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Preface

The Transaction Processing Performance Council (TPC) is a non-profit organi-
zation established in August 1988. Over the years, the TPC has had a significant
impact on the computing industry’s use of industry-standard benchmarks. Ven-
dors use TPC benchmarks to illustrate performance competitiveness for their
existing products, and to improve and monitor the performance of their prod-
ucts under development. Many buyers use TPC benchmark results as points of
comparison when purchasing new computing systems.

The information technology landscape is evolving at a rapid pace, challenging
industry experts and researchers to develop innovative techniques for evaluation,
measurement, and characterization of complex systems. The TPC remains com-
mitted to developing new benchmark standards to keep pace, and one vehicle
for achieving this objective is the sponsorship of the Technology Conference
Series on Performance Evaluation and Benchmarking (TPCTC). With this con-
ference, the TPC encourages researchers and industry experts to present and
debate novel ideas and methodologies in performance evaluation, measurement,
and characterization.

The First TPC Technology Conference on Performance Evaluation and Bench-
marking (TPCTC 2009) was held in conjunction with the 35th International
Conference on Very Large Data Bases (VLDB 2009) in Lyon, France, during
August 24–28, 2009.

The Second TPC Technology Conference on Performance Evaluation and
Benchmarking (TPCTC 2010) was held in conjunction with the 36th Interna-
tional Conference on Very Large Data Bases (VLDB 2010) in Singapore during
September 13–17, 2010.

This book contains the proceedings of the Third TPC Technology Conference
on Performance Evaluation and Benchmarking (TPCTC 2011), held in conjunc-
tion with the 37th International Conference on Very Large Data Bases (VLDB
2011) in Seattle, Washington, from August 29 to September 3, 2011, including
12 selected papers and two keynote papers.

The hard work and close cooperation of a number of people have contributed
to the success of this conference. We would like to thank the members of TPC and
the organizers of VLDB 2011 for their sponsorship; the members of the Program
Committee and Publicity Committee for their support; and the authors and the
participants who are the primary reason for the success of this conference.

Raghunath Nambiar
Meikel Poess
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Abstract. Established in 1988, the Transaction Processing Performance 
Council (TPC) has had a significant impact on the computing industry’s use of 
industry-standard benchmarks. These benchmarks are widely adapted by 
systems and software vendors to illustrate performance competitiveness for 
their existing products, and to improve and monitor the performance of their 
products under development. Many buyers use TPC benchmark results as points 
of comparison when purchasing new computing systems and evaluating new 
technologies. 

In this paper, the authors look at the contributions of the Transaction 
Processing Performance Council in shaping the landscape of industry standard 
benchmarks – from defining the fundamentals like performance, price for 
performance, and energy efficiency, to creating standards for independently 
auditing and reporting various aspects of the systems under test.  

Keywords: Industry Standard Benchmarks. 

1 Introduction 

Originally formed in 1988, the Transaction Processing Performance Council (TPC) 
[1] is a non-profit corporation focused on defining database processing benchmarks 
and disseminating objective, verifiable performance data to the IT industry. The TPC 
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was originally founded in response to a growing trend at the time, affectionately 
known as “benchmarketing.”  Effectively, this was the not-so-uncommon practice of 
vendors to publish amazing claims based on their own performance data in order to 
increase sales. Without independent and objective oversight, a number of vendors 
created highly suspect workloads and test environments while often ignoring crucial 
operational and sometimes even “correctness” requirements in order to improve the 
market’s perception of their product.   

“Benchmarketing” effectively enabled vendors to exaggerate performance and 
even reliability claims in order to boost sales.  The need for a vendor-neutral 
standards organization that focused on creating and administering fair and 
comprehensive benchmark specifications to objectively evaluate database systems 
under demanding, but consistent and comparable workloads, quickly became 
apparent.  Several influential database academics and industry leaders began working 
to establish an organization charged with leading the effort to impose order and 
consistency to the process of benchmarking products fairly and objectively – this 
effort ultimately culminated in the formation of the TPC.   

Over the years, both vendors and end-users have come to rely on TPC benchmarks 
to provide accurate and dependable performance data that is backed by a stringent and 
independent review process. Vendors publish TPC benchmarks to illustrate 
performance competitiveness for their products. In addition, many vendors use TPC 
workloads internally to improve and monitor release-to-release progress of their 
products using TPC-C and TPC-H benchmarks. End-users use TPC benchmark results 
as a reliable point-of-comparison when considering new technologies and purchasing 
new computing systems.  

The key to providing end-users with the promise of reliable and comparable results 
across both hardware and database systems starts with a well-defined specification to 
ensure consistency in workload and measurement.  Although some might argue these 
specifications are too large and detailed, it is precisely this which prevents vendors 
from “bending” the rules to their advantage.  To ensure this, TPC benchmark 
publications mandate extensive documentation of the configuration and benchmark 
process which are carefully vetted and certified by a TPC-certified and independent 
Auditor before it can be released as a formally approved TPC benchmark result.  

A key innovation the TPC popularized was the notion of Price/Performance.  
While vendors could often reach bigger and bigger performance results simply by 
adding more capacity or faster components, price/performance acts as a counter-
balance to provide transparency to the cost of getting that level of performance.  To 
enforce consistency in the costing aspects of these tested solutions, the TPC 
developed a Pricing Specification [2] designed to ensure uniformity between 
benchmark results.  Auditors must also validate that each benchmark follows the 
requirements set forth in the pricing spec to ensure this.  The pricing specification sets 
guidelines for how vendors must price the hardware, what hardware components must 
be included, the rules for licensing of all the software used in the benchmark, and the 
contract costs for three years of maintenance and support for all hardware and 
software. 
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In recent years, energy efficiency has become one of the leading factors in 
evaluating computer systems. To address this shift, the TPC has developed the Energy 
Specification [3], intended to help buyers identify the energy efficiency of computing 
systems in addition to the performance and price/performance requirements. Like the 
TPC Pricing Specification, the TPC Energy Specification is a common specification 
ensuring consistency across all TPC benchmark standards currently in use, including 
TPC-C, TPC-E and TPC-H specifications.  

To better understand the TPC’s contributions to the industry, let’s explore the 
different benchmark specifications. 

2 TPC Benchmark Standards  

Over the years, TPC benchmarks have raised the bar for what the computing industry 
has come to expect in terms of benchmarks themselves. Though the original focus has 
been on online transaction processing (OLTP) benchmarks, to date the TPC has 
approved a total of nine independent benchmarks. Of these benchmarks, TPC-C, 
TPC-H and TPC-E are currently active, and are widely being used by the industry. 
TPC-ETL, TPC-V and TPC-DS are under development. The timelines are shown in 
Figure 1. 

 

Current industry standard benchmarks include TPC-C, TPC-H and TPC-H, each of 
which addresses distinct industry requirements. TPC-C and TPC-E are standards for 
benchmarking transaction processing systems, while TPC-H is the standard for 
benchmarking decision support systems. The longevity of these benchmarks means 
that hundreds of results are publicly available over a wide variety of hardware and 
software platforms.  

The top contribution of the TPC is defining the fundamental metrics that the 
industry uses to analyze and compare computer server technologies. All TPC results 
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must report three primary metrics; Performance, Price/Performance and Availability 
Date. All three primary metrics must be reported for a valid TPC result. 

Performance is a measure of the throughput of database transactions being 
performed on a System Under Test (SUT) in a given operating environment. Each 
benchmark standard has a defined performance metric; TPC-C uses tpmC 
(transactions per minute), TPC-H uses QphH (queries per hour) and TPC-E uses tpsE 
(transactions per second).  TPC performance results are widely used in the industry to 
analyze server performance and compare the performance of various vendor 
offerings. The performance must be reported in, or derived from, measured values. 
The result has to be repeatable. The use of estimated values in describing a TPC result 
is strictly prohibited. 

Price/Performance is a measure of the cost of delivering the stated performance. 
The motivation for price/performance was driven by the need for sponsors to use 
configurations that are commercially viable. This metric has been used widely for 
purchasing decisions, especially in a highly competitive market place, where the most 
effective use of resources is a key objective. The Pricing Specification gives 
guidelines on how the Total Cost of Ownership (over three years) of the SUT is 
calculated.  The TCO is composed of the line item costs of the hardware and software 
components, based on the SKUs that ship with the systems plus the cost of a three 
year maintenance service. The TPC pricing specification defines the  process that 
enables these costs to be verified for accuracy. 

Availability Date, the third TPC primary metric, defines the vendor’s commitment 
in delivering the product. Having the option of using a future availability date enables 
vendors to preannounce, and hence generate demands for, their products. The 
Availability Date as per TPC definition is when the all the components of the SUT are 
orderable and are being shipped to customers. The Availability Date must be within 
185 days of the date when the result is submitted to the TPC.  

Introduced in 2009, the TPC-Energy specification defines the methodology and 
requirements for measuring and reporting energy metrics. TPC-Energy metrics are 
optional and are not required to publish a TPC benchmark result. Watts per 
Performance was a metric that was inspired by the realization that the high 
performance of a SUT usually comes at a cost of high power consumption. With the 
ever rising energy costs for data centers, a measure of the power a configuration 
consumes is relevant business information for IT managers. A key objective of this 
metric is to encourage and spur the development of power efficient computer 
technologies.    

TPC benchmarks have permanently raised the bar; vendors and end users rely on 
TPC benchmarks to provide real-world data that is backed by a stringent and 
independent review process. The main user and vendor benefits of TPC benchmarks 
are listed below: 

 
• Cross-platform performance comparisons.  TPC benchmarks enable server 

configurations and solution offerings to be compared. The ability to verify 
vendor marketing claims is a key contribution by the TPC to the industry. By 
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providing a basis on which server platforms are compared, the TPC has 
encouraged and driven better performing technologies.  

• An objective means of comparing cost of ownership. The TPC has been the 
most successful benchmarking group in developing a standard means of 
comparing the price and price/performance of different systems. All TPC 
testing requires vendors to detail their hardware and software components, 
along with the associated costs and three years of maintenance fees, in order to 
provide the industry's most accurate price and price/performance metrics.  

• An objective means of comparing energy efficiency. The TPC Energy metric 
provides an additional dimension to computing systems' performance and 
price. As with the TPC's price/performance metrics, which rank computing 
systems according to their cost-per-performance, the TPC Energy metric ranks 
systems according to their energy-consumption-per-performance rates. 

• Complete system evaluation vs. subsystem or processor evaluation.  The TPC 
benchmarking model has been the most successful in modeling and 
benchmarking a complete end-to-end business computing environment. This 
has helped TPC benchmarks gain recognition as credible, realistic workloads. 
Most past and many current benchmarks only measure the hardware 
performance (including processor and memory subsystem). TPC benchmarks 
have led the way in developing a benchmark model that most fully 
incorporates robust software testing. 

• Peer review and challenge. TPC results are used widely within the industry 
and the TPC has defined processes that ensure that these results are credible 
and compliant with the benchmark specification under which they are 
published. All results are checked by an independent TPC-authorized Auditor 
for accuracy and compliance with the benchmark specification before they can 
be published. A result’s sponsor must publish an Executive Summary (ES) and 
Full Disclosure Report (FDR) detailing how the SUT was measured. Both 
these documents are available to the public. TPC member companies can 
review these documents and raise a challenge if they find any inconsistencies 
with the prevailing TPC policies or specifications. The Technical Advisory 
Board (TAB) considers these challenges in a timely manner and recommends 
a course of action to the TPC General Council. If a result is found non-
compliant, it is withdrawn. The use of TPC results to make false and 
unverifiable marketing claims (benchmarketing) is strictly prohibited and can 
lead to a TPC Fair Use violation. This can subsequently lead to a reprimand 
and/or fine.    

3 Defining a Level Playing Field  

TPC benchmarks provide a credible way to comparatively evaluate the price, 
performance and energy requirements of complete systems, subsystems and/or 
processors. To make this possible, the TPC has taken considerable efforts to establish 
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a level playing field, in which end-users and vendors can agree on an objective means 
of comparing disparate computing architectures. 

Two key components to the TPC’s success include the organization’s rigorous 
benchmark result auditing process and the pricing component of existing TPC 
benchmarks. These items are described in detail below. 

3.1 Auditing Process 

The TPC’s stringent auditing process has been integral to the organization’s success 
as a leading publisher of industry-standard benchmarks. Independent TPC-certified 
Auditors verify all benchmark results as a prerequisite for publication. Organizations 
performing benchmark tests are required to fully document the system components, 
applications under test and benchmark procedures. This full disclosure makes it 
possible to question and challenge each result, and ensures that all published results 
are both credible and verifiable. 

Even after a benchmark result has been published, the TPC encourages a 60-day 
Peer Review process. During the Peer Review, every member organization in the TPC 
has the right to challenge the published result.  

A comparison of the TPC’s auditing process to that of other industry-standards 
organizations is provided at the end of this section. First, however, the TPC’s auditing 
process is outlined below in further detail for added clarity:  

 
• Verifying the compliance of all components in a SUT, including software 

programs, hardware configurations, purchase and maintenance pricing, etc. 
• Ensuring that the methodology used to implement the benchmark tests 

produces results that demonstrate compliance. 
• Verifying the compliance of benchmark execution by examining the results 

produced. 
• Encouraging comment: The establishment of an audit protocol allows Test 

Sponsors and Auditors to document, in detail, a required set of steps which 
produces the specified benchmark results. The protocol also documents test 
methodology and the resulting test data, which is captured and 
communicated to the Auditor. 

• Verifying the compliance of the result, based on applicable Technical 
Advisory Board (TAB) and General Council (GC) rulings. Additions to the 
audit process may be required if there are outstanding issues that have not 
been previously covered. 

• The Test Sponsor is responsible for attesting to the veracity of all 
information disclosed to the TPC Auditor and in the Full Disclosure Report 
(FDR). 

• The Auditor may choose to examine and test disclosed information at his/her 
discretion. The Auditor’s focus is on verifying the methodology used for 
reaching compliance, rather than verifying the information disclosed by the 
Test Sponsor. 
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The TPC’s auditing process differs from other organizations involved in creating and 
publishing benchmark results. The Standard Performance Evaluation Corporation 
(SPEC), for example, emphasizes a Peer Review process after publication in lieu of 
auditing benchmark results independently. This is intended to help improve 
consistency in the understanding, application, and interpretation of SPEC benchmark 
run rules. Critically, although SPEC reviews results and accepts them for publication 
on its Web site, the results themselves remain the responsibility of the tester. This 
stands in contrast to the TPC, which makes substantial efforts to ensure benchmark 
results are independently certified prior to publication.  

Like the TPC, the Storage Performance Council (SPC) utilizes both Peer Review 
and independent auditing. An SPC benchmark measurement becomes a new 
benchmark result upon successful submission and completion of the SPC audit 
process, which is required. The submitted result is then given the status “Submitted 
for Review” for a minimum of 60 days, during which time the Peer Review occurs. 
Like the TPC’s Peer Review process, the SPC Peer Review allows members an 
opportunity to review the details of the benchmark result and raise any compliance 
issues. If there are no issues raised during this period, the status of the benchmark 
result changes to “Accepted.” If, however, the SPC result is found to be non-
compliant during the Peer Review, the benchmark result must either be withdrawn or 
revised prior to additional review.  

3.2 Pricing 

The TPC-Pricing specification is designed to guide both customers and vendors 
implementing TPC benchmarks. Additionally, the specification directs TPC Auditors 
on what is acceptable pricing for the purposes of publication. The pricing 
methodology reflects the purchase price of the benchmark SUT, software licensing 
used in the benchmark and the contracts for maintenance.  

The TPC-Pricing specification also establishes an availability metric, which 
provides information on whether a specific benchmark configuration can be 
purchased immediately or if some of the components of the configuration are not 
immediately available. The availability requirement limits the length of time before a 
promised result must be fully available.  Ideally, all systems would be available 
immediately upon publication, but the TPC must balance the benefits of allowing 
sponsors flexibility in showcasing systems where one component may not be 
available, and currently allows 185 days from the date of publication – although most 
results are available immediately or within a few weeks.  

To meet the requirements of being fair, honest and comparable, while allowing for 
a variety of pricing and business strategies, the following requirements exist for the 
pricing information across all TPC benchmark publications: 

• Pricing must be based upon a pricing model that the sponsoring company 
employs with existing customers. 

• The published price must be a price that any customer would pay for the 
priced configuration. In a competitive environment, aggressive discounting 
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may occur in certain situations, such as sales or closeouts. Since these 
situations are unique, they do not meet the requirements of the TPC-Pricing 
specification. Therefore, the pricing model employed for TPC benchmark 
publications may not represent the best or lowest price a customer would 
pay. 

• The methodology used must generate a similar price for a similar 
configuration for any customer. The pricing model must represent the pricing 
that could be obtained by any customer in a request for bid to a single 
vendor. Situations that occur when requests for bids go out to multiple 
vendors, and then those bids are used in negotiations to get a better price, are 
not represented. 

Benchmark sponsors are permitted several possible pricing models to construct a 
price for their configuration. The pricing models used must adhere to TPC disclosure 
requirements. Competitors often try to confirm price accuracy by calling into sales 
offices anonymously and attempting to purchase an actual system. 

4 A Look Ahead  

The information technology landscape is evolving at a rapid pace, challenging 
industry experts and researchers to develop innovative techniques for evaluation, 
measurement and characterization of complex systems. The TPC remains committed 
to developing new benchmark standards to keep pace, and one vehicle for achieving 
this objective is the sponsorship of the Technology Conference on Performance 
Evaluation and Benchmarking (TPCTC). With this conference, the TPC encourages 
researchers and industry experts to present and debate novel ideas and methodologies 
in performance evaluation and benchmarking. 

The first TPC Technology Conference on Performance Evaluation and 
Benchmarking (TPCTC2009) [4] was held in conjunction with the 35th International 
Conference on Very Large Data Bases (VLDB2009) in Lyon, France during August 
24–28, 2009, supported by the TPC in a silver sponsor role. The paper acceptance 
ratio was 47%. The conference was keynoted by Mike Stonebraker, recognized as one 
of the top five software developers of the 20th century and an adjunct professor at the 
Massachusetts Institute of Technology. The formation of TPC’s Virtualization 
working group (TPC-V) was a direct result of the papers presented at this conference.  
Proposals like dependability aspects are under consideration for future benchmark 
enhancements. The conference proceedings have been published by Springer-Verlag, 
and are available via the following URL: http://www.springer.com/computer/ 
hardware/book/978-3-642-10423-7. 

The second TPC Technology Conference on Performance Evaluation and 
Benchmarking (TPCTC2010) [5] was held in conjunction with the 36th International 
Conference on Very Large Data Bases (VLDB2010) in Singapore during September 
13-17, supported by the TPC in a silver sponsor role. The paper acceptance ratio was 
58%. The conference was keynoted by C. Mohan, IBM Fellow at IBM Almaden 
Research Center in San Jose, who is recognized worldwide as a leading innovator in 
transaction management.  There are several new benchmark ideas, enhancements to 
existing benchmarks and lessons learnt in practice presented at this conference. The 
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conference proceedings have been published by Springer-Verlag, and are available 
via the following URL: http://www.springer.com/computer/communication+ 
networks/book/978-3-642-18205-1. 

With the third TPC Technology Conference on Performance Evaluation and 
Benchmarking (TPCTC2011) proposal, the TPC encourages researchers and industry 
experts to submit novel ideas and methodologies in performance evaluation, 
measurement, and characterization. Authors are invited to submit original, 
unpublished papers that are not currently under review for any other conference or 
journal. We also encourage the submission of extended abstracts, position statement 
papers and lessons learned in practice. The accepted papers will be published in the 
workshop proceedings, and selected papers will be considered for future TPC 
benchmark developments. 

Areas of Interest: 

• Appliance 
• Business Intelligence 
• Cloud computing 
• Complex event processing 
• Database performance optimizations 
• Green computing 
• Data compression 
• Disaster tolerance and recovery 
• Energy and space efficiency 
• Hardware innovations 
• High speed data generation 
• Hybrid workloads or operational data warehousing 
• Unstructured data management 
• Software management and maintenance 
• Virtualization 
• Very large memory systems  
• Lessons learnt in practice using TPC workloads 
• Enhancements to TPC workloads  

Acknowledgements. The authors would like to thank the past and present members 
of the TPC for their contribution to specifications and documents referenced in this 
paper.  
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Abstract. Advances in hardware architecture have begun to enable
database vendors to process analytical queries directly on operational
database systems without impeding the performance of mission-critical
transaction processing too much. In order to evaluate such systems, we
recently devised the mixed workload CH-benCHmark, which combines
transactional load based on TPC-C order processing with decision
support load based on TPC-H-like query suite run in parallel on the
same tables in a single database system. Just as the data volume of
actual enterprises tends to increase over time, an inherent characteristic
of this mixed workload benchmark is that data volume increases during
benchmark runs, which in turn may increase response times of analytic
queries. For purely transactional loads, response times typically do not
depend that much on data volume, as the queries used within business
transactions are less complex and often indexes are used to answer these
queries with point-wise accesses only. But for mixed workloads, the in-
sert throughput metric of the transactional component interferes with the
response-time metric of the analytic component. In order to address the
problem, in this paper we analyze the characteristics of CH-benCHmark
queries and propose normalized metrics which account for data volume
growth.

Keywords: mixed workload, real-time business intelligence.

1 Introduction

Today, businesses typically employ operational database systems to service trans-
action-oriented applications that are vital to their day-to-day operations. These
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operational database systems focus on providing high availability and low latency
to a large number of concurrent users. Data warehouse systems are used for an-
alyzing large amounts of business data to support strategic decision making, e.
g. computing sales revenue of a company by products across regions and time.
Consequently, data warehouses are especially designed to support fast scans and
complex data algorithms for a relatively small number of users. Early attempts
to run analytical queries directly on the operational database systems resulted
in unacceptable transaction processing performance [4]. Instead, companies de-
ployed separate systems, one for the operational side and one for the analytical
side of their business. As part of an Extraction, Transformation and Load process
(ETL), the data warehouse is periodically updated with data that is extracted
from the operational databases and transformed into a schema optimized for an-
alytical processing. While allowing each system to be tuned separately according
to the characteristics of their respective loads, this staging approach suffers from
inherent drawbacks. On the one hand, two or more software and hardware sys-
tems must be purchased and maintained. On the other hand, analyses do not
incorporate the latest data, but work on a stale snapshot in the data warehouse.

Lately, the case has been made for so called real-time Business Intelligence,
to overcome the disadvantages of the data staging approach. SAP’s co-founder
Hasso Plattner [5] emphasizes the necessity of analytical queries to be performed
on current data for strategic management and compares the expected impact of
real-time analysis on management with the impact of Internet search engines on
the world. This trend is supported by advances in hardware architecture, which
allow keeping large amounts of data in main-memory and may help to process
both loads in a single database system.

Recently, a mixed workload benchmark, called CH-benCHmark has been pro-
posed [3], that bridges the gap between existing single-workload benchmarks
and allows analyzing the suitability of database systems for real-time Business
Intelligence. This hybrid benchmark is based on TPC-C and TPC-H, two stan-
dardized and widely used benchmarks addressing either transactional or analyt-
ical workloads. The CH-benCHmark produces results that are highly relevant to
both hybrid and classic single-workload systems, as it is derived from these two
most widely used TPC benchmarks [6]. A related benchmark is the Composite
Benchmark for Transaction processing and operational Reporting (CBTR) [1,2],
which includes OLTP and reporting components. As discussed in [3], the CH-
benCHmark is intended as a step towards modeling complex mixed workloads
and models the components: continuous data loading, batch data loading, and
large numbers of standard reports.

In this paper we analyze the workload characteristics and performance met-
rics of the mixed workload CH-benCHmark. Based on this analysis, we propose
performance metrics that account for data volume growth which is an inherent
characteristic of the mixed workload benchmark.

This paper is organized as follows. Section 2 gives an overview of the mixed
workload CH-benCHmark. Section 3 describes the performance metrics of CH-
benCHmark and introduces the proposed normalized metrics. Section 4 presents
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the results of our experiments. Section 5 describes how CH-benCHmark deviates
from TPC-C and TPC-H specifications. Section 6 concludes the paper by restat-
ing the reason why the proposed performance metrics are needed and mentions
alternative approaches.

2 Overview of the Mixed Workload CH-benCHmark

The CH-benCHmark represents a mixed database workload comprised of trans-
actional and analytical loads that are executed in parallel on the same tables in
a single Database Management System (DBMS). The transactional load is based
on the business transactions of TPC-C. Since the TPC-C tables are used un-
changed, benchmark sponsors 1 can use their TPC-C benchmark kits to run the
transactional load of CH-benCHmark. The analytical load consists of a read-only
query suite modeled after TPC-H. The TPC-H refresh functions are omitted, as
the database is continuously updated (and expanded) via the transactional load.

2.1 Schema and Inital Database Population

CH-benCHmark extends the TPC-C schema (see gray boxes in Figure 1) with
three additional tables from the TPC-H schema: Supplier,Region andNation
(see white boxes in Figure 1). These additional tables are read-only, as they are
not modified during a benchmark run. The combined schema allows formulating
slightly modified TPC-H queries on TPC-C-like schema and data.

Item (100k)

of

Stock (W ∗ 100k)

sup-by stored

in

in in

Warehouse (W )

available

Order-Line (W ∗ 300k+)

New-Order (W ∗ 9k+)

History (W ∗ 30k+)

serves

Supplier (10k) Nation (62)

Region (5)

pending

contains

has

Order (W ∗ 30k+)

issues

Customer (W ∗ 30k)

located-in

District (W ∗ 10)

(W, W )

(1, 1)

(1, 1)

(10W, 10W )
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(1, 1)

(1, 1)
(5, 15)

(1, 1)

(100k, 100k)

(10, 10) (1, 1)

(1, 1)

(3k, 3k)

(1, ∗)

(1, 1)

(1, ∗)

(1, 1)

(1, 1)

(0, 1)

Fig. 1. Entity-Relationship-Diagram of the CH-Benchmark Database

1 Benchmark sponsors are hardware and software vendors who publish TPC bench-
marks.
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Figure 1 denotes the cardinalities of the initial database population in brack-
ets after the name of each entity. The + symbol is used after the cardinality of an
entity to indicate that the cardinality is subject to change during a benchmark
run, as rows are added or deleted. The initial database population follows the
official TPC-C specification. (min,max)-notation is used to represent the cardi-
nalities of relationships after initial database population and during benchmark
runs. As in TPC-C, the Warehouse table is used as the base unit. The cardinal-
ity of all other tables (except for Item) is a function of the number of configured
warehouses (cardinality of the Warehouse table). The population of the three
additional read-only tables is defined as follows. The relation Supplier is pop-
ulated with a fixed number (10,000) of entries. Thereby, an entry in Stock can
be uniquely associated with its Supplier through the relationship Stock.s i id
× Stock.s w id mod 10, 000 = Supplier.su suppkey. A Customer’s Nation
is identified by the first character of the field c state. TPC-C specifies that
this first character can have 62 different values (upper-case letters, lower-case
letters and numbers), therefore we chose 62 nations to populate Nation (TPC-H
specifies 25 nations). The primary key n nationkey is an identifier according to
the TPC-H specification. Its values are chosen such that their associated ASCII
value is a letter or number. Therefore no additional calculations are required
to skip over the gaps in the ASCII code between numbers, upper-case letters
and lower-case letters. Region contains the five regions of these nations. Rela-
tionships between the new relations are modeled with simple foreign key fields:
(Nation.n regionkey and Supplier.su nationkey).

2.2 Transactional Load

The original TPC-C workload consists of a mixture of read-only and update-
intensive business transactions: New-Order, Payment, Order-Status, Delivery,
and Stock-Level[7]. The TPC-C schema contains nine tables: Warehouse,
Stock, Item, History, New-Order, Order-Line, District, Customer,
and Order (see grey boxes in Figure 1). The transactional load of the CH-
BenCHmark is very similar to the original TPC-C workload. Unchanged TPC-C
business transactions are processed on unchanged TPC-C tables. Even the ini-
tial database population follows the official TPC-C specification. But the CH-
Benchmark does not simulate terminals, as TPC-C does with keying times and
think times. Instead a given number of transactional sessions issue randomly
chosen business transactions in a sequential manner without think times or key-
ing times. The distribution of the different business transaction types follows the
official TPC-C specification. The home warehouses of business transactions are
randomly chosen by each transactional session and are evenly distributed across
warehouses.

2.3 Analytical Load

The original TPC-H workload consists of a database load, the execution of 22
read-only queries in both single (a.k.a. Power Test, see Clause 6.3.3 of [8]) and
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multi-user modes (a.k.a. Throughput Test, see Clause 6.3.3 of [8]) and two re-
fresh functions (RF1 and RF2). The power test measures a systems ability to
parallelize queries across all available resources (i.e. memory, CPU, I/O) in or-
der to minimize response time. The throughput test measures a system’s ability
to execute multiple concurrent queries, allocate resources efficiently across all
users to maximize query throughput. The queries are intended to test the most
common query capabilities of a typical decision support system. In order to fa-
cilitate the understanding of TPC-H queries and the mapping of the benchmark
queries to real world situations, each query is described in terms of a business
question. This business question is formulated in English explaining the result
of the query in context of TPC-H’s business model. The business questions are
translated into functional query definitions that define the queries using the
SQL-92 query language. TPC-H queries are chosen to perform operations that
are relevant to common data warehouse applications. Accordingly, the demand a
query places on the hardware (processor, IO-subsystem) and software (operating
system, database management system) of the tested system varies from query
to query. To assure that the benchmark remains dynamic, each TPC-H query
contains substitution parameters that are randomly chosen by the benchmark
driver immediately before its execution, to mimic ad-hoc workloads. The refresh
functions are intended to test the periodic update of the database. RF1 inserts
new rows into the Orders and Lineitem tables while RF2 removes rows from
the Orders and Lineitem tables to emulate the removal of stale or obsolete
information. The amount of data inserted and deleted scales with the scale factor
SF.

The CH-benCHmark uses the 22 TPC-H queries. Since the CH-benCHmark
schema is different from the TPC-H schema, the queries are rewritten to match
the schema. However, their business semantics and syntactical structure are pre-
served. Business queries read data from the extended schema, including data
from the TPC-C tables and the three additional read-only tables. The contents
of the unmodified TPC-C tables change during the benchmark run, as business
transactions update and insert tuples. These changes have to be accounted for
by the business queries depending on data freshness requirements. Analytical
performance in the CH-benCHmark cannot be easily inferred from the perfor-
mance of a similarly-sized TPC-H installation. The analytical load is generated
by a given number of analytical sessions. Each analytical session submits busi-
ness queries sequentially. All 22 business query types are issued in continuous
iterations over the query type set, while each analytical session executes all 22
query types in a randomly chosen permutation sequence to avoid caching effects.

2.4 Benchmark Parameters

Figure 2 illustrates parameters of the CH-benCHmark and shows some exem-
plary values. Database systems can be compared based on performance metrics
by performing benchmark runs with the same parameter values on all systems.
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Fig. 2. Benchmark Parameters

Similar to TPC-C, the size of the initial database is specified by the number
of warehouses, which determines the cardinalities of the other relations.

The composition of the workload is specified by the number of transactional
sessions and analytical sessions. This parameter allows to specify purely trans-
actional, purely analytical and mixed workload scenarios.

The isolation level which has to be provided by a system under test, is a param-
eter of the CH-benCHmark. Lower isolation levels, like read committed, can be
used to measure raw performance with limited synchronization overhead. More
demanding isolation levels can be used to account for more realistic synchroniza-
tion requirements. The isolation level parameter can be specified separately for
the transactional and the analytical load.

For mixed workload scenarios, the data freshness parameter allows to specify
the time or number of transactions after which newly issued queries have to
incorporate the most recent data.

2.5 Data Scaling

TPC-C and TPC-H employ different scaling models. A scaling model maintains
the ratio between the transaction load presented to the system under test, the
cardinality of the tables accessed by the transactions, the required space for
storage and the number of terminals or sessions generating the system load.
TPC-C employs a continuous scaling model, where the data volume has to be
increased for higher transaction load. The number of warehouses determines not
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only the cardinality of the other tables, but also the number of terminals that
generate a limited load each due to think times and keying times. For increasing
transaction load, the number of terminals has to be increased, requiring a higher
number of warehouses and resulting in a larger data volume. TPC-H employs a
fixed scale factor model, where the database size is set by a scale factor regardless
of system performance.

The CH-benCHmark deviates from the continuous scaling model of TPC-C
in order to allow for high transaction rates on small database sizes that are com-
mon in main-memory database systems. On the one hand, the continuous scaling
model may cause higher response times for analytical queries when transaction
load is increased, because analytical queries would have to process larger data
volumes. In this case it would not be meaningful to compare query response
times of two systems with different maximum transaction loads, as even the
size of the initial database population could vary largely. On the other hand,
the continuous scaling model of TPC-C requires very large data volumes and
expensive secondary storage systems in order to fully utilize modern CPUs.
However, the CH-benCHmark was designed not only for traditional disk-based
database systems, but also for emerging main-memory database systems. For
measuring performance of high-throughput OLTP main-memory database sys-
tems like VoltDB, Stonebraker et al. propose a TPC-C-like benchmark which
does not adhere to continuous scaling [9]. The CH-benCHmark determines max-
imum system performance for a fixed initial data volume. Similar to TPC-H, the
initial database population is determined by a scale factor regardless of system
performance. The scale factor is the number of warehouses which determines the
initial data volume like in TPC-C. But unlike TPC-C, the number of transac-
tional sessions is fixed and there are neither sleep nor keying times. Therefore
higher system performance can be achieved without increasing the initial data
volume.

During the course of a benchmark run business transactions add new orders,
adding tuples to relations Orders, Orderline, History and New-Order.
Since the Supplier relation is read-only, the ratio of the cardinalities of these
relations changes relative to the Supplier relation. The cardinality ratio rela-
tive to the Supplier relation does not change for the relations Warehouse,
District, Stock, Customer, and Item, which are read-only or only updated
in-place. Due to continuous data volume growth, refresh functions like in TPC-H
are not required. The challenges posed by data volume growth during benchmark
runs is discussed in the next section.

3 Performance Metrics

Currently, the mixed workload CH-benCHmark uses performance metrics similar
to those of single-workload benchmarks like TPC-C and TPC-H (see Table 1).
The two most important metrics are Transactional Throughput for transactional
load and Geometric Mean of response times for analytical load.

It may seem obvious to combine the Transactional Throughput metric and
the Queries Per Hour metric in order to obtain a single metric, but competing
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systems under test may prioritize transactions and analytical queries differently
and this aspect would get lost if a single metric were used.

Table 1. Performance Metrics

Transactional Throughput
(tpmCH)

Total number of New-Order transactions com-
pleted during the measurement interval divided
by the elapsed time of the interval in minutes;
New-Order transactions that rollback due to sim-
ulated user data entry errors must be included;
Similar to the Maximum Qualified Throughput
metric of TPC-C

Geometric Mean
(ms)

For each query type the average response times
of queries completed during the measurement in-
terval is determined and the geometric mean of
the average response times of all query types is
reported.

Duration Per Query Set
(s)

Query set consists of 22 queries, one query per
query type; Sum of the average response times of
all query types; Reported in seconds

Queries Per Hour
(QphCH)

Completed queries per hour; This metric is based
on the composite performance metric of TPC-H
(QphH), but differes largely, as there are no re-
fresh functions in CH-benCHmark; Can be de-
duced from Duration Per Query Set metric as
follows:

60 minutes
Duration Per Query Set (in seconds)

60

× 22

But data volume growth caused by the transactional load of the mixed work-
load poses a challenge. The problem is that higher transactional throughput may
result in larger data volume which in turn may result in longer response times
for analytical queries. Therefore, currently reported performance metrics can-
not be compared individually, as systems with high transactional performance
may have to report inferior analytical performance numbers, although analyti-
cal queries have been performed on larger data volumes. The insert throughput
metric of the transactional component interferes with the response-time metric
of the analytic component of the mixed workload. Note that TPC-H does not
consider a database that grows over the course of a benchmark run. To over-
come this issue, we propose performance metrics that account for data volume
growth which is an inherent characteristic of a mixed workload benchmark like
CH-benCHmark.

3.1 Response Times and Data Volume Growth

During the course of a CH-benCHmark run, data volume grows over time due
to inserts caused by transactional load of mixed workload. Figure 3 illustrates
how response time of a query may increase with growing data volume.

During the course of a CH-benCHmark run, cardinality of the following ta-
bles increases:Order,Orderline,History andNew-Order. The cardinality
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ratio between the relations Orderline and Order should be approximately
ten and should be more or less constant during a run, because an order includes
ten items on average according to the TPC-C specification and thus there should
be ten orderlines per order on average. The History relation is not read by any
query in the TPC-H-like query suite of CH-benCHmark. One could think that
the cardinality of the New-Order relation would be more or less constant, as
each delivery transaction delivers a batch of ten new (not yet delivered) orders
and the TPC-C specification states: ”The intent of the minimum percentage of
mix ... is to execute approximately ... one Delivery transaction ... for every 10
New-Order transactions”. But in practice our CH-benCHmark implementation,
like any other implementation of TPC-C, tries to maximize the number of pro-
cessed New-Order transactions and only processes the required minimum of the
other transaction types. This strategy results in approximately 45% New-Order
transactions and only 4% Delivery transactions that deliver ten new orders each.
Therefore the Delivery transactions cannot keep up with orders created by New-
Order transactions and therefore the cardinality of the New-Order relation
increases during a benchmark run, as approximately 11% of new orders remain
undelivered.

Fig. 3. Response Times and Data Volume Growth

Whether the response time of a given query is affected by growing data vol-
ume, depends on the required data access patterns, available indexes and clus-
tering of the accessed data. Data volume growth may affect response times of 19
out of the 22 analytical queries (see Appendix for SQL code of analytic queries),
as they access tables whose cardinality increases during the course of a bench-
mark run. Response times of queries Q2, Q11 and Q16 should not be affected
by growing data volume, as they access only tables whose cardinality does not
change during the course of a benchmark run. Also Q22 should not be affected,
if a suitable index on the Order table is available.
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3.2 Analytical Model and Normalization

We propose to monitor data volume growth during a benchmark run and to nor-
malize response times based on an analytical model to compensate the ”handi-
cap” caused by larger data volumes.

The number of non-aborted New-Order and Delivery transactions can be mon-
itored. Based on this figure, data volume growth of the Order, Orderline
and the New-Order relation can be estimated. CH-benCHmark, like any other
TPC-C implementation, has to monitor the number of New-Order transactions
anyway for reporting the throughput metric.

For each analytic query, the analytical model has to capture how data volume
growth affects query response times, e.g. based on the accessed relations and the
complexity of required basic operations (scan, join, etc.).

For a given point in time, cardinalities of accessed relations can be estimated
and the analytical model can be used to determine a compensation factor. This
factor can be used to normalize query response times and thereby compensate
the ”handicap” caused by larger data volumes.

The point in time used for estimating data volume of a given query execution
depends on the configured isolation level. Depending on the chosen isolation level,
a query may even account for data which is added while the query is executed.
For example, in Figure 3 data volume grows even during query execution as
query execution starts at ts and ends at te. Response times of queries may
increase over time when more data has to be processed. For snapshot isolation
and higher isolation levels, the start time of query execution (ts) can be used. For
lower isolation levels, ts would ignore cardinality changes during query execution
and te could favor longer execution times. As a compromise, the middle of query
execution (tm) may be used.

4 Experimental Evaluation of the Query Performance

We conducted our experiments on a commodity server with two Intel X5570
Quad-Core-CPUs with 8MB cache each and 64GB RAM. The machine had 16
2.5 SAS disks with 300GB that were configured as RAID 5 with two logical
devices. As operating system, we were using an Enterprise-grade Linux running
a 2.6 Linux kernel.

In order to evaluate how data volume growth affects response times of ana-
lytical queries, we need the ability to evaluate analytical performance on CH-
benCHmark databases of different sizes. For reproducibility, we always use the
same fixed data set for a given data volume size. We generate the data sets by
configuring CH-benCHmark for a purely transactional workload scenario and
dump database contents to disk after a given number of New-Order transactions
have been performed.

As described in Section 3.1, normalization is based on an analytical model
and an estimation of data volume growth. We estimate data volume growth
based on the characteristics of typical TPC-C implementations. Figure 4 shows
a comparison between the estimated cardinalities and the actual cardinalities of
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the relations in the used data sets. The x-axis represents the factor by which
data volume is increased (2x - 64x) in a given data set and the y-axis represents
actual or estimated cardinality of the relations.
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In order to compare purely analytical performance of different database
systems, we load data sets of different sizes into two database systems which
represent different kinds of database systems. Database system ”P” is a general-
purpose disk-based database system and adheres to a traditional row-store ar-
chitecture. Database system ”V” adheres to emerging column-store architecture,
is highly optimized for analytical loads and represents a main-memory database
system. We measure response times of analytical queries for each data set. Each
query is performed N times on each data set with warm cache and the average
response time is compared.

Figure 7 shows the measured average response times for each of the 22 queries
on system ”P” and Figure 8 shows the corresponding normalized response times.
Figures 5 and 6 show the same for system ”V”.
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Fig. 5. Average Response Times of System ”V”
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Fig. 6. Normalized Average Response Times of System ”V”
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Fig. 7. Average Response Times of System ”P”
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Fig. 8. Normalized Average Response Times of System ”P”
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The experiments show data volume growth of CH-benCHmark affects re-
sponse times of analytic queries. Our analytical model can be used to normalize
response times. Normalized response times can serve as a performance metric
that accounts for data volume growth.

[3] defines a tabular format for reporting CH-benCHmark results. In Table 2
we show our results according to this format and have added columns and rows
for the proposed normalized metrics. The normalized metrics are determined
in the same way as the original ones, but with normalized response times. The
presented results do not correspond to a full mixed workload, but only one
query stream is performed on fixed data sets with increasing data volume. The
advantage of this approach is, that the same data set of given size can be used
for both systems. We decided not to compare the two system with a full mixed
workload, because System ”V” is highly optimized for analytical loads and is
not intended for transaction processing.

Table 2. Reported CH-benCHmark Results

1 Q. stream on data set with increasing data volume
System ”V” System ”P”

average average average average
response times normalized response times normalized

Q# (ms) response times (ms) response times
Q1 368 42 63632 6001
Q2 126 126 890 890
Q3 1012 121 2606 281
Q4 3368 319 15202 1403
Q5 5722 818 17104 1624
Q6 168 20 22549 2125
Q7 1782 260 177 65
Q8 729 131 4270 517
Q9 703 105 4829 551
Q10 6760 725 141634 7510
Q11 57 57 538 538
Q12 2497 254 39550 3619
Q13 120 27 1437 314
Q14 1430 163 42819 4165
Q15 2876 368 141051 14804
Q16 525 525 7767 7767
Q17 651 79 23405 1926
Q18 7828 587 332413 30598
Q19 614 70 27786 2683
Q20 517 73 6863 819
Q21 2552 280 31812 2710
Q22 245 53 1847 396

Geometric mean (ms) 146 1621
Normalized geometric mean 859 10814
Duration per query set (s) 41 931
Normalized duration per query set 6 92
Queries per hour (QphH) 1949 86
Normalized queries per hour (QphH) 15222 868

5 Deviations from TPC-C and TPC-H Specifications

In the following we provide a short summary of those aspects in which CH-
benCHmark deviates from TPC-C and TPC-H specifications.
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The transactional load of CH-benCHmark deviates from the TPC-C specifica-
tion in the following aspects. First, client requests are generated directly by trans-
actional sessions instead of simulating terminals. The number of transactional
sessions is a parameter of the CH-benCHmark. Therefore, home warehouses of
business transactions are randomly chosen by each transactional session and are
uniformly distributed across warehouses, instead of statically assigning home
warehouses to terminals. Second, a transactional session issues randomly cho-
sen business transactions in a sequential manner without think times or keying
times. But, the distribution of the different business transaction types follows
the official TPC-C specification. Third, the number of warehouses is a parame-
ter of the CH-benCHmark and does not have to be increased to achieve higher
throughput rates. These changes can be easily applied to existing TPC-C imple-
mentations, only small modifications of the benchmark driver configuration and
implementation may be required.

The CH-benCHmark specification has to define the additional tables which
have to be added to an existing implementation of TPC-C. Furthermore, the
business queries, the scaling model and the performance metrics have to be
specified.

6 Conclusions

In this paper we analyzed the workload characteristics and performance metrics
of the mixed workload CH-benCHmark. Based on this analysis, we proposed
performance metrics that account for data volume growth to tackle the problem
that higher transactional throughput may result in larger data volume which in
turn may result in inferior analytical performance numbers. Put differently, the
reason why we need the proposed performance metrics is not data volume growth
itself, but the fact that data volume growth varies largely between different
systems under test that support different transactional throughput rates. An
alternative approach would be not to measure peak transactional and analytical
performance, but to measure how much analytical throughput can be achieved
while a fixed transactional throughput is fulfilled. Moreover, a mixed workload
benchmark could measure resource requirements or energy consumption while
maintaining fixed transactional and analytical performance. These alternative
approaches are out of the scope of this paper, but seem to be an interesting
direction for future work.
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Appendix: Queries

This section contains the SQL code of all 22 analytic queries of the TPC-H-like
query suite.2 All dates, strings and ranges in the queries are examples only.

Q1: Generate orderline overview
se lect ol number ,

sum( o l quan t i ty ) as sum qty ,
sum( ol amount ) as sum amount ,
avg( o l quan t i ty ) as avg qty ,
avg( ol amount ) as avg amount ,
count (∗ ) as count order

from o r de r l i n e where o l d e l i v e r y d > ’ 2007−01−02 00 :00 :00 .000000 ’
group by ol number order by ol number

Q2: Most important supplier/item-combinations (those that have the lowest stock level
for certain parts in a certain region)

se lect su suppkey , su name , n name , i i d , i name , su addres s , su phone , su comment
from item , supp l i e r , stock , nation , region ,

( sel ect s i i d as m i id ,min( s quant i ty ) as m s quant i ty
from stock , s uppl i e r , nation , reg ion
where mod(( s w id∗ s i i d ) ,10000)=su suppkey
and su nat ionkey=n nat ionkey
and n reg ionkey=r reg i onkey
and r name l i ke ’ Europ%’
group by s i i d ) m

where i i d = s i i d
and mod(( s w id ∗ s i i d ) , 10000) = su suppkey
and su nat ionkey = n nat ionkey
and n reg ionkey = r re g ionke y
and i da t a l ike ’%b ’
and r name l ike ’ Europ%’
and i i d=m i id
and s quant i ty = m s quant i ty
order by n name , su name , i i d

Q3: Unshipped orders with highest value for customers within a certain state

se lect o l o i d , o l w id , o l d id , sum( ol amount ) as revenue , o en t ry d
from customer , neworder , orders , o r d e r l i n e
where c s t a t e l ike ’A%’
and c i d = o c i d
and c w id = o w id
and c d i d = o d i d
and no w id = o w id
and no d id = o d i d
and no o id = o id
and o l w i d = o w id
and o l d i d = o d i d
and o l o i d = o id
and o en try d > ’ 2007−01−02 00 :00 :00 .000000 ’
group by o l o i d , o l w id , o l d i d , o ent ry d
order by revenue desc , o en t ry d

Q4: Orders that were partially shipped late

se lect o o l cn t , count (∗ ) as order count
from orde r s
where o ent ry d >= ’2007−01−02 00 :00 :00 .000000 ’
and o en try d < ’ 2012−01−02 00 :00 :00 .000000 ’
and exists ( se lect ∗

from o r de r l i n e
where o i d = o l o i d
and o w id = o l w id
and o d i d = o l d i d
and o l d e l i v e r y d >= o ent ry d )

group by o o l c n t
order by o o l c n t

2 The SQL code for all 22 queries can be found at
http://www-db.in.tum.de/research/projects/CH-benCHmark/ .

http://www-db.in.tum.de/research/projects/CH-benCHmark/
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Q5: Revenue volume achieved through local suppliers

se lect n name , sum( ol amount ) as revenue
from customer , orders , o r de r l i n e , stock , supp l i e r , nation , r eg ion
where c i d = o c i d
and c w id = o w id
and c d i d = o d i d
and o l o i d = o id
and o l w i d = o w id
and o l d i d=o d i d
and o l w i d = s w id
and o l i i d = s i i d
and mod(( s w id ∗ s i i d ) ,10000) = su suppkey
and a s c i i ( substr ( c s ta t e , 1 , 1 ) ) = su nat ionkey
and su nat ionkey = n nat ionkey
and n reg ionkey = r re g ionke y
and r name = ’Europe ’
and o en try d >= ’2007−01−02 00 :00 : 00 .000000 ’
group by n name
order by revenue desc

Q6: Revenue generated by orderlines of a certain quantity

se lect sum( ol amount ) as revenue
from o r de r l i n e
where o l d e l i v e r y d >= ’1999−01−01 00 :00 :00 . 000000 ’
and o l d e l i v e r y d < ’ 2020−01−01 00 :00 :00 .000000 ’
and o l qu an t i t y between 1 and 100000

Q7: Bi-directional trade volume between two nations

se lect su nat ionkey as supp nation ,
substr ( c s ta t e , 1 , 1 ) as cus t na t ion ,
extract (year from o ent ry d ) as l y ea r ,
sum( ol amount ) as revenue

from suppl i er , stock , o r de r l in e , orders , customer , nation n1 , nation n2
where o l s upp l y w id = s w id
and o l i i d = s i i d
and mod(( s w id ∗ s i i d ) , 10000) = su suppkey

and o l w i d = o w id
and o l d i d = o d i d
and o l o i d = o id
and c i d = o c i d
and c w id = o w id
and c d i d = o d i d
and su nat ionkey = n1 . n nat ionkey
and a s c i i ( substr ( c s ta t e , 1 , 1 ) ) = n2 . n nat ionkey
and (

( n1 . n name = ’Germany ’ and n2 . n name = ’Cambodia ’ )
or
( n1 . n name = ’Cambodia ’ and n2 . n name = ’Germany ’ ) )

and o l d e l i v e r y d between ’ 2007−01−02 00 :00 :00 .000000 ’ and ’ 2012−01−02
00 :00 : 00 .000000 ’

group by su nationkey , substr ( c s ta t e , 1 , 1 ) , extract (year from o en t ry d )
order by su nationkey , cu st nat ion , l y e a r

Q8: Market share of a given nation for customers of a given region for a given part
type

se lect extract (year from o ent ry d ) as l y ea r ,
sum( case when n2 . n name = ’Germany ’ then ol amount e lse 0 end) / sum( ol amount )

as mkt share
from item , supp l i e r , stock , o rde r l in e , orders , customer , nation n1 , nation n2 , r eg ion
where i i d = s i i d
and o l i i d = s i i d
and o l s upp l y w id = s w id
and mod(( s w id ∗ s i i d ) ,10000) = su suppkey
and o l w i d = o w id
and o l d i d = o d i d
and o l o i d = o id
and c i d = o c i d
and c w id = o w id
and c d i d = o d i d
and n1 . n nat ionkey = a s c i i ( substr ( c s t a t e , 1 , 1 ) )
and n1 . n reg ionkey = r reg i onkey
and o l i i d < 1000

and r name = ’Europe ’
and su nat ionkey = n2 . n nat ionkey
and o en try d between ’ 2007−01−02 00 : 00 :00 .000000 ’ and ’ 2012−01−02 00 :00 :00 . 000000 ’
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and i da t a l ike ’%b ’
and i i d = o l i i d
group by extract (year from o ent ry d )
order by l y e a r

Q9: Profit made on a given line of parts,broken out by supplier nation and year

se lect n name , extract (year from o en t ry d ) as l y ea r , sum( ol amount ) as sum prof i t
from item , stock , s uppl i e r , o rde r l in e , orders , nation
where o l i i d = s i i d
and o l s upp l y w id = s w id
and mod(( s w id ∗ s i i d ) , 10000) = su suppkey
and o l w i d = o w id
and o l d i d = o d i d
and o l o i d = o id
and o l i i d = i i d
and su nat ionkey = n nat ionkey
and i da t a l ike ’%BB’
group by n name , extract (year from o ent ry d )
order by n name , l y e a r desc

Q10: Customers who received their ordered products late

se lect c id , c l a s t , sum( ol amount ) as revenue , c c i ty , c phone , n name
from customer , orders , o r de r l i n e , nation
where c i d = o c i d
and c w id = o w id
and c d i d = o d i d
and o l w i d = o w id
and o l d i d = o d i d
and o l o i d = o id
and o en try d >= ’2007−01−02 00 :00 : 00 .000000 ’
and o en try d <= o l d e l i v e r y d
and n nat ionkey = a s c i i ( substr ( c s ta t e , 1 , 1 ) )
group by c id , c l a s t , c c i ty , c phone , n name
order by revenue desc

Q11: Most important (high order count compared to the sum of all order counts) parts
supplied by suppliers of a particular nation

se lect s i i d , sum( s o r de r cn t ) as ordercount
from stock , supp l i e r , nation
where mod(( s w i d ∗ s i i d ) ,10000) = su suppkey
and su nat ionkey = n nat ionkey
and n name = ’Germany ’
group by s i i d
having sum( s o r de r cn t ) >

( se lect sum( s o r d e r c n t ) ∗ . 005
from stock , suppl i e r , nation
where mod(( s w id ∗ s i i d ) ,10000) = su suppkey
and su nat ionkey = n nat ionkey
and n name = ’Germany ’ )

order by ordercount desc

Q12: Determine whether selecting less expensive modes of shipping is negatively affect-
ing the critical-priority orders by causing more parts to be received late by customers

se lect o o l cn t ,
sum( case when o c a r r i e r i d = 1 or o c a r r i e r i d = 2 then 1 e lse 0 end) as

h igh l in e count ,
sum( case when o c a r r i e r i d <> 1 and o c a r r i e r i d <> 2 then 1 e lse 0 end) as

l ow l i n e c ount
from orders , o r d e r l i n e
where o l w id = o w id
and o l d i d = o d i d
and o l o i d = o id
and o en try d <= o l d e l i v e r y d
and o l d e l i v e r y d < ’ 2020−01−01 00 :00 :00 .000000 ’
group by o o l c n t
order by o o l c n t
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Q13: Relationships between customers and the size of their orders

se lect c count , count (∗ ) as cu s t d i s t
from ( sel ect c id , count( o i d )

from customer l e f t outer join orde r s on (
c w id = o w id
and c d i d = o d i d
and c i d = o c i d
and o c a r r i e r i d > 8)

group by c i d ) as c o r de r s ( c id , c count )
group by c count
order by c u s t d i s t desc , c count desc

Q14: Market response to a promotion campaign
se lect 100.00 ∗

sum( case when i d a ta l ike ’PR%’ then ol amount e lse 0 end) / 1+sum( ol amount ) as
promo revenue

from o rde r l i n e , item
where o l i i d = i i d and o l d e l i v e r y d >= ’2007−01−02 00 : 00 :00 .000000 ’
and o l d e l i v e r y d < ’ 2020−01−02 00 :00 :00 .000000 ’

Q15: Determines the top supplier

with revenue ( suppl i er no , t o ta l r ev enu e ) as (
se lect mod(( s w id ∗ s i i d ) ,10000) as supp l i e r no ,

sum( ol amount ) as to ta l r ev enue
from o rde r l in e , s tock
where o l i i d = s i i d and o l supp l y w id = s w id
and o l d e l i v e r y d >= ’2007−01−02 00 :00 :00 .000000 ’
group by mod(( s w id ∗ s i i d ) ,10000) )

se lect su suppkey , su name , su addres s , su phone , to ta l r ev enue
from suppl i er , revenue
where su suppkey = supp l i e r no
and t o t a l r e ve nue = ( se lect max( to t a l r ev enue ) from revenue )
order by su suppkey

Q16: Number of suppliers that can supply parts with given attributes

se lect i name ,
substr ( i data , 1 , 3) as brand ,
i p r i c e ,
count( dist inct (mod( ( s w id ∗ s i i d ) ,10000) ) ) as s u pp l i e r c n t

from stock , item
where i i d = s i i d
and i da t a not l ike ’ zz%’
and (mod( ( s w i d ∗ s i i d ) ,10000) ) not in

( se lect su suppkey
from s upp l i e r
where su comment l ike ’%bad%’ )

group by i name , substr ( i data , 1 , 3) , i p r i c e
order by s upp l i e r c n t desc

Q17: Average yearly revenue that would be lost if orders were no longer filled for small
quantities of certain parts

se lect sum( ol amount ) / 2 .0 as avg yea r ly
from o rde r l i n e , ( sel ec t i i d , avg( o l quan t i t y ) as a

from item , o r d e r l i n e
where i da t a l i ke ’%b ’
and o l i i d = i i d
group by i i d ) t

where o l i i d = t . i i d
and o l qu an t i t y < t . a
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Q18: Rank customers based on their placement of a large quantity order

se lect c l a s t , c i d o id , o entry d , o o l cn t , sum( ol amount )
from customer , orders , o r d e r l i n e
where c i d = o c i d
and c w id = o w id
and c d i d = o d i d
and o l w i d = o w id
and o l d i d = o d i d
and o l o i d = o id
group by o id , o w id , o d id , c id , c l a s t , o entry d , o o l c n t
having sum( ol amount ) > 200
order by sum( ol amount ) desc , o en t ry d

Q19: Machine generated data mining (revenue report for disjunctive predicate)

se lect sum( ol amount ) as revenue
from o rde r l i n e , item
where ( o l i i d = i i d

and i da t a l i ke ’%a ’
and o l quan t i t y >= 1
and o l quan t i t y <= 10
and i p r i c e between 1 and 400000
and o l w i d in (1 ,2 ,3 ) )

or ( o l i i d = i i d
and i d a ta l i ke ’%b ’
and o l quan t i ty >= 1
and o l quan t i ty <= 10
and i p r i c e between 1 and 400000
and o l w i d in (1 ,2 ,4) )

or ( o l i i d = i i d
and i d a ta l i ke ’%c ’
and o l quan t i ty >= 1
and o l quan t i ty <= 10
and i p r i c e between 1 and 400000
and o l w i d in (1 ,5 ,3) )

Q20: Suppiers in a particular nation having selected parts that may be candidates for
a promotional offer

se lect su name , su addre s s
from suppl i er , nation
where su suppkey in

( se lect mod( s i i d ∗ s w id , 10000)
from stock , o r de r l i n e
where s i i d in

( se lect i i d
from item
where i d a ta l ike ’ co%’ )

and o l i i d=s i i d
and o l d e l i v e r y d > ’ 2010−05−23 12 : 00 : 00 ’
group by s i i d , s w id , s quan t i t y
having 2∗ s quant i ty > sum( o l quan t i ty ) )

and su nat ionkey = n nat ionkey
and n name = ’Germany ’
order by su name

Q21: Suppliers who were not able to ship required parts in a timely manner

se lect su name , count (∗ ) as numwait
from suppl i er , o r de r l i n e l1 , orders , stock , nation
where o l o i d = o i d
and o l w i d = o w id
and o l d i d = o d i d
and o l w i d = s w id
and o l i i d = s i i d
and mod(( s w id ∗ s i i d ) ,10000) = su suppkey
and l 1 . o l d e l i v e r y d > o en t ry d
and not exists ( sel ect ∗

from o r d e r l i n e l 2
where l 2 . o l o i d = l1 . o l o i d
and l 2 . o l w i d = l 1 . o l w id
and l 2 . o l d i d = l 1 . o l d i d
and l 2 . o l d e l i v e r y d > l 1 . o l d e l i v e r y d )

and su nat ionkey = n nat ionkey
and n name = ’Germany ’
group by su name
order by numwait desc , su name
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Q22: Geographies with customers who may be likely to make a purchase

se lect substr ( c s ta t e , 1 , 1 ) as country ,
count (∗ ) as numcust ,
sum( c ba l ance ) as t o t a cc tba l

from customer
where substr ( c phone , 1 , 1 ) in ( ’ 1 ’ , ’ 2 ’ , ’ 3 ’ , ’ 4 ’ , ’ 5 ’ , ’ 6 ’ , ’ 7 ’ )
and c ba lance > ( sel ec t avg(c BALANCE)

from customer
where c ba lance > 0 .00
and substr ( c phone ,1 , 1 ) in ( ’ 1 ’ , ’ 2 ’ , ’ 3 ’ , ’ 4 ’ , ’ 5 ’ , ’ 6 ’ , ’ 7 ’ ) )

and not exists ( sel ect ∗
from o rder s
where o c i d = c i d
and o w id = c w id
and o d id = c d i d )

group by substr ( c s ta t e , 1 , 1 )
order by substr ( c s ta t e , 1 , 1 )



Towards an Enhanced Benchmark

Advocating Energy-Efficient Systems

Daniel Schall1, Volker Hoefner1, and Manuel Kern2

1 Database and Information Systems Group
University of Kaiserslautern, Germany

{schall,hoefner}@cs.uni-kl.de
2 SPH AG

Stuttgart, Germany
m.kern@sph-ag.com

Abstract. The growing energy consumption of data centers has become
an area of research interest lately. For this reason, the research focus has
broadened from a solely performance-oriented system evaluation to an
exploration where energy efficiency is considered as well. The Transac-
tion Processing Performance Council (TPC) has also reflected this shift
by introducing the TPC-Energy benchmark. In this paper, we recom-
mend extensions, refinements, and variations for such benchmarks. For
this purpose, we present performance measurements of real-world DB
servers and show that their mean utilization is far from peak and, thus,
benchmarking results, even in conjunction with TPC-Energy, lead to in-
adequate assessment decisions, e.g., when a database server has to be
purchased. Therefore, we propose a new kind of benchmarking paradigm
that includes more realistic power measures. Our proposal will enable ap-
praisals of database servers based on broader requirement profiles instead
of focusing on sole performance. Furthermore, our energy-centric bench-
marks will encourage the design and development of energy-proportional
hardware and the evolution of energy-aware DBMSs.

1 Introduction

The TPC-* benchmarking suites are widely used to assess the performance of
database servers. To consider a sufficiently wide spectrum of practical demands,
various benchmarks were developed for simulating different kinds of applica-
tions scenarios. To illustrate the application and hardware dimensions of these
benchmarks, a short overview is given.

TPC-C is an on-line transaction processing (OLTP) benchmark that mea-
sures transaction throughput of order processing on a single database instance.
Typical systems under test (SUT) consist of multiple database nodes, each hav-
ing several multi-core CPUs with plenty of DRAM attached (up to 512 GB per

R. Nambiar and M. Poess (Eds.): TPCTC 2011, LNCS 7144, pp. 31–45, 2012.
c© Springer-Verlag Berlin Heidelberg 2012
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node). Additionally, a huge storage array of several thousand disks (or, recently,
SSDs) is used.1

TPC-E is another OLTP benchmark – simulating the workload of a broker-
age firm – with similar hardware requirements as TCP-C. At the time this paper
was written, the fastest SUT consisted of a single server with 8 processors (80
cores) and 2 TB DRAM. For storage, 16 SAS controllers and more than 800 disk
drives were used.

TPC-H is an ad-hoc decision support benchmark processing a set of OLAP
queries. Although the query types are different compared to OLTP, the hardware
requirements are equally demanding. For example, the fastest server running this
benchmark (for the 30 TB benchmark configuration) consists of a single node,
equippedwith 64 processors, 1TBofDRAM,andmore than 3,000 harddisk drives.

Obviously, the huge amount of hardware is consuming a lot of power – for
all three benchmarks. As an example, the top TPC-E system mentioned earlier
is consuming up to 4,500 watts at peak performance. Despite such substantial
energy needs, power consumption was ignored by TPC in the past. However, the
newly created benchmark TPC-Energy is approaching the emerging demand
for energy-related measures. While TPC-[C,E and H] are reporting performance
only, TPC-Energy is introducing measures for the energy consumption during
query processing. TPC-Energy additionally regulates how power measurements
must be performed, e.g., what measurement devices should be used and what
measurement precision must be maintained. The metrics defined by TPC-Energy
is Energy Consumption over Work done expressed in Joule per transactions,
which translates to Power Consumption over Work delivered expressed in Watts
per tps.

Although TPC-Energy made a first step towards energy-related measures
compared to the former performance-centric TCP benchmarks, we advocate ap-
propriate measures which are still missing to get meaningful insights into the
servers’ energy consumption behavior, e.g., power usage over system utilization.
For this reason, we propose a new benchmarking paradigm which extends the
already existing TPC-Energy.

This paper is structured as follows: In Section 2, we introduce some defini-
tions regarding power consumption and energy and pinpoint the influence of the
server load to the power consumption. In Section 3, we will briefly review re-
lated energy-centric benchmarks, whereas we will revisit TPC-Energy and point
out its limitations by showing measurements of real-world servers in Section 4.
We will argue that servers are usually not running at peak load and discuss the
implications on the power consumption. Based on our findings in the preceding
sections, we propose a new kind of benchmarking paradigm in Section 5. Our
proposal will overcome the limitations we identified earlier. Finally, in Section
6, we conclude our contribution and give an outlook, how a new benchmarking
paradigm can change both the way systems are built and the customers’ view
on new systems.

1 For detailed TPC-C results, see
http://www.tpc.org/tpcc/results/tpcc_perf_results.asp

http://www.tpc.org/tpcc/results/tpcc_perf_results.asp
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2 Energy Efficiency and Other Measures

Energy consumption of data centers is steadily growing due to the ascending
number of server installations and due to the increasing power consumption
of each server. At the same time, energy costs are rising continuously. For an
average utilization period (∼5 years), energy costs have now drawn level with
the server’s acquisition cost [3]. The total cost of ownership is therefore heavily
influenced by the energy footprint of the devices. Further costs, over and above
the plain energy cost of powering the servers, come to play, i.e., cooling cost,
additional batteries, and amply dimensioned power switches.

In recent years, a lot of efforts have been made to limit the spendings on en-
ergy. Some of these efforts include the building of data centers in regions, where
power can be cheaply acquired, or the augmented utilization of servers by virtu-
alization techniques [7]. Nevertheless, the best approach is reducing the power
consumption of the hardware in the first place. As the power consumption of
a server does not scale linearly with its utilization, overdimensioned hardware
has a huge impact on its overall energy consumption. Figure 1 charts the power
consumption at various compute loads. As the load level drops, the power con-
sumption does not scale well. Even at idle, the system uses about 50 % of its
peak power.

Fig. 1. Power by component at different activity levels, from [6]

Due to the growing influence of the energy consumption on buyers’ decisions, it
is crucial to provide sound energy measurement results besides the performance
data for servers. It is especially necessary to provide energy measurements that
cover the whole operating area of a database server. Hence, not only the peak
performance and respective power consumption are important to buyers. The
average energy consumption expected for a certain machine has much more
influence on the anticipated spendings during the next years and are therefore
equally relevant. Because the power consumption of servers is not linear to the
delivered performance, it is important to know the load curve and the resulting
energy consumption of a system. The relation between consumed power and
delivered work relative to their peak is called Energy Proportionality and will be
explained in the following definitions.
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2.1 Definitions

In this paper, we will use the term power (or power consumption) to denote
the current consumption of electricity; hence, the unit of power is Watt. The
power consumption of a server/component over time is called energy (or energy
consumption). Energy consumption is expressed in Joule:

energy =

∫
power dt

1 Joule = 1 Watt · 1 second

To quantify the amount of computational work done on a server, different
hardware-related measures can be employed, e.g. MIPS, FLOPS, IOPS, or
more complex, often application-related measures. In the database community,
and for the TPC-* benchmarks as well, the number of transactions – defined as
specific units of work in the application environments addressed by the TPC-*
workloads – has prevailed as an application-related measure for the quantity of
computations. We are using the same (generic) measure referring to transactions
per time unit, in particular, transactions per second (tps) here:

1 tps =
1 transaction

1 second

Because of the transactions’ dependency on the specific application scenario, only
results from the same benchmark, hence, with the same dataset and the same
set of queries, are comparable. Hence, such performance figures must always be
qualified by the respective benchmark (such as tpmC or tpsE ). In this paper,
performance measures are expressed in tps, but other qualifiers can be used
exchangeablely.

To express how efficiently a certain set of queries can be processed using a
given amount of energy, we use the term energy efficiency:

energy efficiency =
# of transactions

energy consumption

which can be transformed to the amount of work done per time unit when a
certain amount of power is given:

energy efficiency =
tps

Watt

The higher the energy efficiency, the better a given system transforms electricity
into “work”. Note, this is the inverse of the formula used in TPC-Energy which
applies Watt

tps as its metrics. The rationale of the TPC for choosing the inverse
was the desire to be similar to the traditional TPC metrics price over throughput
and, furthermore, to allow a secondary metrics for each of the subsystems. To
conform with already established practices, we will use Watt

tps as well.
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In addition to that absolute measure, we are using the term energy propor-
tionality, coined by [1], when we want to reference the power consumption of a
server (at a given level of system utilization) relative to its peak consumption.
Ideally, the power consumption of a system should be determined by its utiliza-
tion [2]. Hence, energy proportionality describes the ability of a system to scale
its power consumption linearly with the utilization.

Therefore, energy proportionality can not be expressed using a scalar value.
Instead, a function or graph is needed to display the characteristics of a system.
For each level x, 0 ≤ x ≤ 1, of system utilization2, we can measure the power
used and denote this value as the actual power consumption at load level x .
To facilitate comparison, we use relative figures and normalize the actual power
consumption at peak load (x = 1) to 1, i.e., PCact(x = 1) = 1. Using this
notation, we can characterize a system whose power consumption is constant
and independent of the actual load by PCact(x) = 1.

Note, we obtain by definition true energy proportionality at peak load, i.e.,
PCideal(x = 1) = 1. In turn, a truly energy-proportional system would consume
no energy when it is idle (zero energy needs), i.e., PCideal(x = 0) = 0. Due to the
linear relationship of energy proportionality to the level of system utilization,
we can express the ideal power consumption at load level x by PCideal(x) = x.

With these definitions, we can express the energy proportionality EP (x) of a
system as a function of the load level x:

EP (x) =
PCideal(x)

PCact(x)
=

x

PCact(x)
(1)

This formula delivers EP values ranging from 0 to 1. Note, for x < 1 in a real
system, PCact(x) > x. According to our definition, each system is perfectly
energy proportional at x = 1. If a system reaches EP (x) = 1, it is perfectly
energy proportional for all load levels x. In turn, the more EP (x) deviates from
1, the more it loses its ideal characteristics.

Using the results of Figure 1 as an example, we yield EP (x = 0.5) = 0.55,
EP (x = 0.3) = 0.35, and EP (x = 0.01) = 0.02. Special care must be taken
for defining EP (x = 0) to avoid having a zero value in the numerator of the
formula. In this paper, we have agreed to define EP (x = 0) := EP (x = 0.01).
Therefore, this value should be taken with care. Nevertheless, the worst EP
figure is provided by a constant-energy-consuming system in idle mode: EP (x =
0) = 0.

Obviously, assessing energy proportionality is a lot more expressive than mere
energy consumption. While the latter only captures a single point of the system’s
energy characteristics, the former reveals the ability of the system to adapt the
power consumption to the current load.

2 By multiplying x by 100%, the percentage of system utilization can be obtained.
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3 Related Benchmarks

In this section, we will give a short overview of existing benchmarks and their
relation to energy measurements. Poess et al. provide a more detailed summary
in [4].

As the first observation, the TPC-[C, E, H] benchmarks are not considering
energy consumption at all. These benchmarks are purely performance-centric.
The TPC-Energy benchmark – an extension to any of the three benchmarks – is
defining measurements for energy consumption. It gives advice how to measure
the power consumption while the benchmark is running and provides additional
guidelines how to measure the power consumption of the idle system.

SPEC (the Standard Performance Evaluation Corporation) has introduced
the SPECpower ssj2008 benchmark for measuring the performance and energy
consumption of a system running Java-based workloads. In contrast to TPC-
Energy, the SPEC benchmark does measure power consumption at 11 load levels
(from 0% load to 100% load) and aggregates the measurements by the geometric
mean to form a single result. Additionally, newer releases of the SPEC benchmark
like SPECweb 2009 and SPECvirt sc2010 incorporate the power measurement
methodologies from SPECpower.

Apart from benchmarks specified by benchmark-centric organizations, the
database community itself moved forward to propose an energy-related bench-
mark to evaluate the energy efficiency of computer systems. The JouleSort [5]
benchmark is a sort benchmark, whose idea is to account the energy consumed
for sorting a given input size. Instead of benchmarking sorted records per $,
JouleSort is reporting sorted records per Joule. Thus, this benchmark reveals
the energy efficiency of a computer system close to 100% load, but the scenario
(just focusing on sorting) is rather narrow and differing from real-world database
workloads.

In addition, the SPC (Storage Performance Council), whose benchmarks are
targeted on evaluating storage components, defined energy-related extensions for
their benchmarks. These extensions do not track the power consumed at peak
load, but measure it at 80% (denoted as heavy) and 50% (denoted as moderate)
of the peak performance as well as in idle mode. Furthermore, they introduce
the weighted average power consumption based on three different usage patterns
(low, medium, and high).

4 Server Load Profiles

In contrast to the assumptions made for existing benchmarks, i.e., testing a
system at peak performance, real-world applications do not utilize servers that
way. Typically, the hardware of database servers is designed to handle peak
load; hence, it is overprovisioned for the average daily work. In the rare events
of peak load, the servers reach their processing limits, but most of the time, their
hardware is heavily underutilized. In the following, we will outline two studies
that analyzed the energy consumption and load of servers.
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Fig. 2. Average CPU utilization of Google’s servers, from [1]

4.1 Google Study

In 2007, Louiz Barroso and Urs Hölzle published a study that revealed perfor-
mance data of Google’s MapReduce server cluster [1]. According to this study,
the servers are typically operating at 10% to 50% of their maximum perfor-
mance. That way, servers are barely idle but, as well, barely fully utilized. Figure
2 charts the aggregate histogram for the CPU utilization of 5,000 servers hosted
at Google.

4.2 SQL- and BI-Server Data

SPH AG monitored the performance of some of the database and analysis servers
of its customers – data we use to visualize typical utilization and workload
behavior of SQL and Business Intelligence (BI) applications. SPH AG is a mid-
sized ERP-developing company that specializes in the branches mail order and
direct marketing. Its ERP products are based on IBM System i5 or (in the
considered case) on Microsoft Dynamics AX. For some of its customers, SPH
AG is hosting the ERP servers in-house, including SQL servers and BI servers.
The SQL servers are used to store the ERP data, such as customer, sales order,
and invoice information. For the ERP system, 24/7 availability is also needed,
because on-line shops are connected to the ERP systems. The BI servers are
used to process data of the SQL servers for the preparation of reports for the
company management. This data is updated by a nightly job. On all servers, a
thorough performance and load monitoring is installed.

Every customer gets its own SQL and BI server to isolate the user data of
different customers at hardware level. Figure 3 shows a sketch of the systems’
layout. The OLTP server on the left-hand side is processing transactional work-
loads issued by an upstream ERP system. The BI server at the right-hand side
is pulling all tables of interest in a nightly job from the OLTP server. After the
new data has arrived, the BI server starts building indexes and running OLAP
queries. The results are stored on the BI server and can be accessed by the man-
agement. Both servers consist of two Intel Xeon E5620 2.4 GHz with 8 cores
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Fig. 3. SQL and BI server

per CPU and 32 GB DRAM in total. They have two hard disk drives attached,
one for the database files which has 800 GB, and the second one for the log files
(300 GB). The servers are interconnected via Ethernet. One may argue that this
hardware configuration is not very powerful for servers typically benchmarked
with TPC-*, but it delivers sufficient power for these tasks. As we will see, even
this configuration is overprovisioned for the average daily load.

We analyzed the performance-monitoring log files from SPH and charted the
servers’ CPU and disk utilization for some customer. The overall disk and pro-
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Fig. 4. CPU utilization histograms
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Fig. 6. Weekly CPU usage

cessor utilization histograms of the servers are depicted in figures 4(a), 4(b), 5(a),
and 5(b). For an arbitrary day in the data set, the graphs show the probability
distribution of the CPU utilization sorted from 100% to 0% (idle) and the disks’
utilization by accesses/second, respectively. As the graphs indicate, the servers
spend most of their time idle.

A weekly breakdown of the servers CPU load is depicted in figures 6(a) and
6(b). At night, the BI starts its update cycle and gathers daily transaction data
from the SQL server. During some rush hours, the SQL server is processing most
of the transactional workload, while customers and employees are accessing the
ERP system. During the rest of the day, the servers are heavily underutilized.

Overall, it gets obvious that the claims made by Barroso and Hölzle apply to
these servers as well. As the figures 6(a) and 6(b) show, the servers are utilized
about 25% of the time and very rarely at peak.

5 Proposal

Based on the observations in the previous section, it is easy to see that current
server installations do not behave like the systems measured in traditional bench-
marks. While benchmarks usually measure peak performance, typical servers op-
erate far away from that point during most of the time. Nevertheless, benchmark
results are comparable and meaningful when it comes to performance only. As
long as attention is not turned to energy consumption, the mismatch between
benchmarking and real usage of servers does not carry weight. Performance
measurements under peak utilization can be easily broken down to lower load
situations. Hence, a system, able to process x tps per second at peak, can also
process 0.5x tps per second.

In contrast, energy-related measurements obtained at some point of utilization
are not transferable to other load situations because of the non-linear scaling of
energy consumption of todays computer hardware. Therefore, the whole span
of different load situations should be measured separately to obtain meaningful
energy data for customers.
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Fig. 7. Comparing benchmark paradigms

As an analogy from a well-known field, automobiles are benchmarked similarly
with additional “energy-related”measures. Hence, the power of a car is estimated
by its horse power and its top speed, like database servers are classified by their
hardware and their peak tpmC / QphH / tpsE. On the other hand, the gas
consumption of a car, estimated at top speed, is meaningless for the average
driver, because the measurement does not reveal the gas consumption for average
usages. Therefore, a car’s mileage is measured by driving the car through a set
of standardized usage profiles which reflect the typical use of the vehicle. The
same paradigm should be applied to database benchmarks as well, where energy
consumption measured at peak utilization is no indicator for the average use
case.

Figure 7(a) depicts the point that all TPC-* benchmarks measure compared
to the typical working region of a server. Note the mismatch in energy efficiency
between both regions. To cope with the limitations we have outlined previously
and to keep the TPC benchmarking suite up to date, we propose a new paradigm
in benchmarking.

5.1 Static Weighted Energy Proportionality

Nowadays, the measurement paradigm for the TPC benchmarks strictly focuses
on performance results, i.e., to get the most (in terms of units of work) out of
the SUT. Hence, this methodology collides with the desire to get a meaningful
energy-efficiency metrics for the system. Therefore, we propose a sequence of
small benchmarks that utilize the SUT at different load levels, instead of a
single run at peak load. Figure 7(b) depicts a feasible set of benchmark runs at
different utilization ratios. First, a traditional TPC-* run will be performed, i.e.,
at full utilization. That run is used as a baseline to get the maximum possible
performance the SUT can handle (see equation 2). Next, based on the results
from the first run, the number of queries per second issued for the other runs is
calculated using equation 3, where x denotes the system utilization between 0
and 1.
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baseline :=
transactions

second
@100% (2)

transactions

second
@x := baseline · x (3)

Of course, depending on the type of benchmark, the characteristics and knobs for
throttling can differ, e.g., for TPC-C increasing the think time seems reasonable
while for TPC-H a reduction of concurrent streams is the only possibility. We
call this a static weighted energy-proportionality benchmark, because the work-
load does not change in between and, therefore, the system does not have to
adapt to new load situations. To allow the system adapting to the current work-
load, a preparation phase of a certain timespan is preceding each run. During the
preparation time, the SUT can identify the workload and adapt its configuration
accordingly. It is up to the system whether and how to adapt to the workload,
e.g., the system can power down unused CPU cores or consolidate the work-
load on fewer nodes in order to save energy. After the preparation phase, the
overall energy consumption during the run is measured. In other words, instead
of measuring the performance of the SUT, we are now measuring the power
consumption for a certain system usage.

At each load level, the system’s energy proportionality (according to equation
1) is calculated. By multiplying each result with the relative amount of time
the system is running at that load level, we can estimate the overall energy
proportionality under realistic workloads.

Formula. Let EPi be the energy proportionality at load level i, and let Ti be
the relative time, the system operates at that level. Then, the static weighted
energy proportionality of the system ( = SWEP ) can be calculated as:

SWEP =

1.0∫

i=0.0

EPi · Ti di (4)

We can estimate the power consumption ( = PC) of the SUT during the mea-
sured interval by multiplying the (absolute) power consumption of each interval
(PCi) with the relative time, the system operates in that load interval:

PC =

1.0∫

i=0.0

PCi · Ti di [Watts] (5)

Furthermore, by adding the system’s performance to the formula (denoted as
tps in the following), we can estimate the overall energy efficiency.

EE =

1.0∫

i=0.0

PCi

tpsi
· Ti di

[
Watts

tps

]
(6)
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Table 1. Example calculation of the SWEP

real system energy-proportional system

load rel. time rel. PC EP EP · time rel. rel. PC EP EP · time rel.

idle 0.11 0.47 0.00 0.00 0.0 1.0 0.11

0.1 0.08 0.7 0.14 0.01 0.1 1.0 0.08

0.2 0.19 0.78 0.26 0.05 0.2 1.0 0.19

0.3 0.23 0.84 0.36 0.08 0.3 1.0 0.23

0.4 0.18 0.88 0.45 0.08 0.4 1.0 0.18

0.5 0.10 0.91 0.55 0.05 0.5 1.0 0.10

0.6 0.05 0.93 0.65 0.03 0.6 1.0 0.05

0.7 0.02 0.94 0.74 0.01 0.7 1.0 0.02

0.8 0.01 0.98 0.82 0.01 0.8 1.0 0.01

0.9 0.01 0.99 0.91 0.01 0.9 1.0 0.01

1.0 0.02 1.00 1.00 0.02 1.0 1.0 0.02

SWEP ( =
∑

) 0.37 1.00

In a practical application, the integrals in the formulas 4, 5, and 6 are approxi-
mated by the sum of load situations measured, e.g., by eleven measurements of
loads from 0% to 100% using a 10% increment.

Example. To clarify the calculation of the weighted average, we will give an ex-
ample using the load and energy measurements provided by Google (see Figures
1 and 2). Table 1 shows the (relative) average power consumption and time frac-
tions of a hypothetical server for 11 utilization levels. The data is derived from
the two studies done by Google. For comparison, the relative energy footprint
of a theoretical, perfectly energy-proportional system is shown.

This static approach has certain drawbacks: First, the measurements are
rather coarse grained in reality, i.e., “reasonable” static measurements will be
employed at 0, 10, 20, . . . , 100% load, but not in greater detail. And second, this
calculation does not take transition times from one load/power level to another
into account.

5.2 Dynamic Weighted Energy Efficiency

To design an energy-related benchmark that overcomes the drawbacks of the
static approach, we are proposing a refinement of the previous benchmark, called
dynamic weighted energy-efficiency benchmark (DWEE). In order to simulate an
even more realistic workload on the SUT, the static measurements at various load
levels of the SWEP benchmark are replaced by continuous sequences of different
length and different load situations (so called Scenes), followed by each other
without interruption or preparation times. In contrast to the static approach,
all scenes run consecutively, thus transition times are measured as well in this
benchmark. That enables us to test the systems ability to dynamically adapt (if
possible) while running.
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Fig. 8. Dynamic weighted energy-efficiency benchmark – sample load pattern

Every scene will run for a defined timespan T , as sketched in Figure 8. A
timespan is always a cardinal multiple of a constant time slice t, thus, all scenes
run for a multiple of that time slice.

The dynamic energy-efficiency benchmark should simulate a typical workload
pattern, hence, the sequence of load levels should reflect the intended usage
pattern of the SUT.

Influence of the Length of the Time Slice t. By adjusting the cardinal
time slice t to smaller values, all benchmarking scenes will be shorter, hence, the
system must react faster to changing loads. Such a course of action enables test-
ing the SUTs ability to quickly react to changes. Of course, when benchmarking
different systems, the results for a specific benchmark can only be compared by
choosing the same time slice t and the same sequence of scenes.

The minimum length of the time slice should not go below 10 minutes, because
real-world utilization usually does not change faster than that.

Formula. Calculating the result of the DWEE benchmark is simpler than calcu-
lating the SWEP results, because the weighting of the utilization is determined
by the selection of scenes. Because we are measuring the overall throughput
and energy consumption, we do not have to aggregate several measurements. To
obtain comparable results, benchmark runs will be characterized by Watt/tps.
Hence, the overall result of the dynamic weighted energy-efficiency benchmark,
short DWEE, is:

DWEE =
overall Energy Consumption

overall # of T ransactions

[
Joule

transactions
=

Watt

tps

]
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Hence, by employing the same sequence of scenes and the same length of t, the
energy efficiency of different systems can be compared to each other. Because
the benchmark closely simulates a daily workload, the energy consumption to
be anticipated by the system under test can be estimated for its prospective use.

6 Conclusion and Future Work

In times of high energy cost and rising environmental concerns, it is crucial to
shift the focus from a purely performance-centric view to a more comprehensive
look. For this reason, we have proposed two additional measures to the widely
used TPC-* benchmarks. The results from the benchmark runs can be used to
estimate the average power consumption for given usage profiles. By comparing
the overall performance and the load-specific energy efficiency, systems can be
compared for arbitrary utilization profiles. Of course, customers need to be aware
of the specific usage profile of their servers to get meaningful results from the
benchmarks.

We have explained, why high throughput as sole optimization criterion and
$/tps (or $/tpmC, $/tpsE, etc.) as the solitary driver for purchase decisions
are no longer up to date. Therefore, we proposed a paradigm shift for the TPC
benchmarks: the same shift that has already moved SPEC and SPC to energy-
related benchmarks. This paper introduced more sophisticated energy measures
to allow a more detailed view of the systems’ energy efficiency. By comparing the
static weighted energy proprtionality of two servers, one can easily derive, which
server is the more energy proportional one. Additionally, if the usage pattern
of the server is known, the servers real energy consumption can be estimated.
Finally, for getting more realistic, energy-related results, the DWEE benchmark
can be run with workloads, that reflect the estimated usage for a customer.
These workloads could stem from historical performance data provided by the
customer to enable tailor-made comparisons of different systems. Alternatively,
a workload specified by the TPC would enable standardized benchmarking as
usual, with respect to energy.

Since customers are slowly becoming energy-aware also as far as their com-
puter equipment is concerned, measures revealing energy-related characteristics
of servers are gaining increasing attention. Our benchmark proposal will help
comparing the energy profile of different systems.

Our approach focuses on the overall power consumption of the SUT. We do not
make restrictions regarding the power consumption of individual components.
Therefore, it is up to the system designers how to improve the energy footprint
of their systems. Some of the possibilities include powering down redundant, but
underutilized components, e.g., disks in a storage array, CPU cores, or network-
ing adapters. Other approaches could focus on the hardware level, i.e., choosing
more energy-efficient components while building the system. Typical servers can
widely vary in power consumption, depending on the DRAM sizes and modules
used. Finally, the software driving the hardware can have a great impact on
the behavior of the system. Todays database systems do not consider energy
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consumption as a first-class optimization goal, e.g., the use of energy-efficient al-
gorithms. Nevertheless, we expect future generations of database servers to show
an increasing awareness of energy-related characteristics. Energy-aware operat-
ing systems and database management software can leverage energy efficiency
of the plain hardware significantly.

For the future, we encourage researchers and benchmarking enthusiasts to
focus on energy as well as performance. This proposal exposes a first concept
how a comprehensive energy benchmark should look like. As the details have to
be worked out yet, we expect our contribution to influence the design of future
benchmarks.
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Abstract. This paper addresses the challenge of optimizing analytic data flows 
for modern business intelligence (BI) applications. We first describe the chang-
ing nature of BI in today’s enterprises as it has evolved from batch-based pro-
cesses, in which the back-end extraction-transform-load (ETL) stage was sepa-
rate from the front-end query and analytics stages, to near real-time data flows 
that fuse the back-end and front-end stages. We describe industry trends that 
force new BI architectures, e.g., mobile and cloud computing, semi-structured 
content, event and content streams as well as different execution engine archi-
tectures. For execution engines, the consequence of “one size does not fit all” is 
that BI queries and analytic applications now require complicated information 
flows as data is moved among data engines and queries span systems. In addi-
tion, new quality of service objectives are desired that incorporate measures be-
yond performance such as freshness (latency), reliability, accuracy, and so on. 
Existing approaches that optimize data flows simply for performance on a sin-
gle system or a homogeneous cluster are insufficient. This paper describes our 
research to address the challenge of optimizing this new type of flow. We lev-
erage concepts from earlier work in federated databases, but we face a much 
larger search space due to new objectives and a larger set of operators. We de-
scribe our initial optimizer that supports multiple objectives over a single pro-
cessing engine. We then describe our research in optimizing flows for multiple 
engines and objectives and the challenges that remain. 

Keywords: Business Intelligence, Data Flow Optimization, ETL.  

1 Introduction 

Traditionally, Business Intelligence (BI) systems have been designed to support off-
line, strategic “back-office” decision making, where information requirements are 
satisfied by periodical reporting and historical queries. The typical BI architecture 
(Fig. 1) consists of a data warehouse that consolidates data from several operational 
databases and serves a variety of querying, reporting, and analytic tools. The back end 
of the architecture is a data integration pipeline for populating the data warehouse by 
periodically extracting data from distributed, often heterogeneous, sources such as 
online transaction processing (OLTP) systems; cleansing, integrating and transform-
ing the data; and loading it into the data warehouse. The traditional data integration 
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pipeline is a batch process, usually implemented by extract-transform-load (ETL) 
tools [26]. Designing and optimizing the ETL pipeline is still a challenging problem 
[e.g., 6, 21, 23]. After the data is cleansed and loaded into the data warehouse, it is 
then queried and analyzed by front-end reporting and data mining tools.  

 

Fig. 1. Traditional business intelligence architecture 

As enterprises become more automated, real-time, and data-driven, the industry is 
evolving toward Live BI systems that support on-line, “front-office” decision making 
integrated into the operational business processes of the enterprise. This imposes even 
more challenging requirements on the information pipeline. The data sources and data 
types are much more diverse: structured, unstructured, and semi-structured enterprise 
content, external data feeds, Web and Cloud-based data, sensor and other forms of 
streaming data. Faster decision making requires eliminating latency bottlenecks that 
exist in current BI architectures.  

In this new architecture, as shown in Fig. 2, the back-end integration pipeline and 
the front-end query, reporting, and analytics operations are fused into a single analyt-
ics pipeline that can be optimized end-to-end for low latency or other objectives; for 
instance, analytics operations can be executed on “in-flight” streaming data before it 
is loaded into a data warehouse. Integration into the business processes of the enter-
prise requires fault tolerance, with little or no down-time. In general, optimizing the 
end-to-end pipeline for performance alone is insufficient. New quality objectives 
entail new tradeoffs; e.g., performance, cost, latency, fault-tolerance, recoverability, 
maintainability, and so on. We refer to these as QoX objectives [22]. Instead of a “one 
size fits all” engine, there may be many choices of engine to execute different parts of 
the pipeline: column and row store DBMSs, map-reduce engines, stream processing 
engines, analytics engines. Some operations are more efficiently executed in specific 
engines, and it may be best to move the data to the engine where the operation is most 
efficiently executed (data shipping). Other operations may have multiple implementa-
tions, optimized for different engines, and it may be better to leave data in situ and 
move the operation to the data (function shipping). The ETL flows, followed by que-
rying, reporting, and analytics operations, are thus generalized to analytic data flows 
that may span multiple data sources, targets, and execution engines.   

In this paper, we describe the problem of physical design and optimization of ana-
lytic data flows for the next generation BI applications. We model such flows as data 
flow graphs, whose nodes are data sources, targets, or operations on intermediate 
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data. Given (a) a logical data flow graph, (b) optimization objectives for the flow, and 
(c) a physical infrastructure (data stores, processing engines, networks, compute nodes), 
the physical design problem is to create a graph that implements the logical flow on 
the physical infrastructure to achieve the optimization objectives.  

 

Fig. 2. Live BI system architecture 

Example Scenario. We present a simple, example scenario to illustrate our approach. 
The scenario presumes a nationwide marketing campaign is conducted that promotes 
a small set of products. At the end of the campaign, a report is required that lists 
product sales for each product in the campaign. The input to the report is a modified 
version of the Lineitem fact table of TPC-H. This table lists, for each item in a 
purchase order, the quantity sold and the unit price. We also assume a dimension table 
that lists attributes for a marketing campaign. A synopsis of the database schema is 
shown below: 

Lineitem:  orderKey, productKey, quantity, unitCost 
Orders:    orderKey, orderDate 
CmpmDim:   cmpnKey, productKey, dateBeg, dateEnd 
RptSalesByProdCmpn:  productKey, cmpnKey, sales 

The logical data flow to generate the report is shown in Fig. 3. We assume that the 
Lineitem table itself is created by periodically extracting recent line-item rows from 
OLTP databases in the various stores, taking their union, and then converting the 
production keys to surrogate keys. Similar extracts are needed for the Orders table 
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and the dimension tables, but these are not shown. We acknowledge that a real-world 
flow would be much more complicated, e.g., multiple data sources and targets, exten-
sive data cleaning, and so on. However, our purpose here is to illustrate our approach 
to optimization, so we have abstracted away many details in the flow. 

To illustrate the new demands posed by Live BI, we augment our scenario by add-
ing semi-structured content. We assume a Twitter feed is filtered for references to the 
enterprise’s products and the resulting tweets are stored in the distributed file system of 
a Map-Reduce engine such as Hadoop. We perform a sentiment analysis on those 
Twitter feeds to obtain feedback on the public reaction to the campaign products and 
add that analysis to the campaign sales report.  

 

Fig. 3. Flow for RptSalesByProdCmpn 

In this scenario, the Twitter feed includes any tweet that mentions the enterprise’s 
products, and these tweets are passed to the sentiment analysis part of the flow. The 
logical data flow for this example is in Fig. 4. The sentiment analysis computation is 
shown here as a black box (later, in Section 2, we will expand this black box to show 
details of the sentiment analysis operations). The result of sentiment analysis is, for each 
tweet, a sentiment score for each attribute of a topic. For example, a tweet might have a 
weakly positive sentiment for the quality of a printer but a strongly negative sentiment 
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for its price. To simplify, we assume a topic identifies a particular product, but in gen-
eral a topic hierarchy or lattice could be used, e.g., a tweet might reference a particular 
printer model, a class of printers, or all printers sold by the enterprise. After sentiment 
analysis, the product identifiers in the tweets are replaced by their surrogate keys.  The 
sentiment scores per tweet are then aggregated per product and time period so that they 
can be joined with the campaign sales report. In the rollup operation, the computation to 
aggregate the sentiment scores by attribute is assumed to be some user-defined function 
(defined by the marketing department) that assigns weight to the various sentiment val-
ues (e.g., the weight may depend on the influence score of the tweeter).  

 

Fig. 4. Expanded Flow for RptSAByProdCmpn 

A synopsis of the additional tables used by this expanded flow is shown below. 

Tweet:           tweetKey, tweetUser, timestamp, tweetText 

RptSAbyTwtProd:  tweetKey, timestamp, productKey, attribute, 
                 sentimentScore 

RptSAbyProdCmpn: productKey, cmpnKey, sales, attribute,  

                 sentimentScore 

TweetsTweets
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In Section 2, we describe our framework for optimizing analytic data flows. Given a 
logical data flow graph of the kind shown in Fig. 3 and Fig. 4, and a set of QoX ob-
jectives, the optimizer produces a physical data flow that is optimized against those 
objectives. The optimizer assigns fragments of the flow graph to possibly different 
engines for execution. Since the choices made by the optimizer are cost driven, we 
have to characterize the execution of the fragments on different engines with respect 
to the different quality objectives. Our approach is to use micro-benchmarks to meas-
ure the performance of different engines on the various operators that occur in the 
analytic data flows. Section 3 describes some of our work on such micro-benchmarks. 
There are many remaining challenges in developing an optimizer for analytic data 
flows. After describing related work in Section 4, we list some of these challenges in 
Section 5.  

 

Fig. 5. QoX-driven optimization 

2 Our Optimization Approach 

Our optimization approach takes as input a flow graph, a system configuration, and 
some QoX objectives and produces as output a physical flow graph that is optimized 
according to the objectives (see Fig. 5).  

The input logical data flow graph represents data sources, targets, and logical oper-
ations, together with annotations representing QoX objectives. Typical data sources 
are OLTP systems, flat files, semi-structured or unstructured repositories, sensor data, 
Web portals, and others. Typical targets are OLAP and data mining applications, de-
cision support systems, data warehouse tables, reports, dashboards, and so on. The 
flows may contain a plethora of operations such as typical relational operators (e.g., 
filter, join, aggregation), data warehouse-related operations (e.g., surrogate key  
assignment, slowly changing dimensions), data and text analytics operations (e.g., 
sentence detection, part of speech tagging), data cleansing operations (e.g., customer 
de-duplication, resolving homonyms/synonyms), and others. How to design such a 
flow from SLAs and business level objectives is itself a challenging research and 
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practical problem. Some work has been done in the past (e.g., [28]), but we do not 
elaborate further on this topic in this paper. Internally, each flow is represented as a 
directed acyclic graph that has an XML encoding in an internal language we call 
xLM.  

A flow graph may be designed (edge #1 in Fig. 5) in a flow editor which directly 
produces xLM (edge #2) or in an external engine (edge #3); e.g., an ETL flow may be 
designed in a specific ETL engine and exported in some XML form (edge #4) (most 
modern ETL engines store flow metadata and execution information in proprietary 
XML files). An xLM parser translates these files (edge #5) and imports them into the 
QoX Optimizer (edge #6). The optimizer produces an optimized flow (edge #7) that is 
displayed back on the editor (edge #8), so that the user can see –and even modify– the 
optimized flow. In addition, an optimized file is translated into requests to the target 
execution engines (edges #9), which may include relational DBMSs, ETL engines, 
custom scripts, and map-reduce engines (such as Hadoop). 

 

Fig. 6. Sentiment analysis flow graph 

In past work, we have described a complete framework for optimizing flows for a 
variety of QoX objectives such as performance and fault tolerance [6]. Our approach 
to flow optimization involves both the logical and physical levels. For example, to 
optimize the logical flow in Fig. 3 for performance, the optimizer would compare the 
two joins over Lineitem (with the order keys and the product keys) and perform the 
most selective join first. It might also eliminate the sales computation task by combin-
ing it with the rollup task. At the physical level, if the Lineitem, Orders, and 
CmpnDim tables are all stored within the same RDBMS, the optimizer might perform 
the joins and rollup in the RDBMS rather than use an ETL engine. 

To optimize the logical flow in Fig. 4 for fault tolerance, a recovery point might be 
inserted after the surrogate key generation, since sentiment analysis and surrogate key 
generation are time-consuming tasks that would have to be repeated in the event of a 
failure. As a more complicated example, suppose the combined flows of Fig. 3 and 
Fig. 4 were to be optimized for freshness. Then, it might be desirable to filter on the 
campaign dimension very early in the flow to significantly reduce the amount of use-
less data transferred. In this case, the lineitem extracts and the tweet stream could be 
filtered by campaign, product key, and date range. Note that the tweet dataset would 
then be much smaller. Hence, at the physical level, rather than storing it on the map-
reduce engine, the optimizer may choose to extract it to a single compute node where 
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the sentiment analysis could be performed faster, avoiding the higher overhead of the 
map-reduce engine. 

Additional choices involve the granularity at which operations are considered by 
the optimizer. For example, sentiment analysis can be seen as a complex operator that 
in turn is composed by a flow of lower level operators corresponding to the different 
tasks in the analysis. Fig. 6 shows a flow graph for the sentiment analysis operation 
that was represented by a single node in Fig. 3, displayed on the canvas of the Flow 
Editor.  

Treating this complex operation as a composition of other lower-level operators 
makes it possible for the optimizer to consider the possibility of executing the compo-
nent operations on different engines. In our sentiment analysis flow, there is a Nor-
malization operator (to reduce all variations of a word to a standard form) that does a 
look-up operation into a dictionary to retrieve the standard form of a given word. This 
kind of operation can be implemented in different ways: as a relational join, as a Unix 
script, as an ETL look-up operator, or as a program in Java (or some other program-
ming language). Similarly, the Sentiment Word operator looks up a word in a lexicon 
to determine if the word is an opinion word. Assuming that different implementations 
exist for these look-up operators, the issue is to determine the best execution engine 
for each operator. Other operators in the sentiment analysis flow, for instance those 
which perform shallow natural language processing (NLP) tasks (sentence detection, 
tokenization, parts-of-speech tagging, lemmatization, and complex noun phrase  
extraction), are typically implemented as functions in NLP libraries. 

2.1 QoX-Driven Optimizer 

The QoX optimizer first works on a logical data flow graph and tries to optimize it for 
the specified QoX objectives. Then, the optimized flow can be further refined, and 
specific physical choices are made. There are several ways to optimize such a flow, 
even at the logical level. The most obvious objective is to meet an execution time 
window and produce accurate and correct results. Typically, optimizing a flow for 
objectives other than performance – e.g., fault tolerance, maintainability, or recovera-
bility – might hurt performance. For example, for adding a recovery point we may 
have to pay an additional I/O cost. Thus, in general, we optimize first for performance 
and then consider strategies for other optimization objectives: adding recovery points, 
replication, and so on.  

At the physical level, the optimized logical flow is enriched with additional design 
and execution details. For example, a logical operation (such as the join on prodKey) 
may have alternative physical implementations (nested loops, sort-merge, hash join). 
A specific algorithm may have different incarnations based on the execution engine; 
e.g., surrogate key assignments can have a sequential implementation on an ETL en-
gine or a highly parallel implementation on a Hadoop engine. At this level, we need to 
specifically describe implementation details such as bindings of data sources and 
targets to data storage engines, and binding of operators to execution engines. Still, 
the physical plan should be independent of any specific execution engine. However, 
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the optimization may use specific hooks that an engine provides in order to optimize 
better for that specific engine. 

Internally, the QoX Optimizer formulates the optimization problem as a state space 
search problem. The states in this state space are flow graphs. We define an extensible 
set of transitions for producing new states. When a transition is applied to a state, a 
new, functionally equivalent, state is produced. Based on an objective function, we 
explore the state space in order to find an optimal or near optimal state. We have a set 
of algorithms to prune the state space and efficiently find an optimized flow satisfying 
a given set of objectives; i.e., an objective function.  

An example objective function can be as follows:  

OF(F, n, k,w): minimize cT(F), where time(F(n, k)) < w 

which translates to: minimize the execution cost, ‘c’, of a flow, ‘F’, such that its exe-
cution time window should be less than a specified size ‘w’ time units, its input da-
taset has a certain size, ‘n’, and a given number, ‘k’, of failures should be tolerated 
(see [23]).  

The execution cost of a flow is a function of the execution costs of its operations. 
The choice of this function depends on flow structure. For example, the execution 
cost of a linear flow (i.e., a sequence of unary operations) can be calculated as the 
sum of the costs of its operations. Similarly, the execution cost of a flow consisting of 
a number of parallel branches is governed by the execution cost of the slowest branch. 
Cost functions for each operator capture resource cost, selectivity, processing rate, 
cost of data movement, and so on. Simple formulae for the execution cost of an opera-
tion can be determined based on the number of tuples processed by the operation; e.g., 
the execution cost of an aggregator may be O(n.logn), where n is the size of the input 
dataset. More complex and accurate cost functions should involve output sizes (e.g., 
based on the operation’s selectivity), processing time (e.g., based on throughput), 
freshness, and so on. Deriving cost formulae for non-traditional operations (e.g., op-
erations on unstructured data or user-defined analytic operations) that can appear in 
analytic data flows is a challenging problem. Section 3 describes an approach based 
on micro-benchmarks for obtaining cost formulae for individual operators. However, 
the optimization process is not tied to the choice of a cost model.  

The set of state space transitions depends on the optimization strategies we want to 
support. For improving performance, an option is flow restructuring. With respect to 
the example of Fig. 3, we already mentioned pushing the most selective join early in 
the flow. Alternatively, one could consider partitioning the flow, grouping pipeline 
operations together, pushing successive operators into the same engine, moving data 
across engines or data stores, and so on. Typical transitions for improving perfor-
mance are: swap (interchange the position of two unary operations), factor-
ize/distribute (push a unary operation after/before an n-ary operation), and partition 
(add a router and a merger operations and partition the part of the flow between these 
two into a given number of branches). Example transitions for achieving fault toler-
ance are adding recovery points and replicating a part of the flow. Other transitions 
may be used as well so long as they ensure flow correctness. In [6], we described 
several heuristics for efficiently searching the state space defined by these transitions.  
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2.2 Extending the Optimizer to Multiple Engines 

Our earlier work had focused on optimizing back-end integration flows, which we 
assumed were executed primarily on a single execution engine (typically, an ETL 
engine or a relational DBMS). We are now interested in optimizing analytic data 
flows that may execute on a combination of engines (ETL engines, relational DBMSs, 
custom code, Hadoop, etc.). This requires extending the physical level of the QoX 
Optimizer.  

As an example, consider the flow depicted in Fig. 4. We can imagine three differ-
ent execution engines being used to process this flow. The tweets are loaded into a 
map-reduce engine to leverage its parallel execution capabilities for the sentiment 
analysis task. The campaign dimension and campaign sales reports are stored in an 
RDBMS and must be retrieved for processing. Imagine the remaining flow (surrogate 
key, filter, joins, rollup) being processed by an ETL engine. The optimizer might 
choose to push some filtering tasks from the ETL engine down into the RDBMS (fil-
ter on campaign) and the map-reduce engine (filter on date range). As described 
earlierr, the sentiment analysis task is itself a series of sub-tasks and so the optimizer 
may choose to move some of its sub-tasks from map-reduce to the ETL engine.  

In general, there are several engine options for executing an analytic data flow, and 
a particular task may have implementations on more than one execution engine. In 
order to automate the choice of an engine, first we need to characterize the execution 
of operations on different engines. For that, we perform an extensive set of micro-
benchmarks for a large variety of operations. 

Our use of micro-benchmarks is motivated by tools used to calibrate database que-
ry optimizers. Such tools measure the time and resource usage of various operators 
needed for query processing, such as comparing two character strings, adding two 
integers, copying a data buffer, performing random I/O, performing sequential I/O. 
The tools are run on each platform on which the database system will be deployed. 
The individual measurements are combined to estimate the cost of higher-level opera-
tions such as expression evaluation, table scans, searching a buffer, and so on. Section 
3 provides an overview of our current work on micro-benchmarks. 

Applying the micro-benchmark concept to our framework presents two challenges. 
First, our micro-benchmarks are high-level operations with parameters that create a 
large, multi-dimensional space (e.g., sort time might be affected by input cardinality, 
row width, sort key length, etc.). The benchmark cannot cover the entire parameter 
space, so point measurements must be taken. For an actual flow, it is likely that an 
operator’s parameters will not exactly match a measured benchmark. So, interpolation 
is required, but it may reduce the accuracy of the estimate. 

A second challenge is that the ultimate goal is to estimate the cost of a data flow, 
not the cost of individual operators. The operators are coupled through the data flow 
and may interact in complex ways. A method is needed to compose the micro-
benchmarks for individual operators to estimate the cost of a flow. We previously 
mentioned how the cost of a parallel flow is determined by the slowest branch. As 
another example, consider a flow of two operators, one producer and one consumer. If 
producer and consumer process data at similar rates and do not share resource, then 
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the cost of the flow is a simple linear combination. However, if they run at different 
rates, the slower operator meters the flow. Additionally, if they share resources, the 
interaction must be considered when composing the individual micro-benchmark 
results. Addressing these challenges is a current area of research. 

3 Micro-benchmarks for Performance 

As described in Section 2, the goal of the optimizer at the physical level is to decide 
on the appropriate execution engine to process fragments of a flow graph in order to 
achieve the QoX objectives for the entire flow. The optimizer considers both the stor-
age location of data (and the associated execution engine, e.g., RDBMS for tables, 
map-reduce for DFS, etc.) as well as the execution engines available for processing a 
flow graph (e.g., ETL engines, custom scripts, etc.). The optimizer may choose to 
perform data shipping, in which data is moved from the storage system of one execu-
tion engine to another, or it may choose to perform function shipping, in which a task 
is pushed down to be performed in the execution engine where the data is stored. A 
task that has multiple implementations is said to be polymorphic, and the optimizer 
must evaluate each implementation relative to the flow objectives.  

In this section, we describe how the optimizer characterizes the implementation of 
a task relative to an objective. The approach is to use micro-benchmarks to measure 
the performance of a task at various points in the parameter space. The focus here is 
just on performance but the same approach can be used for other objectives. The per-
formance curves generated from the micro-benchmarks can then be compared to 
choose the best implementation of a task for a specific flow graph configuration. In 
the first sub-section, we describe how micro-benchmarks are applied for conventional 
(ETL, relational) operators. In the second sub-section, we describe how the same 
approach can be extended for the new types of operators of Live BI. In particular, we 
show how micro-benchmarks can be used for the text analytics operators that com-
prise the sentiment analysis flow.     

3.1 Micro-benchmarks for Conventional Operators 

We study how several parameters of the flow and the system configuration affect the 
design choice. Example flow parameters to consider are: data size, number and nature 
of operations (e.g., blocking vs. non-blocking), flow and operation selectivity, QoX 
objectives such as degree of replication vs. desired fault-tolerance and freshness, input 
data size and location (e.g., if a mapping table is in a file or in the database). Example 
system configuration parameters include: network load and bandwidth, cluster size 
and resources, cluster node workload, degree of parallelism supported by the engine, 
and so on.  

Knowing how each operation behaves on different engines and under various con-
ditions, we may determine how a combination of operations behaves, and thus, we 
may decide on how to execute a flow or different segments of the flow. To illustrate 
our approach, we discuss example alternative designs for a sequence of blocking  
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operations typified by the sort operation. Due to their blocking nature, as we increase 
the number of such operations, on a single-node, the flow performance linearly de-
creases. We experimented with different parallel implementations for improving the 
performance of the flow. Candidate choices we compared are: Unix shell scripts (os-
sort), an ETL engine (etl-sort), a parallel dbms (pdb-sort), and Hadoop (hd-sort). Due 
to space considerations, we discuss the os-sort and hd-sort methods and present ex-
ample tradeoffs among os-sort, hd-sort, and pdb-sort. 

We implemented os-sort as a combination of C code and shell scripts in Unix, run-
ning directly on the operating system. First, the data file is split in equal-sized chunks 
based on the formula: file size / #nodes (any possible leftover is added to the first 
chunk). Then, each chunk is transferred to a different remote node, where it is sorted. 
Assuming we have a series of n blocking operators, each sort operator i (where i = 
1…n) sorts the i-th data field; if the number of fields is less than n, then the (n + 1)-st 
operator goes back to the first field. In doing so, we eliminate the impact of cache 
memory in our experiments. Next, the sorted data chunks are transferred back to a 
central node and merged back in a hierarchical manner. Intentionally, we tried to 
avoid pipelining as much as we could, in order to make a fair comparison with both 
the etl-sort and hd-sort, where there is no pipelining between blocking operators. In 
practice, therefore, os-sort could perform better than our results show; however, the 
trends shown in our findings do not change. hd-sort is executed as Hadoop code. We 
tested different variations namely in-house developed user-defined functions (udf), 
Pig scripts, and JAQL scripts. Although we did observe differences in terms of abso-
lute numbers, the behavior of this approach compared against the other strategies is 
not affected much. Comparing different Hadoop implementations is not amongst our 
goals; so here, we just present the generic trend (based on average numbers) and ex-
plain the functionality using only the Pig language. As an example of a series of 
blocking operators, we may write the following script in Pig:  

sf$sf = load 'lineitem.tbl.sf$sf'  

      using PigStorage('|') as (f1,f2,...,f17); 

ord1_$nd = order sf$sf by f1 parallel $nd; 

... 

ord10_$nd = order ord9_$nd by f10 parallel $nd; 

store ord$op_$nd into 'res_sf$sf_Ord$op-$nd.dat'  

      using PigStorage('|'); 

Table 1. Statistics for TPC-H lineitem 

SF 1 10 100 
Size (GBs) 0.76 7.3 75 
Rows (x106) 6.1 59.9 600 
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number of blocking operations each remote node has more processing to do. On the 
master node, distributing data is not affected by the number of remote nodes (each 
time we need to create the same number of chunks), while the merge time increases as 
we increase the number of blocking operations. This happens because each blocking 
operator essentially sorts data on a different field: the first on the first field and the N-
th on the N-th field. Thus, each time we have to merge on a field that is placed deeper 
in the file, and thus merge has to process more data before it reaches that field.  

Fig. 9 compares os-sort, hd-sort, and pdb-sort for executing a series of blocking 
operations (1 to 10). pdb-sort ran on a commercial parallel database engine. Starting 
from the top-left graph and going clockwise, the graphs show results of the three 
methods on small-sized (SF=1), medium-sized (SF=10), and large-sized (SF=100) 
data files. In all cases, pdb-sort is faster than os-sort and hd-sort. Hence, if our data 
resides inside the database, there is no reason to sort data outside. However, if our 
data is placed outside the database (e.g., data coming from flows running elsewhere 
like the results of hadoop operations on unstructured data) we have to take into ac-
count the cost of loading this data into our parallel database. This cost increases with 
data size and for this case, the total time (load+sort) is shown in the graphs as the 
green line (pdbL). In this scenario, there are some interesting tradeoffs. For large 
datasets and for a small number of sort operations, it might make sense to use hadoop. 
For medium sized datasets, it might worthwhile to pay the cost of loading the data 
into a database. For small datasets, if the data is not in the database, it is too expensive 
to run pdb-sort; then, it is better to sort outside either using os-sort (e.g., an ETL tool, 
custom scripts) or even hadoop (up to a certain number of sort operations).  

 

 

Fig. 9. Comparison of flow execution using Hadoop and shell scripts 
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Between os-sort and hd-sort, it seems that, for large data files and up to a certain 
number of blocking operations, it is better to use the hd implementation. After that 
number, the Hadoop reduce tasks become quite expensive and hd is not the best op-
tion any more. On the other hand, the trend changes for smaller data files. For small 
files, hd-sort is always the worst case, where for medium-sized files there is a crosso-
ver point. If we have high freshness requirements, then typically we have to process 
smaller batches. In such cases, Hadoop may become quite expensive. If we have to 
process larger batches (e.g., when we have low freshness requirements or the source 
data is updated less frequently), then Hadoop might be a very appealing solution. 

In the same way, we may perform similar micro-benchmarks for other operations. 
We also need to cover the other parameters mentioned earlier and we need to define 
and perform micro-benchmarks for other QoX objectives in addition to performance. 
Using the micro-benchmarks for optimization poses further challenges such as inter-
polation (e.g., micro-benchmark measures 1MB sort and 10MB sort, but the actual 
flow has 3MB sort) and composition (estimating the performance of segments of a 
flow given the performance of individual operations in the flow).   

3.2 Micro-benchmarks for Unconventional Operators 

For optimizing data analytic flows for performance and other objectives, we need to 
consider operations that significantly differ from traditional relational and ETL opera-
tions, such as operations used in text analytics flows. This section discusses our ap-
proach for benchmarking the operators that occur in the sentiment analysis flow of 
Fig. 4. As discussed earlier, these operators are complex and can be benchmarked at 
two levels of granularity: as a single black box operator (as shown in 4) or as a flow 
of individual operators (as shown in 6).  

To estimate cost functions for different implementations of each operator, we exe-
cute them on a set of unstructured documents of different sizes to obtain a series of 
point measurements and then apply regression to these points to learn an interpolation 
function.  

 

Fig. 10. Linear regression of execution costs 
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The initial experiments were on a single node and used dataset sizes from a few 
thousand documents up to 100,000. In all these runs, the operators of the sentiment 
analysis flow of our sample scenario exhibited a linear behavior. Thus, we used linear 
regression to approximate the data points to a line with minimum error, as the R-
squared values in Fig. 10 show. These functions can be plugged into the QoX Opti-
mizer so that it can interpolate to other values.  

Further experiments with larger datasets revealed that an important parameter that 
affects this linear behavior is memory size. The individual operators have different 
memory requirements and consequently different sensitivity to the memory size. 
There is an inflection point at which the linear behavior changes to exponential, due 
to increased paging. The inflection point at which this change in behavior occurs for a 
given operator depends on the amount of available memory. In particular, for the 
sentiment analysis operators implemented in Java, the JVM heap size determines the 
location of the inflection point, which varies from operator to operator as depicted in 
the left three charts of Fig. 11 for two example operations, tokenizer and attribute 
detection, and for the entire sentiment analysis flow. (The bottom-left chart shows the 
behavior when the entire sentiment analysis is implemented as a single, black-box 
operator in a single JVM.) However, for the same experiments ran on a 12-node 
Hadoop cluster, the behavior remained linear past the single-node inflection point 
range of 150K to 190K documents for the different operators. We went up to 30 mil-
lion documents and the behavior was still linear as shown in the two middle charts of 
Fig 12. Consequently, the overall processing time for the entire flow also remained 
linear. 

Another set of experiments focused on a performance comparison among different 
implementations: (i) a single node implementation; (ii) a distributed implementation 
on Hadoop, in which the entire sentiment analysis flow was implemented as a single 
map task that Hadoop could distribute among the nodes of the cluster; and (iii) a dis-
tributed implementation without Hadoop.  

Fig. 12 shows the results for different dataset sizes and the three different imple-
mentations. As for the conventional operators, we observe that for small datasets it is 
too costly to use Hadoop due to its startup cost. The distributed implementation with-
out using Hadoop outperforms the Hadoop implementation because we partitioned the 
data set uniformly on all 12 nodes in the cluster. The Hadoop implementation, on the 
other hand, used the default block size of 64MB, and hence used at most 3 nodes. Fig. 
13 illustrates this point. In the left chart of Fig. 13, we can distinguish two regions: 
one where the execution time of the operator grows linearly in the dataset size and the 
other, where the execution time stabilizes. For small datasets, a single partition is 
enough and consequently only one map task in one node is needed. The execution 
time of the task is proportional to the size of the partition.  However, as the datasets 
get larger, more map tasks are created to process in parallel the various partitions, and 
the execution time stabilizes, not depending any more on the dataset size. This sug-
gests that if it selects the Hadoop implementation, the optimizer will need to control 
the block size depending on the dataset size. The right graph shows that within the 
stable region, as the dataset size gets larger, more map tasks are needed to process the 
larger number of partitions.  
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Fig. 11. Execution cost inflection point sensitiveness to JVM heap size 

 

Fig. 12. Execution times for sentiment analysis operator 
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Fig. 13. Performance of sentiment analysis operator implemented in Hadoop 

4 Related Work 

To the best of our knowledge, there is no prior work on optimizing end-to-end analyt-
ic data flows, and very little work even on optimizing back-end integration flows. 
Off-the-shelf ETL engines do not support optimization of entire flows for multiple 
objectives (beyond performance). Some ETL engines provide limited optimization 
techniques such as pushdown of relational operators [10]) but it is not clear if and 
how these are tied to optimization objectives. Beyond our own QoX approach to inte-
gration flow optimization, research on ETL processes and workflows has not provid-
ed optimization results for multiple objectives. An optimization framework for busi-
ness processes focuses on one objective and uses a limited set of optimization tech-
niques [27]. Query optimization focuses on performance and considers a subset of 
operations typically encountered in our case [e.g. 9, 13, 18, 19]. Also, we want the 
optimizer to be independent of the execution engine; in fact, we want to allow the 
optimized flow to execute on more than one engine. Research on federated database 
systems has considered query optimization for multiple execution engines, but this 
work, too, was limited to traditional query operators and to performance as the only 
objective; for example, see query optimization in Garlic [8,16], Pegasus [7], and  
Multibase [5]. 

Several research projects have focused on providing high-level languages that can 
be translated to execute on a map-reduce engine (e.g., JAQL [3], Pig [15], Hive [24]). 
These languages offer opportunities for optimization. Other research efforts have 
generalized the map-reduce execution engine to create a more flexible framework that 
can process a large class of parallel-distributed data flows (e.g. Nephele [2], Dryad 
[11], CIEL [14]). Such systems typically have higher-level languages that can be 
optimized and compiled to execute on the parallel execution engine (for example, see 
PACTs in Nephele, DryadLINQ in Dryad, SCOPE [4], Skywriting in CEIL). None of 
these projects addresses data flows that span different execution engines. HadoopDB 
is one example of a hybrid system in which queries span execution engines [1]. 
HadoopDB stores persistent data in multiple PostgreSQL engines. It supports SQL-
like queries that retrieve data from PostgreSQL and process the data over Hadoop. 
However, it is not designed as a general framework over multiple engines. 
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Several benchmarks do exist, but so far, none is specifically tailored for general-
ized analytic data flows. TPC has presented a successful series of benchmarks. TPC-
DS provides source and target schemas, but the intermediate integration process is 
quite simplistic (it contains a set of insert and delete statements mostly based on rela-
tional operators) [25]. TPC-ETL is a new benchmark that TPC is currently working 
on and it seems to focus on performance, but no further information has been released 
yet. Another effort proposes an ETL benchmark focusing on modeling and perfor-
mance issues [20]. Several benchmarking and experimental efforts on map-reduce 
engines have been presented, but so far, these focus mainly on performance issues 
[e.g., 12, 17].  

5 Conclusions and Future Work 

In this paper, we have addressed the challenges in optimizing analytic data flows that 
arise in modern business intelligence applications. We observe that enterprises are 
now incorporating into their analytics workflows more than just the traditional struc-
tured data in the enterprise warehouse. They need event streams, time-series analytics, 
log file analysis, text analytics, and so on. These different types of datasets are best 
processed using specialized data engines; i.e., one size does not fit all. Consequently, 
analytic data flows will span execution engines. We sketched our previous work on 
QoX-driven optimization for back-end information integration flows, where the quali-
ty objectives include not just performance, but also freshness, fault-tolerance, reliabil-
ity, and others. This paper outlines how this approach can be extended to optimizing 
end-to-end analytic data flows over multiple execution engines. We described the 
results of initial micro-benchmarks for characterizing the performance of both con-
ventional (ETL and database) operations and unconventional (e.g., text analytic) op-
erations, when they are executed on different engines.  

Many challenges remain, and we hope to address these in future work. These in-
clude: 

– defining and implementing micro-benchmarks for additional representative op-
erations, including event and stream processing, front-end data  mining and ana-
lytic operations;  

– developing interpolation models and interaction models for estimating the cost 
of complete flows;  

– optimization strategies at the physical level for assigning segments of the flow to 
execution engines; and  

– extending the benchmarks, cost models, objective functions, and optimization 
strategies to QoX objectives other than performance.  
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Abstract. The historically introduced separation of online analytical
processing (OLAP) from online transaction processing (OLTP) is in
question considering the current developments of databases. Column-
oriented databases mainly used in the OLAP environment so far, with
the addition of in-memory data storage are adapted to accommodate
OLTP as well, thus paving the way for mixed OLTP and OLAP process-
ing. To assess mixed workload systems benchmarking has to evolve along
with the database technology. Especially in mixed workload scenarios the
question arises of how to layout the database. In this paper, we present
a case study on the impact of database design focusing on normalization
with respect to various workload mixes and database implementations.
We use a novel benchmark methodology that provides mixed OLTP and
OLAP workloads based on a real scenario.

Keywords: Combined OLTP and OLAP Workloads, Database Design,
Normalization, Workload Mix, Benchmarking.

1 Introduction

Online transaction processing (OLTP) systems are the backbone of today’s en-
terprises for daily operation. They provide the applications for the business pro-
cesses of an enterprise and record all business movements, e.g. sales and purchase
orders, production, billing, and payments. For strategic insights to make business
decisions for the future and to monitor the performance of their business, en-
terprises utilize online analytical processing (OLAP) systems. Since OLTP and
OLAP present very different challenges for database architectures and transac-
tion throughput is essential for OLTP, they have been separated into different
systems in the mid 1990s to avoid impairments. The business data used in both
domains is the same, however, stored in differently optimized structures. The
separation implies several drawbacks, for example, keeping redundant versions
of the same data, data staleness for analytics, as data in the OLAP system
is updated only periodically, or having only a selected data set available for
analytics.

Hardware development, that is, multi-core technology and systems with large
main memory provide more powerful systems as a basis for business processing.
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In [26], Nambiar and Poess analyze Moore’s law [24] directly with respect to
transaction processing systems and show that it holds true even on this higher
level. They show that systems have been (and most probably will be) capable of
running ever larger transaction processing workloads with a growth that closely
resembles Moore’s predictions. In combination with recent developments of da-
tabase systems, especially column-oriented storage in addition to lightweight
compression techniques, the question arises if the historically grown separation
of the two domains is still necessary. Plattner [28] states that in-memory column-
oriented databases are capable of running OLTP and OLAP applications in one
and the same system in a mixed mode.

Running OLTP and OLAP in a mixed mode directly leads to the question
of how to design the database. Database design is a major distinguishing char-
acteristic between the OLTP and OLAP domains and has conflicting goals for
optimization. So far, efforts to optimize database design have been focused on
one or the other domain, but not considering a mixed workload of both. Using
a methodology to benchmark composite OLTP and OLAP systems that en-
ables the simulation of mixed workloads, we present a case study of the impact
of database design for different workload mixes and different database storage
architectures. Regarding the database design, our focus in this study lies on dif-
ferent degrees of normalization of the database schema. In this paper, we report
our results for the behavior of databases with primary storage on disk, in main
memory as well as row and column-orientation. A brief announcement of this
case study was presented in [4]. In this paper, we give a complete introduction
to the schema variants analyzed in the case study and present results for a wide
range of mixed workloads and database architectures.

In the following section, we discuss the background of our study by giving
examples for applications that do not clearly fit either into the OLTP or OLAP
domain. Further, we provide a short introduction of OLTP and OLAP database
design and its normalization in particular and we review related work in the area
of database benchmarking and optimizing database design for OLTP and OLAP.
In Section 3 we introduce our database design variants related to normalization.
We apply these variants in a comprehensive case study in Section 4, discuss the
results of the study and finally, we summarize our findings.

2 Background

In this section we present applications which do not clearly fit either into the
OLTP or OLAP domain, we observe that database architectures exist that al-
ready cater for mixed OLTP and OLAP workloads and we present an overview
of the benchmarks for OLTP and OLAP systems. Further, we discuss database
design in general and optimization of database design in detail and we point
out work related to database optimization as our case study aims at optimizing
databases regarding mixed workloads.
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2.1 Applications Spanning Across Domains

Applications are classified to belong to one or the other domain based on their
data processing characteristics. French [10] characterizes the OLTP workload as
simple mixed queries of inserts, updates, and deletes that are relatively short
running, retrieve a large number of columns of a table and touch only a small
set of rows. In contrast, OLAP operations are characterized as complex, read-
mostly queries that touch a small number of columns, but a large number of rows.
According to Abolhassani [1] applications exist in either domain that show the
application characteristics typical for the other domain. As a result, although
a line is drawn between OLTP and OLAP, it is not always obvious from the
characteristics of an application which domain it belongs to.

Krueger et al. [21] point out several examples, e.g., dunning and available-
to-promise (ATP), where this classification is not clear. Dunning and ATP are
categorized as OLTP operations, which need the latest business data in order to
determine the right results. Dunning runs, for example, are triggered for entire
sales areas or customer groups, and therefore touch a relatively large data set. To
avoid long run times in relation to typical OLTP operations and to avoid queuing
other OLTP operations, workarounds have been introduced. For dunning runs it
means that they are triggered only periodically, e.g. during times of low system
load. To further reduce the impact of long response times through reading large
amounts of data on the OLTP system, secondary tables, e.g., holding information
about unpaid bills for dunning or materialized aggregates, i.e., time lines for
availability-to-promise are created and kept up-to-date in synchronization with
the business transactions.

2.2 Combined OLTP and OLAP Database Architectures

Because of the need of OLAP to analyze ever fresher and more complete OLTP
data, database architectures and systems that allow a combined workload of
OLTP and OLAP are proposed. Röhm [29] introduced his unified architecture
for OLTP and OLAP to allow OLAP clients the access to up-to-date data. He
proposes a middleware-based database cluster with OLTP and OLAP nodes side
by side where each OLAP node holds its own copy of the data with a varying
degree of freshness. In contrast to this middleware-based approach, HyPer [18]
handles OLTP and OLAP using hardware assisted replication mechanisms. This
achieves consistent and up-to-date snapshots of the transaction data. Other pro-
totypes such as OctopusDB [8] and Hyrise [12] aim to avoid keeping multiple
copies of data and instead adapting the storage layout of the data according to
usage patterns in the workload.

2.3 Related Work in Benchmarking OLTP and OLAP

The methodology we use in our case study is targeted as a new benchmark for
mixed OLTP and OLAP workloads. However, it is not a standard and we briefly
discuss why it is desirable to introduce a new benchmark and note where its
benefits lie regarding our case study.
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As transactional and analytical benchmarking have been treated as separate
domains so far, being able to use the existing benchmarks only limited state-
ments can be made concerning the ability of data management systems to handle
a mixed workload. Running an OLTP and an OLAP benchmark in parallel, is
a valid approach to create a mixed workload. However, with the current bench-
marks only a partial picture of the actual performance of a hybrid system will
be achieved, measuring the effects of hardware resource contention. Because the
benchmarks still run on their dedicated data sets, conflicts arising from data
access to the same data set are not observed. Harmonizing the different require-
ments for the design of the data set for optimal access are a characteristic of
particular interest for a mixed workload.

Regarding combined OLTP and OLAP workloads, we are aware of two non-
standard benchmarking approaches, one is the composite benchmark for transac-
tion processing and operational reporting (CBTR) [3] and the other is TPC-CH
[11]. CBTR is based on the order-to-cash process of a real enterprise system
that is widely applicable in many industries and TPC-CH is derived from the
standard benchmarks TPC-C [31] and TPC-H [32].

Both benchmark proposals include workload mix as a new parameter that is
of importance in the mixed OLTP/OLAP scenario. Workload is defined by the
types of actions that take place and their frequency of execution. The contri-
bution of the OLTP and OLAP-style workloads to the total workload should
not be constant because transactional and analytical processing follow conflict-
ing optimization goals and consequently the share of OLTP and OLAP-style
actions has an impact on the decisions to optimize a combined system. TPC’s
transactional web e-Commerce benchmark TPC-W [30], which has been marked
as obsolete since 2005, but is still in use, explicitly models different workloads
of its basic transactions in order to reproduce diverse user behavior. These are
browsing, shopping and ordering. Similar to the mix of OLTP and OLAP ac-
tions these mixes cover conflicting optimization goals, e.g. fast access of a large
amount of data during browsing versus providing hassle-free insertion of data
during ordering. For our study of the impact of database design, workload mix
is of particular interest.

In our case study we used CBTR because its data schema and the included
data are the most realistic concerning data found in real enterprise systems and
we believe our results concerning the impact of database design decisions under
varying workloads to be more accurate. In [3], we provide a detailed description
of the scenario, database design and statements used in CBTR.

2.4 OLTP and OLAP Database Design

For both, OLTP and OLAP, basic rules for the creation of optimized database
designs exist. The resulting database schemas, however, differ to a great extend
and the design goals for optimizing OLTP and OLAP systems are in conflict,
meaning that a design which is optimized for OLAP performance degrades OLTP
performance and vice versa [9].



Normalization in a Mixed OLTP and OLAP Workload Scenario 71

The borders between the OLTP and OLAP domain are increasingly blur-
ring when observing the characteristics of the involved data set. The data set
of OLAP systems, though part of it is highly optimized for multi-dimensional
queries and aggregation, increasingly bears similarity with the OLTP data set.
According to Inmon [15] operational data stores (ODS), which are part of the
OLAP environment hold almost fresh OLTP data on the transactional level of
detail, i.e., the same or a very similar logical schema as in the OLTP system.
The freshness of the data within the ODS ranges from updates appearing in the
ODS only seconds later to 24 hours or more, depending on the ODS class. As
data in the ODS ages, it passes into the data warehouse.

BCNF    ... 1NF Type I 
ODS

Type IV
ODS

Snowf�ake
Schema

Star
Schema

...... ... ...

OLTP OLAP

Redundancy

Join Complexity

Fig. 1. Analytical vs. Transaction Processing Schemas

In Figure 1 we illustrate the database schema variants used in OLTP and
OLAP systems. They are ordered according to the join complexity, a fixed query
occurs if the underlying schema is varied. With the decreasing complexity of
joins, the level of redundancy within the data set increases.

2.5 Normalization in Database Design

In this section we focus on normalization as this is the main differentiating factor
when comparing OLTP and OLAP database schemas.

To achieve a sound logical database design and in particular to reduce re-
dundancy within data that can cause false relationships and inconsistencies, the
principles of normalization were developed [13]. In [6], Codd introduces the ob-
jectives of normalization, that include obtaining a powerful retrieval capability
by simplifying the set of relations, removing undesirable insertion, update and
deletion anomalies, and reducing the need for restructuring when adding new
types of data, thus increasing the life span of application programs.

However, for an increased level of normalization of a set of relations a penalty
towards data retrieval has to be accepted. Data that could have been retrieved
from one tuple in a denormalized design may have to be retrieved from several
tuples in a normalized design. Kent [19] acknowledges, that the highest level of
normalization need not be enforced, where performance requirements have to
be taken into account. Mullins [25] enforces normalization by pointing out that
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a normalized schema should never be denormalized unless a performance need
arises which cannot be solved in any other way.

Denormalization can be observed in the data schemas of productive systems
for analytical processing as well as in transaction processing. Bock and Schrage
[2] discuss and give examples how denormalization can be used to improve sys-
tem response times for transaction processing, while avoiding redundant storage
and without incurring prohibitive data maintenance. Furthermore, Mullins [25]
names different types of denormalization techniques, of which the types redun-
dant data, repeating groups, and derivable data can still be observed in today’s
transactional systems. Redundant data means adding columns of a table B to
table A if they are always queried in combination with table A. This is only
advisable if the included columns contain data that does not change frequently.
Repeating groups comprises of adding more columns for an attribute that can
have multiple, but a limited and small number of values, instead of normalizing
this attribute into an own table with a foreign key relationship. A typical exam-
ple is storing up to three telephone numbers for a customer. Here, three telephone
number columns are used instead of three rows in a second table. Derivable data
comprises of pre-computing data and storing it in a column. An example is an
extra column storing the net sales value of an order instead of aggregating it
from the order line items each time it is requested.

In analytical systems, the types pre-joined tables and report tables are com-
mon. In pre-joined tables, as the name says, two or more tables are stored in their
joined form, omitting redundant columns. Report tables are tables that already
represent the report based on the data that is otherwise stored in several tables
and can only be retrieved via complex SQL statement. Thus, the report can be
built using simple SQL queries. The star and snowflake schemas are members of
this category. In our study, we particularly focus on the denormalization type
pre-joined tables under mixed workload conditions.

According to Martyn [23], the denormalization found in the star schema in
the data warehouse is acceptable because of the read-only character of the data
warehouse and the opportunity of addressing potential update anomalies during
the ETL process. Kimball expresses a similar opinion, writing that the “use of
normalized modeling in the data warehouse presentation area defeats the whole
purpose of data warehousing, namely, intuitive and high-performance retrieval
of data.” [20] In contrast, Date [7], when discussing relational models in general
which applies to OLTP as well as OLAP schemas, views denormalization in a
critical fashion and believes “that anything less than a fully normalized design
is strongly contraindicated” and that denormalization should only be used as a
last resort if all other strategies to improve performance fail.

2.6 Related Work in Optimizing the Database Design for OLTP
and OLAP

Structures for optimized query performance like indexes, views, or precomputed
aggregates introduce redundancy, which adds overhead to the insertion of new
data, updates, and deletes [22]. They are relativized with a growing share of
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read access or the increasing size of tables while access patterns, e.g. queried
time windows, are constant. A variety of prototypes and tools exist that propose
configurations for indexes and materialized views, for example, AutoAdmin for
Microsoft SQL Server [5], or to automate partitioning, see Autopart for large
scientific databases [27]. Zilio et al. [33] introduced DB2 Design Advisor, which
additionally takes into account clustering and partitioning. All optimization ap-
proaches are, however, focused on either OLTP or OLAP workloads. Further-
more, they utilize only structures of physical database design, while a difference
between OLTP and OLAP data schemas can also be found on the logical level of
database design, that is, normalization. Our case study provides insights on the
performance of different database schemas with respect to normalization under
a mixed workload.

The development of ODSs shows how a mixed workload can be handled by
one system. There are four types of ODS (cf. [17]). Three of them are copies
of transactional data and can be categorized according to data freshness. The
fourth type of ODS additionally includes strategic information. Data created
from a report in the data warehouse environment is transported back into the
ODS [14]. The different types of users producing the mixed workload are char-
acterized by Inmon as “farmers” and “explorers” [16]. Whereas farmers repeat
the same task over and over again and exactly know what they are looking for,
i.e. benefit from clearly structured data like it is the case in OLTP, explorers
exhibit unpredictable behavior. They skim through a large data set to search for
patterns and relationships similar to OLAP workloads.

The reason why these diverse loads could be integrated within the ODS as
one system are that farmers and explorers operate on only a limited amount
of data copied into the ODS to produce reports concerned only with a short
period of time, e.g. totals sales of the day or the number of new customers. Our
focus, however, lies on systems which contain the entire operational data set of
a company for analytics and not just a snapshot.

3 Database Design Variants Focusing on Normalization

In this section, we exemplify database design variation in the case of normaliza-
tion. Database systems expose a very individual behavior, which heavily depends
on the specific queries, underlying data schema, and physical optimizations. For
a hybrid workload of OLTP and OLAP-like queries the task of choosing an op-
timal database design and optimizations according to a specific mix of queries
becomes vital due to the wide range of data access behavior of the operations in
a combined OLTP and OLAP system.

Figure 2 gives an overview of the levels relevant in database design. The
top layer represents the abstract or conceptual definition of involved entities,
attributes and their relations. OLTP and OLAP queries are defined based on
these definitions and should be oblivious to changes of the database design on
the lower layers. The lower two layers, logical and physical, show the possible
variations of the database design. Normalization as a transformation of the tables
resides in the logical layer.
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Fig. 2. Data Model Variation Levels

The logical layer in Figure 2 depicts the schema variations applied in our case
study. 1NF is the extracted part of a data schema of a real enterprise system,
which is modeled in CBTR. Document and star schema are its variations to
analyze the impact of normalization under varying workloads and in different
types of databases. These will be introduced in Section 3.2.

3.1 The Base Schema

Our starting point is an original database schema taken from a real-world OLTP
database, modeled in CBTR [3]. Figure 3 depicts the database schema that is the
basis for an order-to-cash scenario. This scenario covers sales order processing,
deliveries, billing and payment processing as the related functions of accounting.

18 tables support this scenario, seven of them containing master data and
11 tables for transactional data. Master data is visualized in gray shading and
transactional data is shown with a black header. Primary keys of tables are
marked in bold face. Foreign keys are displayed by additional connections that
start at the foreign key and point to the table and attribute that is referenced. In
this schema only the most important attributes and relationships are illustrated
for easier understanding. The complete schema contains 2316 columns that are
distributed over the shown tables. The columns are not evenly distributed. Thus,
table widths vary between 5 and a maximum of 327 columns.

The mapping of the conceptual design to the tables of this schema is not
trivial. Business partner data is represented by three customer master tables
and product data respectively by three product master tables. The order entity
is split up into sales header, sales item, sales conditions, and sales partner. The
delivery, billing, and accounting information entities are each split up in header
and item tables respectively.

This schema is optimal for the OLTP operations taking place in the order-to-
cash scenario, i.e., order entry, delivery scheduling, billing, and payment record-
ing. Only a small set of transactional tables have to be touched during any of
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these actions and no joins are needed. However, the access pattern looks com-
pletely different for the OLAP operations. Customer payment behavior, order
processing time, and order completion access data from several transactional
tables and joining over four header and item tables is common. These joins are
particularly problematic since the header and item tables have the largest car-
dinality. For the measurements, the OLTP and OLAP actions as defined in the
CBTR benchmark are used. Table 1 gives an overview of the transaction pro-
files for the benchmark actions. We refer to [3] for the detailed profiles and SQL
statements.

Table 1. Overview of CBTR Transaction Profiles and SQL Statements

Type Action Profile/SQL Statement

w
O
L
T
P Sales Or-

der
Header: Select [Cust. Data, Sales Data, Partner Function, Address
Data], Insert [Sales Header]; Per Item: Select [Product Data, De-
scription, Sales Data], Insert [Sales Item, Business Data, Business
Partner]

Shipping Header: Insert [Shipping Header]; Per Item: Select [Sales Item], In-
sert [Shipping Item]

Billing Header: Insert [Billing & Accounting Header, Sales Conditions]; Per
Item: Select [Sales & Shipping Item], Insert [Billing & Accounting
Item]

Payment Select [Accounting Header]; Per Item: Update [Accounting Item]
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Table 1. (continued)

Type Action Profile/SQL Statement

rO
L
T
P

Sales Or-
der by
Key

SELECT [...] FROM SalesHeader, SalesItem WHERE OrderID
= @DocNum AND [...];

Sales Or-
der by Pe-
riod

SELECT [...] FROM SalesHeader WHERE CustomerID =
@CustomerID AND (OrderDate BETWEEN ‘01.10.2011” AND
“31.10.2011”);

Open
Items

SELECT [...] FROM AccountingItem, AccountingHeader
WHERE [...] AND AccountType = “Debitor” AND Clearing-
Date= “”ORDER BY CustID, AccID;

Customer
Details

SELECT [...] FROM CustomerData, AddressDataWHERE [...];

Product
Details

SELECT [...] FROM ProductData, ProductDescription
WHERE [...];

O
L
A
P

Daily
Flash

SELECT [...] SUM(Quantity) FROM SalesHeader, SalesItem
WHERE [...] GROUP BY [...] ORDER BY [...];

Order
Processing
Time

SELECT [...], AVG(DATEDIFF(T.DeliveryDate, T.OrderDate))
AS Days FROM (SELECT DISTINCT [...] FROM
SalesHeader, SalesItem, ShippingHeader, ShippingItem WHERE
OrderDate BETWEEN “01.07.2011” AND “30.09.2011”, [...])T
GROUP BY [...] ORDER BY Days DESC;

Order De-
livery Ful-
fillment

SELECT [...] SUM(DeliveredQuantity), (SELECT
SUM(OrderQuantity) FROM SalesItem, SalesHeader WHERE
[...]) AS Expected FROM SalesHeader AS sdh, SalesItem,
ShippingHeader AS sh, ShippingItem WHERE sh.DeliveryDate
¡= sdh.DeliveryDate AND [...] GROUP BY [...] ORDER BY
DeliveredQuantity DESC;

Days Sales
Outstand-
ing

SELECT [...], (1 - SUM(Amount) / (SELECT SUM(NetValue
+ TaxAmount) FROM BillingHeader WHERE [...])*91 AS DSO
FROM AccountingItem, BillingHeader WHERE ClearingDate
<> “” AND AccountType = “Debitor” AND [...] GROUP BY
Currency ORDER BY DSO DESC;

3.2 Normalization Variants of the 1NF Schema

Figures 4 and 5 illustrate schema variations to optimize the performance of
OLAP operations by avoiding the joins. Through pre-joining the tables, that is
denormalization, the level of redundancy within the data set is increased. This
adds effort for the OLTP operations that insert data.

To assess the impact of normalization for the specific OLAP operations the
tables are denormalized as follows: In Figure 4 header and item tables are joined,
because header and item information is mostly requested in combination by the
OLAP operations. From a business perspective the data about the line items of
an order is never queried without accessing the order header. Even in contexts
where top n sold products are analyzed the header information is necessary to
provide the time dimension, as such queries always reference a certain time
frame, such as last quarter. This schema variant will be called Document in the
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following because it provides the join between header and item information as
would be reflected in a complete order document.

The schema variant in Figure 5 further increases the level of denormaliza-
tion by joining together the sales and delivery information on one hand and the
billing and accounting entities on the other hand. Thus, joins between trans-
actional data tables can be completely avoided in the OLAP operations. This
schema variant resembles a star schema with shared dimension tables and will be
called Denormalized in the following. It represents the maximum level of denor-
malization that fits the set of OLAP operations given in CBTR. No changes
are applied to the master data, therefore only stubs are depicted that rep-
resent the same master data tables and relations between them as shown in
Figure 3.

According to the changes in the tables the actions needed to be adapted.
This means for the OLAP queries and read-only OLTP transactions mainly ex-
changing the tables to be accessed and removing joins for the Document and
Denormalized schemas. Insert OLTP transactions become bulkier with a higher
degree of denormalization. For example, new sales order transactions insert one
sales order header line and one or more sales order item lines into the tables
depending on the number of items ordered. In the Document schema, the sin-
gle header insert is removed, instead the header data is inserted together with
each line item, redundantly storing the information of the sales order header.
Besides increased storage space consumption additional complexity is intro-
duced to updates of header information as multiple line item tuples have to be
updated.
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4 Case Study

In this section we present the setup and the results of our normalization case
study.

4.1 Setup

We analyzed the behavior of four databases of the following configuration:

1. in-memory column-oriented data storage
2. disk-based column-oriented storage (System A)
3. disk-based column-oriented storage (System B)
4. disk-based row-oriented storage

For our workload we simulated 100 concurrently running clients that fire requests
to the database in parallel. Each client upon receiving the answer for its request,
immediately fires the next query. Thus, clients do not simulate any thinking time
between requests. The OLTP and OLAP workload mix is controlled via the share
of client types within the set of the 100 clients. Clients can be of type OLAP and
OLTP, with OLAP clients sending only OLAP requests to the database, OLTP
clients behave respectively. OLTP clients execute either read-only (rOLTP) or
modifying statements (wOLTP) each with a share of approximately 50%. For
example, in the workload (OLTP,OLAP) = (80,20) the share of workload types
is (wOLTP,rOLTP,OLAP) = (40%, 40%, 20%).

For each database, nine workload configurations (OLTP,OLAP) ∈ ((100,0),
(80,20), (75,25), (60,40), (50,50), (40,60), ...,(0,100)) were tested for the above
introduced three schema variants (1NF, Document, and Denormalized).

4.2 Results

The results of our experiments are shown in Figure 6. Each row depicts the
results for one database. The workload configuration is shown on the x-axis1,
and the schema variants are depicted as series. The average response time is
depicted for each workload type on a scale, which is normalized per database
for easier comparison of the schemas for one database. For better comparison of
those schema variants with very fast response times, some graphs are magnified.

From the tests we can see that independent of the the database the perfor-
mance of some schemas varies when the workload mix is changed, particularly
in the cases of the read-only statements. Especially in the OLAP cases, increas-
ing response times are an indicator for the system becoming clogged with too
many requests touching large datasets and being processed independent of each
other’s context. In the memory-column case we can observe that response times
are decreasing with increasing OLAP workload for the Denormalized schema.

1 For better readability in some graphs the axis description is omitted. The x-axes
are the same for all graphs of a workload type and the y-axes are the same for all
non-magnified graphs. Thus, axis descriptions on the bottom/left are applicable.
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Fig. 6. Database Schema Performance for Varying Database Implementations and
Workloads

This shows the impact of reusing intermediate results. As requests concentrate
on few tables in the Denormalized schema, the probability of reusing existing
results increases.

Depending on the workload, the schema which allows top performance differs.
As was expected, for example, for the OLAP cases, the pre-joined schemas are
advantageous, except in the case of the memory-column database, which is the
only system tested that is being developed for a mixed workload. Here we can
see, that 1NF as the schema with the highest degree of normalization tested, is
the top candidate for all workload types. Thus, Date’s view on normalization
mentioned in Section 2.5 is enforced, which emphasizes denormalization as a
strategy to be used for performance improvement as the last resort.

Depending on the database, different schemas allow top performance. In the
disk-row case, we can see that for OLTP 1NF offers the best query performance
closely followed by the Document schema. However, for OLAP the 1NF schema
performs increasingly worse than Document or Denormalized with greater num-
bers of OLAP clients running concurrently. The conclusion for this database
would be to use the Document schema as it achieves the best response times
for all workload types. Taking a look at the results for the disk-column (a) da-
tabase, the same conclusion in favor of the Document schema can be drawn.
The average response times of the schemas for the disk-column (a) database are
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lowest for 1NF for OLTP, but clearly not for OLAP. Since 1NF is in favor for
OLTP, but not in the OLAP case, a decision in favor of the Document schema
would be made, which is close to the optimum for OLTP, is the optimum in the
OLAP case, and performs much better for the OLAP queries compared with
1NF. For the disk-column (b) database making a decision between Document
and Denormalized is hard without further knowledge of priorities and workload
specifications. Only in the case of the memory-column database, one schema,
i.e., 1NF outperforms all other variants regardless of the workload type.

5 Conclusion

The increasing need of up-to-date and detailed data for enterprise analytical
processing and strategic decision making counteracts the current separation of
OLTP and OLAP into two separate domains. Drawing them back into one do-
main, however, requires new system architectures that are able to mediate be-
tween the conflicting demands of OLTP and OLAP. The resulting new domain
of a combined workload requires benchmarking activities to evolve in order to
accompany and drive the further development of database systems and they
need more effort than just extending existing benchmarks, as workload mix as
a new parameter is brought into play.

Next, the question of database design has to be answered. Efforts so far are
focused on OLTP or OLAP and mainly on optimizing physical database de-
sign using indexes, partitioning, clustering or views. Another aspect, however,
is added when uniting OLTP and OLAP, which is their difference on the logi-
cal database design layer. Normalization is the main distinguishing factor when
comparing typical OLTP and OLAP database designs. To our knowledge no
study exists on the variation of database designs on the logical level under a
mixed OLTP and OLAP workload. Therefore, we measured the impact of logi-
cal database design with the focus on normalization on various workload mixes.
We analyzed four databases: one mainly used in the OLTP domain, two from
the OLAP domain and one designed to handle mixed workloads and found that
only for the database developed for a mixed workload one schema is optimal for
all workload types under all tested workload mixes, which is the one with the
highest degree of normalization. Thus, denormalization as the highly disputed
weapon of last resort for performance improvement is not required.

Normalization is only one dimension of logical schema variation as mentioned
in Section 3. More redundant data can be observed in real enterprise data mod-
els, i.e. materialized aggregates. In future work the impact of removing these and
computing them on-the-fly will be analyzed. Further future work includes the
consideration of basic service levels for operations, e.g., 99% of all billing inser-
tion OLTP operations should have a response time of less than 5ms. With a set
of such rules and priorities the database design could be adapted automatically.
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Abstract. Complex Event Processing (CEP) or stream data processing are 
becoming increasingly popular as the platform underlying event-driven 
solutions and applications in industries such as financial services, oil & gas, 
smart grids, health care, and IT monitoring. Satisfactory performance is crucial 
for any solution across these industries. Typically, performance of CEP engines 
is measured as (1) data rate, i.e., number of input events processed per second, 
and (2) latency, which denotes the time it takes for the result (output events) to 
emerge from the system after the business event (input event) happened. While 
data rates are typically easy to measure by capturing the numbers of input 
events over time, latency is less well defined. As it turns out, a definition 
becomes particularly challenging in the presence of data arriving out of order. 
That means that the order in which events arrive at the system is different from 
the order of their timestamps. Many important distributed scenarios need to deal 
with out-of-order arrival because communication delays easily introduce 
disorder.  

With out-of-order arrival, a CEP system cannot produce final answers as 
events arrive. Instead, time first needs to progress enough in the overall system 
before correct results can be produced. This introduces additional latency 
beyond the time it takes the system to perform the processing of the events. We 
denote the former as information latency and the latter as system latency. This 
paper discusses both types of latency in detail and defines them formally 
without depending on particular semantics of the CEP query plans. In addition, 
the paper suggests incorporating these definitions as metrics into the 
benchmarks that are being used to assess and compare CEP systems. 

Keywords: Complex Event Processing, CEP, Performance Evaluation, 
Benchmark Definition, Data Rate, Latency, System Latency, Information 
Latency. 

1 Introduction 

Many application scenarios today rely on complex event processing (CEP) for event-
driven near real-time analytics of data that are typically digitally born. Such 
application scenarios include web click analysis for more targeted online 
advertisement delivery [1], smart grid monitoring to balance power grids and avoid 
power outages [2, 3], or monitoring of financial markets in near real-time for trading 
opportunities and regulatory compliance.  
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CEP Systems. Complex event processing systems typically receive continuous input 
in the form of events from underlying data sources. The processing of the input is 
performed by so-called standing queries that continuously and incrementally produce 
output as new input events arrive.  

CEP system vendors and practitioners currently face the challenge how to validate 
that their CEP systems satisfy the performance requirements of the application. 
Besides the input data rate that captures system throughput in terms of input events 
processed per second, latency is a key performance metric for any near real-time 
system. Latency describes the time it takes for results to emerge after their 
corresponding input events have arrived at the system. Depending on the application 
scenario, users care about worst case latency, average latency or different quantiles of 
latency.  

Contributions. This paper takes a fresh look at latency and the different components 
that contribute to latency in CEP systems. An important distinction here is between 
system latency and information latency. System latency is well understood and it is 
easy to explain as the delays that are introduced by the processing of the events, i.e., 
the time it takes a CEP system to do its work. Information latency in turn is a 
component of latency that has received little attention so far. Information latency is 
caused by delays that the CEP system spends waiting for additional input. An 
important example is out of order arrival of events where a CEP system may need to 
wait for late coming input events before it can proceed with its processing and 
produce a final result set [9, 19]. In this paper, we discuss definitions of information 
latency and introduce ways how to measure and compare information latency between 
different CEP systems. We propose to include information latency comparisons into 
the existing benchmark metrics used to compare CEP system performance.  

2 Related Work 

Efficient processing of events has been an important topic for research in data 
processing and middleware systems. Database research for instance has developed 
benchmarks such as BEAST (BEnchmark for Active database SysTems) to assess and 
compare performance of active database systems [24]. A popular benchmark for 
message-oriented middleware is SPECjms2007 defined by the Standard Performance 
Evaluation Corporation (SPEC) [25]. Workload parameters such as message or event 
rate in these benchmarks are closely related to data rate with CEP systems.  

Current benchmarking efforts for CEP, however, rely on both data rate and latency 
as performance metrics. Most benchmark workloads so far have focused on specific 
industries. For instance, the set of benchmarks developed by the Securities 
Technology Analysis Center (STAC) provides a compelling set of performance 
metrics and workloads for use cases in financial services [4]. The linear road 
benchmark in turn is a popular workload focused on the traffic and transportation 
verticals [17]. Prior work in research on data stream processing in turn has focused on 
defining key performance metrics, making them measurable with low overhead and 
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providing a feedback loop to the CEP system to continuously adapt and improve 
performance [5, 6, 7, 8, 18].  

The challenges arising from out-of-order arrival of messages have been researched 
in earlier work on time management in distributed simulation systems [21]. Similar to 
CEP systems such as [9, 14, 19], optimistic time management in distributed 
simulation aims to proceed with the simulation without blocking. Although this may 
lead to incorrect intermediate results, it reduces latency since the computation does 
not stall waiting for additional input. Approaches such as Time Warp eventually 
produce the correct result by rolling back incorrect intermediate results and replacing 
them with the correct ones [22]. 

3 Complex Event Processing Systems 

This section provides a brief overview of CEP systems and some of their underlying 
concepts.  

CEP systems process events. Processing events means consuming and producing 
events from the input and on the output of the system, respectively. An event is 
typically characterized by a time stamp and a payload. The event thus indicates that 
the payload has been observed at the point in time denoted in the time stamp. Note 
that this separates application time – the time that the events carry – from system time 
– the time at which events arrive at the CEP system [9, 14]. Some systems also allow 
for events with a start and an end time stamp besides the payload, e.g. [9]. In this 
case, the time span between the start and end time stamp indicates the duration during 
which the corresponding payload is valid. 

When new events become available, CEP systems then apply processing logic to 
the new input events as described by the CEP application. Depending on the 
underlying CEP system, application developers can implement the processing with 
rules, e.g. [10], pattern languages or declarative relationally-influenced operations [9, 
11, 12, 20]. An important ingredient across different CEP systems is their ability to 
express temporal processing that relates to the time stamps attached to the events. 
Time windows for example accumulate events over time and then perform an 
operation such as an aggregate over event payloads within each window incarnation. 

Events arrive at a CEP system as streams. A stream denotes a potentially infinite 
sequence of events. A stream is characterized by the shapes of events that it produces, 
the timestamps and payloads that the events carry and the order in which the events 
arrive from the stream at the CEP system. A particularly challenging situation for 
CEP systems is what we call out-of-order arrival [19]. With out-of-order arrival, the 
sequence in which events arrive is different from the order of their time stamps. 

Out-of-order arrival makes it difficult to produce final results as the CEP system 
has to ensure that no more events will arrive subsequently that impact a result that the 
CEP system is about to output. CEP systems therefore introduce the concept of 
advancement of time, heartbeat or punctuation which indicate that time has 
progressed to a certain point and no more events before that point will arrive [9, 14, 
19]. CEP systems with out-of-order arrival need to advance time regularly to finalize 
results.  
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4 Performance Requirements 

Many real-world scenarios for event processing are characterized by multiple assets 
that are instrumented to produce event data which in turn is sent to a CEP system for 
analysis. Examples for assets are pieces of equipment such as a transformer in an 
electric power grid, users browsing the web generating click-stream data, or stocks 
traded at a stock exchange from which we receive a ticker feed. We denote assets that 
produce event data as data sources. The data source emits events as a potentially 
infinite sequence over time.  

With regard to its data sources, various parameters characterize a CEP deployment: 

• Number of data sources: How many data sources are connected? 
• Event rate per data source: How many events does a data source generate? 
• Event size: How large are the events? 

The combination of these parameters defines the aggregate input load or input data 
rate of the CEP system. Depending on the scenario, the aggregate input load may 
fluctuate over time. Solutions based on CEP systems need to be able to scale to the 
required input loads. This indicates one dimension of performance analysis for CEP 
systems that we will discuss in more detail below when introducing performance 
metrics. 

While CEP-based solutions need to be able to process the input from the data 
sources, they also need to deliver results to the users in a timely fashion. This 
requirement is typically measured by the time span between an input event arriving at 
the CEP system and its corresponding result events emerging in the output. This time 
span is denoted as latency. Real-world scenarios employ various techniques to keep 
latency small: 

• Reduce delays: Delays can occur in many forms. Communication delays for 
instance may delay events on their way from the data sources to the CEP system. 
This can introduce significant delays for overall results of the system. Think of an 
aggregate computed across all assets monitored by the CEP system. The finalized 
result for such an aggregate requires input from all data sources and has to wait 
until the input events from all sources have arrived at the CEP system. 
Further delays can occur in the CEP system when processing the incoming events. 
A prominent source of such delays is when there are not enough resources (e.g. 
CPU, memory) available and incoming events have to wait until resources free up. 

• Speculation: Besides producing finalized results as discussed above, some CEP 
systems also produce intermediate (“speculative”) results that are not yet final but 
that may already be acted upon by the user [9]. Since the results are speculative the 
CEP system may need to revise them as additional input data is received. 

Depending on the scenario and the vertical, requirements for data rates and latency 
vary:  

• Manufacturing: Monitoring a complex production process with different pieces of 
equipment typically requires processing more than 10,000 input events per second. 
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• Oil and gas: In proof of concepts with our oil & gas customers, we had to 
demonstrate that the system can handle more than 100,000 input events per second 
[23].  

• Power utilities: In smart grid scenarios, households install smart meters that 
produce meter readings with power consumption information every couple of 
seconds. For large power utilities with millions of households, the aggregate data 
rate on the input to the CEP system can easily reach 100,000 events per second. 
We expect this number to grow as power utilities want to react more quickly to 
changes in demand and grid stability. 

Besides data rates, smart grid scenarios also have strict latency requirements. 
Phasor measurement use cases for instance target end-to-end delays to be smaller 
than a few seconds. During that time, the system has to aggregate and analyze 
events from geographically distributed phasor management units where each unit 
produces an event up to 60 times a second [2].  

• Finance: Finance scenarios present challenging requirement for both data rate and 
latency for CEP systems. For instance, subscribing to the full OPRA feed from the 
Options Price Reporting Authority generated about a million messages per second 
in 2008 and the data rate of the OPRA feed has been increasing since [13]. Trading 
scenarios usually require latency to be less than a millisecond. For high frequency 
trading, latency requirements are in the tens of microseconds and tend to become 
increasingly stricter as hardware and software advance.  

• IT monitoring: Monitoring computer systems can also lead to challenging event 
rates depending on the level of instrumentation of the systems. With Event Tracing 
for Windows (ETW), event categories such as context switches on the processor 
can reach above 100k events per second on each computer with ETW turned on. 

Data rates and event sizes are easy to measure and compare. We will revisit those in 
Section 6 when defining benchmarking metrics, and now focus on latency in the 
following section.  

5 Latency 

In Section 4, we identified low latency as a key requirement for CEP systems. Latency 
was characterized as the delay that events experience on their way from the data source 
to the consumer of the results of the CEP system. To design performance metrics and 
benchmarks for CEP systems, it helps to understand the different ways in which CEP 
systems can introduce additional and sometimes even unnecessary delays. Latency in 
CEP systems consists of two components: (1) system latency, and (2) information 
latency. The following paragraphs discuss both kinds of latency in more detail.  

5.1 System Latency 

One obvious cause for delays is the processing that is required to produce results from 
the CEP system. For instance, it takes CPU resources (and time) to perform an 
aggregation over thousands of input events. We denote the delays that are caused by 
the activity in the CEP system to process events as system latency.  
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5.2 Information Latency 

Different kinds of delays though are caused by the CEP system waiting for input. 
Think for instance of an aggregation that computes average temperature across 
several temperature sensors over a certain period of time. In order to compute the 
aggregate, the CEP system needs to receive the input events from all the participating 
sensors. In addition, it also needs to receive the information that no more sensor 
readings are expected from any of the participating sensors before the CEP system 
can produce a final result of the aggregate. In more general terms, these delays are 
characterized by the CEP system waiting for additional data before proceeding. As in 
the example with the temperature sensors, the additional data can be events or 
information about the advancement of time from the data sources. We call the delays 
caused by waiting as information latency.  

The example above illustrates information latency that is introduced between the 
data sources and the CEP system. However, these delays can also be introduced 
between other components of the CEP solution. If the CEP system is following the 
popular data flow engine architecture, any component within the CEP system can 
cause information latency based on its semantics and implementation. While the first 
kind of information latency is caused by components external to the CEP system, we 
particularly want to understand, measure and improve the second kind where the 
latency is introduced by the CEP system.  

Hopping Window Example. Consider a CEP query with a hopping window that 
accumulates incoming events in windows and outputs aggregates over the event 
payloads in the window as time progresses. Events arrive over time and can arrive out 
of order as Fig. 1 shows. 

 

Fig. 1. Hopping Window Query 

In the figure, the numbers in the subscript of the events indicate arrival order while 
their position over the time axis denotes their application time stamp, i.e., the time 
stamps that the events carry. As the figure shows, event 4 arrives out of order: event 3 
with a higher time stamp has been received before event 4. To accommodate late 
events (i.e. out of order arrival), data sources communicate the advancement of time 
with the heartbeats shown in the figure. Heartbeat t1 in the figure, for instance, 
advances time to t1, indicating all events prior to t1 have arrived. With heartbeats 
trailing the arrival of events, this provides slack to allow for late comers. In the figure, 
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for ease of presentation, a heartbeat collectively advances application time for all data 
sources. Having received a heartbeat for time t, the CEP system can now finalize all 
output up to t since it is guaranteed that no events with time stamps before t can arrive 
and no revisions to the results are needed for everything that ends before t.  One 
would therefore expect that a CEP system running a hopping query like the one in the 
figure would produce the output for Hopping window 1 once it has received the 
heartbeat for t2. Earlier versions of Microsoft StreamInsight however had to delay the 
result for a hopping window until a heartbeat beyond the following window 
incarnation had been received. For instance, the results for Hopping window 1 in the 
figure was delayed until a heartbeat like the one at t3 after Hopping window 2 had 
been received. The reasons for this behavior were rooted in the algebraic 
underpinnings of StreamInsight. In this case, the result was held back to allow for 
expansions of the window result events although expansions could not possible occur 
with that query shape. While a detailed discussion of the algebraic causes of the 
behavior is beyond the scope of this current paper, they significantly increased 
information latency for this type of CEP queries and put customers at a disadvantage 
when they wanted to react to the query result as soon as possible. 

Event Horizons. 
In the above example, a combination of issues led to an unnecessary increase in 
information latency that delayed results longer than justified by the shape of the query 
and the nature of the input events. Information latency issues caused by the 
implementation of a CEP system are difficult to reason about because they require a 
deep understanding of the system implementation and the semantics of the query 
given a particular input. In order to make information latency more tractable, consider 
Fig. 2 with a pivoted representation of the event input from Fig. 1.   

 

Fig. 2. Event Horizon: Progression of application time water mark for the events in Fig. 1 
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The figure shows events in their arrival order over the system time axis. This 
defines the event history as the sequence in which events arrive over system time. The 
application time axis in turn plots the application time of the events (or sync time for 
systems with bi-temporal semantics or speculation [9, 14]).  

The figure now shows a water mark as the dashed line that follows the events and 
their timestamps. More formally, at any given point in the event history, the water 
mark at that point is the maximum application time that is smaller or equal to any 
application time of events that arrive later in the event history. Intuitively, the water 
mark indicates the event horizon or the most aggressive way that application time can 
advance for a CEP system provided full knowledge about the event history, including 
all future events. In other words, any input event arriving at system time st has an 
application time stamp t on or above the water mark at st. Note that event evt3 lies 
above the water mark line since it arrived out of order and the event horizon still has 
to accommodate event evt4 with a smaller time stamp.  

Minimizing Information Latency. 
Having defined the event horizon with the application time water mark now allows us 
to reason about information latency and to compare results with regard to information 
latency. Recall that the event horizon indicates the most aggressive way how 
application time can advance given complete knowledge of the full event history, i.e., 
full knowledge of all past and future events and their time stamps.  

 

Fig. 3. Prefixes of the Output Event History 
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To compare information latency between systems, the transition points in the event 
horizon are particularly interesting. The transition points are the points where the 
water mark line in Fig. 2 moves up. A CEP system that has complete knowledge 
about how time at the data sources will advance can use these transition points to 
produce output. As transition points occur along the sequence of input events, this 
defines a sequence of prefixes of the result history. More formally, the prefix of the 
result history or result history prefix for a given transition point tp in the input history 
is the set of result (or output) events produced by a CEP system that has only been 
provided with input events up to and including the transition point in the input.  

Fig. 3 illustrates the sequence of transitions points and their corresponding result 
history prefixes for the input event history in Fig. 2. Note how transition points 
coincide with the places in the physical input sequence where the event horizon edges 
up. As the figure shows, prefixes are overlapping such that a given prefix includes the 
results of all previous prefixes, i.e., its prefixes “to the left” in the figure.  

We are now ready to define how to compare and minimize information latency. 
Given the complete event input history, the definition relies on (1) the full result set of 
output events over the input history and on (2) the sequence of result history prefixes 
for all the transition points in the input history. A CEP system exhibits minimum 
information latency if at each transition point its result history prefix for the transition 
point is maximal with regard to the full result history.  

Comparing Information Latency. 
Following from this definition, a theoretical lower bound on information latency is a 
system that reliably predicts all input events and can provide the full result at the first 
transition point in the event history without consuming the full input. Practical CEP 
system implementations however produce results over time as events arrive. They do 
not know about future events. Therefore, we can compare their information latency 
properties by comparing their result history prefixes.  

Intuitively, a CEP system has lower (better) information latency if the system 
produces larger prefixes early on in the output sequence. We can formalize this with 
the following definition.  

Information Latency Comparison: Given a CEP query Q and two CEP systems S1 
and S2 with identical result event histories for Q. System S1 has lower (better) 
information latency if none of S1’s prefixes is smaller than the corresponding prefix 
from S2 and at least one of S1’s prefixes is larger than the corresponding prefix in 
S2’s result history. 

Fig. 4 illustrates comparing of information latencies for our running example with 
the hopping window query in Fig. 1. As the figure shows, we are comparing CEP 
System 1 against CEP System 2. With CEP System 1, prefix 3 already produces the 
result for Hopping window 1 while it takes until prefix 5 for CEP System 2 to produce 
the result for the same hopping window. Hence, with CEP System 2, users have to 
wait longer to see results for Hopping window 1. 
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Fig. 4. Comparing information latency between CEP systems 

The following sections will use this observation to define metrics for 
benchmarking CEP systems based on their information latency. 

6 Metrics for CEP System Benchmarking 

CEP solutions across different verticals do not necessarily put the same emphasis on 
all dimensions of CEP performance. CEP in financial services scenarios such as high 
frequency trading for instance favor low latency. End-of-day billing for smart grids in 
turn has stricter demands on throughput. Vendors with platform CEP offerings that 
target different industries therefore have to cater to the different demands in a single 
implementation while vendors with specific CEP solutions can optimize for the 
demands of their solution and vertical.  

The following definitions aim to provide metrics that allow both assessing CEP 
systems along a single dimension and combinations of the metrics to asses overall 
performance of CEP systems. 

6.1 Single Dimension Metrics 

Input Data Rate. Data rate is expressed by the number of aggregate input events 
arriving at the CEP system per second. With varying data rates on the input, both 
average data rate and maximum data rate are important metrics that are also easy to 
capture. Note that the input data rate also constitutes a compelling dimension to 
define different scale factors for CEP benchmarks. 
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Input Event Size. Event sizes are described in terms of bytes per event. With varying 
event sizes both average event size and maximum event size are meaningful metrics 
and easy to measure. 

System Latency. As discussed in [5], system latency can easily be measured by 
adding stimulus time, i.e., wall clock event arrival time, as an additional payload field 
to incoming events. Stimulus times are updated while events flow through the 
processing in the CEP system [5]: the new stimulus time of an event produced by an 
operation in the system is the maximum time stamp across all source events in its 
lineage [15]. Latency for a given event is the difference between its stimulus time and 
current wall clock time. Note, however, that this latency only includes system latency. 
In particular for system latency, quantiles are also meaningful. Ideally, a scatter plot 
of events output and corresponding latency is provided as part of the disclosure 
report.  

Fig. 5 illustrates a scatter plot of event latencies taken from performance tests 
during the development of Microsoft StreamInsight. The figure shows that sometimes 
it is beneficial to track latencies for individual events. In this case, most events took 
between 100 and 200 microseconds to process. Some events however had surprisingly 
large latencies. As the figure shows, a few events took about one millisecond to 
process while some events took even a few hundred milliseconds. For a financial 
services scenario, these latencies could have exposed a trading strategy to significant 
risk for a long time in the market. Scatter plots help to identify outliers and 
understand the root causes for them and improve systems accordingly. 

 
Fig. 5. Scatter plots of latency: (a) linear scale, (b) log scale 

Information Latency. As discussed in Section 5, information latency can be 
measured by how much a given result deviates from the theoretical optimum where 
all results are produced at the first transition point. Let j be the number of transition 
points in a given input event history with a total of n result events in the output 
history. With the theoretical optimum, each prefix has exactly n events since the first 
prefix already outputs the full result.  

Now let ki denote the size of the result history prefix produced by the system under 
test for transition point i. We then define information latency as the following ratio 
between the optimal result prefixes and the prefixes from the system under test: 
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Information Latency  1 11 1 1 1 · 1  

Since ki ≤ n for all i, information latency is between 0 and 1. The optimal case is an 
information latency of 0 where all ki equal n.  

To benchmark systems using information latency, we need a practical way to 
compute result history prefixes. Assuming that we record the input event history, this 
can be done by the following simple iterative process over the input history prefixes 
defined by the transition points of the history: 

For all transition points tpi in the input event history with i ranging from 1 to j, 
perform the following steps: 

• Replay the event input from the beginning of the input event history up to tpi. 
• Advance application time on the input up to the event horizon defined by tpi. 
• Wait for the CEP system to drain all result events. 
• The set of result events collected for tpi constitutes the prefix for tpi. 

6.2 Combined Metrics 

While individual results for the performance dimensions discussed in the previous 
section are of interest, benchmarks typically aggregate those into a single metric that 
can then be related to price. For CEP systems, worst case and average performance 
over a given run for a system under test are important. Based on our previous 
definitions of data rate, event size, system latency and information latency, we define 
combined metrics for worst case and average case performance as follows: 

  · ·   · ·  

 

Note how improvements to information latency, i.e., decreasing information latency, 
in the definitions above help improve overall system performance. Besides the 
metrics for worst case and average case performance shown here, similar metrics for 
different quantiles can be defined along the same lines. 

6.3 Pricing  

More or better hardware will typically lead to better performance regarding both data 
rates and latency. For instance, faster and more processor cores will lead to lower 
system latency. More memory in turn will allow the system to accommodate larger 
event sizes. However, hardware improvements will obviously also make the system 
more expensive. As it is common practice with the benchmarks of the TPC, any of the 
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metrics discussed above can be weighed by the price of the system under test to 
define a performance per price metric as for instance in the TPC-H benchmark [16]. 

7 Conclusions and Outlook 

CEP performance so far focused on data rates and system latency. Information latency 
in turn has received much less attention. For CEP systems that allow for out-of-order 
arrival of events, however, information latency constitutes a critical component of 
overall system performance. As we have shown in this paper, sub-optimal 
performance due to unnecessary information latency can lead to significant delays of 
output which causes customer frustration as end users unnecessarily have to wait for 
their results.  

To address these shortcomings, this paper presented a framework that allows CEP 
system vendors to assess system performance with regard to data rate and latency – 
the key performance metrics for CEP systems. As opposed to previous approaches, 
our definition of latency includes both system and information latency into the overall 
performance assessment. A key contribution from this paper is a practical framework 
that allows CEP vendors to assess and compare their products based on information 
latency. The framework proposed in this paper builds on the experiences of the 
StreamInsight product group to improve information latency for Microsoft 
StreamInsight.  

While performance evaluation and benchmarking of CEP systems are not new, we 
are not aware of any other efforts to include information latency into these 
evaluations. However, information latency is a key component of the user experience 
for a CEP system which the industry needs to incorporate into the performance tuning 
and benchmarking practice for complex event processing. We look forward to 
working with other CEP vendors to augment existing and new benchmarks by 
including information latency metrics. 
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thanks to Anton Kirilov for helpful comments on earlier versions of this paper. 
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Abstract. Recent advances in Cloud Computing present challenges to those 
who create and manage performance benchmarks. A performance benchmark 
tends to rely on physical consistency – a known hardware configuration, a 
known software configuration and consistent measurements from run to run. 
These aspects are not typically present in Cloud Computing. Other aspects 
change, too. For the consumer, the computation of Total Cost of Ownership 
shifts to a computation of ongoing expense. Concepts of service and reliability 
also change from the end-user perspective.  

For an organization like the Transaction Processing Performance Council, 
the expansion of clouds into the commercial, run-your-business space presents 
new challenges that must be addressed if viable benchmarks are to be created in 
this important sector of the computing industry. This paper explores these 
challenges and proposes methods for addressing them.  

Keywords: Cloud Computing, Price/Performance, TCO, Total Cost of 
Ownership, Benchmark, TPC. 

1 Introduction 

Before one creates a benchmark to measure performance of a cloud, it might be 
reasonable to ask the question “Just what is cloud computing?” The first answer might 
be “Cloud computing is the use of shared resources that are physically outside of your 
control to accomplish your work. You are allocated a specific amount of resource 
from the larger pool of resources available and your work is tracked to see how much 
resource you actually use.”  

This answer appears to be very reasonable, until the questioner responds,  

• “How is that different from when, in 1974 I submitted my deck of cards to 
the operations desk for the University of Wisconsin Univac 1108, knowing 
that I had to complete my assignments within a specific allocation of 
compute time?”  

• Or perhaps the reply would be “How does that differ from the Service 
Bureau I worked for in the early 80’s, where the business rented a mainframe 
and customers would contract for time to run their weekly inventory control 
jobs?”  
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• Or perhaps the reply question would be “How does that differ from the 
PROFS application that I ran in the late ‘80s from my 3270 display running a 
VM on the System390, appearing as if I had a private computer but being 
fully aware that I was sharing resources with hundreds of others running 
similar applications?”  

• Or perhaps, “How does that differ from the concepts of ‘The Grid’ that I 
heard about a decade ago, where computing resources would be treated the 
same way that electrical and telephone technologies are, with users unaware 
of where their actual compute resources are located, but know that they will 
be billed on the basis of the amount of resources that they consume?”  

• Or the simple question might be “Isn’t that the same as what we use the web 
for?” 

To all of these questions, the answer is “All of these concepts are embodied in cloud 
computing.” Cloud computing might be considered to be the natural progression of 
technology that enables end users or even whole corporations to apply shared 
resources for dedicated purposes. Perhaps what differentiates cloud computing from 
prior shared resource solutions is that the progression of technology in hardware, 
firmware and software enables the shared resources to be distant, reapportioned on the 
fly and migrated from physical resource to physical resource – in ways that are 
transparent to the actual user and using methods that are stable enough that the option 
is viewed as a cost-effective alternative to the use of dedicated resources to 
accomplish computing tasks.  

For performance benchmarks, the growing importance of 
cloud computing poses some difficult challenges. Most 
performance benchmarks focus on determining, for some 
business model, the capacity of a whole system to accomplish 
work. In the cloud, what is important is the capability of a 
fractional subsystem to accomplish work. 
Traditional performance benchmarks often 
have a set of functional criteria that must be 
satisfied to qualify for benchmark 
publication, including such things as the 
ACID properties used to define transactional 
integrity requirements for TPC benchmarks. 
These qualities are important in cloud 

environments, but are often defined in different terms. Particular to 
the TPC, the benchmarks assume the price quoted is for the 
complete purchase of all hardware and all software licenses, with maintenance 
payments over some period of time. Although this could apply to private clouds, in 
public clouds the concept of making an initial capital investment is in direct contrast 
to the cloud model.  

Of course, for all benchmarks it is important to establish a business model for 
which the benchmark will be targeted. One could no more say “I’m going to create a 
benchmark to represent all cloud computing” than “I’m going to create a benchmark 
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to represent all multiprocessor computing”.  It must be clear that the benchmark is 
addressing only a specific slice of the overall cloud computing pie, with a clear 
description of the application or computing model that the benchmark hopes to 
represent.  

This paper will explore 

• The selection process for determining the physical and logical environments 
that can be measured in a cloud-oriented benchmark 

• The requirements for selection of a valid business model and how this may 
differ from a traditional system benchmark 

• The performance aspects that are of particular interest to cloud users, in 
comparison to those of a traditional, dedicated system 

• Features of the benchmark definition that will need to change from those 
currently employed by the TPC, if a TPC benchmark is to represent a cloud 
environment.   

2 Selection of Cloud Subset for a Target Benchmark 

Before designing a benchmark for cloud computing, we must recognize that the space 
that is “cloud” is massive, and that the benchmark cannot be expected to cover the 
entire space. Furthermore, there are some areas where performance is a critical 
component of the compute model and others where it is not. Finally, there are some 
practical limitations to what can and cannot be included in a general purpose 
benchmark.  

Consider, first, the three primary delivery models services provided by various 
cloud solutions, as defined by NIST and summarized in the reference materials  
[1 - 3]:  

• Software as a Service (SaaS): The entire compute stack is embodied within 
the cloud. What the end-user sees is that they have access to an application, 
where the only thing they control is the information that is to be processed. 
This delivery model is frequently used by individuals for personal needs. 
Many web-based applications such as photo editors, photo sharing systems 
and social media applications can be thought of as SaaS applications. Web-
based tax preparation applications also fit, here. As the industry matures it is 
clearly capable of satisfying general business requirements, as well. 
Certainly, the applications used in a SaaS delivery model could be 
“benchmarked” for specific tasks – to compare one established cloud 
offering with another. A web search for “cloud” and “benchmark” typically 
finds single user tests for this purpose. Such performance characteristics 
could play a big role in the selection of a service to use. However, in a 
general purpose benchmark, the application is an integral part of the 
benchmark and its controls. For this reason, we eliminate SaaS for 
consideration in this paper.  
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• Platform as a Service (PaaS): Here, the application to be executed is 
generally owned and controlled by the consumer of the cloud resources, 
while the rest of the stack is typically owned and controlled by the cloud 
service provider. For example, http services, database services and 
collaborative web application services might be provided by the service 
supplier – as well as the underlying hardware to support them. The consumer 
would purchase or author the actual logic that exercises these services – 
providing a unique web ordering system, or an analysis of consumer habits 
based on application usage. On line services that provide business support 
for cataloguing and charging for consumer web sales is a prominent 
example. Comparing this to a typical TPC benchmark, the benchmark 
application is under the control of the benchmark sponsor, while the delivery 
of hardware, operating system, database and middleware functions are under 
the control of the cloud provider. At first look, this delivery model appears to 
be closest to today’s benchmarks. The “system under test” is comprised of a 
hardware platform, running a particular OS, using a particular database, and 
perhaps also using a particular transaction monitor, Java environment, or 
J2EE provider. The benchmark is the measure of these system components 
under the stress of the benchmark application.  
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• Infrastructure as a Service (IaaS): For corporate consumers that are first 
considering migrating to a cloud solution, this may be the natural choice, 
since they would carry under their own control all of the aspects of the 
application and the application support software or middleware that it 
requires. The business model is similar to outsourcing models of the past 
decade, except that the supplier determines the physical infrastructure in 
return for guarantees in a service level agreement. The operating system, 
physical hardware, and the virtualization and provisioning support needed to 
provide the shared cloud resources are under the control of the cloud 
provider. Although the vocabulary of the PaaS delivery model may appear to 
match a public performance benchmark such as the TPC benchmark, the 
reality of today’s public benchmarks is much closer to IaaS. In today’s 
benchmarks, the hardware configuration, the operating system, and the 
middleware are all tuned explicitly on behalf of the performance of the 
benchmark application, which is more likely to occur in an IaaS delivery 
model than a PaaS one, which must support multiple applications 
simultaneously.  

 
Thus, the target delivery mechanism for a public benchmark for cloud computing 
would appear to be IaaS, but it is also likely that results from such a benchmark would 
be used to promote PaaS solutions. In that regard, consideration should be given to 
defining ways to bring the benchmark definition closer to the PaaS model.  Of course, 
the specific business application must also be taken into account. Some environments 
are more applicable to a shared resource solution, while others are restricted by 
regulation or practical reasons [4]. 

The physical control of the hardware and software components must also be 
considered: Is the environment Public, Private, or a Hybrid? 

 
• Public: The cloud environments that are most highly publicized are those 

that are offered from both large and moderate sized companies as a service to 
individuals and other companies. Delivery of consistently strong 
performance at the contracted level of service is an important aspect of such 
an offering. Considering its growing popularity, it would be ideal if a public 
benchmark could be created to measure performance in a public cloud. There 
are, however, substantial challenges in defining exactly “what” is being 
benchmarked, since the traditional benchmark is run against a specific 
configuration of hardware and software. These difficulties should not 
dissuade the benchmark creators from targeting this environment, but they 
will mean that the benchmark definition will differ in what is controlled, 
what is priced and how various functional properties are guaranteed.  

• Private: A private cloud is more tangible for the “traditional” benchmark 
developer. The complete physical configuration, the software and 
middleware, and the associated tuning of these components are all under the 
control of the owner of the overall system. The challenge, here, is to actually 
represent cloud computing, instead of a more traditional single application 
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benchmark. In today’s public benchmark environment, where test sponsors 
are typically the vendors who would like the public to consider their overall 
solution in purchase decisions, the private cloud environment is a reasonable 
fit.  

• Hybrid: These environments are becoming more and more common, either 
because a consumer wants to have complete control of a part of the resources 
used, such as storage, or because the consumer wants to handle most 
computing needs privately and contract for public resources to meet high 
demand. However, the very term “hybrid” connotes uniqueness, making it a 
difficult environment for a public performance benchmark and a much better 
candidate for consumer-specific benchmarks to evaluate a particular business 
need. It is conceivable that a consumer could combine a private-cloud-
oriented benchmark with a public-cloud-oriented benchmark to achieve this 
end, but it is the assertion of the author that hybrid environments should not 
be the target of public performance benchmarks.  

To summarize the above, there is a place for benchmarks that target both public and 
private cloud solutions, but the goals of the benchmarks and the nature of what is 
measured and priced will be very different between the two. 

The following table summarizes the key points in this section: 
 
  SaaS PaaS IaaS 

Public 

Individual 
measures possible, 
not recommended 
for public 
benchmark 

Excellent target for 
public benchmark, 
difficult to define 

Reasonable target for 
public benchmark, but 
more limited scope than 
PaaS 

Private 

Typically not 
applicable; not 
recommended for 
public benchmark 

Excellent target for 
public benchmark, 
slightly less difficult 
to define, since there 
is greater control 

Excellent target for 
public benchmark. 
Easiest to define. Still 
some challenges 
compared to traditional 
benchmark. 

Hybrid 

Typically not 
applicable; not 
recommended for 
public benchmark 

Not recommended for 
public benchmark due 
to uniqueness of each 
consumer 
environment 

Not recommended for 
public benchmark due 
to uniqueness of each 
consumer environment 

3 Business Models and Use Cases for Cloud 

The Cloud Computing Use Case Discussion Group [1] has done an excellent job of 
classifying a variety of use cases and the overall functional requirements associated 
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with them. Each use case is discussed here, with regard to how well it might fit within 
a public performance benchmark. 

3.1 End User to Cloud 

This use case is almost always associated with an SaaS delivery model. As mentioned 
in section 2, this is not thought to be a good model for a general purpose public 
benchmark, although individual user benchmarks are already available for some 
applications.  

3.2 Enterprise to Cloud to End User 

In this scenario, the enterprise likely has an application that is targeted to interact with 
multiple consumers and enterprise users to generate business for the enterprise. It fits 
well within either PaaS or IaaS delivery models, and could be a candidate for a public 
cloud benchmark. It would, however, be difficult to measure, since it would require 
the simulation of both external and internal users as drivers of the workload. 
Considering the challenges that would be inherent with the use of a public cloud, this 
may not be the best candidate as a use case for a general cloud performance 
benchmark.  

3.3 Enterprise to Cloud 

Here, the enterprise is essentially outsourcing its internal computing requirements to 
the cloud. While most likely to fit the IaaS delivery model, this use case could also fit 
the PaaS model. It has the advantage that it can fit on either a public cloud or a private 
one. It has the further advantage of being most similar to existing traditional 
benchmarks. Note, however, that there are many more functional requirements to 
support this use case in a public cloud than there are for a private cloud, and more for 
a private cloud than would be required of a single-application server environment. 
Consequently, while this appears to be a candidate for all of these environments, care 
should be taken to make sure that results that cross these environments cannot be 
compared.  

3.4 Enterprise to Cloud to Enterprise 

Supply chain applications are examples of this use case. Often, these applications are 
fully automated, so they can be a reasonable use case for a benchmark that measures 
performance in a public cloud.  

3.5 Private Cloud 

As discussed above, this can be viewed as a subset of the Enterprise to Cloud use 
case. There are fewer functional requirements required to maintain user security and 
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business integrity, since many of these controls are inherent within the confines of the 
enterprise. As such benchmarks in a private cloud should not be compared with public 
cloud environments. It would not be a fair representation to compare the two different 
sets of functional requirements, nor would it be representative to require the private 
cloud to rise to the requirements of the public one.  

3.6 Hybrid Cloud 

This use case is interesting in the number of functional requirements needed to 
maintain integrity when some resources are private and some are public. However, as 
discussed in Section 2, it is difficult to conceiver of a “general purpose” definition for 
a hybrid cloud, so this case is not recommended for the definition of a public 
performance benchmark.  

4 Performance Criteria Important to Cloud Environments 

Performance criteria such as response times and throughput are important in any 
computing environment – or they become important when they fail to meet 
expectations. However, there is much more to “business performance” than the 
measure of transaction response times and overall throughput. This becomes 
particularly important in a cloud environment, where the resources being used are not 
under the direct control of the enterprise and where the physical resources being 
exercised may actually change from day to day, or even moment to moment.  Areas of 
reliability, consistency of service, and the ability to expand and contract allocated 
resources all play a role in the overall business performance that is delivered by the 
solution. These areas are important in a dedicated environment, but become key 
purchase criteria in shared resource environments such as cloud computing.  

The following table is adapted from an IBM article on performance considerations 
for cloud computing [3]. The table was originally used as a list of performance-related 
items that might be included in a Service Level Agreement. The table has been 
adjusted by replacing the columns associated with an SLA with the last column that 
contains comments on the applicability for use as a measure in a general purpose 
performance benchmark.  

 
Service 

Level 

category 

Key Performance Indicator Applicability to a public performance 

benchmark for cloud computing 

Availability Percentage of time that service or system 

is available 

For public clouds, should be stipulated in 

the minimum SLA requirements, with 

transparent or near-transparent fail-over 

for resources in error and guarantee of 

data integrity across the migration  

 MTBF - Mean time between failure Covered above 

 MTTR - Mean time to repair Covered above 
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Performance Response time for composite or atomic 

service 

Particularly important to set strong 

criteria for response times in an 

environment where the physical location 

of compute resources are not known 

 Completion time for a batch or 

background task 

Same as response time, only for long 

running “transactions” 

 Throughput - Number of transactions or 

requests processed per specified unit of 

time 

Takes on new meaning for cloud. 

Assumption is that there is always 

additional resource available to obtain 

more throughput, so the measure is more 

likely to be throughput per unit of 

resource in the SLA 

Capacity Bandwidth of the connection supporting 

a service 

For public clouds, likely a part of the 

price equation, but should also be a part 

of the minimum SLA 

 Processor speed – Clock-speed of a 

processor (CPU) 

Reported in the benchmark and a 

contracted part of an SLA. Perhaps a 

component in the overall throughput 

measure 

 Storage capacity of a temporary or 

persistent storage medium, such as 

RAM, SAN, disk, tape 

Part of price equation and part of an SLA 

Reliability Probability that service or system  is 

working flawlessly over time 

In today’s environment, this should be 

covered by the availability requirement, 

above 

Scalability Degree to which the service or system is 

capable of supporting a defined growth 

scenario 

Although a benchmark may be run on a 

fairly static set of resources, the ability to 

scale to larger resource use or even to 

scale to smaller use is a trend that should 

be included, perhaps even as a dynamic 

part of the benchmark. 

5 Benchmark Requirements for the TPC 

For the Transaction Processing Performance Council, there are some special 
considerations that must be made in the definition of a benchmark that is focused on 
cloud computing. None of these challenges are insurmountable, and the addressing of 
them can produce a much richer benchmark than if they are ignored.  

5.1 Price 

The TPC’s Policies document requires that each TPC benchmark have three primary 
metrics: a performance capacity metric, a price/performance metric, and an  
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availability date. The rules for generating a price to use as the numerator of the 
price/performance metric are defined in the TPC’s Price Specification and the 
associated TPC Benchmark specifications [5 - 8] and can be summarized as follows:  

• Purchase price of the complete hardware configuration  
• Purchase price of licenses for software needed to develop and execute the 

benchmark application 
• Price to maintain the hardware and software for a period of three years 

For price considerations, we find a significant difference between public and private 
cloud solutions. The two pricing models are different enough that it may be difficult 
to achieve comparability between them.  

From a benchmark-ability perspective, there are some advantages to using a private 
cloud model – in that all of the resources are under the control of the benchmark 
sponsor. However, from a price perspective, and also from a benchmark execution 
perspective, the need to demonstrate that the benchmark application is only using a 
fraction of system resources and should only be charged for a fraction of system costs 
will be a significant challenge.  

5.1.1   Pricing Public Cloud Configurations 
Particularly for a public cloud, one of the reasons a consumer opts to contract for 
services is to replace the surge-cost of the purchase of a system that likely has more 
capacity than is typically needed with more cost-effective expense costs of ongoing 
monthly service fees for the cloud resources. Instead of up-front payment of the 
capital equipment costs of the entire configuration, the consumer pays through some 
combination of three methods that are in contrast to the TPC Pricing Specification’s 
requirements:  

• Regular monthly fee for contracted resources, such as X compute cores with 
Y memory and Z storage (“rental” model) 

• Monthly charge for resources used, such as $XX/100GB transfer (“utility” 
model) 

• Fee for specific resource allocation, such as $YY for 25,000 core-seconds of 
compute time (“ prepaid phone” model)  

In addition to replacing the items required in current TPC prices (and depending on 
the service-level-agreement negotiated with the provider), the monthly service fees 
typically include many of the items that are a part of the overall cost of ownership of 
compute resources, but are not included in the TPC’s price requirements [10]. For 
public solutions, key items include (some apply to PaaS but not IaaS delivery 
models):  

• Transparent hardware upgrades   
• Transparent middleware upgrades   
• Database and Middleware administration   
• Operational Support   
• Electricity 
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• Floor space and other building costs 
• Backup and Recovery services 
• Up-time guarantee and associated migration services 

By shifting to a 3-year expense cost model for public cloud environments, instead of a 
purchase + maintenance model, the TPC could accommodate typical cloud pricing 
models and include these key areas of the total cost of computing that are currently 
missing in TPC prices. While there are other aspects of benchmarking in public 
clouds that would be more difficult, this enhancement to pricing requirements could 
be accomplished by specifying the minimum support required in the contracted 
Service Level Agreement to ensure that all items are included.  

5.1.2   Pricing Private Cloud Configurations 
For private cloud configurations, the inclusion of the original TPC price list is 
possible, but it should be altered to reflect the inclusion above list of items that are 
missing from current TPC prices and to reflect the fact that cloud solutions are 
designed to use only a fraction of the total computing power that is available. 
Including the SLA list from above is more difficult for a private cloud than a public 
one. For the public configuration, the supplier has completed their own assessment of 
the collection of costs and has rolled them into the service fee, usually without 
itemization. For the private cloud, an actual consumer would accomplish something 
similar, but benchmark rules for establishing a uniform methodology will be a 
challenge - because it requires some assessment of the cost for administrative and 
operational support, or for building requirements, which are difficult to define and can 
change from locale to locale. However, software upgrade support and electricity can 
certainly be included, as can some requirement for the hardware and software 
necessary to support fail-over and server migration.  

The greater challenge for private cloud configurations is that the price of the 
configuration in TPC terms is for the entire configuration; as if a single application is 
using the entire set of resources. However, the same cost savings that attract 
consumers to public clouds are also what attract them to private ones - -  Individual 
applications do not absorb the entire configuration, so the users of an application get a 
charge-back only for the resources that they consume.  

As a starting point, assume that the total configuration is, on average, used only at 
2/3 of the total resources for all possible applications, to ensure sufficient head room 
for expansion while maintaining appropriate quality of service. Then, a method must 
be devised to assess what fraction of the configuration the benchmark application is 
consuming. The ratio of this fraction to 2/3 can be applied to the system costs to 
derive a benchmark cost. If the total configuration cost is computed using a lease 
model instead of a purchase model, this method can approximate the method 
proposed for public clouds. As with public clouds, it will be important to stipulate a 
minimum set of requirements from the SLA list, above, to ensure that the 
configuration is a “true” cloud.  
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5.2 Availability 

The TPC’s rules for the availability of hardware and software components are also 
defined in the TPC Pricing Specification. Essentially, the requirement is that all 
components required for the benchmark be publicly available for delivery within 185 
days of the publication of the benchmark result.  

For benchmarks that are run on public clouds, the assumption is that the 
availability date is the date of the benchmark execution, since it is using publicly 
contracted resources. For private clouds, the TPC’s existing requirements can stand as 
they are.  

5.3 Energy 

The TPC’s Energy Specification [9] has a set of rules to be followed for generating 
the optional energy metrics for each of the existing TPC benchmarks. The goal is to 
promote these rules to apply to future TPC benchmarks, as well.  

As mentioned in the price section, above, for public clouds, the cost of the energy 
consumed to support the fractional set of resources in the contract is included in the 
overall monthly fee that is charged. Although the host of the public cloud certainly 
has to pay attention to energy consumption, it is not a concern for the consumer and 
one assumes that the host is providing a price quotation that allows the continuation 
of payment of these and other costs. Thus, the measure of energy for a public cloud 
benchmark is likely not required.  

For a private cloud, the measure of energy is achievable and likely very important. 
The challenge is reflective of that described for pricing of private clouds – Assuming 
the benchmark application is measured on a fraction of the total physical resources 
available. How does one determine how much of the overall energy consumption 
should be allocated to the workload? Clearly, the most efficient use of energy is if the 
system is operating at capacity, but if the benchmark application is using the entire 
system, it isn’t really a cloud. Some rule could be established to observe the fraction 
of the total capacity that the benchmark application is using and apply some formula 
to that fraction to arrive at a reasonable energy value.  

5.4 ACID Requirements 

All TPC benchmarks have data integrity requirements for Atomicity, Consistency, 
Isolation and Durability. These requirements can and should stand for cloud 
computing environments, as well – both public and private environments. The nature 
of the individual tests to ensure these properties may need to be altered.  

In the case of Durability, the overall requirement should be altered.  As noted 
earlier, one of the likely requirements for a Service Level Agreement for cloud 
resources is a guarantee of up-time and migration of services to maintain that up-time 
in the event of a failure. Thus, the durability requirement for a cloud computing 
benchmark should not only require that data integrity be maintained after recovery 
from a failure, but that data integrity be maintained while the application environment 
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is migrated to new physical resources to simulate the loss of the original resources. 
The migration time and the relative reduction in throughput during and after the 
migration should be measured and reported as a part of the benchmark metrics.  

5.5 System Capacity and Quality of Service (QOS) 

TPC benchmarks (and most other industry benchmarks) focus on the capacity of a 
total configuration to accomplish work under a particular load. If 100% of the system 
resources are not used to accomplish this, the benchmark sponsor either finds a way to 
increase the load to use 100% or reduces the scope of resources configured so that 
100% are used. Cloud computing is based on the premise that the application will 
never use 100% of the total system resources – but rather a fraction of the total 
resource available.  

While the overall throughput achievable for the contracted resources is an 
important measure, there are other performance criteria listed in Section 4 of this 
article that are also important. Many of them are important in a single-application 
environment, as well, but become more prominent in cloud computing. Some TPC 
benchmarks require running within a maximum response time limit, but these 
requirements are often quite relaxed. In a cloud benchmark, not only the response 
time component of QOS is important, but overall bandwidth, system availability, 
resource migration time, resource-on-demand time, and other aspects discussed in 
section 4 are also important.  

TPC Policies require that there be a performance metric for the benchmark, but do 
not stipulate that it be solely a throughput metric. For cloud computing environments, 
it is reasonable and advisable to include other components of performance in the 
overall performance score of the benchmark.  

6 Summary Points 

Cloud computing is here, and growing. Performance considerations for applications 
within a cloud environment are an important part of the selection and implementation 
of a solution, just as they are with a single-application or single-server environment. 
However, the specific performance criteria for cloud are sometimes different or 
sometimes treated differently than they are in a more traditional, stand-alone 
computing environment.  

Benchmarking in “the cloud” is desirable and achievable, but is not trivial. To 
define a public performance benchmark for cloud computing requires changing from 
a total-system-total-capacity benchmark process to a partial system mind-set in which 
many of the performance measures will be different than they are with a total system 
measure.  

As with any benchmark, it is important to select an appropriate use case, or 
business model to target the benchmark towards, and a delivery model that is germane 
to that business model.  
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Use cases that are most likely associated with a Software as a Service (SaaS ) 
delivery model are more likely the topic of individual user environments and are not 
recommended for more general public performance benchmarks. Use cases that fit the 
Platform as a Service (PaaS) delivery model can be good cases for measures of public 
clouds. Use cases that fit the Infrastructure as a Service (IaaS) delivery model are 
more likely candidates for measures of private clouds. Of the variety of use cases that 
have been defined, the “Enterprise to Cloud” use case is the most likely candidate for 
an initial attempt at creating a cloud benchmark. There are sufficient differences 
between public and private clouds that a benchmark should not attempt to span both.   

For the TPC, the inclusion of cloud computing in benchmark designs will require 
rethinking how performance and price are measured, and the way that these metrics 
are represented to the consumer.  A critical component of any cloud benchmark will 
be the inclusion of minimum service thresholds that will be typical of Service Level 
Agreements that will be established to bring enterprise solutions to the cloud space. 
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Abstract. High-availability is a critical feature to database customers; having a 
way to measure and characterize availability is important for guiding system 
development and evaluating different HA technologies. This paper describes 
extensions to the TPC-E benchmark for availability measurement, including 
HA scenario simulation, fault injection, and availability metric reporting. The 
implementation details and exemplary test results on SQL Server 2008 Data-
base Mirroring are also described. 

Keywords: High-availability measurement, database planned/unplanned down-
time, fault simulation, failover/failback, time-to-recover, TPC-E, benchmark. 

1 Introduction 

High-availability (HA) is required for mission-critical applications to ensure business 
continuity in spite of various failures.  There are many approaches in use today to 
achieve HA, spanning hardware and software, including database solutions that can 
mask hardware and software faults so that service downtime is minimized.  

Microsoft SQL Server has several offerings that improve database availability [1], 
including Failover Clustering, Database Mirroring [2], Log Shipping, and Replication.  
HA continues to be a significant investment area for SQL Server going forward. 

Being able to measure HA performance is critical to drive the engineering work re-
quired to improve HA capabilities. Availability is usually expressed as a percentage 
of uptime over a period of time, for example, 99.999% availability means ~5 minutes 
downtime per year. This is mainly based on observation of a live system over an ex-
tended period of time. To proactively understand the HA capability of a system, we 
need to define a representative workload and measurable metrics. 

Availability is the product of both the time between failures and the time to recover 
after a failure occurs. Currently, there’s no industry standard benchmark for characte-
rizing either aspect in database systems. As TPC has defined representative bench-
marks for performance and scalability, we can leverage those workloads and extend 
them to measure and characterize the recovery time aspects of database systems.  
Characterizing the time between failures is beyond the scope of this paper. 

TPC-E [3] is an OLTP benchmark that simulates a brokerage firm workload, where 
customers generate transactions related to trades, account inquiries, and market research. 
Although the underlying business model is a brokerage firm, the benchmark is designed 
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to be broadly representative of modern OLTP systems. In TPC-E there’s a requirement of 
measuring and reporting ‘business recovery time’, which refers to the time needed for the 
database to recover from a single point of failure (loss of processing, storage, or external 
power).  However, the business recovery process has a very limited scope focusing on 
basic durability tests. To measure availability, we need to extend TPC-E by adding more 
granular metrics and introducing more fault scenarios. 

This paper describes an approach for measuring and characterizing high availabili-
ty for database systems based on TPC-E. We have applied this approach to Microsoft 
SQL Server to track availability improvements for engineering and development.  

The rest of the paper is organized as follows. Section 2 briefly summarizes related 
work. Section 3 presents HA scenarios and metrics. Section 4 describes the imple-
mentation details. Section 5 shows the test results on Microsoft SQL Server 2008 
Database Mirroring, followed by conclusion and future work. 

2 Related Work 

Gray and Siewiorek [4] described key concepts and techniques to build high availabil-
ity computer systems, explained the relationship between mean-time-to-failure and 
mean-time-to-repair, and assessed high availability system trends. 

IFIP Working Group 10.4 [5] was established to identify and integrate methods 
and techniques for dependable computing, such as understanding various faults, me-
thods for error detection, validation and design for testability and verifiability, etc. 
The notion ‘dependability’ includes system attributes such as reliability, availability, 
safety and security. Many workshops and conferences have been held to advance 
research in this area. Kanoun and Spainhower published a book [6] that gathered to-
gether dependability benchmarks developed by industry and academia (IFIP Special 
Interest Group on Dependability Benchmarking) and explained principles and con-
cepts of dependability benchmarking. 

The DBench-OLTP [7] project defines a general dependability benchmark model 
for OLTP systems using TPC-C.  Vieira and Madeira describe various fault types to 
cover a broad range of scenarios impacting dependability.  (In contrast, we focus only 
on recovery performance after a fault occurs, without regard for the source or cause of 
the fault.)  Almeida etc. [8] proposed a framework to advance TPC benchmarks with 
dependability aspects. 

3 Methodology 

The TPC-E benchmark defines a workload portraying a brokerage firm, including 
database schema, transactions, implementation rules, and throughput and response 
time metrics. To measure and characterize availability aspects of a database system, 
we need to extend the workload by defining representative fault scenarios and availa-
bility metrics that can occur in the system. 

The focus of this paper is to measure how fast an HA database system can recover 
the service after a fault occurs.  Additionally, we quantify the performance overhead 
for HA compared to the non-HA system during normal operations.  We have used this 
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this methodology to drive improvements in SQL Server availability.  Although the 
methodology is not specific to the TPC-E workload or Microsoft SQL Server, we are 
not attempting to define a ‘general-purpose’ HA benchmark in this paper. 

3.1 Terminologies and Scenarios 

For the discussion in this paper, we assume an HA database system consists of four 
key components: 

• Principal Server:  The database instance that serves clients requests. In case of 
system faults, one of the Standby Servers becomes new Principal. 

• Standby Server(s): A system can have one or more standby database in-
stances, which can provide service when the Principal Server fails. For a ‘hot’ 
Standby Server, the database state is continuously replicated from the Princip-
al Server. For a ‘cold’ Standby Server, generally a complete database  
recovery process is required for it to become the new Principal Server.  In 
Microsoft SQL Server, Database Mirroring uses the hot standby approach and 
Failover Clustering uses the cold standby approach. 

• Management component: The software module that monitors the system and 
decides which server is Principal. 

• Connectivity component: The software module that directs database connec-
tions to current Principal Server. 

Depending on the degree of availability an application needs, an HA database system 
may need redundancy in multiple layers, such as power supply, storage (e.g., disk 
RAID levels), NICs and network switches, number of standby database instances, and 
duplicated system in remote data center (for geographic disaster recovery).  

In this paper we focus on how the RDBMS handles various faults. The TPC-E 
workload is extended to cover the following downtime scenarios: 

• Planned downtime: A period of scheduled downtime for system maintenance, 
characterized by an orderly transition of service from Principal to Standby 
Server. The causes of scheduled downtime include OS & SQL patches, ser-
vice pack, hardware maintenance, online servicing, etc. 

• Unplanned downtime: A period of unscheduled downtime, often due to vari-
ous faults, such as hardware faults, software bugs and human errors, causing 
an abrupt transition of service from Principal to Standby Server. 

Failover refers to the transition of service from Principal to Standby Server. Ideally, 
the database system can automatically failover without administrative intervention for 
unplanned downtime. The administrator typically initiates a ‘manual’ failover process 
for planned downtime. Failback refers to transfer of service back to the original Prin-
cipal Server (after planned/unplanned downtime). The operation is often similar to 
manual failover except that Principal/Standby Servers are flipped. 

Figure 1 shows the key components in the test environment. Note that the System-
Under-Test (SUT) definition in the TPC-E benchmark is extended to include the 
Connectivity component, which can physically run on either the TPC-E Driver ma-
chine (for example, SQL Server Native Client for Database Mirroring) or a server 
machine (for example, Virtual Network Name for Failover Clustering). 
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Fig. 1. Extending TPC-E for Availability Measurement 

To simulate planned downtime, we can call failover APIs provided by the RDBMS 
while running the TPC-E workload. For unplanned downtime, we need to simulate 
various disruptive events that can occur in the system. Table 1 shows some fault ex-
amples. 

Table 1. Fault Simulation 

Category Scenarios Simulation on SQL Server 
Planned 
downtime 

• Patches, maintenance • Call SQL Server APIs to initiate 
manual failover 

Unplanned 
downtime 

• Power outage  
• Disk corruption, network outage 
• System crash 

• Force shutdown of machine 
• Bring disk/network offline 
• Abruptly stop SQL Server process 

In our model we assume that the system follows the ‘fail-fast’ principle described 
by Gray and Siewiorek [4].  Provided that faults in hardware and software cause 
immediate failures, it’s not necessary to test across an exhaustive set of failure modes.  
Thus we do not attempt to enumerate a ‘complete’ list of faults.  The fail-fast attribute 
should be verified independently from the performance testing. 
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3.2 Metrics 

The availability metrics need to reflect customer scenarios and cost of an HA system, 
which includes three main aspects: 

• Capital cost: The cost of additional hardware and software needed for an HA 
system compared to an otherwise equivalent non-HA system. 

• Performance impact: The impact to performance of HA capabilities during 
normal operations compared to the non-HA system. 

• Recovery time: The time to restore the database service after a fault occurs. 

Characterizing capital cost is beyond the scope of this paper, but we believe that the 
pricing model defined in the TPC-E specification can be used as is to compute system 
prices for both HA and non-HA configurations. 

To understand the performance impact during normal operation, we measure TPC-
E throughput in steady state on an HA system and compare that against a standalone 
system to characterize the difference.  

The definition of time-to-recover may include (1) the server is up, (2) all data is 
accessible, and (3) the system is back to steady-state, i.e., it can deliver a certain per-
centage of the peak throughput within the response time constraint. In this paper our 
definition of time-to-recover is (3), which can be broken down into two phases: 

• Service downtime: After a fault occurs, how long it takes for the system to 
come back and be ready to process new requests. 

• Time-to-steady-state: How fast the system ramps up to deliver steady-state 
throughput. 

Figure 2 is a conceptual throughput graph illustrating our metrics, including through-
put impact, service downtime and time-to-steady-state. 
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Fig. 2. Conceptual Throughput Graph after Failover 
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• HA metric reporting, including throughput impact, service downtime, and 
time-to-steady-state. 

• Framework for planned/unplanned downtime simulation. 

The toolkit provides a framework and shared components for HA performance mea-
surement. On top of that various plug-ins are developed for different HA technologies 
in SQL Server. 

4.1 System Workflow 

Measuring throughput impact is straightforward. We first run the TPC-E workload on 
a standalone server for a certain duration of time, for example 2 hours, which gives 
the baseline performance; and then run the workload on an HA system to characterize 
the impact to throughput.  

To characterize planned and unplanned downtime, we need to run both the TPC-E 
workload and the Fault Simulator simultaneously. Here is the description of the 
workflow: 

• Run the TPC-E workload for 2 hours. 
• Run the Fault Simulator in a separate process: 

1. Wait for a certain duration, such as 30 minutes, until the workload is in 
steady-state. 

2. Failover: Inject fault to initiate the failover. This results in transition of 
service from Principal to Standby Server.  

3. Wait 10 minutes (simulating downtime of the original Principal Server), 
during which the new Principal Server is processing TPC-E queries. 

4. Restart the original Principal Server. 
5. Wait 30 minutes. 
6. Failback: Orderly transition of service back to original Principal. 

Note: 

• The time durations above, such as 2 hours, 10 minutes, 30 minutes, are all 
tunable parameters. 

• The interval between failover & failback (30 minutes) is chosen based on em-
pirical data; the minimal interval depends on how fast the original Principal 
Server can catch up (otherwise we can’t failback). 

• The Fault Simulator is an extensible framework that can simulate various 
faults by developing corresponding plug-ins. The plug-in is HA solution spe-
cific. For example, on SQL Server Database Mirroring: 
o Manual failover script (simulating planned downtime):  

ALTER DATABASE FAILOVER 
o Automatic failover script (unplanned downtime):  

TASKKILL MSSQLSERVER.EXE 

Figure 4 illustrates server role changes in the failover/failback process. 
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Fig. 4. Server State Changes in the Test Run 

4.2 Compute Time-To-Steady-State 

As noted in Section 3.2 time-to-recover includes both service downtime and time-to-
steady-state. Service downtime is the duration from the client losing connection until 
the first successful transaction after reconnection. For time-to-steady-state, it is an 
interesting problem to mathematically define when the system has reached 'steady 
state'. The TPC-E benchmark [3] constrains allowable throughput variations in 
steady-state that are measured in sliding windows of 10 and 60 minutes (Clause 
6.6.3). For an HA system, where time-to-steady-state can be well under one minute, a 
more granular model is needed. In this paper we use the following method to compute 
this metric: 

• For a test run we can compute the throughput for each one-second interval. 

That is, for each second S , we have throughput ST . 

• For any duration of N  seconds starting at S , we can calculate the mean 
value and standard deviation of the interval [S,N]: 
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• For a normal test run (no faults in the tests) we compute normalM  and 

normalD  of the entire steady state as defined in the TPC-E specification. 

• For planned and unplanned scenarios, for each second S after the system is 
up following a fault we compute the mean value and standard deviation of the 

60-second interval from S to 59+S , 60,SM  and 60,SD .  

The system is considered to be in steady state starting at the first point S such 
that: 

)/(*/ 60,60, normalnormalSS MDMD α<
 

where α is a constant determined from empirical results; 1.8 in our tests
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Note: 

• The rationale is to decide whether a certain moment is the ‘start of steady-
state’ by looking at the throughput variation in the immediate following pe-
riod of time.  

• The ‘window size’ is a tunable parameter. By default we use 60 seconds, yet 
other window sizes might be used depending on the specific test scenarios. 

• The ‘time bucket’ for computing throughput is 1 second by default.  The time 
bucket size determines the maximum precision of the metrics, i.e., the metrics 
can be no more precise than the size of the time bucket.   

• Determining whether the throughput slowly changes over a long period of 
time is an interesting problem. (For example throughput slowly declines with-
in 12 hours). The method described above doesn’t solve that problem. 

Figure 5 illustrates time to reach the steady-state after a failover. The throughput 
graph is from one test run (post failover). Note that the spike in throughput is due to 
the Limit Orders in TPC-E that are fulfilled after a certain time, as the Market Ex-
change Emulator continues to run while the database service is down (i.e., there is a 
backlog of work). 

 

Fig. 5. Steady State after Failover 

4.3 Reproducibility 

Failover and failback are inherently transient events; achieving highly reproducible 
test results is challenging. For example, certain operations (e.g. checkpoints, as dis-
cussed below) follow a cyclical rhythm.  It is critical to do fault injection at the same 
point in the cycle to get reproducible results.  Important parameters that affect avail-
ability metrics include (1) number of concurrent users, (2) duration between shutting 
down the Principal Server until bringing it back, which affects time to catch-up, and 
(3) the rate at which users reconnect and submit transactions, which affects time-to-
steady-state. 
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We also make sure there’s no IO bottleneck in the tests by adequately sizing the 
storage subsystem. Otherwise the system might have different requirements on work-
load/SQL Server settings for good reproducibility. 

One important setting for SQL Server is the checkpoint interval, which impacts  
database recovery time, throughput, and the system utilization. On a cold Standby 
Server, such as SQL Server Failover Clustering, it also has a big impact on service 
downtime. The Fault Simulator captures database checkpoint begin/complete events, 
and injects faults midway through a checkpoint in steady-state. 

5 Experiment Results 

The toolkit has been used for SQL Server internal performance engineering. This 
section summarizes exemplary test results on SQL Server 2008 DB Mirroring [2]. 

Note: The results shown here are provided as examples of applying the methodolo-
gy. They should not be interpreted as definitive measurements of failover perfor-
mance of SQL Server in production environments.  Your mileage may vary.   

5.1 Configuration 

In this case study, we describe the test results on synchronous DB Mirroring that is 
the ‘high-safety’ mode. The system spec is listed in Table 2. 

Table 2. System Specification 

Principal & 
Standby Server 

Dell PE 2950 
Processor: 2 x Quad Core Intel Xeon X5355, 2.66 GHz 
Memory: 16 GB 
NIC: 1Gbps 

Witness Dell PE 860 
Processor: 1 x Quad Core Intel Xeon X3220, 2.4 GHz 
Memory: 4 GB 

Storage 
(Both Principal 
& Standby) 

Data: 52 x 15K SAS drives; configured to 4 LUNs (14 spindles each) 
Log: 4 x 15K SAS drives 

Software Microsoft Windows Server 2008 x64 Enterprise Edition 
Microsoft SQL Server 2008 x64 Enterprise Edition 

Table 3 summarizes TPC-E configuration. Note that in these experiments we don’t 
strictly follow the scaling requirement specified in TPC-E benchmark spec; instead 
we drive CPU utilization to 100% to test the worst case.  

5.2 Throughput Impact 

As mentioned earlier our throughput comparison is based on a steady-state TPC-E 
run, which is ~30 minutes after starting the workload. Table 4 shows the comparison 
between Database Mirroring and Standalone system. Both Standalone and DB Mirror-
ing were run on the same hardware with the same SQL Server settings. 
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Table 3. TPC-E Configuration 

TPC-E Database Size 30,000 customers 
Users 120 concurrent users: Drive to maximum load (CPU is 

100% busy). Zero think time. 
Start Rate (Users/Minute) 300 
Connect Rate (Users/Minute) 300 
Transaction Mix Standard Benchmark Mix 
SQL Server Memory 14,000 MB 
Database Size 240 GB raw data size. Allocated about 395 GB in data 

files for growth 

‘Log Send Queue’ and ‘Redo Queue’ are two performance counters in Database Mir-
roring, which can be viewed in the Performance Monitor tool in Microsoft Windows 
server operating system. Log Send Queue is the total number of kilobytes of log that 
have not yet been sent to the Standby server. Redo Queue is the total number of kilobytes 
of log that currently remain to be applied to the Standby database. If these queues be-
come large, it means that the Standby is not keeping up with the Primary Server. 

Table 4. DB Mirroring and Standalone Comparison 

 DB Mirroring Normalized as % of Standalone 

Principal Standby 

Throughput  98.6% NA 

CPU 100% 7% 

DB Mirroring: Log Send Queue (KB) 0.1 NA 

DB Mirroring: Redo Queue (KB) NA 11 

There are no IO bottlenecks (disk / network) in these runs. As illustrated in Table 
4, the impact to throughput from Database Mirroring is quite small (~1.4%). CPU 
utilization on the Standby Server is 7%; and both Log Send Queue and Redo Queue 
are very small. Those counters illustrates that Database Mirroring performs well un-
der heavy load.  

5.3 Failover Performance 

Table 5 summarizes the failover performance in unplanned downtime scenario for the 
test configuration that we measured. The database service is back to steady-state in 
about 40 seconds. 

Table 5. TPC-E Failover Performance 

Stage Metric (in seconds) 
Start the  workload  Time-to-steady-state 21 

Failover Service downtime 17 

Time-to-steady-state 24 

Total time-to-recover 41 
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For time-to-steady-state, a good reference is how fast TPC-E can ramp up in the 
‘normal’ situation. As noted in Table 5, when the system is under heavy load, it takes 
only slightly longer duration to reach steady state after failover compared to the start 
of workload. 

The methodology was applied to Microsoft SQL Server for tracking availability 
improvements. Good reproducibility of the availability metrics has been achieved. For 
multiple runs on one SQL Server build, the throughput run-to-run variation is general-
ly within 1% and the time-to-recover variation is generally within 5 seconds, both 
within the bounds needed to be effective for performance engineering. 

6 Conclusion and Future Work 

A methodology for measuring availability in database systems is developed based on 
TPC-E. SQL Server 2008 Database Mirroring is characterized as a case study. The 
methodology has been used for SQL Server internal performance engineering. 

Future work includes developing more complex fault scenarios such as data is par-
tially available, introducing HA metrics into other workloads, exploring modeling 
MTBF, etc.  Further, the methodology could be used as a starting point to define an 
industry standard for availability measurement. 
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Abstract. Snapshot Isolation is an established concurrency control algorithm, 
where each transaction executes against its own version/snapshot of the 
database. Version management may produce unnecessary random writes. 
Compared to magnetic disks Flash storage offers fundamentally different IO 
characteristics, e.g. excellent random read, low random write performance and 
strong read/write asymmetry. Therefore the performance of snapshot isolation 
can be improved by minimizing the random writes. We propose a variant of 
snapshot isolation (called SI-CV) that collocates tuple versions created by a 
transaction in adjacent blocks and therefore minimizes random writes at the cost 
of random reads. Its performance, relative to the original algorithm, in 
overloaded systems under heavy transactional loads in TPC-C scenarios on 
Flash SSD storage increases significantly. At high loads that bring the original 
system into overload, the transactional throughput of SI-CV increases further, 
while maintaining response times that are multiple factors lower.  

Keywords: Snapshot Isolation, Flash, SSD, Solid State Drive, TPC-C, Multi 
Version Concurrency Control, MVCC, SI-CV, Collocation, Transaction 
Processing, Response Time. 

1 Introduction 

Database systems, their architecture and algorithms are built around the IO properties 
of the storage. In contrast to Hard Disk Drives (HDD), Flash Solid State Disks (SSD) 
exhibit fundamentally different characteristics: high random and sequential 
throughput, low latency and power consumption [4]. SSD throughput is asymmetric 
in contrast to magnetic storage, i.e. reads are significantly faster than writes. Random 
writes exhibit low performance, which also degrades over time. Therefore, to achieve 
balanced performance, random writes should be avoided at the cost of random reads.  

Snapshot Isolation (SI) is a Multi-Version Concurrency Control (MVCC) 
algorithm, in which every transaction operates against its own workspace/snapshot of 
the database. Under SI read operations do not block writes and vice versa, which is a 
good match for the Flash SSD properties. SI provides significant performance 
improvements compared to two-phase locking schedulers. Whenever a transaction 
modifies a tuple in its workspace a new version of that tuple is created and linked to 
the chain of older versions. Such operations result in undesired random writes. On 
algorithmic level no provisioning is made for this case. On system level SI relies 
solely on the buffer manager to intercept random writes. 
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We extended the classical SI algorithm to collocate/group tuple versions created by 
a transaction in the same or in adjacent database pages, employing a mechanism of 
page pre-allocation. We call the algorithm Snapshot Isolation with Co-located 
Versions (SI-CV).  

The contributions of the paper are: (i) we implemented SI-CV in PostgreSQL (ii) 
SI-CV was tested in an OLTP environment with DBT2[6] (an open source version of 
TPC-C [8]) (iii) SI-CV performs up to 30% better than the original algorithm on flash 
SSDs and equally good on HDD; (iv) SI-CV performance is better under heavy loads; 
(v) SI-CV is space efficient, regardless of its pre-allocation mechanism. 

The rest of the paper is organized as follows: in the following section we briefly 
review the related work; the properties of Flash SSDs are discussed in Section 3; then 
we introduce the original SI algorithm and SI-CV. Finally, section 6 describes the 
experimental results and analyses. 

2 Related Work 

The general SI-algorithm is introduced and discussed in [1]. The specifics of the 
PostgreSQL SI implementation are described in detail in [2,3]. As reported in [1] SI 
fails to enforce serializability. Recently a serializable version of SI was proposed [7] 
that is based on read/write dependency testing in serialization graphs. Serializable SI 
assumes that the storage provides enough random read throughput needed to 
determine the visible version of a tuple valid for a timestamp, making it ideal for 
Flash storage. [9] recently made an alternative proposal for SI serializability. In 
addition serializable SI has been implemented in the new (but still unstable) version 
of PostgreSQL and will appear as a standard feature in the upcoming release.  

SI-CV presents a way to specially collocate data (versions) for each transaction 
leveraging the properties of the SSDs. There are several proposed approaches for 
flash storage managers, the majority of which explore the idea of append based 
storage [12] for SSDs [11, 10]. SI-CV differs in that it collocates per transaction but 
does not eliminate the concept of write in-place by converting all writes into appends.  

Although it is our long term goal to integrate log-based storage mechanisms this is 
not part of this work. 

In addition, there exist several proposals for page layouts [13] such as PAX [14] 
that aim at sorting row data in a column-based order with page sub-structures. Such 
approaches are developed within the context of Data Warehousing and show superior 
performance for read-mostly data. [15] explores how query processing algorithms and 
data structures such as FlashJoin [15] or FlashScan can benefit from such page 
organizations and the characteristics of Flash SSDs.  

Furthermore, there have been numerous proposals of improving the logging and 
recovery mechanisms with respect to new types of memories (Flash SSDs, 
NVMemories). In-Page Logging [16] (IPL) is one such mechanism, that allows 
significant performance improvements by write reduction as well as page and log 
record collocation.  
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We expect that techniques such as Group Commit have a profound effect on 
version collocation approaches in MVCC environments. We have not explored those 
due to their effect on database crash recovery; however it is part of our future work. In 
[17] we explore the influence of database page size on the database performance on 
Flash storage. 

In a series of papers, e.g. [2] Kemme et al. investigate database replication 
approaches coupled to SI. SI has been implemented in Oracle, PostgreSQL, Microsoft 
SQL Server 2005. In some systems as a separate isolation level, in others to handle 
serializable isolation. 

To the best of our knowledge no version handling approaches for SI exist. This 
aspect has been left out of consideration by the most algorithms as well. 

3 Enterprise Flash SSDs 

The performance exhibited by Flash SSDs is significantly better than that of HDDs. 
Flash SSDs, are not merely a faster alternative to HDDs; just replacing them does not 
yield optimal performance. Below we discuss their characteristics.  

(a) asymmetric read/write performance – the read performance is significantly 
better than the write performance – up to an order of magnitude (Fig. 1, Fig. 2). This 
is a result of the internal organization of the NAND memory, which comprises two 
types of structures: pages and blocks. A page (typically 4 KB) is a read and write unit. 
Pages are grouped into blocks of 32/128 pages (128/512KB). NAND memories 
support three operations: read, write, erase. Reads and writes are performed on a 
page-level, while erases are performed on a block level. Before performing a write, 
the whole block containing the page must be erased, which is a time-consuming 
operation. The respective raw latencies are: read-55μs; write 500μs; erase 900μs. In 
addition, writes should be evenly spread across the whole volume. Hence no write in-
place as on HDDs, instead copy-and-write. 

 

 

Fig. 1. Random throughput (IOPS) of a X25-E SSD vs. HDD 7200 RPM 
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Fig. 2. Sequential throughput (MB/s) of an X25-E SSD vs. HDD 7200 RPM 

(b) excellent random read throughput (IOPS) – especially for small block sizes. 
Small random reads are up to hundred times faster than on an HDD (Fig. 1). The good 
small block performance (4KB, 8KB) affects the present assumptions of generally 
larger database page sizes. 

(c) low random write throughput – small random writes are five to ten times slower 
than reads (Fig. 1). Nonetheless, the random write throughput is an order of 
magnitude better than that of an HDD. Random writes are an issue not only in terms 
of performance but also yield long-term performance degradation due to Flash-
internal fragmentation effects.  

(d) good sequential read/write transfer (Fig. 1). Sequential operations are also 
asymmetric. However, due to read ahead, write back and good caching the asymmetry 
is below 25%. 

Table 1. AVG/MAX latency of an X25-E SSD and 7200 RPM HDD 

 
 

Blocksize 4 KB 

Write Cache (WC)-ON Write Cache-OFF
SSD HDD SSD

Avg[μs] Max[ms] Avg[ms] Max[ms] Avg[μs] Max[ms]
Sequential Read 53 12.3 0.133 109.2 – 12.3

Sequential Write 59 94.8 0.168 36.9 455 100.3
Random Read 167 12.4 10.8 121 – 12.4

Random Write 113 100.7 5.6 127.5 435 100.7

4 Snapshot Isolation 

In SI [1] each transaction operates against its own version (snapshot) of the 
committed state of the database. If a transaction Ti reads a data item X, the read 
operation is performed from Ti’s snapshot, which is unaffected by updates from 
concurrent transactions. Therefore, reads never block writes (and vice versa) and there  
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is no need for read-locks. Modifications (inserts, updates, deletes - Ti’s write set) are 
also performed on Ti’s snapshot and upon successful commit become visible to 
appropriate transactions. During commit the transaction manager checks whether Ti’s 
modifications overlap with the modifications of concurrent transactions. If write sets 
do not overlap Ti commits, otherwise it aborts. These commit-time checks are 
represented by two alternative rules: first-committer-wins[1] or first-updater-
wins[1,3]. While the former is enforced in deferred manner at commit time, the latter 
results in immediate checks before each write. The first-updater-wins relies on write 
locks (see also Listing 1) and is implemented in PostgreSQL. 

Apart from the general SI algorithm we also summarize its PostgreSQL 
implementation [1,2,3] (Listing 1). On begin of every new transaction it is assigned a 
unique transaction ID (TID) equivalent to a timestamp. Tuples in PostgreSQL are the 
unit of versioning. Every version Vi of a tuple X is annotated with two TIDs: t_xmin 
and t_xmax. t_xmin is TID of the transaction that created Vi. t_xmax is the TID of the 
transaction that created a new version Vj of X, a successor of Vi. In principle Vj 
invalidates Vi. If t_xmax is NULL,Vi is the most recent version. All versions are 
organised as a linked list in memory. Complementary to the tuple versions 
PostgreSQL maintains a SnapshotData structure for every running transaction Ti. 
Among other fields it contains: (i) xmax – the TID of the next transaction (T(i+1) at 
time Ti started) and serves as a visibility threshold for transactions whose changes are 
not visible to Ti; (ii) xmin – determines transactions whose updates are visible to Ti 
and depicts the TID of the lowest still running transaction (transactions with 
TID<xmin are considered finished); (iii) xip – holds a TID list of all transactions 
concurrent to Ti. Finally PostgreSQL uses a main memory structure called PG_CLOG 
(previously pg_log), based on the database log, which allows for fast transaction 
status checks (aborted, committed, in progress).  

Consider Listing 1: whenever transaction Ti reads a tuple X (line 2), SI first checks 
if X is in the writeset of Ti to determine whether it has to read its own or the last 
stable version of X (line 2-4). Its own version can be read directly, because it cannot 
be modified by another transaction. Otherwise SI has to determine the version of X 
visible to Ti. Tuple visibility can be expressed with two conditions (line 19 and 20). 
The first one requires the X to be created by a transaction that successfully committed 
before Ti started. The second one (line 20) forbids X to be modified (and committed) 
by a concurrent transaction Tj.  

Before Ti writes X, SI first performs a version check to determine if the version 
was updated by a concurrent transaction. On a negative check Ti has to abort (line 6). 
On a positive check it requests a write-lock on X. If X is locked by a concurrent 
transaction Tk, Ti waits until the lock is granted. Otherwise, it acquires a write lock on 
X, the stable version X.Vs is read and a new version X.Vi is created. Ti sets the 
creation timestamp X.Vi.t_xmin and the invalidation timestamp X.Vs.t_xmax to its own 
timestamp tsi (lines 9,10).  

On a commit or abort all acquired locks are released, waiting transactions are 
woken up and PG_CLOG is updated.  
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Listing 1. Snapshot Isolation 

1. Start Transaction Ti  tsi = timestamp( Ti ); 
2. ON Ti.read( X ): // Transaction Ti reads tuple X  
3.   IF(X IN { writeSet(Ti) }) X.Vi = readOwnVersion(X,Ti) 
4.   ELSE X.Vi  = readStableVersion( X, Ti )
5. ON Ti.write( X ):  // Transaction Ti modifies tuple X 
6.  IF( VersionCheck( X ) = FAILED)  Ti.rollback() 
7.  Ti.lockX = requestXlock( X )
8.  IF(Ti.lockX==GRANTED){ //PerformUpdateInstallUpdate 
9.  X.Vs = readStableVersion(X,Ti); X.Vi =new Version(X); 
10.  X.Vs.t_xmax=tsi;  X.Vi.t_min=tsi; X.Vi.t_max=NULL; 
11.   } ELSE //another transaction acquired lock on X  
12.  ENQUEUE(Ti.lockX)  … wait_for_lock … ON lock granted 
13.  GOTO line 6; // restart write validation             

 //avoid concurrent changes 
14.  ON Ti.commit() or Ti.rollback()  
15.   Release All acquired locks, Wake Up Waiting   

    Transactions, Update Log 
16.  End Transaction Ti;
17.  readStableVersion(Tuple X,Transaction Ti){
18.  Find X.Va, created by transaction Tj such that:    
19.  //Find X.Va created by the latest Tj that committed 

  //before Ti started: 
 X.Va.t_xmin | X.Va.t_xmin < Ti.SnapshotData.xmax AND  
        PG_CLOG( X.Va.t_xmin ) == committed 

20. //Find X.Va that is untouched or was updated by Tj that  
//either aborted or  
//was in progress when Ti attempted to write:  
 X.Va.t_xmax | X.Va.t_xmax==NULL OR  
      PG_CLOG( X.Va.t_xmax ) == aborted OR   
      X.Va.t_xmax IN {Ti.SnapshotData.xip}  

21.   IF Checks FAIL return NULL ELSE return X.Va 
22.  } 
23.  VersionCheck( Tuple X ) {
24.    X.Vi = readStableVersion( X )
25.   IF(X.Vi==NULL) return FAILED 

//X updated by concurrent Tj 
26.  } 

 
Snapshot Isolation never deletes an old version, however a tuple version may still 

become effectively invisible to any running transaction, because of the rules in line 19 
and 20. Such obsolete versions consume precious space and can be safely removed. 
PostgreSQL runs a Vacuum process, which removes obsolete versions and coalesces 
free space. A simple version of Vacuum marks obsolete versions as deleted thus 
freeing space, while the exhaustive Vacuum version removes such versions and 
coalesces the freed space. Unfortunately, it requires an exclusive table lock and 
generates heavy I/O.  

5 Snapshot Isolation with Co-located Versions 

As Listing 1 (lines 9,10) clearly shows, the present algorithm does not group the tuple 
versions created by transactions. It results into multiple updates (t_xmax of the old 
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version and the newly created versions), which may lead to random writes. Our idea 
is to collocate all versions created by one transaction and group them into adjacent 
blocks. This not only minimizes the random writes, possibly converting them into 
sequential writes, but also uses potentially more random reads. Therefore SI-CV is a 
good match for SSD properties. 

SI-CV (Fig. 3) introduces a new structure Barray in the database(shared) buffer of 
PostgreSQL. The Barray maps a transaction to a block-number. In SI-CV each 
transaction receives a pre-allocated block for inserts/updates of tuple versions, which 
is determined on the first write request. Read only or bulk-insert transactions have no 
entries in the Barray. With bulk inserts the storage manager writes sequentially, 
making it unnecessary to provision for that case. Upon the creation of the first new 
version of a tuple X by a transaction Ti an entry in Barray is created with an artificial 
block number. To determine a physical block SI-CV has to decide whether to use the 
free space map (FSM) or not. The FSM is a buffer manager structure that keeps track 
of block numbers that still have space left. If the FSM is used, an existing block with 
sufficient space for the new version is selected, which currently must not be in 
Barray. This is how we forbid multiple transactions to be mapped on the same block. 
However, one transaction may reserve multiple blocks in Barray. In absence of free 
space the FSM is not used, the relation is extended with a new block, which forms a 
new entry in the Barray structure together with the transaction ID. Upon transaction 
termination the entry in the Barray is deleted and made visible to the FSM. After the 
commit of a transaction, the buffer only contains committed data (versions). 

 

 

Fig. 3. SI-CV block diagram 

We illustrate how SI-CV works based on a simple example (Fig. 4). Two 
transactions Ti and Tj modify the tuples K, R, X and Y in the relation Rel, in the 
following way: Start(Ti), Start(Tj), Wi[X], Wj[K], Wj[R], Wi[Y], 
Commit(Ti), Wj[K], Wj[R], Commit(Tj). According to SI-CV the Barray 
buffer manager structure will assign blocks uniquely to each transaction. These blocks 
will contain all versions created by the respective transaction (Fig. 4): transaction Ti 
with TID123 is mapped to Block1, while transaction Tj with TID124 is mapped to 
Block2. Upon Ti’s commit Block1 is written, upon Tj’s commit Block2 is written. 
However, if Tj aborts Block2 is not written, because not valid data is contained.  
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Fig. 4. SI-CV base example 

The original SI will pick any block with enough free space to host the new version, 
regardless of whether it hosts versions of other transactions. This undoubtedly yields 
random writes. In Fig. 5 block O1 and O2 contain versions from both transactions, 
which predisposes them to be written multiple times. Upon Ti’s commit both blocks 
are written, since tuples X and Y are distributed on both blocks. Tj updates tuples R 
and K which share the same blocks as X and Y; Tj commits and both blocks are re-
written. However, if Tj aborts both blocks have to be re-written nonetheless since they 
contain valid data inserted by Ti. 

The following example illustrates the concept of versioning in PostgreSQL. 
Assume the empty relation Rel with 3 columns, a tuple is described by the structure:  

(t_xmin,t_xmax,col1<Int>,col2<String>,col3<String>) 

There are four transactions, as shown in Table 2. Initially transactions Ti and Tj insert 
new tuples; Th reads a tuple that is being updated/ invalidated and Tk updates a tuple. 

Table 2. Transaction Queries 

Transaction TID Query 
Ti 123 INSERT INTO Rel (col1, col2, col3) 

VALUES (4, Lufthansa, London),  
       (5, Lufthansa, Seattle); 

Tj 124 INSERT INTO Rel (col1, col2, col3) 
VALUES(6, Lufthansa, Frankfurt); 

Th 129 SELECT * FROM Rel WHERE 
col3=Frankfurt; 

Tk 131 UPDATE col2=Condor WHERE 
col3=Frankfurt; 

 
The concurrent execution of all transactions results in the history: 

Start(Ti),Start(Tj),Wi[W],Wj[Y],Wi[X],Commit[Ti], 
Commit[Tj],Start[Th],Start[Tk],Rk[W],Rk[X],Rk[Y],Wk[Y], 
Commit[Tk],Rh[Y],Commit[Rh]. 
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After commit of Ti and Tj the relation contains the tuples: 

W.Vi=(123,null;col1=4,col2=Lufthansa,col3=London) 
X.Vi=(123,null;col1=5,col2=Lufthansa,col3=Seattle) 
Y.Vj=(124,null;col1=6,col2=Lufthansa, col3=Frankfurt) 

After Wk[Y] the relation contains a new tuple-version of Y and its invalidated 
predecessor (tuples W and X stay the same) the new tuple is already inserted logically 
into the relation.  

Y.Vj=(124,131;col1=6,col2=Lufthansa,col3=Frankfurt) 
Y.Vk=(131,null;col1=6,col2=Condor,col3=Frankfurt) 

As soon as Tj has finished, the block which was used by it (respectively the entry in 
Barray) is free to be claimed by Tk. Fig. 5 illustrates the state after the commit of Tk, 
under SI-CV Block 2 is first used by Tj and then by Tk while original SI uses 
whichever block was available for insertion (with preference to the last one used for 
an insertion). According to the algorithm displayed in Listing 1 transaction Th reads 
the tuple Y.Vj while the changes of Tk (Y.Vk) are not visible to it. Immediately after 
the last transaction with TID smaller than 131 has finished, tuple Y.Vj becomes 
invisible to all running transactions.  

SI-CV writes Block 1 once after the commit of Ti while original SI has to write 
Block O1 twice: the first time after the commit of Ti (respectively Tj) and the second 
time after commit of Tk that invalidated Y.Vj.  

This clarifies the principles of SI-CV. A block belongs to a transaction as long as it 
is not committed. After it has finished, a block may be claimed by any other 
transaction that inserts tuples into that relation, as long as the block still has enough 
space left to hold the tuples. This scheme is applied to avoid excessive space 
consumption.  

Based on these examples SI-CV not only minimizes on random writes and has 
better abort behavior, but should also perform better with higher number of 
transactions. We investigate this claim in the following section.   

 

 

Fig. 5. SI-CV example with update 
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6 Evaluation 

We implemented SI-CV using the PostgreSQL 8.4.2 codebase. The implementation 
spans several sub-modules of the storage manager, in particular the buffer and page 
mangers. 

We tested SI-CV against the original SI algorithm on a machine with Intel Core 2 
Duo 3GHz CPU and 512 MB RAM, running a 64-bit Ubuntu Server. In addition, we 
used an Intel X25-E/64GB enterprise SSD and an Hitachi HDS72161 7200RPM 
SATA2 HDD. The properties of both drives are described in Section 3. We enabled 
the write cache on SSD and HDD as well. The IO scheduling policy was set to “noop” 
on SSD and “deadline” on HDD. Virtual memory swapping was disabled. 
PostgreSQL is configured with a 24 MB shared buffer and activated simple vacuums 
(Section 4). The nominal DB size is 31GB. As benchmark we used DBT2[6], which is 
instrumented with 20 database connections and 20 terminals per warehouse. Every 
test run has a two hour duration, excluding the additional ramp-up time (which is 
proportional to the number of warehouses used).  

Table 3. Maximum DBT2 Transaction Throughput [NoTPM] with the respective number of 
warehouses 

Original SI [NoTPM] SI-CV [NoTPM]
SSD (270 Wh.) HDD (80 Wh.) SSD (270 Wh.) HDD (80 Wh.) 

2500 210 3588 +30.3% 219 +3.8% 
 
The DBT2 test results showing the maximum transaction throughput for SSDs and 

HDDs are displayed in Table 3. These show a performance increase of 30% with SI-
CV on SSDs. SI-CV on HDDs performs slightly better with an improvement of 3.8%. 
The clear performance advantage of SI-CV on SSDs physically results from the 
reduction of random writes, at the cost of more random reads. As discussed in Section 
3, both random operations have the same cost on a HDD, whereas random reads are 
much cheaper than random writes on a SSD. Hence the different rate of improvement 
(Table 3). In addition, a growing number of concurrent transactions, offers more room 
for version collocation, which magnifies the above effect. 

The performance effects of version collocation will increase with higher 
transactional loads. The reason for this is that more transactions create more versions 
of tuple data, which if collocated will save more random write operations.  

To verify this claim we performed a series of experiments, where the number of 
warehouses increases continuously thus producing higher transactional loads. (In 
TPC-C the number of transactions per warehouse is approximately constant – Section 
5.2.3 from the TPC-C Specification [8] – hence increasing the number of warehouses 
increases the number of transactions).  

The results in Fig. 6 clearly show that SI-CV exhibits better performance under 
higher loads. On an under-committed system with enough free resources (Fig. 6, 
Warehouses ≤ 180) SI and SI-CV perform equally well in PostgreSQL. A further 
increase of the load (Fig. 6, Warehouses ≥ 230) brings SI into thrashing; the system is 
overloaded the transactional throughput does not increase further and begins to 
deteriorate, while the response times (Fig. 7) increase exponentially. The throughput 
of SI-CV grows steadily for the same range of loads.  
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Fig. 6. Transaction Throughput (New Order Transactions per Minute) SI-CV vs. SI on SSD 

 

 

Fig. 7. Avg. Resp. Time [s] of SI-CV and SI on SSD (lower is better) 

SI-CV achieves up to 30% higher transactional throughput, before going into 
thrashing. Such performance behavior is especially favorable to whenever peak loads 
need to be processed or load spikes occur in real systems. Another interesting 
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characteristic of SI-CV are the low response times. As Fig. 7 shows, on an under-
committed system both SI and SI-CV have similar response times. SI-CV, however, 
can support higher transactional loads at significantly lower response times. For peak 
loads (in the present testbed; Warehouses ≥ 230), SI-CV provides up to 30% higher 
transactional throughput at sub-second response times (Fig. 6 and Fig. 7). 

 Furthermore, SI-CV offers similar or better read performance than the original SI. 
To verify this statement we report the ORDER_STATUS transaction performance, 
which is a read-only transaction. Fig. 8 shows the total number of executed 
ORDER_STATUS transactions with SI and SI-CV for each two hour test run with 
different number of warehouses. In this experiment all other TPC-C transactions 
(read-write) execute concurrently. The goal is to obtain a realistic mixture of reads 
and writes that according to the canonical SI do not affect each other. 

 

 

Fig. 8. Total number of Order Status Transactions 

The numbers in Fig. 8 show that read performance of SI-CV remains unaffected by 
the version collocation changes. 

Last but not least, we report the disk space consumption of SI-CV, for the 
following reason. The price per GB of disk space on an enterprise 15K RPM HDD is 
~7x lower than on an enterprise SSD. Due to the block pre-allocation per new 
transaction these blocks may not be filled optimally: each SI-CV block may contain 
more unused space than an SI block. The maximum increase in space consumption 
was measured with less than 0.0016% per Warehouse after 2 hours of testing using 
280 Warehouses and 20 Clients per Warehouse. Because of the difference in 
throughput (~1000 NOTPMs) between the original SI and SICV, this space 
measurement was normalized in aspect to the count of NOTPMs. Insertion of bulk 
loads is not affected; therefore no additional space utilization. Hence, SI-CV is almost 
as space efficient as the SI. 

7 Conclusions 

We developed an extension of Snapshot Isolation (SI), called Snapshot Isolation with 
Co-located Versions (SI-CV). It places versions of tuples created or modified by a 
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transaction in pre-allocated blocks. Thus it reduces the amount of random writes, 
which leverages better the properties of Flash SSDs. SI-CV is implemented in 
PostgreSQL. TPC-C tests show that: (a) SI-CV performs better especially under 
heavy load conditions where the system is very I/O-bound. Under such conditions we 
achieved up to 30% better performance with SI-CV.  

(b) The relative performance of SI-CV (to SI) increases with higher number of 
transactions. 

 (c) The transaction response time with SI-CV on an over-committed system 
remains significantly lower than that of SI. Under heavy load conditions SI-CV 
operates with sub-second response times. 

(d) SI-CV utilizes a block pre-allocation strategy per transaction. We prove 
experimentally that it is almost as space efficient as SI. The space consumption 
difference is marginal and justifies the performance advantages of SI-CV. 

(e) Finally, the read performance of SI-CV in comparison to SI is equally good or 
better. 
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Abstract. While uniform data distributions were a design choice for the TPC-D 
benchmark and its successor TPC-H, it has been universally recognized that da-
ta skew is prevalent in data warehousing. A modern benchmark should there-
fore provide a test bed to evaluate the ability of database engines to handle 
skew. This paper introduces a concrete and practical way to introduce skew in 
the TPC-H data model by modifying the customer and supplier tables to reflect 
non-uniform customer and supplier populations. The first proposal consists in 
defining customer and supplier populations by nation that are roughly propor-
tional to the actual nation populations. In a second proposal, nations are divided 
into two groups, one with large and equal populations and the other with  
equal and small populations. We then experiment with the proposed skew mod-
els to show how the optimizer of a parallel system can recognize skew and  
potentially produce different plans depending on the presence of skew. A com-
parison is made between query performance with the proposed method vs. the  
original uniform TPC-H distributions. Finally, an approach is presented to  
introduce skew into TPC-H with the current query set that is compatible  
with the current benchmark specification rules and could be implemented  
today. 

1 Introduction 

The importance of data skew in database processing has been recognized for a very 
long time especially for parallel systems [1], [2]. In these systems, data skew could 
introduce load imbalances in the parallel join execution that could completely offset 
the performance advantages provided by parallelism. Solutions to the skew problem 
in parallel DBMS have been proposed via new algorithms mainly in the context of 
inner joins [3], [4], and more recently in the context of outer joins [5]. In order to 
handle skew effectively, a database machine must first recognize the skew and then 
the optimizer must make the correct planning choice. Skew testing is therefore an 
important area of benchmarking. While the TPC-H benchmark [6] has been widely 
successful as an industry standard benchmark and as a testing tool in research organi-
zations and vendor shops, it does not include skew as all distributions in the bench-
mark are uniform. This paper addresses the introduction of skew in TPC-H.  
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The paper is organized in three main sections. In section 2 we propose a very sim-
ple approach to introducing skew into TPC-H data. This can be accomplished today 
by modifying an existing TPC-H database using a random number generator and  
insert/select. The skewed data produced as a result will provide a test bed for skewed 
joins and skewed where clauses. The first approach described in section 2 and re-
ferred to as alternative 1 corresponds to actual nation populations in year 2000.  The 
next alternative, also described in section 2, that corresponds to fictitious but skewed 
nation populations will be referred to as alternative 2.  In alternative 2 the nations are 
arbitrarily split into two groups with high and low population counts respectively.  In 
alternative 2 as in alternative 1 the nation to region association stays the same in TPC-
H and the resulting region populations happen to be different from each other. 

In section 3 we use the skewed data obtained by using the approach defined in sec-
tion 2 to show how skew can be a challenge for query optimizers in parallel systems 
using the example of the Teradata database. Finally, in section 4 we propose a com-
plete solution for introducing skew in the TPC-H benchmark.  This solution, referred 
to as alternative 3 involves again fictitious and skewed nation populations with na-
tions split into two groups with high and low population counts. The split is however 
performed in such a way that the region populations remain the same. As a result, 
skew alternative 3 can be implemented using the existing TPC-H queries with minim-
al disruption. 

2 Introducing Skew in TPC-H Data 

In the TPC-H benchmark all distributions are uniform as it is a requirement clearly 
spelled out in the benchmark specification [6]. In particular, there are five regions and 
five nations per region and the number of customers and suppliers per nation is con-
stant. For instance, at scale factor 1000, there are approximately six million customers 
and four hundred thousand supplier per nation. So we could very easily introduce 
skew by making the number of customers and suppliers per nation variable so that we 
would have some nations with a lot of customers and suppliers and other regions with 
few customers and suppliers. By skewing these tables and nothing else we introduce 
skew in a manner that is the simplest possible and involves a very limited amount of 
change. 

The first idea that comes to mind is to make the numbers of customers and suppli-
ers associated with a particular nation proportional to the actual population of this 
nation. We have implemented this alternative using a census of population data for 
the year 2000 and the built-in Teradata SQL random number generator to obtain cus-
tomer and supplier populations proportional to the corresponding nation populations 
at scale factor 1000. This entailed creating a copy of the customer and supplier tables 
and inserting all the original values from customer and supplier respectively except 
the nation key which is determined on the basis of which interval the value drawn by 
the random generator falls into, the intervals being determined by the nation popula-
tions. This very simple procedure can be used mutatis mutandis by anyone interested 
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in the introduction of skew into TPC-H data. Because a built-in number generator is 
used, the resulting populations may differ somewhat from one database to another 
which is fine at this stage of proof of concept. When applied to a TPC-H database at 
scale factor 1000 the procedure described above produced the populations shown in 
Table 1 below. 

Table 1. Customer and Supplier populations – alternative 1 

nation-
key nation name 

actual 2000 
population 

original 
#customers 

#customers 
skewed 

original 
#suppliers 

#suppliers 
skewed 

0 ALGERIA 32854000 5996505 1245313 399554 82867 
1 ARGENTINA 38747000 5997462 1467640 399809 97991 
2 BRAZIL 170000000 6001105 6434837 399867 429159 
3 CANADA 31689000 5999735 1198883 401453 80387 
4 EGYPT 74033000 6000340 2802655 400511 187411 
5 ETHIOPIA 77431000 6000869 2932444 399905 195397 
6 FRANCE 58921000 5996991 2230801 399798 148608 
7 GERMANY 82000000 5997384 3106050 399948 207371 
8 INDIA 1000000000 6001843 37861280 399240 2524131 
9 INDONESIA 206264595 6001218 7803651 400048 519512 

10 IRAN 69515000 6001889 2633616 400286 175430 
11 IRAQ 28807000 6000601 1090553 399914 72641 
12 JAPAN 127000000 5998850 4809793 399558 320661 
13 JORDAN 5703000 6000889 215919 399629 14447 
14 KENYA 34256000 5997420 1299102 399302 86798 
15 MOROCCO 31478000 6003115 1193196 400295 79308 
16 MOZAMBIQUE 19792000 5998481 747864 399604 50207 
17 PERU 27968000 5997549 1058228 400593 70426 
18 CHINA 1242612226 6001991 47039217 400303 3134599 
19 ROMANIA 21711000 6002183 821699 400240 54773 
20 SAUDI ARABIA 24573000 5998452 929786 400246 62114 
21 VIETNAM 70000000 6003717 2648881 400471 175911 
22 RUSSIA 147000000 6000916 5566052 399995 370747 
23 UNITED KINGDOM 58459000 6000497 2211755 399662 147395 
24 UNITED STATES 281421906 5999998 10650785 399769 711709 

  TOTAL 3962235727 150000000 150000000 10000000 10000000 

  

The advantage of the above procedure is that it produces data skew that is realistic 
since the populations are proportional to actual nation populations in 2000 which are 
observed numbers. So any tests conducted on this skewed data would have the poten-
tial of reflecting “real-life” situations. Its disadvantage in the context of TPC-H que-
ries is that all queries involving the skewed customer and supplier tables would result 
in a different amount of work since all nations have now different number of rows in 
customer and supplier. This could be a problem if we wanted to define a number of 
equivalent queries with a nation drawn at random as it is the case in TPC-H. In order 
to remedy the situation, we have devised another way to introduce skew in customer 
and supplier. Again, the change involves only these tables and nothing else. 

The main ingredient in skew is that performance will change when a nation with 
small population is chosen as opposed to a nation with a large population. So let us 
decide that there will be two kinds of nations, the first 13 with a small population, and 
the last 12 with a large population. Let us also decide that a highly populated nation is  
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ten times the size of a nation with a small population. With these constraints at scale 
factor 1000 a small population will be 1,127,820 customers and 75,188 suppliers and 
large populations will ten times as much. Applying the same procedure with in-
sert/select and the Teradata SQL random number generator to this case we obtain the 
customer and supplier populations portrayed in Table 2 below. 

Table 2. Customer and Supplier populations – alternative 2 

nation-
key nation name 

original 
#customers 

#customers 
skewed 

original 
#suppliers 

#suppliers 
skewed 

0 ALGERIA 5996505 1127162 399554 75093 
1 ARGENTINA 5997462 1129929 399809 75398 
2 BRAZIL 6001105 1127874 399867 74755 
3 CANADA 5999735 1127238 401453 75516 
4 EGYPT 6000340 1127577 400511 75046 
5 ETHIOPIA 6000869 1127826 399905 74787 
6 FRANCE 5996991 1129149 399798 75531 
7 GERMANY 5997384 1128233 399948 75052 
8 INDIA 6001843 1126280 399240 75022 
9 INDONESIA 6001218 1127706 400048 74966 

10 IRAN 6001889 1127191 400286 75317 
11 IRAQ 6000601 1125231 399914 74940 
12 JAPAN 5998850 1127436 399558 75545 
13 JORDAN 6000889 11275061 399629 750316 
14 KENYA 5997420 11280163 399302 752856 
15 MOROCCO 6003115 11277956 400295 750342 
16 MOZAMBIQUE 5998481 11277392 399604 751458 
17 PERU 5997549 11278474 400593 752394 
18 CHINA 6001991 11275245 400303 751565 
19 ROMANIA 6002183 11279797 400240 750950 
20 SAUDI ARABIA 5998452 11280197 400246 752172 
21 VIETNAM 6003717 11278040 400471 752970 
22 RUSSIA 6000916 11275496 399995 753193 
23 UNITED KINGDOM 6000497 11283291 399662 753027 
24 UNITED STATES 5999998 11280056 399769 751789 

  TOTAL 150000000 150000000 10000000 10000000 

  
The advantage of this approach is that any nation in the first set of 13 or in the 

second set of 12 represents the same population size and therefore the same amount of 
work which could be of interest in developing queries with various nation names that 
involve the same amount of work. However, with this alternative, the population sizes 
will be different for all regions which is realistic. We now proceed to the next section 
where we show how  the skew that we defined can pose challenges to optimizers in 
parallel systems. 

3 Query Optimization with Skew 

In this section we address the problem of query optimization when a where clause is 
applied on a skewed column. If the condition is applied with a value involving a large 
number of rows as opposed to a value involving a small number of rows we expect to 
have worse performance with the larger number of rows. This is especially true when  
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the same plan is applied to both values. There can be cases however where a better 
plan can be found for the large value. We illustrate this issue here in the context of the 
Teradata database. The experiments were conducted on a small Teradata appliance, 
the same that was used to generate the skewed data. 

In general, query optimizers need to be aware of skew and produce appropriate ex-
ecution plans that may be different than those produced for uniform distributions. 
That intelligence can be implemented through rules or changes to the cost model. 
Normally as it is the case in Teradata, the cost model has detailed knowledge of the 
data distribution used to estimate the selectivity of predicates on skewed columns. If 
the skew columns are parts of joins, the unit of parallelism that has the most amount 
of data is used as a basis for costing. 

In other words, the cost model behaves as if all the units of parallelism (called 
AMPs) have the same amount of rows as the one with the highest amount of rows. 
The query below, which is based on the TPC-H model with a skewed customer table 
as described in alternative 1, illustrates the impact of skew on query optimization. The 
query computes the total price of orders placed during 1997 by customers who live in 
certain nations. 

 
SELECT c_mktsegment , SUM(o_totalprice) AS tot_price 
FROM orders, customer 
WHERE c_custkey = o_custkey 
AND o_orderdate BETWEEN DATE '1997-12-31' -  INTERVAL '1' YEAR 
AND DATE '1997-12-31' 
AND c_nationkey IN (<parm1>,<parm2>,<parm3>) 
GROUP BY c_mktsegment; 
 

The execution plan of the above query involves a join between orders and customer 
followed by an aggregate step. Assuming orders is hashed by o_orderkey and custom-
er by c_custkey respectively, one of the tables need to be reshuffled to perform the 
join. Either the filtered rows of customer are duplicated on all the AMPs or the entire 
orders table is hash redistributed by o_custkey to al the AMPs. Teradata makes the 
decision between these two methods (and the join method as well) based on a cost 
function which is influenced by the number of rows in the three nations selected.  

We ran the above query for a set of nations with smaller populations corresponding 
to nation keys 19, 16, and 13 (query Q1a). We also ran the same query for nations 
with larger populations corresponding to nation keys 2,8 and 9 (query Q1b). In Q1a, 
only 1% of all customers live in the selected nations and the Teradata optimizer chose 
to duplicate the filtered customer rows (see explain in Table 3 below). For Q1b how-
ever (see explain in Table 4), 35% of customers are selected and the cost of redistri-
buting orders became cheaper. Redistributing orders is therefore selected for execu-
tion of query Q1b. In the case where uniform distributions are present which is the 
case for the original TPC-H data, both Q1a and Q1b  select 12% of the customers and 
the optimal plan for both redistributes the orders table.  
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Table 3. Explain for Q1a 

4) We execute the following steps in parallel. 
       1) We do an all-AMPs RETRIEVE step from TPCD1000G.customer_skew 
          by way of an all-rows scan with a condition of ( 
          "(TPCD1000G.customer_skew.C_NATIONKEY = 16) OR 
          ((TPCD1000G.customer_skew.C_NATIONKEY = 13) OR 
          (TPCD1000G.customer_skew.C_NATIONKEY = 19 ))") into Spool 4 
          (all_amps) fanned out into 19 hash join partitions, which is 
          duplicated on all AMPs.  The size of Spool 4 is estimated 
          with high confidence to be 128,554,704 rows (2,828,203,488 
          bytes).  The estimated time for this step is 24.83 seconds. 
       2) We do an all-AMPs RETRIEVE step from 2 partitions of 
          TPCD1000G.ordertbl with a condition of ( 
          "(TPCD1000G.ordertbl.O_ORDERDATE >= DATE '1996-12-31') AND 
          (TPCD1000G.ordertbl.O_ORDERDATE <= DATE '1997-12-31')") into 
          Spool 5 (all_amps) fanned out into 19 hash join partitions, 
          which is built locally on the AMPs.  The size of Spool 5 is 
          estimated with high confidence to be 227,348,762 rows ( 
          5,683,719,050 bytes).  The estimated time for this step is 
          55.38 seconds. 
  5) We do an all-AMPs JOIN step from Spool 4 (Last Use) by way of an 
     all-rows scan, which is joined to Spool 5 (Last Use) by way of an 
     all-rows scan.  Spool 4 and Spool 5 are joined using a hash join 
     of 19 partitions, with a join condition of ("C_CUSTKEY = O_CUSTKEY"). 
     The result goes into Spool 3 (all_amps), which is built locally on 
     the AMPs.  The size of Spool 3 is estimated with low confidence to 
     be 4,059,272 rows (113,659,616 bytes).  The estimated time for 
     this step is 10.05 seconds.  

Table 4. Explain for Q1b 

4) We execute the following steps in parallel. 
       1) We do an all-AMPs RETRIEVE step from TPCD1000G.customer by 
          way of an all-rows scan with a condition of ( 
          "(TPCD1000G.customer.C_NATIONKEY = 16) OR 
          ((TPCD1000G.customer.C_NATIONKEY = 13) OR 
          (TPCD1000G.customer.C_NATIONKEY = 19 ))") into Spool 4 
          (all_amps) fanned out into 3 hash join partitions, which is 
          built locally on the AMPs.  The size of Spool 4 is estimated 
          with high confidence to be 18,001,554 rows (396,034,188 
          bytes).  The estimated time for this step is 19.99 seconds. 
       2) We do an all-AMPs RETRIEVE step from 2 partitions of 
          TPCD1000G.ordertbl with a condition of ( 
          "(TPCD1000G.ordertbl.O_ORDERDATE >= DATE '1996-12-31') AND 
          (TPCD1000G.ordertbl.O_ORDERDATE <= DATE '1997-12-31')") into 
          Spool 5 (all_amps) fanned out into 3 hash join partitions, 
          which is redistributed by the hash code of ( 
          TPCD1000G.ordertbl.O_CUSTKEY) to all AMPs.  The size of Spool 
          5 is estimated with high confidence to be 227,348,762 rows ( 
          5,683,719,050 bytes).  The estimated time for this step is 1 
          minute and 10 seconds. 
  5) We do an all-AMPs JOIN step from Spool 4 (Last Use) by way of an 
     all-rows scan, which is joined to Spool 5 (Last Use) by way of an 
     all-rows scan.  Spool 4 and Spool 5 are joined using a hash join 
     of 3 partitions, with a join condition of ("C_CUSTKEY = O_CUSTKEY"). 
     The result goes into Spool 3 (all_amps), which is built locally on 
     the AMPs.  The size of Spool 3 is estimated with low confidence to 
     be 40,926,311 rows (1,145,936,708 bytes).  The estimated time for 
     this step is 8.48 seconds.  
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4 A Complete Skew Solution for TPC-H 

In this section we address the very specific problem of introducing skew in TPC-H 
with the minimum amount of disruption to the current query set. We already know 
that the first alternative in which all nations had different populations could not be 
utilized because we need to respect the TPC-H protocol whereby several queries per-
forming the same amount of work for a set of nations must be available. Using the 
second alternative is better because an original TPC-H query can be duplicated so that 
two versions of the same query can be used, one version with a small population and 
one with a large population. We will have 13 possible variations of the first version 
and 12 variations of the second version all involving the same amount of work within 
one version. Looking at the existing TPC-H queries involving the skewed tables cus-
tomer or supplier or both it turns out that these tables can be accessed either via a 
nation name or a region name as shown in table 5 below. 

Table 5. TPC-H queries involved in skew 

Queries Involving the Skewed Tables 

CUSTOMER SUPPLIER 

via nation via region via nation via region 

7, 8, 20, 21 5, 8 11, 7 2, 5 
  

 
With alternative 2 the regions have different customer and supplier populations 

which presents a problem because queries 2, 5 and 8 now involve a different amount 
of work depending on what region is drawn by qgen. Queries 7, 11, 20 and 21 could 
easily be handled by duplication as proposed above. This shows the need for a third 
skew alternative that will create two sets of nations with respectively low and high 
populations and leave regions at the same size. This can be accomplished by dividing 
up the nations in two groups as in alternative 2 but this time we will apply a consistent 
strategy to all regions. Since there are 5 nations per region we define 3 nations with 
low population and 2 with high population everything else staying the same including 
the region to nation assignment. Using the same rule as before whereby the popula-
tion of a large region is ten times the population of a small region we obtain the popu-
lations for the customer and supplier tables by nation portrayed in Table 6. 

The customer and supplier populations by nation are in two groups and the regions 
are of the same size as in the current version of the benchmark. As a result, we do not 
have to worry about changing queries 2 and 5 which access the database on a region 
basis. For query 8 which has an explicit reference to both nation and region we will 
need only address the reference to nation. Even though skew will alter the perfor-
mance of these queries compared to today because the joins are skewed but they are 
skewed in the same way and therefore involve the same amount of work regardless of 
the region selected. We now need to address the required changes to queries 7, 8, 10, 
20 and 21.  
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Table 6. Customer and Supplier populations – alternative 3 

regionkey nationkey nation name 
# customers 
skewed 

#suppliers 
skewed 

0 0 ALGERIA 1303884 86904 
0 5 ETHIOPIA 1306366 86958 
0 14 KENYA 1303909 86896 
0 15 MOROCCO 13038119 868515 
0 16 MOZAMBIQUE 13041356 870138 
1 1 ARGENTINA 1304942 86637 
1 2 BRAZIL 1304372 87171 
1 3 CANADA 1305311 86946 
1 17 PERU 13043601 867792 
1 24 UNITED STATES 13043469 868983 
2 8 INDIA 1305191 87360 
2 9 INDONESIA 1307374 86982 
2 12 JAPAN 1304620 86859 
2 18 CHINA 13037483 870543 
2 21 VIETNAM 13045923 867881 
3 6 FRANCE 1302458 86759 
3 7 GERMANY 1304490 86768 
3 19 ROMANIA 1304150 87165 
3 22 RUSSIA 13045606 869921 
3 23 UNITED KINGDOM 13043181 870220 
4 4 EGYPT 1305456 87531 
4 10 IRAN 1303462 87204 
4 11 IRAQ 1304282 86814 
4 13 JORDAN 13045058 871250 
4 20 SAUDI ARABIA 13045937 869803 

    total 150000000 10000000 

  
Since query 7 involves two nations we could chose an approach whereby nation1 is 

chosen from the low population pool while nation2 is chosen from the high popula-
tion pool. This would not require duplicating the query since all combinations would 
involve the same amount of work. The second approach would consist of duplicating 
query 7 and chose in version 1 of the query both nations from a low pool and in ver-
sion 2 of the query both nations from the high pool. The first approach would dilute 
the effect of skew but still provide a large number of nation combinations while the 
second approach increases the effect of skew but results in a smaller number of nation 
combinations.  For each query q where q is 8, 10,  20 and 21 (and perhaps 7 if so 
wanted) we will define two queries q.1 and q.2. While the nation name can be any of 
the nation names with a low population (15 possible values) in q.1, the nation name 
will be any of the nation names with a high population in q.2. This will increase the 
number of queries to at least 26 and skew will be present in TPC-H in a simple fa-
shion although, from a benchmark specification perspective, the effort could be sig-
nificant in terms of the utilities dbgen and qgen. 

5 Conclusion 

We have presented several approaches all very easy to implement that introduce skew 
into TPC-H. The first approach is of interest for companies or research institutions as 
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it is realistic since resulting supplier and customer populations per nation are propor-
tional to actual nation populations. The second alternative divides nations into two 
groups. In one group all nations are of equal size but small while in the other group all 
nations are also of equal size but large and regions are of different sizes. The third 
alternative, like the second, divides the nations into two groups, one with large and 
equal populations and the second with small but equal populations but leaves the re-
gions equal in size (from a customer and supplier standpoint). Using the third alterna-
tive we have shown how it is possible to define a new TPC-H benchmark involving 
skew and the same query set with minimal disruption. Using a simple query we have 
also shown how skew can be a challenge for parallel database system optimizers. 

References 

[1] Lakshmi, S.M., Yu, P.S.: Effect of Skew on Join Performance in Parallel Architectures. 
In: International Symposium on Databases in Parallel and Distributed Systems (1988) 

[2] Walton, C.B., Dale, A.G., Jenevein, R.M.: A Taxonomy and Performance Model of Data 
Skew Effects in Parallel Joins. In: Proceedings of VLDB, pp. 537–548 (1991) 

[3] Wolf, J.L., Dias, D.M., Yu, P.S., Turek, J.: An Effective Algorithm for Parallelizing Hash 
Joins in the Presence of Data Skew. In: Proceedings of ICDE 1991 (1991) 

[4] DeWitt, D.J., Naughton, J.F., Schneider, D.A., Seshadri, S.: Practical Skew Handling in 
Parallel Joins. In: Proceedings of VLDB 1992, pp. 27–40 (1992) 

[5] Xu, Y., Kostamaa, P.: Efficient Outer Join Data Skew Handling in Parallel DBMS. In: 
Proceedings of VLDB, pp. 1390–1396 (2009) 

[6] TPC Benchmark H (Decision Support) Standard Specification Revision 2.14.0, 
http://www.tpc.org 



 

R. Nambiar and M. Poess (Eds.): TPCTC 2011, LNCS 7144, pp. 146–162, 2012. 
© Springer-Verlag Berlin Heidelberg 2012 

Time and Cost-Efficient Modeling and Generation  
of Large-Scale TPCC/TPCE/TPCH Workloads 

Christina Delimitrou1, Sriram Sankar2, Badriddine Khessib2,  
Kushagra Vaid2, and Christos Kozyrakis1 

1 Electrical Engineering Department, Stanford University, Stanford, CA, USA, 94305 
{cdel,kozyraki}@stanford.edu 

2 Global Foundation Services, Microsoft, Redmond, WA, USA, 98052.  
{srsankar,bkhessib,kvaid}@microsoft.com 

Abstract. Large-scale TPC workloads are critical for the evaluation of 
datacenter-scale storage systems. However, these workloads have not been 
previously characterized, in-depth, and modeled in a DC environment. In this 
work, we categorize the TPC workloads into storage threads that have unique 
features and characterize the storage activity of TPCC, TPCE and TPCH based 
on I/O traces from real server installations. We also propose a framework for 
modeling and generation of large-scale TPC workloads, which allows us to 
conduct a wide spectrum of storage experiments without requiring knowledge 
on the structure of the application or the overhead of fully deploying it in 
different storage configurations. Using our framework, we eliminate the time 
for TPC setup and reduce the time for experiments by two orders of magnitude, 
due to the compression in storage activity enforced by the model. We 
demonstrate the accuracy of the model and the applicability of our method to 
significant datacenter storage challenges, including identification of early disk 
errors, and SSD caching.  

Keywords: Workload, Modeling, Storage Traces, TPC benchmarks, 
Characterization, Storage Configuration, Datacenter.  

1 Introduction 

As cloud data-stores have emerged over the past decade, user data has started being 
increasingly stored in large-capacity and high-performance systems, which account 
for a significant portion of the total cost of ownership (TCO) of a datacenter (DC) [4]. 
Specifically for large-scale databases, data retrieval is often the bottleneck for 
application performance [1, 4], promoting efficient storage provisioning to a first-
order design constraint. This makes the study of the TPC benchmarks (TPCC, TPCE 
and TPCH), which have traditionally been of fundamental importance for the 
configuration and evaluation of DC-scale systems, even more important. TPCC and 
TPCE especially, being clearly I/O-bound, are tailored for use in storage system 
studies, while TPCH also experiences significant challenges towards its optimal 
configuration. However, one of the main roadblocks when trying to evaluate storage 



 Time and Cost-Efficient Modeling and Generation 147 

 

system options using large instances of TPC is the cost in time, and demand for 
expertise for setting up and managing the workload itself. Applications like TPCC, 
TPCE and TPCH introduce high complexity in order to be correctly configured and 
setup to scale to hundreds of thousands of servers, while they demand in-depth 
knowledge of the structure and functionality of the workloads from the DC operators.  

One of the main challenges when using large-scale applications to evaluate storage 
is the difficulty in replaying the entire application in all possible system 
configurations. The effort itself can be highly inefficient in both time and cost. 
Furthermore, applications like TPCC and TPCE differ from conventional desktop 
applications in that they cannot be approximated by single-machine benchmarking, 
therefore highly scalable experiments are required.  

Despite the merit in understanding the characteristics of the workload in order to 
effectively provision its storage system, no in-depth, per-thread characterization of the 
I/O behavior of TPC applications exists. Previous work on workload generation [6, 
10, 11, 13] lacks the ability to capture aspects of the workload like spatial and 
temporal locality which are critical for the accurate representation of the application’s 
storage activity, while experiments are limited to small scales. This underlines the 
importance of investing in frameworks that enable extensive workload analysis, 
characterization and modeling, while permitting easy and fast setup for TPC 
applications, without requiring significant knowledge on the application’s intricate 
details and functionality, therefore can be performed directly by storage experts.  

In this work, we propose a framework that enables fast and accurate configuration 
and storage experiments for TPCC/E/H using a workload model and a tool that 
generates storage activity that is similar in I/O characteristics and performance 
metrics to that of the original application. This framework decouples performing 
large-scale storage experiments from the requirement to being an expert in the TPC 
workloads. This infrastructure includes probabilistic, state diagram-based models [1] 
that capture information of configurable granularity on the workload’s access 
patterns. The models are developed from production traces of large instances of 
TPCC, TPCE and TPCH. We identify the optimal level of detail required for the 
model to accurately describe the storage activity of each application and design a tool 
that recognizes them and recreates access patterns with I/O features that resemble 
those of the original workloads. We have performed extensive validation on the 
accuracy of the infrastructure, in terms of the generated storage behavior and have 
verified the consistency and conciseness of the results [3]. Based on these models and 
the original traces we perform an in-depth, per-thread characterization of the storage 
activity of the TPC benchmarks and provide insights on their behavior.  

The proposed framework can be used for research on large-scale storage systems. 
Specifically in this work we present two possible use cases, namely: identification of 
early errors in large-scale storage systems, and evaluation of incorporating SSD 
caching in the back-end servers to improve performance. The results demonstrate the 
accuracy of the modeling process, and the time and cost-efficiency in performing 
large-scale experiments for TPC benchmarks.  
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Succinctly, the main contributions of this work are:  

• We perform an extensive, per-thread characterization of the access pattern 
and characteristics in the storage activity of the TPCC, TPCE and TPCH 
workloads and provide insights on the correlation between storage activity 
and specific query type.  

• We provide a framework for accurate modeling, of configurable detail, of 
the storage activity for TPCC, TPCE and TPCH and verify the 
resemblance between original and synthetic application in I/O features 
and performance metrics.  

• We greatly simplify the setup and configuration procedure for evaluating 
storage using large-scale TPC benchmarks, and remove the requirement 
for expertise in the application’s structure, components and functionality, 
therefore enabling storage experts to independently perform storage 
configuration experiments.  

• We greatly reduce the time required to perform large-scale storage 
experiments (e.g. SSD caching, from days in the original TPC setup, to 
minutes, when using the model i.e. a 150x time reduction), by 
compressing the storage behavior and removing the need to deploy the 
entire application in different storage configurations.  

• We demonstrate the scalability of our methodology to a large number of 
servers, as well as the ability to perform accurate scaled-down 
experiments using fewer instances of the model.  

• We show the applicability of this methodology to a wide spectrum of use 
cases, ranging from identifying early problems with storage (infant 
mortality), to storage configuration optimizations (e.g. use of SSDs, 
hybrid HDD/SSD systems).  
 

This methodology enables studies previously impossible without a full TPC setup and 
without application deployment for every modification in the storage system. Thus it 
greatly reduces the overhead and complexity of performing large-scale studies, while 
offering the ability to setup the workloads to storage experts as well.  

The rest of this paper is structured as follows. Section 2 discusses the motivation 
for this work. Section 3 presents related work on TPC characterization and storage 
modeling and generation. Section 4 provides a description of the model and an 
overview of the tool's implementation as well as an in-depth, per-thread 
characterization of the three applications. Section 5 discusses the validation of the 
methodology against the original TPC workloads, and a comparison of our toolset 
with a popularly used workload generator. Section 6 discusses the applicability of the 
tool in evaluating the important DC storage challenge of storage endurance and SSD 
caching. Finally, Section 7 presents topics for future work and concludes the paper. 

2 Motivation 

Datacenter applications are hard to model due to their varying user demand and large 
scale. Large enterprises typically use industry-standard TPC benchmarks for 
configuring their database systems prior to actual deployment. However, TPC 
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benchmarks are extremely difficult to setup, sometimes taking multiple weeks to get a 
working configuration. In this work, we strive to reduce this setup time and the 
current need to have TPC as a full application deployment. In earlier large-scale TPC 
setups, there used to be disks with intermittent read failures or bad sectors that would 
create latency profiles with few outliers that were very difficult to identify. In present 
day setups, SSDs (Solid State Drives) encounter intermittent write performance issues 
that are difficult to detect in a full application deployment. For all these cases, we 
need improved storage testing ability. The objective of our modeling and I/O 
generation work is to provide such a facility.  

In addition to reducing setup times and facilitating fast storage testing, we also use 
our framework to test new DC technologies, including tiered storage approaches. One 
recent development is the use of SSDs in traditional hard disk drive (HDD) space.  

Since SSDs are significantly costlier per GB than HDDs, we need to configure the 
use of these devices such that the eventual cost-performance of the system is optimal. 
Such studies also require running the entire application setup, which takes a lot of 
time to test multiple configurations. Our framework is designed to address multiple 
test configurations in an efficient manner using intensity knobs.  

3 Related Work 

Performing scalable experiments using the TPC workloads is of great interest to 
hardware architects, especially when the target system is a large-scale DC. 
Specifically, because of their I/O-dominated behavior, TPCC and TPCE are of 
primary importance when configuring and evaluating the storage system of large 
DCs.  
Significant prior work [7] has studied how to efficiently provision this part of the 
system, however, using the TPC workloads in this scope, introduces a large overhead, 
in terms of setup and maintenance for the application. An ideal way to overcome this 
is by using a model that captures the storage behavior of TPC benchmarks and a tool 
that recreates representative access patterns that resemble the original workload. Such 
a framework would provide insight on the storage behavior, and greatly reduce the 
time required for the setup and configuration of large-scale databases, as well as the 
time for storage configuration experiments.  

Despite the obvious merit in developing such an infrastructure, most prior work on 
large-scale storage configuration is empirical, primarily relying on extracting the 
workload characteristics based on traces [8].  

Kavalanekar et al. in [2] and [8] use a trace-based approach to characterize large 
online services for storage configuration and performance modeling respectively. 
Traces offer useful insight on the characteristics of large-scale workloads, but their 
usefulness is limited by the system upon which they have been collected. Generating 
TPC workloads with high fidelity can offer far richer information towards 
understanding their behavior and making experimenting with them easier and faster. 
It also enables addressing instrumental challenges in storage system design (error 
detection, SSD caching, data migration) when optimizing for performance, efficiency 
and/or cost.  
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Prior work on workload generators includes SQLIO [10], Vdbench [11], and 
IOMeter [6] which remains the most well-known open-source tool for workload 
generation. The main disadvantage of these tools is that, as in the case of IOMeter, 
they lack the ability to represent the spatial and temporal locality in the I/O accesses, 
which for applications like TPC is critical in distinguishing between hot and cold 
tables in the database. This makes these tools impractical, if not impossible, to be 
used for locality-aware studies, which are critical for many storage optimizations.  

In this work we present a new framework for TPC workloads, which allows 
accurate modeling and generation of their I/O access patterns and greatly simplifies 
the setup of the infrastructure and the execution of large-scale experiments.  

4 Modeling and Generating TPCC/E/H 

Our framework consists of two main components. First, we train the model that 
captures the storage activity of the TPC workloads. Second, we have implemented a 
tool that recognizes these models and creates storage access patterns with similar 
characteristics as in the original applications.  

4.1 Storage Workload Model 

Our model is based on the Markov chain representation discussed in [1]. According to 
the model, states correspond to ranges of Logical Block Numbers (LBNs) on disk, 
and transitions, represent the probability of consecutive I/Os moving between states. 
The transitions are characterized by the following I/O features: block size, type of 
request (read, write), randomness, and inter-arrival time between subsequent 
requests. We present here the basic features of the state diagram. More details on the 
model can be found in [3]. The main insight behind the structure of the model is that 
spatial locality of I/Os can be represented by the clustering of requests in each state, 
and temporal locality by the transitions between states. The probability of each 
transition is calculated as the percentage of the requests that correspond to it. Figure 
1(a) shows a simple state diagram with four states.  
 

 

Fig. 1. State Diagram Model: (a) One level, (b) Two levels 
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In order to include more detailed information on the I/O access pattern we have 
extended this model to a hierarchical representation with each state expanding to 
become a new state diagram. This way, with a simple sensitivity study we can 
identify the optimal amount of information required by each application to make the 
model accurate. Figure 1(b) shows an example of such a model using two levels. 
Increasing the number of states per level to reduce the number of levels is possible  
but augments the complexity of the model, as the transition count increases 
substantially. 

4.2 Generation Tool  

The second part of the infrastructure consists of a tool that recognizes the storage 
workload model and creates a benchmark with activity similar to that of the original 
TPC application. For this purpose we have used and extended DiskSpd [5], a 
workload generator that works as a command line tool, initiating read/write requests 
in burst mode to disks and/or files. In order to account for the information captured in 
the model, we have implemented a set of additional features in DiskSpd, which 
briefly are:  

• Initiating I/O requests with specified inter-arrival times, either static or 
time-varying to capture fluctuation in the intensity of storage activity. 

• Maintaining transition probabilities between threads and guaranteeing that 
the generated workload is a compressed and accurate version of the 
original one.  

• Varying the intensity of the generated workload using a knob that scales 
the inter-arrival times between subsequent I/O requests. This enables 
evaluation of alternative storage system configurations, e.g. SSD-based 
systems.  

In Section 5 we present the comparison of the original TPC applications against the 
synthetic workloads to show the accuracy of the modeling and generation process.  

4.3 Characterization of TPCC/TPCE/TPCH  

 We used the previously discussed models to characterize large-scale instances of 
TPCC, TPCE and TPCH workloads from real production DC systems. In order to 
reduce the dimensionality of the problem, we separate the application traces per 
thread and create a separate model for each thread. We observe the access patterns in 
the benchmark, along with the spatial and temporal locality characteristics captured 
by the model. We also evaluate the performance metrics (IOPS and average request 
latency) based on the information collected from the traces.  

Table 1 shows this characterization for the three workloads in a per-thread manner. 
This separation is performed perceptively at the moment; however, as part of future 
work, we plan to develop automatic ways to recognize and categorize storage activity 
in thread types. Each row in Table 1 corresponds to a different thread type in the 
application. We categorize the threads based on their functionality (i.e. a Log or a 
Data Thread), activity (low or high I/O request rate) and fluctuation (constant activity 
or experiencing activity spikes) characteristics.  
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The categorization in thread types is:  

• Log Thread with high activity and low fluctuation (#0) 
• Log Thread with low activity and high fluctuation (#1) 
• Data Thread (SQL Queries) with high activity and low fluctuation (#2) 
• Data Thread (SQL Queries) with high activity and high fluctuation (#3)  
• Data Thread (SQL Queries) with medium activity and low fluctuation (#4)  
• Data Thread (SQL Queries) with low activity and high fluctuation (#5) 
• Data Thread (SQL Queries) with low activity and low fluctuation (#6)  
• Data Thread (SQL Queries) with very low activity and fluctuation (#7) 

Specifically TPCC and TPCE have the following thread types:  
 Log #0, Log #1, Data #2, Data #3 and Data #6 
While for TPCH the thread types are:  
 Log #0, Data #2, Data #3, Data #4, Data #5, Data #6 and Data #7  

Those are the only combinations of activity-fluctuation pairs observed for the specific 
applications. For each type of thread we show the characteristics of the I/O requests 
(rd:wr ratio, percentage of sequential I/Os, average inter-arrival time between requests 
and average request size), as well as the spatial locality of accesses as captured by the 
model. Each state corresponds to a portion of the disk space in LBNs, e.g. St1 
corresponds to the first 25% of logical block addresses. The thread weight column 
shows the percentage of requests that correspond to the specific thread. Finally, we 
show the average performance metrics (throughput and latency) for each thread type. 
The number of threads that belongs to each thread type for each application is shown 
in Table 2. 

Table 1. Per thread I/O characteristics and performance metrics for TPCC/TPCE/TPCH 

T
P

C
C

 

Thread 
type 

Fluctuation 
(11min) 

Rd:Wr 
Ratio 

% Seq.
I/Os

Avg  Int. 
Time(ms)

Avg 
Request 

Size (KB)

Spatial Locality Thread
Weight

Avg. 
IOPS 

 Avg Lat. 
(ms) St1 St2 St3 St4

Total 

 

 2.2:1 2.8 0.43 9.48 85.8 1.4 12 0.4 1.00 47,082 4.13 
R 2.2 0.08 0.08 4.13 88.5 1.5 9.8 0.3 0.68 35,720 6.47 
W 1 6.49 4.13 12.31 79.1 1.2 19 0.6 0.32 11,362 0.47 

#0 (Log) 

 

 1:99 1.8 2.56 2.09 88.3 11 0.7 0 1.2E-4 5.87 8.91 
R 1 0.02 3036.1 0.5 0 0 100 0 1.2E-6 0.58 8.97 
W 99 1.8 2.55 2.09 88.9 11 0.2 0 1.2E-4 5.29 8.91 

#1 (Log) 

 

 1:99 0.95 66.30 3.94 66.7 31 2 1 0.001 49.26 2.45 
R 1 0.01 107.8 0.5 75 0 25 0 1E-5 0.49 6.13 
W 99 0.95 65.8 3.94 66.1 31 1.9 1 99E-5 48.77 2.30 

#2 (SQL 
Queries) 

 

 2:1 25.0 2.60 14.625 86.4 0 14 0 0.17 8,403 3.01 
R 2 28.5 2.57 20.625 87.2 0 13 0 0.119 5,602 4.89 
W 1 18.0 2.72 8.192 99.7 0 0 0.3 0.059 2,802 0.41 

#3 (SQL 
Queries) 

 

 98:2 2.0 1.00 20.873 78.5 0 21 0.7 0.242 11,394 6.01 
R 98 2.1 1.00 1.024 78.4 0 21 0.7 0.241 11,166 6.05 
W 2 0.3 10.96 65.526 99.4 0 0 0.6 0.001 228 0.56 

#6 (SQL 
Queries) 

 

 100:1 14.7 5.27 32.893 100 0 0 0 0.02 945.42 5.47 
R 100 14.7 5.27 32.893 100 0 0 0 0.02 945.42 5.47 
W 0 - - - - - - - 0 0 - 
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Table 1. (continued) 

 Thread 
type 

Fluctuation 
(11min) 

Rd:Wr 
Ratio 

% Seq. 
I/Os

Avg  Int. 
Time(ms)

Avg 
Request 

Size (KB)

Spatial Locality Thread
Weight

Avg. 
IOPS 

Avg Lat. 
(ms) St1 St2 St3 St4

T
P

C
E

 

Total 

 

 10.5:1 8.15 0.78 8.41 89.8 8.4 1.7 0.3 1.00 24,694 5.55 
R 10.5 6.04 0.59 8.02 92.5 5.4 2.1 0 0.913 22,546 6.01 
W 1 23.75 6.89 14.68 56.0 27 15 2.1 0.087 2,148 0.69 

#0 (Log) 

 

 1:99 11.75 9.09 2.05 88.8 10 1.0 0.3 5E-4 12.37 0.48 
R 1 0.01 909.14 0.5 76 16.3 7.4 0.3 5E-6 0.12 5.63 
W 99 11.75 9.08 2.05 88.9 11 0.1 0 5E-4 12.25 0.47 

#1 (Log) 

 

 1:100 1.42 77.1 2.10 89.0 11 0 0 2.2E-5 0.54 0.56 
R 0 - - - - - - - 0 0 - 
W 100 1.42 77.1 2.10 89.0 11 0 0 2.2E-5 0.54 0.56 

#2 (SQL 
Queries) 

 

 7:1 20.6 7.25 6.1 92.4 7.4 0.2 0 0.077 1,897 4.63 
R 7 15.3 3.81 3.8 96.0 4.0 0 0 0.067 1,659 5.35 

W 1 37.9 12.89 16.0 87.7 10 2.3 0 0.009 238 0.47 

#3 (SQL 
Queries) 

 

 12.5:1 16.3 4.38 8.02 91.0 8 0.2 1 0.048 1,172 5.67 

R 12.5 11.65 2.37 8.02 90.8 8 0.4 1 0.044 1,086 6.13 
W 1 50 12.68 8.01 92 0 0 8 0.004 86 0.89 

#6 (SQL 
Queries) 

 

 70.4:1 15.5 15.32 8.00 91.2 6.2 2.4 0 0.035 859.3 5.35 
R 70.4 15.6 12.46 8.00 90.6 7.2 2.4 0 0.034 847.3 5.41 
W 1 7.1 287.3 4.01 99 0 0 1 0.0005 12.0 0.65 

T
P

C
H

 

Total 

 

 29.4:1 35.5 0.327 16.13 92.7 6.2 1.3 0 1.00 3,296 5.92 
R 29.4 35.6 0.317 16.19 89.8 10 0.1 0 0.967 3,188 6.01 
W 1 11.7 1.32 1.32 97.8 0 2.2 0 0.328 108.4 0.47 

#0 (Log) 

 

 1:100 0 173.8 4.1 100 0 0 0 4.8E-6 0.016 0.44 
R 0 - - - - - - - 0 0 - 
W 100 0 173.8 4.1 100 0 0 0 4.8E-6 0.016 0.44 

#2 (SQL 
Queries) 

 

 100:1 74.8 10.8 524.2 97.8 2.2 0 0 0.012 40.4 5.31 
R 100 74.8 10.8 524.2 97.8 2.2 0 0 0.012 40.4 5.31 
W 0 - - - - - - - 0 0 - 

#3 (SQL 
Queries) 

 

 100:1 72.1 16.8 524.8 91.8 8.9 0.3 0 0.005 18.6 4.42 
R 100 72.1 16.8 524.8 91.8 8.9 0.3 0 0.005 18.6 4.42 

W 0 - - - - - - - 0 0 - 

#4 (SQL 
Queries) 

 

 99:1 63.8 48.63 128.8 95.4 4.6 0 0 0.002 7.20 5.31 

R 99 63.9 48.5 128.9 95.4 4.3 0 0 0.002 7.19 5.46 
W 1 2.8 202.9 2.14 80 20 0 0 2E-5 0.01 0.46 

#5 (SQL 
Queries) 

 

 100:1 50.9 315.8 524.8 80 0 20 0 0.0011 3.75 5.53 
R 100 50.9 315.8 524.8 80 0 20 0 0.0011 3.75 5.53 
W 0 - - - - - - - 0 0 - 

#6 (SQL 
Queries) 

 

 81:19 66.8 234.9 65.5 91.8 0 8.2 0 6.0E-4 1.99 5.42 
R 81 70.2 123.7 65.5 100 0 0 0 4.8E-4 1.61 5.59 
W 19 12.8 869.4 4.01 80 0 20 0 1.2E-4 0.37 0.69 

#7 (SQL 
Queries) 

 

 100:1 25.6 134.0 65.5 100 0 0 0 1.4E-8 4.6E-5 5.53 
R 100 25.6 134.0 65.5 100 0 0 0 1.4E-8 4.6E-5 5.53 
W 0 - - - - - - - 0 0 - 
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Table 2. Number of threads and thread weights, for each thread-type for TPCC, TPCE and 
TPCH 

Workload 
Thread 

type 
Number of 

Threads 
Thread Weight 

/Thread 
Thread Weight 
/Thread Type 

T
P

C
C

 Total 26 - 1.00 
#0 (Log) 4 1.2E-4 4.8E-4 
#1 (Log) 12 0.001 0.012 
#2 (Data) 1 0.17 0.17 
#3 (Data) 3 0.242 0.726 
#6 (Data) 6 0.02 0.12 

T
P

C
E

 

Total 35 - 1.00 

#0 (Log) 6 5E-4 0.003 

#1 (Log) 9 2.2E-5 1.9E-4 

#2 (Data) 4 0.077 0.308 

#3 (Data) 9 0.048 0.432 

#6 (Data) 7 0.035 0.245 

T
P

C
H

 

Total 175 - 1.00 
#0 (Log) 13 4.8E-6 6.3E-5 
#2 (Data) 58 0.012 0.696 
#3 (Data) 52 0.005 0.26 
#4 (Data) 13 0.002 0.026 
#5 (Data) 6 0.0011 0.006 
#6 (Data) 11 6E-4 0.007 
#7 (Data) 22 1.4E-8 3E-7 

 
Examining all three TPC applications, we see that read requests dominate. For 

TPCC that feature is not as evident as for TPCE and TPCH where the rd:wr ratio is 
over an order of magnitude higher. In terms of I/O features per thread, we present the 
main insight for each of the three applications:  

 
I.TPCC 
TPCC threads are divided between Log and Data threads, with the first accounting for 
a very small percentage of the total storage activity, while Data requests dominate. In 
terms of sequential over random I/O characteristics per thread type, we observe that 
Data #2 (high activity, low fluctuation) has a significant percentage of Sequential 
I/Os, and experiences minimal fluctuation in its storage activity. On the other hand, 
random-dominated threads like Data #3 have high fluctuation in their throughput, 
which might be a result of accessing many different files, and performing more 
complex queries. Regarding spatial locality, most I/O requests are directed to the first 
25% of the storage capacity, with a smaller percentage belonging to St3.  

 
II.TPCE 
While TPCC only had 26 threads, TPCE has a significantly larger number of threads 
in this instance (35). Most of these threads service SQL Queries in the Data partitions 
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of the storage, while 15 threads service Log requests with considerably lower 
intensity. Log threads, as with TPCC, are write-dominated, and have low throughput 
requirements, while Data threads are read-dominated and account for the large 
majority of the workload’s storage activity. The differences between the threads’ 
activity are smoother for TPCE than for TPCC, partially due to their larger number, 
which contributes to better load balance in the system. The main difference between 
SQL threads, apart from their throughput requirements, is their rd:wr ratio, which is 
7:1 for Data #2 and reaches 70.4:1 for Data #6 (low activity, low fluctuation). This 
difference is appointed to the different type of queries serviced by each type of thread, 
and is consistent across threads of the same type. TPCE has even higher spatial 
locality than TPCC, with I/O requests being more aggregated in space, especially 
when it comes to Data requests. Most of the I/O accesses belonging to higher states 
are initiated as part of Log threads. This has motivated the TPC community to start 
using SSDs in order to limit the overprovisioning with respect to spatial locality.  

 
III.TPCH 
TPCH has been previously studied [9, 13] in terms of the large number of different 
queries it is comprised of. Here, we can correlate those types of queries with the 
underlying storage activity they initiate. In terms of aggregate I/O metrics, TPCH is 
significantly read-dominated, more than TPCE, and definitely more than TPCC. It is 
also a lot less intense than the previous two workloads, with average IOPS accounting 
for 5% of the average throughput of TPCC, and 10% of TPCE. However, the aspect 
where TPCH deviates most evidently from the I/O-dominated workloads is the 
number of threads it has, which is 175, almost an order of magnitude more than in 
either TPCC or TPCE. The interesting characterization of TPCH comes from studying 
the different types of these threads. Based on the storage activity and files visited, and 
without knowledge on the semantics of the application, we can deduce the type of 
query from the 22 TPCH query types [9].  

Table 3. Correlation between Storage Activity and Queries for TPCH 

Workload Thread type Query Type 

T
P

C
H

 

Total Q1-Q8, Q10-Q22 
#0 (Log) - 

#2 (Data) Q1, Q5, Q7-Q10, 
Q16, Q18 

#3 (Data) Q1, Q5, Q7, Q9, 
Q13, Q16, Q17 

#4 (Data) Q3, Q5- Q8, Q17, 
Q19, Q21 

#5 (Data) Q1, Q7, Q13-Q15, 
Q19, Q20 

#6 (Data) Q2, Q4, Q6, Q14, 
Q15, Q22 

#7 (Data) Q2, Q4, Q6, Q11, 
Q12, Q22 



156 C. Delimitrou et al. 

 

This means that a workload model can represent one or multiple query types and 
that by assembling the correct mix of per-thread workload models one can create a 
benchmark with the corresponding combination of queries without the requirement to 
know the functionality and structure of the application. Table 3 shows this 
correspondence between thread types and TPCH query types [9].  

5 Validation 

For each thread type, we create a separate workload model and a synthetic workload 
that resembles its storage activity. We create a thread mix based on the ratios in Table 
2 to recreate the aggregate activity of each TPC application. We then run the synthetic 
workload using our framework and compare it against the original TPC applications. 
For our experiments we use real DC traces from a large-scale deployment of the TPC 
benchmarks, running on MS SQL Server. The synthetic workloads are run on a TPC-
provisioned server with two sockets, 8 cores, 16GB of memory and 28 disks  
(5.4TB total storage) organized in RAID1+0 configuration.  The metrics of interest 
are I/O characteristics per thread, as well as performance metrics (throughput and 
latency).  

 

 

Fig. 2. Validation of (a) I/O characteristics, (b) Spatial Locality and (c, d) Performance 
Metrics between Original and Synthetic Trace for TPCC 
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Fig. 3. Validation of I/O characteristics, Spatial Locality and Performance Metrics between 
Original and Synthetic Trace for: Log #0 (1st row), Log #1 (2nd row), Data #2 (3rd row), Data 
#3 (4th row) and Data #6 (5th row) 

Figure 2(a) shows the validation of I/O features (Rd:Wr Ratio, % of Seq. I/Os, 
Avg. Inter-arrival Time, Avg. Request Size, Thread Weight), and Figure 2(b) the 
comparison in spatial locality between original and synthetic application for TPCC. 
The x-axis in Figure 2(a) shows the different I/O characteristics and the y-axis the 
value of the corresponding feature. The different bars in Figure 2(b) show the LBN 
ranges (i.e. each bar is 25% of the disk capacity). As we showed in Section 4.3 the 
vast majority of requests happen in State 1, while State 2 and State 3 have 
significantly lower percentages of I/O accesses. Figures 2(c) and 2(d) show the 
comparison for throughput and latency between original and synthetic application. 
For all metrics, the deviation is marginal (less than 5%), which shows that the model  
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Fig. 4. Validation of I/O characteristics, Spatial Locality and Performance Metrics between 
Original and Synthetic Trace for: the entire TPCE benchmark (1st row), Log #0 (2nd row), Log 
#1 (3rd row) 

accurately captures the behavior of the workload. Since the model is based on the 
logical level of the disk configuration, it is not dependent on the underlying physical 
layout. However, major changes in the database implementation (OS, database 
system) affect the model and will require re-training the state diagrams.  

The per-thread results for all three applications are shown in Figures 3, 4 and 5. 
From left to right we show how the I/O features (Rd:Wr Ratio, %of Seq. I/Os, Avg. 
Inter-arrival Time, Avg. Request Size, Thread Weight), spatial locality and 
throughput and latency compare between original and synthetic application. For 
TPCC we show the comparison for all thread types and for TPCE and TPCH for the 
entire application, one Log thread and one Data thread. The results are similar for the 
other thread types as well. In all cases, the deviation is less than 5%, which 
demonstrates the accuracy of our modeling approach and generation process, even 
across threads with vastly different characteristics, like the low-activity, write-
dominated Log threads and the high-activity, read-dominated Data threads. The error 
bars in each graph show the deviation between threads of the same type, in both 
original and synthetic applications.  

For these experiments, we have used 2 levels in the workload model. In order to 
decide on the optimal number of levels, we perform a sensitivity study; we increase 
the number of levels until performance stabilizes (less than 2% difference in 
throughput). This offers the highest amount of information with the least necessary 
complexity in the model. Additional level of detail is possible, and can reveal more 
fine-grained access patterns for the TPC workloads, but its study exceeds the scope of 
this work.  
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Fig. 5. Validation of I/O characteristics, Spatial Locality and Performance Metrics between 
Original and Synthetic Trace for: the entire TPCH benchmark (1st row), Log #0 (2nd row), Data 
#2 (3rd row) 

6 Use Cases 

6.1 Identifying Early Storage Problems  

Providing a framework for characterization and replay of large-scale TPC workloads 
enables studies that can identify early problems with datacenter-scale storage systems. 
Infant mortality is a prominent issue in large-scale systems and results in significant 
cost in terms of infrastructure and effort to be detected and resolved. Running the 
models for TPCC/E/H, which offer a time-compressed version of the workload, can 
identify such problems very early on, thus saving significant portions of TCO and 
improving the reliability and availability of the system. It can also identify access 
patterns (i.e. thread types) that increase the risk of causing reliability problems.  

Furthermore, the intensity knob included in the generation tool is helpful in that it 
can increase the I/O request rate and stress test the endurance of hard disks. More 
importantly it allows a fast identification of such errors, which eliminates faulty disks 
in the system and improves its longevity.  

6.2 SSD Caching for TPC Workloads  

Studying the spatial locality of the TPC workloads, per thread, has revealed that most 
accesses are limited to a small range on disk, while the vast majority of the storage 
capacity remains unutilized. This justifies the attention that SSD-based or HDD/SSD 
hybrid storage systems have recently attracted. Using our framework, we can predict 
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the performance gains from using an SSD-based storage configuration or a system 
with SSD caches, for TPC workloads. Furthermore, since the experiments are very 
fast to perform, one can examine many more options, than previously possible, in 
search of an optimal storage configuration for a workload.  

We have used our models for TPCC, TPCE and TPCH to evaluate the performance 
gains in a system with SSD caching (4 SSD caches, 8GB each [12]). For this, we have 
used the same disk I/O traces as before, which implies that we assume no change in 
the intensity of the workload when we switch to the SSD-based system. This is not 
necessarily the case, since we expect I/Os to arrive at a faster pace when there are 
SSDs in the system. However, we have chosen to maintain the previous features for 
the applications, to compare the performance metrics more consistently. We plan to 
evaluate a retuned version of the applications in the faster storage system, after 
determining that subsequent I/O requests are independent, in which case simply 
increasing the intensity of the requests, is what we would see in the SSD-based 
system.  

Figure 6 shows the results of this experiment in terms of per thread and aggregate 
speedup when we enable SSD caching, for each of the three applications.  

We observe that for threads that are more intense in I/O requests, the improvement 
from adding the SSD caches is more significant. This is in agreement with the fact 
that SSDs are more beneficial in very intense workloads, while disks are preferred for 
less frequent I/O requests. This also takes into account the fact that SSDs mainly 
benefit read-dominated thread types like #2, #3 and #7 for TPCH, while the write 
dominated Logs (#0, #1) and Data #6 do not experience as high an improvement, with 
performance even worsening for Log #0 and #1 in TPCE. We expect that tuning the 
intensity of the workload to resemble the behavior in an SSD-based system, would 
accentuate even more the difference in performance benefit between intense, read-
dominated and not intense, write-dominated thread types.  

 

   

Fig. 6. Performance before and after the use of SSDs for TPCC/E/H 
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To show the need to capture spatial and temporal locality in the model we compare 
our results with those obtained by the most well-known open-source workload 
generator, IOMeter. IOMeter, does not have any notion of locality of I/O requests, in 
which case it is oblivious as to which blocks should be cached in SSDs. Therefore 
using it to study SSD caching should not demonstrate an improvement in 
performance. Indeed, as shown in Figure 7 there is a significant difference in the 
behavior of the two tools. DiskSpd knows which blocks experience temporal locality, 
therefore caches them in the SSDs, while IOMeter does not. The performance 
improvement is evident when using DiskSpd for the storage system evaluation, while 
IOMeter is not helpful in identifying the speedup from adding the SSDs to the system.  

This experiment can also help with identifying the reasons behind the variability in 
write performance observed in systems with SSD storage. Adding SSDs in the 
system, has consistently made predicting write performance a lot more difficult than 
with HDDs, and as SSDs become more affordable, this problem is expected to 
aggravate. Characterizing the application, as performed in Section 4.3, can help with 
identifying the threads that are write-dominated and thus cause the performance 
variability, while running experiments using the workload generator can replicate and 
identify the reasons for this variability. It can also help with documenting the 
sensitivity of SSDs in write I/O intensity by increasing the rate at which write I/Os are 
issued and quantifying the impact on performance, and performance variability.  

 

 
Fig. 7. Comparison between IOMeter and DiskSpd for TPCC/E/H when using SSD caching 

7 Conclusions and Future Work 

In this work we perform a detailed, per-thread characterization of the storage activity 
of the TPCC, TPCE and TPCH workloads, and provide insight on their behavior and 
access patterns. We propose a modeling and generation framework that greatly 
reduces the time to setup and perform storage experiments in large-scale instances of 
the TPC benchmarks. We demonstrate the accuracy of our methodology against the 
original applications, compare it to previous schemes, and present two possible use 
cases for the framework, early disk error detection and SSD caching. We believe that 
this framework offers a detailed understanding on the storage activity of TPCC/E/H, 
while decoupling performing datacenter storage studies from the overhead of setting 
up the application and the requirement to deploy it in all possible storage system 
configurations. We plan to demonstrate the applicability of our methodology by 
evaluating additional use cases for large-scale storage systems.  
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Abstract. The current computing trend towards cloud-based Database-
as-a-Service (DaaS) as an alternative to traditional on-site relational
database management systems (RDBMSs) has largely been driven by
the perceived simplicity and cost-effectiveness of migrating to a DaaS.
However, customers that are attracted to these DaaS alternatives may
find that the range of different services and pricing options available to
them add an unexpected level of complexity to their decision making.
Cloud service pricing models are typically ‘pay-as-you-go’ in which the
customer is charged based on resource usage such as CPU and mem-
ory utilization. Thus, customers considering different DaaS options must
take into account how the performance and efficiency of the DaaS will
ultimately impact their monthly bill. In this paper, we show that the
current DaaS model can produce unpleasant surprises – for example, the
case study that we present in this paper illustrates a scenario in which a
DaaS service powered by a DBMS that has a lower hourly rate actually
costs more to the end user than a DaaS service that is powered by an-
other DBMS that charges a higher hourly rate. Thus, what we need is a
method for the end-user to get an accurate estimate of the true costs that
will be incurred without worrying about the nuances of how the DaaS
operates. One potential solution to this problem is for DaaS providers to
offer a new service called Benchmark as a Service (BaaS) where in the
user provides the parameters of their workload and SLA requirements,
and get a price quote.

1 Introduction

One of the greatest hurdles associated with deploying traditional on-site rela-
tional database management systems (RDBMSs) is the overall complexity of
choosing, configuring, and maintaining the RDBMS as well as the server it oper-
ates on. In choosing and configuring a particular RDBMS and server to deploy,
the users must have a firm understanding of the characteristics of their par-
ticular workload. Some of the important characteristics include the size of the
database, the nature of the queries (transactional or ad-hoc/analytic), and the
desired metric of performance (latency or throughput). Along with the upfront
decisions of a particular RDBMS and corresponding server, the user must con-
sider the long-term licensing, maintenance, and administration costs of running

R. Nambiar and M. Poess (Eds.): TPCTC 2011, LNCS 7144, pp. 163–179, 2012.
c© Springer-Verlag Berlin Heidelberg 2012
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the system. This complexity that is associated with managing onsite DBMSs is
a key reason why cloud-based Database-as-a-Service (DaaS) is starting to gain
in popularity as an alternative to on-site RDBMS systems, especially for small
and mid-sized database users.

The widely perceived advantage of the DaaS paradigm is that the user has
now transferred the complex and nuanced decisions, and the heavy costs of op-
erating an on-site RDBMS to the DaaS provider. Specifically, by turning to a
DaaS, the user stores the data in the DaaS, and uses the DaaS APIs to query
their data, for a monthly subscriber fee. This monthly fee incorporates all the
responsibilities (such as data availability) that the provider has taken on. This
fee also includes an “on-demand” payment model for computing resources that
are consumed (this later component includes the costs that are associated with
the CPU cycles and the storage that is consumed). However, the DaaS providers
recognize that the needs of the database users varies significantly, and that one
fixed pricing model will alienate one or more segments of the customer market.
Consequently, in order to appeal to the entire spectrum of potential users, the
DaaS providers have begun to diversify their offerings with multiple pricing op-
tions, each promising different levels of computing power, storage capability, and
measures of performance. However, from the users’ perspective, there is now a
bewildering set of choices. As with the process of choosing an on-site RDBMS,
they must now fully understand the characteristics, such the raw DBMS perfor-
mance and query workload characteristics, when choosing an appropriate DaaS
product. In fact, with the addition of the pay-as-you-go model for the computing
resources, they now have an additional factor to consider – namely, the impact
of the computing resources usage on their bottom line.

Initially, it may seem that the DaaS products alleviate many of the pains that
are associated with running an on-site RDBMS. However, as we show in this
study, the truth is that the users are actually in a tough position – they must
now make an upfront decision of choosing a DaaS offering, while the long-term
performance and cost consequences of their decisions are harder to figure out.

A crucial point that we make in this paper is that currently the DaaS users
do not have an effective method to compare the suitability of one DaaS op-
tion over another, and fully understand the actual “cost” of their service. In
a traditional RDBMS setting, the database users know that they can always
turn to well-established benchmarks (such as the TPC benchmarks), to esti-
mate whether one solution is more suitable than another. However, while such
benchmarks identify price and performance as key metrics, these metrics have
not been defined for the complex variable pricing models of DaaS products. For
instance, they do not consider storage costs of the database or the utilization
hours as factors of the price/performance. Moreover, TPC benchmarks usually
take into consideration the total cost of ownership as a primary metric. This is
incompatible with the “pay-as-you-go”model of cloud computing since the cloud
customers are not directly exposed to the hardware, software maintenance, and
administration costs of the deployment.
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Fig. 1. Cumulative monthly user cost as a function of workload repetitions, DBMS
type, and pricing model

To highlight the practical need for an easy to use and accurate pricing model,
consider the popular Amazon Relational Database Service (RDS) [1]. While
Amazon initially provided users with a database service backed by MySQL [11],
recently they have unveiled an option to swap the back-end to an Oracle RDBMS
instance [12]. Of course, these two options are not price equivalent, and currently
the “Quadruple Extra Large DB” instance cost of the MySQL option is $2.60
per compute-hour, while the Oracle option is 31% more expensive at $3.40 per
compute-hour. This price difference is largely due to the licensing cost ($0.80 per
compute-hour) of the commercial Oracle system over the open-source MySQL
system. While a cursory glance at these numbers would suggest that the cost-
conscious user should buy the MySQL option, this choice ignores the fact that
the often superior performance of a commercial DBMS may actually result in
less computation time than the “free” MySQL option, and thus may actually be
the cheaper option in some cases!

To better illustrate this point, consider running the followingWisconsin bench-
mark [7] query (Query 21):

INSERT INTO TMP

SELECT MIN (unique3) FROM TABLE1

GROUP BY onePercent

When we run this query on MySQL and a commercial DBMS (SQL Server) on
the same physical machine (configuration details are described in Section 3),
SQL Server runs this query in 185 seconds while MySQL takes 621 seconds to
execute this query. How is the user’s cost affected by this 3.3X performance gap
when the user decides to run this workload on a DaaS?

Assuming a simple pricing model where the user pays a fixed cost of $1.30 per
compute-hour for the specific DB Instance Class used, and a monthly storage fee
of $25 for a database of 250GB, Figure 1 shows the cumulative monthly cost for
the full deployment when these two RDBMSs are used, and when the workload
consists of repetitions of the above query. For the SQL Server-based service, the
user has to pay an extra hourly license fee/cost. Figure 1 examines four possible
pricing models for the hourly license costs (lc) ranging from $0.65 to $3.90.
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Interestingly, Figure 1 shows that although the user does not need to pay any
license fee for MySQL, using this DBMS results in a higher total cost when the
license fee for SQL Server is less than $3.90, and the user frequently issues such
query requests. If the user load is high (e.g., around 4000 queries/month), then
choosing the commercial-based RDBMS can save the user up to 54%. The reason
for this behavior is that the higher efficiency of SQL Server results in decreased
resource usage, and overall reduces the end-to-end cost for the user.

1.1 Towards BaaS

As the example above illustrates, the actual cost that a DaaS user will incur
is hard to guess upfront. A simple approach to solve this pain point is to take
the existing pricing model a step further. So in this scenario, the user provides
the database and workload characteristics to the DaaS provider and in return
the DaaS provider gives a price quote for running that workload. Along with the
price quote the DaaS provider can attach a Service Level Agreement (SLA) that
make guarantees on aspects such as performance variability and availability, and
also lays out the penalty associated with SLA violations. (Alternatively, some
parameters in the SLA could be provided upfront by the user, or the DaaS
provider may come back with multiple price quotes at different SLA levels.)

Thus, what we need is for the DaaS providers to run another service – namely,
“Benchmark as a Service” (BaaS) that makes it transparent to the user what it
would cost to run their workload. Such a BaaS service could be free, and then
would be crudely analogous to the utility model that is present in other parts
of our lives – for example, internet service providers give an accurate price and
specify the upper limit of the bandwidth. We acknowledge that a DaaS provider
may have a more complicated problem at hand since the SLAs in a DaaS setting
could be complex (hence, this is a promising direction for future work). But, from
the perspective of the end-consumer of DaaS, a transparent pricing model could
be very appealing, and perhaps a competitive advantage for the DaaS providers
that choose to simplify their DaaS offering by coupling it with a BaaS service.

The BaaS approach also has a number of potential advantages for the DaaS
provider as it provides a strong motivation to find the most optimal way of
running the backend DBMS engine (rather than punting this decision to the
end user), thereby reducing their operational cost (and perhaps improving their
bottom line). Furthermore, the BaaS approach may provide more flexibility in
managing the DaaS infrastructure – for example, a DaaS provider may not need
to offer a range of DBMSs or data processing backends, and could simplify their
infrastructure management by using only a single data processing engine. Finally,
with a BaaS approach, the overall DaaS system potentially operates at a much
higher operating efficiency (generally the queries across the system are likely to
run far more efficiently then when the end user has to make nuanced decisions
about configuring their DBMS and making bad choices), which in most cases is
also likely to produce a more energy-efficient way of operating the DaaS, since
in many cases the goal of energy efficiency lines ups with the goal of optimizing
for traditional performance goals.
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The remainder of this paper is organized as follows: Section 2 presents our
cost model. Experimental results are presented in Section 3, while Section 4
discusses related work. Section 5 contains our concluding remarks and points to
some directions for future work.

2 Cost Model

This section presents a simple cost model for using relational DBMSs in the
cloud. The model considers the cost that is incurred by the end user in using
a DaaS offering. We then use this model in our experiments (see Section 3) to
explore the costs associated with using a DaaS product.

We patterned a simple pricing model crudely using Amazon’s DaaS product
as a reference. According to the Amazon’s DaaS pricing model [1], the users pay
only for the resources that they consume. Several parameters determine this cost.
The first one, is an hourly fee that corresponds to the specific DB Instance Class
chosen by the customer. The DB Instance is a database environment in the cloud
with the compute and storage resources that the customer specifies. For example,
currently in Amazon’s RDS, 6 DB Instance Classes are provided. The “Small”
DB Instance Class has 1.7GB of main memory and one 1.0-1.2 GHz CPU core (1
ECU), whereas the “Extra Large DB Instance” has 15GB of main memory and
four 2.0-2.4 GHz CPU cores (8 ECUs). Generally, the hourly rates vary with the
DB Instance Classes, since each class has different hardware characteristics. An
extra hourly license cost/fee, is added for DB Instances backed by a commercial
DBMS, which also varies according to the DB Instance Class chosen. The last
parameter is a monthly storage fee per GB of the provisioned storage needed by
the workload.

Consider a fixed database instance type chosen by the user with corresponding
hourly cost dbc, an hourly license fee for the DBMS equal to lc, a monthly fee
for the provisioned storage per GB equal to stc, and H hours of utilization per
month of the DB instance. Given that the DB instance has associated capacity
of DS GB, the monthly user cost (MUC) can be determined as:

MUC = H ∗ (dbc+ lc) +DS ∗ stc (1)

To keep our model simple, we do not consider the monthly network related
costs.We also do not consider the costs for the extra backup storage that may be
needed. These rates affect the total cost in a way similar to the storage fee stc

and can easily be added to the above equation. Moreover, our model assumes
that only one database instance is used by the customer. Creating and validat-
ing a more complex model that considers a combination of different database
instance classes and multiple database instances per class is part of future work.

3 Experimental Evaluation

In this section, we discuss our experimental results which include performance
measurements of a database server running different workloads and using dif-
ferent storage organizations, using MySQL and SQL Server. Based on these
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performance results and the pricing model presented in Section 2, we compare
the total cost that the user has to pay when using these two DBMSs in a DaaS.

The work by Schad et al. [13] presents experimental results showing that per-
formance unpredictability is a major issue when running workloads in the cloud.
The variance observed can be attributed to several factors, including different
types of virtual systems provided by the service, different availability zones (dis-
tinct locations that are insulated from failures in other availability zones), and
time of the day/week when the workload was run. Similar observations are dis-
cussed in the work of Armbrust et al. [2]. All these parameters make it difficult
to estimate the impact on the cost and the performance of different database
systems serving applications in a cloud-based environment. In this study, in an
effort to eliminate these variances, we decided to measure the performance of
the different DBMSs on a stand-alone local server machine. We show that even
in this isolated environment, where variance due to the factors mentioned above
is eliminated, the impact of the workload type and the efficiency of the DBMS
on the monthly user’s bill is not straightforward to estimate.

3.1 Server Configuration

Our test platform is a HP Proliant server with a dual quad-core hyperthreaded
Intel Xeon L5630 processors (@ 2.13GHz), 32 GB of memory, and 12 HP 146GB
10K RPM SAS drives.

The server is dual booted with 64-bit Ubuntu Server 9.10 and 64-bit Windows
Server 2008 R2 Enterprise Edition. The Linux version is used to run MySQL
(MySQL Community Server 5.5.9) and the Windows version to run SQL Server
2008 R2 (Data Center Edition). Each disk is partitioned roughly evenly between
the two operating systems. The first hard disk is used for the installation of the
operating systems and all the database binaries.

3.2 DBMS Configuration

In our experiments, the database buffer pool is set to 24GB for both DBMSs.
One disk is used to store the log files and the remaining 10 disks are reserved for
the data files and the temporary space that is needed during query execution.

For SQL Server, we created a “file group” of 20 data files across the 20 data
disk partitions (the 10 Windows partitions are further subdivided into two par-
titions). In this way, each of the 16 (hyperthreaded) cores can be assigned to
one disk partition to allow parallel query processing. MySQL currently does not
support such intra-query parallelism. For this reason, we created one data file
striped across the 10 data disks so that we can get a high aggregate disk band-
width. For MySQL we used the InnoDB storage engine, which is the default
setting and the one used in Amazon’s RDS.

3.3 The Wisconsin Benchmark

For our experiments we decided to use workloads based on the Wisconsin
benchmark [7]. Our decision was driven by the fact that it is a simple “mi-
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cro” benchmark that is fairly easy to set up and does not have complicated rules
about how to run and measure a benchmark. Furthermore, this benchmark con-
tains a variety of queries including selections, joins, projections, aggregations
and updates. These simple queries are building blocks for more complex work-
loads and provide good insights about the potential impact on more complex
workload characteristics.

The benchmark uses three basic relations, two that have the same number of
tuples (T ) and one that contains T/10 tuples. Each relation consists of sixteen
attributes, thirteen 4-byte signed integers and three 52-byte varchars. The most
widely used attributes in the benchmark are unique1, unique2 and onePercent.
The values of the unique1 attribute are uniformly distributed unique random
numbers in the range 0 to T − 1. The values of unique2 are in sequential order
from 0 to T − 1. The original benchmark paper [7] contains more information
about each attribute and its values.

The benchmark explores two different kinds of storage organizations. The first
one contains one heap file for each relation, and is called StorageOrg-H. This
storage layout doesn’t contain any primary key indices. In the second storage
organization, called StorageOrg-I, each relation has a clustered index on the
unique2 attribute, a unique non-clustered index on the unique1 attribute and
a non-unique non-clustered index on the onePercent attribute.

3.4 Experimental Setting

For our experiments, we created six different types of workloads based on the
Wisconsin benchmark. The first two workloads contain all the queries in the
benchmark, and are called MixedWorkload1 and MixedWorkload2. The first
workload, MixedWorkload1, uses heapfiles as the storage layout (StorageOrg-H),
whereas the second workload, MixedWorkload2, uses the clustered and non-
clustered indices defined by the benchmark (StorageOrg-I). We generated a
DSS-like workload using a subset of the Wisconsin benchmark queries. From this
set of queries, we created two DSS workloads, DSSWorkload1 and DSSWorkload2,
corresponding to the two storage layouts (StorageOrg-H and StorageOrg-I re-
spectively). Similarly, we generated two OLTP workloads consisting of OLTP-
like queries. These two workloads are OLTPWorkload1 and OLTPWorkload2, and
correspond to the storage layouts StorageOrg-H and StorageOrg-I

respectively.
Note that some of the queries of the mixed workloads are not presented in

the OLTP or in the DSS workloads. More specifically, the 10% selection queries
(Q2, Q4, Q6) as well as the 1% selection to screen query (Q8) are only included
in the mixed workloads. We did not include the 10% selections in the other
workloads because we wanted to experiment with high-selective queries in the
OLTP workloads, and we wanted the DSS workloads to mainly consist of join
and aggregation queries. Query Q8 was omitted since most of its execution time
with MySQL was spent in printing the output to the screen, and not actually
evaluating the query result. In the original Wisconsin benchmark paper [7], some
of the queries are executed only on either Storage-H or Storage-I. In this work,
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we decided to execute all the queries using both storage layouts. This decision
was driven by the fact that for some queries the DBMSs don’t pick the execution
plan described in the benchmark. For example, Query 6 is supposed to use a
non-clustered index, that’s why it is tested only in Storage-I. However, in our
experiments the actual plan picked by the optimizer of both DBMSs is a scan
on the table. That’s the reason why some of the queries are presented twice in
some workloads (e.g., Q6 in MixedWorkload1 and MixedWorkload2).

We created three data files using a Wisconsin benchmark generator. Each file
corresponds to one relation of the benchmark. The two tables of the database
contain 400M tuples, and the third one has 40M tuples. The size of the flat
files for these tables is 80GB, 80GB, and 8GB respectively. Thus, the total raw
database size is approximately 168GB. Between the executions of queries we
purge the buffer pool (i.e., all reported numbers are “cold”). We also update the
statistics for all the tables that are used in a query before its execution starts.
The time to clean the buffer pool and update the statistics is not included in the
experiment’s total execution time. The temporary (TMP) tables that are used
to store the results of each query are dropped after the query is executed and
recreated when needed. Each query was run 3 times and the average value is
reported. We did not see a lot of variance across runs of the same query. All the
time values are reported in seconds. The data loading times were fairly similar
across both DBMSs, and are not included in computing the total cost below.

We used the model presented in Section 2 to estimate the total cost incurred
by the end DaaS subscriber/user. To compute the monthly user cost (MUC),
we set the DB instance fee (dbc) to $1.30 per hour. This dbc is equal to the
rate of a high-memory double extra large DB Instance offered in Amazon RDS,
which is the closest Amazon Instance configuration to our server. To get a bet-
ter sense of how the total cost is affected by the license cost/fee (lc), we ex-
perimented with the following hourly license rates for the commercial DBMS:
{$0.65, $1.30, $2.60, $3.90}. Since MySQL is open-source, its licensing fee is $0.
The monthly storage fee stc is set to $0.10 per GB (similar to Amazon’s RDS
rate). We set the provisioned storage DS (data, log files and temporary space)
for both DBMSs to 250GB.

To evaluate how the storage fee combined with the hourly fees affects the
monthly user cost, we varied the number of repetitions of the workload, so that
we can experiment with short and long-running workloads of the same type. We
first report the cumulative user cost when the workload is executed only once
(#repetitions=1). The next number of repetitions reported (#repetitions=N),
corresponds to a total execution time close to a period of one month (computed
based on the execution time of the workload on the slowest DBMS). This case
represents the scenario were the end user application is driving the provisioned
DBMS instance nearly to its peak capacity (for the slowest DBMS). Finally,
we also present the comparative monthly costs when N/10 repetitions are per-
formed. For example in Figure 1, N = 4, 000, since the slowest DBMS (MySQL)
can execute Query 21, approximately 4, 000 times in a period of a month.
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Table 1. Mixed Workload 1

SQL
Server MySQL

Query Time Time
Query Description (secs) (secs)

Q1 1% selection 224 665
on unique2

Q2 10% selection 482 1185
on unique2

Q5 1% selection 195 739
on unique1

Q6 10% selection 332 1191
on unique1

Single tuple
Q7 selection 191 555

to screen

Q8 1% selection 236 1721
to screen

Q18 1% projection 129 1523

Q20 Min. aggregate 190 482

Min. aggregate
Q21 with group by 185 621

Sum aggregate
Q22 with group by 187 747

Q26 Insert 1 tuple 0.20 0.23

Q27 Delete 1 tuple 192 637

Q28 Update on 192 595
unique2

Q32 Update on 197 609
unique1

Total 2932 11270

Table 2. Mixed Workload 2

SQL
Server MySQL

Query Time Time
Query Description (secs) (secs)

Q3 1% selection 22 51
on unique2

Q4 10% selection 203 551
on unique2

Q6 10% selection 883 1146
on unique1

Single tuple
Q7 selection 0.75 0.60

to screen

Q8 1% selection 62 1245
to screen

Q12 JoinAselB 412 1071

Q13 JoinABPrime 408 1004

Q14 JoinCselAselB 583 1512

Q18 1% projection 864 1495

Q23 Minimum 0.21 0.83
aggregate

Q29 Insert 1 tuple 0.99 0.57

Q30 Delete 1 tuple 0.65 0.66

Q31 Update 1.47 0.73
on unique2

Q32 Update 0.75 0.71
on unique1

Total 3441 8079

3.5 Mixed Workloads

The mixed workloads contain all the queries in the Wisconsin benchmark that
finished within 3 hours with both DBMSs. Some queries (i.e., MySQL running
joins in MixedWorkload1) were stopped after 14 hours of execution. Although
the same queries were completed using SQL Server, we do not take into account
these numbers. It is clear that having such queries in the workload will lead
to poor performance and higher cost, and hence will favor the usage of the
commercial DBMS. However, we believe it’s interesting to see what happens
with respect to performance and cost when all the queries of the workload are
completed in both systems in a reasonable amount of time. Note that all the
queries that MySQL could finish within 14 hours were also completed by SQL
Server within 14 hours.
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Fig. 2. Cumulative monthly user cost as a function of workload repetitions, DBMS
type and pricing model (MixedWorkload1)
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Fig. 3. Cumulative monthly user cost as a function of workload repetitions, DBMS
type and pricing model (MixedWorkload2)

Tables 1 and 2 contain the execution times for both DBMSs using
MixedWorkload1 and MixedWorkload2 respectively. The last rows of the tables
contain the total execution time for each database system used. Figures 2 and 3
show the estimated monthly cost for the customer when MySQL or SQL Server
is used.

As shown in Table 1, when the database consists only of heapfiles
(MixedWorkload1), MySQL is approximately 3.84X (2.3 hours) slower than SQL
Server. Notice that Table 1 does not show the original Wisconsin benchmark
Queries 9-17 – these are join queries that did not complete with MySQL but
completed using SQL Server in a reasonable amount of time (between 400-1000
seconds for each query).

Figure 2 shows how the total user cost is affected by the performance gap that
exists between the two systems, when the repetitions of the workload as well as
the hourly license fee for the commercial DBMS is varied. As shown in this
figure, when the workload is executed only once, the difference in cost between
SQL Server and MySQL is very small. In this case, the execution time is not
long enough to make a significant impact, and thus the total cost is dominated
by the monthly storage fee. The difference in the total cost between the two
systems increases with the number of queries issued. As shown in the figure, the
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Fig. 4. Cumulative monthly user cost as a function of workload repetitions, DBMS
type and pricing model (DSS Workload 1)

“free” open-source DBMS results in higher total cost when the license fee for
the commercial DBMS is below $3.90. When the workload is executed 20 times
the cost savings with SQL Server is 17%(lc = $2.60), 37% (lc = $1.30) and 47%
(lc = $0.65). In the case of 200 repetitions (almost a month running time with
MySQL), when the license fee is $2.60, using MySQL results in a 21% increase
in the user’s monthly bill. In the case of a license fee of $0.65, the increase is
more significant(59%). Regarding, the performance of the MixedWorkload2, as
shown in Table 2, when the clustered and non-clustered indices are used, MySQL
is approximately 2.34X (1.28 hours) slower than SQL Server. In this case, the
existence of the clustered index on the unique2 attribute significantly improved
the execution of some joins (Q12, Q13, Q14) as well selections (Q3, Q4) and
updates (Q29, Q31). The existence of the non-clustered index on the unique1

attribute improved the performance of the queries 30 and 32. However, it had
an adverse impact on other queries (e.g Q5 in MySQL). This behavior can be
attributed to the fact that the non-clustered index contains only two attributes:
unique1 and the primary key unique2. However, the query result contains all
the 16 attributes of the relation. Evaluating this query using the non-clustered
index as an access method possibly results in high random I/O behavior. A
clustered index scan would probably result in a more efficient query execution
(as was the case for the similar Q6 in both MySQL and SQL Server).

Figure 3 presents the total user cost similarly to Figure 2 for MixedWorkload2.
As before, the free MySQL systems often results in higher costs, though now the
license fee for the commercial DBMS has to be lower (around or below $1.30)
than it was in Figure 2 to win over MySQL.

3.6 DSS Workloads

In this section, we evaluate the performance of the two DBMSs when the work-
load contains only decision-support queries. Similar to Section 3.5, based on
these results and the cost model developed in Section 2 we estimate the total
user cost for both cases. The DSS workload includes all the join and aggregation
queries of the Wisconsin benchmark. Again, we report execution times only for
the queries that were completed in both systems.
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Table 3. DSS Workload 1

SQL
Server MySQL

Query Time Time
Query Description (secs) (secs)

Q20 Minimum 190 482
aggregate

Minimum
Q21 aggregate with 185 621

100 partitions

Sum
Q22 aggregate with 187 747

100 partitions

All 562 1850

Table 4. DSS Workload 2

SQL
Server MySQL

Query Time Time
Query Description (secs) (secs)

Q12 JoinAselB 412 1071

Q13 JoinABprime 408 1004

Q14 JoinCselAselB 583 1512

Minimum
Q23 aggregate 0.21 0.83

All 1403 3588

Regarding DSSWorkload1, as it is shown in Table 3, when using heapfiles as
a storage layout only the aggregation queries were completed in both systems.
In this case, MySQL was approximately 3.29X slower than SQL Server.

Figure 3 presents the total cost for the user varying the same parameters
as in Figures 2 and 3. As it is shown in this figure, a similar pattern to that
of MixedWorkload1 is observed. The per hour cheap option (MySQL) does not
always result in the lowest total cost. In fact, when the hourly license fee for SQL
Server is less or equal to $2.60, choosing that over the free DBMS can result in
cost savings of up to 53% (lc = $0.65, 1400 repetitions). On the other hand,
using MySQL can result in cost savings of up to 17% when the license fee is
equal to $3.90 and the workload is executed 1400 times.

Table 4 presents performance results for DSSWorkload2. The existence of the
indices allows many joins to complete with MySQL, but negatively affected some
aggregation queries. The reasons for this behavior are discussed in section 3.5.
In this case, MySQL is 2.55X slower than SQL Server.
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Fig. 5. Cumulative monthly user cost as a function of workload repetitions, DBMS
type and pricing model (DSS Workload 2)
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Table 5. OLTP Workload 1

SQL
Server MySQL

Query Time Time
Query Description (secs) (secs)

Q1 1% selection 224 665
on unique2

Q5 1% selection 195 739
on unique1

Single tuple
Q7 selection 191 555

to screen

Q26 Insert 1 tuple 0.2 0.23

Q27 Delete 1 tuple 192 637

Q28 Update 192 595
on unique2

Q32 Update 197 609
on unique1

All 1191 3800

Table 6. OLTP Workload 2

SQL
Server MySQL

Query Time Time
Query Description (secs) (secs)

Q3 1% selection 22 51
on unique2

Single tuple
Q7 selection 0.75 0.60

to screen

Q29 Insert 1 tuple 0.99 0.57

Q30 Delete 1 tuple 0.65 0.66

Q31 Update 1.47 0.73
on unique2

Q32 Update 0.75 0.71
on unique1

All 26.61 54.27

The corresponding user cost is presented in Figure 5. Similarly to the previous
results, the open-source DBMS is a more cost-effective choice when the license
fee is greater or equal to $2.60. As before, the cost savings increases as the
execution time increases, since in this case the monthly storage fee does not
have a significant impact on the total cost.

3.7 OLTP Workloads

The OLTP workload consists of the queries of the Wisconsin benchmark that
contain high-selective selections, insertions, deletions and updates. Similarly to
the previous experiments, only the queries that were completed in both DBMSs
are reported for each workload.

As shown in Table 5, when the database consists only of heapfiles, MySQL
is 3.19X slower than SQL Server. The corresponding user’s cost is presented
in Figure 6. Similarly to the previous experiments, MySQL is the most cost-
effective option when the hourly license fee is equal to $3.90. In all the other
cases, the cost savings when using SQL Server can be as high as 51%.

When indices are used, MySQL is approximately 2X slower than SQL Server.
Table 6 and Figure 7 present the performance results and the associated user
cost.

3.8 Discussion

We have shown that the process of estimating the cost of a DaaS is not straight-
foward, even in the simple case where the database system in not deployed in a
virtualized environment and factors such as different availability zones, locations
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Fig. 6. Cumulative monthly user cost as a function of workload repetitions, DBMS
type and pricing model (OLTP Workload 1)

or points of time are not taken into consideration. Parameters such as database
efficiency, type of workload, and pricing model can all affect the resulting user
cost. Consequently, often the option that initially seems cheap per hour, e.g., an
open-source DBMS, can actually result in a higher monthly bill than that of a
non-free, licensed DBMS.

4 Related Work

DBMS benchmarking is an age-old sport in the database community. The Wis-
consin benchmark [7] was one of the first benchmarks developed for evaluating
RDBMSs. Today, the series of the TPC benchmarks [16] are widely used for
measuring the performance and the cost or relational database systems.

Following the advent of cloud computing, recent work has evaluated different
cloud services on different types of workloads. More specifically, a recent paper [3]
presents some initial ideas on what a general cloud benchmark should consider,
focusing on the different kinds of cloud services and architectures and their
corresponding pricing plans. One of the (many) considerations in this paper
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Fig. 7. Cumulative monthly user cost as a function of workload repetitions, DBMS
type and pricing model (OLTP Workload 2)
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is the end-user cost. A follow-up work [9] presents an evaluation of different
cloud services when running enterprise web applications with OLTP workloads.
Along the same lines, Berkeley’s Cloudstone project [15] proposes a workload
and metrics to study cloud infrastructures that deploy Web 2.0 applications.
Comparing different cloud services has also been the focus of the recent work
by Garfinkel [8], which evaluates three popular Amazon Computing Services
(EC2, S3 and SQS). Another work [6] compares a traditional open-source RDMS
and existing cloud computing technology (HBase). Cooper et al. [5] propose a
benchmark to compare different popular datastores like Cassandra and PNUTS.

Virtualization techniques have been widely adopted in cloud-based environ-
ments. In a recent paper [10], the performance of relational database systems
running on top of virtual machines has been studied. Bose et al. [4] present per-
formance results from experiments running TPC database workloads on top of
virtual machines, and make the case for a database benchmark on top of virtual
machines. The follow-up work [14] presents a high-level overview of TPC-V, a
benchmark designed for database workloads running in virtualized environments.

5 Concluding Remarks and Directions for Future Work

This paper has explored how two important dimensions in cloud environments,
namely performance and cost, are influenced when different types of DBMSs are
chosen by a DaaS user. More specifically, we have used a variety of simple work-
loads and storage organizations to evaluate two different relational DBMSs (one
open-source and one commercial RDBMS). Our results show that given the range
of the pricingmodels and the flexibility of the “on-demand” allocation of resources
in cloud-based environments, it is hard for a user to figure out their actual monthly
cost upfront. Interestingly, DaaS settings that at first sight seem cheaper per hour
(since the backend is an open-source DBMS) and thus more-cost effective, can re-
sult in higher total costs in the long-run, since the backend DBMS may have poor
performance characteristics on the users’ workload. On the other hand, a DaaS
setting backed by a high performance commercial DBMSs, while more expensive
on a per hour basis, may be cheaper overall since its higher performancemore than
makes up for the hourly price differential. We note that these results should not
be construed to mean that free open source DBMSs are always more expensive in
the DaaS environment (or vice versa) – we have only tried two DBMSs in this pa-
per, picking the most popular free open-source DBMS and a commercial DBMS.
Rather, our work highlights that the real cost of running a workload in the DaaS
is complicated, and may in some cases produce surprising results.

Thus, what we need is real transparency and clarity in pricing DaaS. An
approach to this problem that we propose in this paper is “Benchmark as a
Service” (BaaS), where by the DaaS provider can take the user workload as
input (with SLA parameters) and provide an accurate price for that workload,
or perhaps different prices at different SLA levels. This BaaS approach would
move the DaaS offering closer to a true utility model (like gas and electricity,
or internet service). But, we acknowledge that setting up a BaaS is challenging
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as there are important aspects that need to be considered. For example, how
to specify the workload. A starting point for describing this workload could
be for the user to provide the database schema, average tuple sizes for each
table, and a query set. But, additional parameters may be required, such as
estimated database growth rates, or acceptable ranges for SLA parameters (e.g.,
query/workload response time or throughput). For simplicity from the users’
perspective it is desirable that the workload specifications should not be overly
complicated, but from the DaaS provider’s perspective more details are probably
required. Finding a good and practical balance is one direction for future work.
Other aspects of future work include designing methods for a DaaS provider to
efficiently run a mix of workloads that started with a BaaS, and monitoring and
reacting to changes in workloads that started with a price quote from the BaaS.
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Abstract. Virtualization technology has been widely applied across a
broad range of contemporary datacenters. While constructing a data-
center, architects have to choose a Virtualization Application Solution
(VAS) to maximize performance as well as minimize cost. However, the
performance of a VAS involves a great number of metric concerns, such
as virtualization overhead, isolation, manageability, consolidation, and
so on. Further, datacenter architects have their own preference of met-
rics correlate with datacenters’ specific application scenarios. Neverthe-
less, previous research on virtualization performance either focus on a
single performance concern or test several metrics respectively, rather
than gives a holistic evaluation, which leads to the difficulties in VAS
decision-making. In this paper, we propose a fine-grained performance-
based decision model termed as VirtDM to aid architects to determine
the best VAS for them via quantifying the overall performance of VAS
according to datacenter architects’ own preference. First, our model de-
fines a measurable, in-depth, fine-grained, human friendly metric system
with organized hierarchy to achieve accurate and precise quantitative re-
sults. Second, the model harnesses a number of classic Multiple Criteria
Decision-Making (MCDM) methods, such as the Analytical Hierarchical
Process (AHP), to relieve people’s effort of deciding the weight of dif-
ferent metrics base on their own preference accordingly. Our case study
addresses an decision process based on three real VAS candidates as an
empirical example exploiting VirtDM and demonstrates the effectiveness
of our VirtDM model.

Keywords: virtualization, performance evaluation, benchmark, data-
center, decision making, analytic hierarchical process.

1 Introduction

Virtualization technology has been widely applied across a wide-spread of con-
temporary datacenters due to its benefits of improved utilization, reduced-cost,
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saved-energy, manageability and reliability. Gartner reported that the installed
base of Virtual Machines (VMs) will grow 5 times from 2009 to 2012, and by
2012 half of the server installed base will be virtualized [1].

Moreover, contemporary datacenters and cloud infrastructures have grown to
a grand scale. For example, Google had owned more than 450,000 servers early
in 2006 [2]. On the other hand, various kinds of virtualization technologies has
been designed and implemented, such as para-virtualization, hardware assistant
virtualization, live migration strategies and so on, which offers abundant alterna-
tives to deploy virtualization in a datacenter. As a result, datacenter architects
face the crucial issue that how to choose a Virtualization Application Solution
(VAS) so that it could maximize performance and best adapt to the demand
of their datacenter. In other word, we have to find an evaluation method to
compare different virtualization solutions of a datacenter.

Nevertheless, the performance of a VAS involves a great number of perfor-
mance concerns, such as virtualization overhead, isolation, manageability, con-
solidation, and so on [3]. Furthermore, a datacenter has its own preference of
metrics correlate with specific application scenarios.

Previous research on virtualization performance either focus on a single perfor-
mance concern or test several metrics respectively. A great number of researches
devoted to the characterization and analysis of server consolidation [4,5,6].
Matthews et al. investigated the evaluation on the performance isolation of vir-
tual machine [7]. Several works summarized the primary performance perspec-
tives of virtualization and discussed their metrics [8,9,10], while others studied
their measurement and benchmarking method [11,12]. These studies didn’t pro-
vide an overall evaluation method to adaptively compare different VASes, which
leads to the difficulties of deciding a VAS best fit into a datacenter’s requirement.

In this paper, we propose a fine-grained performance-based decision model
for VAS, termed as VirtDM. It provides an overall quantification method to
compare different VASes according to the architects’ preference, to solve the
VAS decision-making problem in a datacenter. VirtDM divides VAS decision-
making problem into three sub-problems:

1. What metrics should be taken into account to measured a VAS?

2. How to quantify a datacenter architect’s preference on these metrics?

3. How to achieve an overall decision from different metrics’ results and archi-
tects’ preference?

To solve problem 1, we define a fine-grained, hierarchical metrics system and
provide their measurements or quantification methods. Certainly the metrics
should be chosen so much human-friendly that can be easily used for decision.
For problem 2, VirtDM allows people to input pairwise comparison ratios other
than to directly give the weights, thus eases people’s comparison effort as well
as improves the accuracy and precision. For problem 3, we harness a number of
classic Multiple Criteria Decision-Making (MCDM) methods, such as Analytical
Hierarchical Process (AHP) [13]. VirtDM will normalize different metrics’ re-
sults, calculate metrics’ weights and finally provide an overall numeric result for
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each VAS. Then datacenter architects could decide the VAS best fit into their
requests.

The contributions of our work are three-fold. First, we design an effective
model VirtDM to assist the VAS decision making for a datacenter. We im-
plement an algorithm for our model and validate our model by a case study.
Second, we build a fine-grained hierarchical metrics system to evaluate different
performance characteristics of VAS. We give their measurements or quantifica-
tion methods. Third, we offer a convenient way to calculate metrics’ weights
using classic MCDM methods, and provides an overall VAS evaluation method
adaptive to datacenter architects’ preferences.

The rest of this paper is organized as follows. Section 2 presents the architec-
ture of VirtDM. Section 3 describes metrics system for how to choose the metrics
for our model. Section 4 explains the implementation of VirtDM, especially of
the metrics’ results normalization and metrics’ weights identification. Section
5 demonstrates a case study, including both the experiments and the overall
decision process. Finally, section 6 provides our conclusions & future work.

2 Architecture of VirtDM Model

In this section, we describe the architecture of VirtDM model.
The VirtDM model is designed to achieve the right decision from different

VAS candidates for a datacenter. In VirtDM, we embraces different components
which will contribute to the accuracy of final decision result. Fig. 1 shows the
architecture of VirtDM. It consists of five abstract components: VAS Candidates,
Metrics System, Preference, MCDM-Processor, Decision Result. Basing on the
Metrics System and the Preference, the MCDM-Processor will carry out the
decision making process over different VAS candidates, and finally yields the
Decision Result.
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Fig. 1. The architecture of VirtDM
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Fig. 2. The components of VAS

A VAS candidate refers to a specific software and hardware implementa-
tion of virtualization technologies. It involves Hardware, Virtual Machine mon-
itor(VMM) and Virtual Machine(VM), as Fig 2 shows. The performance of a
VAS depends on the software virtualization technologies regarding the VMM,
e.g. as Xen, KVM, VMWare etc., and the hardware virtualization technologies
like Intel-VT, AMD-SVM, Extended Page Tables, and so on.

Metrics System determinates which virtualization performances are concerned
and how they are measured. In VirtDM, we construct a fine-grained, quantifiable,
hierarchical and human friendly metrics system, covering essential performance
characteristics of virtualization in a datacenter, and set up their measurement
or quantification methods as accurate and precise as possible. We will discuss
the details of our Metrics System in section 3.

The preference of decision-makers impacts how much final Decision Result fit
into a datacenter’s definite demand. Because different datacenters might have
their individual application scenarios, which results in different preferences. For
example, if a datacenter would perform large mount of I/O processing, the ar-
chitects will care much more about the I/O overhead metric of a VAS.

Furthermore, the MCDM-processor is central in our VirtDM model. It consti-
tutes the key decision making process logic. The procedure of VirtDM involves
four primary tasks including measuring, normalization, the weights identifica-
tion and the combination of decision results. We will talk about more details in
section 4.

3 Metrics Choosing

We should choose right performance metrics so that our VirtDM model could
produce more accurate and precise quantitative results. We break down this big
picture into following criteria while choosing the metrics:

– The metrics should cover all of the essential performance characteristics em-
bracing both advantage and disadvantage facets of virtualization in a data-
center.
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– The metrics should be able to produce precise and accurate numeric results.
They must be fine-grained and quantifiable, in order to distinguish VASes’
performance.

– The metrics should be human friendly. Our VirtDM model involves archi-
tects to make preference between them. The metrics must be well-organized
and comparable on the right level of abstraction, thus architects can easily
understand and compare them.

In VirtDM, we mainly divide the crucial performance characteristics of data-
center virtualization into the following five categories: overhead, manageability,
isolation, consolidation and migration. For each category, we will discuss its sig-
nificance and specific metrics. We describe the measurement methods for some
metrics, and the quantification methods for others which cannot be directly
measured.

3.1 Virtualization Overhead

Virtualization overhead is usually one of the major roadblocks getting in the
way of employing virtualization. Added layer of VMM introduces extra resources
consumption and performance degradation of the Guest OS, due to its tasks of
hardware resources managements and its interactions with the Guest OS.

We should define specific overhead metrics and their measurements. The
VirtDM requires human’s participation in weighting the importance of different
metrics. In VirtDM, the overhead is measured by calculating the performance
degradation of a workload running on a virtualization solution platform against
a non-virtualization platform on the same physical host, to exclude the perfor-
mance impact of other factors.

We test the overhead of a VAS through the following four essential workloads:
1) CPU task; 2) Memory task; 3) I/O task; 4) Context switch. We consult the
micro-benchmarks of LMbench [14] to generate these workloads and acquire
their throughput results. The workload of context switch is implemented by the
fork() system call function. Each workload is implemented to last long enough
for precision.

3.2 Manageability

Manageability leads to the operational efficiency and automation, e.g. rapid
provisioning, automated workload management, workload live migration etc. In
VirtDM, we define the following specific metrics to represent the manageability
of a VAS:

1. VM resource scalability. It refers to how much virtual or physical re-
sources could be allocated to a virtual machine, usually limited by VMM
implementation, such as vSMP Scalability, pSMP Scalability [8].

2. Migration function. It refers to whether a VAS has the capacity of live
migration or storage migration.

3. Consolidation functional scalability. It refers to how many VMs could
be allocated to a physical machine, usually limited by VMM implementation.
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4. VM snapshot save/resume efficiency.
5. VM start/shutdown efficiency.

We measure 4) and 5) using their response time. For 2) and 3) we consider that
their functions are provided or not, but leave the evaluation of their efficiency
in following subsections. Notice that 1), 2) and 3) are not measurable metrics.
In Section 4.2, we will describe how to obtain the numeric values for these
immeasurable metrics.

Here we just think about what functions are provided to facilitate manage-
ability. We temporarily exclude the consideration of how well a VAS manages
physical resources, since it would involve automatic management policies which
is difficult to measure.

3.3 Isolation

Virtualization enhances the degree of isolation by restricting multiple software
stacks in their own VMs. But security isolation and environment isolation prob-
lems will remain as long as the physical resources are shared among different
VMs. Therefore, we dwell on the performance isolation. Performance isolation
refers to how well a virtualization solution is able to limit the impact of a mis-
behaving VM on other well-behaving VMs.

We consult previous works on isolation benchmarking [7]. In VirtDM, we run
different stress tests - CPU bomb, memory bomb, I/O bomb - to cause ex-
treme resource consumption and refer their VMs as bad VMs. Then we measure
the performance degradation of the normal workloads on a well-behaving VM,
caused by the bad VM sharing the hardware resource of the same physical host.

3.4 Consolidation

Server consolidation is the most common practice of virtualization in datacen-
ters. It refers to running multiple VMs concurrently on one physical host, to
increase resource utilization and reduce cost such as power, space and cooling
devices etc. [5].

We use SPECvirt sc2010 [15] to measure the performance of server consoli-
dation. SPECvirt sc2010 scales the workloads on the System Under Test (SUT)
until the SUT reaches its peak performance, when additional workload VMs
either fails the QoS(Quality of Service) or fails to improve overall metric.

3.5 Migration

Migration allows a running VM to be moved from one physical machine to
another without any disruption of service or perceived downtime. It provides
an essence capacity required for dynamic load balancing, VM replacement, high
availability of service during maintenance, and declined power consumption.

We use Virt-LM benchmark [16] to measure the performance of live migration,
which provide the results of four metrics - downtime, total migration time, the
amount of migrated data and migration overhead across a wide range of classic
application workloads in a datacenter.
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4 VirtDM Modeling

In this section, we specify our VirtDM to achieve an overall decision making
method process and illustrate the relevant components. We will formulate the
MCDM problem and detail its implementation. Before modeling, it is necessary
to identify the candidate VASes with specific metrics, and give a clear definition
for the MCDM problem of VirtDM.

Generally the goal of choosing VASes in datacenter is to satisfy the daily de-
mand of the multiple application services such as web hosting, e-business sites,
and enterprise systems etc. Datacenter architects will combine the existing phys-
ical machines and VMMs occasionally to full utilize the hardware/software re-
sources with virtualization technology. The combinations compose a variety of
VASes. Further, based on the performance measurements of multiple metrics
these VASes will arise special performance features as a well proof of decision-
making. Thus, the decision problem induces the considerations on the given
VASes, the metrics, additionally, more importantly, as well as the human pref-
erence.

Besides, MCDM researchers have constructed a number of MCDM methods,
such as AHP [13], LINMAP, TOPIS [17,18], etc. We primary consult the AHP
technique which is one of the most efficient MCDM method to implement the
MCDM-Processor of VirtDM. The VirtDM aims to find the optimal weight of
attribute for a group of VAS alternatives, to determine a rational ranking order
as well.

4.1 VirtDM Formulation

In this section we state the MCDM problem of VirtDM and present its formu-
lation in order to express the decision-making process conveniently.

Problem 1. (Generalization problem). The MCDM problem of the VirtDM
is provided with a hierarchy structure and must be decomposed into levels as
shown in Fig. 3. It comprises L-levels (L >= 3): alternative(VAS candidate, one

Fig. 3. The formulation of VirtDM with hierarchical structure
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fixed level), criteria (one or more of metric levels, apparently equal to L − 2
levels) as well as objective (decision objective level, one fixed level).

Each level incorporates several elements. The elements of a given level can be
comparable with the elements of the same level which elements are mutually
exclusive. VirtDM presumes that the elements of a given level are affected by
elements at the level directly above them besides the top level.

Problem 2. (Special case). Let L = 4 in problem 1, then we have a new hierar-
chy MCDM problem with four levels. In this way, in addition to the alternative-
level and objective-level, the metric-level of general problem is divided into two
levels: ML(metric-level) and SML(sub-metric level) as illustrated in Fig. 3. Each
metric of the metric-level can be composed of several sub-metrics of the sub-
metric level.

For simplification, we use problem 2 to implement the decision process of VirtDM.
Some constraints are initialized in the following two definitions.

Definition 1. (Size of the hierarchy structure). Assume problem 2 contain
m alternatives(VASes), n sub-metrics and s metrics in the criteria level as well
as 1 objective at the top level. Two adjacent levels are directly related.

If the ith given metric of the metric-level contains ni sub-metrics, it will satisfy
the equation:

∑s
i=1 ni = n.

Definition 2. (Decision Attribute Matrix). For each alternative, we can
obtain a numerical value, called an attribute, for each metric of sub-metrics.
Then, in problem 2 we have m× n attributes which comprise the decision basis
of VirtDM. To store the decision attributes, we give a matrix: D = (dij)m×n, (i =
1, ...,m, j = 1, ..., n), where the element dij represents the jth sub-metric value of
the ith VAS alternative. This matrix is called Decision attribute matrix (DAM).

4.2 VirtDM Implementation

Besides problem formulation, to achieve the aim, the implementation of VirtDM
is covering with several procedures as the follows.

1. Metrics Quantification. The metrics (elements) in DAM must be quan-
tified before the weight identification. In problem 2 the metrics are categorized
into two groups: quantitative and qualitative. Only the immeasurable metrics
which are qualitative require to be expressed by numerical value. The qualita-
tive metrics are commonly quantified by fuzzy language such as Bipolar scale
method. The Bipolar scale has 10 cells with the common used scope of 1−9. Here
“Bipolar” means it can be used to quantify both Cost-type metrics and Benefit-
type metrics. Regardless of what type of metrics, the maximum preference is
identified as 9.0, while the minimum one identified as 1.0.
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2. Metrics Normalization. We can begin the weight identification after all
metrics in DAM D are quantified.

However, the metric numerical values typically exist three issues: the inconsis-
tency dimension, the mixture of qualitative and quantitative metrics, as well as
the difference of attribute orientation. Moreover, before the weight determina-
tion, the values should be normalized to be consistent attribute orientation and
dimensionless. The metrics can be categorized into two types: benefit-criteria
and cost-criteria which have different normalization ways.

The VirtDM incorporates three normalization means such as vector normal-
ization method, linear scale transformation method and (0− 1) interval conver-
sion method [19].

Besides, for the using of the AHP technique, we also use Formula(1), a simple
additive weighting method to over again normalize the metric value:

rij = dij/

m∑
i=1

dij . (1)

As mentioned in above Formulas, we obtain the matrix R = (rij)m×n, a new
normalized decision making matrix.

The purpose of our MCDM is to calculate an overall score for each alternative
based on the metrics.

The basis process of weight identification is as follows. From the bottom alter-
native level to the top objective level one-by-one, VirtDM identifies the weights
of the elements in a given level relative to the elements of the level directly
above them. VirtDM applies MCDM with a weighted sum model (WSM) [19] as
a uniform evaluation method. The ith alternative is given a score by Formula(2).

Score(Ai) =
n∑

j=1

rij ∗ wj . (2)

3. Weight Identification. We use the pairwise comparison method to iden-
tify the weights of metric at each metric-level in associate with decision-maker’s
preference in problem 2. We consider the weights hierarchically. First the weights
of metrics in metric-level need to be identified relative to one objective of the
objective-level. Then, each metric of metric-level consists of several sub-metrics
of sub-metric level. So N metrics of metric-level require N iterations identifi-
cation to the weights of metrics of sub-metric level relative to the each metric
of metric-level. Totally we will have N + 1 iterations weight identifications in
problem 2.

We suppose the weights of metric in metric-level relative to objective of top
level is denoted as W2 and the weights of metric in sub-metric level relative to
metric of metric-level with N metrics is expressed by W3i, i = 1...N , where N
denotes N metrics of metric-level and the dimensions of W3i depends on the
amount of sub-metrics.

Each iteration weight identification has the same process. We present an al-
gorithm Alg WIA for weight identification as shown in Algorithm 1.
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Algorithm 1. Algorithm WIA : weight identification of pairwise comparison
method
Require:

The amount of metrics for pairwise comparison, N ;
The random index corresponding to N dimension, RI ;
The pairwise comparison matrix, P = (xij)N×N ;

Ensure:
The weight vector of metrics, W = (wi)

T , i = 1..N ;
1: Determining and input the elements of P according to decision maker’s preference

by Satty’s scale method [13].
2: Use geometric mean method as Formula (3): an approximate method to calculate

the weight W = (wi)
T , i = 1..N .

mi =

N∏

j=1

xij , wi = n
√
mi, wi = wi/

n∑

i=1

wi. (3)

3: Using Formula (4): an approximate method to calculate the maximum eigenvalue
of P .

λmax =

n∑

i=1

(
∑

xijW )i/n · wi. (4)

4: Using Formula (5) to carry out CI and CR.

CI = (λmax − n)/(n− 1), CR = CI/RI. (5)

5: If CR < 0.5 then goto step (6) to output the result weight vector: W ; else goto
step (1);

6: return W .

4. Weight Combination. Eventually, after all the weights identification in
each level are completed, we can combine them into just one vector by multiply-
ing all the weight vectors as the following Formula (6):

V = R ∗W3 ∗W2 ∗W1, (6)

where R is a normalized decision attribute matrix; V is an overall VAS priority
vector, stands for the satisfaction degree of the decision making results.

5 Case Study

In this section, we demonstrate a case study applying VirtDM model to make
decision the best VAS alternative among three ones, supposing a datacenter be
deployed preferring I/O performance. Fig. 4 shows the hierarchy structure of our
decision case and the chosen metrics are simplified ignoring human subjects for
the goal is just to illustrate the whole process of how VirtDM works to validate
its usefulness. On the other hand, this case could easily be extended to complex
ones with more VAS candidates or more complicated metrics concerns.
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5.1 Experimental Environment Setup

We experiment our VirtDM method on three VAS platforms, as following shows.

1. VAS-XEN-HV: The physical host is a Dell PowerEdge T710, with dual quad-
core Intel Xeon processor E5620 at 2.4GHZ and 24GB of memory. The VMM
is Xen-3.3.1 with Linux Kernel 2.6.18.8-xen. The VM is Linux 2.6.21 with
1GB memory and 1 vcpu binding to a particular physical CPU core.

2. VAS-XEN-PV: Using the same host and VMM as VAS-XEN-HV but with a
para-virtualized VM.

3. VAS-KVM: Using the same host and VM as VAS-XEN-HV but with a dif-
ferent VMM — KVM.

Fig. 4. The case of the hierarchy of the VAS decision making problem. V AS1 refers to
VAS-XEN-HV, V AS2 denotes VAS-XEN-HV and V AS3 represents VAS-KVM.

5.2 Performance Measurement

To simplify the illustration of VirtDM process, ignoring human subjective or
qualitative metrics, we choose three categories of measurable metrics — over-
head, isolation, manageability — in our experiment. Of course our VirtDM model
could be extended to other different metrics choices using the same course of our
case study. Fig. 5 provides the metrics results of the three different VAS alter-
natives and Table 1 shows the performance measurements.
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Table 1. Performance measurements from three VASes: XEN-HV, XEN-PV, KVM

Overhead[%] Isolation[%] Manageability[sec]

CPU Mem Disk I/O Net I/O C.S. CPU Mem I/O start shut. save rest.

XEN-HV 8.1 15.5 51.1 7.7 41 0.6 35.7 42.4 21 2.4 17.9 16.2
XEN-PV 11.13 4.8 7.9 4.8 98 23.8 21.8 20.1 18.5 3.5 17.2 16.9
KVM 9.13 14.5 56.3 7.0 50 0.4 33.5 55.0 20 2.5 18 16.5

Overhead. According to Section 3.1, we measure the virtualization overhead
of four workloads: CPU task, memory task, I/O task and Context Switch task.
The metric results are calculated by the performance degradation percentage of
the workloads running on the VAS against running on the physical host. Lower
is better. As Fig. 5 shows, all VAS alternatives achieved less overhead on CPU
and Memory tasks, but greater overhead on I/O and Context Switch tasks,
because I/O and context switch tasks would cause more interactions of VMM.
However, VAS-XEN-PV gained much better performance on I/O overhead test,
especially on disk I/O test, although it produces the worst performance about
the context switch overhead. The reason is that para-virtualization mechanism
using modified I/O driver which could significantly decrease the number of VMM
context switches.

Isolation. According to Section 3.3, we measure the isolation with the normal
VM’s performance degradation cause by a “bad”VM which produces extreme
resources consumption. We tested three kind of performance isolation using dif-
ferent kinds of “bad”VMs— the CPU stressed, the Memory stressed and the I/O
stressed. Hence, lower is better. For comparison, we also test the performance
isolation of non-virtualization case, in which the normal workload are impacted
by a stressed workload within the same single OS.

As Fig. 5 demonstrates, CPU isolation is generally better than the other two.
Further, VAS-XEN-HV and VAS-KVM had really poor memory isolation, while
VAS-XEN-PV illustrated quite bad I/O isolation.

Manageability. In this experiment we merely test the duration of general VM
operation – VM start, shutdown, save and restore. Lower is better. We also the
duration of the physical machine’s reboot to illustrate the virtualization effi-
ciency. The three VASes attained very close results of each metrics as displayed
in Fig. 5.

5.3 Overall Decision Process

In this section we show the steps of the decision process using our VirtDM model.

Example 1. As an example shown in Fig. 4, it provides a hierarchy MCDM
including 4-levels. Besides bottom and top level, the criteria level is composed
of two levels: 1) metric-level which involves three metrics: overhead, isolation
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and manageability metrics; 2) the sub-metrics of the sub-metric level. All sub-
metrics are cost-type and have been measured before decision. The metrics of
the metric-level derive from the synthesization of the sub-metrics in the level
directly below them.

Step 1. Normalizing the attribute data to be dimensionless.
According to the common normalizing methods, we normalize the raw metrics
results data shown in Table 1 to be dimensionless by using Formula (7) and the
cost-criteria linear conversion method.

rij = min
1≤i≤m

xij/xij . (7)

Further, we again normalize the weights by simple weighted mean method
to satisfy the sum of the weights of all VAS alternatives in the alternative-level
added up to 1. For example, the following equation is right for each sub-metric:
w(V AS1)+w(V AS2)+w(V AS3) = 1. The normalized result is shown in Table 2.

Table 2. The normalized data

Overhead[%] Isolation[%] Manageability[sec.]

CPU Mem Disk I/O Net I/O C.S. CPU Mem I/O Start Shut. Save Rest.

XEN-HV 0.38 0.19 0.12 0.27 0.45 0.38 0.27 0.26 0.31 0.38 0.33 0.34
XEN-PV 0.28 0.61 0.77 0.43 0.19 0.01 0.44 0.54 0.36 0.26 0.34 0.33
KVM 0.34 0.20 0.11 0.30 0.36 0.61 0.29 0.20 0.33 0.36 0.33 0.33

Step 2. Constructing the decision-making matrix.
For the convenient calculation, we extract the metrics from Table 2 to create
three decision Matrices:O—Overhead decision matrix; I—Isolation decision ma-
trix; M—Manageability decision matrix, where,

O=

⎡
⎣0.38 0.19 0.12 0.27 0.45
0.28 0.61 0.77 0.43 0.19
0.34 0.20 0.11 0.30 0.36

⎤
⎦ , I=

⎡
⎣0.38 0.27 0.26
0.01 0.44 0.54
0.61 0.29 0.20

⎤
⎦ ,M=

⎡
⎣0.31 0.38 0.33 0.34
0.36 0.26 0.34 0.33
0.33 0.36 0.33 0.33

⎤
⎦

.
Step 3. Identifying the weights for sub-metrics and metrics.
In this MCDM, without immeasurable metrics in the sub-metrics, the weights
of the alternative-level relative to the metrics of the sub-metric level do not
required to be determined by using preference in pair wise comparison method
but immediately be identified from the measurements in the decision matrix. On
the contrary, the identifications of weights using pair wise comparison method
concentrate on the metrics of the sub-metric level relative to the metrics of
metric-level. Each metric of the metric-level relative to the relevant sub-metrics
need one iteration weight identification. It indicates that three metrics reflect
three iterations. In addition, the weight of metrics of metric level relative to
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the top level(objective level) needs one iteration. Hence, this MCDM exists four
iterations using pair wise comparison method to determine weights.

This weight determination method associates decision-maker’s preference with
the pairwise comparison matrix. According to the requirement of the pairwise
comparison method, we determine the weights with the help of eigenvector
theory-based acceptance validation, and obtain the rational weight vectors, re-
spectively.

We create four pairwise comparison matrices: PO,PI, PMandPP as follows:

PO =

⎡
⎢⎢⎢⎢⎣

CPU Mem DiskI/O NetI/O Cont.S

CPU 1 1 0.111 0.14 0.333
Mem 1 1 0.143 0.125 0.2

DiskI/O 9 7 1 0.5 2
NetI/O 7 8 2 1 3
Cont.S 3 5 0.5 0.333 1

⎤
⎥⎥⎥⎥⎦, P I =

⎡
⎣

CPU Mem I/O

CPU 1 3 5
Mem 0.33 1 3
I/O 0.2 0.33 1

⎤
⎦,

PM =

⎡
⎢⎢⎣

start shut. save res.

start 1 1 0.17 0.17
shut. 1 1 0.2 0.2
save 6 5 1 1
res. 6 5 1 1

⎤
⎥⎥⎦, PP =

⎡
⎣

PCM1 ove. iso. man.

ove. 1 3 9
iso. 0.33 1 4
man. 0.11 0.25 1

⎤
⎦

– (1) PO is used to identify the weights of sub-metrics: CPU, Disk I/O, Net
I/O, Context Switch(Cont.S) relative to the metric overhead.

– (2) PI is used to identify the of sub-metrics: CPU, Memory, I/O relative to
isolation metric.

– (3) PM is used to identify the weights of sub-metrics: start time, shutdown
time(shut.), save time(save.), restore time(rest.) relative to manageability
metric.

– (4) PP is used to identify the weights of metrics: overhead (ove.), isolation
(iso.), and manageability (man.) in the metric-level relative to the objective
top-level.

In this MCDM, we assume that datacenter administrators are to make decision
of choosing a high performance VAS with better I/O performance. Therefore the
metric disk I/O and Net I/O are given a high preference value in the matrices.

Based on each comparison matrix, we calculate all relevant weight vectors
by eigenvector theory and calculate the approximate weights by geometry mean
method. All the pairwise comparison matrices get through the consistency vali-
dation.

Finally, the relevant valid weights are expressed as follows:
(1)Wo = (0.048, 0.044, 0.311, 0.435, 0.163)T is the overhead weight vector,
(2)Wi = (0.634, 0.260, 0.106)T is the isolation weight vector,
(3)Wm = (0.075, 0.081, 0.422, 0.422)T is the manageability weight vector,
(4)Wp = (0.681, 0.250, 0.069)T is the synthetic weight vector.
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Step 4. Combining the weights and result analysis.
We calculate the combined weights of overhead (W1), isolation (W2), as well as
manageability (W3) as follows.

(1)W1 = O·Wo =

⎡
⎣0.38 0.19 0.12 0.27 0.45
0.28 0.61 0.77 0.43 0.19
0.34 0.20 0.11 0.30 0.30

⎤
⎦·

⎡
⎢⎢⎢⎢⎣

0.048
0.044
0.311
0.435
0.163

⎤
⎥⎥⎥⎥⎦ = (0.254, 0.499, 0.248)T

(2)W2 = I ·Wi =

⎡
⎣0.38 0.27 0.26
0.01 0.44 0.54
0.61 0.29 0.20

⎤
⎦ ·

⎡
⎣0.6340.260
0.106

⎤
⎦ = (0.338, 0.178, 0.484)T ,

(3)W3 = M ·Wm =

⎡
⎣0.31 0.38 0.33 0.34
0.36 0.26 0.34 0.33
0.33 0.36 0.33 0.33

⎤
⎦ ·

⎡
⎢⎢⎣
0.075
0.081
0.422
0.422

⎤
⎥⎥⎦ = (0.337, 0.330, 0.333)T .

The final result of the decision-making process is concluded by the following
Formula:

V=(W1,W2,W3)·Wp=

⎡
⎣0.254 0.499 0.248
0.338 0.178 0.484
0.337 0.330 0.0.333

⎤
⎦·
⎡
⎣0.6810.250
0.069

⎤
⎦=(0.281, 0.407, 0.313)T .

It concludes the combined vector V which represents the VAS priority. It indi-
cates the rank order: 0.281 < 0.313 < 0.407, which is corresponding to V AS1 <
V AS3 < V AS2. Thus, the second VAS alternative, namely, XEN-PV, is the
best choice for our given MCDM problem in the case.

6 Conclusions and Future Work

In this paper, we design and implement the VirtDM model to serve the VAS
decision making in a datacenter. We define a fine-grained, in-depth, and human
friendly metrics system to cover essential performance characteristics of a VAS.
We employ classic MCDM methods to ease the quantification of people’s pref-
erence. VirtDM will measure different metrics, normalize their results, calculate
their weights fit into people’s preference and finally give an overall decision from
given VAS candidates.

However, many aspects of VirtDM are far from satisfying. For example, our
metrics system is fair rough and omits some metrics difficult to measure, e.g. the
efficiency of the automatic policies of consolidation or migration. Further, our
model are primarily based on AHP method and other MCDM methods maybe
more sophisticated and more appropriate. These deserve our further investiga-
tion and effort to improve.
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Abstract. With 182 benchmark results1 from 20 hardware vendors, TPC-H has 
established itself as the industry standard benchmark to measure performance of 
decision support systems. The release of TPC-H twelve years ago by the Trans-
action Processing Performance Council’s (TPC) was based on an earlier  
decision support benchmark, called TPC-D, which was released 1994. TPC-H 
inherited TPC-D’s data and query generators, DBgen and Qgen. As systems 
evolved over time, maintenance of these tools has become a major burden for 
the TPC. DBgen and Qgen need to be ported on new hardware architectures and 
adapted as the system grew in size to multiple terabytes. In this paper we dem-
onstrate how Parallel Data Generation Framework (PDGF), a generic data  
generator, developed at the University of Passau for massively parallel data 
generation, can be adapted for TPC-H. 

Keywords: Performance Analysis, Benchmark Standards, TPC-H, Data  
Generation. 

1 Introduction 

Since its introduction in 1999 by the Transaction Processing Performance Council 
(TPC) 20 system vendors have published 182 benchmark results on hundreds of sys-
tem configurations using the TPC-H benchmark specification. This establishes TPC-
H as the de facto industry standard to measure performance of decision support sys-
tems. Closely tight to its specification are its data and query generators, DBgen and 
Qgen respectively, which are implemented in the programming language C. Their 
development, originally used in TPC’s first decision support benchmarks (TPC-D), 
was completed in 1994. Since that time, the code has been ported to 20 separate plat-
forms, spanning OS versions from UNIX to Windows, and from VMS, to MVS, to 
Linux. 

Since the introduction of DBgen and Qgen in 1994 systems used in TPC bench-
mark publications have evolved greatly causing the maintenance of these tools to be a 

                                                           
1 As of May 9th, 2011. 
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Fig. 1. TPC-H Schema 

 

major burden for the TPC. While systems that published TPC-D benchmarks only 
employed few single core processors on data warehouse of up to one Terabyte, sys-
tems running TPC-H today employ clusters of multi-core processor nodes, totaling 
hundreds of cores, on data warehouses of up to 30 Terabytes and multi Terabytes of 
main memory. Recently the frequency at which bugs are reported increased dramati-
cally, which lead to a discussion of completely rewriting DBgen. However, this 
turned out to be cost prohibitive. As an alternative this paper investigates the feasibili-
ty of using the Parallel Data Generation Framework (PDGF), developed at the Uni-
versity of Passau, for TPC-H. Originally developed for massively parallel data  
generation of cloud scale databases, PDGF has many advantages over DBgen: It is 
written in the platform independent language Java, which makes portability needless. 
Studies have shown that it is able to generate terabytes of data quickly and reliably 
[2]. Its separation into a data generation engine and a file defining the metadata about 
the data to be generated makes it easily maintainable and, if necessary quickly extens-
ible. Finally, since it is a generic data generation tool, it can also be adapted by other 
benchmarks in which case the TPC only needs to maintain one data generator. 

The remainder of this paper is organized as follows. Section 2 gives a quick over-
view of the different data generation requirements of TPC-H. Section 3 introduces 
PDGF and develops the metadata file that allows PDGF to generate TPC-H data. It 
also explains some of the modifications that needed to be implemented in PDGF to 
allow for the different data types. In Section 4 a detailed analysis of the data generat-
ed by PDGF is presented. The paper concludes in Section 5. We have included the 
two metadata files (Appendix A) and all SQL compliance queries (Appendix B) as 
supporting material to this paper. 

2 Overview Data Generation in TPC-H 

TPC-H models the activity of any industry which manages, sells, and distributes 
products worldwide. It uses a 3rd normal form schema consisting of eight base tables, 

(see Figure 1). They are 
populated with synthet-
ic data, scaled to a 
scale factor (SF) that 
determines the size of 
the raw data outside the 
database, e.g. SF=1000 
means that the sum of 
all base tables equals 1 
Terabyte. Sizes of all 
tables, except for na-
tion and region scale 
linearly with SF (see 
[1,6] for more details 
on TPC-H). 
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Fig. 2. PDGF Architecture

 

In order to guarantee that every database publication uses the same data in the base 
tables, the TPC-H specification defines the content of every column very precisely 
using the following primitives: Date, Phone Number, Random String, Random Value, 
Random v-String, Text Appended Digit and Text String. Table 1 shows how these 
data generation primitives are used in defining column content. For space reasons we 
only list a representative subset of all TPC-H columns.  For a full list of column defi-
nition see Clause 4.2 in [6]. In TPC-H the term “random” means independently se-
lected and uniformly distributed over the specified range of values. 

Table 1. Example usage of data generation primitives in TPC-H 

Column Use of data generation primitive Sample output 
O_Orderdate Date, uniformly distributed between 1992-01-01and 1998-08-02 1995-05-26 
S_Phone Phone Number 16-421-927-9442 
L_Shipinstruct Random String [instructions], where Instructions={DELIVER IN 

PERSON, COLLECT COD,NONE, TAKE BACK RETURN} 
TAKE BACK 
RETURN 

S_Nationkey Random Value [0 .. 24] 23 
S_Address Random v-String[10,40] vs50U4?e5i 
S_Name Text Appended with Digit ["Supplier", S_Suppkey] Supplier5628 
PS_Comment Text String [49,198] dependencies beyo 

3 Implementing TPC-H in PDGF 

PDGF is an extensible Parallel Data Generation Framework, developed at the Univer-
sity of Passau, to generate Exabytes of synthetic data by utilizing deterministic paral-
lel pseudo random number generators. In its current form it is limited to generating 
data for relational database management systems (RDBMS). However, its design can 
be extended to allow for the generation of structurally different data, e.g. XML.  

PDGF’s architecture is designed for large data sets, maximum performance and 
easy extensibility. Figure 2 shows a sample setup with three nodes. The controller, 
executed in the center node, reads meta-data about the schema, its distributions, out-
put format and system configuration from XML files and initiates the data generations 

by spanning multiple threads 
(by default one for each 
core) on each node. The 
scheduler divides the work 
and assigns equal sized, 
continuous portions of the 
data to each thread. The 
actual data generation is 
done by so called generators, 
which are executed in 
threads. To generate non-
uniform data the system 
features various distributions 
that can be applied to the 
random numbers.  
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Its unique seeding approach allows PDGF to generate random values for each field 
deterministically. To generate a single value for a column (e.g. name), a hierarchy of 
random number generators is used: TableColumnRow NameGenerator. Even 
for large relational schemas the total number of seeds required can be cached in 
PDGF. This approach enables PDGF to generate all values for all columns of all 
tables independently and deterministically. Dependencies of columns, i.e. Intra-Row 
(e.g. ZIPcity), Intra-Table (e.g. surrogate key sequence) and Inter-Table (e.g. refe-
rential integrity) can be resolved without caching all values or re-reading previously 
generated data back in. For a discussion of the generation of data dependencies please 
refer to [3]. 

 

 

Fig. 3. Performance Comparison DBGen and PDGF 

In [2] a comparison of the generation speed of DBgen vs. PDGF was presented, for 
reference we show these results here again in Figure 3. Although PDGF is a generic 
data generator, it has a comparable generation speed to DBgen as can be seen in the 
figure. PDGF includes a range of generators that allow the generation of all common 
relational data types, these include numeric values, random strings and datestamps. 
New generators can be added to PDGF as plug-ins. This is especially useful for 
benchmarks like TPC-H that have very special requirements for its data specification. 
For example, TPC-H has various interdependencies in the data definition and special 
data generation rules. Therefore, a plug-in for TPC-H was implemented that encapsu-
lates all TPC-H specific generators. An actual extension to the PDGF core was a 
cache for the active row. Although in principle all values can be computed it is much 
more efficient to cache a single row than to compute all values several times for a 
single row. This is necessary for intra-row dependencies which can be found for ex-
ample in Part, where P_Retailprice is calculated based on P_Partkey. Besides this 
extension only TPC-H specific generators had to be implemented. The following 
paragraphs give details on the implementation and how to configure PDGF to gener-
ate data for the generation primitives, presented in Section 2. The generation specifi-
cation resembles the relational schema: it is an XML file that contains an element 
table for each table in the schema. Each of the table elements has multiple field sub-
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<field name="O_ORDERDATE"> 
  <type>java.sql.Types.DATE</type> 
  <generator name="DateGenerator"> 
  <startDate>1992-01-01</startDate> 
  <endDate>1998-08-02</endDate> 
</generator> 

</field> 

Fig. 4. Configuration of the DateGene-rator for 
O_Orderdate of Order 

<field name="S_PHONE"> 
  <type>java.sql.Types.VARCHAR</type> 
  <size>15</size> 
  <generator name="PhoneNumberGenerator" /> 
</field> 

Fig. 5. Configuration of the PhoneNumberGene-rator for 
S_Phone of Supplier  

<field name="O_ORDERPRIORITY"> 
  <type>java.sql.Types.VARCHAR</type> 
  <size>15</size> 
  <generator name="DictList"> 
    <file>dicts/priorities.dict</file> 
  </generator> 
</field> 

Fig. 6. Configuration of the DictList generator for 
O_Orderpriority of Order 

elements. These represent a column in the table. For each table element the PDGF 
will generate a single file in which each row consists a number of fields that is de-
fined by the field subelements. 

Appendix A contains a full list of the TPCH.pdgf file that generates the entire data 
set for TPC-H for a given SF. 

Date (min,max). Since date is a fairly common data type in relational data, PDGF 
comes with a generic date generator, called DateGenerator. Figure 4 shows how Da-
teGenerator can be configured to generate O_Orderdate, which are uniformly distri-

buted between 1/1/1992 and 8/2/1998 
(see StartDate and EndDate tags in 
the example). To do so, it converts 
the assigned date range in millise-
conds and scales down the random 
number to the given date range in 
milliseconds. There are several other 
fields that require dates. They directly 
depend on other fields. For example 

L_Shipdate is defined as a date 1 to 121 days after O_Orderdate. Similar dependen-
cies are defined for the fields L_Receiptdate and L_Commitdate. These intra-row 
dependencies require special generators that, on the fly, look up dates and compute 
other dates. In Java, these are implemented as subclasses of the date generator adding 
simple date arithmetic to implement the dependency. For faster processing they make 
use of the row cache and the reference lookup in PDGF. 

Phone Number. In TPC-H a phone number is defined as a string constructed of four 
random numbers that are separated by dashes, e.g. 1-650-633-8000. The PhoneNum-

berGenerator, is specifically 
designed for TPC-H. For 
each of the four segments of 
the phone number a separate 
random number is generated 
in the specified interval and 
the numbers are concate-
nated. Since there are no 

further restrictions, the call to PhoneNumberGenerator has no arguments as can be 
seen for the configuration of S_Phone of the supplier table in Figure 5. 

Random String. Random String values are generated by randomly picking one ele-
ment from one or multiple lists. If a single list is used PDGF’s DictListGenerator can 

be used. Figure 6 shows the confi-
guration of the O_Orderpriority 
field, which can be one of {1-
URGENT, 2-HIGH, 3-MEDIUM, 
4-NOT SPECIFIED, 5-LOW}. In 
general it randomly chooses values 
from a dictionary with a uniform 
distribution. Other distributions can 
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<field name="S_NATIONKEY"> 
  <type>java.sql.Types.INTEGER</type> 
  <generator name="IntGenerator"> 
    <min>0</min> 
    <max>24</max> 
  </generator> 
</field> 

Fig. 7. Configuration of the random integer num-
ber generator of N_Nationkey of Nation 

<field name="S_ADDRESS"> 
  <type>java.sql.Types.VARCHAR</type> 
  <size>40</size> 
  <generator name="RandomVSTring" /> 
</field> 

Fig. 8. Configuration of the RandomVString gene-
rator 

<field name="C_NAME"> 
  <type>java.sql.Types.VARCHAR</type> 
  <size>25</size> 
  <generator name="TextAppendedWithDigit"> 
    <text>Customer</text> 
    <digitSource>C_CUSTKEY</digitSource> 
  </generator> </field> 

Fig. 9. Configuration of the TextAppendedWithDigit 
generator of S_Address of Supplier 

be specified explicitly. The dictionary is stored in a file, whose name can be specified 
with the file tag. Fields that require multiple lists can be generated with the same ge-
nerator by creating a dictionary file that contains all combinations of the lists. This is 
a feasible solution since all TPC-H lists contain only few elements. The maximum 
number of entries is 150 (see P_Type of the Part table in [6]). For a faster generation 
PDGF caches dictionaries in memory. 

Random Value: Random values can be generated using the IntGenerator. It is called 
with min and max values and an optional distribution function, such as normal, Gaus-

sian or Zipf. TPC-H only requires 
uniform distributions. Figure 7 
shows the configuration of the 
S_Nationkey. It is randomly picked 
between 0 and 24. 

Random v-String: In TPC-H Ran-
dom V-string primitive denotes a 
randomly generated string over an 

alphabet of 64 characters. The 
length of the string is uniformly 
distributed between a 10 and 40. 
Random v-String is implemented in 
PDGF with the RandomVString. It 
randomly chooses the length of the 
string between the given min and 
max values and then fills the string 

by randomly picking elements from an alphabet of 64 characters. In TPC-H Random 
v-Strings are used for address fields, such as S_Address. The specification for 
S_Address is depicted in Figure 8. 

Text Appended Digit: In TPC-H the Text Append Digit primitive specifies a field 
that consists of a text followed by ‘#’ and a random integer number. Most fields use 

this type in connection with 
intra-row dependencies. For 
example, the name of a cus-
tomer C_Name consists of the 
text “Customer”, a ‘#’ sign 
and value of the field 
C_Custkey of the same row. 
The specification of C_Name 
can be seen in Figure 9; the 
digitSource element specifies 

that the value of C_Custkey will be used as the number in the generation of C_Name. 
Another special case is the generation of P_Brand, the brand of a part. It dependens 
on P_Mfgr, the manufacturer of a part. Both fields are text, appended with digits, but 
the random number of P_Brand is preceded by the random number of P_Mfgr of the 
same row. Since P_Mfgr is not a number, the generator cannot simply use the  
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<field name="N_COMMENT"> 
  <type>java.sql.Types.VARCHAR</type> 
  <size>117</size> 
  <generator name="TextString"> 
    <min>29</min> 
    <max>116</max> 
  </generator> 
</field> 

Fig. 10. Configuration of the TextString genera-
tor of N_Comment of Nation 

digitSource element. To reduce the computational overhead, this is implemented as a 
special case in the generator. The generator caches the last random number of P_Mfgr 
in order to reuse it in P_Brand. 

Text String: The most difficult primitive in TPC-H is the Text String primitive. It is 
used in multiple comment fields such as C_Comment of Customer. The generated 

value is a random substring of a 300 
MByte pseudo text file. The length 
of the string is randomly chosen 
between specified upper and lower 
bounds. The offset of the string is 
also randomly chosen. The 300 
MByte file is populated with a 
grammar definition. The grammar 
emulates the composition of  
English texts. TPC-H also specifies a 

lists of verbs, nouns, adjectives and the like which are used as terminals for the 
grammar.  

Although it would be possible to cache the pseudo text it can also be computed on 
the fly. The TextString generator loads word lists and generates sentences using the 
specified grammar. For performance reasons the text generator is implemented as a 
singleton object. The XML specification for the TextString generator can be seen in 
Figure 10. A special case of the TextString primitive is used in field S_Comment of 
Supplier. 0.05 percent of S_Comment entries are complaints and 0.05 percent of the 
entries are recommendations. These have to include the string “Customer” followed 
by a random number of characters, followed by either the string “Complaints” or the 
string “Recommends”. In PDGF text for S_Comment is generated using the same 
pseudo text generator as above, additionally complaints and recommendations are 
inserted in the text with given probabilities. 

Apart from these types and their specializations, several custom generators for sin-
gle fields were implemented. These usually have dependencies that make a generic 
implementation inefficient. An example is L_Extendedprice; it is calculated as 
L_Quantity * P_Retailprice, where P_Partkey = L_Partkey in the according rows. 
Obviously, it is easier implement the logic in a generator instead of implementing a 
generic generator that allows these kinds of dependencies. 

4 TPC-H.pdgf Verification 

This section describes our approach to verify whether PDGF, using the attached  
TPC-H.pdgf file generates data that complies with the current TPC-H specification, 
Version 2.14.0. To demonstrate functional compliance with the current TPC-H speci-
fication, we need to analyze whether all columns of all tables contain data that is 
compliant with Clause 4.2.3 of the specification, which we reviewed in Section 2. 
First we verify the cardinalities in each table, followed by one section for each data 
primitives: Date, Phone Number, Random String, Random Value, Random v-String, 
Text Appended Digit, Text String and Unique Value. At the end of these sections, we 
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SELECT CASE WHEN cnt=SF*S  
            THEN ‘OK’ END 
FROM (SELECT count(*) cnt  
      FROM T); 

Fig. 11. Table car-dinality com-
pliance query 

list some columns that do not quite follow the generation primitives. They are in a 
section labeled special cases.  

Most of the primitives refer to the term random. According to the TPC-H specifica-
tion the term “random” means “independently selected and uniformly distributed over 
the specified range of values.” That is, n unique values  of a column are uniformly 

distributed if . Since we use pseudo random number generators, per-

fectly uniform distributions are impossible to guarantee. Hence, we define a column  
with n unique values  to be uniformly distributed if the coefficient of variation of its 

values is less than . Formally, given the mean of  as ∑ and its standard 

deviation ∑ , then the following must be true: .  is column 

specific.  is not defined in the specification. However, we can obtain  for each col-
umn by calculating the coefficient of variation on the data generated by DBgen. 
PDGF data is then compliant if it yields a similar .  

Row Cardinalities: The cardinalities of most 
tables depend on the scale factor or their cardi-
nality is fixed. These are: Orders (SF*1,500,000), 
Customer (SF * 150,000), Supplier (SF * 
10,000), Part (SF * 200,000) and Partsupp (SF * 
800,000). The cardinalities of nation (25) and 
region (5) are scale factor in-
dependent. Verification of 
their cardinalities can be done 
with the SQL query listed in 
Figure 11, where T is the table 
name and S is its scaling rela-
tive to the scale factor SF. 

The cardinalities of Linei-
tem, on the other hand, depend 
on the cardinalities of other 
orders. To each row in the 
Orders table correspond a random number of rows within [1 .. 7] in the Lineitem ta-
ble. More generally, to each row in the parent table P correspond n rows in the depen-
dent table D. For dependencies like this three characteristics need to be analyzed i) 
Join Frequency. Given that each row of the parent table can join between 1 and 7 
times to the dependent table, we need to calculate the range of join frequencies of 
parent to dependent rows ii) Coefficient of the frequency distribution, i.e. the distribu-
tion of how often rows of the parent table join to the dependent table is uniform. iii) 
Row counts.  The following two SQL statements show how the relationship between 
Lineitem and Orders can be verified in SQL. Running these SQL statements on 100 
SF databases, populated with DBgen and PDGF shows that the range of the join fre-
quency is one to seven with roughly 21 Million records each and a coefficient of vari-
ation of 0.000197 for DBgen and 0.000002 of PDGF. The row count differs slightly. 
Dbgen generates 600,037,902 rows, while PDGF generates 600,000,000. 

Table 2. Cardinalities DBgen and PDGF 

Table 
Table cardinalities @ SF=100 

Specification DBgen PDGF 
Orders 150 Million 150 Million 150 Million 
Customer 15 Million 15 Million 15 Million 
Supplier 1 Million 1 Million 1 Million 
Part 20 Million 20 Million 20 Million 
Partsupp 80 Million 80 Million 80 Million 
Nation 25 25 25 
Region 5 5 5 
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SELECT MIN(O_Orderdate) 
      ,MAX(O_Orderdate) 
      ,count(distinct O_Orderdate) 
FROM Orders; 

SELECT STDDEV(c)/AVG(c) 
FROM (SELECT O_Orderdate,count(*) c 
      FROM Orders  
      GROUP BY O_Orderdate);

Fig. 12. Sample date column compliance query 

SELECT bucket 
      ,bucketsize 
      ,SUM(bucketsize) OVER  
       (ORDER BY bucket ROWS  
        BETWEEN UNBOUNDED PRECEDING 
    AND CURRENT ROW) TotalBucketsize 
FROM(SELECT bucket 
           ,COUNT(*) bucketsize  
     FROM (SELECT l_orderkey 
                 ,COUNT(*) bucket 
           FROM lineitem 
               ,orders  
           WHERE l_orderkey=o_orderkey  
           GROUP BY l_orderkey)  
     GROUP BY bucket); 

SELECT stddev(bucketsize) 
      /avg(bucketsize) 
FROM(SELECT bucket 
           ,COUNT(*) bucketsize 
     FROM (SELECT l_orderkey 
                 ,COUNT(*) bucket 
           FROM lineitem 
               ,orders 
           WHERE l_orderkey 
                =o_orderkey 
           GROUP BY l_orderkey) 
     GROUP BY bucket); 

Date (min,max): The Date primitive generates a string of numeric characters sepa-
rated by hyphens and comprised of a four digit year, two digit month and two digit 
day of the month, e.g. “1996-04-01”. The TPC-H schema contains four date columns, 
L_Shipdate, O_Orderdate, L_Commitdate and L_Receiptdate. O_Orderdate is gener-
ated with a random date between Startdate and Enddate -151 days, while L_Shipdate, 
L_Commitdate and L_Receiptdate are generated by adding a random number as offset 

between to O_Orderdate, i.e. 
l_shipdate = o_orderdate + random 
value [1 .. 121], l_commitdate = 
o_orderdate + random value [30 .. 
90], l_receiptdate = o_orderdate + 
random value [1 .. 30].  

To demonstrate compliance with 
the specification, we need to show 
three data characteristics for each 
date field i) the minimum and maxi-

mum dates are correct and iii) the date interval is dense, i.e. the number of distinct 
dates equals the number of dates between min and max and iii) the dates are uniform-
ly distributed (see Figure 12). 

Table 3. Comparison Date Distribution DBgen and PDGF 

Column 
CoV of dates Date Range DBgen Date Range PDGF 

DBgen PDGF Min Max #distinct Min Max #distinct 
O_Orderdate 

0.00388 0.00398 
1992-01-
01 

1998-
08-02 

2406 
1992-
01-01 

1998-08-
02 

2406 

L_Shipdate 
0.17970 0.17969 

1992-01-
02 

1998-
12-01 

2526 
1992-
01-02 

1998-12-
01 

2526 

L_Commitdate 
0.12762 0.12763 

1992-01-
31 

1998-
10-31 

2466 1992-
01-31 

1998-10-
31 

2466 

L_Receiptdate 
0.20888 0.20887 

1992-01-
03 

1998-
12-31 

2555 
1992-
01-03 

1998-12-
31 

2555 

 

Phone Number: The Phone Number primitive generates a string of numeric charac-
ters separated by hyphens and represented as follows: [1 .. 25]"-" [100 .. 999]"-" [100 
.. 999]"-" [1000 .. 9999]. To demonstrate compliance with the specification, each of  
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the four sections of the phone number needs to be investigated separately. For each 
we need to determine three characteristics i) the minimum and maximum values ii) 
the number of unique values and iii) whether the values are distributed uniformly. The 
phone number primitive applies to the fields S_Phone and C_Phone. The following 
four SQL statements, one for each section of the phone number field, show how the 
supplier phone number field S_Phone can be verified in SQL: 

 
SELECT MIN(cc),MAX(cc),COUNT(*),STDDEV(cnt),STDDEV(cnt)/AVG(cnt) 
FROM (SELECT SUBSTR(s_phone,1,2) cc,COUNT(*) CNT  
      FROM supplier  
      GROUP BY SUBSTR(s_phone,1,2)); 
SELECT MIN(cc),MAX(cc),COUNT(*),STDDEV(cnt),STDDEV(cnt)/AVG(cnt) 
FROM (SELECT SUBSTR(s_phone,4,3) cc,COUNT(*) CNT  
      FROM supplier   
      GROUP BY SUBSTR(s_phone,4,3)); 
SELECT MIN(cc),MAX(cc),COUNT(*),STDDEV(cnt),STDDEV(cnt)/AVG(cnt) 
FROM (SELECT SUBSTR(s_phone,8,3) cc,COUNT(*) CNT  
      FROM supplier  
      GROUP BY SUBSTR(s_phone,8,3)); 
SELECT MIN(cc),MAX(cc),COUNT(*),STDDEV(cnt),STDDEV(cnt)/AVG(cnt) 
FROM (SELECT SUBSTR(s_phone,12,4) cc,COUNT(*) CNT  
      FROM supplier  
      GROUP BY SUBSTR(s_phone,12,4)); 

Fig. 13. SQL statements to verify compliance of S_Phone data 

Table 4. Comparison Phone fields DBgen and PDGF 

 DBgen PDGF 
Phone# Section MIN MAX Distinct CoV MIN MAX Distinct CoV 
Country Code 10 34 25 0.0042 10 34 25 0.0039 
Area Code 100 999 900 0.0293 100 999 900 0.0288 
Phone # Part 1 100 999 900 0.0308 100 999 900 0.0301 
Phone # Part 2 1000 9999 9000 0.0952 1000 9999 9000 0.0950 
Country Code 10 34 25 0.0011 10 34 25 0.0013 
Area Code 100 999 900 0.0076 100 999 900 0.0078 
Phone # Part 1 100 999 900 0.0077 100 999 900 0.0082 
Phone # Part 2 1000 9999 9000 0.0245 1000 9999 9000 0.0246 

Random String (list_name): 
The Random String primitive 
generates a string selected at 
random within a list of strings 
(list_name). Each string is se-
lected with equal probability. It 
applies to columns P_Type, 
P_Container, C_Mktsegment, 
L_Shipinstruct, L_Shipmode 

and O_Orderpriority. For each of these fields we need to verify the following two data 
characteristics i) The distinct elements in the column correspond to the TPC-H specific  
 

Table 5. CoV of Random String values 

Column 
CoV Idential  

List_name DBgen PDGF 
P_Type 0.00280 0.00293 Yes 
P_Container 0.00142 0.00131 Yes 
C_Mktsegment 0.00062 0.00054 Yes 
L_Shipinstruct 0.00008 0.00012 Yes 
L_Shipmode 0.00011 0.00012 Yes 
O_Orderpriority 0.00012 0.00009 Yes 
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and ii) the distribution of the elements is ran-
dom. Figure 14 shows an example how to 
verify i) and ii) for C_Mktsegment using SQL 
and Table 5 shows the results for running this 
type of SQL for all Random String columns. 
For a list of SQL statements for all other col-
umns using the Random String primitive, 
please refer to Appendix B 

Random Value (min,max): The Random Value primitive defines random values 
between min and max inclusively, with a mean of (min+max)/2. The columns using 
this primitive are P_Size, Ps_Availqty, Ps_Supplycost, C_Acctbal, L_Partkey, 
C_Nationkey L_Discount, L_Tax, L_Quantity, S_Nationkey and S_Acctbal. For each 
column we need to verify three  characteristic i) min and max values ii) number of 
distinct values and iii) coefficient of variation of the value probabilities. The follow-
ing two SQL statements verify S_Nationkey column, a foreign key to the Nation table 
in Supplier. For a list of SQL statements for all columns using the Random Value 
primitive, please refer to Appendix B. 

 
SELECT MIN(S_Nationkey),MAX(S_Nationkey),COUNT(DISTINCT S_Nationkey) 
FROM Supplier; 
SELECT STDDEV(cnt)/AVG(cnt)  
FROM (SELECT S_Nationkey,COUNT(*) FROM SUPPLIER GROUP BY S_Nationkey); 

Fig. 15. SQL statements to verify compliance of S_Nationkey data 

Table 6. CoV or Random Values 

 DBgen PDGF 
Column MIN MAX Distinct CoV MIN MAX Distinct CoV 
P_Size 1 50 50 0.00151 1 50 50 0.00149 
Ps_Availqty 1 9999  9999  0.01083 1 9999  9999  0.10003 
Ps_Supplycost 1.00 1000.00 99901 0.03469 1.00 1000.00 99897 0.31573 
C_Acctbal -999.99 9999.99 1099998 0.26985 -999.99 9999.99 1099999  0.27089 
L_Partkey 1 20e6  20e6 0.15503 1 20e6 20e6 0.18264  
C_Nationkey 0 24 25 0.00105 0 24 25 0.00110 
L_Discount 0 0.1 11 0.00011 0 0.1 11 0.00012 
L_Tax 0 0.08 9 0.00007 0 0.08 9 0.00014 
L_Quantity 1 50 50 0.00028 1 50 50 0.00032 
S_Nationkey 0 24 25 0.0042 0 24 25 0.00519 
S_Acctbal -999.99 9999.98 656803 0.50379 -999.99 9999.98 656803 0.50393 

 

Random v-String: A Random v-String primitive represents a string comprised of 
randomly generated alphanumeric characters within a character set of at least 64 sym-
bols. The length of the string is a random value between values min and max inclu-
sive. Columns using this data generation primitive are the address columns: 
C_Address, S_Address, C_Address. For each column we need to determine three data 
characteristics i) domain over which the strings are generated ii) are the strings picked 

SELECT UNIQUE C_Mktsegment  
FROM CUSTOMER; 

SELECT STDDEV(cnt)/AVG(cnt)  
FROM (SELECT C_Mktsegment mseg 
            ,COUNT(*) cnt  
      FROM customer  
      GROUP BY C_Mktsegment); 

Fig. 14. SQL to verify compliance of 
C_Mktsegment data 
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Table 7. CoV of Text Appended with Digit values 

Column 
CoV Specification PDGF 

DBgen PDGF min/max min/max 
O_Clerk 0.02587 0.02587 1 100000 1 100000 
P_Mfgr 0.00031 0.00033 1 5 1 5 
P_Brand 0.00044 0.00043 1 5 1 5 

randomly? iii) min, max length of each string and distribution of length across all 
fields. i) can be determined with SQL in Figure 16. ii) can be determined with the 
SQL in Figure 17 and iii) can be determined with the SQL in Figure 18. 

 
SELECT SUM(LENGTH(S_Address)-LENGTH(REPLACE(S_Address,CHR(0),''))) S0 
    ,SUM(LENGTH(S_Address)-LENGTH(REPLACE(S_Address,CHR(1),''))) S1,… 
    ,SUM(LENGTH(S_Address)-LENGTH(REPLACE(S_Address,CHR(255),''))) S255 
FROM SUPPLIER; 

Fig. 16. SQL statement to verify compliance of v-String data 

SELECT STDDEV(Col)/AVG(Stddev)FROM( 
SELECT SUM(LENGTH(s_address)-LENGTH(REPLACE(s_address,CHR(0),'')))COL0 
FROM SUPPLIER UNION ALL  
SELECT SUM(LENGTH(s_address)-LENGTH(REPLACE(s_address,CHR(1),'')))COL1 
FROM SUPPLIER UNION ALL ,…,UNION ALL 
SELECT SUM(LENGTH(s_address)-LENGTH(REPLACE(s_address,CHR(255),'')))COL 
FROM SUPPLIER); 

Fig. 17. SQL compliance query to determine random distribution of characters 

Select min(length(s_address) 
      ,max(length(s_address) 
      ,stddev(length(s_address)/avg(length(s_address) 
From supplier; 

Fig. 18. SQL compliance query to determine minimal, maximal length and length distribution  

Text Appended with Digit: The Text Appended with Digit primitive represents a 
string generated by concatenating a sub-string text with a number. Columns using this 
primitive are S_Name, C_Name, P_Mfgr, P_Brand and O_Clerk. Columns S_Name 
and C_Name append the content of another column (of the same row), while p_Mfgr, 

P_Brand and O_Clerk ap-
pend a random number 
within min and max. To 
demonstrate compliance 
with the specification of 
columns appending the 
value of another column, we 

need to demonstrate that the appended value is equal to the value of the other column. 
Figure 19 shows a compliance query that counts the number of rows where the values 
are different. A result of 0 indicates compliance with the specification. To demon-
strate compliance with the specification of columns adding a random number, we 
need to demonstrate three data characteristics i) the minimum and maximum values of 
the appended number correspond to the min and max values of the specification; ii) 
the number of distinct values and iii) the values are distributed randomly. Figure 20 
shows a compliance query that computes the minimum and maximum values, the 
number of distinct values and the coefficient of variation of the distribution of the 
values between minimum and maximum. For a list of all columns using the Text Ap-
pended with Digit primitive, please refer to the appendix. 
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SELECT MIN(S_Suppkey) 
      ,MAX(S_Suppkey) 
      ,COUNT(DISTINCT S_Suppkey) 
      ,COUNT(S_Suppkey) 
FROM Supplier; 

Fig. 21. SQL to verify Unique Values 

SELECT COUNT(*) 
FROM (SELECT MOD(O_ORDERKEY,9) 
MODVALS  
      FROM ORDERS )  
WHERE MODVALS <= 8; 

Fig. 22. SQL to check the sparsely popu-
lated O_Orderkey 

select sum(case when s_suppkey = col then 0 else 1 end) 
from (select to_number(substr(s_NAME,10,length(s_NAME)-9)) col 
            ,s_suppkey 
      from supplier); 

Fig. 19. Compliance query for Text with Append Digit primitive (column)  

select min(col) 
      ,max(col) 
      ,count(*) 
      stddev(cnt)/avg(cnt) 
from (select to_number(substr(o_clerk,10,length(o_clerk)-9)) col 
            ,count(*) cnt  

      from orders  
      group by to_number(substr(o_clerk,10,length(o_clerk)-9))); 

Fig. 20.  Compliance query for Text with Append Digit primitive (random number) 

Unique Value (min,max): The 
Unique Value primitive generates 
unique values between 1 and x. Col-
umns using this primitive are 
S_Suppkey [1 .. sf * 10,000], 
P_Partkey [1 .. sf * 200,000], 
C_Custkey [1 .. sf * 150,000], 
N_Nationkey [0 .. 24], R_Regionkey [0 .. 4] and O_Orderkey [1 .. sf * 1,500,000 * 4]. 
O_Orderkey has an additional requirement, as only the first 8 keys of each 32 are to 
be populated. For each column we have to verify four data characteristics i) minimum 
value ii) maximum values iii) number of distinct values and iv) number of rows. Data 
is generated correctly if the minimum and maximum values correspond to the specifi-
cation and the number of distinct values equals the number of rows. The following 
table lists the result of the Query listed in Figure 21 for Dbgen and PDGF. 

Table 8. Results of Unique Value tests for all affected columns 

 TPC-H Specification (@SF=100) PDGF 
Column MIN MAX Distinct MIN MAX Distinct Count 
S_Suppkey 1 1000000 1000000 1 1000000 1000000 1000000 
P_Partkey 1 20000000 20000000 1 20000000 20000000 20000000 
C_Custkey 1 15000000 15000000 1 15000000 15000000 15000000 
N_Nationkey 0 24 25 0 24 25 25 
R_Regionkey 0 4 5 0 4 5 5 
O_Orderkey 1 6E+08 1.5E+08 1 6E+08 1.5E+08 1.5E+08 

In addition to the above, for O_Orderkey 
we need check that the keys are only 
sparsely populated, i.e. only the first 8 
keys of every 32 keys are used. The fol-
lowing SQL statement counts the number 
of keys that fall in residue classes small or 
equal than 8. If this query returns the same 
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SELECT MIN(l) 
      ,MAX(l) 
      ,STDDEV(c) 
       /AVG(c) 
FROM(SELECT  
     LENGTH(L_Comment)l 
    ,COUNT(*) c 
     FROM Lineitem; 

Fig. 23. SQL to check com-
pliance of L_Co-mment 

Table 9. CoV of Random Text Strings 

Column 
CoV Spec PDGF 

DBgen PDGF min/max min/max 
L_Comment 0.00024 0.00023 10 43 10 43 
O_Comment 0.00057 0.00032 19 78 19 78 
S_Comment 0.00850 0.00477 25 100 25 100 
P_Comment 0.00087 0.00056 5 22 5 22 
PS_Comment 0.00124 0.00073 49 198 49 198 
C_Comment 0.00247 0.00143 29 116 29 116 
N_Comment 0 0 31 114 31 114 
R_Comment 0.4 0.4 31 115 31 115 

number of rows than the total number of rows (last column in Table 5), then only the 
first 8 keys of every 32 keys are populated. For a list of all columns using the Unique 
Value primitive see Appendix B. 

Random Text Strings (min,max) is a pseudo English text generated over a fixed 
dictionary following the  grammar defined in Clause 4.2.2.14.  In order to assure that 
the text was generated with the grammar in Clause 4.2.2.14 one would need to write a 
parser for the grammar. Since the grammar of the text is not exploited in the bench-
mark, the authors believe that by checking i) the minimum length ii) the maximum 
length and iii) the uniqueness and the uniform distribution of the length, suffices to 
assure compliance with the specification. SQL in Figure 23 checks this.  

Special Cases 

O_Shippriority should be set to 0 for all orders. Compliance with the TPC-H specifi-
cation can be checked with the following simple SQL query: 
SELECT CASE WHEN c=0 THEN ‘OK’ END FROM (SELECT count(*) c from orders); 

The above query shows OK for DBGen and PDGF on a SF=100 database. 

L_Returnflag is set to “R” or “A” if L_Receiptdate <= Currentdate. Otherwise it is 
set to "N". The following SQL query counts the number of rows with L_Returnflag 
equal to R, A and N when L_Receiptdate is less or equal than currentdate and when 
L_Receiptdate is greater than currentdate. If the following SQL query returns 0 for 
lessAndN, largerAndR and largerAndA, then L_Returnflag conforms to TPC-H:  

SELECT SUM(CASE WHEN L_Receiptdate<=TO_DATE('1995-06-17','YYYY-MM-DD') 
                 AND L_Returnflag = 'R' THEN 1 ELSE 0 END) lessAndR 
      ,SUM(CASE WHEN L_Receiptdate<=TO_DATE('1995-06-17','YYYY-MM-DD') 
                 AND L_Returnflag = 'A' THEN 1 ELSE 0 END) lessAndA 
      ,SUM(CASE WHEN L_Receiptdate<=TO_DATE('1995-06-17','YYYY-MM-DD') 
                 AND L_Returnflag = 'N' THEN 1 ELSE 0 END) lessAndN 
      ,SUM(CASE WHEN L_Receiptdate>TO_DATE('1995-06-17','YYYY-MM-DD') 
                 AND L_Returnflag = 'R' THEN 1 ELSE 0 END) largerAndR 
      ,SUM(CASE WHEN L_Receiptdate>TO_DATE('1995-06-17','YYYY-MM-DD') 
                 AND L_Returnflag = 'A' THEN 1 ELSE 0 END) largerAndA 
      ,SUM(CASE WHEN L_Receiptdate>TO_DATE('1995-06-17','YYYY-MM-DD') 
                 AND L_Returnflag = 'N' THEN 1 ELSE 0 END) largerAndN 
      ,COUNT(*) CNT 
from lineitem; 

Fig. 24. SQL compliance query for L_Returnflag 
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The above query shows returns 0 for lessAndN, largerAndR and largerAndA for 
DBGen and PDGF on a SF=100 database. DBGen and PDGF show a count of 0 for 
this query. 

P_Retailprice is set to P_Retailprice = (90000 + ((P_Partkey/10) modulo 20001 ) + 
100 * (P_Partkey modulo 1000))/100. The following SQL query counts the number of 
rows where P_Retailprice is not computed correctly: 

SELECT SUM(CASE WHEN P_Retailprice-(90000+(MOD((P_Partkey/10),20001)) 
                                    +100*(MOD(P_Partkey,1000)))/100 
                THEN 1 ELSE 0 END) cnt 
from part; 

Fig. 25. SQL compliance query of P_Retailprice 

L_Linestatus is set to "o" if l_Shipdate > currentdate, to "f" otherwise. The following 
SQL query counts the correct cases where L_Linestatus should be set to O and F. If 
the sum of largerAndO and lessOrEqualAndF equals cnt, then L_Linestatus conforms 
to the TPC-H specification. DBGen and PDGF show pass this query test on a SF=100 
database. 

SELECT SUM(CASE WHEN L_Shipdate >TO_DATE('1995-06-17','YYYY-MM-DD') 
                 AND L_Linestatus='O'THEN 1 ELSE 0 END)largerAndO 
      ,SUM(CASE WHEN L_Shipdate <=TO_DATE('1995-06-17','YYYY-MM-DD') 
                 AND L_Linestatus='F'THEN 1 ELSE 0 END)lessOrEqualAndF 
      ,COUNT(*) cnt 
From Lineitem; 

Fig. 26. SQL compliance query for L_Linestatus 

P_Name is generated by concatenating five unique randomly selected strings from a 
list of colors (see Clause 4.2.3 of the TPC-H specification for details). Verifying 
P_Name is not straight forward in SQL. One needs to extract all five colors and then 
check pair wise for duplicates. The following SQL query counts the number of rows 
with duplicate colors in P_Name. A result of 0 signifies compliance with the TPC-H 
specification. Both Dbgen and PDGF show 0 for this query. 

SELECT SUM(CASE WHEN C1=C2 OR C2=C3 OR C3=C4 OR C4=C5 OR C2=C3 
                     OR C2=C4 OR C2=C5 OR C3=C4 OR C3=C5 OR C4=C5 
               THEN 1 ELSE 0 END) 
FROM (SELECT SUBSTR(P_Name,1,SA-1) C1,SUBSTR(P_Name,SA+1,SB-SA) C2 
            ,SUBSTR(P_Name,SB+1,SC-SB) C3,SUBSTR(P_Name,SC+1,SD-SC) C4 
            ,SUBSTR(P_Name,SD+1,LENGTH(P_Name)-SD+1) C5 
      FROM (SELECT P_Name  
                  ,INSTR(P_Name,' ',1,1) SA ,INSTR(P_Name,' ',1,2) SB 
                  ,INSTR(P_Name,' ',1,3) SC ,INSTR(P_Name,' ',1,4) SD 
            FROM Part)); 

Fig. 27. SQL compliance query for P_Name 

O_Totalprice is computed as sum(L_Extendedprice*(1+L_Tax)*(1-L_Discount)) for 
all Lineitem of this order. In order to verify O_Totalprice we need to join Orders with 
Lineitem and calculate the sum. The following SQL query verifies this for all rows: 
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SELECT COUNT(*) 
FROM(SELECT O1.O_Orderkey OK, SUM(L1.L_Extendedprice  
                              *(1+L1.L_Tax)*(1-L1.L_Discount)) TP 
     FROM Lineitem L1,Orders O1 
     WHERE L1.L_Orderkey=O1.O_Orderkey 
     GROUP BY O1.O_Orderkey),Orders O2 
WHERE OK<>O2.O_Orderkey And O2.O_Totalprice<>TP; 

N_Nationkey, N_Name, N_Regionkey is statically to a list of combinations. This list 
of combinations is defined in Clause 4.2.3. Both DBgen and PDGF generate a correct 
set of combinations. 

R_Regionkey, R_Name is statically to a list of combinations. This list of combina-
tions is defined in Clause 4.2.3. Both DBgen and PDGF generate a correct set of 
combinations. 

PS_Suppkey defined as (PS_Partkey+(i*((S/4)+(int)(PS_Partkey-1 )/S)))) modulo 
S+1, where i is the i-th  supplier within [0 .. 3] and S = SF * 10,000. The following 
verifies compliance of PS_Suppkey for scale factor 100. If the values of Matching 
and Cnt are identical PS_Suppkey is generated in compliance with the specification. 
Both DBgen and PDGF generate compliance data for PS_Suppkey.  

SELECT SUM (CASE WHEN (Ps_Suppkey=MOD(Ps_Partkey+0*((1000000/4) 
                           +(TRUNC((Ps_Partkey-1)/1000000))),1000000)+1) 
                   OR (Ps_Suppkey=MOD(Ps_Partkey+1*((1000000/4) 
                           +(TRUNC((Ps_Partkey-1)/1000000))),1000000)+1) 
                   OR (Ps_Suppkey=MOD(Ps_Partkey+2*((1000000/4) 
                           +(TRUNC((Ps_Partkey-1)/1000000))),1000000)+1) 
                   OR (Ps_Suppkey=MOD(Ps_Partkey+3*((1000000/4) 
                           +(TRUNC((Ps_Partkey-1)/1000000))),1000000)+1) 
                 THEN 1 ELSE 0 END) Matching 
       ,COUNT(*) Cnt FROM Partsupp; 

Fig. 28. SQL compliance query for PS_Suppkey 

5 Conclusion 

In this paper, we have shown that TPC-H equivalent data can be generated with the 
generic data generator PDGF. First we analyzed the generation requirements of TPC-
H data and showed how they can be implemented using PDGF. The complete confi-
guration file for PDGF is given as supported material to this paper. To proof that our 
PDGF implementation is compliant with the current TPC-H specification (Version 
2.14.2), we first developed a mathematical way to determine compliance based on the 
coefficient of variation, minimum, maximum values, among others. We also provided 
SQL statements to calculate these values. Examples of these statements are given in 
the paper, while a complete list is given as supporting material. Using scale factor 
100, we generated a complete data set with both DBgen and PDGF.  

Running the compliance queries on the scale factor 100 database showed that both 
tools generate data that is compliant with the specification. All minimum, maximum 
values and distributions in general are identical between the two tools. One of the 
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major characteristics of TPC-H’s data is that it is distributed uniformly. This is very 
important as the benchmark’s execution rules rely on it. DBgen shows a wide range 
for the CoV of various colums. For instance, the CoV of the distribution of lineitem to 
orders is 0.000197 while the CoV of L_Partkey is 0.15503. It is up to the TPC to de-
cide whether these CoV are specification conforming. For the sake of this paper, 
however, it is only important whether the data PDGF generates has the same or better 
CoV. Our data shows that in most cases the CoV of PDGF data is better than that of 
DBgen data. Only in a few cases, DBgen generates data with a lower CoV. For in-
stance, Ps_Supplycost shows a CoV of 0.31573 with PDGF and 0.03469 with 
DBGen. In time for the completion of this paper we were not able to fully investigate 
these cases. We hope to have completed this work by the time of the workshop.  

Apart from data generation itself, PDGF has many advantages over DBgen. Since it 
is written in the platform independent language Java, it is very portable to new, 
emerging platforms. Its generic nature, i.e. its separation into a data generation engine 
and a file defining the metadata about the data to be generated also suggests that 
PDGF could be the default data generator for the TPC. This will reduce development 
cost of new benchmarks and maintenance cost of existing benchmarks. Finally, pre-
vious studies have shown that PDGF is able to generate terabytes of data quicker than 
tools currently deployed by the TPC [2]. 
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