, in
a second phase, the minimum-weight arborescence T rooted in v, which exists
in 7" is obtained by dynamic programming. The second algorithmic component
which is executed at each iteration is the pheromone update. Hereby, some of the
constructed solutions—that is, the iteration-best solution 7%, the restart-best
solution T7°, and the best-so-far solution T**—are used for a modification of the
pheromone values. This is done with the goal of focusing the search over time
on high-quality areas of the search space. Just like any other M M AS algorithm,
our approach employs restarts consisting of a re-initialization of the pheromone
values. Restarts are controlled by the so-called convergence factor (¢f) and a
Boolean control variable called bs update. The main functions of our approach
are outlined in detail in the following.

Construct Arborescence Of Maximal Size(G, v,): This function contructs a solu-
tion in the way which is shown in lines 2-9 of Algorithm [Il The only difference
is in the choice of the next arc to be added to the current arborescence T' at
each step (line 5 of Algorithm/[]). Instead of deterministically choosing from Apes
the arc which has the smallest weight value, the choice is done probabilistically,

Hybrid Algorithms for the MWRA Problem 65

Algorithm 2. Ant Colony Optimization for the MWRA Problem

1: input: a DAG G = (V, A), and a root node v,

2: T% .= ({v,},0), T := ({v.},0), ¢f := 0, bs update := false
3: 7o =05forallac A

4: while termination conditions not met do

5 fori=1,---,n, do

6: T’ := Construct Arborescence Of Maximal Size(G, v;)

7 T; := Dynamic Programming(T’,k = |V | — 1)

8: end for

9: T":=argmin{f(T;) | T,...,Tn.}

10: T < 77 then 77 i T

11: if 7% < 7% then T" :=T%

12: ApplyPheromoneUpdate(cf,bs update, T, T T"° T%*)
13: ¢f := ComputeConvergenceFactor(T)

14: if ¢f > 0.99 then

15: if bs update = true then
16: Tq =05 foralla€ A
17: T .= ({v.}, 0)

18: bs update := false

19: else

20: bs update := true

21: end if

22: end if

23: end while
24: output: 7%, the best solution found by the algorithm

based on pheromone and heuristic information. The pheromone model 7 that
is used for this purpose contains a pheromone value 7, for each arc a € A. The
heuristic information n(a) of an arc a is computed as follows. First, let

Wmax := max{w(a) | a € A}. (2)

Based on this maximal weight of all arcs in G, the heuristic information is defined
as follows:

77(@) ‘= Wmax + 1 - w(a) (3)

In this way, the heuristic information of all arcs is a positive number. Moreover,
the arc with minimal weight will have the heighest value concerning the heuristic
information. Given an arborescence T, and the non-empty set of arcs Apos that
may be used for extending 7", the probability for choosing arc a € Apes is defined
as follows:

Ta - 1(a)
ZaeApos 7o - ()
However, instead of choosing an arc from A, always in a probabilistic way, the

following scheme is applied at each construction step. First, a value r € [0, 1] is
chosen uniformly at random. Second, r is compared to a so-called determinism

pla|T") = (4)

66 S. Mateo et al.

Table 1. Setting of ki, krb, Kbs, and p depending on the convergence factor ¢f and
the Boolean control variable bs update

bs update = FALSE bs update

cf <04 cf €[0.4,0.6) cf €[0.6,0.8) ¢f > 0.8 = TRUE
Kib 1 2/3 1/3 0 0
Kb 0 1/3 2/3 1 0
Kbs 0 0 0 0 1
p 0.1 0.1 0.1 0.1 0.1

rate 0 € [0, 1], which is a fixed parameter of the algorithm. If r < ¢, arc a* € Apos
is chosen to be the one with the maximum probability, that is:

a* :=argmax{p(a|T’) | a € Apos} (5)

Otherwise, that is, when 7 > 4, arc a* € A is chosen probabilistically accord-
ing to the probability values.

ApplyPheromoneUpdate(cf,bs update, T, T T T"%): The pheromone update is
performed in the same way as in all MMAS algorithms implemented in the
HCF. The three solutions 7%, T and T (as described at the beginning of
this section) are used for the pheromone update. The influence of these three
solutions on the pheromone update is determined by the current value of the
convergence factor cf, which is defined later. Each pheromone value 7, € T is
updated as follows:

Ta ::Ta“i’p'(ga*’ra)) (6)

where)
o = Kip - AT, a) + kpp - A(T™, @) + ks - AT, a) (7)

where ki, is the weight of solution 7%, k,, the one of solution 77, and kps
the one of solution T%. Moreover, A(T,a) evaluates to 1 if and only if arc a
is a component of arborescence T'. Otherwise, the function evaluates to 0. Note
also that the three weights must be chosen such that k;, + k-5 + Kps = 1. After
the application of Equation [6] pheromone values that exceed Tmax = 0.99 are
set back to Tmax, and pheromone values that have fallen below 7, = 0.01 are
set back to Tin. This prevents the algorithm from reaching a state of complete
convergence. Finally, note that the exact values of the weights depends on the
convergence factor ¢f and on the value of the Boolean control variable bs update.
The standard schedule as shown in Table [[l has been adopted for our algorithm.

ComputeConvergenceFactor(7): The convergence factor ¢f is computed on the
basis of the pheromone values:

Z maX{TnlaX —TayTa — 7-min}
of =2 ™7 — 0.5

|T| . (Tmax - 7'min)

Hybrid Algorithms for the MWRA Problem 67

This results in ¢f = 0 when all pheromone values are set to 0.5. On the other
side, when all pheromone values have either value T,i, Or Tmax, then c¢f = 1.
In all other cases, ¢f has a value in (0, 1). This completes the description of all
components of the proposed algorithm, which is henceforth labelled Aco.

4 Experimental Evaluation

The algorithms proposed in this work—that is, DP-HEUR and AcO—were im-
plemented in ANSI C++ using GCC 4.4 for compiling the software. Moreover,
we reimplemented the heuristic proposed in [I0]. As mentioned in the introduc-
tion, this heuristic—henceforth labelled VENSRI—is the only existing algorithm
which can directly be applied to the MWRA problem. All three algorithms were
experimentally evaluated on a cluster of PCs equipped with Intel Xeon X3350
processors with 2667 MHz and 8 Gigabyte of memory. In the following, we first
describe the set of benchmark instances that have been used to test the three
algorithms. Afterwards, the experimental results are described in detail.

4.1 Benchmark Instances

Due to the lack of a publicly availabe set of benchmark instances, a benchmark
set was generated. The construction of each DAG G(V, A) from this benchmark
set was based on a pre-defined number of vertices (n) and a pre-defined number
of arcs (m). First, a random arborescence T with n vertices was generated. The
root node of T is called v,.. Each one of the remaining m—n-+1 arcs was generated
by randomly choosing two vertices v; and v;, and adding the corresponding arc
a = (v;,v;j) to T. In this context, a = (v;,v;) may be added to T, if and only
if by its addition no directed cycle is produced, and neither (v;,v;) nor (vj,v;)
form already part of the graph. In order to generate a diverse set of benchmark
instances we considered n € {20, 50,100, 500, 1000, 5000} and m € {2n,4n,6n}.
A total of 10 problem instances was generated for each combination of n and
m. This resulted in a total of 180 problem instances. The arc weights for all
instances were chosen uniformly at random from [—100, 100].

4.2 Results

The three algorithms considered for the comparison were applied exactly once
to each of the 180 problem instances of the benchmark set. Although Aco is a
stochastic search algorithm, this is a valid choice, because results are averaged
over groups of instances that were generated with the same parameters. ACO was
applied with n, = 10—that is, 10 solution constructions per iteration—, with
a determinism rate of § = 0.9, and with a stopping criterion of 10.000 solution
evaluations per run. Table 2 presents the results of each algorithm averaged over
the 10 instances for each combination of n and m (as indicated in the first two
table columns). Four table columns are used for presenting the results of each
algorithm. The column with heading value provides the average of the objective

S. Mateo et al.

68

06°STLFSGE 08°9LT8 0L°99GF (16°LF6E) 0T G968GT- 66°6L9% 0T LOLY (18°6£8C) 0L ESVILI- 6TL 09°GzeT (L€2992T) 00°TITLIG- U9
0%'660TCE 072658 0G'CLEY (8€°GTFY) 0T FIG9TT- G9'G8GT 00°0SSY (T6'€S1T) 09'G8EEIT- TF'9 0T'SPOV (€9°88€L) 09°G09LLT- uF 0009
06°6ZEVLT 08°2€S8 09'8CLE (64°LLET) 08°T809FT- 0L°0VFC O0T'126E (99°962C) 08'€LESET- €T°C 09'1L8€ (F2°0867) 06°CTI611- ug
18°92LF 0€°60¥L 000036 (LL°T00T) OT'TSEPS- T¥61 07’176 (8L°9¥8) 0S°0649¢- 2T0 00'6L8 (92°9L£C) 01°08¢SH- U9
00'8¥67 09'7€E8 08°9L8 (I6°€9FT) 08°68FSH- 69'8T 0T'S06 (68'T9FT) 09°L1€Fe- €20 08'T18 (69°0€0€) OF'GTILLE- uF 0001
¥€'9T0€ 06'1S¥6 06'CFL (¥9'892T1) 0F°S1662- OF'LT 0T°0.LL (0F'966) 0866692~ €20 09'TL9 (0€°LL8T) 08°€67FG- ug

0£'889 0L°0298 01'8ST (6°9¥F) 0S'6L2L%- 8ET 09'TLF (S9°6EL) 0F'9688T- 90°0 06'7ev (€200Tg) 09°98¢5g- U9

L€°6L9 030068 06°L6F (67°L€ST1) O8°F%9%C- 8GC 0z6%F (9%°€0L) 00°9S2LT- 90°0 00'20F (6T'Cece) 08°TTEST- uF 009
Gz'09% 09998 00°8LE (92°2£9) 00°68%ST- GI'C 0L°86¢ (64'809) 09'S80¥T- 900 06'87¢ (PL'80€1) 0SF0Vcl- ug

PI°8T 0L°2F9L 0906 (2T 16E) 0L'T8LSG- 700 01°¢6 (2T ¥LE) 0L650%- 100 > 0gL8 (8128%) OV 618F- ug

89°L1 0F'7028 06'88 (GL'12E) 06°SS6¥- 200 0668 (6°90€) 0L1.8€- 100> 0ge8 (69699) 00°€068- uy 001
1261 0L¥1LS 00GL (C9°SHY) OB 0ETE- 10°0 02'9L (€L°60%) 0L'8282- 100> 01L.9 (16CHP) 01°€08e- ug

00°G 0FFLFL 0OLFF (80°1SG) 06°788%- 100 > 0L6F (GL208) OT991g- 100> 09¢F (80°89¢) 0LGLET- ug

98°¥ 0%°€60L 07'¢F (81°21€) 09°F0%C- 100> o08'€r (€7'80%) 0¢GISI- 100 > o0L6¢ (6L2EF) 0£CI6T- up 0%
a4 00°GE9Y 068 (2S'88C) 00°TLST- 100 > 0g8¢ (11°662) 0L '9L¥T- 100 > 09¢e (88°€L2) 089¥gl- ug

9z'T 02999z 06°LT (€9'TST) 0S 96TT- 100 > 08L1 (S0'IST) OT'L¥6- 100> 0LLT (0SL6T) OT°TE0T- ug9

er'l 08°¢¥cg 06°LT (21°6S1) 09°966- 100 > 0FLT (F1°80T) 0£'908- 1000 > 06T (89°082) 09168~ w07
0T'T 08¥%6¢ 0¢¥T (19291) 0%°S09- 100> 06F%0 (69°96T) 01°69S- 1000 > 09T (9TF€1) 09Fas- ug

(s) swtry sfeas ozIs pIs anpea (s) swrg oz1s p3s anfea (s) swtry oz1s p3s anpea

[eJe)vs TISNE A HNAH-dA w u
(THSNEA)

[07] woiy wyytoSre oyy pue ‘(MndAH-JJ) fIom siyy ur pesodoid orysumey oyj o} paredwrod st 0OV ‘S)Nsol [ejuowiodxy ‘g 9[qe],

Hybrid Algorithms for the MWRA Problem 69

60
50

40

20 H DP-HEUR
mACO
10

-10

-20

% improvement

Fig. 3. Average improvement (in %) of Aco and DP-HEUR over VENSRI. Positive
values correspond to an improvement, while negative values indicate that the respective
algorithm is inferior to VENSRI. The improvement is shown for the three different arc-
densities that are considered in the benchmark set, that is, m = 2n, m = 4n, and
m = 6n.

function values of the best solutions found by the respective algorithm for the
10 instances of each combination of n and m. The second column (with heading
std) contains the corresponding standard deviation. The third column (with
heading size) indicates the average size (in terms of the number or arcs) of the
best solutions found by the respective algorithmﬂ Finally, the fourth column
(with heading time (s)) contains the average compution time (in seconds). For
all three algorithms, the computation time indicates the time of the algorithm
termination. In the case of ACo, an additional table column (with heading evals)
indicates at which solution evaluation, on average, the best solution of a run was
found. Finally, for each combination of n and m, the result of the best-performing
algorithm is indicated in bold font.

The results allow to make the following observations. First, Aco is for all com-
binations of n and m the best-performing algorithm. Averaged over all problem
instances ACO obtains an improvement of 31.9% over VENSRI. Figure [shows
the average improvement of ACO over VENSRI for three groups of input instances
concerning the different arc-densities. It is interesting to observe that the advan-
tage of ACO over VENSRI seems to grow when the arc-density increases. On
the downside, these improvements are obtained at the cost of a significantly in-
creased computation time. Concerning heuristic DP-HEUR, we can observe that
it improves in all 12 combinations of n and m where m € {4n,6n} over VENSRI.
Interestingly, however, DP-HEUR is inferior to VENSRI for all combinations with
m = 2n. In other words, DP-HEUR seems to be inferior to VENSRI when rather
sparse input graphs are concerned, whereas the opposite is the case for more

! Remember that solutions—that is, arborescences—may have any number of arcs
between 0 and |V| — 1, where |V| is the number of the input DAG G = (V, A).

70 S. Mateo et al.

dense input graphs. Averaged over all problem instances, DP-HEUR obtains an
improvement of 8.87% over VENSRI. The average improvement of DP-HEUR
over VENSRI is shown for the three groups of input instances concerning the
different arc-densities in Figure[Bl Concerning a comparison of the computation
times, we can state that DP-HEUR has a clear advantage over VENSRI especially
for large-size problem instances.

Figure [presents the information which is contained in the columns of Table[2]
that have headings size and evals. Concerning the average size of the solutions

5000
4500

4000

3500

3000

2500 m DP-HEUR

uACO

2000 VENSRI
1500

1000

snnll]

2n'4n'6n 2n 4ni6n 2n 4ni6n 2n/4n 6n 2n'4n 6n 2n 4n 6n
n=20 n =50 n=100 n=500 | n=1000 ' n=5000

Solution Size

(a) Average solution size

10000

8000

7000 ~

6000 / e
5000 — m=4n
4000 m = 6n
3000

2000

1000

0
n=20 n=>50 n =100 n =500 n=1000 n=5000

Evals

(b) Average number of solution evaluations at which the best solution of an
AcO run is found

Fig. 4. (a) shows, for each combination of n and m, information about the average
size—in terms of the number of arcs—of the solutions produced by DP-HEUR, Aco,
and VENSRI. (b) shows for each combination of n and m the average number of solution
evaluations at which the best solution of a run of Aco is found.

Hybrid Algorithms for the MWRA Problem 71

produced by the three algorithms (as shown in Figure it is interesting to
observe that the solutions produced by DP-HEUR consistently seem to be the
smallest ones, while the solutions produced by VENSRI seem generally to be the
largest ones. The size of the solutions produced by AcCO is generally inbetween
these two extremes. We currently have no explanation for this aspect, which
certainly deserves further examination.

Finally, Figure presents the average number of solution evaluations at
which the best solution of a run of Aco is found. Not surprisingly, when large
graphs are concerned, significantly more solution evaluations are necessary for
reaching the best solutions than when rather small graphs are tackled. Con-
cerning a comparison between the groups of graphs characterized by different
arc-densities, it can be observed that when rather small graphs are concerned
Aco seems to faster in obtaining good solutions for sparse graphs. However,
when the size of the input graph grows, this difference disappears.

5 Conclusions and Future Work

In this work we have proposed a heuristic and an ant colony optimization ap-
proach for the minimum-weight rooted arboresence problem. Both algorithms
make use of dynamic programming as sub-ordinate procedure. Therefore, they
may be regarded as hybrid algorithms. The experimental results show that both
approaches improve (on average) over an existing heuristic from the literature.
Interestingly, the advantage of the proposed algorithm over the existing heuristic
grows with increasing arc-density of the input graph.

Concerning future work, we plan to apply both approaches to other types of
problem instances. For example, we plan to generate problem instances in which
the number of arcs with negative weights is significantly higher than the number
of arcs with positive weights, or vice versa. Moreover, we plan to implement an
integer programming model for the tackled problem—in the line of the model
proposed in [5] for a related problem—and to solve the model with an efficient
integer programming solver. In [7] we already proposed an extension of this
model for the problem of reconstructing tree structures.

Acknowledgments. This work was supported by grant TIN2007-66523
(FORMALISM) of the Spanish government.

References

1. Blum, C.: Revisiting dynamic programming for finding optimal subtrees in trees.
European Journal of Operational Research 177(1), 102-114 (2007)

2. Blum, C., Dorigo, M.: The hyper-cube framework for ant colony optimization.
IEEE Transactions on Systems, Man and Cybernetics — Part B 34(2), 1161-1172
(2004)

3. Blum, C., Puchinger, J., Raidl, G., Roli, A.: Hybrid metaheuristics in combinatorial
optimization: A survey. Applied Soft Computing 11(6), 4135-4151 (2011)

72

S. Mateo et al.

Dorigo, M., Stiitzle, T.: Ant Colony Optimization. MIT Press, Cambridge (2004)
Duhamel, C., Gouveia, L., Moura, P., Souza, M.: Models and heuristics for a min-
imum arborescence problem. Networks 51(1), 34-47 (2008)

Stiitzle, T., Hoos, H.H.: MAX — MZN Ant System. Future Generation Computer
Systems 16(8), 889-914 (2000)

Tiretken, E., Benmansour, F., Fua, P.: Automated reconstruction of tree structures
using path classifiers and mixed integer programming. In: Proceedings of CVPR
2012 — 25th IEEE Conference on Computer Vision and Pattern Recognition. IEEE
Press (in press, 2012)

Tiretken, E., Gonzélez, G., Blum, C., Fua, P.: Automated reconstruction of den-
dritic and axonal trees by global optimization with geometric priors. Neuroinfor-
matics 9(2-3), 279-302 (2011)

Tutte, W.T.: Graph Theory. Cambridge University Press, Cambridge (2001)

. Venkata Rao, V., Sridharan, R.: Minimum-weight rooted not-necessarily-spanning

arborescence problem. Networks 39(2), 77-87 (2002)

Improving the cAnt-Minerpg
Classification Algorithm

Matthew Medland, Fernando E.B. Otero, and Alex A. Freitas

School of Computing, University of Kent, Canterbury, UK
{mm443,f.e.b.otero,a.a.freitas}@kent.ac.uk

Abstract. Ant Colony Optimisation (ACO) has been successfully ap-
plied to the classification task of data mining in the form of Ant-Miner.
A new extension of Ant-Miner, called cAnt-Minerpg, uses the ACO pro-
cedure in a different fashion. The main difference is that the search in
cAnt-Minerpp is optimised to find the best list of rules, whereas in Ant-
Miner the search is optimised to find the best individual rule at each
step of the sequential covering, producing a list of best rules. We aim to
improve cAnt-Minerpp in two ways, firstly by dynamically finding the
rule quality function which is used while the rules are being pruned, and
secondly improving the rule-list quality function which is used to guide
the search. We have found that changing the rule quality function has lit-
tle effect on the overall performance, but that by improving the rule-list
quality function we can positively affect the discovered lists of rules.

1 Introduction

Data mining is the automatic search for useful, usable, and preferably interesting
patterns in data [3UI3]. These patterns are used by anyone with an interest in
what their data holds—e.g., businessmen or scientists. There are multiple data
mining tasks, of which classification is the most studied.

The classification task seeks to create a model that places objects (exam-
ples) into groups. A class value (group name) is then assigned by analysing
common traits (attributes’ values) between objects of that class. Classification
problems can therefore be viewed as optimisation problems, where the intended
outcome is to find the best model that represents the predictive relationships
in the data. There are many different ways to represent these models, such as
‘black-box’ models produced by support vector machines (SVM) and artificial
neural networks, which are difficult to interpret, and ‘white-box’ decision tree
and classification rule models, which are more readily interpreted [II]. ‘White-
box’ methods have the advantage of being easier to comprehend, and so they are
used to provide further understanding of the data. This enhanced understanding
leads to a greater degree of trust in the models produced and enables decision
makers to make the best possible decisions.

Ant Colony Optimization (ACO) algorithms have successfully been applied
to the classification task in the form of Ant-Miner [2[10]. Ant-Miner seeks to
extract a list of classification rules of the form IF antecedent THEN consequent

M. Dorigo et al. (Eds.): ANTS 2012, LNCS 7461, pp. 73-B4, 2012.
(© Springer-Verlag Berlin Heidelberg 2012

74 M. Medland, F.E.B. Otero, and A.A. Freitas

from a data set, where the antecedent is composed by predictor attribute-value
conditions, and the consequent corresponds to the class value to be predicted.

Several extensions of Ant-Miner have been proposed in the literature and
have been reviewed in [8]. The majority of these extensions maintain the overall
structure of the algorithm—i.e., the algorithm employs an ACO-based procedure
to create individual rules which are joined to create a complete classification
model (list of rules). This strategy to produce a list of classification rules is known
as sequential covering (or separate-and-conquer), where each rule is discovered
individually. An improved strategy has recently been proposed in the cAnt-
Minerpp algorithm [J], where an ACO-based procedure is used not to construct
individual rules, but a full list of rules. One of the main differences between the
cAnt-Minerpg and Ant-Miner algorithms is that in cAnt-Minerpg the search is
performed and optimised to find the best list of rules, whereas in Ant-Miner (and
its extensions) the search is performed and optimised to find the best individual
rule at each step of the sequential covering, resulting in the list of best rules.
In other words, in cAnt-Minerpg the search is governed by the quality of a
candidate list of rules, while in Ant-Miner the search is guided by the quality of
an individual rule.

One of the main components of Ant-Miner is the rule quality function used
to guide the search. The use of different rule quality functions in sequential
covering algorithms has been studied in [57] and in Ant-Miner algorithm in
[12]. Improving the rule quality function of sequential covering algorithms tends
to improve the overall performance of the algorithm. Although the search in
cAnt-Minerpp is guided by the quality of a list of rules, the algorithm uses a
rule quality function to prune (i.e., remove irrelevant terms) from a candidate
rule. Therefore, there are two quality functions involved in the search for the best
list of rules in cAnt-Minerpg: the rule quality function used during pruning and
the rule-list quality function used to guide the search (i.e., update pheromones).

In this paper we propose to improve the search of the cAnt-Minerpg algorithm
by (1) allowing the algorithm to dynamically choose a rule quality evaluation
function for a candidate rule and (2) using a new rule-list quality function to
guide the search. The extension (1) is possible since the rule quality function has
a smaller role in cAnt-Minerpg—it is only used during pruning—and it is not
used as a criterion to compare different rules. A dynamic rule quality function
selection would not be possible in Ant-Miner, as the rule quality function needs
to be consistent throughout to ensure that the algorithm is comparing like-to-
like. The extension (2) aims at preventing overfitting—the case where the list of
rules is too tailored to the training set and has poor generalisation performance.
We evaluate the effect of these extensions using 14 data sets from the UCI
Machine Learning repository [4] in terms of both predictive accuracy and size of
the discovered classification model.

The remainder of this paper is organised as follows. In Section[2we discuss the
differences in the search strategy of Ant-Miner and cAnt-Minerpg algorithms.
In Section Bl we discuss our proposed improvements to cAnt-Minerpg. Then we
present and discuss our results in Section El Section [Bl then concludes this paper.

Improving the cAnt-Minerpg Classification Algorithm 75

2 Background

Separate-and-conquer, also known as sequential covering, classification algo-
rithms are data mining algorithms that employ two steps to create a classifi-
cation model. First, the algorithm classifies part of the dataset (conquer) and
then removes the classified data from the dataset (separate). This process is re-
peated until the number of unclassified examples falls below a set threshold. At
each stage, the data which is classified depends on the classification rule cho-
sen, and which classification rule is chosen depends on the quality of possible
rules. To calculate this, a rule quality function is used and it is this function
which determines the success of most sequential covering algorithms. There are
multiple aspects of a rule which can affect its quality. For example, a rule may
never misclassify an example (high consistency) but only cover a small subset of
examples (low coverage). Deciding which rule quality function to use always has
the problem of finding an effective trade-off between consistency and coverage.

The Ant-Miner algorithm follows a sequential covering strategy using an ACO
procedure to create individual rules. First, a construction graph is created where
each node is a value for a given attribute, with every attribute-value pair from
the data set represented. Each ant then moves from a start node (with an empty
rule) and stochastically chooses a vertex with a probability based upon the
pheromone value and a heuristic value. The visited vertex is a rule term as
a [attribute, value| pair. The ant will continue to add new terms until either
all attributes have been used or adding another would decrease the number of
covered examples below a predefined threshold. After a rule has been created, a
pruning algorithm removes irrelevant terms from the newly created rule. Once
every ant in the colony has traversed the graph, the best rule based on a quality
function is selected and the pheromone levels are adjusted. The pheromone on
the terms included in the best rule increase and the pheromone on the others
(unused terms) decrease. After a rule has been created by the ACO procedure,
all of the examples which it covers are removed from the data set and the next
rule is created. The algorithm finishes once the training set has less than a
predefined number of training examples remaining and the list of best rules is
returned as the discovered classification model. Most of the proposed extensions
of Ant-Miner follow this same strategy to create a list of rules [§].

cAnt-Minerpg is an ACO classification algorithm that employs a different
search strategy than Ant-Miner. Rather than searching for the list of best rules
as Ant-Miner does, cAnt-Minerpg instead searches for the best list of rules. This
change may sound minor, but it has a dramatic effect on the algorithm. In Ant-
Miner each ant creates an individual rule, whereas in cAnt-Minerpg each ant
creates an entire list of rules. Once the best candidate list of rules has been
created, the pheromones are updated which affects the lists that will be created
in the future iterations. The best list of rules chosen throughout the execution
of the algorithm is returned as the discovered classification model.

The high-level pseudocode of cAnt-Minerpp is presented in Figure[Il At each
iteration, an ant in the colony starts with an empty list and the full training
set. An ant then creates a rule, prunes the rule using the rule quality function,

76 M. Medland, F.E.B. Otero, and A.A. Freitas

Input: training examples
Output: best discovered list of rules
InitialisePheromones();
listgb — {},
m < 0;
while m < maximum iterations and not stagnation do
liStib < {},
for n < 1 to colony size do
examples < all training examples;
listn <+ {};
while |ezamples| > maximum uncovered do
ComputeHeuristicInformation(examples);
rule <— CreateRule(examples);
Prune(rule);
examples < examples — Covered(rule, examples);
listy, < list, + rule;
end while
if Quality(listn) > Quality(list;y) then
listsp < listn;

e e el el
NSNERRROORNS TN -

18. end if

19. end for

20. UpdatePheromones(listi);

21. if Quality(listiy) > Quality(listg,) then
22. listgb < listib;

23. end if

24, m<+m+1;
25. end while
26. return listg;

Fig. 1. High-level pseudocode of the cAnt-Minerpg algorithm [9]

and removes all of the covered examples from the training set. The ant then
repeats these steps until the number of remaining examples lies below a prede-
fined threshold. It is important to note that at no point are rules compared to
each other, and that the only time the rule quality function is used is during
the pruning stage. The list of rules created by the ant is then compared to the
current best list of rules and if it is better than the current best, it replaces it
as the current best. Once all ants in the colony have finished creating candidate
list of rules, the pheromones are updated. This entire process repeats until ei-
ther the maximum number of iterations has been reached or until the algorithm
converges.

There is a clear difference in the search strategy between Ant-Miner (and its
extensions) and cAnt-Minerpp algorithms. The search in Ant-Miner is guided
by the quality of the individual rules, as in (traditional) sequential covering
algorithms. The best rule found is always used, regardless of how it affects the
list of rules. The search in cAnt-Minerpg algorithm, however, is not concerned
by the quality of the individual rules as long as the quality of the complete list
of rules is improving, since the entire list is created at once and the best list is
chosen to guide the search. Therefore, the rule quality function has a smaller
role—only used to decide whether or not to prune a rule—and the rule-list
quality function guides the search.

Improving the cAnt-Minerpg Classification Algorithm 77

3 Proposed Improvements to cAnt-Minerpg

This paper presents two extensions of the cAnt-Minerpp algorithm in order to
improve the search for the best list of rules. The first extension consists of al-
lowing the algorithm to dynamically choose the rule quality function to be used
during the pruning procedure (per rule fashion), where different rules can be
pruned using different rule quality functions. As has been previously studied
[BU7IT2], rule quality functions have different bias and capture different aspects
of the rule (e.g., some might favour consistency over coverage). The second ex-
tension consists of using a pessimistic error rate rule-list quality function to
evaluate a candidate list of rules and, consequently, to guide the search.

3.1 Dynamically Choosing Rule Evaluation Functions

In cAnt-Minerpg, ants find routes through a fully connected graph of all possible
rule terms (attribute-value pairs) in order to construct rules. Our initial approach
to dynamically choose the rule quality function was based around adding extra
vertices to the construction graph containing the candidate rule terms to repre-
sent the available rule quality functions, resulting in one large graph. This simple
approach had the benefits that it was an easy concept to grasp and it fits very
nicely into cAnt-Minerpp with very few modifications to the existing algorithm.
However, we have found that using this approach, the same rules can be created
by the pruning procedure but with different rule quality functions. This affected
the convergence of the algorithm, since the choices of the rule quality functions
were not unique and, consequently, there was no selective pressure towards a
particular rule quality function. This meant that the algorithm would rarely
converge.

These results led us to realise that the convergence tests had to purely rely
upon the terms selected to create the rules. To enable this behaviour, we used
two separate construction graphs: one purely consisting of different rule quality
functions, and the other consisting of rule terms. When creating a rule, an ant
will first visit the rule quality functions graph to select an evaluation function,
and then visit the rule terms graph to create the rule.

This process can be implemented adding only a few lines to the algorithm
presented in Figure [[l The first addition would be the creation of a rule qual-
ity functions graph and initialise its pheromones (line 1). Next, each ant would
choose the rule quality function before creating a rule (line 11), and then store
the rule quality for later use in the pruning stage (line 12). The selection of the
rule quality function is only based on pheromone levels, no heuristic informa-
tion is used. Once the iteration-best list of rules has been determined, the two
pheromone matrices would be updated (line 20) to reflect the chosen rule quality
functions as well as the list of rule terms used in the list of rules.

Though the rule quality functions and rule terms graphs are independent, the
pheromones in cAnt-Minerpg are retained in sequence. In other words, the first
rule being chosen in a list has a list of pheromones which is saved and updated
across iterations, as does the second and so forth. This means that the first rule

78 M. Medland, F.E.B. Otero, and A.A. Freitas

IF petal-width <= 0.8 THEN Iris-setosa USING F-measure function

IF petal-width > 1.75 THEN Iris-virginica USING Error-based function
IF sepal-length <= 6.15 THEN Iris-versicolor USING M-Estimate function
IF <empty> THEN Iris-virginica

Fig. 2. An example of a list of rules with associated rule quality functions. The default
rule (with an empty antecedent) does not have a function associated.

is now converging to the list of terms, which was affected by the choice of the rule
quality function, both of which may be vastly different to the terms and quality
function used by the second rule. Convergence is only determined by analysing
the rule terms graph, since different rule quality functions can lead to the same
rule and the choice of the rule quality function does not affect the quality of
the list of rules (as long as they produce the same rules). Figure [l presents an
example of a list of rules with associated rule quality functions.

In order for our dynamic rule quality function selection process to be of any use
we needed a wide selection of different rule quality functions. We have selected
previously used rule quality functions described in [7[12], as well as the original
rule quality function used in cAnt-Minerpp (Sensitivity x Specificity) and a rule
quality function based on C4.5’s error-based measure [I1, p. 41]. The chosen
functions can be found in Table[Il For the parametric quality functions, we have
used their default parameter values [7] (shown in the ‘Parameter’ column in
Table [l). In the function definitions we make use of a series of shorthands to
condense the formulae. These are defined as below:

TP The number of examples covered by the rule that belong to the class pre-
dicted by the rule (true positives).

FP The number of examples covered by the rule that do not belong to the class
predicted by the rule (false positives).

TN The number of examples not covered by the rule that do not belong to the
class predicted by the rule (true negatives).

FN The number of examples not covered by the rule that belong to the class
predicted by the rule (false negatives).

S The total number of training examples (TP + FP + TN + FN).

3.2 Error-Based Rule-List Function

After a candidate list of rules is created in cAnt-Minerpg, its quality is measured
in terms of predictive accuracy in the training set. It is expected that a list of
rules that perform well in the training set will also perform well in the test set
(the set of unseen examples). However, the use of the predicted accuracy can
lead to overfitting—the case where the list of rules created is too tailored to the
training set and does not generalise well, i.e., it has a lower predictive accuracy
in the test set. In order to mitigate the possibility of overfitting, we propose the

Improving the cAnt-Minerpg Classification Algorithm 79

Table 1. The rule quality functions used in the dynamic selection process

Function Name Parameter Formula
TP+TN
Accuracy - TP+FP+TN+FN
Confidence + Coverage - T PT+PF pt TSP
Cost Measure c=0.437 (¢c:TP)—((1—¢)- FP)
2y, TP . TP
F-measure B8=0.5 (Hf) PN TEEPE
B2 TP+FN + TP+FP
TP
Jaccard - TPLFP4FN
Klosgen w = 0.4323 (TPgFP)w . (TPT+PFP - TPEFN)
. TP
M-Estimate m = 22.466 ;Fii;npfm
C4.5’s Error-based function* - Ucp(FP, TP+ FP)
Relative Cost Measure cr = 0.342 (er -recall) — ((1 —cr) - FPF+1;N)
TP TN

Sensitivity x Specificity - TPAFN ~ TN4FP

*The Ucp function corresponds to the upper limit of the probability of an error (F'P) over the
examples covered by a rule (T'P + FP). More details can be found in [I1}, p. 41]

use of a function based on C4.5’s pessimistic error rate (Ucp) to measure the
quality of a candidate list of rules, given by

L
S (TP, + FP,)-Ucp(FP,, TP, + FP,)

r=1

where F'P,. and T P, are the number of false positives and true positives of the
r-th rule, respectively, L is the number of rules in the candidate list and S is
the number of training examples. According to (), the quality of a list of rules
corresponds to 1 minus the sum of the predicted errors (the number of examples
classified by a rule times its associated Ucr error rate [I1), p. 41]) of the rules
divided by the number of examples in the training set—the lower the sum of
predicted errors, the higher the quality of the list.

4 Results

In order to evaluate the proposed extensions of the cAnt-Minerpg algorithm,
we have selected 14 datasets from the UCI Machine Learning repository [4].
Table 2] presents a summary of the data sets used in our experiments. We have

80 M. Medland, F.E.B. Otero, and A.A. Freitas

Table 2. Summary of the data sets used in the experiments

Data set # Attributes # Classes # Examples
Nominal Continuous
balance-scale 4 0 3 625
breast-1 9 0 2 286
breast-w 0 30 2 569
credit-a 8 6 2 690
dermatology 33 1 6 366
glass 0 9 7 214
heart-c 6 7 5 303
hepatitis 13 6 2 155
ionosphere 0 34 2 351
iris 0 4 3 150
liver-disorders 0 6 2 345
parkinsons 0 22 2 195
wine 0 13 3 178
700 16 0 7 101

evaluated four different variations of cAnt-Minerpg: the original cAnt-Minerpg;
the cAnt-Minerpg with the proposed dynamic rule quality function selection (de-
noted with a ‘[D]’ marking); the cAnt-Minerpg with the proposed error-based
rule-list quality function (denoted with a ‘[E]’ marking); and cAnt-Minerpg with
both dynamic rule quality function selection and error-based list quality function
(denoted with a ‘[D+E]’ marking). We carried out a tenfold cross-validation pro-
cedure and the cAnt-Minerpp default parameters were used [9]: colony size of
5, mazimum number of iterations of 500 and evaporation factor of 0.90 (i.e.,
the evaporation rate is equal to 1 — factor, therefore the pheromone values
are decreased by 10% during evaporation). Since cAnt-Minerpp is a stochastic
algorithm, it was run 10 times for each of the cross-validation folds.

The results of our experiments are presented in Table [B] for predictive accu-
racy, and Table @] for the size of the discovered model (measured as the total
number of terms in the list of rules). A value on those tables corresponds to
the average value measured over the tenfold cross-validation. Table [B] presents
the results of the non-parametric Friedman statistical test with the post-hoc
Hommel’s test [IJ6]. The information presented in Table [f] corresponds to the
average rank (first column), where the lower the rank the better the algorithm’s
performance, and the adjusted pgomm value. Statistically significant differences
among the algorithm with the highest rank (the control ‘(c)’ algorithm) are de-
termined by the pgomm value: if the p value is less than 0.1, the difference in
the rank is statistically significant at the o = 0.1 level; if the p value is less
than 0.05, the difference in the rank is statistically significant at the v = 0.05
level.

Improving the cAnt-Minerpg Classification Algorithm 81

Table 3. Average predictive accuracy (average =+ standard error) measured over
tenfold cross-validation. The highest predictive accuracy for a given data set is shown

in bold.

cAMpgp cAMpg [E] cAMpg [D} cAMpgp [D+E]
balance-scale 76.83 + 0.24 76.26 £+ 0.29 76.69 £ 0.17 76.28 + 0.21
breast-1 72.32 £+ 0.31 75.27 + 0.35 70.59 £ 0.42 73.77 £ 0.36
breast-w 94.29 + 0.16 94.34 £+ 0.16 94.09 £ 0.33 94.60 + 0.20
credit-a 85.68 +£ 0.15 86.10 £+ 0.23 85.19 £+ 0.31 85.77 £ 0.22
dermatology 92.46 + 0.31 92.40 £ 0.40 91.72 £+ 0.35 91.97 £+ 0.28
glass 73.94 + 0.49 73.11 £ 0.61 72.73 £+ 0.65 73.52 £+ 0.42
heart-c 55.50 + 0.37 55.21 + 0.41 54.57 £+ 0.63 54.83 £+ 0.62
hepatitis 78.78 £ 0.43 78.55 + 0.66 79.50 + 0.61 78.83 £ 0.55
ionosphere 89.65 + 0.31 89.95 + 0.23 89.32 + 0.30 90.58 + 0.45
iris 93.24 + 0.20 93.13 £ 0.26 94.33 £ 0.25 94.47 + 0.14
liver-disorders 66.72 £+ 0.40 66.71 £+ 0.41 67.10 £ 0.49 67.98 + 0.53
parkinsons 86.98 + 0.65 88.42 + 0.50 87.88 £+ 0.29 87.72 £ 0.55
wine 93.57 £+ 0.32 94.51 £+ 0.31 94.18 £+ 0.56 95.04 £+ 0.33
700 88.59 + 0.50 88.67 £ 0.26 89.19 + 0.41 88.57 £+ 0.49

Table 4. Average number of terms (average + standard error) measured over tenfold
cross-validation. The lowest number of terms for a given data set is shown in bold.

cAMpgp cAMpg [E] cAMpg [D} cAMpgp [D+E]
balance-scale 12.64 + 0.03 12.66 4+ 0.05 15.45 + 0.16 14.32 £+ 0.13
breast-1 19.15 + 0.40 8.65 + 0.17 34.65 £+ 0.82 11.85 £+ 0.62
breast-w 8.55 £+ 0.12 8.03 + 0.19 11.90 + 0.21 9.50 £+ 0.28
credit-a 17.54 + 0.32 13.71 + 0.38 35.53 £ 0.74 25.23 + 0.64
dermatology 44.47 £+ 0.63 43.93 £ 0.63 42.39 £ 0.66 41.89 + 0.57
glass 10.73 + 0.14 9.99 + 0.15 13.24 4+ 0.25 12.61 £+ 0.22
heart-c 27.65 £+ 0.58 25.10 + 0.57 38.66 £+ 0.68 29.90 £+ 0.71
hepatitis 10.87 £ 0.17 10.36 £+ 0.40 12.71 4+ 0.43 11.47 £ 0.20
ionosphere 11.04 + 0.17 9.96 + 0.25 15.35 + 0.38 11.38 4+ 0.32
iris 4.92 £+ 0.08 4.17 £ 0.13 5.04 £ 0.11 4.13 + 0.05
liver-disorders 11.78 4+ 0.08 11.49 £+ 0.12 29.66 + 0.30 23.70 £ 0.50
parkinsons 7.02 £ 0.11 5.96 + 0.08 7.94 £+ 0.15 7.00 £ 0.15
wine 4.75 4+ 0.08 3.83 + 0.07 5.66 + 0.14 4.42 4+ 0.07
Z0O 6.70 + 0.09 7.12 £ 0.10 6.97 £+ 0.10 7.41 £ 0.19

The use of the dynamic rule quality function selection combined with the

error-based rule-list quality function (cAnt-Minerpg [D+E]) led to an over-
all improvement in predictive accuracy and achieved the highest average rank,
although the differences are not statistically significant according to the Fried-
man test. The use of the error-based rule-list quality (cAnt-Minerpg [E]) had
a similar predictive accuracy to the original cAnt-Minerpg, achieving a similar

82 M. Medland, F.E.B. Otero, and A.A. Freitas

Table 5. Statistical test results according to the non-parametric Friedman test with
the Hommel’s post-hoc test. Statistically significant differences at the o = 0.1 level are
tabulated in bold and differences at the o = 0.05 level are underlined.

Configuration Average Rank Adjusted promm

(i) Predictive Accuracy

cAnt-Minerpg [D+E] (c) 2.07 -
cAnt-Minerps [E] 2.43 0.4642
cAnt-Minerpp 2.57 0.4642
cAnt-Minerpg [D] 2.93 0.2369
(i) Model Size

cAnt-Minerpg [E] (c) 1.43 -
cAnt-Minerpg 2.29 0.0789
cAnt-Minerpg [D+E] 2.57 0.0383
cAnt-Minerpg [D] 3.71 8.4E-6

average rank. The use of the dynamic rule quality function (cAnt-Minerpgp [D])
has not led to an improvement in predictive accuracy, achieving the lowest aver-
age rank. In terms of the discovered model size, the use of the error-based rule-list
quality (cAnt-Minerpg [E]) led to a statistically significant improvement in the
size of the discovered lists, reducing the average number of terms in the lists.
The use of the dynamic rule quality function selection (cAnt-Minerpg [D] and
cAnt-Minerpp [D+E]) resulted in longer lists and achieved the lowest rank.

The error-based rule-list function has shown significant improvement in terms
of the size of the discovered lists of rules, without a drop in accuracy. This is
a very useful finding as the cAnt-Minerpg algorithm suffered from increased
list size, which now can be avoiding by the use of the new error-based rule-list
function. The dynamic rule quality function selection, however, has shown no
significant gain in accuracy while performing much worse in terms of size.

During the experiments using the dynamic rule quality function selection we
monitored which rule quality functions were being chosen. The frequency of each
rule quality function being chosen per dataset can be found in Figure[3l The top
image (Figure Bal) shows the results when using the dynamic search alongside
the traditional predictive accuracy rule-list function, whereas the bottom image
(Figure [BH) shows the results when the proposed error-based rule-list function
was used. In Figure[3al it appears that four rule quality functions were being used
more often quite consistently, except in the case of the zoo dataset, suggesting
that the use of these functions can lead to improvements in the accuracy during
training and potentially overfitting. In Figure BB however, the pattern is much
less clear and no rule quality function stands out.

Improving the cAnt-Minerpg Classification Algorithm 83

2
5]
o
@
@
o
c
L}
©
a

breast.|
breast.w
credit.a
dermatology
glass
heart.c
hepatitis
ionosphere
iris
liver.disorders
parkinsons
wine

z00

SensitivitySpecificityFunction

RelativeCostMeasureFunction

ReducedErrorFunction

MEstimateFunction

KlosgenFunction

JaccardFunction

FmeasureFunction

CostMeasureFunction

ConfidenceCoverageFunction
AccuracyFunction

(a) Using the predictive accuracy rule-list function.

balance.scale
breast.|
breast.w
credit.a
dermatology
glass

heart.c
hepatitis
ionosphere
iris
liver.disorders
parkinsons
wine

200

SensitivitySpecificityFunction

RelativeCostMeasureFunction

ReducedErrorFunction

MEstimateFunction

KlosgenFunction

JaccardFunction

FmeasureFunction

CostMeasureFunction

ConfidenceCoverageFunction

AccuracyFunction

(b) Using the error-based rule-list function.

Fig. 3. Heatmaps showing the frequency at which different rule quality functions were
chosen per dataset—the darker the colour the more often the rule quality function was
used

84 M. Medland, F.E.B. Otero, and A.A. Freitas

5 Conclusion

We have found that the error-based rule-list evaluation function produces a sta-
tistically significant improvement in terms of the size of the discovered lists, and
that there is no detriment to the predictive accuracy. Our second finding was
that the dynamic selection of rule quality functions did not yield any improve-
ments. This leads us to believe that the characteristics of an individual rule
quality function have little effect on the final quality of the discovered lists, and
that any sensible rule quality function can be used.

We have shown that the dynamic selection of rule quality function (used
purely for pruning) has little effect on the quality of the lists, therefore as a
future research direction, it may be interesting to investigate the use of different
pruning strategies within cAnt-Minerpg that are not necessary dependent on
the rule quality and more related to the quality of a list of rules.

References

1. Demsar, J.: Statistical Comparisons of Classifiers over Multiple Data Sets. JMLR 7,
1-30 (2006)

2. Dorigo, M., Stiizle, T.: Ant Colony Optimization. The MIT Press (2004)

3. Fayyad, U., Piatetsky-Shapiro, G., Smith, P.: From data mining to knowledge
discovery: an overview. In: Advances in Knowledge Discovery & Data Mining, pp.
1-34. MIT Press (1996)

4. Frank, A., Asuncion, A.. UCI Machine Learning Repository (2010),
http://archive.ics.uci.edu/ml

5. Filirnkranz, J., Flach, P.: ROC ‘n’ Rule Learning—Towards a Better Understanding
of Covering Algorithms. Machine Learning 58, 39-77 (2005)

6. Garcia, S., Herrera, F.: An Extension on ‘Statistical Comparisons of Classifiers
over Multiple Data Sets’ for all Pairwise Comparisons. JMLR 9, 2677-2694 (2008)

7. Janssen, F., Firnkranz, J.: On the quest for optimal rule learning heuristics. Ma-
chine Learning 78, 343-379 (2010)

8. Martens, D., Baesens, B., Fawcett, T.: Editorial survey: swarm intelligence for data
mining. Machine Learning 82, 1-42 (2011)

9. Otero, F., Freitas, A., Johnson, C.: A New Sequential Covering Strategy for Induc-
ing Classification Rules with Ant Colony Algorithms. To Appear in IEEE Trans.
on Evolutionary Computation (2012)

10. Parpinelli, R., Lopes, H., Freitas, A.: Data Mining with an Ant Colony Optimiza-
tion Algorithm. IEEE Trans. on Evolutionary Computation 6(4), 321-332 (2002)

11. Quinlan, J.R.: C4.5: Programs for Machine Learning. Kaufmann Publishers Inc.,
San Francisco (1993)

12. Salama, K., Abdelbar, A.: Exploring Different Rule Quality Evaluation Functions
in ACO-based Classification Algorithms. In: IEEE Symposium on Swarm Intelli-
gence (SIS), pp. 1-8 (2011)

13. Witten, 1., Frank, E., Hall, M.: Data Mining: Practical Machine Learning Tools
and Techniques, 3rd edn. Morgan Kaufmann (2011)

http://archive.ics.uci.edu/ml

Introducing Novelty Search
in Evolutionary Swarm Robotics

Jorge Gomes!:3, Paulo Urbano!, and Anders Lyhne Christensen?:?
! LabMAg, Faculdade de Ciéncias da Universidade de Lisboa, Portugal
2 Instituto Universitario de Lisboa (ISCTE-IUL), Lisboa, Portugal
3 Instituto de Telecomunicactes, Lisboa, Portugal
{jgomes ,pub}@di .fc.ul.pt, anders.christensen@iscte.pt

Abstract. Novelty search is a recent and promising evolutionary tech-
nique. The main idea behind it is to reward novel solutions instead of
progress towards a fixed goal, in order to avoid premature convergence
and deception. In this paper, we use novelty search together with NEAT,
to evolve neuro-controllers for a swarm of simulated robots that should
perform an aggregation task. In the past, novelty search has been ap-
plied to single robot systems. We demonstrate that novelty search can
be applied successfully to multirobot systems, and we discuss the chal-
lenges introduced when moving from a single robot setup to a multirobot
setup. Our results show that novelty search can outperform the fitness-
based evolution in swarm robotic systems, finding (i) a more diverse set
of successful solutions to an aggregation task, (ii) solutions with higher
fitness scores earlier in the evolutionary runs, and (iii) simpler solutions
in terms of the topological complexity of the evolved neural networks.

1 Introduction

Novelty search [I0] is a divergent evolutionary technique. In traditional evolu-
tionary computation, candidate solutions are scored by an objective function
that has been derived directly from the task or problem for which a solution is
sought. Novelty search does not drive the evolutionary process toward a fixed
goal. In novelty search, candidate solutions are scored based on how different
they are from solutions seen so far and the evolutionary process is therefore con-
tinuously driven towards novelty. As a result, novelty search has the potential to
overcome deception [4]. Deception can be a challenging problem in evolutionary
computation and occurs when the evolutionary process converges prematurely to
a local optimum because the objective function fails to reward the intermediate
steps needed to achieve the final goal. Lehman and Stanley [10] have shown that,
although novelty search does not pursue a goal directly, it may be able to find
the goal faster and more consistently than traditional fitness-based evolution.
Novelty search has also proven to be able to find a greater diversity of solutions
to a problem than traditional fitness-based evolution [11].

Novelty search has been successfully applied to many domains, including non-
collective evolutionary robotics in tasks such as maze navigation [I0/13], T-maze

M. Dorigo et al. (Eds.): ANTS 2012, LNCS 7461, pp. 85-Pg, 2012.
(© Springer-Verlag Berlin Heidelberg 2012

86 J. Gomes, P. Urbano, and A.L. Christensen

tasks that require lifetime learning [I4], biped walking [I0], and the deceptive
tartarus problem [3]. There are many motivations behind the use of evolution-
ary techniques for the design of a control system for a robot [5]. In a multirobot
domain in particular, the dynamical interactions among robots and the environ-
ment make it difficult to hand-design a control system for the robots that yields
the desired macroscopic swarm behaviours. However, artificial evolution has been
shown capable of exploiting these dynamic features and synthesise self-organised
behaviours [18].

In this paper, we use novelty search to evolve neural controllers for swarm
robotic systems, where fitness-based evolutionary approaches has been previ-
ously used. Our motivation for applying novelty search to swarm robotic systems
is their high level of complexity, resulting from the intricate dynamics between
many interacting units. As the complexity of a task or a system increases, artifi-
cial evolution is more likely to get affected by deception [19], and novelty search
has been shown capable of overcoming deception [I0]. The drive of novelty search
towards behavioural diversity is also valuable because it can generate a diversity
of solutions in a single evolutionary run, as opposed to fitness-based evolution,
in which a particular run often converges to a single solution.

There are many works that describe the evolution of robot swarms with neu-
roevolution methods that optimise only the weights of the neural network. How-
ever, the evolution of the network topology along with the weights has proved to
be beneficial in other domains [I9J16]. In this paper, we use NEAT (NeuroEvolu-
tion of Augmenting Topologies) [I7] to evolve the neural controllers used by the
robots in a swarm. NEAT is a method that evolves both the network topology
and weights, allowing solutions to become gradually more complex as they be-
come better [17]. The use of novelty search together with NEAT is motivated by
the complexifying nature of NEAT, which imposes some order in the exploration
of the behaviour space, because simple controllers are explored before moving
on to more complex ones.

We use an aggregation task for the experiments in this study. In this task,
the robots should move around in an environment to search for each other and
ultimately form a single aggregate. Aggregation is of particular interest since it
stands as a prerequisite for other forms of cooperation in swarm robotics sys-
tems [I8]. This task has been used in previous works in evolutionary swarm
robotics [2II81]. In our experiments, the domain was made challenging by in-
creasing the size of the arena and by reducing the sensors capabilities, compared
to the previous studies on aggregation in robots.

2 Background

In this section, we review the related work on aggregation in evolutionary robotics,
the NEAT neuroevolution method used in our experiments, and the novelty
search method.

Introducing Novelty Search in Evolutionary Swarm Robotics 87

2.1 Evolution of Aggregation Behaviours

Several works describe the evolution of aggregation behaviours in swarms of
robots, where neural networks with fixed topologies are evolved via evolutionary
algorithms guided by fitness. Baldassarre et al. [2] successfully evolved controllers
for a swarm of robots to aggregate and move towards a light source in a clus-
tered formation. Trianni et al. [I8] describe the evolution of a swarm of simple
robots to perform aggregation in a square arena. In this experiment, two differ-
ent behaviours were evolved: a static clustering which forms compact and stable
aggregates and a dynamic clustering which creates loose but moving aggregates.
Bahgegi et al. [I] used a similar experimental setup as [18], and studied how
some parameters of the evolutionary methods affect the performance and the
scalability of the behaviours in swarm robotic systems.

In these studies, the robots used directional sound sensors and sound signalling
to identify other robots in the environment. Sound signalling enabled robots to
follow sound gradients in order to aggregate. In fact, these works show that
neural networks without any hidden neurons are sufficient to successfully solve
the task. In our work, we make the aggregation task more challenging: we remove
the sound gradient, decrease the range of the sensors, and increase the size of the
arena. These modifications increase the difficulty of the task and may require
quite different strategies for aggregation because it is harder for the robots to
find each other [I5].

2.2 NEAT

NEAT [17] is a neuroevolution method that optimises both the weighting pa-
rameters and the structure of artificial neural networks. It begins the evolu-
tion with a population of small, simple networks and complexifies the network
topology into diverse species over generations, potentially leading to increasingly
sophisticated behaviour. A key feature in NEAT is its distinctive approach to
maintaining a healthy diversity of growing structures simultaneously. Unique
historical markings are assigned to each new structural component. During
crossover, genes with the same historical markings are aligned, producing valid
offspring efficiently, without having to rely on complex topological comparisons.
Speciation in NEAT protects new structural innovations by reducing competition
between differing networks, giving time for newer and more complex structures
to have their weights optimised. Networks are assigned to species based on the
extent to which they share historical markings. Complexification is thus sup-
ported by both historical markings and speciation, allowing NEAT to establish
high-level features early in evolution and then later elaborate on them. In effect,
NEAT searches for a compact, appropriate network topology by incrementally
complexifying existing structures.

2.3 Novelty Search

In novelty search [10], individuals in an evolving population are selected based
exclusively on how different their behaviour is when compared to the other

88 J. Gomes, P. Urbano, and A.L. Christensen

behaviours discovered so far. Implementing novelty search requires little change
to any evolutionary algorithm aside from replacing the fitness function with a
domain dependent novelty metric. This metric measures how different an indi-
vidual is from the other individuals with respect to their behaviour. The use of
a novelty measure creates a constant pressure to evolve individuals with novel
behaviour features.

The novelty of a newly generated individual is computed with respect to the
behaviours of an archive of past individuals and to the current population, giving
a comprehensive sample of where the search has been and where it currently is.
However, the archive does not contain all of the behaviours previously explored,
in order to minimise the impact in the algorithm’s computational complexity.
The archive is initially empty, and behaviours are added to it if they are sig-
nificantly different from the ones already there, i.e., if their novelty is above
some threshold. The purpose of the archive is to allow the penalisation of future
individuals that exhibit previously explored behaviours.

The novelty metric characterises how far away the new individual is from the
rest of the population and its predecessors in behaviour space, determining the
sparseness at any point in that space. A simple measure of sparseness at a point
is the average distance to the k-nearest neighbours of that point, where k is a
fixed parameter empirically determined. The sparseness p at point z is given by

k
pla) = | D dist() (1)

where p; the ith-nearest neighbour of x with respect to the distance metric
dist, which is a domain-dependent measure of behavioural difference between
two individuals in the search space. Candidates from more sparse regions of the
behaviour space thus receive higher novelty scores, guiding the search towards
what is new, with no other explicit objective.

3 Aggregation Experiments

In this section, we apply novelty search to the aggregation task and compare it
with fitness-based evolution. Three experiments were performed using different
novelty measures: one highly correlated with the fitness function, an alternative
measure only weakly correlated, and finally a combination of the two. In each
experiment, the performance of novelty search was compared to the performance
of traditional fitness-based evolution. NEAT with random selection is used as a
baseline for performance comparisons.

3.1 Experimental Setup

The simulated environment is modelled in a customised version of the Simbad 3d
Robot Simulator [7]. The environment is a 5m by 5m square arena bounded by
walls. The robots are modelled based on the the e-puck educational robot [12],

Introducing Novelty Search in Evolutionary Swarm Robotics 89

but do not strictly follow its specification. Each simulated robot has 8 IR sensors
evenly distributed around its chassis for the detection of obstacles (walls or other
robots) within a range of 10cm, and 8 sensors dedicated to the detection of
other robots within 25 cm range. An additional sensor calculates the percentage
of nearby robots, relative to the size of the swarm, within a radius of 25 cm.

The swarm is homogeneous and the controllers of the robots are time recurrent
neural networks. For fitness-based evolution, we used the NEAT implementation
available in the Encog 3.0.1 library [6]. For novelty search, we extended the same
NEAT implementation following the description and parameters in [I0], with a k
value of 15 and a dynamic archive threshold [9]. This dynamic threshold ensures
a constant and reasonable flow of individuals to the archive, at an average rate
of 2 individuals per generation. The NEAT parameters were the same in both
evolutionary methods: the crossover rate was 25%, the mutation rate 10%, the
population size 200, and each evolution runs for 250 generations. The rest of the
parameters were the default of the Encog implementation.

To evaluate each controller, 10 simulations are run with it, varying the number
of robots and their starting positions and orientations. The starting positions and
orientations are random but ensure a minimum distance between the robots. The
group size varies from 3 to 10, with each controller being run at least once with
every group size. Each simulation lasts for 500s of simulated time.

The fitness function that evaluates each simulation is based on the average
distance to the centre of mass, also used in [18]. The average distance is sampled
throughout the simulation at regular intervals of 10s. The samples are then
combined in a single fitness value using a weighted average, with linearly more
weight towards the end of the simulation. The fitness F' of a simulation with T’
time steps and N robots is defined as:

T

1 t diSth,I‘it
SETESTD S50 Dt @

t=1 =1

where R; is the centre of mass at each instant, and r;, is the position of each
robot. The fitness values obtained in each of the 10 simulations are combined in
a single value using the harmonic mean, which gives more weight to the lower
values, as advocated in [I].

As mentioned above, the novelty measure characterises the distance between
one controller and the others in behaviour space. We use the Euclidian distance
between vectors that represent the level of aggregation along time. These vectors
are built by measuring behaviour features at regular intervals throughout the
simulation (every 10s). We devised three ways of measuring the group behaviour,
which will be explained in the next sections. As 10 simulations are conducted
to evaluate each controller, its behaviour vector is the average of the vectors
obtained in each of the simulations. In order to compare novelty search with
the fitness-based evolution, the controllers evolved by novelty search were also
evaluated with the fitness function F. It is important to note that the fitness
scores did not have any influence in the novelty search experiments.

90 J. Gomes, P. Urbano, and A.L. Christensen

3.2 The First Experiment

The first behaviour measure uses the same metric as the fitness function; a
vector is built with the average distance to centre of mass, sampled throughout
the simulation. Considering a simulation with IV robots and T" temporal samples,
the behaviour vector bey, that characterises a controller is given by:

N N
1 . .
bem = N ;dzst(Rl, ri)y, ; dist(Rp,ri)| . (3)

In our experiments, the sampling rate was 10s and the simulation time 500s,
resulting in a behaviour vector of length 50.

The fitness scores of the highest scoring individuals evolved using novelty search
and fitness driven evolution, respectively, are listed in Table[Il There is not a signif-
icant difference between the fitness of the controllers evolved in these experiments,
but both methods are significantly better than the random evolution (Student’s ¢-
test with p-value < 0.05). If we look at the behaviours of the best controllers evolved
by both methods, significant differences are found, despite the similar fitness val-
ues. In the fitness-based evolution, the highest scoring controllers were always very
similar, displaying only one distinctive behaviour: the robots explore the environ-
ment in large circles, and form static clusters when they encounter one another. If
the cluster is small, the robots abandon it after a while and start exploring again.

Novelty search, on the other hand, found several distinct high-scoring controllers
that could perform the aggregation task: (1) The robots go straight forward until
they hit the wall, and then, depending on the impact angle, they stay there for a
while or start moving along the wall until they find other robots; (2) Similar to (1),
but when they meet each other they continue to follow the wall until they hit a cor-
ner, aggregating there; (3) Similar to the behaviour evolved by fitness, but without
splitting the small clusters; (4) Similar to (3) but navigating in the environment
only in straight trajectories instead of curves. It is important to note that each
evolutionary run of novelty search could evolve several different solutions, finding
many (if not all) of the solutions described above and variants of them.

The main difference between the behaviours was that novelty search evolved
controllers that exploited the wall to achieve better solutions, while in the
fitness-based evolution robots always avoided navigating near the walls. Our
hypothesis is that learning to navigate along the walls requires going against the

Table 1. Highest fitness found with each evolutionary method. The values were ob-
tained with 10 runs for each experiment. Individuals with fitness value over 0.8 are
considered to be solutions to the task. Note that in practice the minimum fitness value
is not 0, since an initial random population has an average fitness of around 0.6.

Evolutionary Setup Average Max. Min.
Fitness-based NEAT 0.863 0.892 0.826
NEAT with novelty search 0.864 0.906 0.828

NEAT with random selection 0.725 0.752 0.706

Introducing Novelty Search in Evolutionary Swarm Robotics 91

fitness gradient. If the robots go towards the walls, they will often end up in
different ones, and staying there will result in a low fitness because the centre of
mass will be in the centre of the arena, far from the robots. On the other hand,
avoiding the walls results in better fitness because they will be on average closer
to the centre. If the fitness evolution misses the stepping stone of being close to
the walls, it will hardly be able to reach behaviours that require the use of walls
to achieve aggregation. This is an important result because it demonstrates that
the fitness function is preventing the evolution of certain types of solutions.

To confirm our hypothesis, we analysed the behaviour space explored in novelty
search and in fitness evolution. To facilitate this analysis, all the individuals evolved
in fitness evolution were also evaluated with the same behaviour measure that was
used in novelty search. Since each behaviour description is a long vector, we ap-
plied a dimensionality reduction method in order to visualise the behaviour space.
We used a Kohonen self-organising map [§], a type of neural network trained us-
ing unsupervised learning to produce a two-dimensional discretisation of the input
space of the training samples, preserving the topological relations. The map was
trained with all the behaviours found both in novelty search and in fitness evolu-
tion, and then the behaviours found by each method were mapped individually to
the trained map. The resulting maps can be seen in Figure[ll

As it can be seen in the maps, the fitness-based evolution avoids the zones
where the average distance to the centre of mass rises beyond the initial value,
preventing the evolution of good solutions that might require traits found only
in those behaviour zones. The evolution is much more focused in behaviours
that express a monotonic fall of the average distance to the centre of mass,
which is consistent with the observable performances of the best controllers. On
the other hand, novelty search is not subject to this fitness pressure, and can
therefore explore and discover a wide range of solutions to the task.

Fitness-based evolution Novelty search

Fig. 1. Kohonen maps representing the explored behaviour space in fitness evolution
(left) and in novelty search (right). Each circle is a neuron that is characterised by
the vector depicted by the line inside (the average distance to the centre of mass
over time). Each behaviour vector is mapped to the most similar neuron. The darker
the background of a neuron is, the more behaviours were mapped to it. The neurons
corresponding to the best behaviours have a bold circle.

92 J. Gomes, P. Urbano, and A.L. Christensen
3.3 The Alternative Novelty Measure

We devised a new behaviour description, based on the metric used in [If, in
order to determine how the novelty measure influences the evolved solutions.
The new description consists of measuring the number of robot clusters along the
simulation. Two robots belong to the same cluster if the distance between them
is less than 30 cm. Applying this iteratively we can obtain the number of clusters.
The number of samples was the same as in our previous experiments (50). The
behaviour vector b is described by:

1
bl = N [clustersCount(1),- - -, clustersCount(T)] . (4)

The best fitness found in each evolutionary run was 0.83 on average, which is
significantly lower (p-value < 0.05) than the novelty search with the centre of
mass behaviour measure (0.864 on average). This might be explained by the use
of a novelty measure that is less related to the fitness function. But again, we have
to look at the evolved behaviours to determine the significant differences. The
following distinct successful behaviours were evolved: (1) The robots go towards
walls, navigate along it and when they find another one, they form a single
file, keeping a fixed distance; (2) They navigate in circles in the environment,
forming a static cluster when they meet each other; (3) Similar to (2), but they
randomly abandon their respective clusters; (4) They navigate in circles and
when two robots meet at some distance, one tries to follow the other. When
robots collide, they form a cluster and remain aggregated.

Most behaviours were quite different from the ones found in the previous ex-
periment. The reason the previous experiment did not find these behaviours (and
vice-versa) is conflation (see [I0]). Conflation occurs when individuals with distinct
observable behaviours have very similar behaviour descriptions. The consequence
is that an individual with a distinct observable behaviour might not be considered
novel by the novelty measure, thus eventually disappearing from the population.
Conflation canrepresent both an advantage because it reduces the search space, and
a disadvantage, when different successful solutions or important stepping stones
are dismissed. In our experiments, what happens is that the centre of mass novelty
measure is conflating some solutions that are not conflated in the clusters measure
and vice-versa, thus evolving different solutions in both the experiments.

Two examples of behaviours that can be conflated are shown in Figure 2l
When the centre of mass measure is used, for example, the clustering of the
robots is irrelevant. The search will therefore avoid behaviours that have an
already explored centre of mass progression but differ in the clustering of the
robots, possibly bypassing interesting solutions. This effect can also be seen in the
evolved behaviours: with the centre of mass measure, there were more solutions
that exploited the use of the walls, because navigating near them has a great
impact in that novelty measure; while with the number of clusters measure, the
solutions focused on the interactions between the agents and clusters, including
following each other and leaving the cluster.

Introducing Novelty Search in Evolutionary Swarm Robotics 93

Fig. 2. An illustration of conflation in the centre of mass measure (left) and in the
number of clusters measure (right). In both cases, if the robots evolved from the
left configuration to the right, that change would not be captured by the respective
behaviour description, despite potentially being relevant.

3.4 Combining Novelty Measures

In order to reduce conflation, we setup a new experiment with a richer behaviour
description, by combining the novelty measures proposed in the two previous
experiments. To combine the two behaviour descriptions presented before in
Equations [3] and [, we simply concatenate the two vectors. But as the novelty
measure is based on the Euclidean distance between the vectors, caution must
be displayed to ensure that both components have similar contributions to this
distance. Namely, we want the vectors to have the same length and the items in
the vectors to have the same range, which can be achieved by normalising each
of the components. The new behaviour description beomp is thus defined as:

bcomb - (bcma bcl) . (5)

The fitness performance of the search with this new measure was improved,
evolving individuals with high fitness scores much sooner than in the other ex-
periments, as seen in Figure [Bl The fitness values in novelty search were higher
than fitness-based evolution until generation 150. It is also interesting to look
at the explored behaviour space (Figure []). We can see that there was a greater
diversity of solutions, exploring many combinations of the progression of the
number of clusters and the distance to the centre of mass. Observing the best
controllers in action, we notice that this combined measure evolved all the be-
haviours that were generated using the previous two measures independently.
To determine why novelty search with the combined measure was faster than
fitness-based evolution in finding good individuals, we evaluated the network
complexity of the solutions. On average, novelty search finds the first good in-
dividual (with fitness value over 0.8) at the generation 33 with a network of 1
hidden neuron and 39 links, while the fitness evolution finds the first good in-
dividual at the generation 83 with a network of 4 hidden neurons and 44 links.
Looking at the early solutions found by novelty search, we discovered that in
some cases they are the ones that the fitness-based evolution could not evolve
at all (behaviours that used the wall). In other cases, they were apparently the
same solutions that the fitness-based evolution would find in later generations
with more complex networks. Due to the incremental nature of NEAT, more
complex networks take more generations to evolve. If fitness starts to converge
to more complex structures, it takes more time to evolve effective controllers.

94 J. Gomes, P. Urbano, and A.L. Christensen

0,90

0,85

0,80

0,75 —— Nowelty Combined

, —&— Fitness

0,70 —¥— Random

0,65

0,60

0 50 100 150 200 250

Fig. 3. Fitness value of the best individual found so far in each generation. The values
are averaged over 10 evolutionary runs for each experiment. Individuals with fitness
value over 0.8 are considered to be solutions to the task. The evolution was tested with
more generations but there is no change in the fitness values after the 250th generation.

Fitness-based evolution Novelty Clusters + Centre Mass

Fig. 4. The explored behaviour space in novelty search with the combined novelty mea-
sure and in the fitness-based evolution. In each neuron, the left half is the number of
clusters measure and the right half is the centre of mass. The darker the neuron back-
ground is, the more behaviours were mapped to it. Neurons with the best behaviours
have a bold circle.

4 Discussion

Our experiments revealed that novelty search could outperform fitness-based
evolution in respect to the fitness values of the evolved individuals. Other works
have shown that novelty search can perform better than fitness-based evolution
in deceptive tasks, but fails to be better as the task gets less deceptive [TOJI3].
Our results suggest that the task is not notably deceptive, as fitness evolution can
always find high-scoring solutions. Still, novelty search managed to outperform
the fitness-based evolution.

Looking beyond the fitness of the solutions, we showed that the diversity found
by novelty search can produce many different solutions to the same task. This
can be used to provide a range of different solutions to the experimenter that is
using the evolutionary process. This is especially relevant in the swarm robotics
domain, because there are many behaviour possibilities and non-obvious rela-
tions between the agents that might be revealed. Another advantage of novelty

Introducing Novelty Search in Evolutionary Swarm Robotics 95

search was that it found solutions with simpler neural networks than the ones
found by fitness evolution, confirming the results reported in [10].

The Kohonen maps proved to be useful in the visualisation of the behaviour
search space. They allow the understanding of the behaviour zones that were
explored by novelty search and the zones where the fitness-based evolution gets
stuck. We verified that controllers mapped to different neurons typically have dif-
ferent observable behaviours. This suggests that analysing the differences in the
behaviour vectors might be a way of automatically identifying distinct solutions.

The biggest challenge in using novelty search in the domain of swarm robotics
was the definition of the novelty measure. Our experiments suggest that confla-
tion can be a serious issue when evolving collective behaviours with novelty
search. While in single robot systems, conflation can be mitigated by describing
the full behaviour of the robot, for example its position in space over time [10],
in swarm robotics that is not possible. Describing the behaviour of all the robots
individually would open the search space too much. It would also introduce scal-
ability issues, for example if the number of robots varies or if the swarm is very
large. It is necessary to devise measures that evaluate the swarm as whole. Con-
flation is essential to cope with the greater diversity of collective behaviours, but
caution must be displayed in order not to conflate aspects of the swarm that are
relevant to the solution. Our last experiment showed that by combining different
novelty measures, we can reduce conflation and improve the performance of nov-
elty search. This combination can simply be the concatenation of the behaviour
vectors associated with each measure, which was effective in our case.

5 Conclusion

This study showed that novelty search is a promising technique for evolving
controllers for swarm robotic systems. Compared to the fitness-based evolution,
novelty search could find a greater diversity of solutions, solutions with higher
fitness earlier in the evolution, and solutions based on simpler neural networks.
We studied the impact of the novelty measure in the evolved behaviours and
showed how conflation can be mitigated by combining different novelty measures.
In future research, we will use other novelty search variants that combine the
fitness value and the novelty measure [3l9] to investigate if our results can be
further improved. We will also use novelty search to evolve controllers for other
swarm robotics tasks, to evaluate if the results presented in this paper generalise.

Acknowledgments. This work was supported by FCT project PEst-OE/EEI/
LA-0008/2011.

References

1. Bahgegi, E., Sahin, E.: Evolving aggregation behaviors for swarm robotic systems:
A systematic case study. In: Swarm Intelligence Symposium, pp. 333-340. IEEE,
New York (2005)

96

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

J. Gomes, P. Urbano, and A.L. Christensen

Baldassarre, G., Nolfi, S., Parisi, D.: Evolving mobile robots able to display collec-
tive behaviors. Artificial Life 9(3), 255-268 (2003)

Cuccu, G., Gomez, F.: When Novelty Is Not Enough. In: Di Chio, C., Cagnoni,
S., Cotta, C., Ebner, M., Ekéart, A., Esparcia-Alcizar, A.l., Merelo, J.J., Neri,
F., Preuss, M., Richter, H., Togelius, J., Yannakakis, G.N. (eds.) EvoApplications
2011, Part I. LNCS, vol. 6624, pp. 234-243. Springer, Heidelberg (2011)
Goldberg, D.E.: Simple genetic algorithms and the minimal, deceptive problem.
In: Genetic Algorithms and Simulated Annealing. Research Notes in Artificial In-
telligence, pp. 74-88. Pitman Publishing, London (1987)

Harvey, 1., Husbands, P., Cliff, D., et al.: Issues in evolutionary robotics. In: Second
Int. Conf. on Simulation of Adaptive Behavior, pp. 364-373. MIT Press, Cambridge
(1993)

Heaton, J.: Programming Neural Networks with Encog3 in Java. Heaton Research,
Chesterfield (2011)

Hugues, L., Bredeche, N.: Simbad: An Autonomous Robot Simulation Package for
Education and Research. In: Nolfi, S., Baldassarre, G., Calabretta, R., Hallam,
J.C.T., Marocco, D., Meyer, J.-A., Miglino, O., Parisi, D. (eds.) SAB 2006. LNCS
(LNAI), vol. 4095, pp. 831-842. Springer, Heidelberg (2006)

Kohonen, T.: The self-organizing map. Proc. of the IEEE 78(9), 1464-1480 (1990)
Lehman, J., Stanley, K.O.: Revising the evolutionary computation abstraction:
minimal criteria novelty search. In: Genetic and Evolutionary Computation Conf.,
pp. 103-110. ACM, New York (2010)

Lehman, J., Stanley, K.O.: Abandoning objectives: Evolution through the search
for novelty alone. Evolutionary Computation 19(2), 189-223 (2011)

Lehman, J., Stanley, K.O.: Evolving a diversity of virtual creatures through novelty
search and local competition. In: Genetic and Evolutionary Computation Conf.,
pp. 211-218. ACM, New York (2011)

Mondada, F., Bonani, M., Raemy, X., Pugh, J., Cianci, C., Klaptocz, A., Magne-
nat, S., Zufferey, J.C., Floreano, D., Martinoli, A.: The e-puck, a robot designed
for education in engineering. In: 9th Conf. on Autonomous Robot Systems and
Competitions, pp. 59-65. IPCB, Castelo Branco (2009)

Mouret, J.: Novelty-based multiobjectivization. New Horizons in Evolutionary
Robotics, pp. 139-154. Springer, Berlin (2011)

Risi, S., Vanderbleek, S.D., Hughes, C.E., Stanley, K.O.: How novelty search es-
capes the deceptive trap of learning to learn. In: Genetic and Evolutionary Com-
putation Conf., pp. 153-160. ACM, New York (2009)

Soysal, O., Bahgeci, E., Sahin, E.: Aggregation in swarm robotic systems: Evolution
and probabilistic control. Turkish Journal of Electrical Eng. 15(2), 199-225 (2007)
Stanley, K.O.: Efficient Evolution of Neural Networks Through Complexification.
Ph.D. thesis, Dep. of Computer Sciences, The University of Texas, Austin (2004)
Stanley, K.O., Miikkulainen, R.: Evolving neural network through augmenting
topologies. Evolutionary Computation 10(2), 99-127 (2002)

Trianni, V., Gro8, R., Labella, T.H., Sahin, E., Dorigo, M.: Evolving Aggregation
Behaviors in a Swarm of Robots. In: Banzhaf, W., Ziegler, J., Christaller, T.,
Dittrich, P., Kim, J.T. (eds.) ECAL 2003. LNCS (LNAI), vol. 2801, pp. 865-874.
Springer, Heidelberg (2003)

Whitley, L.D.: Fundamental principles of deception in genetic search. In: Founda-
tions of Genetic Algorithms, pp. 221-241. Morgan Kaufmann, San Mateo (1991)

Measuring Diversity in the Cooperative
Particle Swarm Optimizer

Adiel Ismail"? and Andries P. Engelbrecht?

! Department of Computer Science, University of the Western Cape, South Africa
aismail@uwc.ac.za
2 Department of Computer Science, University of Pretoria, South Africa
engel@cs.up.ac.za

Abstract. Diversity is an important aspect of population-based search
algorithms such as particle swarm optimizers (PSO) since it influences
their performance. Diversity is closely linked to the exploration-
exploitation tradeoff. High diversity facilitates exploration, which is usu-
ally required during the initial iterations of the optimization algorithm.
A low diversity is indicative of exploitation of a small area of the search
space, desired during the latter part of the optimization process. The
success of the Cooperative Particle Swarm Optimizer (CPSO), a variant
of PSO which has outperformed the basic PSO on numerous multi-modal
functions, has been ascribed to its increased diversity. Although numer-
ous population diversity measures have been proposed for the basic PSO,
not all can be readily applied to the CPSO. This paper proposes a mea-
surement of diversity for the CPSO which is compared with three other
diversity measures to establish the most appropriate diversity measure
for CPSO. The proposed diversity measure is applied to the CPSO on
a few well known test functions and compared with the diversity of the
basic global best PSO with the objective to justify the claim that the
CPSO increases diversity. The paper also investigates whether diversity
increases with an increase in the number of subswarms of the CPSO.

1 Introduction

Particle swarm optimization (PSO) is an effective and efficient population based
stochastic optimization approach which was originally developed by Eberhart
and Kennedy [3]. The basic PSO exhibits good performance on well-known test
functions, but tends to converge prematurely on strongly multi-modal test func-
tions [8]. One of the causes of premature convergence in the basic PSO is poor
swarm diversity [11]. Numerous diversity measures have been developed for PSO
[, [©, [11], [I3] with each approach having numerous variations. Some diver-
sity measures are sensitive to outliers which may result in the diversity not to
accurately reflect the search behavior of the swarm with regards to exploration
and exploitation.

Diversity has also been used to guide the search in PSO. Several diver-
sity guided PSOs have been developed such as the Attractive-Repulsive PSO

M. Dorigo et al. (Eds.): ANTS 2012, LNCS 7461, pp. 97-[[08, 2012.
(© Springer-Verlag Berlin Heidelberg 2012

98 A. Ismail and A.P. Engelbrecht

(ARPSO) [11], the modified ARPSO of Pant et al [I0] and the diversity guided
PSO of Cui and Ju [2] amongst others. The accuracy of the diversity measure
can therefore influence the performance of the diversity guided PSOs.

The Cooperative Particle Swarm Optimizer (CPSQO), a variant of the PSO,
differs from the basic PSO in that values for different components of the solution
vector are stored in different subswarms. The diversity measures of PSO referred
to above cannot readily be applied to CPSO due to the subswarms solving only
a section of the original optimization problem. It is not always clear how sub-
swarms which contain partial solution vectors should be treated in the diversity
measures.

This paper proposes an alternative measure of diversity for the CPSO and
investigates how the proposed method compares with three other diversity mea-
sures. The claim that CPSO improves diversity is tested by comparing the diver-
sity of the CPSO with the diversity of the PSO on 9 well-known test problems.
This paper also investigates whether the diversity increases with an increase in
the number of subswarms of the CPSO.

The rest of the paper is organized as follows: Section 2l provides an overview of
PSO and CPSO. Section Bl presents a brief overview of diversity measures. The
diversity measures for CPSO are presented in section @l The experiments and
their results are presented and discussed in section Bl The paper is concluded in
section [Gl

2 Overview of PSO and CPSO

2.1 PSO

PSO is a nature-based stochastic optimization algorithm that emulates the
swarm behaviors of bird flocks [7]. PSO consists of a swarm of particles where
the position of each particle of the swarm represents a potential solution to the
optimization problem. PSO searches for an optimum solution by merely drawing
the position of each particle in the swarm toward its own historical best position
and toward the position of the historical best particle in a defined neighborhood
[6]. The position and velocity of each particle are updated over time. Each par-
ticle is viewed as a point in D-dimensional space and has a fitness. The best
position in a defined neighbourhood is the position yielding the best fitness.
The position and velocity of particle ¢ are denoted by x; and v;, respectively.
The best position of particle ¢ since the start of optimization is referred to as the
personal best position and is represented as y; and ‘pbest’ its corresponding
fitness. The best position of all personal best positions in the entire swarm is
represented by ¥ with ‘gbest’ as its corresponding fitness. This PSO is known
as the global best PSO. The position and velocity are updated as follows:

vt 1) = w-of (t) + e - ri (1) - (Wi (8) — 2l (1) + c2-r5() - (97(1) —2i(t) (1)

2l (t+1) =2l () + vl (t+1) (2)

where d = 1,2,...,n, i = 1,2,...,.5, and S is the size of the swarm; w is the
inertia weight with 0 < w < 1; constants ¢; and co are called acceleration

Measuring Diversity in the Cooperative Particle Swarm Optimizer 99

coefficients; r1 and ro are two vectors containing random numbers uniformly
distributed in (0, 1); and ¢ denotes the iteration number. The second and third
terms in equation (1) are respectively referred to as the cognitive and the social
components.

2.2 Cooperative Particle Swarm Optimizer (CPSO)

In PSO, a position vector of a particle serves as a complete solution vector
for the optimization problem. In CPSO the solution vector of the optimization
problem is split into K components with each component optimized in a separate
subswarm. This CPSO is denoted as CPSO-Sk. If K = n, then each subswarm
consists of 1-dimensional particles. This special case is denoted by CPSO-S. A
particle in a subswarm represents only part of the complete solution vector and
its fitness cannot be calculated in isolation from the other subswarms. All swarms
will have to share their information, i.e. cooperate, to form a complete solution
vector [14]. To represent the n-dimensional solution a context vector is required.
One way of constructing a context vector is to simply concatenate the global
best positions from all K subswarms, arranged in the order 1 to K.

The rest of the discussion focuses on the CPSO-S, but it is easily applicable
to CPSO-Sk. The fitness of particle ¢ in subswarm j is equal to the function
value after applying the objective function to a temporarily updated context
vector where the j-th component of the context vector has been replaced with
the position of particle ¢ in subswarm j, but only for the duration of the fitness
calculation. Note, that for the evaluation of the fitness of particle 7 in subswarm
j, all components of the context vector except component j retained the global
best positions of the other (n — 1) subswarms.

The algorithm for the CPSO-S as defined in [14] appears in Algorithm 1, where
R;, R;jx;, R;.v;and R;.y; refer, respectively, to subswarm j and the position,
velocity and personal best position of particle ¢ in subswarm j. The global best
particle in subswarm j is denoted by R;.y. The context vector is defined as
(R1.¥, R2.¥, ..., R,.¥). The operator b(j, z) replaces the j-th component of the
context vector with z to produce (R1.§y, R2.¥,..., Rj—1.¥,%2, Rj11.¥,..., Rn.¥).

3 Diversity Measures

Population diversity can be used to monitor swarm behaviour, i.e. the degree of
convergence or divergence [16]. It is therefor important that a measurement of
population diversity provide accurate information about the swarm’s behaviour,
with regards to exploration and exploitation. However, not all diversity mea-
sures accurately reflect such information as a result of the diversity measures’
sensitivity to outliers [9].

3.1 Characteristics of Diversity Measure

Given a PSO with an initial high diversity and a sequence of global best solutions
{9:}E,, then the PSO is said to converge to point p, a weighted average of the

100 A. Ismail and A.P. Engelbrecht

Algorithm 1. The CPSO algorithm

Create and initialize n one-dimensional PSOs: R;,j € [1..n]
repeat
for each swarm j € [1..n]
for each particle i € [1..s]
if f(b(j, R;.xi)) < f(b(j, R;.yi))
then Rjy1 = Rj.Xi
then RJS’ = Rjyl
endfor
Update all particles in R; using equations (1) and (2)
endfor
until stopping condition is true

global best and personal best positions, if lim_,) ¥: = p, where ¢ denotes
time step [I5]. In this case the diversity of the swarm at time step t approaches
zero as t approaches infinity. Under these conditions an accurate measure of
diversity should reflect an average decrease proportional with time to a value
that approaches zero [9].

3.2 Diversity Measures for PSO

Olorunda and Engelbrecht [9] investigated a number of diversity measures which
included (a) the swarm diameter and swarm radius, (b) the average distance
around the swarm center, (c) the normalized average distance around the swarm
center, (d) the average of the average distance around all particles in the swarm,
and (e) swarm coherence (defined as the swarm center divided by the average
speed of all particles in the swarm). Olorunda and Engelbrecht concluded that
the average distance around the swarm center is a more robust measure than
the other diversity measures in the presence of outliers. The ‘average distance
around the swarm center’ is defined as,

diversity; (R) = ; Z Z(xg — 77)?2 (3)
with

1,
=) (4)
1=1

where 2 denotes the swarm, S is the size of the swarm, n is the dimensionality
of the optimization problem, z! is the value of dimension j of particle i, and z’
is the average value for dimension j over all particles.

The diversity formula in equation () is used in the experiments of this study
to calculate the diversity of the PSO. A normalized version of the average

Measuring Diversity in the Cooperative Particle Swarm Optimizer 101

distance around the swarm center was successfully used to guide the search
in Attractive-Repulsive PSO (ARPSO) developed in [I1].

Shi and Eberhart [I3] defined several population diversity measures based
on a particle’s (a) position, (b) velocity and (c) cognitive term. Position di-
versity is measured using either an element-wise or a dimension-wise approach.
A simple example indicated that element-wise diversity could not differentiate
between two vastly different diversity situations. Results in [I3] also confirmed
that the element-wise approach could not provide accurate information about
the distribution of particles. Dimension-wise diversity has a clearer geometric
interpretation than the element-wise diversity measure, while velocity diversity
provides dynamic information of particles and measures the distribution of the
current velocities of the particles. The formula for cognitive diversity measure-
ment is similar to the position diversity measurement except that all references
to the particle’s current position are replaced with its personal best position.

In the knowledge-based cooperative particle swarm optimizer (KCPSO) of Jie
et al [5], a distinction is made between diversity of a subswarm and diversity of
the entire swarm. Jie et al describes the distribution of the particles locally in
a subswarm using a formula similar to equation (B]). The diversity of the entire
swarm in KCPSO is calculated using a formula similar to that in equation (8]
except that, (a) all references to a particle’s current position are replaced with
the particle’s personal best position, (b) the average of all particles in the entire
swarm is replaced with the average of all personal best positions, and (c) the
diversity is normalized by dividing the diversity by the distance of the longest
diagonal in the search space. The diversity measure of Jie et al [5] uses only
the personal best position of a subswarm, while ignoring all other particles in
each subswarm. This approach may not accurately reflect the diversity of the
subswarm.

4 Diversity Measures for CPSO

The ‘average distance around the swarm center’, as a proven robust diversity
measure, is applied in this paper to calculate the diversity of the CPSO, unless
stated otherwise. Applying this formula to the CPSO poses a problem, since the
formula assumes that each particle in the swarm is a complete solution vector.
This is not the case in the CPSO. Each particle in a subswarm represents only
a part of a solution vector. To address this problem four methods, denoted by
CPSO-Div 1 to CPSO-Div 4, are used to calculate the diversity of the CPSO.
The approach that generates solution vectors for fitness evaluation in CPSO
is also used in the first method, i.e. CPSO-Div 1, to generate solution vectors
which are subsequently used to calculate the diversity of the CPSO. CPSO uses
the method outlined in section to calculate a fitness value for each particle
in each subswarm. This approach generates a solution vector for each particle
in each CPSO subswarm. Since there are n subswarms, each of size m, the total
number of particles in all subswarms is equal to m x n. Hence, the total number
of complete solution vectors generated during each iteration of the CPSO algo-
rithm is m x n. These solution vectors will subsequently be used to calculate the

102 A. Ismail and A.P. Engelbrecht

population diversity of CPSO. In the implementation of the proposed diversity
measure the diversity of the CPSO is calculated immediately before the end of
each iteration. In this approach the formula in equation (@) is applied to all
m x n solution vectors. Note, as the swarm converges, (z7 — z7)? — 0 for all
dimensions j for all particles 7, the diversity measure, CPSO-Div 1, reduces to
zero with time.

The second method does not use complete solution vectors and the diversity
is calculated based on the particles in each subswarm. This method uses the
dimension-wise definition based on the L; norm in [I3]. The center X of the
entire swarm is computed. Then an n-dimensional vector is computed as follows:
For each dimension of the n-dimensional vector, corresponding to a subswarm,
the average of the absolute difference between each particle in the subswarm and
corresponding dimension of the swarm center is calculated. The average of all
dimensions of the computed vector is subsequently returned as the diversity of
the CPSO. This approach is referred to as CPSO-Div 2, computed using,

n S
1 1 , .
diversity,(R) = . E (S . E |2d — :fj|> (5)
Jj=1 i=1

J _ %9 = 0 for all dimensions j for all particles

Note, as the swarm converges |x2
i. Although the diversity measure, CPSO-Div 2, reduces to zero with time the
actual solution vectors used for evaluation of fitness are not taken into account
when calculating the diversity. Since the diversity is not directly based on the
solution vectors of the CPSO, CPSO-Div 2 may inaccurately reflect the diversity
of the swarm.

In the third method, instead of using a context vector which consists of the
global best particles from each of the subswarms, all possible combinations of all
particles in all subswarms are used to form n-dimensional solution vectors. The
solution vectors can be generated using n nested for-loops, with each for-loop
associated with one of the n subswarms consisting of 1-dimensional particles.
The value of the running variable of each for-loop indexes a particle in the
specific subswarm whose position is copied to the corresponding component of
the solution vector. This approach will be referred to as CPSO-Div 3.

The fourth method called CPSO-Div 4 corresponds to the approach proposed
by Jie et al in section Bl Diversity is calculated based on the personal best
positions and not on the current positions of the particles. This approach is
reminiscent of the normalized average distance around the swarm center, except
that the pool of current positions is replaced with the pool of personal best
positions. As the swarm converges, (y; — §7)*> — 0 for all dimensions i of all
particles j, resulting in the diversity measure, CPSO-Div 4, to reduce to zero
with time.

5 Experiments and Results

The objective of this section is to describe and report on the experiments per-
formed in this paper. For this purpose, section [5.1] describes the experiments

Measuring Diversity in the Cooperative Particle Swarm Optimizer 103

and defines the test functions and its parameters, while section reports the
results of the experiments.

5.1 Experimental Procedure
The goal of this paper is to answer the following research questions:

1. Which diversity measures are appropriate for CPSO?

2. Which diversity measure is the best to use for CPSO?

3. Does CPSO increase diversity compared to global best PSO?

4. Does diversity increase with an increase in the number of subswarms?

To answer questions (1) and (2) the four diversity measures in section M were
applied to the 9 well-known optimization test problems defined in table [l The
dimension of the test functions was set to five, since a relatively large value for
the dimension makes the application of CPSO-Div 3 infeasible as pointed out in
section [

To answer question (3) the diversity values produced by the best diversity
measure approach as identified by question (2) are compared with the diversity
values of the global best PSO. The dimension of the test functions was set to 30.

To answer question (4) the diversity of a few CPSO variants is investi-
gated. The best diversity measure as identified by question (2) was then used
to calculate the diversity of the CPSO-Si where K varies from 3 to 30, i.e.
K =3,6,10,15,30. The dimension of the test functions was set to 30.

In the experiments the size of each subswarm for the five dimensional test
functions was set to 10 and the CPSO was executed for a total of 10000 func-
tion evaluations or 200 (=10000/(5 (number of subswarms) x 10 (number of
particles)) iterations. For the 30 dimensional test functions the size of each sub-
swarm was set to 20 and all variants of the CPSO were executed for 200000
function evaluations, bearing in mind that the CPSO-S require 600 (= number
of subswarms (30) x number of particles (20)) function evaluations per itera-
tion. The CPSO-Ss, CPSO-S3, CPSO-S; and CPSO-S1q require respectively 40,
60, 100 and 200 function evaluations per iteration. Results plotted are averages
calculated over 30 simulations.

The inertia weight, w, and acceleration coefficients ¢; and co were set as
suggested by Shi and Eberhart [4] to 0.72, 1.49 and 1.49, respectively, for both
the global best PSO and all the CPSO variants.

The Sphere function is unimodal, while the remaining test functions are multi-
modal. In general, to prevent n one dimensional searches on separable test func-
tions, functions are rotated. In this paper the Griewank test function was rotated.
For rotation, Salomon’s method [12] was used to construct an n-dimensional or-
thogonal matrix which was then left multiplied by the particle’s position vector.
The resulting vector was used to determine a particle’s fitness.

5.2 Experimental Results

Investigating Research Question 1: The average diversity values calculated
over 30 simulations for each of the four diversity measures as defined in section [

104 A. Ismail and A.P. Engelbrecht

Table 1. Definitions and parameters of test functions

Function Domain Name
(where D = 30)
F160 =30 a2 [—100, 100] P Sphere
D
fa(x) = 30,2 100(wg; — @2,)% 4+ (1 — wp;_1)% [-10, 10]P Rosenbrock
f3(x) = —20 - exp (-o.z . \/Ll) A :r?) [—32, 32| Ackley
—exp (L S0P | cosmay)) 420+
FaG) = 4ibo SO @2 — TR, cos(VARE: [—600,600]P Griewank
f5(x) = Zf’zl(w? — 10 cos(2ma;) + 10) [-5.12,5.12]P Rastrigin
fo(x) = 3o (y2 — 10cos(2my;) + 10) [-5.12,5.12] P Non-
where continuous
z; if |25 < 3 .
Yi =\ round(2z;) . 1 Rastrigin
2 if o] > 5
x) = — S P 2. sin z; —500,500]°P Schwefel
7 =1 Ti i
f8() = 4iho SO @2 — [T, cos \/li) +1 [—600, 600]° Rotated
y=M=#x Griewank
fo(x) = T (10sin?(x - y;) Generalized
+ 24:_11(%' ~ 2. @+ 10sin?(r -y 1)) [-50,50]P Penalized
+p — D) + 32 u(z, 10,100, 4) function

where y; =14 1(2; + 1),

k(z; —a)™, if z; > a
u(z, a, k, m) =<0 if —a<®;<a

, i
k(—z; — a)™if 2; < —a

on the five-dimensional test functions are plotted in figure [Il Firstly, an impor-
tant observation is that all the diversity measures of CPSO-S decrease towards
zero on all functions. Secondly, plots in figure 1 indicate that the rate of reduc-
tion is the same. All four diversity measures satisfy the criteria as indicated in
section @ Although the CPSO-Div 3 maintained the highest average diversity
its applicability to functions with higher dimensions is infeasible as indicated in
section @l Hence, the plots in figure[Ilindicate that the remaining diversity mea-
sures are all appropriate for CPSO-S, except CPSO-Div 3 for high dimensional
functions.

Investigating Research Question 2: From subfigures (a) to (i) in figure 1,
CPSO-Div 3 maintained the highest average diversity for each iteration except
for the Griewank (f4) function. CPSO-Div 4 generally maintained a high diver-
sity except on the Sphere and Ackley functions, where the diversity was the small-
est of all the diversity methods for a larger part of the duration of optimization.
CPSO-Div 1 and CPSO-Div 2 maintained identical diversities for functions f;
and f3 to fg, while CPSO-Div 1 exceeded the diversity values reached by CPSO-
Div 2 midway through optimization on function fs. Although the CPSO-Div 3
maintained the highest average diversity its applicability to functions with higher
dimensions is infeasible as indicated in section @l Hence, the plots in figure [l in-
dicate that the remaining diversity measures are all appropriate for CPSO. The
best diversity measure(s) on higher dimensional test functions are CPSO-Div 1 and
CPSO-Div 2, with CPSO-Div 1 achieving slightly better diversity than CPSO-Div
2 on the Rosenbrock function (f2). The best diversity measure for CPSO based on
diversity plots of the test functions in this paper is CPSO-Div 1.

Measuring Diversity in the Cooperative Particle Swarm Optimizer 105

Sphere Rosenbrock Ackley

Mothod 1 “54—
Method 2 ~-
i Method 3 —-&.
g Method 4 3¢

log(diversity)
log(diversity)
log(diversity)

20 40 60 80 100 120 140 160 180 20 40 60 80 100 120 140 160 180 200 20 40 60 80 100 120 140 160 180
iterations terations iterations

(a) f1 (Sphere) (b) f2 (R(n)seubrock) (c) f3 (Ackley)

Griewank Rastrigin Non-cont. Rastrigin
WMethod 1 ——
Method 2 -O-
Method 3 &
*

1000,
¥

K

NG Method 4

og(diversiy)
log(diversity)
og(diversiy)

20 40 60 80 100 120 140 160 180 2 20 40 60 80 100 120 140 160 180 200 20 40 60 80100 120 140 160 160 2
iterations iterations. iterations

(d) f4 (Griewank) (e) f5 (Rastrigin) (f) f¢ (Non-cont. Rastrigin)

Schwefel Rotated Griewank Gen. penalized

Mothod 1 “5—
Method 2 ~-
Method 3 —-&.
Method 4 3¢

s

log(diversity)
logdiversity)
log(diversity)

20 40 60 80 100 120 140 160 180 20 40 60 80 100 120 140 160 180 200 20 40 60 80 100 120 140 160 180
iterations iterations iterations

(g) f7 (Schwefel) (h) fg (Rotated Griewank) (i) fo (Gen. penalized)

Fig. 1. Plots of average diversity for each of the four diversity methods for 5D functions

Investigating Research Question 3: The diversity of the global best PSO
and the CPSO-S on the 30 dimensional test functions listed in table [I] was also
investigated. CPSO-Div 1 as the best diversity approach for CPSO was used
to calculate the diversity of the CPSO-S, while the diversity of the PSO was
calculated using equation Bl Figure Bl contains plots of the average diversity for
each of the 9 test functions. CPSO-S maintained a higher average diversity than
global best PSO throughout the optimization process except for the Rosenbrock
function (f2), where the low diversity maintained by the CPSO-S can be ascribed
to the CPSO-S converging much quicker than the global best PSO. From the
plots it is clear that CPSO-S generally maintained a higher average diversity
than global best PSO. This proves the claim that CPSO-S (or CPSO) maintains
a higher diversity than the global best PSO.

Investigating Research Question 4: The effect of an increased number of
swarms in CPSO on diversity was also investigated. CPSO-Div 1 was used
to calculate the diversity of the CPSO-Sx where K varies from 3 to 30, i.e.
K =3,6,10, 15, 30. The experiments were performed on the test functions listed
in table [[] with dimension 30. Plots of the average diversity for each of the 9 test
functions appear in figure Bl The plots indicate that an increase in number of
swarms generally resulted in an increase in diversity except for the Rosenbrock

106 A. Ismail and A.P. Engelbrecht

Sphere Rosenbrock Ackley
tes020 1e4007 100
NG of subswarmt = 30 5 3. of subswamd = 30 <5 NG of subswarmt = 30 5
- No.of ubawarms - 15 — N Siag
L 1o400 No.of ubawa '
No. of subsw No.of subswarms =6,
10020 No. of subswarms oo D No_of subswarms -3~
100000y Ghest PSO. 2 Goest PSO. +
10040 - =
7 z F 0001
2 10060 £ 10000 2
2 E] 3 1e008
§ 10080 S oo S
E g g 1e008
£ o100 g g
10 1e010
1120 ¥ °
te-140 i SFomtged o .
te-160 - 1 10014 s >
o000 a0 Te0000 200000 0000 Boon 0 760000 200000 0000 800 Te0000 200000
funcion evaluations funciion evaluations funcion evaluations
(a) f1 (Sphere) (b) fo (Rosenbrock) (c) f3 (Ackley)
Griewank Rastrigin Non-cont. Rastrigin
1000 10000
No.of subswarms = 30 £ 5 5. of subswa NG of subswarms
No.of subswarms - 15 8- 1o - No_ o1 5 No_of Sbswarms
No-of subswarms - 10 & P S z: =
100 No.of subswarms =6 X ' o, &P
No_of subswarms =3 - N of subswarms =3 - No_of subswarms =3 —6-—
Gbest PSO. e oot Gbest PSO. e Goest PSO. e
2 2 00001 z
g o g g
H £ joa0s 2
g S 10 g
g 2 g
g B 1e0t0 g
1e012
o1 1014
10016
oot 10018
0000 0000 0000 Ta0000 200000 T 70000 160000 200000 0000 @000 120000 160000 200000
funciion evaluations funciion evaluations funciion evaluations
(d) f4 (Griewank) (e) f5 (Rastrigin) (f) fg (Non-cont. Rastrigin)
Schwefel Rotated Griewank Gen. penalized
1000 tes0t0,
o, of subswarms 30 b.of subswarmt = 30 NG of subswarmt = 30 5
No.of ubawarms - 15 -O- No.of ubawarms - 15 -O- 100000 No.of subswarms - 15 -
No.of subswams - 10 - & No.of ubewa No_of subswarms - 10 - &
4000 No.of subswarms <6 100 No.of No.of subswarms =6 X
No_ of subswarms =3 —>-- No_ of subswarms =3 —>--) S—
Gbest PSO. ¥ Gbest PSO GoRIPSO F
5000 = _ 16005} Y
3 3 7
2 = 2 10010
= 000 H H
] g 8 1eors
g £ oo
10025 \
Y
10020 \ .
N A A
14000 o001 10035
0000 a0 T20000 160000 200000 0000 a0 T20000 160000 200000 0000 8000 o Te0000 200000
function evaluations funciion evaluations funcion evaluations
(g) f7 (Schwefel) (h) fg (Rotated Griewank) (i) fo (Gen. penalized)

Fig. 2. Plots of average global best for subswarms of different sizes for 30D functions

function (f2) where the opposite is observed. As shown in figureBl(b) the CPSO-S
and CPSO-S;15 converged quickly to the minimum indicating excellent exploita-
tion which resulted in lower diversity on the Rosenbrock function (f2), while the
other CPSO variants were still exploring the search space thus reflecting a larger
diversity. The same behaviour is also observed in figure Bld) on the Griewank
function (f4). In figureBl(e) the CPSO-S and CPSO-S;5 maintained a high diver-
sity while exploring the search space and managed to find the optimum, while
all other CPSO variants converged prematurely as reflected in figure Pfe). In
figure [(e) the premature convergence to local optima by all CPSO-S variants,
except CPSO-S and CPSO-S;5, lead to a lower diversity of the swarm. For the
Rastrigin function (f5) the low diversity maintained by the CPSO-S - with the
largest number of subswarms - can be ascribed to quicker convergence which
is experienced earlier than all other CPSO variants. The plots indicate that an
increase in the number of subswarms results in an increased diversity.

A comparison of plots in figures P and [also indicates that an increase in
diversity, increased performance of the CPSO as reflected for functions f4; to
fs functions, while the increased diversity of the CPSO-S resulted in slower
convergence on functions f;. However, the decreasing graphs in figures [2(a) and
(i) indicate that with increased optimization time the optima could be found by

Measuring Diversity in the Cooperative Particle Swarm Optimizer 107

Rosenbrock Ackley
tes0t0 10
NG of subswarmt = 30 5
| No_of subswars - 15 0~
No_of subswarms - 10 &
No.of subswarms <6 X
10010 No_of subswarms -3 -
51PSO. +
10020
El z
% 10000 2
S to0m0 H o S—— =+
~ te0s0 B b‘?}\
1e0%0 M
o070 e e R]
10080 00001
o000 a0 Te0000 200000 w0000 0 760000 200000 0000 B0 Te0000 200000
funcion evaluations funciion evaluations funcion evaluations
(a) f1 (Sphere) (b) fo (Rosenbrock) (c) f3 (Ackley)
Griewank Rastrigin Non-cont. Rastrigin
100 100

NG of subswarms = 30 ——

NG of subswarms = 30 ——
No. of subswarms — 15 - -

No. of subswarms — 15 -

NG. of subswarms = 30 —5—
No. of subswarms - 15 O
No. of subswarms = 10 &
of subswarms =6 X
No. of subswiarms =3 -&--
GostPSQ. .]

001

H ; il 2 00001 T
% sk (L % 1
1008 3 16008
Y ‘
10008 10010
o600 000 Ta000 180000 200000 o600 000 Ta000 Te0000 200000 0000 80600720000 160000 200000
function evaluations function evaluations function ovaluations
(d) f4 (Griewank) (e) f5 (Rastrigin) (f) fg (Non-cont. Rastrigin)
Schwefel Rotated Griewank Gen. penalized

NG of subswarms =30 ——

NG. of subswarms = 30 ——
No. of subswarms = 15 —O-
No. of subswarms = 10 - &.
No. of subswarms =6 X
No. of subswarms =3 -5
Gbest PSO. +

001 \m
3 N Sooor[ZW
2 2 H iy
g 1ow0o T
% § oooon 3 oo I S R — o]
g g g 3
006 o N E
N\ B,
Te02 \ ~
16008 “u, O,
1e014 \‘% .
1e-010 16016 i Sr— A
40000 80000 2000(160000 200000 00g 40000 80000 0000 160000 200000 © 40000 8000 0 160000 200000
function ovaluatons function ovaluatons functon evalugtons
(g) f7 (Schwefel) (h) fg (Rotated Griewank) (i) fo (Gen. penalized)

Fig. 3. Plots of average diversity of the CPSO-Sk for K = 3,6,10,15,30 (30D test
functions)

the CPSO-S on these two functions. Thus, increased diversity generally improves
performance of the CPSO-S.

6 Conclusion

This paper proposed an alternative measure of diversity for the CPSO and com-
pared the proposed method with 3 other diversity measures. The best diversity
measure of the four approaches was identified and used to compare the diver-
sity of the CPSO-S with the diversity of the global best PSO to test the claim
that CPSO improves diversity. This paper also investigated whether diversity
increases with an increase in the number of subswarms of the CPSO. Applica-
tion of the four diversity measures to nine well-known test functions indicated
that the diversity measure, which is based on solution vectors generated by using
all possible combinations of particles in all subswarms, maintained the highest
diversity during optimization. This approach becomes infeasible for objective
functions with a relatively large dimension and large swarm size. According to
the diversity plots the proposed diversity measure which is based on the same
context vector used for fitness evaluations in CPSO managed to maintain a di-
versity which is at least as good as the diversity of the dimension-wise approach

108 A. Ismail and A.P. Engelbrecht

proposed in [I3]. Results of experiments also indicated that the higher diversity
maintained by the CPSO-S on multi-modal functions lead to improved solutions
compared to other CPSO variants and that in general diversity increased with
an increase in the number of subswarms of CPSO.

References

1. Cheng, S., Shi, Y.: Diversity Control in Particle Swarm Optimization. In: IEEE
Symposium on Swarm Intelligence (SIS), pp. 1-9 (2011)

2. Cui, Y., Ju, S.-G.: A diversity guided PSO combined with BP for feedforward
neural networks. In: 3rd International Congress on Image and Signal Processing,
CISP 2010, Yantai, pp. 1538-1542 (2010)

3. Eberhart, R.C., Kennedy, J.: A New Optimizer Using Particle Swarm Theory. In:
6th International Symposium on Micro Machine and Human Science, pp. 39-43.
IEEE Service Center, Piscataway (1995)

4. Eberhart, R.C., Shi, Y.: Comparing inertia weights and constriction factors in
particle swarm optimization. In: IEEE Congress on Evolutionary Computation
(CEC 2000), San Diego, CA, pp. 84-88 (2000)

5. Jie, J., Zeng, J., Han, C., Wang, Q.: Knowledge-based cooperative particle swarm
optimization. Journal of Applied Mathematics and Computation 205, 861-873
(2008)

6. Kennedy, J., Eberhart, R.C.: Particle Swarm Optimization. In: IEEE International
Conference on Neural Networks, vol. 4, pp. 1942-1948 (1995)

7. Kennedy, J.F., Kennedy, J., Eberhart, R.C.: Swarm Intelligence. Morgan
Kaufmann Publishers (2001)

8. Liang, J.J., Qin, A.K., Suganthan, P.N., Baskar, S.: Comprehensive Learning Par-
ticle Swarm Optimizer for Global Optimization of Multimodal Functions. IEEE
Trans. Evol. Comput. 10(3) (June 2006)

9. Olorunda, O., Engelbrecht, A.P.: Measuring Exploration/Exploitation in Particle
Swarms using Swarm Diversity. In: IEEE World Congress on Computational In-
telligence (CEC 2008), pp. 1128-1134 (2008)

10. Pant, M., Radha, T., Singh, V.P.: A Simple Diversity Guided Particle Swarm
Optimization. In: IEEE Congress on Evolutionary Computation (CEC 2007), pp.
3294-3299 (2007)

11. Riget, J., Vesterstrom, J.S.: A Diversity-Guided Particle Swarm Optimizer - the
ARPSO, Technical report, EVALife, Denmark (2002)

12. Salomon, R.: Reevaluating genetic algorithm performance under coordinate rota-
tion of benchmark functions. BioSystems 39, 263-278 (1996)

13. Shi, Y., Eberhart, R.: Population diversity of particle swarms. In: Congress on
Evolutionary Computation (CEC 2008), pp. 1063—-1067 (2008)

14. Van den Bergh, F., Engelbrecht, A.P.: A Cooperative Approach to Particle Swarm
Optimization. IEEE Transactions on Evolutionary Computation 8(3), 225-239
(2004)

15. Van den Bergh, F.: An analysis of particle swarm optimizers. PhD Thesis, Depart-
ment of Computer Science, University of Pretoria (2002)

16. Zhan, Z., Zhang, J., Li, Y., Chung, H.S.: Adaptive Particle Swarm Optimization.
IEEE Transactions on Systems, Man and Cybernetics - Part B: Cybernetics 139(6),
1362-1381 (2009)

Multi-armed Bandit Formulation of the Task
Partitioning Problem in Swarm Robotics

Giovanni Pini, Arne Brutschy, Gianpiero Francesca,
Marco Dorigo, and Mauro Birattari

TRIDIA, Université Libre de Bruxelles, Brussels, Belgium
{gpini,arne.brutschy,gianpiero.francesca,mdorigo,mbiro}@ulb.ac.be

Abstract. Task partitioning is a way of organizing work consisting in
the decomposition of a task into smaller sub-tasks that can be tackled
separately. Task partitioning can be beneficial in terms of reduction of
physical interference, increase of efficiency, higher parallelism, and ex-
ploitation of specialization. However, task partitioning also entails costs
in terms of coordination efforts and overheads that can reduce its bene-
fits. It is therefore important to decide when to make use of task parti-
tioning. In this paper we show that such a decision can be formulated as
a multi-armed bandit problem. This is advantageous since the theoret-
ical properties of the multi-armed bandit problem are well understood
and several algorithms have been proposed for tackling it. We carry out
our study in simulation, using a swarm robotics foraging scenario as a
testbed. We test an ad-hoc algorithm and two algorithms proposed in
the literature for multi-armed bandit problems. The results confirm that
the problem of selecting whether to partition a task can be formulated
as a multi-armed bandit problem and tackled with existing algorithms.

1 Introduction

Task partitioning refers to the act of dividing a task into a sequence of sub-
tasks that can be tackled separately [9]. Many social insects, such as ants, bees,
and wasps employ task partitioning for organizing their work. The benefits that
insects draw from task partitioning are many: decrease of physical interference
between individuals, higher exploitation of specialization, higher parallelism and
efficiency in performing tasks [I7]. Swarms of robots could benefit from task
partitioning in the same ways. However, task partitioning also entails costs that
are mainly a consequence of the coordination required to link different sub-tasks
one to another. Therefore, task partitioning should be employed only when the
benefits overcome the costs. In the rest of the paper, we will refer to the problem
of selecting whether to employ task partitioning as the task partitioning problem.

In a previous work, we proposed a method that allows the robots to choose
when to employ task partitioning, on the basis of the costs involved [16]. In
this paper, we extend the work by reformulating the task partitioning problem
as a multi-armed bandit problem [3]. The multi-armed bandit problem consists
in repeatedly selecting actions to be performed in order to maximize a reward

M. Dorigo et al. (Eds.): ANTS 2012, LNCS 7461, pp. 109-[[20, 2012.
(© Springer-Verlag Berlin Heidelberg 2012

110 G. Pini et al.

that depends on the actions taken. In terms of the multi-armed bandit, the
task partitioning problem can be reformulated as the problem of choosing be-
tween partitioning the overall task and performing it as an unpartitioned task,
with the goal of minimizing the resulting costs. Each robot tackles the multi-
armed bandit problem independently of the other robots: it selects its actions on
the basis of its individual estimate of the costs. The advantage of formulat-
ing the task partitioning problem as a multi-armed bandit stems from the fact
that the latter is widely studied in statistics. Consequently, its theoretical prop-
erties are well understood and, most importantly, one can select among several
existing algorithms, without the need of implementing ad-hoc solutions every
time. The approach presented in this paper can be used to solve the task parti-
tioning problem in situations in which the robots can measure or estimate the
costs associated to employing task partitioning.

Multi-armed bandit problems are characterized by a tradeoff between ex-
ploitation and exploration. A balance has to be found between “exploring the
environment to find profitable actions” [2] and “taking the empirically best ac-
tion as often as possible” [2]. Also in the task partitioning problem there is such
a tradeoff. Task partitioning should be exploited as much as possible, if the ex-
pected resulting costs are low. However, changes in the environment can affect
costs. Therefore, the option of using task partitioning should be reconsidered in
time, in order to detect such changes.

The rest of the paper is organized as follows. In Section 2] we review the ex-
isting work on task partitioning in swarm robotics. In Section [B] we describe the
specific problem tackled in this work and present the three algorithms that we
consider for tackling the problem. In Section [we briefly describe the experimen-
tal setup and the tools used to carry out the research. In Section Bl we present
and comment the results of the experiments. Finally, in Section [6l we summarize
the contribution of the work and we describe directions for future research.

2 Related Work

The biology literature is rich in studies devoted to task partitioning. In partic-
ular, task partitioning has been observed in social insects in the organization of
tasks such as material transportation, nest excavation, and waste removal [17].
Swarm robotics draws inspiration from the world of social insects in the imple-
mentation of robotic systems composed of a large number of relatively simple
cooperating robots [5]. The tasks performed by swarms of robots have often a
counterpart in the world of social insects. As social insects draw benefits from
task partitioning, it is interesting to study the application of task partitioning
to swarms of robots performing similar tasks.

While in biology the body of literature on task partitioning is large, few works
in swarm robotics have been devoted to this topic. In the majority of the works,
the focus is on the use of task partitioning as a means for reducing physical
interference. In [7], a foraging task is partitioned into sub-tasks developing in
separate areas, each one assigned a-priori to a different robot. A similar work is

Multi-armed Bandit Formulation of the Task Partitioning Problem 111

presented in [I4], with the difference that in this case the areas are not assigned
statically and several robots can share the same working area. In [I§], a swarm
of robots has to forage for objects. Objects are progressively moved towards the
nest by different robots, each working in an area of a given radius. The study
shows that the higher the number of robots, the smaller the working area radius
should be. The work as been extended to allow for a dynamical regulation of
the working areas size [10] and to relocate the working areas depending on the
objects distribution in the environment [I1]. In [I2], a swarm of robots has to
perform foraging in an environment composed of several corridors. The authors
show that task partitioning improves performance when the corridors are too
narrow for two robots traveling in opposite directions to pass at the same time.

In a previous work we studied task partitioning in a foraging task and proposed
a simple method that allows a swarm of robots to tackle the task partitioning
problem [§]. In a follow up research the method has been extended to explicitly
take into account costs linked to task-partitioning [I6].

3 Problem Description and Methodology

We study the task partitioning problem: how to choose whether to partition a
given task, or to perform it as a whole, unpartitioned task. When task partition-
ing is employed, the given task is partitioned into a sequence of sub-tasks. In
this paper, we focus on the case in which there are two sub-tasks. The sub-tasks
are linked by an interface of finite capacity. The output of the first sub-task can
be stored at the interface and be subsequently used as the input for the second
sub-task. In this paper we use a swarm robotics foraging scenario as testbed.

Figure[lprovides a schematic representation of the environment and the prob-
lem we study in this work. In the foraging scenario, the robots repeat an object
retrieval task: harvesting an object from the source, and storing it at the nest.
The environment is composed of two areas, one containing the source and the
other containing the nest, separated by a cache. The robots cannot cross the
cache, but they can use it to transfer objects from one area to the other. A
corridor links the two areas and allows the robots to reach one from the other.

In the setup described, using the cache allows the robots to partition the object
retrieval task into two sub-tasks: the first consists in harvesting an object from
the source and drop it in the cache, the second in picking up an object from the
cache and storing it at the nest. Therefore, the cache acts as an interface between
sub-tasks. Conversely, the use of the corridor allows the robots to perform object
retrieval as an unpartitioned task: a robot can directly reach the source from the
nest and the other way around, harvesting and storing objects.

Each robot chooses whether to employ task partitioning in two situations,
represented by a question mark in Fig.[Il First, after taking an object from the
source, a robot decides whether to use the cache to DROP the object, or to use
the corridor and STORE the object at the nest. Second, after storing an object
in the nest, a robot decides whether to PICK UP an object from the cache, or to
use the corridor and HARVEST an object from the source.

112 G. Pini et al.

SOURCE
>
O
o
n (O
= |7©
o
E
CACHE
T
>
2
O |z
= |0
~
c
T
NEST

CORRIDOR

Fig. 1. Representation of the studied foraging problem. Foraging consists in harvesting
objects from the source and storing them at the nest. Robots choose between using
task partitioning (i.e., use the cache) or not (i.e., use the corridor) in two cases, marked
with “?” in the figure. After taking an object from the source, a robot chooses between
STORE it at the nest or DROP it at the cache. Upon storing an object in the nest, a
robot chooses between PICK UP the next at the cache or HARVEST one from the source.
The dashed arrows represent cost estimates t; that the robot associates to each action.

In this work, we show that the task partitioning problem can be formulated
as a multi-armed bandit problem. In the multi-armed bandit problem, the goal
is to maximize a reward. If the dual problem of minimizing costs is tackled,
algorithms and techniques for the bandit problem can be employed for the task
partitioning problem as well. The nature of the costs depends on the specific task
and on the characteristics of the environment. Typically costs are represented
by resources needed to perform the task. Examples are: energy, time required to
complete a task, or materials employed. In the foraging scenario studied in this
paper, the goal is to maximize the number of objects delivered to the nest. This
can be done by maximizing the throughput; we therefore express costs in terms
of time.

Each robot keeps a cost estimate for each of the possible four actions: i)
HARVEST an object from the source (using the corridor), ii) PICK UP an object
from the cache, iii) DROP an object in the cache, and iv) STORE an object in the
nest (using the corridor). Each estimate ; is computed as:

t}e(lfa)t}JratM, (1)

where o € (0, 1] is a weight factor. ¢as is the measure of the time taken by the last
action performed by the robot, its meaning depending on the specific estimate
being updated (refer to the dashed arrows in Fig. [[. When estimating the cost
ty of HARVESTING an object from the source, t); measures the time from the
moment an object is stored in the nest till the moment a new object is harvested
from the source. Analogously, when estimating the cost {5 of STORING an object
in the nest, t); denotes the time measured from the moment an object is taken
from the source to the moment it is deposited in the nest. When estimating

Multi-armed Bandit Formulation of the Task Partitioning Problem 113

the cost £p of DROPPING objects in the cache, t); measures the time from the
moment an object is taken from the source, to the moment the following one
is taken from the source, after dropping the first in the cache. Analogously, for
the cost tp of PICKING UP, t5; accounts for the time between two objects being
stored in the nest, with the second one taken from the cache. These estimates
are used by the robots to decide between using the cache or the corridor.

In this work we compare three algorithms, used by the robots to make this de-
cision. The first is an ad-hoc algorithm that we proposed in a previous work [16].
Using the ad-hoc algorithm, after taking an object from the source, a robot has
a probability P, of DROPPING it in the cache:

. ~ ~ ~ —1
i {1 + e—S((tH+tS)/(tP+ tD)—l):| , if iy + tAS > (tAp —I-tAD) @)
= R R R N -1 . R R R)
P {1 4 e S(-(ir+ tD)/(tHHS))} , it iy +is < (ip +ip)

where S is a steepness factor. The higher its value, the higher the degree of
exploitation of the algorithm. Analogously, after delivering an object to the nest,
a robot has the same probability P, of PICKING UP the following one from the
cache. Thus, the object retrieval task is performed as a partitioned task with
a probability of P, and performed as an unpartitioned task with a probability
1—-P,.

We compare the ad-hoc algorithm with two other algorithms that have been
previously proposed in the literature to tackle multi-armed bandit problems.
The first of the two, which we will refer to as UCB, is a modified version of
the UCBI policy presented in [2] that, in turn, is derived from the index-based
policy described in [I]. Using UCB, after taking an object from the source, a
robot DROPS it in the cache if:

R 2In(np +n . 2In(np +n
tD’y\/ (5D S)<tsv\/ (ES S), (3)

otherwise it takes the corridor to STORE the object in the nest. np is the number
of times that the robot selected the cache for DROPPING an object, ng the number
of times the robot used the corridor for STORING an object in the nest. v is a
parameter that allows to tune the degree of exploration of the algorithm: the
higher the value, the higher the exploration. An analogous formula is used to
choose between PICKING UP an object from the cache or HARVEST it from the
source using the corridor.

The third algorithm studied in this work, is the e-greedy algorithm, a simple
algorithm widely employed in reinforcement learning [19]. With the e-greedy
algorithm, the action perceived as the less costly is selected with a probability
1 — ¢, otherwise a random action is selected. € defines the degree of exploration
of the algorithm: the higher the value, the higher the exploration.

Notice the difference between the ad-hoc algorithm and the other two. In the
former, no distinction is made between the two decision points: both at the nest
and at the source there is the same probability P, of employing task partitioning.

114 G. Pini et al.

In the UCB and the e-greedy algorithms, the robots discriminate between the
two cases when making their choice.

For all the algorithms, a give up mechanism allows the robots to abandon
the choice of using the cache. Without this mechanism, deadlocks could occur
in two cases. The first case happens if all the robots are trying to drop objects
in the cache and the cache is full. The second case happens if all the robots are
trying to pick up objects from the cache, and the cache is empty. Giving up is
implemented using a timeout: the robot measures the time it has been trying
to access the cache, and abandons its choice when the time reaches a given
threshold. Details about how the threshold is computed can be found in the
online supplementary material [I5]. When a robot gives up, its current waiting
time updates the respective estimate ip or ¢p using Equation [

4 Experimental Setup

This section briefly describes the experimental tools and the environment in
which we run the experiments presented in the paper. A more detailed descrip-
tion can be found in [16], of which the research presented here is a follow up.

All the experiments presented in this work have been carried out in simulation
using ARGoS [13], a simulator developed within the Swarmanoid project [6].
We simulate the e-puc7 a small wheeled robot that has been used in many
studies in swarm robotics. As the e-puck does not have the capability of grasping
objects, we abstract this process by using a device called Task Allocation Module
(TAM) [4]. Each TAM is a small booth in which an e-puck can enter. In the
experiments, we simulate the TAM and its basic functionalities: two RGB LEDs
that can be perceived by the e-pucks and a light barrier that can detect the
presence of a robot within the TAM. In the experiments presented in this article,
we implement the source, the nest, and the cache using TAMs.

The experiments take place in the environment represented in Fig. 2l The
source is located at the top-left, the nest at the top-right, and the cache between
the source and the nest. The nest and the source are implemented using four
TAMs on one side; the cache is implemented with eight TAMs, four on each
side, organized in pairs facing opposite directiondd. The corridor links the areas
containing the source and the nest.

We perform the experiments in two environments, called short-corridor and
long-corridor environments. In both environments, the source is 1.5 m away from
the nest. The environments differ in terms of the total length of the corridor:
5.0m in the short-corridor and 7.5 m in the long-corridor environment. We also
impose a cache processing time IT that the robots have to spend in the cache
when dropping or picking up an object. The length of the corridor and the value
of IT determine whether it is more advantageous to perform the object retrieval

! http://www.swarmanoid.org

2 http://www.e-puck.org

3 A video showing the behavior of the cache can be found in the online supplementary ma-
terial at the following url: http://iridia.ulb.ac.be/supp/IridiaSupp2012-005/

http://www.swarmanoid.org
http://www.e-puck.org
http://iridia.ulb.ac.be/supp/IridiaSupp2012-005/

Multi-armed Bandit Formulation of the Task Partitioning Problem 115

Fig. 2. Representation of the experi-
mental environment. Nest, source and
cache are implemented using TAMs. The
different ground colors are used by the
robots for localization in the arena. Light
sources, marked with “L”, provide di-
rectional information. The short-corridor
and long-corridor environments differ in
the total length of the corridor.

(V]
v
=
=]
(=]
(0}

L L L

task as unpartitioned task, or to partition it into two sub-tasks. By changing
the value of IT, we can tune the relation between the performance obtained by
using the cache and the one obtained by using the corridor. Consequently, we
can also define how advantageous it is to employ task partitioning.

5 Experiments and Results

We run all the experiments in both the short-corridor and long-corridor environ-
ments, with swarms of 10 and 20 robots. Every experiment lasts 10 simulated
hours. At the beginning of each experiment, half of the swarm is positioned in
the area containing the source and the other half in the area containing the nest.
The value of «, used for computing the time estimates in Equation [, has been
set to 0.5. Notice that, in order to reduce the parameter space, we do not tune
the value of a with systematic experiments. We select this value of « since low
values are likely to render the algorithms poor in reacting to changes, while high
values increase sensitivity to noise. The values of the cost estimates are initial-
ized randomly: fz and {g are uniformly sampled in the interval [40, 80], fp and
tp in [20, 40)].

116 G. Pini et al.

Table 1. Selected parameters for the exploiting and exploring versions of the three
algorithms

Algorithm parameter exploiting version exploring version
ad-hoc S 6.0 1.0

UCB vy 100 1000
e-greedy € 0.01 0.11

We run two sets of experiments. The goal of the first set of experiments is to
select the parameters for each algorithm. Details about these experiments and
the complete results can be found in the online supplementary material. Follow-
ing these experiments, we selected two parameters settings for each algorithm,
one corresponding to an ezploring version and one to an exploiting version of
the algorithm.

In the second set of experiments, the goal is to test whether, by employing
the different algorithms, the robots are able to choose properly when to use task
partitioning and when not to. Additionally, we test if the choice made by the
robot adapts to variations occurring in the environment. In each experiment,
the value of the cache interfacing time II is initialized to 0, it switches to 160s
after 2.5 hours, and then it switches back to 0 when the experiment reaches half
of its duration. The robots are expected to choose between the cache and the
corridor and to adapt their choice in time.

Figure [reports the results of the experiments, for a swarm composed of 20
robots, in the long-corridor environment. Plots on the same row refer to the
same algorithm (from top to bottom: ad-hoc, UCB, e-greedy). The plots in the
left column report the results for the exploiting version of the corresponding
algorithm, the ones on the right for the exploring version. Each box reports the
percentage of usage of the cache in the 30 minutes preceding the time reported
on the X axis. The grey horizontal lines report the optimal cache usage, that
changes depending on the value of II. The grey slanted lines report percentages
of cache usage that lead to a performance of at least 95% of the optimal. Per-
formance is measured as average total number of objects retrieved at the end of
the experiment. To determine the optimal way of using the cache, we performed
experiments in which some of the robots were forced to always use the cache.
For each value of IT and the two swarm sizes, we exhaustively tested all the
possible values of the number of robots forced to use the cache and recorded the
corresponding performance. The performance of the different algorithms is re-
ported in Fig. [l The optimal performance and the performance of an algorithm
randomly selecting between cache and corridor are also reported for reference.

A comparison between the two versions of each algorithm highlights the trade-
off between exploration and exploitation, typical in multi-armed bandit prob-
lems. When the exploiting versions of the algorithms are employed, the robots
can select when to use the cache and when to use the corridor, but are unable
to detect changes occurring in the environment. This can be seen in the near

Multi-armed Bandit Formulation of the Task Partitioning Problem 117

Exploiting Exploring
n-0s n-160s n-0s n-160s n-0s
i l o | | o
\\ NN RN Sy
o : © o
- o E F 2R
3 R
[®) \\ \\ \l\ g
(0]
o | l o | D -
c E : E
1 =}
(0]
2 F3 . | -3
©
! ! ! B ST $)
i . . Lo 4 ! i Lo
I o i
RN P
| AR Lo o
T T T T T T T T T T T T T T T T T T T T
0 1 2 3 4 5 6 7 8 9 10 0 1 2 3 4 5 6 7 8 9 10
Time (hours) Time (hours)
n-0s n-160s n-0s n-0s n-160s n-0s
i Lo | | o
- o e] : T
!
\ N \ R J [o
b Fes 1 o Fesg
m - A N : e g
@) Cnn b ' >
! i (0]
S FE A : F2g
. |
: ' ' s
i ! ‘ l o ' | «©
3) B
;
i o~y Lo | RN L o
g 2
T T T T T T T T T T T T T T T T T T T T
0 1 2 3 4 5 6 7 8 9 10 0 1 2 3 4 5 6 7 8 9 10
Time (hours) Time (hours)
n-0s N-160s n-0s n-os n-160s n-0s
i l o | | o
¥ Ny o\i\] i
ey] —
o \ Lo \\i\ t ' L =@
~ L
T h Nk g
$ 4 S A i Fsg
)
=}
'
= L <« ! l < 2
A . © . °8
w 1 ! (&)
R FS Ao 1 F S
i , IR
i \l [I} Lo | CN L o
g 2
T T T T T T T T T T T T T T T
0 1 2 3 4 5 0 1 2 3 4 5 6 7 8 9 10
Time (hours) Time (hours)

Fig. 3. Percentage of usage of the cache for the ad-hoc (first row), the UCB (second
row), and the e-greedy (third row) algorithm. In each row, the plot on the left reports
the results for the exploiting version, the one on the right for the exploring version
of the corresponding algorithm. We report the results obtained in the long-corridor
environment, with a swarm composed of 20 robots. The cache interfacing time II is
initialized to 0. After 2.5 hours of experiment, the value is changed to 160 seconds, and
returns to 0 at half experiment. Vertical dashed lines mark the moments in which the
value of IT changes. Each box reports the percentage of usage (over 25 experimental
runs) of the cache in the 30 minutes preceding the time reported on the X axis. The
grey horizontal line reports the cache usage that maximizes the number of objects
retrieved, which varies with the value of I1. The grey slanted lines report percentages
of cache usage that lead to a number of objects retrieved that is at least 95% of the
maximum.

118 G. Pini et al.

S Algorithm version
2 B Exploiting
- 8 O Exploring
QR
2
= 8 =
o o e i
e 3 " =
] — ; -
3 g = =
= ° ~ R
e : -
8
8 ' ;
g i = n
8 aoal
8
8
Ad-Hoc ucB e-greedy Optimal Random
Algorithm

Fig. 4. Total number of objects retrieved by a swarm of 20 robots in the long-corridor
environment

optimal behavior in the first half of the experiment, which degrades in the sec-
ond half. Notice that the first change in the value of IT is detected also when
employing the exploiting version of the algorithms. The reason is that initially
the cache is selected often by the robots. Consequently, they can detect changes
in IT independently of the version of the algorithm being employed. Detecting
the opposite transition in the value of IT is harder and it only happens when the
exploring version of the algorithms is employed.

The overall results (see online supplementary material) indicate that, in gen-
eral, the algorithms perform better, more consistently, and with higher reactivity
to changes, when the swarm is larger. This highlights that cooperation is required
in order to render task partitioning effective. When the robots are many, it is
more likely that robots are present on both sides of the cache, which is critical
in order to exploit the cache properly. The length of the corridor seems to have
little effect on the behavior of algorithms.

The results confirm that the task partitioning problem can be formulated as a
multi-armed bandit problem. General algorithms for tackling bandit problems,
such as the UCB and the e-greedy, can be successfully employed to tackle the task
partitioning problem, with results comparable with those of an ad-hoc algorithm.
In particular the e-greedy is a suitable candidate, since it is simple and its only
parameter is easy to understand and tune manually.

6 Conclusions

In this paper, we studied the problem of choosing whether to tackle a task as a
whole, or to partition it into a sequence of two sub-tasks. We show that the prob-
lem can be formulated as a multi-armed bandit problem. This is advantageous
since the problem is well studied and understood, and its theoretical properties
are known. Most importantly, several algorithms have been proposed in the lit-
erature for tackling the problem. This allows one to select an algorithm knowing
its strengths and weaknesses and apply it to task partitioning problems without
the need of designing ad-hoc solutions each time. The approach can be applied
to situations in which costs can be measured or estimated by the robots. We

Multi-armed Bandit Formulation of the Task Partitioning Problem 119

pointed out that the tradeoff between exploration and exploitation, typical of
multi-armed bandit problems, also arises in the task partitioning problem. This
tradeoff has to be taken into account when choosing an algorithm and its param-
eters. Directions for future work aim at investigating more complex cases with
more than two sub-tasks, as well as cases in which the location of the sub-tasks
interface is not predefined, but must be decided by the robots autonomously.
Additionally, in this work each robot tackles the task partitioning problem in-
dividually. As future work, we also plan to enhance the system with explicit
communication. The robots could exchange information about the environment
and compute cost estimates also on the basis of the information received.

Acknowledgements. The research leading to the results presented in this
paper has received funding from the European Research Council under the
European Union’s Seventh Framework Programme (FP7/2007-2013) / ERC
grant agreement n° 246939. Marco Dorigo, Mauro Birattari, and Arne Brutschy
acknowledge support from the Belgian F.R.S.-FNRS. Giovanni Pini acknowl-
edges support from Université Libre de Bruxelles through the “Fonds David &
Alice Van Buuren”.

References

1. Agrawal, R.: Sample mean based index policies with O(log n) regret for the multi-
armed bandit problem. Advances in Applied Probability 27, 1054-1078 (1995)

2. Auer, P., Cesa-Bianchi, N.; Fischer, P.: Finite-time analysis of the multiarmed
bandit problem. Machine Learning 47(2), 235-256 (2002)

3. Berry, D.A., Fristedt, B.: Bandit problems: Sequential allocation of experiments.
Chapman & Hall, London (1985)

4. Brutschy, A., Pini, G., Baiboun, N., Decugniere, A., Birattari, M.: The
IRIDIA TAM: A device for task abstraction for the e-puck robot. Tech. Rep.
TR/IRIDIA /2010-015, IRIDIA, Université Libre de Bruxelles, Brussels, Belgium
(2010)

5. Dorigo, M., Sahin, E.: Guest editorial. Special Issue: Swarm robotics. Autonomous
Robots 17(2-3), 111-113 (2004)

6. Dorigo, M., Floreano, D., Gambardella, L.M., Mondada, F., Nolfi, S., Baaboura,
T., Birattari, M., Bonani, M., Brambilla, M., Brutschy, A., Burnier, D., Campo, A.,
Christensen, A.L., Decugniere, A., Caro, G.D., Ducatelle, F., Ferrante, E., Forster,
A., Gonzales, J.M., Guzzi, J., Longchamp, V., Magnenat, S., Mathews, N., de Oca,
M.M., O’Grady, R., Pinciroli, C., Pini, G., Rétornaz, P., Roberts, J., Sperati, V.,
Stirling, T., Stranieri, A., Stiitzle, T., Trianni, V., Tuci, E., Turgut, A.E., Vaussard,
F.: Swarmanoid: a novel concept for the study of heterogeneous robotic swarms.
IEEE Robotics & Automation Magazine (in press, 2012)

7. Fontan, M.S., Matari¢, M.J.: A study of territoriality: The role of critical mass
in adaptive task division. In: Maes, P., Matari¢, M.J., Meyer, J.A., Pollack, J.,
Wilson, S. (eds.) From Animals to Animats 4: Proceedings of the Fourth Inter-
national Conference of Simulation of Adaptive Behavior, pp. 553-561. MIT Press,
Cambridge (1996)

120

8.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

G. Pini et al.

Frison, M., Tran, N.-L., Baiboun, N., Brutschy, A., Pini, G., Roli, A., Dorigo, M.,
Birattari, M.: Self-organized Task Partitioning in a Swarm of Robots. In: Dorigo,
M., Birattari, M., Di Caro, G.A., Doursat, R., Engelbrecht, A.P., Floreano, D.,
Gambardella, L.M., Gro8, R., Sahin, E., Sayama, H., Stiitzle, T. (eds.) ANTS
2010. LNCS, vol. 6234, pp. 287-298. Springer, Heidelberg (2010)

Jeanne, R.L.: The evolution of the organization of work in social insects. Monitore
Zoologico Italiano 20, 119-133 (1986)

Lein, A., Vaughan, R.: Adaptive multi-robot bucket brigade foraging. In: Bullock,
S., Noble, J., Watson, R., Bedau, M.A. (eds.) Artificial Life XI: Proceedings of
the Eleventh International Conference on the Simulation and Synthesis of Living
Systems, pp. 337-342. MIT Press, Cambridge (2008)

Lein, A., Vaughan, R.T.: Adapting to non-uniform resource distributions in robotic
swarm foraging through work-site relocation. In: 2009 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS 2009), pp. 601-606. IEEE
Press, Piscataway (2009)

Ostergaard, E.H., Sukhatme, G.S., Matari¢, M.J.: Emergent bucket brigading: A
simple mechanisms for improving performance in multi-robot constrained-space
foraging tasks. In: AGENTS 2001: Proceedings of the Fifth International Confer-
ence on Autonomous Agents, pp. 29-30. ACM Press, New York (2001)

Pinciroli, C., Trianni, V., O’Grady, R., Pini, G., Brutschy, A., Brambilla, M.,
Mathews, N., Ferrante, E., Di Caro, G.A., Ducatelle, F., Stirling, T., Gutiérrez,
A., Gambardella, L.M., Dorigo, M.: ARGoS: A modular, multi-engine simulator
for heterogeneous swarm robotics. In: Proceedings of the 2011 IEEE/RSJ Interna-
tional Conference on Intelligent Robots and Systems (IROS 2011), pp. 5027-5034.
IEEE Computer Society Press, Los Alamitos (2011)

Pini, G., Brutschy, A., Birattari, M., Dorigo, M.: Task Partitioning in Swarms of
Robots: Reducing Performance Losses Due to Interference at Shared Resources.
In: Cetto, J.A., Filipe, J., Ferrier, J.-L. (eds.) Informatics in Control Automation
and Robotics. LNEE, vol. 85, pp. 217-228. Springer, Heidelberg (2011)

Pini, G., Brutschy, A., Francesca, G., Dorigo, M., Birattari, M.: Multi-armed bandit
formulation of the task partitioning problem in swarm robotics — Online supple-
mentary material (2012), http://iridia.ulb.ac.be/supp/IridiaSupp2012-005/
Pini, G., Brutschy, A., Frison, M., Roli, A., Birattari, M., Dorigo, M.: Task par-
titioning in swarms of robots: An adaptive method for strategy selection. Swarm
Intelligence 5(3—4), 283-304 (2011)

Ratnieks, F.L.W., Anderson, C.: Task partitioning in insect societies. Insectes
Sociaux 46(2), 95-108 (1999)

Shell, D.J., Matari¢, M.J.: On foraging strategies for large-scale multi-robot sys-
tems. In: Proceedings of the 19th IEEE/RSJ International Conference on Intelli-
gent Robots and Systems (IROS), pp. 2717-2723. IEEE Press, Pitscataway (2006)
Sutton, R., Barto, A.: Reinforcement learning, an introduction. MIT Press,
Cambridge (1998)

http://iridia.ulb.ac.be/supp/IridiaSupp2012-005/

Scalability Study of Particle Swarm Optimizers
in Dynamic Environments

Barend J. Leonard and Andries P. Engelbrecht

Department of Computer Science,
University of Pretoria, South Africa
{bleonard,engel}@cs.up.ac.za

Abstract. This study investigates the scalability of three particle swarm
optimizers (PSO) on dynamic environments. The charged PSO (CPSO),
quantum PSO (QPSO) and dynamic heterogeneous PSO (dHPSO) algo-
rithms are evaluated on a number of DF1 and moving peaks benchmark
(MPB) environments that differ with respect to the severity and fre-
quency of change. It is shown that dHPSO scales better to high severity
and high frequency DF1 environments. For MPB environments, similar
scalability results are observed, with dHPSO obtaining the best average
results over all test cases. The good performance of dHPSO is ascribed
to its ability to explore and exploit the search space more efficiently than

CPSO and QPSO.

1 Introduction

Many real-world problems are dynamic in the sense that the search landscape
changes over time. Landscape changes can be due to changes in the objective
function(s) and/or problem constraints. When such changes occur, a known solu-
tion to a problem may no longer be good or valid. A new solution must therefore
be found to reflect the landscape changes. This study focusses on single-objective
dynamic optimization problems, where only the objective function changes.

Two commonly used benchmarks to generate dynamic optimization problems
are the moving peaks benchmark (MPB) [5] and the DF1 function generator
[11]. By using these generators, optimization techniques can be evaluated on
problems that accurately reflect real-world situations.

The particle swarm optimization (PSO) algorithm [9] is a well known op-
timization technique. PSO has been successfully applied to a wide variety of
problems since its introduction and is known to perform well on static optimiza-
tion problems. However, PSO faces two obstacles when dynamic problems are
considered. The first is a problem referred to as outdated memory. The second,
more severe problem, is that of diversity loss.

In order to solve dynamic problems using PSO, both of the above-mentioned
problems must be overcome. Two variants of the PSO algorithm, known as the
charged PSO (CPSO) and quantum PSO (QPSO), were designed to address
these problems [2], [3]. Both variants prohibit particles in a swarm to com-
pletely converge, thereby ensuring that some particles are always distributed in

M. Dorigo et al. (Eds.): ANTS 2012, LNCS 7461, pp. 121-[32, 2012.
(© Springer-Verlag Berlin Heidelberg 2012

122 B.J. Leonard and A.P. Engelbrecht

the search landscape within a region around the best known solution. There-
fore, the distributed particles are able to detect when the optimum moves to
a new location within the covered region. In this way, the problem of diversity
loss is addressed. Additionally, particles are forced to re-evaluate the function
value at their current positions, either periodically or whenever a change in the
environment is detected, thereby addressing the problem of outdated memory.

Recently, another variant of PSO, known as dynamic heterogeneous PSO
(dHPSO), was developed [7]. The dHPSO was first proposed to address the
exploration-exploitation trade-off problem on static optimization problems, but
it was later shown that dHPSO could also be successfully applied to dynamic
problems [10]. The dHPSO allows particles in a swarm to follow different position-
and velocity update rules from one another. In addition, the algorithm allows
particles to select new update rules from a behaviour pool of update rules if the
particle stagnates at any time during execution.

This study investigates the scalability of CPSO, QPSO and dHPSO in dy-
namic environments. Experiments are conducted to show how the performance
of the algorithms deteriorate as the severity and frequency of changes in the
environment increase.

The rest of this paper is structured as follows: Section [2 gives an overview
of the PSO algorithm. Section [discusses the problems associated with apply-
ing PSO to dynamic function optimization. In addition, the PSO variants that
address those problems are explained. The experimental procedure is given in
section @] and the results are discussed in section Bl The study is concluded in
section [6l

2 Particle Swarm Optimization

Particle swarm optimization is a stochastic, population-based optimization al-
gorithm [9]. The algorithm maintains a population (or a swarm) of candidate
solutions (known as particles) to some optimization problem. Each particle i has
a position x; and velocity v; in an n,-dimensional search space. A particle’s posi-
tion x; represents the solution proposed by particle i. In addition to its position
and velocity, each particle also keeps track of the best position y; that it has
found during the search process, known as the particle’s personal best position.
The best position ¥ found by the swarm is called the global best position.
At every time step, each particle’s velocity is updated using

Vit +1) = wvi(t) + eiri(B)]yi(t) — xi(0)] + cor2(O[F(¢) —x:(H)] (1)

where w is the inertia weight [14], ¢; and co are acceleration constants, and
r1;(t) and 7o;(¢) are random values, sampled from U(0,1) in each dimension
i=1...,ng.

The second and third terms in equation (I are referred to as the cognitive
component and the social component, respectively.

Once a particle’s velocity has been updated, its new position is calculated as

Xi(t+1) =x(t) +vi(t +1). (2)

Scalability Study of Particle Swarm Optimizers in Dynamic Environments 123

The resulting behaviour is that particles stochastically return to regions of the
search space that are known to contain promising solutions.

3 Particle Swarm Optimization in Dynamic Environments

For the purpose of this study, a dynamic environment is a function f whose
optima may move around the function domain during the search process. An
optimum can move in two distinct ways. Firstly, the position x* of an optimum
may change in any or all dimensions. Secondly, the value f(x*) of the optimum
may increase or decrease. Furthermore, the magnitude (or severity) and the
frequency of changes may vary. The consequences of the changes are that optima
may appear or disappear during the search process. In addition, a local optimum
may become a global optimum and wice versa.

To perform optimization in dynamic environments, the goal is to find the op-
timum, and then track its movement over time. When considering environments
with multiple optima, it may also be necessary to detect when an optimum being
tracked is no longer the global optimum. In such a case it the new global opti-
mum must be found and tracked instead. Assuming that environmental changes
occur only at known intervals, the PSO algorithm is subject to two problems
when applied to dynamic functions: outdated memory and diversity loss.

Outdated memory occurs whenever the environment changes. Recall that each
particle in the swarm keeps track of its personal best position y;. When a change
occurs, the value f(y;) associated with a particle’s personal best may no longer
be correct. This could cause particles to be attracted to regions of the search
space that used to contain good solutions, but are no longer desirable. To solve
the problem of outdated memory, Eberhart and Shi [6] showed that it is sufficient
to re-evaluate f at the particles’ personal best positions, as well as at the global
best position § whenever the environment changes.

A subsequent study by Blackwell and Bentley [2] identified the problem of
diversity loss. Diversity loss occurs when the swarm converges on a point in the
search space. If the swarm is too highly converged, there is no way to detect
optima outside the region where particles are present. Therefore, if an optimum
moves or appears outside this small area, the PSO algorithm is unable to find
and track it [1], [2], [3]. It was further shown in [2] that particle swarms in this
situation are prone to oscillation on a line perpendicular to the true optimum in a
phenomenon known as linear collapse. To overcome diversity loss, it is necessary
to control the diversity of the swarm in some way. That is, either prevent particles
from converging, or provide a way for the swarm to diverge if necessary.

Three variants of the PSO algorithm that have been successfully applied to
dynamic environments are discussed below.

3.1 PSO with Charged Particles

Blackwell and Bentley [2] proposed the use of charged particles to prevent swarm
convergence. The approach was later modified by Blackwell and Branke [4].

124 B.J. Leonard and A.P. Engelbrecht

A charged particle has an electrostatic charge @Q; > 0. A particle with no
charge is referred to as a neutral particle. Swarm convergence is then prevented
by introducing a Coulomb repulsion force a; in equation ({I). The repulsion force
acting on a particle ¢ at time ¢ is given by

_ QiQk))
a;(t) = ; (G t))sézk(t), Peore < Sik(t) < p (3)

where 8;x(t) = x;(t) — xx(t), and d;,(t) = ||x;(t) — x(¢)||. The lower limit peore
prevents the repulsion force from becoming too large between particles that are
very close to each other. Equation (IJ) then becomes

Vit +1) = wvi(t) + eira (O)[yi(t) — xi(0)] + cora(D)[F (1) — x:(8)] + ai(t). (4)

A charged particle i is therefore repelled by all other charged particles k # i
where Peore < 6ik <p.

Outdated memory is addressed by re-evaluating the personal best positions
of all particles whenever the environment changes.

By using both charged particles and neutral particles in a single swarm, the
neutral particles converge in order to exploit an optimum, while the charged
particles remain distributed in a region around the neutral particles. Thus, the
problem of diversity loss is solved. However, the computational complexity of this
approach is much higher than that of the standard PSO, because of the need to
calculate euclidean distances between all pairs of particles at each iteration.

This approach is often referred to as charged PSO (CPSO).

3.2 PSO with Quantum Particles

The use of quantum particles was proposed by Blackwell and Branke [3]. In this
approach, a quantum particle ¢ samples a new position x;(t + 1) at each time
step, such that x;(t 4+ 1) € B(¢cioud), where B(deioud) is an ny-dimensional ball
with radius ¢cjouq around y(t).

The problem of diversity loss is therefore solved in the same way as charged
PSO (by partially preventing swarm convergence), but without the need to cal-
culate euclidean distances between particles.

A re-evaluation strategy is used to address the problem of outdated memory.

This variant is known as Quantum PSO (QPSO).

3.3 Dynamic Heterogeneous PSO

The dHPSO was introduced by Engelbrecht [7] and was first applied to dynamic
environments by Leonard et al. [10].

The dHPSO maintains a collection of position- and velocity update equations.
The collection is known as the behaviour pool and velocity- and position updates
are grouped together to form behaviours that particles may choose to follow. In
addition, particles are monitored for stagnation. When stagnation is detected,

Scalability Study of Particle Swarm Optimizers in Dynamic Environments 125

the particle in question is forced to randomly select a new behaviour from the
behaviour pool. In [7], a particle was deemed to be stagnating whenever its
personal best position did not change for ten consecutive iterations.

It was shown in [10] that dHPSO is able to diversify by selecting exploratory
behaviours when exploitative behaviours begin to stagnate. In this way, random
behaviour selection in dHPSO contributes to addressing the problem of diversity
loss.

Leonard et al. [I0] further showed that, in order to apply dHPSO to dy-
namic environments, it is necessary to combine the approach with the peri-
odic re-initialization of a portion of the particles in the swarm. The reason for
this is that particles in dHPSO converge and are therefore not capable of de-
tecting changes in the environment. By re-initializing a portion of the particles
when a change occurs, the re-initialized particles are able to observe the change.
However, for this reason, the current implementation of dHPSO only works on
dynamic environments for which the changes occur at known intervals.

To address outdated memory, the personal best positions of all particles are
re-evaluated whenever the environment changes.

In Engelbrecht’s work [7], the following five behaviours were included in the
behaviour pool:

— Standard PSO behaviour, where equations (Il) and (2] were used. The
cognitive acceleration constant c¢; was linearly decreased from 2.5 to 0.5
throughout the search process, while the social acceleration constant co was
linearly increased from 0.5 to 2.5. This behaviour promotes exploration dur-
ing the initial stages of the search process, while promoting exploitation
towards the end of the search process.

— Cognitive PSO behaviour, where the social acceleration constant co in
equation () is set to 0.0, so that a particle is only attracted to its own
personal best position y;. This behaviour facilitates exploration by turning
the particle that follows this behaviour into an independent hill-climber.

— Social PSO behaviour, where the cognitive acceleration constant ¢; in
equation ([IJ) is set to 0.0, so that a particle is only attracted to the global
best position y. This behaviour facilitates exploitation by effectively turning
all particles that follow it into a single stochastic hill-climber.

— Bare bones PSO behaviour, introduced by Kennedy [8]. The bare bones
behaviour after he observed that a single particle, attracted to its personal
best position y; and the global best position ¥, exploits the point « in the
middle along a straight line between these two positions. He further observed
that the positions visited by the particle are normally distributed around the
point . In a bare bones PSO, a particle’s velocity is not calculated using
equation ([I), but is sampled from a Gaussian distribution such that

v (t+1) ~ N (yz’j(t) +Qj(t)702)

) 5)

where the variance o = |y;;(t) —9;(t)|. The position update rule in equation
@) then changes to

126 B.J. Leonard and A.P. Engelbrecht

“Moving Peaks"
0

-100
-150
200 [

cuSHERSHEGES

(a) Moving Peaks benchmark (b) DF1 function generator
function

Fig. 1. Example 2-dimensional environments with 10 optima

Initially, this behaviour will promote exploration, because the personal best
positions of particles are widely distributed around the search space. As the
personal best positions converge, this behaviour will become more exploita-
tive.

— Modified bare bones PSO behaviour, which is a slightly modified ver-
sion of bare bones PSO, also proposed by Kennedy [8]. In this approach,
equation (Bl is changed to

vis(t+1) = {yz‘j(t) if U(O,.l) <0.5 -
© otherwise.
where)
o~ N (yij(t) ;rl/j(t) ’ 02) . -

Equation (6]) is still used for position updates. This behaviour facilitates
better initial exploration and later exploitation than the standard bare bones
PSO, because particles exploit their personal best positions 50% of the time.

4 Experimental Procedure

For this study, a number of dynamic environments were generated using the
DF1 function generator [I1], as well as the Moving Peaks Benchmark (MPB)
[5]. Example 2-dimensional environments are shown in figure [I1

All problems and algorithms were implemented using the open source com-
putation intelligence library, CIlib [I3].

4.1 Problems

The problems used for this study were generated using the MPB function [5]
and the DF1 function generator [I1]. Each of the two generators were used to
create environments with the change severity settings shown in table [l The
position and height severities were chosen to correspond to percentages of the

Scalability Study of Particle Swarm Optimizers in Dynamic Environments 127
Table 1. MPB Severity Parameters

Shift severity Height Severity % Shift severity Height Severity %

0.5 0.2 0.5% 20.0 8.0 20.0%
1.0 0.4 1.0% 30.0 12.0 30.0%
2.0 0.8 2.0% 40.0 16.0 40.0%
5.0 2.0 5.0% 50.0 20.0 50.0%
10.0 4.0 10.0%

range within which they were allowed to move. In addition, all environments were
also generated with the following change frequencies: 10, 50, 100, 200 and 500
iterations. Finally, each environment was created in a unimodal and multimodal
fashion, with all multimodal environments having 10 optima. This gave rise to
320 unique problems.

For all the environments, optima moved around a 2-dimensional domain in
the range [—50,50]?. The heights of the optima oscillated in the range [10, 50],
while the widths and slopes of the peaks and cones were set to a constant value
of 5.0. These parameters are the same as those used for dynamic environments
in [10], except for the dimensionality. Scalability to higher dimensions will be
examined in future studies.

4.2 Algorithms

For this study, the QPSO, CPSO and dHPSO algorithms described in section
were tested on a range of dynamic environments. For all experiments, the
algorithms ran for 2000 iterations and all reported results are averages over 30
independent samples.

Unless otherwise stated, all chosen parameter values correspond to the
parameters used by Leonard et al. [10].

Charged PSO: For CPSO, the acceleration constants ¢; and ¢y were both set
to 1.496180. The parameter p.o.. was set to 1, while p had a value of 30. The
values y; and y of all particles were re-evaluated at each change interval.

In [I0], 50% of the particles in CPSO were also re-initialized at each change
interval. However, since the algorithm maintains swarm diversity throughout
the search process, there is no need to include a re-initialization strategy that
is designed to re-introduce diversity into converged swarms. Therefore, no
re-initialization was performed for CPSO in this study.

Quantum PSO: The acceleration constants ¢; and co were both set to 1.496180.
The radius ¢jouq Was set to 30. At each change interval, the values of y; and ¥,
were re-evaluated for all particles.

No re-initialization of particles was performed for QPSO in this study for the
same reason explained in section

128 B.J. Leonard and A.P. Engelbrecht

Dynamic Heterogeneous PSO: For this study, the behaviour pool was pop-
ulated with the same five behaviours that were used in [7] and [10]. However,
one change was made to the initialization of dHPSO swarms in this study:

The cognitive PSO behaviour in the previous studies suffered from immediate
stagnation in the first ten iterations of the search process. The reason for this is
that particle velocities were initialized to 0.0, and that particles’ initial personal
best positions y;(0) and their initial positions x;(0) were the same. This resulted
in a zero attraction force on particles with zero velocity (cognitive particles
are only attracted towards their own personal best positions). Because of the
stagnation detection in dHPSO, those particles would, however, change their
behaviours after the first ten iterations and would gain velocity as new attraction
forces were introduced.

To prevent the immediate stagnation of cognitive particles, the personal best
positions of all particles in the swarm were initialized randomly in the range
[-50,50]? for this study. Doing so meant that the cognitive components of all
particles were initially a random point within the search domain. However, since
the personal best positions of particles are updated after each iteration, any
inferior personal best positions that may have resulted from random initialization
only persisted for one iteration. In addition, cognitive particles gained initial
velocity, solving the problem of immediate stagnation.

4.3 Measurements

To quantify the performance of the different algorithms with respect to the
quality of the solutions found, the collective mean error [12] was recorded. The
collective mean error at iteration ¢ is the average of all actual error measurements
that have been recorded up to iteration ¢ since the beginning of the search
process. The actual error is taken as the difference between the global best fitness
f(¥) and the global maximum value (assuming a maximization problem).

Since the aim of this study is to investigate the ability of algorithms to find
good solutions in environments with varying change severities and change fre-
quencies, no other performance criteria are reported. However, the actual error
measurements and the diversity of swarms will likely provide further insight into
how swarms are affected by environmental changes. Those measurements were
therefore recorded to be studied in future work.

5 Results and Discussion

The scalability results of dHPSO are reported in table Pl For comparison with
other algorithms, figures 2 and [3] illustrate the scalability trends for DF1 envi-
ronments and MPB environments, respectively.

For unimodal DF1 environments, all algorithms showed a decrease in per-
formance as the severity and frequency of changes increased, as was expected.
Initially, QPSO mostly obtained the lowest collective mean error, but at

Scalability Study of Particle Swarm Optimizers in Dynamic Environments

Table 2. DHPSO Collective Mean Errors

Multimodal DF1
Severity (%)

50

Unimodal DF1
Severity (%)

50

Multimodal MPB
Severity (%)

50

Unimodal MPB
Severity (%)

Frequency (iterations)
10 50 100 200 500

1.57£0.29 0.87+0.36 0.63+0.44 0.67£0.64 0.571+0.52
2.03+0.24 1.18+£0.42 0.994+0.4 0.5940.29 0.85+0.76
3.0840.27 1.50£0.23 1.2940.33 0.9540.34 0.69£0.56
5.46£0.18 2.394+0.3 1.584+0.36 1.09£0.4 0.94+0.56
6.72+0.28 2.8740.29 1.98£0.39 1.561+0.43 1.14£0.68
7.89£0.35 3.34+0.38 2.284+0.44 1.40£0.46 0.95+0.56
7.30+0.29 2.98+0.49 2.13+0.39 1.4540.36 0.99+£0.45
8.51£0.3 3.9940.49 2.90£0.49 2.30+0.54 1.85+1.07
6.4540.26 3.15£0.34 2.45+0.34 1.924+0.33 0.92+0.51

Frequency (iterations)
10 50 100 200 500

0.5£0.04 0.4140.04 0.29£0.05 0.214+0.05 0.13+0.04
0.84£0.05 0.6£0.05 0.43£0.11 0.2640.04 0.15+0.04
1.51+£0.07 0.8340.05 0.58+0.10 0.32+0.41 0.184+0.04
2.86+£0.12 1.13+0.12 0.6940.07 0.33£0.06 0.2£0.05
4.09£0.11 1.2240.14 0.74£0.11 0.3510.04 0.22£0.05
4.84£0.07 1.13+0.05 0.7+0.10 0.42+0.05 0.2510.05
5.04£0.2 1.1140.09 0.75£0.09 0.47+0.07 0.2+0.04
5.7440.25 1.23£0.11 0.84%0.08 0.54+0.07 0.31£0.05
5.25£0.26 1.17£0.10 0.75%+0.07 0.54+0.07 0.32+0.05

Frequency (iterations)
10 50 100 200 500

2.2841.82 2.4+1.68 2.154+1.47 1.924+1.62 2.45£1.96
2.09£2.01 2.19+£1.79 2.124+1.77 2.53+£2.03 2.28+2.11
3.414£2.20 1.68£1.73 2.97+£1.84 2.46+1.95 2.55+£3.5
2.984+1.89 2.014+1.71 2.454+1.85 2.894+1.95 2.12+2.12
2.8+£2.04 2.4442.28 1.99+£1.41 2.184+1.97 1.94+2.11
2.78£2.07 1.93£1.67 2.31£1.90 2.02£1.69 1.9£1.75
3.24+£1.85 2.24+1.87 2.62+1.98 2.194+1.92 2.624+1.94
2.96£2.02 2.12+1.75 1.944+1.54 2.26£2.28 2.4+1.83
2.64£2.08 1.96+£1.60 2.184+1.86 2.65+1.86 2.06+£1.43

Frequency (iterations)
10 50 100 200 500

0.21£0.04 0.21£0.05 0.2£0.05 0.1940.06 0.22+0.04
0.214+0.05 0.24+0.05 0.2£0.06 0.2+0.05 0.21£0.06
0.2440.06 0.22£0.04 0.21+0.04 0.2+0.05 0.21£0.03
0.2240.05 0.19£0.07 0.2£0.06 0.2140.04 0.21£0.05
0.23£0.06 0.2£0.05 0.21+£0.05 0.224+0.04 0.240.05
0.224+0.06 0.2+0.05 0.2£0.05 0.2+0.06 0.19£0.04
0.214£0.05 0.24+0.05 0.21+0.07 0.2140.05 0.21£0.03
0.19£0.04 0.184+0.04 0.24+0.04 0.2+0.04 0.21+£0.04
0.23£0.06 0.24+0.04 0.21+0.04 0.2340.04 0.23£0.05

129

130 B.J. Leonard and A.P. Engelbrecht

Scalability for Unimodal DF Scalability for Multimodal DF1

- o+ B QPsO X
ey P50 % =T A oipso W

B

CME
CME

Frequency

Fig. 2. DF1 Environments Severity Results

Scalability for Unimodal Moving Peaks

o + Scalability for Multimodal Moving Peaks
owrso @

018
02
022 {1

CME 024 | |
026 (. e
028 k
03
032

034

CME

® ~ o v s oW oN o

Frequency

Fig. 3. MPB Environments Severity Results

higher severities, dHPSO showed lower errors over all frequencies. The dHPSO
algorithm also showed a better scalability to high severity changes at high
frequencies.

The inferior performance of dHPSO on low severity unimodal DF1 problems
can be attributed to the fast convergent behaviour of dHPSO, as shown in [I0],
when compared to CPSO and QPSO. When changes in the environment occur,
dHPSO needs time to diverge in order to exploit the moved optimum. Since the
neutral particles of CPSO and QPSO take longer to converge, they are in a better
position to locate the shifted optimum. However, as the severity increase, CPSO
and QPSO begin to struggle. Leonard et al. [10] suggested that the inability of
charged and quantum particles to converge may prevent them from thoroughly
exploring the search space. The results presented here support their suggestion.
The re-initialized particles of dHPSO are capable of converging on solutions and
may therefore begin to exploit a shifted optimum even before the rest of the
particles have diverged.

For multimodal DF1 problems, dHPSO obtained a lower error in almost all
test cases. Again, all algorithms showed a decrease in performance as the severity
and frequency of changes increased. The lower collective mean error of dHPSO
on low severity multimodal DF1 environments is attributed to the algorithm’s
superior exploration abilities, as shown in [I0]. In unimodal environments, the

Scalability Study of Particle Swarm Optimizers in Dynamic Environments 131

exploring particles in dHPSO served little purpose, because the optimum was still
close to its previous position. However, in the case of multimodal functions, it is
likely that new optima appear elsewhere in the search space. The re-initialized
particles of dHPSO are then better equipped to find and exploit these new
optima than the charged or quantum particles in the other algorithms.

Figure [shows that dHPSO produced lower collective mean errors in all test
cases on MPB environments. In both the unimodal and multimodal cases, all
algorithms showed a less pronounced effect as the severity and change frequency
increased. The peaks in MPB environments are much narrower that the cones
in DF1 and are therefore difficult to locate. Once CPSO or QPSO has located
a shifted peak, additional time is required for the neutral particles to diverge.
The diverging process in dHPSO is much quicker, because particles are able to
switch to exploratory behaviours independently from the re-initialized particles.
The neutral particles in CPSO and QPSO will only diverge once a better solu-
tion has been found elsewhere in the search space. Figure 3 shows a correlation
between the frequency and severity of changes in that the performance of the
algorithms decrease as both the frequency and severity increase. However, when
only the severity or only the frequency of changes increased, all three algorithms
showed similar performance across all test cases, with the exception of very high
severities and very high frequencies. Again, the difference in performance be-
tween the two environments is attributed to the different shapes of the search
landscapes.

6 Conclusion and Future Work

This study investigated the scalability of three particle swarm optimization
(PSO) algorithms on dynamic optimization problems. The charged PSO (CPSO),
quantum PSO (QPSO) and dynamic heterogeneous PSO (dHPSO) algorithms
were tested on a variety of functions, generated with the moving peaks
benchmark (MPB) and the DF1 function generator.

It was shown that dHPSO scales better to high severities and frequencies of
changes on DF 1 environments. When considering MPB environments, the algo-
rithms showed similar scalability results, but dHPSO obtained the best average
results in all test cases. The bad performance of CPSO and QPSO was attributed
to the inability of charged and quantum particles to exploit viable solutions.
Charged and quantum particles can only explore, while the neutral particles
must first diverge and reach an optimum before exploitation can take place. In
the case of dHPSO, the exploring particles may change their behaviour to be-
come exploiting particles. The only cases where CPSO and QPSO performed well
was on low severity DF 1 environments. In these cases, the environment changes
occurred within the range of the neutral particles and the shape of the search
landscape allowed the neutral particles to easily locate the shifted optimum. The
observed differences in performance between DF 1 and MPB environments were
caused by the different shapes of the functions.

132 B.J. Leonard and A.P. Engelbrecht

Future studies will investigate the scalability of the algorithms to higher
dimensional problems and also consider the effects on swarm diversity. Self-
adaptive models, where the stagnation detection of dHPSO is replaced with
probabilistic selection of behaviours, based on their past performance should
also be compared to the standard dHPSO in order to observe the effect that
different selection schemes have on the algorithm’s performance. Finally, the ef-
fect of including different behaviours in the behaviour pool might also produce
interesting studies.

References

1. Blackwell, T.: Particle swarms and population diversity. Soft Computing — A Fusion
of Foundations, Methodologies and Applications 9(11), 793-802 (2005)

2. Blackwell, T., Bentley, P.: Dynamic search with charged swarms. In: Proceedings
of the Genetic and Evolutionary Computation Conference, pp. 19-26 (2002)

3. Blackwell, T., Branke, J.: Multi-swarm Optimization in Dynamic Environments. In:
Raidl, G.R., Cagnoni, S., Branke, J., Corne, D.W., Drechsler, R., Jin, Y., Johnson,
C.G., Machado, P., Marchiori, E., Rothlauf, F., Smith, G.D., Squillero, G. (eds.)
EvoWorkshops 2004. LNCS, vol. 3005, pp. 489-500. Springer, Heidelberg (2004)

4. Blackwell, T., Branke, J.: Multiswarms, exclusion, and anti-convergence in dynamic
environments. IEEE Transactions on Evolutionary Computation 10(4), 459-472

2006

5.](Branlze, J.: Memory enhanced evolutionary algorithms for changing optimization
problems. In: Proceedings of the IEEE Congress on Evolutionary Computation,
vol. 3. IEEE (1999)

6. Eberhart, R., Shi, Y.: Tracking and optimizing dynamic systems with particle
swarms. In: Proceedings of the IEEE Congress on Evolutionary Computation, vol.
1, pp. 94-100. IEEE (2001)

7. Engelbrecht, A.P.: Heterogeneous Particle Swarm Optimization. In: Dorigo, M.,
Birattari, M., Di Caro, G.A., Doursat, R., Engelbrecht, A.P., Floreano, D.,
Gambardella, L.M., Gro8, R., Sahin, E., Sayama, H., Stiitzle, T. (eds.) ANTS
2010. LNCS, vol. 6234, pp. 191-202. Springer, Heidelberg (2010)

8. Kennedy, J.: Bare bones particle swarms. In: Proceedings of the IEEE Swarm
Intelligence Symposium, pp. 80-87. IEEE (2003)

9. Kennedy, J., Eberhart, R.: Particle swarm optimization. In: Proceedings of the
IEEE International Conference on Neural Networks, vol. 4, pp. 1942-1948 (1995)

10. Leonard, B., Engelbrecht, A., van Wyk, A.: Heterogeneous particle swarms in dy-
namic environments. In: Proceedings of the IEEE Swarm Intelligence Symposium,
pp. 1-8. IEEE (2011)

11. Morrison, R., De Jong, K.: A test problem generator for non-stationary environ-
ments. In: Proceedings of the IEEE Congress on Evolutionary Computation, vol. 3,
IEEE (1999)

12. Morrison, R.: Performance measurement in dynamic environments. In: GECCO
Workshop on Evolutionary Algorithms for Dynamic Optimization Problems, pp.
5-8 (2003)

13. Pampara, G., Engelbrecht, A., Cloete, T.: Cilib: A collaborative framework for
computational intelligence algorithms — part i. In: Proceedings of the International
Joint Conference on Neural Networks, pp. 1750-1757. IEEE (2008)

14. Shi, Y., Eberhart, R.: A modified particle swarm optimizer. In: Proceedings of the
IEEE Congress on Evolutionary Computation, pp. 69-73. IEEE (2002)

Self-reconfigurable Modular e-pucks

Lachlan Murray!, Jon Timmis!2, and Andy Tyrrell!

! Department of Electronics, University of York, UK
2 Department of Computer Science, University of York, UK
{1jm505, jt517,amt }@ohm.york.ac.uk

Abstract. We present the design of a new structural extension for the
e-puck mobile robot. The extension may be used to transform what is a
swarm robotics platform into a self-reconfigurable modular robotic sys-
tem. As a proof of concept, we present an algorithm for controlling the
collective locomotion of a group of e-pucks that are equipped with the
extension. Our approach proves itself to be an effective method of coordi-
nating the movement of a group of physically connected e-pucks. Further-
more, the system shows robustness in its ability to self-reconfigure and
self-assemble following a disruption which alters the group’s structure.

1 Introduction

Swarm robotics and self-reconfigurable modular robotics are two closely related
areas within the larger field of autonomous mobile robotics. Swarm robotics
concerns the study of how a collection of relatively simple embodied agents may
coordinate their behaviour in a distributed and self-organising manner, whilst
relying exclusively on local sensing and communication [I7]. Modular robotic
systems are also composed of several relatively simple units, however, unlike
robotic swarms, the individuals in a modular robotic system may physically
connect with one another to form larger robotic structures. An advantage of such
systems is that by varying the connectivity of neighbouring units, structures may
dynamically transform their morphology to suit their task or environment [19].

The field of swarm robotics is currently far more accessible than that of modu-
lar robotics. As is reflected in the availability of both types of hardware. Several
swarm robotic platforms are available to buy or have been released as open
hardware projects [T4JT3IOBITTIZ]. In contrast, the authors are not aware of any
modular robots that are available commercially, and know of only a single open
source project [2I]. This may, at least partially, be attributed to the differ-
ing complexity of the required hardware. Swarm robots are purposefully simple
units, whereas modular robots, although simple in comparison to the structures
that they may form, require complex electrical and mechanical hardware to fa-
cilitate the processes of docking, reconfiguration and inter-robot communication.

To help redress the balance between the two fields and encourage research into
modular robotic systems, here we present a low-cost, low-technology extension
that may be used to transform an existing swarm robotics platform into a mod-
ular robotic system. Our chosen platform is the e-puck robot [14]. As an open

M. Dorigo et al. (Eds.): ANTS 2012, LNCS 7461, pp. 133-[[44, 2012.
(© Springer-Verlag Berlin Heidelberg 2012

134 L. Murray, J. Timmis, and A. Tyrrell

hardware project, the e-puck robot is a highly flexible platform. Over recent
years a number of extensions have been developed, including an omnidirectional
vision turret, a range-bearing board [7], colour LEDs, a ZigBee radio module [I],
and even an embedded Linux implementation [I2].

In this paper we describe a purely structural extension that allows each
equipped e-puck to physically connect with up to four other modules through
passive magnetic docking interfaces. The extension may serve as a low-cost and
accessible platform for research into the control of 2-dimentional modular robotic
systems. As a proof of concept, we present an algorithm for coordinating the mo-
tion of a collection of physically connected e-puck robots and observe that our
approach is not only amenable to the task, but exhibits robust behaviour in the
face of perturbations that disrupt the arrangement of the robots.

The remainder of this paper is structured as follows. In section 2] we provide
a short review of existing modular robotics hardware. In section Bl we describe
the design of our extension. In section (] we introduce a proof of concept con-
trol algorithm. In section [Bl we present results of some preliminary experiments
utilising our modular extension. Finally, in section [6] we present our conclusions.

2 Self-reconfigurable Modular Robotics

In 2007, Yim et al. produced a review of the state of the art in modular robotics
[19]. The review includes a ‘taxonomy of architectures’ which classifies platforms
as either: chain, lattice, mobile, or if they combine elements of more than one
of the previous three, hybrid. Platforms may further be classified according to
the number of degrees of freedom that the individual units posses, the number
of dimensions in which structures can be formed and the method by which they
reconfigure themselves, which may be described as deterministic or stochastic.

In chain-based architectures modules are connected to one another in series
but may branch to form tree like structures or fold and reconnect to form loops.
The CKBot is one such example. Each of the cube shaped modules possess only
a single degree of freedom, but as a collective have been shown demonstrate a
wide range of movements, notably, including the ability to self-repair following
a high impact event that breaks the system into multiple sub-structures [20].
The open source Molecubes platform is another example, similar to our goal, the
platform was designed to encourage research into modular robotics [21].

Lattice architectures are more restrictive than chain-based systems, with mod-
ules only able to occupy discrete positions within a conceptual grid. The Miche
[4] and subsequent Smart Pebble systems [0] are two examples of lattice archi-
tectures. Envisaged as a test bed for future systems of programmable matter,
these small, immobile, cube shaped modules may self-assemble with the help
an external stocastic force, for example a vibrating table. Once assembled in a
densely packed arrangement, a distributed strategy of self-disassembly is used
to ‘sculpt’ the desired object from the robotic substrate.

In a mobile architecture, as well being able to form collective robotic struc-
tures, modules are able to move freely around their environment as individuals.

Self-reconfigurable Modular e-pucks 135

The s-bot platform [I5], developed as part of the Swarm-bot project, and the
robots of the succeeding Swarmanoid project represent the best example of a
mobile self-reconfigurable robotic system. The individual robots can physically
connect to one another using grippers. Although unable to create structures as
complex as those produced by other modular robotic systems, the platforms have
been used to developed several distributed control strategies for tackling tasks
such as self-assembly [0] and collective recovery [16].

The term “hybrid” is commonly used to describe systems which combine el-
ements from both chain and lattice based architectures. Recently, a new type
of hybrid has emerged which also shares some of the properties of mobile ar-
chitectures. The Sambot platform [18], and the robots being developed by the
SYMBRION and REPLICATOR projects [10] are two good examples of such
mobile-hybrids. Like the Swarm-bot and Swarmanoid projects, the individual
robots are independently mobile. However, unlike the s-bot and its derivatives,
the modules are also designed to be capable of forming complex 3D structures.

3 Modular e-puck Extension

In this section we present the design of our modular e-puck extension. The ex-
tension may be used to transform the existing e-puck platform into what can be
described as a hybrid mobile-lattice modular robotic system. Robots equipped
with the extension remain independently mobile, but through passive magnetic
docking interfaces may physically connect with other modules within a 2D grid.
As shown in figure [[al the extension consists of three parts: a circular base
plate which sits directly on top of the e-puck, a central frame which rests on top
of the base plate, and a second circular plate which sits on top of the frame.
To ensure that there is enough room to clear the selector switch on the default
extension board, and to allow access to the reset button, the base plate is posi-
tioned on top of three 15mm hexagonal spacers. A small overhang on the base
plate allows the inner ring of the central frame to rest on the base plate with-
out being permanently attached. This lip allows the frame to rotate unhindered
around the central axis of the e-puck. To enable separate modules to connect
with one another, two magnets are fitted on each internal edge of the central
frame, with opposing poles facing outwards. The strength and positioning of the
magnets were chosen such that if connected modules coordinate their motion
they will remain attached, but if they do not, they will break apart. Therefore
ensuring that the extension provides a suitable platform for investigating both
collective behaviour and self-reconfiguration. Screws which pass through the two
circular plates secure the extension to the epuck and an arrow shaped window
in the top plate allows the current heading of the robot to be easily recognised.
To date, four prototype modules have been produced. The three structural
parts of the extension were fabricated using a MakerBot 3D printer. The com-
plete set of parts required to construct a single extension are displayed in figure
[[B] we estimate the total cost to be around €5 per unit. Figure [[d shows a po-
tential arrangement of four e-pucks equipped with the fully assembled extension.

136 L. Murray, J. Timmis, and A. Tyrrell

(a) (b) (c)

Fig. 1. A schematic of the main structural components of the modular e-puck extension
(a) and photographs of unassembled (b) and assembled prototypes (c)

4 Collective Locomotion

In this section we present an algorithm for controlling the collective locomotion
of a group of e-pucks that are physically connected using the modular e-puck
extension. Through a behaviour-based approach every robot in the group is
motivated to move forward, to align with its neighbours and to avoid obstacles.
The summation of these three objectives determines the speed of the robot’s
motors. Regardless of their position within the larger structure, each robot runs
the same controller and exchanges information only via local communication.

As a collective, the robots are able to exhibit continuous coordinated motion
within an enclosed arena, whilst at the same time demonstrating robustness to
perturbations in the overall structure. Following the removal of one or more
modules from a group, whether deliberate or accidental, the system is able to
self-reconfigure and re-form either the original structure, or an entirely new one.
This process of self-assembly is not pre-programmed but emerges due to a com-
bination factors including: the design of the structural extension, the design of
the locomotion controller, and the nature of the robot’s environment.

The two primary objectives of the controller, to align with neighbouring robots
and to avoid obstacles, both make use of the e-puck’s infrared (IR) sensors. The
arrangement of the eight sensors on a single e-puck is shown in figure Bal The
obstacle avoidance behaviour uses the IR sensors for proximity detection whilst,
with the help of the LibIrcom library [8], the alignment behaviour uses them for
short-range communication.

The alignment behaviour is based upon the same principle of exchanging
relative bearings as both the Liblrcom library’s ‘synchronize’ example, and the
alignment technique described in [7]. We begin this section by describing this
method of alignment, from this point on referred to as static synchronisation,
due to the fact that the robots remain stationary throughout. We identify some
problems with this approach when considering non-stationary alignment and
whilst introducing a new alignment behaviour propose some solutions. Following
which we introduce the obstacle avoidance behaviour and describe how the two
parts are combined with a forward bias to produce the desired overall locomotion.

Self-reconfigurable Modular e-pucks 137

robot 1 robot 2

(a) (b)

Fig. 2. The positioning of the infrared sensors on board an e-puck robot (a) and the
mechanism for exchanging relative bearings between two modules (b)

4.1 Static Synchronisation

The static synchronisation example shows how, by exchanging relative bearings,
a group of stationary robots may converge to and maintain a common heading.

Every robot broadcasts its ID and listens for the IDs of others. Based upon
the sensor at which a message is received, robots are able to estimate the position
of their neighbours as an angle relative to their own heading. For every ID that
a robot receives, a message is sent to the corresponding neighbour, notifying it
of the angle at which it was detected. As shown in figure Bh using the angle at
which robot 2 was detected (a), and the angle at which robot 2 detected robot 1
(b), robot 1 may calculate the relative heading of robot 2 as h = a + 7 — b. The
relative heading of each of a robot’s neighbours is used to incrementally update
the robot’s own desired heading, which consequently determines whether a robot
should turn left, turn right, or remain stationary at each control cycle.

The approach is effective at synchronising the alignment of stationary robots,
but we observe two problems which make it unsuitable for the alignment of
mobile robots connected using the modular e-puck extension. Both problems are
a consequence of the arrangement of the IR sensors on board the e-puck robot.

Firstly, because the angle between neighbouring sensors ranges from around
30° to 60°, unless two sensors are perfectly aligned, the estimate of angles a and
b is often inaccurate. Although the static synchronisation approach incorporates
mechanisms for reducing this uncertainty, it is still present. As is evident in the
behaviour of the robots, which continuously switch between turning left and
right, even once the robots have converged to approximately the same heading.

The second problem is a result of the large gaps between sensors 2, 3, 4 and 5.
When two robots are physically connected, the close proximity of the modules
and the gaps between the sensors can create blind spots in some orientations
(marked 4, j and k in figure 2a). As a result of these blind spots, in certain
configurations the time taken to converge to a common heading is increased.

The two problems are further highlighted in figure Bl When sending messages
via infrared, it is possible to estimate the distance between the sending and
receiving sensors by measuring the intensity of the light received. Figure [3a
maps the intensity of the infrared signal for messages sent between two robots

138 L. Murray, J. Timmis, and A. Tyrrell

a b ¢

—~ 3.5
N

= 30
= 2.5 2
s c
: 20 ¢
5 5 B
= g
N=t 1.0 é}
2

2 0.5
A 0.0

Rotation of robot 2 (¢)

(a) (b)

Fig. 3. A map of the intensity of the IR messages sent between two modules at various
orientations (a) and a diagram of the setup used to gather the data (b)

arranged at various orientations. The setup used to gather this data is shown in
figure where robot 1 is the receiving module and robot 2 is the sender. The
intensity of the signal associated with five received messages was recorded at
10° intervals for every 1296 (36 x 36) possible configurations of the two robots.
Where no message was received within a certain time limit an intensity of 0 was
assigned. The mean value of the five measurements is plotted. It can be noted
from figure Bal that, due to the distribution of the sensors, when the two robots
are facing each other (bottom right) the intensity of the received signals is high,
but when two robots are facing away from each other (top left) the intensity is
often low. A high intensity value indicates that the sending and receiving sensors
are closely aligned, so when two robots are facing each other the measurement
of angle a and b is likely to be more accurate than when they are facing away.

4.2 Alignment

We now present an alternative approach to alignment which aims to tackle the
problems identified in the previous section by making use of the information
available in figure [Bal Building upon the static synchronisation approach, robots
still broadcast their IDs and track the relative orientation of their neighbours,
but as well as making use of the content and direction of the messages they
receive, the intensity of the signals also influences their behaviour.

In figure Bal the lines at z = a, x = b and = = ¢ correspond respectively to the
configurations at which the blind spots ¢, j and k of robot 2 are directly aligned
with robot 1. As shown in figure[3al the intensity values of the messages received
along and adjacent to the lines a, b and ¢ are low. It is possible to make use of
this fact to infer when the blind spot of a robot is aligned with its neighbour, and
hence to determine the position of the neighbour more accurately. Specifically, as
shown in figure @al we may infer that the blind spot k of robot 1 is facing robot 2,

Self-reconfigurable Modular e-pucks 139

a/ ///
a \ %<
XN
2.5
robot 1 robot 2 robot 1 robot 2
(a) (b)

Fig. 4. Diagrams showing the strategy for correcting misalignment using ‘virtual’
sensors (a) and alignment based upon paired sensors (b)

when the message m received at sensor 2 reports a low intensity. Whilst it is
true that sensor 2 will also report low intensity values when the point between
sensors 1 and 2 is aligned with robot 2, because this gap is smaller, these values
will never drop as far they do in blind spot k.

A similar inference can be applied to blind spot ¢ and its relation to sensor
5. Notionally then we may define two wvirtual sensors ‘2.5’ and ‘4.5’ which lie
between sensors 2-3 and 4-5 respectively. As shown in figure Hal if a message is
detected at sensor 2.5, rather than assume it to have originated from a point at
an angle a, we may more accurately assume that it originated from an angle o’
half way between sensors 2 and 3. Note that it is not possible to define a virtual
sensor ‘3.5” which lies between sensors 3 and 4 because from the perspective of
these sensors the blind spots i, j and k are indistinguishable.

It should be noted that, using intensity values alone, it is difficult for a robot
to differentiate between the scenarios in which its own blind spot is facing its
neighbour, its neighbour’s blind spot is facing it, or both blind spots are facing
each other. This is not a major concern, however, since in either scenario the re-
action is the same, the robots will turn towards each other. Furthermore we may
note that messages received from neighbours that are not directly connected,
i.e. neighbours positioned at a diagonal, will always have lower intensity values.
However, since the LibIrcom library preferentially processes high intensity mes-
sages, the proportion of messages received from indirect neighbours, and thus
the influence they exert, will be lower than that of direct neighbours. In the
worst case scenario robots will over eagerly turn towards each other, and as will
become apparent in section [this is not always a bad thing.

In an attempt to reduce the constant changes in direction witnessed in the
static synchronisation example, and to improve the time taken for the robots to
converge upon a common heading, we also implement a new method for translat-
ing the relative headings of neighbouring modules into motor commands. Rather
than incrementally updating an internal desired heading, at each control cycle
we calculate the average direction of all the most recently detected headings.
This value, h, which belongs to the range —m < h < 7 is used to determine the
speed of the robot’s motors. For values of A < 0 the robot will turn left and for
values of A > 0 will turn right, the speed at which the robot turns is proportional

140 L. Murray, J. Timmis, and A. Tyrrell

to the magnitude of h. For values of h = 0 and for control cycles in which no
messages are received, the turning speed of the robot’s motors is set to zero.

In communicating the relative angle at which a neighbour was detected, the
robots transmit the number of the sensor, rather than the angle itself. Further-
more, if |h| > 7, indicating that the robot will make a fast turn, to preempt
this movement the number of the sensor that is transmitted is incremented or
decremented depending upon whether the robot is turning left or right.

Finally, based upon the knowledge that a high intensity signal is indicative of a
close alignment between two sensors, we can define certain sensor pairings which,
when the intensity of the signal is high, should not influence the movement of
the robots. For example, in figure @D, if robot 1 receives a high intensity message
on sensor 3, that was sent from sensor 7 of robot 2, the relative heading of robot
2 will be set to 0. Note that although the alignment between robots 1 and 2 in
this scenario is not perfect, it is considered ‘good enough’ for the task at hand,
and preferential to the robots continuously changing direction.

4.3 Obstacle Avoidance

Every sensor which has not recently received a message from another robot, and
does not neighbour with a sensor that has recently received a message from an-
other robot, contributes to obstacle avoidance. At each control cycle, the sensors
which have detected the presence of an obstacle each create a new desired head-
ing, based upon the position of the sensor. The distance to the detected object
is used to assign a weight in the range (0,1) to each of these new headings,
where the closer the obstacle is, the larger the weight. These weighted headings
are added to the relative headings of the robots neighbour’s, and as before, the
average heading h is used to determine the speed of the robots motors. In effect,
this is equivalent to assuming that there is a neighbouring robot directly facing
every sensor which perceives an obstacle. As well as attempting to align with
their neighbours, robots attempt to ‘align’ with obstacles, with closer obstacles
exerting a greater influence over the alignment.

Finally, to ensure that the robots always continue to move forward, we add a
small positive bias to the speed of each of the robot’s motors.

5 Results

In this section we present the results of a series of experiments conducted using
groups of between two and four e-pucks, each equipped with the modular e-puck
extension. In the first set of experiments, using a group of stationary robots, we
compare the performance of the static synchronisation strategy with our own
approach to alignment. After showing our approach to be amenable to the task
of stationary alignment, we demonstrate its ability to control a group of mobile
robots. At the same time, we observe the robustness of our approach in terms
of its ability to recover from perturbations which cause the group to split apart.

Self-reconfigurable Modular e-pucks 141

5.1 Stationary Alignment

In this set of experiments we compare our approach with the static synchroni-
sation strategy from the Liblrcom library. Experiments were conducted using
groups of two, three and four stationary robots, arranged as shown in figure [Bal

For each controller and each of the three arrangements, 20 individual runs
were conducted. The orientation of the robots was randomised at the start of
each run and the absolute heading of each robot was recorded at one second
intervals over a period of 100 seconds. Throughout all of the experiments, data
was collected using an overhead camera and computer tracking software.

To assess the effectiveness of the approaches in terms of the ability of the
robots to converge towards a common heading, we use the same polarisation
metric as the authors of [7]. The polarisation P(G) of a group of robots G is
defined as the sum of the distance between the heading of every robot and its
angular nearest neighbour 6,,,. More formally shown by equation [

P(G) = 3" fann(i). (1)
i€G

Figures Bb-d plot the mean polarisation of the two approaches for each of the
three module configurations. As is evident by the eventual low polarisation values
in all of the figures, in every experimental run the modules were observed to
converge to and maintain a common heading. In comparing the two approaches,
there is no statistically significant difference between the eventual polarisation
of each set of experiments. However, in every configuration, we can observe that
convergence is faster for the experiments utilising the new approach to alignment.
Furthermore, during the convergence phase (between around 0 and 30 seconds)
the variance in the polarisation of the static synchronisation approach greater.

5.2 Collective Locomotion

With the integration of the obstacle avoidance behaviour, we now apply our
approach to the task of controlling the collective locomotion of a group of mobile
units. The approach was tested for the same configurations used in section (.11
and, in an enclosed arena (~ 0.5 x 0.7m), was shown to be capable of effectively
coordinating the motion of all three groups. A single run, lasting 30 minutes, was
conducted for each configuration. The average position of the robots over the
full period is plotted in figure[6l Videos of the experiments are provided onlindl.

In all three scenarios the robots were able to successfully navigate the arena
without colliding with the arena walls. For the two and four robot configurations
all of the modules remained attached to one another throughout. In the three
module configuration, for a short period of time one module broke away from the
group, only to rejoin soon after. The ability of the module to rejoin the group
highlights an important property of our approach, that it is robust to pertur-
bations in the group structure. To further examine this property we conducted

! http://www-users.york.ac.uk/~1jm505/modular_epucks.htmll

http://www-users.york.ac.uk/~ljm505/modular_epucks.html

142 L. Murray, J. Timmis, and A. Tyrrell

o 6 [T T T T]
2
O 1O OO 54 -
OlORRO O
S
~0
0 20 40 60 80 100
Time (s)
(a) (b) 2 modules
q 6 [T T T T i - 6 [T T T T i
2 2
=4 1 w4 1
22 . 52 _
Sol == o Sol _
0 20 40 60 80 100 0 20 40 60 80 100
Time (s) Time (s)
(¢) 3 modules (d) 4 modules

Fig. 5. Figures (b-d) plot the mean polarisation & one standard deviation, for each of
the three configurations in (a). The static synchronisation approach is represented by
the dashed line and the lighter grey region, and our new approach is represented by
the solid line and the darker region.

another experiment in which three robots were placed in different corners of the
arena and left to operate for 10 minutes.

In figure[6dl the average pairwise distance between each of the robots is plotted
over the 10 minute period. As can be seen in the figure, the robots start far away
from one another and gradually converge to a close proximity at around the 5
minute mark. For the remainder of the experiment they remain within close
proximity of each other. As shown in figure[B6d, what happened in this particular
experiment was that at point ¢ two of the modules physically joined together to
form a two module structure. Shortly after, at point j the third module joined
to complete the three module configuration shown in figure [fal The robots then
remained in this configuration until the end of the run.

It is important to note that this self-assembly behaviour was not pre-
programed, it emerges purely due to the interaction of the robots and their
environment. Specifically, it can be said to result from a combination of at three
factors. Firstly the enclosed arena ensures that robots never stray too far away
from one another. Secondly, the alignment behaviour ensures that robots all
head in a similar direction. Finally, the design of the e-puck extension ensures
that if two robots come into close proximity their magnetic docking interfaces
will cause them to ‘snap’ together. Furthermore, although there is no explicit
cohesion behaviour, the implementation of virtual sensors introduced in section
@ may cause robots to move towards each other when they mistakenly believe
themselves to be aligned with the blind spot of another robot. These factors
combine to produce the semi-stochastic self-assembly behaviour observed in
figure

Self-reconfigurable Modular e-pucks 143

8 T T T T T
g6L 1
: . .
§4_ L] i
52 vy

0

0 100 200 300 400 500 600
Time (s)
(d) (e)
Fig.6. The average position of groups of two (a), three (b) and four (c) e-pucks

equipped with the modular extension, recorded over a 30 minute period, and the
pairwise distance between three robots recorded over a 10 minute period (d-e)

6 Conclusions

We have presented the design of a structural extension that may be used to
transform the e-puck platform into a mobile-lattice modular robotic system.
As a proof of concept we described a controller for coordinating the collective
locomotion of a group of e-pucks equipped with the extension. The controller
was shown to be capable of synchronising the alignment of the group, as well as
exhibiting robustness to perturbations which threaten the group’s integrity. We
conclude that our modular e-puck extension represents a viable low cost platform
for research into the control of self-reconfigurable modular robotic systems.

Acknowledgments. The authors would like to thank James Hilder and Martin
Trefzer for their invaluable input. The SYMBRION project is funded by the Eu-
ropean Commission, within the 7th Framework Programme. FP7-ICT-2007.8.2.

References

1. Cianci, C.M., Raemy, X., Pugh, J., Martinoli, A.: Communication in a Swarm
of Miniature Robots: The e-Puck as an Educational Tool for Swarm Robotics.
In: Sahin, E., Spears, W.M., Winfield, A.F.T. (eds.) SAB 2006 Ws 2007. LNCS,
vol. 4433, pp. 103-115. Springer, Heidelberg (2007)

2. English, S., Gough, J., Johnson, A., Spanton, R., Sun, J.: Formica (2012),
http://formica.srobo.org

3. GCtronic: Elisa 3 (2012), http://www.gctronic.com/doc/index.php/Elisa_3

http://formica.srobo.org
http://www.gctronic.com/doc/index.php/Elisa_3

144

4.

5.

11.
12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

L. Murray, J. Timmis, and A. Tyrrell

Gilpin, K., Kotay, K., Rus, D., Vasilescu, I.: Miche: Modular shape formation by
self-disassembly. Int. J. Rob. Res. 27, 345-372 (2008)

Gilpin, K., Rus, D.: Self-disassembling robot pebbles: New results and ideas for
self-assembly of 3d structures. In: IEEE International Conference on Robotics and
Automation Workshop “Modular Robots: The State of the Art”, pp. 94-99 (2010)
GroB, R., Bonani, M., Mondada, F., Dorigo, M.: Autonomous self-assembly in
swarm-bots. IEEE Transactions on Robotics 22(6), 1115-1130 (2006)

Gutierrez, A., Campo, A., Dorigo, M., Donate, J., Monasterio-Huelin, F.,
Magdalena, L.: Open e-puck range & bearing miniaturized board for local com-
munication in swarm robotics. In: IEEE International Conference on Robotics and
Automation, ICRA 2009, pp. 3111-3116 (May 2009)

Gutiérrez, A., Tuci, E., Campo, A.: Evolution of neuro-controllers for robots align-
ment using local communication. International Journal of Advanced Robotic Sys-
tems 6(1), 25-34 (2009)

K-Team Corporation: K-Team Mobile Robotics (2012), http://www.k-team.com

. Kernbach, S., Scholz, O., Harada, K., Popesku, S., Liedke, J., Raja, H., Liu, W.,

Caparrelli, F., Jemai, J., Havlik, J., Meister, E., Levi, P.: Multi-Robot Organisms:
State of the Art. In: ICRA10, Workshop on “Modular Robots: State of the Art”,
Anchorage, pp. 1-10 (2010)

Kernbach, S.: Jasmine swarm robot platform (2012), http://www.swarmrobot.org
Liu, W., Winfield, A.F.: Open-hardware e-puck linux extension board for experi-
mental swarm robotics research. Microprocessors and Microsystems 35(1), 60-67
(2011)

Rubenstein, M., Hoff, N., Nagpal, R.: Kilobot: A low cost scalable robot system
for collective behaviors. Tech. Rep. TR-06-11, Harvard University (June 2011),
ftp://ftp.deas.harvard.edu/techreports/tr-06-11.pdf

Mondada, F., Bonani, M., Raemy, X., Pugh, J., Cianci, C., Klaptocz, A., Magne-
nat, S., Christophe Zufferey, J., Floreano, D., Martinoli, A.: The e-puck, a robot
designed for education in engineering. In: Proceedings of the 9th Conference on
Autonomous Robot Systems and Competitions, pp. 59-65 (2009)

Mondada, F., Pettinaro, G.C., Guignard, A., Kwee, I.W., Floreano, D.,
Deneubourg, J.L., Nolfi, S., Gambardella, L.M., Dorigo, M.: Swarm-bot: A new
distributed robotic concept. Autonomous Robots 17, 193-221 (2004)

O’Grady, R., Pinciroli, C., Gro8, R., Christensen, A.L., Mondada, F., Bonani, M.,
Dorigo, M.: Swarm-Bots to the Rescue. In: Kampis, G. (ed.) ECAL 2009, Part I.
LNCS, vol. 5777, pp. 165-172. Springer, Heidelberg (2011)

Sahin, E., Spears, W.: Swarm Robotics: SAB 2004 International Workshop, Santa
Monica, CA, USA, July 17 (2004); revised selected papers. LNCS. Springer (2005)
Wei, H., Cai, Y., Li, H., Li, D., Wang, T.: Sambot: A self-assembly modular
robot for swarm robot. In: 2010 IEEE International Conference on Robotics and
Automation (ICRA), pp. 66-71 (2010)

Yim, M., Shen, W.M., Salemi, B., Rus, D., Moll, M., Lipson, H., Klavins, E.,
Chirikjian, G.: Modular self-reconfigurable robot systems [grand challenges of
robotics]. IEEE, Robotics Automation Magazine 14(1), 43-52 (2007)

Yim, M., Shirmohammadi, B., Sastra, J., Park, M., Dugan, M., Taylor, C.: Towards
robotic self-reassembly after explosion. In: IEEE/RSJ International Conference on
Intelligent Robots and Systems, IROS 2007, pp. 2767-2772 (2007)

Zykov, V., Chan, A., Lipson, H.: Molecubes: An open-source modular robotics kit.
In: TROS 2007 Self-Reconfigurable Robotics Workshop (2007)

http://www.k-team.com
http://www.swarmrobot.org
ftp://ftp.deas.harvard.edu/techreports/tr-06-11.pdf

Task Partitioning via Ant Colony Optimization
for Distributed Assembly

James Worcester and M. Ani Hsieh

Drexel University, Philadelphia, USA
{jbw68,mhsiehl}@drexel.edu

Abstract. We address the distributed assembly of a structure by a team
of homogeneous robots. We present an ant-colony-optimization (ACO)
based algorithm to partition general 2- and 3-D assembly tasks into N
separate subtasks. The objective is to determine an allocation or par-
titioning strategy that minimizes the workload imbalance between the
robots that allow for maximum assembly parallelization. This objective
is achieved by extending ACO to apply to a team of ants dividing a set
of tasks, with pheromone marking connections between tasks guiding de-
cisions on task allocation. We present simulation results for various 2-D
and 3-D structures and discuss the advantages of the ACO formulation
in the context of other existing approaches.

1 Introduction

The challenge in distributed autonomous assembly of general two and three-
dimensional structures lies in the complex interplay between the demands on
global planning and coordination and local manipulation and perception. Suc-
cessful autonomous and distributed assembly systems must have the ability to
1) sense and manipulate the various assembly elements; 2) interact with the
desired structure at all stages of the assembly process while ensuring correct-
ness of each assembly step; and 3) satisfy global structural properties such as
static stability and structural integrity. Existing approaches to the distributed
assembly problem generally fall under three categories: self-assembly, assembly
task partitioning, and the synthesis of complete assembly strategies that can be
executed with limited sensing and actuation capabilities.

In the self-assembly approach, the components mix freely until an appropriate
combination occurs, at which point a robot performs the appropriate action to
combine them [7l[T0]. This area is generally analyzed with chemical reaction net-
works, and deals with concentrations of various parts present in the workspace.
As such, it is ideally suited to problems that have large numbers of parts and
robots, where many copies of a completed structure are desired. It also has the
advantage of dealing with multiple types of materials by considering them to be
different chemical species. We are interested in the development of distributed
autonomous assembly strategies for application in the areas of macro-scale man-
ufacturing and automation. In this problem space, distributed autonomous as-
sembly is representative of the general class of tightly-coupled tasks that is of
much interest in multi-agent robotics research [3].

M. Dorigo et al. (Eds.): ANTS 2012, LNCS 7461, pp. 145-[[59, 2012.
(© Springer-Verlag Berlin Heidelberg 2012

146 J. Worcester and M.A. Hsieh

In recent years, the execution of tightly-coupled tasks by multi-robot teams
has mostly focused on cooperative grasping and manipulation of a single object
by a team of robots [IL5L0,1T14]. However, automated assembly involves the
coordination of many robots and their interactions with various assembly com-
ponents whose placements must respect certain precedence constraints to ensure
the final integrity of the desired structure. Existing approaches addressing dis-
tributed macro-scale assembly include [8I5[I7I]]. In [I5], the strategy consists
of designing local attachment rules for the assembly components and assem-
bly is achieved by robots endowed with the ability to communicate locally with
the components in the assembly structure to determine whether a placement is
allowed. Mass-based partitioning of a desired structure is achieved through iter-
ative applications of Voronoi decomposition in [I7,18]. Each robot in the team
is then tasked to assemble the components located within each Voronoi cell. The
advantage of this approach is that workload allocation can be further improved
during the assembly process based on the amount of assembled components in
each cell and employing the robot’s positions as the new Voronoi centers. While
this method works well for two dimensional structures, it is not clear how this
strategy extends to three dimensions. Lastly, the synthesis of assembly instruc-
tions for special cubic structures by a team of quadrotors is discussed in [§].
While the assembly instructions can be executed by quadrotor teams of any
size, correctness of the assembly strategy is achieved through serial execution
of the assembly instructions. As such, this approach does not take advantage of
the potential for parallelization afforded by a multi-robot team.

In this work, we present an ant-colony-optimization (ACO) [4L13] based so-
lution to the assembly partitioning problem . The primary contribution of this
work is the modification of ACO to manage teams of cooperating agents, rather
than to determine a policy for a single agent. Where traditional ACO uses groups
of ants exploring the search space of solutions for a single ant, we use groups of
teams of ants to explore the search space of solutions for a single team. We create
N teams of M ants each. Each team acts independently during a generation,
but pheromone is shared across teams, allowing them to learn from each others’
experience. Each team has a manager which directs the interaction of the team
members, orchestrating a sequential node-claiming sequence.

The remainder of the paper is organized as follows: Section [describes our
methodology. Section [outlines our results, and Section d provides discussion of
the results and directions for future work.

2 Methodology

We determine the set of starting nodes by computing the angular density of the
structure about the center of mass, and then spacing the starting nodes such
that the wedge mapped out between any two starting nodes has the same por-
tion of the mass of the overall structure, subject to the restriction that starting
nodes must be on the exterior of the top surface of the structure. The same set
of starting nodes is then provided to all team managers so that pheromone can

Task Partitioning via Ant Colony Optimization for Distributed Assembly 147

be meaningfully shared between teams, allowing them to learn from each others’
experiences. The algorithm is then run for a prespecified number of generations.
In each generation, the ants within a team will collectively divide the task ac-
cording to the pheromone present, then score their proposed solution according
to a metric based on workload variance, deposit their own pheromone in propor-
tion to the quality of their solution, and finally reset their states in preparation
for the next generation. This is shown in Alg. 211

Algorithm 2.1. Algorithm Overview

0: choose starting nodes
for i = 1 to number of generations do
for j =1 to N do
Team j plans a task allocation (Alg. [22])
Team j scores its solution
end for
for j =1 to N do
Team j deposits pheromone
Team j resets its plan to hold only starting nodes
end for
end for

2.1 Baseline Strategy

We begin by describing our baseline strategy, which we label DAACO (Dis-
tributed Assembly by Ant Colony Optimization). In each generation, we use
the existing pheromone to plan a decomposition of the structure into individual
tasks. This is achieved by each ant sequentially claiming a single node, contin-
uing until no unclaimed nodes remain. An individual ant makes its decision on
which node to claim based on summing the total amount of pheromone leading
to each potential target node from all nodes currently part of its task. That is,
for each target node j, it computes a probability of taking that node according
to equation [T}

bj = ((Z l'ij) +pmm)/Z((Z xik) +pmin) (1)
7 k %

where p; is the probability of claiming node j, x;; is the pheromone on the edge
between ¢ and j, and p,,;, is a constant that provides a small chance of claiming
each node, even in the absence of pheromone. The sums only consider nodes for
j that are adjacent to the ant’s current task, and only consider nodes for i that
are within the ant’s current task. By considering all edges leading to the target
node, we make it more likely that an ant will claim new tasks that share multiple
adjacencies with the current task, leading to a more compact overall task for
the ant.

148 J. Worcester and M.A. Hsieh

The purpose of p,in is to introduce a possibility of exploring previously un-
tried assignments. Effectively this provides a noise term to the exploration of the
search space, giving a possibility of exiting a local minimum. The pheromone is
globally initialized to a value of zero, meaning that initial decisions are chosen
from a uniform distribution over all adjacent nodes. To increase solution diver-
sity, an ordering of the ants is randomly generated by the team manager for
each cycle (each ant claims at most one node during a cycle). The manager also
determines when all nodes have been claimed, at which point the solution is
scored. This process is summarized in Alg.

Algorithm 2.2. Planning for a team
while There are unclaimed nodes do
order = randomized permutation of ants within team
for i = order do
for k = neighbors of current task do
scores(k) = > pheromone between k and current task
end for
choose a node with probability proportional to scores(k) + pmin
if Ant ¢ found a claimable node then
mark that node as claimed
end if
end for
end while

Between the planning and scoring phases, the pheromone graph is subjected
to a global decay, removing a set fraction of the old pheromone each gener-
ation. This has the effect of attaching more importance to more recent gen-
erations. The reason for the timing between planning and scoring is to allow
pheromone deposited in generation ¢ to be used in generation ¢ + 1 before it is
subjected to decay. This means it is possible to increase the decay to a point
where all pheromone is erased before new pheromone is deposited, making each
generation dependent only on the results of the immediately preceding gener-
ation. A decay rate of d means (d * 100)% of the pheromone is removed at
this step.

A metric based on the variance of the workload of each ant is employed by the
team manager to score the solution. The metric is given by Eq. 2 This metric
will provide a score scaled between 0 and 1, with a higher score indicating a
better performance. This score is based on the entire team’s performance, and
is then passed to each individual ant to be used in depositing pheromone.

score = 1/(1 +var(WL)) (2)

After the team’s manager has computed a team score, each ant deposits an
amount of pheromone equal to the score to each edge connecting a pair of nodes
within the ant’s task. Finally, at the end of each generation every ant is reset to
contain only its assigned start node before the next generation begins.

Task Partitioning via Ant Colony Optimization for Distributed Assembly 149

After all generations are concluded, a solution is extracted from the popula-
tion of ants by having one team run one last generation with a slight difference.
Rather than stochastically choosing nodes according to the probabilities de-
scribed above, each ant selects a node by deterministically selecting the node
that would have the maximum probability, described by equation [where c
is the choice made. This allows us to extract a solution that from the best
knowledge the pheromone represents without adding the stochasticity found in
a typical generation.

cj = mjax(z Tij) 3)

2.2 Variant Strategies

We consider two variants on the baseline strategy. The first, which we label
DAACO-D, provides an alternative way of depositing pheromone. As the baseline
strategy deposits pheromone on all connections within the current task, it does
not designate a direction, so the pheromone graph is undirected. This means that
an ant claiming a node on either side of an edge with a high value is likely to take
the node on the other side. Since this may not be desirable behavior for nodes
near one of the starting points, DAACO-D uses a directed pheromone graph.
To determine where to deposit pheromone on this directed graph, Dijkstra’s
algorithm is run on an ant’s complete task assignment to determine a distance
back to the start for every node. Pheromone is then only deposited on edges
leading from a lower distance to a higher distance.

Our second variant, DAACO-S, allows ants to claim nodes that have already
been taken by another ant, in order to more quickly reach an equal workload
by not forcing an ant to stop taking nodes in a situation where all adjacent
nodes have been claimed. In order to avoid ants repeatedly trading nodes back
and forth, three restrictions are placed on this behavior. First, an ant will only
consider stealing a node if there are no unclaimed nodes adjacent to its cur-
rent task. Second, an ant will only steal nodes if its current workload is be-
low the target workload (based on an equal distribution of the total). Finally,
ant ¢ will only steal a node from ant j if j has at least as much work as
7. In order to encourage fewer stolen nodes in successive generations, an ant
that loses a node will remove a fraction of the pheromone connecting it to
that node.

3 Results

We test the algorithm on types of structures consisting of towers connected by
paths, with holes between the paths where nothing is to be built. We vary the
number of robots dividing the structure and the decay rate of the pheromone.
Each map is also compared against the results of the algorithm described in [16]

150 J. Worcester and M.A. Hsieh

run on the same map. In this algorithm, the assembly task is initially divided by
running Dijkstra’s algorithm with multiple starting nodes, one for each robot.
This leaves each robot with a tree representation of its task, where the root
(the starting node) is guaranteed to be on the external boundary of the struc-
ture. By successively building leaves and removing built nodes from its tree, a
robot can complete its task without the danger of becoming trapped in a par-
tially built structure. The algorithm then goes through a node-trading phase
which attempts to equalize the workload by exchanging leaves or branches while
maintaining the tree property of each task. This is a deterministic algorithm,
and hence generates only one solution for a given assembly task, in contrast to
DAACO and its variants, which explore the solution space by varying pheromone
levels.

Results are compared using the variance of the workload between different
robots, with the goal being that this variance should be minimized in an effec-
tive plan. Our base structure consists of 9 3x3 towers, built out of 351 pieces,
shown in Fig. Each reported result for DAACO and its variants is the
average of five runs, with each run lasting 20 generations. If parameters are
not explicitly stated, the experiment is done with 8 robots, using a decay rate
of 0.1.

Fig. 1. (a) The base structure, consisting of nine towers connected by ground paths.
(b) A typical decomposition, in this case by DAACO-S using 8 robots. Different colors
represent the tasks of different robots.

First, we analyze the effects of using different numbers of robots to build
this structure. For each number, we apply DAACO, DAACO-S, DAACO-D,
and the Dijkstra-based algorithm from [16]. Results are shown in Table [l Each
entry is the variance of the workloads of the robots. Generally the deterministic
Dijkstra-based algorithm has the best performance, closely followed by DAACO-
S, while the basic DAACO has higher workload variance, and DAACO-D is
consistently the worst. A typical decomposition is shown in Fig. generated
by DAACO-S for eight robots. However, the deterministic algorithm, as it only
generates one solution per problem, will occasionally encounter a situation that

Task Partitioning via Ant Colony Optimization for Distributed Assembly 151

provides a poor result. One instance of this can be seen for 6 robots dividing the
base structure. Although the deterministic algorithm generally produces slightly
better results than DAACO-S, in this case DAACO-S vastly outperforms the

poor solution chosen by the deterministic algorithm. These solutions are shown
in Fig.

Table 1. Performance as a Function of Team Size

Algorithm Number of Robots

2 3 4 5 6 7 8
DAACO 0.50 0.8 6.83 2.80 109.5 34.3 9.84
DAACO-S 0.50 0.20 0.78 040 3.5 1.01 0.98
DAACO-D 198.9 964.6 379.2 368.4 351.1 223.5 50.9

Dijkstra-based Algorithm 0.50 0 0.25 0.20 81.1 0.48 0.13

Fig. 2. Solutions for six robots, as solved by DAACO-S (a) and the deterministic
algorithm (b). Tasks are delineated by different colors.

So v s oo o

Fig. 3. Two asymmetric structures. (a) Tower structure with one tower triple the height
of the rest (b) 2-d structure with lopsided areas.

152 J. Worcester and M.A. Hsieh

Next, we examine the results of the two structures shown in Fig.Blto determine
the algorithm’s robustness to asymmetry. In one structure, one of the towers is
much taller than the others, while the second is a 2-D structure with lopsided
areas. Table 2] shows a direct comparison between these cases. We note that
these asymmetric cases can cause problems for the deterministic algorithm, while
DAACO-S still performs well. The plans generated for these structures are shown
in Figs. @ and Bl

Varying the decay rate of the pheromone (what percentage evaporates between
each generation) has little effect on the resulting workload variance, as shown in
Table Bl These results were generated on the base structure.

Table 2. Results on Asymmetric Structures

Algorithm One Tall Tower 2-d asymmetric
DAACO 48.3 10.2
DAACO-S 6.73 4.97
DAACO-D 79.8 65.0
Dijkstra-based Algorithm 41.1 29.4

Fig. 4. Plans created for asymmetric tower structure by (a) DAACO, (b) DAACO-S,
(c) DAACO-D, and (d) deterministic algorithm.

Task Partitioning via Ant Colony Optimization for Distributed Assembly 153

25 25

an EEEECOOODDCDODOOO®E ol m o o
] [m/m[m| u oog
(=== u oo
| = |
] | |
15 O 150 =
g]]
]] =
=]
]] =
10] 10 =
2 5 B
| | | =
4 O = LS = 1C \=
g = o o
m| = o [o o
|] [goos
z] o o o = , [| S
E|EI 10 15 20 25 DEI 0 25
(a)
25 2%
20+ M 100000000 0000O0006 2 AEEEEEOOO0O00O00000008
o] ooQ I [E/E[m|
= o 00
1] I g
15+ E = 15 =
= = = 0
o = o]
. = |} |
10 M [} Ry | []
]]]]
]] o =
]]]] =
o]] =1]
st] OEEEE sl |]
] HE CHEEEE] | | |
el SHEEE 44 SEEEE
[[]]
5 | (] HXH‘H [{mm ”.H 10000 HI\ ”Z‘.! § e | o [=
o 5 10 gl 20 2% DD 5 10 15 20 25
(c) (d)

Fig.5. Plans created for 2-D structure with lopsided areas by (a) DAACO, (b)
DAACO-S, (c) DAACO-D, and (d) deterministic algorithm.

Table 3. Performance with Different Decay Rates

Algorithm Decay Rate

0 01 05 07 1
DAACO 5.50 9.84 6.24 5.73 6.75
DAACO-S 0.58 0.98 0.41 0.53 0.47
DAACO-D 46.4 45.5 45.8 44.7 49.7

4 Discussion and Future Work

The results show that allowing ants to steal nodes from each other greatly im-
proves the performance of DAACO-S on this task, giving it comparable per-
formance to the Dijkstra-based algorithm from [16] in most cases, and superior
performance in some. This performance appears to be largely independent of
how much pheromone decay is present. Breaks in symmetry tend to be prob-
lematic for the deterministic approach, but are handled well by DAACO-S. In
contrast, DAACO-D displays performance generally worse than DAACO. This
may be because not adding pheromone between nodes at the same distance from
the starting point weakens the incentive to tightly cluster the tasks chosen, and

154 J. Worcester and M.A. Hsieh

allows claiming of more distant tasks which can block off other ants, leaving
them with smaller workloads.

One aspect of this algorithm worth noting is that it can be used to maintain
connectivity back to an external node, similar to the Dijkstra-based algorithm.
By requiring the starting points to be on the exterior of the structure and limiting
newly claimed nodes to be adjacent to already possessed nodes, DAACO and
DAACO-D provide contiguous tasks that contain part of the exterior of the
structure. This means each robot can plan a way to build its own part that
avoids being trapped in a partially complete structure. As discussed in [6], when
using Voronoi methods, robots can have entirely internal tasks, leaving them no
way to escape the structure if other robots build a wall around them.

DAACO-S in our implementation is not guaranteed to maintain a contiguous
task as another robot could steal a node that disconnects some part of the
task. However, this can be fixed by explicitly checking for each stolen node
whether contiguouity would be broken. One direction for future work is to add a
method to perform this check in constant time regardless of task size. This will
be done by having each node maintain a distance from the root, which can be
easily calculated when the node is added to the task. One direct method would
then be to only allow stealing of nodes that do not have any neighbors with a
higher distance. This would prevent tasks from being separated, but would also
greatly limit the number of nodes available. A more promising direction is to
apply a local Dijkstra starting from each neighbor with a higher distance, which
terminates at the first node other than the stolen node which has a distance no
higher than the stolen node. Essentially what this is doing is checking for an
alternate path back to the root.

Another area for future work is to apply an idea from Simulated Annealing,
and allow p,,:n to decay over time, starting with a high value to encourage early
exploration of the solution space, with the best solution being further refined as
the noise represented by p,;n, decreases.

Finally, we would like to apply these methods to our experimental testbed,
described in [I6], where it was used with the deterministic approach presented
in that paper. Other hardware platforms that could be used with this approach
include those used in [§], [12], [2].

References

1. Berman, S., Lindsey, Q., Sakar, M.S., Kumar, V., Pratt, S.: Experimental study
and modeling of group retrieval in ants as an approach to collective transport in
swarm robotic systems. Proceedings of the IEEE, Special Issue on Swarming in
Natural and Engineered Systems (2011)

2. Bolger, A., Faulkner, M., Stein, D., White, L., Yun, S., Rus, D.: Experiments
in decentralized robot construction with tool delivery and assembly robots. In:
IEEE/RSJ International Conference on Intelligent Robots and Systems (2010)

3. Chaimowicz, L., Sugar, T., Kumar, V., Campos, M.F.M.: An Architecture for
Tightly Coupled Multi-Robot Cooperation. In: Proc. IEEE Int. Conf. on Rob. &
Autom., Seoul, Korea, pp. 2292-2297 (May 2001)

10.

11.

12.

13.

14.

15.

16.

17.

18.

Task Partitioning via Ant Colony Optimization for Distributed Assembly 155

Dorigo, M., Caro, G.D., Gambardella, L.M.: Ant algorithms for discrete optimiza-
tion. Artificial Life, 137-172 (1999)

Fink, J., Hsieh, M.A., Kumar, V.: Multi-robot manipulation via caging in environ-
ments with obstacles. In: Proc. IEEE International Conference on Robotics and
Automation (ICRA 2008), Pasadena, CA, pp. 1471-1476 (May 2008)

Hsieh, M., Rogoff, J.: Complexity measures for distributed assembly tasks. In:
Proc. of the 2010 Performance Metrics for Intelligent Systems Workshop (PerMIS
2009), Baltimore, Maryland (September 2010)

Klavins, E., Burden, S., Napp, N.: Optimal rules for programmed stochastic self-
assembly. In: Proc. Robotics: Science and Systems 11, Atlanta, GA, pp. 9-16 (2007)
Lindsey, Q.J., Mellinger, D., Kumar, V.: Construction of cubic structures with
quadrotor teams. Robotics: Science and Systems (June 2011)

Mataric, M.J., Nilsson, M., Simsarian, K.: Cooperative Multi-Robot Box-Pushing.
In: Proc. IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS 1995), Pittsburgh, Pennsylvania, pp. 556-561 (August 1995)

Matthey, L., Berman, S., Kumar, V.: Stochastic Strategies for a Swarm Robotic
Assembly System. In: Proc. 2009 IEEE International Conference on Robotics and
Automation (ICRA 2009), Kobe, Japan, pp. 1953-1958 (2009)

Pereira, G.A.S., Kumar, V., Campos, M.F.M.: Decentralized Algorithms for Mul-
tirobot Manipulation via Caging. International Journal of Robotics Research 23,
783-795 (2004)

Peterson, K., Nagpal, R., Werfel, J.: Termes: an autonomous robotic system for
three-dimensional collective construction. In: Robotics: Science and Systems (2011)
Sauter, J.A., Matthews, R., Parunak, H.V.D., Brueckner, S.: Evolving adaptive
pheromone path planning mechanisms. In: Autonomous Agents and Multi-Agent
Systems (AAMAS 2002), Bologna, Italy, pp. 434-440 (2002)

Sugar, T., Kumar, V.: Multiple Cooperating Mobile Manipulators. In: Proc. 1999
IEEE International Conference on Robotics and Automation (ICRA 1999), Detroit,
Michigan, pp. 1538-1543 (May 1999)

Werfel, J., Bar-Yam, Y., Nagpal, R.: Building patterned structures with robot
swarms. In: Proc. of the 19th Int. Joint Conf. on Artificial Intelligence (IJCAI
2005), Pasadena, CA USA, pp. 1495-1502 (July 2009)

Worcester, J., Rogoff, J., Hsieh, M.: Constrained Task Partitioning for Distributed
Assembly. In: Proc. IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS 2011), San Francisco, California (September 2011)

Yun, S.K., Rus, D.: Adaptation to robot failures and shape change in decentralized
construction. In: Proc. of the Int. Conf. on Robotics & Automation (ICRA 2010),
Anchorage, AK, USA, pp. 2451-2458 (May 2010)

Yun, S.-k., Schwager, M., Rus, D.: Coordinating Construction of Truss Struc-
tures Using Distributed Equal-Mass Partitioning. In: Pradalier, C., Siegwart, R.,
Hirzinger, G. (eds.) Robotics Research. STAR, vol. 70, pp. 607-623. Springer, Hei-
delberg (2011)

The Self-adaptive Comprehensive Learning
Particle Swarm Optimizer

Adiel Ismail*? and Andries P. Engelbrecht?

! Department of Computer Science, University of the Western Cape, South Africa
aismail@uwc.ac.za
2 Department of Computer Science, University of Pretoria, South Africa
engel@cs.up.ac.za

Abstract. Particle swarm optimization (PSO) has been applied suc-
cessfully to a wide range of optimization problems. Appropriate values
for control parameters of the particle swarm optimization (PSO) algo-
rithm are critical to its success. This paper proposes that the control
parameters of PSO be embedded in the position vector of particles and
dynamically adapted while the search is in progress, relieving the user
from specifying appropriate values before the search commences. Ap-
plication of the Self-Adaptive Comprehensive Learning Particle Swarm
Optimizer (SACLPSO) to 9 well known test functions show an improve-
ment in performance on most of the functions compared to CLPSO and
a tuned PSO.

1 Introduction

Particle swarm optimization (PSO) is a nature inspired population based
stochastic optimization approach which was originally developed by Eberhart
and Kennedy [3]. PSO is appealing to optimization because it is easy to imple-
ment, no gradient information is required, and it is computationally inexpensive
due to low memory and CPU requirements [3].

Despite its simplicity, the success of PSO largely depends on selecting ap-
propriate values for its control parameters, i.e. the inertia weight, w, and ac-
celeration coefficients ¢; and co. Incorrectly chosen parameter values may lead
to suboptimal solutions, premature convergence, stagnation of the algorithm,
slower convergence, or even to divergent or cyclic behaviour [13],[I4]. Optimal
control parameter values are also problem dependent and may be different for
different particles in the swarm. Determining optimal static control parameters
manually for the PSO is time consuming.

Numerous PSO variants dynamically adapt the control parameters to improve
the performance of the PSO. These include the time-varying parameter control
strategies such as the linearly decreasing inertia weight [I0] and maximum ve-
locity [12], the non-linearly adjusted inertia weight [I], and the time-varying
acceleration coefficients [7]. A fuzzy system adapts the inertia weight in [11].
Two swarms alternate in optimizing the objective function and the PSO control
parameters separately in [5]. Control parameters are self-adapted by growing

M. Dorigo et al. (Eds.): ANTS 2012, LNCS 7461, pp. 156-[61, 2012.
(© Springer-Verlag Berlin Heidelberg 2012

The Self-adaptive Comprehensive Learning Particle Swarm Optimizer 157

and shrinking the swarm respectively based on under or improved performance
of individual particles in ‘Tribes’ of Clerc [2].

Despite exhibiting good performance on well-known test functions, the basic
PSO tends to converge prematurely in strongly multi-modal test functions. Poor
swarm diversity has been identified as one of the causes of premature convergence
of the basic PSO [§]. Correctly chosen parameter values ensure swarm diversity
and thus exploration which is vital for the PSO in reaching an optimal solution.
Preferably, the PSO search should start with a high diversity and maintain it
for a longer period while a lower diversity is desirable when approaching conver-
gence. Results reported for the Comprehensive Learning PSO (CLPSO) of Liang
et al [] on multi-modal functions indicate that the CLPSO generally strikes a
good balance between high and low diversity when fine-tuning a solution.

This paper proposes the Self-Adaptive Comprehensive Learning PSO
(SACLPSO) which is a modification to the CLPSO by dynamically determin-
ing appropriate values for the CLPSO control parameters. The position vectors
are augmented to also contain the inertia weight and the acceleration coefficient
which are adjusted together with the decision variables using the PSO update
equations. Velocity, personal best position and global best position are also aug-
mented to (D+2)-dimensional vectors. This approach of including the control
parameters in an augmented position vector can easily be applied to other PSO
variants.

The rest of the paper is organized as follows: Section 2 provides an overview
of PSO. An overview of the CLPSO is presented in section 3. The SACLPSO
is presented in section 4. The experiments and their results are presented and
discussed in section 5. The paper is concluded in section 6.

2 Overview of PSO

A swarm of particles in PSO fly through the search space to find an optimal
solution to an optimization problem. Each particle represents a potential solution
to the optimization problem and is equipped with a position and a velocity. When
PSO starts, the particles are randomly distributed throughout the search space.
Each particle subsequently adjusts its velocity in relation to the best position
found so far and in relation to the best position of all particles in a defined
neighborhood. The position of a particle is updated using the particle’s velocity.
The best position of particle 7 is denoted by x; and the velocity by v;. The
personal best position of particle ¢ is represented as xpbest;. The best position
in the entire swarm is referred to as xGbest. The global best and personal
best positions are also updated over time. The position and velocity update
equations are:

vt 4+1) = w-vd(t) + ¢ - r(t) - (wpbestd(t) — (1)) (1)
+co - rd(t) - (zGbest(t) — xd(t))

?

zd(t4+1) = z(t) + vl (t + 1) (2)

158 A. Ismail and A.P. Engelbrecht

where d = 1,2,...,D, ¢ = 1,2,...,5, and S is the size of the swarm; w is the
inertia weight with 0 < w < 1; ¢; and ¢ are two positive constants, called the
acceleration constants; r1 and ro are two vectors containing random numbers,
with each random number uniformly distributed in (0,1); and ¢ indicates the
iteration number. The second and third terms in equation (1) are respectively
referred to as the cognitive and the social components.

3 Comprehensive Learning Particle Swarm Optimizer

The Comprehensive Learning Particle Swarm Optimizer (CLPSO) of Liang et
al [A] addresses the problem associated with premature convergence in the ba-
sic PSO by removing the social component from velocity update equation (1),
and by allowing each position vector component of a particle to be attracted
stochastically to the corresponding personal best position vector component of
any other particle in the swarm. Velocity is updated using

vi(t+1) = w v (1) + ¢ r{ () (zpbest;q) (1) — 2 (2)) 3)

where f; = [f,(l),fz(2)7f2(3), afZ(D)] and fz(d) =41, with d € {1,2,3,...,D}
and i; € {1,2,3,...,5}; S denotes the size of the swarm and f; defines which
particles’ personal best positions to use when updating each dimension of the
velocity of particle 3.

The basic PSO updates a particle’s velocity using the particle’s personal best
and the swarm’s global best positions, while in the extreme case equation (3) may
result in a particle’s velocity to be updated by using information from as many
as D distinct particles when each vector component refers to a different particle,
ie. {fi(d) | d=1,2,3,...,D} = {i1 | i1 = 1,2,3, ..., 5}, where iy refers to the
index of the particle. The decision whether to use a particle’s own personal best
position or that of another particle depends on a learning probability, LP;. The
learning probabilities which range from 0.05 to 0.5 were empirically developed
by Liang et al and were computed using,

(exp(’4Y) = 1)
(exp(10) — 1)

Experiments conducted by Liang et al indicated that different learning proba-
bilities equip particles with different exploration/exploitation abilities. Liang et
al subsequently proposed a different learning probability for each particle in the
swarm. The learning probability assigned to a particle is fixed to the particle for
the entire execution of the CLPSO algorithm.

CLPSO updates the velocity of each particle using a set of particles referred
to as exemplars [4]. Exemplars are selected as follows: A random number uni-
formly distributed in (0, 1) is generated for each dimension of particle 4. If this
random number exceeds the corresponding learning probability, LP;, then the
corresponding dimension will be updated using the particle’s own personal best,

LP; =0.05+0.45- (4)

The Self-adaptive Comprehensive Learning Particle Swarm Optimizer 159

otherwise the dimension will be updated using the personal best of another par-
ticle as determined by a tournament selection procedure. In the latter approach
two particles are randomly chosen from the swarm, excluding the particle be-
ing updated. The particle with a better personal best value is subsequently se-
lected to update the corresponding dimension of the velocity of particle i. This
procedure is repeated for all dimensions of particle 7.

If all dimensions of the position of particle ¢ refer to its own personal best
positions, then one dimension of particle ¢ is randomly chosen and updated by
the corresponding dimension of another randomly selected particle’s personal
best position.

If a particle’s personal best does not improve for a predetermined period (also
referred to as the refreshing gap, m), a new set of exemplars is selected for the
particle. Liang et al empirically determined 7 as a good value for m on their
set of test functions. To keep track of the number of consecutive iterations that
showed no improvement in a particle’s personal best, each particle 7 is assigned
a counter, flag;. For a detailed description of CLPSO refer to [4].

Liang et al reported that the CLPSO performed better than a number of
modified PSO algorithms in 10 of their 16 test functions. This makes the CLPSO
algorithm a good candidate for self-adapting the control parameters of PSO.

4 Self-adaptive Comprehensive Learning PSO

The Self-Adaptive Comprehensive Learning PSO (SACLPSO) is an adapta-
tion of the CLPSO where the inertia weight and acceleration coefficient are
self-adapted during the search process. The position vector of each particle in
SACLPSO is augmented to contain both the inertia weight, w, and the accel-
eration coefficient, c¢. The first D dimensions of the position vector represent
a potential solution to the optimization problem, while the particle’s inertia
weight and acceleration coefficient are stored in dimensions D+1 and D+2 of
the position vector, respectively. Thus, each particle in SACLPSO has its own
inertia weight and acceleration coefficient. Note that only the first D dimensions
of the position vector are used when evaluating a particle’s fitness. Velocity,
personal best position and global best position vectors are also augmented to
(D+2)-dimensional vectors. When a swarm is created the vector components
corresponding to the decision variables are initialized to random values in a
defined domain, while the vector components for the inertia weight and the ac-
celeration coefficient values of each particle are initialized to random values in
the acceptable ranges [0.1, 1.0] and [0.1, 3.0], respectively. The learning proba-
bilities which are fixed during the entire execution of SACLPSO are initialized
using equation (4).

The following operations apply to each particle in the swarm: A new set of
exemplars for a particle is selected as outlined in CLPSO when the SACLPSO
commences or as soon as flag; is equal to or greater than the refreshing gap m.
When a new set of exemplars is selected for particle 7, the counter flag; is reset
to zero. The control parameters, w and ¢, are extracted from the position vector

160 A. Ismail and A.P. Engelbrecht

and used to update the velocity of a particle using equation (3) and clamped
if required. The position of a particle is subsequently updated using equation
(2). The personal best and global best positions are only updated if the position
of the particle lies within the search domain. An update of the personal best
signals an improvement, and hence flag; is reset. If the personal best of particle
i is not updated, flag; is incremented. To prevent the SACLPSO algorithm
from searching for potential solutions outside the search space, a value for any
dimension of an updated position that exceeds the boundary of the search space
is immediately reassigned to a random value in the domain. The SACLPSO
algorithm appears in Algorithm 1 where max;;, refers to the maximum number
of iterations.

The SACLPSO requires additional storage space for the weight and accelera-
tion coeflicients of each particle. Additional processing is also required to access,
extract and update these additional two vector components compared to the

CLPSO.

Algorithm 1. SACLPSO algorithm

Create a swarm of D+2-dimensional particles with
position vector augmented to contain w and ¢
Initialize learning probabilities, LP;, using equation (4)
Repeat mawx ie, times (K = 1 to mawx;e,)
Repeat S times (i = 1 to S)
if(flag; > m) or (k = 1) then
select a set of exemplars for particle
reset counter, flag; < 0
Endif
Extract w from position vector of particle i
Extract ¢ from position vector of particle ¢
Repeat D times (d = 1 to D + 2)
Update vfii using equation (3)
Clamp velocity if necessary
Update ‘L;i using equation (1)
Next D
if x; € [Xmmin > Xmaaz] then
if fitness(x;) < fitness(xpbest;) then
xpbest; = x;
flag; =0
if fitness(x;) < fitness(gBest) then
gBest = x;
Endif
Else
flag; = flag; +1
Endif
else
Reassign vector position components
that exit search space randomly
to search domain
Endif
Next i
Next k

5 Experiments and Results

The aim of this section is to describe and report on the experiments performed
in this paper. For this purpose, section (. Ildescribes the experiments and defines
the test functions and its parameters, while section reports the results of the
experiments.

The Self-adaptive Comprehensive Learning Particle Swarm Optimizer 161

5.1 Experimental Procedure

The principle goal of this paper is to investigate the performance of the proposed
SACLPSO which self-adapts the control parameters of CLPSO, bearing in mind
that the SACLPSO searches a larger dimensional space of D + 2 compared to
the D dimensional space searched by the CLPSO. Performance was based on
the fitness of particles. To compare the performance of the SACLPSO with the
CLPSO and a tuned PSO, 9 test functions listed in table 1 were used. The
test set consisted of the unimodal Sphere function and 8 multi-modal functions
including the Rotated Ackley, which has been rotated using Salomon’s method
[9). The domain refers to the space in which the optimum was searched for.

Table 1. Definitions and parameters of test functions

Function Domain Name
(where D = 30)

160 =3P 22 [—100,100]P Sphere

D
fo(x) = Eii’_l 100(zg; — mgi_l)Q + (1 —29;_1)% [10, 10]P Rosenbrock
f3(x) = —20 - exp (—o.z . \/Ll) " T;L’) [—32, 32| Ackley
—exp (L S0P cos(ma;)) +20+
_ 1 D _2_ 711D z; _ D .

FaG) = 4600 i1 ®r — 12y cos(\/i) +1 [—600, 600] Griewank
f500) = S0P | (kmeeak cos(2nbF (2; +0.5)]) [-0.5,0.5]P Weierstrass

—D o kmaTiokeos(2nbk - 0.5)
a=0.50b=3, kmaz = 20

fe(x) = 3P | (@2 — 10 cos(2ma;) + 10) [-5.12,5.12]°P Rastrigin

Fr(x) = E?:I(y;é’ — 10 cos(27y;) + 10) [-5.12,5.12] P Non-

where continuous

@; if lo;] < 1 o
Yi = round(2z;) . 7 Rastrigin
2 if |z 2 5

fg(x) =418.98 x D — P 5, sin (\/\JL”) [—500, 500]P Schwefel

fo(x) = —20 - exp (—0.2 - \/Ll) " Lf) [—32, 321D Rotated
— exp (71L ZLD=1 cos(21r$71)) + 20+ e Ackley
y=M=xaw

The optimal set of parameters for the tuned PSO was determined by compar-
ing the average global best values yielded by a limited number of combinations
of w, ¢; and ¢y on the test functions after 1000 iterations. The inertia weight
ranged from 0.4 to 1.0 in increments of 0.025, while both acceleration coefficients
ranged from 0.6 to 2.4 in increments of 0.075. The average of the global best
values over 50 independent simulations was used to evaluate the performance
for each set of PSO control parameters. The best yielding set of parameters for
each test function was chosen as parameters for the PSO. The parameters for
the tuned PSO for each function are listed in table 2.

The performance of the SACLPSO, as measured by the average global best
value over 30 simulations, was compared to that of the CLPSO and a tuned PSO
using the parameters listed in Table 2. For all experiments, each swarm consisted
of 40 particles. All experiments were run for 2 x 10° function evaluations, noting
that 40 function evaluations are required per iteration by all PSO approaches.
The swarm size and maximum number of function evaluations are similar to that
chosen by Liang et al for their experiments in [4].

162 A. Ismail and A.P. Engelbrecht

Table 2. Parameter settings of tuned Table 3. Average values for control pa-
PSO for each test function rameters for SACLSPO and p-values
Function PSO SACLPSO SACLPSO
w c1 c2 Function average average vs Vs
f1 0.525 2.025 1.80 w c CLPSO PSO
f2 0.625 1.20 2.025 p-value p-value
f3 0.60 1.875 2.025 fq 0.482 1.103 0.032 2.87E-11
fa 0.60 2.10 1.65 fo 0.490 1.325 0.013 2.87TE-11
fs 0.725 1.475 1.85 f3 0.428 1.140 5.43E-05 2.87E-11
fe 0.775 2.10 1.05 fq 0.445 1.147 1.05E-05 0.917
f7 0.75 2.025 1.20 f5 0.399 1.207 2.87E-11 2.87E-11
fs 0.45 2.40 1.875 fg 0.283 1.268 4.29E-11 2.87E-11
fo 0.70 2.175 1.275 f7 0.264 1.254 6.17E-10 2.87E-11
fg 0.385 1.275 1.12E-09 2.87E-11
fg 0.409 0.964 2.28-07 1.14E-7

The effect of SACLPSO on diversity was also investigated in this paper.
Olorunda and Engelbrecht investigated a number of diversity measures in [6]
and concluded that the average distance around the swarm center is a more ro-
bust measure than swarm diameter or radius in the presence of outliers. Hence,
the diversity measure used in this paper is the ‘average distance around the
swarm center’ as defined in [6].

5.2 Experimental Results

The average values for the inertia weight, w, and the acceleration coefficient,
¢, for the SACLPSO were calculated at each iteration over the 30 simulations;
results are given in table 3. In order to establish whether the results produced by
the SACLPSO algorithm are statistically different from the results produced by
CLPSO and the PSO, the non-parametric Mann-Whitney U-test was conducted.
The p-values from the test are included in table 3. A p-value less than 0.05
indicates that the performance of the two algorithms are statistically different
with 95% confidence. Entries in bold in table 3 indicate that the SACLPSO has
outperformed the other algorithm. The SACLPSO has outperformed the CLPSO
and the PSO in 7 and 5 of the 9 test functions, respectively.

The average global best values over 30 simulations are tabulated in table 4 for
the tuned PSO, CLPSO and SACLPSO for each of the 9 test functions.

Subfigures (a) to (j) in figure 1 plot the logarithm of the average global best
values over 30 simulations for the various test functions for each of the three
PSO approaches. The logarithm of the average diversity over 30 simulations for
the various test functions are plotted for the tuned PSO, CLPSO and SACLPSO
in subfigures (a) to (i) in figure 2.

The basic PSO with optimized parameters performed much better than
CLPSO and SACLPSO on function f;, the unimodal Sphere function. The
tuned PSO also converged much faster than both the CLPSO and SACLPSO.
Both the CLPSO and SACLPSO improved their minimum, although extremely
slowly. The CLPSO and SACLPSO achieved fairly similar results on the Sphere
function. Figure 2(a) indicates that the SACLPSO maintained a slightly higher
diversity than CLPSO, with a corresponding slightly lower performance as re-
flected in figure 1(a). The continued high diversity maintained by both CLPSO

The Self-adaptive Comprehensive Learning Particle Swarm Optimizer 163

and SACLPSO towards the end of the search could have resulted in their
poor performance. The CLPSO and SACLPSO could not successfully move
from exploration to exploitation when convergence is reached on the simple
unimodal functions. The omission of the global best term from the velocity
update equation in CLPSO and SACLPSO resulted in particles not being at-
tracted explicitly to the single global minimum when applied to the simple uni-
modal Sphere function. Particles were instead attracted to positions which were
constructed from personal best positions. Omission of the global best term from
the velocity update equation caused delayed attraction and subsequent slowed
convergence to the local minimum in the case of unimodal functions.

Table 4. Average global best over 30 simulations for tuned PSO, CLPSO and
SACLPSO

Function PSO CLPSO SACLPSO
Mean Mean Mean
fq 7.73E — 95 £ 2.93E — 94 6.44E — 13 £ 2.92E — 13 7.45E — 12 £ 2.63E — 11

fo 6.05E + 00 + 2.23E + 00 2.12E + 01 £ 2.54E + 00 2.62E + 01 £ 1.27E + 01
f3 9.80E — 15 £ 3.30E — 15 2.88E — 07 £ 6.76E — 08 1.87TE — 07 &£ 1.60E — 07

fy 2.11E — 02 £ 4.56E — 02 7.79E — 09 £ 1.08E — 08 1.45E — 08 £+ 4.98E — 08
f5 2.90E + 00 &+ 1.84E + 00 4.74E — 06 £ 2.26E — 06 1.04E — 08 &+ 1.10E — 08
fe 2.27E + 01 + 6.41E + 00 8.94E — 05 + 1.00E — 04 2.38E — 13 + 2.67E — 13
f7 1.33E 4+ 01 £ 8.01E + 00 1.06E — 03 & 6.86E — 04 6.21E — 10 £ 3.06E — 09
fg 2.57TE + 03 £ 5.96E + 02 1.69E — 09 + 1.49E — 09 7.84FE — 11 + 1.50E — 10

fg 2.08E + 00 £ 8.61E — 01 1.54E — 02 + 4.29E — 02 1.46E — 02 £ 7.50E — 02

* * Ps0T b — T
. X et N et
r
P " :
© :
= i)
fo £ £
2 z < N
.
o
(a) f1 (Sphere) (b) f2 (Rosenbrock) (c) f3 (Ackley)
Ps0T PsoT * T
. et et K SER
B
o s t . T, \\
. “
2 H R
i i o
£ g
"
.
(d) fa (Griewank) (e) f5 (Weierstrass) (f) f¢ (Rastrigin)

“ ® ©

e e e
S e o —
siéihso o s siéihso o

“sactrso 8

v bt over 20 uns

0 s 00 s 00 0 Wm0 400 40 500 0 s 00 B0 00 0 Wm0 400 40 500 0 0 Wm o 00 200 300 B0 MW 460 500

(¢) f7 (Non-cont. Rastrigin) (h) fg (Schwefel) (i) fo (Rotated Ackley’s)

Fig. 1. Plots of average gbest for functions f1 to fo

164 A. Ismail and A.P. Engelbrecht

The tuned PSO also performed much better than both the CLPSO and the
SACLPSO on function fa, the Rosenbrock function as reflected in figure 1(b).
The tuned PSO improved its minimum fitness value quickly over the first 300
iterations, with a corresponding reduction in diversity, whereafter the minimum
fitness continued to decrease at a much slower rate. As illustrated in figure 2(b),
the diversity of the tuned PSO on Rosenbrock also increased from iteration
350 as some particles were drawn away from the global minimum towards local
minima. An inspection also revealed that more particles were exiting the search
domain after 2000 iterations, which also lead to an increase in the diversity, since
particles were not re-initialized to the domain. The CLPSO reached a slightly
lower fitness than the SACLPSO.

For function f3, the Ackley function, a tuned PSO converged initially much
faster than the CLPSO and SACLPSO, but was eventually exceeded by CLPSO
and SACLPSO (i.e. around 10000 iterations or 40000 evaluations, not shown in
graph). The small spikes in the graph depicting the diversity for PSO on the
Ackley function in figure 2(c) showed that particles wandered off or explored
the search areas around the minimum but were subsequently drawn back to the
minimum. The tuned PSO performed the best for the Ackley function.

The tuned PSO converged much faster than both CLPSO and SACLPSO on
functions f1, fo and f3 (i.e. the Sphere, Rosenbrock and the Ackley functions,
respectively) as reflected in figures 1(a) to 1(c) and managed to reach much lower
fitness values compared to CLPSO and SACLPSO within the 2 x 10° function
evaluations.

The SACLPSO outperformed the tuned PSO on the multi-modal functions, f4
to fo (i.e. Griewank, Weierstrass, Rastrigin, Non-continuous Rastrigin, Schwefel
and Rotated Ackley functions, respectively) based on the Mann-Whitney U-
Test (refer to table 3). Figures 1(d) to 1(i) indicate that the tuned PSO had
difficulty optimizing these functions. The tuned PSO converged prematurely on
the Weierstrass and Rastrigin functions as reflected in figures 1(e) and 1(f),
while the CLPSO and SACLPSO continued to improve their solutions. A higher
diversity is maintained for longer by SACLPSO and CLPSO compared to the
tuned PSO on the multi-modal functions as reflected in figures 2(d) and 2(e).
Oscillation or wandering of particles are indicated by the spikes in figure 2(d)
in the case of the tuned PSO applied to the Griewank function, which however
lead to no corresponding improvement of the solution as reflected in figure 1(d).
This implies that the tuned PSO was not able to successfully escape from local
minima in search of the global minimum. The tuned PSO was also unsuccessful in
escaping from local minima in the case of the Weierstrass and Rastrigin functions
with behaviour similar to that exhibited by the Griewank function. The graphs of
multi-modal functions f5 and fs in figures 1(e) and 1(f) also show that SACLPSO
converged much quicker than the CLPSO with the additional advantage that no
parameter tuning was required for both the inertia weight and the acceleration
coefficient. The poor performance of the tuned PSO is accompanied by much
lower diversity compared to SACLPSO and CLPSO on functions f4, f5 and fs
(i.e. Griewank, Weierstrass, Schwefel functions, respectively).

The Self-adaptive Comprehensive Learning Particle Swarm Optimizer

165

B o
e = ——
T — =
‘SACLPSO" & — “SACLPSO" o
. —~—
" . 2
H H
i P
i e
i R
: 3
"
. I\
)an 500 000 1500 2000 2500 3000 3500 4000 4500 5000 0 500 1000 500 2000 2500 3000 3500 4000 4500 5000 un 500 000 1500 2000 2500 3000 3500 4000 4500 5000
(a) f1 (Sphere) (b) fo (Rosenbrock) (c) f3 (Ackley)
= e T
—— B % BB % S

v log (dvery) aver 20 s

.
s,
.
(d) f4 (Griewank) (e) f5 (Weierstrass) (f) f¢ (Rastrigin)

PSOr N

—_ .

3

i

g, H

: i

]

H

|

B

() f7 (Non-cont. Rastrigin)

(h) fg (Schwefel)

(i) fo (Rotated Ackley’s)

Fig. 2. Plots of average diversity for functions fi to fo

s o7 o8
(a) w (Sphere) (b) ¢ (Sphere) (¢) w (Schwefel) (d) ¢ (Schwefel)
w
= = = =
e " 0 "
B % 055 "
8
.
AT
e a 3
u 0 s "

(e) w (Ackley)

Fig. 3. Plots for average
and fs

(f) ¢ (Ackley)

(g) w (Rastrigin)

(h) ¢ (Rastrigin)

of parameters w and c of all particles for functions f1, f3, fs

166 A. Ismail and A.P. Engelbrecht

Figures 1(g) and 1(h) show that the SACLPSO outperformed the CLPSO on
functions f7 and fs. In these cases the PSO converged prematurely.

Figure 3 visualizes the average values of the inertia weight, w, and the accel-
eration coefficient, ¢, of the SACLPSO for functions f1, f3, f¢ and fs. The graph
in figure 3(a) indicates a decrease in the inertia weight up to 1300 iterations,
whereafter it increased, indicating that particles changed from exploitation to
exploration after the 1300 iterations, however without much success as indicated
in figure 1(a). Figures 3(c) and 3(d) show that w decreased to a low value of 0.37,
while ¢ decreased initially followed by an increase and subsequent exploration of
the search space as confirmed by the corresponding diversity in figure 2(h). In
figure 3(e), w decreased until approximately 3000 iterations, followed by a sud-
den increase to enable SACLPSO to escape from local minima in search of better
optima as reflected in figure 1(c). Figure 3(g) and 3(h) show that both w and
¢ decreased rapidly. The small value of w indicates that successful exploration
and exploitation of the search space was achieved by the larger ¢ value.

The results showed that the SACLPSO performed at least as well as the
CLPSO on most of the multi-modal functions and in seven cases much better
than the CLPSO, despite having to search a larger D + 2 dimensional space
compared to the smaller D dimensional space searched by CLPSO.

6 Conclusion

This paper presented the Self-Adaptive Comprehensive Learning PSO
(SACLPSO) where the control parameters (i.e. inertia weight, w, and accelera-
tion coefficient, ¢) are self-adapted by extending particles of the CLPSO. Each
particle is equipped with its own set of control parameters which are dynami-
cally adapted by the SACLPSO process. The CLPSO’s strategy does not restrict
updating of a particle’s velocity to its own personal best and that of the global
best particle, but extends updating to include the best positions of all other par-
ticles in the swarm. This approach contributed to the success of the SACLPSO
in self-adapting the control parameters. The Mann-Whitney U-Test results indi-
cate that the SACLPSO outperformed the CLPSO in 7 of the 9 test functions.
The SACLPSO algorithm produced sensible values for the control parameters
as reflected in table 3 and the plots of averages of the control parameter values.

The SACLPSO succeeded in optimizing the multi-modal functions at least
as good as the CLPSO and outperformed the tuned PSO. The results of the
experiments have indicated that the SACLPSO converged much faster than the
CLPSO on most of the multi-modal functions. Unfortunately, poorer perfor-
mance on unimodal functions is the price paid for improved performance on
multi-modal functions in accordance to the ‘no free lunch theorem’ [15].

The SACLPSO algorithm relieves the user from specifying appropriate control
parameters for optimization using CLPSO and requires the user to only specify
(a) the function to optimize, (b) the domain to search, and (c) the terminating
condition(s) presented. This effectively reduces the optimization involving a PSO
to optimization using a black box.

The Self-adaptive Comprehensive Learning Particle Swarm Optimizer 167

References

10.

11.

12.

13.

14.

15.

Chatterjee, A., Siarry, P.: Nonlinear inertia weight variation for dynamic adapta-
tion in particle swarm optimization. Comput. Oper. Res. 33(3), 859-871 (2004)
Clerc, M.: TRIBES, A parameter free particle swarm optimizer, Math stuff for
PSO (2002), http://wuw.mauriceclerc.net

Eberhart, R.C., Kennedy, J.: A New Optimizer Using Particle Swarm Theory. In:
6th International Symposium on Micromachine and Human Science, pp. 39-43.
IEEE Service Center, Piscataway (1995)

Liang, J.J., Qin, A.K., Suganthan, P.N., Baskar, S.: Comprehensive Learning Par-
ticle Swarm Optimizer for Global Optimization of Multimodal Functions. Trans-
actions on Evolutionary Computation 10(3) (June 2006)

Meissner, M., Schmuker, M., Schneider, G.: Optimized Particle Swarm Optimiza-
tion (OPSO) and its application to artificial neural network training. BMC Bioin-
formatics 2006 7, 125 (2006)

Olorunda, O., Engelbrecht, A.P.: Measuring Exploration/Exploitation in Particle
Swarms using Swarm Diversity. In: IEEE World Congress on Computational In-
telligence (CEC 2008), pp. 1128-1134 (2008)

Ratnaweera, A., Halgamuge, S.M., Watson, H.: Self-Organizing hierarchical parti-
cle swarm optimiser with time-varying acceleration coefficients. IEEE Transactions
on Evolutionary Computation 8(3), 240-255 (2004)

. Riget, J., Vesterstrgm, J.S.: A Diversity-Guided Particle Swarm Optimizer - the

ARPSO. Technical report, EVALife, Denmark (2002)

. Salomon, R.: Reevaluating genetic algorithm performance under coordinate rota-

tion of benchmark functions. BioSystems 39, 263-278 (1996)

Shi, Y., Eberhart, R.C.: Parameter selection in particle swarm optimization. In:
7th Annual Conference on Evolutionary Programming, New York, pp. 591-600
(1998)

Shi, Y., Eberhart, R.C.: Fuzzy adaptive particle swarm optimization. In: IEEE
Congress on Evolutionary Computation (CEC 2001), vol. 1, pp. 101-106. IEEE
Press (2001)

Schutte, F., Groenwold, A.A.: A study of Global Optimization using Particle
Swarms. Journal of Global Optimization 31, 93-108 (2005)

Trelea, 1.C.: The Particle Swarm Optimization Algorithm: Convergence Analysis
and Parameter Selection. Information Processing Letters 85(6), 317-325 (2003)
Van den Bergh, F., Engelbrecht, A.P.: A Study of Particle Swarm Optimization
Particle Trajectories. Information Sciences 176(8), 937-971 (2006)

Wolpert, D.H., Macready, W.G.: No free lunch theorems for optimization. IEEE
Transactions on Evolutionary Computation 4, 67-82 (1997)

http://www.mauriceclerc.net

Towards Swarm Calculus: Universal Properties
of Swarm Performance and Collective Decisions

Heiko Hamann

Artificial Life Laboratory of the Department of Zoology
Karl-Franzens University Graz, Austria
heiko.hamann@uni-graz.at

Abstract. The search for generally applicable methods in swarm in-
telligence aims to gain new insights about natural swarms and to de-
velop design methodologies for artificial swarms. The ideal would be a
‘swarm calculus’ that allows to calculate key features such as expected
swarm performance and robustness on the basis of a few parameters.
A path towards this ideal is to find methods and models that have max-
imal generality. We report two models that might be examples of ex-
ceptional generality. First, we present an abstract model that describes
the performance of a swarm depending on the swarm density based on
the dichotomy between cooperation and interference. Second, we give
an abstract model for decision making that is inspired by urn models.
A parameter, that controls the feedback based on the current consensus,
allows to understand the effects of an increasing probability for positive
feedback over time in a decision making system.

1 Introduction

Research in the context of swarm intelligence is important in biology to gain new
insights about natural swarms and also in fields aiming for artificial swarms, such
as swarm robotics, to obtain sophisticated design methodologies. The ideal tools
would allow to calculate swarm behavior, performance, stability, and robustness
based on few observed parameters in case of a natural swarm system or based
on few designed parameters in case of an artificial swarm. We call this highly
desired set of tools ‘swarm calculus’ (calculus in its general sense).

Models will surely be an important part of swarm calculus. In order to define
a general methodology of understanding and designing swarm systems, general
properties and generally applicable models need to be found. Today only few
models exist that have the potential to become general swarm models. Biolog-
ical swarm models are particularly distinguished by their variety [23122127/6/5].
Typically each biological challenge is answered by a specialized model. The de-
sire for a model with applicability to all natural swarms seems to be small in that
community. In the field of artificial swarms, such as robot swarms, the desire for
generality seems to be bigger which is, for example, expressed by several models
of swarm robotics [LOJII24/18]. The idea of these models is to support the design
of swarm robotic systems within a maximal range of applications. They focus

M. Dorigo et al. (Eds.): ANTS 2012, LNCS 7461, pp. 168-[[79, 2012.
(© Springer-Verlag Berlin Heidelberg 2012

Towards Swarm Calculus 169

on features that describe quantities of the swarm behavior, such as robot dis-
tributions or required times for certain tasks and typically struggle between the
intended generality and having direct connections between the model and the
robot behavior. If we abandon, however, the demand for a detailed description of
behavioral features and focus only on high-level features such as overall perfor-
mance or the macroscopic process of a collective decision then a higher degree of
generality is achievable. In this paper, we identify two models of universal prop-
erties of swarm systems concerning the dependence of swarm performance on
swarm density and the dependence of collective decisions on positive feedback.

2 Universal Properties of Swarm Performance

It is quite clear that a function of swarm performance depending on swarm den-
sity cannot be a simple linear function. For a true swarm scenario a very low
density (e.g., corresponding to one agent in the whole area) has to result in low
performance because there is no cooperation. With increasing density the perfor-
mance increases because more and more cooperation is possible (assuming that
cooperation is an essential beneficial part of swarms). Even a superlinear perfor-
mance increase is possible in this interval [20]. At some critical/optimal density
the improvement in cooperation possibilities will be lower than the drawback
of high densities, namely interference [I5]. With further increase of the density
the performance is decreasing. Hence, swarms generally face a tradeoff between
beneficial cooperation and obstructive interference.

It turns out that not only these qualitative properties are similar in many
swarm systems but also the actual shapes of swarm performance over swarm
size plots (see Fig. . Examples are the performance of foraging in a group of
robots (Fig. and Fig. 10a in [15]), the activation dynamics and information
capacity in an abstract cellular automaton model of ants (Figs. 1b and 1c in [19]),
and even in the sizes of social networks (Fig. 8b in [26]). Furthermore, notice that
these shapes are typical in probability distributions such as Weibull, Wigner, and
log-normal. A related set of models are traffic models of flow over density. The
‘fundamental diagram’ of traffic flow [I6] is symmetric, more realistic models
propose at least two asymmetric phases of free and synchronized flow. Actual
measurements on highways show curves with shapes similar to Fig. [L(a)| (e.g.,
see Fig. 6-4 in [I7]). In these models, there exist two densities for a given flow
(except for the maximum flow) similar to the situation here where we have two
swarm densities for a given swarm performance.

Having identified the two main components (cooperation and interference)
and the typical shape of these plots we can define a simple model. The idea is
to fit this model to empirical data for verification and predictions.

2.1 Simple Model of Swarm Performance

For a given bounded, constant area A the swarm density p is defined by the
swarm size N according to p = N/A. We define the swarm performance P
depending on swarm size N by

170 H. Hamann

P(N) = C(N)(I(N) — d) = a1 N®as exp(cN), (1)

for parameters ¢ < 0, a1,a2,b > 0, and d > 0 (see Fig. . Parameter d is
subtracted to force a decrease to zero (imy_o0 I(N) — d = 0). The swarm per-
formance depends on two components C' and I. First, the swarm effort without
negative feedback is defined by the cooperation function (see also Fig.

C(N) = a; N, (2)

This function can be interpreted as the potential for cooperation in a swarm
that would exist without certain constraints, such as physical collisions. The
same formula was used by Breder [4] to model the cohesiveness of a fish school
and by Bjerknes and Winfield [2] to model swarm velocity in emergent taxis.
However, they used parameters of b < 1 while we are using mostly values of
b > 1. Second, the interference function (see also Fig. [L(a)) is defined by

I(N) = azexp(eN) + d, (3)

with d used for scaling (e.g., limy_, o I(N) = d). The exponential decrease seems
to be a reasonable choice, for example, compare Fig. 10b in [I5] which shows an
exponentially decreasing efficiency per robot in a foraging task.

2.2 Examples

To prove the wide applicability of this simple model we fit it to some swarm
performance plots that were available. We briefly investigate four scenarios:
foraging in a group of robots [I5], collective decision making [12] based on
BEECLUST [25], aggregations in tree-like structures and reduction to short-
est paths [9] similar to [I4], and the emergent taxis scenario (also sometimes
called ‘alpha algorithm’) [211/3].

Given the data of the the overall performance, the four parameters of eq. [l
can be directly fitted to it. That is what we do for the first three of our four
examples in Fig.[Il The equation can be well fitted to the empirical data. In case
of the foraging scenario (Fig. we also have data about the efficiency per
robot. We can use the model parameters, that were obtained by fitting the model
to the overall performance, to predict the efficiency per robot. This is done by
scaling the interference function linearly and plotting it against the efficiency
per robot. The satisfying result is shown in Fig.

We analyze the forth example, emergent taxis, in more detail. The following
empirical data is based on a simple simulation. This simulation is noise-free
and therefore robots move in straight lines except for u-turns according to the
emergent taxis algorithm. First, we measure the performance that is achieved
without cooperation. This is done by defining a random behavior that ignores any
characteristic feature of the actual emergent taxis algorithm. For example, in the
emergent taxis algorithm, robots count the number of neighbors and do u-turns if
this number drops below a threshold a. To obtain the cooperation-free behavior
we have set this parameter to @ = 0 in the simulation. Hence, no robot will

0.5

. { cooperation

i

swarm p erformance

Pooast

interferencé ..

30 60
N

(a) Model of cooperation and interfer-
ence, examples of swarm performance
(eq.), cooperation (eq.), and inter-
ference (eq.[3]) depending on swarm size.

Towards Swarm Calculus 171

0.008
group efficiency

0.006 |

P o004 f

0.002 |

efficiency
S8, , perrobot
0 X K a 00 onpgg
0 5 10 15 20

N
(b) Foraging in a group of robots, eq. [fit-
ted to group efficiency (upper solid line),
prediction of interference (lower solid line,
efficiency per robot, linearly rescaled), data

points extracted from Fig. 10 in Lerman
et al. [15]; P gives group/robot efficiency

0.625
N p

0 50 100 0 0.05

(¢) Collective decision making [12]
based on BEECLUST [25]; values of
P =1 would indicate that 100% of the
swarm have found a decision; P = 0 in-
dicates symmetry between options

(d) Aggregation in tree-like structures and
reduction to shortest path [9]; P gives the
ratio of successful runs

Fig.1. Model of cooperation and interference and three scenarios with fitted
performance P according to eq.[I]

ever u-turn and they basically disperse in the arena. A simulation run is stopped
once a robot touches a wall. The performance of the swarm P is measured by
the total distance covered by the swarm’s barycenter multiplied by the swarm
size (i.e., an estimate of how much distance was effectively covered summed over
all robots). The performance obtained by this random behavior can be fitted
using the interference function of eq. Bl The well fitted interference function
and the empirically obtained data is shown in Fig. labeled ‘random’. In
a second step, we keep the interference function fixed and fit the full model
of swarm performance P (eq. [) to the data from the actual emergent taxis
scenario by only varying the cooperation function (i.e., fitting a1 and b while

172 H. Hamann

1 L
¥ 0.006 200
0.75 % emergent taxis
0.004 >
P o5 g
v 0.002 5
o
[
025 f, 0 &
N, random.
0 ‘ e 5 g, -0.002 0
0 25 50 75 100 10 20 30 40
N N

(a) Model fitted to data of random and (b) Histogram of barycenter speeds v for
emergent-taxis behavior; P is covered different swarm sizes. Note the bimodality
distance by barycenter times V. about in the interval N € [16,40].

Fig. 2. Performance of a random behavior and the actual self-organized emergent taxis
behavior (also sometimes called ‘alpha algorithm’) [213] with fitted model (eq. [);
histogram showing two phases

keeping as, ¢ and d fixed). The fitted swarm performance model] is shown in
Fig. labeled ‘emergent taxis’. This simple model is capable of predictions, if
the interference function has been fitted and we fit the cooperation function only
to a small interval of, for example, N € [15,25] (i.e., including the maximum
performance).

Note that we are working with a single value (average) to describe the per-
formance which does not fully catch the system’s behavior. At least in some
scenarios, as here in the emergent taxis scenario, the performance does not just
decrease due to increasing interference. Instead, two coexisting phases of be-
haviors emerge: functioning swarms moving forward and pinned swarms with
extreme numbers of u-turns. In emergent taxis this is shown, for example, by
a histogram of barycenter speeds in Fig. For N < 15 the mean of a uni-
modal distribution increases with increasing N. Starting at about N = 15 a
second phase of slowly moving swarms emerges generating a bimodal distribu-
tion. Hence, given the fully deterministic implementation of our simulation, there
are two classes of initial states (robot positions and orientations) that determine
the two extremes of success or total failure. In other scenarios the interference
might be increased in a different process continuously, for example, by saturation
of target areas with robots.

3 Universal Properties of Collective Decisions

In the following we investigate macro models of collective decisions. One of the
most general and at the same time simplest model of collective decisions is a
model of only one state variable s(¢) which gives the temporal evolution of a

! Fitted parameters: a; = 0.01061, b = 3.237, az = 0.2138, ¢ = —0.1823, d = 0.075.

Towards Swarm Calculus 173

swarm fraction that is in favor of one of the options in a binary decision process.
If we assume that there is no initial bias to either option (i.e., full symmetry),
then we need a tie breaker for s = 0.5. A good choice for the tie breaker is
noise because any real swarm will be noisy. The average change of s depending
on itself per time (As(s)/At) is of interest. Given that the system should be
able to converge to one of two options plus the symmetric case of s = 0.5 we
end up with at least three zeros for As(s)/At and consequently at least a cubic
function. Instead of developing a model, that predefines such a function, we
prefer a model that allows this function to emerge from a simple process. In
swarms the tendency to a certain option once symmetry is overcome (say, for
s = 0.5+ € towards s = 1) is typically a result of positive feedback. Hence, we
define such a process depending on probabilities of positive feedback next.

3.1 Simple Model of Collective Decisions

We use simple models inspired by the urn model of the Ehrenfests [7] which
they introduced in the context of statistical mechanics and entropy. Eigen and
Winkler reported similar models to show the effect of positive feedback [§]. Here
we use an urn model that has optionally positive or negative feedback depending
on the system’s current state and depending on a stochastic process. The urn is
filled with N marbles which are either red or blue. The game’s dynamics is turn-
based. First a marble is drawn with replacement followed by replacing a second
one influenced by the color of the first marble. The probability of drawing a blue
marble is implicitly determined by the current number of blue marbles B(t) in
the urn. The subsequent replacement of a second marble effects either a positive
or a negative feedback. The feedback is determined explicitly by a probability

P(s,¢) = psin(rs) (4)

that is based on the current ratio s of either the blue marbles in the urn s = b(¢)
or the ratio of red marbles s = 7(t). The constant ¢ € [0,1] defines the ‘sign’
and the intensity of the feedback. For ¢ < 0.5 negative feedback is predominant
and for ¢ > 0.5 an interval around s = 0 emerges for which positive feedback is
predominant. Say we draw a blue marble, we notice the color, and put it back into
the urn. Then our model defines that with probability P(b(t), ¢) a red marble will
be replaced by a blue one (i.e., a positive feedback event because drawing a blue
one increased the number of blue marbles) and with probability 1 — P(b(¢, ¢))
a blue one will be replaced by a red one (i.e., a negative feedback event because
now drawing a blue one decreased the number of blue marbles). Hence, the
probability P(s,) gives the probability of positive feedback. P(s, ¢) is plotted
for different settings of ¢ in Fig. There is maximum probability for positive
feedback for the fully symmetric case of s = 0.5 as clearly seen in Fig. For
s =0 and s = 1 we have P(s,p) = 0 because no positive feedback is possible
(either all marbles are already blue or all marbles are red and therefore no blue
one can be drawn). For ¢ < 0.5 the probability of positive feedback is small
(¢ <0.5,Vs: P(s,p) <0.5), consequently the system is stable and kept around

174 H. Hamann

s = 0.5. The analogy of this model to a collective decision making scenario is the
following. The initial drawing resembles the frequency of individual decisions in
the swarm proportional to s within the turn-based model. The replacement of
the second marble resembles the effect of a swarm member convincing another
one about its decision or of being convinced of the opposite. Based on the above
definitions the average expected change AB of blue marbles B can be calculated
by summing over the four cases: drawing a blue or red marble, followed by
positive or negative feedback, multiplied by the ‘payoff’ in terms of blue marbles
respectively. Using the symmetry P(b, p) = P(1 — b, ¢) we get

AB(b) = bP(b,¢)(+1) +b(1 = P(b,¢))(-1)
+ (1A =b)P(L=be)(=1)+ (1 =b)(1—P(1—=0b))(+1)
= 4(P(b,p) — 0.5)(b—0.5). (5)

In Fig. [3(b)| we compare the theoretical average change per round AB/At ac-
cording to eq. Bl to the empirically obtained average change of B(t) in terms of
number of marbles for the different settings of ¢. The agreement between theory
and empiric data is close to perfect as expected. Two zeros s; and s, emerge
additionally to so = 0.5 for ¢ > 0.5: s = | arcsin(21¢) and sp = 1— ! arcsin(2147).
Positive values of AB(s)/At for s < 0.5 represent dynamics that has a bias to-
wards s = 0.5 and negative values represent dynamics with a bias towards s = 0
and vice versa for the other half (s > 0.5).

Fig. gives an estimate of the asymptotic behavior of this urn model for
varied feedback intensity ¢. It shows a pitchfork bifurcation at ¢ = 0.5 which
is to be expected based on Fig. Between ¢ = 0.5 and ¢ = 0.75 the curve
defined by AB(s)/At becomes cubic and generates two new stable fixed points
while the former at s = 0.5 becomes unstable.

3.2 Examples

Next we want to compare the data from our urn model (Fig. to data from
more complex models, such as the density classification scenario [13]. First we
need a more general equation than eq.[Bl We obtain it by introducing a scaling
constant ¢ that scales the average change for payoffs different from 1.

As(s) = 4c(P(s,) —0.5)(s — 0.5) (6)

The density classification scenario [I3] is about a swarm of red and green agents
moving around randomly. Their only interaction is constantly keeping track of
those agents’ colors they bump into. Once an agent has seen five agents of either
color it changes its own color to that it has encountered most. Here, s gives the
ratio of red agents. The name of this scenario is due to the idea that the swarm
should converge to that color that was initially superior in numbers. It turns out
that the averaged change As(s)/At (see Fig. starts with a curve similar to
that of ¢ = 0 in Fig. and then converges slowly to a curve that is similar to
that of ¢ = 0.75. Early in the simulation there is mostly negative feedback forcing

Towards Swarm Calculus 175

values close to s = 0.5. With increasing time the negative feedback decreases
which results finally in positive feedback for s € [0.23,0.77]. Comparing Fig.
to Fig. [3(d)| indicates a good qualitative agreement between our urn model and
the density classification scenario. Given that the curves in Fig. converge
over time to the final shape which is resembled by our model for increasing ¢ in
Fig. one can say that positive feedback builds up slowly over time in the
density classification scenario. By fitting eq. [l to the data shown in Fig. [3(d)
we get estimates for the feedback intensity ¢. From the earliest and steepest
line to the latest and only curve with positive slope in s = 0.5 we get values
of ¢ € 10,0,0,0.007,0.304, 0.603] for times ¢ € [100, 200, 400, 800, 1600, 3200]. By
continuing this fitting for additional data not shown in Fig. [3(d) we are able
to investigate the temporal evolution of feedback intensity ¢ according to our
model. In Fig. the data points of feedback intensity ¢ obtained by fitting
are shown and also a negative exponential function that was fitted to the data.
This result supports the assumption of a negative exponential increase of positive
feedback in this system as already stated in [IT].

Other examples showing similarities to the ¢ = 0.75-graph in Fig. are
Figs. 2B and 3B in Yates et al. [28] which show the drift coefficient dependent
on the current alignment of a swarm (average velocity). While the data obtained
from experiments with locusts (Fig. 2B in [28]) is too noisy, we use the data from
their model (Fig. 3B in [28]) to fit our model. The result is shown in Fig.
We obtain a maximal positive feedback of ¢ = 1.

4 Discussion and Conclusion

We have reported two abstract swarm models with high generality because we
would like to get towards a swarm calculus. The first model describes the de-
pendency of swarm performance on swarm density by separation into two parts:
cooperation and interference. It explains the existence of an optimal or critical
swarm density at which the peak performance is reached. The second model de-
scribes the dynamics of collective decision processes based on the existence and
intensity of feedback. It explains how the cubic functions of decision revision
emerge by an increase of positive feedback over time.

The first model is simple and somewhat obvious because the existence of op-
timal swarm densities is well known. However, the authors are not aware of any
explicit introduction of a similar model combined with a validation by fitting
the model to data from diverse swarm applications. Despite its simplicity the
model has the capability to give predictions of swarm performance, especially, if
the available data, to which it is fitted, includes an interval around the optimal
density. That way this model might serve as a swarm calculus of swarm perfor-
mance. In addition, we want to draw attention to the problem of masking special
density-dependent properties by only investigating the mean performance. The
example shown in Fig. documents the existence of phases in swarm systems.

The second model is also abstract but has a higher complexity and is more
conclusive because it allows for mathematical derivations. Based on our urn

176

H. Hamann

»=0.25
¢ =0.125
=0

0

0 51 0.5 Sz 1
S

(a) Examples of setting the
probability of positive feedback
for intensities of feedback ¢ €
{0,0.125,0.25,0.5,0.75}.

0 0.5 1
P

(¢) Normalized histogram of blue
marbles B over intensity of
feedback ¢ after ¢ = 200 steps,
initialized to B(0) € {32, 33}, in-
dicating a pitchfork bifurcation at
@ =0.5.

g-EE T o
o o=
i
0.5 é’l
=
4 i
&
a
=]
a]
0 ma
0 2500 5000 7500
t

(e) Negative exponential function
@(t) = 0.786 — exp(—5 x 107t)
fitted to feedback intensities ob-
tained from the density classifica-
tion scenario.

(b) Average change of B(¢) in
terms of marbles, lines according
to eq. Bl squares give empirical
data, number of samples is 8 x 10°
for each possible s, 64 marbles.

0.001

3
-
g
=
Z oot
%
<

“J“"uu

y "
-0.001 Eld

0 05 1
S

(d) Density classification sce-

nario [I3], change of the ratio of
red robots for different times dur-
ing simulation, squares give em-
pirical data (from [I1]), lines are
fitted according to eq.

0.004

As(s) /At

-0.004
0
S

(f) Model fitted to data from

Fig. 3B of Yates et al. [28] (local

model of swarm alignment in lo-

custs) by ¢ =1 (and ¢ = 4.134 x

107?); data scaled to s € [0, 1].

Fig. 3. Settings of the positive feedback probabilities, resulting average change in B(t)
in the urn model over the ratio of marbles s, histogram of blue marbles for varied
intensity of feedback ¢, comparison of model and results from the density classification
scenario [I3], increase of positive feedback over time, and comparison of model and
results from Yates et al. [28]

Towards Swarm Calculus 177

model for positive feedback decision processes the emerging cubic function of
decision revision can be derived (see eq. B)). Here this ‘cubic function’ is actu-
ally trigonometric but alternatively one can choose P(s,) = ¢(1 —4(s — 0.5)?)
yielding As(s) = 2(s — 0.5) — 16(s — 0.5)3. Hence, we generate the function of
decision revision based on our urn model which allows for an interpretation of
how the function emerges while, for example, in [28] this function is measured
in a local model. Our model of collective decisions might qualify as a part of
swarm calculus because those decision revision functions seem to be a general
phenomenon in swarms.An interesting result is also the negatively exponential
increase of the positive feedback over time in the density classification task (see
Fig.[3(e)). Note that this increase seems to be independent from respective values
of s. Furthermore, values close to the bounds (s & 1 or s a2 0) are not observed.
An investigation of the underlying processes is beyond this paper but we want to
state two ideas. First, the final saturation phase (lim;— ¢ = 0.8) is most likely
caused by explicit noise in the simulation. The agent—agent recognition rate was
set to 0.8 which keeps P(s = 0.5,¢) < 1. Second, the initial fast increase of ¢
(after a transient which might also be caused by the simulation because agents
revise their color only after a minimum of five agent—agent encounters) might be
caused by locally emerging sub-groups of homogeneous color within small areas
that generate ‘islands’ of early positive feedback. Time-variant positive feedback
was also observed in BEECLUST-controlled swarms as reported before [12].
Hence, a feedback system as given in Fig.] seems to be a rather common sit-
uation in swarm systems. In terms of the above urn model we can mimic this
situation, say A is the number of blue marbles (w.l.o.g.), B is the probability
of drawing a blue marble, P is the probability of positive feedback (i.e., this
edge can also negatively influence A), and C' is an unspecified state variable that
increases feedback (¢) over time and is influenced by an additional, unknown
process. This triggers the question of what C' can be and how it influences the
feedback process independent of the current swarm consensus s.

We get maximally positive feedback ¢ = 1 for the data of [28] (see Fig.
with the effect that situations of low alignment (s =~ 0.5) are left as fast as
possible. This reinforces the findings of Yates et al. [28] about the diffusion
coefficient. A major feature of the self-organizing processes in the swarm seems

Fig. 4. Time-variant feedback system; here for increasing probability of pos. feedback

178 H. Hamann

to be that times in states of low aligned are minimized by the system (Yates
et al.: “A higher diffusion coefficient at lower alignments suggests that the locusts
‘prefer’ to be in a highly aligned state”).

The result of this paper is that generally applicable swarm models, that have
simple preconditions, exist. To apply the model of swarm performance, only
a concept of swarm density is necessary and to apply the model of collective
decisions only a consensus variable of a binary decision is necessary. Despite
their simplicity, both models have enough explanatory power to give insights
about swarm processes such as the interplay of cooperation and interference and
the installation of positive feedback. Hence, we contend that it is possible to
generate a set of models and methods of general applicability for swarm science,
that is, to create a swarm calculus.

Acknowledgments. The author thanks Payam Zahadat, Jiirgen Stradner
and the anonymous reviewers for very helpful comments that improved the
manuscript.

References

1. Berman, S., Kumar, V., Nagpal, R.: Design of control policies for spatially inhomo-
geneous robot swarms with application to commercial pollination. In: IEEE Intern.
Conf. on Robotics and Automation (ICRA 2011), pp. 378-385 (2011)

2. Bjerknes, J.D.; Winfield, A.: On fault-tolerance and scalability of swarm robotic
systems. In: Proc. Distributed Auton. Robotic Syst, DARS 2010 (2010)

3. Bjerknes, J.D., Winfield, A., Melhuish, C.: An analysis of emergent taxis in a wire-
less connected swarm of mobile robots. In: IEEE Swarm Intelligence Symposium,
pp. 45-52. IEEE Press, Los Alamitos (2007)

4. Breder, C.M.: Equations descriptive of fish schools and other animal aggregations.
Ecology 35(3), 361-370 (1954)

5. Camazine, S., Deneubourg, J.L., Franks, N.R., Sneyd, J., Theraulaz, G., Bonabeau,
E.: Self-Organizing Biological Systems. Princeton Univ. Press (2001)

6. Edelstein-Keshet, L.: Mathematical models of swarming and social aggregation.
Robotica 24(3), 315-324 (2006)

7. Ehrenfest, P., Ehrenfest, T.: Uber zwei bekannte Einwinde gegen das
Boltzmannsche H-Theorem. Physikalische Zeitschrift 8, 311-314 (1907)

8. Eigen, M., Winkler, R.: Laws of the game: how the principles of nature govern
chance. Princeton University Press (1993)

9. Hamann, H.: Modeling and Investigation of Robot Swarms. Master’s thesis,
University of Stuttgart, Germany (2006)

10. Hamann, H.: Space-Time Continuous Models of Swarm Robotics Systems:
Supporting Global-to-Local Programming. Springer (2010)

11. Hamann, H., Meyer, B., Schmickl, T., Crailsheim, K.: A Model of Symmetry
Breaking in Collective Decision-Making. In: Doncieux, S., Girard, B., Guillot, A.,
Hallam, J., Meyer, J.-A., Mouret, J.-B. (eds.) SAB 2010. LNCS (LNAI), vol. 6226,
pp. 639-648. Springer, Heidelberg (2010)

12. Hamann, H., Schmickl, T., Worn, H., Crailsheim, K.: Analysis of emergent symme-
try breaking in collective decision making. Neural Computing & Applications 21(2),
207218 (2012)

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.
28.

Towards Swarm Calculus 179

Hamann, H., Wérn, H.: Embodied computation. Parallel Processing Letters 17(3),
287-298 (2007)

Hamann, H., Woérn, H.: Aggregating Robots Compute: An Adaptive Heuristic
for the Euclidean Steiner Tree Problem. In: Asada, M., Hallam, J.C.T., Meyer,
J.-A., Tani, J. (eds.) SAB 2008. LNCS (LNAI), vol. 5040, pp. 447-456. Springer,
Heidelberg (2008)

Lerman, K., Galstyan, A.: Mathematical model of foraging in a group of robots:
Effect of interference. Autonomous Robots 13, 127-141 (2002)

Lighthill, M.J., Whitham, G.B.: On kinematic waves. II. A theory of traffic flow
on long crowded roads. Proceedings of the Royal Society of London A 229(1178),
317-345 (1955)

Mahmassani, H.S., Dong, J., Kim, J., Chen, R.B., Park, B.: Incorporating weather
impacts in traffic estimation and prediction systems. Tech. Rep. FHWA-JPO-09-
065, U.S. Department of Transportation (September 2009)

Milutinovic, D., Lima, P.: Cells and Robots: Modeling and Control of Large-Size
Agent Populations. Springer (2007)

Miramontes, O.: Order-disorder transitions in the behavior of ant societies. Com-
plexity 1(1), 56-60 (1995)

Mondada, F., Bonani, M., Guignard, A., Magnenat, S., Studer, C., Floreano,
D.: Superlinear Physical Performances in a SWARM-BOT. In: Capcarrere, M.S.,
Freitas, A.A., Bentley, P.J., Johnson, C.G., Timmis, J. (eds.) ECAL 2005. LNCS
(LNAI), vol. 3630, pp. 282-291. Springer, Heidelberg (2005)

Nembrini, J., Winfield, A.F.T., Melhuish, C.: Minimalist coherent swarming of
wireless networked autonomous mobile robots. In: Hallam, B., et al. (eds.) Proc.
of the 7th Intern. Conf. on Simulation of Adaptive Behavior (SAB), pp. 373-382.
MIT Press, Cambridge (2002)

Okubo, A.: Dynamical aspects of animal grouping: Swarms, schools, flocks, and
herds. Advances in Biophysics 22, 1-94 (1986)

Okubo, A., Levin, S.A.: Diffusion and Ecological Problems: Modern Perspectives.
Springer, Berlin (2001)

Prorok, A., Correll, N., Martinoli, A.: Multi-level spatial models for swarm-robotic
systems. The International Journal of Robotics Research 30(5), 574-589 (2011)
Schmickl, T., Hamann, H.: BEECLUST: A swarm algorithm derived from hon-
eybees. In: Xiao, Y. (ed.) Bio-inspired Computing and Communication Networks.
CRC Press (March 2011)

Strogatz, S.H.: Exploring complex networks. Nature 410(6825), 268-276 (2001)
Vicesek, T., Zafiris, A.: Collective motion. arXiv:1010.5017v1 (2010)

Yates, C.A., Erban, R., Escudero, C., Couzin, I.D.; Buhl, J., Kevrekidis, I.G.,
Maini, P.K., Sumpter, D.J.T.: Inherent noise can facilitate coherence in collective
swarm motion. PNAS 106(14), 5464-5469 (2009)

A Hybrid Particle Swarm Optimization
Algorithm for the Open Vehicle
Routing Problem

Yannis Marinakis! and Magdalene Marinaki?

! Decision Support Systems Laboratory,
Department of Production Engineering and Management,
Technical University of Crete, Chania, Greece
marinakis@ergasya.tuc.gr
2 Industrial Systems Control Laboratory,
Department of Production Engineering and Management,
Technical University of Crete, Chania, Greece
magda@dssl.tuc.gr

Abstract. This paper introduces a new hybrid algorithmic nature in-
spired approach based on Particle Swarm Optimization, for successfully
solving one of the most popular supply chain management problems,
the Open Vehicle Routing Problem. The Open Vehicle Routing Problem
(OVRP) is a variant of the classic vehicle routing problem in which the
vehicles do not return in the depot after the service of the customers.
The proposed algorithm for the solution of the Open Vehicle Routing
Problem, the Hybrid Particle Swarm Optimization (HybPSO), combines
a Particle Swarm Optimization (PSO) Algorithm, the Variable Neighbor-
hood Search (VNS) Strategy and a Path Relinking (PR) Strategy. The
algorithm is suitable for solving large-scale open vehicle routing prob-
lems within short computational time. Two sets of benchmark instances
are used in order to test the proposed algorithm.

1 Introduction

Particle Swarm Optimization (PSO) is a population-based swarm intel-
ligence algorithm that was originally proposed by Kennedy and Eberhart [9].
PSO simulates the social behavior of social organisms by using the physical
movements of the individuals in the swarm. Its mechanism enhances and adapts
to the global and local exploration. Most applications of PSO have concentrated
on the optimization in continuous space but in the last years the PSO algorithm
is used also in discrete optimization problems.

The Open Vehicle Routing Problem (OVRP) is the variant of the classic
vehicle routing problem where the vehicles do not return in the depot after
the service of the customers [I4]. The real life application of the Open Vehicle
Routing Problem concerns the case where either the company does not have
vehicles at all or the vehicles owned by the company are not enough in order
to use them for the distribution of the products to the customers. In both cases

M. Dorigo et al. (Eds.): ANTS 2012, LNCS 7461, pp. 180-[[31, 2012.
(© Springer-Verlag Berlin Heidelberg 2012

HybPSO Algorithm for OVRP 181

the company has to hire a number of vehicles in order to realize the distribution
of the products. When the vehicles finish their jobs they do not return to the
company. This problem also belongs in the category of the third party logistics
(3PL) problems. From the combinatorial optimization point of view, the main
difference between the Vehicle Routing Problem and the Open Vehicle Routing
Problem is that in the first case the route is a hamiltonian cycle while in the
second case the route is a hamiltonian path [I]. Usually two different objectives
are used in OVRP, the first one is the minimization of the required number of
vehicles and, then, for this number of vehicles the total travel distance is, also,
minimized and the second one is the minimization of the corresponding total
traveled distance. The Open Vehicle Routing Problem was first published in [15]
but since then for the following twenty years it received little study. In the last
ten years, a number of publications using different heuristic and metaheuristic
algorithms for the OVRP have been published. It should be noted that the Open
Vehicle Routing Problem is an NP-hard problem, and, thus, the instances with
a large number of customers can not be solved in optimality within reasonable
time. For this reason, a large number of approximation techniques has been
proposed for its solution. These techniques are classified into three main ca-
tegories: the classical heuristics, the single solution based metaheuristics and
the population based metaheuristics. For analytical descriptions of the solution
algorithms for the Open VRP please see [TO/T3UIE].

In this paper, we would like to develop a competitive Nature Inspired me-
thod based on Particle Swarm Optimization for the solution of the Open Vehicle
Routing Problem and to test its efficiency compared to other Nature Inspired
and Classic Metaheuristic algorithms. Thus, in this paper, we demonstrate how
a nature inspired intelligent technique, the Particle Swarm Optimization (PSO)
[9) and two metaheuristic techniques, the Variable Neighborhood Search (VNS)
[8] and the Path Relinking (PR) [7] can be incorporated in a hybrid scheme in
order to give very good results for the Open Vehicle Routing Problem (OVRP).
The rest of the paper is organized as follows: In the next section the proposed
algorithm, the Hybrid Particle Swarm Optimization (HybPSO) is presented and
analyzed in detail. Computational results are presented and analyzed in the third
section while in the last section conclusions and future research are given.

2 Hybrid Particle Swarm Optimization Algorithm

In this paper, a hybrid PSO (HybPSO) algorithm is used for the solution of the
OVRP. In PSO algorithm, initially a set of particles is created randomly where
each particle corresponds to a possible solution. Each particle has a position in
the space of solutions and moves with a given velocity. One of the key issues in
designing a successful PSO for the Open Vehicle Routing Problem is to find a
suitable mapping between Open Vehicle Routing Problem solutions and particles
in PSO. Each particle is recorded via the path representation of the tour, that
is, via the specific sequence of the nodes.

182 Y. Marinakis and M. Marinaki

For example, if we have a particle (solution) with ten nodes, a possible path
representation is the following:

138541016972
with node number 1 is denoted the depot and nodes 2 through 10 denote the
customers. The difference between the Open Vehicle Routing Problem and the
Capacitated Vehicle Routing Problem is that in the first the vehicles do not
return to the depot. Thus, the difference in the calculation of a cost function
for each particle is that we do not add the cost between the last customer and
the depot, i.e. in the previous example the cost (distances) between customer 10
and the depot and customer 2 and the depot are omitted.

As the calculation of the velocity of each particle is performed by Equation
(D (see below), the above mentioned representation should be transformed ap-
propriately. We transform each element of the solution into a floating point in
the interval (0,1], calculate the velocities and the positions of all particles and,
then, convert back the particles’ positions into the integer domain using relative
position indexing [11].

The position of each individual (called particle) isrepresented by a d-dimensional
vector in problem space x; = (1, Zia, .., Tid), ¢ = 1,2, ..., N (N is the population
size and n is the number of the vector’s dimension), and its performance is eva-
luated on the predefined fitness function. The velocity v;; represents the changes
that will be made to move the particle from one position to another. Where the
particle will move depends on the dynamic interaction of its own experience and the
experience of the whole swarm. There are three possible directions that a particle
can follow: to follow its own path, to move towards the best position it had during the
iterations (pbest;;) or to move to the best particle’s position (gbest;). The velocity
and position equations are updated as follows (constriction PSO) [3]:

05 (t + 1) = x(vij(t) + cirand, (pbest;j — xi;(t)) + caranda(gbest; — ;5 (t))) (1)
and
l'ij (t + 1) = xij (t) + Uz‘j (t + 1) (2)

where

2

X= 12 — ¢ — V2 — 4c

and c=c¢1 +co,c> 4 (3)

t is the iterations counter, ¢; and co are the acceleration coefficients, rand; and
randy are two random variables in the interval (0, 1). A local search strategy
based on the Variable Neighborhood Search (VNS) algorithm [8] is applied in
each particle in the swarm in order to improve the solutions produced from
the particle swarm optimization algorithm. In this paper, the VNS algorithm is
used with the following way. Initially, the number of local search algorithms is
selected. The local search strategies for the Open Vehicle Routing Problem are
distinguished between local search strategies for a single route and local search
strategies for multiple routes. The local search strategies that are chosen and

HybPSO Algorithm for OVRP 183

belong to the category of the single route interchange are the well known methods
for the TSP, the 2-opt and the 3-opt. In the single route interchange all the
routes have been created in the initial phase of the algorithm. The Local Search
Strategies for Single Route Interchange try to improve the routing decisions.
The Local Search Strategies for Multiple Route Interchange try to improve the
assignment decisions. This, of course, increases the complexity of the algorithms
but gives the possibility to improve even more the solution. The multiple route
interchange local search strategies that are used are the 1-0 relocate, 2-0 relocate,
1-1 exchange and 2-2 exchange [6].

As we do not want to increase the complexity of the algorithm, it is decided to
apply in each particle one local search combination of algorithms per iteration.
For this reason, a VNS operator Cy ng is selected that controls which local search
algorithm is applied. The Cy g value is compared with the output of a random
number generator, rand;(0,1). If the random number is less or equal to the
Cv ns, then, the first local search algorithm is used. Then, if the random number
is less or equal to the 2 x Cy g, then, the second local search algorithm is used,
and so on. As we would like to have not only simple local search algorithms but
also their combinations we select ten local search algorithms, the six previously
mentioned methods (2-opt, 3-opt, 1-0 relocate, 2-0 relocate, 1-1 exchange and
2-2 exchange) and four combinations (2-opt with 1-0 relocate, 2-opt with 1-1
exchange, 2-opt with 3-opt and 1-1 exchange and 2-opt with 3-opt, 1-0 relocate
and 1-1 exchange). Thus, the Cy ys operator is set equal to 0.1 and only for 10%
of the cases a time consuming local search procedure is applied in the problem.

Finally, after the completion of an iteration, a path relinking strategy [7] for
exploring trajectories between the best particle and a number of other particles of
the swarm is applied. During the path relinking procedure, if a better solution than
the current best solution is found, then, the current best solution is replaced by this
solution. In this algorithm the best particle plays the role of the starting solution
and in each iteration the other random particles play the role of target solutions.
We are using random particles for the target solutions in order to give to the best
particle more exploration abilities by combining not only the best particle with
its neighbor particles but also with equal probabilities with all the particles in the
swarm. If a better solution than the current best solution is found, then, the current
best solution is replaced by this solution. In each iteration of the algorithm the
optimal solution of the whole swarm and the optimal solution of each particle are
kept. The algorithm stops when a maximum number of iterations has been reached.

3 Results and Discussion

The algorithm was implemented in Fortran 90 and was compiled using the Lahey
f95 compiler on a Intel Core 2 DUO CPU T9550 at 2.66 GHz, running Suse
Linux 9.1. The algorithm was tested on two sets of benchmark problems, the
14 benchmark problems proposed by Christofides [2] and the 8 large scale open
vehicle routing problems proposed by Li et al. [10]. Each instance of the first set
contains between 51 and 200 nodes including the depot. The location of the nodes

184 Y. Marinakis and M. Marinaki

is defined by their Cartesian co-ordinates and the travel cost from node i to j is
assumed to be the respective Euclidean distance. Each problem includes capacity
constraints while the problems 6-10, 13 and 14 have, also, maximum route length
restrictions (mtl) and non zero service times (st). For the first ten problems,
nodes are randomly located over a square, while for the remaining ones, nodes are
distributed in clusters and the depot is not centred. The maximum allowed route
length has been multiplied by 0.9 compared to the one considered for the VRP
[13]. The second set of instances contains between 200 and 480 nodes including
the depot. Each problem instance includes capacity constraints. In Table [in
columns 2-5 the most important characteristics (number of nodes (n), Capacity
of Vehicles (Q), maximum route length restrictions (mtl) and service times (st))
of each of the data sets are presented. The parameters of the proposed algorithm
are selected after thorough testing. A number of different alternative values were
tested and the ones selected are those that gave the best computational results
concerning both the quality of the solution and the computational time needed
to achieve this solution. The selected parameters are: number of particles equal
to 50, number of generations equal to 1000 and ¢; = ¢o = 2.05. The efficiency of
the HybPSO algorithm is measured by the quality of the produced solutions. The
quality is given in terms of the relative deviation from the best known solution,
that is w = (CHy“’SO CBKS)(V