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Héctor Menéndez and David Camacho
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Abstract. The interest in the analysis and study of clustering tech-
niques have grown since the introduction of new algorithms based on the
continuity of the data, where problems related to image segmentation
and tracking, amongst others, makes difficult the correct classification
of data into their appropriate groups, or clusters. Some new techniques,
such as Spectral Clustering (SC), uses graph theory to generate the clus-
ters through the spectrum of the graph created by a similarity function
applied to the elements of the database. The approach taken by SC allows
to handle the problem of data continuity though the graph representa-
tion. Based on this idea, this study uses genetic algorithms to select the
groups using the same similarity graph built by the Spectral Clustering
method. The main contribution is to create a new algorithm which im-
proves the robustness of the Spectral Clustering algorithm reducing the
dependency of the similarity metric parameters that currently affects
to the performance of SC approaches. This algorithm, named Genetic
Graph-based Clustering (GGC), has been tested with different synthetic
and real-world datasets, the experimental results have been compared
against classical clustering algorithms like K-Means, EM and SC.

Keywords: Machine Learning, Clustering, Spectral Clustering, Genetic
Algorithms.

1 Introduction

The unsupervised learning methods are mainly based on clustering techniques [3].
These techniques were designed to find hidden information or features in a dataset
grouping the data with similar properties in clusters. The different methods are
divided in three main categories[7]: partitional (consists in a disjoint division of
the data where each element belongs only to a single cluster); overlapping or non-
exclusive (allows each element tobelong tomultiple clusters) andhierarchical (nests
the clusters formed through a partitional clustering method creating bigger parti-
tions and grouping the clusters by hierarchical levels).

This work is focused on the first category: partitional clustering which also
has three main approximations[3]: Parametric or Model-based clustering (con-
sists on an estimator based on a mixture of probabilities whose parameters are
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estimated, it fixes the model to the dataset); Non-Parametric clustering (there
is not an initial probability model or estimator) and Semiparametric clustering
(a combination of both methods).

This work is based on a well-known technique of Non-Parametric Partitional
Clustering: Spectral Clustering (SC). It was introduced by Ng et al. in [10]. The
algorithm is divided in three main steps:

1. A Similarity Function is applied to all the pairs of data elements to generate
a Similarity Graph. There are three different kind of similarity graph: the
ε-neighbourhood graph (all the components whose pairwise distance is
smaller than ε are connected), the k-nearest neighbour graph (the vertex
vi is connected with vertex vj if vj is among the k-nearest neighbours of vi)
and the fully connected graph (all points with positive similarity are
connected with each other).

2. The Laplacian Matrix (or Spectrum) of the Similarity Graph is extracted
to study its eigenvectors. There are three different Laplacian matrices[12].
They define different versions of the SC algorithm: Unnormalized SC (the
Laplacian matrix is: L = D−W ),Normalized SC (the Laplacian matrix is:
Lsym = D−1/2LD−1/2) and Normalized SC related to Random Walks
(the Laplacian matrix is: Lrw = D−1L).

3. Kmeans (or other partitional clustering technique) is applied to the matrix
formed by the k-first eigenvectors to discriminate the information and assign
the final clusters.

The main problem of the SC algorithm is the computation of the eigenvectors
and eigenvalues of the Laplacian Matrix and the effect that they produce on the
convergence of the algorithm. is how to compute the eigenvector and the eigen-
values of the Laplacian matrix of this similarity graph. The theoretical analysis
of the convergence is justified using the perturbation theory [12], random walks
and graph cut theory [12]. Some of the main problems of Spectral Clustering
are related to the consistency of the two typical methods used in the analysis:
normalized and un-normalized spectral clustering. A deep analysis about the
theoretical effectiveness of normalized clustering over un-normalized was carry
out by von Luxburg in [13].

Other problem of the Spectral Clustering algorithm is its sensitivity to the
definition of the similarity function. It produces several problems when there
is noisy information as Chang and Yeung exposed in [2]. Some solutions to
this problem were based on the improvements of the parameters selection for
the similarity function [2]. Other solutions are focused on the selection of the
partitional clustering algorithm for the third step of SC [14]. This work develops
a new algorithm based on Genetic Algorithms (GA) to improve the robustness
of the clusters selection taking the similarity graph as a starting point.

Genetic Algorithms have been traditionally used in optimization problems.
The complexity of the algorithm depends on the codification and the operations
that are used to reproduce, cross, mutate and select the different individuals
(chromosomes) of the population [4]. The algorithm applies a fitness function
which guides the search to find the best individual of the population.



218 H. Menéndez and D. Camacho

Different approximation of genetic codifications to the clustering problem were
profound studied by Hruschka et al. in [7]. They show the different codifications,
operations and fitness functions applied in several genetic algorithms to solved
the clustering problem. Our previous work was also focused on resolve this prob-
lem using GA, but it was centred on overlapping clustering [1].

This work presents a Genetic Graph-based Clustering (GGC) algorithm which
is inspired on the Spectral Clustering algorithm (it takes the same Similarity
Graph as a starting point) and improves the robustness of the solution. The
algorithm is experimentally compared with Spectral Clustering, Kmeans [9] and
Expectation Maximization (EM) [9] to test its accuracy. The experimental study
is also focused in a comparison between the robustness of the SC and GGC
algorithms.

The rest of the work is structured as follows: Section 2 presents the Genetic
Graph-based Clustering Algorithm; Section 3 shows the experimental results.
Finally, Section 4 gives the conclusions and future work.

2 Genetic Graph-Based Clustering Algorithm (GGC)

This section explains the algorithm which has been implemented. It is mainly
based on a simple Genetic Algorithm (GA). It is necessary to give a number
of clusters initially. The algorithm begins with a Similarity Graph in the same
manner that the Spectral Clustering algorithm. The population of the GGC
algorithm is a set of possible solutions (partitions) which evolves until the best
solution is found or the number of generations is ended. The fitness function is
a quality measure for the solutions.

2.1 Codification and Genetic Operators

The codification is a simple vector-based numerical representation. Each indi-
vidual is a n-dimensional vector (where n is the number of data instances) which
has integer values between 1 and the number of clusters. They represent a clus-
ter selection for the dataset. During the evolution process, the operators can
create invalid individuals. These individuals represent solutions where one or
more clusters have no elements. In this problem of partitional clustering these
solutions are not valid because the number of clusters is initially given. To avoid
the invalid individuals generation problem, they receive a 0 fitness value. The
operators used in the GGC algorithm are the traditional ones extracted from
the GA literature, they can be briefly summarized as follows:

– Selection: The selection process selects a subset of the best individuals.
These chromosomes are reproduced and also pass to the next generation. It
is called a (μ+λ) selection [4], where μ represents those chromosomes which
are chosen, and λ the new chromosomes generated.

– Reproduction: The reproduction randomly selects two individuals (using
the classical wheel algorithm [4]), and applies the crossover operation to the
chosen chromosomes creating two new individuals.
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Algorithm 1. Pseudo-code of the Fitness Function

Require: A n-vector of elements with values between 0 and k where k is the number
of clusters and a variable neighbours which represents the number of neighbours
for the KNN measure.

Ensure: A value between 0 and 1 which corresponds with the fitness achieved.
1: TotalKNN = 0.;
2: TotalMC = 0.;
3: Generate the set of k Clusters: C.
4: for all Ca ∈ C do
5: if Ca = ∅ then
6: return 0
7: end if
8: SumKNN = 0; SumMC = 0.
9: for all ind ∈ Ca do
10: SumKNN += PofKNN(neighbours, ind) {It calculates the percentage

of neighbours for the individual ind which are assigned to the same clus-
ter.}

11: SumMC += AvEdWCut(ind) {It calculates the average value of the edge
weights which have been cut from ind.}

12: end for
13: TotalKNN += SumKNN / |Ca|; {|Ca| represents the number of elements of

Ca.}
14: TotalMC += SumMC / |Ca|;
15: end for
16: return TotalKNN

|C| ×
(
1− TotalMC

|C|

)

– Crossover: The main problem of the crossover operation is those individu-
als which have different numerical values but represents the same solution.
These individuals need to be relabelled before the application of the oper-
ation. For this reason, a measure which compares the number of commons
elements between the clusters is used to find the similarity degree of the chro-
mosomes. After, one of the two chromosomes is relabelled trying to maximize
the similarity. Finally, the crossover exchanges strings of numbers between
the two chromosomes (both string have the same length).

– Mutation: The mutation randomly choose different chromosomes to change
the values of some of their alleles. The new value is a random number between
1 and the number of clusters.

2.2 The GGC Fitness Function

The fitness function is a combination of the classical K-Nearest Neighbourhood
(KNN) [9] algorithm and the Minimal Cut measure [11]. KNN assigns an element
to a cluster if its neighbours are in the same cluster. It is useful to ensure the
continuity condition that is common in the Spectral Clustering solutions. To
control the separation between the elements of the clusters, the Minimal Cut
measure is used. It guarantees that those elements which clearly belongs to
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different clusters are not assigned to the same cluster. The K value for KNN is
initially given.

Algortihm 1 shows the pseudo-code of the fitness: KNN covers all the nodes
and check if the K-closest elements are in the same cluster (lines 9 to 12). The
fitness value of this metric is the mean of the percentage of well-classified neigh-
bours of all the individuals in a cluster (lines 10 and 13). The Minimal Cut
measure calculates the average value edge weights which have been removed
(lines 11 and 14). The final value of the fitness if the product of the KNN met-
ric and the subtraction between one and the Minimal Cut metric (line 16), both
metrics have the same range: [0,1]. Therefore, the algorithm maximizes the value

of TotalKNN
|C| ×

(
1− TotalMC

|C|
)
(line 16) where:

TotalMC =
∑
x∈C

∑
y/∈Cx

wxy

|{y|y /∈ Cx}|

TotalKNN =
∑
x∈C

|{y|y ∈ Γ (x) ∧ y ∈ Cx}|
|Γ (x)|

In these formulas, C represents the set of clusters and Γ (x) represents the neigh-
bourhood of the element x. It reduces the weight values of the edges which are
cut and improve the proximity of the neighbours.

3 Experimental Results

This section shows the different experiments carried out to evaluate the be-
haviour of our approach. These experiments are both synthetic and real-world
experiments. First, the experiments analyse the distance dependency problem
of the Spectral Clustering algorithm compared with the GGC algorithm. This
initial analysis shows the robustness of the algorithm to the metric parame-
ters. Second, the GGC algorithm results are compared with other algorithms
(Kmeans, EM and Spectral Clustering) using synthetic datasets. Finally, these
algorithms are applied to real-world datasets, which are classified, to test their
results.

The parameters of the GGC algorithm have been experimentally fixed. To
find these values, 100 experiments have been executed using the synthetic data
(see Section 3.2).the selected parameters are:

– Population: 200

– Generations: 2000

– Crossover probability: 0.3

– Mutation probability: 0.5

– Selection (μ + λ): The 50th best individual are selected from the previous
generation.

– K value of the KNN metric: 2
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3.1 The Robustness of the GGC Algorithm

An important problem of the Spectral Clustering algorithm is its dependency to
the parameters of the similarity function. The GGC algorithm has been designed
to avoid this problem. The KNN metric which is applied in the fitness calculation
provides a higher robustness to the algorithm compared to the Spectral Clus-
tering algorithm, it does not depend of the order of magnitude of the distances
calculated by the metric. Figure 1 shows a clear example. In this case, the Spec-
tral Clustering algorithm (implemented in the “kernlab” package of CRAN [8])
is compared with the GGC algorithm. In the “kernlab” package, Karatzoglou
et al. implements the Random Walks Normalized Spectral Clustering algorithm.
They use the Gaussian RBF Kernel to set the similarity graph. It is defined by:
Kij = e−σ||xi−xj ||2 , where K is the similarity matrix, xi, xj are data instances,
and σ is the parameter which changes the order of magnitude. The experimental
results show that the clustering technique clearly depends of the σ parameter.
Figure 1 shows the different clustering results of the Spectral Clustering and the
GGC algorithm modifying the σ parameter.
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Fig. 1. Spectral Clustering and Genetic Algorithm results for the spirals[8] dataset
with σ = 2, σ = 500, σ = 2000, respectively

These results show that the parameters used in the definition of the kernel
are very important because these parameters defined the degree of the similarity.
Ng et al. introduced a method to calculate the optimal σ in [10], however, as
Figure 2 shows, this technique is not always enough. GGC obtains always the
same results because it consider metrics which do not depend of the value of the
distances, they depend of the order relation between the distances.

3.2 Experiments on Synthetic Data

In this section the different datasets which are used for the experimentation are
explained and analysed. These datasets have been extracted from different clus-
tering works which study the behaviour of the algorithms in difficult conditions.
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Data Description. The GGC algorithm has been tested with different datasets.
These datasets are 2-Dimensional data which can be separated by human intu-
ition but are problematic for the classical clustering algorithms. The following
datasets have been analysed:

– Aggregation[6]: This dataset is composed by 7 clusters, some of them can
be separated by parametric clustering.

– Compound[15]: There are 6 clusters with are only separable by non-
parametric methods (or special kernels if parametric clustering is applied).

– Spiral[2]: In this case, there are 3 spirals close to each other.

Results of Data Test. Figure 2 shows the classification results of the different
datasets. Table 1 shows the best fitness values achieved by the GGC algorithm.
In these cases the σ parameter to generate the similarity matrix of the Spectral
Clustering and the GGC algorithms is 100 (it has been approximated using the
method described by Ng et al. [10]). All the algorithms have been run 50 times
and their best results have been selected. GGC and SC use the RBF kernel. EM
and Kmeans use the Euclidean distance metric.

GGC and SC correctly classify Aggregation (GGC achieves a fitness value of
0.9928 which is the maximum value of fitness achieved by the algorithm; it is a
consequence of those elements which could belong to two clusters) while EM and
Kmeans have problems related to the form of the data. These problems could
be a consequence of local minimum convergence for the centroids. Compound
is impossible to classify with these parametric algorithms and the Euclidean
distance. Also SC has problems related to the different distributions of the data.
The GGC algorithm correctly classifies the Compound problem with a fitness
value of 0.9552 (this value is also the maximum fitness achieved by the algorithm;
in this case, there are elements assigned to different clusters which are closed to
other clusters). Finally, Spirals classification is also impossible for the parametric
methods while GGC and SC classify it correctly (in this case GGC achieves the
maximum fitness).

Table 1. Fitness values achieved by GGC (see Figure 2)

Dataset Fitness achieved

Aggregation 0.9928
Compound 0.9552

Spiral 1.0

3.3 Experiments on UCI Datasets

In this section the experiments are focused on real-world datasets which have
been previously classified. Here, the accuracy of the algorithm is tested. In these
databases the correct number of clusters is known. The measures used are the
Euclidean Distance and the RBF kernel because they are the best known of
the dissimilarity measures for these databases and they have been employed in
previous works for all the methods used here. The GGC algorithm has been
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Fig. 2. Each row represents the cluster selection of each algorithm for the synthetic
datasets from left to right: “aggregation”, “compound”, “spiral”. The rows represents
from top to bottom: the ideal results, the Spectral Clustering results, the Kmeans
results, the EM results and the GA results.
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applied on 2 real and classified datasets (without missing values) extracted from
the UCI Machine Learning Repository [5]:

– Iris: This dataset is a well-know dataset. It has 150 instance of 3 different
classes (50 in each class). Each class refers to a type of iris plant. Each
instance has 4 attributes.

– Wine: This dataset has 178 instance of 3 different classes (not balanced).
Each class refers to a type of wine. Each instance has 13 attributes.

Results of the Data Test. The experiments have followed the same procedure
that they followed in the synthetic datasets experiments. Also the value of σ
has been approximated to 100. The results for the Iris show that EM is the
best classifier (with an accuracy of the 96,67 %) and the GGC algorithm is the
second (92%). The results for the Wine datasets shows that all the algorithm
obtain high accuracy values (higher than the 95 %), and the GGC algorithm
obtains a perfect classification with the maximum fitness value. These results
are a consequence of the data distribution. Iris dataset has instances of different
classes which are closed to each other, the GGC algorithm has problems to
discriminate the boundary of the clusters specially when there are intersections
between the clusters. The fitness value of the Iris is the higher that the algorithm
has achieved, it shows that there are instance which belongs to different cluster
but are closed to each other. In the case of the Wine dataset, the classes are
clearer separated (as the different clustering techniques show). It improves the
results of the GGC algorithm, because the boundary is clearer.

Table 2. Experimental results obtained using the UCI datasets

Iris dataset Wine dataset

Kmeans best classification 89.33% 95.50 %
EM best classification 96.67% 97.19%
Spectral Clustering best classification 89.33% 95.50%
GGC best classification 92% (Fitness=0.9946) 100% (Fitness=1)

4 Conclusions and Future Work

This work presents a new clustering method inspired by the Spectral Clustering
algorithm and based on Genetic Algorithms. The GGC algorithm is defined us-
ing simple codification and operations. The main contribution of the algorithm is
the fitness selection. GGC uses KNN and Minimum Cut measures. It is applied
to the similarity graph which is generated in the first step of the Spectral Clus-
tering algorithm. The combination of these measures improves the robustness of
the algorithm giving a higher independence of the parameters of the similarity
function. The results of Section 3 show that the new algorithm obtains good
results for both synthetic and real-world datasets.

The future work will be focused on several improvements that could be made
to the GGC algorithm. The effects of noisy information could be deeply anal-
ysed. The number of clusters could be automatically selected using strategies



GGC Algorithm 225

such as cross-validation. Finally, other fitness functions which could improve the
convergence, and the clusters quality, of the GGC algorithm will be studied.
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