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Preface

This volume contains the papers of the 19th Workshop on Logic, Language,
Information and Computation (WoLLIC 2012), which was held during September
3–6, 2012 at the University of Buenos Aires.

The WoLLIC series of workshops series started in 1994 with the aim of fos-
tering interdisciplinary research in pure and applied logic. The idea is to have a
forum which is large enough for dialogues between logic and the sciences relating
to information and computation, and yet small enough for interactions among
participants.

A total of 16 papers were accepted out of 46 submissions for presentation at
WoLLIC 2012 and for inclusion in the proceedings. Each submitted paper was re-
viewed by at least three members of the Program Committee, who were assisted
in their work by 62 external reviewers. We would like to thank the members of
the Program Committee and the external reviewers for their review work, as well
as Andrei Voronkov for providing the EasyChair system that proved invaluable
throughout the review process and the preparation of this volume. In addi-
tion to the contributed papers, the WoLLIC program contained invited lectures
by Andrea Asperti (Bologna), Hans van Ditmarsch (Sevilla), Laura Kallmeyer
(Düsseldorf), George Metcalfe (Nashville), Anca Muscholl (Bordeaux), Andre
Nies (Auckland), Peter Selinger (Halifax), and Nicole Schweikardt (Frankfurt).

Many people helped to make WoLLIC 2012 a success. We would like to
thank Carlos Areces (Local Co-chair), Santiago Figueira (Local Co-chair), Javier
Legris, and Anjolina G. de Oliveira; our sponsors: Departamento de Computación,
Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires and
Facultad de Ciencias Económicas, Universidad de Buenos Aires, and Centro de
Informática, Universidade Federal de Pernambuco, Brazil. Last, but not least,
we gratefully acknowledge the sponsorship of the following organizations: Inter-
est Group in Pure and Applied Logics (IGPL), Association for Logic, Language
and Information (FoLLI), Association for Symbolic Logic (ASL), European As-
sociation for Theoretical Computer Science (EATCS), European Association for
Computer Science Logic (EACSL), Sociedade Brasileira de Computação (SBC),
and Sociedade Brasileira de Lógica (SBL).

June 2012 Luke Ong
Ruy de Queiroz
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Formalizing Turing Machines

Andrea Asperti and Wilmer Ricciotti

Department of Computer Science, University of Bologna
{asperti,ricciott}@cs.unibo.it

Abstract. We discuss the formalization, in the Matita Theorem Prover,
of a few, basic results on Turing Machines, up to the existence of a
(certified) Universal Machine. The work is meant to be a preliminary
step towards the creation of a formal repository in Complexity Theory,
and is a small piece in our Reverse Complexity program, aiming to a
comfortable, machine independent axiomatization of the field.

1 Introduction

We have assisted, in recent years, to remarkable achievements obtained by means
of interactive theorem provers for the formalization and automatic checking of
complex results in many different domains, spanning from pure mathematics
[9,14,5] to software verification [19,18,25,1], passing through the metatheory and
semantics of programming languages [10,24].

Surprisingly, however, very little work has been done so far in major fields
of theoretical computer science, such as computability theory and, especially,
complexity theory. The only work we are aware of is [20], containing basic re-
sults in computability theory relying on λ-calculus and recursive functions as
computational models. The computational constructs of both these models are
not finitistic and are not very suitable for complexity purposes: Turing Machines
still provide the standard foundation for this discipline.

Our work is an initial, preliminary contribution in this direction. In particular,
we present a formalization of basic definitions and results on Turing Machines,
up to the existence of a universal machine and the proof of its correctness. In
particular, in Section 2 we discuss the notion of Turing Machine and its seman-
tics; Section 3 provides means for composing machines (sequential composition,
conditionals and iteration); Section 4 contains the definition of basic, atomic
machines for textual manipulation of the tape; Section 5 introduces the notion
of Normal Turing Machine and its standard representation as a list of tuples;
Section 6 gives an outline of the universal machine; Section 7 and 8 are respec-
tively devoted to the two main routines of the universal machine, namely finding
the right tuple to apply, and executing the corresponding action; in Section 10,
we summarize the main results which have been proved about the universal ma-
chine. In the conclusion we provide overall information about the size of the
contribution and the resources required for its development as well as more mo-
tivations for pursuing formalization in computability and complexity theory: in
particular we shall briefly outline our long term Reverse Complexity program,

L. Ong and R. de Queiroz (Eds.): WoLLIC 2012, LNCS 7456, pp. 1–25, 2012.
c© Springer-Verlag Berlin Heidelberg 2012



2 A. Asperti and W. Ricciotti

aiming to a trusted, comfortable, machine independent axiomatization of the
field suitable for mechanization.

In our development, we have been inspired by several traditional articles and
textbooks, comprising e.g. [13,17,11,23,21]; however, it is worth to remark that
none of them provides a description of the topic, and especially of universal ma-
chines, sufficiently accurate to be directly used as a guideline for formalization.

The formalization work described in this paper has been performed by means
of the Matita Interactive Theorem Prover [8]. For lack of space we cannot provide
details about proofs; the development will be part of the standard library of
Matita since the next public release, and in the next few months will be made
accessible on-line through the new Web interface of the system [6].

2 The Notion of Turing Machine

Turing Machines were defined by Alan M. Turing in [22]. To Computer Scientists,
they are a very familiar notion, so we shall address straight away their formal
definition. Let us just say that, for the purposes of this paper, we shall stick to
deterministic, single tape Turing Machines. The generalization to multi-tape/non
deterministic machines does not look problematic.1

2.1 The Tape

The first problem is the definition of the tape. The natural idea is to formalize it
as a zipper, that is a pair of lists l and r, respectively representing the portions of
the tape at the left and the right of the tape head; by convention, we may assume
the head is reading the first symbol on the right. Of course, the machine must
be aware this list can be empty, that means that the transition function should
accept an optional tape symbol as input. Unfortunately, in this way, the machine
is only able to properly react to a right overflow; the problem arises when the left
tape is empty and the head is moved to the left: a new “blank” symbol should be
added to the right tape. A common solution in textbooks is to reserve a special
blank character� of the tape alphabet for this purpose: the annoying consequence
is that tape equality should be defined only up to a suitable equivalence relation
ignoring blanks. To make an example, suppose we move the head to the left and
then back to the right: we expect the tape to end up in the same situation we
started with. However, if the tape was in the configuration ([ ], r) we would end
up in ([�], r). As anybody with some experience in interactive proving knows very
well, reasoning up to equivalence relations is extremely annoying, that prompts us
to look for a different representation of the tape.

1 It is worth to recall that the choice about the number of tapes, while irrelevant for
computability issues, it is not from the point of view of complexity. Hartmanis and
Stearns [15] have shown that any k-tape machine can be simulated by a one-tape ma-
chine with at most a quadratic slow-down, and Hennie [16] proved that in some cases
this is the best we can expect; Hennie and Stearns provided an efficient simulation of
multi-tape machines on a two-tape machine with just a logarithmic slow-down [12].
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The main source of our problem was the asymmetric management of the left
and right tape, with the arbitrary assumption that the head symbol was part of
the right tape. If we try to have a more symmetric representation we must clearly
separate the head symbol from the left and right tape, leading to a configuration
of the kind (l, c, r) (mid-tape); if we have no c, this may happen for three different
reasons: we are on the left end of a non-empty tape (left overflow), we are on the
right end of a non-empty tape (right overflow), or the tape is completely empty.

This definition of the tape may seem conspicuous at first glance, but it resulted
to be quite convenient.
� �

inductive tape (sig:FinSet) : Type :=
| niltape : tape sig
| leftof : sig → list sig → tape sig
| rightof : sig → list sig → tape sig
| midtape : list sig → sig → list sig → tape sig.
� �

For instance, suppose to be in a configuration with an empty left tape, that is
(midtape [] a l); moving to the left will result in (leftof a l); further moves to the
left are forbidden (unless we write a character to the uninitialized cell, therefore
turning the overflow into a mid-tape), and moving back to the right restores the
original situation.

Given a tape, we may easily define the left and right portions of the tape and
the optional current symbol (question marks and dots appearing in the code are
implicit parameters that the type checker is able to infer by itself):
� �

definition left :=λsig.λt:tape sig .match t with
[ niltape ⇒ [] | leftof ⇒ [] | rightof s l ⇒ s::l | midtape l ⇒ l ].

definition right :=λsig.λt:tape sig .match t with
[ niltape ⇒ [] | leftof s r ⇒ s::r | rightof ⇒ [] | midtape r ⇒ r ].

definition current :=λsig.λt:tape sig .match t with
[ midtape c ⇒ Some ? c | ⇒ None ? ].

� �

Note that if (current t) = None than either (left t) or (right t) is empty.

2.2 The Machine

We shall consider machines with three possible moves for the head: L (left) R
(right) and N (None).
� �

inductive move : Type :=| L : move | R : move | N : move.
� �

The machine, parametric over a tape alphabet sig, is a record composed of a
finite set of states, a transition function trans, a start state, and a set of halting
states identified by a boolean function. To encode the alphabet and the states, we
exploit the FinSet library of Matita, making extensive use of unification hints [7].
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� �

record TM (sig:FinSet): Type :=
{ states : FinSet;
trans : states × (option sig ) → states × (option (sig × move));
start : states ;
halt : states →bool}.

� �

The transition function takes in input a pair 〈q, a〉 where q is the current
internal state and a is the current symbol of the tape (hence, an optional char-
acter); it returns a pair 〈q, p〉 where p is an optional pair 〈b,m〉 composed of a
new character and a move. The rationale is that if we write a new character we
will always be allowed to move, also in case the current head symbol was None.
However, we also want to give the option of not touching the tape (NOP), that
is the intended meaning of returning None as output.

Executing p on the tape has the following effect:
� �

definition tape move :=λsig.λt:tape sig.λp:option (sig × move).
match p with
[ None ⇒ t
| Some p1 ⇒
let 〈s ,m〉 :=p1 in
match m with

[ R ⇒ tape move right ? (left ? t) s ( right ? t)
| L ⇒ tape move left ? (left ? t) s ( right ? t)
| N ⇒ midtape ? (left ? t) s (right ? t) ] ].

� �

where
� �

definition tape move left :=λsig:FinSet.λlt : list sig .λc: sig .λrt: list sig .
match lt with
[ nil ⇒ leftof sig c rt
| cons c0 lt0 ⇒ midtape sig lt0 c0 (c :: rt) ].

definition tape move right :=λsig:FinSet.λlt: list sig .λc: sig .λrt: list sig .
match rt with
[ nil ⇒ rightof sig c lt
| cons c0 rt0 ⇒ midtape sig (c::lt) c0 rt0 ].

� �

A configuration relative to a given set of states and an alphabet sig is a record
composed of a current internal state cstate and a sig tape.
� �

record config (sig , states :FinSet): Type :=
{ cstate : states ;
ctape: tape sig }.

� �

A transition step between two configurations is defined as follows:
� �

definition step :=λsig.λM:TM sig.λc:config sig (states sig M).
let current char :=current ? (ctape ?? c) in
let 〈news,mv〉 :=trans sig M 〈cstate ?? c,current char〉 in
mk config ?? news (tape move sig (ctape ?? c) mv).

� �
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2.3 Computations

A computation is an iteration of the step function until a final internal state
is met. In Matita, we may only define total functions, hence we provide an
upper bound to the number of iterations, and return an optional configuration
depending on the fact that the halting condition has been reached or not.
� �

let rec loop (A:Type) n (f:A→A) p a on n :=
match n with
[ O ⇒ None ?
| S m ⇒ if p a then (Some ? a) else loop A m f p (f a) ].

� �

The transformation between configurations induced by a Turing machine M
is hence:
� �

definition loopM :=λsig,M,i,inc.
loop ? i (step sig M) (λc.halt sig M (cstate ?? c)) inc .

� �

The usual notion of computation for Turing Machines is defined according
to given input and output functions, providing the initial tape encoding and
the final read-back function. As we know from Kleene’s normal form, the output
function is particularly important: the point is that our notion of Turing Machine
is monotonically increasing w.r.t. tape consumption, with the consequence that
the transformation relation between configurations is decidable. However, input
and output functions are extremely annoying when composing machines and we
would like to get rid of them as far as possible.

Our solution is to define the semantics of a Turing Machine by means of a
relation between the input tape and the final tape (possibly embedding the input
and output functions): in particular, we say that a machine M realizes a relation
R between tapes (M |= R), if for all t1 and t2 there exists a computation leading
from 〈qo, t1〉, to 〈qf , t2〉 and t1 R t2, where q0 is the initial state and qf is some
halting state of M .
� �

definition initc :=λsig.λM:TM sig.λt.
mk config sig (states sig M) (start sig M) t.

definition Realize :=λsig.λM:TM sig.λR:relation (tape sig).
∀t.∃i .∃outc.
loopM sig M i (initc sig M t) = Some ? outc ∧R t (ctape ?? outc).

� �

It is natural to wonder why we use relations on tapes, and not on configura-
tions. The point is that different machines may easily share tapes, but they can
hardly share their internal states. Working with configurations would force us
to an input/output recoding between different machines that is precisely what
we meant to avoid.

Our notion of realizability implies termination. It is natural to define a weaker
notion (weak realizability, denoted M ||= R), asking that t1 R t2 provided there
is a computation between t1 and t2. It is easy to prove that termination together
with weak realizability imply realizability (we shall use the notation M ↓ t to
express the fact that M terminates on input tape t).
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� �

definition WRealize :=λsig.λM:TM sig.λR:relation (tape sig).
∀t, i ,outc.
loopM sig M i (initc sig M t) = Some ? outc →R t (ctape ?? outc).

definition Terminate :=λsig.λM:TM sig.λt. ∃i,outc.
loopM sig M i (initc sig M t) = Some ? outc.

lemma WRealize to Realize : ∀sig.∀M: TM sig.∀R.
(∀t.M ↓ t) →M ||= R →M |= R.

� �

2.4 A Canonical Relation

For every machine M we may define a canonical relation, that is the smallest
relation weakly realized by M

� �

definition R TM :=λsig.λM:TM sig.λq.λt1,t2.
∃i ,outc. loopM ? M i (mk config ?? q t1) = Some ? outc ∧ t2 = ctape ?? outc.

lemma Wrealize R TM : ∀sig,M.
M ||= R TM sig M (start sig M).

lemma R TM to R: ∀sig,M,R. ∀t1,t2.
M ||= R →R TM ? M (start sig M) t1 t2 →R t1 t2.

� �

2.5 The Nop Machine

As a first, simple example, we define a Turing machine performing no opera-
tion (we shall also use it in the sequel to force, by sequential composition, the
existence of a unique final state).

The machine has a single state that is both initial and final; the transition
function is irrelevant, since it will never be executed.

The semantic relation R nop characterizing the machine is just the identity
and the proof that the machine realizes it is entirely straightforward.

in this case, states are defined as initN 1, that is the interval of natural
numbers less than 1. This is actually a sigma type containing a natural number
m and an (irrelevant) proof that it is smaller than n.

� �

definition nop states :=initN 1.
definition start nop : initN 1 :=mk Sig ?? 0 (le n . . . 1).

definition nop :=λalpha:FinSet.
mk TM alpha nop states
(λp.let 〈q,a〉 :=p in 〈q,None ?〉)
start nop (λ .true ).

� �
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� �

definition R nop :=λalpha.λt1,t2:tape alpha.t2 = t1.

lemma sem nop : ∀alpha.nop alpha |= R nop alpha.
� �

3 Composing Machines

Turing Machines are usually reputed to suffer for a lack of compositionality.
Our semantic approach, however, allows us to compose them in relatively easy
ways. This will give us the opportunity to reason at a higher level of abstraction,
rapidly forgetting their low level architecture.

3.1 Sequential Composition

The sequential composition M1 ·M2 of two Turing Machines M1 and M2 is a
new machine having as states the disjoint union of the states of M1 and M2.
The initial state is the (injection of the) initial state of M1, and similarly the
halting condition is inherited from M2; the transition function is essentially the
disjoint sum of the transition functions of M1 and M2, plus a transition leading
from the final states of M1 to the (old) initial state of M2 (here it is useful to
have the possibility of not moving the tape).

� �

definition seq trans :=λsig. λM1,M2 : TM sig.
λp. let 〈s ,a〉 :=p in
match s with
[ inl s1 ⇒

if halt sig M1 s1 then 〈inr . . . (start sig M2), None ?〉
else let 〈news1,m〉 :=trans sig M1 〈s1,a〉 in 〈 inl . . .news1,m〉

| inr s2 ⇒
let 〈news2,m〉 :=trans sig M2 〈s2,a〉 in 〈inr . . .news2,m〉

].

definition seq :=λsig. λM1,M2 : TM sig.
mk TM sig
(FinSum (states sig M1) (states sig M2))
(seq trans sig M1 M2)
( inl . . . (start sig M1))
(λs.match s with [inl ⇒ false |inr s2 ⇒ halt sig M2 s2]).

� �

If M1 |= R1 and M2 |= R2 then M1 ·M2 |= R1 ◦R2, that is a very elegant way to
express the semantics of sequential composition. The proof of this fact, however,
is not as straightforward as one could expect. The point is that M1 works with
its own internal states, and we should “lift” its computation to the states of the
sequential machine.

To have an idea of the kind of results we need, here is one of the the key
lemmas:
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� �

lemma loop lift : ∀A,B,k, lift , f ,g,h, hlift ,c,c1.
(∀x. hlift ( lift x) = h x) →
(∀x.h x = false → lift ( f x) = g ( lift x)) →
loop A k f h c = Some ? c1 →
loop B k g hlift ( lift c) = Some ? (lift . . . c1).

� �

It says that the result of iterating a function g starting from a lifted configuration
lift c is the same (up to lifting) as iterating a function f from c provided that

1. a base configuration is halting if and only if its lifted counterpart is halting
as well;

2. f and g commute w.r.t. lifting on every non-halting configuration.

3.2 If Then Else

The next machine we define is an if-then-else composition of three machines
M1,M2 and M3 respectively implementing a boolean test, and the two condi-
tional branches. One typical problem of working with single tape machines is the
storage of intermediate results: using the tape is particularly annoying, since it
requires moving the whole tape back and forward to avoid overwriting relevant
information. Since in the case of the if-then-else the result of the test is just a
boolean, it makes sense to store it in a state of the machine; in particular we
expect to end up in a distinguished final state qacc if the test is successful, and
in a different state otherwise. This special state qacc must be explicitly men-
tioned when composing the machines. The definition of the if-then-else machine
is then straightforward: the states of the new machine are the disjoint union of
the states of the three composing machines; the initial state is the initial state of
M1; the final states are the final states of M2 and M3; the transition function is
the union of the transition functions of the composing machines, where we add
new transitions leading from qacc to the initial state of M2 and from all other
final states of M1 to the initial state of M2.
� �

definition if trans :=λsig. λM1,M2,M3:TM sig. λq:states sig M1.λp.
let 〈s ,a〉 :=p in
match s with
[ inl s1 ⇒

if halt sig M1 s1 then
if s1==q then 〈inr . . . (inl . . . (start sig M2)), None ?〉
else 〈 inr . . . (inr . . . (start sig M3)), None ?〉

else let 〈news1,m〉 :=trans sig M1 〈s1,a〉 in
〈 inl . . .news1,m〉

| inr s ’ ⇒
match s’ with
[ inl s2 ⇒ let 〈news2,m〉 :=trans sig M2 〈s2,a〉 in
〈 inr . . . (inl . . .news2),m〉

| inr s3 ⇒ let 〈news3,m〉 :=trans sig M3 〈s3,a〉 in
〈 inr . . . (inr . . .news3),m〉 ] ].

� �
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� �

definition ifTM :=λsig. λcondM,thenM,elseM:TM sig.λqacc: states sig condM.
mk TM sig
(FinSum (states sig condM) (FinSum (states sig thenM) (states sig elseM)))
( if trans sig condM thenM elseM qacc)
( inl . . . (start sig condM))
(λs.match s with
[ inl ⇒ false
| inr s ’ ⇒match s’ with
[ inl s2 ⇒ halt sig thenM s2
| inr s3 ⇒ halt sig elseM s3 ] ] ).

� �

Our realizability semantics is defined on tapes, and not configurations. In
order to observe the accepting state we need to define a suitable variant that we
call conditional realizability, denoted by M |= [q : R1, R2]. The idea is that M
realizes R1 if it terminates the computation on q, and R2 otherwise.
� �

definition accRealize :=λsig.λM:TM sig.λacc:states sig M.λRtrue,Rfalse.
∀t.∃i .∃outc.
loopM sig M i (initc sig M t) = Some ? outc ∧
(cstate ?? outc = acc →Rtrue t (ctape ?? outc)) ∧
(cstate ?? outc 
= acc →Rfalse t (ctape ?? outc)).

� �

The semantics of the if-then-else machine can be now elegantly expressed in
the following way:
� �

lemma sem if: ∀sig.∀M1,M2,M3:TM sig.∀Rtrue,Rfalse,R2,R3,acc.
M1 |= [acc: Rtrue,Rfalse] →M2 |= R2 →M3 |= R3 →
ifTM sig M1 M2 M3 acc |= (Rtrue ◦R2) ∪(Rfalse ◦ R3).

� �

It is also possible to state the semantics in a slightly stronger form: in fact,
we know that if the test is successful we shall end up in a final state of M2 and
otherwise in a final state of M3. If M2 has a single final state, we may express the
semantics by a conditional realizability over this state. As we already observed,
a simple way to force a machine to have a unique final state is to sequentially
compose it with the nop machine. Then, it is possible to prove the following
result (the conditional state is a suitable injection of the unique state of the nop
machine):
� �

lemma acc sem if: ∀sig,M1,M2,M3,Rtrue,Rfalse,R2,R3,acc.
M1 |= [acc: Rtrue, Rfalse ] →M2 |= R2 →M3 |= R3 →
ifTM sig M1 (single finalTM . . .M2) M3 acc |=

[ inr . . . (inl . . . (inr . . . start nop)): Rtrue ◦R2, Rfalse ◦ R3].
� �

3.3 While

The last machine we are interested in, implements a while-loop over a body
machine M . Its definition is really simple, since we have just to add to M a
single transition leading from a distinguished final state q back to the initial
state.
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� �

definition while trans :=λsig. λM : TM sig. λq:states sig M. λp.
let 〈s ,a〉 :=p in
if s == q then 〈start ? M, None ?〉
else trans ? M p.

definition whileTM :=λsig. λM : TM sig. λqacc: states ? M.
mk TM sig
( states ? M)
(while trans sig M qacc)
( start sig M)
(λs.halt sig M s ∧¬ s==qacc).

� �

More interesting is the way we can express the semantics of the while machine:
provided that M |= [q : R1, R2], the while machine (relative to q) weakly realizes
R∗

1 ◦R2:
� �

theorem sem while: ∀sig,M,qacc,Rtrue,Rfalse.
halt sig M qacc = true →
M |= [qacc: Rtrue,Rfalse] →
whileTM sig M qacc ||= (star ? Rtrue) ◦Rfalse .

� �

In this case, the use of weak realizability is essential, since we are not guaranteed
to exit the while loop, and the computation can actually diverge. Interestingly,
we can reduce the termination of the while machine to the well foundedness of
Rtrue:
� �

theorem terminate while: ∀sig,M,qacc,Rtrue,Rfalse,t.
halt sig M qacc = true →
M |= [qacc: Rtrue,Rfalse] →
WF ? (inv . . .Rtrue) t →whileTM sig M qacc ↓t.

� �

4 Basic Machines

A major mistake we made when we started implementing the universal machine
consisted in modelling relatively complex behaviors by directly writing a corre-
sponding Turing Machine. While writing the code is usually not very complex,
proving its correctness is often a nightmare, due to the complexity of specifying
and reasoning about internal states of the machines and all intermediate con-
figurations. A much better approach consists in specifying a small set of basic
machines, and define all other machines by means of the compositional constructs
of the previous section. In this way, we may immediately forget about Turing
Machines’ internals, since the behavior of the whole program only depends on
the behavior of its components.

A very small set of primitive programs turned out to be sufficient for our
purposes (most of them are actually families of machines, parametrized over
some input arguments).
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write c write the character c on the tape at the current head position
move r move the head one step to the right
move l move the head one step to the left
test char f perform a boolean test f on the current character and enter state

tc true or tc false according to the result of the test
swap r swap the current character with its right neighbor (if any)
swap l swap the current character with its left neighbor (if any)

The specification of these machines is straightforward. Let us have a glance at
the swap r machine. In order to swap characters we need an auxiliary memory
cell; since tape characters are finite, we may use an internal state (register) of
the machine to this purpose. The machine will sequentially enter in the following
four states:

– swap0: read the current symbol, save it in a register and move right
– swap1: swap the current symbol with the register content, and move back to

the left
– swap2: write the register content at the current position
– swap3: stop

Here is the machine implementation:
� �

definition swap r :=
λalpha:FinSet.λfoo:alpha.
mk TM alpha (swap states alpha)
(λp.let 〈q,a〉 :=p in
let 〈q ’, b〉 :=q in
let q’ :=\fst q’ in (∗ extract the witness ∗)
match a with
[ None ⇒ 〈〈swap3,foo〉,None ?〉 (∗ if tape is empty then stop ∗)
| Some a’ ⇒
match q’ with
[ O ⇒ (∗ q0 ∗) 〈〈swap1,a’〉,Some ? 〈a’,R〉〉 (∗ save in register and move R ∗)
| S q’ ⇒ match q’ with
[ O ⇒ (∗ q1 ∗) 〈〈swap2,a’〉,Some ? 〈b,L〉〉 (∗ swap with register and move L ∗)
| S q’ ⇒match q’ with
[ O ⇒ (∗ q2 ∗) 〈〈swap3,foo〉,Some ? 〈b,N〉〉 (∗ copy from register and stay ∗)
| S q’ ⇒ (∗ q3 ∗) 〈〈swap3,foo〉,None ?〉 (∗ final state ∗)
] ] ] ] )

〈swap0,foo〉
(λq.\fst q == swap3).

� �

and this is its specification.
� �

definition Rswap r :=λalpha,t1,t2.
∀a,b, ls , rs . t1 = midtape alpha ls b (a:: rs) → t2 = midtape alpha ls a (b::rs ).

� �

It is possibly worth to remark that an advantage of using relations is the possi-
bility of under-specifying the behavior of the program, restricting the attention
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to what we expect to be the structure of the input (e.g., in the previous case,
the fact of receiving a mid-tape as the input tape).

The proof that swap r realizes its specification is by cases on the structure of
the tape: three cases are vacuous; the case when the tape is actually a mid-tape
is essentially solved by direct computation.

4.1 Composing Machines

Let us see an example of how we can use the previous bricks to build more com-
plex functions. When working with Turing Machines, moving characters around
the tape is a very frequent and essential operation. In particular, we would like
to write a program that moves a character to the left until we reach a special
character taken as a parameter (move char l). A step of the machine essentially
consists of a swap operation, but guarded by a conditional test; then we shall
simply wrap a while machine around this step.
� �

definition mcl step :=λalpha:FinSet.λsep:alpha.
ifTM alpha (test char ? (λc.¬ c==sep))

(single finalTM . . . (swap r alpha sep · move l ?)) (nop ?) tc true .

definition Rmcl step true :=λalpha,sep,t1,t2.
∀a,b, ls , rs .
t1 = midtape alpha ls b (a:: rs) →
b 
= sep ∧ t2 = mk tape alpha (tail ? ls ) (option hd ? ls ) (a :: b :: rs ).

definition Rmcl step false :=λalpha,sep,t1,t2.
right ? t1 
= [] → current alpha t1 
= None alpha →
current alpha t1 = Some alpha sep ∧ t2 = t1.

definition mcls acc: ∀alpha:FinSet.∀sep:alpha.states ? (mcl step alpha sep)
:=λalpha,sep.inr . . . (inl . . . (inr . . . start nop)).

lemma sem mcl step :
∀alpha,sep.
mcl step alpha sep |=

[mcls acc alpha sep: Rmcl step true alpha sep, Rmcl step false alpha sep]
� �

Here is the full move char l program:
� �

definition move char l :=λalpha,sep.
whileTM alpha (mcl step alpha sep) (mlcs acc alpha sep).

definition R move char l :=λalpha,sep,t1,t2.
∀b,a, ls , rs . t1 = midtape alpha ls b (a:: rs) →
(b = sep → t2 = t1) ∧
(∀ls1 , ls2 . ls = ls1@sep::ls2 →
b 
= sep →memb ? sep ls1 = false →
t2 = midtape alpha ls2 sep (a:: reverse ? ls1@b::rs )).

� �
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� �

lemma sem move char l : ∀alpha,sep.
WRealize alpha (move char l alpha sep) (R move char l alpha sep).

� �

In a very similar way, we may define two machinesmove left to andmove right to
that move the head left or right until they meet a character that satisfies a given
condition.

5 Normal Turing Machines

A normal Turing machine is just an ordinary machine where:

1. the tape alphabet is {0, 1};
2. the finite states are supposed to be an initial interval of the natural numbers.

By convention, we assume the starting state is 0.

� �

record normalTM : Type :=
{ no states : nat;
pos no states : (0 < no states);
ntrans : (initN no states)×Option bool → (initN no states)×Option (bool×Move);
nhalt : initN no states → bool}.

� �

We may easily define a transformation from a normal TM into a traditional
Machine; declaring it as a coercion we allow the type system to freely convert
the former into the latter:
� �

definition normalTM to TM :=λM:normalTM.
mk TM FinBool (initN (no states M))
(ntrans M) (mk Sig ?? 0 (pos no states M)) (nhalt M).

coercion normalTM to TM.
� �

A normal configuration is a configuration for a normal machine: it only depends
on the number of states of the normal Machine:
� �

definition nconfig :=λn. config FinBool (initN n).
� �

5.1 Tuples

By general results on FinSets (the Matita library about finite sets) we know that
every function f between two finite sets A and B can be described by means
of a finite graph of pairs 〈a, fa〉. Hence, the transition function of a normal
Turing machine can be described by a finite set of tuples 〈〈i, c〉, 〈j, action〉〉 of
the following type:

(initN n× option bool)× (initN n× option bool ×move)
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Unfortunately, this description is not suitable for a Universal Machine, since
such a machine must work with a fixed set of states, while the size on n is
unknown. Hence, we must pass from natural numbers to a representation for
them on a finitary, e.g. binary, alphabet. In general, we shall associate to a pair
〈〈i, c〉, 〈j, action〉〉 a tuple with the following syntactical structure

|wix,wjy, z

where

1. ”|” and ”,” are special characters used as delimiters;

2. wi and wj are list of booleans representing the states i and j;

3. x is special symbol null if c = None and is the boolean a if c = Some a

4. y and z are both null if action = None, and are respectively equal to b and
m′ if action = Some(b,m)

5. finally, m′ = 0 if m = L, m′ = 1 if m = R and m′ = null if m = N

As a minor, additional complication, we shall suppose that every character is
decorated by an additional bit, normally set to false, to be used as a marker.

� �

definition mk tuple :=λqin,cin,qout,cout,mv.
〈bar, false 〉 :: qin @ cin :: 〈comma,false〉 :: qout @ cout :: 〈comma,false〉 :: [mv].

� �

The actual encoding of states is not very important, and we shall skip it: the
only relevant points are that (a) it is convenient to assume that all states (and
hence all tuples for a given machine) have a fixed, uniform length; (b) the first
bit of the representation of the state tells us if the state is final or not.

5.2 The Table of Tuples

The list of all tuples, concatenated together, provides the low level description
of the normal Turing Machine to be interpreted by the Universal Machine: we
call it a table.

The main lemma relating a table to the corresponding transition function is
the following one, stating that for a pair 〈s, t〉 belonging to the graph of trans ,
and supposing that l is its encoding, then l occurs as a sublist (can be matched)
inside the table associated with trans .
� �

lemma trans to match:
∀n.∀h.∀trans: trans source n → trans target n.
∀inp,outp,qin,cin ,qout,cout,mv. trans inp = outp →
tuple encoding n h 〈inp,outp〉 = mk tuple qin cin qout cout mv →
match in table (S n) qin cin qout cout mv
( flatten ? ( tuples list n h (graph enum ?? trans))).

� �
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5.3 The Use of Marks

We shall use a special alphabet where every character can be marked with an
additional boolean. Marks are typically used in pairs and are meant to identify
(and recall) a source and a target position where some joint operation must be
performed: typically, a comparison or a copy between strings. The main generic
operations involving marks are the following:

mark mark the current cell
clear mark clear the mark (if any) from the current cell
adv mark r shift the mark one position to the right
adv mark l shift the mark one position to the left
adv both marks shift the marks at the right and left of the head one position

to the right
match and advance f if the current character satisfies the boolean test f then

advance both marks and otherwise remove them
adv to mark r move the head to the next mark on the right
adv to mark l move the head to the next mark on the left.

5.4 String Comparison

Apart from markings, there is an additional small problem in comparing and
copying strings. The natural idea would be to store the character to be com-
pared/copied into a register (i.e. as part of the state); unfortunately, our seman-
tics is not state-aware. The alternative solution we have exploited is to have
a family of machines, each specialized on a given character. So, comparing a
character will consist of testing a character and calling the suitable machine
in charge of checking/writing that particular character at the target position.
This behavior is summarized in the following functions. The comp step subcase
takes as input a character c, and a continuation machine elseM and compares
the current character with c; if the test succeeds it moves to the next mark to
the right, repeats the comparison, and if successful advances both marks; if the
current character is not c, it passes the control to elseM .

� �

definition comp step subcase :=λalpha,c,elseM.
ifTM ? (test char ? (λx.x == c))
(move r . . . · adv to mark r ? (is marked alpha) · match and adv ? (λx.x == c))
elseM tc true .

� �

A step of the compare machine consists in using the previous function to build
a chain of specialized testing functions on all characters we are interested in
(in this case, true, false, or null), each one passing control to the next one in
cascade:
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� �

definition comp step :=
ifTM ? (test char ? (is marked ?))
(single finalTM . . . (comp step subcase FSUnialpha 〈bit false,true〉
(comp step subcase FSUnialpha 〈bit true,true〉
(comp step subcase FSUnialpha 〈null,true〉
(clear mark . . . )))))

(nop ?)
tc true .

� �

String comparison is then simply a while over comp step
� �

definition compare :=
whileTM ? comp step (inr . . . (inl . . . (inr . . . start nop))).

� �

6 The Universal Machine

Working with a single tape, the most efficient way to simulate a given machine
M is by keeping its code always close to the head of the tape, in such a way
that the cost of fetching the next move is independent of the current size of the
tape and only bounded by the dimension of M . The drawback is that simulating
a tape move can require to shift the whole code of M ; assuming however that
this is fixed, we have no further complexity slow-down in the interpretation. The
Universal Machine is hence fair in the sense of [3].

Our universal machine will work with an alphabet comprising booleans and
four additional symbols: “null”, “#” (grid), “|” (bar) and “,” (comma). In addi-
tion, in order to compare cells and to move their content around, it is convenient
to assume the possibility of marking individual cells: so our tape symbols will
actually be pairs of an alphabet symbol and a boolean mark (usually set to
false).

The universal machine must be ready to simulate machines with an arbitrary
number of states. This means that the current state of the simulated machine
cannot be kept in a register (state) of the universal machine, but must be mem-
orized on the tape. We keep it together with the current symbol of the simulated
tape

The general structure of the tape is the following:

α#
⇓
qi0 . . . qinc#table#β

where α, β and c are respectively the left tape, right tape, and current character
of the simulated machine. If there is no current character (i.e. the tape is empty or
we are in a left or right overflow) then c is the special “null” character. The string
wi = qi0 . . . qin is the encoding of the current state qi of M , and table is the set
of tuples encoding the transition function ofM , according to the definition of the
previous section. In a well formed configuration we always have three occurrences
of #: a leftmost, a middle and rightmost one; they are basic milestones to help the
machine locating the information on the tape. At each iteration of a single step
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of M the universal machine will start with its head (depicted with ⇓ in the above
representation) on the first symbol qi0 of the state.

Each step is simulated by performing two basic operations: fetching in the
table a tuple matching wic (match tuple), and executing the corresponding ac-
tion (exec action). The exec action function is also responsible for updating wic
according to the new state-symbol pair wjd provided by the matched tuple.

If matching succeeds, match tuple is supposed to terminate in the following
configuration, with the head on the middle #

α#wic
⇓
# . . . |wic ∗, wjd,m| . . .︸ ︷︷ ︸

table

#β

where moreover the comma preceding the action to be executed will be marked
(marking will be depicted with a ∗ on top of the character). If matching fails,
the head will be on the # at the end of table (marked to discriminate easily this
case from the former one):

α#wic#table

⇓
∗
# β

The body of the universal machine is hence the following uni step function,
where tc true is the accepting state of the test char machine (in the next section
we shall dwell into the details of the match tuple and exec action functions).
� �

definition uni step :=
ifTM ? (test char STape (λc.\fst c == bit false))

(single finalTM ?
(init match · match tuple ·
(ifTM ? (test char ? (λc.¬ is marked ? c))
(exec action · move r . . . )
(nop ?) tc true )))

(nop ?) tc true .
� �

At the end of exec action we must perform a small step to the right to reenter
the expected initial configuration of uni step.

The universal machine is simply a while over uni step:
� �

definition universalTM :=whileTM ? uni step us acc.
� �

The main semantic properties of uni step and universalTM will be discussed in
Section 9.

7 Matching

Comparing strings on a single tape machine requires moving back and forth be-
tween the two stings, suitably marking the corresponding positions on the tape.
The following initialize match function initializes marks, adding a mark at the
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beginning of the source string (the character following the leftmost #, where the
current state, character pair begins), and another one at the beginning of the ta-
ble (the character following the middle #):
� �

definition init match :=
mark ? · adv to mark r ? (λc:STape.is grid (\ fst c)) · move r ? ·
move r ? · mark ? · move l ? · adv to mark l ? (is marked ?).

� �

The match tuple machine scrolls through the tuples in the transition table
until one matching the source string is found. It just repeats, in a while loop,
the operation of trying to match a single tuple discussed in the next section:
� �

definition match tuple :=
whileTM ? match tuple step (inr . . . (inl . . . (inr . . . start nop))).

� �

7.1 Match Tuple Step

The match tuple step starts checking the halting condition, that is when we have
reached a (rightmost) #. If this is not the case, we execute the “then” branch,
where we compare the two strings starting from the marked characters. If the
two strings are equal, we mark the comma following the matched string in the
table and then we stop on the middle #; otherwise, we mark the next tuple (if
any) and reinitialize the mark at the beginning of the current state-character
pair. If there is no next tuple, we stop on the rightmost grid after marking it.

If on the contrary the match tuple step is executed when the current character
is a #, we execute the “else” branch, which does nothing.
� �

definition match tuple step :=
ifTM ? (test char ? (λc:STape.¬ is grid (\ fst c)))
(single finalTM ?
(compare ·
(ifTM ? (test char ? (λc:STape.is grid (\ fst c)))
(nop ?)
(mark next tuple ·

(ifTM ? (test char ? (λc:STape.is grid (\ fst c)))
(mark ?) (move l ? · init current ) tc true )) tc true )))

(nop ?) tc true .
� �

Thematch tuple step is iterated until we end up in the “else” branch, meaning
the head is reading a #. The calling machine can distinguish whether we ended
up in a failure or success state depending on whether the # is marked or not.

8 Action Execution

Executing an action can be decomposed in two simpler operations, which can be
executed sequentially: updating the current state and the character under the
(simulated) tape head (copy), and moving the (simulated) tape (move tape).
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Similarly to matching, copying is done one character at a time, and requires a
suitable marking of the tape (and a suitable initialization init copy). As we shall
see, the copy machine will end up clearing all marks, halting with the head on
the comma preceding the move. Since tape move expects to start with the head
on the move, we must move the head one step to the right before calling it.
� �

definition exec action :=
init copy · copy · move r . . . · move tape.

� �

8.1 Init Copy

The init copy machine initializes the tape marking the positions corresponding
to the the cell to be copied and its destination (with the head ending up on the
former). In our case, the destination is the position on the right of the leftmost
#, while the source is the action following the comma in the tuple that has been
matched in the table (that is the position to the right of the currently marked
cell). In graphical terms, the init copy machine transforms a tape of the form

α#qi0 . . . qinc# . . . |wka
⇓
∗, qj0 . . . qjnd,m| . . .︸ ︷︷ ︸

table

#β

into

α#
∗
qi0 . . . qinc# . . . |wka,

⇓
∗
qj0 . . . qjnd,m| . . .︸ ︷︷ ︸

table

#β

This is the corresponding code:
� �

definition init copy :=
init current on match · move r ? ·
adv to mark r ? (is marked ?) · adv mark r ?.

� �

where
� �

definition init current on match :=
move l ? · adv to mark l ? (λc:STape.is grid (\ fst c)) · move r ? · mark ?.

� �

8.2 Copy

The copy machine copies the portion of the tape starting on the left mark and
ending with a comma to a portion of the tape of the same length starting on the
right mark. The machine is implemented as a while machine whose body copies
one bit at a time, and advances the marks. In our case, this will allow us to pass
from a configuration of the kind

α#
∗
qi0 . . . qinc# . . . |wka,

⇓
∗
qj0 . . . qjnd,m| . . .︸ ︷︷ ︸

table

#β
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to a configuration like

α#qj0 . . . qjnd# . . . |wka, qj0 . . . qjnd ⇓, m| . . .︸ ︷︷ ︸
table

#β

As a special case, d can be a null rather than a bit: this identifies those actions
that do not write a character to the tape. The copy machine acts accordingly,
ignoring nulls and leaving c untouched. The copy machine removes all marks
before exiting.

8.3 Move Tape

Finally, the move tape machine mimics the move action on the simulated tape.
This is a complex operation, since we must skip the code of the simulated ma-
chine and its state. The main function just tests the character encoding the move
action and calls three more elementary functions: move tape r , move tape l , and
no move:
� �

definition move tape :=
ifTM ? (test char ? (λc:STape.c == 〈bit false, false 〉))
(adv to mark r ? (λc:STape.is grid (\ fst c)) · move tape l)
(ifTM ? (test char ? (λc:STape.c == 〈bit true,false〉))

(adv to mark r ? (λc:STape.is grid (\ fst c)) · move tape r)
(no move ?) tc true) tc true .

� �

The no move machine is pretty simple since it is merely responsible for resetting
the head of tape at the expected output position, that is on the leftmost #:
� �

definition no move :=
adv to mark l ? (λc:STape.is grid (\ fst c)) ·
move l . . . · adv to mark l ? (λc:STape.is grid (\ fst c)))

� �

The other two functions are pretty similar; we shall only discuss the first one.

8.4 Move Tape r

The move tape right is conceptually composed of three sub-functions, executed
sequentially: a fetch r function, that advances the head to the first character of
the simulated right tape (that is, the first character after the rightmost #), and
initializes it to null if the tape is empty; a set new current r function that moves
it to the “current” position, that is at the position at the left of the middle #;
and finally a move old current r, that moves the old “current” value (which is
now just at the left of the tape head), as first symbol of the left tape (that is, just
after the the leftmost #). The last two functions are in fact very similar: they
have just to move a character after the first # at their left (move after left grid).
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This is the evolution of the tape, supposing the right tape is not empty:

α#wjd#table
⇓
# bβ fetch r

α#wjd#table
⇓
b #β move after left grid

α#wjd
⇓
b #table#β move l

α#wj
⇓
d b#table#β move after left grid

α
⇓
d #wjb#table#β move r

αd
⇓
# wjb#table#β

This is the code for the above machines:
� �

definition fetch r :=
move r . . . · init cell · move l . . . · swap r STape 〈grid,false 〉 .

definition move after left grid :=
move l . . . · move char l STape 〈grid, false 〉 · swap r STape 〈grid,false 〉 .

definition move tape r :=
fetch r · move after left grid · move l . . . · move after left grid · move r . . . .

� �

init cell is an atomic machine defined in the obvious way.

9 Main Results

Given a configuration for a normal machine M, the following function builds the
corresponding “low level” representation, that is the actual tape manipulated by
the Universal Machine:
� �

definition low config: ∀M:normalTM.nconfig (no states M) → tape STape :=
λM:normalTM.λc.
let n :=no states M in
let h :=nhalt M in
let t :=ntrans M in
let q :=cstate . . . c in
let q low := m bits of state n h q in
let current low :=
match current . . . (ctape . . . c) with
[ None ⇒ null | Some b ⇒ bit b] in

let low left :=map . . . (λb.〈bit b,false〉) ( left . . . (ctape . . . c)) in
let low right :=map . . . (λb.〈bit b,false〉) (right . . . (ctape . . . c)) in
let table :=flatten ? ( tuples list n h (graph enum ?? t)) in
let right :=
q low@〈current low,false〉 :: 〈grid , false 〉 :: table@〈grid, false 〉 :: low right in

mk tape STape (〈grid,false〉 :: low left ) (option hd . . . right) ( tail . . . right).
� �

Similarly, every relation over tapes can be reflected into a corresponding relation
on their low-level representations:



22 A. Asperti and W. Ricciotti

� �

definition low R :=λM,qstart,R,t1,t2.
∀tape1. t1 = low config M (mk config ?? qstart tape1) →
∃q,tape2.R tape1 tape2 ∧
halt ? M q = true ∧ t2 = low config M (mk config ?? q tape2).

� �

We expect the Universal Machine to be able to simulate on its tape each step
of the machine M, and to stop leaving the tape unchanged when M stops. The
machine must be able to end up in a special accepting state us acc in the former
case, and in a different state in the latter. The input-output relation realized by
the machine in the two cases are the following:
� �

definition low step R true :=λt1,t2.
∀M:normalTM.∀c: nconfig (no states M).
t1 = low config M c →
halt ? M (cstate . . . c) = false ∧ t2 = low config M (step ? M c).

definition low step R false :=λt1,t2.
∀M:normalTM.
∀c: nconfig (no states M).
t1 = low config M c →halt ? M (cstate . . . c) = true ∧ t1 = t2.

lemma sem uni step1:
uni step |= [us acc: low step R true, low step R false ].

� �

For the universal machine we proved that, for any normal machine M , it
weakly realizes the low level version of the canonical relation for M
� �

theorem sem universal: ∀M:normalTM. ∀qstart.
universalTM ||= (low R M qstart (R TM FinBool M qstart)).

� �

From this result it is easy to derive that, for any relation weakly realized by M ,
the universal machine weakly realizes its low level counterpart.
� �

theorem sem universal2: ∀M:normalTM. ∀R.
M ||= R →universalTM ||= (low R M (start ? M) R).

� �

Termination is stated by the following result, whose proof is still in progress.
� �

theorem terminate UTM: ∀M:normalTM.∀t.
M ↓ t →universalTM ↓ (low config M (mk config ?? (start ? M) t)).

� �

10 Conclusions

We provided in this paper some preliminary results about formal specification
and verification of Turing Machines, up to the definition of a universal machine
and the proof of its correctness. The work is organized in 15 files (see Figure 1),
for a total of 6743 lines (comprising comments). It has been developed by the two
authors during 2.5 months of intense joint work, at the good rate of more than
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name dimension content

mono.ma 475 lines mono-tape Turing machines
if machine.ma 335 lines conditional composition
while machine 166 lines while composition
basic machines.ma 282 lines basic atomic machines
move char.ma 310 lines character copying
alphabet.ma 110 lines alphabet of the universal machine
marks.ma 901 lines operations exploiting marks
compare.ma 506 lines string comparison
copy.ma 579 lines string copy
normalTM.ma 319 lines normal Turing machines
tuples.ma 276 lines normal Turing machines
match machines.ma 727 lines machines implementing matching
move tape.ma 778 lines machines for moving the simulated tape
uni step.ma 585 lines emulation of a high-level step
universal.ma 394 lines the universal machine

total 6743 lines

Fig. 1. List of files and their dimension in lines

300 lines per man-week (see [4] for an estimation of the cost of formalization at
the current state of the art).

One could possibly wonder what is the actual purpose for performing a similar
effort, but the real question is in fact the opposite one: what could be the reason
for not doing it, since it requires a relatively modest investment in time and
resources? The added value of having a complete, executable, and automatically
verifiable specification is clear, and it could certainly help to improve confidence
(of students, if not of researchers) in a delicate topic that, especially in modern
textbooks, is handled in a very superficial way.

The development presented in this paper is still very preliminary, under many
respects. In particular, the fact that the universal machine operates with a dif-
ferent alphabet with respect to the machines it simulates is annoying. Of course,
any machine can be turned into a normal Turing machine, but this transfor-
mation may require a recoding of the alphabet that is not entirely transparent
to complexity issues: for example, prefixing every character in a string x1 . . . xn
with a 0 in order to get the new string 0x1 . . . 0xn could take, on a single tape
Turing Machine, a time quadratic in the length n of the string (this is precisely
the kind of problems that raises a legitimate suspicion on the actual complexity
of a true interpreter).

Complexity Theory, more than Computability, is indeed the real, final target
of our research. Any modern textbook in Complexity Theory (see e.g. [2]) starts
with introducing Turing Machines just to claim, immediately after, that the
computational model does not matter. The natural question we are addressing
and that we hope to contribute to clarify is: what matters?

The way we plan to attack the problem is by reversing the usual deductive
practice of deriving theorems from axioms, reconstructing from proofs the basic
assumptions underlying the major notions and results of Complexity Theory. The
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final goal of our Reverse Complexity Program is to obtain a formal, axiomatic
treatment of Complexity Theory at a comfortable level of abstraction, providing
in particular logical characterizations of Complexity Classes that could help
to better grasp their essence, identify their distinctive properties, suggest new,
possibly non-standard computational models and finally provide new tools for
separating them.

The axiomatization must obviously be validated with respect to traditional
cost models, and in particular w.r.t. Turing Machines that still provide the actual
foundation for this discipline. Hence, in conjunction with the “reverse” approach,
it is also important to promote a more traditional forward approach, deriving out
of concrete models the key ingredients for the study of their complexity aspects.
The work in this paper, is meant to be a contribution along this second line of
research.
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Abstract. Let E,F be equivalence relations on N. We say that E is com-
putably reducible to F , written E ≤ F , if there is a computable function
p : N→ N such that xEy ↔ p(x)Fp(y). We show that several natural Σ0

3

equivalence relations are in fact Σ0
3 complete for this reducibility. Firstly,

we show that one-one equivalence of computably enumerable sets, as
an equivalence relation on indices, is Σ0

3 complete. Thereafter, we show
that this equivalence relation is below the computable isomorphism rela-
tion on computable structures from classes including predecessor trees,
Boolean algebras, and metric spaces. This establishes the Σ0

3 complete-
ness of these isomorphism relations.

1 Introduction

Invariant descriptive set theory studies the complexity of equivalence relations
on the reals via Borel reductions (see [6]). An analog for equivalence relations on
natural numbers, where the reductions are computable functions, was already
introduced in [1], and has received considerable attention in recent years [7,3].

The isomorphism relation on a class of structures is a natural example of
an equivalence relation. A countable structure in a countable signature can be
encoded by a real. The complexity of the isomorphism relation on (reals encod-
ing) countable structures has been studied in invariant descriptive set theory
beginning with H. Friedman and Stanley [5]. For instance, they showed that
isomorphism of countable graphs is not Borel complete for analytic equivalence
relations.

We may assume that the domain of a countable structure is an initial segment
of N. Then the quantifier free statements involving elements of the structure
can also be encoded by natural numbers. Suppose the signature is computable.
We say that a presentation of a countable structure is computable if its atomic
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diagram, that is, all the quantifier free facts about the structure, is a computable
set. A computable index for the atomic diagram is also called a computable
index for the structure. As a general rule, familiar countable structures all have
computable presentations. Examples include (Z,+) and (Q, <).

Following Fokina et al. [4], for a class K of structures, we denote by I(K)
the set of computable indices for structures in K. For common classes, this
will be an arithmetical set. Isomorphism can now be viewed as an equivalence
relation on I(K), and clearly is Σ1

1 . Fokina et al. [4] studied possible analogs of
some results in [5] for isomorphism on computable structures. Their reduction,
denoted ≤FF , was a slight extension of computable reducibility which allows for
partial computable functions as reductions as long as their domain contains the
relevant set I(K). In contrast to the above-mentioned result of [5], they proved
as a main result that isomorphism of computable graphs is ≤FF complete for
Σ1

1 equivalence relations. Coding graphs into structures, they then obtained the
similar result for other classes, such as torsion free abelian groups, and linear
orders. Boolean algebras were notably absent.

In this paper, we go one step further in effectivizing the setting of [5]: we also
require that the isomorphisms are computable. For computable presentations
C,D of structures in the same computable signature, we write

C ∼=comp D

if there is a partial computable bijection between the domains of C,D (initial
segments of N) which induces an isomorphism of the structures. Clearly, if I(K)
is Σ0

3 , then computable isomorphism on I(K) is also Σ0
3 .

We will show that for several classes of structures, the computable isomor-
phism relation is aΣ0

3 -complete equivalence relation under computable reducibil-
ity: computable trees and graphs, computable Boolean algebras, and (with some
adjustment of terminology) metric spaces. Note that for some classes, however,
the computable isomorphism problem may be less complex than Σ0

3 . For in-
stance, consider the class K of computable permutations of order 2. Then I(K)
is Π0

2 . The computable isomorphism relation on I(K) is also Π0
2 . This is so be-

cause we only need to figure out whether for two given permutations, both have
the same number of 1-cycles, and the same number of 2-cycles.

Our completeness results rely on a recursion theoretic fact of interest by itself.
As usual let (We)e∈N be an effective listing of the computably enumerable sets.
Recall that sets A,B ⊆ N are 1-equivalent, A ≡1 B, if there is a computable
permutation h of N such that h(A) = B.

Theorem 1. For each Σ0
3 equivalence relation S, there is a computable func-

tion g such that

ySz ⇒Wg(y) ≡1 Wg(z), and

¬ySz ⇒Wg(y),Wg(z) are Turing incomparable.

The proof will be given in Section 3. As an immediate consequence, we have:
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Corollary 2. Many-one equivalence and 1-equivalence on indices of c.e. sets
are Σ0

3 complete for equivalence relations under computable reducibility.

Note that this is significantly stronger than the mere Σ0
3 completeness of ≡m as

a set of pairs of c.e. indices, which follows for instance because the m-complete
c.e. set have a Σ0

3 complete index set.
As a further consequence, Turing equivalence on indices of c.e. sets is a Σ0

3

hard equivalence relation for computable reducibility. However, this equivalence
relation is only Σ0

4 . We conjecture that it is in fact Σ0
4 complete in our sense.

In the following Section 2, we will encode 1-equivalence on indices of c.e. sets
into computable isomorphism for the relevant classes. We then use Corollary 2
to conclude these isomorphism relations are Σ0

3 complete.

2 Computable Isomorphism of Computable Structures

2.1 Computable Trees and Computable Equivalence Relations

We use the terminology of Fokina, Friedman et al. [4]. In particular, a tree
is a structure in the language containing the predecessor function as a single
unary function symbol. The root is its own predecessor. A countable tree can be
represented by a nonempty subset B of ω<ω closed under prefixes. The unary
predecessor function takes off the last entry of a non-empty tuple of natural
numbers, and maps the empty tuple to itself.

A tree has a computable presentation iff we can choose B c.e. For in that case
B is the range of a partial computable 1-1 function φ with domain an initial
segment of ω; the preimage of the predecessor function under φ is the required
computable atomic diagram.

We let
Te = {σ : ∃τ � σ [τ ∈ We]},

where the e-th c.e. set We is now viewed as a subset of ω<ω. Then (Te)e∈N is a
uniform listing of all computable trees.

We say a tree has height k if every leaf has length at most k.

Proposition 3. Computable isomorphism of computable trees of height 2 where
every node at level 1 has out-degree at most 1 is a complete Σ0

3 equivalence
relation.

Proof. Let h be a computable function such for each e, Th(e) is the tree

{∅} ∪ {〈x〉 : x ∈ ω} ∪ {〈x, 0〉 : x ∈ We}.

Clearly, Wy ≡1 Wz iff Th(y) is computably isomorphic to Th(z). Now we apply
Corollary 2.

A similar argument shows:

Proposition 4. Computable isomorphism of computable equivalence relations
where every class has at most 2 members is a complete Σ0

3 equivalence relation.
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2.2 Boolean Algebras

For a linear order L with least element, Intalg L denotes the subalgebra of the
Boolean algebra P(L) generated by intervals [a, b) of L where a ∈ L and b ∈
L∪ {∞}. Here ∞ is a new element greater than any element of L, and [a,∞) is
short for {x ∈ L : x ≥ a}. Note that Intalg L consists of all sets S of the form

S =

n⋃
r=1

[ar, br)

where a0 < b0 < a1 . . . < bn ≤ ∞. From a computable presentation of L as a
as a linear order, we may canonically obtain a computable presentation of the
Boolean algebra Intalg L.

Theorem 5. Computable isomorphism of computable Boolean algebras is com-
plete for Σ0

3 equivalence relations.

Proof. Let (V e)e∈N be an effective listing of the c.e. sets containing the even
numbers. The relation of 1-equivalence ≡1 of c.e. sets V e is Σ0

3 complete by
Theorem 1 and its proof below. We will computably reduce it to computable
isomorphism of computable Boolean algebras. We define the Boolean algebra
Ce to be the interval algebra of a computable linear order Le. Informally, to
define Le, we begin with the order type ω. For each x ∈ ω, when x enters V k we
replace x by a computable copy of [0, 1)Q. More formally,

Le =
⊕
x∈ωM

e
x ,

whereM e
x has one elementmkx = 2x, until x enters V e; if and when that happens,

we expand M e
x to a computable copy of [0, 1)Q, using the odd numbers, while

ensuring that mkx = minMk
x holds in Lk. Also note that the domain of Lk is N

because 0 ∈ V k.

Claim. V e ≡1 V
i ⇔ Ce ∼=comp Ci.

⇒: Suppose V e ≡1 V
i via a computable permutation π. We define a computable

isomorphism Φ : Ce ∼= Ci.
(a) Let Φ(mex) = miπ(x). Once x enters V e, we know that π(x) ∈ V i. So we may
always ensure that Φ restricts to a computable isomorphism of linear orders
M e
x
∼= M i

π(x).

(b) Consider an element S of Ce. It is given in the form S =
⋃n
r=1[ar, br) where

a0 < b0 < a1 . . . < bn for ar, br ∈ Le∪{∞} as above. If bn <∞, we can compute
the maximal x ∈ ω such that Me

x ∩ S �= ∅. Define

Φ(S) =
⋃
y≤x

Φ(S ∩M e
y ).

Note that the set Φ(S ∩M e
y ) can be determined by (a).

If bn =∞, then let Φ(S) be the complement in Li of Φ(Le \ S).
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⇐: Now suppose that Ce ∼=comp Ci via some computable isomorphism Φ. We
show that V e ≤1 V i via some computable function f . Suppose we have defined
f(y) for y < x. We have Φ(M e

x) =
⋃n
r=1[ar, br) where ar, br ∈ Li∪{∞} as above.

If n > 1 then Me
x is not an atom in Ce, whence x ∈ V e. Thus let f(x) be the

least even number that does not equal f(y) for any y < x.
Now suppose n = 1. If a1 = miy, b1 = miy+1 then let f(x) = y. Otherwise,

again we know M e
x is not an atom in Ce, and define f(x) as before.

By symmetry, we also have V i ≤1 V e, and hence V i ≡1 V e by Myhill’s
theorem.

2.3 Metric Spaces

Let (M,d) be a metric space, and let (αi)i∈N be a dense sequence in M without
repetitions. We say that M = (M,d, (αi)i∈N) is a computable metric space if
d(αi, αk) is a computable real uniformly in i, k. We call the elements of the
sequence (αi)i∈N the special points. For background on computable metric spaces,
see [2].

A computable metric space is discrete if every point is isolated. For such a
space, necessarily every point is a special point.

Corollary 6. Computable isometry of discrete computable metric spaces is com-
plete for Σ0

3 equivalence relations.

Proof. Given a computable treeB, create a discrete computable metric spaceMB

as follows: if a string 〈x〉 enters B, add a point px. If later 〈x, i〉 enters B for the
first i, add a further point qx. Declare d(px, qx) = 1/4. Declare d(px, py) = 1 and
d(qx, py) = 1 (if qx exists). Clearly for trees B,C as in Cor. 3, B is computably
isomorphic to C iff MB is computably isometric to MC .

3 Proof of Theorem 1

Since S is Σ0
3 , there is a uniformly c.e. triple sequence

(Vy,z,i)y,z,i∈ω,y<z

of initial segments of N such that for each y < z,

ySz ⇔ ∃i Vy,z,i = ω.

We build a uniformly c.e. sequence of sets Ax = Wg(x) (x ∈ ω), g computable.
We meet the following coding requirements for all y < z and i ∈ ω.

Gy,z,i : Vy,z,i = ω ⇒ Ay ≡1 Az .

We meet diagonalization requirements for u �= v,

Nu,v,e : u = min[u]S ∧ v = min[v]S ⇒ Au �= Φe(Av).

where Φe is the e-th Turing functional, and [x]S denotes the S-equivalence class
of x. Meeting these requirements suffices to establish the theorem.
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The basic strategies to meet the requirements are as follows. If Vy,z,i = ω,
a strategy for Gy,z,i “finds out” that z is S-related to the smaller y. Hence it
builds a computable permutation h such that Ay ≡1 Az via h.

A strategy for Nu,v,e picks a witness n, and waits for Φe(Av;n) to converge.
Thereafter, it ensures that this computation is stable and Au(n) does not equal
its output Φe(Av;n) by enumerating n into Au if this output is 0.

The tree of strategies. To avoid conflicts between strategies that enumerate into
the same set Az, we need to provide the strategies with a guess at whether z
is least in its S-equivalence class [z]S. An N -type strategy will only enumerates
into Az if according to its guess, z is least in its [z]S; a G-type strategy only
enumerates into Az if according to its guess, z is not least.

Fix an effective priority ordering of all requirements. We define a tree T of
strategies, which is a computable subtree T of 2<ω. We write α : R if strategy
α is associated with the requirement R. By recursion on |α|, we define whether
α ∈ T , and which is the requirement associated with α. We also define a function
L mapping α ∈ T to a cofinite set L(α) consisting of the numbers x such that
according to α’s guesses, x is least in its equivalence class.

Let L(∅) = ω. Assign to α the highest priority requirement R not yet assigned
to a proper prefix of α such that either (a) or (b) hold.

(a) R is Gy,z,i and z ∈ L(α); in this case put both α0 and α1 on T , and define
L(α0) = L(α) − {z} while L(α1) = L(α) (along α0 we know that x is no
longer the least in its equivalence class)

(b) R is Nu,v,e and u, v ∈ L(α); in this case put only α0 on T , and define
L(α0) = L(α).

For strings α, β ∈ 2<ω, we write α <L β if there is i such that α�i= β �i, α(i) = 0
and β(i) = 1. We let α � β denote that α is a prefix of β. We define a linear
ordering on strings by

α ≤ β if α <L β or α � β.

Construction of a u.c.e. sequence of sets (Ax)x∈N. We declare in advance that
Ax(4m+ 1) = 0 and Ax(4m+ 3) = 1 for each x,m. The construction then only
determines membership of even numbers in the Ax.

We define a computable sequence (δs)s∈N of strings on T of length s. Suppose
inductively that δt has been defined for t < s. Suppose k < s and that η = δs �k
has been defined. If η : Nu,v,e let δs(k) = 0. Otherwise η : Gy,z,i. Let t < s be
the largest stage such that t = 0 or η � δt. Let δs(k) = 0 if Vy,z,i,s �= Vy,z,i,t,
and otherwise δs(k) = 1.

The true path TP is the lexicographically leftmost path f ∈ 2ω such that
∀n ∃∞s ≥ n [δs �n≺ f ]. To initialize a strategy α means to return it to its first
instruction. If α : Gy,z,i we also make the partial computable function hα built
by the strategy α undefined on all inputs. At stage s, let init(α, s) denote the
largest stage ≤ s at which α was initialized.

An Nu,v,e strategy α. At stages s:
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(a) Appoint an unused even number n > init(α, s) as a witness for diagonaliza-
tion. Initialize all the strategies β � α.

(b) Wait for Φe(Av;n)[s] to converge with output r. If r = 0 then put n into
Au. Initialize all the strategies β � α.

A Gy,z,i strategy α. If α0 is on the true path then this strategy builds a com-
putable increasing map hα from even numbers to even numbers such thatAy(k) =
Az(hα(k)) for each k. Furthermore, Az − range(hα) is computable. By our defi-
nitions of Ay and Az on the odd numbers, this implies that hα can be extended
to a computable permutation showing that Ay ≡1 Az, as required.

At stages s, if α0 ⊆ δs, let t < s be greatest such that t = 0 or α0 ⊆ δt, and
do the following.

(a) For each even k < s such that k �∈ dom(hα,t) pick an unused even value
m = hα,s(k) > init(α, s) in such a way that hα remains increasing.

(b) From now on, unless α is initialized, ensure that Az(m) = Ay(k). (We will
verify that this is possible.)

The stage-by-stage construction is as follows. At stage s > 0 initialize all strate-
gies α >L δs. Go through substages i ≤ s. Let α = δs �i. Carry out the strategy α
at stage s.

Verification. To show the requirements are met, we first check that there is no
conflict between different strategies that enumerate into the same set Az .

Claim. Let α : Gy,z,i. Then (b) in the strategy for α can be maintained as long
as α is not initialized.

To prove the claim, suppose a strategy β �= α also enumerates numbers into Az .
If α0 <L β then β is initialized when α extends its map hα, so the numbers
enumerated by β are not in the range of hα. If β <L α0 then α is initialized
when β is active, so again the numbers enumerated by β are not in the range of
hα. Now suppose neither hypothesis holds, so α0 � β or β ≺ α.

Case β : Nz,v,e. In this case α0 � β is not possible because z �∈ L(α0). If β ≺ α
then α is initialized when β appoints a new diagonalization witness.
Case β : Gy′,z,i′ . In this case α0 � β is not possible because z �∈ L(α0). If
β1 � α then α is initialized each time β extends its map hβ . Finally, β0 � α is
not possible because z �∈ L(β0). This proves the claim.

Claim. Let α be the Nu,v,e strategy on the true path. Suppose α is not initialized
after stage s. Then α only acts finitely often, and meets its requirement.

At some stage ≥ init(α, s) the strategy α picks a permanent witness n. No
strategy β ≺ α can put n into Au because u ∈ L(α). No other strategy can put
n into Au because of the initialization α carries out when it picks n. Suppose now
that at a later stage t, a computation Φe(Av;n)[t] converges. Since v ∈ L(α), no
G-type strategy β ≺ α enumerates into Av. Thus the initialization of strategies
γ � α carried out by α at that stage t will ensure that this computation is
preserved with value different from Au(n). This proves the claim.
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It is now clear by induction that each strategy α on the true path is initialized
only finitely often. Thus theN -type requirements are met. Now suppose α : Gy,z,i
and α0 is on the true path. Then no strategy β � α0 enumerates into Az. Thus
by the initialization at stages s such that α0 � δs, the set Az−range(hα) is com-
putable. As noted earlier, this implies that hα can be extended to a computable
permutation showing that Ay ≡1 Az . There is a computable bijection q between
the set of odd numbers and the set of numbers that are odd, or even but not
in the range of hα, so that m ∈ Ay ↔ q(m) ∈ Az. Now let the permutation be
q ∪ hα.
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An Analysis of Directed Motion Expressions
with Lexicalized Tree Adjoining Grammars

and Frame Semantics�
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Abstract. We present an analysis of directed motion expressions in the
framework of Lexicalized Tree Adjoining Grammars (LTAG) enriched with a
decompositional frame semantics. This approach to the syntax-semantics inter-
face allows us to combine a detailed decomposition and composition of syntac-
tic building blocks with a parallel decomposition and composition of meaning
components. In LTAG, lexical anchors can be distinguished from unanchored el-
ementary trees which allows for the description of the meaning contributions of
constructions. Furthermore, due to the metagrammatical factorization of the de-
scriptions of unanchored elementary trees, the meaning contributions of single
argument realizations and of their combinations can be described in a principle
way.

1 Introduction

Investigating the interplay between the syntax and semantics of directed motion ex-
pressions, and of verb-based constructions in general, is faced with the following two
issues, among others: the distinction between arguments and adjuncts and the syntac-
tic mechanisms of semantic composition. In this paper, we show how these issues can
be naturally addressed within a framework that integrates Lexicalized Tree Adjoining
Grammars (LTAG) with Frame Semantics. Semantic frames have been established as
an expressive way to capture detailed aspects of meaning. So far, they are mainly used
to describe the meanings of single lexical items. This paper concentrates on frame-
based semantic composition and its interaction with syntactic operations. There are two
reasons for choosing LTAG in the context of semantic frame composition. Firstly, the
elementary trees in LTAG represent entire subcategorization frames, which facilitates
the linking of the syntactic components and the semantic frame components. Secondly,
the underlying “metagrammatical” specification of an LTAG allows a strong factoriza-
tion of the syntactic and semantic information of elementary trees and thereby enables
one to capture the specific meaning contributions of fragments of constructions.

The focus of this paper is on directional expression that are constructed from verbs
of motion and directional PPs. The relevant constructions include intransitive verbs of
locomotion (1) as well as transitive verbs of caused motion and transport (2).
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(1) a. Mary walked to the house.
b. The ball rolled into the goal.

(2) a. John threw/kicked the ball into the goal.
b. John pushed/pulled the cart to the station.
c. John rolled the ball into the hole.

Directional specifications are not restricted to goal expressions as in (1) and (2) but
can also describe the source or the course of the path in more detail. Moreover, path
descriptions can be iterated to some extent (3). Below we will use this property as an
indicator for distinguishing between arguments and adjuncts.

(3) a. John walked through the gate along the fence to the house.
b. John threw the ball over the fence into the yard.

The paper is structured as follows. In Section 2, we discuss the semantics of directed
motion expressions, formulated with frames. The following section introduces LTAG.
Section 4 brings the previous sections together by proposing a frame-based LTAG se-
mantics for expressions of directed motion, distinguishing between the meaning of lex-
ical items and the meaning of unanchored elementary trees. Building on this, Section
5 develops a more fine-grained factorization of the syntax and semantics of the unan-
chored elementary trees, using the LTAG metagrammar.

2 Directed Motion Expressions

Modeling the syntax-semantics interface of directed motion expressions requires us to
be explicit about a number of issues concerning the syntactic and semantic structure of
such expressions, many of which have been discussed extensively in the literature.

2.1 Verbs of Motion

It is common to distinguish between manner-encoding and path-encoding verbs of mo-
tion. The first kind of verbs (run, roll) lexically encode the manner of the motion but no
path-related information, while the second kind of verbs (enter, leave) do not encode
the manner but specify the direction of motion. Manner-encoding motion verbs lexi-
cally characterize activities or processes. Directional information about the goal or path
can be added by appropriate adverbials (i.e., by “satellite framing” constructions [21]).
In the following, we focus on manner-encoding verbs since our goal is to model the
syntactic and semantic processes of combining directional specifications with motion
expressions.

There are also motion verbs where the actor differs from the entity that undergoes
the motion. This class includes verbs of transport and caused motion (carry, drag, push,
throw). As with manner-of-motion verbs, transport and caused motion verbs do not lex-
ically specify a direction or goal. Again, directional information can be added by ad-
verbials. The verbs of transport and caused motion are basically transitive verbs whose
direct object refers to the moving entity. They can be sub-divided into different classes
depending on (i) how the motion of the object is enforced by the actor and (ii) to which
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extent the activity of the actor and the manner of motion are lexically specified (cf. [7]).
Concerning (i), we can distinguish between onset causation (throw, kick) and extended
causation (pull, drag), following the terminology of [20]. Verbs of the first type de-
scribe the punctual initiation of a motion event, verbs of the second type describe the
continuous enforcement of the motion. As to (ii), some of the verbs in question specify
the manner of motion of the moved object but say nothing about the activity of the actor
(roll, slide), while for other verbs the converse is true (pull, drag).1

In the following, we are concerned with locomotion/manner-of-motion verbs and
caused motion and transport verbs that occur in directional constructions like those
listed in (1)–(3).

2.2 Syntactic Issues

In the context of the LTAG analysis presented in the following sections, a crucial issue
is whether to treat directional expression such as those in (1)–(3) as complements or
as adjuncts. Moreover, an argument can be determined by the base lexeme or it can
be introduced by a construction or a lexical rule. For instance, sentences of type (2-c)
are often characterized as caused motion constructions or causative path resultatives
[14]. That is, the directional argument is constructionally introduced. Within the LTAG
approach both, the basic argument structure construction as well as the extended con-
struction are represented by elementary trees. The relation between these trees, and
the fact that one of them builds on the other, is captured in the class structure of the
metagrammar (cf. Section 5).

Dowty [6] counts directional PPs as adjuncts of motion verbs since their presences is
not obligatory and they do not “complete” but “modify” the meaning of the head verb.
Dowty distinguishes adjuncts from elliptical complements by characterizing the latter as
cases where a semantically required element must be inferred contextually. Van Valin &
LaPolla [22] classify directional PPs as “argument-adjuncts”. Like adjuncts, argument-
adjuncts are predicative, but they introduce an argument into the syntactic core of the
head verb and they typically share an argument with the predicate encoded by the verb.
A well-known distinction observed by Jackendoff, Verkuyl and Zwarts, among others,
is that between bounded and unbounded directional PPs, which give rise respectively
to telic (4-a) and atelic (4-b) event descriptions [15,23,25].

(4) a. She walked to the brook (in half an hour/*for half an hour).
b. She walked along the brook (*in half an hour/for half an hour).

With reference to this distinction and based on data from Dutch and other languages,
Gehrke [13] argues that bounded directional PPs are complements of the verb while
unbounded PPs are adjuncts. For verbs of locomotion and transport, which are lexically
atelic, this means that a directional expression is regarded as a complement in case
it changes the aspectual type of the expression. This assumption is compatible with
the formal criterion that expressions that can be added iteratively (as, e.g., prenominal
adjectives) need to be analyzed as adjuncts. In the following, we take this criterion as a
preliminary working definition of adjuncthood.

1 Cf. [7] for further distinctions.
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2.3 Motion, Paths, and Directions

A locomotion event is by definition associated with some trajectory, trace or path of the
moving entity. The approaches found in the literature differ with respect to the explicit
representation of the path in the lexical semantics of the respective verbs. While in [5]
and [18], paths are not part of the semantic representations of locomotion verbs, [25]
proposes a thematic function TRACE that maps motion events to the path traversed by
the moving entity and in [19], it is assumed that “manner-of-motion predicates leave a
trail of the motion along an implicit path, as measured over time.” Similarly, [8] take
paths as part of the semantics of verbs of motion. The paths referenced by verbs are
here again understood as trajectories, that is, as the collection of “all points the object
occupies during its course.”

Paths, traces or trajectories provide a straightforward semantic link between motion
verbs and directional specifications. Directionals (in English) occur often morphologi-
cally combined with locatives. For example, the directional preposition into specifies a
path whose end point is in the interior of the goal expressed by the nominal complement
of the preposition. The interior region associated with an object, as well as other regions
specified by locatives, can be regarded as functional attributes of that object. We will
employ this view below for the frame representations of directional prepositions.

2.4 Frame-Semantic Representation

The semantics of directional expressions is often represented in terms of logical ex-
pression of one kind or another in the literature (cf. [8]). In our approach, we employ
frames for semantic representation, inspired by the programmatic outlines in [9] and
[2]. Frames in this context are to be understood as generalized typed feature structures
with relational constraints. In contrast to the flat role frames used in FrameNet [10], we
take into account semantic decomposition, which gives rise to nested frame structures.
For example, the verb throw expresses a caused motion, that is, the described event
can be analyzed as a complex causation event whose cause component consists of the
activity of the thrower and whose effect is the ballistic motion of the thrown object.
A possible frame-semantic representation of this decompositional analysis is shown on
the right side of Fig. 1, which also shows frames for walk and pull.

In the given representations, a good part of the lexical meaning is condensed in the
types or left implicit. For instance, the precise way of how the actor induces the (bal-
listic) motion of the object in throwing events is simply encoded by an atomic value of
the attribute MANNER. Similarly, the causation type of throwing events is encoded by
the type onset-causation of the main event. A more explicit representation would in-
clude the temporal characteristics of an onset causation, i.e., punctuality and temporal
precedence of the causing event. Notice that the path or trace of the moving entity is
made explicit by the frames in Fig. 1. As argued above, the trace of the moving object
is an inherent semantic component of locomotion events; the path provides the anchor
for directional specifications. It is important to keep in mind that the presence of the
PATH attribute in the frame representation of, say, walk does not imply by any means
that walk lexically encodes any information about the path of the movement.

For the frame representations of directional prepositions, we follow basically the
outline discussed in the previous section. The basic idea is that frames associated with
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walk⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

locomotion-activity

ACTOR 1

MANNER walking

PATH

⎡⎢⎣path

STARTP 2

ENDP 3

⎤⎥⎦

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

throw⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

onset-causation

CAUSE

⎡⎢⎢⎢⎣
activity

ACTOR 1

THEME 2

MANNER throwing

⎤⎥⎥⎥⎦

EFFECT

⎡⎢⎢⎢⎢⎢⎢⎣
locomotion

THEME 2

PATH

⎡⎢⎣path

STARTP 3

ENDP 4

⎤⎥⎦

⎤⎥⎥⎥⎥⎥⎥⎦

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦pull⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

extended-causation

CAUSE

⎡⎢⎢⎢⎣
activity

ACTOR 1

THEME 2

MANNER pulling

⎤⎥⎥⎥⎦

EFFECT

⎡⎢⎢⎢⎢⎢⎢⎣
locomotion

THEME 2

PATH

⎡⎢⎣path

STARTP 3

ENDP 4

⎤⎥⎦

⎤⎥⎥⎥⎥⎥⎥⎦

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
Fig. 1. Possible frame-semantic representations of some verbs of (caused) motion

directional prepositions can unify with frames of pure locomotion to frames that express
directed motion. For example, the frame for the preposition into, which is shown on the
right of Fig. 2, represents (directed) motion to the interior region 2 of an object 1 which
is denoted by the nominal complement of the preposition. The frame constraint in the
last line encodes the condition that the end point 3 of the path or trajectory generated
by the motion is in fact contained in the region in question.

The semantic representations described so far allow us to introduce the basic ideas
of syntax-driven semantic frame composition in the following sections. Of course, in
a fully developed theory of frame representations for event semantics, the types and

to⎡⎢⎢⎢⎢⎢⎣
directed-motion

GOAL 1
[

AT-REGION 2
]

PATH

[
path

ENDP 3

]
⎤⎥⎥⎥⎥⎥⎦

3 ⊆ 2

into⎡⎢⎢⎢⎢⎢⎣
directed-motion

GOAL 1
[

IN-REGION 2
]

PATH

[
path

ENDP 3

]
⎤⎥⎥⎥⎥⎥⎦

3 ⊆ 2

Fig. 2. Frame examples for directional prepositions
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event

activity motion causation

motion-activity locomotion onset-causation extended-causation

locomotion-activity directed-motion

directed-motion-activity

Fig. 3. Partial sketch of the event type hierarchy

features used in the frames are systematically related to each other by a type hierarchy
and by feature constraints. For instance, the inheritance hierarchy of the event types
introduced so far would look like the one depicted in Fig. 3. Additional feature dec-
larations would then specify, e.g., that frames of type causation have a CAUSE and an
EFFECT attribute, and that the value of the CAUSE attribute of onset-causation events is
of type punctual-event.

3 LTAG and Grammatical Factorization

3.1 Introduction to TAG

Tree Adjoining Grammar (TAG, [16]) is a tree-rewriting formalism. A TAG consists of
a finite set of trees (elementary trees). The nodes of these trees are labelled with non-
terminals and terminals (terminals only label leaf nodes). Starting from the elementary
trees, larger trees are derived by substitution (replacing a leaf with a new tree) and
adjunction (replacing an internal node with a new tree). Sample elementary trees and a
derivation are shown in Fig. 4. In this derivation, the elementary tree for John substitutes
into the subject slot of the elementary tree for came, the in tree for the temporal PP
modifier adjoins to the VP node and December substitutes into the NP leave of the
modifier tree.

In case of an adjunction, the tree being adjoined has exactly one leaf that is marked
as the foot node (marked with an asterisk). Such a tree is called an auxiliary tree. To
license its adjunction to a node n, the root and foot nodes must have the same label as n.
When adjoining it to n, in the resulting tree, the subtree with root n from the old tree is
attached to the foot node of the auxiliary tree. Non-auxiliary elementary trees are called
initial trees. A derivation starts with an initial tree. In a final derived tree, all leaves must
have terminal labels.

In a TAG, one can specify for each node whether adjunction is mandatory and which
trees can be adjoined. The subscripts NA and OA indicate adjunction constraints: NA
signifies that for this node, adjunction is not allowed while OA signifies that adjunction
is obligatory.
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Fig. 5. Feature structure unifications in FTAG

3.2 Feature Structure Based TAG

In order to be able to capture syntactic generalizations in a more satisfying way, the
non-terminal node labels in TAG elementary trees are usually enriched with feature
structures. The resulting TAG variant is called Feature-structure based TAG (FTAG,
[24]). In an FTAG, each node has a top and a bottom feature structure (except substitu-
tion nodes that have only a top). Nodes in the same elementary tree can share features
(extended domain of locality). In contrast to the original TAG, an FTAG does not have
separate adjunction constraints, since the constraints can be expressed by features.

During substitution and adjunction, the following unifications take place (see Fig. 5):
In a substitution operation, the top of the root of the new initial tree unifies with the top
of the substitution node. In an adjunction operation, the top of the root of the new
auxiliary tree unifies with the top of the adjunction site and the bottom of the foot of the
new tree unifies with the bottom of the adjunction site. Furthermore, in the final derived
tree, top and bottom must unify for all nodes.
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NP[AGR= 1 ] VP[AGR= 1 ]
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V
[AGR= 2 [PERS=3,NUM=sing]] VP∗

is

Fig. 6. Agreement with feature structures

Since nodes in the same elementary tree can share features, constraints among de-
pendent nodes can be more easily expressed than in the original TAG formalism. See
Fig. 6 for an example (the top feature structure is notated as a superscript, the bottom
feature structure as a subscript of the respective node).

3.3 LTAG Elementary Trees

The elementary trees of a TAG for natural languages respect certain principles [11,1].
Firstly, they are lexicalized, i.e., each elementary tree has at least one non-empty lexical
item, its lexical anchor. A lexicalized TAG (LTAG) is a TAG that satisfies this condition
for every elementary tree. Secondly, each elementary tree associated with a predicate
contains argument slots (leaves with non-terminal labels, i.e., substitution nodes or foot
nodes) for each of its arguments, i.e., for each of the elements it subcategorizes for,
including the subject. Furthermore, it contains argument slots only for the arguments of
its lexical anchor, and for nothing else (elementary tree minimality, [11]).

Most argument slots are substitution nodes, in particular the nodes for nominal ar-
guments (see the elementary tree for lives in Fig. 4). Sentential arguments however are
realised by foot nodes. The reason is that we want to be able to extract material from
sentential arguments in long-distance dependencies such as (5). Such extractions can be
obtained by adjoining the embedding clause into the sentential argument.

(5) Whom does Paul think that Mary likes?

As we have seen, the elementary trees of an LTAG are lexicalized and contain non-
terminal leaves for all the arguments of their lexical head. Because of this extended
domain of locality, LTAG is particularly well-suited for a frame-based compositional
semantics. The semantic frame of a predicate specifies, among others, the thematic
roles of its arguments. In LTAG, these can be immediately linked to the corresponding
syntactic argument slots.

Concerning the modeling of the syntax-semantics interface, we follow approaches
that link a single semantic representation (in our case, a semantic frame) to an entire
elementary tree and which model semantic composition by unifications triggered by
substitution and adjunction [12,17]. A simplified example that illustrates the locality
of linking in this framework is given in Fig. 7. The substitutions trigger unifications
between 1 and 3 and between 2 and 4 which leads to an insertion of the corresponding
argument frames into the frame of eats.
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Fig. 7. Syntactic and semantic composition for John eats pizza

4 Motion Verbs and Directional PPs

4.1 Directed Motion Activities

This section deals with the combination of motion verbs and directional PPs as in (6).

(6) a. Mary walked/ran to/into/towards the house.
b. Mary walked/ran along the river.
c. Mary walked/ran over the bridge along the fence through the meadows.

Recall that our criterion for deciding whether a constituent is an argument or an adjunct
is for us its iterability. Constituents that cannot be iterated and that add a semantic role
(no matter whether this is already present in the frame contributed by the verb) are
taken to be complements in the sense of being integrated into the unanchored tree for
the verb within the metagrammar. For this reason, the examples in (6-a) are treated as
PP complements while the PP in (6-b) is an adjunct. PPs of the type in (6-b) can be
iterated as can be seen in (6-c).

In the complement cases, the preposition is however not part of the elementary tree
of the verb since it is not determined by the verb. This is in contrast to constructions
where a specific preposition is treated as a coanchor of the elementary tree. An example
is the elementary tree for remind of as for instance in (7) where the preposition of is
taken to be a coanchor of the elementary tree.

(7) This picture reminds me of my little dog.

As explained above, we assume that the motion verb defines a locomotion activity that
takes place along a certain path. This path has a start and an end point.

In the construction, the additional PP adds a further argument with the semantic
role GOAL. The way this goal combines with the path, i.e., whether it is its end point,
whether it adds a direction to the path etc., depends on the preposition.

The unanchored elementary tree for an intransitive verb with an additional direc-
tional PP is given in Fig. 9. The lower VP node in the tree is inspired by the XTAG
choices. It serves to allow the adjunction of modifiers between the verb and the PP ob-
ject, as in (8), which would not be possible if the V and the PP were sisters. The empty
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Fig. 9. Unanchored tree and semantics of n0Vpp(dir) construction

V-tree below this additional VP carries a NA (null adjunction) constraint. I.e., this node
does not allow for adjunction.

(8) He ran every day to the river.

The decoration of the elementary tree with features I and E makes sure that the substi-
tutions of the subject NP and the object PP will fill the corresponding argument roles
and, furthermore, adjunctions of modifiers to the VP node extend the event frame 4 .

The preposition determines the relation between the path of the motion and the goal.
Fig. 10 shows the elementary trees of different directional prepositions. We assume
that objects such as the house have a certain topological structure. They come with
different types of regions, an at-region that contains all points that can be said to be at
the object, an in-region that determines the space that constitutes the inner part of the
object etc. The preposition to refers to the at-region of an object; it expresses that the
endpoint of the path must be contained in the at-region of the object in the PP. Similarly,
into expresses that the endpoint must be contained in the in-region of the PP object. In
contrast to this, towards does not determine the end or start point, it only says something
about the direction of the path.

The nature of the contained-in relation is different from the functional attributes in
frames. A region can of course be contained in several other regions, consequently a
formalization via a frame attribute CONTAINED IN is not possible. Therefore, the rela-
tion of containment between regions is formulated outside the attribute value structure
itself, i.e., we formalize it as an additional relation ⊆ between elements of type region
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Fig. 10. Elementary trees for prepositions
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in our frames. We assume a mereological structure on regions where single location
points are considered as regions as well. This relation is a partial order relation, i.e., it
is reflexive, transitive and antisymmetric.

Now let us consider as an example the derivation of (9). Fig.11 shows the elementary
trees and frames that are involved and how they are combined. The tree for the house
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Fig. 12. Frame obtained for (9) John walked into the house

comes with both an in-region and an at-region. (The composition of the determiner
and the noun into the NP the house is left aside in this example.) The preposition into
links the in-region to the end point of the path traversed throughout the walking activity.
Because of the various substitution, we obtain the following equations: 1 = 5 , 2 = 7 =
10 and 0 = 8 . With the corresponding unifications, the resulting frame is the one given
in Fig. 12.

(9) John walked into the house.

The difference between verbs of locomotion such as in (9) and motion verbs as in (10)
that are turned into a directed motion by adding a goal and a path is the semantics of
the verb. walk comes with a path while dance does not. The lexical frame for dance is
shown in Fig. 13. When combining it with the unanchored construction tree, the path
attribute is added and the goal argument is linked to the PP.

(10) Mary danced into the room.

⎡⎢⎣motion-activity

ACTOR 1

MANNER dancing

⎤⎥⎦
Fig. 13. Frame for dance

4.2 Path Modification

Now let us consider the case where the directional PP is an adjunct that gives an ad-
ditional specification of the path of the event as in (6-b). In these cases, the verb of
locomotion anchors an intransitive activity tree as in Fig. 14. As before, walked comes
with a path. But there need not be a goal restricting this path.
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Fig. 15. Derivation for (11)

As an example, consider the derivation of (11). Fig. 15 shows the adjunction of the
along elementary tree into the anchored elementary tree of the intransitive walked. The
frame(s) linked to along express that the NP within the PP has an at-region that must
contain the entire region of the path. Note that the frame contributed by the preposition
does not have a unique root. The reason for this is that the NP does not contribute an
argument and therefore it does not fill a semantic role slot. The link between it and the
walking activity concerns only its at-region.

(11) John walked along the brook.

As a result, when combining further with the elementary trees for John and the brook,
we obtain the frame in Fig. 16. We represent the frame using avms with relational con-
straints and, in order to emphasize that this frame is not a tree and, if we do not consider
the additional relation⊆, not even a connected graph, we also depict the corresponding
graph in Fig. 16.

Obviously, examples with motion verbs that are not necessarily directional such as
(12) work as well.
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Fig. 16. Frame for (11)

(12) Mary danced along the fence

As a last example, let us consider a combination of argument directional PPs and ad-
joining directional PPs.

(13) Mary walked along the brook into the field

The derivation step combining the along the brook PP with the rest of the sentence is
shown in Fig. 17. As one can see, when performing the unification of 8 and 0 triggered
by the adjunction, we obtain a resulting frame that combines the two constraints on the
path contributed by the two PPs: The entire path (i.e., its REGION) must be contained in
the AT-REGION of the brook and the ENDP (endpoint) of the path must be contained in
the IN-REGION of the field.

4.3 Caused Motion

We now turn to verbs of transport and caused motion as exemplified in (14).

(14) a. Mary threw the ball into the hole.
b. Mary pulled the cart along the river.
c. Mary kicked the ball along the line into the goal.

Our proposal for the unanchored construction and its semantics is shown in Fig. 18.
The difference to the directed motion construction without a direct object n0Vpp(dir)
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Fig. 18. Unanchored tree and semantics of n0Vn1pp(dir) construction

discussed above is that now the object, i.e., the theme is moved. This movement is the
effect of an action performed by the actor that affects the theme. Therefore the directed
motion of the object (the theme) is embedded as the effect of a causation whose cause
is an action performed by the subject.
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A difficulty with this construction is that the PP argument and also directional PP
modifiers want to access the embedded event 4 while other modifiers might want to
access 0 . As a solution that makes both accessible and that distinguishes them, we
propose to use the feature E in the syntactic trees for the highest event (here 0 ) while
using a feature Emo for the relevant motion event if this exists. In n0Vpp(dir) the two
features have the same value.

Obviously, when using this construction, a directional PP argument that substitutes
into the PP slot as in (14-a) can modify the embedded motion event via the Emo feature.
Similarly, a directional PP that adjoins as a modifier to the lower VP node as in (14-c)
can also access the embedded event via the Emo feature and modify its PATH attribute.

5 Metagrammar Decomposition

This section deals with the further decomposition of the meaning of unanchored ele-
mentary trees.

5.1 Metagrammar and Factorization

LTAG allows for a high degree of factorization inside the lexicon, i.e., inside the set
of lexicalized elementary trees. Firstly, as we have seen above, unanchored elementary
trees are specified separately from their lexical anchors. The set of unanchored elemen-
tary trees is partitioned into tree families where each family represents the different
realizations of a single subcategorization frame. For transitive verbs such as hit, kiss,
admire, etc. there is a tree family (see Fig. 19) containing the patterns for different re-
alizations of the arguments (canonical position, extraction, etc.) in combination with
active and passive. The node marked with a diamond is the node that gets filled by the
lexical anchor.
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Fig. 19. Unanchored tree family for transitive verbs

Secondly, unanchored elementary trees are usually specified by means of a meta-
grammar [3,4] which consists of dominance and precedence constraints and category
assignments. The elementary trees of the grammar are defined as the minimal models
of this constraint system. The metagrammar formalism allows for a compact grammar
definition and for the formulation of linguistic generalizations. In particular, the meta-
grammatical specification of a subcategorization frame defines the set of all unanchored
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Fig. 20. MG fragment for transitive verbs

elementary trees that realize this frame. Moreover, the formalism allows us to define
tree fragments that can be used in different elementary trees and tree families, thereby
giving rise to an additional factorization and linguistic generalization. Phenomena that
are shared between different tree families such as passivization or the extraction of a
subject or an object are specified only once in the metagrammar and these descriptions
become part of the descriptions of several tree families.

Let us illustrate this with the small metagrammar fragment given in Fig. 20, which
is of course very incomplete in that many tree fragments are missing and features are
almost totally omitted. The first two tree fragments describe possible subject realiza-
tions: the subject can be in canonical position, immediately preceding the VP, or it can
be extracted, with a trace in the canonical subject position. The class Subj comprises the
different subject realizations. Similar classes exist for the different realizations of the
object, while in Fig. 20 only the canonical position class is listed. Furthermore, there is
a class for the by-PP in a passive construction. This is used only for passive, therefore
the tree fragment contains a corresponding feature VOICE = passive. Besides these argu-
ment classes, our fragment contains two classes for active/passive morphology. Finally,
the class Transitive specifies for each argument its different grammatical functions: the
first argument can be the subject of an active sentence or the by-PP of a passive sen-
tence or it can be omitted in a passive sentence.2 The second argument can be the direct
object or it can be promoted to a subject in a passive sentence. If we assume that the
metagrammar constraints require the identification of the lexical anchor nodes, then the
minimal models of this class are among others the first four tree in Fig. 19. Note that the
difference between canonical subject and extracted subject is factored out in the class
Subj, which can also be used for the definition of other tree families.

2 We are computing minimal models, this is why the third possibility in the disjunction signifies
that this argument is not realized.
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Fig. 21. Unanchored trees for intransitive activity verbs, possibly with a directional PP
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ACTOR 5

GOAL 7

CAUSE

⎡⎢⎣activity

ACTOR 5

THEME 6

⎤⎥⎦
EFFECT 4

⎡⎢⎣directed motion

THEME 6

GOAL 7

⎤⎥⎦

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Fig. 22. Unanchored trees for transitive caused motion verbs, possibly with a directional PP

A similar factorization is possible within the semantics. The semantic contribution of
unanchored elementary trees, i.e., constructions, can be separated from their lexicaliza-
tion, and the meaning of a construction can be decomposed further into the meaning of
fragments of the construction. Due to this factorization, relations between the different
parts of a certain syntactic construction and the components of a semantic representa-
tion can be expressed.

5.2 Metagrammar Decomposition of Directed Motion Constructions

So far, we have seen how lexical anchoring contributes to semantic composition and
how substitutions and adjunctions trigger semantic unifications that yield then the frame
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Class Subj
export: p
identities: p = 0

syn:
S

NP[I= 1 ][AGR= 2 ] VP[AGR= 2 ]
[E= 0 ]

NP ≺ VP V�[E= 0 ]

sem:
0

[
activity

ACTOR 1

]

Class VSpine
syn:
VP

[AGR= 1 ]

V�[AGR= 1 ]

Class InTransitive
export: p
use classes V1 =VSpine,

N1 =Subj
identities: V1.V = N1.V ,

p = N1.p

Fig. 23. MG classes for intransitive activity verbs

of an entire sentence. Now we will have a look at the metagrammatical decomposition
of the unanchored trees for n0Vpp(dir) and n0Vn1pp(dir), shown in Fig. 21 and 22.

In the following, we restrict ourselves to the base trees when explaining the syntactic
and semantic decomposition. Of course, other argument realizations are possible as well
and should be taken into account in the metagrammar classes. We leave this aside in this
paper.

Let us first consider the classes needed for the subject, the verbal spine and the intran-
sitive elementary trees. They are shown in Fig. 23. Each class has a name, a declaration
of variables that one can refer to when using this class (the export variables), a list of
equations, and a syntactic dimension and a semantic dimension. The syntactic dimen-
sion contains a tree description that is depicted in the usual way in the figure. I.e., solid
lines indicate immediate dominance, dotted lines indicate dominance and the order of
sisters indicates linear precedence (but not necessarily immediate linear precedence).
Furthermore,≺ denotes immediate linear precedence. In the class Subj for instance, the
tree description tells us that there are three nodes n1, n2, n3 with labels S, NP and VP
such that n2 has a top feature I with value 1 . Furthermore, n1 immediately dominates
n2 and n3 (depicted by the edges) and n2 immediately precedes n3 (constraint NP ≺
VP). The picture is a little sloppy since it mixes node variabes with node categories.
The subject adds an actor to the semantic frame.3

Concerning the semantic dimension, we assume this to be a description of a typed
feature structure. When we say “unification”, speaking of combining frames in the meta-
grammar, we actually mean conjunction and feature value equation. So far, our impres-
sion is that we need only a simple feature logic without quantification or negation.

The class for the verbal spine takes care of the percolation of features (for instance
AGR) along the verbal spine. InTransitive combines the verbal spine with the subject.
This yields an identification of the VP and V nodes in both classes and the resulting
frame is the one coming from the subject class. When computing the minimal model of
InTransitive, we obtain the unanchored tree on the left of Fig. 21.

3 This is of course not the only way this syntactic fragment can be used; other possibilities for
the semantic role of the subject exist as well.
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Note that we assume that, whenever we use a class, its meta-variables ( 0 , 1 , etc.) get
instantiated with fresh values. This avoids uninteded unifications.

Class DirPrepObj
export: x, p
identities: x = 1 , p = 0

syn: VP1

V1� VP2[Emo= 0 ]

V2NA PP[I= 1 ] [Emo= 0 ]

ε V2 ≺ PP

sem:

0

[
directed-motion

GOAL 1

]

Class n0Vpp(dir)
use classes V1 =InTransitive, N2 =DirPrepObj
identities: N2.p =V1.p, V1.V = N2.V

Fig. 24. MG classes for intransitive construction with directional PP

For the construction involving an additional directional PP complement, we com-
bine the InTransitive class with a class DirPPObj for a directional PP-argument. The
PP contributes the goal of some directed motion. The higher class n0Vpp(dir) arises
from a combination of the InTransitive class and the class for the directional PP. The
motion frame contributed by the PP is unified with the activity frame contributed by
the InTransitive class. Note that only in the n0Vpp(dir) class, the E feature and the Emo

feature get identified via the equation N2.p = V1.p. The class DirPPObj can also be
used in a context where the E and Emo features are different.

Class NPObj
export: p
identities: p = 0

syn:
VP1[E= 0 ][Emo= 1 ]

V1� NP[I= 2 ]

V1 ≺ NP

sem:

0

⎡⎢⎢⎢⎢⎢⎢⎢⎣

causation

CAUSE

[
activity

THEME 2

]

EFFECT 1

[
locomotion

THEME 2

]

⎤⎥⎥⎥⎥⎥⎥⎥⎦
Class n0Vn1
export: p
use classes V1 =InTransitive, N2 =NPObj
identities: p =V1.p = N2.p, V1.V = N2.V

sem:

p

⎡⎢⎢⎢⎢⎣
causation

ACTOR 1

CAUSE

[
activity

ACTOR 1

]
⎤⎥⎥⎥⎥⎦

Class n0Vn1pp(dir)
use classes V1 =n0Vn1, N3 =DirPPObj
identities: V1.V = N3.V

sem:
V1.p

[
causation

EFFECT N3.p

]

Fig. 25. MG classes for the n0vn1pp(dir) construction
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For the class n0Vn1pp(dir), we need a further argument class for the direct NP object
in this construction. A direct NP argument can have different roles of course. In the
context we are interested in, namely the caused motion, the NP object contributes an
argument that is the theme of the causing activity and also the theme of the caused
directed motion. Therefore we assume the metagrammar class NPObj from Fig. 25.
When combining this with the intransitive class, the activity event denoted by the p
feature of the intransitive class gets further specified as being a causation where the
actor is also the actor of the causing event. This is expressed in the class n0Vn1. Its
minimal model is the unanchored tree on the left of Fig. 22.

Finally, when adding the directional PP, its directed motion event becomes the EF-
FECT of the causation. This embedding is specified in the values of the EFFECT feature
in the class n0Vn1pp(dir).

With this metagrammar decomposition we were able to capture the fact that the di-
rectional PP always contributes the goal of a directed motion, independent from the
construction it gets combined with. In the n0Vpp(dir) case, the directed motion is the
event denoted by the lexical anchor while in the n0Vn1pp(dir) case, the directed motion
is embedded as the effect of the causation denoted by the lexical anchor.

6 Conclusion

In this paper, we proposed to combine an LTAG-based syntax-semantics interface with
a fine-grained frame-based semantics. We have shown that this architecture provides
the means to associate a detailed decomposition and composition of syntactic building
blocks with a parallel decomposition and composition of meaning components. Due to
its various possibilities for decomposing elementary trees and because of its extended
domain of locality, LTAG allows one to pair not only lexical items with lexical meaning
but also constructions with their meaning contributions. Furthermore, due to the meta-
grammatical specification of TAG elementary trees, the meaning contributions of single
argument realizations and of their combinations can be described in a principle way, in
parallel to a similar decomposition of the syntactic elementary trees.

We have discussed the case of directed motion expressions and we have shown how
to capture the various ways a directional PP adds information about the path of the mo-
tion event. Besides giving a detailed frame-based analysis of lexical and constructional
meaning aspects, our approach integrates this into a syntax-semantics interface. Via
substitution and adjunction, the frame-based characterization of the events described
by entire sentences can be compositionally derived.
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Abstract. The admissible rules of a logic (understood as a structural
consequence relation) may be described as rules that can be added to
the logic without producing any new theorems, or, equivalently, as rules
such that any substitution making the premises into theorems, also makes
the conclusion into a theorem. However, this equivalence collapses once
multiple-conclusion or other, more exotic, admissible rules are consid-
ered. The first aim of this paper is to explain how such distinctions can
be explained and characterized. The second aim is to explore how these
rules can be useful in determining properties of classes of algebras.

1 Introduction

The notion of an admissible rule was introduced explicitly by Lorenzen in the
1950s in the context of intuitionistic logic [20], but appears also, at least im-
plicitly, in Gentzen’s papers on the sequent calculus [10] and Whitman’s work
on free lattices [28]. Admissible rules have since been studied intensively by
many authors. In particular, Rybakov showed that the set of admissible rules
of intuitionistic logic is decidable, but not finitely axiomatizable [26]. An ele-
gant infinite axiomatization (conjectured by De Jongh and Visser) of this set of
rules was later provided by Iemhoff [14] (based on the work of Ghilardi [11,12]
relating admissibility to unification) and, independently, by Rozière [25]. Ax-
iomatizations have also been provided for a range of intermediate logics [15,8],
transitive modal logics [17], and various many-valued logics [18,19,5], leading in
some cases also to proof systems for checking admissibility [13,16,3,24].

The starting point for the work reported here is the observation that two
seemingly quite opposed notions of admissibility are employed in the literature.
Informally, for a system S and rules consisting of a finite set of premises and
finite set of conclusions:

(A) A rule is admissible in S if the set of theorems of S does not change when
the rule is added to the existing rules of S.

(B) A rule is admissible in S if each substitution mapping all of its premises to
theorems of S, also maps one of its conclusions to a theorem of S.
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In many cases – in particular, for the single-conclusion rules of a logic (structural
consequence relation) – these two notions of admissibility coincide. Moreover, in
an algebraic setting, with logics and single-conclusion rules corresponding, re-
spectively, to quasivarieties and quasiequations, admissibility amounts to validity
in free algebras on countably infinitely many generators. For multiple-conclusion
rules, however, and more exotic rules with restrictions on variables, these two
notions may diverge.

The first task of this paper, undertaken in Section 2, is to give an algebraic
account of admissibility according to notions (A) and (B), seeing where these two
notions agree and where the equivalence breaks down. (Note that a treatment
of admissibility for algebraizable logics, i.e., structural consequence relations
enjoying well-behaved translations between equations and formulas, follows di-
rectly from this algebraic account.) A new, more general, first-order framework
is then introduced in Section 3, relating admissibility to the preservation of cer-
tain classes of sentences (equations, quasiequations, etc.) by particular sentences
with respect to a given class of algebras. Finally, in Section 4, some applications
of admissibility for determining properties of classes of algebras are described.

2 An Algebraic Perspective

For convenience, let us assume in what follows that L is an algebraic language
and that an L-algebra A is an algebraic structure for this language with universe
A. We denote the term algebra (absolutely free algebra) for L over countably
infinitely many variables by TmL and let s, t, u stand for L-terms in TmL.
An L-equation is an ordered pair of L-terms, written s ≈ t, and we let the
metavariables Γ,Δ stand for finite sets of L-terms. An L-clause is an ordered
pair of finite sets of L-equations, written Γ ⇒ Δ, called an L-quasiequation if
|Δ| = 1, an L-positive clause if Γ = ∅, and identified with the single equation in
Δ if |Δ| = 1 and Γ = ∅.

Throughout this paper, whenever L contains a binary connective ∧, we make
use of s ≤ t as an abbreviation for s ∧ t ≈ s.

Let us fix a class of L-algebrasK and a finite set of L-equations Γ∪Δ. We write
Γ |=K Δ to denote that for every A ∈ K and homomorphism h : TmL → A,
Γ ⊆ kerh implies Δ∩ kerh �= ∅. In this case, we say that Γ⇒ Δ is valid in each
A ∈ K. That is, Γ ⇒ Δ may be understood as the universal formula (i.e., of
first-order logic) (∀x̄)(

∧
Γ⇒
∨
Δ) where x̄ are the variables occurring in Γ∪Δ

and
∧
∅ = 1,
∨
∅ = 0. Conversely, an arbitrary universal formula of the language

L may be associated (by putting the quantified formula into conjunctive normal
form) with a finite set of L-clauses. We abbreviate ∅ |=K Δ by |=K Δ, and
Γ |={A} Δ by Γ |=A Δ. We also drop the brackets in Γ,Δ when no confusion
may occur. As usual, if the language is clear from the context we may omit the
prefix L when referring to these concepts.
K is said to be an L-universal class if there exists a set of L-clauses Λ such that

A ∈ K iff all clauses in Λ are valid in A. If there exists such a Λ consisting only
of quasiequations, positive clauses, or equations, then K is called, respectively,
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an L-quasivariety, an L-positive universal class, or an L-variety. The variety
V(K), quasivariety Q(K), positive universal class U+(K), and universal class
U(K) generated by K are, respectively, the smallest variety, quasivariety, positive
universal class, and universal class containing K.

Let H, I, S, P, and PU be, respectively, the class operators of taking homomor-
phic images, isomorphic images, subalgebras, products, and ultraproducts. Then
V(K) = HSP(K), Q(K) = ISPPU (K), U+(K) = HSPU (K), and U(K) = ISPU (K).
Moreover, if K is a finite set of finite algebras, these latter equivalences refine to
Q(K) = ISP(K), U+(K) = HS(K), and U(K) = IS(K) (see [4, Theorems II.9.5,
II.11.9, V.2.20, and V.2.25] and [6, Exercise 3.2.2] for further details).

Let us consider first the “standard” characterization of admissibility (notion
(B) from the introduction), fixing a quasivariety Q for the remainder of this sec-
tion. We say that an L-clause Γ⇒ Δ is Q-admissible if for every homomorphism
(substitution) σ : TmL → TmL:

|=Q σ(s) ≈ σ(t) implies |=Q σ(s′) ≈ σ(t′)

for all s ≈ t ∈ Γ for some s′ ≈ t′ ∈ Δ.

This notion of Q-admissibility is equivalent (at least in algebraic contexts) to
validity in the free algebra on countably many generators of Q. Recall that for
a cardinal κ, an L-algebra B is called a free κ-generated algebra FQ(κ) if there
exists X ⊆ B such that |X | = κ and B has the universal mapping property for
Q over X ; that is, for every A ∈ Q, and map f : X → A there exists a (unique)
homomorphism g : B→ A extending f .

Note that when considering admissibility, it can be helpful to view the ele-
ments of FQ(κ) for κ ≤ ω as equivalence classes [t] of terms t containing at most
κ variables, defined with respect to the congruence relating s and t whenever
|=K s ≈ t. In particular, the canonical homomorphism hQ : TmL → FQ(ω) is
the unique homomorphism mapping a term t to its equivalence class [t] in FQ(ω),
recalling (see [4, Corollary II.11.6]) that for each L-equation s ≈ t:

|=Q s ≈ t iff |=FQ(ω) s ≈ t iff hQ(s) = hQ(t). (1)

Quasivarieties are closed under taking products; hence, given any finite set of
L-equations Γ ∪Δ:

Γ |=Q Δ iff Γ |=Q s ≈ t for some s ≈ t ∈ Δ (2)

and combining (1) and (2):

|=Q Δ iff |=Q s ≈ t for some s ≈ t ∈ Δ iff |=FQ(ω) Δ. (3)

Lemma 1. Γ⇒ Δ is Q-admissible iff Γ |=FQ(ω) Δ.

Proof. (⇒) Suppose that Γ⇒ Δ is Q-admissible and consider a homomorphism
g : TmL → FQ(ω) such that Γ ⊆ ker g. Let σ be a map sending each variable x
to a member of the equivalence class g(x). By the universal mapping property
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for TmL for L-algebras, this extends to a homomorphism σ : TmL → TmL.
But since hQ(σ(x)) = g(x) for each variable x, it follows that hQ ◦ σ = g. I.e.,
Γ ⊆ ker(hQ ◦ σ). So for each s′ ≈ t′ ∈ Γ, also hQ(σ(s′)) = hQ(σ(t′)) and, by (1),
|=Q σ(s′) ≈ σ(t′). Hence, by assumption, |=Q σ(s) ≈ σ(t) for some s ≈ t ∈ Δ.
Therefore, again by (1), g(s) = hQ(σ(s)) = hQ(σ(t)) = g(t) as required.

(⇐) Suppose that Γ |=FQ(ω) Δ and let σ : TmL → TmL be a homomorphism
such that |=Q σ(s′) ≈ σ(t′) for all s′ ≈ t′ ∈ Γ. But then also σ(Γ) |=FQ(ω) σ(Δ),
so |=FQ(ω) σ(Δ). By (3), |=Q σ(s) ≈ σ(t) for some s ≈ t ∈ Δ as required. #�

Example 1. The variety KA of Kleene algebras is generated as a quasivariety by
the three-element algebra C3 = 〈{⊥, a,%},∧,∨,¬,⊥,%〉 where ⊥ < a < % and
¬ swaps ⊥ and %, fixing a; that is, KA = Q(C3). Since no term is constantly a,
the quasiequation

{x ≈ ¬x} ⇒ x ≈ y

is KA-admissible, but {x ≈ ¬x} �|=KA x ≈ y (just consider mapping x to a and
y to ⊥). Indeed, it is shown in [5] (using a natural duality for KA) that the
admissible quasiequations of KA are axiomatized relative to KA by

{¬x ≤ x, x ∧ ¬y ≤ ¬x ∨ y} ⇒ ¬y ≤ y. (4)

That is, Q(FKA(ω)) consists of all algebras in KA satisfying (4). An axioma-
tization of the admissible clauses of KA is also obtained in [5] by adding the
“disjunction property”

{x ∨ y ≈ %} ⇒ {x ≈ %, y ≈ %}. (5)

That is, U(FKA(ω)) consists of all algebras in KA satisfying (5).

There is, however, another natural notion of admissibility (notion (A) from the
introduction), which in logical contexts may be expressed as the property that
adding the rule to a consequence relation (i.e., considering the smallest conse-
quence relation containing both the rule and the original consequence relation)
does not change the set of theorems. Expressed algebraically, this characteriza-
tion corresponds to the following well-known equivalence (see, e.g., [26]):

Lemma 2. Γ⇒ s ≈ t is Q-admissible iff V(Q) = V({A ∈ Q | Γ |=A s ≈ t}).

Example 2. The following quasiequation is admissible but not valid in the variety
of Heyting algebras HA:

{% ≈ ¬x→ (y ∨ z)} ⇒ % ≈ (¬x→ y) ∨ (¬x → z). (6)

Hence HA is generated as a variety (but clearly not as a quasivariety) by all
Heyting algebras satisfying (6). Consider now also the variety of Gödel algebras
GA: Heyting algebras satisfying % ≈ (x → y) ∨ (y → x). Validity and admissi-
bility in GA coincide; that is, GA = Q(FGA(ω)) (GA is said to be structurally
complete) and indeed, GA = U(FGA(ω)) (GA is universally complete). Consider,
however, the class GAlin of Gödel algebras satisfying the positive clause.

⇒ {x ≤ y, y ≤ x}
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Then GAlin, the class of linearly ordered Gödel algebras, generates GA as a
variety, i.e., V(GAlin) = GA. However, this clause does not hold in the free
algebra FGA(ω).

As the previous example shows, the equivalence established in Lemma 2 does
not extend to clauses. Rather the added clause should not increase the set of
valid positive clauses.

Lemma 3. Γ⇒ Δ is Q-admissible iff U+(Q) = U+({A ∈ Q | Γ |=A Δ}).

Proof. (⇒) Suppose that Γ⇒ Δ isQ-admissible. Then since for any quasivariety
Q, we have FQ(ω) ∈ Q, it follows by Lemma 1 that FQ(ω) ∈ {A ∈ Q | Γ |=A Δ}
and U+(FQ(ω)) ⊆ U+({A ∈ Q | Γ |=A Δ}) ⊆ U+(Q). But also U+(Q) =
U+(FQ(ω)), using (3). Hence U+(Q) = U+({A ∈ Q | Γ |=A Δ}).

(⇐) Suppose that U+(Q) = U+({A ∈ Q | Γ |=A Δ}) and let σ : TmL →
TmL be a homomorphism such that |=Q σ(s′) ≈ σ(t′) for all s′ ≈ t′ ∈ Γ. Then
|=A σ(Δ) for all A ∈ Q such that Γ |=A Δ. Hence also |=Q σ(Δ). By (3),
|=Q σ(s) ≈ σ(t) for some s ≈ t ∈ Δ as required. #�

Note that Lemma 2 follows directly from this result, since U+(Q) = V(Q), and
when |Δ| = 1, also U+({A ∈ Q | Γ |=A Δ}) = V({A ∈ Q | Γ |=A Δ}).

However, this raises the question as to what it means algebraically for a pos-
itive clause to “preserve” the set of valid equations, but perhaps not the set of
valid positive clauses. An answer is provided below for congruence distributive
varieties that makes use of Jónsson’s Lemma (referring to [4] for this result and
other undefined concepts from Universal Algebra). Indeed in this case all valid
quasiequations are preserved.

Lemma 4. If V is a congruence distributive variety, then the following are
equivalent:

(1) |=A Δ for all subdirectly irreducible algebras A ∈ V
(2) V = Q({A ∈ V | |=A Δ})
(3) V = V({A ∈ V | |=A Δ}).

Proof. (1) ⇒ (2) Follows immediately from the fact that V is generated as a
quasivariety by its subdirectly irreducible members.

(2) ⇒ (3) Trivial since V is a variety.
(3) ⇒ (1) Suppose that V = V({A ∈ V | |=A Δ}) and consider a subdirectly

irreducible algebra B ∈ V . By Jónsson’s Lemma, B ∈ U+({A ∈ V | |=A Δ}).
Hence |=B Δ as required. #�

This result of course raises further questions. For example, what does it mean
algebraically for a clause to “preserve” the set of valid equations (or quasiequa-
tions), but perhaps not the set of valid positive clauses?

Finally, for this section, observe that there are interesting and useful rules
employed in the literature that do not seem to have a direct algebraic interpre-
tation. Consider, for example, the following “density rule” for the variety GA
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of Gödel algebras, introduced by Takeuti and Titani in the logical setting of
first-order Gödel logic [27]:

{% ≈ (s→ x) ∨ (x→ t) ∨ u} ⇒ % ≈ (s→ t) ∨ u

where s, t, and u are terms not containing the variable x.

This rule was shown to be admissible for GA in [2] in the following sense: equa-
tions that can be derived in a proof system for GA extended with the rule can
also be derived in the proof system without the rule. This admissibility result was
extended to other classes of algebras in [22,7] and used to show that these classes
are generated as quasivarieties by their linearly and densely ordered members.
We will have more to say on this issue in Section 4.

3 A First-Order Framework

As the results and remarks of the previous section make plain, our two different
notions of admissibility coincide in some but not all contexts. The goal of this
section is to explain and explore these differences by considering admissibility in
the more expressive setting of first-order logic.

We will assume the usual terminology and definitions of classical first-order
logic with equality, making use of the symbols ∀, ∃, #, �, ⇒, ∼, and ≈. In
particular, for a first-order language L, Sen(L) is the set of sentences of L with
respect to a countably infinite set of variables, denoting formulas by ϕ, ψ and
sets of formulas by Σ,Θ. For a class of L-structures K and Σ ⊆ Sen(L), we set

ThΣ(K) = {ψ ∈ Σ | K |= ψ}

and say that ϕ ∈ Sen(L) preserves Σ in K if

ThΣ(K) = ThΣ({A ∈ K | A |= ϕ}).

In particular, if K is axiomatized by Θ ⊆ Sen(L), then ϕ ∈ Sen(L) preserves Σ
in K if for all ψ ∈ Σ:

Θ |= ψ iff Θ ∪ {ϕ} |= ψ.

Let us again consider an algebraic language L, and denote the set of L-clauses
(understood now as first-order sentences) by Cl(L), positive L-clauses by Cl+(L),
L-quasiequations by Qe(L), and L-equations by Eq(L). We recall that for classes
of L-algebras K1 and K2, V(K1) = V(K2) iff K1 and K2 satisfy the same
L-equations, Q(K1) = Q(K2) iff they satisfy the same L-quasiequations, and
U+(K1) = U+(K2) iff they satisfy the same positive L-clauses. Hence Lemmas 3
and 4 may be reinterpreted as:

Corollary 1. If Q is a quasivariety, then the following are equivalent for any
clause ϕ ∈ Cl(L):

(1) FQ(ω) |= ϕ
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(2) U+(Q) = U+({A ∈ Q | A |= ϕ})
(3) ϕ preserves Cl+(L) in Q.

In particular, if ϕ ∈ Qe(L), then (1)-(3) are equivalent also to:

(2’) V(Q) = V({A ∈ Q | A |= ϕ})
(3’) ϕ preserves Eq(L) in Q.

Corollary 2. If V is a congruence distributive variety, then the following are
equivalent for any ϕ ∈ Cl+(L):

(1) A |= ϕ for all subdirectly irreducible algebras A ∈ V
(2) V = Q({A ∈ V | A |= ϕ})
(3) ϕ preserves Qe(L) in V
(4) V = V({A ∈ V | A |= ϕ})
(5) ϕ preserves Eq(L) in V.

Example 3. Consider the variety BA of Boolean algebras in a language LBool

and the LBool-sentence:

ϕ = (∀x)((x ≈ ⊥) � (x ≈ %)).

Then ϕ preserves Qe(LBool) in BA, since a quasiequation is valid in all Boolean
algebras iff it is valid in the standard two element Boolean algebra. Clearly,
however, FBA �|= ϕ. On the other hand, ¬ϕ also preserves Qe(LBool) in BA,
since a quasiequation is valid in all Boolean algebras iff it is valid in the four
element Boolean algebra.

An L-sentence can be translated (in the standard way) into a set of clauses in an
expanded language: first find an equivalent L-sentence in prenex normal form,
then skolemize to obtain a universal sentence, possibly containing extra function
symbols, equivalent to a conjunction of clauses. In particular, consider again
an algebraic language L and a prenex formula ϕ ∈ Sen(L). The Skolem form
sk(ϕ) ∈ Sen(L′) of ϕ in an algebraic language L′ extending L with additional
function symbols is defined in the usual way, so that for any Θ∪ {ψ} ⊆ Sen(L):

Θ ∪ {ϕ} |= ψ iff Θ ∪ {sk(ϕ)} |= ψ.

Let us fix K to be an elementary class of L-structures and, for any extension of
the language L′ with additional function symbols, let K′ be the elementary class
of L′-structures whose L-reducts are in K.

Proposition 1. The following are equivalent for any Σ ∪ {ϕ} ⊆ Sen(L):

(1) ϕ preserves Σ in K
(2) sk(ϕ) ∈ Sen(L′) preserves Σ in K′.

Proof. Suppose that K is axiomatized by Θ ⊆ Sen(L). Then ϕ preserves Σ in K
iff for all ψ ∈ Σ:

Θ |= ψ iff Θ ∪ {ϕ} |= ψ.
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Axioms Cut rule

t ≤ t
(id)

s ≤ u u ≤ t

s ≤ t
(cut)

Left logical rules Right logical rules

t1 ≤ s

t1 ∧ t2 ≤ s
(∧≤)1

s ≤ t1
s ≤ t1 ∨ t2

(≤∨)1

t2 ≤ s

t1 ∧ t2 ≤ s
(∧≤)2

s ≤ t2
s ≤ t1 ∨ t2

(≤∨)2

t1 ≤ s t2 ≤ s

t1 ∨ t2 ≤ s
(∨≤)

s ≤ t1 s ≤ t2
s ≤ t1 ∧ t2

(≤∧)

Fig. 1. The proof system GLat

But this holds iff for all ψ ∈ Σ:

Θ |= ψ iff Θ ∪ {sk(ϕ)} |= ψ.

That is, ϕ preserves Σ in K iff sk(ϕ) ∈ Sen(L′) preserves Σ in K′. #�

Example 4. Consider the variety of semilattices in a language L with one binary
connective ∧, and the L-sentence:

ϕ = (∀x)(∀y)(∃z)(∀w)((x ≤ z) # (y ≤ z) # (((x ≤ w) # (y ≤ w))⇒ (z ≤ w))).

Skolemizing, we obtain a language L′ with an additional binary connective ∨,
and an L′-sentence sk(ϕ) of the form

(∀x)(∀y)(∀w)((x ≤ x ∨ y) # (y ≤ x ∨ y) # (((x ≤ w) # (y ≤ w))⇒ (x ∨ y ≤ w))).

Moreover, we may interpret sk(ϕ) as the clauses:

⇒ x ≤ x ∨ y, ⇒ y ≤ x ∨ y, {x ≤ w, y ≤ w} ⇒ x ∨ y ≤ w.

It is not hard to see that semilattices satisfying ϕ, are in fact lattices, and that
ϕ preserves Eq(L) in the variety of semilattices.

4 Applications

Let us turn our attention now to describing some applications of admissibility in
determining properties of classes of algebras. More precisely, we use admissible
rules to show that certain quasivarieties are generated as varieties or quasivari-
eties by their members satisfying order-theoretic properties such as boundedness,
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unboundedness, linearity, and density. The goal here is not to provide striking
new algebraic results, but rather to illustrate the potential of the methodology,
leaving more general investigations for future work.

We begin with the variety Lat of lattices in the language LLat with operation
symbols ∧ and ∨, making use of the proof system GLat of Fig. 1, the lattice
fragment of the Full Lambek Calculus (see, e.g., [9] or [21]). For a given proof
system GL, let us write &GL W to denote that there exists a derivation in
GL (a finite tree of structures built according to the rules of the system) with
root W , and say that GL admits cut-elimination if there exists a procedure for
transforming a derivation of W in GL into a derivation of W in GL that makes
no use of the rule (cut). (In fact, cut-elimination for GL implies that (cut)
understood as a quasiequation is admissible in the quasivariety defined by the
other rules of GL.)

Theorem 1 (see, e.g., [21])

(a) &GLat s ≤ t iff |=Lat s ≤ t.
(b) GLat admits cut-elimination.

Example 5. Note that by considering derivations in GLat that do not make use
of (cut), we obtain

|=Lat s1 ∧ s2 ≤ t1 ∨ t2 implies |=Lat s1 ≤ t1 ∨ t2 or |=Lat s2 ≤ t1 ∨ t2 or

|=Lat s1 ∧ s2 ≤ t1 or |=Lat s1 ∧ s2 ≤ t2,

and therefore the Lat-admissibility of Whitman’s condition (see [28])

{x1∧x2 ≤ y1∨y2} ⇒ {x1 ≤ y1∨y2, x2 ≤ y1∨y2, x1 ∧x2 ≤ y1, x1∧x2 ≤ y2}.

Let us consider now the following LLat-sentence for expressing boundedness:

ϕbd = (∃x)(∃y)(∀z)((x ≤ z) # (z ≤ y)).

Skolemizing this sentence gives

sk(ϕbd) = (∀z)((⊥ ≤ z) # (z ≤ %))

in the expanded language LbLat containing additional constants ⊥ and %.

Theorem 2. ϕbd preserves Eq(LLat) in Lat.

Proof. It suffices by Proposition 1 to show that sk(ϕbd) preserves Eq(LLat) in
Latb where Latb consists of all lattices with additional constants ⊥ and %. Let
BLat = {A ∈ Latb | A |= ϕbd}. Then it is enough, using Corollary 1, to show
that whenever |=BLat s ≤ t for s ≤ t ∈ Eq(LLat), also |=Latb s ≤ t.

We define GBLat to be GLat extended with the rules:

⊥ ≤ t
(⊥≤)

and s ≤ �
(≤�)

.
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Then it is easily shown that (a) &GBLat s ≤ t iff |=BLat s ≤ t, and (b) GBLat
admits cut-elimination. Suppose that &GBLat s ≤ t for s ≤ t ∈ Eq(LLat). Then
there is a cut-free derivation of s ≤ t in GBLat and hence also (since the extra
rules cannot be used in this derivation) in GLat. I.e., &GLat s ≤ t and therefore
|=Latb s ≤ t as required. #�

Hence by Corollary 1, we obtain:

Corollary 3. Lat = V({A ∈ Lat | A is bounded}).

We consider now the following LLat-sentence for expressing unboundedness:

ϕunbd = (∀x)(∃y)(∃z)(¬(x ≤ y) # ¬(z ≤ x)).

Skolemizing this sentence gives

sk(ϕunbd) = (∀x)(¬(x ≤↓x) # ¬(↑x ≤ x))

in the expanded language LuLat with additional unary function symbols ↓ and ↑.

Theorem 3. ϕunbd preserves Eq(LLat) in Lat.

Proof. It suffices by Proposition 1 to show that sk(ϕunbd) preserves Eq(LLat) in
Latu where Latu consists of all lattices with additional unary functions ↓ and ↑.
Let ULat = {A ∈ Latu | A |= ϕunbd}. Then it is enough to show that whenever
|=ULat s ≤ t for s ≤ t ∈ Eq(LLat), also |=Latu s ≤ t.

We define GULat to be GLat extended with the rules:

u ≤ ↓u
s ≤ t

(≤↓)
and

↑u ≤ u

s ≤ t
(↑≤)

.

Then it is easily shown that (a) &GULat s ≤ t iff |=ULat s ≤ t, GULat admits
cut-elimination, and (c) �&GULat s ≤ ↓ t and �&GULat↑s ≤ t for all LuLat-terms s, t.
Hence, if &GULat s ≤ t for s ≤ t ∈ Eq(LLat), then then there is a derivation of
s ≤ t in GLat as required. #�

Hence by Corollary 1, we obtain:

Corollary 4. Lat = V({A ∈ Lat | A is unbounded}).

Note that although these generation results for lattices are straightforward to
prove algebraically, for other classes of algebras this may no longer be the case.
In particular, we aim to use this methodology to provide general conditions for
classes of algebras to be generated as a variety by its bounded or unbounded
members. Note for example, that the variety of lattice-ordered abelian groups
cannot be generated by its bounded members (since there is only one, the triv-
ial algebra), and that a variety of commutative residuated lattices (see below)
satisfying weakening conditions such as x · y ≤ x cannot be generated by its
unbounded members.
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Let us conclude by considering the more interesting case of the density rule
already mentioned at the end of Section 2. A commutative residuated lattice
for the language L is an algebra A = 〈A,∧,∨, ·,→, e〉 such that 〈A,∧,∨〉 is a
lattice, 〈A, ·, e〉 is a commutative monoid, and x · y ≤ z iff x ≤ y → z for all
x, y, z ∈ A. The algebra A is called semilinear if it is distributive and satisfies
e ≤ (x → y) ∨ (y → x) for all x, y ∈ A. We denote the class of all semilinear
commutative residuated lattices by CRLc.

A proof system GCRLc for CRLc, originally defined with extra constants
in [22] (see also [23]), is presented in Fig. 2 in the framework of hypersequents
(introduced by Avron in [1]). A (single-conclusion) sequent S is an ordered pair
consisting of a finite multiset of L-terms Π and a term t, written Π ≤ t. A (single-
conclusion) hypersequent G is a finite multiset of sequents, written S1 | . . . | Sn.
We define the following interpretation of sequents and hypersequents:

i(s1, . . . , sm ≤ t) = (s1 · . . . · sm)→ t

i(≤ t) = t

i(S1 | . . . | Sn) = i(S1) ∨ . . . ∨ i(Sn)

and write |=CRLc G iff |=CRLc e ≤ i(G).

Theorem 4 (see [22], also [23])

(a) &GCRLc G iff |=CRLc G.
(b) GCRLc admits cut-elimination.

Consider now the following L-sentence expressing linearity and density:

ϕ = (∀x)(∀y)(∃z)(((x ≤ y) � (y ≤ x)) # (((x ≤ z) � (z ≤ y))⇒ (x ≤ y))).

Skolemizing, we obtain the sentence

sk(ϕ) = (∀x)(∀y)(((x ≤ y)�(y ≤ x))#(((x ≤ d(x, y))�(d(x, y) ≤ y))⇒ (x ≤ y))).

in an expanded language Ld containing an additional binary function symbol d.

Theorem 5. ϕ preserves Eq(L) in CRLc.

Proof. It suffices by Proposition 1 to show that sk(ϕ) preserves Eq(L) in CRLc′
where CRLc′ consists of all semilinear commutative residuated lattices with an
additional binary function d. Let CRLcD = {A ∈ CRLc′ | A |= ϕ}. Then
it is enough to show that whenever |=CRLcD s ≤ t for s ≤ t ∈ Eq(L), also
|=CRLc′ s ≤ t.

We define GCRLcD to be GCRLc extended with the rule:

G | Π1 ≤ x | Π2, x ≤ t

G | Π1,Π2 ≤ t
(density)

where x does not occur in G, Π1, Π2, or t.

It is proved in [22] (see also [23]) that (a) &GCRLcD G iff |=CRLcD G, and (b)
for all G not containing d, &GCRLcD G iff &GCRLc G. Hence if |=CRLcD s ≤ t for
s ≤ t ∈ Eq(L), then &GCRLcD s ≤ t and so &GCRLc s ≤ t as required. #�
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Axioms Cut rule

G | t ≤ t (id)
G | Π1, t ≤ u G | Π2 ≤ t

G | Π1,Π2 ≤ u
(cut)

External weakening External contraction

G
G | H (ew)

G | H | H
G | H (ec)

Left logical rules Right logical rules

G | Π ≤ u

G | Π, e ≤ u
(e≤) G | ≤ e

(≤e)

G | Π1 ≤ s G | Π2, t ≤ u

G | Π1,Π2, s→ t ≤ u (→≤)
G | Π, s ≤ t

G | Π ≤ s→ t
(≤→)

G | Π, s, t ≤ u

G | Π, s · t ≤ u
(·≤)

G | Π1 ≤ s G | Π2 ≤ t

G | Π1,Π2 ≤ s · t (≤·)

G | Π, s ≤ u

G | Π, s ∧ t ≤ u
(∧≤)1

G | Π ≤ s
G | Π ≤ s ∨ t (≤∨)1

G | Π, t ≤ u

G | Π, s ∧ t ≤ u
(∧≤)2

G | Π ≤ t
G | Π ≤ s ∨ t (≤∨)2

G | Π, s ≤ u G | Π, t ≤ u

G | Π, s ∨ t ≤ u
(∨≤)

G | Π ≤ s G | Π ≤ t
G | Π ≤ s ∧ t (≤∧)

Fig. 2. GCRLc

Hence by Corollary 1, we obtain:

Corollary 5. CRLc = V({A ∈ Lat | A is linearly and densely ordered}).

Note finally that in [22] (see also [23]) it is proved that CRLc is generated as a
quasivariety by its linearly and densely ordered members. This follows here from
the previous corollary using the fact that a suitable local deduction theorem
holds for both classes of algebras.

Acknowledgements. I would like to thank both Leonardo Cabrer and
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1 Introduction

Distributed systems are notoriously difficult to understand and analyze in or-
der to assert their correction w.r.t. given properties. They often exhibit a huge
number of different behaviors, as soon as the active entities (peers, agents, pro-
cesses, . . . ) behave in an asynchronous manner. Already the modelization of such
systems is a non-trivial task, let alone their formal verification.

Several automata-based distributed models have been proposed and studied
over the past twenty years, capturing various aspects of distributed behavior.
Depending on the motivation, such models fall into two large categories. In the
first one we find rather simple models, expressing basic synchronization mecha-
nisms, like Petri nets or communicating automata. In the second category we see
more sophisticated models, conceived for supporting practical system design, like
statecharts or I/O automata. It is clear that being able to develop automated
verification techniques requires a good understanding of the simpler models, in
particular since more complex ones are often built as a combination of basic
models.

This purpose of this paper is to discuss the problem of distributed monitoring
on a simple model of finite-state distributed automata based on shared actions,
called asynchronous automata. Monitoring is a question related to runtime veri-
fication: assume that we have to check a property L against an unknown or very
complex system A, so that classical static analysis is not possible. Therefore
instead of model-checking a monitor is used, that checks the property on the
underlying system at runtime. The question is which properties can be checked
in this way, that is, which properties L are monitorable. A classical example
for monitorable properties are safety properties, like “no alarm is raised”. A
monitor for a property L is an automaton ML that after each finite execution
tells whether (1) every possible extension of the execution is in L, or (2) every
possible extension is in the complement of L, or neither (1) nor (2) holds. The
notion of monitorable properties has been proposed by Pnueli and Zaks [15],
and the theory has been extended to various kinds of systems, for instance to
probabilistic systems [3,10] or real-time systems [1,2].

We are interested here in monitoring distributed systems modelled as asyn-
chronous automata. It is natural to require that monitors should be of the same
kind as the underlying system, so we consider here distributed monitoring. A dis-
tributed monitor does not have a global view of the system, therefore we propose

L. Ong and R. de Queiroz (Eds.): WoLLIC 2012, LNCS 7456, pp. 70–84, 2012.
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the notion of locally monitorable trace language. Our main result shows that if
the distributed alphabet of actions is connected and if L is a set of Γ -infinite
traces (for some subset of processes Γ ) such that both L and its complement Lc

are countable unions of locally safety languages, then L is locally monitorable.
We also show that over Γ -infinite traces, recognizable countable unions of locally
safety languages are precisely the complements of deterministic languages.

2 Preliminaries

The idea of describing concurrency by a fixed independence relation on a given
set of actions Σ goes back to the late seventies, to Mazurkiewicz [12] and
Keller [11] (see also [6]). One can start with a distributed action alphabet (Σ, dom)
on a finite set Proc of processes, where dom : Σ → (2Proc\∅) is a location function.
The location dom(a) of action a ∈ Σ comprises all processes that need to syn-
chronize in order to perform this action. It defines in a natural way an indepen-
dence relation I ⊆ Σ×Σ by letting (a, b) ∈ I if and only if dom(a)∩dom(b) = ∅.

The execution order of two independent actions (a, b) ∈ I is irrelevant, they
can be executed as a, b, or b, a - or even concurrently. More generally, we can
consider the congruence ∼I on Σ∗ generated by I. An equivalence class [w]I of
∼I is called a (finite) Mazurkiewicz trace, and it can be also viewed as labeled
pomset t = 〈V,≤, λ〉 of a special kind: if w = a0 · · · an then the vertex set
is V = {0, . . . , n}, the labeling function is λ(i) = ai and ≤ =({(i, j) | i <
j, (ai, aj) /∈ I})∗ is the partial order. The word w is a linearization of t defined
as above, i.e., a total order compatible with the partial order of t.

Infinite traces can be defined is a similar way from ω-words. Finite and infinite
traces are also called real traces, and the set of real traces is written R(Σ, I) (or
simply R when Σ, I are clear from the context). A trace t is a prefix of a trace
t′ (denotes as t ≤ t′) if t is isomorphic to a downwards-closed subset of t′. The
set of prefixes of t is denoted pref(t). If L ⊆ R then we denote by Lin(L) ⊆ Σ∞

the set of linearizations of traces from L.
A language K ⊆ Σ∞ is called trace-closed if K = Lin(L) for some L ⊆ R.

Whenever convenient, we talk about trace languages L ⊆ R or trace-closed word
languages K ⊆ Σ∞ in equivalent terms. A language L ⊆ R is recognizable if
Lin(L) ⊆ Σ∞ is a regular language of finite and infinite words.

Linear temporal properties like safety and liveness [14] can be translated into
topological properties, as closed and dense sets in the Cantor topology. For real
traces, these notions generalize smoothly to the Scott topology, by replacing
word prefixes by trace prefixes. The Scott topology corresponds to a global view
in traces, where one needs to reason on global configurations, i.e., configurations
involving several processes. However, in the setting of monitoring that we discuss
here, such a global view is not available. Therefore we use here local safety as
basic notion, as introduced in [4] and explained in the following.

A trace t = 〈V,≤, λ〉 is called prime if it is finite and has a unique maximal
element. That is, |max(t)| = 1, where max(t) is the set of maximal elements of
t w.r.t. the partial order ≤. The set of prime traces in R is denoted P(R). The
set of prime prefixes of elements of L ⊆ R is denoted P(L).
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Definition 1. Let L ⊆ R.

1. L is called prime-open if it is of the form
⋃
{pR | p ∈ U} for some U ⊆ P.

Complements of prime-open sets are called prime-closed.
2. L is the intersection of all prime-closed sets containing L (and denoted as

prime-closure of L). Note that L is prime-closed.
3. A prime-closed, recognizable language L ⊆ R is called a locally safety lan-

guage.

Remark 1. 1. Every prime-open set is also Scott-open, and prime-open sets
are closed under union, but not under intersection. As an example consider
aR ∩ bR which is not prime-open for (a, b) ∈ I.

2. A first-order locally safety language L ⊆ R is a prime-closed set such that
Lin(L) is a first-order language. It is known from [4] that first-order locally
safety languages are characterized by formulas of the form Gψ, with ψ a
past formula in a local variant of LTL called LocTL.

We end this section by introducing our model for distributed automata. An
asynchronous automaton A = 〈(Sα)α∈Proc, sin, (δa)a∈Σ〉 is given by

– for every process α a finite set Sα of (local) states,
– the initial state sin ∈

∏
α∈Proc Sα,

– for every action a ∈ Σ a transition relation δa ⊆ (
∏
α∈dom(a) Sα)

2 on tuples

of states of processes in dom(a).

For convenience, we abbreviate a tuple (sα)α∈P of local states by sP , where
P ⊆ Proc. We also denote

∏
α∈Proc Sα as global states and

∏
α∈P Sα as SP .

An asynchronous automaton can be seen as a sequential automaton with the
state set S =

∏
α∈Proc Sα and transitions s

a−→ s′ if (sdom(a), s
′
dom(a)) ∈ δa, and

sProc\dom(a) = s′Proc\dom(a). By L(A) we denote the set of words labeling runs
of this sequential automaton that start from the initial state. It can be easily
noted that L(A) is trace-closed. The automaton is deterministic if each δa is a
(partial) function.

Example 1. Let us consider the asynchronous automaton A given by Sp = {0},
Sq = Sr = {0, 1}, and transition function δa(sp, sq) = (sp,¬sq) if sq = 1 (unde-
fined otherwise), δd(sr) = ¬sr if sr = 1 (undefined otherwise), δb(sq, sr) = (1, 1)
if sq ∧ sr = 0 (undefined otherwise) and δc(sp) = sp. Starting with s0 = (0, 0, 0),
an accepting run of A checks that between any two successive b-events, there is
either an a or a d (or both), and there is a b-event before all a and d.

Since the notion of a trace was formulated without a reference to an accepting
device, it is natural to ask if the model of asynchronous automata is powerful
enough for capturing the notion of regularity. Zielonka’s theorem below says that
this is indeed the case, hence these automata are a right model for the simple
view of concurrency captured by Mazurkiewicz traces.

Theorem 1. [17] Let dom : Σ → (2Proc \ {∅}) be a distribution of letters. If a
language L ⊆ Σ∗ is regular and trace-closed then there is a deterministic asyn-
chronous automaton accepting L (of size exponential in the number of processes
and polynomial in the size of the minimal automaton for L, see [9]).
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Fig. 1. The pomset associated with the trace t = [c b a d c b a d b], with dom(a) = {p, q},
dom(b) = {q, r}, dom(c) = {p}, dom(d) = {r}

3 Safety Languages

A set of traces C ⊆ R is called coherent if C ⊆ pref(t) for some t ∈ R. This means
that �C ∈ R exists, and it is a prefix of t. By Lc we denote the complement
R \ L of L. Recall that P(L) is the set of prime prefixes of traces in L ⊆ R.

We use in our characterizations below a basic property of automata on traces,
which is for instance satisfied by (runs of) asynchronous automata, called forward
diamond property. A set K ⊆ Σ∗ satisfies the forward diamond property if the
following holds:

If ua ∈ K and ub ∈ K, then uab ∈ K, for every u ∈ Σ∗ and (a, b) ∈ I.

Lemma 1. For L ⊆ R we have

L = {�C | C ⊆ P(L) and C is coherent} .

We have L = K if and only if P(L) = P(K).

Proof. Let X = {�C | C ⊆ P(L) and C is coherent}. By definition, Xc = UR
with U = P \ P(L), thus X is prime-closed (and contains L). Let K ⊇ L be
prime-closed, thus Kc = VR with V ⊆ P. Consider some coherent set C ⊆ P(L),
and assume that �C ∈ vR for some v ∈ V . But then v ∈ P(L), thus Kc ∩L �= ∅,
a contradiction. So X ⊆ K, which shows that L = X .

Lemma 2. If L ⊆ R is recognizable, then the prime closure L is recognizable,
too. Moreover, on input (Σ, dom) and (sequential) Büchi automaton B such that
L = L(B) is trace-closed, we can compute an exponential-size, deterministic
asynchronous automaton A accepting L , such that all states of A are final.

Proof. Given L ⊆ R recognizable, we have that P(L) is recognizable, too. Then it
is easy to see that L is recognizable, by using for instance monadic second-order
logic over traces.

Let us consider the complexity of the construction of a deterministic asyn-
chronous automaton for L in more detail. We assume that the input L is given
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by a (sequential) Büchi automaton B. We first determinize B and get a deter-
ministic (say Rabin) automaton B′ for L. From B′ we can easily construct a DFA
accepting P(L): we just need to store the set of maximal processes in the control
state. The resulting DFA is exponential in both B and Proc. By applying the
construction cited in Thm. 1 we obtain a deterministic asynchronous automaton
A for P(L) which is still exponential in B and Proc. Using classical timestamping
we may assume that each local state reached by the maximal processes of a prime
trace contains the complete information about the global state of A reached on
that prime trace - the size of the deterministic asynchronous automaton A′ thus
obtained remains exponential. It remains to construct the automaton accepting
L . Recall that L contains precisely those traces where all prime prefixes belong
to P(L). Thus, it suffices to take A′ and forbid transitions that produce bad
local states of A′, that is, local states that are non-final viewed as global states
of A. On finite or infinite traces, the automaton A′ accepts precisely L . By
construction, all its reachable states are final.

Proposition 1. The following are equivalent characterizations for L ⊆ R:

1. L is a locally-safety language.
2. K = Lin(L) ⊆ Σ∞ is a regular, prefix-closed language such that K ∩ Σω is

a safety language, and K ∩Σ∗ satisfies the forward diamond condition.
3. L is accepted by a deterministic asynchronous automaton where all reachable

states are final.

Proof. The implications (1) ⇒ (2) and (3) ⇒ (1) are immediate. For (2) ⇒ (3)
let us assume that K = Lin(L) is regular, prefix-closed and satisfies the two
additional conditions in the statement. Since K ∩ Σ∗ is prefix-closed, trace-
closed and satisfies the forward diamond property, there exists a deterministic
asynchronous automaton B recognizing K ∩ Σ∗ (equivalently, the set of finite
traces in L) such that all reachable states are final [16]. Since K is assumed to
be prefix-closed and K ∩Σω is a safety language, we obtain that the automaton
B accepts precisely L = L over R.

Example 2. Assume that Σ = {a, b, c} with dom(a) = {α}, dom(b) = {β} and
dom(c) = {α, β}. The trace language “no two consecutive c’s” is a locally safety
language, and it can be recognized by an asynchronous automaton where both
processes remember their last action, and do not allow two consecutive c’s.

The trace language “no a in parallel with a b” is not a locally safety language
(but it is Scott-closed).

For first-order languages we have, as usual, also a characterization by temporal
logics:

Proposition 2. The following are equivalent characterizations for L ⊆ R:

1. L is a locally-safety language definable in first-order logic.
2. L is definable by a globally past formula in LocTL.
3. K = Lin(L) ⊆ Σ∞ is a first-order, prefix-closed language such that K ∩Σω

is a safety language, and K ∩Σ∗ satisfies the forward diamond property.
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Proof. The equivalence (1)⇔ (2) follows from [4], and the implication (1)⇒ (3)
is immediate. For (3)⇒ (1) it suffices to show that L = L (since we know by [7]
that L must be first-order). So let t = �C, with C ⊆ P(L) coherent. For every
u ∈ P(L) and every linearization x of u, we have x ∈ K since K is prefix-
closed. Moreover, if {t, t′} is coherent and K contains all linearizations of t and
t′, respectively, then by the forward diamond property, K contains some (and
thus all) linearization(s) of t � t′. This shows the claim for finite traces t. For
infinite traces it follows from K ∩Σω being a safety language.

4 Local Monitoring

Here and in the following we write s ≤ L for a (finite) trace s ∈ R and a language
L ⊆ R if there exists some t ∈ L with s ≤ t.

Definition 2. A set L ⊆ R is called locally monitorable if for all s ∈ P there
exists some t ∈ P with (1) s ≤ tR and (2) either tR ⊆ L or tR ⊆ Lc.

Notice that in the definition of locally monitorable sets, the first condition says
that {s, t} is coherent. So a set L is locally monitorable if for every prime trace
s there is another prime trace t that is coherent with s and such that after t we
know that every extension belongs either to L or to its complement Lc.

The following lemma extends a well-known observation from words to traces:

Lemma 3. Every prime-closed trace language is locally monitorable. In partic-
ular, every locally-safety (or locally-co-safety) language is locally monitorable.

Proof. Let L = L and s ∈ P. If sR is not a subset of L, then there exists some
t = sx ∈ Lc. Since L is prime-closed this means that there is some u ∈ P \ P(L)
with u ≤ t. But then {u, s} is coherent, thus s ≤ uR and uR ⊆ Lc.

The next proposition characterizes locally monitorable sets in terms of the clo-
sure operator defined in the previous section:

Proposition 3. L ⊆ R is locally monitorable if and only if L ∩ Lc does not
contain any non-empty prime-open subset.

Proof. First, assume by contradiction that L is locally monitorable, but sR ⊆
L ∩ Lc for some s ∈ P. By symmetry in L and Lc we may assume that we find
t ∈ P and s ≤ tR ⊆ L. Hence, t /∈ P(Lc) and thus tR∩Lc = ∅. But sR∩ tR �= ∅.
Contradiction.

For the other direction let s ∈ P. We may assume (again by symmetry in L
and Lc) that sR ∩ L

c �= ∅. Hence, there is x /∈ L with s ≤ x. This implies that
there is t ∈ P \ P(L) with s ≤ tR. Thus, tR ⊆ Lc and L is locally monitorable.

We state now the main result of this section, which shows that whenever a
recognizable property over traces is locally monitorable, we can build a monitor
that is of the same type as the system on which it runs, i.e., an asynchronous
automaton.
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Theorem 2. Let L ⊆ R be recognizable. Then we can decide whether L is locally
monitorable. Moreover, if L is locally monitorable, then we find a deterministic
asynchronous finite state monitor for L.

Proof. By Lemma 2 there exist deterministic asynchronous automata A, A′

accepting L and Lc , resp., such that all their reachable states are final.
Let (δa)a∈Σ , (δ′a)a∈Σ be the transition functions of A,A′, resp. We modify

the product automaton A × A′ to a (deterministic) asynchronous automaton
C with transition functions (Δa)a∈Σ : first we add two local states ⊥α, %α on
each process α ∈ Proc. Consider a ∈ Σ and some trace t on which A reaches
state s and A′ reaches state s′. Note that ta belongs to one of L or Lc (or
both). If A has no a-transition on sdom(a) then we add Δa((sα, s

′
α)α∈dom(a)) =

(⊥α)α∈dom(a). If A′ has no a-transition on s′dom(a) then we add the transition

Δa((sα, s
′
α)α∈dom(a)) = (%α)α∈dom(a). The first case corresponds to taR ∩ L =

∅, the second one to taR ∩ Lc = ∅. Else, Δa((sα, s′α)dom(a)) is defined as the
componentwise product of δa(sdom(a)) and δ′a(s′dom(a)). Finally, for each a ∈ Σ

and each tuple ŝdom(a) of states of A × A′: if some component of ŝdom(a) is ⊥,
then all components of Δa(ŝdom(a)) become ⊥, and symmetrically for %. The
language L is not locally monitorable if and only if the automaton C has some
infinite run where no process gets into state % or ⊥.

Proposition 4. The following problem is PSPACE-hard:

– Input: A Büchi automaton B = 〈Q,Σ, δ, q0, F 〉.
– Question: Is the accepted language L(B) ⊆ Σω monitorable?

Proof. The universality problem for non-deterministic finite automata (NFA) is
one of the well-known PSPACE complete problems. We reduce this problem to
the problem of monitorability.

Start with an NFA A = 〈Q′, Γ, δ′, q0, F ′〉. We will construct a Büchi automa-
ton B such that we have L(A) = Γ ∗ if and only if L(B) ⊆ Σω is monitorable.

For this we use a new letter b and we let Σ = Γ ∪ {b}. We use three new
states d, e, f and we let Q = Q′ ∪ {d, e, f}. The repeated (or final) states of B
are defined as F = {e, f}. The initial state is the same as before: q0. It remains
to define δ. We keep all arcs from δ′ and we add the following new arcs.

– q
b−→ d

a−→ e
a−→ e for all q ∈ Q′ \ F ′ and all a ∈ Γ .

– e
b−→ d

b−→ d
– q

b−→ f
c−→ f for all q ∈ F ′ and all c ∈ Σ.

In order to understand the construction, consider what happens if we reach state
d or state f . Starting in f we accept everything, because we loop in a final state
of B. On the other hand starting in d we accept all words except those which
end in bω. Starting in d we are nowhere monitorable.

Now, let w ∈ Σ∗. This can be written as uv where u ∈ Γ ∗ is the maximal
prefix without any occurrence of b.
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Assume we have L(A) = Γ ∗, then there is path from q0 to f labelled by wb
since reading u leads us to some state in F ′. This implies that wbΣω ⊆ L(B) for
all w ∈ Γ ∗; and L(B) is monitorable.

On the other hand, if L(A) �= Γ ∗, then there is some word u ∈ Γ ∗ such that
u leads to states in Q′ \ F ′, only. Thus, reading ub we are necessarily in state d.
The language L(B) is not monitorable, due to the word ub ∈ Σ∗.

We have a matching upper bound for Büchi automata in the theorem below.
Note that the input is a Büchi automaton accepting a trace-closed language,
therefore we may see the accepted language also as a subset of R.

Theorem 3. The following problem is PSPACE-complete:

– Input: A Büchi automaton B = 〈Q,Σ, δ, q0, F 〉 and (Σ, dom) such that L(B)
is trace-closed.

– Question: Is the accepted language L(B) ⊆ R locally monitorable?

Proof. For a subset P ⊆ Q let us write L(B, P ) for the accepted language of
B when P is used as a set of initial states. We say that P is good if either
L(B, P ) = Σω or L(B, P ) = ∅. The predicate whether P is good can be computed
in PSPACE. For a letter a ∈ Σ and P, P ′ ⊆ Q we define another predicate
Reach(P, P ′, a), which is defined to be true, if:

P ′ = {q ∈ Q | ∃p ∈ P ∃ta ∈ P and p
ta−→ q} .

Note that Reach(P, P ′, a) is computable in PSPACE, too. If there is no a ∈ Σ
such that Reach({q0}, P ′, a) becomes true for some good P ′ ⊆ Q, then L = L(B)
is not locally monitorable. Thus, we may assume that such P and a exist. If there
are two letters a and b in different connected components of (Σ, dom) with this
property, then L is locally monitorable. Hence we assume in the following that
there is only one component where such a letter a exist. Indeed, letters occurring
in some prime traces belong to a single connected component of (Σ, dom); and
due to Reach({q0}, P ′, a) it is enough to consider monitorability of prime traces
which belong to the same component as the letter a. Since every such prime
trace can be made longer such that it ends with this letter a, we fix a in the
following.

Now, the language L ⊆ R is locally monitorable if and only if for all P ⊆ Q
such that Reach({q0}, P, a) holds, there is some good subset P ′ such that we
have Reach(P, P ′, a).

To see this, let L ⊆ R be locally monitorable. Consider a subset P such
that Reach({q0}, P, a) holds. This corresponds to some word s such that the
corresponding trace s = s′a is a prime. Since L is locally monitorable, there
exists some prime t such that s ≤ tR and either tR ⊆ L or tR ⊆ Lc. However,
by the assumption above, we may assume that s and t belong to the same
component. We can make t longer and actually assume s ≤ t and such that
t = t′a. Choose some representing word w for t. If P ′ is the subset of states
we can reach after reading w starting in q0 we have Reach(P, P ′, a). The set
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P ′ is good, because L is trace-closed. Indeed, if tR ⊆ L, then wΣω ⊆ L, hence
L(B, P ′) = Σω. If tR ⊆ Lc, then L(B, P ′) = ∅.

For the converse it is clear that the condition is strong enough to ensure local
monitorability of L.

The condition to monitor a single language might be an unnecessary restriction.
We can imagine a certain family of properties or languages L1, . . . , Ln and we
content ourselves with a monitor which selects one of these possibilities, even if
certain Li and Lj do intersect non-trivially for i �= j. This leads to the following
definition.

Definition 3. Let n ∈ N and L1, . . . , Ln be subsets of R. We say that the
family {L1, . . . , Ln} is locally monitorable, if

∀s ∈ P ∃t ∈ P ∃1 ≤ i ≤ n : s ≤ tR ⊆ Li.

Remark 2. A language L is locally monitorable if and only if the family {L,Lc}
is locally monitorable.

A distributed alphabet (Σ, dom) can be split into several connected components.
This is a partition Σ = Σ1 ∪ · · · ∪ Σk such that all Σi are non-empty and
Σi × Σj ⊆ I for all 1 ≤ i < j ≤ k. We say that (Σ, dom) is connected, if k = 1
and disconnected otherwise. For k ≥ 2 we can write R = R′ × R′′ such that R′

and R′′ are both infinite.

4.1 Disconnected Case

We assume in this section that (Σ, dom) is disconnected and we write R =
R′ × R′′. Let L ⊆ R. If L is locally monitorable then, necessarily sR ⊆ L or
sR ⊆ Lc for some prime s ∈ P = P(R′) ∪ P(R′′). By symmetry we may assume
s ∈ P(R′) and sR ⊆ L. As a consequence, there is no t ∈ P(R′′) such tR ⊆ Lc.
On the other hand, if there is some prime t ∈ P(R′′) such tR ⊆ L, then L is
locally monitorable for a trivial reason: For every prime trace u ∈ P we either
have u ∈ R′ or u ∈ R′′; and by choosing either the prime s or t in the other
component as u we satisfy the required condition for L to be locally monitorable.

Hence we are only interested in the case that there is no prime t ∈ R′′ such that
tR ⊆ L. In this case we can reduce the problem whether L is locally monitorable
to the component of R′ as follows: First, let us define languages of prime traces
L1 = {u ∈ P(R′) | uR ⊆ L} and L2 = {u ∈ P(R′) | uR ⊆ Lc}. Note that if L is
recognizable, then L1, L2, as well as L1R′, L2R′, are recognizable too. Moreover,
we can construct the corresponding automata.

Theorem 4. Let L ⊆ R = R′×R′′ and assume that there is some s ∈ P(R′) such
that sR ⊆ L but there is no t ∈ P(R′′) with tR ⊆ L. Then L is locally monitorable
if and only if the family {L1R′, L2R′} is locally monitorable w.r.t. R′.

Proof. First, let L be locally monitorable and s ∈ P be a prime. Choose some
prime t ∈ P with s ≤ tR such that either tR ⊆ L or tR ⊆ Lc. We cannot have
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t ∈ R′′, hence t ∈ P(R′). Thus, either t ∈ L1 or t ∈ L2. It follows that tR′ ⊆ L1R′

or tR′ ⊆ L2R′, and hence {L1R′, L2R′} is locally monitorable w.r.t. R′.
For the other direction let {L1R′, L2R′} be locally monitorable w.r.t. R′. Then

for every prime u ∈ P(R′) there is some v ∈ P(R′) such that u ≤ vR′ such that
either vR′ ⊆ L1R′ or vR′ ⊆ L2R′. In particular, either v ∈ L1 or v ∈ L2, since
r ≤ v with r ∈ Li implies v ∈ Li. By definition, either vR ⊆ L or vR ⊆ Lc. Thus,
L is locally monitorable on all primes of R′. Now, let u ∈ P(R′′). By assumption
there is some s ∈ P(R′) such that sR ⊆ L. Since R = R′ × R′′ we have u ≤ sR.
Thus, L is locally monitorable.

4.2 Connected Case

Recall that a distributed alphabet (Σ, dom) is connected if it cannot be parti-
tioned as Σ = Σ1 ∪Σ2 such that Σ1×Σ2 ⊆ I with Σ1 �= ∅ �= Σ2. For connected
(Σ, dom) we obtain a nicer characterization of locally monitorable sets:

Lemma 4. Let (Σ, dom) be connected. Then L is locally monitorable if and only
if

∀s ∈ P ∃s ≤ t ∈ P : tR ⊆ L ∨ tR ⊆ Lc.

Proof. Let L be such that ∀s ∈ P ∃t ∈ P : s ≤ tR ⊆ L ∨ s ≤ tR ⊆ Lc. We have
to show that we can choose s to be a prefix of t. But this is clear: if s ≤ tR, then
there is a prime p with s ≤ p and t ≤ p. The result follows because pR ⊆ tR in
this case.

Proposition 5. The following assertions are equivalent.

1. (Σ, dom) is connected.
2. The family of locally monitorable sets is closed under finite union.
3. The family of locally monitorable sets is a Boolean algebra.

Proof. Since the locally monitorable property is symmetric for L,Lc, the last
two items of the proposition are equivalent. Let (Σ, dom) be connected, we show
that locally monitorable is preserved by taking finite unions. Let L and K be
locally monitorable and consider s ∈ P. If we find s ≤ t ∈ P and either tR ⊆ L
or tR ⊆ K, we are done. Hence there is s ≤ t ∈ P and tR ⊆ Lc. Now, we may
assume that there is t ≤ u ∈ P and uR ⊆ Kc. But then s ≤ u and uR ⊆ (L∪K)c.

Conversely, let a, b ∈ Σ be in different connected components of (Σ, dom)
and let L = “no occurrence of a” and K = “no occurrence of b”. Both sets are
locally monitorable, since they are prime-closed. However, for every prime s we
have s ∈ L ∪ K and sR ∩ (L ∪ K)c �= ∅. This shows that L ∪ K is not locally
monitorable.

Again, for connected alphabets and a family of languages, we can make the
condition to be locally monitorable more precise by using Lem. 4. Indeed, if
(Σ, dom) is connected, then a family {L1, . . . , Ln} is locally monitorable if and
only if

∀s ∈ P ∃ s ≤ t ∈ P ∃1 ≤ i ≤ n : tR ⊆ Li.
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Theorem 5. Let (Σ, dom) be connected, and L1, . . . , Ln be subsets of R such
that

1. R = L1 ∪ · · · ∪ Ln.
2. Each Lk is a countable union of prime-closed sets.

Then the family {L1, . . . , Ln} is locally monitorable.

Proof. We give the proof for n = 2, the one for n > 2 is similar. Let L = Lc1 and
K = Lc2. Write L =

⋂
i≥0 UiR and K =

⋂
i≥0 ViR where all Ui, Vi ⊆ P. Without

restriction we have U0R = V0R = R.
By contradiction, assume that {L1, L2} is not locally monitorable. This means

that we can find some s ∈ P such that for all t ∈ P with {s, t} coherent it holds
that tR ∩ L �= ∅ �= tR ∩K. Let p0 = x0 = q0 = y0 = s.

By induction let for some k ≥ 1 prime traces pi, xi, qi, and yi for all 0 ≤ i < k
be defined such that Ui ) pi ≤ xi ≤ yi, Vi ) qi ≤ yi, and yi−1 ≤ xi.

We define xk, pk as follows. Since s ≤ yk−1 ∈ P we have by assumption
yk−1R ∩ L �= ∅, and thus we find yk−1 ≤ x ∈ L. Thus, there is pk ∈ Uk with
pk ≤ x. The set {yk−1, pk} is coherent, hence there is common finite trace w with
yk−1 ≤ w and pk ≤ w. Since (Σ, dom) is connected, we find some prime xk ∈ P
with w ≤ xk. The definition of yk follows the same pattern. We have s ≤ x1 ≤
y1 ≤ x2 · · · and x = �{xi | i ∈ N} exists. However, x ∈

⋂
i≥0 UiR ∩

⋂
i≥0 ViR.

Contradiction, because L ∩K = ∅.

Remark 3. Notice that the above proof still works if (Σ, dom) has only two
connected components. In the general case it is open whether the statement of
Thm. 5 still holds.

5 Infinite Traces

Prime-closed languages are prefix closed, so they always intersect. In particular,
for any language L ⊆ R, it can never happen that both L and Lc are countable
unions of prime-closed sets (or equivalently, countable intersections of prime-
open sets), as required by Thm. 5.

Thus, in order to define an trace analogue of Gδ ∩ Fσ we will restrict our at-
tention to infinite traces where a (given) subset Γ of processes is active infinitely
often and “sees” all other processes. In this way monitoring can be performed by
processes in Γ . Another motivation for the new notion is due to the fact that in
order to monitor a language we should be able to gather information into longer
and longer prime prefixes.

For a finite trace t we write max(t) ⊆ Γ if dom(a)∩Γ �= ∅ for each a ∈ max(t).

Definition 4. Let Γ be a (non-empty) subset of Proc. A trace x is called Γ -
infinite if

– Every process from Γ has infinitely many actions in x.
– x can be written as x = x0x1 · · · such that max(xn) ⊆ Γ for each n ≥ 0.
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– alph(x) is connected.

The set of Γ -infinite traces is written as RΓ .

Remark 4. If Γ is a singleton, then for every trace x ∈ RΓ , both alph(x) and
alphinf(x) are connected (and non-empty).

In the following everything is within Γ -infinite traces, for a fixed set Γ ⊆ Proc.
In particular, the notion of closed and open are meant to be induced. The notion
of locally monitorable is also relative to RΓ : a set L ⊆ RΓ is locally monitorable
if ∀s ∈ P(RΓ )∃s ≤ t ∈ P(RΓ ) : tR∩RΓ ⊆ L∨tR∩RΓ ⊆ Lc (where Lc = RΓ \L).

Definition 5. Let Γ ⊆ Proc be a non-empty set of processes.

1. A set X ⊆ RΓ is prime-Gδ if it has the form X =
⋂
i≥0 Ui where all Ui are

prime-open in RΓ . The family of prime-Gδ-sets is denoted PGδ.
2. A set X ⊆ RΓ is prime-Fσ if its complement is prime-Gδ. The family of

prime-Gδ-sets is denoted PFσ.

Example 3. Let Γ = Proc = {α, β} and Σ = {a, b, d} with dom(a) = {α},
dom(b) = {β} and dom(d) = {α, β}. Let L ⊆ RΓ contain all traces without
the (trace) factor abd. Such traces are formed either by a trace from ((a∗ +
b∗)d+)∗(a∗ + b∗)d+ followed by aωbω, or they belong to ((a∗ + b∗)d+)ω. Clearly,
L is prime-closed. The complement of L is in PFσ, since L

c =
⋃
w∈Σ∗,i,j>0Xw,i,j

whereXw,i,j contains all traces from RΓ with prefix waibjd. EachXw,i,j is prime-
closed.

The next lemma generalizes the case of ω-words. Note that we need the restric-
tion to RΓ (or some similar restriction). As an example, consider Σ = {a, b} with
(a, b) ∈ I. The language L = aR is prime-open. But its complement Lc = b∞

cannot be written as countable intersection of prime-open sets in R, since we
cannot avoid occurrences of a in such sets.

Lemma 5. Prime-closed sets of RΓ are in PGδ.

Proof. Let L ⊆ RΓ be prime-closed. By definition, every �C ∈ RΓ where C is
coherent and C ⊆ P(L), belongs to L. For K ⊆ P, α ∈ Γ and k ∈ N let

Kα,k = {p ∈ K | |p| ≥ k, α ∈ dom(max(p))}.

We claim that
L =

⋂
k∈N, α∈Γ

P(L)α,k RΓ .

The inclusion from left to right follows from L ⊆ RΓ and the definition of
RΓ . Let x ∈ RΓ be such that for every k ∈ N and α ∈ Γ , there is some
pα,k ≤ x with pα,k ∈ P(L)α,k. By definition of RΓ and of P(L)α,k, we have that
x = �{pα,k | k ∈ N, α ∈ Γ}. Hence, x is of the form �C for C ⊆ P(L) coherent,
and thus in L.
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Theorem 6. 1. PGδ∩PFσ is a Boolean algebra containing all prime-open and
all prime-closed subsets of RΓ .

2. All PGδ ∩ PFσ subsets of RΓ are locally monitorable.

Proof. PGδ is closed under union. Hence, PGδ ∩ PFσ is a Boolean algebra. It
contains all prime-open and all prime-closed subsets of RΓ by Lem. 5.

The proof of the second claim follows along the same lines as the one of
Thm. 5. Assume that RΓ �= ∅ and choose some connected subalphabet Σ′ of Σ
that contains for each α ∈ Γ some letter a with α ∈ dom(a). The prime traces
xk, yk can be chosen such that max(xk) ⊆ Γ , max(yk) ⊆ Γ , and alph(x−1

k yk) =
alph(y−1

k−1xk) = Σ′. Thus, x = �ixi ∈ RΓ .

Asynchronous Büchi and Muller automata have been studied in [8,5].
McNaughton’s theorem [13] stating the equivalence of non-deterministic Büchi
and deterministic Muller automata over omega-word languages, extends to recog-
nizable languages of infinite traces and asynchronous automata [5]. If we restrict
to traces from RΓ , then the Büchi and Muller acceptance conditions are simpler:

Definition 6. Let Γ ⊆ Proc be a non-empty set of processes, and let A =
〈(Sα)α∈Proc, (δa)a∈Σ , s0〉 be an asynchronous automaton.

1. A Büchi acceptance condition is a set F ⊆ SΓ .
An infinite run s0 = s0, a0, s1, a1, . . . of A is accepting if for some fΓ ∈ F
and for every α ∈ Γ , there are infinitely many n ≥ 0 with (sn)α = fα.

2. A Muller acceptance condition is a set F ⊆
∏
α∈Γ 2Sα .

An infinite run s0 = s0, a0, s1, a1, . . . of A is accepting if for some TΓ ∈ F
and for every α ∈ Γ , the set of states from Sα such that (sn)α = fα for
infinitely many n, is precisely Tα.

The language L(A) is the set of all traces from RΓ that have an accepting run.
The next result is a generalization from ω-word languages to RΓ trace languages:

Theorem 7. Let L ⊆ RΓ be recognizable. Then L is in PGδ if and only if L is
accepted by a deterministic Büchi asynchronous automaton.

Proof. Assume first that L = L(A), where A is a deterministic asynchronous
Büchi automaton, and fix a final state f ∈ F . For n > 0, α ∈ Γ we define Kf

n,α

as the set of all traces t ∈ P with α ∈ dom(max(t)) and such that in the run of
A on t, at least n letters on process α are in state fα. It is easy to see that the
set
⋃
f∈F
⋂
α∈Γ,n>0K

f
n,αRΓ is precisely L(A). The remaining of the proof will

show that PGδ is closed under finite union, thus L(A) ∈ PGδ.
For the converse let L =

⋂
n>0 Un ⊆ RΓ be recognizable, with Un prime-open

in RΓ . We first define Vn =
⋂
k≤n Un. It is not difficult to see that each Vn can

be assumed to be of the form KnRΓ with max(t) ⊆ Γ for each t ∈ Kn. Let now
K ′
n ⊆ Kn consist of all elements of Kn that have no proper prefix in Kn. Let

K =
⋃
n>0K

′
nXn, where Xn is the set of traces t such that (1) max(t) ⊆ Γ , (2)

|t|α ≥ n for each α ∈ Γ , and (3) no proper prefix of t satisfies (1) and (2).
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Let us first show that L = {�C | C ⊆ K, C coherent}. The inclusion from
left to right follows from L =

⋂
n>0 Un =

⋂
n>0KnRΓ =

⋂
n>0K

′
nRΓ =⋂

n>0K
′
nXnRΓ . Conversely, let t = x0x1 . . . with x0 · · ·xn ∈ K for all n. Observe

that we must have infinitely many n such that x0 · · ·xm ∈ Kn for some m, since
K ′
n is prefix-free. Thus, t ∈ Vn for infinitely many n and t ∈ Un for all n.
To conclude, we show that if L = {�C | C ⊆ K, C coherent} for some K, and

L ⊆ RΓ is recognizable, then L is the language of a deterministic asynchronous
Büchi automaton. We assume as above that max(t) ⊆ Γ for all t ∈ K. Since L is
recognizable, there is some deterministic Muller automaton A with acceptance
condition F and L(A) = L. We may also assume that on every finite trace t the
states of processes from dom(max(t)) reached on t determine the states of all
other processes. First we test for every T ∈ F if there is some trace from RΓ
accepted with T . Without restriction this is the case for all T ∈ F . For each T
we can determine a reachable state s(T ) ∈

∏
α∈Γ Tα and finite traces t0(T ), t(T )

with max(t0(T ),max(t(T )) ⊆ Γ such that (1) t0(T ) leads from the initial state
to s(T ), (2) t(T ) is a loop on state s(T ) and (3) the set of α-states in the loop
t(T ) is precisely Tα. In addition, t0(T ) is connected.

We claim that A accepts L with the following (Büchi) condition: a trace is
accepted if for some T ∈ F , every state from Tα occurs infinitely often, for
every α ∈ Γ . It is clear that all of L is accepted in this way by A. Conversely,
let x be an arbitrary trace with max(x) ⊆ Γ and looping on state s(T ). We
have t0 t(T )

ω ∈ L, so there is some n0 and u0 in K such that u0 ≤ t0 t(T )
n0 .

Since t0 t(T )
n0x t(T )ω ∈ L we find some n1 such that u1 ≤ t0 t(T )

n0x t(T )n1

for some u1 ∈ K with u0 < u1. In this way we can build a trace t from RΓ ,
t = t0 t(T )

n0x t(T )n1x · · · , with t = �n≥0un ∈ {�C | C ⊆ K, C coherent} and
such that for each α ∈ Γ , the set of states from Sα repeated infinitely often is a
superset of Tα. The claim follows since L = {�C | C ⊆ K, C coherent}.
Remark 5. For the previous proof we do not need the connectedness assumption
in the definition of RΓ . On the other hand, it is open whether without this
assumption all PGδ ∩ PFσ sets are still locally monitorable.

6 Conclusion

Our aim in this paper was to propose a reasonable notion of distributed mon-
itoring for asynchronous systems. We argued that distributed monitors should
have the same structure as the system that is monitored. We showed that prop-
erties over Γ -infinite traces that are deterministic and co-deterministic, are lo-
cally monitorable. It would be interesting to consider alternative restrictions to
Γ -infinite traces, that capture some reasonable (partial) knowledge about the
asynchronous system and for which PGδ ∩ PFσ sets are locally monitorable.
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Abstract. In this talk I consider first-order formulas (FO, for short)
where, apart from the symbols in the given vocabulary, also predicates for
linear order and arithmetic may be used. For example, order-invariant for-
mulas are formulas for which the following is true: If a structure satisfies
the formula with one particular linear order of the structure’s universe,
then it satisfies the formula with any linear order of the structure’s uni-
verse. Arithmetic-invariant formulas are defined analogously, where apart
from the linear order other arithmetic predicates may be used in an invari-
ant way. The aim of this talk is to give an overview of the
state-of-the art concerning the expressive power of order-invariant and
arithmetic-invariant logics.

One way of enhancing the expressive power of a logic is to add predicates for
linear order and arithmetic on the elements of a structure, and to allow formulas
to use these predicates. To achieve closure under isomorphisms, one wants the
formulas to be invariant under the particular interpretation of these predicates.
For example, order-invariant formulas are formulas for which the following is
true: If a structure satisfies the formula with one particular linear order, then it
satisfies the formula with any linear order. From the Immerman-Vardi Theorem
it follows that the polynomial-time computable graph properties are precisely
captured by order-invariant IFP (cf., e.g., [9]). Similarly, arithmetic-invariant
FO captures the graph properties that belong to the circuit complexity class AC0

(and thus are highly parallelisable, as they can be checked in constant time using
a polynomial number of processors), and arithmetic-invariant IFP captures the
graph properties that belong to the class P/Poly [10,11].

In fact, restricting attention to logical formulas that use linear order and
arithmetic in an invariant way closely corresponds to restricting attention to
computations whose output is independent of the particular encoding of an in-
put graph. This way, invariant logics serve as natural candidates for providing
logical characterisations of complexity classes. However, Trakhtenbrot’s Theorem
implies that it is impossible to automatically check if a given formula is order-
or arithmetic-invariant. Thus, invariant logics do not have a decidable syntax.
When speaking of “invariant logics”, it therefore should be kept in mind that
these are “logical systems”, but not “logics” in the strict formal sense. The well-
known “quest for a logic capturing polynomial time” can thus be re-formulated
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as the quest for a logical system that has a decidable syntax and that has the
same expressive power as order-invariant IFP.

An easy application of Craig’s Interpolation Theorem shows that first-order
sentences that are order-invariant on the class of all structures (finite and infi-
nite), are no more expressive than plain first-order logic. When restricting atten-
tion to finite structures, however, the situation is different: A famous example by
Gurevich (cf., Theorem 5.3 in [9]) shows that order-invariant FO is strictly more
expressive than FO on a class of finite structures suitable for encoding Boolean
algebras. This was strengthened by Otto [13] and Rossman [14], showing that al-
ready epsilon-invariant FO and successor-invariant FO are more expressive than
FO on the class of all finite graphs (epsilon-invariant FO is an extension of FO
by invariant uses of an operator that allows to choose an arbitrary element in a
given set of elements). Up-to-date, no decidable characterisations of these logical
systems on the class of all finite structures are known.

In [15], Rossman showed that the bounded variable hierarchy of order-invariant
FO, as well as arithmetic-invariant FO, is strict.

Grohe and Schwentick [6] showed that order-invariant FO queries are Gaif-
man local with respect to a constant locality radius. In [1,2] it was shown that
arithmetic-invariant FO queries are Gaifman local with respect to a locality
radius that is polylogarithmic in the size of the underlying structure. For the
particular case of addition-invariant FO it remains open if the result can be
strengthened to a constant locality radius.

In [17], Schweikardt and Segoufin obtained a decidable characterisation of
addition-invariant FO on the class of all finite coloured sets: On these struc-
tures, addition-invariant FO is precisely as expressive as FOcard, the extension
of FO with predicates for testing the cardinality of a structure’s universe mod-
ulo some fixed number. In fact, as shown in [17,7], FOcard precisely charac-
terises the regular word languages and the regular tree languages definable in
addition-invariant FO. It remains open, however, whether all languages definable
in addition-invariant FO are regular.

In [3], Benedikt and Segoufin showed that on trees and words, order-invariant
FO is no more expressive than plain FO, and that on finite graphs of bounded
valence or bounded tree-width, order-invariant FO is no more expressive than
monadic second-order logic MSO.

By results of Courcelle and Lapoire [4,8] it is known that order-invariant MSO
on finite graphs of bounded tree width has exactly the same expressive power
as the extension of MSO with counting quantifiers (CMSO, for short). Ganzow
and Rubin [5] proved, however, that on the class of all finite structures, order-
invariant MSO is strictly more expressive than CMSO.

Allowing addition-invariance rather than order-invariance with respect to
monadic logics drastically increases the expressive power: Already on the class of
finite word structures, addition-invariant monadic least fixed-point logic MLFP
can define all properties in Grandjean’s linear-time complexity class DLIN, and
addition-invariant MSO precisely corresponds to the linear-time hierarchy LinH
[16,12].
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Abstract. I will talk about some recent applications of logical methods
to quantum information theory. In computing, a higher-order function is
a function for which the input or output is another function. I will argue
that many of the interesting phenomena of quantum information theory
involve higher-order functions, although that is often not how they are
presented. I’ll talk about the quantum lambda calculus as a possible
framework to describe such phenomena.
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Abstract. We review several logics with propositional quantification.

1 Introduction

You are uncertain whether Cordoba is in Spain. Carlos is in a position to inform
you. Let us assume for a moment that Cordoba is in fact in Spain (it’s that town
250 kilometers east of Sevilla). This may of course be contested in Argentina,
but we won’t. Carlos has two possible answers, he can say: “Yes, Cordoba is
in Spain,” or he can say, politely: “I am also uncertain whether Cordoba is in
Spain.” In other words, there is an announcement after which you know that
Cordoba is in Spain and there also is an announcement after which you do not
know that Cordoba is in Spain. What is the logic for ‘there is an announcement
after which’? In this paper we present our various recent proposals for proposi-
tional quantification in modal logics. We focus on open problems. Different ways
to quantify over information change include (where ϕ is a formula and G is a
subset of the set of agents):

– there is a public announcement after which ϕ;

– there is a public announcement by the agents in group G after which ϕ;

– there is an action after which ϕ;

– there is a refinement after which ϕ.

By ‘action’ we mean epistemic/informative action. A public announcement is
such an epistemic action, but there are also other epistemic actions, e.g., pri-
vate announcements. By ‘refinement’ we mean the dual of simulation. From the
bisimulation requirements, a refinement relation satisfies atoms and back. We
will see that there are subtle differences between ‘there is an action’ and ‘there
is a refinement’, but that the two come quite close.

The original publication on propositional quantifiers is Fine’s [13]. Such an
operator quantifies over subsets of the domain of a given structure. Fine dis-
tinguishes three different options: quantification (i) over subsets definable by
boolean combinations of propositional variables, (ii) over modally definable sub-
sets, and (iii) over any subset.
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Example 1

s(p)

t(p) u(¬p)

v(p) w(¬p)

b

b

a

a

b b s(p)

t(p) u(¬p)

w(¬p)

b

a

b

The above (left) structure depicts that agent b knows whether p and that agent a
knows that p or is uncertain whether p. Agent b cannot distinguish states s, t, and
v (and in that case he knows that p) and he also cannot distinguish states u and
w (and in that case he knows that ¬p). Agent a knows p in s, or else is uncertain
about p. This is a multi-agent Kripke structure where accessibility relations
are equivalences, i.e., the ‘arrows’ are assumed to be transitive, symmetric, and
reflexive: they are mere links between indistinguishable states. States t and v are
also indistinguishable in the stronger sense of being bisimilar: they cannot be
distinguished in the modal logical language. States u and w are also bisimilar.

The boolean definable subsets of the domain are {s, t, u, v, w}, {s, t, v}, and
{u,w}. The modally definable subsets are those and {s} (namely by �ap) and
{t, v} (by p ∧ ¬�ap). The singleton {v} is not modally definable. If we restrict
the model to the domain minus v (on the right in the figure), state w has become
modally different from state u: w is now the unique state where a knows ¬p, and
u the unique one where b knows ¬p but a is uncertain about p.

Quantification of type (iii) is undesirable in a setting for information change,
as states where agents have indistinguishable beliefs could then after all after
become different. Avoiding this is a general requirement for all proposals that
we discuss.

An established area of different explorations in propositional quantification are
bisimulation quantified logics [34,20], that have also been studied in combination
with epistemic logics [15]. That is not the topic of this survey. One might say that
we restrict ourselves to quantification over the formula parameters of dynamic
modalities (such as ‘ϕ’ in a public announcement !ϕ), i.e., quantification over
information change. There is overlap. The refinement modal logic of Section 7
can be seen as a refinement quantified logic.

2 Dynamic Epistemic Logic

We present multi-agent epistemic logic, on the general level of a multimodal
logic. Its language, structures, and semantics are as follows.

Language
L ) ϕ ::= p | ¬ϕ | (ϕ ∧ ϕ) | �aϕ
L(!) ) ϕ ::= p | ¬ϕ | (ϕ ∧ ϕ) | �aϕ | 〈!ϕ〉ϕ
L(!!) ) ϕ ::= p | ¬ϕ | (ϕ ∧ ϕ) | �aϕ | 〈!Ms〉ϕ

where propositional variable p is in a countable set P , agent a is in a finite set
A, and Ms is a finite action model to be defined below: we can see this as an
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inductively defined operator with a finite number of arguments of type formula,
where this operator is an element of a countable set of action model frames (as
in automata PDL). Other propositional connectives are defined by abbreviation
and we also define �aϕ by abbreviation as ¬�a¬ϕ and similarly [!ϕ]ψ and [!Ms]ψ.
For �aϕ we read ‘agent a considers ϕ possible’ and for �aϕ, ‘agent a knows ϕ’.
For [!ϕ]ψ we read ‘after announcement of ϕ, ψ (is true)’.

Structures. An epistemic model M = 〈S,R, V 〉 consists of a domain S of states
(or ‘worlds’), an accessibility function R : A → P(S × S), where each R(a), for
which we write Ra (and we may write Rast for (s, t) ∈ Ra), is an accessibility
relation, and a valuation V : P → P(S), where each V (p) represents the set of
states where p is true. For s ∈ S, a pair (M, s), for which we write Ms, is an
epistemic state, also known as a pointed Kripke model. The model class without
any restrictions is K. The class of models where all accessibility relations are
equivalence relations is S5.

Let models M = 〈S,R, V 〉 and M ′ = 〈S′, R′, V ′〉 be given. A non-empty
relation R ⊆ S×S′ is a bisimulation between M and M ′, notation R : M↔M ′,
if for all (s, s′) ∈ R and a ∈ A:

atoms s ∈ V (p) iff s′ ∈ V ′(p) for all p ∈ P ;
forth if Ra(s, t), then there is a t′ ∈ S′ such that R′

a(s
′, t′) and (t, t′) ∈ R;

back if R′
a(s

′, t′), then there is a t ∈ S such that Ra(s, t) and (t, t′) ∈ R.

We write Ms↔M ′
s′ if there is a bisimulation between M and M ′ linking s and

s′.

Semantics. We first give the semantics for truthful public announcement logic
(PAL) [26]. The semantics for action models (the construct 〈!Ms〉ψ) follows later.
Assume an epistemic model M = 〈S,R, V 〉.

Ms |= p iff s ∈ Vp
Ms |= ¬ϕ iff Ms �|= ϕ
Ms |= ϕ ∧ ψ iff Ms |= ϕ and Ms |= ψ
Ms |= �aϕ iff there is a t ∈ S : Rast and Mt |= ϕ

Ms |= 〈!ψ〉ϕ iff Ms |= ψ and (M |ψ)s |= ϕ

where M |ψ := 〈S′, R′, V ′〉 such that S′ := {s ∈ S |Ms |= ψ}, R′
a := Ra ∩ (S′ ×

S′), and V ′(p) := V (p) ∩ S′.

Example 2
1 0 1

a !p

M M ′

Agent a is uncertain about p (she cannot distinguish state 1 where p is true
from state 0 where p is false). The actual state 1 is underlined. After truthful
announcement !p, she knows that p. We have thatM1 |= 〈!p〉�ap becauseM1 |= p
and (M |p)1 |= �ap. Note that we also have, e.g., M1 |= p ∧ ¬�ap, so, strangely,
as �ap implies ¬p∨�ap which is equivalent to ¬(p∧¬�ap) we have that M1 |=
〈!(p ∧ ¬�ap)〉¬(p ∧ ¬�ap).
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Axiomatization. The well-known axiomatization of minimal modal logic K con-
tains axiom �a(ϕ → ψ) → �aϕ → �aψ and derivation rule ‘From ϕ infer
�aϕ.’ There are no multimodal interaction axioms. One of the axioms involving
announcements is [!ψ]�aϕ↔ (ψ → �a[!ψ]ϕ).

Action Models. An action model [7] (or event model) is a structure like a Kripke
model but with a precondition function instead of a valuation function. An action
model M = 〈S, R, pre〉 consists of a domain S of actions, an accessibility function
R : A→ P(S× S), where each Ra is an accessibility relation, and a precondition
function pre : S→ L, where L is a logical language. A pointed action model Ms

is an epistemic action.
Performing an epistemic action in an epistemic state means computing their

restricted modal product. This product encodes the new state of information. It
is defined as follows.

Given an epistemic state Ms where M = 〈S,R, V 〉 and an epistemic action
Ms where M = 〈S,R, pre〉. Let Ms |= pre(s). The update (M ⊗ M, (s, s)) is an
epistemic state where (M ⊗M) = 〈S′, R′, V ′〉 and

S′ = {(t, t) |Mt |= pre(t)}
((t, t), (t′, t′)) ∈ R′

a iff Ratt
′ and Ratt

′

(t, t) ∈ V ′(p) iff t ∈ V (p)

In other words: the domain consists of the product but restricted to state/action
pairs (t, t) such that Mt |= pre(t), i.e., such that the action can be executed in
that state; an agent considers a pair (t, t) possible in the next epistemic state
if she considered the previous state t possible, and the execution of action t in
that state; and the valuations do not change after action execution. (Example 7
on page 105 illustrates action model execution.)

The action model for truthful public announcement is a singleton action
model, with as precondition the announcement formula ϕ, accessible to all
agents. So, public announcement logic is a specific action model logic.

In the language L(!!) with action models we associate a dynamic modal opera-
tor 〈!Ms〉 to each finite epistemic actionMs. The clause 〈!Ms〉ϕ is in fact inductive,
if we realize that the preconditions of all actions in M (this includes s) are also of
type formula. The interpretation of such modal operators for epistemic actions
is then as follows.

Ms |= 〈!Ms〉ψ iff Ms |= pre(s) and (M ⊗M)(s,s) |= ψ

Axiomatization. Two crucial axioms of action model logic (AML) are

[!Ms]p ↔ (pre(s)→ p)
[!Ms]�aψ ↔ (pre(s)→

∧
(s,t)∈Ra

�a[!Mt]ψ)

The axiom for knowledge after public announcement in the previous paragraph
is a special case of the above. Public announcement logic and also action model
logic are equally expressive as multi-agent epistemic logic. Epistemic actions can
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be eliminated from formulas by axioms such as the above. They function as
reduction rules. The dynamic modality is pushed ever more inward until it gets
eliminated by an application of the first axiom.

3 Arbitrary Announcement

Arbitrary public announcement logic (APAL) contains a quantifier over an-
nouncements. First, we introduce the languages that will serve us throughout
this contribution.

Definition 1 (Language) To the languages L, L(!), and L(!!) we can add in-
ductive clauses (either) �ϕ or �Bϕ, where B ⊆ A. For �{a}ϕ we write �aϕ. We
thus get L(�), L(!,�), L(!!,�), L(�B), etc.
The language of APAL is L(!,�).

Definition 2 (Semantics of arbitrary announcement) Given are Ms (in
K) and ϕ ∈ L(!,�).

Ms |= �ϕ iff there is a ψ ∈ L(!) such that Ms |= 〈!ψ〉ϕ

The restriction ψ ∈ L(!) is important: � quantifies over formulas in the language
without the � operator, i.e., the ‘�-free formulas’. Given that public announce-
ment logic and epistemic logic are equally expressive, this means that we quantify
over epistemically definable subsets of the given model.

Example 3

1 0 1 0 1
aa !p!%

M ′′ M M ′

Agent a can either make a truly informative announcement !p or a trivial an-
nouncement !%. We have that M1 |= ��ap because M1 |= 〈!p〉�ap. On the other
hand we have that M1 |= �¬�ap because M1 |= 〈!%〉¬�ap. Of course we do not
have M1 |= �(�ap ∧ ¬�ap).

Validities. On the class S5 an illustrative validity is: �(�ap ∨ �a¬p). This for-
malizes that the agent a can always learn the value of an atomic proposition.
Either p is true, in which case the agent knows it after its announcement (or, in
case it already knew that p, still knows it after its announcement), or it is false,
in which case the agent knows that it is false after the announcement that p is
false. Some schematic validities of interest are

– ��ϕ→ �ϕ (4)
This expresses that a sequence of two announcements !ψ and !χ is again an
announcement, namely !〈!ψ〉χ (or !(ψ ∧ [!ψ]χ)).

– �ϕ→ ϕ (T)
If ϕ is true after any announcement, it is true after the trivial announcement.
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– ��ϕ→ ��ϕ (Church-Rosser)
Given an epistemic state Ms and two (truthful) announcements !ψ and !χ,
there are, respectively, two consecutive announcements !ψ′ and !χ′ such that
the same (or bisimilar) epistemic state results: (M |ϕ|ϕ′)s↔(M |ψ|ψ′)s.

– ��ϕ→ ��ϕ (McKinsey)
In combination with 4 this formalizes a property known as atomicity [8].

The operator � seems therefore to behave like S4. However, this is not the case.
It is not even a normal modal operator. For example, p → ��ap is valid but
(p ∧ ¬�ap)→ ��a(p ∧ ¬�ap) is invalid (see Example 2).

Axiomatization and Theory. The logic APAL has a complete axiomatization (for
the class S5, generalizable to the class K), is not compact [6], is undecidable [16]
(the usual tiling argument applies), and the model checking problem is PSPACE-
complete (an application of a result obtained in [2] for the similar logic GAL,
group announcement logic). A crucial semantic result is as follows.

Whenever Ms |= �ψ, then there exists a model M ′ only differing from
M in the valuation of atoms not occurring in ψ (including a p) such that
M ′
s |= 〈!p〉ψ.

This is not trivial, because the value of a formula �ψ does not merely depend on
the variables occurring in ψ but on the entire set of propositional variables, as �
implicitly quantifies over all propositional variables. This property is also used
to prove that APAL is more expressive than epistemic logic. An elegant proof
(due to Kooi) is as follows.

Let a formula in L(!,�) be given. We may as well assume that it has form
�ψ. Suppose there is a χ ∈ L that is logically equivalent to �ψ. This χ has a
certain modal depth. Now take two epistemic states identical up to that (finite!)
depth but different in some detail beyond there, and a formula ϕ expressing that
difference. Then 〈!ϕ〉ψ is true in the one and false in the other epistemic state,
and therefore �ψ as well. On the other hand, χ cannot see that far ahead and
must be either true in both epistemic states or false in both epistemic states, in
contradiction with the assumption.

The axiomatization for the logic contains an axiom and derivation rule:

�ϕ→ [!ψ]ϕ where ψ is �-free
From ψ → [!χ][!p]ϕ infer ψ → [!χ]�ϕ where p is not in ϕ, χ, ψ

This derivation rule is the convenient form of a more intuitive infinitary axiom.
The infinitary axiom says that if for all ψ you can derive a formula η([!ψ]ϕ) (of
a shape called ‘necessity form’ [17], containing a unique occurrence [!ψ]ϕ), then
you can also derive η(�ϕ). A intermediary finitary axiom infers η(�ϕ) from
η([!p]ϕ), where p does not occur in ϕ — a technique pioneered by Gabbay. The
soundness of this intermediate rule follows from the semantic result above that
satisfiability of �ψ implies that of 〈!p〉ψ for a p not in ψ. The derivation rule
above then simplifies the intermediate rule.
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Knowability. The schema ��aϕ, for ‘there is an announcement after which the
agent knows ϕ’, forms a specific interpretation of ‘ϕ is knowable,’ a suggestion
made by van Benthem in [28], an interesting setting for Fitch’s knowability para-
dox [14]. Fitch addressed the question whether what is true can become known.
It is considered problematic (paradoxical even) that the existence of unknown
truths (there is a ϕ for which ϕ ∧ ¬�aϕ) is inconsistent with the requirement
that all truths are knowable (for any ψ, ψ → ��aψ). The inconsistency appears
by substituting p∧¬�ap for ψ. Given the Fitch setting, an interesting validity in
APAL is �(�aϕ∨�a¬ϕ) [33], because this states that ‘everything is knowable’.
This comes at a price: the Moore-sentence p ∧ ¬�ap is knowable in this ‘get to
know if true or get to know if false’ sense, because after this is being truthfully
announced, agent a knows that it is false (see Example 2).

Open Questions. The reason for the syntax restriction in the semantics of �ϕ
is that otherwise the definition is circular. Consider an ‘unlimited’ � version:
�ϕ is true in a state if [!ψ]ϕ is true there for all ψ — but that includes [!�ϕ]ϕ.
So we need to go down the scale on some complexity measure. The solution in
APAL is to go down all the way, ψ has to be �-free. But one could imagine a
hierarchy of ever more expressive arbitrary announcement logics, e.g., �ϕ is true
in a state if [!ψ]ϕ is true there for all ψ ‘with strictly less � operators than �ϕ.’
This suggestion by Baltag was not followed up.

In her PhD thesis [12] Economou proposed various logics with propositional
quantification that are at least as expressive as APAL. We conjecture that they
are equally expressive. Her work has unfortunately not been published.

The semantics of �ϕ is uses public announcement operators. Given the se-
mantics for public announcement it could therefore also be

Ms |= �ϕ iff there is a ψ ∈ L such that (M |ψ)s |= ϕ

We call this logic, for the language L(�) without announcements, knowability
logic. What is its axiomatization? It is not known. The axiom and rule for �
in APAL need to be replaced by something not using announcements. Possi-
bly, this may be syntactic relativization. That would make matters not simpler
but harder and even less elegant. An alternative road to success may be an ax-
iomatization without the occurrence of the fresh variable in the derivation rule,
where inspiration may be found in the — elegant, we think — axiomatization
of refinement modal logic (Section 7).

4 Group Announcement

The announcements in truthful public announcement logic are supposed to be
made by an outside observer. For that case, ‘truthful’ simply means ‘true’. The
outside observer is not modelled as an agent and does not appear in the logical
language. If we wish to formalize a truthful public announcement of ϕmade by an
agent a that is modelled in the system, it is common to see this as the announce-
ment !�aϕ. Now, there is a difference between true and truthful. Truthful means
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that the agent believes what it announces. A truthful but false announcement by
a that ϕ satisfies ¬ϕ ∧�aϕ. In group announcement logic (GAL) we investigate
what can be achieved by simultaneous truthful announcements by a subset of
the set of all agents. This includes communication protocols where agents take
turns in saying something. If a announces ϕ and subsequently b announces ψ,
we can also see this as: simultaneously a announces ϕ and b announces % (i.e.,
‘nothing’), and then, simultaneously a announces % and b announces ψ.

Definition 3 (Semantics of group announcement).LetB ⊆ A,ϕ ∈ L(!,�B).

Ms |= �Bϕ iff there are ψ1 . . . ψ|B| ∈ L(!) such that Ms |= 〈!
∧
B

�iψi〉ϕ

Example 4. Given two agents a, b such that a knows whether p and b knows
whether q (and this is common knowledge), and let in fact p be true and q be
false (the underlined state). Anne (a) can achieve that Bill knows whether p
(namely by informing him of the value of p), and Bill (b) can achieve that Anne
knows whether q, but neither agent can achieve both outcomes at the same time.
However, together they can achieve that.

10

11

a

00 10

01 11

b

b

a a

00 10
b!�ap !�b¬q

We can evualate in the square model in the middle that

– 10 |= �a�bp but 10 �|= �b�bp
– 10 |= �b�a¬q but 10 �|= �a�a¬q
– 10 |= �ab(�bp∧�a¬q) but 10 �|= �a(�bp∧�a¬q) and 10 �|= �b(�bp∧�a¬q)

Whatever the actual state, a and b can get to know it by ‘collaborating’ in the
�ab sense.

A number of validities are (B,C ⊆ A)

– �B�Cϕ→ �B∪Cϕ
If an announcement by group B is followed by an announcement by group
C, then B and C could have made a joint announcement with the same
informative content.

– �B�Bϕ→ �Bϕ
A corollary of the previous.

– �B�Cϕ→ �C�Bϕ
Church-Rosser for different groups of agents: let those in B announce some-
thing and those in C announce something else, then there is a subsequent
C announcement in the first case and a subsequent B announcement in the
second case to reach the same epistemic state again, modulo bisimilarity.
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This group announcement logic (GAL) has been reported on in [3,2]. With GAL
one can formalize communication protocols, such as security protocols. Let Alice
be a sender a, Bob a receiver b, and Eve a spy / eavesdropper e. Let ϕ be
some information goal. For example, suppose Alice wishes to informs Bob of
the latest transatlantic scandal p, then an information goal could be that Alice,
Bob, and Eve commonly know that either Alice and Bob share knowledge of p or
Alice and Bob share knowledge of ¬p. (This can be more succinctly formalized
with common knowledge operators but we bypass these in this paper.) The
requirement that not only Alice and Bob but also they and Eve commonly know
this, is usual in a security setting. It formalizes that the protocol is known to have
terminated: we may assume that everything is public about the protocol except
the message (and private keys). There is also a security goal ψ that needs to be
preserved throughout protocol execution, e.g., Alice, Bob, and Eve commonly
know that Eve is ignorant about p (or some more involved aspect of p, such as
the identity of those involved in the scandal). A finite protocol for a and b to
learn the secret safely should observe

ψ → �ab(ϕ ∧ ψ)

The logic GAL shares various properties with APAL, e.g., the axiomatization
is similar and the method to prove completeness, and the model checking com-
plexity is PSPACE-complete.

Agency. The expression �Gϕ has the smell of ‘group of agents G is able to
achieve ϕ’, such that, taking a single agent, �a�aϕ (on S5 models) seems to
formalize that agent a knows that she is able to achieve ϕ, as in logics combining
agency and knowledge [21,1,30]. These are tricky issues in the setting for group
announcements. For example:

– �a�aϕ→ �aϕ is valid
‘If you know that you can do something, you can do it.’

– �a�aϕ→ �a�aϕ is valid
This is known as ‘knowledge de re implies knowledge de dicto’.

– �a�aϕ→ �a�aϕ is not valid (‘knowl. de dicto does not imply knowl. de re’)
The problem is that in different states different announcements may be re-
quired to make ϕ true. As you do not know what the actual state is, you
therefore do not know what announcement makes ϕ true in the actual state.
You only know that in all states that you consider possible there is an an-
nouncement that makes ϕ true. For example, in state s formula ϕ is true
after you announce p, but not after you announce q; in indistinguishable
state t formula ϕ is true after you announce q, but not after you announce
p. Should you announce p or should you announce q? You are not able to
achieve ϕ!

Open Problems. The exact shape of group announcement specifications such as
the finite protocol specification ψ → �ab(ϕ ∧ ψ) are of some interest.
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Group announcement logic GAL seems only a version of APAL. With group
announcements one can only get model restrictions that are (for the S5 case)
an intersection of unions of equivalence classes. E.g., in Example 4 one cannot
get the submodel with domain {00, 10, 11}. This can be used in an expressivity
argument to show that APAL is strictly more expressive than GAL. But it is
unknown if GAL is strictly more expressive than APAL. For example, it is not
known if the existence of a finite two-agent protocol specification as above is
formalizable in APAL.

The logic GAL is probable also undecidable, but the tiling argument used for
APAL does not work with announcements known by agents.

5 Coalition Announcement

Another variation on APAL is coalition announcement logic (CAL). In group
announcement logic (GAL), we investigate the consequences of the simultaneous
announcement (joint public event) by G. The agents not in G do not take part
in the action. In CAL we quantify over what the agents in G can achieve by their
joint announcement, no matter what the other agents simultaneously announce.
The semantics therefore should be clear. The language is the same as for GAL:
L(!,�G) — to distinguish the two �G operators we write �cal

G for the coalitional
version. Properties of CAL are again similar to those of APAL.

Definition 4 (Semantics of coalition announcement). Let B ⊆ A.

Ms |= �cal
B ϕ iff there are ψ1, . . . , ψ|B| such that for all χ1, . . . , χ|A\B|,

Ms |=
∧
�iψi and Ms |= [!(

∧
�iψi ∧

∧
�jχj)]ϕ

Example 5. Consider the four-state model of Example 4. Although we have that
10 |= �a¬�a¬q (namely by simply doing nothing / announcing %), it is not the
case that 10 |= �cal

a ¬�a¬q: agent b can prevent a from remaining ignorant by
announcing ¬q. We still have that 10 |= �cal

ab (�bp ∧ �a¬q) — but this is trivial,
as there are no other agents around to say something to prevent it. The power
of group announcements by all agents is the same as that of an announcement
by the grand coalition.

The logic CAL is summarily discussed in [3], but no complete axiomatization is
given. A complete axiomatization is given for a much related logic in [24], that
also deals with many other aspects of such agency. Instead of a dynamic epis-
temic setting, [24] is an epistemic PDL-style dynamic setting that also involves
factual change. Such PDL action labels have preconditions that are the otherwise
announced formulas. Another difference is that simultaneous announcements by
the agents in group B need not be known by those agents.

The logics GAL and CAL are related in interesting ways. If the grand coalition
A can achieve ϕ in GAL, then obviously as well in CAL, as there are no remaining
agents to counteract it (Example 5):

�Aϕ→ �cal
A ϕ
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On the other hand, if the empty coalition ∅ can achieve ϕ in CAL, then ϕ will
be true after any announcement (APAL):

�cal
∅ ϕ→ �ϕ

Pauly’s Coalition Logic [25] can be embedded in CAL. This includes the princi-
ples:

(S) (�cal
B ϕ ∧ �cal

C ϕ′)→ �cal
B∪C(ϕ ∧ ϕ′) if B ∩C = ∅

(N) �cal
∅ ϕ→ �cal

A ϕ

and [3] also contains a summary but original interpretation of neighbourhood
semantics for a public announcement setting.

Open Problems. The relative expressivity of APAL, GAL and CAL remains un-
clear. The only obvious result is that APAL is strictly more expressive than GAL
and than CAL. Of particular interest is whether CAL is definable in GAL. The
forcing operator {B} proposed by van Benthem in [27] (and in [25]) quantifies
over sequences of moves/actions. Schema �cal

B �cal
B ϕ → �cal

B ϕ should be valid in
CAL (similar to GAL). Therefore �cal

B models what coalition B can achieve/force
in any finite sequence of moves: the extensive game setting of van Benthem. A
quick way to that goal would be to show that coalition announcement �cal

B ϕ is
definable in GAL. The conjectured definition is

�cal
B ϕ↔ �B�A\Bϕ

In other words: if coalition B can achieve ϕ no matter what the other agents
announce at the same time, then coalition B can achieve ϕ no matter what the
other agents announce afterwards.

6 From Arbitrary Announcements to Arbitrary Events

In the logic APAL we quantify over announcements. How about generalizations?
As the effect of an announcement is a model restriction (take a subdomain of
the domain, and restrict the valuation and accessibility relations to that subdo-
main), we can in the first place think of other restrictions of the model. In [35] a
quantification is proposed over restrictions of the accessibility relation. We will
get to that below.

A similar path but towards an even further generalization is as follows. In our
multi-agent setting, an announcement is a public event. By this we mean that all
agents observe the event similarly. Carlos’ announcement ‘Cordoba is in Spain’
is assumed to be heard by all agents present, and they can all assume that they
all know that they all hear this, and so on.

A non-public event is Carlos privately saying to you ‘Cordoba is in Spain’
while I am in another room. Now, there are complications. Firstly, the beliefs of
the other agents may become incorrect. I still believe that you were not informed
that Cordoba is in Spain, and therefore incorrectly believe that you do not know
that. Secondly, lack of synchronization is an issue. In dynamic epistemic logic it
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is usual to identify the observed execution of an action with a tick of the clock.
So the unobservant agents are therefore running behind.

In events that are sometimes called semi-public all agents know that something
happened, but they may have a different perspective on the action. Carlos writes
on a piece of paper whether Cordoba is in Spain (or not), folds it, puts it in a
letter, and hands me the letter in public telling me it contains the truth about
p, and then I open it in public. Now everybody knows that I know the truth
about p, but they still do not know if p is true or false. (If the alternatives in
semi-public events are mutually exclusive, this can be modelled as restriction of
accessibility relations, the first mentioned variation.)

Increasingly more complex scenarios can be worked out. Instead of quantifying
over announcements, public events, we can quantify over a more general class of
events, that includes announcements as a special case. The usual suspect is then
to quantify over the action models of Section 2.

Unlike the previous sections, this section mainly consists of partial results and
open problems.

Restriction of Accessibility Relations. In [35], Wen et al. assume that accessibility
relations Ra are equivalence relations ∼a (and where ∼ is a function that assigns
such an equivalence relation to each agent). A restriction of an accessibility
relation that is an equivalence relation is also known as a refinement of the
partition induced by the equivalence relation. In other words, ∼′

a ⊆ ∼a means
that ∼′

a is a refinement of ∼a. We write ∼′ ⊆ ∼ for ‘for all agents a, ∼′
a ⊆ ∼a’.

Definition 5 (Semantics of quantification over restr. of access. rel.).
Let M = 〈S,∼, V 〉 and ϕ ∈ L(!,�) be given.

M, s |= �ϕ iff there is a M ′ that is as M but with ∼′ ⊆ ∼, s.t. M ′, s |= ϕ

Some of the semi-public actions mentioned above are partition refining, e.g., the
action in the envelope example. The authors discuss alternative solutions to the
knowability paradox in this setting.

We recall how Fine distinguished different forms of quantification, as presented
in Section 1, and that quantifying over all submodels allows us to distinguish
bisimilar states. This is also major disadvantage of mere restriction of accessi-
bility. The � operator of Definition 5 does not preserve bisimilarity of epistemic
states. We think this can easily be repaired by making the deletion of arrows
(refinement of equivalence classes) dependent on logical conditions. For exam-
ple, only delete arrows that start in states where some formula ϕ is true, or only
delete arrows that finish in states where some such ϕ is true, as in [23].

Quantifying over Action Models. The logic AAML (arbitrary action model logic),
interpreted over L(!!,�), has a clear semantics (as stipulated in [6, p.329-330]).

Definition 6 (Semantics of arbitrary events).

Ms |= �ϕ iff there is a Ms with �-free preconditions, such that Ms |= 〈!Ms〉ϕ
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In a manuscript by Balbiani and van Ditmarsch an axiomatization is proposed.
We recall the axiom and derivation rule for � in APAL:

�ϕ→ [!ψ]ϕ where ψ is �-free
From ψ → [!χ][!p]ϕ infer ψ → [!χ]�ϕ where p is not in ϕ, χ, ψ

The axiomatization for AAML consists of ‘the usual suspects’ for the reduction
and composition of action models (see Section 2), plus the following axiom and
— tentatively proposed — rule. There is no completeness proof.

�ϕ→ [!Ms]ϕ where all preconditions in M are �-free
From ψ → [!Ms][!p]ϕ infer ψ → [!Ms]�ϕ where p not in ϕ, ψ or precond. of M

The axiom is obviously correct. The rule could well be another (necessity) form
wherein an occurrence of [!p]ϕ is replaced by an occurrence of �ϕ. Assuming
the rule is correct, the surprising aspect is that public announcement of variable
p is then sufficient to ‘witness’ the execution of any action model. This applies
a result from [31]: the execution of an action model in a given model Ms has
the same effect as the announcement of fresh propositional variable p in a model
that is bisimilar to Ms except for p (and such that the value of p does not affect
the value of the ϕ evaluated in Ms). On the level of the proof system, this might
mean that it is sufficient to have a derivation from a fresh atom (for any model)
in order to get it from any action model, no matter how complex.

Any Action That Satisfies ϕ. A public announcement !ϕ is an event similarly
perceived by all agents with execution precondition ϕ. The corresponding action
model is a singleton, accessible to all agents, with, obviously, precondition ϕ.
Consider any epistemic action with precondition ϕ. For example, any epistemic
action such that Cordoba is in Spain. Any communicative act is fine, such as
lying, deceiving, and private announcement. As long as Cordoba is in Spain.
This seems an interesting form of quantification. (It is somewhat similar to the
quantification described by de Lima in [24, p.110]: what holds if the agents in
group B make a simultaneous announcement ϕ1 ∧ . . . ∧ ϕn, no matter what
the remaining agents simultaneously announce.) We reuse the notation !ϕ for
this ϕ-satisfying epistemic action operator. It should obey that Ms |= 〈!ϕ〉ψ
iff there is a Ms such that Ms |= 〈!Ms〉ψ (from Ms |= 〈!Ms〉ψ also follows that
Ms |= pre(s)). More succinctly, where �ϕ is the quantification over action models
of this section:

Definition 7 (Quantifying over actions that satisfy ϕ)

Ms |= 〈!ϕ〉ψ iff Ms |= ϕ ∧ �ψ

Such a quantification was suggested by Aucher in [5], based on the approach
presented in [4] where instead of action models an action language is presented,
on a par with the static language (see Section 8). An intriguing question is if
we can axiomatize this logic in the language L(!), without action models and
without �.
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More Open Problems. The logic for arbitrary action models lacks an axioma-
tization, but another open problem is whether this logic is decidable. The ex-
pectation of the reader might be that, as APAL is undecidable, AAML is also
undecidable. But the mere fact that AAML quantifies over a larger set of objects
does not mean that that logic is therefore also undecidable. Refinement modal
logic (RML), presented in Section 7, is on finite models equivalent to AAML.
And RML is decidable. So why not AAML as well?

Group announcement logic GAL and coalition announcement logic CAL can
be generalized to action models — such very similar logics would clearly benefit
from a complete axiomization of AAML. We should then require that the pre-
conditions of all actions in the action models take the form

∧
a∈B �aϕa (where

all ϕa are �-free). This would give us a more general meaning to ‘ability of a
group B’. For example, consider agents Anne, Bill, Cath, and Dave. Anne and
Bill know p but Cath and Dave don’t. The group consisting of Anne and Bill
has the ability to achieve that:

Cath knows p but is uncertain if Anne knows p, and Dave knows p but
is uncertain if Bill knows p.

The way to achieve that is:

Anne privately informs Dave that p and Bill privately informs Cath that
p.

We cannot achieve the stipulated postcondition by a public announcement! Then,
Cath and Dave would have common knowledge that Anne and Bill know p.

7 Refinement Modal Logic

In arbitrary public announcement logic the quantification � is over announce-
ments !ϕ, on the level of the syntax. But as we have seen there is a corresponding
structural operation: model restriction to the ϕ-states. Another structural op-
eration used to quantify was restriction of the accessibility relation. The partic-
ular quantification we presented was deficient, because it was not bisimulation
preserving. But we can make it bisimulation preserving again by making the
restrictions dependent on logical (formula) conditions. Arbitrary action model
logic quantifies over pointed action models Ms. As such action models are param-
eters in the language, this is again a syntactic way to define the quantification
(their execution as the restricted modal product is relative to action precon-
ditions, that are formulas). Wouldn’t there be a more purely semantic way to
define quantification over information change? Somewhat surprisingly, there is.
It is called refinement.

Bisimulation determines when two structures have the same informative con-
tent. Bisimilar states have the same valuation (atoms), and for all agents every
step (arrow in the accessibility relation for that agent) that you do from one
state, can be matched by a step that you do from the other state (forth), and
vice versa (back). Simulation is widely used in computer science. We now only
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require atoms and forth. (Typically, simulation only requires inclusion of propo-
sitional variables: all variables true in the origin should be true in the image. We
require that for all literals.) We can think of a structure M ′

s′ that is simulating a
structure Ms as containing all the structural properties of M but maybe more: in
M ′ we can match all steps we do in M but there may be unmatched steps in M ′

— back is not required. Now consider doing simulation in the other direction.
We require only atoms and back. This direction is called refinement. It corre-
sponds to structural loss instead of structural gain. But more structure means
more uncertainty and less structure means less uncertainty. So, less uncertainty
is more information. (Only for certain ‘positive’ aspects of information it is real
gain.) This suggests that existentially quantifying over informative change means
that there is a refinement of an epistemic model.

A model restriction due to an announcement is an example: given an M and
some restriction M |ϕ, every state in the restriction has an original in M , and
every step one does in the restriction can be matched by the same step in M .
But not vice versa! Steps in M to ¬ϕ-states cannot be matched. So we have
back, but not forth. And trivially we have atoms, because states in the model
restriction do not change the value of atoms.

Example 6. Consider the following structure, for an anonymous agent (unlabeled
modality). The ◦ state is the designated point. The arrows can be associated with
a modality.

◦ • • •

E.g., ����⊥ is true in the point. From the point of view of the modal language,
this structure is essentially the same structure (it is bisimilar) as

• • • ◦ • • •

This one also satisfies ����⊥, and any other modal formula that is true in
the first one as well, for that matter. A more radical structural transformation
would be to consider submodels, such as

◦ • •

A distinguishing formula between the two is ���⊥, which is true here and false
above. Can we consider other ‘submodel-like’ transformations that are neither
bisimilar structures nor strict submodels? Yes, we can. Consider

• ◦ • •

It is neither a submodel of the initial structure, nor is it bisimilar. It satisfies the
formula ��⊥∧���⊥ that certainly is false in any submodel. It is a refinement
of the initial structure.

There still is a ‘submodel-like’ relation with the original structure. Look at its
bisimilar duplicate, the one with seven states. The last structure is a submodel



104 H. van Ditmarsch

of that copy. Such a relation always holds: a refinement of a given structure can
always be seen as the model restriction of a bisimilar copy of that structure.

We can think of the restriction as the result of the public announcement of a
variable p. But that variable has then first to be made true exactly in the four
states in the restriction and false elsewhere! This we can achieve, with respect
to the original structure, by choosing a duplicate that is bisimilar except for p,
and such that p is made true on the four states of the later restriction. In other
words: refinement is bisimulation except for p, followed by model restriction to
p. In syntactic terms: refinement quantification is bisimulation quantification
followed by relativization.

The logic based on the refinement operation has been presented in [31,32,9,19,18].
It is also known as ‘future event logic’. The language of this logic is again L(�B)
(but in an entirely different usage of this parameter B than that in GAL and
CAL). For �A we write �.

Definition 8 (Refinement). Given are epistemic states Ms and M ′
s′ , and let

B ⊆ A. A relation between the domains of M and M ′ that satisfies (i) atoms,
(ii) back for all agents in B, and (iii) forth and back all agents in A \ B
is a B-refinement. Epistemic state M ′

s′ is then (also called) a B-refinement of
Ms (i.e., given that (s, s′) is in the relation), and we write Ms←BM

′
s′ . An A-

refinement we call a refinement (plain and simple) and for {a}-refinement we
write a-refinement.

Definition 9 (Semantics of the refinement modality). Assume an epis-
temic model M = (S,R, V ). Let B ⊆ A.

Ms |= �Bϕ iff for all M ′
s′ : Ms←BM

′
s′ implies M ′

s′ |= ϕ

We have the validities �a�bϕ↔ �b�aϕ and also �a�bϕ↔ �abϕ. It is therefore
sufficient to give results for a single agent �a. In this refinement modal logic
(RML) we see some by now familiar validities.

– �aϕ→ ϕ (reflexivity)
– �a�aϕ→ �aϕ (transitivity)
– �a�aϕ→ �a�aϕ (Church-Rosser)

The �a operator can also seen as implicit quantification over a propositional
variable, just as in bisimulation quantified logics we have explicit quantification
over propositional variables. The bisimulation variation except for one variable
followed by a model restriction in Example 6 is a general result. Refinement
quantification is bisimulation quantification plus relativization (modulo an in-
ductively defined translation), for �A (�) we get:

�ϕ is equivalent to ∃pϕp

The chosen notion of relativization also matters: given the primitive �aϕ, the re-
sult had to be obtained using the arrow elimination semantics for announcement,
not the state elimination semantics.
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Action Models and Refinement. There is a strong link between AAML (arbitrary
action model logic) and RML: executing an epistemic action in an epistemic state
produces a refinement of that epistemic state, and, dually, for every refinement
of a finite epistemic state there is an epistemic action such that the result of
its execution in that pointed model is a model bisimilar to the refinement [31,
Prop.4,5]. It is instructive to outline the proof of these results.

Given pointed model Ms and epistemic action Ms, the resulting (M ⊗M)(s,s)
is a refinement of Ms by way the relation R consisting of all pairs (t, (t, t)) such
that Mt |= pre(t). Some states of the original model may get lost in the modal
product, namely if there is no action whose precondition can be executed there.
But all ‘surviving’ (state,action)-pairs simply can be traced back to their first
argument: clearly a refinement.

For the other direction, construct an epistemic action Ms′ that is isomorphic
to a given refinementNs′ of a modelMs, but wherein valuations (determining the
value of propositional variables) in states t ∈ N are replaced by preconditions for
action execution of the corresponding action points (also called) t. Precondition
pre(t) should be satisfied in exactly those states s ∈ M such that (s, t) ∈ R,
where R is the refinement relation linking Ms and Ns′ . Now in a finite model,
we can single out these states by a distinguishing formula [10]. One then shows
that (M ⊗M)(s,s′) is bisimilar to Ns′ . It is unknown if the finiteness restriction
can be lifted.

Example 7. We illustrate that action model execution is refinement and vice
versa. Two agents a, b are uncertain about the value of a (true) fact p. An
informative event is possible after which a knows that p but b does not know
that. The initial state of information is on the left, and its refinement validating
the postcondition is on the right. (Actual states are underlined.)

0

1

ab

0

1 1

ab

b

b
R

R

R

On the left, the formula �(�ap ∧ ¬�b�ap) is true, because �ap ∧ ¬�b�ap is
true on the right. On the right, in the actual state there is no alternative for
agent a (only the actual state itself is considered possible by a), so �ap is true,
whereas agent b also considers another state possible, wherein agent a considers
it possible that p is false. Therefore, ¬�b�ap is also true in the actual state on
the right.

The model on the right in the figure is neither an a-refinement of the model
on the left, nor a b-refinement of it, but an {a, b}-refinement. The right model
is not bisimilar to the left model, e.g., from the underlined 1-state on the right
a cannot access a state where p is false.

Now we produce the right model as the execution of an epistemic action! The
epistemic action consists of two action points t and p, they can be distinguished
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by agent a but not by agent b. What really happens is p; it has precondition p.
Agent b cannot distinguish this from t with precondition %. In words: agent a
learns that p is true, but agent b is uncertain if that has happened or not (i.e.,
or if nothing has happened).

The execution of this action is below. The point of the structure is the one
with precondition p: in fact, a is learning that p, but b is uncertain between that
action and the ‘trivial’ action wherein nothing is learnt. The trivial action has
precondition %. It can be executed in both states of the initial model. The actual
action can only be executed in the state where p is true. Therefore, the resulting
structure is the refinement with three states.

0

1

ab

× t

p

b

= (0, t)

(1, t) (1, p)

ab

b

b

Axiomatization and Theory. The axiomatization RML has the following axioms
involving �a.

�a∇aΦ↔
∧
ϕ∈Φ�a�aϕ

�a∇bΦ↔ ∇b{ϕ ∈ Φ | �aϕ} where a �= b
�a
∧
b∈B ∇bΦb ↔

∧
b∈B �a∇bΦb

This uses the cover operator∇a. By abbreviation,∇aΦ is defined as
∧
ϕ∈Φ�aϕ∧

�a
∨
ϕ∈Φ ϕ. The single-agent version of the axiomatization only contains the first

axiom. Consider the case where Φ = {ϕ1, ϕ2}. The first axiom then says that if
there is a refinement with two accessible states, of which one validates ϕ1 and the
other ϕ2 (so that we have �aϕ1 and �aϕ2 and �a(ϕ1∨ϕ2)), then already in the
initial model there should be two accessible states such that after a refinement
ϕ1 is true in one and ϕ2 is true in the other (see also Example 8, next).

All these axioms are equivalences. This seems a recipe to eliminate by rewrit-
ing the refinement quantifiers from the epistemic language. And that is indeed
the case! In other words, the axiomatization is complete, the logic RML is equally
expressive as the base epistemic (or rather: multi-agent modal) logic, and there-
fore it is evidently also decidable, unlike APAL (and unlike AAML?). Such nice
results do not generalize straightforwardly to other model classes than K. The
problem is that the ‘implicit’ bisimulation aspect in the semantics makes it very
relevant over what class of models the quantification is. The above axioms may
be invalid for other model classes.

Example 8. On the class S5 the first axiom is invalid! Consider �a∇a{�ap,¬�ap}
and �a�a�ap∧�a�a¬�ap. The first is inconsistent for S5. It implies that there
is a refinement in which �a�ap and �a¬�ap are both true. In S5 this is equiv-
alent to both �ap and ¬�ap being true, an inconsistency: you cannot know and
not know p at the same time! But the second is very conceivable, if you are
uncertain about p, you consider it possible that you are informed about p, after
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which you know p, but you also consider it possible that you are kept in the
dark, after which you still do not know that p. So, there is no equivalence there,
this axiom does not hold for class S5.

Open Problems. There are a number of results on complexity and succinctness
for a version of refinement modal logic for the modal μ-calculus, for this see [9]
(refinement μ-calculus is non-elementary). The complexity of RML is reported
complete for AEXPpol in a manuscript by Bozzelli, van Ditmarsch and Pinchi-
nat (AEXPpol is the class of problems solvable by alternating Turing machines
running in single exponential time but only with a polynomial number of alter-
nations). French and Hales are investigating refinement modal logic for various
other classes than the results now available (for K, KD45, and, recently, S5):
there are worthwhile results to obtain for axiomatization, complexity, and ex-
pressivity. It seems also worthwhile to investigate refinement in other modal
settings, e.g., refinement CTL and refinement PDL.

8 Other Variations and Conclusions

We presented a fair variety of quantifiers over information change. Fair, we hope,
but clearly not all. In the course of our investigations we came across other op-
tions of independent interest, and of which the relation to the proposals pre-
sented in this contribution, that are mainly our proposals, is unclear. Consider
the following.

Difference Operator. In the sabotage games proposed by van Benthem [29] a
network with multiple connections between nodes is given, a player called Run-
ner attempts to travel between two given nodes in the network and a player
Blocker attempts to sabotage the first player by removing nodes in the network
after every move of Runner. If Runner cannot reach his destination, Blocker
wins. Otherwise, Runner wins. The focus of [29] is on the complexities of solv-
ing such games (determine the winner). Van Benthem also proposes a modal
logical setting [29, p.271], as follows. We can think of removing a link between
states/destinations as the elimination of a state/world in a corresponding Kripke
model, such that we have:

Ms |= �ϕ iff there is a t �= s such that (M − t)s |= ϕ

where M − t is the model restriction of M to the domain minus t. As far as
we know, the axiomatization of this logic is an open question. Surely there is a
relation with the difference operator proposed by de Rijke [11].

Action Language Quantifiers. In works as [4,5] Aucher proposes a dynamic epis-
temic logic with an action language instead of action models. The idea is that the
standard modalities can have both a static and dynamic interpretation. Similar
ideas were proposed by Kooi in [22, Section 4.4.1], the ‘action language logic’
ALL, and the roots go back to [7]. Instead of having pointed action models
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as epistemic actions, consider having action language expressions as epistemic
actions. The base language is again L, multi-agent epistemic logic, but now in-
terpreted on action models. The action formula p is true on all action models Ms

such that pre(s) = p, but �aq is true if agent a considers an alternative action
possible, accessible from s in M, with precondition q. The quantifier proposed in
Definition 7, over all action models with precondition ϕ, is the action language
formula satisfying ϕ. Just like that. Consider ¬p ∧ �ap, as an action language
expression. This stands for all actions satisfying ¬p where a incorrectly believes
that the action satisfies p is executed. That formula holds in a two-action ac-
tion model where you are lying to a that p, but also in any action model that
contains that as a substructure (so, in a way, in any action model simulating
the two-action minimal one). The relation to operators like �, that quantify in
a way unrelated to any specific formula, is as yet unclear.

More and more quantifiers over information change... As Ramanujam says:
“These are all submodel operators. What are their properties?” Well, the ones in
this contribution are fairly S4-like, and satisfy ��ϕ → �ϕ. And also �ϕ → ϕ.
But if we were to quantify over protocol execution logics, 4 would not hold. It is a
bit unclear what properties should always hold. The complexity picture for model
checking and for satisfiability is rather incomplete. Overviews of complexities of
dynamic epistemic logics such as the notes by YanjingWang are eagerly expected.
We encourage any reader to contribute to the further development and completion
of this new frontier in dynamic epistemic logics. This story is to be continued.
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Abstract. Well quasi-orders (wqo’s) are an important mathematical
tool for proving termination of many algorithms. Under some assump-
tions upper bounds for the computational complexity of such algorithms
can be extracted by analyzing the length of controlled bad sequences.

We develop a new, self-contained study of the length of bad sequences
over the product ordering of Nn, which leads to known results but with
a much simpler argument.

We also give a new tight upper bound for the length of the longest
controlled descending sequence of multisets of Nn, and use it to give
an upper bound for the length of controlled bad sequences in the ma-
joring ordering of sets of tuples. We apply this upper bound to obtain
complexity upper bounds for decision procedures of automata over data
trees.

In both cases the idea is to linearize bad sequences, i.e. transform
them into a descending one over a well-order for which upper bounds
can be more easily handled.

1 Introduction

A quasi-order is a binary relation ≤ over a given set A that is reflexive and
transitive. A sequence X = x0, x1, x2, . . . of elements of A is called good if there
are i < j such that xi ≤ xj . A sequence is bad if it is not good. A well quasi-order
(wqo) is a quasi-order where all infinite sequences are good, or, equivalently, all
bad sequences are finite.

Wqo’s are widely used in termination proofs of algorithms in constraint solv-
ing, automated deduction, program analysis, verification and model checking,
logic, etc. From the analysis of a termination proof of a given algorithm S,
whose correctness is grounded in the analysis of certain wqo, one may extract
a computational complexity upper bound for S. Roughly, the idea is that any
sequence of successive configurations of S (with a given input) is transformed
into a bad sequence in the wqo. Thus, having an upper bound for the length
of the bad sequence entails an upper bound for the number of steps that the
algorithm needs to terminate.
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However, in principle, a bad sequence over a wqo can be arbitrarily large. For
instance, the lexicographic ordering ≤lex over Nn is a well-order, and hence a
wqo. Observe that for N2 and any N , the sequence

〈1, 0〉, 〈0, N〉, 〈0, N − 1〉, 〈0, N − 2〉, . . . , 〈0, 1〉, 〈0, 0〉 (1)

is ≤lex-bad (which in a total order is equivalent to say that it is decreasing) and
has length greater than N . Therefore, in general there is no bound to the length
of a bad sequence starting with a given element: bad sequences in a wqo are
finite but could be arbitrarily large.

In practice, in the analysis of termination proofs, one has two additional as-
sumptions of a wqo (A,≤). First, one has some effective way of measuring the
size of each element x ∈ A, notated |x|A or simply |x|.

Definition 1. [13] A norm function |·|A over a set A is a mapping |·|A : A→ N
that provides every element of A with a positive integer, its norm. The norm
function is said to be proper if {x ∈ A | |x|A < n} is finite for every n.

Second, we may restrict ourselves to bad sequences x = x0, x1, x2 . . . with a
controlled behavior, which means that there is an effective way of computing,
given i, an upper bound for |xi|.

Definition 2. Let g : N→ N be a computable increasing function and let (A,≤)
be a wqo with a proper norm. A bad sequence x = x0, x1, x2 . . . is g, t-controlled
if for all i, |xi|A < g(t+ i). We say that g is the control function for x.

As a consequence of König’s Lemma, controlled bad sequences over wqos cannot
be arbitrarily large: given a control, there exist upper bounds for their lengths.
Let us go back to the example of the ≤lex-decreasing sequence in (1). If we
further impose that the sequence is g, 0-controlled, where g(0) = 2 and we fix
|x|N2 to be the infinity norm of x then the reader may verify that the longest
g, 0-controlled decreasing sequence is

〈1, 1〉, 〈1, 0〉, 〈0, g(2)− 1〉, 〈0, g(2)− 2〉, . . . , 〈0, 1〉, 〈0, 0〉. (2)

In this paper we give upper bounds for the length of g, t-controlled bad sequences,
when t is a parameter. That is, given a well (quasi) order under study (we address
lexicographic, product, multiset and majoring) (A,≤), we define LAg (t) as the
length of the longest g, t-controlled bad sequence in (A,≤), and we study upper
bounds for LAg , which are classified in the Fast Growing Hierarchy (Fα)α<ε0 of
Löb and Wainer [10].

For a more detailed introduction to some topics of this paper, see [1].

Linearizing

Our technique to obtain an upper bound for LAg is to linearize the wqo (A,≤A)
with a proper norm | · |A into a suitable well linear order (B,≤B) with a proper
norm | · |B . This means to find a function h : A+ → B such that for every
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a ∈ A+ and a ∈ A, if a�a is a bad sequence in (A,≤A) then h(a) >B h(a�a).
So if a = a0, . . . , ak is bad in (A,≤A) then

b = h(a0), h(a0, a1), h(a0, a1, a2), . . . , h(a)

is descending in (B,≤B). Furthermore, for any control function g we seek a
control function g̃ such that if a is g, t-controlled then |h(a)|B < g̃(|a| + t − 1)
—here |a| denotes the length of a. Hence if a is g, t-controlled then b is g̃, t-
controlled and therefore from a g, t-controlled bad sequence in (A,≤A) one can
get a g̃, t-descending sequence in (B,≤B) of the same length. Hence LAg ≤ LBg̃ ,

and the task is now to find an upper bound for LBg̃ . In practice, these upper
bounds are easier to devise for well-orders than for wqo’s.

Our Contributions

Product and lexicographic ordering. For some dimension n, let (Nn,≤pr) be the
set of n-tuples of N ordered with the natural product ordering. Dickson’s Lemma
is the statement that (Nn,≤pr) is a wqo. We denote Lpr

n,g(t) the length of the
longest g, t-controlled bad sequence over (Nn,≤pr). Here we take |x|Nn to be
|x|∞.

McAloon [11] shows an upper bound for Lpr
n,g when g is linear, and places

it at the level Fn+1 of the Fast Growing Hierarchy. Later Clote [2] simplifies
McAloon’s argument and finds an upper bound in Fn+6. Neither of these proofs
are self contained and both are quite complex. In [5] D. and S. Figueira, Schmitz
and Schnoebelen show an improved upper bound of Fn with a simpler proof,
relying in a mathematical more general setting of disjoint unions of powers of
N. In fact, the main result is both more general and more precise than those of
McAloon and Clote: if g ∈ Fγ then Lpr

n,g is bounded by a function in Fγ+n−1.
Although this proof is markedly simpler than those of [11] and [2], there are still
some technical lemmas regarding this richer setting.

In Thm. 4 we give an even shorter, elementary and self-contained proof of the
result of [5] which only uses a linearization of (Nn,≤pr) into (Nn,≤lex). As a side
result, in Prop. 3 we obtain a tight upper bound for the length of the longest
decreasing sequence in (Nn,≤lex).

Majoring and multiset ordering. Informally, if A and B are finite subsets of Nn

then A ≤maj B iff every element of A is majorized (with respect to ≤pr) in B.
It is well-known that ≤maj over subsets of Nn is a wqo, and this fact is used in
a number of decidability results.

In Cor. 19, we show an upper bound for Lmaj
n,g (t), the length of the longest

g, t-controlled ≤maj-bad sequence of finite subsets of Nn. To obtain this upper
bound, we linearize the wqo into the multiset ordering over (Nn,≤lex), which
is a well-order. In Thm. 12 and Thm. 14 we show a tight upper bound for the
longest decreasing sequence of multisets.

We also give some applications on how our upper bound for Lmaj
n,g (t) can be

used in some decision procedures of some types of automata over data trees.
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Outline

In §2 we give the formal definitions of all the involved orders and the definition
of the Fast Growing Hierarchy. In §3, §4, §5, §6 we study the lexicographic,
product, multiset and majoring ordering, respectively. In §7 we mention some
applications of our upper bounds in concrete decision procedures. We close with
some conclusions and future work in §8.

2 Basic Definitions

If A is a set then |A| denotes the cardinality of A. If x ∈ An then the i-th coordi-
nate of x is denoted x[i], so x = 〈x[1], . . . , x[n]〉. Sequences are always in boldface
and if x is a finite sequence then |x| denotes its length. The concatenation of
the sequence x and the element x at the rightmost place is denoted x�x. We fix
g : N→ N to be a computable and increasing function.

Given a set X provided with a total order ≤, (X,≤) is called a well-order if
every non-empty subset of X has a minimum.

We work with the following wqo’s:

Lexicographic ordering. If x, y ∈ Nn then it is the well-order defined as

x <lex y
def⇔ x[1] < y[1] ∨ (x[1] = y[1] ∧ 〈x[2], . . . , x[n]〉 <lex 〈y[2], . . . , y[n]〉) .

Product ordering. If x, y ∈ Nn then it is the wqo defined as

x ≤pr y
def⇔ (∀i ∈ {1, . . . , n}) x[i] ≤ y[i].

Multiset ordering. A multiset M over a set X is a function X → N. Intuitively a
multiset is a generalization of a set, where elements may be repeated. For x ∈ X ,
M(x) is called the multiplicity of x. A multiset is finite if the set of elements with
positive multiplicity is finite. We notate x ∈ M for M(x) > 0. Let M<∞(X)
denote the class of finite multisets over X .

Let (X,≤) be a poset and let M,N ∈ M<∞(X). We define

N <(≤)
ms M

def⇔M �=N ∧ (∀x∈X)[N(x)>M(x) ⇒ (∃y∈X)[y>x∧M(y)>N(y)]].

Intuitively, this says that N can be obtained fromM by replacing some elements
by finitely many (possibly zero) smaller (with respect to ≤) elements. If (X,≤) is
a well-order then (M<∞(X),≤(≤)

ms ) is also a well-order. See [3] for more details.

We will study (M<∞(Nn),≤(≤lex)
ms ), the multiset ordering of finite multisets

of tuples with the underlying lexicographic ordering. In this context, we write

≤ms for ≤(≤lex)
ms . Observe that it is a well-order because (Nn,≤lex) is so.

Majoring ordering. Let P<∞(X) denote the finite and non-empty parts of X .
For a wqo (X,≤) and A,B ∈ P<∞(X), the majoring ordering is defined as

A ≤(≤)
maj B

def⇔ (∀x ∈ A)(∃y ∈ B) x ≤ y.
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We will study (P<∞(Nn),≤(≤pr)
maj ), the majoring ordering of finite sets of tuples

with the underlying product ordering. In this context, we write ≤maj for ≤(≤pr)
maj .

Observe that it is a wqo because (Nn,≤pr) is so (see for instance [4, Prop. 2.15]).

The Fast Growing Hierarchy (Fα)α<ε0 . Let ε0 be the least infinite ordinal α such
that ωα = α. The Fast Growing Hierarchy is defined as

F0(x)
def
= x+ 1 Fα+1(x)

def
= F x+1

α (x) Fλ
def
= Fλx(x),

where in general gk denotes the k-th iteration of g (i.e. g1 = g and gk+1 = g◦gk),
α < ε0 is an ordinal, λ < ε0 is a limit ordinal and (λx)x<ω is an increasing
sequence of ordinals with limit λ (a fundamental sequence), which we fix to be:

(γ + ωβ+1)x
def
= γ + ωβ · (x+ 1) (γ + ωλ)x

def
= γ + ωλx .

The class Fα of the Fast Growing Hierarchy is the closure under substitution
and limited recursion of the constant, sum, projections, and the functions Fα.
F0 = F1 contains all linear functions, F2 contains all the elementary functions, F3

contains all the tetration functions.
⋃
n<ω Fn is the class of all primitive recursive

functions and in general
⋃
α<ωk Fα is the class of k-recursive functions [12]. There

are a number of important monotonicity results regarding the Fast Growing
Hierarchy: for ordinals α < β < ε0, the function Fα is strictly increasing, Fα+1 ≥
Fα, Fα is eventually majorized by Fβ , and then Fα � Fβ (except α = 0 and
β = 1), etc. For more results on the Fast Growing Hierarchy, cf. [10].

3 The Lexicographic Ordering

We denote by Llex
n,g(t) the length of the longest g, t-controlled decreasing sequence

in (Nn,≤lex). In [5, Section VI], it is shown that

Llex
1,g(t) = g(t), Llex

n+1,g(t) =

g(t)∑
j=1

Llex
n,g

(
oj−1
n,g (t)
)
, on,g(t)

def
= t+ Llex

n,g(t). (3)

Proposition 3. For any ordinal γ ≥ 1, if g ∈ Fγ then Llex
n,g has an upper bound

in Fγ+n−1.

Proof. We proceed by induction on n. If n = 1 then Llex
1,g(t) = g(t), and by

hypothesis g ∈ Fγ . Now suppose Llex
n,g ≤ h ∈ Fγ+n−1. We have Llex

n+1,g(t) ≤
g(t) · Llex

n,g(o
g(t)−1
n,g (t)) ≤ g(t) · og(t)n,g (t) where the first inequality follows from (3),

since on,g is growing, and the second one because Llex
n,g ≤ on,g.

Since Llex
n,g ≤ h ∈ Fγ+n−1 then on,g(t) ≤ h(t)+t and so on,g ∈ Fγ+n−1. By [10,

Thm. 2.10], there is p such that F pγ+n−1 majorizes on,g. Therefore

Llex
n+1,g(t) < g(t) · F p·g(t)γ+n−1(t)

≤ g(t) · F p·g(t)+1
γ+n−1 (p · g(t)) (by monononicity of Fγ+n−1)

= g(t) · Fγ+n(p · g(t)),
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which lies in Fγ+n, since it is the composition and product of functions in Fγ+n
(and since γ + n ≥ 2, Fγ+n is closed by products). #�

In [5, Prop. VI.3] it is shown that if g = Fγ then Llex
n,g ≥ Fγ+n−1. Hence our

upper bound is tight.

4 The Product Ordering

In this section we linearize the wqo (Nn,≤pr) into the well-order (Nn,≤lex) and
derive an upper bound for Lpr

n,g(t), the length of the longest g, t-controlled bad
sequence over (Nn,≤pr).

The next result follows the idea of Harwood, Moller and Setzer [7] adapted to
controlled bad sequences. For the sake of completeness we include the full proof.

First, let us mention the intuition behind the proof. For x ∈ Nn, define ↑x def
=

{z ∈ Nn | x ≤pr z}. Let n = 2, and suppose

x = 〈x0, y0〉, 〈x1, y1〉, 〈x2, y2〉, . . . , 〈xk, yk〉

is a bad sequence in (N2,≤pr). Let a(x) = min0≤i<|x| xi, b(x) = min0≤i<|x| yi
and C(x) = ↑〈a(x), b(x)〉 \

⋃
0≤i<|x| ↑〈xi, yi〉. It is easy to see that C(x) is finite.

Here is how we can linearize (N2,≤pr) into (N2,≤lex): Define h(x)
def
= 〈a(x) +

b(x), |C(x)|〉 ∈ N2 and suppose that x�〈x, y〉 is bad. If x < a(x)∨ y < b(x) then
h(x�〈x, y〉)[1] < h(x)[1]; in case x ≥ a(x)∧y ≥ b(x) then C(x�〈x, y〉) ⊆ C(x). In
this last case, since 〈x, y〉 ∈ C(x) \C(x�〈x, y〉), we have |C(x�〈x, y〉)| < |C(x)|.
Therefore h(x�〈x, y〉) <lex h(x). Furthermore, if x is g, t-controlled then C(x)
has at most g(t+ |x| − 1)2 elements, and a(x) + b(x) < 2g(t+ |x| − 1). Hence if
x is g, t-controlled, then the sequence

y = h(〈x0, y0〉), h(〈x0, y0〉, 〈x1, y1〉), . . . , h(x),

is <lex-descending and g̃, t-controlled, where g̃(x) = 2g(x)2.
The argument for any n > 2 cannot be generalized straightforwardly, obtain-

ing a linearization into (N2,≤lex). For instance, for n=3 and x=〈0, 0, 1〉, 〈0, 1, 0〉,
we would have C(x) = ↑〈0, 0, 0〉 \ (↑〈0, 0, 1〉 ∪ ↑〈0, 1, 0〉) and this set is infinite
((N, 0, 0) ∈ C(x) for any N). However, by an inductive argument (Nn,≤pr) can
be linearized into (Nn,≤lex).

Theorem 4. There is a function hn : (Nn)+ → Nn such that if x�x is bad in
(Nn,≤pr) and x is nonempty, then hn(x

�x) <lex hn(x). Furthermore if x is
g, t-controlled then |hn(x)|∞ < g̃(|x| − 1 + t), for g̃(x) = n! g(nx)n.

Proof. We define the functions hn by induction in n. If x = x0, x1, x2, . . . , xk
is a bad sequence in N then define h1(x0, x1, x2, . . . , xk)

def
= xk. Since in N the

product order and the lexicographic order coincide, we have h1(x
�x) <lex h1(x).

For the inductive construction of hn, let n > 1 and assume the statement of
the theorem for dimension n− 1. For 1 ≤ i ≤ n and x ∈ Nn we define

deli(x)
def
= 〈x[1], . . . , x[i − 1], x[i+ 1], . . . , x[n]〉,
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i.e. deli(x) deletes the i-th component of the n-tuple x. Given a finite and
nonempty bad sequence x = x0, x1, . . . , xk of n-tuples, we define the set

badi(x)
def
= {deli(xj0 ), . . . ,deli(xjp ) | p ≥ 0, 0 ≤ j0 < · · · < jp ≤ k, and

deli(xj0), . . . ,deli(xjp) is bad},

i.e. badi(x) consists of the bad subsequences of (n− 1)-tuples of x in which the
i-th components of the n-tuples have been deleted. Finally we define

mini(x)
def
= min<lex

{hn−1(y) | y ∈ badi(x)} and

extn(x)
def
= {x ∈ Nn | (∀i ∈ {1, . . . , n}) mini(x) = mini(x

�x), and

(∀j ∈ {0, . . . , k}) xj �≤pr x},

which consists of the n-tuples with which the sequence x can be extended without
altering the mini values and yet while maintaining badness.

Fact 1. |extn(x)| <∞, and if x is g, t-controlled, then |extn(x)| < g(k + t)n.

Proof. Let z = deli(xj0 ), . . . ,deli(xjp) ∈ (Nn−1)+ be a bad sequence, suppose
mini(x) = hn−1(z), and suppose that s ∈ extn(x). If the sequence z�deli(s)
were bad, then by the ind. hyp. wewould get thatmini(x

�s) ≤lex hn−1(z
�deli(s))

<lex hn−1(z) = mini(x), contradicting s ∈ extn(x). Therefore, since z is bad
but z�deli(s) is not, we have deli(xjm) ≤pr deli(s) for some m. But since
s ∈ extn(x) we have that xjm �≤pr s, and therefore s[i] < xjm [i]. Now, since
this goes for all i, we conclude that |extn(x)| is finite.

Now if x is g, t-controlled, then xj [i] < g(k+t) for all j, because g is increasing.
By the above argument |extn(x)| ≤ g(k + t)n, but since x was nonempty and
x0 /∈ extn(x), we conclude |extn(x)| < g(k + t)n. #�

We finally define

hn(x)
def
=

〈
n∑
i=1

mini(x), |extn(x)|
〉
∈ Nn,

where the sum is taken componentwise and thus results in a tuple in Nn−1. We
conclude the proof with the following two facts:

Fact 2. If x�x is bad then hn(x
�x) <lex hn(x).

Proof. Suppose that y = x�x bad. Since for any i ∈ {1, . . . , n}, badi(x) ⊆
badi(y), then mini(y) ≤lex mini(x); and if mini(y) = mini(x) for all i then
extn(y) � extn(x), since extn(y) ⊆ extn(x) but x ∈ extn(x) \ extn(y).
Thus |extn(y)| < |extn(x)|. #�

Fact 3. If x is g, t controlled then |hn(x)|∞ < g̃(|x| − 1 + t), where g̃(x) =
n! g(nx)n.
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Proof. By induction in n ≥ 1. If n = 1 then If x = x0, . . . , xk is g, t-controlled,
then h1x = xk < g(t+ k) = g(t+ |x| − 1) = g̃(t+ |x| − 1).

Since any y ∈ badi(x) is a g, (t + k)-controlled bad sequence of Nn−1, by
inductive hypothesis we get

|hn−1(y)|∞ < (n− 1)! g((n− 1)(|y| − 1) + t+ k)n−1

≤ (n− 1)! g((n− 1)k + t+ k)n−1

= (n− 1)! g(nk + t)n−1.

In particular, for y such that mini(x) = hn−1(y), we conclude |mini(x)|∞ <
(n − 1)! g(nk + t)n−1, and so the first n − 1 coordinates of hn(x) are strictly
bounded by n! g(nk + t)n−1 (the factor n comes from the n additions). By
Fact 1, the last coordinate of hn(x) is strictly bounded by g(k + t)n. Therefore,
|hn(x)|∞ < max{n! g(nk+ t)n−1, g(k+ t)n} ≤ n! g(nk+ t)n ≤ g̃(|x|− 1+ t). #�

Let Lpr
n,g(t) denote the length of the longest g, t-controlled bad sequence in

(Nn,≤pr), and let Llex
n,g(t) denote the length of the longest g, t-controlled de-

creasing sequence in (Nn,≤lex). We arrive to the same result as in [5]:

Corollary 5. Lpr
n,g ≤ Llex

n,g̃, for g̃ as in Thm. 4. Hence if g ∈ Fγ, and γ ≥ 2 is
an ordinal, then Lpr

n,g has an upper bound in Fγ+n−1.

Proof. The function g̃ is defined through finite substitution from g and product.
Since F2 and higher levels are closed under finite products, we have g̃ ∈ Fγ . By
Prop. 3, there is a function h ∈ Fγ+n−1 such that h ≥ Llex

n,g̃. #�

5 The Multiset Ordering

We need a notion of g, t-controlled sequence of (multi)sets. By Def. 2 it suffices
to give a proper norm:

Definition 6 (A proper norm of sets and multisets of tuples). Given
X ∈ M<∞(Nn), we define |X |, the norm of X, as the maximum between
maxx∈Nn X(x) and max{|x|∞ | x ∈ Nn ∧X(x) > 0}. For X ∈ P<∞(Nn), |X | is
defined analogously, as any set is a multiset.

We denote by Lms
g,n(t) the length of the longest g, t-controlled decreasing sequence

in (M<∞(Nn),≤(≤lex)
ms ), i.e. a sequence of finite multisets of Nn, with the un-

derlying lexicographic ordering. In this section we give a tight upper bound for
Lms
g,n(t) in terms of the Fast Growing Hierarchy.

5.1 Maximizing Strategy

To study the longest g, t-controlled ≤ms-descending sequence of multisets we de-
fine the maximizing strategy which, given a nonempty g, t-controlled multisetM ,
determines the greatest g, (t+1)-controlled multiset N which is smaller than M .



118 S. Abriola, S. Figueira, and G. Senno

The strategy says that to obtain N one should take out one of the minimum ele-
ments ofM , saym, (i.e. decrement in one the multiplicity ofm) and add as many
elements smaller than m as the control function permits.

For the rest of this subsection, assume (X,≤) is a well-order. We write <ms

instead of <
(≤)
ms . Let M ∈ M<∞(X) which is g, t-controlled and a proper norm

| · |X = | · | for X . We define the g, t-predecessor of M as follows: For x ∈ X ,

predgt (M)(x)
def
=

⎧⎪⎨⎪⎩
g(t+ 1)− 1 x < minM ∧ |x| < g(t+ 1);

M(x)− 1 x = minM ;

M(x) otherwise.

where minM
def
= min{x |M(x) > 0}.

Lemma 7. Let M be a nonempty finite multiset over a totally ordered set
P , which is g, t-controlled and let N = predgt (M). Then (1) N is g, (t + 1)-
controlled; (2) N <ms M ; and (3) if N ′ is g, (t + 1)-controlled and N ′ <ms M
then N ′ ≤ms N .

Proof. (1) is clear from the definition of N and the fact that g is monotone
increasing. For (2), it is obvious that M �= N . By definition, if N(x) > M(x)
then x < m = minM and M(m) > N(m).

For (3), assume N ′ < M is g, (t+1)-controlled. We show that if N ′(x) > N(x)
then there is z > x such that N(z) > N ′(z). Suppose N ′(x) > N(x). First, if
x < minM then N(x) = g(t + 1) − 1 ≥ N ′(x), contradicting N ′(x) > N(x).
Second, suppose x > minM . Then N(x) = M(x) and therefore N ′(x) > M(x).
Since N ′ <ms M there is z > x such that N(z) = M(z) > N ′(z). Third, suppose
x = minM . Then N(x) = M(x) − 1, and so N ′(x) ≥ M(x). If N ′(x) > M(x)
then, since M <ms N ′, there is z > x with M(z) > N ′(z). For such z, by
definition of N , we have N(z) = M(z) > N ′(z). If N ′(x) = M(x) then, since
N ′ �= M , there is y such that N ′(y) �= M(y). Any such y must be different
from x. Suppose that all such y’s were smaller than x = minM . In this case
M ≤ms N

′ and this contradicts the hypothesis. Hence there is y > x such that
N ′(y) �= M(y). If N ′(y) > M(y), there is z > y > x such that N ′(z) < M(z) =
N(z). If N ′(y) < M(y), since M(y) = N(y), we conclude N ′(y) < N(y). #�

We represent a finite multiset M such that {x | M(x) > 0} = {x1, . . . , xn} as

M
def
= M(x1) · x1 + · · ·+M(xn) · xn.
For a finite multiset M , let Lg,M (t) denote the length minus one of the longest

g, t-controlled and <ms-decreasing sequence of multisets starting with the mul-
tiset M . For x ∈ X , let og,x(t) = t+ Lg,1·{x}(t).

Lemma 8. If k ≥ 1 then Lg,k·{x}(t) =
∑k−1
i=0 Lg,1·{x}(oig,x(t)).

Proof (Sketch). We write Lk for Lg,k·{x} and o for og,x. First show by induction

in i that oi(t) = t+
∑i−1
j=0 L1(o

j(t)). Then show the statement of the Lemma by
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induction in k ≥ 1. Observe that the longest g, t-controlled decreasing sequence
of multisets beginning with M1 = (k + 1) · {x} is

M1 >ms M2 >ms . . . , >ms Ml1 >ms N2 >ms N3 >ms . . . >ms Nl2 ,

of length l1+ l2−1 and where l1 = Lk(t)+1, Ml1 = 1 ·{x}, l2 = L1(t+Lk(t))+1
and Nl2 = ∅. Use straightforwardly the inductive hypothesis. #�

Corollary 9. For k ≥ 1, Lg,k·{x} ≥ Lkg,1·{x}.

Corollary 10. For k ≥ 1, Lg,k·{x}(t) ≤ k · Lg,1·{x}(ok−1
g,x (t)).

In the sequel we fix (X,≤) to be (Nn,≤lex). If M ∈ M<∞(Nn) then Pg,n(M, t)
denotes the length minus one of the longest g, t-controlled <ms-decreasing se-
quence of multisets starting with M . If M consists of one copy of (x1, . . . , xn),
we simply write Pg,n(x1, . . . , xn, t) instead of Pg,n(1 · {(x1, . . . , xn)}, t). Observe
that, having fixed (X,≤), we have Lg,M (t) = Pg,n(M, t).

5.2 Lower Bound

Define Gg,n : Nn+1 \ {(0, . . . , 0)} → N by multiple recursion as:

Gg,n(0, . . . , 0, 1, t)
def
= g(t+ 1) (4)

Gg,n(x, xn + 1, t)
def
= Gg(t+1)−1

g,n (x, xn, t), for x = x1, . . . , xn−1 (5)

Gg,n(x, xj + 1, 0, t)
def
= Gg,n(x, xj , g(t+ 1)− 1, 0, t), for x = x1, . . . , xj−1 (6)

Equation (5) applies when xi > 0 for some i, and (6) when j < n. Gkg,n(a, b) de-
notes the k-th iteration of Gg,n in the last component, i.e. G1

g,n(a, b) = Gg,n(a, b)

and Gk+1
g,n (a, b) = Gg,n(a,G

k
g,n(a, b)).

Lemma 11. If g(x) ≥ x+ 1 then Pg,n ≥ Gg,n.

Proof (Sketch). By induction in the lexicographic order of x1, . . . , xn. For (4),
the longest g, t-controlled <ms-decreasing sequence starting with 1 · {(0, 1)} is

1 · {(0, 1)} >ms (g(t+ 1)− 1) · {(0, 0)} >ms . . . >ms 0 · {(0, 0)} = ∅,

which has length g(t + 1) + 1 and then Pg,n(0, . . . , 0, 1, t) = g(t + 1). For (5),
the longest g, t-controlled <ms-decreasing sequence of multisets starting with
1·{(x, xn+1)} contains the multisetM = (g(t+1)−1)·{(x, xn)}, so Pg,n(x, xn+
1, t) ≥ Pg,n(M, t + 1). Now apply Cor. 9, monotonicity of Gg,n and ind. hyp.
For (6), the longest g, t-controlled <ms-decreasing sequence of multisets starting
with 1 ·{(x, xj+1, 0)} contains 1 ·{(x1, . . . , xj , g(t+1)−1, 0)} as one of its terms,
so Pg,n(x, xj + 1, 0, t) ≥ Pg,n(x, xj , g(t+ 1)− 1, 0, t). Then apply ind. hyp. #�

Theorem 12. If g ≥ F1 and g(x) ≥ x+ 2, then Lms
g,n ≥ Fωn .
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Proof (Sketch). Show that if xi > 0 for some i then Gg,n(xn−1, . . . , x0, t) ≥
Fα(t), where α = ωn−1 · xn−1 + · · ·+ x0 ·ω0 by induction in (xn−1, . . . , x0). Use
monotonicity of Gg,n and the fact that g(x) ≥ x+ 2. Finally, for all t we have

Lms
g,n(t) ≥ Pg,n(g(t)− 1, 0, t)

≥ Pg,n(t+ 1, 0, t)

≥ Gg,n(t+ 1, 0, t)

≥ Fωn−1·(t+1)(t) = Fωn(t).

The second inequality follows from the monotonicity of Pg,n and g(x) ≥ x + 2;
the third one from Lem. 11. #�

5.3 Upper Bound

Define Ug,n : Nn+1 \ {(0, . . . , 0)} → N by multiple recursion as:

Ug,n(0, . . . , 0, 1, t)
def
= g(t+ 1) (7)

Ug,n(x, xn + 1, t)
def
= g(t+ 1) · Ug,n(x, xn, og(t+1)−1

x1,...,xn (t+ 2)) (8)

Ug,n(x, xj + 1, 0, t)
def
= Ug,n(x, xj , g(t+ 1), 0, t+ 2) (9)

where ox1,...,xn(t) = t+Ug,n(x1, . . . , xn−1, xn, t); equation (8) applies when xi >
0 and x=x1, . . . , xn−1; and equation (9) applies when j < n and x=x1, . . . , xj−1.

Lemma 13. Pg,n ≤ Ug,n.

Proof. By induction in the lexicographic order of x1, . . . , xn. For (7), as in the
proof of Lem. 11, the longest g, t-controlled <ms-decreasing sequence starting
with 1 · {(0, 1)} has length g(t + 1) + 1 and then Pg,n(0, 1, t) = g(t + 1) =
Ug,n(0, 1, t). For (8) the longest g, t-controlled <ms-decreasing sequence starting
with M0 = 1 · {(x, xn + 1)} continues with a multiset M1whose <lex-maximum
element is (x, xn), of multiplicity g(t+1)−1. Therefore if N = g(t+1) ·{(x, xn)}
then M0 >ms N >ms M1 and N is g, (t+ 2)-controlled. Hence

Pg,n(x, xn + 1, t) ≤ Pg,n(g(t+ 1) · {(x, xn)}, t+ 2)

≤ g(t+ 1) · Pg,n(x, xn, õg(t+1)−1
x1,...,xn (t+ 2))

≤ g(t+ 1) · Ug,n(x, xn, og(t+1)−1
x1,...,xn (t+ 2)) = Ug,n(x, xn + 1, t)

where õx1,...,xn(t) = t + Pg,n(x1, . . . , xn, t), the second inequality follows from
Cor. 10, and the third one from ind. hyp. and monotonicity of Ug,n. For (8)
the longest g, t-controlled <ms-decreasing sequence of multisets starting with
M ′

0 = 1 · {(x, xj + 1, 0)} continues with a multiset M ′
1 whose <lex-maximum

element is (x, xj , g(t+1)− 1, . . . , g(t+1)− 1), of multiplicity g(t+1)− 1. Then
M ′

0 >ms N ′ >ms M ′
1, where N ′ = 1 · {(x, xj , g(t + 1), 0)}, and hence N ′ is

g, (t+ 2)-controlled. Therefore by inductive hypothesis we have

Pg,n(x, xj + 1, 0, t) ≤ Pg,n(x, xj , g(t+ 1), 0, t+ 2)

≤ Ug,n(x, xj , g(t+ 1), 0, t+ 2) = Ug,n(x, xj + 1, 0, t),

and this concludes the proof. #�



Linearizing Bad Sequences 121

Theorem 14. If g is primitive recursive and g(t) ≥ t+1 then Lms
g,n has an upper

bound in Fωn . Also, this bound is tight.

Proof. The fact that the bound is tight follows from Thm. 12. Without loss of
generality suppose, t > 2 and let 2 ≤ e < ω such that g(t + 1) ≤ Fe(t). By
(∀∞x)ϕ(x) we mean that ϕ holds for almost every x, i.e (∃k)(∀x > k)ϕ(x).

Fact 4. If x �= 0 then (∀∞t)(∀x)Ug,n(0, x, t) ≤ F3(x−1)+e(t).

Proof. By induction in x �= 0. For x = 1, observe that Ug,n(0, 1, t) = g(t +
1) ≤ Fe(t). For the inductive step, o0,x = t + Ug,n(0, x, t) ≤ t + F3(x−1)+e(t) ≤
F3(x−1)+e+1(t). Now

Ug,n(0, x+ 1, t) =g(t+ 1) · Ug,n(0, x, og(t+1)−1

0,x
(t+ 2))

≤g(t+ 1) · F3(x−1)+e(o
g(t+1)−1

0,x
(t+ 2)) (ind. hyp.)

≤Fe(t) · Fp(x)(F g(t+1)−1
p(x)+1 (t+ 2)) (p(x)

def
= 3(x− 1) + e)

≤Fe(t) · Fp(x)(F g(t+1)+1
p(x)+1 (g(t+ 1))

=Fe(t) · Fp(x)(Fp(x)+2(g(t+ 1))

≤Fp(x)+2(Fp(x)+2(Fp(x)+2(Fp(x)+2(t)))

=F 4
p(x)+2(t) ≤ Fp(x)+3(t) = F3x+e. (t ≥ 3)

This concludes the proof of the Fact #�
Fact 5. If x0 > 0 then (∀∞t)(∀xn−1, . . . , x0)[Ug,n(xn−1, . . . , x0, t) ≤ Fγ(t) ⇒
Ug,n(xn−1, . . . , x0 + 1, t) ≤ Fγ+3(t)].

Proof. Same idea as in Fact 4. #�
Fact 6. If xi > 0 for some i ≥ 1 then (∀∞t)(∀x = xn−1, . . . , x1)Ug,n(x, 0, t) ≤
Fα(t), where α = xn−1 · ωn−1 + xn−2 · ωn−2 + · · ·+ x2 · ω2 + x1 · ω + 1.

Proof. By induction in x �= 0. Ug,n(0, 1, 0, t) = Ug,n(0, g(t+1), t+2) ≤ Fd(t)(t+

2) ≤ Fd(t)+1(d(t)) = Fω(d(t)) ≤ Fω+1(t) where d(t)
def
= 3(g(t + 1) − 1) + e, the

first inequality follows from Fact 4 and the last one is true for all t ≥ k1.
Next, Ug,n(0, x1 + 1, 0, t) = Ug,n(0, x1, g(t+ 1), t+ 2) ≤ Fx1·ω+1+r(t)(t+ 2) ≤

Fx1·ω+1+r(t)(r(t)) = F(x1+1)·ω(r(t)) ≤ F(x1+1)·ω+1(t) where r(t)
def
= 3g(t+1), the

first inequality follows from ind. hyp. and Fact 5 and the last one is true for all
t ≥ k2 ≥ k1 (independently of x1).

Finally, let x = xn−1, . . . , xj−1 and let β = xn−1 · ωn−1 + · · ·+ xj−1 · ωj−1.

Ug,n(x, xj + 1, 0, t) =Ug,n(x, xj , g(t+ 1), 0, t+ 2)

≤Fβ+xj·ωj+g(t+1)·ωj−1+1(t+ 2) (ind. hyp.)

≤Fβ+xj·ωj+(g(t+1)+1)·ωj−1(t+ 2)

≤Fβ+xj·ωj+(g(t+1)+1)·ωj−1(g(t+ 1))

≤Fβ+(xj+1)·ωj (g(t+ 1)) ≤ Fβ+(xj+1)·ωj+1(t),

where the last inequality is true for all t ≥ k3 ≥ k2 (independently of x, xj). #�
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Now, let t be sufficiently large. If n = 1 then Lms
g,n(t) ≤ Pg,n(g(t), t + 1) ≤

Ug,n(g(t), t+1) ≤ F3(g(t)−1)+e(t+1) ≤ F3(g(t)−1)+e+1(3(g(t)−1)+e) = Fω(3(g(t)−
1) + e)) ∈ Fω, where the second inequality follows from Lem. 13 and the third
one from Fact 4. If n > 1 we have:

Lms
g,n(t) ≤ Pg,n(g(t), 0, t+ 1)

≤ Ug,n(g(t), 0, t+ 1)

≤ Fg(t)·ωn−1+1(t+ 1)

≤ F(g(t)+1)·ωn−1(g(t)) = Fωn(g(t)) ∈ Fωn .

The second inequality follows from Lem. 13 and the third one from Fact 6. #�

6 The Majoring Ordering

Recall from §2 that the underlying order of ≤maj is ≤pr and the underlying
order of ≤ms is ≤lex. We linearize the wqo (P<∞(Nn),≤maj) into the well-order
(M<∞(Nn),≤ms) and derive an upper bound for Lmaj

n,g (t), the length of the
longest g, t-controlled bad sequence of finite sets of n-tuples with respect to the
majoring ordering ≤maj. To do this, we use the results of §5.

Our linearization will be done in two steps. Given a ≤maj-bad sequence X =
X0, X1, . . .Xk of finite and nonempty sets of n-tuples we define an intermediate
sequence T0, T1, . . . , Tk of trees whose nodes are decorated with n-tuples. From
these trees we define a sequence of finite and nonempty multisets of n-tuples
M = M0,M1, . . . ,Mk. We show that ifX is ≤maj-bad then M is <ms-decreasing.
Furthermore, given a control for X, we find a control for M. Using the results
of §5 we give an answer to the question of the maximum possible length of a
controlled ≤maj-bad sequence of finite sets of n-tuples.

Let X ⊆ Nn. We say X avoids x if for all y ∈ X we have x �≤pr y. Since
X = X0, X1, . . . , Xk is bad, then for any i < j, Xj avoids some tuple of Xi. In
particular for all j ∈ {1, . . . , k}, Xj avoids some tuple of X0. If a is the ≤pr-

supremum ofX0 then X̃ = {a}, X1, . . .Xk is also a bad sequence. Furthermore, if
X was g, t-controlled then X̃ also is, and in this case a ≤pr 〈g(t)−1, . . . , g(t)−1〉.
Even more, if X is the longest such sequence then a = 〈g(t) − 1, . . . , g(t) − 1〉.
Therefore, without loss of generality we may assume that all ≤maj-bad sequences
of sets analyzed here have a singleton as the first element.

Construction of the trees Ti. Without loss of generality suppose X0 = {a0}.
Define the following sequence of finite trees of n-tuples. By path we always refer
to a path from the root to a leaf. See Fig. 1 for an example of this construction.

– T0 is a0, the root.
– Ti+1 is formed by extending Ti as follows. For any path a0, . . . , am in Ti do

the following: if for all j = 0, . . . ,m, Xi+1 avoids aj then add all the elements
of Xi+1 as new children of am.
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〈3, 3〉 〈3, 3〉
〈1, 4〉 〈4, 1〉

〈3, 3〉

〈1, 4〉
〈5, 1〉 〈3, 2〉

〈4, 1〉

〈3, 3〉

〈1, 4〉
〈5, 1〉
〈2, 1〉

〈3, 2〉
〈2, 1〉

〈4, 1〉
〈2, 1〉

〈3, 3〉

〈1, 4〉
〈5, 1〉
〈2, 1〉

〈3, 2〉
〈2, 1〉

〈4, 1〉
〈2, 1〉
〈1, 5〉

T0 T1 T2 T3 T4

Fig. 1. Construction of the trees for the bad sequence X0, X1, X2, X3, X4, where X0 =
{〈3, 3〉}; X1 = {〈1, 4〉, 〈4, 1〉}; X2 = {〈5, 1〉, 〈3, 2〉}; X3 = {〈2, 1〉} ; X4 = {〈1, 5〉}

Proposition 15. At least one path of Ti is strictly extended in Ti+1.

Proof. Recall that Xj �= ∅ for all j. It is clear that if all internal nodes of Ti have
a child which is avoided by Xi+1 then there is a path a0, . . . , am in Ti such that
Xi+1 avoids aj for all j.

If Ti+1 = Ti then, by construction, there is no path a0, . . . , am with all of its
elements avoided by Xi+1. Then there is an internal node of Ti, say a, with none
of its children avoided by Xi+1. But this contradicts the badness of X since by
construction the set of children of a is Xj for some j ≤ i. #�

As the example in Fig. 1 shows, the height of Ti+1 is not necessarily greater than
the height of Ti. The following follows by construction:

Proposition 16. Any path in Ti is a bad sequence of n-tuples with respect to
the product ordering. Furthermore if X is g, t-controlled then any such path is
g, (t+ i)-controlled.

Construction of the multisets Mi. LetMi ∈M<∞(Nn) be defined as:Mi(y)
def
= d

iff there are exactly d paths in Ti, say p1, . . . , pd, such that hn(pj) = y for all j.
In other words, Mi is the multiset where we put hn(p) for every path in Ti.

If the path a = a1, . . . , am in Ti is extended to a, x in Ti+1 then by Thm. 4,
hn(a, x) <lex hn(a). Then Mi+1 <ms Mi. The need for working with multisets
and not simply with sets resides in the fact that h is not injective.

Proposition 17. If X = X0, . . . , Xk is g, t-controlled then |Mk| < g̃(t+ k), for
g̃(x) = n! g(nx)n(x+1) + 1.

Proof. Observe that the maximum multiplicity of an element in Mk is bounded
by
∏k
j=1 g(t + j)n ≤ g(t + k)nk < g̃(t + k). By Prop. 16 each of such path is

g, (t + k)-controlled and by the second part of Thm. 4 we have that if x ∈ Mk

then |x|∞ < n! g(n(k + t))n < g̃(t+ k). #�

Altogether we have shown:

Theorem 18. There is a function fn : (P<∞(Nn))+ → M<∞(Nn) such that
if X�X is a bad sequence in (P<∞(Nn),≤maj), X is nonempty and X is a
nonempty set, then fn(X

�X) <ms fn(X). Furthermore if X is g, t-controlled
then |fn(X)| < g̃(|X| − 1 + t), for g̃ as in Prop. 17.
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Proof. Take fn(X) = M|X|−1 as in the above construction. #�

Let Lmaj
n,g (t) denote the length of the longest g, t-controlled bad sequence in

(Nn,≤maj), and let Lms
n,g(t) denote the length of the longest g, t-controlled de-

creasing sequence in (Nn, <ms).

Corollary 19. For any primitive recursive g there is a primitive recursive g̃
such that Lmaj

n,g ≤ Lms
n,g̃. Hence there is an upper bound of Lmaj

n,g in Fωn .

Proof. It follows from Thm. 18 and Thm. 14. #�

7 Applications

In Jurdziński and Lazić [9] it is shown that for the class of incrementing tree
counter automata (itca) as well as the class of alternating top-down tree one
register automata (atra), the emptiness problem—i.e. whether the language ac-
cepted by an automaton of such classes is empty— is decidable over finite data
trees. Figueira [4] later showed that for some extensions of atra decidability
still holds. All these proofs go along the lines of interpreting the automata exe-
cution as a downward well-structured transition system, then showing that it is
reflexive-downward-compatible with respect to a wqo between sets of configura-
tions, and finally applying Finkel and Schnoebelen results [6] (mainly Prop. 5.4).
That wqo is precisely the majoring order.

From [9], we know that the computational complexity of such decision pro-
cedures is lower-bounded by a non-primitive recursive function. For the upper-
bound for itca’s, an algorithm can be given in a manner analogous to [5, §VII.B.]
for finding the levels (a finite set of configurations) reachable from the initial level
—the emptiness problem is then reduced to testing whether the empty level is
amongst them. The complexity of such an algorithm is mainly determined by the
length of a bad sequence of levels V = V0, V1, . . . , Vm. In more detail, suppose
an itca C has k counters and a finite set of states Q. Then a level of C is a
finite set of tuples of the form 〈q, v〉, where q ∈ Q and v = 〈a1, . . . , ak〉 ∈ Nk is
the current values of the k counters. The levels are ordered by the the majoring
ordering with the following underlying order

〈p, u〉 ≤ 〈q, v〉 def⇔ p = q ∧ u ≤pr v,

which is a wqo. The complexity of the emptiness problem can be bounded by

the length of the longest bad sequence in (P<∞(Q × Nk),≤(≤)
maj). As one can

see, the application of Cor. 19 is not entirely straightforward because it applies
to the majoring ordering of finite sets of tuples of N with the underlying ≤pr

and not to levels with the underlying ≤. We reduce bad sequences of levels to
bad sequences of finite sets of tuples as follows. Suppose Q = {q0, . . . , qs−1}
and let q′i

def
= (i, s − i) ∈ N2. Clearly if p′ ≤pr q′ then p′ = q′ and so p = q.

Let V ∈ P<∞(Q × Nk) be a level. Define V ′ def
= {〈p′, u〉 ∈ Nk+2 | 〈p, u〉 ∈ V }.

The reader can verify that if V and W are levels then V ′ ≤(≤pr)
maj W ′ implies
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V ≤(≤)
maj W . Hence V = V0, V1, . . . , Vm, a bad sequence of levels of an itca with

k counters, can be seen as a bad sequence of the same length V′ = V ′
0 , V

′
1 , . . . , V

′
m

in P<∞(Nk+2) with the majoring ordering studied in §6. Regarding how V′ is
controlled, the analysis is almost the same as in [5, §VII.B.]. Let V ′

0 = {〈0, |Q|−
1, 0〉} and V ′

i = {c1, ..., cpi}. From Def. 6 we have that |V ′
i | = maxj{|cj |∞}.

The change from V ′
i to V ′

i+1 may involve a change of state or increment of cj ’s
counters’ values by one. The ‘state part’ of cj is controlled by the constant |Q|
and the ‘counters part’ is controlled by the successor function. Hence, the bad
sequence of sets is g, 0-controlled by g(t) = t+1+ |Q|. Now we can finally apply
Cor. 19 to conclude that the complexity of the emptiness problem for an itca
with k counters is upper bounded by a function in Fωk+2 .

This immediately gives us an upper bound for the emptiness problem for
atra. From [9, Thm. 3.1] we have that emptiness for atra follows from a
pspace-reduction to emptiness for itca. If the atra A has s states then the

itca C constructed in the reduction has k(s)
def
= 2s−1+24s counters.1 Hence the

complexity of the emptiness problem for an atra with s states is upper bounded
by a function in Fωk(s)+2 .

The above complexities are obtained by the straightforward codification of
levels V into V ′. This increases the dimension of tuples from n to n+2, and this
might be too wasteful. It seems plausible to work directly with levels (i.e. sets
of Q × Nn) and obtain better upper bounds.

8 Conclusions

Upper bounds for controlled descending sequences in a well-order are easier to
obtain than for controlled bad sequences in a wqo’s. We studied upper bounds
for the length of controlled bad sequences of two wqo’s by linearizing them into
well-orders. Such bounds were placed in the Fast Growing Hierarchy.

For the product ordering of tuples, we gave a straightforward elementary
proof for an upper bound of controlled bad sequences, and we arrived to the
same general result as [5] but avoiding the “sum of powers of N” approach. This
last approach —being noticeably more understandable than previous proofs, and
also leading to a more general result— still needs some rather technical lemmas.
Our proof simply relies on a linearization of controlled bad sequences of tuples
in the product ordering into controlled descending sequences of tuples in the
lexicographic ordering, for which upper bounds can be easily obtained.

For the majoring ordering of sets of tuples, we gave an upper bound of con-
trolled bad sequences over such wqo by linearizing to controlled and descending
sequences of multisets with the natural multiset ordering. For the latter we also
gave a tight upper bound, which is of interest by itself. As applications we showed
complexity upper bounds for the emptiness problem for two types counter au-
tomata: itca and atra.

1 In [9] there is typo in the number of counters in the auxiliary array c′. Where it says

2|Q|4 , it should read 24|Q|.
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The fact that (P<∞(Nn),≤maj) is a wqo follows from reducing finite sets of
tuples to finite strings over Nn and then applying Higman’s Lemma. Schmitz and
Schnoebelen [13] developed an algebraic framework for handling normed wqo’s
where upper bounds for controlled bad sequences when using Higman’s Lemma
on finite alphabets are derived. Hence, another approach to obtain upper bounds
for the majoring ordering would be to try to extend this framework to deal with
strings over infinite alphabets.

As future research we will study lower bounds for the majoring ordering, and
upper bounds for the bad sequences over the dual of the majoring ordering, the
minoring ordering:

A ≤(≤)
min B

def⇔ (∀y ∈ B)(∃x ∈ A) x ≤ y.

This is not in general a wqo: one needs the underlying ≤ to be an ω2-wqo [8,
Thm. 1]. It would also be interesting to investigate how far one can generalize
this idea of linearization. Are there general ways in which one can relate the
length of a bad sequence over a wqo into the length of a linearization of it?
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órdenes buenos. MSc thesis, Universidad de Buenos Aires, Argentina (2011)

2. Clote, P.: On the finite containment problem for Petri nets. Theoretical Computer
Science 43, 99–105 (1986)

3. Dershowitz, N., Manna, Z.: Proving termination with multiset orderings. Commu-
nications of the ACM 22(8), 465–476 (1979)

4. Figueira, D.: Reasoning on Words and Trees with Data. PhD thesis, Laboratoire
Spécification et Vérification, ENS Cachan, France (December 2010)

5. Figueira, D., Figueira, S., Schmitz, S., Schnoebelen, P.: Ackermannian and
primitive-recursive bounds with Dickson’s lemma. In: LICS, pp. 269–278 (2011)

6. Finkel, A., Schnoebelen, P.: Well-structured transition systems everywhere? The-
oretical Computer Science 256(1-2), 63–92 (2001)

7. Harwood, W., Moller, F., Setzer, A.: Weak Bisimulation Approximants. In: Ésik,
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Abstract. We give an algebraic characterization of the syntax and se-
mantics of a class of simply–typed languages, such as the language PCF:
we characterize simply–typed binding syntax equipped with reduction
rules via a universal property, namely as the initial object of some cate-
gory. For this purpose, we employ techniques developed in two previous
works: in [2], we model syntactic translations between languages over dif-
ferent sets of types as initial morphisms in a category of models. In [1],
we characterize untyped syntax with reduction rules as initial object in a
category of models. In the present work, we show that those techniques
are modular enough to be combined: we thus characterize simply–typed
syntax with reduction rules as initial object in a category. The universal
property yields an operator which allows to specify translations — that
are semantically faithful by construction — between languages over pos-
sibly different sets of types.

We specify a language by a 2–signature, that is, a signature on two
levels: the syntactic level specifies the types and terms of the language,
and associates a type to each term. The semantic level specifies, through
inequations, reduction rules on the terms of the language. To any given
2–signature we associate a category of models. We prove that this cat-
egory has an initial object, which integrates the types and terms freely
generated by the 2–signature, and the reduction relation on those terms
generated by the given inequations. We call this object the (program-
ming) language generated by the 2–signature.

1 Introduction

We give a characterization, via a universal property, of the syntax and semantics
of simply–typed languages with variable binding. More precisely, we characterize
the terms and sorts associated to a signature equipped with reduction rules as
the initial object in a category of models. Initiality in this category gives rise to
an iteration principle (cf. Rem. 45) which allows to specify translations between
languages in a convenient way as initial morphisms. The category of models is
sufficiently large — and thus the iteration principle stemming from initiality is
sufficiently general — to account for translations between languages over different
sets of sorts. Furthermore, translations specified via this principle are ensured to
be faithful with respect to reduction in the source and target languages, as well as
compatible in a suitable sense with substitution on either side.

To illustrate the iteration operator stemming from initiality, we use it to
specify a translation from PCF to the untyped lambda calculus ULC. We do
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so in the proof assistant Coq [5]; for this purpose, we prove formally, in Coq,
an instance of our main theorem for the 2–signature of PCF: the types and
terms of PCF, equipped with their usual reductions, form an initial object in
the category of models of PCF. We then use the iteration principle to obtain an
initial morphism — a translation, faithful with respect to reductions — to ULC,
as an executable Coq function. The Coq theory files as well as documentation
are available online at http://math.unice.fr/laboratoire/logiciels.

Summary. We define a notion of 2–signature which allows the specification of
the types and terms of a language — via an underlying 1–signature — as well
as its semantics in form of reduction rules. A 1–signature (S, Σ) is given by a
pair of a signature S for types and a binding signature Σ for terms typed over
the set of types associated to S. Reduction rules for terms generated by Σ are
specified via a set A of inequations over (S, Σ). A 2–signature ((S, Σ), A) is a
pair of a 1–signature (S, Σ) and a set A of inequations over (S, Σ). To such a
2–signature we associate a category of representations, for which the types and
terms generated by (S, Σ), equipped with reductions according to A, forms an
initial object.

1–signatures are defined in [2]. There, we associate a category Rep(S, Σ) of
representations to any 1–signature (S, Σ), and show that the types and terms
freely generated by (S, Σ) form an initial object in this category. Representations
there are built from monads on families of sets. In the present work, we build
a different category RepΔ(S, Σ) of representations using relative monads from
sets to preordered sets, which allows — in a second step, cf. below — the inte-
gration of reduction rules to account for semantic aspects. The two categories of
representations, Rep(S, Σ) and RepΔ(S, Σ), are connected through an adjunc-
tion which transports the initial object of the former to the latter category (cf.
Lem. 34).

Inequations over untyped 1–signatures are considered in [1]. There, we define
a notion of 2–signature for untyped syntax with semantics in form of reduc-
tion rules and show that its associated category of representations has an initial
object. In the present work, we define inequations over typed 1–signatures as
defined in [2]. Given a set A of inequations over a 1–signature (S, Σ), the repre-
sentations of (S, Σ) that satisfy each inequation of A, form a full subcategory of
RepΔ(S, Σ), which we call the category of representations of (S, Σ, A). Our main
theorem (cf. Thm. 44) states that this category has an initial object, which inte-
grates the types and terms freely generated by (S, Σ), equipped with reduction
rules generated by the inequations of A.

Related Work. Related work is reviewed extensively in [1,2], as well as in the
author’s PhD thesis [3]. We give a brief overview: rewriting in nominal settings is
examined by Férnandez and Gabbay [6]. Ghani and Lüth [8] present rewriting for
algebraic theories without variable binding; they characterize equational theories
resp. rewrite systems as coequalizers resp. coinserters in a category of monads
on the categories Set resp. Pre. Fiore and Hur [7] have extended Fiore’s work
to integrate semantic aspects into initiality results. In particular, Hur’s thesis

http://math.unice.fr/laboratoire/logiciels
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[12] is dedicated to equational systems for syntax with variable binding. In a
“Further research” section [12, Chap. 9.3], Hur suggests the use of preorders, or
more generally, arbitrary relations to model inequational systems. Hirschowitz
and Maggesi [9] prove initiality of the set of lambda terms modulo beta and
eta conversion in a category of exponential monads. In an unpublished paper
[10], they define a notion of half–equation and equation to express congruence
between terms. We adopt their definition in this paper, but interpret a pair of
half–equations as inequation rather than equation.

2 Relative Monads and Modules

Relative monads were defined by Altenkirch et al. [4] to overcome the restriction
of (regular) monads to endofunctors. In an earlier work [1], we define morphisms
of relative monads and modules over relative monads. In the following section we
define a more general notion of colax morphism of relative monads — which we
use in Sect. 3 to model translations between languages over different sets of types
— and generalize constructions of [1] to such colax morphisms. Some definitions
from [1,2] which we use in the present work, are recalled at the beginning.

We denote by Set the category of sets and total maps of sets. We call Pre the
category of preordered sets and monotone maps between them.

Definition 1. We call Δ : Set → Pre the left adjoint of the forgetful functor
U : Pre → Set. The functor Δ associates to each set X the set itself together
with the smallest preorder, i.e. the diagonal of X, Δ(X) := (X, δX).

Definition 2 (Category of Families). Let C be a category and T be a set, i.e.
a discrete category. We denote by CT the functor category, an object of which is a
T–indexed family of objects of C. We write Vt := V (t) for objects and morphisms.
Given a functor F : C → D, we denote by FT : CT → DT the induced functor.

Definition 3 (Relative Monad on ΔT , enriched). We strengthen the defi-
nition of a relative monad P on ΔT by requiring the substitution map σX,Y to
be monotone with respect to the preorders induced by the preorders on PY ,

σX,Y : PreT (ΔX, PY ) → PreT (PX, PY ) .

From now on, a relative monad on ΔT is meant to be enriched in the sense of
Def. 3, i.e. monotone in both the first– and the higher–order argument.

Example 4 (Lambda Calculus as Relative Monad on ΔT ). Let T := TTLC be
the set of types of the simply–typed lambda calculus, built from a base type
and a binary arrow constructor. Given a set family V ∈ SetTTLC , we denote by
TLC(V ) ∈ SetTTLC the set family of simply–typed lambda terms over TTLC in
context V , which might be implemented in the proof assistant Coq as follows:

Inductive TLC (V : T −> Type) : T −> Type :=
| Var : forall t, V t −> TLC V t
| Abs : forall s t TLC (V + s) t −> TLC V (s ∼> t)
| App : forall s t, TLC V (s ∼> t) −> TLC V s −> TLC V t.
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Here V + s is a notation denoting the context V extended by a fresh variable of
type s — the variable that is bound by the constructor Abs s t. We occasionally
leave the object type arguments of the constructors implicit and write λM and
M(N) for Abs s t M and App s t M N, respectively. The set family of lambda
terms is equipped with a structure of a monad TLC on the category SetTTLC as
follows [11]: the family ηTLC is given by the family of constructors Var, and the
substitution map is given by capture–avoiding simultaneous substitution:

σX,Y : SetT
(
X, TLC(Y )

)
→ SetT

(
TLC(X), TLC(Y )

)
.

Similarly, with the same operations η and σ, we can consider it as a relative
monad on the functor ΔTTLC ,

TLCΔ : SetTTLC → PreTTLC .

The underlying object map TLCΔ associates, to each set family V , the family of
lambda terms in context V , equipped with the diagonal preorder, corresponding
to syntactic equality:

TLCΔ : V �→
(
TLC(V ), δTLC(V )

)
.

We equip each set TLC(V )(t) of lambda terms over context V of object type t
with a preorder taken as the reflexive–transitive closure of the relation generated
by the beta rule

λM(N) ≤ M [∗ := N ] (β)

and its propagation into subterms:

TLCβ : V �→
(
TLC(V ), β∗

TLC(V )

)
.

The beta rule in Disp. (β) states that the application of a lambda abstraction
with body M to an argument N reduces to the term M in which the term N
is substituted for the fresh variable of M — recall from above that M lives in
an extended context — in a capture–avoiding manner. This assignment defines
a relative monad TLCβ on the functor ΔT : SetT → PreT .

Modules over relative monads and their morphisms are defined in [1], together
with several constructions of modules. Recall that modules over P with codomain
E and morphisms between them form a category called RMod(P, E). We give
some examples of modules and module morphisms over the monad TLCβ, which
hold analogously for the monad TLCΔ:

Example 5 (Ex. 4 cont.). The map TLCβ : V �→ TLCβ(V ) yields a module over
the relative monad TLCβ, the tautological TLCβ–module TLCβ. Given V ∈ SetT

and s ∈ T , we denote by V s the context V enriched by an additional variable of
type s. The map TLCβs : V �→ TLCβ(V s) inherits the structure of a TLCβ–module
from the tautological module TLCβ. We call TLCβs the derived module with respect
to s ∈ T of the module TLCβ. Given t ∈ T , the map V �→ TLCβ(V )(t) : SetT →
Pre inherits a structure of a TLCβ–module, the fibre module [TLCβ]t with respect
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to t ∈ T . Given s, t ∈ T , the map V �→ TLCβ(V )(s � t) × TLCβ(V )(s) inherits a
structure of a TLCβ–module. Finally, the constructors of abstraction Abs s t and
application App s t are carriers of morphisms of TLCβ–modules:

Abss,t : [TLCβs]t → [TLCβ]s�t , Apps,t : [TLCβ]s�t × [TLCβ]s → [TLCβ]t .

Analogous remarks hold for the monad TLCΔ and modules over this monad.
As in Ex. 4, we consider a language over a set T of types as a (relative) monad on
ΔT . Translations between languages are given by colax morphisms of monads:

Definition 6. Suppose given two relative monads P : C F→ D and Q : C′ F ′
→ D′. A

colax morphism of relative monads from P to Q is a quadruple h = (G, G′, N, τ)
of a functor G : C → C′, a functor G′ : D → D′ as well as a natural transformation
N : F ′G → G′F and a natural transformation τ : PG′ → GQ such that the
following diagrams commute for any objects c, d and any suitable morphism f :

G′Pc
G′σP (f)

��

τc

��

G′Pd

τd

��

QGc
σQ(τd◦G′f◦Nc)

�� QGd

F ′Gc
Nc ��

ηQ
Gc ������������������� G′Fc

G′ηP
c �� G′Pc

τc

��

QGc.

Given a morphism of relative monads h : P → Q and a Q–module N with
codomain E , we define the pullback P–module h∗N , also with codomain E :

Definition 7. We define the pullback of N along h with object map c �→ M(Gc)
and with substitution map, for f : Fc → Pd, as ςh∗M (f) := ςM (τd ◦ G′f ◦ Nc).
The pullback extends to module morphisms and is functorial.

Given two languages over different object types T and T ′, modelled as relative
monads P and Q on ΔT and ΔT ′

, respectively, we model a translation from P to
Q by a colax monad morphism whose underlying functors are retyping functors :

Definition 8 (Retyping Functor). Let g : T → T ′ be a map of sets, and
let C be a cocomplete category. The map g induces a functor g∗ : CT ′ → CT by
postcomposition, W �→ W ◦ g. The retyping functor �g : CT → CT ′

associated to
g : T → T ′ is defined as the left Kan extension operation along g, that is, we
have an adjunction �g � g∗.

Remark 9. We are going to use the following instance of Def. 6: P and Q are
monads — e.g., languages — on ΔT and ΔT ′

, for sets T and T ′ of object types.
The functors G and G′ are the retyping functors (cf. Def. 8) associated to some
translation of types g : T → T ′, and N is the identity transformation. Then τ
denotes a translation of terms from P to Q:

SetT
ΔT

��

�g
��

PreT

�g
��

SetT
′

ΔT ′
��
PreT ′

����
��Id

SetT
P ��

�g
��

������ τ

PreT

�g
��

SetT
′

Q
��
PreT ′

.
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A family of constructors, such as the family (Abss,t)s,t∈TTLC
of Ex. 5, is modelled

via a family of module morphisms of suitable domain and codomain. Equiva-
lently, via uncurrying, we can consider such a family as one module morphism
between two suitable modules: intuitively, the idea is to write Abs(V, s, t) :
TLCβ(V s)(t) → TLCβ(V )(s � t) instead of Abss,t(V ). For this to work, an
object of the domain category of the source and target modules of Abs must be
of the form (V, s, t), where V is a context and s, t ∈ TTLC. More generally:

Definition 10 (Pointed index sets). Given a category C, a set T and a
natural number n, we denote by CT

n the category with, as objects, diagrams of
the form n

t→ T
V→ C, written (V, t1, . . . , tn) with ti := t(i). A morphism h

to another such (W, t) with the same pointing map t is given by a morphism
h : V → W in CT .

Any functor F : CT → DT extends to Fn : CT
n → DT

n via Fn(V, t) := (FV, t).
Also, any relative monad R over F induces a monad Rn over Fn.

Given a map of sets g : T → T ′, by postcomposing the pointing map with g,
the retyping functor (cf. Def. 8) generalizes to the functor

�g(n) : CT
n → CT ′

n , (V, t) �→ (�gV, g ◦ t) .

The category CT
n consists of T n copies of CT , which do not interact. Due to the

“markers” (t1, . . . , tn) we can act differently on each copy, cf. Defs. 12 and 13.
Two important constructions on modules over monads of [2], derivation and

fibre modules, carry over to modules over monads on ΔT . Intuitively, derivation
corresponds to considering terms in an extended context, whereas the fibre cor-
responds to picking terms of a specific object type. Since we consider varying
sets of types, the object type for context extension and fibre is chosen through
a natural transformation, which picks an element of any set.

Given u ∈ T , we denote by D(u) ∈ SetT the context with D(u)(u) = {∗} and
D(u)(t) = ∅ for u 	= t. For a context V ∈ SetT we set V ∗u := V + D(u).

Given a category C and n ∈ N, we denote by T Cn the category an object of
which is a triple (T, V, t) of a set T , a T –indexed family V of objects of C and a
vector t of length n of elements of T . Note that for a fixed set T , the category
CT

n is the fibre over T of the forgetful functor T Un : T Cn → Set which maps an
object (T, V, t) to its indexing set T . Let 1 : T Cn → Set be the constant functor
mapping to the singleton set. For a natural transformation τ : 1 ⇒ T Un, we write
τ(T, V, t) := τ(T, V, t)(∗) ∈ T , i.e. we omit the argument from the singleton set.
Intuitively, such τ picks an element of T of any object (T, V, t) ∈ T Cn.

Example 11. For 1 ≤ k ≤ n, we denote by k : 1 ⇒ T Un : T Cn → Set the natural
transformation such that k(T, V, t)(∗) := t(k).

Definition 12 (Context Extension). Let τ be as above, and let T be a fixed
set. Given a monad P on ΔT

n and a P–module M with codomain E, we define the
derived module of M with respect to τ by setting M τ (V, t) := M(V ∗τ(T,V,t), t).
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Definition 13 (Fibre). Let τ be as in Def. 12. Let P be a monad on ΔT
n and

M be a P–module with codomain category ET
n . The fibre module [M ]τ of M with

respect to τ has object map (V, t) �→ M(V, t)(τ(T, V, t)), that is, the component
τ(T, V, t) of M , forgetting also the pointing map t.

Example 14 (Ex. 5 cont.). Let T := TTLC. According to Def. 10, we have a rela-
tive monad — and its associated tautological module — TLCβ2 on the functor
ΔT

2 : SetT2 → PreT
2 . Let i : 1 ⇒ TU2 : TC2 → Set, for i = 1, 2, be a natural

transformation as in Ex. 11. Then we have a TLCβ2–module

TLCβ2
1 : (V, s, t) �→ TLCβ2(V s, s, t) .

We also have a TLCβ2–module

[TLCβ2]2 : (V, s, t) �→ TLCβ2(V, s, t)(t) .

Again, as in Ex. 5, analogous remarks hold for TLCΔ.

Remark 15 (Module of Higher Degree corresponds to a Family of Modules). Let
T be a set and let R be a monad on the functor ΔT . Then a module M over
the monad Rn corresponds precisely to a family of R–modules (Mt)t∈T n by
(un)currying. Similarly, a morphism α : M → N of modules of degree n is
equivalent to a family (αt)t∈T n of morphisms of modules of degree zero with
αt : Mt → Nt.

3 Signatures, Representations, Initiality

We combine the techniques of [2] and [1] in order to obtain an initiality result for
simple type systems with reductions on the term level. As an example, we specify,
via the iteration principle stemming from the universal property, a semantically
faithful translation from PCF with its usual reduction relation to the untyped
lambda calculus with beta reduction. Analogously to [1], we define a notion of
2–signature with two levels: a syntactic level specifying types and terms of a
language, and, on top, a semantic level specifying reduction rules on the terms.

The syntactic level itself — given by a 1–signature (S, Σ), cf. Def. 29 —
specifies the types of the language, via an algebraic signature S, as well as terms
that are typed over the types specified by S, via a signature Σ over S. In a first
result (cf. Lem. 34) we characterize the language generated by a 1–signature,
and equipped with the equality preorder, as an initial object of a category of
representations. An instance of this theorem is given in Ex. 22, where TLCΔ,
equipped with two module morphisms given by the constructors Abs and App,
is characterized as the initial representation of a suitable 1–signature.

Afterwards we equip 1–signatures with inequations, yielding 2–signatures (cf.
Def. 42). We prove an initiality result for those 2–signatures (cf. Thm. 44), an
instance of which characterizes the simply–typed lambda calculus TLCβ with
beta reduction as initial representation (cf. Ex. 43).
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Signatures for Types. We consider sets of types that are specified by algebraic
signatures, which are presented in [2]. We review briefly:

Definition 16 (Algebraic Signature). An algebraic signature is given by a
family of natural numbers.

Intuitively, each natural number of such a family specifies the number of argu-
ments of its associated type constructor.

Example 17. The types of the simply–typed lambda calculus are specified via
the algebraic signature STLC := {∗ : 0, (�) : 2}.

Example 18. The language PCF [14] is a simply–typed lambda calculus with a
fixed point operator and arithmetic constants. The signature of the types of
PCF is given by SPCF := {ι : 0, o : 0, (⇒) : 2}. A representation T of SPCF

is given by a set T and three operations of suitable arities. A morphism of
representations is a map of sets compatible with the operations on either side.

Lemma 19. Let S be an algebraic signature. The category of representations of
S has an initial object Ŝ.

Signatures for Terms. For the rest of the section, let S be a signature for
types. Signatures for terms over S are syntactically defined as in [2]. We call
degree of an arity the number of object type variables appearing in the arity. For
instance, the signature ΣTLC of simply–typed lambda terms over the signature
STLC (cf. Ex. 17) is given by two arities of degree 2:

ΣTLC := {abs :
[
([1], 2)
]
→ (1 � 2) , app :

[
([], 1 � 2), ([], 1)

]
→ 2} . (1)

Intuitively, the numbers vary over object types. More precisely, for any repre-
sentation of STLC in a set T , the numbers vary over elements of T .

In order to define representations of such a signature (S, Σ), we need to con-
sider set families where the indexing set is equipped with a representation of the
type signature S:

Definition 20. Given a category C — e.g., the category Set of sets — we define
the category SCn to be the category an object of which is a triple (T, V, t) where
T is a representation of S, the object V ∈ CT is a T–indexed family of objects of
C and t is a vector of elements of T of length n. We denote by SUn : SCn → Set
the functor mapping an object (T, V, t) to the underlying set T .

We have a forgetful functor SCn → T Cn which forgets the representation
structure. On the other hand, any representation T of S in a set T gives rise to
a functor CT

n → SCn, which “attaches” the representation structure.

Recall from [2] that S(n) denotes terms of S with free variables in {1, . . . , n}. The
meaning of a term s ∈ S(n) as a natural transformation s : 1 ⇒ SUn : SCn → Set
is given by recursion on the structure of s:
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Definition 21 (Canonical Natural Transformation). Let s ∈ S(n) be a
type of degree n. Then s denotes a natural transformation s : 1 ⇒ SUn : SCn →
Set defined recursively on the structure of s as follows: for s = α(a1, . . . , ak) the
image of a constructor α ∈ S we set

s(T, V, t) = α(a1(T, V, t), . . . , ak(T, V, t))

and for s = m with 1 ≤ m ≤ n we define s(T, V, t) = t(m). We call a natural
transformation of the form s ∈ S(n) canonical.

The natural transformations of Ex. 11 yield examples of canonical transforma-
tions. We now define representations of the 1–signature (STLC, ΣTLC) of the
simply–typed lambda calculus. Afterwards we define general 1–signatures and
their representations.

Example 22 (Ex. 14 cont.). Let S := STLC be the signature for types of TLC as
in Ex. 17. We denote by i : 1 ⇒ SU2 : SC2 → Set, for i = 1, 2, the natural trans-
formations defined analogously to those of Ex. 14. We define the transformation
1 � 2 : 1 ⇒ SU2 as

(1 � 2)(V, s, t)(∗) := s � t .

The constructors of the simply–typed lambda calculus thus constitute the car-
riers of two module morphisms,

Abs : [TLCΔ2
1]2 → [TLCΔ2]1�2

App : [TLCΔ2]1�2 × [TLCΔ2]1 → [TLCΔ2]2 . (2)

Altogether we model the simply–typed lambda calculus with equality relation
via the following categorical structure:

– the relative monad TLCΔ on ΔTTLC and
– two morphisms of TLCΔ2–modules Abs and App of type as in Disp. (2).

We thus define a representation of the simply–typed lambda calculus, specified
by the signature (STLC, ΣTLC) (cf. Disp. (1)), as a representation T of STLC in a
set T , a monad P on ΔT and two morphisms of P2–modules

Abs : [P2
1]2 → [P2]1�2 and App : [P2]1�2 × [P2]1 → [P2]2 .

Together with a suitable definition of morphisms of representations, this yields
a category in which the triple (TLCΔ, Abs, App) is the initial object.

In general, an arity over S of degree n ∈ N is given by a pair of functors, each
of which associates, to any suitable monad P , a source dom(s, P ) and a target
dom(s, P ) of a Pn–module morphism. Each such functor is called a half–arity.
Representing an arity in the monad P then means specifying a module morphism
dom(s, P ) → cod(s, P ).

We define the source and target categories of half–arities; an object of the
source category is a pair of a representation of S in a set T and a monad on ΔT .
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Definition 23 (Relative S–Monad). The category S-RMnd of relative S–
monads is the category whose objects are pairs (T, P ) of a representation T of
S and a relative monad P on ΔT . A morphism from (T, P ) to (T ′, P ′) is a pair
(g, f) of a morphism of S–representations g : T → T ′ and a morphism of relative
monads f : P → P ′ over �g as in Rem. 9.

Given n ∈ N, we write S-RMndn for the category whose objects are pairs (T, P )
of a representation T of S and a relative monad P over ΔT

n . A morphism from
(T, P ) to (T ′, P ′) is a pair (g, f) of a morphism of S–representations g : T → T ′

and a monad morphism f : P → P ′ over the retyping functor �g(n) (Def. 10).

The target categories mix modules over different relative monads:

Definition 24. Given n ∈ N, an algebraic signature S and a category D, we call
LRModn(S,D) the category an object of which is a pair (P, M) of a relative S–
monad P ∈ S-RMndn and a P–module with codomain D. A morphism to another
such (Q, N) is a pair (f, h) of a morphism of relative S–monads f : P → Q in
S-RMndn and a morphism of relative modules h : M → f∗N .

We sometimes just write the module — i.e. the second — component of an object
or morphism of the large category of modules. Given M ∈ LRModn(S,D), we
thus write M(V, t) or MV,t for the value of the module on the object (V, t).

A half–arity over S of degree n is a functor from relative S–monads to the
category of large modules of degree n.

Definition 25. Given an algebraic signature S and n ∈ N, a half–arity over S
of degree n is a functor α : S-RMnd → LRModn(S, Pre) which is pre–inverse to
the forgetful functor.

The basic building brick for the half–arities we consider is the tautological mod-
ule:

Definition 26. To any relative S–monad R we associate the tautological mod-
ule of Rn (cf. Def. 10),

Θn(R) := (Rn, Rn) ∈ LRModn(S, PreT
n ) .

From the tautological module, we build classic half–arities using canonical natu-
ral transformations (cf. Def. 21); these transformations specify context extension
(derivation) and selection of specific object types (fibre):

Definition 27 (Classic Half–Arity). The following clauses define an induc-
tive set of classic half–arities, to which we restrict our attention:

– The constant functor ∗ : R �→ 1RMod(R,Pre) is a classic half–arity.
– Given any canonical natural transformation τ : 1 ⇒ SUn (cf. Def. 21),

the point-wise fibre module with respect to τ (cf. Def. 13) of the tautological
module Θn : R �→ (Rn, Rn) (cf. Def. 26) is a classic half–arity of degree n,

[Θn]τ : S-RMnd → LRModn(S, Pre) , R �→ [Rn]τ .
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– Given any (classic) half–arity M : S-Mnd → LModn(S, Pre) of degree n and
a canonical natural transformation τ : 1 ⇒ SUn, the point-wise derivation
of M with respect to τ is a (classic) half–arity of degree n,

M τ : S-RMnd → LRModn(S, Pre) , R �→
(
M(R)
)τ

.

– Given two (classic) half–arities M and N of degree n, their pointwise product
of modules M × N is again a (classic) half–arity of degree n.

A half–arity of degree n thus associates, to any relative S–monad P over a set
of types T , a family of P–modules indexed by T n, cf. Rem. 15.

An arity of degree n ∈ N for terms over an algebraic signature S is defined
to be a pair of functors from relative S–monads to modules in LRModn(S, Pre).
The degree n corresponds to the number of object type indices of its associated
constructor. For instance, the arities of Abs and App of Disp. (1) are of degree 2.

Definition 28 (Term–Arity, Signature over S). A classic arity α over S
of degree n is a pair s =

(
dom(α), cod(α)

)
of half–arities over S of degree n

such that dom(α) is classic and cod(α) is of the form [Θn]τ for some canonical
transformation τ as in Def. 21. We write dom(α) → cod(α) for the arity α,
and dom(α, R) := dom(α)(R) and similar for the codomain and morphisms of
relative S–monads. A term–signature Σ over S is a family of classic arities (of
varying degree) over S.

Definition 29 (1–Signature). A 1–signature is a pair (S, Σ) consisting of an
algebraic signature S for sorts and a term–signature Σ over S.

Example 30 (Ex. 22 cont.). The terms of the simply typed lambda calculus over
the type signature of Ex. 17 are given by the arities

abs : [Θ]12 → [Θ]1�2 , app : [Θ]1�2 × [Θ]1 → [Θ]2 ,

both of which are of degree 2 — we leave the degree implicit. The outer lower
index and the exponent are to be interpreted as de Bruijn variables, ranging
over types. They indicate the fibre (cf. Def. 13) and derivation (cf. Def. 12),
respectively, in the special case where the corresponding natural transformation
is given by a natural number as in Def. 21.

Example 31 (Ex. 18 cont.). The term–signature of PCF consists of an arity for
abstraction and an arity for application, each of degree 2, an arity (of degree
1) for the fixed point operator, and one arity of degree 0 for each logic and
arithmetic constant — some of which we omit:

abs : [Θ]12 → [Θ]1⇒2 , app : [Θ]1⇒2 × [Θ]1 → [Θ]2 , Fix : [Θ]1⇒1 → [Θ]1 ,

n : ∗ → [Θ]ι for n ∈ N , Succ : ∗ → [Θ]ι⇒ι , Zero? : ∗ → [Θ]ι⇒o

Definition 32 (Representation of an Arity, of a 1–Signature over S). A
representation r of an arity α over S in an S–monad R is a morphism of relative
modules r : dom(α, R) → cod(α, R). A representation R of a signature over S is
a given by a relative S–monad — called R as well — and a representation αR

of each arity α of S in R.
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Representations of (S, Σ) are the objects of a category RepΔ(S, Σ), whose mor-
phisms are defined as follows:

Definition 33 (Morphism of Representations). Given representations P
and R of a typed signature (S, Σ), a morphism of representations f : P → R is
given by a morphism of relative S–monads f : P → R, such that for any arity
α of Σ the following diagram of module morphisms commutes:

cod(α, f) ◦ αP = αR ◦ dom(α, f) .

Lemma 34. For any 1–signature (S, Σ), the category of representations of (S, Σ)
has an initial object.

Proof. The initial object is obtained, analogously to the untyped case (cf. [1]),
via an adjunction Δ∗ � U∗ between the categories of representations of (S, Σ)
in relative monads and those in monads as in [2]. We use that left adjoints are
cocontinuous, and thus preserve initial objects.

Inequations & 2–Signatures. An inequation associates, to any representa-
tion of (S, Σ) in a relative monad P , two parallel morphisms of P–modules.
Similarly to arities, an inequation (of higher degree) may be given by a family
of inequations, indexed by object types. Consider the simply–typed lambda cal-
culus, which was defined with typed abstraction and application. Similarly, we
have a typed substitution operation for TLC and, more generally, for any monad
on ΔT (cf. Def. 36). For s, t ∈ TTLC and M ∈ TLC(V ∗s)t and N ∈ TLC(V )s,
beta reduction is specified by

λM(N) � M [∗ := N ] ,

where our notation hides the fact that abstraction, application and substitution
are typed operations. More formally, such a reduction rule might read as a family
of inequations between morphisms of modules

apps,t ◦ (abss,t × id) ≤ _[∗s :=t _] ,

where s, t ∈ TTLC range over types of the simply–typed lambda calculus. Analo-
gously to 1–signatures, we want to specify the beta rule without referring to the
set TTLC, but instead express it for an arbitrary representation R of the typed
signature (STLC, ΣTLC) (cf. Ex. 30), as in

appR ◦ (absR × id) ≤ _[∗ := _] ,

where both the left and the right side of the inequation are given by suitable
R–module morphisms of degree 2.

Definition 35. Let (S, Σ) be a 1–signature, and let U : RepΔ(S, Σ) → S-RMnd
be the forgetful functor. Given two (classic) half–arities dom(s) and cod(s) of
degree n ∈ N, a half–equation α : dom(s) → cod(s) of degree n over (S, Σ) is
a natural transformation α : dom(s) ◦ U → cod(s) ◦ U . We call an inequation
classic when its codomain is given by a classic half–arity.



Initiality for Typed Syntax and Semantics 139

Definition 36 (Substitution of one Variable as a Half–Equation). Let
T be a (nonempty) set and let P be a monad over ΔT . For any s, t ∈ T and
X ∈ SetT we define a binary substitution operation (y, z) �→ y[∗ := z] :=
σ ([ηX , x �→ z]) (y). For any pair (s, t) ∈ T 2, we thus obtain a morphism of P–
modules

substP
s,t : [P s]t × [P ]s → [P ]t .

By Rem. 15 this family is equivalent to a module morphism of degree 2. We thus
have a half–equation of degree 2 with classic domain and codomain over any
typed signature,

subst : R �→ substR : [R1
2]2 × [R2]1 → [R2]2 .

Example 37 (Ex. 30 cont.). The following map yields a half–equation over the
signature TLC, as well as over the signature of PCF:

app ◦ (abs× id) : R �→ appR ◦ (absR × idR) : [R1
2]2 × [R2]1 → [R2]2 .

Definition 38 (Inequation). Given a signature (S, Σ), an inequation over
(S, Σ), or (S, Σ)–inequation, of degree n ∈ N is a pair of parallel half–equations
of degree n. We write α ≤ γ for the inequation (α, γ).

Example 39 (Beta Reduction). For any suitable 1–signature — i.e. for any 1–
signature that has an arity for abstraction and an arity for application — we
specify beta reduction using the parallel half–equations of Def. 36 and Ex. 37:

app ◦ (abs× id) ≤ subst : [Θ2]12 × [Θ2]1 → [Θ2]2 .

Example 40 (Fixpoints and Arithmetics of PCF). We specify some of the reduc-
tion rules of PCF via inequations over the 1–signature of PCF (cf. Ex. 31); for
space reasons we refrain from specifying all of them. The reader may fill in the
missing inequations, whose informal specification can be found, e.g., in [13].

Fix ≤ app ◦ (id,Fix) : [Θ]1⇒1 → [Θ]1
app ◦ (Pred,0) ≤ 0 : ∗ → [Θ]ι

app ◦ (Pred, app ◦ (Succ,n)) ≤ n : ∗ → [Θ]ι
app ◦ (Zero?,0) ≤ T : ∗ → [Θ]o

app ◦ (Zero?, app ◦ (Succ,n)) ≤ F : ∗ → [Θ]o

Definition 41 (Representation of Inequations). A representation of an
(S, Σ)–inequation α ≤ γ : U → V (of degree n) is any representation R over
a set of types T of (S, Σ) such that αR ≤ γR pointwise, i.e. if for any pointed
context (X, t) ∈ SetT × T n, any t ∈ T and any y ∈ UR

(X,t)(t), αR(y) ≤ γR(y),
where we omit the sort argument t as well as the context (X, t) from α and γ.
We say that such a representation R satisfies the inequation α ≤ γ.

The category of representations of ((S, Σ), A) is defined as the full subcategory
of RepΔ(S, Σ) of representations satisfying each inequation of A. According to
Rem. 15, the above inequation is equivalent to ask whether, for any t ∈ T n, any
t ∈ T and any y ∈ UR

t (X)(t), αR
t (y) ≤ γR

t (y).
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Definition 42 (2–Signature). A 2–signature is a pair given by a 1–signature
(S, Σ) and a set A of classic inequations over (S, Σ).

Example 43 (Representations of TLC with β). A representation of (STLC, ΣTLC, β)
is given by a representation (P, Abs, App) of (STLC, ΣTLC) over a set T “of types”
such that, for any context V ∈ SetT , any s, t ∈ T and any M ∈ P s(V )(t) and
N ∈ P (V )(s),

Apps,t(Abss,t(M), N) ≤ M [∗ := N ] .

The initial such representation is given by the triple (TLCβ, Abs, App), where

Abs : [TLCβ2
1]2 → [TLCβ2]1�2

App : [TLCβ2]1�2 × [TLCβ2]1 → [TLCβ2]2 .

The above example is an instance of the following general theorem for 2–signatures:

Theorem 44. For any set of classic (S, Σ)–inequations A, the category of rep-
resentations of ((S, Σ), A) has an initial object.

A proof of the theorem can be found in the author’s PhD thesis [3].
The following remark gives a “manual” on how to use the universal property

of initiality in order to specify a translation between two languages:

Remark 45 (Iteration Principle by Initiality). The universal property of the lan-
guage generated by a 2–signature yields an iteration principle to define maps —
translations — on this language, which are compatible by construction with sub-
stitution and reduction in the source and target languages. A translation from
the language generated by (S, Σ, A) to the language generated by (S′, Σ′, A′) can
be obtained, via the universal property, as an initial morphism in RepΔ(S, Σ, A),
obtained by equipping the relative monad Σ̂′

A′ underlying the target language
with a representation of the signature (S, Σ, A). In more detail:

1. we give a representation of the type signature S in the set Ŝ′. By initiality
of Ŝ, this yields a translation Ŝ → Ŝ′ of sorts.

2. Afterwards, we specify a representation of the term signature Σ in the monad
Σ̂′

A′ by defining suitable (families) of morphisms of Σ̂′
A′–modules. This yields

a representation R of (S, Σ) in the monad Σ̂′
A′ .

3. Finally, we verify that the representation R of (S, Σ) satisfies the inequations
of A, that is, we check whether, for each α ≤ γ : dom(α) → cod(α) ∈ A, and
for each context V , each t ∈ Ŝ and x ∈ dom(α)R

V (t), αR(x) ≤ γR(x).

Example 46 (Translation from PCF to ULC). We use the aforementioned itera-
tion principle to specify a translation from PCF to ULC, which is semantically
faithful with respect to the usual reduction relation of PCF — generated by the
inequations of Ex. 40 (and some more, see [14]) — and beta reduction of ULC. For
space reasons, we cannot present this example here; we refer to [3]. This example
— initiality of the types and terms of PCF with its reductions, and a translation
to ULC with beta reduction via associated category–theoretic iteration operator
— has also been implemented in the proof assistant Coq. The source files and doc-
umentation are available on http://math.unice.fr/laboratoire/logiciels.

http://math.unice.fr/laboratoire/logiciels
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Abstract. We study dynamic modal operators that can change the
model during the evaluation of a formula. In particular, we extend the
basic modal language with modalities that are able to swap, delete or
add pairs of related elements of the domain, while traversing an edge
of the accessibility relation. We study these languages together with the
sabotage modal logic, which can arbitrarily delete edges of the model. We
define a suitable notion of bisimulation for the basic modal logic extended
with each of the new dynamic operators and investigate their expressive
power, showing that they are all uncomparable. We also show that the
complexity of their model checking problems is PSpace-complete.

1 Introduction

Modal logics [2,4] are particularly well suited to describe graphs, and this is for-
tunate as many situations can be modeled using graphs: an algebra, a database,
the execution flow of a program or, simply, the arbitrary relations between a
set of elements. This explains why modal logics have been used in many, diverse
fields. They offer a well balanced trade-off between expressivity and computa-
tional complexity (model checking the basic modal language ML is only poly-
nomial, while its satisfiability problem is PSpace-complete). Moreover, the range
of modal logics known today is extremely wide, so that it is usually possible to
pick and choose the right modal logic for a particular application.

But if we want to describe and reason about dynamic aspects of a given
situation, e.g., how the relations between a set of elements evolve through time
or through the application of certain operations, the use of modal logics (or
actually, any kind of logic with classical semantics) becomes less clear. We can
always resort to modeling the whole space of possible evolutions of the system as
a graph, but this soon becomes unwieldy. It would be more elegant to use truly
dynamic modal logics with operators that can mimic the changes that structure
will undergo. This is not a new idea, and a clear example of this kind of logics
is the sabotage logic introduced by Johan van Benthem in [12].

Consider the following sabotage game. It is played on a graph with two players,
Runner and Blocker. Runner can move on the graph from node to accessible
node, starting from a designated point, and with the goal of reaching a given
final point. He should move one edge at a time. Blocker, on the other hand, can

L. Ong and R. de Queiroz (Eds.): WoLLIC 2012, LNCS 7456, pp. 142–153, 2012.
c© Springer-Verlag Berlin Heidelberg 2012
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delete one edge from the graph, every time it is his turn. Of course, Runner
wins if he manages to move from the origin to the final point in the graph, while
Blocker wins otherwise. van Benthem discusses in [12] how to transform the sa-
botage game into a modal logic. van Benthem’s original idea has been studied
in several other works [6,10] where the sabotage operator is defined as:

M, w |= 〈gs〉ϕ iff there is a pair (u, v) of M such that M−
{(u,v)}, w |= ϕ,

where M−
{(u,v)} is identical to M except that the edge (u, v) has been removed

from the accessibility relation.
It is clear that the 〈gs〉 operator changes the model in which a formula is eva-

luated. As van Benthem puts it, 〈gs〉 is an “external” modality that takes evalua-
tion to another model, obtained from the current one by deleting some transition.
It has been proved that solving the sabotage game is PSpace-hard, while the
model checking problem of the associated modal logic is PSpace-complete and
the satisfiability problem is undecidable. The logic fails to have both the finite
model property and the tree model property [6,10].

In this article, we will investigate various model changing operators. The first
one, 〈sw〉, has the ability to swap the direction of a traversed arrow. The 〈sw〉
operator is a ♦ operator — to be true at a state w it requires the existence of an
accessible state v where evaluation will continue— but it changes the accessibility
relation during evaluation — the pair (w, v) is deleted, and the pair (v, w) added
to the accessibility relation. A picture will help understand the dynamics of 〈sw〉.
The formula 〈sw〉♦% is true in a model with two related states:

w

〈sw〉♦%
v w v

♦%

As we can see in the picture, evaluation starts at state w with the arrow pointing
from w to v, but after evaluating the 〈sw〉 operator, it continues at state v with
the arrow now pointing from v to w. We will investigate two other dynamic
operators in this article. 〈ls〉, for local sabotage, is a ♦ operator that destroys the
traversed arrow, while 〈br 〉, for bridge, models the opposite situation: it adds an
arrow to an inaccessible point of the model and moves over there.

We have chosen these model changing operators with the intention of covering
a sufficiently varied sample of alternatives. The goal is to investigate whether the
differences among them lead to different properties of the logics they defined,
and how they vary in expressive power. Clearly, other operators could have
been included in this exploration, and actually some alternative choices have
been already investigated in the literature, e.g., the adjacent sabotage operator
discussed in [10].

Summing up then, we will study and compare the expressive powers of
ML(〈sw〉), ML(〈gs〉), ML(〈ls〉) and ML(〈br〉), and we provide complexity
results for their model checking problems.
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2 Syntax and Semantics

The syntax of the dynamic modal logics we will study is a straightforward ex-
tension of the basic modal logic (see [2]):

Definition 1 (Syntax). Let PROP be a countable, infinite set of propositional
symbols. Then the set FORM of formulas over PROP is defined as:

FORM ::= ⊥ | p | ¬ϕ | ϕ ∧ ψ | �ϕ,

where p ∈ PROP, � ∈ {♦, 〈sw〉, 〈gs〉, 〈ls〉, 〈br 〉} and ϕ, ψ ∈ FORM. Other opera-
tors are defined as usual. In particular, �ϕ is defined as ¬�¬ϕ.

Formulas of the basic modal language ML are those that contains only the ♦
operator beside the Boolean operators. We call ML(�) to the extension of ML
allowing also the � operator, for � ∈ {〈sw〉, 〈gs〉, 〈ls〉, 〈br〉}.

Semantically, formulas of ML(〈sw〉), ML(〈gs〉), ML(〈ls〉) and ML(〈br〉) are
evaluated in standard relational models, and the meaning of all the operators
of the basic modal logic is unchanged. When we evaluate formulas containing
dynamic operators, we will need to keep track of the edges that have been mo-
dified. To that end, let us define precisely the models that we will use. In the
rest of this article we will use wv as a shorthand for {(w, v)} or (w, v). Context
will always disambiguate the intended use.

Definition 2 (Models and Model Updates). A model M is a triple M =
〈W,R, V 〉, where W is a non-empty set whose elements are called points or states;
R ⊆W×W is the accessibility relation; and V : PROP -→ P(W ) is a valuation.

Given a model M = 〈W,R, V 〉, we define the following notations:

(swapping) M∗
vw = 〈W,R∗

vw, V 〉, with R∗
vw = (R\wv)∪vw, wv ∈ R.

(sabotaging) M−
wv = 〈W,R−

wv, V 〉, with R−
wv = R\wv, wv ∈ R.

(bridging) M+
wv = 〈W,R+

wv, V 〉, with R+
wv = R ∪ wv, wv ∈ (W×W )\R.

Let w be a state in M, the pair (M, w) is called a pointed model; we will usually
drop parenthesis and call M, w a pointed model.

We are now ready to introduce the semantics.

Definition 3 (Semantics). Given a pointed model M, w and a formula ϕ we
say that M, w satisfies ϕ, and write M, w |= ϕ, when

M, w |= p iff w ∈ V (p)
M, w |= ¬ϕ iff M, w � ϕ
M, w |= ϕ ∧ ψ iff M, w |= ϕ and M, w |= ψ
M, w |= ♦ϕ iff for some v ∈W s.t. wRv,M, v |= ϕ
M, w |= 〈sw〉ϕ iff for some v ∈W s.t. wRv,M∗

vw, v |= ϕ
M, w |= 〈gs〉ϕ iff for some v, u ∈W, s.t. vRu,M−

vu, w |= ϕ
M, w |= 〈ls〉ϕ iff for some v ∈W s.t. wRv,M−

wv, v |= ϕ
M, w |= 〈br〉ϕ iff for some v ∈W s.t. ¬wRv,M+

wv, v |= ϕ.
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ϕ is satisfiable if for some pointed model M, w we have M, w |= ϕ.
We write M, w ≡L N , v when both models satisfy the same L-formulas, i.e.,

for all ϕ ∈ L, M, w |= ϕ if and only if N , v |= ϕ. We will drop the L subindex
when no confusion arises.

Once syntax and semantics are in place, the following result that distinguishes
the dynamic logics from ML can be easily established. A basic result for ML
shows that it has the tree model property: every satisfiable formula of ML can
be satisfied at the root of a model where the accessibility relation defines a tree
(i.e., there is a root, the relation is irreflexive, all elements different from the
root can be reached from the root via the transitive closure of the accessibility
relation, and no element has two different predecessors).

Theorem 4. ML(�) does not have the tree model property, for � ∈ {〈sw〉, 〈gs〉,
〈ls〉, 〈br 〉}

Proof. For details see the appendix. We present formulas that ensure that the
accessibility relation does not define a tree. The 〈gs〉 case has already been proved
in [6]. Suppose the following formulas hold at some point w:

1. p ∧ (
∧

1≤i≤3 �i¬p) ∧ 〈sw〉♦♦p, then w has a reflexive successor;
2. ♦♦% ∧ [ls ]�⊥, then w is reflexive;
3. ♦♦% ∧ [gs ]�⊥, then w is reflexive;
4. 〈br〉�⊥, then w and some different point v are unconnected.

In each case, the formula cannot be satisfied in a tree. #�

As the four logics we introduced are conservative extensions of ML, the for-
mulas above show that each is strictly more expressive than ML. A natural
question is whether these dynamic logics are different from each other. We will
use bisimulations to answer this question.

Because we need to keep track of the changes on the accessibility relation that
the dynamic operators can introduce, we will define bisimulations as relations
that link a point of evaluation together with the current accessibility relation.

Definition 5 (Bisimulations). Given models M = 〈W,R, V 〉 and M′ = 〈W ′,
R′, V ′〉, together with points w ∈ W and w′ ∈W ′ we say that they are bisimilar
and write M, w ↔ M′, w′ if there is a relation Z ⊆ (W × P(W 2)) × (W ′ ×
P(W ′2)) such that (w,R)Z(w′, R′) satisfying conditions from Figure 1. Which
conditions have to be satisfied depends on the operators present in the language.

If needed, we write ↔L to indicate that the bisimulation corresponds to L.

Theorem 6 (Invariance for Dynamic Logics). ForML(�),� ∈ {〈sw〉, 〈gs〉,
〈ls〉, 〈br 〉}, M, w ↔ML(�) M′, w′ implies M, w ≡ML(�) M′, w′.

Proof. We will only prove the ML(〈sw〉) case by structural induction.
The base case holds by (agree), and the ∧ and ¬ cases are trivial.

[♦ϕ case:] Let M = 〈W,R, V 〉 and M′ = 〈W ′, R′, V ′〉. Suppose M, w |= ♦ϕ.
Then there is v in W s.t. wRv and M, v |= ϕ. Since Z is a bisimulation, by
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always (nontriv) Z is not empty

always (agree) If (w,S)Z(w′, S′), w and w′ make the same propositional variables
true.

♦ (zig) If wSv, there is v′∈W ′ s.t. w′S′v′ and (v, S)Z(v′, S′)

(zag) If w′S′v′, there is v∈W s.t. wSv and (v, S)Z(v′, S′)

〈sw〉 (sw -zig) If wSv, there is v′∈W ′ s.t. w′S′v′ and (v, S∗
vw)Z(v′, S′∗

v′w′ )

(sw -zag) If w′S′v′, there is v∈W s.t. wSv and (v, S∗
vw)Z(v′, S′∗

v′w′ )

〈gs〉 (gs-zig) If vSu, there is v′, u′∈W ′ s.t. v′S′u′ and (w,S−
vu)Z(w′, S′−

v′u′)

(gs-zag) If v′S′u′, there is v, u∈W s.t. vSu and (w,S−
vu)Z(w′, S′−

v′u′)

〈ls〉 (ls-zig) If wSv, there is v′∈W ′ s.t. w′S′v′ and (v, S−
wv)Z(v′, S′−

w′v′)

(ls-zag) If w′S′v′, there is v∈W s.t. wSv and (v, S−
wv)Z(v′, S′−

w′v′)

〈br〉 (br -zig) If ¬wSv, there is v′∈W ′ s.t. ¬w′S′v′ and (v, S+
wv)Z(v′, S′+

w′v′)

(br -zag) If ¬w′S′v′, there is v∈W s.t. ¬wSv and (v, S+
wv)Z(v′, S′+

w′v′)

Fig. 1. Conditions for ML(�)-bisimulations

(zig) we have v′ ∈ W ′ s.t. w′R′v′ and (v,R)Z(v′, R′). By inductive hypothesis,
M′, v′ |= ϕ and by definition M′, w′ |= ♦ϕ. For the other direction use (zag).

[〈sw〉ϕ case:] For the left to the right direction suppose M, w |= 〈sw 〉ϕ. Then
there is v ∈ W s.t. wRv and M∗

vw, v |= ϕ. Because Z is a bisimulation, by
(sw -zig) we have v′ ∈ W ′ s.t. w′R′v′ and (v,R∗

vw)Z(v′, R′∗
v′w′). By inductive

hypothesis, M′∗
v′w′ , v′ |= ϕ and by definition M′, w′ |= 〈sw〉ϕ. For the other

direction use (sw -zag). #�

3 Expressive Power

With the appropriate notions of bisimulation at hand we can now start the
comparison of the expressive power of the different dynamic modal logics we
introduced. We will use the following standard definition of when a logic is at
least as expressive as another.

Definition 7 (L ≤ L′). We say that L′ is at least as expressive as L (notation
L ≤ L′) if there is a function Tr between formulas of L and L′ such that for
every model M and every formula ϕ of L we have that

M |=L ϕ iff M |=L′ Tr(ϕ).

M is seen as a model of L on the left and as a model of L′ on the right, and we
use in each case the appropriate semantic relation |=L or |=L′ as required.

We say that L and L′ are uncomparable if L � L′ and L′ � L.

By inspecting suitable models we can establish the following result.

Theorem 8. For all �1,�2 ∈ {〈sw〉, 〈gs〉, 〈ls〉, 〈br 〉} with �1 �= �2, ML(�1)
and ML(�2) are uncomparable.
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M M′ Distinct by Bisimilar for

w
w′

〈br〉〈br〉�
〈gs〉�

ML(〈ls〉)
ML(〈sw〉)

w w′
〈ls〉♦�
〈gs〉♦�

ML(〈sw〉)
ML(〈br〉)

w w′

〈sw 〉〈sw〉♦♦♦�⊥
[br ][br ]⊥

ML(〈gs〉)
ML(〈ls〉)

w
. . .. . . w′

. . . 〈sw 〉♦�⊥ ML(〈br〉)

w

. . .

. . .

w′

. . .

. . .

〈ls〉♦�⊥ ML(〈gs〉)

Fig. 2. Bisimilar models and distinguishing formulas

Proof. In Figure 2 we summarize our results by presenting pairs of models that
are bisimilar for a given logic and distinguishable by another. More precisely,
the formulas given in the third column are false at M, w and true at M′, w′.

That the models are bisimilar for the given logics can be easily verified for
the first two rows. In the third row, the given models are bisimilar for ML(〈gs〉)
and ML(〈ls〉) because they are bisimilar for ML, they are acyclic and (for
ML(〈gs〉)) they contain the same number of edges. In the fourth row, both
models are ML(〈br 〉)-bisimilar since they are infinite, hence one can add as
many links as needed to points that are modally bisimilar.

Finally, the pointed models of the last row are the same graph with a different
evaluation point. The graph is a star that has infinitely many ingoing branches,
and infinitely many ingoing-outgoing branches. w is a point located at the end
of an ingoing branch, and w′ is at the end of an ingoing-outgoing branch. Let us
present the ML(〈gs〉)-bisimulation as a game between Spoiler and Duplicator.
If Spoiler moves to the center of the star, Duplicator can do the same and
both situations become undistinguishable. If Spoiler deletes one of the ingoing
edges that has w or w′ as origin, then Duplicator does the same on the other
graph, and any further edge deletion can also be imitated. If Spoiler deletes the
outgoing edge that goes from the center of the graph towards w′, then Duplicator
can delete any outgoing edge without changing the graph, given that there are
infinitely many edges of both kinds. #�

4 Model Checking Dynamic Logics

In this section we establish complexity results for the model checking task in the
various dynamic modal logics we presented. All the results are established using a
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similar argument: hardness proofs are done by encoding the satisfiability problem
of Quantified Boolean Formulas (QBF) [8] as the model checking problem of each
logic. While the idea behind the encoding is the same for all the logics involved,
the encoding needs to be slightly modified in each case taking into consideration
the semantics of the various dynamic operators.

PSpace-hardness for global sabotage was already proved in [7,6], but we pro-
vide here a more direct proof.

Theorem 9. For � ∈ {〈sw〉, 〈gs〉, 〈ls〉, 〈br 〉}, model checking for any of the log-
ics ML(�) is PSpace-hard.

Proof. We will reduce the PSpace-complete satisfiability problem of Quantified
Boolean Formulas (QBF) to the model checking problem of each of these logics.
For a complete proof of the case of ML(〈sw 〉), consult the appendix.

Consider ML(〈sw〉). Let α be a QBF formula with variables {x1, . . . , xk}.
Without loss of generality we can assume that α has no free variables and no
variable is quantified twice. One can build in polynomial time the relational
structure Mk = 〈W,R, V 〉 over a signature with one relational symbol and
propositions {p�, p1, . . . , pk}, where:

W = {w} ∪ {w1
i , w

0
i | 1 ≤ i ≤ k}

V (pi) = {w1
i , w

0
i }

V (p�) = {w1
i | 1 ≤ i ≤ k}

R = {(w,w1
i ), (w,w

0
i ) | 1 ≤ i ≤ k} p1

p�
p1

. . . pk

p�
pk

Let ( )′ be the following linear translation from QBF to ML(〈sw〉)

(∃xi.α)′ = 〈sw 〉(pi ∧ ♦(α)′)
(xi)

′ = ¬♦(pi ∧ p�)
(¬α)′ = ¬(α)′
(α ∧ β) = (α)′ ∧ (β)′.

It remains to see that α is satisfiable if, and only if, Mk, w |= (α)′ holds. This
part of the proof is in the appendix. This shows that the model checking problem
of ML(〈sw 〉) is PSpace-hard.

For ML(〈gs〉) and ML(〈ls〉), we use the following model:

W = {w} ∪ {w1
i , w

0
i | 1 ≤ i ≤ k}

V (pi) = {w1
i , w

0
i }

V (p�) = {w1
i | 1 ≤ i ≤ k}

R = {(w,w1
i ), (w,w

0
i ), (w

1
i , w), (w

0
i , w)

| 1 ≤ i ≤ k}
p1

p�
p1

. . . pk

p�
pk

Let ( )′ be the following linear translation from QBF to ML(〈ls〉):

(∃xi.α)′ = 〈ls〉(pi ∧ ♦(α)′)
(xi)

′ = ¬♦(pi ∧ p�)
(¬α)′ = ¬(α)′
(α ∧ β) = (α)′ ∧ (β)′.
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From QBF to ML(〈gs〉), we provide the following translation:

(∃xi.α)′ = 〈gs〉((¬♦(pi ∧ p�) ∨ ¬♦(pi ∧ ¬p�)) ∧ ♦(pi ∧ ♦(α)′))
(xi)

′ = ¬♦(pi ∧ p�)
(¬α)′ = ¬(α)′
(α ∧ β) = (α)′ ∧ (β)′.

In both cases, showing that a QBF formula α is satisfiable if, and only if,
Mk, w |= (α)′ holds can be done similarly to the case of ML(〈sw 〉).

Finally, to prove PSpace-hardness for ML(〈br〉), build the following model:

W = {w} ∪ {w1
i , w

0
i | 1 ≤ i ≤ k}

V (pi) = {w1
i , w

0
i }

V (p�) = {w1
i | 1 ≤ i ≤ k}

R = {(w1
i , w), (w

0
i , w) | 1 ≤ i ≤ k} p1

p�
p1

. . . pk

p�
pk

And use the following linear translation ( )′:

(∃xi.α)′ = 〈br 〉(pi ∧ ♦(α)′)
(xi)

′ = ♦(pi ∧ p�)
(¬α)′ = ¬(α)′
(α ∧ β) = (α)′ ∧ (β)′. #�

Theorem 10. Model checking for ML(〈sw〉, 〈gs〉, 〈ls〉, 〈br 〉) is in PSpace.

Proof. The evaluation of the truth of a formula in a model can be done by a
polynomial space algorithm that follows Definition 3.

The algorithm works on the same copy of the model, except when dealing
with formulas whose main connector is 〈sw 〉, 〈gs〉, 〈ls〉 or 〈br〉 (i.e., dynamic
operators). In such cases, by proceeding depth-first among at most |W | possible
choices, the algorithm only allocates as much additional space as the size of the
initial model to store the modified copy. This memory can be reclaimed once
the result of the recursive call is known. The maximum number of copies of the
input model in memory is bounded by the nesting of dynamic operators of the
input formula. Hence the algorithm runs using only polynomial space. #�

With the previous results we get:

Theorem 11. For � ∈ {〈sw〉, 〈gs〉, 〈ls〉, 〈br〉}, model checking for any of the
logics ML(�) is PSpace-complete.

5 Conclusions

In this article we investigate dynamic modal logics that can modify the model
during the evaluation of a formula. Dynamic Epistemic Logics (DEL) as those
investigated in [9,5,11,13] are well known examples of languages which can also
update the model during evaluation. The standard update operation used in
DELs is to move evaluation to a submodel defined by a certain ‘announcement’,



150 C. Areces, R. Fervari, and G. Hoffmann

e.g., to the model representing the fact that ϕ is now known, obtained as the
restriction to all the nodes satisfying a formula ϕ. Instead, in this article we
investigate logics that can explicitly modify the accessibility relation, as the
sabotage logics first introduced by van Benthem in [12].

We introduce a number of operators with both local and global effects, and
which can add, delete and modify edges in the accessibility relation. The goal
was to investigate the different degrees of liberty that the operators offered, and
how much overlap there was between the logics they defined, and the models
they could describe.

We show in Sections 2 and 3 that the languages obtained by the extension of
the basic modal logic with each of the dynamic operators can be characterized
using bisimulations. Actually, even though each operator requires a particular
pair of zig and zag conditions, the definition is modular and the set up homo-
geneous. All the bisimulations involved are of the same type, linking a pair of
point of evaluation and accessibility relation in one model, with a similar pair
in the other. Moreover, a suitable definition of bisimulation for the basic modal
logic extended with any combination of the new dynamic operators can be ob-
tained by using the adequate zig and zag conditions associated to the operators
involved. Summing up then, even though the logics obtained are different in each
case, they are all amenable to fairly classical modal analysis.

In Section 4 we turn to model checking, and show that the complexity of this
reasoning task is PSpace-complete for all the logics considered. Once more, the
proofs are fairly homogeneous in all cases. The general set up is the encoding
of the PSpace-complete QBF satisfiability problem in each of the logics. In each
case, a suitable representation for the assignment and the concrete translation
used needs to be defined, but once this is done the proof is similar.

More precisely, we established the complexity of the combined model check-
ing task, measured in function of the length of an input model and an input
formula. It is also possible to consider the task of model checking against a fixed
model, measuring its complexity in function of the size of an input formula (this
is known as the formula complexity). One can also fix a formula and measure
the complexity of model checking in function of the length of an input model
(known as the program complexity or data complexity). Both notions were in-
troduced in [14], and it has been shown in [6] that the formula complexity and
the program complexity ofML(〈gs〉) are respectively linear and polynomial. We
believe that the proof generalizes to ML(〈ls〉), ML(〈sw〉) and ML(〈br 〉) with
identical results.

Another natural direction for future research would be to investigate the com-
plexity of the satisfiability problem of these logics. From [6], we already know
that ML(〈gs〉) is undecidable. We conjecture that using techniques from [3,1],
it is possible to prove that the problem is undecidable in all remaining cases.
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Appendix

Theorem 4. ML(�) does not have the tree model property, for � ∈ {〈sw〉, 〈gs〉,
〈ls〉, 〈br 〉}

Proof. We are going to list formulas that force no-treelike models:

1. The formula
ϕ = p ∧ (

∧
1≤i≤3

�i¬p) ∧ 〈sw〉♦♦p

is true at a state w in a model, only if w has a reflexive successor.
Suppose we evaluate ϕ at some state w of an arbitrary model. The ‘static’

part of the formula p∧(
∧

1≤i≤3 �i¬p) makes sure that p is true in w and that
no p state is reachable within three steps from w (in particular, w cannot be
reflexive).
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Because 〈sw 〉♦♦p is true at w, there should be an R-successor v where
♦♦p holds once the accessibility relation has been updated to R∗

vw. That
is, v has to reach a p-state in exactly two R∗

vw-steps. But the only p-state
sufficiently close is w which is reachable in one step. As w is not reflexive, v
has to be reflexive so that we can linger at v for one loop and reach p in the
correct number of states.

2. The formula
ϕ = ♦♦% ∧ [ls ]�⊥

is true at a state w in a model, only if w is reflexive.
Suppose we evaluate ϕ at some state w of an arbitrary model. On one

hand, the ‘static’ part of the formula ♦♦% ensures it is possible to take two
accessibility relations. On the other hand, the ‘dynamic’ part of the formula
[ls ]�⊥ tells us that after taking any accessibility relation and eliminating
it, it is no longer possible to go anywhere else. This can only happen if the
point w is reflexive and does not have any other outgoing links.

3. The formula
ϕ = ♦♦% ∧ [gs ]�⊥

(from [6]) is true at a state w in a model, only if w is reflexive.
4. The formula

ϕ = 〈br〉�⊥
is only satisfiable in models that have at least two unconnected points. #�

Theorem 11. Model checking for ML(〈sw〉) is PSpace-hard.

Proof. We will reduce the PSpace-complete satisfiability problem of Quantified
Boolean Formulas (QBF) to the model checking problem of ML(〈sw〉).

Let α be a QBF formula with variables {x1, . . . , xk}. Without loss of generali-
ty we can assume that α has no free variables and no variable is quantified twice.
One can build in polynomial time the relational structure Mk = 〈W,R, V 〉 over
a signature with one relational symbol and propositions {p�, p1, . . . , pk}, where:

W = {w} ∪ {w1
i , w

0
i | 1 ≤ i ≤ k}

V (pi) = {w1
i , w

0
i }

V (p�) = {w1
i | 1 ≤ i ≤ k}

R = {(w,w1
i ), (w,w

0
i ) | 1 ≤ i ≤ k} p1

p�
p1

. . . pk

p�
pk

Let ( )′ be the following linear translation from QBF to ML(〈sw〉)

(∃xi.α)′ = 〈sw 〉(pi ∧ ♦(α)′)
(xi)

′ = ¬♦(pi ∧ p�)
(¬α)′ = ¬(α)′
(α ∧ β) = (α)′ ∧ (β)′.

It remains to see that α is satisfiable iff Mk, w |= (α)′ holds. Let us write
v |=qbf α if valuation v : {x1, . . . , xk} → {0, 1} satisfies α. For a model M with
relation R we define vR : {x1, . . . , xk} as “vR(xi) = 1 iff (w,w1

i ) �∈ R”, in the
present case, iff the link between w and w1

i has been swapped.
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Let β be any subformula of α. We will show by induction on β that M, w |=
(β)′ iff vR |=qbf β. The first observation is that R satisfies i) if xi is free in β,
then (w,w1

i ) �∈ R or (w,w0
i ) �∈ R but not both, and ii) if xi is not free in β then

(w,w1
i ) ∈ R and (w,w0

i ) ∈ R. From here it will follow that Mk, w |= (α)′ iff
v |=qbf α for any v since α has no free variables, iff α is satisfiable.

For the base case, vR |=qbf xi iff (w,w1
i ) �∈ R which implies (from the defi-

nition of Mk) M, w |= (xi)
′. For the other direction, suppose M, w �|= (xi)

′.
Hence M, w |= ♦(pi ∧ p�) which implies (w,w1

i ) ∈ R and uR �|=qbf xi.
The boolean cases follow directly from the inductive hypothesis.
Consider the case β = ∃xi.γ. Since no variable is bound twice in α we know

(w,w1
xi) ∈ R and (w,w0

i ) ∈ R. We have vR |=qbf β iff (vR[xi -→ 0] |=qbf γ or
vR[xi -→ 1] |=qbf γ) iff (v

Rw0
i
w |=qbf γ or v

Rw1
i
w |=qbf γ). By inductive hypothesis,

this is the case if and only if (Mw0
iw, w0

i |= ♦(γ)′ or Mw1
iw, w1

i |= ♦(γ)′) iff
M, w |= 〈sw〉(pi ∧ ♦(γ)′) iff M, w |= (∃xi.γ)′. #�
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An Automated Approach
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Abstract. We provide general conditions on hypersequent calculi that
guarantee standard completeness for the formalized logics. These condi-
tions are implemented in the PROLOG system AxiomCalc that takes as
input any suitable axiomatic extension of Monoidal T-norm Logic MTL
and outputs a hypersequent calculus for the logic and the result of the
check. Our approach subsumes many existing results and allows for the
computerized discovery of new fuzzy logics.

1 Introduction

Standard completeness, that is completeness of a logic with respect to algebras
based on truth values in [0, 1], has received increasing attention in the last few
years. In a standard complete logic connectives are interpreted by suitable func-
tions on [0, 1], and this makes it a fuzzy logic in the sense of [11]. For example,
conjunction and implication can be interpreted by a t-norm1 and its residuum
or by classes of t-norms. Gödel and 	Lukasiewicz being prominent examples of
logics based on particular t-norms, while e.g. Monoidal t-norm logic MTL [8] is
based on the class of left-continuous t-norms. MTL is a useful basic system as
many interesting logics, including Gödel and 	Lukasiewicz logics, can be obtained
by extending MTL with suitable properties expressed as Hilbert axioms.

Checking or discovering whether a logic is standard complete is sometimes a
challenging task which deserves a paper for each specific logic, e.g., [5, 10, 12].
It is traditionally established by semantic techniques which are inherently logic-
specific. Given a logic L described in a Hilbert-style system, semantic proofs
usually consist of the following four steps (see, e.g., [5, 7, 8, 10, 11, 15]):

1. The algebraic semantics of the logic is identified (L-algebras).
2. It is shown that if a formula is not valid in an L-algebra, then it is not valid

in a countable L-chain (linearly ordered L-algebra).
3. It is shown that any countable L-chain can be embedded into a countable

dense L-chain by adding countably many new elements to the algebra and
extending the operations appropriately. This establishes rational complete-
ness: a formula is derivable in L iff it is valid in all dense L-chains.

4. Finally, a countable dense L-chain is embedded into a standard L-algebra,
that is an L-algebra with lattice reduct [0, 1], using a Dedekind-MacNeille-
style completion.

1 T-norms are the main tool in fuzzy set theory to combine vague information.

L. Ong and R. de Queiroz (Eds.): WoLLIC 2012, LNCS 7456, pp. 154–167, 2012.
c© Springer-Verlag Berlin Heidelberg 2012
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The crucial step 3. above (rational completeness) is the most difficult to es-
tablish as it relies on finding the right embedding, if any. A different approach to
step 3. was proposed in [13] by using proof-theoretic techniques. The idea in [13]
is that the admissibility of a particular syntactic rule (called density) in a logic
L can lead to a proof of rational completeness for L. This is for instance the case
when L is any axiomatic extension of MTL. Introduced by Takeuti and Titani
in [17], the density rule formalized Hilbert-style has the following form

(A→ p) ∨ (p→ B) ∨ C

(A→ B) ∨ C

where p is a propositional variable not occurring in A, B, or C. Ignoring C, this
can be read contrapositively as saying (very roughly) “if A > B, then A > p and
p > B for some p”; hence the name “density” and the intuitive connection with
rational completeness.

The new approach was used in [13] to establish standard completeness for
various logics for which semantic techniques do not appear to work. Following
this method, to establish standard completeness for a logic L we need to

(a) define a suitable proof system HL for L extended with the density rule

(b) check that this rule is eliminable (or admissible) in HL, i.e. that density does
not enlarge the set of provable formulas

(c) standard completeness may then be obtained in many cases (but not in
general) by means of the Dedekind-MacNeille completion.

A convenient proof system HMTL for MTL uses hypersequents, which are a
simple generalization of Gentzen sequents, see [1, 14].

Step (b) above (density-elimination) was shown in [2, 13] for various calculi,
including HMTL. The proofs in [2, 13] are calculi-specific and use heavy combi-
natorial arguments, in close analogy with Gentzen style cut-elimination proofs.
A different method to eliminate applications of the density rule from derivations
was introduced in [6]. It shows that each hypersequent calculus obtained by
extending HMTL by certain sequent rules admits density-elimination. Though
more general than the proofs in [2,13], this result does not apply to many inter-
esting extensions of MTL whose additional axioms require hypersequent rules;
e.g., it does not apply to weak nilpotent minimum logic WNM [4, 8].

The aim of this paper is to automate standard completeness proofs for large
classes of axiomatic extensions of MTL.

We introduce the program AxiomCalc that automates steps (a)-(c) above for
propositional logics extending MTL by any Hilbert axiom within the class P3

in the syntactic classification of [4]. The main theoretical contribution of this
paper is the identification of sufficient conditions on hypersequent rules that
ensure standard completeness for the formalized logics. As shown in Section 3,
our conditions allow indeed density-elimination (and hence, by [13], they lead
to rational completeness). Standard completeness follows, being the axioms we
deal with preserved under suitable forms of Dedekind-MacNeille completions [3].
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AxiomCalc implements the systematic procedure in [4] to define cut-free hy-
persequent calculi from Hilbert systems for large classes of logics (step (a)), and
the check of our sufficient conditions which account for steps (b) and (c) at once.

Our approach subsumes many existing results on standard completeness for
specific logics and allows for the computerized discovery of new fuzzy logics. For
instance, it applies to WNM and to the logics obtained by extending MTL with
the axioms ¬(α · β)n ∨ ((α∧ β)n−1 → (α · β)n) for each n ≥ 2. The latter family
of logics is new and was discovered by playing with the PROLOG system Ax-
iomCalc, available at http://www.logic.at/people/lara/axiomcalc.html.

2 Automated Proof Theory for Extensions of MTL

In this section we present the system AxiomCalc and describe the calculi that it
generates. The program is a PROLOG-implementation of the algorithm in [4].

The basic system we will deal with is Monoidal T-norm Logic MTL [8] which
was shown in [10] to be the logic of left continuous t-norms2 and their residua.
MTL is obtained by adding the prelinearity axiom (α → β) ∨ (β → α) to
intuitionistic logic without contraction (also known as HBCK [16] or Full Lambek
calculus with exchange and weakening FLew).

Formulas of MTL are built from propositional variables and the constants
0 and 1 by using → (implication), ∧ (additive conjunction), · (multiplicative
conjunction), and ∨ (disjunction). We use ¬α as an abbreviation for α→ 0.

In the following α, β, . . . will stand for both formulas and for metavariables
for formulas. To distinguish between rule applications and rule schemas we
will denote finite (possibly empty) multisets of formulas with Γ,Δ,Σ,Θ,Λ and
metavariables for multisets of formulas with Γ ,Δ,Σ,Θ,Λ. Metavariables Π,Ψ
will stand for stoups, i.e., either a formula or the empty set.

Definition 1. A hypersequent is a finite multiset S1 | . . . |Sn where each Si, i =
1 . . . n is a sequent, called a component of the hypersequent.

The symbol “ | ” is intended to denote disjunction at the meta-level. In this
paper we will only consider hypersequents whose components contain at most
one formula on their right-hand side.

Henceforth we will denote hypersequents by G,H and sequents (possibly built
from metavariables) by Si, Ci. The hypersequent calculus contains initial axioms,
cut, and logical rules. These are as in sequent calculus, the only difference being
the presence of a (possibly empty) side hypersequent G. Structural rules are
divided into two groups: internal and external rules. The latter, which permit
interaction between components, increase the expressive power of the hyperse-
quent calculus with respect to sequent calculus.

2 A t-norm is a commutative, associative, increasing function ∗ : [0, 1]2 → [0, 1] with
identity element 1. ∗ is left continuous iff whenever {xn}, {yn} (n ∈ N) are increasing
sequences in [0, 1] s.t. their suprema are x and y, then sup{xn ∗ yn : n ∈ N} = x ∗ y.
The residuum of ∗ is a function →∗ where x→∗ y = max{z | x ∗ z ≤ y}.

http://www.logic.at/people/lara/axiomcalc.html
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Table 1. Hypersequent calculus HMTL for MTL

G |Γ ⇒ α G |α,Δ⇒ Π

G |Γ,Δ⇒ Π
(Cut)

G |α⇒ α
(init)

G | 0⇒
(0l)

G |Γ ⇒ α G |Δ⇒ β

G |Γ ,Δ⇒ α · β
(· r)

G |α, β, Γ ⇒ Π

G |α · β, Γ ⇒ Π
(· l)

G |Γ ⇒ Π

G | 1, Γ ⇒ Π
(1l)

G |Γ ⇒ α G |β,Δ⇒ Π

G |Γ, α→ β,Δ⇒ Π
(→ l)

G |α, Γ ⇒ β

G |Γ ⇒ α→ β
(→ r)

G |Γ ⇒
G |Γ ⇒ 0

(0r)

G |Γ ⇒ α G |Γ ⇒ β

G |Γ ⇒ α ∧ β
(∧r)

G |αi, Γ ⇒ Π

G |α1 ∧ α2, Γ ⇒ Π
(∧l)

G | ⇒ 1
(1r)

G |α, Γ ⇒ Π G |β, Γ ⇒ Π

G |α ∨ β, Γ ⇒ Π
(∨l)

G |Γ ⇒ αi

G |Γ ⇒ α1 ∨ α2

(∨r)
G |Γ ⇒ Π

G |Γ, α⇒ Π
(wl)

G |Γ ⇒ Π |Γ ⇒ Π

G |Γ ⇒ Π
(EC)

G

G |Γ ⇒ Π
(EW )

G |Γ ⇒
G |Γ ⇒ Π

(wr)

G |Γ 1,Δ1 ⇒ Π1 G |Γ 2, Δ2 ⇒ Π2

G |Γ 1, Γ 2 ⇒ Π1 |Δ1,Δ2 ⇒ Π2

(com)

Fig. 1. Classification (Nn,Pn) [4]

The (cut-free) hypersequent calculus HMTL for MTL is obtained by adding
Avron’s communication rule (com) to the hypersequent version of the sequent
calculus for FLew, see Table 1. (Note that a sequent rule can be easily trans-
formed into a hypersequent rule by adding the context G everywhere).

A classification of Hilbert axioms in the language of FLew was introduced
in [4]. It is based on classes (Nn,Pn) which intuitively account for the difficulty
to deal with the axioms proof theoretically.

The general grammar for determining the class of each axiom is as follows (A
is the set of atomic formulas):

P0 ::= N0 ::= A
Pn+1 ::= Nn | Pn+1 · Pn+1 | Pn+1 ∨ Pn+1 | 1
Nn+1 ::= Pn | Pn+1 → Nn+1 | Nn+1 ∧Nn+1 | 0
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Table 2. Some axioms and their corresponding logics

Class Axiom Rule (cf. Table 3) Logic

N2 α→ α · α (c) Gödel logic G

P2 α ∨ ¬α (em) Classical Logic CL

P3 ¬α ∨ ¬¬α (lq) SMTL
α ∨ (α→ β) ∨ (α ∧ β → γ) (bc2) 3-valued G (with (c))
¬(α · β) ∨ (α ∧ β → α · β) (wnm) WNM

¬(α · β)n ∨ ((α ∧ β)n−1 → (α · β)n) (wnm)n new!

Table 3. Some analytic rules

Γ , Γ ,Δ⇒ Π

Γ,Δ⇒ Π
(c)

G |Γ,Δ⇒ Π

G |Γ ⇒ |Δ⇒ Π
(em)

G |Γ 1, Γ 2 ⇒
G |Γ 1 ⇒ |Γ 2 ⇒

(lq)

G |Γ 1, Δ2 ⇒ Π2 G |Γ 1,Δ3 ⇒ Π3 G |Γ 2,Δ3 ⇒ Π3

G |Δ3 ⇒ Π3 |Γ 2,Δ2 ⇒ Π2 |Γ 1,Δ1 ⇒ Π1

(bc2)

G |Γ 2, Γ 1,Δ1 ⇒ Π1

G |Γ 1, Γ 1,Δ1 ⇒ Π1

G |Γ 1, Γ 3, Δ1 ⇒ Π1

G |Γ 2, Γ 3, Δ1 ⇒ Π1

G |Γ 2, Γ 3 ⇒ |Γ 1, Δ1 ⇒ Π1

(wnm)

{G | (Γ i, Γ j)
n, Σ ⇒ Π}1≤i,j≤(n−1)

{G | (Γ i, Γn+2j−1)
n, Σ ⇒ Π}1≤i≤(n−1);1≤j≤n

{G | (Γn+2i−2, Γ j)
n, Σ ⇒ Π}1≤i≤n;1≤j≤(n−1)

{G | (Γn+2i−2, Γn+2j−1)
n, Σ ⇒ Π}1≤i,j≤n

G |Γn, · · · , Γ (3n−1) ⇒ |Γ 1, · · · , Γn−1, Σ ⇒ Π
(wnm)n

A graphical representation of this classification is depicted in Figure 1. Note that
the arrows → stand for inclusions ⊆ of the classes.

Paper [4] also contains a procedure to transform axioms within the classes3

N2,P2 and P3 into equivalent rules which preserve cut-admissibility once added
to the (hypersequent version of) the calculus for FLew.

Example 1. The axiom ¬(α · β)2 ∨ ((α ∧ β)→ (α · β)2) (that is ¬(α · β · α · β) ∨
((α ∧ β) → (α · β · α · β))) is in the class P3. The equivalent rule generated by
the algorithm in [4] is

{G |Γ 2
1, Γ

2
i , Σ ⇒ Π}1≤i≤5 {G |Γ 2

i , Γ
2
i+1, Σ ⇒ Π}2≤i≤4 G |Γ 2

2, Γ
2
5, Σ ⇒ Π

G |Γ 2, Γ 3, Γ 4, Γ 5 ⇒ |Γ 1, Σ ⇒ Π
(wnm)2

3 An explicit description of the axioms in these classes is given in Appendix.



Standard Completeness for Extensions of MTL 159

where the notation Xk within inference rules stands for X, . . . , X k times, with
k ≥ 0. For further examples see Tables 2 and 3.

2.1 Density and Convergent Rules

The density rule was introduced by Takeuti and Titani in their axiomatization
of first-order Gödel logic [17]. In hypersequent calculi (an instance of) this rule
has the form:

G′ |Σ, p⇒ Π |Λ⇒ p

G′ |Σ,Λ⇒ Π
(D)

where p is a propositional variable not occurring in Σ,Λ,Π or G′ (p is an eigen-
variable). Note that adding the density rule to a hypersequent calculus can have
a dramatic effect. Consider, e.g., HMTL + (em), i.e., HMTL extended with the
rule (em) (cf. Table 3): by adding (D) we are able to prove the empty sequent as
follows:

p⇒ p (init)

p⇒ | ⇒ p
(em)

⇒ (D)

A similar situation arises for HMTL + (bc2) + (c). This is no surprise since, as
shown in [13], the addition and subsequent elimination of (D) from an extension
of HMTL leads to rational completeness for the formalized logic, and the two
calculi above formalize logics that are not rational complete: classical and 3-
valued Gödel logic (see Table 2).

However, for many extensions of HMTL, adding (D) has no effect on which
hypersequents are derivable: applications of (D) can be eliminated from deriva-
tions. Below we identify properties that, when satisfied by hypersequent rules
generated using the algorithm in [4], ensure density-elimination of the corre-
sponding extensions of HMTL. Rules satisfying these properties will be called
convergent.

Given a sequent S henceforth we will denote by L(S) its left hand side and by
R(S) its right hand side. Let S := Γ1, Γ2 ⇒ Π , we indicate by S[Γ1/Λ]

l[Π/Σ⇒Ψ ]r

the sequent Λ, Γ2, Σ ⇒ Ψ . The notations apply also to metasequents, i.e., se-
quents built from metavariables.

In what follows we will refer to any hypersequent rule generated by the pro-
cedure in [4] as completed.

Definition 2. Let (r) be a completed hypersequent rule:

G |S1 . . . G |Sm

G |C1 | . . . |Cq

Let G|Si and G|Sj be among its premises.

(0-pivot) G|Si is a 0-pivot if there is an s ∈ {1, . . . , q} such that R(Si) =
R(Cs) and the different metavariables in L(Si) are contained in those
of L(Cs).
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(n-pivot) G|Sj is an n-pivot for G|Si, for n > 0, if the following conditions hold:

• G|Sj is a 0-pivot
• R(Si) = R(Sj)

• L(Sj) = L(Si[
Γ 1/Δ1

, . . .Γn /Δn
]l) for Γ 1, . . . Γn ∈ L(Si) and Δ1, . . . Δn ∈

L(Sj)
• If n > 1, G|Sj is a (n-1)-pivot for n premises G|Sj1 . . . G|Sjn , and
L(Sj) = L(Sji [

Γ 1/Δ1
, . . . ,Γ i−1 /Δi−1

,Γ i+1 /Δi+1
, . . . ,Γn /Δn

]l)

for Γ 1, . . . , Γ i−1, Γ i+1, . . . , Γn ∈ L(Sji), Δ1, . . . , Δi−1, Δi+1, . . . , Δn ∈
L(Sj) and i = 1, . . . , n.

Definition 3. A completed hypersequent rule (r) is convergent if for each premise
G|Si one of the following conditions holds: (1) R(Si) = ∅, (2) G|Si is a 0-pivot, or
(3) there is a premise G|Sj which is an n-pivot for G|Si, with n > 0.

Intuitively, the conclusion of a convergent rule results from a “minimal interplay”
among its premises. Indeed for a premise G|Si, in which R(Si) is not empty, two
cases can arise: either the metavariables contained in it are already present in
a component of the rule’s conclusion, or there is a premise G|Sj having this
property and which allows us to obtain G|Si by suitable replacements of the
metavariables.

Example 2. Convergent rules are all internal structural rules, (wnm), (lq) and
(wnm)n, see Table 3. For instance, in the particular case of (wnm)2 (cf. Ex. 1):

– All different metavariables in the premise P1 = G |Γ 2
1, Γ

2
1, Σ ⇒ Π are con-

tained in the component Γ 1, Σ ⇒ Π of the conclusion. Therefore, P1 is a
0-pivot.

– The premise P1 is a 1-pivot for all premises G |Γ 2
1, Γ

2
i , Σ ⇒ Π, 2 ≤ i ≤ 5 as

they differ from P1 only by one metavariable.
– P1 is a 2-pivot for the remaining premises of (wnm)2.

Completed rules that are not convergent are (em) and (bc2).

AxiomCalc. The procedure in [4] to transform axioms into equivalent ana-
lytic (hyper)sequent rules is implemented in the PROLOG-system AxiomCalc.
It takes as input any axiom provided by the user, indicates the class Nn or Pn
to which the axiom belongs and, for axioms within N2,P2 and P3, it generates
(a paper that contains) the equivalent (hyper)sequent rules. Finally, the system
checks whether the generated rules are convergent.

3 Sufficient Conditions for Density Elimination

In this section we prove that HMTL extended with any set of convergent rules
admits density-elimination. Our proof uses and refines the method in [6] of
density elimination by substitutions, which is outlined below: Let d be a sub-
derivation ending in the following uppermost application of density
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··· d
′

G′ |Σ, p⇒ Π |Λ⇒ p
(D)

G′ |Σ,Λ⇒ Π

(D) is removed by substituting the occurrences of p in d in an “asymmetric”
way, according to whether p occurs in the left or in the right hand side of a
sequent. More precisely, each component S of a hypersequent in d is replaced by
S[p/Λ]

l[p/Σ⇒Π ]r. This way, the application of (D) above is simply replaced by
(EC).

A problem: the resulting labeled tree, denoted by d∗, is in general not a cor-
rect derivation anymore. The reason being the presence in d of external struc-
tural rules different from (EW ) and (EC), that, by mixing the content of various
conclusion components, might lead to p-axioms in their premises, i.e. to hyperse-
quents of the form G|Θ, pk ⇒ p derivable from axioms simply using weakenings;
the problem is that the asymmetric substitution on a p-axiom leads, e.g., to
G|Θ,Λk, Σ ⇒ Π , which is no longer derivable in the same way.

The proof in [6]: Density-elimination was proved for calculi containing only
(EC), (EW ) and (com) as external structural rules. The only problematic case
was when in d one of the premises of (com) led to a p-axiom. This case was
handled by removing in d∗ this application of (com) and replacing it with a
suitable (sub)derivation starting from the other premise.

The addition of convergent rules: We show below that, though a convergent
rule (r) can manipulate more hypersequent components at once and hence might
create p-axioms, (r) behaves well with respect to the asymmetric substitutions.
Indeed, intuitively, if one or more premises of (r) led in d to a p-axiom, say
G|Θ, pk ⇒ p, the special premises of (r) called pivot are used to derive their
substituted version G|Θ,Λk, Σ ⇒ Π which allow us to correctly apply (r).

The length |d| of a derivation d is, as usual, the (maximal number of inference
rules) + 1, occurring on any branch. A (D)-free derivation is a derivation not
containing the (D) rule. The following lemma, which allows us to suitably “move”
multisets of formulas between components, is the key for our main proof.

Lemma 1. Given HMTL + R, with R any set of convergent rules.

1. Any derivation d of H can be transformed into a derivation of H [p/α]
l[p/⇒α]r,

for any formula α and propositional variable p.
2. Let d′ and d1 be derivations of G′|Σ, p ⇒ Π |Λ ⇒ p (p /∈ G′, Σ,Π,Λ) and

G′|Θ,Δ⇒ Ψ . We can find a derivation of G′|Θ,Λ⇒ Ψ |Σ,Δ⇒ Π.

Proof. 1. Just replace p in d everywhere with α. The claim is proved by induction
on the length of the resulting derivation, as convergent rules are completed (and
hence substitutive, cf. the definition and the analogous lemma in [6]).

2. By 1. and d′ we have a derivation d2 of G′|Σ,.Δ ⇒ Π |Λ ⇒ .Δ where
.Δ stands for the multiplicative conjunction · of the formulas in Δ (note that
p /∈ G′, Σ,Π,Λ). The desired derivation follows by applying (Cut) between
G′|Θ,Λ⇒ Ψ |Δ⇒ .Δ and the end hypersequent of
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··· d2
G′|Σ,�Δ⇒ Π |Λ⇒ �Δ

··· d1
G′|Θ,Δ⇒ Ψ

(·l) + (EW )
G′|Θ,�Δ⇒ Ψ |Σ,�Δ⇒ Π

(Cut)
G′|Θ,Λ⇒ Ψ |Σ,�Δ⇒ Π

We are now ready for the main theorem. Henceforth we denote by S∗
i the se-

quent Si[
p/Λ]

l[p/Σ⇒Π ]r, and by G∗,H∗, the hypersequents G,H , where the same
substitution is applied to each one of their components.

Theorem 1 (Density Elimination). HMTL extended with any set R of con-
vergent rules admits density elimination

Proof. To perform density elimination, it is sufficient to remove topmost appli-
cations of (D). Take the derivation d above in HMTL + (D) + R, ending in an
application of (D) and let d′ be the (D)-free derivation ending in

G′ |Σ, p⇒ Π |Λ⇒ p

As convergent rules are particular completed rules, they preserve cut-elimination
when added to HMTL. Hence we assume that d′ is cut-free.

Claim: For each hypersequent H in d′ that is not a p-axiom, one can find a
(D)-free derivation of G′|H∗.

The result on density elimination follows from this claim. Just letH beG′|Λ⇒
p|Σ, p ⇒ Π . We get that G′ |G′ |Λ,Σ ⇒ Π |Λ,Σ ⇒ Π is derivable (note
that (G′)∗ = G′ by the eigenvariable condition on p). The desired proof of
G′|Λ,Σ ⇒ Π follows by multiple applications of (EC).

The proof of the claim proceeds by induction on the length of the cut-free
subderivation dH of H in HMTL + R. We distinguish cases according to the
last rule (r) applied in dH . The cases |dH | = 0, or when (r) is (EC) or (EW )
are easy. The proof for logical rules and for (com) proceeds as in [6].

Convergent rules: Assume that (r) is a convergent rule of the form

G |S1 . . . G |Sm
G |C1 | . . . |Cq

(r)

and that the conclusion of (r) contains no p-axiom. We show how to find a
derivation of

G′|G∗|C∗
1 | . . . |C∗

q .

Take a premise G|Si. If G|Si is not a p-axiom, the inductive hypothesis gives
us a derivation of G′|G∗|S∗

i . Note that this is always the case when R(Si) = ∅,
and when G|Si is a 0-pivot as in the latter case the metavariables instantiated
to obtain Si are all included in one component of the conclusion. Thus, if G|Si
was a p-axiom, the conclusion would be a p-axiom as well, thus contradicting
the assumption.
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Assume now that G|Si is a p-axiom. We show below that we can always obtain
a (D)-free derivation of

G′ |G∗ |S∗
i |C∗

s

for some s ∈ {1, . . . , q}. Being (r) convergent, there is an n-pivot premise G|Sj
for G|Si. We show how to use G|Sj to obtain the required derivation.

– Case n = 1: There is a 1-pivot premise G|Sj for G|Si, i.e., (the metasequent
leading to) Si differs only in 1 metavariable from (that of) Sj. By Defini-
tion 2, G|Sj is also a 0-pivot and hence it is not a p-axiom. Let G|Si and
G|Sj be obtained as instantiations of the following premises4 of (r):

Si is obtained from Θ,Γ
k
, Δ

l ⇒ Π and Sj from Θ,Δ
k+l ⇒ Π

As G|Si is a p-axiom and G|Sj is not, only Γ can be instantiated with a
propositional variable p. The most general case is when Γ is instantiated by
Γ, pn, the metavariable Δ by the multiset Δ, Θ by Θ and Π by p. Hence

G|Si is G|Θ,Γ k, Δl, pmk ⇒ p and G|Sj is G |Θ,Δk+l ⇒ p.

As G|Sj is not a p-axiom, by the inductive hypothesis we have a derivation
for G′|G∗|Θ,Δk+l, Σ ⇒ Π . Using the derivation d′ of G′ |Σ, p⇒ Π |Λ⇒ p,
by k applications of Lemma 1.2 with (EW ) and (EC) we get

G′ |G∗ |Θ,Λk, Δl, Σ ⇒ Π |Σ,Δ⇒ Π

Now, by multiple applications of internal weakenings (wl), we have

G′ |G∗ |Θ,Γ k, Λmk, Δl, Σ ⇒ Π |Σ,Δ⇒ Π

From further repeated applications of (wl) on the fourth component, we
finally obtain G′ |G∗ |S∗

i |C∗
s , where Cs stands for the component of the

conclusion to which all the metavariables in (the metasequent leading to) Sj
belong.

– Assume that there is an n-pivot premise G|Sj for G|Si, with n > 1. By
Def. 2 (the metasequent leading to) G|Si differs from (that of) G|Sj by n
metavariables and there exist n other premises for which G|Sj is an (n− 1)-
pivot. As in the previous case, let Si and Sj be obtained respectively as
instantiations of the following premises of (r)

Θ,Γ
k1
1 , . . . , Γ

kn
n , Δ

l1
1 , . . . , Δ

ln
n ⇒ Ψ and Θ,Δ

k1+l1
1 , . . . , Δ

kn+ln
n ⇒ Ψ

Assume w.l.o.g. that G|Sj is:

G |Θ,Δk1+l11 , . . . , Δkn+lnn ⇒ p

Two cases have to be considered, according to the possible instantiations of
the metavariables Γi with the propositional variable p in G|Si:

4 To simplify the notation Θ stands for all the metavariables in common, except Δ.
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(i) In G|Si all the metavariables Γi are instantiated with a multiset Γi
together with at least one occurrence of p. Then we repeatedly apply
Lemma 1.2 to d′ and G|Sj together with (EW ) and (EC) to replace
Δ1, . . . , Δn with Λ in Sj , respectively k1, . . . kn times. This way we get

G|Θ,Λk1 , . . . , Λkn , Δl11 , . . . , Δ
ln
n , Σ ⇒ Π |Δ1, Σ ⇒ Π | . . . |Δn, Σ ⇒ Π .

The desired hypersequentG′ |G∗ |S∗
i |C∗

s follows by suitable applications
of (wl) and (EC) (as in the 1-pivot case, Cs stands for the component
of the conclusion to which all the metavariables in Sj belong).

(ii) In G|Si all the metavariables Γi are instantiated with Γi, p
mi and mi > 0

only for r of them (1 ≤ r < n). (Note that in this case Lemma 1.2 would
replace each metavariable Δi with Λ, leading to at least n occurrences
of Λ, and n > r). The idea here is to find another premise of (r) which
is not a p-axiom, for which suitable applications of Lemma 1.2 do the
job. The existence of (at least one) such a premise is guaranteed by the
notion of n-pivot.

We first illustrate the way we proceed with an example for n = 3.

Assume that Si arises as an instantiation of Γ 1, Γ 2, Γ 3 ⇒ Π and Sj
as an instantiation of Δ1, Δ2, Δ3 ⇒ Π (G|Sj is a 3-pivot for G|Si). By
definition of 3-pivot, there exist 3 premises in (r) for which G|Sj is a 2-
pivot. For each of these premises, there exist 2 premises in (r) for which
G|Sj is a 1-pivot. In the figure below we show how all these premises are
related w.r.t the metavariables they instantiate.

(Case r = 1) If only 1 metavariable, say Γ 1, is instantiated in Si with
Γ1, p we need to find a corresponding premise which will not contain
a p-axiom, i.e., that does not contain Γ 1. The first occurrence of such
a premise is among the premises that have G|Sj as a 2-pivot, that is
Δ1, Γ 2, Γ 3 ⇒ Π .

(Case r = 2) Assume now that 2 metavariables, say Γ 1, Γ 2, are in-
stantiated with Γ1, p and Γ2, p, respectively. Again, we need to find a
corresponding premise that is not a p-axiom. In this case, the set of
premises that have G|Sj as a 2-pivot does not suffice because each of
them contains either Γ 1 or Γ 2. The first occurrence of a premise that is
not a p-axiom is among the premises that have G|Sj as a 1-pivot, i.e.,
Δ1, Δ2, Γ 3 ⇒ Π .
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In general, we can eventually find a premise that is not a p-axiom
among those that have G|Sj as (n − r)-pivot. Assume for the general
case that the occurrences of p in G|Si are related to the instantiation of
r different metavariables, w.l.o.g Γ1, . . . , Γr, i.e., Si is

Θ,Γ k11 , . . . , Γ knn , Δl11 , . . . , Δ
ln
n , p

m1k1+...+mrkr ⇒ p with m1, . . . ,mr > 0

Then we can find premises for whichG|Sj is an (n−r)-pivot; (the metase-
quent leading to) those premises differ from that of G|Si in r metavari-
ables. (At least) one of these premises will not be a p-axiom, and hence
it will have the form:

G |Θ,Δk1+l11 , . . . , Δkr+lrr , Γ
kr+1

r+1 , Δ
lr+1

r+1 , . . . , Γ
kn
n , Δlnn ⇒ p

By inductive hypothesis we have a derivation of:

G′ |G∗ |Θ,Δk1+l11 , . . . , Δkr+lrr , Γ
kr+1

r+1 , Δ
lr+1

r+1 , . . . , Γ
kn
n , Δlnn , Σ ⇒ Π

Then we repeatedly apply Lemma 1.2 together with (EW ) and (EC) to
replace Δ1, . . . , Δr with Λ, respectively k1, . . . , kr times. After suitable
applications of internal weakening and further external contractions, we
finally get

G′ |G∗ |S∗
i |C∗

s .

In summary, when the last rule in dH is convergent, for each premise G|Si we
have:

– If G|Si does not contain any p-axiom, G′|G∗|S∗
i is (D)-free derivable.

– If G|Si contains a p-axiom, then G′|G∗|S∗
i |C∗

s is (D)-free derivable.

The required derivation of G′|G∗|C1
∗|...|Cq∗ follows by (r) and subsequent ap-

plications of (EC), if needed. This completes the proof of the main claim.

4 From Density Elimination to Standard Completeness

Theorem 1 together with the results in [3, 13] lead to standard completeness
for any logic L extending MTL with any set A of axioms having equivalent
convergent rules. (For all concepts of universal algebra below we refer to [3,9,13]).

As shown in [13], density elimination is indeed a uniform method to estab-
lish rational completeness for any extension of MTL. From Theorem 1 we can
therefore state the following: let L be an MTL-algebra (see [8] and steps 1-4 in
the introduction) satisfying the equations A∗ corresponding to the axioms in A

A formula α is satisfied in each dense L-chain ⇔ α is derivable in MTL + A.

Standard completeness is then achieved through so called Dedekind Mac-Neille
completion, which generalizes to various ordered algebraic structures Dedekind’s
embedding of the rational numbers into the reals.
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It is shown, e.g. in [13], that the Dedekind-McNeille completion of a dense
MTL-chain is still a dense MTL-chain (in other words, it is preserved by
Dedekind-MacNeille-completion). It is easy to see that the results in [3] on the
preservation of equations by this completion hold for the equations A∗ when re-
stricting to MTL-chains. Hence the Dedekind-MacNeille completion of a dense
L-chain is still a dense L-chain, and in addition it is order-isomorphic to [0, 1].
This leads to standard completeness for the logic L.

Remark. Our sufficient condition for density-elimination can be easily extended
to first-order calculi, hence leading, by the results in [6], to standard completeness
proofs for axiomatic extensions of first-order MTL. In contrast, convergency of
rules might be too weak to ensure density-elimination for hypersequent calculi
not containing (wl) and (wr). For these calculi, formalizing logics which extend
Uninorm Logic UL [13], only calculi-tailored proofs of density-elimination are
available; the proof in [6] applies indeed to very few of them, namely, those
extending the calculus for UL only with additional internal structural rules
having a very simple structure (e.g. contraction (c) is not one of them).

4.1 A Case Study

As a corollary of our results follows that the family of logics obtained by ex-
tending MTL with the axioms (wnm)n: ¬(α ·β)n ∨ ((α∧ β)n−1 → (α ·β)n), for
n ≥ 2 (here xn stands for x · · · · · x, n times) are standard complete and hence
they are fuzzy logics in the sense of [11]. This new family of logics, discovered by
playing with AxiomCalc, contains infinitely many different logics. This can be
easily seen by noticing that (wnm)n is valid in the m-valued logic of 	Lukasiewicz
if and only if m ≤ n+ 1.

Acknowledgments. Work supported by the FWF START Y544-N23 and the
WWTF project MA07-016.
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A Appendix

The normal form of axioms within the classes N2, P2 and P3 is the following.
N2: Axioms have the form

∧
1≤i≤n δi, in which every δi is a α1 · · ·αm → β

where:
– β = 0 or β1 ∨ · · · ∨ βk and each βl is a multiplicative conjunction of
propositional variables and

– each αi is of the form
∧

1≤j≤p γ
j
i → βji where

◦ βji = 0 or a propositional variable, and

◦ γji is a multiplicative conjunction or a disjunction of propositional
variables (or 1).

P2: Axioms have the form
∨

1≤i≤n δi, where each δi is of the form∧
1≤j≤m αj → βj or

∧
1≤j≤m αj where:

– each αj is a multiplicative conjunction or disjunction of propositional
variables and 1, and

– βj = 0 or a propositional variable.
P3: Axioms have the form δ1 ∨ · · · ∨ δn, where each δi is in N2.
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Abstract. We present a logic for reasoning about the evidence-based
knowledge and beliefs and the evidential dynamics of non-logically
-omniscient agents. We do this by adapting key tools and techniques from
Dynamic Epistemic Logic, Justification Logic, and Belief Revision so as
to provide a lightweight, yet fine-grained approach that characterizes
well-known epistemic and doxastic attitudes in terms of the evidential
reasoning that justifies these attitudes. We then add the dynamic oper-
ations of evidence introduction, evidence-based inference, strong accep-
tance of new evidence (evidential “upgrade”), and irrevocable acceptance
of additional evidence (evidential “update”). We exemplify our theory by
providing a formal dynamic account of Lehrer’s well-known Gettier-type
scenario involving the famous Ferrari and the infamous Messrs. Nogot
and Havit.
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1 Introduction

As shown by the famous Gettier counterexamples [8], “knowledge” cannot simply
be equated with “justified true belief.” But what is the missing ingredient in this
old Platonic equation? While epistemologists have proposed different answers
to fill the gap, all would agree that not just any justification will do in order
to turn an item of true belief into knowledge. It is essential that “knowledge”
comes equipped with a correct, or “good,” justification. Taking this insight as
our starting point, we offer in this paper a new formalization for a plethora
of notions ranging from justified belief to defeasible knowledge, each of which
comes with its own justification based on how well an agent’s evidence supports
her epistemic attitude.
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The so-called Defeasibility Theory defines “knowledge” as true justified be-
lief that is stable under belief revision with any new evidence: “if a person has
knowledge, then that person’s justification must be sufficiently strong that it is
not capable of being defeated by evidence that he does not possess” (Pappas
and Swain [13]). One of the problems is interpreting what “evidence” means in
this context. One possible interpretation, considered by at least one author [15],
takes “evidence” to mean “any proposition,” meaning we include possible misin-
formation: “real knowledge” should be robust even in the face of false evidence.
This interpretation corresponds to our “infallible knowledge” modality K, which
could be called “absolutely unrevisable belief.” This is a fully introspective type
of knowledge, satisfying all the laws of the modal system S5.

However, the most common interpretation of Defeasibility Theory is to take it
as requiring persistence of belief only in the face of “any true information.” The
resulting notion of “knowledge” was formalized by Stalnaker in [17], and defined
there as follows: “an agent knows that ϕ if and only if ϕ is true, she believes
that ϕ, and she continues to believe ϕ if any true information is received”. This
interpretation corresponds to our “defeasible knowledge” modality �, which is
positively (but not necessarily negatively) introspective, satisfying all the axioms
of the modal system S4.

In [6], two of the authors of this paper studied these two notions in detail,
using a dynamic logic of belief change to make precise the sense in which these
modal operators match the above-mentioned characterizations in terms of their
potential (in)defeasibility. However, both the above notions of “knowledge” suffer
from the problem of logical omniscience. So at best they can be taken to capture
some kind of implicit, or potential, knowledge. Moreover, Lehrer’s conception
[10, 11] of defeasible knowledge is more sophisticated: he requires, not only that
the belief itself be stable in the face of any true evidence, but also that the
justification supporting this belief be similarly stable.

In this paper, we formalize the explicit defeasible knowledge that can be ac-
tually possessed by a (non-logically omniscient) agent. For this, we develop a
version of Justification Logic (JL), in the tradition of [2], with the new feature
that it borrows concepts from Belief Revision theory to deal with “soft” (falli-
ble) evidence. Furthermore, we combine this approach with ideas and techniques
from Dynamic Epistemic Logic (DEL) [4–6, 20], including important ideas from
the temporal DEL literature [14, 16, 22], obtaining a Dynamic Justification Logic
that can deal with justified belief change and soft evidential dynamics.

Thus, in essence we bring together the work of two traditions in Logic (DEL
and JL), while using models coming from a third tradition (Belief Revision
theory). The added value comes from the interplay of these settings, which
in particular allows us to capture several of the subtle distinctions made in
[10, 12], pointing to scenarios in which an agent has a justified true belief but
no good evidence to turn his belief into knowledge. We formalize various types
of epistemic-evidential actions, and we use them to give dynamic characteriza-
tions of explicit “knowledge” (in both its defeasible and its infallible versions).
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We provide complete, decidable proof systems for these logics, and apply them
to the analysis of one of the well-known Gettier-type counterexamples in the
literature.

The approaches in the available literature that are closest to our work are
Artemov’s paper [1] on the Gettier problem, and the work of van Benthem and
Velázquez-Quesada [19, 21] on the dynamics of evidence. In our last section we
make a more detailed comparision between these papers and ours. For now, it
suffices to say that our solution is closely related to these approaches and was
in fact inspired by them, but it is nevertheless original and avoids some of the
problems encountered in these works.

2 Belief, Justification, Awareness, and Knowledge

2.1 Syntax

Definition 1 (Language). Given a set Φ of atomic sentences, the language
L := (T ,F ) consists of the set T of evidence terms t and the set F of
propositional formulas (sentences) ϕ defined by the following double recursion:

ϕ ::= ⊥ | p | ¬ϕ | ϕ ∧ ϕ | Et | t/ϕ | �ϕ | Kϕ | Y ϕ with p ∈ Φ
t ::= cϕ | t · t | t+ t

Notation: let � denote ¬�¬, let K̂ denote ¬K¬, and let Ŷ denote ¬Y ¬. The
set sub(t) of subterms of a term t is defined by induction on the construction
of t as follows: sub(cϕ) = {cϕ}, sub(s · u) = {s · u} ∪ sub(s) ∪ sub(u), sub(s +
u) = {s + u} ∪ sub(s) ∪ sub(u). The set sub(ϕ) of subformulas of a formula
ϕ is defined by induction on the construction of ϕ as follows: sub(⊥) := {⊥},
sub(p) := {p}, sub(¬θ) := {¬θ}∪ sub(θ), sub(θ∧θ′) := {θ∧θ′}∪ sub(θ)∪ sub(θ′),
sub(Et) := {Et}, sub(t/ θ) := {t/ θ}, sub(�θ) := {�θ} ∪ sub(θ), sub(Kθ) :=
{Kθ}∪sub(θ), and sub(Y θ) := {Y θ}∪sub(θ). We define an operation (·)Y : T ∪
F → T ∪F by setting: (cϕ)

Y := c(ϕY ), (t·s)Y := tY ·sY , and (t+s)Y := tY +sY

for terms; and ⊥Y := ⊥, pY := p, (¬ϕ)Y := ¬ϕY , (ϕ∧ψ)Y := ϕY ∧ψY , (Et)Y :=
EtY , (t/ϕ)Y := tY /ϕY , (Kϕ)Y := Y Kϕ, (�ϕ)Y := Y�ϕ, (Y ϕ)Y := Y Y ϕ.

Et says that evidence t is available to the agent (though not necessarily accepted
by her). t/ϕ says that t is admissible evidence for ϕ: if accepted, this evidence
supports ϕ. �ϕ says that the agent (implicitly) defeasibly knows ϕ. Kϕ says that
the agent (implicitly) infallibly knows ϕ. Y ϕ says that “yesterday” (i.e., before
the last epistemic action) ϕ was true. cϕ is an evidential certificate: a “canonical”
piece of evidence in support of sentence ϕ. t ·s is a compound evidence, obtained
by combining (using Modus Ponens) the two pieces of evidence t and s. Finally,
t+s is a body of evidence that aggregates (without performing logical inference)
all the evidence provided by t and s; t · s therefore supports both the statements
supported by t and those supported by s.

By “defeasible knowledge” � we mean here knowledge in the sense of the
Defeasibility Theory: justified true belief that cannot be defeated by any new
true information that the agent might receive. By “infallible” knowledge K we
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mean “absolutely certain,” absolutely unrevisable, fully introspective knowledge:
belief that cannot fail to be true, and so it cannot be defeated by any new infor-
mation (including false testimony). We will later show that our formal operators
match these characterizations. Note that both these notions are forms of implicit
knowledge. We will later introduce the corresponding types of explicit knowledge.

Definition 2 (Admissibility). Admissibility is the smallest binary relation
/ ⊆ T ×F satisfying the following conditions: (1) cϕ/ϕ; (2) if t/ (ψ ⇒ ϕ)
and s/ψ, then (t · s)/ϕ; (3) if t/ϕ or s/ϕ, then (t + s)/ϕ. Note that
admissibility is both a syntactic meta-relation and a symbol in the language. It
will be clear from context which is which.

Lemma 1 (Temporal Admissibility). t/ϕ implies tY /ϕY .

Proof. By induction on the construction of t. #�

Lemma 2 (Computability of Admissibility). The map t -→ {ϕ | t/ϕ} of
type T → ℘(F ) is computable, and for every t the set {ϕ | t/ϕ} is finite.

Proof. The map is recursive, and the finiteness of {ϕ | t/ϕ} can be proved by
induction on the complexity of terms. #�

Definition 3. T e := {t ∈ T | ∃ϕ : t/ϕ} is the set of admissible terms.

Definition 4 (Propositional Content). For every term t ∈ T , we define the
propositional content cont of t as the conjunction of all the formulas for which t
is admissible evidence: cont :=

∧
{θ | t/ θ}. For t �∈ T e, this is the conjunction

of an empty set of formulas, so in this case (if we intrepret
∧

as infimum in
the complete Boolean algebra of propositions) we get tautologically true content:
cont = % := ¬⊥.

Definition 5 (Implicit Belief, Implicit Acceptance, Implicit Evidence).
We introduce the following abbreviations for the language L :

Bϕ := ��ϕ says that the agent (implicitly) believes ϕ,
A(t) :=

∧
cϕ∈sub(t) Bϕ says that the agent (implicitly) accepts evidence t,

G(t) :=
∧
cϕ∈sub(t) �ϕ says that t is good (implicit) evidence,

I(t) :=
∧
cϕ∈sub(t) Kϕ says that t is infallible (implicit) evidence, and

t :ϕ := A(t) ∧ t/ϕ says that t is (implicit) evidence for belief of ϕ.

Like the implicit knowledge notions K and �, implicit belief suffers from logical
omniscience. We now introduce the corresponding explicit notions, which reflect
the beliefs, knowledge and justifications that are actually possessed by a (non-
logically-omniscient) agent.

Definition 6 (Explicit Belief and Knowledge). We introduce the following
additional abbreviations for the language L :

Beϕ := Bϕ ∧Ecϕ says that the agent explicitly believes ϕ,
�eϕ := �ϕ ∧Ecϕ says that the agent explicitly defeasibly knows ϕ,
Keϕ := Kϕ ∧ Ecϕ says that the agent explicitly infallibly knows ϕ, and
t :e ϕ := t :ϕ ∧ Et says that t is explicit evidence for belief of ϕ.



172 A. Baltag, B. Renne, and S. Smets

2.2 Semantics

Definition 7 (Model). A model M = (W, �·�,∼,≥,�, E) is a structure con-
sisting of a nonempty set W of possible worlds; a valuation map �·� : Φ→ ℘(W );
binary relations ∼, ≥, and � on W , with ∼ (“epistemically indistinguishable
from”) representing epistemic possibility/indistinguishability, ≥ (“no more plau-
sible than”) representing relative plausibility, and � (“is the temporal predecessor
of”) representing immediate temporal precedence (going forward in time from a
moment to the next moment); as well as an evidence map E : W → ℘(T ); all
satisfying the following conditions:

– ∼ is an equivalence relation and ≥ is a preorder.1

– Indefeasibility: w ≥ v ⇒ w ∼ v.
– Local Connectedness: w ∼ v ⇒ (w ≥ v ∨ v ≥ w).
– Propositional Perfect Recall: (w � v ∼ v′) ⇒ ∃w′(w ∼ w′ � v′).
– Evidential Perfect Recall: w � w′ ⇒ {tY | t ∈ E(w)} ⊆ E(w′).
– Uniqueness of Past: (w′ � w ∧ w′′ � w)⇒ w′ = w′′.
– Persistence of Facts: w � w′ ⇒ (w ∈ �p� ⇔ w′ ∈ �p�).
– (Implicit) Evidential Introspection: w ∼ v ⇒ E(w) = E(v).
– Subterm Closure: If t · t′ ∈ E(w) or t + t′ ∈ E(w), then t ∈ E(w) and

t′ ∈ E(w).
This says that a compound evidence is actually available to the agent only if
its component pieces of evidence are available.

– Certification of Evidence: If t ∈ E(w) and t/ϕ, then cϕ ∈ E(w).
This says that every actual evidence in support of a sentence ϕ can be
converted into a certificate of correctness: a canonical piece of evidence cϕ
that certifies it. All explicit knowledge can be certified.

A pointed model is a pair (M,w) consisting of a model M and a designated
world w in M called the “actual world.”

Many authors in the Belief Revision literature require their models to satisfy
some version of the following requirement:

Definition 8. The Best Worlds Assumption applies to a model iff for every
non-empty set P ⊆W of indistinguishable worlds (i.e., such that w ∼ w′ for all
w,w′ ∈ P ), the set

minP := {w ∈ P | w′ ≥ w for all w′ ∈ P}
(consisting of the most plausible worlds in P ) is also non-empty.

The Best Worlds Assumption is useful, since it allows for a very natural and
intuitive definition of (conditional) belief B(ϕ|P ). Some authors (e.g., Grove [9])
weaken this condition to cover only the sets P that are definable by some sentence
ψ in their language: this is indeed enough to define syntactical conditional belief
operators B(ϕ|ψ). However, in this paper, we will consider an even stronger
condition, called standardness :

1 A preorder is a reflexive and transitive binary relation. For a preorder ≥, we denote
by > the strict version given by t > s := (s ≥ t) ∧ (t � s). We denote by ≤ and <
the converse relations.
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Definition 9 (Standard Model). A model M = (W, �·�,∼,≥,�, E) is said to
be standard if both the strict converse-plausibility relation < and the immediate
temporal predecessor relation � are well-founded. This means that there are no
infinite chains w0 > w1 > w2 > · · · of more and more plausible worlds, and there
are no infinite chains w0

�w1

�w2

�· · · going back in time. Observe that
well-foundedness implies acyclicity, so in a standard model there are no temporal
loops. Note also that the well-foundedness of � together with the Propositional
Perfect Recall condition imply “temporal perfect recall”: w � v implies w �∼ v.
Similarly, note that every standard model satisfies the Best Worlds Assumption.2

Definition 10 (Truth). We now define a satisfaction relation (M,w) |= ϕ
between pointed models (M,w) and formulas ϕ ∈ F . We also denote (M,w) |= ϕ
in the more familiar way by w |=M ϕ, omitting the subscript M when M is fixed.

w �|= ⊥
w |= p iff w ∈ �p�
w |= ¬ϕ iff w �|= ϕ
w |= ϕ ∧ ψ iff w |= ϕ and w |= ψ
w |= Et iff t ∈ E(w)
w |= t/ϕ iff t/ϕ
w |= �ϕ iff v |= ϕ for every v ≤ w
w |= Kϕ iff v |= ϕ for every v ∼ w
w |= Y ϕ iff v |= ϕ for every v � w

Given a model M = (W, �·�,∼,≥,�, E), we can extend the valuation map �·�
to all sentences, by putting �ϕ� = {w ∈ W | w |= ϕ}. Validity |= ϕ means that
(M,w) |= ϕ for every standard pointed model (M,w).

The following result shows that belief, as defined above, fits with its most widely
accepted definition in standard models:

Lemma 3. In a standard model M = (W, �·�,∼,≥,�, E), “belief” is the same
as “truth in the most plausible worlds”:

w |=M Bϕ iff w′ |=M ϕ for all w′ ∈ min{w′ ∈ W | w ∼ w′} .

2.3 Example of the Gettier Problem

The following example of a Gettier problem is adapted from [12]. Our (unnamed)
agent (Lehrer’s “Claimant,” who we assume to be a woman) is the professor of
a class consisting of two students, Mr. Nogot and Mr. Havit. Let us denote by p
the sentence “Mr. Nogot owns a Ferrari” and by q the sentence “Mr. Havit owns
a Ferrari.”

Mr. Nogot tells our agent that he owns a Ferrari and shows her the title
papers and a picture of him driving a Ferrari. This testimonial evidence supports
sentence p, and so it is admissible for p; hence, we will denote this evidence by cp.

2 Indeed, it is easy to see that this condition follows from the well-foundedness of <
together with the above Local Connectedness assumption.
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The evidence term cp is thus available to our agent (since it was made available
to her by Mr. Nogot). Let us further assume that this evidence is accepted by
her: on the basis of cp, she believes p (i.e., that Mr. Nogot owns a Ferrari).
Moreover, let us assume that this belief is actually false: in fact, Mr. Nogot does
not own a Ferrari, he just lied to our agent, forged the car title and faked the
picture (using Photoshop to edit himself into the driver’s seat). Furthermore, let
us assume that, unknown to our agent, Mr. Havit actually does own a Ferrari.

Based on her available accepted evidence cp and using propositional inference,
our agent concludes that some student in her class owns a Ferrari (p ∨ q). This
belief is true (since in fact Mr. Havit owns one), it is justified (given Mr. Nogot’s
testimony and the rules of logic), but it is not “knowledge” in Lehrer’s sense. Of
course, p∨ q is not infallible knowledge (in the absolutely certain sense captured
by the operator K above), since the agent posseses no “hard” evidence for p∨ q.
Indeed, testimonial evidence is “soft”: the fact that Mr. Nogot claims that he
owns a Ferrari is still consistent with the possibility that nobody in the class owns
any car. Moreover, our agent’s justified belief in p∨q is easily defeasible, even by
true evidence: if in the future she would (correctly) learn that Mr. Nogot does
not in fact own a Ferrari (¬p), then she would be forced to drop her (correct)
belief in p ∨ q. Hence, this true justified belief is not “knowledge,” even in the
fallible, defeasible sense, captured in our formalism by the operator. �

Here is a simple model of the epistemic situation described in this story:

q

w w
′

p, q

w
′′

p

w
′′′

E = {cp, cp⇒p∨q, cp⇒p∨q · cp, cp∨q}

Fig. 1. The Nogot-Havit scenario

The set of possible worlds is W = {w,w′, w′′, w′′′} and the valuation is �p� =
{w′′, w′′′}, �q� = {w,w′′}. In Figure 1, we represent each possible world by a
circle (labeled with the name of the world and encompassing the atomic sentences
true at that world). The double-circled world indicates the real world or current
state of affairs (in which q is true and p is false; i.e., Mr. Havit has a Ferrari
and Mr. Nogot does not). We represent the plausibility relations ≥ by horizontal
arrows (pointing from a world w to all the worlds v ≤ w that are at least as
plausible as w), but we omit the arrows that can be obtained by reflexivity
(looping) and transitivity (arrow composition). The one-way arrow from w′ to
w′′ (and the one-way arrows, obtained by transitivity, from w to both w′′ and w′′′

and from w′ to w′′′) show the p-worlds are more plausible than the ¬p-worlds.
As a consequence, the agent implicitly believes p (since p is true in all the
most plausible worlds w′′ and w′′′). The epistemic indistinguishability relation
is not directly represented but can be recovered by closing the horizontal arrows
under transitivity, reflexivity and symmetry. So here all the four worlds are
epistemically indistinguishable, which expresses the fact that the agent has no
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hard evidence concerning p and q, and thus she has no infallible knowledge (K)
concerning their truth values: all four Boolean combinations are epistemically
possible (in the sense of K). The available evidence is the same at all four
worlds (in agreement with the condition of Implicit Evidential Introspection) and
consists of Nogot’s testimonial evidence cp, logical evidence cp⇒p∨q supporting
the axiom p ⇒ p ∨ q, inferential evidence cp⇒p∨q · cp (obtained by combining
the previous two in accordance with Modus Ponens) supporting p ∨ q, and a
certificate cp∨q confirming that she derived p ∨ q. According to our definitions,
the agent has (both implicit and) explicit true justified belief in p∨q: the sentence
(p ∨ q) ∧ Be(p ∨ q) ∧ (cp⇒p∨q · cp) : (p ∨ q) holds at the real world w. However,
she does not have (either implicit or explicit) knowledge of p ∨ q (either in the
infallible sense of K or in the defeasible sense of �).

In this model, all evidence is accepted: cp⇒p∨q is infallibly so (since the agent
has implicit infallible knowledge of axioms) and cp is incorrectly accepted (since
the agent implicitly believes p but p is in fact false). But this is not a general
requirement in our setting: availability does not imply acceptance. Indeed, mu-
tually inconsistent evidence terms might be available (in the sense that the agent
is aware of them, can compute them or is considering them), while in our models,
belief is always consistent. For instance, our agent may be aware of some very
weak evidence against p, say the fact (denoted by c¬p) that she never actually
saw Mr. Nogot in a Ferrari, but she might choose to reject such evidence. In this
case, she still keeps the same (implicit and explicit) beliefs as in the above story,
as illustrated by the following model:

q

w w
′

p, q

w
′′

p

w
′′′

E = {cp, cp⇒p∨q, cp⇒p∨q · cp, cp∨q, c¬p}

Fig. 2. The Nogot-Havit scenario with additional evidence c¬p

Note that in both the above models, the agent has no explicit introspection
about her beliefs or about her justifications! She simply does not consider such
issues. If we want to model a situation in which the agent uses introspection to
become aware of her explicit belief in p, then we obtain the model in Figure 3.

q

w w
′

p, q

w
′′

p

w
′′′

E = {cp, cp⇒p∨q, cp⇒p∨q · cp, cp∨q, cBep}

Fig. 3. The Nogot-Havit scenario with introspection of belief

The fact that there are no �-arrows in any of these diagrams simply expresses
the fact that we chose the current moment as the starting point (moment 0) in
our story. Of course, a more accurate representation would include the history
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q

w0 w
′

0

p, q

w
′′

0

p

w
′′′

0

E0 = ∅

q

w1 w
′

1

p, q

w
′′

1

p

w
′′′

1

E1 = {cp}

q

w2 w
′

2

p, q

w
′′

2

p

w
′′′

2

E2 = {cp, cp⇒(p∨q)}

q

w3 w
′

3

p, q

w
′′

3

p

w
′′′

3

E3 = {cp, cp⇒(p∨q), cp⇒(p∨q) · cp, cp∨q}

Fig. 4. Temporal development leading to the Nogot-Havit scenario

of how our agent came to believe p ∨ q. A possible such history could be given
by the model in Figure 4.

The real world at the current moment (previously denoted by w) is now de-
noted by w3. The vertical arrows represent the immediate temporal precedence
relation, going from one moment to the next moment. So the time flows down-
ward in this diagram. According to this history, originally (at the “true” initial
moment w0) the agent had no evidence (E = ∅), and no non-trivial beliefs about
p and q, so she considered all four Boolean combinations to be equally plausible.
After this, she received and accepted Mr. Nogot’s testimonial evidence cp, lead-
ing her to explicitly believe p (at moment w1), and thus implicitly (but not yet
explicitly!) believe p ∨ q. At the next moment w2, she thought about the logical
axiom p ⇒ p ∨ q, became aware of its applicability to this particular instance,
and so the infallible evidence cp⇒p∨q became available to her. She then used
Modus Ponens, thereby computing the evidence term cp⇒p∨q · cp that supports
the conclusion p∨ q, certified this derivation by adding cp∨q to her evidence set,
and therefore acquired an explicit belief in p ∨ q (at the current moment w3).

2.4 Proof System

Definition 11 (Theory). JB, the theory of justified belief, is defined in Table 1.

Lemma 4 (Derivable Principles). We have the following.

1. Application for Admissibility: & (s/ϕ)⇒ (t/ (ϕ⇒ ψ)⇔ (t · s)/ψ).
2. Application: & (s/ϕ)⇒

(
t : (ϕ⇒ ψ) ∧ s :ϕ⇔ (t · s) :ψ

)
.

3. Weakening of Justified Belief: & t :ϕ⇒ Bϕ.
4. Certification of Implicit Belief: & Bϕ⇒ cϕ :ϕ.
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Table 1. The theory JB

Axiom Schemes

Classical Logic: Axioms of Classical Propositional Logic
Knowledge of Available Evidence: � Et⇒ KEt

Subterm Closure: � E(t · s)⇒ Et ∧Es
� E(t+ s)⇒ Et ∧Es

Certification of Evidence: � t�ϕ ∧Et⇒ Ecϕ
Admissibility: � t�ϕ whenever t�ϕ

� ¬(t�ϕ) whenever t 
�ϕ
Infallible Knowledge: S5 axioms for K

Defeasible Knowledge: S4 axioms for �

Indefeasibility: � Kϕ⇒ �ϕ
Local Connectedness: � K(ϕ ∨�ψ) ∧K(ψ ∨ �ϕ)⇒ (Kϕ ∨Kψ)

Normality of Y : � Y (ϕ⇒ ψ)⇒ (Y ϕ⇒ Y ψ)
Propositional Perfect Recall: � Y Kϕ⇒ KY ϕ

Evidential Perfect Recall � Y Et ∧ ¬Y⊥ ⇒ EtY

Uniqueness of Past: � ¬Y ϕ⇒ Y ¬ϕ
Persistence of Facts: � Y p⇔ (¬Y⊥ ⇒ p)

Rules

ϕ⇒ ψ ϕ

ψ
(MP)

ϕ

�ϕ
(�N)

ϕ

Kϕ
(KN)

ϕ

Y ϕ
(Y N)

5. Weakening of Justified Defeasible Knowledge: & (t/ϕ) ∧G(t)⇒ �ϕ.
6. Certification of Defeasible Knowledge: & �ϕ⇒ (cϕ/ϕ) ∧G(cϕ).
7. Weakening of Justified Infallible Knowledge: & (t/ϕ) ∧ I(t)⇒ Kϕ.
8. Certification of Infallible Knowledge: & Kϕ⇒ (cϕ/ϕ) ∧ I(cϕ).

Proof. (1) follows by the definition of admissibility. (2) follows by the definition
of u : θ, (1), and classical reasoning. (4) follows by the definition of A(cϕ). (6)
follows by the definition of G(cϕ). (8) follows by the definition of I(cϕ).

Recalling that u : θ = A(u)∧u/ θ and A(u) =
∧
cθ∈sub(u) Bθ, the proof of (3)

is by induction on the construction of t. Base case: & cϕ :ϕ⇒ Bϕ follows by the
definition of A(cϕ) and classical reasoning. Induction step: assuming & si : θ ⇒
Bθ and for each i ∈ {1, 2} and θ ∈ F , we wish to show that & (s1 ·s2) :ϕ⇒ Bϕ.
Let S := {ψ | s1/ (ψ ⇒ ϕ) ∧ s2/ψ}. If S = ∅, then & ¬(s1 · s2)/ϕ and so
we have & (s1 · s2) :ϕ ⇔ ⊥ and hence & (s1 · s2) :ϕ ⇒ Bϕ. So let us assume
that S �= ∅. We then have by classical reasoning that & (s1 · s2) :ϕ ⇔ s1 : (ψ ⇒
ϕ) ∧ s2 :ψ for an arbitrarily selected ψ ∈ S �= ∅. By the induction hypothesis
and classical reasoning, we then have & (s1 · s2) :ϕ⇒ B(ψ ⇒ ϕ)∧Bψ. Applying
modal reasoning, it follows that & (s1 · s2) :ϕ⇒ Bϕ.

Recalling that G(u) =
∧
cθ∈sub(u) Gθ, the proof of (5) is by induction on the

construction of t. Base case: t = cϕ and the result follows by the definition ofG(cϕ)
and classical reasoning. Induction step: assuming & (si/ θ)∧G(si)⇒ �ϕ for each
i ∈ {1, 2} and θ ∈ F , we wish to show that & (s1 · s2)/ϕ ∧ G(s1 · s2) ⇒ �ϕ.
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We define S := {ψ | s1/ (ψ ⇒ ϕ)∧ s2/ψ}. If S = ∅, then & ¬(s1 · s2)/ϕ and
hence & (s1 · s2)/ϕ∧G(s1 · s2)⇔ ⊥, from which the result follows by classical
propositional reasoning. So let us assume that S �= ∅. Choosing an arbitrary
ψ ∈ S, we have & (s1 · s2)/ϕ ∧ G(s1 · s2) ⇔ s1/ (ψ ⇒ ϕ) ∧ s2/ψ ∧G(s1) ∧
G(s2) by classical propositional reasoning, the definition of admissibility, and
the definition of G(u). But we then have & (s1 · s2)/ϕ ∧ G(s1 · s2) ⇒ �(ψ ⇒
ϕ) ∧ �ψ by the induction hypothesis and classical reasoning and therefore that
& (s1 · s2)/ϕ ∧G(s1 · s2)⇒ �ϕ by modal reasoning.

The argument for (7) is similar to that for (5). #�

A common criticism of epistemic modal logic is that it suffers from logical om-
niscience: the agent believes all logical consequences of her beliefs, including
in particular all valid formulas. But in JB, only implicit belief Bϕ and implicit
knowledge—either infallible Kϕ or defeasible �ϕ—satisfies logical omniscience.
That is, Kϕ (or �ϕ) says only that the agent can come to infallibly (or de-
feasibly) know ϕ only in principle. Implicit knowledge may be thought of as
“potential knowledge” of ϕ that the agent might in principle obtain, though
perhaps she will never have this knowledge in actuality.

Explicit knowledge Keϕ (or �eϕ) is very different. This represents the agent’s
actual knowledge, in that Keϕ = Kϕ ∧ Ecϕ and �eϕ = �ϕ ∧ Ecϕ say that the
agent not only has the potential to realize her implicit knowledge of ϕ but also
that she has in fact gone through the trouble of obtaining and correctly validating
the certificate of correctness cϕ for ϕ (i.e., Ecϕ). Therefore, explicit knowledge
does not satisfy logical omniscience.

Definition 12 (Iterated Axioms and Logical Terms). An iterated axiom
is a formula of the form

X1X2X3 · · ·Xn︸ ︷︷ ︸
zero or more Xi’s

ϕ ,

where each Xi ∈ {�,K, Y } and ϕ is an axiom. The set of logical terms is the
smallest set that contains certificates cϕ for each iterated axiom ϕ and is closed
under the evidence-combining operator t · s (for Modus Ponens).

The logical terms are those that are built by applying the inference operator ·
to certificates of knowledge cϕ for iterated axioms ϕ. We may think of logical
terms as the logical arguments we use to justify iterated axioms and their logical
consequences. The forthcoming Theorem 1 shows that the agent can in principle
always find purely logical justification to support infallible knowledge of logical
truths.

Lemma 5 (Necessitation Elimination). For each ϕ ∈ F , we have & ϕ iff ϕ
is provable from iterated axioms without the use of necessitation rules (i.e., KN,
�N, or Y N).

Proof. By induction on the number of necessitations. #�

Theorem 1 (Theorem Internalization). For each ϕ ∈ F , we have & ϕ iff
there exists a logical term t such that & I(t) ∧ t/ϕ.
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Proof. The right-to-left direction follows by Lemma 4(7), so we focus on the
left-to-right direction. We write &∗ ϕ to mean that ϕ is provable from iterated
axioms without the use of necessitation rules. By Lemma 5, it suffices for us to
prove by induction on the proof length that &∗ ϕ implies there is a term t such
that &∗ (t/ϕ) ∧ I(t). Proceeding, we recall that I(s) =

∧
cψ∈sub(s) Kψ.

– Case: ϕ is an iterated axiom.
Since ϕ is an iterated axiom, cϕ is a logical term and &∗ Kϕ. Hence &∗

I(cϕ). Further, we have cϕ/ϕ by the definition of admissibility and hence
& cϕ/ϕ. Conclusion: &∗ (cϕ/ϕ) ∧ I(cϕ).

– Case: ϕ follows by MP from ψ ⇒ ϕ and ψ.
By the inner induction hypothesis, there exist logical terms t and s such
that &∗ t/ (ψ ⇒ ϕ) ∧ I(t) and &∗ (s/ψ) ∧ I(s). Hence &∗ (t · s)/ψ and
&∗ I(t · s). Conclusion: &∗ ((t · s)/ϕ) ∧ I(t · s). #�

Theorem 2 (Soundness and Completeness for Non-Standard Models).
JB is sound and strongly complete with respect to the class of all models.

Proof. Soundness is by induction on the length of derivation. We omit the de-
tails. Completeness is by way of a canonical model construction. We define the
canonical model Ω := (WΩ, �·�,∼,≥,�, E) by setting

WΩ := {Γ ⊆ F | Γ is maximal consistent} ,

�p� := {Γ ∈ W | p ∈ Γ} ,

Γ ∼ Δ iff {θ | Kθ ∈ Γ} ⊆ Δ ,

Γ ≥ Δ iff {θ | �θ ∈ Γ} ⊆ Δ ,

Γ � Δ iff {θ | Y θ ∈ Δ} ⊆ Γ , and

E(Γ ) := {t ∈ T | Et ∈ Γ} .

It is easy to see that Ω is a model: most properties follow by standard correspon-
dence theory [7], while the properties of Evidential Perfect Recall, Knowledge
of Available Evidence, Subterm Closure, and Certification of Evidence follow by
modal reasoning using axioms of the same name.

What remains is for us to prove the Truth Lemma: for each Γ ∈ WΩ and
each θ ∈ F , we have θ ∈ Γ iff Γ |=Ω θ. The proof is by induction on the
construction of θ. All steps of this induction are standard [7], except the ones
refering to formulas of the form Et or t/ϕ. For formulas Et, to have Et ∈
Γ is what it means to have t ∈ E(Γ ), which is itself equivalent to Γ |= Et
by the definition of truth. For formulas t/ϕ, it follows immediately from the
Admissibility axioms (Table 1), maximal consistency, and the definition of truth
that we have (t/ϕ) ∈ Γ iff Γ |= t/ϕ. This completes the proof of the Truth
Lemma. Strong completeness follows immediately in the usual way [7]. #�

Theorem 3 (Completeness for Standard Models, Finite Model Prop-
erty). JB is sound and weakly complete with respect to the class of standard
models. Moreover, it is also weakly complete with respect to the class of finite
standard models.
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Proof (Proof Sketch). First, we unravel the canonical model to Ω obtain another
model Ω×Z in which � is acyclic. For this, we take copies (w, k) of each world
w in Ω and each integer k ∈ Z. Accordingly, the set of worlds of our new
model Ω × Z will be WΩ × Z with (w, k) ∼ (w′, k′) iff k = k′ and w ∼ w′,
(w, k) ≥ (w′, k′) iff k = k′ and w ≥ w′, (w, k) � (w′, k′) iff k′ = k − 1 and
w � w′, E(w, k) = E(w), and �p� = {(w, k) | w ∈ �p�}. We obtain a (non-
standard) model Ω×Z, in which the relation � is acyclic. One can easily check
(by induction on formulas) that (w, k) |=Ω×Z ϕ iff w |=Ω ϕ for each k ∈ Z and
ϕ ∈ F .

Fix a consistent formula ψ and a world v in Ω satisfying v |=Ω ψ and hence
(v, 0) |=Ω×Z ψ. Take the submodel M := (Ω×Z)(v,0) generated by (v, 0) via the
relations ∼, ≥, and �; i.e., M is the restriction of (the relations, functions, and
valuation of) the model Ω × Z to the set

WM := {(w, k) | (w, k) �∗ (v′, 0) for some v′ ∼ v} .

Here we use the iterated temporal arrows �n and �∗, which are defined induc-
tively by setting w �0 w′ iff w = w′, w �n+1 w′ iff there exists w′′ such that
w �n w′′ � w′, and w �∗ w′ iff there exists some n ∈ N such that w �n w′.
It is easy to see that the set WM is closed (as a submodel of Ω × Z) under the
relations ∼, ≥, and �. (The proof for ∼ uses Propositional Perfect Recall, and
the proof for ≥ uses Indefeasibility and the result for ∼; see Definition 9.) So M
is indeed a generated submodel, and hence by standard results in modal logic
about generated submodels [7], it follows that for every (w, n) ∈ WM and every
formula ϕ, we have (w, n) |=M ϕ iff w |=Ω ϕ. Hence (v, 0) |=M ψ. It is also
easy to see that each temporal layer of this model is connected: (w, n) ∼ (w′, n′)
holds in M iff n = n′.

Let now m be the modal Y -depth of formula ψ; that is, m is the maximum
number of nested Y -modalities occuring in ψ. For each 0 ≤ n ≤ m, let Ψn :=
subn(ψ) be the set of all subformulas of ψ of modal Y -depth less than or equal
to n. We construct a new model M ′ by “cutting” M to depth m (i.e., deleting
all worlds (w, n) having n > m) and applying to the nth temporal layer of the
resulting submodel (for each nonnegative n ≤ m) the transitive filtration with
respect to the set Ψm−n. More precisely, we define an equivalence relation ≡ on
WM by

(w, n) ≡ (w′, n′) iff (n = n′) ∧ ∀ϕ ∈ Ψm−n
(
(w, n) |=M ϕ⇔ (w′, n′) |=M ϕ

)
.

The set W ′ of possible worlds in our new model M ′ will consist of all the ≡-
equivalence classes of worlds of depth at most m:

W ′ = {(w, n) | (w, n) ∈ WM and 0 ≤ n ≤ m} ,
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where (w, n) = {(w′, n′) ∈ WM | (w, n) ≡ (w′, n′)}. For R ∈ {∼,�}, we take
the induced relations on classes (the “smallest filtration”):

(w, n)R(w′, n′) iff ∃(v, k) ∈ (w, n), ∃(v′, k′) ∈ (w′, n′) : (v, k)R(v′, k′) .

In the case of ∼, this amounts to (w, n) ∼ (w′, n′) iff n = n′, and in the case of
�, this boils down (with the aid of Propositional Perfect Recall) to

(w, n) � (w′, n′) iff (n′ = n− 1) ∧
∃w′′(w′′ � w′ ∧ ∀ϕ ∈ Ψm−n(w |=Ω ϕ⇔ w′′ |=Ω ϕ)

)
.

For ≥, we take the transitive filtration:

(w, n) ≥ (w′, n′) iff (n′ = n) ∧ ∀ϕ ∈ Ψm−n (w |=Ω �ϕ⇒ w′ |=Ω �ϕ) .

The valuation is defined as in any filtration. Formulas of the form Et and t/ϕ
are treated in the same way that filtration treats atomic formulas. (For formulas
Et, this works because all worlds in M belonging to the same temporal layer
n are ∼-indistinguishable and so agree on the truth values of formulas Et by
Evidential Perfect Recall. For formulas t/ϕ, it works because all worlds in Ω
agree on the truth values of formulas t/ϕ.)

The resulting model M ′ is finite and inherits all the properties of the previous
models, in particular � is acyclic and > is transitive and irreflexive (and hence
also acyclic). Since every acyclic relation on a finite set is well-founded, M ′ is a
standard model. Finally, it is trivial to check (by induction on n) that, for every
0 ≤ n ≤ m, every world (w,m− n) ∈ W ′ and every formula ϕ ∈ Ψn, we have
(w, n) |=M ′ ϕ⇔ (w, n) |=M ϕ. In particular, we obtain (v, 0) |=M ′ ψ. #�

Corollary 1 (Decidability). The logic JB is decidable.

Proof. The size of the finite model M ′ constructed in the above proof is bounded
by N = m · 2|sub(ψ)|, where m is the modal Y -depth of ψ. Hence we can simply
investigate one by one all models (up to isomorphism) of size at mostN , checking
whether ψ is satisfied in any of them. #�

It is common in Justification Logic to have “evidence internalization terms” !t
and ?t that allow the agent to introspectively verify his evidence or lack thereof
according to the following schemes:

PC. t :ϕ⇒ !t : (t :ϕ)
NC. ¬t :ϕ⇒ ?t : (¬t :ϕ)

PC (“Positive Checker”) says that if the agent has potential evidence t for ϕ,
then she can in principle use !t (pronounced “bang t”) to check that t is indeed
potential evidence for ϕ. NC (“Negative Checker”) says that if t is not potential
evidence for ϕ, then the agent can in principle check this as well using ?t. PC
is typically required in order for the Theorem Internalization result to hold.
However, as we saw above, positive checker is not needed to prove this result for
JB. The reason is that our certificates cϕ allow us to recover a form of PC. In
fact, certificates allow us to recover a form of NC as well. Indeed, the following
schemes are derivable in our system
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PC’. t :ϕ⇒ (ct :ϕ) : (t :ϕ)
NC’. ¬t :ϕ⇒ (c¬t :ϕ) : (¬t :ϕ)

The next result is a kind of “doxastic internalization,” showing that all the im-
plicit beliefs of a rational agent are in principle justifiable, all her explicit beliefs
are explicitly justified, and all her (infallible, or at least, defeasible) knowledge
can be given a correct (i.e., infallible, or at least “good”) justification.

Theorem 4 (Knowledge and Belief Internalization). For each ϕ ∈ F :

w |=M Bϕ iff there is a term t such that w |=M t :ϕ ;
w |=M Beϕ iff there is a term t such that w |=M t : eϕ ;
w |=M �ϕ iff there is a term t such that w |=M t :ϕ ∧G(t) ;
w |=M �eϕ iff there is a term t such that w |=M t : eϕ ∧G(t) ;
w |=M Kϕ iff there is a term t such that w |=M t :ϕ ∧ I(t) ;
w |=M Keϕ iff there is a term t such that w |=M t : eϕ ∧ I(t) .

In words: something is (implicit or explicit) belief iff it is (implicitly or explicitly)
justifiable by some (implicitly or explicitly accepted) evidence; something is (im-
plicit or explicit) defensible knowledge iff it is (implicitly or explicitly) justifiable
by some good evidence; something is (implicit or explicit) infallible knowledge iff
it is (implicitly or explicitly) justifiable by some infallible evidence.

Proof. The right-to-left directions of the statements about implicit knowledge
and belief follow by soundness, the validity |= t :ϕ⇒ t/ϕ, and Lemma 4 parts
(3), (5), and (7). For the left-to-right directions of the statements about implicit
knowledge and belief, take t := cϕ. We have |= cϕ/ϕ by the definitions of
admissibility and truth. Hence w |= cϕ :ϕ by the assumption on the left, which
implies Bϕ = A(cϕ). In the case of the implicit knowledge statements, the
additional conjunction on the right side of the “iff” follows by the assumption
on the left and the fact that G(cϕ) = �ϕ and I(cϕ) = Kϕ. Results for the
explicit knowledge and belief statements follow by taking t = cϕ and recalling
that |= cϕ/ϕ. #�

3 Evidence Dynamics

In this paper we will consider only four types of epistemic actions. (1) The first
type is the action t+ by which an evidence term t becomes available: the agent
can form this term, or becomes aware of the possibility of this evidence, without
necessarily accepting it. A special example of this is cϕ+, for some axiom instance
ϕ: this represents the “logical” action of becoming aware of an axiom instance.
Other examples include the actions cBϕ+ and c¬Bϕ+: these represent acts of
introspection by which the agent becomes aware of some of her implicit beliefs
and non-beliefs. (2) The second type is the action t⊗s by which, given previously
available evidence terms t and s, the agent forms a new term t · s representing
the logical action of performing a Modus Ponens step. (3) The third type is the
action t! of updating with some “hard” evidence t (coming from an absolutely



The Logic of Justified Belief Change 183

infallible source). This corresponds to the standard DEL update (all the worlds
that do not fit evidence t are deleted), except that its input is a new piece of
evidence t rather than a proposition. Morever, this is an “explicit” update: the
new evidence becomes available to (and accepted with absolute certainty by)
the agent, although only in its “past” form (tY ), since it is evidence about the
world as it was before the update. Similarly, all the previously available evidence
is still available but only its “past” form as evidence about the situation before
the update.3 (4) The fourth type is the action t⇑ of upgrading with some “soft”
evidence t coming from a strongly trusted (though not infallible) source. The
new evidence is (strongly) accepted (although not infallibly known). Modulo the
same differences as in the case of update, this is essentially an explicit version
of the action called “radical upgrade” in the DEL literature and “lexicographic
revision” in the Belief Revision literature. All worlds that fit the new evidence
become more plausible than the worlds that do not fit it.

There are of course many other possible epistemic actions. In particular, one
can define an explicit version of the action t↑ known as “conservative upgrade”
in the DEL literature and as “minimal revision” in the Belief Revision litera-
ture: only the most plausible worlds fitting the new evidence become the most
plausible overall. But for simplicity, in this paper we restrict ourselves to the
four types of actions mentioned above.

Definition 13 (Language with Updates). L act := (T act,Fact) is the ex-
tension of the basic language L = (T ,F ) obtained by adding modal operators
[α] for epistemic actions α ∈ {t+, t ⊗ s, t!, t⇑}, for every t, s ∈ T . (Note that
this not only extends the set of formulas: due to our terms cϕ, it also extends
the set of terms.) The notions of subterm, subformula, admissibility, and model
are lifted to L act in the obvious way. We assign the following informal readings
to the new modal formulas:

[t+]ϕ says that after making evidence t available, ϕ is true,
[t⊗ s]ϕ says that after combining evidence t and s (by Modus Ponens), ϕ is true,
[t!]ϕ says that after updating with hard evidence t, formula ϕ is true, and
[t⇑]ϕ says that after (radically) upgrading with soft evidence t, formula ϕ is true.

For every action α we define a sentence preα, called the precondition of α, and
a set of terms T (α) called the evidence set of α:

3 This is needed in order to deal with Moore sentences. However, we want to endow
the agent with some basic insight of the principle that epistemic actions do not
change ontic facts: she should be instantly aware of this, without having to perform
additional inference steps to derive this. This explains our definition of ϕY , which
leaves unchanged all the purely propositional formulas (i.e., Boolean combinations
of atoms), so that for such formulas we have (cϕ)

Y = cϕ. In effect, epistemic actions
with factual evidence will actually produce evidence about the current world as it is
after the update.
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pret+ := pret⇑ = %
pret! := cont =

∧
{θ | t/ θ}

pret⊗s := Et ∧ Es

T (t+) = T (t!) = T (t⇑) := sub(t) ∪ {cθ | s/ θ for some s ∈ sub(t)}
T (t⊗ s) := {t · s} ∪ {cθ | t · s/ θ}

The precondition preα captures the condition of possibility of action α: actions
t+ and t⇑ can always happen, t! can only happen if t really is hard information
(i.e., if the proposition supported by t is actually true), and t⊗s can only happen
if t and s are already available. The evidence set T (α) consists of all the evidence
terms that become available due to α.

To say that a formula is reduced means that it does not contain a subformula
of the form [α]ϕ. Note that the notion of subformula is lifted to L act from that
given in Definition 1 in the obvious way. So, for example, ϕ is not a subformula
of c[cϕ!]ϕ/ [cϕ!]ϕ.

Definition 14 (Truth for L act). Given a model M = (W, �·�,∼,≥,�, E), a
world w ∈ W and an epistemic action α ∈ {t+, t ⊗ s, t!, t⇑}, we will use the
notation wα to denote the ordered pair (w,α), and we will use this to formally
represent the “updated” world resulting from performing action α in world w.
The satisfaction relation (M,w) |= ϕ is defined as an extension of our previous
definition of truth (Definition 10) obtained by adding the following clauses for
dynamic modalities [α]ϕ, with α ∈ {t+, t⊗ s, t!, t⇑}:

x |=M [α]ϕ iff xα |=M [α] ϕ with M [α] := (Wα, �·�α,∼α,≥α,�α, Eα)

and

Wα := W ∪ {wα | w ∈ �preα�}
Eα(w) := E(w) for w ∈ W
Eα(wα) := {uY | u ∈ T (α) ∪ E(w)}
�p�α := �p� ∪ {wα ∈ Wα | w ∈ �p�}
∼α := ∼ ∪ {(wα, vα) | w ∼ v}
�α := � ∪ {(w,wα) | w ∈ �preα�}
≥α := ≥ ∪ {(wα, vα) | w ≥ v} for α ∈ {t+, t⊗ s, t!}
≥t⇑ := ≥ ∪ {(wt⇑, vt⇑) | (w �∈ �cont� ∧ v ∈ �cont�) ∨

(w �∈ �cont� ∧ w ≥ v) ∨ (v ∈ �cont� ∧ w ≥ v)}
≥t⇑ := ≥ ∪ {(wt⇑, vt⇑) | w ≥ v} for t �∈ T e

3.1 Example Continued

We now generate the temporal progression of Lehrer’s Nogot-Havit scenario us-
ing our epistemic actions. First, we begin from a situation of complete ignorance
represented by the model in Figure 5.

We successively apply the following actions: first the upgrade cp⇑, by which
our agent upgrades with (i.e., accepts as soft evidence) Mr. Nogot’s false testi-
mony; then the logical action cp→p∨q+, by which she becomes aware of evidence
for the axiom p → p ∨ q; then the action cp→p∨q ⊗ cp, by which she combines
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q

w0 w
′

0

p, q

w
′′

0

p

w
′′′

0

E0 = ∅

Fig. 5. Initial situation with complete ignorance

her pieces of evidence using Modus Ponens, acquiring explicit justified belief in
p ∨ q. The result of these transformations is exactly the model in Figure 4.

But now we can go one step further in the future. Suppose that the agent
receives hard evidence (from an infallible source such as Lehrer’s Critic, who
always tells the truth) that Mr. Nogot does not own a Ferrari. We can interpret
this as an update c¬p!, which can be applied to the model in Figure 4 to yield
the model in Figure 6 below. Our agent has been “Gettierized”: some new true
evidence defeated her true justified belief!
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E3 = {cp, cp⇒(p∨q), cp⇒(p∨q) · cp, cp∨q}
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w4 w
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4

E4 = {c¬p, cp, cp⇒(p∨q), cp⇒(p∨q) · cp, cp∨q}

cp⇑

cp⇒(p∨q)+

cp⇒(p∨q) ⊗ cp

c¬p!

Fig. 6. “Gettierization” of the agent from the Nogot-Havit scenario

3.2 An Explicit Version of Moore Sentences

Finally, to explain the need for the Y operator and justify the way we defined
evidential dynamics, let us consider the situation after the first step above, as
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E1 = {cp}

cp⇑

Fig. 7. After action cp⇑
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shown in Figure 7. Our agent has just received Mr. Nogot’s (lying) testimony
cp and performed an upgrade cp⇑. Notice that now she explicitly believes p, but
she is not yet aware of it: she has not yet performed any introspection acts,
so she does not explictly know that she explicitly believes p. She simply has
not reflected upon her own beliefs. Now suppose the infallible Critic intervenes,
giving her hard evidence c¬p that ¬p, and, at the same time, she reflects upon
her beliefs, becoming infallibly aware of her explicit belief in p, justified by her
“hard” introspective evidence cBep. Note that, unlike the classical examples of
Moore sentences learnt by a fully introspective agent, in this case both these
pieces of hard evidence are non-redundant : the agent explicitly learns something
new from each of them. We can interpret this action as an update (c¬p+ cBep)!,
which applied to the model in Figure 7 yields the model in Figure 8. Note the
new evidence set: the agent did not simply add the new term (and its subterms
cBep etc.) to her set. Adding cBep would in any case be useless, since by now
(in the new model) she already believes ¬p, so the evidence cBep would simply
be rejected. But this action does give her a new, important (and correct!) in-
trospective piece of evidence, namely cY Bep: she explicitly learns that she used
to believe p (before the update). This is indeed new: at the time when she was
holding the explicit belief in p, she was not introspective about it. Now that she
is aware of this (past) belief, she does not hold it anymore!
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p
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E2 = {cp, c¬p, cY Bep, c¬p + cY Bep}

cp⇑

(c¬p + cBep)!

Fig. 8. After action (c¬p + cBep)!

3.3 Robustness of Knowledge

Using dynamics, we can now show in what sense our notions of knowledge capture
their intended interpretations:

Theorem 5. Something is (explicit) defeasible knowledge iff it is (explicitly)
believed to have been true no matter what new hard (and hence true) evidence
is received:

w |= �ϕ iff w |= [t!]BY ϕ for every evidence term t ;
w |= �eϕ iff w |= [t!]BeY ϕ for every evidence term t .

Something is (explicit) infallible knowledge iff it is (explicitly) believed to have
been true no matter what new soft (possibly false) evidence is received:
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w |= Kϕ iff w |= [t⇑]BY ϕ for every evidence term t ;
w |= Keϕ iff w |= [t⇑]BeY ϕ for every evidence term t .

Definition 15 (Theory). DJB, the theory of dynamic justified belief, is de-
fined in Table 2.

Lemma 6 (Reduction). For each ϕ ∈ Fact, there is a reduced ϕ† ∈ Fact

such that & ϕ⇔ ϕ†.

Theorem 6 (Soundness and Completeness). & ϕ iff |= ϕ for each ϕ ∈
Fact.

Table 2. The theory DJB

Axiom Schemes

JB: Axioms and rules of JB (Table 1)
Persistence of Facts: [α]p ⇐⇒ (preα ⇒ p)

Functionality: [α]¬ϕ ⇐⇒ (preα ⇒ ¬[α]ϕ)
Conjunction Distributivity: [α](ϕ ∧ ψ) ⇐⇒ [α]ϕ ∧ [α]ψ

Evidence Dynamics: [α]EtY for t ∈ T (α)
[α]EtY ⇐⇒ (preα ⇒ Et) for t 
∈ T (α)
[α]Es ⇐⇒ ¬preα for s 
∈ {tY | t ∈ T }

Admissibility Dynamics: [α](t�ϕ) ⇐⇒ (preα ⇒ t�ϕ)
Knowledge Dynamics: [α]Kϕ ⇐⇒ (preα ⇒ K[α]ϕ)

[α]�ϕ ⇐⇒ (preα ⇒ �[α]ϕ) for α ∈ {t+, t⊗ s, t!}
[t⇑]�ϕ ⇐⇒ �(¬cont ⇒ [t⇑]ϕ) ∧

(cont ⇒ �[t⇑]ϕ ∧K(¬cont ⇒ [t⇑]ϕ))
Temporal Dynamics: [α]Y ϕ ⇐⇒ (preα ⇒ ϕ)

4 Conclusion and Comparison with Related Work

Our framework is a variant of the traditional Justification Logic semantics for
justified belief and knowledge. But a key difference lies in our semantics for
justified belief t :ϕ. According to the traditional Justification Logic semantics
(the “Fitting semantics”) [1–3], the agent has justified belief t :ϕ if and only
if: (1) t is admissible for ϕ and (2) the agent believes ϕ (in the sense that Bϕ
holds for an appropriate modal operator B). Here the notion of admissibility is
weaker than ours: the traditional semantics does not require that each atomic
piece of evidence is admissible for a finite number of formulas (let alone for a
unique formula); further, the traditional account does not require that a com-
pound piece of evidence t · s or t + s be admissible for a formula if and only
if the constituents t and s are admissible for certain related formulas (only the
“if” direction is required). For example, while both the traditional account and
ours agree that (s/ϕ) ⇒ (t/ (ϕ ⇒ ψ) ⇒ (t · s)/ψ), only ours also ensures
that (s/ϕ) ⇒ ((t · s)/ψ ⇒ t/ (ϕ ⇒ ψ)). It is therefore possible in the
traditional semantics that a compound piece of evidence t · s is admissible for
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a formula without its constituent pieces of evidence t and s having any rela-
tion to this formula on their own. We forbid this in our setup: admissibility
always provides an “evidential chain” that links the formulas for which a com-
pound piece of evidence is admissible to the finitely many formulas for which
its constituent pieces of evidence are admissible. This evidential chain plays an
important role in our semantics of (implicit) justified knowledge and belief: the
agent has (implicit) justified knowledge or belief if and only if she has a piece of
evidence t whose structure describes a step-by-step evidential reasoning process
along a well-formed evidential chain from basic assumptions—all of which are
supported by acceptable, good, or infallible certificates—to a final conclusion
that is justified by the reasoning process encoded by the evidential chain. (Here
the emphasis is on the “only if” direction: she cannot have justified knowledge or
belief without having a proper justification!) We therefore have not only that the
resulting compound piece of evidence is admissible for the conclusion ϕ, but that
this evidence necessarily encodes a meaningful and evidentially sound argument
for t (that begins with premises cψ whose certified ψ’s are validated according
to belief, defeasible knowledge, or infallible knowledge, and that proceeds step-
wise via Modus Ponens s1 · s2 and monotonic combination of evidence s1 + s2
to the eventual conclusion ϕ). In contrast, the traditional semantics admits the
possibility that a combined piece of evidence t · s is admissible for an assertion
ϕ without any evidential chain linking admissible formulas of t and of s to ϕ,
and, further, that one or more of t or s is individually faulty (in the sense that
none of the formulas for which it is admissible is believed or known). In such a
circumstance, the agent has a “justified belief” in ϕ based on a compound piece
of evidence t · s whose components t and s are individually unrelated to ϕ and
are not all reliable evidence for those things for which they are admissible. We
expressly forbid such a possibility in our semantics: compound pieces of evidence
always provide a proper evidential chain from reliable certificates to a justified
conclusion.

In our setting we consider different ways in which an agent can change his
evidence and update his beliefs and knowledge: the agent can be confronted
with new evidence coming from an external source, he can reach new conclu-
sions by bringing pieces of available evidence together or he can become aware
of how to perform a specific inference on evidence. Related work in the Dy-
namic Epistemic Logic literature can be found in [19, 21], where van Benthem
and Velázquez-Quesada provide a logical system that can handle information
changes that include an agent’s acts of inference. These authors start from a
particular type of awareness logic and enhance it with the dynamic features that
are common in Dynamic Epistemic Logic. Their focus lies on how implicit and
explicit knowledge can be related, specifically addressing the question “what
do agents have to do to make their implicit knowledge explicit?” [19]. In [21],
their work was extended to consider implicit and explicit belief and belief revi-
sion. If we compare the “evidence sets” in our models with van Benthem and
Velázquez-Quesada’s “awareness sets,” we see that their setting can be thought
of as a special case of ours. Indeed as noted in [21], their setting is the special
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case in which each formula can have one unique justification, namely the for-
mula itself. Another important difference between the two approaches points to
how one can deal with the synchronization between explicit and implicit knowl-
edge under epistemic actions that change the model at hand. Indeed as noted
also in [19], an update with epistemic higher-order information (i.e., information
that refers to the knowledge of beliefs of the agent) can easily push the explicit
and implicit knowledge of the agent “out of sync.” An example is our explicit
version of a Moore-sentence–type announcement in Figure 8. The evidential up-
dates defined by van Benthem and Velázquez-Quesada are simply adding the
new evidence to the awareness set (or, in our setting, to the evidence set). But
in the case of a Moore announcement, this would add evidence that is already
obsolete! Van Benthem and Velázquez-Quesada attempt to solve this problem by
proposing in [19, 21] a different definition of “explicit knowledge,” which in our
setting would correspond to Keϕ = K(ϕ ∧ Ecϕ). In our view, this variant defi-
nition, although interesting, is not enough to solve the synchronization problem
because it loses track of the past. According to us, this problem simply cannot
be solved if one does not keep track of the past: our solution is to enhance our
models with a temporal operator that allows us to refer back to the previous
state before the epistemic action happened. Hence all new evidence that becomes
available to the agent comes in its “past” form: it always is evidence about the
world as it was before the learning or reasoning action took place. In the case
of purely propositional information, this will still be valid evidence about the
current state of the world. But in the case of doxastic information, it will simply
be (new!) evidence about the agent’s past beliefs: a previously non-introspective
agent becomes aware of some of her past beliefs, even if in the meantime she
already changed them!

Overall, our explicit treatment of justification, awareness, dynamics and epis-
temics tackles several of the issues that have been left open in the work of [19].
In future work we aim to combine our approach with the semantic treatment of
“evidence” in [18], where van Benthem and Pacuit use neighborhood models for
evidence and develop a theory of “evidence management.”
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Abstract. We show how to use duality theory to construct minimized versions
of a wide class of automata. We work out three cases in detail: (a variant of)
ordinary automata, weighted automata and probabilistic automata. The basic idea
is that instead of constructing a maximal quotient we go to the dual and look for a
minimal subalgebra and then return to the original category. Duality ensures that
the minimal subobject becomes the maximally quotiented object.

1 Introduction

The main goal of this paper is to exploit a simple observation of category theory that
yields some striking results when applied to particular instances. The simple observa-
tion is this: a quotient construction in a category is the same as a subobject construction
in the opposite category. How can such a simple observation be useful or interesting?
First, there is the mathematically nontrivial task of giving a useful alternative descrip-
tion of the opposite category. Second it is useful because finding the relevant subobjects
may be easier than an explicit quotient construction in the original category of inter-
est. Furthermore one gets completely new algorithms for the minimization problem.
Third, it is interesting because one ties together seemingly unrelated ideas into a co-
herent whole. These ideas have appeared not only in minimization but in questions
related to machine learning, specifically the problem of modelling systems with hidden
state [9]

We are going to exploit duality or, more precisely, a dual equivalence for the minimi-
sation of automata, ie. we use the fact that a given category of transition systems, say C,
is equivalent to the opposite of another category Dop. Our basic strategy for minimiza-
tion is as follows. We start with a transition system S of a certain type. We go to the dual
category and look for a special subobject: a so-called zero-generated subobject which
has the property that it must embed into any other subobject of the dual object. Then
we come back to the original category and find that the zero-generated subobject is the
minimal realization of the original object. The general abstract statement is of course
very easy, practically an observation. Examples of this phenomenon are, however, very
interesting.

The first example that we treat in this way is based on reasoning about systems
with hidden state [9]. It is related in spirit, but not in detail, to an old algorithm due to
Brzozowski [7] which is a minimization algorithm that seems to work by black magic.
A precise categorical treatment of Brzozowski’s algorithm has recently been given by
Bonchi et al. [6]. Our second example deals with weighted automata. We derive an
algorithm due to Stefan Kiefer [12] which he discovered after listening to a presentation

L. Ong and R. de Queiroz (Eds.): WoLLIC 2012, LNCS 7456, pp. 191–205, 2012.
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of the third author. The third example is that of probabilistic transition systems. We use
Gelfand duality to show how to minimize what are called belief automata in the AI
literature [11].

2 The Abstract Setting

In this section we describe a categorical setting in which our minimization results can
be placed. This framework is by no means exhaustive, we hope it will lend itself to
further generalizations and clarifications. In this paper, it merely has the role to present
our minimization procedures under a common umbrella. Readers who are interested
in concrete examples, rather than in the unifying categorical viewpoint, can skip this
section.

The starting point for our presentation of automata minimization is a basic duality:
Let C and D be dually equivalent categories and let F : Cop −→ D and G : D −→ Cop be
the contravariant functors establishing this duality. The following three examples will
be discussed in our paper.

Example 1. 1. Let C = FinSet be the category of finite sets and D = FinBA the
category of finite Boolean algebras. The epimorphisms in C are the surjective maps.

2. Let C = D = FDVec the category of finite-dimensional real vector spaces and
linear maps. The epimorphisms in C with domain C ∈ C correspond to congruence
relations on C.

3. Let C = KHaus the category of compact Hausdorff spaces and D = C∗Alg be
the category of real commutative C∗-algebras. The epimorphisms in C with domain
C ∈ C correspond to equivalence relations on C that are closed in the topology.

In our examples we will be dealing with categories C that have an (Epi,Mono)-
factorization system (cf. [2]), i.e., we can factor any morphism f ∈ C into f = m ◦ e
where m is a mono, e is an epi and this factorization is unique up to isomorphism. The
automata we are studying in this paper are coalgebras for functors T : C −→ C that
preserve monos. It is not difficult to see that the factorization structure of C can be lifted
to Coalg(T) if T : C −→ C preserves monos and that the factorization of a morphism
in Coalg(T) can be computed in the base category C (cf. e.g. [1]). This factorization
structure can be used in order to define the minimization of a coalgebra.

Definition 1. Let T : C −→ C be a functor and let S = (S , γ) be a T-coalgebra. An
epimorphism e : S −→ S′ of S is called minimization of S iff for all other quotients
e′ : S −→ S′′ there exists a unique map g : S′′ −→ S′ such that g ◦ e′ = e.

In order to ensure that the minimization of a T-coalgebra exists we further assume that
the base category is co-wellpowered, ie., that for every object C in C the collection
of epimorphisms e : C −→ C′ forms a set. In this case, given our assumptions on
the category C and the functor T : C −→ C, the minimization of a coalgebra (X, γ) ∈
Coalg(T) exists (cf. [1, Thm. 3.8]).

In order to compute the minimization of a T-coalgebra we proceed as follows: We
first lift the basic duality C � Dop to a duality between Coalg(T) and some category
Alg(L) for some functor L : D −→ D and we denote by F̂ : Coalg(T) −→ Alg(L)op and
Ĝ : Alg(L) −→ Coalg(T)op the functors that witness this dual equivalence.



Minimization via Duality 193

Remark 1. Note that a functor L : D −→ D such that Coalg(T) � Alg(L)op can always
be defined as follows: Let G : D −→ Cop and F : Cop −→ D be the functors that
constitute the dual equivalence between C and D. If we put L = F ◦ Top ◦ G, it is not
difficult to see that Coalg(T) � Alg(L)op. In our examples we will use, however, more
concrete representations of L and of the algebras in Alg(L).

By the duality Coalg(T) � Alg(L)op and the fact that minimizations in Coalg(T) exist
it is clear that each object A ∈ Alg(L) has a minimal subobject i : A′ −→ A such that for
all other subobjects j : A′′ −→ A there exists a map k : A′ −→ A′′ such that j ◦ k = i. For
any T-coalgebra (ie, automaton) S = (S , γ : S −→ TS ) the minimization can therefore
be obtained by taking the dual of the minimal subobject of the dual algebra F̂S of S.
We summarize the observations of this section in the following meta-theorem.

Theorem 1. Let C be a co-wellpowered category with (Epi,Mono)-factorization, D be
a category dually equivalent to C, and T : C −→ C be a functor that preserves monos.
Assume also that L : D −→ D is a functor such that Coalg(T) and Alg(L) are dually
equivalent. Let

F̂ : Coalg(T) −→ Alg(L)op and Ĝ : Alg(L) −→ Coalg(T)op

be the functors establishing this duality. Let S be any T-coalgebra with Cm being the
minimal subobject of F̂(S). Then Ĝ(Cm) is the minimization of S.

3 Partially Observable Deterministic Finite Automata

In this section we are working in the basic setting of Example 1.1.

Definition 2. We define partially observable deterministic finite automata (PODFA) to
be quintuples S = (S ,A,O, δ : S −→ S A, γ : S −→ 2O) where S is a finite set of states,
A is a finite set of actions, O is a finite set of observations, δ is a transition function
and γ is an observation function.

The only difference from the usual automata is the presence of observations. We do not
see what state the automaton is in currently, instead we see some observations that partly
reveal the state, we may think of γ as a relation between states and observations.

We fix the set of actions and observations henceforth; thus automata are just triples
(S , δ, γ). These automata are coalgebras for the functor T : FinSet −→ FinSet given
by

T(S ) = S A × 2O, T( f : S −→ S ′) = λ〈α : A −→ S , O ⊆ O〉.〈 f ◦ α, O〉.

A homomorphism for these coalgebras is a function f : S −→ S ′ such that the following
diagram commutes: S

f ��

〈δ, γ〉
��

S ′

〈δ′, γ′〉
��

S A × 2O
f A×id

�� S ′A × 2O
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where f A(α) = f ◦ α. This translates to the following conditions:

∀s ∈ S , ω ∈ O, ω ∈ γ(s) ⇐⇒ ω ∈ γ′( f (s)), and ∀s ∈ S , a ∈ A, f (δ(s, a)) = δ′( f (s), a).
(1)

Definition 3. The category of coalgebras for the functor T is called PODFA, the cate-
gory of partially observable deterministic finite automata.

In order to define a category dual to PODFA we use a well-known finite variant of basic
Stone duality; see, for example [8].

Fact 2. The categories FinSet and FinBA are dually equivalent. This dual equivalence
is established via the contravariant functors 2 : FinSet −→ FinBA and At : FinBA
−→ FinSet where 2 denotes the contravariant power set functor and At the functor that
maps a given finite Boolean algebra to its set of atoms and a homomorphism h : B1

−→ B2 to the function At(h) : At(B2) −→ At(B1) with At(h)(b′) �
∧

{b ∈ B1 | b′ ≤ h(b)}
for all b′ ∈ At(B2).

Based on this duality, we establish a duality between the category PODFA and the
category of finite Boolean algebras with operators.

Definition 4. The category FBAO of finite Boolean algebras with operators (FBAOs)
has as objects finite Boolean algebras B with the usual operators ∧ and ¬ with a great-
est element � and least element ⊥ together with unary operators (a) : B −→ B, for each
action a, such that (a) is a Boolean homomorphism. For each observation ω ∈ O, we
also have constants ω. We denote an object of FBAO by

B = (B, {(a)|a ∈ A}, {ω|ω ∈ O},�,∧,¬).

The morphisms of FBAO are the usual Boolean homomorphisms preserving, in addi-
tion, the constants and the unary operators.

Remark 2. FBAOs fit easily into the general framework that we outlined in Section 2:
We define a functor L : FinBA −→ FinBA by putting LB =

∐
a∈A B+ FFinBA(O) where

FFinBA(O) denotes the free Boolean algebra generated by the finite set of observations
O and

∐
and + denote coproducts in FinBA. As the category of Boolean algebras is

locally finite, finitely generated Boolean algebras are finite and a coproduct of two finite
Boolean algebras is also finite. It is easy to see that the categories Alg(L) and FBAO
are isomorphic.

Finite Boolean algebra with operators provide the categorical dual of finite automata.

Proposition 1. PODFA � FBAOop via two contravariant functors F̂ : PODFAop −→
FBAO and Ĝ : FBAO −→ PODFAop.

Proof. We define the two functors explicitly and check the requisite conditions. First we
define a functor F̂ : PODFAop −→ FBAO as follows.

(S , δ, γ) �→ (2S ,A, Ω)
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where ω = {s|ω ∈ γ(s)} and (a)b = {s|δ(s, a) ∈ b}, b an element of the Boolean algebra
2S is just a subset of the states of S. The arrow part of the functor is just inverse image
which clearly preserves the usual Boolean operators. The fact that it preserves the new
operators and the constants is immediate from equations (1).

Now we define a functor Ĝ : FBAO −→ PODFAop:

(B,A, Ω) �→ (At(B), δ, γ).

Here At(B) means the set of atoms of B, since B is a finite Boolean algebra it is certainly
atomic. We define

δ(b, a) =
∧

{b′ ∈ B|b ≤ (a)b′} (2)

and
γ(b) = {ω ∈ O|b ≤ ω ∈ Ω} (3)

where b is an atom of B. The arrow part of the functor is defined as follows:

f : B1 −→ B2, Ĝ( f )(b ∈ At(B2)) =
∧

{c ∈ B1|b ≤ f (c)}. (4)

In order to ensure that Ĝ is well defined we need to verify that δ(b, a) is an atom and
also that Ĝ( f )(b) is an atom in the above definitions when b is an atom.

Assume that b is an atom. We claim that β
def
=
∧

{b′|b ≤ (a)b} � ⊥. Suppose that it
were equal to ⊥. The set {b′|b ≤ (a)b} consists of finitely many elements {b1, . . . , bn},
so we have b1 ∧ b2 ∧ . . . ∧ bn = ⊥. Now for each bi we have b ≤ (a)bi by the definition
of the set, so b ≤ (a)b1 ∧ . . . ∧ (a)bn. Using the fact that the operators (a) are Boolean
homomorphisms it is easy to see that b ≤ (a)b1 ∧ . . . ∧ (a)bn = (a)(b1 ∧ . . . ∧ bn) =
(a)⊥ = ⊥.Thus if b � ⊥ then β� ⊥.

In fact there is a unique atom c in the set {b′|b ≤ (a)b}. To see that there is an atom
in this set we calculate as follows

b ≤ T ≡ (a)T = (a)(
∨

x∈At(B)

x) =
∨

x∈At(B)

(a)x

and, since, b is an atom, for some c ∈ At(B) we have b ≤ (a)c. Suppose that there were
two such atoms c1, c2. Then b ≤ (a)c1, b ≤ (a)c2, hence b ≤ (a)(c1 ∧ c2) = (a)⊥ = ⊥,
which contradicts the assumption that b is an atom. Since {b′|b ≤ (a)b} contains an atom
and its meet is not ⊥ the meet must be that atom. Thus, we could have defined δ(b, a)
to be the unique atom c such that b ≤ (a)c. The proof that Ĝ( f )(b) is an atom is similar.

Now suppose that we have a PODFA S = (S , δ, γ), we construct Ĝ(F̂(S)) to obtain
another PODFA S′ = (S ′, δ′, γ′). Clearly the atoms of 2S just gives back S ; in other
words {·} : S −→ At(2S ) is a (natural) isomorphism. Then

γ′({s}) = {ω ∈ O|{s} ⊆ ω} = {ω|ω ∈ γ(s)} = γ(s).

Now consider any state s and action a

δ′({s}, a) = {s′} with {s} ⊆ (a){s′}
= {s′} with {s} ⊆ {s′′|δ(s′′, a) = s′}
= {δ(s, a)}.
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Thus the iso in the category of sets is in fact an iso in the category PODFA. To show
that we get an isomorphism going the other way is straightforward as well. We embed
B into 2At(B) by mapping b ∈ B to {u ∈ At(B)|u ≤ b}.
This shows that we get a precise duality between automata with observations and
FBAOs. The interesting point, however, is that one can get a minimal realization via
this theory.

Definition 5. Consider the language L:

t ::= � | ω̂ | 〈a〉t | t1 ∧ t2 | ¬t.

Now, for a given automaton S = (S , δ, γ) we can define a satisfaction relation for the
formulas as follows:

s |= � always s |= ω̂ iff ω ∈ γ(s)
s |= t1 ∧ t2 iff s |= t1 and s |= t2 s |= ¬t iff s �|= t
s |= 〈a〉t iff δ(s, a) |= t.

We say that a subset U of S is definable by L if U = �t� � {s ∈ S | s |= t} for some
t ∈ L.

From the subsets definable by L, call this D, we can obtain another Boolean algebra
with operators.

Proposition 2. The set of subsets definable by L of a PODFA S, with the evident re-
strictions of the operators, gives a minimal subalgebra Cm of F̂(S), i.e., a subalgebra
Cm that is contained in any other subalgebra of F̂(S).

The following theorem is an immediate consequence of Theorem 1.

Theorem 3. The automaton Ĝ(Cm) is the minimal realization of S.

In the previous construction we used a logic that had the Boolean connectives as well
as the modal operators and the observations as primitive propositions. In fact, one just
needs the last two in the logic provided one is working with deterministic systems. As
we will show below in such cases the Boolean connectives are superfluous.

Given the set of actions and observations we define a simple sublanguage L0 of L
as follows:

L0 � t ::== ω̂ | 〈a〉t.

The following lemma is easy to prove, if we are working with deterministic automata.

Lemma 1. If a formula of L distinguishes two states then so does a formula of L0.

We say that a set of states is definable by L0 if it is of the form �t� for some t in L0.
The subsets definable by L0 do not form a Boolean algebra. Let us call the collection of
these subsets D′. Then the Boolean algebra generated by D′ is exactly the same as the
Boolean algebra of the subsets definable by L. However, this is only true because the
operators are required to be boolean algebra homomorphisms. The reason we require
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that the operators be boolean algebra homomorphisms is because we are dealing with
deterministic automata. In general, one could have sets defined by formulas like (a)(p∧
(b)q) in D which are not in the Boolean algebra generated by D′. Thus, we can work
with D′ and use the Boolean algebra generated by it to get to D and then proceed as we
did in the previous subsection.

Proposition 3. Given a PODFA the boolean algebra with operators generated by the
subsets definable by L0 gives the zero-generated subobject of the dual FBAO object.
Thus one can construct the minimal PODFA by using formulas of L0.

Our algorithm resembles aspects of Brzozowski’s algorithm in the following sense. We
construct a dual object which resembles Brzozowski’s reversed machine in the sense
that an FBAO object is essentially running the original machine backward. However,
there are many differences. First of all we are not dealing with reachability aspects and
secondly we have multiple observations; essentially we have Moore machines rather
than acceptors. The precise categorical version of Brzozowski’s algorithm is given by
Bonchi et al. [6] who exploit the duality of observability and reachability as originally
discussed by Arbib and Manes [3].

4 Linear Weighted Automata

In this section we show that the minimization of weighted automata fit into our frame-
work. Weighted automata are also called multiplicity automata and are important in
learning theory [4]. Our minimization construction is inspired by a construction by
Stephan Kiefer [12] who came up with a minimization algorithm after hearing a talk on
duality for ordinary automata given by the third author of the present paper. As in [5],
we model linear weighted automata as coalgebras for a functor on the category FVect of
finite dimensional real vector spaces. In order to prepare for the categorical picture we
recall the well-known self-duality property of the category of finite-dimensional vector
spaces.

For a vector space V we denote by End(V) the set of linear maps T : V −→ V and
by V∗ the dual space of V consisting of linear mappings φ : V −→ R. We can easily
extend ( )∗ to a contravariant functor ( )∗ : FVect −→ FVectop that maps a morphism
T : V −→ W to the morphism T ∗ : W∗ −→ V∗ given by T ∗(σ)(v) � σ(T (v)) for
σ ∈ W∗, v ∈ V .

Fact 4. There is a natural isomorphism τ : IdFVect −→ ( )∗∗, given by τV (v)(φ) = φ(v)
for all v ∈ V, φ ∈ V∗ and V ∈ FVect. Therefore the pair (( )∗, (( )∗)op) is a dual equiva-
lence between FVect and itself.

Definition 6. The category WAuto of output linear weighted automata over alphabet A
can be defined as the category of coalgebras for the functor T = ( )A ×R. Equivalently,
an object in WAuto can be represented as a triple

S = (V, T : A −→ End(V), η ∈ V∗)

where V ∈ FVect, A is a finite set (input alphabet), and T maps input letters a ∈
A to linear transformations T (a) : V −→ V. The vector η ∈ V∗ is the final vector.
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The dimension of V is called the dimension of the automaton and is denoted dim(S).
Given a weighted automata S ∈ WAuto we extend the map T to a map T : A∗ −→
End(V) inductively by putting T (ε) = idV and T (a · w) = T (a) · T (w).

Given two linear weighted automata S1 = (V1, T1 : A −→ End(V1), η1 ∈ V∗) and
S2 = (V2, T2 : A −→ End(V2), η2 ∈ V∗

2), a WAuto-morphism from S1 to S2 is a
linear function M : V1 −→ V2 such that M∗(η2) = η1 and for all a ∈ A we have
M ◦ T1(a) = T2(a) ◦ M.

Based on the self-duality of FVect we can define a duality of output linear weighted
automata with linear weighted automata with initial states.

Definition 7. The category WAuti of linear weighted automata with initial state over
alphabet A has as objects triples (V, T : A −→ End(V), α) where V ∈ FVect is a finite-
dimensional real vector space, T (a) : V −→ V is a linear function for all a ∈ A and
α ∈ V is an initial state vector. A WAuti-morphism from (V1, T1, α1) to (V2, T2, α2) is
a linear function M : V1 −→ V2 such that M(α1) = α2 and such that for all a ∈ A we
have M ◦ T1(a) = T2(a) ◦ M.

Remark 3. Again the dual category WAuti can be represented as a category of algebras
for a functor. We define a functor L : FVect −→ FVect by putting LV =

∐
a∈A V +

FFVect(1) where FFVect(1) = R denotes the free real vector space generated by the one-
element set. It is now not difficult to see that Alg(L) is isomorphic to WAuti.

We now use the duality from Fact 4 to define the dual of a linear weighted automaton
in order to establish a duality WAuto �WAutop

i .

Definition 8. Let S = (V, T, η) be an output linear weighted automaton. The dual of
S is defined as F̂(S) = (V∗, T ∗, η) where T ∗(w) � (T (w))∗ for w ∈ A∗. We extend F̂
to a contravariant functor from WAuto to WAuti by putting F̂(M) � M∗ for a given
morphism M : S1 −→ S2 ∈ WAuto. Likewise, the dual of a linear weighted automaton
with initial state S = (V, T, α) is defined as Ĝ(S) = (V∗, T ∗, τV (α)) where τV : V
−→ V∗∗ is the V-component of the natural isomorphism from Fact 4 and we extend Ĝ to
a contravariant functor from WAuti to WAuto by putting Ĝ(M) = M∗.

Proposition 4. The natural isomorphism τ : IdFVect −→ ( )∗∗ extends to natural isomor-
phisms τ : IdWAuti −→ F̂ ◦ Ĝ and τ : IdWAuto −→ Ĝ ◦ F̂. Consequently, the contravariant
functors F̂ : WAuto −→ WAuti and Ĝ : WAuti −→ WAuto form a dual equivalence of
WAuto and WAuti.

Proof. We show that for any linear weighted automaton S = (V, T : A∗ −→ End(V), α ∈
V, η ∈ V∗) the map τV : V −→ V∗∗ is an isomorphism between S and ĜF̂(S). Clearly it
is an isomorphism of the underlying vector spaces.

We need to check that τV : S −→ ĜF̂(S) ∈ WAuto, where

Sdd = (V∗∗, T ∗∗, τV∗ (η))

by definition.
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Obviously τV satisfies the morphism condition for the initial vector. For the condition
regarding the final vector, one can easily see that

τ∗V (τV∗ (η))(v)
(Def. of ( )∗)
= (τV∗ (η))(τV(v))

(Def. of τV∗ )

= τV (v)(η)
(Def. of τV )
= η(v)

for any v ∈ V . Therefore τ∗V (τV∗ (η)) = η as required. Furthermore, for w ∈ A∗, v ∈ V
and φ ∈ V∗, we calculate:

(T ∗∗(w)(τV (v)))(φ) = ((T ∗(w))∗(τV (v)))(φ)

= τV (T (w)∗(φ)) = (T (w)∗(φ))(v)

= φ(T (w)(v)) = (τV (T (w)(v)))(φ)

which implies that T ∗∗(w)(τV (v)) = τV (T (w)(v)) as required by the diagram in the def-
inition of a WAuto-morphism. Similarly one can check that τ gives rise to a natural
isomorphism from IdWAuti to F̂ ◦ Ĝ.

In order to apply our general minimization theorem we have to describe the minimal
subobjects of an object S ∈ WAuti. As in the previous case this can be done using
formulas. One can think of these formulas as tests which can be applied to a given
weighted automaton.

Definition 9. Let A be a finite alphabet. The set of tests T over A is inductively defined
by

T � t ::= ε | a · t, a ∈ A.

Given some S = (V, T, η ∈ V∗) ∈ WAuto the semantics of a test t ∈ T is a linear function
�t� : V −→ R that is defined by putting �ε�(v) = η(v) and �a · t�(v) = �t�(T (a)(v)).

We can use these test functions in order to define elements of F̂(S) and in order to
obtain a way to compute minimal subobjects in the category WAuti:

Lemma 2. Let S = (V, T, η) ∈ WAuto and let F̂(S) = (V∗, T ∗, η). The smallest sub-
object of F̂(S) is equal to (U, T ∗

�U , η) where U = span({�t� | t ∈ T }) denotes the
subspace of V generated from test functions and T ∗

�U denotes the restriction of T ∗ to U,
ie., T ∗

�U(a) = (T (a)∗)�U.

Proof. In order to see that T ∗
�U is well-defined we have to check that for any test

t ∈ T and any a ∈ A we have T (a)∗(�t�) ∈ U. For v ∈ V we have T (a)∗(�t�)(v) =
�t�(T (a)(v)) = �a · t�(v) and thus T (a)∗(�t�) = �a · t� ∈ U as required. It is not difficult
to see that any subobject of F̂(S) has to contain {�t� | t ∈ T } and therefore also U,
which shows that (U, T ∗

�U , η) is indeed the smallest subobject of F̂(S).

By Theorem 1 the following is immediate:

Theorem 5. Let S = (V, T, η) ∈ WAuto be an output linear weighted automaton. The
minimization of S can be computed as Ĝ(S′) where S′ is the minimal subobject of
F̂(S) ∈ WAuti as described in Lemma 2.
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Spelling out the description of minimal subobjects provided by Lemma 2 one can now
obtain a minimization procedure for linear weighted automata. Owing to space limita-
tions, however, we cannot provide the details of this construction here. Finally note that
in [5] it is proven that behavioural equivalence in the category that we call WAuto is
precisely language equivalence. This shows that minimization in WAuto coincides with
the standard notion of minimization for linear weighted automata.

5 Belief Automata

A fundamental example of our approach is probabilistic transition systems. These are
not a special case of weighted automata for the simple reason that the set of probability
distributions on a set does not form a vector space. One needs a different theory. There
are two possible approaches: one is to use Stone’s version of Gelfand duality [18,19]
and the other is to exploit convexity ideas, which we will not do here but will follow
up in future work. For textbook presentations of Stone’s version of Gelfand duality we
recommend Johnstone [10]. Some key categorical constructions are due to Joan Wick-
Pelletier [14].

There are several versions of probabilistic transition systems that one could use.
A basic model is partially observable Markov decision processes (POMDPs) [17,16].
This is a model invented in the operations research community but now of major impor-
tance in the artificial intelligence community, especially in machine learning; see, for
example, the paper by Kaelbling et al. [11]. Usually POMDPs have a notion of reward
associated with transitions and the main interest is in optimizing the reward by finding
a suitable policy. However, we will ignore the reward for this paper. POMDPs with-
out rewards are rather like Labelled Markov Processes [15] except that the state is not
observable. A very interesting duality theory for LMPs also based on Gelfand duality
has been developed by Mislove et al. [13]. Our constructions are somewhat different
because we deal with partial observability. We use the left adjoint of a particular for-
getful functor to construct C∗-algebras [14], they construct C∗-algebras directly from
tests. They use their theory to discuss composition of LMPs while we are interested in
minimization.

In the AI literature one does not deal with POMDPs directly, rather one deals with
what are called belief automata. This is an automaton where the states are probability
distributions over the states of the original POMDP and the transitions are interpreted
as changes in the distribution. One works directly with this object for analysis, learning
prediction etc. and the original POMDP is not used. The belief automaton becomes
a set of probability distributions over a finite set which is just a simplex in a finite
dimensional real vector space and hence a compact Hausdorff space.

Definition 10. We define CHA(A,O) as the category of compact Hausdorff automata
over A and O. The objects are triples K = (K, Δ : K −→ KA, Γ : K −→ Sub(O)), where
K is a compact Hausdorff space and Δ is a transition function over the set of actions A
while Γ maps a state to a subdistribution over the set of observations O, ie. to a function
f : O −→ [0, 1] such that

∑
ω∈O f (ω) ≤ 1. For fixed a ∈ A, the function Δ(·)(a) : K −→ K

is continuous and Γ is continuous when Sub(O), the set of subdistributions over O, is
topologized with the topology it inherits as a subset of [0, 1]|O|.



Minimization via Duality 201

The morphisms of CHA(A,O), f : (K, Δ, Γ) −→ (K′, Δ′, Γ′) are continuous functions
f : K −→ K′ such that Δ′( f (k))(a) = f (Δ(k)(a)) and Γ′( f (k))(ω) = Γ(k)(ω) for k ∈
K, a ∈ A and ω ∈ O. In other words, CHA(A,O) is isomorphic to the category of
coalgebras for the functor T = ( )A × Sub(O) : KHaus −→ KHaus on the category of
compact Hausdorff spaces.

We will usually just write CHA instead of CHA(A,O). We employ the well known
Gelfand duality between the category of compact Hausdorff spaces and the category
C∗Alg of real commutative C∗-algebras in order to develop a duality for CHA (cf. [10,
Chapter IV.4]). For the dual of a compact Hausdorff automaton we take commutative
C∗-algebras as the underlying structure but we need to equip them with operators as we
did with Boolean algebras with operators. We will assume fixed sets A of actions and
O of observations.

Definition 11. An object of the category CAO is a real commutative C∗-algebra C
together with a set of operators (a) : C −→ C, for each a ∈ A and a distinguished set
of elements ω of C for each ω ∈ O. The operators (a) are C*-algebra morphisms (ie.
ring homomorphisms).We require that 0 ≤ ω ≤ 1 and

∑
ω∈O ω ≤ 1. The morphisms

are morphisms of C∗-algebras,which also preserve the constants and the additional
operators.

Remark 4. Again it is possible to view CAO as a category L-algebras. There is, how-
ever, a slight problem that needs to be solved: the forgetful functor from the category
of C∗-algebras does not have a left adjoint, ie., it is not possible to always construct
the free C∗-algebra for a given set of generators. Luckily there is a slight variant of the
forgetful functor that does have a left adjoint: Consider the functor from C∗Alg to Set
that maps a given C∗-algebra C to its unit interval I = {c ∈ C | 0 ≤ c ≤ 1}. This functor
does have a left-adjoint ([14]) which we denote with FC∗Alg. We now define a functor
L : C∗Alg −→ C∗Alg by putting LC =

∐
a∈A C + FC∗Alg(O)/J where FC∗Alg(O)/J is

a quotient of FC∗Alg(O) that ensures that the sum of the elements of FC∗Alg(O)/J that
correspond to the constants ω is smaller or equal to 1. A number of details have to be
checked; owing to space limitations we omit them here and will give them in the full
version of the paper.

There are contravariant functors between these categories that establish a dual equiv-
alence. We describe these functors before stating the duality theorem. We name the
functors A : CHA −→ CAOop and H : CAOop −→ CHA.

We are given an object K = (K, Δ, Γ) of CHA. We define an object A(K) = (C, {(a)},
{ω}) of CAO as follows. We define C to be the C∗-algebra of continuous functions from
K to R with the pointwise order.

The operators and constants are defined by (a) f := λx : K. f (Δ(x)(a)) for a ∈ A
and f ∈ C and ω := λx : K.Γ(x)(ω) for ω ∈ O. Clearly (a) : C −→ C is a ring
homomorphism for any a ∈ A. Also,

∑
ω∈O
ω =
∑
ω∈O
λx : K.Γ(x)(ω) ≤ λx : K.1.
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Given a morphism h : K −→ K′, where K′ = (K′, Δ′, Γ′) we define A(h) : A(K′)
−→ A(K) by A(h)( f ) = f ◦ h. It is easy to verify that this is a functor.

For the reverse direction we proceed as follows: Given a CAO (C, {(a)}, {ω}) we
define the dual compact Hausdorff automaton K = (K, Δ, Γ) by putting K = Hom(C,R),
Δ( f )(a) = λx. f ((a)x) and Γ( f )(ω) = f (ω) for a ∈ A, ω ∈ O and f ∈ Hom(C,R). The
set K is turned into a compact Hausdorff space by adding the topology that is generated
by the sets ĉ = { f ∈ Hom(C,R) | f (c) � 0}.

Lemma 3. With these definitions the maps Δ and Γ are continuous.

Proof. It is not difficult to see that Δ is continuous:

Δ−1
a (ĉ) = {g | Δa(g)(c) � 0} = {g | g((a)(c)) � 0} = (̂a)(c).

The fact thatΓ is well-defined follows because any C∗-algebra morphism f ∈ Hom(C,R)
has the property that || f (x)|| ≤ ||x|| for all x ∈ C and thus ||

∑
ω∈O f (ω)|| ≤

∑
ω∈O ||ω|| ≤ 1.

The fact that Γ is continuous can be seen as follows: By Gelfand duality we can assume
w.l.o.g. that C � C(X) for some compact Hausdorff space X. Also by Gelfand duality
we know that the map

τX : X −→ (C(X) −→ R)

x �→ λ f . f (x)

is a homeomorphism. In particular, for any g : C(X) −→ R there is xg ∈ X such that
τX(xg) = g. Our goal is to prove that the map

Γω : HC(X) −→ R
(g : C(X) −→ R) �→ g(ω)

is continuous. Let U ⊆ R be an open set. Then

Γ−1
ω (U) = {g : C(X) −→ R | g(ω) ∈ U}

= τX({x | ω(x) ∈ U}) = τX(ω−1(U))

Because ω ∈ C(X) is continuous we have ω−1(U) is open and by the fact that τX is a
homeomorphism we have Γ−1

ω (U) is open as well. As U ⊆ R was an arbitrary open set
this shows that Γw is continuous as required.

This operation can be extended to a functor H : CAO −→ CHAop that maps a function
h : C1 −→ C2 ∈ CAO to the function H(h) : H(C2) −→ H(C1) given by H(h)(g) �
g ◦ h.

Theorem 6. The functors H : CAO −→ CHAop and A : CHAop −→ CAO form an
equivalence of categories, i.e. the categories CHA and CAO are dually equivalent:
CHA � CAOop.

Proof. Let K = (K, Δ, Γ) be a compact Hausdorff automaton and let HAK = (K′, Δ′, Γ′).
It is an immediate consequence of Gelfand duality that the carrier spaces K and K′ are
isomorphic via the isomorphism τK : K −→ K′ given by τK (x)( f ) � f (x) (note that
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K′ = Hom(C(K),R), i.e. τK (x) has to map continuous real-valued functions on K to
a real number). The fact that τK : Id −→ H ◦ A is natural is also a consequence of
Gelfand duality. The only thing which remains to be checked is that τK is an automaton
morphism. In order to see this we calculate for a ∈ A, x ∈ K and g ∈ C(K) that

(Δ′(τK (x))(a))(g) = τK (x)((a)g) = τK (x)(λy.g(Δ(y)(a)))

= g(Δ(x)(a)) = τK (Δ(x)(a))(g)

where all equalities are immediate consequences of the definitions. This shows that
τK is an automaton morphism regarding the transition structures Δ and Δ′. Let us now
check that τK also preserves all observations ω ∈ O:

Γ′(τK (x))(ω) = τK (x)(ω) = ω(x) = Γ(x)(ω).

For the other direction of the equivalence we have to show that the C∗-algebra iso-
morphism αC : C −→ C(Hom(C,R)) that exists by Gelfand duality for each C =
(C, {(a)}, {ω}) ∈ CAO and and that is given by αC(c)( f ) � f (c) for f ∈ Hom(C,R)
is in fact a CAO-morphism. It then follows that α : Id −→ A ◦ H is a natural isomor-
phism. In order to see that αC is indeed a CAO-morphism we calculate

(αC((a)c)( f )) = f ((a)c) = (Δ( f )(a))(c)

= αC(c)(Δ( f )(a)) = (a)′(αC(c))

(αC(ω))( f ) = ω( f ) = Γ( f )(ω) = ω′( f )

where the (a)′ and ω′ denote the operators and constants of AHC which is the C∗-
algebra with operators obtained by following both functors.

We are now going to use the duality in order to minimize compact Hausdorff automata.
Let us first define a set of tests.

Definition 12. The set of tests for automata in CHA is defined as follows

T � t ::= ω,ω ∈ O | (a)t, a ∈ A.

A test t gives rise to a function �t� : K −→ R:

�ω�(k) � Γ(k)(ω) for ω ∈ O
�(a)t�(k) � �t�(Δ(k)(a)) for ω ∈ O,w ∈ A∗.

We say two states k, k′ ∈ K in an automaton (K, Δ, Γ) are test equivalent (notation:
k ∼ k′) if for all tests t ∈ T we have �t�(k) = �t�(k′).

The tests can be used in order to obtain a better understanding of the smallest subobject
(subalgebra) of a given C∗-algebra with operators A(K) ∈ CAO.

Proposition 5. Let K ∈ CHA be a compact Hausdorff automaton, let A(K) be its
dual C∗-algebra with operators and let C = (C, {(a)}, {ω}) be the smallest subobject
(subalgebra) of A(K). Then C ⊆ { f ∈ C(K) | ∀k, k′.k ∼ k′ implies f (k) = f (k′)}, ie. all
functions in C agree on the equivalence classes defined by test equivalence on K .

Proof.(Sketch) It is clear that �T � = {�t� | t ∈ T } ⊆ C. We can generate a C∗-algebra
with operators from �T � by adding the constant functions and by closing under +, · and
under limits in the sup norm. All functions generated in that way, and thus all functions
in C, will be constant on the ∼-equivalence classes.
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As in the other cases duality gives us the following theorem.

Theorem 7. Let K ∈ CHA be a compact Hausdorff automaton. The minimization of
K can be computed as H(C) where C is the minimal subobject of A(K) ∈ CAO as
described in Proposition 5.

As a corollary of the previous proposition and theorem we obtain a description of the
minimization of a given compact Hausdorff automaton.

Corollary 1. Given a compact Hausdorff automaton K = (K, Δ, Γ), let K′ = (K, Δ′, Γ′)
be a compact Hausdorff automaton such that the states of K′ are ∼-equivalence classes
of K and Δ′([k])(a) = [Δ(k)(a)], Γ′([k]) = Γ(k) for k ∈ K where [k] denotes the ∼-
equivalence class of k. Then K′ is the minimization of K .

6 Conclusions

In this paper we have developed a theory of minimization via duality and showed how it
works in three examples. There are some variations of these cases that we have omitted
from this abstract for lack of space. For example, we have worked out a version of the
weighted automaton case in which there are both initial and final “states” and in which
the minimization is achieved by dualizing and using reachability twice. This version is
actually being used by Stefan Kiefer and he has implemented the algorithm.

The idea of this kind of double duality was first worked out, in a completely non-
categorical way in 2006 [9] and was used as a way of representing systems where one
does not know the state space. Closely connected to what we have been doing is the
work in [6]: they give a duality-based explanation of the Brzozowski algorithm for
deterministic finite automata, but their duality is very different from our Stone duality
and takes reachability into account, something we have not done here.

We note that Mislove et al. [13] have used this duality to study labelled Markov
processes but with different motivations; their work, while very interesting, is not about
minimization but about how to compose systems. Furthermore, the details of their work
are somewhat different from ours.

It is clear that there are a number of cases very close to automata, for example tree
automata, nondeterministic automata, alternating automata etc. that fall under the same
rubric and could be developed as straightforward extensions of the present work. We
have begun a collaboration with the authors of [6] and others to unify our points of
view and collect several more examples.
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1. Adámek, J., Bonchi, F., Hülsbusch, M., König, B., Milius, S., Silva, A.: A Coalgebraic
Perspective on Minimization and Determinization. In: Birkedal, L. (ed.) FOSSACS 2012.
LNCS, vol. 7213, pp. 58–73. Springer, Heidelberg (2012)

2. Adamek, J., Herrlich, H., Strecker, G.E.: Abstract and Concrete Categories: The Joy of Cats.
Dover (1990)

3. Arbib, M., Manes, E.: Adjoint machines, state behavior machines and duality. J. Pure Appl.
Algebra 6, 313–343 (1975)

4. Beimel, A., Bergadano, F., Bshouty, N.H., Kushelevitz, E., Varricchio, S.: Learning functions
represented as multiplicity automata. Journal of the ACM 47(5), 506–530 (2000)

5. Bonchi, F., Bonsangue, M., Boreale, M., Rutten, J., Silva, A.: A coalgebraic perspective on
linear weighted automata. Information and Computation 211, 77–105 (2012)

6. Bonchi, F., Bonsangue, M.M., Rutten, J.J.M.M., Silva, A.: Brzozowski’s Algorithm
(Co)Algebraically. In: Constable, R.L., Silva, A. (eds.) Logic and Program Semantics, Kozen
Festschrift. LNCS, vol. 7230, pp. 12–23. Springer, Heidelberg (2012)

7. Brzozowski, J.A.: Canonical regular expressions and minimal state graphs for definite events.
In: Fox, J. (ed.) Proceedings of the Symposium on Mathematical Theory of Automata. MRI
Symposia Series, vol. 12, pp. 529–561. Polytechnic Press of the Polytechnic Institute of
Brooklyn (April 1962); book appeared in 1963

8. Givant, S., Halmos, P.: Introduction to Boolean Algebras. Undergraduate Texts in Mathemat-
ics. Springer (2009)

9. Hundt, C., Panangaden, P., Pineau, J., Precup, D.: Representing systems with hidden state.
In: The Twenty-First National Conference on Artificial Intelligence, AAAI (2006)

10. Johnstone, P.: Stone Spaces. Cambridge Studies in Advanced Mathematics, vol. 3. Cam-
bridge University Press (1982)

11. Kaelbling, L.P., Littman, M.L., Cassandra, A.R.: Planning and acting in partially observable
stochastic domains. Artificial Intelligence 101 (1998)

12. Kiefer, S.: Minimization of weighted automata (2011) (unpublished private communication)
13. Mislove, M., Ouaknine, J., Pavlovic, D., Worrell, J.B.: Duality for Labelled Markov Pro-

cesses. In: Walukiewicz, I. (ed.) FOSSACS 2004. LNCS, vol. 2987, pp. 393–407. Springer,
Heidelberg (2004)

14. Negrepontis, J.W.: Duality in analysis from the point of view of triples. Journal of Algebra 19,
228–253 (1971)

15. Panangaden, P.: Labelled Markov Processes. Imperial College Press (2009)
16. Smallwood, R.D., Sondik, E.J.: The optimal control of partially observable Markov decision

processes over a finite horizon. Operations Research 21(5), 1071–1088 (1973)
17. Sondik, E.J.: The optimal control of partially observable Markov processes. Ph.D. thesis,

Stanford University (1971)
18. Stone, M.H.: A general theory of spectra I. Proc. Nat. Acad. Sci. USA 26, 280–283 (1940)
19. Stone, M.H.: A general theory of spectra II. Proc. Nat. Acad. Sci. USA 27, 83–87 (1941)



On Some Subclasses

of the Fodor-Roubens Fuzzy Bi-implication

Claudio Callejas, João Marcos, and Benjamı́n René Callejas Bedregal
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Abstract. The paper deals with fuzzy versions of the classical bi-im-
plication, that is, extensions of classical bi-implication to the canonical
domain of mathematical fuzzy logics, the real-valued unit interval [0, 1].
Our approach to fuzzy bi-implication may be summarized as follows:
first, we recall a well-known approach to bi-implications, by Fodor and
Roubens, via the direct axiomatization of the properties of the corre-
sponding class of operators; next, we investigate a particular defining
standard of bi-implication in terms of t-norms and r-implications. We
study four prospective classes of bi-implications based on such defin-
ing standard, by varying the properties of its composing operators, and
show that these classes collapse into precisely two increasingly weaker
subclasses of the Fodor-Roubens bi-implication.

1 Introduction

The investigation of fuzzy logic in a narrow sense, as subfield of multi-valued
logic, was initiated by Petr Hájek in [9], much after the introduction of fuzzy
set theory by Lotfi Zadeh in [20]. Since then, however, a lot of debate has hap-
pened over the ‘most reasonable way’ of extending the most usual operators from
the discrete classical domain {0, 1} into the continuum represented by the real-
valued unit interval [0, 1]. In the meanwhile, if some classical connectives have
found well-accepted fuzzy counterparts, others remained largely as a matter of
contention. The fuzzy interpretation of conjunction, for instance, is well settled
in terms of the triangular norm operator, and similarly for disjunction as its
dual [11–14]. Classical negation, in weak and strong forms, also has a reasonably
well-studied associated fuzzy operator [6]. Furthermore, there are many compet-
ing fuzzy versions of implication, of which [1] seems to be the most widely used
in the literature.

Classical bi-implication also does not fall short of fuzzy interpretations, and
one may find it studied in the literature under the appellations of T-indistinguish-
ability operator [18], fuzzy bi-implication [2, 4], fuzzy equality [17], fuzzy bi-
residuation [11, 15], fuzzy equivalence [7, 8], T-equivalence [16], fuzzy similarity
[9] and restricted equivalence function [5].

As it happens, it is relatively common to find in the recent literature inves-
tigations that study the relations between different classes of the most common
fuzzy operators. This happens for instance with the relation between different
classes of triangular norms [12] and with the intersections of different classes of
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fuzzy implications [1]. For fuzzy bi-implication, however, the same investigation
still remains to be done. In this paper we contribute to fill this gap, by study-
ing the relation between the more well-known definition proposed by Fodor and
Roubens and other appealing definitions, old or new, of fuzzy operators that
extend the interpretation of the classical bi-implication.

The plan of the paper is as follows: in section 2 we recall some basic definitions
and facts about t-norms and r-implications; subsection 3.1 recalls the definitions
and proves some important results about the so-called Fodor-Roubens fuzzy
bi-implications; section 3.2 studies four classes of bi-implications produced by
the defining standard based on the classical equivalence in between α ⇔ β and
(α⇒ β) ∧ (β ⇒ α), and shows that these classes amount to two distinct classes
of which one is a subclass of the other, and both are subclasses of Fodor-Roubens
bi-implications; we conclude by some considerations concerning open problems
and interesting lines for future research.

2 Conjunction and Implication from a Fuzzy Perspective

There are infinite ways in which the interpretation of conjunction ∧ may be
extended from the classical {0, 1} domain to the unit interval [0, 1], but not
all of them behave as what is intuitively expected from a generalization of the
Boolean conjunction to the unit square. The fuzzy logic community, as a matter
of fact, has by and large agreed to impose the properties of t-norms to any
extension of the classical conjunction.

The following definitions and examples may be found in [12].

Definition 1. A triangular norm (in short t-norm) is a binary operator T on
the unit interval [0, 1] that: (T0) agrees with classical conjunction on {0, 1},
(T1) is commutative, (T2) is associative, (T3) is monotone on both arguments,
and (T4) has 1 as neutral element.

In fact, it is easy to check that (T0) follows from the remaining properties.
The associated notions of continuity are the usual ones. In particular:

Definition 2. A t-norm T is left-continuous if for all non-decreasing sequences
(xn)n∈N we have that lim

n→∞ T (xn, y) = T ( lim
n→∞xn, y).

There are uncountably many t-norms, but below we mention some of the most
well-known among them.

Example 1.

1. TM (x, y) = min(x, y) (minimum t-norm)
2. TP (x, y) = x · y (product t-norm)
3. TL(x, y) = max(x+ y − 1, 0) (	Lukasiewicz t-norm)

4. TD(x, y) =

{
0 if (x, y) ∈ [0, 1)2

min(x, y) otherwise
(drastic t-norm)
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Notice, in particular, that TM , TP and TL are all left-continuous, yet TD is not.
The following constitutes a generalization of the transitivity property in the

context t-norms:

Definition 3. Let T be a left-continuous t-norm, and F a binary operator on
[0, 1]. We say that F is T -transitive if T (F (x, y), F (y, z)) ≤ F (x, z).

As regards implication⇒, there are several competing approaches to what should
constitute its fuzzy counterpart (see for example [6, 10, 19]). Below we propose
an axiomatization equivalent to the ones that may be found in [1, 8, 10], which
characterize the most common fuzzy implication found in the literature.

Definition 4. A fuzzy implication is a binary operator I on the unit interval
[0, 1] that: (I0) agrees with classical implication on {0, 1}, (I1) is antitone on the
first argument and (I2) is monotone on the second argument.

The following are examples of fuzzy implications:

Example 2.

1. IM (x, y) =

{
1 if x ≤ y
y otherwise

(minimum / Gödel implication)

2. IP (x, y) =

{
1 if x ≤ y
y
x otherwise

(product / Goguen implication)

3. IL(x, y) = min(1− x+ y, 1) (contractionless / 	Lukasiewicz implication)

4. ID(x, y) =

{
y if x = 1
1 otherwise

(drastic / Weber implication)

5. I1B(x, y) =

{
0 if x = 1 and y �= 1
1 otherwise

(boolean 1-implication)

The first four examples are well-known, but for the last one, introduced here,
we have to check that the corresponding definition satisfies the properties in
Definition 4. In any case, (I0) is obvious. Consider now xa < xb. So, xa < 1,
thus I1B(xa, y) = 1 ≥ I1B(xb, y), satisfying thus (I1). Next, assume ya < yb ≤ 1,
and suppose that I1B(x, ya) > I1B(x, yb). Notice that this is only possible in
case I1B(x, ya) = 1 and I1B(x, yb) = 0. From I1B(x, yb) = 0 one may conclude in
particular that x = 1, and from this and I1B(x, ya) = 1 it follows that ya = 1.
Contradiction, for ya < yb. Thus, (I2) is also satisfied.

Definition 5. A fuzzy implication I is said to satisfy:

– the identity principle, if I(x, x) = 1 (IP)
– the left-ordering property, if I(x, y) = 1 whenever x ≤ y (LOP)
– the right-ordering property, if I(x, y) �= 1 whenever x > y (ROP)

Given an arbitrary t-norm T and an arbitrary fuzzy implication I, the pair (T, I)
is said to satisfy:

– modus ponens, if T (x, I(x, y)) ≤ y (MP)
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Notice that all implications in Ex. 2 satisfy (LOP), and a fortiori also (IP).
There are well-known examples of implications failing (LOP) (check the first
chapter of [1]), but they will be of no particular interest to us here.

The following operation is used to generalize the Deduction Metatheorem:

Definition 6. The residuum of a left-continuous t-norm T is the (unique) op-
eration I such that I(x, y) ≥ z iff T (z, x) ≤ y.

A particularly interesting class of fuzzy implications is the one based on residua:

Definition 7. A binary operator I on [0, 1] is called an r-implication if there is
a t-norm T such that:

I(x, y) = sup{z ∈ [0, 1] | T (z, x) ≤ y}

In such case we may say also that I is an r-implication based on T , and denote
it by IT . We say that IT is of type LC in case T is left-continuous. In such
case we also say that (T, IT ) form an adjoint pair, or that IT is the adjoint
companion of T .

Given a left-continuous t-norm T , it should be clear from the above that its
residuum IT is the pointwise largest operation such that (T, IT ) satisfies modus
ponens.

Note that:

Proposition 1. (TX , I
TX ) form adjoint pairs, for each X ∈ {M,P,L}.

It is also the case that (cf. [1, 2]):

Proposition 2. Let IT be an r-implication. Then: (i) IT (1, y) ≥ y; (ii) IT satis-
fies the identity principle; (iii) IT satisfies the left-ordering property. Assume IT

to be of type LC. Then: (iv) IT is T -transitive; (v) IT satisfies the right-ordering
property.

Even though we will not need the following results here, it is interesting to
mention that for r-implications we can immediately count on IT (1, y) ≤ y as
well, thus validating (MP), and to mention also the characteristic strengthening
of the above result according to which any r-implication that satisfies both (LOP)
and (ROP) is of type LC. It might also be interesting to notice how Prop. 2(v)
shows that I1B cannot be the residuum of a left-continuous t-norm, as it obviously
fails (ROP). While neither ID nor I1B are of the type LC, and on the one hand
it is easy to see that ID is indeed the residuum of TD, on the other hand it is
not at all obvious which t-norm, if any, would I1B be the residuum of.

3 Fuzzy Bi-implication

3.1 Via Axiomatization

As it happens with implication, for the bi-implication⇔ there is also no universal
agreement on what should constitute its fuzzy counterpart. The most well-known
class of fuzzy bi-implications was investigated by Fodor and Roubens and is
characterized by the following properties (see [8]):
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Definition 8. The class of f -bi-implications contains binary operators B on
the unit interval [0, 1] respecting the following axioms:

(B1) B(x, y) = B(y, x) (B-commutativity)
(B2) B(x, x) = 1 (B-identity)
(B3) B(0, 1) = 0
(B4) If w ≤ x ≤ y ≤ z, then B(w, z) ≤ B(x, y)

In view of (B1), (B2) and (B3), it is easy to see that any Fodor-Roubens fuzzy
bi-implication is bound to agree with classical bi-implication on {0, 1}. We will
refer to this ‘boundary’ property as (B0).

Here are some examples of f -bi-implications:

Example 3

1. BM (x, y) =

{
1 if x = y
min(x, y) otherwise

2. BP (x, y) =

{
1 if x = y
min(x,y)
max(x,y) otherwise

3. BL(x, y) = 1− |x− y|

4. BD(x, y) =

⎧⎨⎩
y if x = 1
x if y = 1
1 otherwise

5. BTI1B (x, y) =

{
1 if x = y or x, y �= 1
0 otherwise

Definition 9. A fuzzy bi-implication B is said to satisfy:

– the diagonal principle, if B(x, y) �= 1 whenever x �= y (DP)

It should be clear that:

Theorem 1. (i) Not all f -bi-implications satisfy the diagonal principle. (ii)
There are f -bi-implications that are T -intransitive, that is, that fail T -transiti-
vity for every t-norm T . Indeed, BD is a convenient witness to both these facts.

Proof. Part (i). If x < y < 1 then BD(x, y) = 1. Since we have x �= y and
BD(x, y) = 1 then BD does not satisfy (DP). Part (ii). Let T be an arbitrary t-
norm. Then, in view of (T4) and the definition of BD, T (BD(1, .9), BD(.9, .8)) =
T (.9, 1) = .9 �≤ .8 = BD(1, .8). Therefore, BD fails to be T -transitive. #�

Moreover:

Theorem 2. The following property holds good for any r-implication IT :

– min(IT (x, y), IT (y, x)) = IT (max(x, y),min(x, y))

Proof. Let IT be of type LC. Assume without loss of generality that x ≤ y.
Recall that, by Prop. 2(iii), IT satisfies (LOP), thus min(IT (x, y), IT (y, x)) =
min(1, IT (y, x)) = IT (y, x). Notice, in addition, that y = max(x, y) and x =
min(x, y), once x ≤ y. #�
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3.2 Via a Defining Standard over t-Norms and Fuzzy Implications

Inspired by the classical (in fact, intuitionistic) equivalence in between α ⇔ β
and (α ⇒ β) ∧ (β ⇒ α), in this section we explore the fuzzy bi-implication
obtained by setting as defining standard B(x, y) = T (I(x, y), I(y, x)). We shall
call this TI defining standard for bi-implication. As a matter of fact, a very
general result may be proven about such defining standard, when r-implications
are involved:

Theorem 3. Given B(x, y) = T (I(x, y), I(y, x)), where I is an r-implication,
the specific choice of t-norm T is inconsequential. Indeed, the following property
holds good in general:

– B(x, y) = min(I(x, y), I(y, x))

Proof. Assume without loss of generality that x ≤ y. Since, by Prop. 2(iii), the
r-implication I satisfies (LOP), we have that B(x, y) = T (I(x, y), I(y, x)) =
T (1, I(y, x)), and by (T4), we know that T (1, I(y, x)) = I(y, x). Using (LOP)
again, we conclude that I(y, x) = min(I(x, y), I(y, x)). #�
In the definitions that follow, we fix the TI defining standard for fuzzy bi-
implications, assume that T is a t-norm and I an r-implication, and experiment
with properties associated to left-continuity. We start by proposing the following
very generous class of fuzzy bi-implications:

Definition 10. The class of aa-bi-implications contains all binary operators B
on [0, 1] following the TI defining standard and based on arbitrary t-norms
and arbitrary r-implications, that is, operators defined by setting B(x, y) =
T1(I

T2(x, y), IT2(y, x)), where T1 and T2 are arbitrary t-norms.

One may readily prove that:

Theorem 4. Every aa-bi-implication B satisfies the equation B(1, y) ≥ y.

Proof. By Theor. 3, we know that B(1, y) = min(IT (1, y), IT (y, 1)), for some
appropriate r-implication IT , which by Prop. 2(iii) must satisfy (LOP). From
the latter property we conclude that IT (y, 1) = 1, thus, B(1, y) = IT (1, y). The
proof is completed by recalling from Prop. 2(i) that IT (1, y) ≥ y. #�
Theorem 5. Every aa-bi-implication is an f -bi-implication.

Proof. Let T be a t-norm, I be an r-implication and B be the aa-bi-implication
based on T and I. It is obvious that B satisfies (B1) and (B3), and (B2) follows
from Prop. 2(ii). Now, recall by Prop. 2(iii) that I satisfies (LOP), and assume
w ≤ x ≤ y ≤ z. So:

B(w, z) = T (I(w, z), I(z, w))
= T (1, I(z, w)) by (LOP), once w ≤ z
= I(z, w) by (T4)
≤ I(y, x) by (I1), once z ≥ y, and (I2), once w ≤ x
= T (I(x, y), I(y, x)) by (LOP), once x ≤ y
= B(x, y)

Therefore, B satisfies (B4). #�
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A restricted version of the above definition may be found in [2]:

Definition 11. The class of a-bi-implications contains all aa-bi-implications in
which T1 = T2, that is, in which IT2 is precisely the residuum of T1.

Example 4. The ‘drastic’ bi-implication BD (Ex. 3.4) is an a-bi-implication. In-
deed, BD(x, y) = TD(ID(x, y), ID(y, x)).

In view of Ex. 4 and Theor. 1 we know that there are a-bi-implications (thus, a
fortiori, aa-bi-implications) that are intransitive and fail the diagonal principle.

As a corollary of Theor. 3, however, it is easy to see that the classes of aa-bi-
implications and a-bi-implications are coextensive, even though the former class
might have initially seemed to be more inclusive than the latter. So:

Theorem 6. Every aa-bi-implication is an a-bi-implication.

In what follows we restrict a bit further the preceding definitions of fuzzy bi-
implication.

Definition 12. The class of a�-bi-implications contains all binary operators B
on [0, 1] following the TI defining standard and based on arbitrary t-norms and r-
implications of type LC, that is, operators defined through the equation B(x, y) =
T1(I

T2(x, y), IT2(y, x)), where T1 is an arbitrary t-norm and IT2 an r-implication
of type LC.

The following specialization of a�-bi-implications was studied in [11]:

Definition 13. The class of �-bi-implications contains all a�-bi-implications in
which T1 = T2, that is, in which IT2 is precisely the adjoint companion of T1.

Example 5. BM , BP and BL are �-bi-implications.

Again, as an immediate corollary of Theor. 3, we know that the two latter classes
of bi-implications are coextensive, that is:

Theorem 7. Every a�-bi-implication is an �-bi-implication.

As a more interesting side-effect of Theor. 3, the following results from [3] on
�-bi-implications may also be generalized to a�-bi-implications:

Theorem 8. Every a�-bi-implication based on an r-implication IT of type LC
enjoys both the diagonal principle and T -transitivity.

Proof. Let T1 be a t-norm, IT be an r-implication of type LC and B be the a�-bi-
implication B(x, y) = T1(I

T (x, y), IT (y, x)) based on T1 and IT . By Theor. 3, we
know that B(x, y) = min(IT (x, y), IT (y, x)). So, B(x, y) = 1 iff both IT (x, y) =
1 and IT (y, x) = 1. Given Prop. 2(v), IT satisfies (ROP), so IT (x, y) = 1 and
IT (y, x) = 1 imply that x ≤ y and y ≤ x. It follows that x = y whenever
B(x, y) = 1, in other words, that B satisfies (DP).
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Now we are going to check that T (B(x, y), B(y, z)) ≤ IT (x, z). Recall that,
by Prop. 2(iv), IT is T -transitive, once T is left-continuous. So:

T (B(x, y), B(y, z)) =
= T (min(IT (x, y), IT (y, x)),min(IT (y, z), IT (z, y))) by Theor. 3
≤ T (IT (x, y), IT (y, z)) by (T3)
≤ IT (x, z) by T -transitivity of IT

For analogous reasons, it is also true that T (B(x, y), B(y, z)) ≤ IT (z, x). There-
fore, T (B(x, y), B(y, z)) ≤ min(IT (x, z), IT (z, x)) and again by Prop. 2(iii) and
Theor. 3, it follows that min(IT (x, z), IT (z, x)) = B(x, z). Thus,B is T -transitive.

#�

Last but not least, for the sake of comparing the above classes of bi-implication,
we may observe that:

Theorem 9. Not all a-bi-implications are �-bi-implications. Again, BD bears
witness to this fact.

Proof. Recall from Ex. 4 that BD is an a-bi-implication and that in Theor. 1
we proved that BD does not satisfy neither the diagonal principle nor the T -
transitivity property for no t-norm T . Since by the definition of the class of �-bi-
implications, any creature from this class is in particular an a�-bi-implication,
and in Theor. 8 we have seen that every a�-bi-implication satisfies both (DP)
and T -transitivity, the drastic bi-implication BD gives us two good reasons to
conclude that not every a-bi-implication is an �-bi-implication. #�

While the latter distinguishing result should be contrasted with the ordinary
facts mentioned in Ex. 5, the next result should be contrasted with Ex. 3.5:

Theorem 10. Not all f -bi-implications are a-bi-implications. Indeed, this state-
ment has BTI1B as witness.

Proof. Consider any y ∈ (0, 1). Then, BTI1B (1, y) = 0. Yet, in view of Theor. 4
we know that B(1, y) ≥ y for any aa-bi-implication B.

4 Conclusions

There are basically three classes of fuzzy bi-implications to be found in this
paper: (B1) f -bi-implications; (B2) a-bi-implications (which we have shown to be
coextensive with the apparently more general class of aa-bi-implications); (B3) �-
bi-implications (which we have shown to be coextensive with the apparently more
general class of a�-bi-implications) We have seen that (B3) is a proper subclass
of (B2), and that (B2) is a proper subclass of (B1). The full picture may be
appreciated in Fig. 1.

In [5] a class B4 of ‘restricted equivalence functions’ is introduced via ax-
iomatization as a subclass of B1. It has not been shown, however this consists
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B1

B2

B3

•BD

•BTI1
B

Fig. 1. Subclasses of Fodor-Roubens fuzzy bi-implication

in a proper subclass. An interesting line of investigation would be thus to de-
termine which are the relations that hold between B4 and the other classes of
fuzzy bi-implications that we have studied here.

Finally, to get a better view over the possibilities it is also very important
to investigate other defining standards for bi-implication, such as the one that
sets B(x, y) = I(S(x, y), T (x, y)), where T is a t-norm, I a convenient fuzzy
implication, and S a t-conorm (the dual of a t-norm, used for interpreting dis-
junction). Some results have already been found that characterize some classes,
based on such an alternative defining standard, that properly extend B3 yet
are not extended by B1, providing thus a legitimate alternative to the Fodor-
Roubens paradigm. Presenting these results in detail is left as matter for future
work.

To the authors of this paper, the class of Fodor-Roubens implications is too
inclusive. In particular, satisfaction of the equation I(1, y) ≤ y is not enforced,
and that seems to us rather inadvisable, at least if one wants to count on (fuzzy)
modus ponens. This defect is appropriately fixed by r-implications. In exporting
the intuitions behind (Fodor-Roubens) fuzzy implications into the class of f -bi-
implications, the defects of the former are inherited, and there will be no way of
guaranteeing that, say, B(1, y) ≤ y. Not by coincidence, the alternative classes of
bi-implications we have studied here are based precisely on r-implications, and
the fact that they turned out to define proper subclasses of the f -bi-implications
containing the most natural examples of fuzzy bi-implications from the literature
would seem to lend support to our decision of concentrating our attention on such
classes. However, if one takes into account, on a closer look, the additional fact
that our main theorems concerning both the class of bi-implications following
the TI defining standard and the class of a-bi-implications are based directly on
the left-ordering property, rather than on other properties of fuzzy implications,
there seems to be some chance that an interesting class of bi-implications might
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still lurk somewhere in between B1 and B2. We close our present study by leaving
the investigation of this thread open for the interested researcher.
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Abstract. We consider the non-deterministic extension of the call-by-
value lambda calculus, which corresponds to the additive fragment of the
linear-algebraic lambda-calculus. We define a fine-grained type system,
capturing the right linearity present in such formalisms. After proving
the subject reduction and the strong normalisation properties, we pro-
pose a translation of this calculus into the System F with pairs, which
corresponds to a non linear fragment of linear logic. The translation pro-
vides a deeper understanding of the linearity in our setting.

Introduction

Several non-deterministic extensions of λ-calculus have been proposed in the
literature, e.g. [1–4]. In these approaches, the sometimes called must-convergent
parallel composition, is such that if t and u are two λ-terms, t+u (also written
t ‖ u) represents the computation that runs either t or u non-deterministically.
Therefore, (t+u)s can run either ts or us, which is exactly what ts+us expresses.
Extra rewriting rules (or equivalences, depending on the presentation) are set
up to account for such an interpretation, e.g. (t+ u)s→ ts + us.

This right distributivity can alternatively be seen as the one of the function
sum: (f + g)(x) is defined as f(x) + g(x). This is the approach of the algebraic
lambda-calculi presented in [5] and [6], that were introduced independently but
that resulted afterwards to be strongly related [7, 8]. In these algebraic calculi,
a scalar pondering each ‘choice’ is considered in addition to the sum of terms.

In the call-by-value (or cbv) version of these algebraic/non-deterministic cal-
culi, e.g. [1, 4, 5], it is natural to consider also the left distributivity of application
over sums: t(u+s)→ tu+ts. To our knowledge, this was first observed in [9]. In-
deed, a sum u+s is not a value, in the sense that it represents a non-deterministic
choice that remains to be done, and therefore cannot subsitute the argument x.
In algebraic terms, it means that functions are linear: f(x + y) = f(x) + f(y).

The work we present here is motivated by a better understanding of this
linearity, and so our first attempt was to interpret such a cbv calculus in Linear
Logic [10] (indeed linear functions can be precisely characterised in this logic).
Surprisingly, it appeared that the target calculus was a non linear fragment of
the intuitionistic multiplicative exponential Linear Logic (imell), shining a light
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on the difference between the linearity in these non-deterministic calculi, and the
common algebraic notion of linear functions. Since the non linear fragment of
imell corresponds to the System F with pairs [11, Sec. 1.5], and this latter
might be better known by the reader, we present in this paper a (reversible)
translation into the System F with pairs.

Notice also that the left distributivity of application over sum induces a com-
pletely different computational behaviour compared to the one in cbn calculi.
Consider for instance the term δ = λx.xx applied to a sum t + u. In the first
case, it reduces to δt+ δu and then to tt+ uu, whereas a cbn reduction would
lead to (t + u)(t + u) and then to t(t + u) + u(t + u). In particular, the cbv
algebraic calculus we mentioned above (Lineal, [5]) was originally meant to ex-
press quantum computing, where a superposition t + u is seen as a quantum
superposition. Hence reducing δ(t + u) into (t + u)(t + u) is considered as the
forbidden quantum operation of “cloning” [12], while the alternative reduction
to tt+uu is seen as a “copy”, or cnot, a fundamental quantum operation [13].

Outline. In this paper we propose (in Sec. 1) a type system, called Additive,
capturing the linear cbv behaviour of the sum operator that we discussed above.
Then we prove its correctness properties, namely subject reduction and strong
normalisation in Sec. 2. Its logical interpretation (that is, the translation into
System F with pairs) is developed in Sec. 3. We conclude with a discussion
about the linearity of the call-by-value setting. We leave in the appendices extra
examples and some technical details such as auxiliary lemmas.

1 The Calculus

1.1 The Language

We consider the call-by-value λ-calculus [14] extended with a non-deterministic
operator in the spirit of the parallel composition from [2]. This setting can be
seen as the additive fragment of Lineal [5]. The set of terms and the set of
values are defined by mutual induction as follows (where variables range over a
countable set and are denoted by x, y, z):

Terms: t,u, s ::= v | tu | t+ u | 0
Values: v ::= x | λx.t

Intuitively t + u denotes the non-deterministic choice between t and u, and
hence, as discussed in the introduction, (t+u)s reduces to the non-deterministic
choice ts+us. Analogously, in this call-by-value setting, t(u+s) reduces to tu+
ts. The term 0 is introduced to express the impossible computation, and hence t+
0 always reduces to t, while t0 and 0t reduce to 0, because none of them continue
reducing (notice that 0 is not a value), and have an impossible computation on
them. Since the operator + represents a non deterministic choice, where no one
have precedence, terms are considered modulo associativity and commutativity
of + (that is an AC-rewrite system [15]). Notice that considering t+u either as
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a sum of functions or as a sum of arguments—depending on its position—is also
natural with the previous definitions, where 0 becomes the sum of 0 elements.

The α-conversion and the set fv(t) of free variables of t are defined as usual
(cf. [16, Sec. 2.1]). We say that a term t is closed whenever fv(t) = ∅. Given
a term t and a value v, we denote by t{v/x} to the term obtained by simul-
taneously substituting v for all the free occurrences of x in t, taking care to
rename bound variables when needed in order to prevent variable capture. Here-
after, terms are considered up to α-conversion. The five rewrite rules plus the
β-reduction are summarised as follows.

Distributivity rules: Zero rules: β-reduction:
(t+ u)s→ ts+ us, 0t→ 0, t+ 0→ t, (λx.t)v → t{v/x}.
t(u+ s)→ tu+ ts, t0→ 0,

1.2 The Additive Type System

Our objective is to define a type system, capturing as much as possible the
behaviour of +. Roughly speaking, we want a system where, if t has type T
and u has type R, then t + u has type T + R. So the natural typing rule for
such a construction is “Γ & t : T and Γ & u : R entails Γ & t + u : T + R”.
We also want a special type distinguishing the impossible computation 0, which
we call 0. Due to the associative and commutative nature of +, we consider an
equivalence between types taking into account its commutative nature. Hence
if T + R is a type, R + T is an equivalent type. Also the neutrality of 0 with
respect to + is captured by an equivalence between T + 0 and T . Finally, as
usual the arrow type T → R characterises the functions taking an argument in
T and returning an element of R. However, notice that the type (T + R) → S
captures a behaviour that is not appearing in our setting: there is no function
taking a non-deterministic superposition as argument. Indeed, if v1 has type T
and v2 type R, any function t distributes t(v1 + v2) as tv1 + tv2, so t needs to
be characterised by a function taking both T and R, but not simultaneously. In
order to capture such a behaviour, we introduce a unit type U (i.e. an atomic
type with respect to +), capturing elements which are not sums of elements, and
hence the arrow types have the shape U → T , where the different arguments
to which the function can be applied, are captured by polymorphic types with
variables ranging on unit types. For example, the previous term t can have type
∀X.(X → S), where if t is applied to the above discussed v1+v2 of type T +R,
it reduces to tv1 + tv2 of type S[T/X ] + S[R/X ].

To take into account the above discussion, the grammar of the Additive type
system is defined by mutual induction as follows (where type variables range
over a countable set and are denoted by X,Y, Z):

Types: T,R, S ::= U | T +R | 0
Unit types: U, V,W ::= X | U → T | ∀X.U

Contexts are denoted by Γ,Δ and are defined as sets of pairs x : U , where each
term variable appears at most once. The substitution of X by U in T is defined
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analogously to the substitution in terms, and is written T [U/X ]. We also use

the vectorial notation T [�U/ �X] for T [U1/X1] · · · [Un/Xn] if �X = X1, . . . , Xn and
�U = U1, . . . , Un. To avoid capture, we consider that Xi cannot appear free in
Uj , with j < i. Free and bound variables of a type are assumed distinct.

The above discussed equivalence relation ≡ on types, is defined as the least
congruence such that:

T +R ≡ R+ T, T + (R+ S) ≡ (T +R) + S, T + 0 ≡ T.

Within this equivalence, it is consistent to use the following notation:

Notation:
∑0
i=1 T = 0 ;

∑α
i=1 Ti =

∑α−1
i=1 Ti + Tα if α ≥ 1.

Remark 1. Every type is equivalent to a sum of unit types.

Returning to the previous example, t(v1 + v2) reduces to tv1 + tv2 and its
type have to be an arrow with a polymorphic unit type at the left. Such a type
must allow to be converted into both the type of v1 and the type of v2. Hence,
consider V1 and V2 to be the respective types of v1 and v2, we need t to be of
type ∀X.(U → S) for some S and where U [W1/X ] = V1 and U [W2/X ] = V2

for some unit types W1 and W2. That is, we need that if t has such a type,
then v1 has type U [W1/X ] and v2 type U [W2/X ]. We can express this with the
following rule

Γ & t : ∀X.(U → S) Γ & v1 + v2 : U [W1/X ] + U [W2/X ]

Γ & t(v1 + v2) : S[W1/X ] + S[W2/X ]

In the same way, for the right distributivity, if t and u are two functions of types
U → T and V → R respectively, then the application (t + u)v needs U and V
to be the type of v. Therefore, the polymorphism plays a role again, and if t has
type ∀X.(U → T ) and u has type ∀X.(V → R) such that U [W1/X ] = V [W2/X ]
and also equal to the type of v, then (t+u)v has a type. It can be expressed by

Γ & t+ u : ∀X.(U → S) + ∀X.(V → R) Γ & v : U [W1/X ] = V [W2/X ]

Γ & (t+ u)v : S[W1/X ] +R[W2/X ]

Notice that when combining both cases, for example in (t+u)(v1+v2), we need
the type of t to be an arrow accepting both the type of v1 and the type of v2 as
arguments, and the same happens with the type of u. So, the combined rule is

Γ & t+ u : ∀X.(U → S) + ∀X.(U → R) Γ & v1 + v2 : U [V/X ] + U [W/X ]

Γ & (t+ u)(v1 + v2) : S[V/X ] +R[W/X ]

The arrow elimination has become also a forall elimination. For the general case
however it is not enough with the previous rule. We must consider bigger sums,
which are not typable with such a rule, as well as arrows with more than one ∀,
e.g. ∀X.∀Y.(U → R), where U [V/X ][W/Y ] has the correct type. Since it is under
a sum, and the elimination must be done simultaneously in all the members of
the sum, it is not possible with a traditional forall elimination.
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The generalised arrow elimination as well as the rest of the typing rules are
summarised in Fig. 1. Rules for the universal quantifier, axiom and introduction
of arrow are the usual ones. As discussed before, any sum of typable terms can
be typed using rule +I . Notice that there is no elimination rule for + since the
actual non-deterministic choice step (which eliminates one branch) is not consid-
ered here. For similar calculi where the elimination is present in the operational
semantics, see e.g. [2, 17]. Finally, a rule assigns equivalent types to the same
terms.

ax
Γ, x : U � x : U

ax0
Γ � 0 : 0

Γ � t : T T ≡ R
≡

Γ � t : R

Γ, x : U � t : T
→I

Γ � λx.t : U → T

Γ � t :
α∑

i=1

∀ �X.(U → Ti) Γ � u :

β∑
j=1

U [�Vj/ �X ]

→E

Γ � tu :

α∑
i=1

β∑
j=1

Ti[�Vj/ �X ]

Γ � t : T Γ � u : R
+I

Γ � t+ u : T +R

Γ � t : ∀X.U
∀E

Γ � t : U [V/X]

Γ � t : U X /∈ FV (Γ )
∀I

Γ � t : ∀X.U

Fig. 1. Typing rules of Additive

Example 2. Let V1 = U [W1/X ], V2 = U [W2/X ], Γ & v1 : V1, Γ & v2 : V2,
Γ & λx.t : ∀X.(U → T ) and Γ & λy.u : ∀X.(U → R). Then

Γ & λx.t + λy.u : ∀X.(U → T ) + ∀X.(U → R) Γ & v1 + v2 : V1 + V2 →E
Γ & (λx.t + λy.u)(v1 + v2) : T [W1/X ] + T [W2/X ] +R[W1/X ] +R[W2/X ]

Notice that this term reduces to (λx.t)v1︸ ︷︷ ︸
T [W1/X]

+(λx.t)v2︸ ︷︷ ︸
T [W2/X]

+(λy.u)v1︸ ︷︷ ︸
R[W1/X]

+(λy.u)v2︸ ︷︷ ︸
R[W2/X]

.

Example 3. Let Γ & v1 : U and Γ & v2 : V . Then the term (λx.x)(v1 + v2),
which reduces to (λx.x)v1 + (λx.x)v2, can be typed in the following way:

Γ & λx.x : ∀X.X → X Γ & v1 + v2 : U + V
→E

Γ & (λx.x)(v1 + v2) : U + V

Notice that without the simultaneous forall/arrow elimination, it is not possible
to type such a term.
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2 Main Properties

The Additive type system is consistent, in the sense that typing is preserved
by reduction (Theorem 4). Moreover, only terms with no infinite reduction are
typable (Theorem 11).

The preservation of types by reduction, or subject reduction property, is proved
by adapting the proof of Barendregt [18, Section 4.2] for the System F : we first
define a binary relation � on types, and then prove the usual generation and
substitution lemmas (cf. Appendix A for more details).

Theorem 4 (Subject Reduction). For any terms t, t′, any context Γ and
any type T , if t→∗ t′ then Γ & t : T ⇒ Γ & t′ :T .

We also prove the strong normalisation property (i.e. no typable term has an in-
finite reduction) by adapting the standard method of reducibility candidates [19,
Chap. 14] to the Additive type system. The idea is to interpret types by re-
ducibility candidates, which are sets of strongly normalising terms. Then we
show that as soon as a term has a type, it is in its interpretation, and thereby
is strongly normalising.

We define here candidates as sets of closed terms. The set of all the closed
terms is writen Λ0, and SN0 denotes the set of strongly normalising closed terms.
In the following, we write Red(t) for the set of reducts in one step of a term t
(with any of the six rules given in Sec. 1.1), and Red∗(t) for the set of its reducts
in any number of steps (including itself). Both notations are naturally extended
to sets of terms. A term is a pseudo value when it is an abstraction or a sum
of them: b,b′ ::= λx.t | b+ b′. A term that is not a pseudo value is said to be
neutral, and we denote by N the set of closed neutral terms.

Definition 5. A set S ⊆ Λ0 is a reducibility candidate if it satisfies the three
following conditions: (CR1) Strong normalisation: S ⊆ SN0. (CR2) Stability
under reduction: t ∈ S ⇒ Red(t) ⊆ S. (CR3) Stability under neutral expansion:
If t ∈ N , then Red(t) ⊆ S implies t ∈ S.

We denote the reducibility candidates by A,B, and the set of all the reducibility
candidates by RC. Note that SN0 is in RC. In addition, the term 0 is a neutral
term with no reduct, so it is in every reducibility candidate by (CR3). Hence
every reducibility candidate is non-empty.

Let S be the closure of a set of terms S by (CR3). It can be defined inductively
as follows: If t ∈ S, then t ∈ S, and if t ∈ N and Red(t) ⊆ S, then t ∈ S.

We can actually use this closure operator to define reducibility candidates:

Lemma 6. If S ⊆ SN0, then Red∗(S) ∈ RC.

In order to interpret types with reducibility candidates, we define the operators
‘arrow’, ‘plus’ and ‘intersection’ in RC: Let A,B ∈ RC. We define: A → B = {t ∈
Λ0/ ∀u ∈ A, tu ∈ B} and A∓B = (A+ B) ∪A ∪ B where A+ B = {t+u / t ∈
A and u ∈ B}.
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Proposition 7. Let A,B ∈ RC. Then both A → B and A∓ B are reducibility
candidates. Moreover, if (Ai)i∈I is a family of RC, then

⋂
i∈I Ai is a reducibility

candidate.

The operator + is commutative and associative on terms, and hence so is the
operator + defined on sets of terms. Therefore, ∓ is commutative and associative
on reducibility candidates. In addition, ∅ (a reducibility candidate according to
Lemma 6) is neutral with respect to ∓. Lemma 8 formalises these properties.

Lemma 8. Let A,B, C ∈ RC. Then A∓B = B∓A, (A∓B)∓C = A∓ (B∓ C)
and A∓ ∅ = A.

Type variables are interpreted using valuations, i.e. partial functions from type
variables to reducibility candidates: ρ := ∅ | ρ,X -→ A. The interpretation �T �ρ
of a type T in a valuation ρ (that is defined for each free type variable of T ) is
given by

�X�ρ = ρ(X) �0�ρ = ∅
�U → T �ρ = �U�ρ → �T �ρ �T +R�ρ = �T �ρ ∓ �R�ρ
�∀X.T �ρ =

⋂
A∈RC �T �ρ,X �→A

Lemma 6 and Proposition 7 ensure that each type is interpreted by a reducibility
candidate. Furthermore, Lemma 8 entails that this interpretation is well defined
with respect to the type equivalences.

Lemma 9. For any types T, T ′, and any valuation ρ, if T ≡T ′ then �T �ρ=�T ′�ρ.

Adequacy Lemma. We show that this interpretation complies with typing judge-
ments. Reducibility candidates deal with closed terms, whereas proving the ade-
quacy lemma by induction requires the use of open terms with some assumptions
on their free variables (which are ensured by the context). Therefore we use sub-
stitutions σ to close terms:

σ := ∅ | x -→ u;σ t∅ = t , tx �→u;σ = t{u/x}σ.

Given a context Γ , we say that a substitution σ satisfies Γ for the valuation ρ
(notation: σ ∈ �Γ �ρ) when (x : T ) ∈ Γ implies σ(x) ∈ �T �ρ. A typing judgement
Γ & t :T is said to be valid (notation Γ 	 t :T ) if for every valuation ρ, and for
every substitution σ satisfying Γ for ρ, we have tσ ∈ �T �ρ.

Proposition 10 (Adequacy). Every derivable typing judgement is valid: for
each Γ , each term t and each type T , we have that Γ & t :T implies Γ 	 t : T .

This immediately provides the strong normalisation result:

Theorem 11 (Strong normalisation). Every typable term in Additive is
strongly normalising.

Proof. If a term t is typable by a type T , then the adequacy lemma ensures
that t ∈ �T �∅. As a reducibility candidate, �T �∅ is included in SN0, and thus t
is strongly normalising. #�
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3 Logical Interpretation

In this section, we interpret the Additive type system into System F with pairs
(System FP for short). Sum types are interpreted with Cartesian products. Since
this product is neither associative nor commutative in System FP , we first con-
sider Additive without type equivalences. This involves a slightly modified but
equivalent type system, that we call Addstr . We then translate every term of
Addstr into a term of System FP . Finally, we show that our translation is correct
with respect to typing in Additive (Theorem 17) and reduction (Theorem 18).

Structured Additive Type System. The system Addstr is defined with the same
grammar of types as Additive, and the same rules ax, ax0, →I , +I , ∀I and ∀E .
There is no type equivalence, and thereby no commutativity nor associativity
for sums (also 0 is not neutral for sums). Hence rule →E , has to be precised. To
specify what an n-ary sum is, we introduce the structure of trees for types.

Example 12. In Addstr , the type (U1 + (0 + U2)) + U3 is no longer
equivalent to U1 + (U2 +U3). We can represent the first one by the
labelled tree on the right. U1

0 U2

U3

�

Z �

�

To formalise Addstr , we use the standard representation of bi-
nary trees, with some special leaves � (which can be labelled by
a unit type): T , T ′ := � | Z | S(T , T ′) .
Each leaf is denoted by the finite word on the alphabet {l, r} (for
left and right) representing the path from the root of the tree.
For instance, the type (U1 + (0+U2)) +U3 is obtained using the
labelling {ll -→ U1, lrr -→ U2, r -→ U3}, with the tree of the left.

We say that a labelling function s (formally, a partial function from {l, r}∗
to unit types) labels a tree T when each of its leaves � is in the domain of s.
In this case, we write T [s] the type of Addstr obtained by labelling T with s.
Notice that conversely, for any type T , there exists a unique tree TT and a
labelling function sT such that T = TT [sT ]. The tree composition T ◦T ′ consists
in “branching” T ′ to each leaf � of T (cf. Example 25 in Appendix B.1). By
extending the definition of labelling functions to functions from leaves to types,
we have T [w -→ T ′[s]] = T ◦T ′[wv -→ s(v)], where w denotes a �-leaf of T , and v
a �-leaf of T ′. Then the rule for the arrow elimination in Addstr is:

Γ & t : T [w -→ ∀ �X.(U→ Tw)] Γ & u : T ′[v -→ U [�Vv/ �X]]
→E′

Γ & tu : T ◦ T ′[wv -→ Tw[�Vv/ �X]]

where wv is a word whose prefix w represents a leaf of T (cf. Example 26).

Proposition 13 (Additive equivalent to Addstr). Γ & t : T is derivable in
Additive if and only if there is a type T ′ ≡ T such that Γ & t : T ′ is derivable
in Addstr.
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Translation into the System F with Pairs. We recall the syntax of System FP [11]:

Terms : t, u := x | λx.t | tu | � | 〈t, u〉 | πl(t) | πr(t)
Types : A,B := X | A⇒ B | ∀X.A | 1 | A×B

(reduction and typing rules are well known, cf. Fig. 2 on Appendix B).
In the same way than for the types, we define a term of System FP with a tree

(whose binary nodes S are seen as pairs) and a partial function τ from {l, r}∗
to FP -terms. We write πα1...αn(t) for πα1(πα2 (. . . παn(t))) (with αi ∈ {l, r}).
Remark that if t = T [τ ] and w is a �-leaf of T , then τ(w) is a subterm of t that can
be obtained by reducing πw(t), where w is the mirror word of w (cf. Example 14).

Example 14 (Representation of FP -terms with trees).
Let t = 〈〈u1, 〈u2, u3〉〉, �〉. Then t = T [ll -→ u1, lrl -→ u2, lrr -→ u3]
(where T is the tree on the right) and u3 reduces from π221(t).

�

� �

Z

Every type T is interpreted by a type |T | of System FP .

|X | = X, |0| = 1, |∀X.U | = ∀X.|U |,
|U → T | = |U | ⇒ |T |, |T +R| = |T | × |R|.

Then any term t typable with a derivation D is interpreted by a FP -term [t]D:

If D =
Γ, x : T & x : T

ax, then [x]D = x.

If D =
Γ & 0 : 0

ax0, then [0]D = �.

If D =
D1 D2

Γ & t+ u : T +R
+I , then [t+ u]D = 〈[t]D1 , [u]D2〉.

If D =
D′

Γ & λx.t : U → T
→I , then [λx.t]D = λx.[t]D′ .

If D =
D1 D2

Γ & tu : T ◦ T ′[wv -→ Tw[�Vv/ �X]]
→E′ ,

then [tu]D = T ◦ T ′[wv -→ πw([t]D1)πv([u]D2)].

If D =
D′

Γ & t : ∀X.U
∀I , then [t]D = [t]D′ .

If D =
D′

Γ & t : U [V/X ]
∀E , then [t]D = [t]D′ .

This interpretation is in fact a direct translation of sums by pairs at each step
of the derivation, except for the application: informally, all the distributivity
redexes are reduced before the translation of a term tu, which requires to ‘know’
the sum structure of t and u. This structure is actually given by their type, and
that is why we can only interpret typed terms.

Example 15. If t has type (U → T1) + (U → T2) and u has type (U + 0) +
U , then we see them as terms of shape t1 + t2 and (u1 + 0) + u2 respec-
tively (the reducibility model of section 2 ensures that they actually reduce to
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terms of this shape). Indeed, the translation of tu reduces to the translation of(
((t1u1) + 0) + t1u2

)
+
(
((t2u1) + 0) + t2u2

)
:

[tu]D = 〈 〈 〈t1u1, �〉 , t1u2〉 , 〈 〈t2u1, �〉 , t2u2〉〉,
where t1 = π11([t]D1), t2 = π21([t]D1), u1 = π1([u]D2), and u2 = π12([u]D2)

Theorem 16 (Correction with respect to typing). If a judgement Γ & t :
T is derivable in Addstr with derivation D, then |Γ | &F [t]D : |T |.

The technical details for its proof are given in Appendix B.2. In Appendix B.3 it
is given a theorem showing that the translation is not trivial since it is reversible.

To return back to Additive, observe that if T ≡ T ′, their translations are
equivalent in System FP (in the sense that there exists two terms establishing
an isomorphism between them), and conclude with Proposition 13.

Theorem 17. If a judgement Γ & t : T is derivable in Additive, then there is
a term t′ of System FP such that |Γ | &F t′ : |T |

To some extent, the translation from Addstr to System FP is also correct with
respect to reduction (technical details for its proof in Appendix B.4).

Theorem 18 (Correction with respect to reduction). Let Γ & t : T be
derivable (by D) in Addstr, and t → u. If the reduction is not due to rule
t+ 0→ t, then there is D’ deriving Γ & u : T , and [t]D →+ [u]D′ .

Notice that the associativity and commutativity of types have their analogous in
the term equivalences. However, the equivalence T+0 ≡ T has its analogous with
a reduction rule, t+0→ t. Since Addstr has no equivalences, this reduction rule
is not correct in the translation. However, if Γ & t+ 0 : T + 0 is derivable by D
in Addstr , then there is some D′ = Γ & t : T such that ε|T+0|,|T |[t+ 0]D →∗

[t]D′ , where ε|T+0|,|T | and ε|T |,|T+0| are the terms establishing the isomorphism

between |T | and |T + 0| in System FP .

4 Conclusion

In this paper we considered an extension to call-by-value lambda calculus with
a non-deterministic (or algebraic) operator +, and we mimiced its behaviour at
the level of types. As we discussed in the introduction, this operator behaves
like the algebraic sum with linear functions: f(x + y) = f(x) + f(y). However,
our system is simulated by System F with pairs, which corresponds to the non
linear fragment of imell.

This puts in the foreground the deep difference between the linearity in the
algebraic sense (the one of Linear Logic), and the linearity of Additive (which
is the same, for instance, as Lineal [5]). In the first case, a function is linear if it
does not duplicate its argument x (that is, x2 –or xx– will not appear during the
computation), whereas in Additive a linear behaviour is achieved by banning
sum terms substitutions: while computing (λx.t)(u + s), the argument (u + s)
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will never be duplicated even if t is not linear in x. We can only duplicate val-
ues (that intuitively correspond to constants in the algebraic setting, so their
duplication does not break linearity). Actually, in Additive, the application is
always distributed over the sum before performing the β-reduction, and these
both reductions do not interact. This is what our translation shows: all distribu-
tivity rules are simulated during the translation (of the application), and then
the β-reduction is simulated in System F , without paying any attention to the
linearity.

As mentioned in the introduction, Lineal was meant for quantum computing
and forcing the left distributivity is useful to prevent cloning. Moreover, it makes
perfectly sense to consider any function as linear in this setting, since every
quantum operator is given by a matrix, and thereby is linear. A cbv reduction
for this kind of calculus is thus entirely appropriate.

Acknowledgements. We would like to thank Olivier Laurent for the useful
advice he gave us about the interpretation we present in this paper, as well as
Pablo Arrighi for the fruitful discussions about Lineal and its linearity.
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A Formalisation of the Proof of Subject Reduction

The preservation of types by reduction, or subject reduction property, is proved
by adapting the proof of Barendregt [18, Section 4.2] for the Sytem F : we first
define a binary relation � on types, and then we give the usual generation and
substitution lemmas. Finally, we give a needed property (Lemma 24) for the
typing of 0 and values.

Definition 19 (Relation � on types)

– Given two types U1 and U2, we write U1 ≺ U2 if either
• U2 ≡ ∀X.U1 or
• U1 ≡ ∀X.U ′ and U2 ≡ U ′[T/X ] for some type T .

– We write � the reflexive (with respect to ≡) transitive closure of ≺.

The following property says that if two arrow types are related by �, then they
are equivalent up to substitutions.

Lemma 20 (Arrow comparison). For any unit types U , U ′ and types T , T ′,
if U ′ → T ′ � U → T , then there exist �V , �X such that U → T ≡ (U ′ → T )[�V / �X].

As a pruned version of a subtyping system, we can prove the subsumption rule:

Lemma 21 (�-subsumption). For any context Γ , any term t and any unit
types U , U ′ such that U � U ′ and no free type variable in U occurs in Γ , if
Γ & t :U then Γ & t :U ′.

Generation lemmas allows to study the conclusion of a derivation so as to un-
derstand where it may come from, thereby decomposing the term in its basic
constituents.

http://diaz-caro.info/ndti.pdf
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Lemma 22 (Generation lemmas). For any context Γ , any terms t,u, and
any type T ,

1. Γ & tu : T implies Γ & t :
∑n
i=1 ∀ �X.(U → Ti) and Γ & u :

∑m
j=1 U [�Vj/ �X] for

some integers n, m, some types T1, . . . , Tn, and some unit types U, �V1, . . . , �Vm
such that

∑n
i=1

∑m
j=1 Ti[

�Vj/ �X] � T .
2. Γ & λx.t : T implies Γ, x :U & t :R for some types U ,R such that U → R � T .
3. Γ & t + u :T implies Γ & t :R and Γ & u :S with for some types R, S such

that R+ S ≡ T .

The following lemma is standard in proofs of subject reduction, and can be found
for example in [18, Prop. 4.1.19] and [20, Props. 8.2 and 8.5]. It ensures than by
substituting type variables for types or term variables for terms in an adequate
manner, the type derived is still valid.

Lemma 23 (Substitution). For any Γ , T , U , v and t,

1. Γ & t : T implies Γ [U/X ] & t : T [U/X ].
2. If Γ, x :U & t :T , and Γ & v :U , then Γ & t{v/x} :T .

Finally we need a property showing that 0 is only typed by 0 and its equivalent
types, and values are always typed by unit types or equivalent.

Lemma 24 (Typing 0 and values)

1. For any Γ , if Γ & 0 :T then T ≡ 0.
2. For any value v (i.e. a variable or an abstraction), if Γ & v : T then T is

necessarily equivalent to a unit type.

Using all the previous lemmas, the proof of subject reduction is made by induc-
tion on typing derivation.

B Formalisation of the Translation into System F

B.1 Some Examples

Example 25 (Tree composition).
Let T =

� Z

�

and T ’=

� Z

. Then T ◦ T ′=

� Z

Z � Z

Example 26 (Arrow elimination rule in Addstr).
The following derivation is correct:

Γ & t :
(
∀ �X.(U → T1) + ∀ �X.(U → T2)

)
+ 0 Γ & u : U [�V / �X] + 0

Γ & tu :
(
(T1[�V / �X] + 0) + (T2[�V / �X] + 0)

)
+ 0

→E′
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Graphically, we can represent this rule as follows:
if t has type

∀ �X.(U→T1)∀ �X.(U→T2)

0

and u has type

U [�V / �X] 0

, then tu has type

T1[�V / �X] 0 T2[�V / �X] 0

0

B.2 Soundness with Respect to Typing

We need first some lemmas and definitions. It can be immediately checked that
the tree structure of a type is preserved by translation, as expressed in the
following lemma.

Lemma 27. If T = T [w -→ Uw] is a type of Addstr, then |T | = T [w -→ |Uw|].

Definition 28. We call F-labelling a function defined from leaves to types of
System FP . Given φ, an F-labelling, and T , a tree, the type T [φ] of System FP
is defined as expected:

�[φ] = φ(ε), Z[φ] = 1, S(T , T ′)[φ] = T [w -→ φ(lw)] × T ′[w -→ φ(rw)]

There is a trivial relation between the term-labelling of a tree, and its F-labelling,
that we give in the following lemma.

Reduction rules :
(λx.t)u→ t{u/x} ; πi(〈t1, t2〉)→ ti

λx.tx→ t (if x /∈ FV (t) ) ; 〈πl(p), πr(p)〉 → p

Typing rules :

Δ,x : A �F x : A
Ax ;

Δ �F � : 1
1 ;

Δ,x : A �F t : B

Δ �F λx.t : A⇒ B
⇒I

Δ �F t : A⇒ B Δ �F u : A

Δ �F tu : B
⇒E ;

Δ �F t : A Δ �F u : B

Δ �F 〈t, u〉 : A×B
×I

Δ �F t : A×B

Δ �F πl(t) : A
×El ;

Δ �F t : A×B

Δ �F πr(t) : B
×Er

Δ �F t : A X /∈ FV (Δ)

Δ �F t : ∀X.A
∀I ;

Δ �F t : ∀X.A

Δ �F t : A[B/X]
∀E

Fig. 2. System F with pairs
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Lemma 29. Let T be a tree.

1. If Γ &F tw : Aw for each �-leave w, then Γ &F T [w -→ tw] : T [w -→ Aw].
2. If Γ &F t : T [w -→ Aw], then for each �-leaf of T , Γ &F πw(t) : Aw.

Theorem 16 (Correction with respect to typing). If a judgement Γ & t : T
is derivable in Addstr with derivation D, then |Γ | &F [t]D : |T |.

Proof. We prove this proposition by induction on the derivation D. If it ends
with rule ax or ax0, we use rule Ax or 1 respectively in System FP . If the last
rule of D is +I or →I we can conclude by induction. If the last rule is ∀I , we
just need to note that X /∈ FV (Γ ) implies X /∈ FV (|Γ |). If it is the rule ∀E ,
we just have to note that |U [V/X ] | = |U | [|V | /X ] to conclude with induction
hypothesis. The only interesting case is when D ends with rule →E′ :

D =
Γ & t : T [w -→ ∀ �X.(U → Tw)] Γ & u : T ′[v -→ U [�Vv/ �X]]

Γ & tu : T ◦ T ′[wv -→ Tw[�Vv/ �X]]

By induction hypothesis, |Γ | &F [t]D1 : |T [w -→ ∀ �X.(U → Tw)]| and |Γ | &F
[u]D2 : |T ′[v -→ U [�Vv/ �X]]|. By Lemma 27, it means that |Γ | &F [t]D1 : T [w -→
∀ �X.|U | ⇒ |Tw|] and |Γ | &F [u]D2 : T ′[v -→ |U |[ �|Vv|/ �X]]. By Lemma 29.2, for
every �-leaf w of T , and every �-leaf v of T ’, we can derive

|Γ | &F πw([t]D1) : ∀ �X.|U | ⇒ |Tw|
|Γ | &F πw([t]D1) : |U |[ �|Vv|/ �X]⇒ |Tw|[ �|Vv|/ �X] |Γ | &F πv([u]D2) : |U |[ �|Vv|/ �X]

|Γ | &F πw([t]D1) πv([u]D2) : |Tw|[ �|Vv|/ �X]

Since [tu]D = T ◦ T ′[wv -→ πw([t]D1) πv([u]D2)], by Lemma 29(1) we can

conclude |Γ | &F [tu]D : T ◦ T ′[wv -→ |Tw|[ �|Vv|/ �X]], and then conclude using
Lemma 27 again. #�

B.3 Partial Translation from System FP to Addstr

To show that the translation from Addstr to System FP is meaningful and non
trivial, we define a partial encoding from System FP to Addstr , and prove that
it is the inverse of the previous translation. We define inductively the partial
function (|·|) from the types of System FP to those of Addstr , as follows.

(|X |) = X and (|1|) = 0 ;

if (|A|), (|A′|) and (|B|) are defined, then

(|∀X.A|) = ∀X.(|A|) and (|A×B|) = (|A|) + (|B|) ;

and if also (|A′|) ∈ U, then (|A′ ⇒ B|) = (|A′|)→ (|B|).
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This translation is extended to contexts in the usual way. Similarly, we define a
partial function from terms of System FP to those of Addstr :

〈|x|〉 = x ; 〈|λx.t|〉 = λx.〈|t|〉 ; 〈|tu|〉 = 〈|t|〉〈|u|〉 ; 〈|�|〉 = 0 ;

〈|T [wv -→ πw(t)πv(u)]|〉 = 〈|t|〉〈|u|〉 if T �= Z and T �= � ;

〈|〈t1, t2〉|〉 = 〈|t1|〉+ 〈|t2|〉 if 〈t1, t2〉 �= T [wv -→ πw(u)πv(u
′)] for any T , u, u′

This defines the inverse of [·]D, as specified by the following theorem.

Theorem 30. If Γ & t : T is derivable in Addstr with derivation D, then
(||Γ ||) & 〈|[t]D |〉 : (||T ||) is syntactically the same sequent.

B.4 Soundness with Respect to Reduction

First we need a substitution lemma for the translation of terms.

Lemma 31. Let D1 = Γ, x :U & t : T and D2 = Γ & b :U , then ∃D3 such that
[t]D1{[b]D2/x} = [t{b/x}]D3 .

Theorem 18 (Correction with respect to reduction). Let Γ & t : T
be derivable (by D) in Addstr, and t → u. If the reduction is not due to rule
t+ 0→ t, then there is D’ deriving Γ & u : T , and [t]D →+ [u]D′ .

Proof. The proof is long but straightforward using the previous lemmas. It
follows by induction over D. #�
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Abstract. Domain theory has been used with great success in providing a se-
mantic framework for Turing computability, over both discrete and continuous
spaces. On the other hand, classical approximation theory provides a rich set of
tools for computations over real functions with (mainly) polynomial and rational
function approximations.

We present a semantic model for computations over real functions based on
polynomial enclosures. As an important case study, we analyse the convergence
and complexity of Picard’s method of initial value problem solving in our frame-
work. We obtain a geometric rate of convergence over Lipschitz fields and then,
by using Chebyshev truncations, we modify Picard’s algorithm into one which
runs in polynomial-time over a set of polynomial-space representable fields, thus
achieving a reduction in complexity which would be impossible in the step-
function based domain models.

Keywords: computable analysis, computational complexity, initial value prob-
lem, Picard’s method, approximation theory, Chebyshev series.

1 Introduction

In classical mathematical analysis, for the most part one abstracts away from effective
representations of objects. The constructive view of analysis [6] brings in a distinction
between finitely representable objects and those that can only be approximated with
finitely representable ones. In computable analysis [25] one works at an even lower
level of abstraction, where claims of existence are required to be proven via procedures
that are implementable on a Turing machine.

For instance, whereas in classical analysis it is true that any initial value problem
(IVP) with a continuous field has a solution, in computable analysis proper this claim
is only valid when a solution can be worked out using some algorithm which generates
approximations to the solution to within any desired accuracy.

As such, in partial orders one finds a natural setting in which essential concepts such
as approximation and convergence can be formulated [13]. As a special subclass of
partial orders, domains [2] have been studied extensively as a semantic model of com-
putation. Cartesian closed categories of domains with an interval domain object [11]
provide a denotational semantic framework for computations over continuous spaces.
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There is a canonical way of constructing function spaces in the category of domains
via step functions [2, Chapter 4]. For real function spaces this approach is essentially
equivalent to approximating functions via piece-wise constant enclosures. This is theo-
retically sufficient as with this construction many of the concepts from classical analysis
can be reformulated in a domain theoretic setting [8,9].

On the other hand, there is a long tradition in approximation theory [3,21] with a
very rich literature, in which computations over real functions are reduced to those over
their relatively simpler polynomial (or even rational function) approximations. By the
classic theorems of Jackson [15] and Bernstein [4] there is a tight link between the
analytic properties of a function and how it can be approximated with polynomials.

At a practical level, almost all widely used maths software libraries provide some
kind of functionality based on approximation theory. In fact there are some that have
been written exclusively based on function approximations.1 These libraries are mainly
geared towards fast numerical computations based on the machine’s floating-point unit.
This means that a rigorous analysis of (floating-point) inaccuracies or the theoretical
complexity of computations beyond the reach of the machine’s resources is typically of
a secondary concern.

Our aim is to present a semantic model along the lines of domain based ones, in
which both the convergence and the complexity of computations can be studied. We will
make sure that our framework is complete, i. e. all results can be approximated to within
any desired accuracy. We pick IVP solving as an important case to study, and analyse
the convergence and complexity of Picard’s method as adapted to our framework.

2 Polynomial Enclosures

In what follows,N+ denotes the set of positive natural numbers and C[a, b]n denotes the
set of continuous functions from the n-dimensional cube [a, b]n to R, where a, b ∈ R,
n ∈ N+ and a ≤ b.

For n ∈ N+ and f , g ∈ C[a, b]n we define the function enclosure [ f , g] by

[ f , g] � {h ∈ C[a, b]n | ∀x̄ ∈ [a, b]n : f (x̄) ≤ h(x̄) ≤ g(x̄)}

If ∃x̄0 ∈ [a, b]n : g(x̄0) < f (x̄0) then [ f , g] will be empty. The functions f and g are
called the lower and the upper boundaries of the enclosure [ f , g], respectively. For each
point t ∈ [a, b]n, the (local) width of the enclosure [ f , g] at t is defined as w[ f ,g](t) �
g(t) − f (t). The (global) width of the enclosure is defined as w([ f , g]) � max{w[ f ,g](t) |
t ∈ [a, b]n}. Note that w([ f , g]) is well defined as [a, b]n is compact and both f and g are
assumed to be continuous.

Definition 1 (Γ(h): graph of a function enclosure). Let h = [ f , g] be an enclosure
where f , g ∈ C[a, b]n. By the graph of h we mean the set of all points in [a, b]n ×R lying
between the graphs of its lower and upper boundaries, i. e.

Γ(h) � {(x̄, r) ∈ [a, b]n × R | f (x̄) ≤ r ≤ g(x̄)}
1 Such as the free and open source MATLAB library chebfun available from
http://www2.maths.ox.ac.uk/chebfun

http://www2.maths.ox.ac.uk/chebfun
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Definition 2 (<P, R>: centered rational polynomial enclosure). Let n ∈ N+ and as-
sume that P and R are polynomials with rational coefficients in n variables X1, . . . , Xn,
i. e. P,R ∈ Q[X1, . . . , Xn]. By the centered rational polynomial enclosure <P,R> we
mean the non-empty2 function enclosure [ f , g] in which f , g ∈ C[a, b]n and ∀x̄ ∈
[a, b]n : g(x̄) = P(x̄) + R(x̄) ∧ f (x̄) = P(x̄) − R(x̄). We will refer to P and R as the
center and the radius of the enclosure <P,R>, respectively.

As we have imposed the non-emptiness condition, then ∀x̄ ∈ [a, b]n : R(x̄) ≥ 0. The
purpose of restricting the coefficients of P and R to rational numbers has been to ensure
that all of our enclosures are finitely representable.

Note that the notations [ f , g] and <P,R> for function enclosures are indeed inter-
changeable as we have [ f , g] = <(g + f )/2, (g − f )/2>. In this paper there will be no
decoupling of the boundaries of the enclosures in the sense that we will always add the
error estimates to both the upper and the lower boundaries of an enclosure. Thus, we
will opt for using the centered-enclosure notation as in Definition 2.

Remark 1. Throughout this paper, by a polynomial enclosure we will always mean a
centered rational one.

For each n ∈ N+ we denote the set of all non-empty enclosures with boundaries in
C[a, b]n by FE[a, b]n, i. e. FE[a, b]n � {[ f , g] | f , g ∈ C[a, b]n,∀t ∈ [a, b]n : f (t) ≤ g(t)}.
We define the order � over this set as follows: ∀h1, h2 ∈ FE[a, b]n : h1 � h2 ⇔ h2 ⊆ h1.
The pair (FE[a, b]n,�) is a partial order which we simply denote by FE[a, b]n. The pair
(PE[a, b]n,�) in which PE[a, b]n is the set of polynomial enclosures also forms a poset
under the order inherited from FE[a, b]n, which we simply write as PE[a, b]n.

A sequence 〈[ fi, gi]〉i∈N of enclosures is said to converge to [ f , g] if ∀k ∈ N :
[ fk, gk] � [ f , g], f = limi→∞ fi and g = limi→∞ gi, where the limits are taken with re-
spect to the supremum norm, which is defined for each f ∈ C[a, b]n as ‖ f ‖ = sup{ f (x̄) |
x̄ ∈ [a, b]n}. An element h ∈ FE[a, b]n is said to be maximal if w(h) = 0, in which case
h = [ f , f ] for some f ∈ C[a, b]n. For simplicity, we will identify the maximal ele-
ment [ f , f ] with f . Using this convention one may talk about sequences of function
enclosures in FE[a, b]n that converge to functions in C[a, b]n.

Note that neither FE[a, b]n nor PE[a, b]n is complete under the notion of convergence
just defined. For instance, consider the sequence hi = [ fi, gi] of enclosures in PE[0, 1]
defined as ∀i ∈ N, x ∈ [0, 1] : fi(x) = 0, gi(x) = xi. This sequence forms a chain as
∀i ∈ N : hi � hi+1, but ‘the limit’ of 〈gi〉i∈N is the non-continuous function γ : [0, 1] → R
which satisfies γ(x) = 0 if x ∈ [0, 1) and γ(1) = 1.

3 Solving Initial Value Problems Using an Oracle Machine

Let m ∈ N+ and consider the initial value problem (IVP)
⎧⎪⎪⎨⎪⎪⎩

y′(t) = F(t, y(t))

y(t0) = y0
(1)

2 It will be interesting to see (in our future work) what more we may achieve by removing the
non-emptiness condition.



Polynomial-Time IVP Solving with Polynomial Enclosures 235

in which F : Ω→ Rm will be referred to as the field of the IVP, and for which we seek
a solution y : [t0, a] → Rm for a suitable a ≥ t0. We assume that Ω ⊆ Rm+1 is open
and includes the initial point, i. e. (t0, y0) ∈ Ω. Peano’s existence theorem states that the
mere continuity of the field F guarantees the existence of a solution [22]. Furthermore,
if F is Lipschitz continuous in its second argument, i. e.

∃L ∈ R : ∀t ∈ R, r1, r2 ∈ Rm : ‖F(t, r1) − F(t, r2)‖sup ≤ L‖r1 − r2‖sup

then by Picard-Lindelöf theorem the IVP has a unique solution. The Lipschitz condi-
tion is sufficient but not necessary for the uniqueness [22]. A necessary and sufficient
condition for the uniqueness of the solution was provided by Hiroshi Okamura, a gen-
eralisation of which can be found in [26].

If we integrate both sides of the differential equation in (1) and incorporate the initial
condition, we obtain the following integral equation:

y(x) = y0 +

∫ x

t0

F(t, y(t)) dt (2)

Assume that for some suitable a ≥ t0 and b > 0 satisfying [t0, a] × [−b, b]n ⊆ Ω the
operator PicF(g) = λx. y0 +

∫ x

t0
F(t, g(t)) dt is an endofunction over [t0, a] × [−b, b]n.

Then any fixed-point of PicF—if any does indeed exist—would be a solution to both
the integral equation (2) and the IVP (1). In fact, Lipschitz continuity guarantees that
the conditions for the Banach fixed-point theorem are satisfied,3 so all one needs to do
is to apply PicF repeatedly to obtain better approximations of the solution, a process
famously known as Picard’s method of IVP solving.

Assume that the field F and the initial point (t0, y0) are computable. Then under the
Lipschitz assumption Picard’s method yields a computable solution, whereas without
the Lipschitz assumption all of the solutions could turn out to be non-computable [1].

Remark 2. Throughout this paper, the only notion of computability over real numbers
that we will consider will be that of the Type-2 Theory of Effectivity (TTE) [25].

From now on, without loss of generality, we will focus on the one-dimensional case and
will consider the following IVP:

⎧⎪⎪⎨⎪⎪⎩
y′(t) = F(t, y(t))

y(0) = 0
(3)

for which we seek a solution y : [0, a] → [−b, b], for suitable a ≥ 0 and b ≥ 0.4

We draw inspiration from Ko’s work [17] and adopt an oracle machine model for a
clear complexity analysis (as in Fig. 1). As we have simplified the initial condition to
(0, 0), the solver machine will only need:

1. a socket into which one plugs in a field oracle, i. e. an oracle which provides infor-
mation about the field to the solver machine;

2. a pair of input and output tapes for interaction with the user (i. e. the outside world).
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field oracle

F

solver machine

S

query

answer

required accuracy

approximation
of the solution

user

Fig. 1. An oracle machine for solving IVPs

The user sends the required accuracy to the solver machine S in the form of a nat-
ural number k, and in return will be expecting a polynomial enclosure <yk, rk> of the
solution y whose width over [0, a] is smaller than 2−k. The solver machine in turn tries
to obtain enough information about the field from its oracle F until it can provide the
required approximation of the solution.

The advantage of using an oracle machine model is that we can abstract away from
the cost of computing the field, and instead focus on the actual cost of IVP solving
as performed by the solver machine. Nonetheless, the cost of handling queries and
answers, and the cost of operations inside the solver machine will be taken into account.

Let us recount a rough sketch of how algorithms such as those of [10,12]—where
step-functions are used to approximate real functions—would work in this setting. The
solver starts with the most conservative rectangle enclosing the graph of the solution,
i. e. ([0, a], [−b, b]). At iteration n, the solver possesses an enclosure of the graph of
the solution made up of 2n rectangles {Bn

i | 0 ≤ i < 2n}, in which each rectangle Bn
i

has got the horizontal side [ai/2n, a(i + 1)/2n]. The solver machine sends each of these
rectangles as queries to the field oracle.

The field oracle F possesses an ‘encoding’ of a domain theoretic extension IF of the
field F. As such, in response to each query Bn

i it returns an interval enclosure IF(Bn
i ) of

F(Bn
i ), i. e. F(Bn

i ) ⊆ IF(Bn
i ).

Next, the solver performs a domain-theoretic integration on the step-function en-
closure {([ai/2n, a(i + 1)/2n],IF(Bn

i )) | 0 ≤ i < 2n}, and works out an enclosure of this
integral by 2n+1 rectangles {Bn+1

i | 0 ≤ i < 2n+1}, which forms the next approximation
of the solution y, and then the solver moves on to iteration n + 1.

This means that the mere number of queries and answers grows exponentially in n,
which puts a heavy burden on the communications between the machine and its oracle.
To address this problem, we will consider a different protocol for communications in
which queries from the solver machine S to the field oracleF are of the form (n, <P,R>),
where n ∈ N, and <P,R> is a polynomial enclosure in PE[0, a], and answers from F to
S come in the form of polynomial enclosures in PE[0, a], so do the approximations to
the solution y as sent out to the user by S.

A denotational semantic model of communication protocols (such as ours) over real
numbers has been studied in a broader context in [19,18]. Here we focus on the com-
plexity theoretic implications of using one specific protocol.

3 See e. g. [22, page 79].
4 Generalising our results to the m-dimensional case and y : [α, β] → [−b, b]m will be straight-

forward.
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3.1 Semantic Behaviour of the Field Oracle F

It is instructive to begin by viewing the input to F as a pair consisting of a number and
a function enclosure. Assume that F receives a query (n, [α, β]) on its input tape, where
n ∈ N and [α, β] ∈ FE[0, a]. We expect the respective output to be an approximation
of the image of [α, β] under the field F, to within 2−n accuracy. So, consider the set
Φ � {(t, s) ∈ [0, a] × R | ∃z ∈ R : α(t) ≤ z ≤ β(t) ∧ s = F(t, z)}. It is easy to see that
there are two functions f , g ∈ C[0, a] for which we have Φ = Γ([ f , g]), i. e. the graph
of [ f , g] (see Definition 1). We denote the enclosure [ f , g] as F([α, β]), i. e.

F([α, β]) � [ f , g] (4)

Next, we consider two polynomials φ and ψ that approximate f and g from below and
above to within 2−n accuracy, respectively, i. e. [φ, ψ] � [ f , g] � [φ + 2−n, ψ − 2−n].
Remember that according to our protocols, the input to F is a pair (n, <P,R>), in which
<P,R> ∈ PE[0, a]. Hence we define:

Definition 3 (Lipschitz field oracle). The field oracle F is said to be Lipschitz with
constant L if for each n ∈ N and <P,R> ∈ PE[0, a], the input query (n, <P,R>) is
responded with some <P̃, R̃> ∈ PE[0, a], in which <P̃, R̃> is an enclosure of F(<P,R>)
(see (4) above) and ∀t ∈ [0, a] : 0 ≤ R̃(t) ≤ 2−n + LR(t).

Even though we abstract away from what goes on inside the oracleF, yet to demonstrate
that Definition 3 is a plausible one, we have presented a way of obtaining Lipschitz
oracles from analytic fields using polynomial approximations in Appendix A.

4 Convergence of Picard’s Method

Let us reformulate Picard’s method in our setting. The idea is for the solver machine
to work out a sequence {<yn, rn> | n ∈ N} of polynomial enclosures in such a way that
they all enclose the final solution y, i. e. ∀n ∈ N : y ∈ <yn, rn>:

base case: y0(x) = 0, r0(x) = b.
recursive step: Assume that the solver S has worked out the enclosure <yn−1, rn−1>.

At this point S sends the query (n, <yn−1, rn−1>) to the field oracle F, and in return
it receives the polynomial enclosure <P̃n, R̃n>. To obtain the next approximation
<yn, rn>, all S needs to do is symbolic integration over polynomials, i. e.

yn(t) =
∫ t

0
P̃n(x) dx, rn(t) =

∫ t

0
R̃n(x) dx (5)

Theorem 1 (geometric convergence). Consider the IVP (3) and the configuration of
Fig. 1. Moreover, assume that the field oracle F is Lipschitz. Then the successive poly-
nomial enclosures <yn, rn> sent on the output tape by the solver machine converge to
the solution y of the IVP geometrically, that is, for some constant c > 1, the width of
<yn, rn> decreases in O(c−n).

Proof. The main idea of the proof is similar to the usual one for the classical Picard-
Lindelöf theorem. A detailed proof is given in Appendix B. ��
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5 Reducing the Complexity to Polynomial-Time

One of the many ways with which the oracle F can work out a polynomial enclosure in
response to any query from the solver machine S is via polynomial compositions (see
Appendix A for a detailed account). Let <P̃n, R̃n> be the answer that F sends to S in
response to the query (n, <yn−1, rn−1>) where P̃n(X) = Pn(X, yn−1(X)) and Pn(X1, X2) ∈
Q[X1, X2] is a polynomial approximation of the field F to within 2−n accuracy.

Let us write qn for the maximum degree of X2 in Pn(X1, X2), and dn for the degree of
the nth polynomial approximation yn of the solution y generated by the solver machine.
It is straightforward to verify that the degrees of the polynomials {yn | n ∈ N} satisfy
dn+1 ≥ 1 + qn+1dn for all n ∈ N, and d0 = 0.

This should give us an idea of how the degrees of the approximants to the solution
grow. For instance, even if ∀n ∈ N : qn = 2, then dn grows at least exponentially. One
way to address this inefficiency is to first approximate each of the polynomials P̃n and
R̃n by lower degree polynomials ỹn and r̃n, respectively, and then proceed to work out
the next approximation to the solution <yn, rn> accordingly.

There are various ways of approximating one polynomial with another of a lower
degree. The approach which we consider here is based on using truncated Chebyshev
series. The main reason for choosing this method over (say) the straightforward trun-
cated Taylor series is that in numerical work, the Chebyshev basis is a much more
well-behaved one compared with the monomial basis, a well-known fact spelled out in
any standard text on function approximation [24,20].

Another reason is that for any rational polynomial, the calculation of Chebyshev
truncation involves only arithmetic over rational numbers, in contrast to methods such
as the Carathéodory-Fejér [14] which involves computations of eigenvalues that are not
necessarily rational.5

Assume that a polynomial p is written as
∑n

i=0 aixi in the monomial basis, and as∑n
i=0 biTi(x) in the Chebyshev basis, in which Ti(x) =

∑i
j=0 ti jx j is the i-th Chebyshev

polynomial of the first kind (i ≥ 0).6 Going from the latter to the former is straightfor-
ward, and in the other direction, the coefficients bi can be calculated as the entries of the
vector B, which is the solution of the system of linear equations S × B = A, in which
A = [a0 . . . an]T , B = [b0 . . . bn]T and S = [si, j]0≤i, j≤n is upper triangular with entries as
follows:

si, j =

⎧⎪⎪⎨⎪⎪⎩
t ji if i ≤ j

0 if i > j
(6)

For each k ∈ N, the Chebyshev-truncation of p up to degree k is defined to be the
polynomial ct(p, k) �

∑k′

i=0 biTi(x) in which k′ = min{k, n}. As ∀i ∈ N, x ∈ [−1, 1] :
| Ti(x) | ≤ 1 and as we will focus only on the values of x in [0, 1], then we define the
Chebyshev-bound of this truncation to be cb(p, k) �

∑n
i=k+1| bi |.

For ρ ≥ 0, let Cρ = {ρeiθ | 0 ≤ θ < 2π} be the circle of radius ρ in the complex plain.
We write Eρ to denote the open region bounded by the ellipse which is obtained as the

5 Nonetheless, we will be considering the Carathéodory-Fejér method in our future work due to
its remarkable performance in practice.

6 One can find a comprehensive treatment of Chebyshev polynomials in any standard book on
approximation theory, e. g. [24,21].
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image of the circle Cρ under the Joukowsky map z �→ (z + z−1)/2. The following is a
corollary of Bernstein’s theorem [5]:

Theorem 2. Assume that p ∈ R[x] is a real polynomial and choose ρ > 1 and C ≥ 0
in such a way that ∀z ∈ Eρ : | p(z) | ≤ C. Then the Chebyshev coefficients of p satisfy
bk ≤ 2Cρ−k. As a consequence ∀n ∈ N : cb(p, n) ≤ 2Cρ−n/(ρ − 1).

Now we focus on the solution of the equation (3) for values of t ∈ [0, 1] and modify
the algorithm of Section 4 to reduce the growth of the size of the polynomials yn and
rn, i. e. both the degree and the bit size of coefficients. More precisely, after receiving
the polynomial enclosure <P̃n, R̃n> from the field oracle, the solver first works out the
Chebyshev truncation of R̃n up to degree n to obtain the polynomial r̂n � ct(R̃n, n), and
adds the bound e(r̂n) � cb(R̃n, n) to r̂n. Next it considers the Chebyshev truncation of P̃n

up to degree n, which we write as ŷn � ct(P̃n, n), and adds the bound e(ŷn) � cb(P̃n, n)
to r̂n + e(r̂n). At this point our polynomials satisfy deg(ŷn) ≤ n and deg(r̂n) ≤ n.

The final concern is that the sizes of the representations of the coefficients of ŷn and
r̂n may have grown too large. So, assume that ŷn(x) =

∑n
i=0 aixi in monomial basis

and for each i ≤ n, let pi/2n be the largest dyadic number with denominator 2n which
is not greater than | ai |, and define åi as pi/2n if ai ≥ 0, and −pi/2n otherwise. We
define ỹn(x) �

∑n
i=0 åixi. It should be clear that, as ∀i ≤ n : | ai − åi | ≤ 2−n, we

will have ‖ ỹn − ŷn ‖ ≤ (n + 1)2−n. Using the same method, we obtain r̃n from r̂n by
approximating its coefficients with appropriate dyadic numbers, with an added error
of (n + 1)2−n. So, the reduction of the sizes of the coefficients have added another
2(n + 1)2−n = (n + 1)2−(n−1) to our error estimates. Now we define:

yn(t) =
∫ t

0
ỹn(x) dx, rn(t) =

∫ t

0

(
r̃n(x) + e(r̂n) + e(ŷn) + (n + 1)2−(n−1)

)
dx (7)

In order to be able to use Theorem 2, we add the following assumption which states that
in the modified algorithm:

∃C ∈ N : ∀n ∈ N : ∀z ∈ E5 : | P̃n(z) | < C ∧ | R̃n(z) | < C (8)

We have chosen the elliptic region E5 as it fully contains the circle C2. This ensures
that the sizes of the coefficients åi (i ≥ 0) remain within the desired bounds. To see this,
assume that the complex function f is analytic in a neighbourhood D of Cρ. Then inside
D, the function f is equal to its Taylor series about 0, i. e. f (z) =

∑∞
i=0 aizi. In particular,

we have:

∀i ∈ N : ai =
1

2πi

∫
Cρ

f (z)
zi+1

dz (9)

Proposition 1. Assume that ρ > 1 and ∃C > 0 : ∀z ∈ Cρ : | f (z) | < C. Then ∀k ∈ N :
| ak | < C/ρk.

Proof. Straightforward from (9). ��

Under assumption (8) and by using Proposition 1 (and the fact that C2 is contained in
E5), the coefficients of the polynomial ŷn(x) =

∑n
i=0 aixi satisfy ∀i : | ai | ≤ C, which

implies that each åi will be representable in (n log(C)!+1) bits, i. e. O(n) bits. A similar
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argument holds for the coefficients of r̂n and r̃n. As such we have reduced the degrees
of our polynomials to O(n), and by dyadic approximations, we have reduced the sizes
of their representations to O(n2). Nonetheless, how much F blows up the sizes of its
answers is not under our control. Therefore, we consider the field oracles for which, the
size of the answer to a query is bounded by a polynomial function of the size of the
query:

Definition 4 (p-representable field oracle). Assume that the size of the representation
of each finite object x is written as s(x). We say that the field oracle F is polynomial-
space representable, p-representable for short, if there exists a polynomial q ∈ N[X]
such that for each input query (n, <P,R>), the answer polynomial enclosure <P̃, R̃>
satisfies s(<P̃, R̃>) ≤ q(m), where m = max{n, s(<P,R>)}.7

Remark 3. It is worth mentioning that according to Jackson-Bernstein Theorem [17,
page 254], by assuming the field oracle to be p-representable, we are effectively ex-
cluding the fields that are not infinitely differentiable. Yet by another theorem of Bern-
stein [21, Theorem 5.2.1, page 148], we are effectively including all analytic fields.

We can prove that for all values of τ ≤ min(a, 1), the enclosures <yn, rn> do indeed
enclose the solution y over [0, τ], and in fact:

Theorem 3 (polynomial-time complexity). For any Lipschitz p-representable field or-
acle F and under assumption (8), the modified algorithm solves the associated IVP in
polynomial-time over [0, τ], in which τ ≤ min(a, 1).

Proof (Sketch). The fact that our modified algorithm converges follows from (7) and
(8) and Theorem 2.

To prove polynomial-time complexity, first note that the volume of data on the chan-
nels is capped as a result of the truncations on the one-hand, and the assumption that
the field is p-representable on the other hand. Regarding the cost of computations inside
the solver, symbolic integration in monomial basis can be done in polynomial-time, and
the rewriting of polynomials in Chebyshev basis is also polynomial-time as the matrix
S in (6) is upper triangular with non-zero diagonal entries. For the details of this proof,
please see Appendix C. ��

5.1 Analysis of Our Assumption

Admittedly, assumption (8) lacks the elegance that one would hope for. More impor-
tantly, it is not clear how restrictive this assumption is.

Note that for equation (3), Picard’s method guarantees a lifetime of r ≤ min(a, b/M)
for the solution, in which M is the maximum norm of F over [0, a] × [−b, b]. In Sub-
section 3.1, we required the field to return enclosures <P̃, R̃> that were ‘tight enough’
in response to queries (n, <P,R>). We considered the field and the polynomials as de-
fined over real numbers. If we strengthen this requirement by interpreting the field and
the polynomials involved over a certain subset of complex numbers, which in our case

7 For a more detailed account of this definition, including the precise account of the representa-
tion of a polynomial, see Appendix C.
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should contain E5, we can guarantee polynomial-time complexity for our algorithm
assuming 5 ≤ min(a, b/(2M)).8

But this seems to leave out some very simple equations such as y′(t) = 2y(t) +
2. The problem is that the lifetime as guaranteed by Picard’s method can be a gross
underestimate of the real one. For instance, for the IVP y′(t) = 2y(t) + 2 with the initial
condition y(0) = 0, the unique solution y(t) = exp(2t) − 1 is defined over the whole real
line, and it can be easily verified that our method converges in polynomial-time over
this IVP.9 Yet Picard’s method only guarantees a lifetime of r ≤ 1/2. Therefore, we will
need to analyse the strength of assumption (8) using a different method.

Picard’s method may be seen as a competition between the field oracle on the one
hand, which may be highly expanding and thus may amplify tiny fluctuations, and the
solver on the other hand, which smooths the results over by integration. Bournez et
al. [7] have proven polynomial-time complexity of computing the Taylor coefficients of
the solution under a cap on the growth of the field, which is called poly-boundedness.
This condition is implied by p-representability of the field in our setting. Thus, in our
future work, we will try to answer the following question:

Problem 1. Assume that the field F is extendable to a p-representable analytic function
over a ‘suitably large’ compact subset of C2, and the field oracle’s estimates are tight
enough over complex numbers. Will it be true then that condition (8) is always satisfied
and hence the IVP can be solved in polynomial-time using our modified method?

6 Summary

We have presented a denotational framework for analysing the semantics of compu-
tations over real functions based on polynomial enclosures. We focused on the case
of Picard’s method of IVP solving. An oracle machine model was considered to sepa-
rate the actual procedure of IVP solving from the field application. In Theorem 1, we
showed that Picard’s method converges under an assumption which is equivalent to the
classical Lipschitz condition on the field.

In general, IVPs cannot be solved in polynomial-time under the mere Lipschitz con-
tinuity condition on the field unless P=PSPACE [16]. On the other hand, from [23,7] we
know that under the stronger analyticity condition on the field, the Taylor coefficients
of the solutions can be approximated in polynomial-time. But this does not provide any
explicit bounds on the solution.

In contrast, in this paper, we have presented a semantic model which provides ex-
plicit error bounds at each stage in the form of polynomial enclosures of the result. In
that respect, our model is comparable to the usual domain-models, with the difference
that ours makes polynomial-time solution of IVPs possible, as opposed to the step-
function models considered in [10,12].

8 We do not present a formal proof of this claim here as it can be verified easily with a bit of
calculation.

9 In fact, our implementation of the algorithm successfully converges over non-linear equations
such as y′(t) = cos(t)y(t), y(0) = 1 and y′′(t) − 0.2(1 − y(t)2)y′(t)+ y(t) − 0.1 cos(1.1t), y(0) = 1,
the latter being an instance of the forced Van der Pol’s equation.
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A Obtaining Lipschitz Oracles from Analytic Fields

Assume that F : [0, a] × [−b, b] → R is the field of our IVP and assume that F is
continuous and Lipschitz (in the classical sense) in its second argument with Lipschitz
constant L′. As F is continuous, there exists a sequence {Pn | n ∈ N} of polynomials
in Q[X1, X2] such that ∀n ∈ N : F ∈ <Pn, 2−n> and F = limn→∞ Pn. Furthermore,
if F is analytic, then we can choose the sequence of polynomials in such a way that
Dy(F) = limn→∞ Dy(Pn), where Dy(F) is the derivative of F in the direction of the unit
vector (0, 1). In fact, we can choose {Pn | n ∈ N} in such a way that

∀n ∈ N : ‖ Dy(Pn) ‖ < L′ + 1 (10)

If one defines L � L′ + 1, then there is a direct (yet very inefficient) way for the ora-
cle F to generate its output as follows: on each input (n, <P,R>), the oracle F simply
substitutes in Pn(X1, X2) the identity polynomial X for X1, and the polynomial P(X) for
X2, to obtain the univariate polynomial P̃n(X). Then it returns the polynomial enclosure
<P̃n, 2−n + LR>. It should be clear that by the assumption of (10) and the fact that each
Pn approximates F to within 2−n accuracy, we will have <P̃n, 2−n + LR> � F(<P,R>).

B Proof of Theorem 1 Regarding Geometric Convergence

We break down the proof of Theorem 1 into the following set of propositions:

Proposition 2. Assume that the field oracle F is Lipschitz with constant L and let y :
[0, a] → [−b, b] be a solution of the IVP. Then each <yn, rn> encloses y.

Proof. We prove the proposition by induction on n. Obviously y ∈ <y0, r0>. Now
assume that n > 0 and y ∈ <yn−1, rn−1>. Let [φn, ψn] = F(<yn−1, rn−1>) and as-
sume that <P̃n, R̃n> is the answer sent by the field oracle F in response to the query
(n, <yn−1, rn−1>). As F is assumed to be Lipschitz, <P̃n, R̃n> � [φn, ψn]. By monotonic-
ity of the integral operator and using (5) on page 237 we have ∀t ∈ [0, a]:

yn(t) − rn(t) ≤
∫ t

0
φn(x) dx ≤

∫ t

0
ψn(x) dx ≤ yn(t) + rn(t) (11)

On the other hand, y ∈ <yn−1, rn−1> implies λx.F(x, y(x)) ∈ [φn, ψn], and as y is a
solution of the IVP:

λt.y(t) = λt.
∫ t

0
F(x, y(x)) dx ∈ [λt.

∫ t

0
φn(x) dx, λt.

∫ t

0
ψn(x) dx] (12)

Combining (11) and (12) completes the proof. ��
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For each n ∈ N, we define the n-th degree polynomial

en(t) = t
n−1∑
k=0

εktk + εntn (13)

by assigning εn = Lnb/n! and

∀k ∈ {0, . . . , n − 1} : εk =
Lk

2n−k(k + 1)!

Proposition 3. ∀n ∈ N, t ∈ [0, a] : 0 ≤ rn(t) ≤ en(t)

Proof. Straightforward induction using (5) on page 237, and using the fact that, as F is
Lipschitz (Definition 3 on page 237), ∀n ∈ N+, t ∈ [0, a] : 0 ≤ R̃n(t) ≤ 2−n + Lrn−1(t).

��

Notice that in (13), we have split the coefficients of tn into εn−1 + εn. For instance,
according to the format in (13) for r2 we get:

0 ≤ r2(t) ≤ 1
22 × 1!

t +
L

21 × 2!
t2 +

L2b
2!

t2

Proposition 4. The maximum value of en over [0, a] converges to zero geometrically,
i. e. ∃C > 0, n0 ∈ N : ∀n ≥ n0 : ‖ en ‖ ≤ C/2n.

Proof. First note that all of the coefficients of en are non-negative, hence en is non-
decreasing and as a result it attains its maximum value at t = a, at which point according
to (13)

en(a) = a
n−1∑
k=0

εkak + εnan = a
n−1∑
k=0

Lkak

2n−k(k + 1)!
+

Lnan

n!

Note that (Lnan/n!) tends to 0 as n → ∞ at a rate even faster than a geometric one.
Moreover:

a
n−1∑
k=0

Lkak

2n−k(k + 1)!
= a

n−1∑
k=0

(2La)k

2n(k + 1)!
=

1
2L2n

n∑
k=1

(2La)k

k!

≤ 1
2L2n

∞∑
k=1

(2La)k

k!
≤ e2La − 1

L2n+1
(14)

Hence limn→∞ en(a) = 0 and the rate of convergence is geometric. ��

Corollary 1. The widths of <yn, rn> converge to zero geometrically.

Theorem 1 follows from Proposition 2 and Corollary 1.



Polynomial-Time IVP Solving with Polynomial Enclosures 245

C Proof of Theorem 3 Regarding Polynomial-Time Complexity

Let us first clarify what we mean by a p-representable field oracle. For this we need to
present a method for representing univariate rational polynomials of the form P(x) =∑n

i=0 aixi. Such a polynomial can be fed into a Turing machine as the following sequence
of symbols:

##a0#a1# . . .#an## (15)

where # is used as a delimiter. If the size of each finite object x is denoted as s(x), then
according to (15) the size of the polynomial P would be s(P) = (n+ 4) s(#)+

∑n
i=0 s(ai).

A polynomial enclosure <P,R> can also be represented using the representations of
P and R and an appropriate delimiter. For instance $$P$R$$, in which case s(<P,R>) =
s(P) + s(R) + 5 s($).

Definition 5 (p-representable). We say that the field oracle F is polynomial-space
representable, p-representable for short, if there exists a polynomial q ∈ N[X] such
that for each input query (n, <P,R>), the answer polynomial enclosure <P̃, R̃> satisfies
s(<P̃, R̃>) ≤ q(m), where m = max{n, s(<P,R>)}.

Now, assume that the field oracle F is p-representable. To prove polynomial com-
plexity, we need to analyse the following contributing factors:

Communication of Data: As we are capping the sizes of each yn and rn at stage n to at
most O(n2), then the volume of data communicated between the solver on the one
hand, and the field oracle and the outside world on the other hand remains within
the polynomial bound. It is in fact very easy to see that this volume at each stage n
is O(n2 deg(q)+1), where q is the bounding polynomial as in Definition 5 above.

Chebyshev Truncations: Note that the polynomial q puts a bound on the sizes of the
answers of the field oracle F, i. e. not just on the degree of the answers, but also on
the sizes of the coefficients of the answer polynomials. Now assume that at stage
n, the matrix Sn (as in (6) on page 238) is used to convert the representation of P̃n

from monomial to Chebyshev basis, and assume that Sn has got dimension υn × υn.
Then obviously we have υn ∈ O(n2 deg(q)), and for each entry si, j of Sn, we have
s(si, j) ∈ O(n2 deg(q)). As Sn is upper triangular with all its diagonal entries non-zero,
then at stage n the equation Sn × B = A can be solved with at most O(υ2

n) arithmetic
operations. The same argument holds for the Chebyshev truncation of R̃n.

Dyadic Approximations: In Section 5 we discussed the approximation of each of the
coefficients ai (for 0 ≤ i ≤ n) of ŷn by åi to obtain ỹn. Let i ≤ n and for simplicity
assume that ai ≥ 0, and let (the rational number) ai be written as mi/ni. We want to
find the biggest pi ∈ N which is not bigger than 2nmi/ni. The easiest way to do this
is by a simple integer division. As the sizes of the numerator and the denominator
of 2nmi/ni are at most O(n2 deg(q)+1), then the division can be carried out in at most
O(n4 deg(q)+2) steps. This gives us pi, and as a consequence, the required dyadic
number pi/2n.
Therefore, as there are n + 1 coefficients, the approximation of ŷn by ỹn can be
carried out in O(n4 deg(q)+3). A similar argument holds for the approximation of r̂n

by r̃n.

This completes the proof of Theorem 3. ��
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1 Introduction

The focus of this work is, as for example in [4], [5], on the problem of understand-
ing the symmetries that transform a recursively presented universal structure,
which in this paper will be a Fräıssé limit of finite first order structures, to
a copy of such a structure which is Martin-Löf random relative to a canoni-
cal S∞-invariant measure on the class of all universal structures of the given
type. Here S∞ is the symmetric group of a countable set, with the pointwise
convergence topology. This invesigation leads to a link between the symmetries
associated with the so-called discernable flows in structural Ramsey theory and
algorithmic randomness.

Glasner and Weiss [6] showed that there exists a unique measure on the set of
linear orderings of the natural numbers (seen as a subset of Cantor space) that is
invariant under the canonical action of the symmetric group of the natural num-
bers. The author [5] showed that this measure is computable and studied the as-
sociated Martin-Löf (ML) random points, which, due to the uniqueness of the
Glasner-Weiss measure, may be regarded as random linear orders. The author
showed that anyML-random linear order has the order type of the rationals.More-
over, it was shown that recent work by Kechris and Sokic [12] implies that no ran-
dom linear order can be the extension of the universal poset (the Fräıssé limit
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of finite posets) to a linear order. In [5] a study was made of so-called “randomiz-
ers”. These are permutations of the natural numbers that transform a computable
(Cantor) rational linear order into a random one. It was also proven in [5] that any
such randomizer cannot be an automorphism of the universal poset.

The aim of this paper is to generalise these results to a broader class of
Fräıssé limits F0 of Ramsey classes, the automorphism groups Aut(F0) not being
amenable. Again, as in [5], this paper relies heavily on the groundbraking paper
[10] by Kechris, Pestov and Todorcevic. The arguments in this paper require
some understanding of the subtle interplay between structural Ramsey theory
and topological dynamics as is beautifully explicated in the paper [10]. This
paper has been written in such a way that it should be accessible to a non-
specialist in Ramsey theory.

2 Preliminaries on Amenable Groups

Let G be a topological group and X a compact Hausdorff space. A dynamical
system (X,G) (or a G-flow on X) is given by a jointly continuous action of G
on X . If (Y,G) is a second dynamical system, then a G-morphism π : (X,G)→
(Y,G) is a continuous mapping π : X → Y which intertwines the G-actions,
i.e.,the diagram

G× Y Y
β

��

G×X

G× Y

1×π

��

G×X X
α �� X

Y

π

��

,

commutes with α, β being the group actions.
An isomorphism is a bijective homomorphism. A subflow of (X,G) is a G-flow

on a compact subspace Y of X with the action of G on X restricted to the action
on Y . A G-flow is minimal if it has no proper subflows. Every dynamical system
has a minimal subflow (Zorn).

The following fact, first proven by Ellis (1949) [2], is central to the theory of
dynamical systems:

Theorem 1. Let G be a Hausdorff topological group. There exists, up to G-
isomorphism, a unique minimal dynamical system, denoted by (M(G), G), such
that for every minimal dynamical system (X,G) there exists a G–epimorphism

π : (M(G), G) −→ (X,G),

and any two such universal systems are isomorphic.
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The flow (M(G), G) is called the universal minimal flow of G.
We next introduce the notion of amenable groups.

Definition 1. A topological group G is amenable if, whenever X is a non-empty
compact Hausdorff space and π is a continuous action of G on X, then there is
a G–invariant Borel probability measure on X.

This means that, for every G-flow on a compact space X , there is a measure ν
on the Borel algebra of X , such that, ν(X) = 1 and, for every g ∈ G and Borel
subset U of X ,

ν(gU) = ν(U).

3 Fräıssé Limits and Their Recursive Representations

In the sequel, L will stand for the signature of a relational structure. Moreover, L
will always be finite and the arities of the relational symbols will all be ≥ 1.The
definitions that follow were introduced by Fräıssé in 1954.

The age of an L-structure X , written Age(X), is the class of all finite L-
structures (defined on finite ordinals) which can be embedded as L-structures
into X . The structure X is homogeneous (some authors say ultrahomogeneous)
if, given any isomorphism f : A → B between finite substructures of X , there
is an automorphism g of X whose restriction to A is f . A class K of finite L-
structures has the amalgamation property if, for structures A,B1, B2 in K and
embeddings fi : A → Bi (i = 1, 2) there is a structure C in K and there are
embeddings gi : Bi → C (i = 1, 2), such that the following diagram commutes:

A

B2

f2 ���
��

�A

B1
f1 ������

B1

C

g1

���
�

B2

C

g2

���
�

.

Suppose K is a countable class of finite L-structures, the domains of which are
finite ordinals such that

1. if A is a finite L-structure defined on some finite ordinal, if B ∈ K and if
there is an embedding of A into B, then A ∈ K;

2. the class K has the amalgamation property.

Then, Fräıssé showed that there is a countable homogeneous structure X such
that Age(X) = K. Moreover, X is unique up to isomorphism. The (essentially)
unique X is called the Fräıssé limit K of K. Note that, conversely, the age
K of a countable homogeneous structure has properties (1) and (2). We shall
frequently call a countable structure which is isomorphic to a Fräıssé limit a
universal structure.
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A recursive representation of a countably infinite L-structure X is a bijection
φ :X→ N such that, for each R ∈ L, if the arity of R is n, then the relation Rφ

defined on Nn by

Rφ (x1, x2, . . . , xn)⇐⇒ R
(
φ−1(x1), . . . , φ

−1(xn)
)
,

is recursive. If we identify the underlying set of X with N via φ and each R with
Rφ, we call the resulting structure a recursive L-structure on N and we say it
has a recursive representation on N.

If X is countable and homogeneous and if Age(X) has an enumeration A0,
A1, A2, . . ., possibly with repetition, with the property that there is a recursive
procedure that yields, for each i ∈ N, and R ∈ L, the underlying set A(i) of Ai
together with the interpretation of R in A(i), then we call (Ai : i ∈ N) a recursive
enumeration of Age(X). It follows from the construction of Fräıssé limits from
their ages, that one can construct a recursive representation ofX from a recursive
enumeration of its age. (Conversely, it is trivial to derive a recursive enumeration
of Age(X) from a recursive representation of X .) It is therefore not difficult
to find recursive representations for Fräıssé limits of classes K from recursive
enumerations of their ages.

Theorem 2. Suppose C and D are countable and recursively represented L-
structures on N with the same age. Suppose that they are both homogeneous.
Then there is a recursive isomorphism from C to D.

Proof. As mentioned in [5], the model-theoretic back-and-forth argument as
discussed, for example, on pp 161-162 of Hodges [7] is constructive relative to
the recursive representations of the homogeneous structures C and D.

4 Structural Ramsey Theory in a Model Theoretic
Context

In this section we summarise the results from [10] which underly the formalisa-
tion and proof of the main theorem of this paper. Unless otherwise stated all the
proofs of the statements made here can be found in [10].

Let K be the age of some countable L-structure. For A, π ∈ K we denote by
Aπ the set of all the (model-theoretic) structure-preserving embeddings of π in
A. For a natural number r ≥ 1 and for π,A,B ∈ K we introduce the predicate
B � (A)

π
r (Erdős-notation) to mean:

B � (A)
π
r ⇐⇒

(
∀ Bπ r

χ �� ∃ A B�� α ��
Aπ Bπ

α∗ ��Aπ

r
! ���
��

��
Bπ

r
χ����
��
�

Aπ

⊕
)
.

Here α∗ : Aπ → Bπ is the mapping that takes an embedding π A�� x �� to the

induced embedding π B��αx �� .

In other words, B � (A)πr iff: for every r-colouring χ of the set Bπ consisting
of the embeddings of π in B (copies of π in B), there is an embedding α of A



250 W.L. Fouché

into B such that χα∗ is a constant. This means that χ assumes a constant value
on all the embeddings of π into the image A′ ⊂ B of A under α.

We shall call an age K a Ramsey age if, for all π,A ∈ K with Aπ �= ∅, and all
natural numbers r ≥ 1, there is some B ∈ K such that B � (A)πr .

Assume L is a countable signature containing a distinguished binary relation
symbol<. An order structureA for the signatureL with the distinguished symbol
<, is a structure A for which the interpretation <A of the symbol < in A is a
total ordering.

An order class K for L is one for which all A ∈ K are order structures (relative
to the distinguished <).

Let L0 be the signature obtained by removing the distinguished symbol< from
L. For any L-structure A, denote by A0 the L0-structure which is the reduct of
A to L0. This means that A0 is the structure A where the distinguished order
< interpretated as a total order <A in A is being ignored.

Let K be a Fräıssé order class. By this we mean an order class having a
Fräıssé limit. Denote by K0 the class of all structures A0 which are reducts of
some A ∈ K. We write F for the Fräıssé limit of K. We now discuss when K0 is
also a Fräıssé class with limit F0. Following Kechris, Pestov and Todorcevic [10],
we say that the classK is reasonable if for every A0, B0 ∈ K0, and linear ordering
< on A0 such that A := (A0, <) ∈ K, and for an embedding π : A0 → B0, there
is a linear ordering <1 on B0 so that B = (B0, <1) ∈ K and π : A → B is also
an embedding. (This means that x < y ⇔ π(x) <1 π(y).)

Then Kechris et al. (p 135) showed that K0 is a Fräıssé class with limit F0,
iff the Fräıssé order class K is reasonable.

Note that, in this case, the underlying sets of F and F0 are the same. Moreover,
we can write

F = (F0, <0),

for some linear ordering <0 on the underlying set of F0.
We consider the continuous action of the automorphism group Aut(F0) on the

(topological) space of all linear orderings on the set F0, which is the underlying
set of the structure F0. Write XK ⊂ {0, 1}F0×F0 for the orbit topological closure
of the action of Aut(F0) on the linear ordering <0, i.e.,

XK = Aut(F0). <0.

This set is clearly a closed, hence compact, subset of the Baire space {0, 1}F0×F0 .
Moreover, it is clearly also an Aut(F0)-invariant subset of {0, 1}F0×F0 under the
natural action of Aut(F0) on the latter space. We have thus obtained an Aut(F0)-
flow on XK .

This flow can be defined for any reasonable (in the technical sense as explained
above) Fräıssé order class K. I will call it the discerning flow associated with
the reasonable Fräıssé order class K.

Remark. The author uses the terminology discerning in acknowledgement of
Ramseys pioneering work in developing his theorem in the context what now
would be considered as a study of indiscernables in model theory.
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If, in addition to being a Fräıssé order class, the class K is a Ramsey age, then
every minimal subflow of the discernable flow is isomorphic to the universal
minimal flow of Aut(F0).

The Fräıssé order class K is said to have the ordering property if for every
A0 ∈ K0, there is a B0 ∈ K0 such for any linear ordering < on A0 and every
linear ordering <1 on B0, where both <,<1 are restrictions of <0, there is an
embedding of (A0, <) into (B0, <1).

The discerning flow associated with the Fräıssé order class K is itself minimal
iff K has the ordering property.

We also extract the following remark from [10].

Proposition 1. If K is a Fräıssé order class which is Ramsey and has the
ordering property, then a total order ξ belongs to the discerning flow XK iff for
any L0-structure A in the age of F0 allowing an <A interpretion of <, it is the
case that <A is the restriction of ξ to A.

We shall make substantial use of this remark in the sequel.

Example. It is known (see, for example [3] that the class P (finite posets, linear
extensions) is Ramsey and has the ordering property. As was noted in [10], this
has the implication that the discerning Aut(P0)-flow is thus a universal minimal
flow. It acts on the space XP consisting of the linear extensions of the universal
poset P0. Using these facts, Kechris and Sokič (2011) [12] recently showed that
the automorphism group of P0 is not amenable. These results do imply that the
set of linear extensions of the Fräıssé limit of finite posets are all, in a definite
sense, nonrandom, at least from the point of view of algorithmic randomness as
was shown in [5]. This result will be placed in a broader context in what follows.

5 Martin-Löf Random Countable Orders

Let S∞ be the group of permutations of a countable set, which, without loss
of generality, we may take to be N. We place on S∞ the pointwise convergence
topolopy. Let (N×N)�= denote the set of ordered pairs (i, j) of natural numbers
with i �= j. Write M for the set of total orders on N. We identify M with a
subset of {0, 1}(N×N) �= by identifying a total order < on N with the function
ξ : (N× N)�= → {0, 1} given by

ξ(x, y) = 1⇔ x < y, x, y ∈ N.

The total order associated with ξ will be denoted by <ξ. We topologise M via
the natural injection

M−→ {0, 1}(N×N) �=,

where the (Baire) space {0, 1}(N×N) �= has the product topology. As such M is a
closed hence compact subspace of {0, 1}(N×N) �=.

The group S∞ acts continuously on M if, for ξ ∈ M and σ ∈ S∞, we define
the total order σξ by:

x <σξ y ⇐⇒ σ−1x <ξ σ
−1y, x, y ∈ N.
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Since S∞ is an amenable group, there is an S∞-invariant measure onM. In fact,
Glasner and Weiss (2002) [6] showed that there is exactly one such measure (i.e.,
the flow onM is uniquely ergodic). Their proof is based on an ergodic argument.
Let us denote this measure by μ. I shall refer to this measure as in [5] as the
Glasner-Weiss measure.

We writeMf for the set of finite total orders on some subset of N. For � ∈Mf ,
denote by Z� the set of ξ ∈ M, such that ξ is an extension of �. These sets are
the cylinder subsets of M. Write Z0 for the class of events of the form Z� for
some � ∈ Mf and Z for the algebra generated by Z0. Note that the σ-algebra
generated by Z is exactly the Borel algebra on M.

For Z ∈ Z0 we write Z0 for the complement of Z and Z1 for Z. Let (Ti)i∈N

be any enumeration of the algebra Z generated by (Z�)�∈Mf
in such a way that

one can effectively retrieve from a given i ∈ N, the corresponding Ti as a finite
union of sets T of the form

T = Zδ1�1 ∩ . . . ∩ Zδk�k , (1)

where each �i is in Mf and δi ∈ {0, 1} for i = 1, . . . , k. We call any such
enumeration a recursive representation of Z.

The Glasner-Weiss measure μ is computable in the following sense:

Theorem 3. Denote by μ the Glasner-Weiss measure on the Borel-algebra of
M. Let (Ti : i < ω) be a recursive representation of the algebra Z . There is an
effective procedure that yields, for i, k ∈ N, a binary rational βk such that

|μ (Ti)− βk| < 2−k.

A proof of this result appears in [5].

Definition 2. A set A ⊂M is of constructive measure 0, if, for some recursive
representation of (Ti : i ∈ N) of Z, there is a total recursive φ : N2 → N such
that

A ⊂
⋂
n

⋃
m

Tφ(n,m)

and μ
(⋃

m Tφ(n,m)

)
< 2−n.

Definition 3. A total order ξ is said to be μ-Martin-Löf random if ξ is in the
complement of every subset B of M of constructive measure 0.

6 The Main Theorem

Write MLμ ⊂M for the set of μ-Martin-Löf random total orders.

Theorem 4. Let K be a recursive Fräıssé order class which is Ramsey and has
the ordering property. Write

F = (F0, <)
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for its Fräıssé limit and XK for the associated discerning flow. Fix some recursive
representation of F. Note that

XK ⊂M.

If some element of XK is μ-Martin-Löf random, then the automorphism group
Aut(F0) is amenable. Equivalently, if Aut(F0) is not amenable, then

MLμ ∩XK = ∅.

Corollary 1. Consequently, if for some ξ ∈ XK and some automorphism π of
F0 it is the case that the linear order πξ is μ-Martin-Löf random, then Aut(F0)
is amenable.

Proof of Theorem: Note that a topological groupG is amenable iff its universal
minimal flow M(G) has a G-invariant probability measure. Indeed, let ν be an
invariant measure on M(G). Consider any G-flow on some compact Hausdorff
space X . By Zorn’s lemma there is a minimal subflow Y and a G-embedding i
of Y into X . Therefore, there are G-morphisms

M(G) Y
π �� Y X�� i �� .

Let ρ be the pushout measure of ν under iπ. In other words, for every Borel
subset A of X , we set

ρ(A) = ν(π−1i−1A).

Then ρ is an invariant measure on X . The converse is trivial, since M(G) is a
compact G-flow.

We introduce a number of (standard) recursion-theoretic concepts and termi-
nology: A sequence (An) of sets in Z is said to be enumerable if for each n, the
set An is of the form Tφ(n) for some total recursive function φ : ω → ω and some
effective enumeration (Ti) of Z. (Note that the sequence (Acn), where Acn is the
complement of An, is also an Z−enumerable sequence.) In this case, we call the
union
⋃
nAn a Σ0

1 class. A set is a Π0
1 set if it is the complement of a Σ0

1 set. It
is of the form

⋂
nAn, for some Z-semirecursive sequence (An).

We shall also need the following observation. (In the language of algorithmic
randomness, it states the well-known fact that the notion of Martin-Löf random-
ness is stronger than that of Kurtz randomness. A proof of this observation, in
the present context, can be found in [5]. For more on Kurtz randomness, the
reader is referred to the book [1] by Downey and Hirschfeldt.)

Lemma 1. If A is a Σ0
1 subset of M and if μ(A) = 1, then MLμ is contained

in A. In particular, if B is a Π0
1 subset of M that contains some element of

MLμ, then μ(B) > 0.

It follows from Proposition 1 that a total order ξ belongs to XK iff for any A in
the age of F0 it is the case that <A is the restriction of ξ to A. Therefore, since
K is a recursive order class, the relation

ξ ∈ XK



254 W.L. Fouché

is Π0
1 definable over M. It follows from Lemma 1 that, if

MLμ ∩XK �= ∅,

then μ(XK) > 0. This means that μ is a nonzero Aut(F0)-invariant measure on
the flow XK.

Since K is a Ramsey order class, XK is the universal minimal flow associated
with the group Aut(F0). By universality we can conclude that any Aut(F0)-flow
on a compact Hausdorff space will admit a nonzero Aut(F0)-invariant measure.
In particular, Aut(F0) is an amenable topological group.

The second part now follows from the observation that if ξ ∈ XK and π is an
automorphism of F0 then πξ will also belong to XK.

Corollary 2. Fix a recursive representation of the universal poset P0 on the
natural numbers N. Let M(P0) be the class of linear extensions of P0. Write
MLμ for the set of total orders on N that are Martin-Löf random relative to the
Glasner-Weiss probability measure μ. Then

MLμ ∩M(P0) = ∅.

Proof: The result is a direct consequence of the fact that Aut(P0) is not an
amenable group. [12].

7 Open Problems

A total order on N is a Cantor rational order if it is isomorphic to the standard
ordering of the rational numbers. The following theorem is in [5].

Theorem 5. Write Q for the set of total orders on N which are isomorphic to
the Cantor rational order η. Then

MLμ ⊂ Q.

In particular,
μ(Q) = 1.

This observation has the following consequence.

Theorem 6. For a total order η, set

Sμ(η) := {σ ∈ S∞ : ση ∈MLμ}.

Then Sμ(η) �= ∅ iff η is a rational Cantor order.

Proof. By Theorem 5, if η were not rational, the corresponding set Sμ(η) must
be the empty set. If η is rational, then the class Q is exactly the orbit of η under
the action of S∞. Since both Q and MLμ have μ-measure one, it follows that

μ(Q∩MLμ) = 1,

and, therefore, that Sμ(η) �= ∅.
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Following [5], note that, if π ∈ S∞, then

Sμ(η)π
−1 = Sμ(πη). (2)

Indeed, for α ∈ Sμ(η), we have απ−1(πη) = αη ∈ MLμ and hence απ−1 ∈
Sμ(πη). Conversely, if τ ∈ Sμ(πη), then τπη ∈ MLμ, i.e., τπ ∈ Sμ(η), and, so,
τ ∈ Sμ(η)π

−1.
If η1, η2 ∈ Q, there is some π ∈ S∞ such that η2 = πη1. Moreover, if η1, η2

were both recursive, the permutation π could also be chosen to be recursive.
(See Theorem 2). Write Sr for the class of recursive permutations of N. We let
Sr act on the right on the class Σ of all sets of the form Sμ(τ) with τ a recursive
rational order on N. The action is given by

Σ × Sr −→ Σ,

(Sμ(τ), π) -→ Sμ(τ)π
−1, π ∈ Sr, τ ∈ Qr,

where Qr denotes the class of all recursive rational orders on N. It follows from
the preceding arguments that this Sr-action will have a single orbit, i.e, the
action is transitive. Set

S =
⋃
τ∈Qr

Sμ(τ).

If we choose any fixed η ∈ Qr, we also have

S =
⋃
π∈Sr

Sμ(η)π
−1.

We shall call the permutations in S Martin-Löf randomizers. These are the
permutations that transform some recursive rational order to one which is μ-
Martin-Löf random.

These arguments show that an understanding of S can be be attained from
any single Sμ(τ) for a single recursive rational order τ modulo the recursive
permutations in S∞.

Let K be a recursive Fräıssé order class which is Ramsey and has the ordering
property. Write again

F = (F0, <)

for its Fräıssé limit and XK for the associated discerning flow. The arguments of
this paper show that, if τ ∈ Qr ∩XK, then the presence of elements in Aut(F0)
which are Martin-Löf randomizers of τ is related to the amenability of the group
Aut(F0). Indeed, for some π ∈ Aut(F0) to be a Martin-Löf randomizer of any
τ as above is a generic property, in the sense that this very fact forces the
group Aut(F0) to be amenable! The problem still remains to identify the class
of Martin-Löf randomizers.

Let L be the Fräıssé order class consisting of all pairs (L,<) where L is a
lattice with underlying set a finite ordinal and with < being a total order on the
underlying set of L which is a linear extension of the partial order on L. As far
as the author knows, it is unknown whether L is Ramsey and whether it has
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the ordering property. The author has discussed this problem with specialists
in Ramsey theory and it would appear that this problem is wide open. Writing
L = (L0, <) for the Fräıssë limit of L, it is also an interesting open problem to
relateXL to MLμ and thus perhaps gaining an understanding of the amenability
or not of Aut(L0). Note that if L were Ramsey with the ordering property,
then Aut(L) would be an extremely amenable group. This would mean that its
universal minimal flow is a singleton.
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5. Fouché, W.L.: Martin-Löf randomness, invariant measures and countable homoge-

neous structures. Theory of Computing Systems (to appear), arXiv:1205:0386v1
6. Glasner, E., Weiss, B.: Minimal actions of the group S(Z) of permutations of the

integers. Geometric and Functional Analysis 5, 964–988 (2002)
7. Hodges, W.: A shorter model theory. Cambridge University Press (1993)
8. Hrushovski, E.: Extending partial isomorphisms of graphs. Combinatorica 12,

411–416 (1992)
9. Kechris, A.S.: The dynamics of automorphism groups of homogeneous structures.

Lecture at LMS Northern Regional Meeting (July 2011)
10. Kechris, A.S., Pestov, V.G., Todorcevic, S.: Fräıssé limits, Ramsey theory, and
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Propositional Reasoning about Saturated

Conditional Probabilistic Independence
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Abstract. Conditional independence provides an essential framework
to deal with knowledge and uncertainty in Artificial Intelligence, and
is fundamental in probability and multivariate statistics. Its associated
implication problem is paramount for building Bayesian networks. Un-
fortunately, the problem does not enjoy a finite ground axiomatization
and is already coNP-complete to decide for restricted subclasses. Satu-
rated conditional independencies form an important subclass of condi-
tional independencies whose implication problem is decidable in almost
linear time. Geiger and Pearl have established a finite ground axioma-
tization for this class. We establish a new completeness proof for this
axiomatization, utilizing a new sound inference rule. The proof intro-
duces special probability models where two values have probability one
half. Special probability models allow us to establish a semantic proof
for the equivalence between the implication of saturated conditional in-
dependencies and formulae in a Boolean propositional fragment. The
equivalence extends the duality between the propositional fragment and
multivalued dependencies in relational databases to a trinity involving
saturated conditional independencies.

1 Introduction

The concept of conditional independence is important for capturing structural
aspects of probability distributions, for dealing with knowledge and uncertainty
in Artificial Intelligence, and for learning and reasoning in intelligent systems
[15]. Application areas include natural language processing, speech processing,
computer vision, robotics, computational biology, and error-control coding [7].
A conditional independence (CI) statement I(Y, Z | X) represents the indepen-
dence of two sets of attributes relative to a third: given three mutually disjoint
subsets X , Y , and Z of a set S of attributes, if we have knowledge about the
state of X , then knowledge about the state of Y does not provide additional
evidence for the state of Z and vice versa. An important problem is the impli-
cation problem, which is to decide for an arbitrary set S, and an arbitrary set
Σ ∪ {ϕ} of CI statements over S, whether every probability model that satisfies
every CI statement in Σ also satisfies ϕ. The significance of this problem is due
to its relevance for building Bayesian networks [15]. The implication problem for
CI statements is not finitely axiomatizable by a set of Horn rules [17]. However,
it is possible to express CI statements using polynomial likelihood formulae,

L. Ong and R. de Queiroz (Eds.): WoLLIC 2012, LNCS 7456, pp. 257–267, 2012.
c© Springer-Verlag Berlin Heidelberg 2012
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and reasoning about polynomial inequalities is axiomatizable [7]. Recently, the
implication problem of stable CI statements has been shown to be finitely ax-
iomatizable [14], and coNP -complete to decide [13]. Here, stability means that
the validity of I(Y, Z | X) over S implies the validity of every I(Y, Z | X ′) where
X ⊆ X ′ ⊆ S − Y Z. An important subclass of CI statements are saturated con-
ditional independence (SCI) statements. These are CI statements I(Y, Z | X)
over S that satisfy XYZ = S. Geiger and Pearl have established a finite axiom-
atization for the implication problem [6].

Example 1. Let BlueRay={M(ovie), A(ctor), R(ole), C(rew), F(eature),
L(anguage)} denote a set of attributes that model information about blue-rays
of movies, including which actors played which role, what crew members were
involved, and which features are available in which language. Let Σ consist of
I(ARC,FL | M) and I(AR,CFL | M), let ϕ1 be I(C,ARFL | M), and let ϕ2

be I(A,CRFL |M). Then Σ implies ϕ1, but Σ does not imply ϕ2. Indeed, we
can define two values that match on every attribute in MCFL, differ on A and
on R; and assign the probability one half to both values. This probability model
satisfies both elements of Σ but violates ϕ2. #�

The notion of saturated conditional independence I(Z, Y | X) over S is very
closely related to that of a multivalued dependency (MVD) X 
 Y | Z over S,
studied in the framework of relational databases [2,1,5,9,11,12,16]. Here, a set
X of attributes is used to denote the X-value of a tuple over S, i.e., those tuple
components that appear in the columns associated with X . Indeed, X 
 Y | Z
expresses the fact that an X-value uniquely determines the set of associated
Y -values independently of joint associations with Z-values where Z = S −XY .
Thus, given a specific occurrence of an X-value within a tuple, so far not know-
ing the specific association with a Y -value and Z-value within this tuple, and
then learning about the specific associated Y -value does not provide any infor-
mation about the specific associated Z-value. Previous research has established
an equivalence between the implication problem for SCI statements and that for
MVDs [18]. The equivalence proof between the implication of MVDs and that of
SCI statements was only syntactic in the sense that they both enjoy a common
axiomatization. In addition it is known that the implication problem of MVDs
can be decided in almost linear time [5], and that it is equivalent to that of for-
mulae in a Boolean propositional fragment F [16], even in nested databases with
finite list, and record constructors [10]. Indeed, Sagiv et al. showed that it suf-
fices to consider two-tuple relations in order to decide the implication problem of
MVDs. This enabled them to define truth assignments from two-tuple relations,
and vice versa, in such a way that the two-tuple relation satisfies an MVD if and
only if the truth assignment is a model for the F -formula that corresponds to
the MVD. It follows from these results that the implication of SCI statements
is equivalent to that of F -formulae.

Example 2. Let L = {M ′, A′, R′, C′, F ′, L′} denote a set of propositional vari-
ables. Let Σ′ consist of the formulae M ′ → ((A′∧R′∧C′)∨(F ′∧L′)) and M ′ →
((A′∧R′)∨(C′∧F ′∧L′)), let ϕ′

1 be the formulaeM ′ → (C′∨(A′∧R′∧F ′∧L′)),
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Fig. 1. Special Probability Models and their Correspondence to Truth Assignments

and let ϕ′
2 denote the formulaM ′ → (A′∨(C′∧R′∧F ′∧L′)). Indeed, Σ′ logically

implies ϕ′
1, but Σ

′ does not logically imply ϕ′
2. In fact, the truth assignment that

assigns true to M ′, C′, F ′, L′ and false to A′ and R′ is a model for the formulae
in Σ′ but not a model for ϕ′

2. #�

Contributions. The purpose of this paper is to establish a direct and explicit
correspondence between probability models for SCI statements and models for
F -formulae. Based on a new sound inference rule for the implication of SCI
statements we will develop a new completeness proof for Geiger and Pearls ax-
iomatization of SCI statements. The proof introduces probability models that
are special in the sense that two values have probability one half. The argument
shows, in particular, that the implication problem of SCI statements over discrete
probability models is the same as the implication problem of SCI statements over
special binary probability models. Example 1 illustrates the definition of such
a special probability model. Special probability models form the analogue of
Sagiv et al.’s two-tuple relations. Indeed, we use special probability models to
define truth assignments, and vice versa, in such a way that the special prob-
ability model satisfies an SCI statement ϕ if and only if the truth assignment
is a model for the F -formula ϕ′ that corresponds to ϕ. Example 2 shows the
definition of such a truth assignment. In fact, we simply assign true to variables
that correspond to attributes with matching values in the special probability
model. Figure 1 summarizes our contribution.

Organization. We give preliminary definitions in Section 2. The new complete-
ness proof for Geiger and Pearl’s axiomatization is established in Section 3,
introducing a new inference rule and special probability models. In Section 4
we establish the correspondence between special probability models and truth
assignments. We conclude in Section 5.

2 Saturated Conditional Independence

We use the framework of Geiger and Pearl [6]. We denote by S a finite set of
distinct symbols {s1, . . . , sn}, called attributes. A domain mapping is a mapping
that associates a set, dom(si), with each attribute si. This set is called the
domain of si and each of its elements is a value for si. For X = {a1, . . . , ak} ⊆ S
we say that x is a value of X , if x ∈ dom(a1)× · · · × dom(ak). For a value x of
X we write x(y) for the projection of x onto Y ⊆ X .
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Table 1. Axiomatization G = {T ,S ,C,W} and Algebra Rule

I(S −X, ∅ | X)

I(Y,Z | X)

I(Z, Y | X)
(saturated trivial independence, T ) (symmetry, S)

I(ZW,Y | X) I(Z,W | XY )

I(Z, YW | X)

I(Y,ZW | X)

I(Y,Z | XW )
(weak contraction, C) (weak union, W)

I(Y Y ′, ZZ′ | X) I(Y Z, Y ′Z′ | X)

I(Y Y ′Z,Z′ | X)
(algebra, A)

A probability model over a finite set of attributes S = {s1, . . . , sn} is a pair
(dom, P ) where dom is a domain mapping that maps each si to a finite domain
dom(si), and P : dom(s1) × · · · × dom(sn) → [0, 1] is a probability distribution
having the Cartesian product of these domains as its sample space.

Definition 1. The expression I(Y, Z | X) where X,Y and Z are disjoint subsets
of S is called a conditional independence (CI) statement over S. If XY Z = S,
we call I(Y, Z | X) a saturated CI (SCI) statement. Let (dom, P ) be a probability
model over S. A CI statement I(Y, Z | X) is said to hold for (dom, P ) if for
every value x of X, for every value y of Y , and for every value z of Z,

P (y, z,x) · P (x) = P (y,x) · P (z,x). (1)

Equivalently, (dom, P ) is said to satisfy I(Y, Z | X). #�

Let Σ∪{ϕ} be a set of SCI statements over S. We say that Σ implies ϕ, denoted
by Σ |= ϕ, if every probability model over S that satisfies every SCI statement
in Σ also satisfies the SCI statement ϕ. The implication problem is to decide the
following problem.

PROBLEM: Implication problem
INPUT: Schema S, Set Σ ∪ {ϕ} of SCI statements over S
OUTPUT: Yes, if Σ |= ϕ; No, otherwise

For Σ we let Σ∗ = {ϕ | Σ |= ϕ} be the semantic closure of Σ, i.e., the set of all
SCI statements implied by Σ. In order to determine the implied SCI statements
we use a syntactic approach by applying inference rules. These inference rules
have the form

premises

conclusion
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and inference rules without any premise are called axioms. An inference rule is
called sound, if every probability model over S that satisfies every SCI statement
in the premises of the rule also satisfies the SCI statement in the conclusion of the
rule. We let Σ &R ϕ denote the inference of ϕ from Σ by the set R of inference
rules. That is, there is some sequence γ = [σ1, . . . , σn] of SCI statements such
that σn = ϕ and every σi is an element of Σ or results from an application of
an inference rule in R to some elements in {σ1, . . . , σi−1}. For Σ, let Σ+

R = {ϕ |
Σ &R ϕ} be its syntactic closure under inferences by R. A set R of inference
rules is said to be sound (complete) for the implication of SCI statements, if
for every S and for every set Σ of SCI statements over S we have Σ+

R ⊆ Σ∗

(Σ∗ ⊆ Σ+
R). The (finite) set R is said to be a (finite) axiomatization for the

implication of SCI statements if R is both sound and complete.

Theorem 1 (Geiger and Pearl 1993). The set G = {T ,S, C,W} forms a
finite axiomatization for the implication of SCI statements. #�

3 A New Completeness Proof

In this section we establish a new proof that G is complete for the implication
of SCI statements. The new proof introduces a special probability model which
consists of two values with probability one half. For the definition of this special
probability model we introduce a new inference rule for SCI statements.

3.1 The Algebra Rule

Lemma 1. The algebra rule A can be derived from the symmetry S, weak union
W, and weak contraction rule C; and is thus sound.

Proof. We derive the algebra rule A from the symmetry S, weak union W , and
weak contraction rule C.

I(Y Z, Y ′Z ′ | X)

W : I(Y Z,Z ′ | XY ′)
I(Y Y ′, ZZ ′ | X) S : I(Z ′, Y Z | XY ′)

S : I(ZZ ′, Y Y ′ | X) W : I(Z ′, Z | XY Y ′)
C : I(Z ′, Y Y ′Z | X)

S : I(Y Y ′Z,Z ′ | X)

This concludes the proof. #�

Example 3. Recall the setting of Example 1. We can apply the symmetry rule
to the SCI statement I(ARC,FL | M) from Σ to infer the SCI statement
I(FL,ARC | M). We can then apply the algebra rule to the SCI statement
I(FL,ARC | M), and the SCI statement I(AR,CFL | M) from Σ to infer
the SCI statement I(ARFL,C | M); where Y = ∅, Y ′ = FL, Z = AR and
Z ′ = C. A final application of the symmetry rule to I(ARFL,C | M) results
in ϕ1. Hence, Σ implies ϕ1 due to the soundness of the symmetry and algebra
rules. #�



262 S. Link

3.2 The Independency Basis

For some S, and some set Σ of SCI statements over S, and some X ⊆ S let
IDepΣ(X) := {Y ⊆ S − X | Σ &G I(Y, Z | X)} denote the set of all Y ⊆
S − X such that I(Y, Z | X) can be inferred from Σ by G. The soundness of
the algebra rule implies that (IDepΣ(X),⊆,∪,∩, (·)C , ∅, S − X) forms a finite
Boolean algebra where (·)C maps a set W to its complement S − (XW ). Recall
that an element a ∈ P of a poset (P,5, 0) with least element 0 is called an
atom of (P,5, 0) precisely when a �= 0 and every element b ∈ P with b 5 a
satisfies b = 0 or b = a. Further, (P,5, 0) is said to be atomic if for every
element b ∈ P − {0} there is an atom a ∈ P with a 5 b. In particular, every
finite Boolean algebra is atomic. Let IDepBΣ(X) denote the set of all atoms
of (IDepΣ(X),⊆, ∅). We call IDepBΣ(X) the independency basis of X with
respect to Σ. Its importance is manifested in the following result.

Theorem 2. Let Σ be a set of SCI statements over S. Then Σ &G I(Y, Z | X)
if and only if Y =

⋃
Y for some Y ⊆ IDepBΣ(X).

Proof. Let Y ∈ IDepΣ(X). Since every element b of a Boolean algebra is the
union over those atoms a with a ⊆ b it follows that Y =

⋃
Y for Y = {W ∈

IDepBΣ(X) | W ⊆ Y }. Vice versa, let Y =
⋃
Y for some Y ⊆ IDepBΣ(X).

Since I(W,W ′ | X) ∈ Σ+
G holds for every W ∈ Y successive applications of the

algebra rule result in I(Y, Z | X) ∈ Σ+
G . #�

Example 4. Recall Example 1 where Σ consist of I(ARC,FL | M) and
I(AR,CFL | M). It follows that IDepΣ(M) = {M,AR,C, FL}. Indeed,
for I(C,ARFL | M) we have C ∈ IDepΣ(M), and, thus, Σ |= ϕ1. Also,
A /∈ IDepΣ(M) and, thus, Σ |= ϕ2 does not hold as ϕ2 = I(A,CRFL |M). #�

3.3 Completeness

The original completeness proof for multivalued dependencies constructs a
counter-example relation with 2k tuples [1], where k denotes the elements in the
(in)dependency basis for the multivalued dependency X → Y | Z /∈ Σ+. The
original completeness proof for SCI statements constructs a probability model
with 2|X|+1 values, where I(Y, Z | X) /∈ Σ+

G [6]. Here, a new technique, only
recently developed for multivalued dependencies [8], is generalized to define spe-
cial probability models with two values of probability one half. Our technique
therefore extends the existence of special probability models from the case of
marginal SCI statements I(Y, Z | ∅) [6] to general SCI statements.

Theorem 3. The set G is complete for the implication of SCI statements.

Proof. Let Σ ∪ {I(Y, Z | X)} be a set of SCIs over S, and suppose that
I(Y, Z | X) cannot be inferred from Σ using G. We will show that I(Y, Z | X) is
not implied by Σ. For this purpose, we will construct a probability model that
satisfies all SCI statements of Σ, but violates I(Y, Z | X).
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Let IDepBΣ(X) be the disjoint union of {{a} | a ∈ X} and {W1, . . . ,Wk}, in
particular S = XW1 · · ·Wk. Since I(Y, Z | X) /∈ Σ+

G we conclude by Theorem 2
that Y is not the union of some elements of IDepBΣ(X). Consequently, there is
some i ∈ {1, . . . , k} such that Y ∩Wi �= ∅ and Y −Wi �= ∅ hold. For every a ∈ S
we define dom(a) = {0,1}. We define the following two values v1 and v2 of S.
We define v1(a) = 0 for all a ∈ S. We further define v2(a) = 1 iff a ∈ Wi , and
v2(a) = 0, otherwise. As probability measure we define P (v1) = P (v2) = 0.5.
It follows from the construction that (dom, P ) does not satisfy I(Y, Z | X).

It remains to show that (dom, P ) satisfies every SCI statement I(V,W | U)
in Σ. Suppose that for some value u of U , P (u) = 0. Then equation (1) will
always be satisfied. If P (u,v) = 0 or P (u,w) = 0 for some value u of U , and
for some value v of V or for some value w of W , then P (u,v,w) = 0. Then
equation (1) is also satisfied. Suppose that for some value u of U , P (u) = 0.5.
If for some value v of V and for some value w of W , P (u,v) = P (u,w) = 0.5,
then P (u,v,w) = 0.5, too. It remains to consider the case where u is a value of
U such that P (u) = 1. In this case, the construction of the probability model
tells us that U ⊆ XT where T = W1 · · ·Wi−1Wi+1 · · ·Wk. Consequently, we
can apply the weak union and symmetry rules to I(V,W | U) ∈ Σ to infer
I(V −XT,W−XT | XT ) ∈ Σ+

G . Theorem 2 also shows that I(Wi, T | X) ∈ Σ+
G .

However, Wi = (V − XT )(W − XT ). An application of the weak contraction
rule to I((V −XT )(W −XT ), T | X) and I(V −XT,W −XT | XT ) results in
I(V −XT, T (W−XT ) | X). It follows from Theorem 2 that V −XT is the union
of elements from IDepBΣ(X). Suppose first that V −XT = Wi. Then, we are
either in the previous case where P (u,v) = 0 or P (u,w) = 0; or P (u,v) = 0.5,
P (u,w) = 1 and P (u,v,w) = 0.5. Otherwise, V − XT = ∅. Then, we are
either in the previous case where P (u,v) = 0 or P (u,w) = 0, or P (u,v) = 1,
P (u,w) = 0.5 and P (u,v,w) = 0.5. This concludes the proof. #�

We call a probability model (dom, P ) over S special, if for every a ∈ S, dom(a)
consists of two elements, and there are two values v1, v2 over S such that P (v1) =
0.5 = P (v2). We say that Σ implies ϕ in the world of special probability models,
denoted by Σ |=2 ϕ, if every special probability model over S that satisfies every
SCI statement in Σ also satisfies the SCI statement ϕ. The following variant of
the implication problem for SCI statements emerges.

PROBLEM: Implication problem in the world of special probability models
INPUT: Schema S, Set Σ ∪ {ϕ} of SCI statements over S
OUTPUT: Yes, if Σ |=2 ϕ; No, otherwise

The proof of Theorem 3 implies the following result.

Corollary 1. The implication problem for SCI statements coincides with the
implication problem for SCI statements in the world of special probability models.

Proof. LetΣ∪{ϕ} be a set of SCI statements over S.We need to show thatΣ |= ϕ
if and only if Σ |=2 ϕ. If it does not hold that Σ |=2 ϕ, then it also does not
hold that Σ |= ϕ since every special probability model is a probability model.
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Vice versa, if it does not hold that Σ |= ϕ, then it does not hold that Σ &G ϕ
sinceG is sound for the implication of SCI statements. However, the proof of The-
orem 3 shows how to construct a special probability model that satisfies every SCI
statement in Σ but does not satisfy ϕ. Hence, it does not hold that Σ |=2 ϕ. #�

Corollary 1 shows that to decide the implication problem for SCI statements
over S it suffices to check special probability models over S.

Example 5. Recall from before that in the setting of Example 1, Σ does not
imply ϕ2 = I(A,CRFL | M), where IDepΣ(M) = {M,AR,C, FL}. One may
define a special probability model based on the values

(The Seven Samurai, T. Mifune, Kikuchiyo, A. Kurosawa, Subtitle, English) &
(The Seven Samurai, T. Shimura, K. Shimada, A. Kurosawa, Subtitle, English).

The special probability model satisfies the SCI statements in Σ but violates ϕ2.
Hence, Σ does not imply ϕ2 in the world of special probability models. #�

4 Characterization by a Propositional Fragment

In this section we will define the mapping between SCI statements and formulae
in a Boolean propositional fragment. We then present a semantic proof for the
equivalence of the implication problem for SCI statements and the implication
problem for the Boolean propositional fragment. We assume familiarity with
basic notions from Boolean propositional logic [3]. We are interested in propo-
sitional formulae of the form (a′1 ∧ · · · ∧ a′n)→ ((b′1 ∧ · · · ∧ b′m) ∨ (c′1 ∧ · · · ∧ c′k))
where a′i, b

′
j , c

′
l denote propositional variables. We assume that conjunction ∧

binds stronger than disjunction ∨, and disjunction ∨ binds stronger than ma-
terial implication →. Hence, the formula above becomes: a′1 ∧ · · · ∧ a′n →
b′1 ∧ · · · ∧ b′m ∨ c′1 ∧ · · · ∧ c′k. Formulae in this fragment are denoted by either
σ′ or ϕ′, and sets of such formulae by Σ′. The satisfaction of a formula ϕ′ by a
truth assignment ω′ is denoted by |=ω′ ϕ′. We also say that ω′ is a model of ϕ′.
We write Σ′ |= ϕ′ to say that Σ′ logically implies ϕ′, i.e., every truth assignment
that satisfies every formula in Σ′ also satisfies ϕ′.

4.1 The Propositional Fragment F
As a first step, we define the Boolean fragment F that corresponds to SCI
statements. Let φ : S → L denote a bijection between a set S of attributes
and the set L = {a′ | a ∈ S} of propositional variables. We extend φ to a
mapping Φ from the set of SCI statements over S to the set L. For an SCI
statement I(Y, Z | X) over S, let Φ(I(Y, Z | X)) denote the formula

∧
a∈X a′ →∧

b∈Y b′ ∨
∧
c∈Z c′. Disjunctions over zero disjuncts are interpreted as F and

conjunctions over zero conjuncts are interpreted as T. We will simply denote
Φ(ϕ) = ϕ′ and Φ(Σ) = {Φ(σ) | σ ∈ Σ} = Σ′. Example 2 shows the F -formula
that correspond to the SCI statements from Example 1.
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4.2 Special Truth Assignments

We will now show that for any set Σ ∪ {ϕ} of SCI statements over S there
is a probability model π = (dom, P ) over S that satisfies Σ and violates ϕ if
and only if there is a truth assignment ω′

π that is a model of Σ′ but not a
model of ϕ′. For arbitrary probability models π it is not obvious how to define
the interpretation ω′

π. However, the key to showing the correspondence between
counterexample probability models and counterexample truth assignments is
Corollary 1. Corollary 1 tells us that for deciding the implication problem Σ |= ϕ
it suffices to examine special probability models (instead of arbitrary probability
models). For a special probability model π = (dom, {v1,v2}), however, we can
define its corresponding special truth assignment ω′

π of L as follows:

ω′
(dom,{v1,v2})(a

′) =
{
T , if v1(a) = v2(a)
F , otherwise

.

Next we justify the definition of the special truth assignment and that of the
Boolean fragment F in terms of the special probability models.

Lemma 2. Let π = (dom, {v1,v2}) be a special probability model over S, and
let ϕ denote an SCI statement over S. Then π satisfies ϕ if and only if ω′

π is a
model of ϕ′.

Proof. Let ϕ = I(Y, Z | X) and ϕ′ =
∧
a∈X a′ →

∧
b∈Y b′ ∨

∧
c∈Z c

′. Suppose
first that π satisfies ϕ. We need to show that ω′

π is a model of ϕ′. Assume
that ω′

π(a
′) = T for all a ∈ X . According to the special truth assignment we

must have v1(a) = v2(a) for all a ∈ X . That means P (v1(X)) = 1. Suppose
that for some b ∈ Y we have ω′

π(b
′) = F. Then v1(b) �= v2(b) according to the

special truth assignment. Then P (v1(XY )) = P (v1) = 0.5. However, since π
satisfies ϕ we must have P (v1(XZ)) = 1. Hence, for every c ∈ Z, we cannot
have v1(c) �= v2(c). This means that for all c ∈ Z we have ω′

π(c) �= F. This shows
that ω′

π is a model of ϕ′.
Suppose ω′

π is a model of ϕ′. We need to show that π satisfies ϕ. That is,
for every value x of X , and every value y of Y , and every value z of Z, that
P (x) · P (x,y, z) = P (x,y) · P (x, z) holds. We distinguish between a few cases.

Case 1. Certainly, if P (x,y) = 0 or P (x, z) = 0, then P (x,y, z) = 0, too. For
the remaining cases we can therefore assume that P (x,y) > 0 and P (x, z) > 0.
In particular, P (x) > 0.

Case 2. Suppose P (x) = 1. It follows that v1(a) = v2(a) for all a ∈ X . Conse-
quently, ω′

π(a
′) = T for all a ∈ X . Since ω′

π is a model of ϕ′ we conclude that
ω′
π(b

′) = T for all b ∈ Y , or ω′
π(c

′) = T for all c ∈ Z. This, however, would mean
that P (x,y) = 1 or P (x, z) = 1. Since ϕ is saturated, it follows that exactly one
of P (x,y) and P (x, z) is 1, and the other 0.5. Consequently, (x,y, z) equals v1

or v2. Hence, P (x,y, z) = 0.5. It follows that π satisfies ϕ.

Case 3. Suppose that P (x) = 0.5. Then P (x,y) = 0.5 = P (x, z). Then (x,y, z)
equals v1 or v2, as P (x) would have to be 1 otherwise. Hence, P (x,y, z) = 0.5.

#�
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The equivalence between special probability models and special truth assign-
ments extend the existing equivalence between two-tuple relations for multival-
ued dependencies and special truth assignments [4,8,16].

4.3 The Equivalence

Corollary 1 and Lemma 2 allow us to establish the anticipated equivalence be-
tween probability models and propositional truth assignments.

Theorem 4. Let Σ ∪ {ϕ} be a set of SCI statements over some set S of at-
tributes, and let Σ′ ∪ {ϕ′} denote the set of its corresponding Boolean formulae
over L. Then Σ |= ϕ if and only if Σ′ |= ϕ′.

Proof. Based on Corollary 1 it remains to establish the equivalence between
Σ |=2 ϕ and Σ′ |= ϕ′. Suppose first that Σ |=2 ϕ does not hold. Then there is
some special probability model π over S that satisfies every SCI statement σ in
Σ but violates ϕ. Let ω′

π denote the special truth assignment associated with
π. By Lemma 2 it follows that ω′

π satisfies every formula σ′ in Σ′ but violates
ϕ′. Consequently, Σ′ |= ϕ′ does not hold. Suppose now that Σ′ |= ϕ′ does not
hold. Then there is some truth assignment ω′ over L that is a model for every
formula σ′ in Σ, but not a model for the formula ϕ′. Define the following special
probability model π = (dom,P ) over S: for all a ∈ S, let v1(a) = v2(a) if and
only if ω′(a′) = T. It follows that ω′

π = ω′. By Lemma 2 it follows that π satisfies
every SCI statement σ in Σ but violates ϕ. Hence, Σ |=2 ϕ does not hold. #�

Example 2 illustrates the equivalences of the special truth assignments and
probability models.

5 Conclusion

Saturated conditional independence statements form an important subclass of
conditional independence statements since their associated implication problem
is finitely axiomatizable and decidable in almost linear time. We have estab-
lished a new completeness proof for Geiger and Pearl’s axiomatization of SCI
statements. The proof shows that, in order to decide the implication problem of
SCI statements over discrete probability models, it suffices to consider special
binary probability models where two values have probability one half. Special
probability models allow us to establish a semantic proof for the equivalence
between the implication problem of i) SCI statements, ii) a fragment of Boolean
propositional logic, and iii) multivalued dependencies in relational and nested
relational databases.
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Abstract. In this paper, inspired in the field of belief revision, it is pre-
sented a novel operation for defining a new logic given a known logic.
The operation consists in removing some (maybe undesirable) derived
rule from a logic. Besides removing the ‘undesirable’ rule, this opera-
tion (called contraction) should change the logic in a minimal way. This
paper presents formal definitions for contraction operations over logics,
both as sets of rationality postulates and by means of concrete construc-
tions. This allowed us to generalize several notions of maximality of logics
presented in the literature. Furthermore, the proposed constructions are
applied to the study of some paraconsistent and intermediate logics.

1 Introduction

Belief revision is a subfield of knowledge representation that studies the dynamics
of propositional theories [AGM85]. The dynamics of the theories is given by a
set of operations (contraction, revision, expansion etc.) which are defined via
sets of rationality postulates.

The first papers in the field restricted themselves to the study of the dynamics
of theories within supra-classical logics, but recently it was showed how this can
be generalized to several other non-classical logics [Rib12]. In this paper it is
presented a way to generalize belief revision techniques even more.

Instead of considering operations for changing a theory within a given logic,
it is presented operations that change the logic itself. This paper focuses on
contraction operations i.e. operations that given a logic returns another logic
where certain rule doesn’t hold.

Firstly a set of rationality postulates that the operation should satisfy is pre-
sented. This includes some kind of minimality criterion concerning the change
needed to perform the operation. The techniques involved lead us naturally to
the notion of maximality of logics. The constructions proposed here generalize
several notions of maximality considered in the literature. After this, represen-
tation theorems relating the constructions defined here with sets of postulates
are obtained. Finally, several examples involving paraconsistent, paracomplete
and super-intuitionistic logics are shown.

2 Preliminaries

In this section we recall the basic notions to be used along the paper.
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Definition 1. A (Tarskian) consequence system is a pair 〈For, Cn〉 such that
For is a set (whose elements are called formulas) and Cn : ℘For → ℘For is a
map satisfying, for every Γ,Δ ⊆ For:

– Γ ⊆ Cn(Γ ) (extensiveness)
– if Γ ⊆ Δ then Cn(Γ ) ⊆ Cn(Δ) (monotonicity)
– Cn(Cn(Γ )) ⊆ Cn(Γ ) (idempotence)

The map Cn : ℘For → ℘For is called a consequence operator. We say that
〈For, Cn〉 is compact if Cn(Γ ) =

⋃
{Cn(Γ0) : Γ0 is a finite subset of Γ}.

The usual consequence systems are defined over formal languages generated
by signatures.

Definition 2. A (propositional) signature is a family of sets C = {Cn}n∈N such
that Ci ∩ Cj = ∅ if i �= j, and C0 �= ∅.

The elements of Cn are called n-ary connectives. The elements of C0, in partic-
ular, are called propositional variables. Let Ξ be a given set of symbols called
schema variables.

Definition 3. Let C = {Cn}n∈N be a signature. The propositional schema lan-
guage generated by C is the algebra L(C,Ξ) of type C freely generated by Ξ∪C0.
The propositional language generated by C is the algebra L(C) of type C freely
generated by C0.

The elements of L(C,Ξ) (of L(C), resp.) are called schema formulas (formulas,
resp.) over C. Note that C0 ⊆ L(C) ⊆ L(C,Ξ).

Definition 4. A Hilbert calculus is a pair H = 〈C,R〉 such that C is a signature,
and R is a set of inference rules, that is, a set of pairs 〈Δ,ϕ〉 where Δ ∪ {ϕ} is
a finite subset of L(C,Ξ).

When Δ = ∅ we say that the inference rule is an axiom. The notion of derivation
in a Hilbert calculus is the usual one. Before that it is necessary to introduce
the notion of substitution.

A substitution over C is a map σ : Ξ → L(C,Ξ). A substitution can be
extended to a unique C-homomorphism σ̂ : L(C,Ξ) → L(C,Ξ) as usual. We
denote by σ̂(Δ) the set of schema formulas {σ̂(ψ) : ψ ∈ Δ}, for Δ ⊆ L(C,Ξ).
Finally, let Subs(C) = {σ : σ is a substitution over C}.

Definition 5. A derivation of ϕ ∈ L(C,Ξ) in H from a set Γ ⊆ L(C,Ξ) is a
sequence ϕ1 . . . ϕn such that ϕn = ϕ and, for i = 1, . . . , n, each ϕi is either an
element of Γ or there is a substitution σ and an inference rule 〈Δ,ϕ〉 in H such
that σ̂(ϕ) is ϕi and, for every ψ ∈ Δ, σ̂(ψ) is ϕj for some j < i.

We say that ϕ is derived from Γ in H, denoted by Γ &H ϕ, if there is a
derivation of it in H from Γ .
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If H is a Hilbert calculus then its set of rules will be frequently denoted by RH .
Given two Hilbert calculi Hi = 〈C,Ri〉 over C (for i = 1, 2) we say that H1 is
a subcalculus of H2, denoted by H1 ⊆ H2, if R1 ⊆ R2. Given H = 〈C,R〉 over
C then the closure of the set of rules R is the set of rules Cl(R) = {〈Δ,ϕ〉 :
Δ &H ϕ}. The closure of H is the Hilbert calculus Cl(H) = 〈C,Cl(R)〉. If
r ∈ Cl(R) then r is a derived rule of H . Let CnH : ℘(L(C,Ξ)) → ℘(L(C,Ξ))
be the consequence operator generated by H as expected: CnH(Γ ) = {ϕ :
Γ &H ϕ}. This consequence operator is Tarskian and structural, that is: for every
substitution σ and every set of schema formulas Γ , σ̂(CnH(Γ )) ⊆ CnH(σ̂(Γ )).
We say that 〈L(C,Ξ), CnH〉 is the consequence system, associated to the Hilbert
calculus H . If R(C) =def ℘f (L(C,Ξ))×L(C,Ξ) denotes the set of all rules over
C, it is easy to see that 〈R(C), Cl〉 is a compact and structural consequence
system, where ℘f (X) denotes the set of finite subsets of a set X , and where σ̂(r)
is defined in the obvious way for every r ∈ R(C) and every σ ∈ Subs(C).

3 Rationality Postulates

Given a Hilbert calculus H over C we want to define an operation − that for
each rule r = 〈Δ,ϕ〉 over C returns a Hilbert calculus H−r over C that satisfies
certain properties:

(inclusion) H − r ⊆ H

Inclusion states that the result of a contraction in H is a subcalculus of H .

(success) If ϕ �∈ Δ (i.e. r �∈ Cl(∅)) then Δ �H−r ϕ.

Success states that the resulting calculus should not derive the rule r, unless
this is impossible. The only case when it is impossible to remove r from H is
when ϕ is a substitution of some element of Δ i.e. if r is a derived rule in any
Hilbert calculus, by extensiveness.

(failure) If ϕ ∈ Δ (i.e. r ∈ Cl(∅)) then H ⊆ H − r.

Failure states that if r is a derived rule in any Hilbert calculus, then the
contraction − over H should not remove any element from H . Together with
inclusion, failure postulate states that H − r = H if r ∈ Cl(∅). In other words,
in this case the contraction should fail.

Besides these, we need some postulate that guaranties the minimality of
change i.e. that guarantees that only derivations relevant to prove r should be
removed. Next section investigate possible minimality postulates.

So far postulates for contraction over an arbitrary Hilbert calculus were pre-
sented. A criticism one can make to this approach is that it compromises itself
with one specific axiomatization for a logic.

One way to abstract away the specificity of certain choice of a set of rules R is
to consider the closure of H = 〈C,R〉, that is, the calculus Cl(H) = 〈C,Cl(R)〉.
Observe that 〈L(C,Ξ), Cl(R)〉 is a Tarskian, compact and structural conse-
quence system which represents the logic generated by H . For this reason it
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is more robust to consider the contraction over the closure of H instead of H
itself.

Let us then define a contraction − over a closed Hilbert calculus H (i.e. where
H = Cl(H)). In this case we want the result of a contraction − over H to be
also a closed Hilbert calculus:

(closure) H − r = Cl(H − r)

The other postulates for contraction over closed Hilbert calculi are the same
we already stated.

3.1 Minimality Criteria

In belief revision literature we can find several minimality postulates: recovery,
relevance, core-retainment, fullness etc. (see [Han99]). We will focus here in two
of these postulates, namely, relevance and fullness.

(fullness) If r′ ∈ RH and r′ /∈ RH−r then r ∈ Cl(RH−r ∪ {r′}).

Fullness states that if some rule r′ was removed fromH after contraction then
re-inserting r′ should recover the rule r.

It will be sometimes useful to weaken this postulate to guarantee that only
axioms r′ = 〈∅, ϕ′〉 may be removed from H .

(weak fullness) If r′ ∈ RH is an axiom and r′ /∈ RH−r then r ∈ Cl(RH−r ∪
{r′}).

However, it is pointed out in the literature that these postulates may be too
strong for certain purposes. Relevance is a weaker version of this postulate (see
[Han91]):

(relevance) If r′ ∈ RH and r′ /∈ RH−r then there is H ′ such that H − r ⊆
H ′ ⊆ H , r /∈ Cl(H ′) and r ∈ Cl(RH′ ∪ {r′}).

Relevance states that if r′ is removed then there is some intermediary calculus
H ′ such that r is not a derived rule in H ′ but r is a derived rule if r′ is added.
Again we can define a weak version of the postulate which is concerned only
with derived axioms, not derived rules in general:

(weak relevance) If r′ ∈ RH is an axiom and r′ /∈ RH−r then there is H ′

such that H − r ⊆ H ′ ⊆ H , r /∈ Cl(H ′) and r ∈ Cl(RH′ ∪ {r′}).

Notice that relevance implies failure:

Lemma 6. Let H be a Hilbert calculus over C. If − over H satisfies relevance
then H satisfies failure.

As will be shown in section 4, these minimality postulates are related with a
construction called remainder set.
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4 Maximality

In previous sections we presented a set of postulates for a contraction operation
over a Hilbert calculus which may or may not be closed. We argued that mini-
mality is a desirable property of the operation, i.e. contraction should change the
logic as little as possible. This desiderata is closely related to the notion of max-
imal logics. In this section we will investigate different definitions for maximal
logic presented in the literature and we will present a definition which generalizes
them.

Usually, a logic L1 is said to be maximal w.r.t. another logic L2 when both are
defined over the same language, the consequence relation &L1 of L1 is contained
in &L2 and, if ϕ is a schema formula such that &L2 ϕ but �L1 ϕ then the
extension of L1 obtained by adding ϕ as a valid schema coincides with L2.
In our framework if L1 is given by the closure of a Hilbert calculus H1 then
Cl(RL1 ∪ {〈∅, ϕ〉}) = RL2 whenever 〈∅, ϕ〉 ∈ RL2 \RL1 .

For example, a logic over a signature C is Post complete if it is maximal w.r.t.
the trivial logic TrivC = 〈C,R(C)〉 over C.

Another definition of maximality found in the literature comes from [AAZ10].
In this article the authors defined a logic L as being maximal w.r.t. a rule (in
their case the principle of explosion 〈{¬ξ1, ξ1}, ξ2〉). They define two types of
maximality: strong and weak. The logic L1 seeing as a closed Hilbert calculus
is strongly maximal w.r.t. a rule r /∈ RL1 if for every logic L2 such that RL1 ⊂
RL2 we have that r ∈ Cl(L2). Using this definition the authors proved that
several three-valued logics, such as P1 and J3, are maximal w.r.t. the principle
of explosion.

We will borrow a concept from belief revision literature to generalize the
notions of maximality.

Definition 7 (Remainder set). Let H be a Hilbert calculus over C and R be
a set of rules over C. A remainder set H⊥R is a set such that X ∈ H⊥R iff:

1 X ⊆ H (X is a subcalculus of H).
2 R � Cl(RX) (there is some r ∈ R that is not a derived rule in X).
3 If X ⊂ X ′ ⊆ H then R ⊆ Cl(RX′) (X is maximal).

The remainder set H⊥R is the set of all maximal subcalculus X of H such that
some rule in R is not a derived rule in X . We can also define a weak version of
remainder set, denoted by H⊥wR, by changing item 3 in the above definition
to:

3’ For any axiom r ∈ RH \RX we have that R ⊆ Cl(RX ∪ {r}).

Example 8. Consider the following Hilbert calculus HCPL = 〈C,R〉 for Classi-
cal Propositional Logic (CPL). Let C = {P, {¬}, {∧,∨,→}} where P denote the
set of propositional variables, and let R be the following set of rules1:

1 In this example we will identify an axiom 〈∅, ϕ〉 with ϕ.
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(Ax1) ξ1 → (ξ2 → ξ1) (Ax2) ξ1 → (ξ2 → (ξ1 ∧ ξ2))
(Ax3) (ξ1 ∧ ξ2)→ ξ1 (Ax4) (ξ1 ∧ ξ2)→ ξ2
(Ax5) ξ1 → (ξ1 ∨ ξ2) (Ax6) ξ2 → (ξ1 ∨ ξ2)
(Ax7) ξ1 → (¬ξ1 → ξ2) (Ax8) ξ1 ∨ ¬ξ1
(Ax9) (ξ1 → (ξ2 → ξ3))→ ((ξ1 → ξ2)→ (ξ1 → ξ3))
(Ax10) (ξ1 → ξ2)→ ((ξ3 → ξ2)→ (ξ1 ∨ ξ3 → ξ2))
(Ax11) (ξ1 → ξ2)→ ((ξ1 → ¬ξ2)→ ¬ξ1)
(MP ) 〈{ξ1, ξ1 → ξ2}, ξ2〉

Let r = 〈{¬¬ξ}, ξ〉. It is well known that r ∈ Cl(HCPL). Consider now the
Hilbert calculus HInt = 〈C,R \ {Ax8}〉 for Intuitionistic logic. It is also well
known that r /∈ Cl(HInt). Hence, it is trivial to show that HInt ∈ HCPL⊥{r}.

Notice that this is strongly dependent on the choice of the rules. This is why
it is important to consider the contraction operation not over arbitrary Hilbert
calculi, but over closed Hilbert calculi.2

The above example shows the limitation of using an arbitrary Hilbert calculus
H in the definition of remainder set. We will be more interested in applications
where H is closed. In this case, we can prove that the elements of H⊥R are also
closed:

Lemma 9. If H = Cl(H) and X ∈ H⊥R then X = Cl(X).

As a first application of our framework, let us show that the notions of maxi-
mality presented above can be represented using remainder sets:

– A logic L1 seeing as a closed Hilbert calculus is maximal w.r.t. a logic L2 iff
L1 ∈ L2⊥wRL2 .

– A logic L over a signature C is strongly maximal w.r.t. a rule r iff L ∈
TrivC⊥{r}.

– A logic L over C is weakly maximal w.r.t. a rule r iff L ∈ TrivC⊥w{r}.
– A logic L over C is Post complete iff L ∈ TrivC⊥wRTrivC .

Now let us show some useful propositions about remainder sets.

Proposition 10. Let H be an arbitrary Hilbert calculus and let R1 and R2 be
sets of rules. If X ∈ H⊥R1, R2 ⊆ R1 ⊆ RH and R2 � Cl(RX) then X ∈ H⊥R2.

This proposition states that if we know that X ∈ H⊥R1 and we know that
a subset R2 of R1 also contains some rule that is not derived from X then
X ∈ H⊥R2.

Recall that P1 was introduced in [Set73] as a three valued paraconsistent logic
axiomatized by a Hilbert calculus over a signature just containing ¬ and→. We
know from [Set73] that P1 is maximal w.r.t. CPL, that is P1 ∈ CPL⊥wRCPL,
when both logics are considered as closed Hilbert calculi. Furthermore, we know
that r = 〈{ξ1,¬ξ1}, ξ2〉 /∈ RP1 and that r ∈ RCPL. Hence, we have the following
corollary of Proposition 10:

2 Notice that similar problems arise when using belief base contraction instead of belief
set contraction.
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Corollary 11. P1 ∈ CPL⊥w{〈{ξ1,¬ξ1}, ξ2〉}.

The logic I1 was introduced in [SC95] as a three valued paracomplete logic (dual
to P1) axiomatized by a Hilbert calculus over a signature just containing ¬ and
→. From [SC95] we know that I1 is maximal w.r.t.CPL, i.e. I1 ∈ CPL⊥wRCPL.
Furthermore, the rule of double negation r = 〈{¬¬ξ1}, ξ1〉 doesn’t hold in I1.

The Smetanich’s logic Sm is another example of logic where the rule of double
negation fails. Sm is the greatest super-intuitionistic logic (cf. [CZ97]), i.e. Int ⊂
Sm ∈ CPL⊥wRCPL. From this, clearly I1 is not super-intuitionistic.

Since 〈{¬¬ξ1}, ξ1〉 ∈ RCPL, we have the following corollaries:

Corollary 12. I1 ∈ CPL⊥w{〈{¬¬ξ1}, ξ1〉}.

Corollary 13. Sm ∈ CPL⊥w{〈{¬¬ξ1}, ξ1〉}.

Proposition 10 showed a relation that holds when we fix the Hilbert calculus
H and change the set of rules. The following proposition states a relation that
holds when we fix the set of rules R and change the Hilbert calculus.

Proposition 14. Let H1 and H2 be arbitrary Hilbert calculi and let R be a set
of rules. If X ∈ H1⊥R and X ⊆ H2 ⊆ H1 then X ∈ H2⊥R.

The logic J3, introduced in [DdC70], is a paraconsistent three valued logic that
can be defined over the signature C = 〈P∪ {⊥}, {¬}, {∧,∨,→}〉. From [AAZ10]
we know that J3 is strongly maximal w.r.t. the principle of explosion, that is
J3 ∈ TrivC⊥{〈{¬ξ1, ξ1}, ξ2〉}. The following corollary is a consequence of the
fact that J3 ⊆ CPL ⊆ TrivC:

Corollary 15. J3 ∈ CPL⊥{〈{¬ξ1, ξ1}, ξ2〉}.

The following results analyze the connection between the notions of remainder
sets and weak remainder sets just introduced. The main purpose is to obtain
sufficient conditions in order to guarantee the equivalence between both notions.

Lemma 16. Let H = 〈C,R〉 be a Hilbert calculus over C, r = 〈{γ1, . . . , γn}, ϕ〉
a rule over C and Hr = 〈C,R ∪ {r}〉. Assume that H has (possibly derived)
connectives → (binary) and ∼ (unary) such that the following holds:

1. ξ1, (ξ1 → ξ2) &H ξ2;
2. &H ξ1 → (ξ2 → ξ1);
3. ∼ξ1 &H (ξ1 → ξ2);
4. If Γ, ξ1 &Hr ξ2 and Γ,∼ξ1 &Hr ξ2 then Γ &Hr ξ2, for every Γ .

Let ξ be a schema variable not occurring in r. Then

(ξ → γ1), . . . , (ξ → γn) &Hr (ξ → ϕ).
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Corollary 17. Let H and Hr as in Lemma 16. Assume that H satisfies the
Deduction Meta-Theorem (MTD) with respect to →: Γ, α &H β implies Γ &H
(α→ β), for every α, β. Then Hr also satisfies MTD with respect to →.

Corollary 18. Let H and Hr as in Corollary 17 for r = 〈{γ1, . . . , γn}, ϕ〉. Let
Hr = 〈C,R ∪ {〈∅, γ1 → (γ2 → (. . . → (γn → ϕ) . . .))〉}〉. Then the consequence
systems generated by Hr and Hr coincide, that is: Cl(Hr) = Cl(Hr).

Theorem 19. Let H and H ′ be closed Hilbert calculi over C such that H ⊆ H ′.
Assume that H satisfies the conditions of Corollary 17 for every rule r over C,
and that H ′ satisfies MTD with respect to→. Then, H ∈ H ′⊥wR iff H ∈ H ′⊥R
for every R ⊆ R(C).

With Theorem 19 we can now prove that both I1 and P1 are not only weakly
maximal, but also strongly maximal w.r.t. CPL:

Proposition 20. Let CPL be the Classical Propositional Logic in the signature
containing just→ and ¬, seeing as closed Hilbert set. Then we have the following:

1. I1 ∈ CPL⊥RCPL and
2. I1 ∈ CPL⊥{〈{¬¬ξ1}, ξ1〉}.

Proposition 21. Let CPL be the Classical Propositional Logic as in Proposi-
tion 20. Then the following holds:

1. P1 ∈ CPL⊥RCPL and
2. P1 ∈ CPL⊥{〈{¬ξ1, ξ1}, ξ2〉}.

5 Representation Theorems

In Section 3 we enumerated a set of rationality postulates for a contraction op-
eration. In Section 4 we claimed that this operation is related with a notion of
maximality which we explored. This section presents constructions for contrac-
tion. Each of them is proved to be characterized by a specific set of rationality
postulates.

The following is an important lemma related to remainder sets called upper-
bound lemma. This result was adapted from a similar one in belief revision field
found in [AM81].

Lemma 22 (upper-bound). Let H and X be Hilbert Calculi such that X ⊆ H
and let R be a finite set of rules, all over a signature C. If R � Cl(X) then

1. there is some H ′ such that X ⊆ H ′ ∈ H⊥R and
2. there is some H ′′ such that X ⊆ H ′′ ∈ H⊥wR.

Consider now a Hilbert calculus H and a rule r both over the same signature.
A (strong) subset selection function is any function Υ that satisfies the following
properties:
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1. Υ (H, r) �= ∅;
2. Υ (H, r) ⊆ H⊥{r} if H⊥{r} �= ∅;
3. Υ (H, r) = {H} if H⊥{r} = ∅.

A weak subset selection function is defined analogously using weak remainder
set instead of remainder set. Now consider the following construction for some
selection function Υ :

H −Υ r =
⋂

Υ (H, r)

In the belief revision field this construction is called partial meet contraction (cf.
[AGM85]). Any partial meet contraction satisfies success, inclusion and failure.
It also satisfies relevance or weak relevance depending if Υ is a weak or a strong
selection function. Furthermore, if H is closed, by Lemma 9 and the fact that the
intersection of closed Hilbert calculi is closed, partial meet contraction satisfies
closure.

Theorem 23. For any weak subset selection function Υ , the contraction −Υ
over H defined as H −Υ r =

⋂
Υ (H, r) satisfies success, inclusion, failure and

weak relevance. Furthermore:

– If Υ is a (strong) subset selection function then −Υ also satisfies relevance.
– If H is closed then −Υ satisfies closure

Besides satisfying the postulates, the following theorem shows that, in fact, the
postulates fully characterize the construction.

Theorem 24. Let H be a Hilbert calculus. If a contraction − over H satisfies
success, inclusion, failure and weak relevance then there is some weak subset
selection function Υ such that:

H − r = H −Υ r =
⋂

Υ (H, r)

If − satisfies relevance then the above equation holds for some (not weak) subset
selection function. In this case, failure property become redundant by Lemma 6.

Now let us define an element selection function as any function Ψ such that:

1. Ψ(H, r) ∈ H⊥{r} if H⊥{r} �= ∅.
2. Ψ(H, r) = H if otherwise.

Weak element selection function is defined analogously using a weak remainder
set. A maxi-choice contraction is defined as follows:

H −Ψ r = Ψ(H, r)

Weak maxi-choice contraction is defined analogously.
As for partial meet contraction, maxi-choice contraction is fully characterized

by a set of postulates, namely: success, inclusion, failure and fullness. Further-
more, weak maxi-choice contraction is characterized by the same postulates with
fullness exchanged by weak fullness.



Contracting Logics 277

Theorem 25. Let H be a Hilbert calculus. An operation − over H is a maxi-
choice contraction iff it satisfies success, inclusion, failure and fullness. − is a
weak maxi-choice contraction iff instead of fullness it satisfies weak fullness.

Example 26. Consider P1 and CPL defined in the same signature of J3 and
let r = 〈{¬ξ1, ξ1}, ξ2〉. For certain choice of element selection functions we have
that P1 = CPL−Ψ1 r and J3 = CPL−Ψ2 r. Furthermore, for certain choice of
subset selection function Υ , we have P1 ∩ J3 = CPL−Υ r. An analogous result
can be obtained by considering weak selection functions, I1, Sm and CPL (over
the same signature) and r = 〈{¬¬ξ1}, ξ1〉. Note that I1 can be choose even for
non weak selection functions.

6 Conclusion and Future Work

In this paper it was presented a formal framework for defining new logics by con-
tracting a derived rule from a known logic. The framework consists in defining
operations − over possibly closed Hilbert Calculi. These operation are related
with contraction operation in belief revision field. Constructions for the opera-
tions as well as postulates that characterize them were presented.

This framework is related with the study of maximal logics w.r.t. another
logic (cf. [Set73, SC95]) and the study of maximal logics w.r.t. a principle (cf.
[AAZ10]). Furthermore, the relation between the notion of strong remainder set
and weak remainder set was analyzed. As an application it was proved that the
logics P1 and I1 are strongly maximal w.r.t. Classical Propositional Logic.

This paper focused in the contraction of one rule from a logic. It would be
interesting to analyze the result of contracting a set of rules. Once again the field
of belief revision may help us in this task.

As future work we intend to extend this framework to sequent calculi and also
to study the analogous of a revision operation over logics.
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Appendix A: Proofs of the Main Results

Lemma 6: Proof. Let r be a rule over C such that r ∈ Cl(∅). If H � H − r
then there is r′ ∈ RH \ RH−r . By relevance, there is H ′ such that r /∈ Cl(H ′).
But this is an absurd, by monotonicity of Cl. �

Lemma 9: Proof. Let H = Cl(H), and X ∈ H⊥R. By extensiveness it follows
that X ⊆ Cl(X). Now, suppose that X ⊂ Cl(X). By monotonicity Cl(X) ⊆
Cl(H) = H , and soX ⊂ Cl(X) ⊆ H . Since X ∈ H⊥R we have, by idempotence,
that R ⊆ Cl(RX), which is a contradiction. Hence, there is no r ∈ Cl(X) \X
i.e. X = Cl(X). �

Proposition 10: Proof. To prove that X ∈ H⊥R2 we need to show 1) that
X ⊆ H , 2) R2 � Cl(RX) and 3) if X ⊂ X ′ ⊆ H then R2 ⊆ Cl(RX′). 1)
follows directly from the fact that X ∈ H⊥R1 and 2) follows by hypothesis. To
prove 3) notice that if X ⊂ X ′ ⊆ H then R1 ⊆ Cl(RX′) and, since R2 ⊆ R1,
R2 ⊆ Cl(X ′). �

Proposition 14: Proof. We need to prove 1) that X ⊆ H2, 2) R � Cl(RX)
and 3) if X ⊂ X ′ ⊆ H2 then R ⊆ Cl(RX′). 1) and 2) follow directly from
hypothesis. Now let consider X ′ such that X ⊂ X ′ ⊆ H2. We have by hypothesis
that H2 ⊆ H1 and, hence, X ′ ⊆ H1. It follows that R ⊆ Cl(R′

X′), because
X ∈ H1⊥R. �

Lemma 16: Proof. For i = 1, . . . , n it holds that (ξ → γi), ξ &Hr γi, by (1),
and so (ξ → γ1), . . . , (ξ → γn), ξ &Hr γi, for every i. Since γ1, . . . , γn &Hr ϕ then
(ξ → γ1), . . . , (ξ → γn), ξ &Hr ϕ. But then (ξ → γ1), . . . , (ξ → γn), ξ &Hr (ξ →
ϕ), since &Hr ϕ → (ξ → ϕ) and by (1). On the other hand ∼ξ &Hr (ξ → ϕ),
by (3), and so (ξ → γ1), . . . , (ξ → γn),∼ξ &Hr (ξ → ϕ). By (4) it follows that
(ξ → γ1), . . . , (ξ → γn) &Hr (ξ → ϕ) as required. �
3 Lemmas 6 and 9 were adapted from [Han99].
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Corollary 17: Proof. Assume that Γ, α &Hr β. By induction on the length of a
derivation ϕ1 . . . ϕk of β from Γ∪{α} inHr it will be shown that Γ &Hr (α→ β).
Since H satisfies MTD with respect to →, the only case to be analyzed is when
β is obtained by the use of the rule r = 〈{γ1, . . . , γn}, ϕ〉. Thus, there is some
substitution σ such that β = σ̂(ϕ) and {σ̂(γ1), . . . , σ̂(γn)} ⊆ {ϕ1, . . . , ϕk−1}.
By induction hypothesis, Γ &Hr (α → σ̂(γi)) for every i. By Lemma 16, (α →
σ̂(γ1)), . . . , (α → σ̂(γn)) &Hr (α → σ̂(ϕ)) (by taking σ(ξ) = α). Therefore
Γ &Hr (α→ σ̂(ϕ)), that is, Γ &Hr (α→ β). �

Corollary 18: Proof. Clearly γ1, . . . , γn &Hr ϕ, and then &Hr γ1 → (γ2 →
(. . .→ (γn → ϕ) . . .), by MTD. Thus Cl(Hr) ⊆ Cl(Hr).

On the other hand, by (i) of Lemma 16 it holds that γ1, . . . , γn &Hr ϕ and so
Cl(Hr) ⊆ Cl(Hr). This completes the proof. �

Theorem 19: Proof. Assume that H and H ′ satisfy the hypothesis of the
theorem. The ‘if’ part is obviously true. For the ‘only if’ part, assume that
H ∈ H ′⊥wR and let r = 〈{γ1, . . . , γn}, ϕ〉 be a rule such that r ∈ RH′ \ RH .
Since H ′ satisfies MTD with respect to→ if follows that &H′ γ1 → (γ2 → (. . .→
(γn → ϕ) . . .)). Since H satisfies (1) of Lemma 16 it follows that �H γ1 → (γ2 →
(. . .→ (γn → ϕ) . . .)). Given that H ∈ H ′⊥wR it follows that R � Cl(RH) but
R ⊆ Cl(Hr), where Hr = 〈C,RH ∪ {〈∅, γ1 → (γ2 → (. . . → (γn → ϕ) . . .))〉}〉.
But Cl(Hr) = Cl(Hr), by Corollary 18, where Hr = 〈C,RH ∪ {r}〉. Then
R ⊆ Cl(Hr) and so H ∈ H ′⊥R. �

Proposition 20: Proof. 1. It is known that the logic I1 is maximal with
respect to CPL in the signature just containing → and ¬ (cf.[SC95]). That is,
I1 ∈ CPL⊥wRCPL. Let ∼α =def (α → ¬α) and α ∨ β =def (¬(β → β) →
β) → ((α → α) → α). Then &I1 (∼α ∨ α) for every α. On the other hand,
it is easy to show the following: Γ, α &(I1)r γ and Γ, β &(I1)r γ implies that
Γ, (α ∨ β) &(I1)r γ, for every Γ, α, β, γ and for every rule r, where (I1)r is as in
Lemma 16. Thus, I1 satisfies the conditions (1)-(4) of Lemma 16, for every rule
r. On the other hand, both CPL and I1 satisfy MTD with respect to →. Then,
by Theorem 19 it follows that I1 is strongly maximal with respect to CPL, that
is, I1 ∈ CPL⊥RCPL.

2. We know from Corollary 12 that I1 ∈ CPL⊥w{〈{¬¬ξ1}, ξ1〉}. The proof that
I1 ∈ CPL⊥{〈{¬¬ξ1}, ξ1〉} is analogous to that of item 1. �

Proposition 21: Proof. The proof is similar to that of Proposition 20.

1. We begin by observing that the logic P1 is maximal with respect to CPL in
the signature just containing→ and ¬ (cf. [Set73]). That is,P1 ∈ CPL⊥wRCPL.
It is enough to define in P1 a classical negation ∼ and a disjunction ∨ which
guarantee, as in the case of I1, the satisfaction of conditions (1)-(4) of Lemma 16,
for every rule r. The derived connectives ∼α =def ¬(¬α → α) and α ∨ β =def
(∼α→ β) satisfy the required properties. Since both P1 and CPL satisfy MTD



280 M.M. Ribeiro and M.E. Coniglio

with respect to → then, by Theorem 19, it follows that P1 is strongly maximal
with respect to CPL. That is, P1 ∈ CPL⊥RCPL.

2. We know from Corollary 11 that P1 ∈ CPL⊥w{〈{ξ1,¬ξ1}, ξ2〉}. The proof
that P1 ∈ CPL⊥{〈{ξ1,¬ξ1}, ξ2〉} is analogous to that of item 1. �

Lemma 22: Proof. Let C be the signature of H and enumerate the rules in
RH : {r1, r2, . . . }. Let R0 = RX and for each i ≥ 1 let:

Ri =

{
Ri−1 ∪ {ri} if R � Cl(Ri−1 ∪ {ri})
Ri−1 otherwise.

Now consider H ′ = 〈C,
⋃
iRi〉. Clearly, X ⊆ H ′. Suppose that R = {r′1, . . . , r′n}

is contained in Cl(RH′). Since Cl is compact, there exists a finite set R′
j ⊆ RH′

such that r′j ∈ Cl(R′
j) for j = 1, . . . , n. But Ri ⊆ Ri+1 and so R ⊆ Cl(Rj) for

some j, which is a contradiction. We conclude that R � Cl(RH′).
The other conditions for H ′ ∈ H⊥R are easy to verify. �

Theorem 23: Proof. Inclusion follows trivially and success follows directly from
the upper-bound lemma with X = ∅. To prove relevance note that if r′ ∈ RH \⋂
Υ (H, r) then there is X ∈ Υ (H, r) such that r′ /∈ X . Of course

⋂
Υ (H, r) ⊆

X ⊆ H , r /∈ Cl(X) and, since X is maximal, then r ∈ Cl(RX ∪{r′}). This same
argument holds if r′ is an axiom and Υ is a weak subset selection funcion, hence
weak relevance also holds. Finally, if H is closed then closure follows directly
from Lemma 9. �

Theorem 24: Proof. We will show only a sketch of a proof for strong subset
selection function. The proof for weak subset selection function is completely
analogous. Let Υ (H, r) = {X ∈ H⊥{r} : H − r ⊆ X} if H⊥{r} �= ∅ and
Υ (H, r) = {H} otherwise. We need to show that Υ is well defined, that it is a
selection function and that H − r =

⋂
γ(H, r).

Proving that Υ is well defined is trivial, since we defined Υ over the generators
(that is, the pairs 〈H, r〉).

It is also trivial to verify that Υ (H, r) ⊆ H⊥{r}. From success, inclusion and
the upper-bound lemma, we show that Υ (H, r) �= ∅.

Now if H⊥{r} = ∅ then r ∈ Cl(∅). In this case
⋂
Υ (H, r) = H and, by

failure and inclusion we have that H − r = H . If H⊥{r} �= ∅ then trivially
H − r ⊆

⋂
Υ (H, r). To prove the converse, suppose by absurdum that r′ /∈

H − r. If r′ /∈ H then r′ /∈
⋂
Υ (H, r) and we are done. Consider then that

r′ ∈ H . Then by relevance there is H ′ such that H − r ⊆ H ′ ⊆ H , r /∈ Cl(H ′)
and r ∈ Cl(RH′ ∪ {r′}). By the upper bound lemma there is X such that
H ′ ⊆ X ∈ H⊥{r}. It follows that r′ /∈ X ∈ Υ (H, r) and, hence, r′ /∈

⋂
Υ (H, r). �

4 This proof was adapted from a very similar to the proof of Lindenbaum’s lemma
found in [Wój88].
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Theorem 25: Proof. We will sketch the proof of maxi-choice characterization.
The proof for weak maxi-choice characterization is completely analogous.

Let Ψ(H, r) = H − r. We must prove that Ψ(H, r) ∈ H⊥{r} if H⊥{r} �= ∅
and Ψ(H, r) = H otherwise.

The second situation follows directly from failure. Now let us assume that
r /∈ Cl(∅), then Ψ(H, r) ∈ H⊥{r} by success, inclusion and fullness. �
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Abstract. A first-order sentence ϕ defines k-clique in the average-case
if

lim
n→∞

Pr
G=G(n,p)

[
G |= ϕ ⇔ G contains a k-clique

]
= 1

where G = G(n, p) is the Erdős-Rényi random graph with p (= p(n))
the exact threshold such that Pr[G(n, p) has a k-clique] = 1/2. We are
interested in the question: How many variables are required to define
average-case k-clique in first-order logic? Here we consider first-order
logic in vocabularies which, in addition to the adjacency relation of G,
may include fixed “background” relations on the vertex set {1, . . . , n}
(for example, linear order). Some previous results on this question:

– With no background relations, k/2 variables are necessary and k/2+
O(1) variables are sufficient (Ch. 6 of [7]).

– With arbitrary background relations, k/4 variables are necessary [6].

– With arithmetic background relations (<, +,×), k/4+O(1) variables
are sufficient (Amano [1]).

In this paper, we tie up a loose end (matching the lower bound of [6] and
improving the upper bound of [1]) by showing that k/4+O(1) variables
are sufficient with only a linear order in the background.

1 Introduction

The number of variables in a first-order formula ϕ refers to the number of distinct
variable symbols (x, y, z, etc.) occurring in ϕ. This number includes both free
and bound variables, and we allow variables to be quantified multiple times.
For example, the following 2-variable sentence1 expresses “the universe has � 5
elements” on the class of linear orders:

∃x∃y
(
x < y ∧ ∃x

(
y < x ∧ ∃y

(
x < y ∧ ∃x

(
y < x
))))

.

The number of variables is an important measure of the complexity of a first-
order formula. Under a well-known descriptive complexity characterization of

1 Recall that a sentence is a formula with no free variables.
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first-order logic in terms of the complexity class AC0, every s-variable formula
has an equivalent AC0 circuit of size O(ns) [3].

A well-studied question in model theory and finite model theory is: over which
classes of structures does first-order logic increase in express power with respect
to the number of variables? That is, when is the so-called variable hierarchy
strict? For instance, 2 variables are enough to express every first-order property
over the class of finite linear orders, whereas 3 variables are enough over the
class of finite words [5]. On the other hand, the variable hierarchy is strict on
the class of finite graphs. A longstanding open question was whether the variable
hierarchy is strict on the class of finite ordered graphs (see [2]). Answering this
question, in [6] we showed that the property “there exists a k-clique” requires
k/4 variables on the class of finite ordered graphs. This lower bounds is in fact
an average-case hardness result: in the first-order language of ordered graphs,
k/4 variables are required even to express “there exists a k-clique” with high
probability on a certain natural distribution (the Erdos-Renyi random graph
G(n, p) for p = p(n) an appropriate threshold).

Following [6], Kazayuki Amano [1] gave uniform AC0 circuits of size nk/4+O(1)

which define k-clique in the same average-case sense. Under the descriptive com-
plexity characterization of uniformity, Amano’s circuits are equivalent to a sen-
tence in the first-order language of graphs on {1, . . . , n} with arithmetic back-
ground relations <, + and ×. In the author’s Ph.D. thesis [7], it was noted that
the “k/2-extension axiom” (famous from the 0-1 law for first-order logic) implies
a lower bound of k/2 variables for the average-case definability of k-clique in the
absence of background relation; together with Joel Spencer, an upper bound of
k/2+O(1) was also shown. One question left open from all this work is whether
k/4+O(1) or k/2+O(1) (or something in-between) is the true number of vari-
ables required to define k-clique in the average-case with only a linear order in
the background. Tying up this loose end, in this paper we show that k/4+O(1)
variables suffice.

2 Preliminaries

Let k be a fixed constant (independent of n). Let p = p(n) = n−2/(k−1),
although everything we write holds for any p(n) = Θ(n−2/(k−1)) including
the exact threshold for k-clique (see any standard text such as [4] for back-
ground on random graphs). Let G be the Erdős-Rényi random graph G(n, p),
viewed as a linearly ordered graph. That is, G is random structure with universe
[n] = {1, . . . , n} and binary relations E and < where < is the standard linear
on [n] and E is an anti-reflexive symmetric binary relation such that events
{(u, v) ∈ E} occur independently with probability p over pairs (u, v) such that
1 � u < v � n. Throughout this note, “almost surely” means “with probability
tending to 1 as n → ∞”. For vertices u, v ∈ [n] such that u � v, we denote by
[u, v] the interval of vertices including and between u and v.

In this paper, we prove the following:
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Theorem 1. There is a sentence ϕ in the first-order language of ordered graphs
with only k/4 + O(1) variables such that, almost surely, G |= ϕ if and only if
G has a k-clique.

To prove Theorem 1, we first define a property P of finite ordered graphs (Def-
inition 4) such that P implies the existence of a k-clique. We then show that P
is first-order definable with k/4 + O(1) variables (Lemma 1). Finally, we show
that almost surely, if G has a k-clique then G has property P (Lemma 8).

For simplicity, we treat the case where k � 7 and k ≡ 3 mod 4. The proof
holds with minor modifications when k �≡ 3 mod 4. Let t = (k − 1)/2 and
s = (k − 7)/4. Note that s � 0 and t = 2s+ 3 are integers and p = n−1/t.

3 Proof Sketch

Before defining property P in the next section, we give some basic intuition.
We start by showing how to define k-clique almost surely with k/2 + O(1)
variables. Suppose that G contains a k-clique {v1, . . . , vk} (i.e. condition on this
event). Then almost surely vertices vt+2, . . . , vk are the only common neighbors
of v1, . . . , vt+1. This is seen by the following union bound:

Pr[v1, . . . , vt+1 have a common neighbor beside vt+2, . . . , vk]

�
∑

w∈[n]\{v1,...,vk}
Pr[w is a common neighbor of v1, . . . , vt+1]

= (n− k)pt+1 < p = o(1).

Denote byQ the following property: there exist distinct vertices x1, . . . , xt+1 such
that x1, . . . , xt+1 form a clique and have � t common neighbors and every two
common neighbors of x1, . . . , xt+1 are adjacent. Note that property Q implies
the existence of a k-clique (as k = 2t+1). The above inequality also shows that,
almost surely, if G has a k-clique then G has property Q; hence Q is almost
surely equivalent to k-clique with respect to the random graph G.

We claim that Q is definable with only t + 3 = k/2 + O(1) variables on the
class of finite ordered graphs. (Here the linear order is indispensable: Q is not
definable with fewer than k variables on the class of finite graphs.) The key
observation is that saying “x1, . . . , xt+1 have � t common neighbors” can be
achieved with only 2 bound variables in addition to free variables x1, . . . , xt+1:
letting ν(�x, y) ≡

∧
i∈{1,...,t+1} Edge(xi, y), we have

“x1, . . . , xt+1 have � t common neighbors” ≡
∃y, ν(�xy) ∧

(
∃z, y<z ∧ ν(�xz) ∧

(
∃y, z<y ∧ ν(�xy) ∧

(
∃z, z < y ∧ ν(�xz) ∧ . . .

)))
where there are t existential quantifiers in total. Hence, property Q can be ex-
pressed with t+ 3 variables as follows:

Q ≡ ∃x1 . . . ∃xt+1,
∧

1�i<j�t+1 Edge(xi, xj)

∧ “x1, . . . , xt+1 have � t common neighbors”

∧ ∀y∀z, (ν(�x, y) ∧ ν(�x, z) ∧ y �= z)→ Edge(y, z).
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Property P is similar to propertyQ, except that we must use k/4+O(1) variables
to isolate the k/2 + O(1) vertices x1, . . . , xt+1 that make up the first half of a
possible k-clique in the graph G. (As with property Q, once we isolate these
t + 1 vertices, it will be easy to say that they belong to a k-clique using just
O(1) additional free variables.) What do we mean by isolate? Well, with only
k/4+O(1) parameters, there is no hope of defining the set {x1, . . . , xt+1} exactly.
But we can define a sequence of intervals I1, . . . , It+1 ⊆ [n] where Ij contains xj
and is not too large; in fact, Ij has size roughly nj/t. This sequence will isolate
x1, . . . , xt+1 in the sense that for all j ∈ {1, . . . , t}, xj+1 is the unique common
neighbor of x1, . . . , xj in the interval Ij . This property allows us to efficiently
define xj (with O(1) extra variables) given formulas defining I1, . . . , It+1. As to
defining intervals I1, . . . , It+1 using just k/4+O(1) variables, this is accomplished
by using a single variable for each of I1, . . . , I4 and a single variable for each pair
(I5, It+1), (I6, It), (I7, It−1), . . . , (Is+4, Is+5); that is, s + 4 = k/4 + O(1) total
variables.

4 Property P
The following definitions refer to a fixed but arbitrary finite ordered graph.
Without loss of generality, we assume this graph has vertex set [n] under the
standard ordering. For a vertex v ∈ [n], we denote by v+1 and v−1 the successor
and predecessor of v (when defined).

Definition 1. A sequence I1, . . . , I� of subsets of [n] is an �-clique isolator if
|I1| = 1 and there exists (u1, . . . , u�) ∈ I1 × · · · × I� such that for every i ∈
{2, . . . , �}, ui is the unique common neighbor of u1, . . . , ui−1 in the set Ii.

Remark 1. The notion of an �-clique isolator will be useful for the following rea-
son. Suppose I1, . . . , I� are given by unary relation symbols. Then the statement
“I1, . . . , I� is an �-clique isolator” can be expressed in first-order logic using only
2 variables. To see this, we inductively define formulas ψi(x) such that ψi(x) is
true iff I1, . . . , Ii is an i-clique isolator and x = ui (i.e., for the unique i-clique
{u1, . . . , ui} with (u1, . . . , ui) ∈ I1 × · · · × Ii). In the base case,

ψ1(x) ≡ I1(x) ∧
(
∀y, y �= x→ ¬I1(y)

)
.

For i ∈ {2, . . . , �}, define

ψi(x) ≡ θi(x) ∧
(
∀y, y �= x→ ¬θi(y)

)
where θi(x) ≡ Ii(x) ∧

∧
j∈{1,...,i−1}

(
∃y, ψj(y) ∧ Edge(x, y)

)
.

The statement “I1, . . . , I� is an �-clique isolator” is equivalent to the 2-variable
formula ∃x, ψ�(x). A corollary of this observation is that if each set Ii is definable
by an m-variable formula, then the statement “I1, . . . , I� is an �-clique isolator”
is equivalent to a formula with m+ 2 variables.
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Definition 2. A vertex v ∈ [n] is a pointer if v � t + 1 and v, v − 1, . . . , v − t
(i.e., v and its t predecessors) have a unique common neighbor. If v is a pointer,
we denote by v∗ the unique common neighbor of v, v − 1, . . . , v − t.

Remark 2. The predicate “x is a pointer and x∗ = y” is definable with 3 variables
(i.e., 1 variable in addition to x and y).

“x is a pointer and x∗ = y”

≡ “x has � t predecessors”∧ γ(x, y) ∧
(
∀z, z �= y → ¬γ(x, z)

)
where γ(x, y) ≡

∧
j∈{0,...,t}

(
∃z, “z = x− j” ∧ Edge(y, z)

)
.

We leave it as an exercise to show that “x has � t predecessors” is definable
with 1 variable in addition to x and “z = x− j” (for fixed j) is definable with 1
variable in addition to x and z.

Remark 3. For any v ∈ [n] such that v � t+1, the probability that v is a pointer
in G is roughly p. Conditioning on v being a pointer, v∗ is uniformly distributed
in [n] \ {v, v − 1, . . . , v − t}. (These facts come up in the proof of Lemma 3.)

Definition 3. For j � 1 and v ∈ [n], denote by fj(v) the minimal w ∈ [n] such
that w > v and w is a common neighbor of v+1, . . . , v+ j (i.e., the j successors
of v); in cases where fj(v) would be undefined (either because v > n−j or because
v + 1, . . . , v + j have no common neighbor greater than v), we set fj(v) = n.

Remark 4. For fixed j � 1, the predicate “fj(x) = y” is definable with 3 variables
(cf. Remark 2).

Remark 5. For any j ∈ {1, . . . , t − 1} and v ∈ [n] such that v < n − n1−ε, we
expect fj(v) to be around v+p−j = v+nj/t in the random graph G. Indeed, for
any constant ε > 0, it holds almost surely that v+n(j/t)−ε < fj(v) < v+n(j/t)+ε.
Moreover, this is true even if we condition on arbitrary events in G depending
only on edges outside of the interval [v + n(j/t)−ε, v + n(j/t)+ε].

Definition 4. A finite ordered graph has property P if there exist vertices
v1, v2, v3, v4 and w1, . . . , ws such that

(i) w1, . . . , ws are pointers and
(ii) the following sequence of subsets of [n] is a (t+ 1)-clique isolator:

{v1}, {v2}, {v3}, {v4}, [w1, f3(w1)], . . . , [ws, fs+2(ws)]︸ ︷︷ ︸
[wi,fi+2(wi)] for i=1,...,s

, [w∗
s , ft−s(w

∗
s)], . . . , [w

∗
1 , ft−1(w

∗
1)]︸ ︷︷ ︸

[w∗
i
,ft−i(w

∗
i
)] for i=s,...,1

,

(iii) for the unique (t+1)-clique {v1, . . . , vt+1} isolated by this sequence, v1, . . . ,
vt+1 have exactly t common neighbors and these common neighbors form
a t-clique.
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Lemma 1. There is a formula with k/4 + O(1) variables that defines property
P on the class of finite ordered graphs.

Proof. The formula defining P begins with ∃v1, v2, v3, v4, w1, . . . , ws. Each set
[wi, fi+2(wi)] and [w∗

i , ft−i(w
∗
i )] is definable with C = O(1) variables in addition

to parameter wi (cf. Remarks 2 and 4). Therefore, the statement that

{v1}, {v2}, {v3}, {v4}, [w1, f3(w1)], . . . , [ws, fs+2(ws)], [w
∗
s , ft−s(w

∗
s)], . . . , [w

∗
1 , ft−1(w

∗
1)]

is a (t + 1)-clique isolator can be expressed with only C + 2 variables in ad-
dition to parameters v1, v2, v3, v4, w1, . . . , ws; moreover, the individual elements
v1, . . . , vt+1 of the unique (t + 1)-clique isolated by this sequence are definable
with the same s+O(1) total variables (cf. Remark 1). Using the order, we can
express that v1, . . . , vt+1 have exactly t common neighbors with only 3 additional
variables. To express that these common neighbors form a k-clique, we can say
any two common neighbors are adjacent, using just 2 additional variables. So in
total we require s+O(1) = k/4+O(1) variables (in fact, k/4+10 are sufficient).

5 Almost Surely, G Has a k-Clique Iff G Has Property P
Let ε > 0 be a sufficiently small constant (ε = 1/k will do).

Definition 5. A tuple (u1, . . . , u�) of vertices in [n] is well-spaced if

n1−ε < u1 < · · · < u� < n− n1−ε

and ui+1 − ui > n1−ε for i ∈ {1, . . . , �− 1}.
Lemma 2. Almost surely, if G contains a k-clique, then G contains a well-
spaced k-clique.

Proof. Condition on G containing a k-clique. Sample {v1, . . . , vk} uniformly from
among the k-cliques of G where v1 < · · · < vk. Notice that (v1, . . . , vk) is uni-
formly distributed among increasing k-tuples in [n]k. The lemma follows from
the observation that a uniform random increasing k-tuple in [n]k is well-spaced
with high probability.

Lemma 3. Let u, u′ ∈ [n] be a fixed well-spaced pair of vertices and let i ∈
{1, . . . , s}. Almost surely in G, there is a vertex w such that

u− n
i+2
t −ε < w < u < fi+2(w) < u+ n

i+2
t +ε,

u′ − n
t−i−1

t +3ε < w∗ < u′ < ft−i(w∗) < u′ + n
t−i
t +ε.

Proof. LetM = {1, . . . , 6n i+2
t −2ε7} and form ∈M , let xm = u−2tm and denote

by Zm the event that xm is a pointer and u′ − n
t−i−1

t +3ε < x∗m < u′. Note that
events Zm are mutually independent (using the fact that u, u′ are well-spaced).
We have

Pr[Zm] ∼ n− i+2
t +3ε.

This is obtained from the following inequalities:
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– Pr[Zm] = Pr[xm is a pointer] Pr[u′−n
t−i−1

t +3ε < x∗m < u′ | xm is a pointer],
– Pr[xm is a pointer]

= Pr[xm, xm − 1, . . . , xm − t have a unique common neighbor]

= Pr[� 1 common neighbor]− Pr[� 2 common neighbors],

– Pr[� 1 common neighbor] = 1− (1−pt+1)n−t−1 ∼ 1− exp(n1+(1/t))n−t−1 ∼
n−1/t,

– Pr[� 2 common neighbors] �
(
n−t−1

2

)
(pt+1)2 < n−2/t,

– Pr[u′ − n
t−i−1

t +3ε < x∗m < u′ | xm is a pointer] ∼ n− i+1
t +3ε

since x∗m is uniformly distributed in [n] \ {x, x− 1, . . . , x− t} conditioned on
xm being a pointer.

By independence of Zm’s, we have

Pr[
∧
m∈M

¬Zm] =
∏
m∈M

Pr[¬Zm]

� (1− n− i+2
t

+3ε + o(n− i+2
t

+3ε))n
i+2
t

−2ε

∼ exp(n−ε).

Therefore, almost surely at least one of the events Zm holds in G�v.
Now observe the following (cf. Remark 5)

Pr
[
xm + n

i+2
t −ε < fi+2(xm) < xm + n

i+2
t +ε
∣∣ Zm] = 1− o(1),

Pr
[
x∗m + n

t−i
t −ε < ft−i(x∗m) < x∗m + n

t−i
t +ε
∣∣ Zm] = 1− o(1).

It follows that for any m ∈M such that Zm holds in G�v, the vertex xm is almost
surely a suitable witness for w.

We now fix an arbitrary well-spaced k-tuple of vertices �v = (v1, . . . , vk) ∈ [n]k.
Denote by G�v the random graph G conditioned on �v being a k-clique (that is,
G�v = G ∪ {k-clique supported on v1, . . . , vk}).

Lemma 4. The following hold almost surely in G�v.

1. For all j ∈ {1, . . . , t}, vj+1 is the unique common neighbor of v1, . . . , vj in

the interval [vj+1 − n
j
t−ε, vj+1 + n

j
t−ε]. Hence, the sequence

{v1}, [v2−n
1
t
−ε, v2+n

1
t
−ε], [v3−n

2
t
−ε, v3+n

2
t
−ε], . . . , [vt+1−n1−ε, vt+1+n1+ε]

is almost surely a (t+ 1)-clique isolator in G�v.
2. vt+2, . . . , vk are the only common neighbors of v1, . . . , vt+1.

Proof. Taking union bounds, we have

1. Pr

[
v1, . . . , vj have a common neighbor beside

vj+1 in [vj+1 − n
j
t−ε, vj+1 + n

j
t−ε] in G�v

]
� 2n

j
t−εpj = 2n−ε = o(1),

2. Pr

[
v1, . . . , vt+1 have a common neighbor

beside vt+2, . . . , vk in G�v

]
� (n− k)pt+1 < p = o(1).
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For the next two lemmas, it will be convenient to relabel the first t+1 (= 2s+4)
vertices in �v as follows. Let

v1, . . . , vt+1 = v1, v2, v3, v4, v
′
1, . . . , v

′
s, v

′′
s , . . . , v

′′
1 .

That is, v′i = vi+4 and v′′i = vt−i+2 for i ∈ {1, . . . , s}.

Lemma 5. Almost surely in G�v, there exist vertices w1, . . . , ws such that

v′i − n
i+2
t −ε < wi < v′i < fi+2(wi) < v′i + n

i+2
t +ε,

v′′i − n
t−i−1

t +3ε < w∗
i < v′′i < ft−i(w∗

i ) < v′′i + n
t−i
t +ε.

Proof. This is pretty much a corollary of the argument in Lemma 3. Whereas
Lemma 3 concerns a single well-separated pair (u, u′) in the random graph G,
we now consider s well-separated pairs (v′1, v

′′
1 ), . . . , (v

′
s, v

′′
s ) in the random graph

G�v. However, we can apply the argument in Lemma 3 independently to each pair
(v′i, v

′′
i ) using the fact that (v′1, . . . , v

′
s, v

′′
s , . . . , v

′′
1 ) is well-separated; conditioning

on {v1, . . . , vk} being a clique does not affect the argument.

Lemma 6. Almost surely in G�v, there exist vertices w1, . . . , ws such that

– v′i ∈ [wi, fi+2(wi)] and v′′i ∈ [w∗
i , ft−i(w

∗
i )] for all i ∈ {1, . . . , s},

– the sequence

{v1}, {v2}, {v3}, {v4}, [w1, f3(w1)], . . . , [ws, fs+2(ws)], [w
∗
s , ft−s(w

∗
s)], . . . , [w

∗
1 , ft−1(w

∗
1)]

is a (t+ 1)-clique isolator (and hence isolates the clique {v1, . . . , vt+1}).

Proof. Condition on the almost sure properties of G�v given by Lemma 4(1)
and 5. For vertices w1, . . . , ws as in Lemma 5, we have v′i ∈ [wi, fi+2(wi)] and
v′′i ∈ [w∗

i , ft−i(w
∗
i )] for all i ∈ {1, . . . , s}. The claim that the sequence

{v1}, {v2}, {v3}, {v4}, [w1, f3(w1)]︸ ︷︷ ︸
	 v5

, . . . , [ws, fs+2(ws)]︸ ︷︷ ︸
	 vs+2

, [w∗
s , ft−s(w

∗
s)]︸ ︷︷ ︸

	 vs+3 = vt−i+2

, . . . , [w∗
1 , ft−1(w

∗
1)]︸ ︷︷ ︸

	 vt+1

is a (t+ 1)-clique isolator follows from the fact that is subsumed by the (t+ 1)-
clique isolator

{v1}, [v2−n
1
t −ε, v2+n

1
t −ε], [v3−n

2
t −ε, v3+n

2
t −ε], . . . , [vt+1−n1−ε, vt+1+n1−ε].

That is, we have {vi0} ⊆ [vi0 −n
i0−1

t −ε, vi0 +n
i0−1

t −ε] trivially for i0 ∈ {2, 3, 4},
while for i ∈ {1, . . . , s}, we have

[wi, fi+2(wi)] ⊆ [v′i − n
i+2
t −ε, v′i + n

i+2
t +ε] ⊆ [vi+4 − n

i+3
t −ε, vi+4 + n

i+3
t −ε],

[w∗
i , ft−i(w

∗
i )] ⊆ [v′′i −n

t−i−1
t

+3ε, v′′i +n
t−i
t

+ε] ⊆ [vt−i+2−n
t−i+1

t
−ε, vt−i+2+n

t−i+1
t

−ε].
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Lemma 7. Almost surely, G�v has property P.

Proof. Condition on the almost sure properties of G�v given by Lemmas 4(2) and
6. Vertices v1, v2, v3, v4 together with w1, . . . , ws from Lemma 6 witness property
P . Lemma 6 takes care of conditions (i) and (ii) in Definition 4, while Lemma
4(2) takes care of condition (iii).

Lemma 8. Almost surely, G contains a k-clique iff G has property P.

Proof. Property P implies the existence of a k-clique (with probability 1). The
other direction follows from Lemmas 2 and 7. Almost surely, if G contains a
k-clique then it contains a well-spaced k-clique. But for any well-spaced k-clique
�v = (v1, . . . , vk) that we condition on, G�v has property P almost surely. There-
fore, the existence of a k-clique in G implies that property P holds almost surely.
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Abstract. We investigate a model-theoretic property that generalizes the classi-
cal notion of preservation under substructures. We call this property preservation
under substructures modulo bounded cores, and present a syntactic characteri-
zation via Σ0

2 sentences for properties of arbitrary structures definable by FO
sentences. Towards a sharper characterization, we conjecture that the count of
existential quantifiers in the Σ0

2 sentence equals the size of the smallest bounded
core. We show that this conjecture holds for special fragments of FO and also
over special classes of structures. We present a (not FO-definable) class of finite
structures for which the conjecture fails, but for which the classical Łoś-Tarski
preservation theorem holds. As a fallout of our studies, we obtain combinatorial
proofs of the Łoś-Tarski theorem for some of the aforementioned cases.

Keywords: Model theory, First Order logic, Łoś-Tarski preservation theorem.

1 Introduction

Preservation theorems have traditionally been an important area of study in model the-
ory. These theorems provide syntactic characterizations of semantic properties that are
preserved under model-theoretic operations. One of the earliest preservation theorems
is the Łoś-Tarski theorem, which states that over arbitrary structures, a First Order (FO)
sentence is preserved under taking substructures iff it is equivalent to a Π0

1 sentence [5].
Subsequently many other preservation theorems were studied, e.g. preservation under
unions of chains, homomorphisms, direct products, etc. With the advent of finite model
theory, the question of whether these theorems hold over finite structures became in-
teresting. It turned out that several preservation theorems fail in the finite [1,7,9]. This
inspired research on preservation theorems over special classes of finite structures, e.g.
those with bounded degree, bounded tree-width etc. These efforts eventually led to some
preservation theorems being “recovered” [2,3]. Among the theorems whose status over
the class of all finite structures was open for long was the homomorphism preservation
theorem. This was recently resolved in [10], which showed that the theorem survives
in the finite.

In this paper, we look at a generalization of the preservation under substructures
property that we call preservation under substructures modulo bounded cores. In
Section 2, we show that for FO sentences, this property has a syntactic characterization
in terms of Σ0

2 sentences over arbitrary structures. Towards a sharper characterization,

L. Ong and R. de Queiroz (Eds.): WoLLIC 2012, LNCS 7456, pp. 291–305, 2012.
c© Springer-Verlag Berlin Heidelberg 2012
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we conjecture that for core sizes bounded by a number B, there is a syntactic charac-
terization in terms of Σ0

2 sentences that use at most B existential quantifiers. In Section
3, we discuss how the notion of relativization can be used to prove the conjecture in
special cases. We present our studies of the conjecture for special classes of FO and
over special classes of structures in Sections 4 and 5. As a fallout of our studies, we
obtain combinatorial proofs of the classical Łoś-Tarski theorem for some of the afore-
said special cases, and also obtain semantic characterizations of natural subclasses of
the Δ0

2 fragment of FO. We conclude with questions for future work in Section 6.
We assume that the reader is familiar with standard notation and terminology used in

the syntax and semantics of FO (see [8]). A vocabulary τ is a set of predicate, function
and constant symbols. In this paper, we will restrict ourselves to finite vocabularies
only. A relational vocabulary has only predicate and constant symbols, and a purely
relational vocabulary has only predicate symbols. We denote by FO(τ), the set of all
FO formulae over vocabulary τ . A sequence (x1, . . . , xk) of variables is denoted by x̄.
We will abbreviate a block of quantifiers of the form Qx1 . . . Qxk by Qx̄, where Q ∈
{∀, ∃}. By Σ0

k (resp.Π0
k ), we mean FO sentences in Prenex Normal Form (PNF) over an

arbitrary vocabulary, whose quantifier prefix begins with a ∃ (resp. ∀) and consists of k−
1 alternations of quantifiers. We use the standard notions of τ -structures, substructures
and extensions, as in [8]. Given τ−structures M and N , we denote by M ⊆ N that
M is a substructure of N (or N is an extension of M ). Given M and a subset S (resp.
a tuple ā of elements) of its universe, we denote by M(S) (resp. M(ā)) the smallest
substructure (under set inclusion ordering of the universe) of M containing S (resp.
underlying set of ā) and call it the substructure of M induced by S (resp. underlying
set of ā). Finally, by size of M , we mean the cardinality of its universe and denote it by
|M |. As a final note of convention, whenever we talk of FO definability in the paper, we
mean definability via FO sentences (as opposed to theories), unless stated otherwise.

2 Preservation under Substructures Modulo Cores

We denote by PS the collection of all classes of structures, in any vocabulary, that
are closed under taking substructures. This includes classes that are not definable in
any logic. We let PS denote the collection of FO definable classes in PS. We identify
classes in PS with their defining FO sentences and will henceforth treat PS as a set of
sentences. We now consider a natural generalization of PS. Our discussion will concern
arbitrary (finite) vocabularies and arbitrary structures over them.

2.1 The Case of Finite Cores

Definition 1 (Preservation under substructures modulo finite cores)
A class of structures S is said to be preserved under substructures modulo a finite core
(denoted S ∈ PSCf ), if for every structure M ∈ S, there exists a finite subset C of
elements of M such that if M1 ⊆ M and M1 contains C, then M1 ∈ S. The set C is
called a core of M w.r.t. S. If S is clear from context, we will call C as a core of M .
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Note that any finite subset of the universe of M containing a core is also a core of M .
Also, there can be multiple cores of M having the same size. A minimal core of M is a
core, no subset of which is a core of M .

We will use PSCf to denote the collection of all classes preserved under substruc-
tures modulo a finite core. Similarly, we will use PSCf to denote the collection of
FO definable classes in PSCf . We identify classes in PSCf with their defining FO
sentences, and will henceforth treat PSCf as a set of sentences.

Example 1: Let S be the class of all graphs containing cycles. For any graph in S, the
vertices of any cycle is a core of the graph. Thus S ∈ PSCf .

Note that PS ⊆ PSCf since for any class in PS and for any structure in the class, any
element is a core. However it is easy to check that S in above example is not in PS; so
PSCf strictly generalizes PS. Further, the FO inexpressibility of S shows that PSCf
contains classes not definable in FO.

Example 2: Consider φ = ∃x∀yE(x, y). In any graph satisfying φ, any witness for x
is a core of the graph. Thus φ ∈ PSCf . In fact, one can put a uniform bound of 1 on
the minimal core size for all models of φ.

Again it is easy to see that PS � PSCf . Specifically, the sentence φ in Example 2 is
not in PS. This is because a directed graph with exactly two nodes a and b, and having
all directed edges except the self loop on a models φ but the subgraph induced by a
does not model φ. Hence PS � PSCf . Extending the example above, one can show
that for any sentence ϕ in Σ0

2 , in any model of ϕ, any witness for the ∃ quantifiers in
ϕ forms a core of the model. Hence Σ0

2 ⊆ PSCf . In fact, for any sentence in Σ0
2 ,

the number of ∃ quantifiers serves as a uniform bound on the minimal core size for
all models. Surprisingly, even for an arbitrary φ ∈ PSCf , it is possible to bound the
minimal core size for all models!

Towards the result, we use the notions of chain and union of chain from the literature.
The reader is referred to [5] for the definitions. We denote a chain as M1 ⊆ M2 ⊆ . . .
and its union as

⋃
i≥0 Mi. We say that a sentence φ is preserved under unions of chains

if for every chain of models of φ, the union of the chain is also a model of φ. We now
recall the following characterization theorem from the ’60s [5].

Theorem 1. (Chang-Łoś-Suszko) A sentence φ is preserved under unions of chains iff
it is equivalent to a Π0

2 sentence.

Now we have the following theorem.

Theorem 2. A sentence φ ∈ PSCf iff φ is equivalent to a Σ0
2 sentence.

Proof: We infer from Theorem 1 the following equivalences.
φ is equivalent to a Σ2

0 sentence iff
¬φ is equivalent to a Π2

0 sentence iff
∀M1,M2, . . . ((M1 ⊆ M2 ⊆ . . .) ∧ (M =

⋃
i≥1Mi) ∧ ∀i(Mi |= ¬φ)) → M |= ¬φ

iff
∀M1,M2, . . . ((M1 ⊆M2 ⊆ . . .) ∧ (M =

⋃
i≥1Mi) ∧ (M |= φ))→ ∃i(Mi |= φ)
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Assume φ ∈ PSCf . Suppose M1 ⊆M2 ⊆ . . . is a chain, M =
⋃
i≥0Mi and M |= φ.

Then, there exists a finite core C of M . For any a ∈ C, there exists an ordinal ia s.t.
a ∈ Mia (else a would not be in the union M ). Since C is finite, let i = max(ia| a ∈
C). Since ia ≤ i, we have Mia ⊆ Mi; hence a ∈ Mi for all a ∈ C. Thus Mi contains
C. Since C is a core of M and Mi ⊆ M , Mi |= φ by definition of PSCf . By the
equivalences shown above, φ is equivalent to a Σ0

2 sentence. We have seen earlier that
Σ0

2 ⊆ PSCf .

Corollary 1. If φ ∈ PSCf , there exists B ∈ N such that every model of φ has a core
of size at most B.

Proof : Take B to be the number of ∃ quantifiers in the equivalent Σ0
2 sentence.

Given Corollary 1, it is natural to ask if B is computable. In this context, the following
recent (unpublished) result by Rossman [11] is relevant. Let |φ| denote the size of φ.

Theorem 3. (Rossman) There is no recursive function f : N→ N such that if φ ∈ PS,
then there is an equivalent Π0

1 sentence of size at most f(|φ|). The result holds even for
relational vocabularies and further even if PS is replaced with PS ∩Σ0

2 .

Corollary 2. There is no recursive function f : N→ N such that if φ ∈ PS, then there
is an equivalent Π0

1 sentence with at most f(|φ|) universal variables. The result holds
even for relational vocabularies and further even if PS is replaced with PS ∩Σ0

2 .

Proof : Let ϕ = ∀nz̄ψ(z̄) be a Π0
1 sentence equivalent to φ where n = f(|φ|). Let

k be the number of atomic formulae in ψ. Since φ and ψ have the same vocabulary,
k ∈ O(|φ| · n|φ|). The size of the Disjunctive Normal Form of ψ is therefore bounded
above by O(k · n · 2k). Hence |ϕ| is a recursive function of |φ| if f is recursive.

Theorem 3 strengthens the non-elementary lower bound given in [6]. Corollary 2 gives
us the following.

Lemma 1. There is no recursive function f : N → N s.t. if φ ∈ PSCf , then every
model of φ has a core of size at most f(|φ|).

Proof : Consider such a function f . For any sentence φ in a relational vocabulary τ s.t.
φ ∈ PS,¬φ is equivalent to a Σ0

1 sentence by Łoś-Tarski theorem. Hence¬φ ∈ PSCf .
By assumption about f , the size of minimal models of ¬φ is bounded above by n =
f(|φ|) + k, where k is the number of constants in τ . Therefore, ¬φ is equivalent to an
∃n sentence and hence φ is equivalent to a ∀n sentence. Corollary 2 now forbids n, and
hence f , from being recursive. It is easy to see that the result extends to vocabularies
with functions too (by using functions in a trivial way).

Corollary 1 motivates us to consider sentences with bounded cores since all sentences
in PSCf have bounded cores.
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2.2 The Case of Bounded Cores

We first give a more general definition.

Definition 2 (Preservation under substructures modulo a bounded core). A class of
structures S is said to be preserved under substructures modulo a bounded core (de-
noted S ∈ PSC), if S ∈ PSCf and there exists a natural number B dependent only on
S such that every structure in S has a core of size at most B.

The collection of all such classes is denoted by PSC. Let PSC(B) be the sub-collection
of PSC in which each class has minimal core sizes bounded by B. Then PSC =⋃
B≥0 PSC(B). An easy observation is that PSC(i) ⊆ PSC(j) for i ≤ j. As before,

PSC and each PSC(B) contain non-FO definable classes. As an example, the class of
forests is in PSC(0). Let PSC (resp. PSC(B)) be the FO definable classes in PSC
(resp. PSC(B)). Observe that PSC(0) is exactly PS and PSC =

⋃
B≥0 PSC(B).

Therefore, PSC generalizes PS. Further, the hierarchy in PSC is strict. Consider
φ ∈ PSC(k) given by φ = ∃x1 . . . ∃xk

∧
1≤i<j≤k ¬(xi = xj). Then φ /∈ PSC(l) for

l < k. From Corollary 1, we have

Lemma 2. PSC = PSCf .

As noted earlier, a Σ0
2 sentence φ with B existential quantifiers is in PSCf with min-

imal core size bounded by B. Hence φ ∈ PSC(B). In the other direction, Theorem 2
and Lemma 2 together imply that for a sentence φ ∈ PSC(B), there is an equivalent
Σ0

2 sentence. We can then ask the following sharper question: For φ ∈ PSC(B), is
there an equivalent Σ0

2 sentence having B existential quantifiers?
The remainder of the paper is an account of our studies for a number of special cases

of the above question. Since the answer in all of these cases in which arbitrary structures
were considered turned out positive, we put forth the following conjecture1.

Conjecture 1. A sentence φ ∈ PSC(B) iff it is equivalent to a Σ0
2 sentence with B

existential quantifiers.

3 Revisiting Relativization

For purposes of our discussion in this and in the remaining sections of the paper, we
will assume relational vocabularies (only predicates and constants).

A notion that has proved immensely helpful in proving most of our positive cases
for the conjecture is that of relativization. Informally speaking, given a sentence φ, we
would like to define a formula (with free variables x̄) which asserts that φ is true in the
submodel induced by x̄. The following lemma shows the existence of such a formula.

Lemma 3. If τ is a relational vocabulary, for every FO(τ) sentence φ and variables
x̄ = (x1, . . . , xk), there exists a quantifier-free formula φ|x̄ with free variables x̄ such

1 Post submission of this paper, we have obtained a proof of the conjecture, over arbitary struc-
tures, using non-combinatorial model-theoretic arguments. However, this has not benefited
from the scrutiny of the anonymous reviewers. Details of our proof may be found in [12].
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that the following holds: Let M be a model and ā = (a1, . . . , ak) be a sequence of
elements of M . Then

(M,a1, . . . , ak) |= φ|x̄ iff M({a1, . . . , ak}) |= φ

Proof : Let X = {x1, . . . , xk} and C be the set of constants in τ . First, replace every ∀
quantifier in φ by ¬∃. Then, replace every subformula of φ of the form ∃xχ(x, y1, . . . ,
yk) by
∨
z∈X∪C χ(z, y1, . . . , yk).

We refer to φ|x̄ as ‘φ relativized to x̄’. For clarity of exposition, we will abuse notation
and use φ|{x1,...,xk} to denote φ|x̄ (although x̄ is a sequence and {x1, . . . , xk} is a set),
whenever convenient.

We begin with the following observation.

Lemma 4. Over any given class C of structures in PS, if φ↔ ∀z1 . . . ∀znϕ where ϕ is
quantifier-free, then φ↔ ψ where ψ = ∀z1 . . .∀znφ|{z1,...,zn}.

Proof : It is easy to see that φ → ψ. Let M ∈ C be s.t. M |= ψ. Let ā be an n−tuple
from M . Then, by Lemma 3, M(ā) |= φ. Since C ∈ PS, M(ā) ∈ C so that M(ā) |=
∀z1 . . .∀znϕ. Then M(ā) |= ϕ(ā) and hence M |= ϕ(ā). Then M |= ∀z1 . . . ∀znϕ
and hence M |= φ.

Using Łoś-Tarski theorem and the above lemma, it follows that a sentence φ in PS
has an equivalent universal sentence whose matrix is φ itself relativized to the universal
variables. However we give a proof of this latter fact directly using relativization, and
hence an alternate proof of the Łoś-Tarski theorem. We emphasize that our proof works
only for relational vocabularies (Łoś-Tarski is known to hold for arbitrary vocabular-
ies). This would show that relativization helps us resolve the conjecture for the case of
B = 0.

3.1 A Proof of Łoś-Tarski Theorem Using Relativization

We first introduce some notation. Given a τ−structure M , we denote by τM , the vo-
cabulary obtained by expanding τ with as many constant symbols as the elements of
M - one constant per element. We denote by M the τM structure whose τ−reduct is
M and in which each constant in τM is interpreted as the element of M corresponding
to the constant. It is clear that M uniquely determines M. Finally, D(M) denotes the
diagram of M - the collection of quantifier free τM−sentences true in M.

Theorem 4. (Łoś-Tarski) A FO sentence φ is in PS iff there exists an n ∈ N such that
φ is equivalent to ∀z1 . . . ∀znφ|{z1,...,zn}.

Proof :
Consider a set of sentences Γ = {ξk | k ∈ N, ξk = ∀z1 . . .∀zkφ|{z1,...,zk}}. Observe
that ξk+1 → ξk so that a finite collection of ξks will be equivalent to ξk∗ where k∗ is
the highest index k appearing in the collection. We will show that φ ↔ Γ . Once we
show this, by compactness theorem, φ ↔ Γ1 for some finite subset Γ1 of Γ and by the
preceding observation, φ is equivalent to ξn ∈ Γ1 for some n.
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If M |= φ, then since φ ∈ PS, every substructure of it models φ - in particular, the
substructure induced by any k-elements of M . Then M |= ξk for every k and hence
M |= Γ .

Conversely, suppose M |= Γ . Then every finite substructure of M models φ. Let
M be the τM structure corresponding to M . Consider any finite subset S of the dia-
gramD(M) of M . Let C be the finite set of constants referred to in S. ClearlyM|τ∪C ,
namely the (τ ∪ C)-reduct of M models S since M |= D(M). Then consider the
substructure M1 of M|τ∪C induced by the interpretations of the constants of C - this
satisfies S. Now since C is finite, so is M1. Then the τ−reduct of M1 - a finite sub-
structure of M models φ.

Thus S ∪ {φ} is satisfiable by M1. Since S was arbitrary, every finite subset of
D(M) ∪ {φ} is satisfiable so that by compactness, D(M) ∪ {φ} is satisfiable by some
structure say N . Then the τ−reduct N of N is s.t. (i) M is embeddable in N and (ii)
N |= φ. Since φ ∈ PS, the embedding of M in N models φ and hence M |= φ.

The above proof shows that for φ ∈ PS, there is an equivalent universal sentence whose
matrix is φ itself, relativized to the universal variables. In fact, by Lemma 4, there is an
optimal (in terms of the number of universal variables) such sentence.

An observation from the proof of Theorem 4 is that, the Łoś-Tarski theorem is true
over any class of structures satisfying compactness - hence in particular the class of
structures definable by a FO theory (indeed this result is known). But there are classes
of structures which are not definable by FO theories but still satisfy compactness: Con-
sider any FO theory having infinite models and consider the class of models of this
theory whose cardinality is not equal to a given infinite cardinal. This class satisfies
compactness but cannot be definable by any FO theory due to Löwenheim-Skolem the-
orem. Yet Łoś-Tarski theorem would hold over this class.

Having seen the usefulness of relativization in proving Conjecture 1 when B equals
0, it is natural to ask if this technique works for higher values of B too. We answer this
negatively.

3.2 Limitations of Relativization

We show by a concrete example that relativization cannot be used to prove the con-
jecture in general. This motivates us to derive necessary and sufficient conditions for
relativization to work.

Example 3: Consider φ = ∃x∀yE(x, y) over τ = {E}. Note that φ is in PSC(1).
Suppose φ is equivalent to ψ = ∃x∀nȳφ|xȳ for some n. Consider the structure M =
(Z,≤) namely the integers with usual ≤ linear order. Any finite substructure of M
satisfies φ since it has a minimum element (under the linear order). Then taking x to be
any integer, we see that M |= ψ. However M �|= φ since M has no minimum element -
a contradiction. The same argument can be used to show that φ cannot be equivalent to
any sentence of the form ∃nx̄ ∀mȳ φ|x̄ȳ .

We now give necessary and sufficient conditions for relativization to work. Towards
this, we introduce the following notion. Consider φ ∈ FO(τ) s.t. φ ∈ PSC(B).
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Consider a vocabulary τB obtained by expanding τ with B fresh constants. Consider
the class Sall

φ of τB-structures with the following properties:

1. For each (M,a1, . . . , aB) ∈ Sall
φ where M is a τ−structure and a1, . . . , aB ∈ M ,

M |= φ and {a1, . . . , aB} forms a core of M w.r.t. φ.
2. For each model M of φ, for each core C = {a1, . . . , al} of M w.r.t. φ s.t. l ≤

B and for each function p : {1, . . . , B} → C with range C, it must be that
(M,p(1), . . . , p(B)) ∈ Sall

φ .

We now have the following.

Theorem 5. Given φ ∈ PSC(B), the following are equivalent.

1. Sall
φ is finitely axiomatizable.

2. φ is equivalent to ∃B x̄ ∀nȳ φ|x̄ȳ for some n ∈ N.
3. φ is equivalent to a ∃B∀∗ sentence ψ such that in any model M of ψ and φ, the

following hold:
(a) The underlying set of any witness for ψ is a core of M w.r.t. φ.
(b) Conversely, if C is a core of M w.r.t. φ, x1, . . . , xB are the ∃ variables of ψ and

f : {x1, . . . , xB} → C is any function with range C, then (f(x1), . . . , f(xB))
is witness for ψ in M .

Proof :
(1)→ (2): Let Sall

φ be finitely axiomatizable. Check that Sall
φ ∈ PS so that by Łoś-

Tarski theorem, it is axiomatizable by a Π0
1 FO(τB)-sentence ψ having say n ∀ quan-

tifiers. Further, by Lemma 4, ψ is equivalent to γ = ∀nz̄ψ|z̄ . Now consider ϕ =
∃Bx̄ ∀nȳ φ|x̄ȳ . Firstly, from Lemma 5, φ → ϕ. Conversely, suppose M |= ϕ. Let
a1, . . . , aB be witnesses and consider the τB-structure MB = (M,a1, . . . , aB). Now
MB |= ∀nȳ φ|x̄ȳ . We will show that MB |= γ. Consider b1, . . . , bn ∈ M and let
M1 = MB({b1, . . . , bn}). Then M1 |= ∀nȳ φ|x̄ȳ . Check that the τ−reduct of M1 (i)
models φ and (ii) contains {a1, . . . , aB} as a core. Then M1 ∈ Sall

φ and hence M1 |= ψ.
Since b1, . . . , bn were arbitrary, MB |= γ. Since γ ↔ ψ and ψ axiomatizes Sall

φ , the
τ−reduct of MB , namely M , models φ.

(2)→ (3): Take ψ to be ∃Bx̄ ∀nȳ φ|x̄ȳ . Consider a model M of φ and ψ. The set C of
elements of any witness for ψ forms a core of M w.r.t. ψ. Then since φ↔ ψ, C is also
a core of M w.r.t. φ. Conversely, consider a core C of M w.r.t. φ. Then any substruc-
ture of M containingC satisfies φ. Then check that elements of C form a witness for ψ.

(3)→ (1): Let φ ↔ ψ where ψ = ∃Bx̄ ∀nȳβ(x̄, ȳ) where β is quantifier free and ψ
satisfies the conditions mentioned in (3). Consider ϕ = ∀nȳ β[x1 -→ c1, . . . , xB -→ cB]
where c1, . . . , cB are B fresh constants and xi -→ ci means replacement of xi by ci. If
MB = (M,a1, . . . , aB) |= ϕ, then M |= ψ and hence M |= φ. Since a1, . . . , aB
are witnesses for ψ in M , they form a core of M w.r.t. φ by assumption, so that
MB ∈ Sall

φ . Conversely, if MB = (M,a1, . . . , aB) ∈ Sall
φ , then M |= φ and a1, . . . , aB

form a core in M . Then by assumption, M |= ψ and a1, . . . , aB are witnesses for ψ.
Then MB |= ϕ. To sum up, ϕ axiomatizes Sall

φ .
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Consider φ and M in Example 3 above. Take any finite substructure M1 of M - it
models φ. There is exactly one witness for φ in M1, namely the least element under≤.
However every element in M1 serves as a core. The above theorem shows that no ∃∀∗
sentence will be able to capture exactly all the cores through its ∃ variable.

In the following sections, we shall study the conjecture for several special classes of
FO and over special structures. Interestingly, in most of the cases in which the conjec-
ture turns out true, relativization works! However we also show a case for the conjecture
in which relativization does not work, yet the conjecture is true.

4 Positive Cases for the Conjecture

4.1 The Conjecture Holds for Special Fragments of FO

Unless otherwise stated, we consider relational vocabularies throughout the section.
The following lemma will be repeatedly used in the subsequent results.

Lemma 5. Let φ ∈ PSC(B). For every n ∈ N, φ implies ∃Bx̄ ∀nȳ φ|x̄ȳ .

Proof : Suppose M |= φ. Since φ ∈ PSC(B), there is a core C of M of size at most
B. Interpret x̄ to include all the elements of C (in any which way). Since C is a core,
for any n-tuple d̄ of elements of M , having underlying set D, the substructure of M
induced by C ∪D models φ. Then (M, ā, d̄) |= φ|x̄ȳ for all d̄ from M .

Lemma 6. Let τ be a monadic vocabulary containing k unary predicates. Let φ ∈
FO(τ) be a sentence of rank r s.t. φ ∈ PSC(B). Then φ is equivalent to ψ where
ψ = ∃Bx̄ ∀nȳ φ|x̄ȳ where n = r × 2k. For B = 0, n is optimal i.e. there is an FO
sentence in PSC(0) for which any equivalent Π0

1 sentence has at least n quantifiers.

Proof : That φ implies ψ follows from Lemma 5. For the converse, suppose M |= ψ
where n = r × 2k. By an Ehrenfeucht-Fräissé game argument, we can show that M
contains a substructure MS such that (i) M ≡r MS , with |MS | ≤ n and (ii) for any
extension M ′ of MS in M , M ′ ≡r MS . The substructure MS is obtained by taking up
to r elements of each colour c ∈ 2τ present in M . An element a in structure M is said
to have colour c if for every predicate P ∈ Σ, M |= P (a) iff P ∈ c. Since M |= ψ,
there exists witnesses ā for ψ in M . Choose b̄ to be an n-tuple which includes the ele-
ments of MS . This is possible because |MS | ≤ n. Then we have, (M, ā, b̄) |= φ|x̄ȳ so
that M(āb̄) |= φ. But MS ⊆M(āb̄) ⊆M so that M(āb̄) ≡r M . Then M |= φ.

To see the optimality of n for B = 0, consider the sentence φ which states that there
exists at least one colour c ∈ 2τ such that there exist at most r− 1 elements with colour
c. The sentence φ can be written as a formula with rank r, as the disjunction over all
colours, of sentences of the form, ∃x1∃x2 · · · ∃xr−1∀xr(

∧r−1
i=1 xr �= xi) → ¬C(xr).

From the preceding paragraph,φ↔ ∀nȳ φ|ȳ where n = r×2k. Suppose φ is equivalent
to a ∀s sentence for some s < n. Then by Lemma 4, φ ↔ ϕ where ϕ = ∀sȳ φ|ȳ .
Then consider the structure M , which has r elements of each colour. Clearly, M �|= φ.
However check that every s-sized substructure of M models φ. Then M |= ϕ and hence
M |= φ - a contradiction.
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Lemma 7. Let S ∈ PSC(B) be a finite collection of τ−structures so thatS is definable
by a Σ0

2 sentence φ ∈ PSC(B). Then S is definable by the sentence ψ where ψ =
∃Bx̄ ∀nȳ φ|x̄ȳ for some n ∈ N.

Proof : Check that all structures in S must be of finite size so that φ exists. Let the size
of the largest structure in S be at most n. Consider ψ. Lemma 5 shows that φ → ψ.
Conversely, suppose M |= ψ. Then there exists a witness ā s.t. any extension of M(ā)
within M with at most n additional elements models φ. Since M is of size at most n,
taking the extension M of M(ā), we have M |= φ. Since φ defines S so does ψ.

Lemma 8. Consider φ ∈ Π0
2 given by φ = ∀nx̄ ∃mȳ β(x̄, ȳ) where β is quantifier

free. If φ ∈ PSC(B), then φ is equivalent to ψ where ψ = ∃Bū ∀nv̄ φ|ūv̄ .

Proof : From Lemma 5, φ → ψ. For the converse, let M |= ψ and let ā be a witness.
Consider an n−tuple b̄ from M . Then M1 = M(āb̄) is s.t. M1 |= φ. Then for x̄ = b̄,
there exists ȳ = d̄ s.t. d̄ is an m−tuple from M1 and M1 |= β(b̄, d̄). Then M |= β(b̄, d̄)
since M1 ⊆M . Hence M |= φ.

Lemma 9. Suppose φ ∈ PSC(B) and ¬φ ∈ PSC(B′). Then φ is equivalent to ψ
where ψ = ∃Bx̄ ∀B′

ȳ φ|x̄ȳ .

Proof : From Lemma 5, φ implies ψ. For the converse, suppose M |= ψ. Then there is a
witness ā for ψ s.t. for any B′-tuple b̄, the substructure induced by āb̄ i.e. M(āb̄) models
φ. Suppose M �|= φ. Then M |= ¬φ so that there is a core C of M w.r.t. ¬φ, of size at
most B′. Let d̄ be a B′-tuple which includes all the elements of C. Then M(ād̄) |= φ.
But M(ād̄) ⊆M contains C so that M(ād̄) |= ¬φ – a contradiction.

Observe that for the special case of B = 0, we get combinatorial proofs of Łoś-Tarski
theorem for the fragments mentioned above. Moreover all of these proofs and hence the
results hold in the finite. We mention that the result of Lemma 8 holding in the finite
was proved by Compton too (see [7]). We were unaware of this until recently and have
independently arrived at the same result. The reader is referred to [12] for our studies
on more positive cases of Łoś-Tarski in the finite.

Interestingly, Lemma 9has implications for theΔ0
2 fragment of FO. DefineΔ0

2(k, l) ⊆
Δ0

2 to be the class of sentences which have a ∃k∀∗ and a ∀l∃∗ equivalent. Note that
Δ0

2 =
⋃
l,k≥0 Δ

0
2(k, l). Lemma 9 gives us the following right away.

Theorem 6. The following are equivalent:

1. φ ∈ PSC(k) and ¬φ ∈ PSC(l).
2. φ is equivalent to a ∃k∀l and a ∀l∃k sentence.
3. φ ∈ Δ0

2(k, l).

As a corollary, we see that Δ0
2(k, l) is a finite class up to equivalence. We are not aware

of any other semantic characterization of these natural fragments of Δ0
2. This highlights

the importance of the notion of cores and the sizes thereof.
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4.2 The Conjecture over Special Classes of Structures

We first look at the conjecture over finite words. These are finite structures in the vo-
cabulary containing one binary predicate ≤ (always interpreted as a linear order) and
a finite number of unary predicates (which form a partition of the universe). Interest-
ingly, we obtain something stronger than the conjecture. Towards this, we note that
the idea of relativization can be naturally extended to MSO. Given φ in MSO and
a set of variables Z = {z1, . . . , zn}, φ|Z is obtained by first converting all ∀X to
¬∃X and then replacing every subformula ∃Xχ(X, . . .) with

∨
Y⊆Z((
∧
z∈Y X(z) ∧∧

z∈Z\Y ¬X(z)) ∧ χ(X, . . .)). The resulting FO formula is then relativized to Z and
simplified to eliminate the (original) SO variables. As before, abusing notation, we use
φ|Z and φ|z̄ interchangeably.

Theorem 7. Over words, a MSO sentence φ is in PSC(B) iff it is equivalent to ψ where
ψ = ∃Bx̄∀kȳφ|x̄ȳ for some k ∈ N.

Proof sketch: We use the fact that over words, by the Büchi-Elgot-Trakhtenbrot theo-
rem [4], MSO sentences define regular languages. The ‘If’ direction is easy. For the
‘Only if’ direction, let the regular language L defined by φ be recognized by an n state
automaton, say M. If there is no word of length > N = (B + 1) × n in L, then L is
a finite language of finite words and hence from Lemma 7, we are done. Else suppose
there is a word of length > N in L. Then consider ψ above for k = N . It is easy to
observe that φ implies ψ. In the other direction, supposew |= ψ for some word w. Then
there exists a set A of elements i1, . . . , im s.t. (i) m ≤ B and i1 < i2 · · · < im and
(ii) every substructure of w of size at most N +m containing A models φ. We claim
(proof sketched below) that there exists a substructure w1 of w containing A such that
(i) |w1| ≤ N and (ii) w1 ∈ L iff w ∈ L. Then w1 models φ and hence w |= φ. Thus ψ
implies φ and hence is equivalent to φ.

The proof of the claim used in the argument above proceeds as follows. Let qj be
the state reached by automaton M upon reading the subword w[1 . . . ij ]. The subword
w[(ij +1), . . . ij+1] takesM from qj to qj+1 through a sequence S of states. SinceM
has only n states, if w[(ij + 1), . . . ij+1] is long, then S will contain at least one loop.
Then getting rid of the subwords that give rise to loops, we will be able to obtain a sub-
word of w[(ij + 1), . . . ij+1] that takes M from qj to qj+1 without causing M to loop
in between. It follows that this subword must be of length at most n. Collecting such
subwords of w[(ij + 1), . . . ij+1] for each j and concatenating them, we get a subword
of w of length at most N containing set A that takes M from the initial state to the
same state as w. Details can be found in [12].

For the special case of B = 0, we obtain Łoś-Tarski theorem for words and also give
a bound for the number of ∀s in the equivalent Π0

1 sentence in terms of the number of
states of the automaton for φ (A simpler proof of Łoś-Tarski using Higman’s lemma
can be found in [12] though this does not tell anything about the number of ∀s). We
have not encountered this result in our literature survey.

So far, relativization has worked in all the cases we have seen. We now give an
example of a class of structures over which relativization fails, yet the conjecture is
true.
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Consider a subclass C of bounded degree graphs in which each graph is a collection
(finite or infinite) of oriented paths (finite or infinite). For clarity, by oriented path we
mean a graph isomorphic to a connected induced subgraph of the graph (V,E) where
V = Z and E = {(i, i+ 1) | i ∈ Z}. Observe that C can be axiomatized by a theory T
which asserts that every node has in-degree at most 1 and out-degree at most 1 and that
there is no directed cycle of length k for each k ≥ 0. We first show the following.

Lemma 10. For each B ≥ 1, there is a sentence φ ∈ PSC(B) which is not equivalent,
over C, to any ψ of the form ∃B x̄ ∀nȳ φ|x̄ȳ .

Proof : Consider φwhich asserts that there are at least B elements of total degree at most
1 where total degree is the sum of in-degree and out-degree. Clearly φ ∈ PSC(B) since
it is expressible as a ∃B∀∗ sentence. Suppose φ is equivalent to ψ of the form above for
some n ∈ N. Consider M ∈ C which is a both-ways infinite path so that every node
in M has total degree 2 - then M �|= φ. Consider B distinct points on this path at a
distance of at least 2n from each other and form a B−tuple say ā with them. Let b̄ be
any n−tuple from M . Now observe that M(āb̄) is a finite structure which has at least
B distinct paths (0-sized paths included). Then M(āb̄) |= φ so that (M, ā, b̄) |= φ|x̄ȳ .
Since b̄ was arbitrary, M |= ψ so that M |= φ. Contradiction.

However the conjecture holds over C! The proof is currently lengthy so we provide only
a sketch and refer the reader to [12] for details.

Theorem 8. Over the class C of graphs defined above, φ ∈ PSC(B) iff φ is equivalent
to a ∃B∀∗ sentence.

Proof Sketch: If τ = {E} is the vocabulary of φ, let τB be a vocabulary obtained by
adding B fresh constants to τ . Given a class S of τ−structures, define SB to be the
class of all τB−structures s.t. the τ−reduct of each structure in SB is in S. Then the
proof can be divided into two main steps. Below ≡ denotes elementary equivalence.

Step 1: Given φ, define class C′ ⊆ C such that for every structure A ∈ CB , there exists
a structure D ∈ C′B such that A ≡ D (Property I). Since compactness theorem holds
over CB (as CB is defined by the same theory T as C), it also holds over C′B.

Step 2: Show that φ is equivalent to an ∃B∀∗ sentence over C′, hence showing the same
over C as well.

Note: The conditions in Step 1 imply that for every A ∈ C, there exists a D ∈ C′ such
that A ≡ D. Then since compactness theorem holds over C, it also holds over C′.

Suppose the rank of φ is m. We define C′ to be the class of graphs G ∈ C such that
either (a) there exists a bound nG (dependent on G) such that all paths in G have length
less than nG (this does not mean that G is finite – there could be infinite paths of the
same length in G) or (b) there are at least (B + m + 2) paths in G that are infinite in
both directions. It can be shown that C′ satisfies Property I (see [12]).

Now, to show Step 2, we use the following approach.
Let P ∈ C′ be s.t. P |= φ. Choose a core Z of P (recall that φ ∈ PSC(B)). Let

MP ∈ C′B be a τB−structure whose τ−reduct is P , and in which each element of
Z is assigned to some constant. Let ΓMP be the set of all ∀∗ sentences true in MP .
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We can show that (see [12]) if M ′ ∈ C′B is such that M ′ |= ΓMP , then M ′ |= φ.
That is, if every finite substructure of M ′ is embeddable in MP , then M ′ |= φ. Then
over C′B , ΓMP → φ. Now, since C′B satisfies the compactness theorem, there exists a
finite subset ΓMP

0 of ΓMP such that ΓMP
0 → φ over C′B. Note that, since ΓMP

0 is a
conjunction of ∀∗ sentences, we can assume that ΓMP

0 is a single ∀∗ sentence.
Let φP be the τ−sentence of the form ∃B∀∗ obtained by replacing the B constants

in ΓMP
0 with B fresh variables, and by existentially quantifying these variables. We

can then show that φP → φ. It is also easy to see that φ →
∨
P∈C′,P |=φ φP , since

if P |= φ, then the witnesses of the ∃ quantifiers in φP can be chosen to be the core
Z mentioned above. By the compactness theorem over C′, there exists a finite set of
structures, say {P1, · · · , Pm}, such that Pi ∈ C′, Pi |= φ and φ →

∨i=m
i=1 φPi . Then,

we have φ ↔
∨i=m
i=0 φPi over C′. Since each φPi is of the form ∃B∀∗, the sentence∨i=m

i=0 φPi is also of the same form. This completes Step 2 of the proof.

5 Conjecture Fails over Special Classes of Structures

We first look at the class F of all finite structures. Łoś-Tarski theorem fails over this
class and hence so does Conjecture 1 (for B = 0). However, we have the following
stronger result. We prove it for relational vocabularies (constants permitted).

Lemma 11. For relational vocabularies, Conjecture 1 fails, over F , for each B ≥ 0.

Proof : We refer to [1] for the counterexampleχ for Łoś-Tarski in the finite. Let τ be the
vocabulary of χ (i.e. {≤, S, a, b}) along with a unary predicate U . Let us call an element
x as having colour 0 in a structure if U(x) is true in the structure and having colour 1
otherwise. Let ϕ be a sentence asserting that there are exactly B elements having colour
0 and these are different from a and b. Then consider φ = ¬χ ∧ ϕ. Check that since
¬χ is preserved under substructures in the finite, in any model of φ, the B elements of
colour 0 form a core of the model w.r.t. φ. Then φ ∈ PSC(B). Suppose φ is equivalent
to ψ given by ∃B x̄∀nȳ β where β is quantifier-free. Observe that in any model of φ and
ψ, any witness for ψ must include all the B elements of colour 0 (else the substructure
formed by the witness would not model ϕ and hence φ, though it would modelψ). Con-
sider the structure M = ({0, 1, . . . , B + 2n + 3},≤, S, a, b, U) where ≤ is the usual
linear order on numbers, S is the (full) successor relation of ≤, a = 0, b = B + 2n+ 3
and U = {1, . . . , B}. Now M �|= φ since M �|= ¬χ. Consider M1 which is identical to
M except that S(B+ n+1, y) is false in M1 for all y. Then M1 |= φ so that M1 |= ψ.
Any witness ā for ψ must include all the B colour 0 elements of M1. Then choose
exactly the same value, namely ā, from M to assign to x̄. Choose any b̄ as ȳ from M .
Check that it is possible to choose d̄ as ȳ from M1 s.t. M(āb̄) is isomorphic to M1(ād̄)
under the isomorphism f given by f(0) = 0, f(B+2n+3) = B+2n+3, f(ai) = ai
and f(bi) = di where ā = (a1, . . . , aB), b̄ = (b1, . . . , bn) and d̄ = (d1, . . . , dn). Then
since M1 |= β(ā, d̄), M |= β(ā, b̄). Then M models ψ, and hence φ. But that is a
contradiction.

The example expressed by χ can also be written as a sentence in a purely relational
vocabulary. Then one can do a similar proof as above to show that for purely relational
vocabularies too, for each B ≥ 0, Conjecture 1 fails over F (see [12]).
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So far, in all the cases we have seen, it has always been the case that Conjecture 1
and Łoś-Tarski theorem either are both true or are both false. We then finally have the
following result which is our first instance of a class of structures over which Łoś-Tarski
theorem holds but the conjecture fails.

Theorem 9. Over the class C of graphs in which each graph is a finite collection of
finite undirected paths, for each B ≥ 2, there is a sentence φ ∈ PSC(B) which is not
equivalent to any ∃B∀∗ sentence. However, Łoś-Tarski theorem holds over C.

Proof : Łoś-Tarski theorem holds from the results of Dawar et al. over bounded degree
structures [2]. As a counterexample to the conjecture for B ≥ 2, consider the property
D which asserts that there are at least B paths in the graph (0 length included). It can
be shown (see [12]) that D is equivalent to the following condition D′ parametrized by
B: (The number of nodes of degree 0) + 1

2× (the number of nodes of degree 1) ≥ B.
Then given B, take φ to be the sentence expressing D′ for B. We reason out for the
case of B = 2 since for the other cases an analogous reasoning can be done (see [12]).

Every model N of φ has at least 2 paths of length ≥ 0. Consider set A formed by
an end point of one path and an end point of the other path. Check that A is a core of
N w.r.t. φ so that φ ∈ PSC(2). Suppose φ is equivalent over C to ψ = ∃2x̄ ∀nȳ β
where β is quantifier-free. Consider a model N of φ having exactly 2 paths each of
length ≥ 5n. Then since N |= ψ, consider the witnesses a1, a2 for ψ. It cannot be that
a1, a2 are both from the same path else the path by itself would be a model for ψ and
hence φ. Now consider a structure M containing a single path that is of length ≥ 5n
with end points p1, p2. If a1 (resp. a2) is at a distance of ≤ n from any end point in N ,
choose a point b1 (resp. b2) at the same distance from p1 (resp. p2) in M . Else choose
b1 (resp. b2) at a distance of n+1 from p1 (resp. p2). Choose any d̄ as ȳ from M . Check
that it is possible to choose ē as ȳ from N s.t. M(b1b2d̄) is isomorphic to N(a1a2ē)
under the isomorphism f given by f(bi) = ai, f(dj) = ej where d̄ = (d1, . . . , dn) and
ē = (e1, . . . , en). Since N |= β(a1, a2, ē), M |= β(b1, b2, d̄). Then M models ψ, and
hence φ. Contradiction.

Interestingly however, the conjecture holds over C for B = 1. We also give a simpler
proof for the case of B = 0 i.e. Łoś-Tarski over C (see [12]).

6 Conclusion and Future Work

For future work, we would like to investigate cases for which combinatorial proofs of
Conjecture 1 can be obtained. This would potentially improve our understanding of
the conditions under which combinatorial proofs can be obtained for the Łoś-Tarski
theorem as well. An important direction of future work is to investigate whether the
conjecture holds for important classes of finite structures for which the Łoś-Tarski the-
orem holds. Examples of such classes include those considered by Atserias et al in [2].
We have also partially investigated how preservation theorems can be used to show FO
inexpressibility for many typical examples (see [13]). We would like to pursue this line
of work as well in future.
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Abstract. In this work, we combine the frameworks of Justification
Logics and Logics of Plausibility-Based Beliefs to build a logic for Multi-
Agent Systems where each agent can explicitly state his justification for
believing in a given sentence. Our logic is a normal modal logic based
on the standard Kripke semantics, where we provide a semantic defini-
tion for the evidence terms and define the notion of plausible evidence
for an agent, based on plausibility relations in the model. This way, un-
like traditional Justification Logics, justifications can be actually faulty
and unreliable. In our logic, agents can disagree not only over whether a
sentence is true or false, but also on whether some evidence is a valid jus-
tification for a sentence or not. After defining our logic and its semantics,
we provide a strongly complete axiomatic system for it and show that
it has the finite model property and is decidable. Thus, this logic seems
to be a good first step for the development of a dynamic logic that can
model the processes of argumentation and debate in multi-agent systems.

1 Introduction and Motivation

Epistemic logics [15] are a particular kind of modal logics [10] where the modali-
ties are used to describe epistemic notions such as knowledge and belief of agents.
Traditional epistemic logics are expressive enough to describe knowledge and be-
lief of multiple agents in a multi-agent system, including higher-order notions,
such as the knowledge of one agent about the knowledge of another, and some
notions of knowledge and belief that are related to groups of agents, such as
“everybody in a group knows...” or “it is common knowledge in a group...”.

Nevertheless, such epistemic logics have two important limitations. The first is
that the knowledge or belief of an agent is static, i.e., it does not change over time.
One of the reasons for this is that, in such logics, it is not possible to describe
communication between the agents. The second is that the knowledge modeled
by such logics is implicit, which means that if the agent knows something, then
he knows it for some reason that remains unspecified.

In order to deal with the first limitation, Dynamic Epistemic Logics [11] were
developed. In these logics, we can describe acts of communication between the
agents. Such acts consist of truthful announcements that are made by one of the
agents (or an external observer) to the other agents (or a sub-group of them).
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In works such as [4, 5, 7, 8], this framework of dynamic logics was extended
so that not only knowledge, but also beliefs (which, unlike knowledge, may turn
out to be actually false) could evolve over time. The semantics of such logics of
dynamic beliefs is based on Plausibility Models, where each agent has a plausibil-
ity order for the possible states of the model and he believes in those sentences
that are true in the most plausible states according to his plausibility order. The
change of beliefs is then modeled as changes in the plausibility orders of the
agents.

In order to deal with the second limitation, Justification Logics [1–3] were
developed. In these logics, instead of formulas simply stating “Agent i knows
ϕ”, we have formulas that state “t is agent i’s justification (or evidence) for
knowing ϕ”. Thus, these are logics of explicit knowledge, where every knowledge
that an agent has is accompanied by an explicit justification for it. This is why
Justification Logics are also called Logics of Explicit Knowledge or Logics of
Evidence-Based Knowledge.

Justification Logics came from a previous framework, called Logic of Proofs
[1], where justifications described formal proofs of arithmetical theorems. Thus,
justifications in traditional Justification Logics are usually rather strong and the
presence of a justification for a logical sentence entails the truth of that sentence
[2, 3].

In the processes of argumentation and debate, be it an internal debate or
a public debate where each agent tries to convince an external observer of his
particular point of view, it is unrealistic to say that all of the announcements are
truthful. The realistic assumption is that the announcements are merely sincere,
i.e., each agent believes in what he announces. However, in order to convince oth-
ers of their belief, an agent should not only state what he believes in, but also
why he believes in it. So, the appropriate logic to model these processes would be
a dynamic logic of evidence-based beliefs. In order to build such a logic, we com-
bine aspects of Justification Logics with Plausibility Models, while considering
now, unlike traditional Justification Logics, that justifications can actually be
faulty and unreliable (so they no longer entail truth). Using Plausibility Models,
we give a notion of plausible evidence, or plausible justification, for an agent.
So, if an agent has a plausible evidence for a sentence, then he will believe in
that sentence, but, as the evidence can possibly be faulty, this belief has the
possibility to be false.

In the present work, we take a first step in order to build such a logic for the
description of the processes of argumentation and debate. We build a normal
modal logic (for the definition of normal modal logics, [10] can be consulted)
where we can describe the plausibility of evidences for all the different agents,
give a sound and strongly complete axiomatic system for this logic and show
that it has the finite model property and is decidable.

As our next step, we plan to build a dynamic logic of explicit beliefs, adding
to the present logic the actions that would model the communications between
agents during the processes of argumentation and debate. This is not a triv-
ial task. The standard announcements that describe changes of knowledge [11],
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sometimes called hard announcements, are too strong for our needs, since they
are required to be truthful and not merely sincere (using such announcements
without respecting the requisite that the announced formula should be true can
generate logical inconsistencies). On the other hand, the standard announce-
ments that describe changes of beliefs, called belief upgrades or soft announce-
ments [6] are too weak, since, even tough they are only required to be sincere,
they still make the agents receiving the announcement start believing in it, re-
gardless of their current beliefs. In our desired framework, the announcement
of a sentence should be accompanied by a justification as to why the agent
performing the announcement believes in it. Then, each agent receiving the an-
nouncement should judge by himself whether he should start believing or not
in the announced sentence, based on his current beliefs both about what was
announced and about the justification that was given.

There are, in the literature, works that combine aspects of Justification Logics
and Dynamic Epistemic Logics. [19] developed the first proposal of a Justification
Logic with communication between the agents. However, these communication
actions were extremely simple. Later, the series of works [16–18] developed logics
that add to Justification Logics a series of communication actions, some rather
complex. However, those actions are all from the family of hard announcements,
so they cannot be used for our purpose. Our combination of Justification Logics
with explicit evidence terms and Plausibility Models and our use of evidence
terms to model explicit beliefs instead of explicit knowledge seems to be a novel
approach. [9] also developed a logic of evidence-based beliefs, but, unlike our
logic, it has no explicit evidence terms in the language and some of the modalities
are non-normal. Besides that, also unlike our logic, no complete proof system for
that logic is presented.

The rest of this paper is organized as follows. In Section 2, we introduce the
necessary concepts that are used as building blocks for our logic: Justification
Logic and Plausibility Models. The language and semantics of our logic, called
Logic of Plausible Justifications (LPJ), is presented in Section 3, where we also
show that our logic has the finite model property and is decidable and present
a sound and strongly complete axiomatic system for it. Finally, in Section 4, we
state our final remarks and point out potential further developments, including
the one which originally motivated this work: the construction of a dynamic logic
that can model argumentation and debate in multi-agent systems.

2 Background Concepts

This section presents two important concepts for the construction of our logic:
Justification Logic and Plausibility Models.

2.1 Justification Logic

In this section, we provide a brief account of Justification Logic. For more details,
[1–3, 12] can be consulted.
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Definition 1. The language of basic Justification Logic consists of a countable
set Φ of proposition symbols, a countable set C of evidence constants, a countable
set X of evidence variables, all pairwise disjoint, and the boolean connectives ¬
and ∧. The formulas ϕ and the evidence terms t of the language are defined as
follows:

ϕ ::= p | % | ¬ϕ | ϕ1 ∧ ϕ2 | t : ϕ,with t ::= c | x | t1 · t2 | t1 + t2 | !t ,

where p ∈ Φ, c ∈ C and x ∈ X . We denote the set of all evidence terms of the
language by T and the set of all formulas by F .

In this logic and in every other logic described in this paper, we use the
standard abbreviations ⊥ ≡ ¬%, ϕ ∨ φ ≡ ¬(¬ϕ ∧ ¬φ), ϕ→ φ ≡ ¬(ϕ ∧ ¬φ) and
ϕ↔ φ ≡ (ϕ→ φ) ∧ (φ→ ϕ).

Initially, the basic Justification Logic was defined in a purely syntactic man-
ner, through an axiomatic system. Later, Fitting [12] provided a modal semantics
for the logic.

Definition 2. A frame for Justification Logic is a tuple F = (W,R) where W
is a non-empty set of states and R ⊆W ×W is a binary relation that is reflexive
and transitive.

Definition 3. A Fitting Model for Justification Logic is a tupleM = (F ,V, E),
where F is a frame, V is a valuation function V : Φ -→ 2W and E is an evidence
function E : W × T → F satisfying the following conditions:

– If (ϕ→ ψ) ∈ E(w, s) and ϕ ∈ E(w, t), then ψ ∈ E(w, s · t).
– E(w, s) ∪ E(w, t) ⊆ E(w, s+ t).
– If ϕ ∈ E(w, t), then t : ϕ ∈ E(w, !t).
– If wRw′, then E(w, t) ⊆ E(w′, t).
– If ϕ ∈ E(w, c) and c ∈ C, then ϕ must be valid, as defined below.

Definition 4. LetM = (F ,V, E) be a Fitting model. The notion of satisfaction
of a formula ϕ in a modelM at a state w, notation M, w 
 ϕ, can be inductively
defined as follows:

– M, w 
 p iff w ∈ V(p).
– M, w 
 % always.
– M, w 
 ¬ϕ iff M, w �
 ϕ.
– M, w 
 ϕ1 ∧ ϕ2 iff M, w 
 ϕ1 and M, w 
 ϕ2.
– M, w 
 t : ϕ iff ϕ ∈ E(w, t) and, for all w′ such that wRw′, M, w 
 ϕ.

If M, w 
 ϕ for every state w, we say that ϕ is globally satisfied in the model
M, notation M 
 ϕ. If ϕ is globally satisfied in all models M of a frame F , we
say that ϕ is valid in F , notation F 
 ϕ. Finally, if ϕ is valid in all frames, we
say that ϕ is valid, notation 
 ϕ.

From the semantical definition above, we can think of · as a form of evidence-
controlled Modus Ponens, + as a form of evidence combination, ! as a constructor
of evidence for formulas that already contain evidence terms and evidence con-
stants as atomic evidence for formulas that do not need further justification
(since they are valid).
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2.2 Plausibility Models

In this section, we present Plausibility Models for the single-agent case. The
multi-agent case is covered in the presentation of our logic in the next section.
Plausibility Models in the present form were introduced in [4, 5] and [7, 8].

Definition 5. A Plausibility Frame is a tuple F = (W,≥), where W is a non-
empty set of states and ≥ ⊆ W × W is a relation that satisfies reflexivity,
transitivity (thus, is a pre-order) and local connectivity (for all v, w ∈ W ,
v ≥ w or w ≥ v or both). ≥ is called a plausibility order.

When we think about the relation ≥ as an epistemic relation, we consider
that, if v ≥ w, then the agent does not know for sure in which of the states v
or w he actually is, but he considers that the state w is more plausible than the
state v. The choice of the most plausible states as the minimal states according
to the pre-order ≥, which seems counter-intuitive, comes from the fact that if
we add the hypothesis that ≥ is well-founded, then we guarantee that the set of
most plausible states is always well-defined.

As ≥ is transitive and locally connected, the agent considers that it is possible
for him to be in any state of the model, but he considers some more plausible
than others. In the particular case that v ≥ w and w ≥ v, the agent considers
both states v and w to be equally plausible.

Definition 6. A Plausibility Model is a tuple M = (F ,V), where F is a Plau-
sibility Frame and V is a valuation function V : Φ→ 2W , mapping proposition
symbols to sets of states.

Let us now discuss the kinds of belief that can be described in a Plausibility
Model. One thing that all sorts of beliefs have in common, and what differentiates
them from knowledge, is that there is always the possibility that a belief can be
false. Nevertheless, beliefs are consistent, which means that an agent cannot
simultaneously believe in φ and ¬φ.

For our discussion of beliefs, let us consider that the modelM is finite or that
the relation ≥ is well-founded. We can define the set Best(M) = {w ∈ W : v ≥
w, for all v ∈W}. Then, we can define the weakest notion of belief (denoted by
B) as M, w 
 Bϕ iff M, v 
 ϕ, for all v ∈ Best(M). Thus, an agent believes
in ϕ if the formula is satisfied in the most plausible states, according to his
plausibility order. The modality B is a normal modality (B(ϕ → ψ) → (Bϕ →
Bψ)). However, B is not the modality directly associated with the relation ≥. Let
us then define M, w 
 �ϕ iff M, v 
 ϕ, for all v such that w ≥ v. The notion
described by � is called safe belief. An agent has safe belief in a formula if it
is satisfied in all states that are more or equally plausible than the current one.
Thus, safe belief implies belief. Safe belief is also normal. However, the “safety”
of a belief can only be inferred by an external observer, because for an agent
to know that one of his beliefs is safe he would need to know in which state he
currently is. Finally, we define the notion of strong belief in a formula ϕ if all the
states in which ϕ is satisfied are more plausible than all the states in which ϕ is
not satisfied. Strong belief also implies belief, but strong belief is not normal.
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3 Logic of Plausible Justifications

In this section, we present our logic, discuss some of its expressive features and
present a sound and strongly complete axiomatic system for it.

3.1 Language and Semantics

We start by defining the language for the formulas of our logic.

Definition 7. In order to define the language of LPJ, we need to take a finite
set A = {1, . . . , n} of agents, a countable set Φ of proposition symbols and
countable sets Xi, i ∈ A, of evidence variables. We assume that each pair of
such sets is disjoint. The formulas ϕ and the evidence terms t of the language
are defined as follows:

ϕ ::= p | % | ¬ϕ | ϕ1 ∧ ϕ2 | Kiϕ | �iϕ | [t?]ϕ | t/i ϕ | Pit | t :i ϕ, with

t ::= p | g | xij | t, | t1 + t2 ,

where p ∈ Φ, i ∈ A, j ∈ N, xij ∈ Xi and g is a term not occurring in A, Φ or
any of the sets Xi. We denote the set of all evidence terms of the language by T .

In the rest of this paper, sometimes it is convenient to use the duals of some
of our modalities: 〈Ki〉ϕ ≡ ¬Ki¬ϕ, ♦iϕ ≡ ¬�i¬ϕ and 〈t?〉ϕ ≡ ¬[t?]¬ϕ. We do
not use the duals of /i, Pi and :i, but they can be defined analogously.

The first thing that we notice is that there are some differences between our
evidence terms and the ones in Justification Logic. Our language does not have
the operators · and !, it does not have a set C of evidence constants, having
instead a single evidence constant g, it has evidence terms of the form t and
proposition symbols are also evidence terms. We will discuss these differences
after we present the semantics of our logic.

Definition 8. A frame for LPJ is a tuple F = (W, {∼i}i∈A, {≥i}i∈A) where

– W is a non-empty set of states
– ∼i⊆W ×W is an equivalence relation.
– ≥i⊆W ×W is a relation that satisfies reflexivity and transitivity.
– For each i ∈ A, the relations ∼i and ≥i satisfy the following property: ∼i=
≥i ∪ (≥i)−1, where (≥i)−1 = {(v, w) ∈W ×W : (w, v) ∈≥i}.

– Building the relation ≈= (
⋃
i∈A ∼i), we have that, for every pair (v, w)

∈W ×W , v ≈ w. We call this property weak connectivity.

In an LPJ frame, the relations ≥i are the plausibility relations for each of the
agents. They are pre-orders, just as in the single-agent setting of the previous
section. Also as in the previous section, if v ≥i w, then agent i does not know
for sure in which of the states v or w he actually is, but he considers state w
more plausible than state v. The relations ∼i denote these relations of indis-
tinguishability of states by each of the agents. This is why they are defined as
∼i=≥i ∪ (≥i)−1.
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The relations ≥i are no longer locally connected in our present multi-agent
scenario. However, the property of weak connectivity implies that every pair of
states in the frame is indistinguishable to at least one of the agents.

Definition 9. A model for LPJ is a tuple M = (F ,V, E), where F is a frame,
V is a valuation function V : Φ → 2W , mapping proposition symbols to sets of
states, and E is an evidence function E : T → 2W , mapping evidence terms to
sets of states, that satisfies the following rules:

– E(p) = V(p), for all p ∈ Φ.
– E(g) = W .
– E(t) = W \ E(t).
– E(t1 + t2) = E(t1) ∩ E(t2).

We can see, in this definition, how the semantics for our evidence terms is
built. We follow a similar approach to the one presented in [9] and use what
seems to be the simplest semantics for evidence: an evidence is a subset of states
of the model. Roughly speaking, we say that an evidence term t is an evidence
for a formula ϕ if ϕ is satisfied in all of the states in E(t) (in reality, we also have
to check the plausibility of the evidence, as we discuss below).

As the proposition symbols also denote subsets of states (using the function
V), we also use them as evidence terms. We can think of the evidences denoted
by proposition symbols as the “common ground” for all of the agents. Then,
we can use the variables in the sets Xi to denote the “personal views” of each
agent. The evidence term g can be considered as the “weakest” evidence, as it
contains all the states in the model. It has a similar function to the evidence
constants in Justification Logic (looking at the semantics below, we can see that
g can be used by any agent as evidence for what he knows) and it can also
replace the operator !, as we can see, from the definition below, that the formula
t :i ϕ→ g :i (t :i ϕ) is valid. We can drop the operator · since, in our semantics,
it would be a particular case of the operator + to formulas in implication form.
Finally, evidence terms of the form t denote evidence complementation.

Definition 10. Let M = (F ,V, E) be a model. The notion of satisfaction of a
formula ϕ in a model M at a state w, notation M, w 
 ϕ, can be inductively
defined as follows:

– M, w 
 p iff w ∈ V(p).
– M, w 
 % always.
– M, w 
 ¬ϕ iff M, w �
 ϕ.
– M, w 
 ϕ1 ∧ ϕ2 iff M, w 
 ϕ1 and M, w 
 ϕ2.
– M, w 
 Kiϕ iff for all v ∈W such that w ∼i v, M, v 
 ϕ.
– M, w 
 �iϕ iff for all v ∈ W such that w ≥i v, M, v 
 ϕ.
– M, w 
 [t?]ϕ iff if w ∈ E(t), then M, w 
 ϕ.
– M, w 
 t/i ϕ iff for all v ∈W such that w ∼i v and v ∈ E(t), M, v 
 ϕ.
– M, w 
 Pit iff:
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1. there is v ∈ W such that w ∼i v and v ∈ E(t) and
2. for all x, y ∈ W such that w ∼i x and x ≥i y, if x ∈ E(t), then y ∈ E(t).

– M, w 
 t :i ϕ iff M, w 
 t/i ϕ and M, w 
 Pit.

The notions of global satisfaction, validity in a frame and validity are defined
as in the previous section. We say that a formula ϕ is satisfiable if there is a
model M and a state w in M such that M, w 
 ϕ. A formula is not satisfiable
iff its negation is valid. A (possibly infinite) set Δ of formulas is satisfiable if
there is a single model M and a single state w in M such that M, w 
 ϕ, for
all ϕ ∈ Δ.

Our modalities Ki, �i, [t?],/i and :i are all normal. The modalities Ki and �i
denote the usual notions of knowledge (satisfaction in all states indistinguishable
from the current one) and safe belief (satisfaction in all states more or equally
plausible than the current one), respectively.

Our modalities [t?] are inspired by PDL [14] test modalities. They allow
us to verify whether a state belongs to an evidence t, by checking whether
〈t?〉% is satisfied at a state. The relation associated to the modality [t?] is
Rt = {(w,w) : w ∈ E(t)}. The modalities /i are inspired by Renne’s [16–
18] modality of admissibility. The semantics of a formula t : ϕ in Justification
Logic is composed by two parts (see Section 2.1): the first one related to the
evidence function and the second to the relations in the frame. Renne calls the
first part admissibility and uses the modality / to describe it. In our semantics,
an agent i considers an evidence t admissible for a formula ϕ (t /i ϕ) if, in all
the states inside the evidence t that the agent consider possible for him to be,
the formula ϕ is satisfied.

The modalities Pi are used to denote that agent i considers an evidence to be
plausible. The notion of plausibility of an evidence has some similarities to the
notion of strong belief. An evidence is considered plausible if there is a state that
the agent considers possible inside of the evidence and, among the states that the
agent considers possible, all of the states inside the evidence are more plausible
than all of the states outside the evidence. Finally, the modality :i is used to
denote that an agent considers an evidence as plausible evidence or plausible
justification for a formula. An evidence is plausible evidence for a formula if the
agent considers the evidence to be plausible and considers the evidence to be
admissible for the formula.

Theorem 1 (Finite Model Property). Every satisfiable formula ϕ is satis-
fiable in a finite model (i.e., a model with a finite number of states).

Proof. See appendix A. #�

Corollary 1 (Decidability). The satisfiability problem for LPJ (determining
whether a formula ϕ is satisfiable) is decidable.

Proof. The proof of Theorem 1 gives an upper bound (as a function of the size of
ϕ) for the size of the models where ϕmust be checked. As there is a finite number
of such models, they can all be verified to determine whether ϕ is satisfiable. #�
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3.2 Axiomatic System

We consider the set of axioms and rules in Figure 1, where ϕ and ψ are arbitrary
formulas, t and s are arbitrary evidence terms and p is an arbitrary proposition
symbol. We present the axioms divided in groups related to their function.

1. Tautologies, Duals and Normality

PL Propositional Tautologies
DuK Kiϕ↔ ¬〈Ki〉¬ϕ
Du� �iϕ↔ ¬♦i¬ϕ
Dut [t?]ϕ↔ ¬〈t?〉¬ϕ
KK Ki(ϕ→ ψ)→ (Kiϕ→ Kiψ)
K� �i(ϕ→ ψ)→ (�iϕ→ �iψ)
Kt [t?](ϕ→ ψ)→ ([t?]ϕ→ [t?]ψ)

2. ∼i is an equivalence relation

TK Kiϕ→ ϕ
4K Kiϕ→ KiKiϕ
5K ¬Kiϕ→ Ki¬Kiϕ

3. ≥i is reflexive and transitive

T� �iϕ→ ϕ
4� �iϕ→ �i�iϕ

4. ∼i=≥i ∪ (≥i)
−1

Rel1 Kiϕ→ �iϕ
Rel2 〈Ki〉ϕ∧〈Ki〉ψ → 〈Ki〉(ϕ∧♦ψ)∨

〈Ki〉(♦ϕ ∧ ψ)

5. Construction of evidence terms

E1 〈t?〉ϕ↔ (〈t?〉� ∧ ϕ)

E2 〈p?〉� ↔ p

E3 〈g?〉�
E4 〈t?〉� ↔ ¬〈t?〉�
E5 (〈t?〉� ∧ 〈s?〉�)↔ 〈(s+ t)?〉�

6. Admissibility, Plausibility and Justifi-
cation

Adm (t�i ϕ)↔ (Ki[t?]ϕ)

Pla Pit ↔ ((Ki[t?]�i〈t?〉�) ∧
(〈Ki〉〈t?〉�))

Jus t :i ϕ↔ (t�i ϕ) ∧ Pit

7. Rules

MP From ϕ→ ψ and ϕ, derive ψ

Gen From ϕ, derive Kiϕ, �iϕ and
[t?]ϕ

Fig. 1. Axiomatic System

From the axioms above, perhaps Rel2 is the one with the less clear purpose.
Rel1 states that every pair in ≥i is also in ∼i, while Rel2 states that every pair
in ∼i is in ≥i or in (≥i)−1. Rel2 is an adaptation with two modalities (〈Ki〉 and
♦i) of the so-called .3 axiom (see [10] for more details about this axiom).

Every formula φ derivable from the axiomatic system above is called a theorem
(denoted by & φ). A formula φ is consistent iff ¬φ is not a theorem, i.e., iff
�& ¬φ, and inconsistent otherwise. A finite set of formulas Δ = {φ1, . . . , φn} is
consistent iff the formula ψ = φ1 ∧ . . . ∧ φn is consistent. Finally, an infinite set
of formulas Δ′ is consistent iff every finite subset Δ ⊂ Δ′ is consistent.

The axiomatic system is said to be sound if every satisfiable formula is con-
sistent (or, in an equivalent definition, if every satisfiable set of formulas is con-
sistent). The axiomatic system is said to be complete if every consistent formula
is satisfiable. It is said to be strongly complete if every consistent set of formulas
is satisfiable. Unlike the case of soundness, the two definitions for completeness
are not equivalent. Strong completeness implies completeness, but the reciprocal
is false.
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The proof of the soundness of our axiomatic system is straightforward. It is not
difficult to show that each of the axioms is valid according to the LPJ semantics
and that the application of each of the rules to valid formulas give formulas that
are also valid. The strong completeness proof is given in the following theorem.

Theorem 2 (Strong Completeness). Every consistent set of formulas is sat-
isfiable in an LPJ model.

Proof. See appendix B. #�

4 Final Remarks and Future Work

In this work, we combine aspects of Justification Logics with Plausibility Models
to build a logic of explicit beliefs, where each agent can explicitly state which is
his justification for believing in a given sentence. Our logic is a normal modal
logic based on the standard Kripke semantics, where we provide a semantic def-
inition for the evidence terms and define the notion of plausible evidence for an
agent, based on plausibility relations in the model. In our logic, agents can dis-
agree not only over whether a sentence is true or false, but also on whether some
evidence is a valid justification for a sentence or not. Thus, unlike traditional
Justification Logics, justifications can be faulty and unreliable in our logic. After
defining our logic and its semantics, we provide a strongly complete axiomatic
system for it and show that it has the finite model property and is decidable.

We feel that this logic is a good first step for the development of a dynamic
logic that can model the processes of argumentation and debate in multi-agent
systems. We think that the appropriate logic to model these processes would
be a dynamic logic of evidence-based beliefs. Thus, as our next step to build
such a logic, we need to add to the present logic the actions that would model
the communications between agents during the processes of argumentation and
debate. In our desired framework, the announcement of a sentence should be
accompanied by a justification as to why the agent performing the announcement
believes in it. Then, each agent receiving the announcement should judge by
himself whether he should start believing or not in the announced sentence,
based on his current beliefs both about what was announced and about the
justification that was given. In a preliminary analysis, it seems that we may
have a few possible results for an announcement, depending on whether the
agent receiving the announcement currently (before the announcement) believes
in what was announced, in the negation of it or in neither and whether he
currently considers that the justification that was given is plausible or not.

Beside this main goal, we feel that it would also be interesting to develop other
proof systems for this logic, such as a tableau system or a sequent calculus, since
they are more suited to be used as automatic provers than an axiomatic system.
It would also be interesting to investigate the model-checking problem for this
logic and to analyze its complexity. Finally, it would be interesting to analyze
extensions of this logic with quantification over evidence terms, as [13] did in
the context of traditional Justification Logics.
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A Finite Model Property

In this section, we present a proof of the finite model property for our logic using
the standard technique of filtrations, adapting it to the particular features of our
logic. For more details on this construction, [10] can be consulted.

Definition 11. Given a formula ϕ of the language, we built the set of formulas
Cl(ϕ), called closure of ϕ, which is the smallest set that contains ϕ and satisfies
the following properties:

1. If ψ ∈ Cl(ϕ), then, for all subformulas ψ′ of ψ, ψ′ ∈ Cl(ϕ).
2. If �ψ ∈ Cl(ϕ), then ¬�¬ψ ∈ Cl(ϕ), where � ∈ {Ki,�i, [t?]} and � is the

corresponding dual.
3. If t/i ψ ∈ Cl(ϕ), then Ki[t?]ψ ∈ Cl(ϕ).
4. If Pit ∈ Cl(ϕ), then Ki[t?]�i〈t?〉% ∈ Cl(ϕ) and 〈Ki〉〈t?〉% ∈ Cl(ϕ).
5. If t :i ψ ∈ Cl(ϕ), then t/i ψ ∈ Cl(ϕ) and Pit ∈ Cl(ϕ).
6. If 〈t?〉ψ ∈ Cl(ϕ), then 〈t?〉% ∈ Cl(ϕ).

It is important to notice that Cl(ϕ) is a finite set. Using this set of formulas,
we can define an equivalence relation in the set of states of an LPJ model M =
(W, {∼i}i∈A, {≥i}i∈A,V, E). We define w � w′ if, for all formulas ψ ∈ Cl(ϕ),
M, w 
 ψ iff M, w′ 
 ψ. We denote the equivalence class of state w by this
equivalence relation as |w|. We can then use this equivalence relation to build a
new model Mf from M.

Definition 12. Let Mf = (W f , {∼fi }i∈A, {≥fi }i∈A,Vf , Ef ), where:

– W f = {|w| : w ∈W}.
– |w| ∼fi |v| iff, for all formulas 〈Ki〉ψ ∈ Cl(ϕ), M, w 
 〈Ki〉ψ iff M, v 

〈Ki〉ψ.

– |w| ≥fi |v| iff, for all formulas ♦iψ ∈ Cl(ϕ),M, v 
 ♦iψ implies thatM, w 

♦iψ.

– Vf (p) = {|w| ∈W f : w ∈ V(p)}, for all proposition symbols p ∈ Cl(ϕ).
– Ef (t) = {|w| ∈ W f : w ∈ E(t)}, for all evidence terms t such that 〈t?〉% ∈

Cl(ϕ).

It is straightforward to verify that the relations ∼fi and ≥fi satisfy the neces-
sary conditions stated in [10] for filtration relations and also to check that Mf

indeed satisfies all the properties of an LPJ model: ∼fi is an equivalence rela-

tion, ≥fi is reflexive and transitive, we have ∼fi=≥
f
i ∪ (≥fi )−1, Mf is weakly

connected and the evidence function satisfies the desired inductive rules. We call
the modelMf the filtration ofM through Cl(ϕ). It is important to notice that,
if |Cl(ϕ)| = k, then |W f | = 2k, so Mf is a finite model.
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Theorem 3 (Filtration Theorem). For all formulas ψ ∈ Cl(ϕ) and all states
w in M, M, w 
 ψ iff Mf , |w| 
 ψ.

Proof. The proof is by induction on the structure of the formula ψ.

– If ψ is a proposition symbol, ψ = %, ψ = ¬ψ1 or ψ = ψ1 ∧ ψ2, the proof is
straightforward from the definition of Vf and from item 1 of definition 11.

– If ψ = Kiψ1, then, by items 1 and 2 of definition 11, φ = 〈Ki〉φ1 ∈ Cl(ϕ),
where φ1 = ¬ψ1. Then, using the induction step for negation, it is sufficient
to show the result for φ.
(⇒) Suppose that M, w 
 〈Ki〉φ1 ∈ Γ . Then, there is v in M such that
w ∼i v and M, v 
 φ1. By the induction hypothesis, Mf , |v| 
 φ1. Now,

as ∼fi satisfies the necessary conditions for filtration relations, we have that

w ∼i v implies |w| ∼fi |v|. Thus, Mf , |w| 
 〈Ki〉φ1.
(⇐) Suppose that Mf , |w| 
 〈Ki〉φ1. Then, there exists |v| in Mf such that

|w| ∼fi |v| and M, |v| 
 φ1. By the induction hypothesis, M, v 
 φ1. Now,

as ∼fi satisfies the necessary conditions for filtration relations, we have that

|w| ∼fi |v| and M, v 
 φ1 implies that M, w 
 〈Ki〉φ1.
– If ψ = �iψ1, the proof is entirely analogous to the previous item.
– If ψ = [t?]ψ1, then, using the same reasoning of the previous two cases, it

is sufficient to show the result for formulas of the form φ = 〈t?〉φ1. Now,
M, w 
 〈t?〉φ1 iff w ∈ E(t) and M, w 
 φ1. Then, by the induction hy-
pothesis, item 6 of definition 11 and the definition of Ef (t), this happens iff
|w| ∈ Ef (t) and Mf , |w| 
 φ1 iff Mf , |w| 
 〈t?〉φ1.

– If ψ = t/i ψ1, ψ = Pit or ψ = t :i ψ1, the proof is straightforward from the
previous cases and items 3, 4 and 5 of the definition 11, respectively. #�

Theorem 4 (Finite Model Property). Every satisfiable formula ϕ is satis-
fiable in a finite model.

Proof. If M, w 
 ϕ, we build the set Cl(ϕ) and the finite model Mf , which is
the filtration of M through Cl(ϕ). Then, by the Filtration Theorem, we have
Mf , |w| 
 ϕ, so ϕ is satisfiable in a finite model. #�

B Strong Completeness

In this section, we present a strong completeness proof for our axiomatization
using the standard technique of the construction of canonical models, adapting
it to the particular features of our logic. For more details on this construction,
[10] can be consulted.

Given a consistent set of formulasΔ, we can expand this set using the standard
Lindenbaum construction [10] to obtain a maximal consistent set (MCS) Δ+ ⊇
Δ. A set Γ is a MCS if it is consistent and all sets Γ ′ � Γ are inconsistent.
Any MCS Γ has the following important property: for every formula ϕ in the
language, ϕ ∈ Γ iff ¬ϕ /∈ Γ .
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Definition 13 (Canonical Pre-Model). The canonical LPJ pre-model is the
tuple MC = (WC , {∼Ci }i∈A, {≥Ci }i∈A,VC , EC), where:

– WC is the set of all MCS’s.
– If Γ, Γ ′ ∈ WC, then Γ ∼Ci Γ ′ iff, for all formulas ψ ∈ Γ ′, Γ ∪ {〈Ki〉ψ} is

consistent (or, in an equivalent definition, 〈Ki〉ψ ∈ Γ , since Γ is a MCS).
– If Γ, Γ ′ ∈ WC, then Γ ≥Ci Γ ′ iff, for all formulas ψ ∈ Γ ′, Γ ∪ {♦iψ} is

consistent (♦iψ ∈ Γ ).
– VC(p) = {Γ ∈WC : p ∈ Γ}, for all p ∈ Φ.
– EC(t) = {Γ ∈WC : 〈t?〉% ∈ Γ}, for all t ∈ T .

Lemma 1 (Sound Evidence Lemma). The canonical evidence function EC
as defined above satisfies all of the properties required of an evidence function in
an LPJ model (definition 9).

Proof

– Γ ∈ EC(p) iff 〈p?〉% ∈ Γ iff, by axiom E2, p ∈ Γ iff Γ ∈ VC(p), so EC(p) =
VC(p), for all p ∈ Φ.

– Γ ∈ EC(g) iff 〈g?〉% ∈ Γ , which is always the case by axiom E3, so EC(g) =
WC .

– Γ ∈ EC(t1 + t2) iff 〈(t1 + t2)?〉% ∈ Γ iff, by axiom E5, 〈t1?〉% ∈ Γ and
〈t2?〉% ∈ Γ iff Γ ∈ EC(t1) and Γ ∈ EC(t2), so EC(t1+t2) = EC(t1) ∩ EC(t2).

– Γ ∈ EC(t) iff 〈t?〉% ∈ Γ iff, by axiom E4, ¬〈t?〉% ∈ Γ iff 〈t?〉% /∈ Γ iff
Γ /∈ EC(t), so EC(t) = WC \ EC(t). #�

It is straightforward to check that MC satisfies many of the properties of an
LPJ model: ∼Ci is an equivalence relation (by axioms TK, 4K and 5K), ≥Ci is re-
flexive (by axiom T�) and transitive (by axiom 4�), we have ∼Ci =≥Ci ∪ (≥Ci )−1

(by axioms Rel1 and Rel2) and the evidence function satisfies the desired in-
ductive rules (Lemma 1). Nevertheless, MC is not weakly connected. That is
why we call MC the canonical pre-model. So, in order to build an LPJ model
useful for proving that the consistent set Δ is satisfiable, we take the MCS Δ+

and build the set WΔ+

as the maximal weakly connected subset of WC that
contains Δ+. We then define ∼Δ+

i , ≥Δ+

i , VΔ
+

and EΔ+

as the restrictions of

∼Ci , ≥Ci , VC and EC to the states in WΔ+

, respectively. Then, it is straightfor-

ward to verify that MΔ+

= (WΔ+

, {∼Δ+

i }i∈A, {≥Δ
+

i }i∈A,VΔ
+

, EΔ+

) satisfies
all of the above properties that MC satisfies and it is also weakly connected by
construction. Thus, MΔ+

is an LPJ model, and we call it the canonical model
for the consistent set Δ.

Lemma 2 (Existence Lemma). Let Γ be a MCS in MΔ+

. If the formula

〈Ki〉ψ belongs to Γ , then there is a MCS Γ ′ such that Γ ∼Δ+

i Γ ′ and ψ ∈ Γ ′.
Analogously, if the formula ♦iψ belongs to Γ , then there is a MCS Γ ′′ such that
Γ ≥Δ+

i Γ ′′ and ψ ∈ Γ ′′.
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Proof. We show the proof for the 〈Ki〉 modality. The proof for the modality ♦i
is entirely analogous. Suppose that 〈Ki〉ψ ∈ Γ . We want to build a MCS Γ ′ such
that ψ ∈ Γ ′ and Γ ∼Δ+

i Γ ′. If ¬〈Ki〉ϕ ∈ Γ and ϕ ∈ Γ ′, then we would not have

Γ ∼Δ+

i Γ ′, since Γ is a MCS. So, for all formulas ¬〈Ki〉ϕ ∈ Γ , we must have
¬ϕ ∈ Γ ′. We can use this fact to build the set Σ = {ψ} ∪ {¬ϕ : ¬〈Ki〉ϕ ∈ Γ}.
If Σ were not consistent, we would have {¬ϕ1, . . . ,¬ϕk} ⊂ (Σ \ {ψ}), where &
¬(ψ∧¬ϕ1∧. . .∧¬ϕk). Using propositional reasoning, we get & ψ → (ϕ1∨. . .∨ϕk).
Using axioms KK and DuK, rules MP and Gen and propositional reasoning,
we get & 〈Ki〉ψ → (〈Ki〉ϕ1 ∨ . . . ∨ 〈Ki〉ϕk), which contradicts the consistency of
Γ . Then, Σ is consistent and can be expanded to a MCS Σ+. We can then take
Γ ′ = Σ+. #�

Lemma 3 (Truth Lemma). Let MΔ+

be the canonical model for the set

Δ+. For all MCS’s Γ in the model MΔ+

and all formulas ϕ in the language,
MΔ+

, Γ 
 ϕ iff ϕ ∈ Γ .

Proof. The proof is by induction on the structure of the formula ϕ. For the rest
of this proof, Γ will denote a MCS in MΔ+

.

– If ϕ = p ∈ Φ, ϕ = %, ϕ = ¬ψ or ϕ = ϕ1 ∧ ϕ2, the proof is straightforward
from the definitions of VC and VΔ

+

and from the definition of a MCS.
– If ϕ = Kiψ, then, by the induction step for negation and axiom DuK, it is

sufficient to show the result for formulas of the form φ = 〈Ki〉φ1.
(⇒) Suppose that 〈Ki〉φ1 ∈ Γ . Then, by the Existence Lemma, there is Γ ′

in MΔ+

such that Γ ∼Δ+

i Γ ′ and φ1 ∈ Γ ′. By the induction hypothesis,

MΔ+

, Γ ′ 
 φ1, which implies MΔ+

, Γ 
 〈Ki〉φ1.

(⇐) Suppose that MΔ+

, Γ 
 〈Ki〉φ1. Then, there is Γ ′ in MΔ+

such that

Γ ∼Δ+

i Γ ′ and MΔ+

, Γ ′ 
 φ1. By the induction hypothesis, φ1 ∈ Γ ′ and,
by the definitions of ∼Ci and ∼Δ+

i , we must have 〈Ki〉φ1 ∈ Γ .
– If ϕ = �iψ, then the proof is entirely analogous to the previous case, using

now axiom Du� and the second part of the Existence Lemma.
– If ϕ = [t?]ψ, then, using the same reasoning of the previous two cases and

axiom Dut, it is sufficient to show the result for formulas of the form φ =
〈t?〉φ1. By axiom E1, 〈t?〉φ1 ∈ Γ iff 〈t?〉% ∈ Γ and φ1 ∈ Γ . Now, by the

definitions of EC and EΔ+

, 〈t?〉% ∈ Γ iff Γ ∈ EΔ+

(t) and, by the induction

hypothesis, φ1 ∈ Γ iff MΔ+

, Γ 
 φ1. Finally, Γ ∈ EΔ+

(t) andMΔ+

, Γ 
 φ1

iff MΔ+

, Γ 
 〈t?〉φ1.
– If ϕ = t/i ψ, ϕ = Pit or ϕ = t :i ψ1, the proof is straightforward from the

previous cases and axioms Adm, Pla and Jus, respectively. #�

Theorem 5 (Completeness). Every consistent set of formulas is satisfiable
in an LPJ model (definition 9).

Proof. Let Δ be a consistent set of formulas and Δ+ ⊇ Δ be a MCS obtained
from Δ. Consider the canonical model MΔ+

. Then, by the Truth Lemma, we
conclude that MΔ+

, Δ+ 
 ϕ, for all ϕ ∈ Δ, so Δ is satisfiable. #�
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Abstract. A general procedure is presented for producing classic-like
cut-based tableau systems for finite-valued logics. In such systems, cut is
the only branching rule, and formulas are accompanied by signs acting as
syntactic proxies for the two classical truth-values. The systems produced
are guaranteed to be sound, complete and analytic, and they are also
seen to polynomially simulate the truth-table method, thus extending
the results in [7]. �Lukasiewicz’s 3-valued logic is used throughout as a
simple illustrative example.

1 Introduction

In [4,5], in accordance with the so-called Suszko’s Thesis, the authors have shown
how to take advantage of the intrinsic bivalence that stems from the distinction
between designated and undesignated truth-values in any sufficiently expressive
finite-valued logic in order to provide the latter with a (non-truth-functional)
bivalent semantics, and ultimately with a classic-like tableau proof system, using
2-signed formulas, associated to a simple decision procedure. However, due to
the necessary encoding of the original semantics of the logic in terms of the
two classical values, one ends up having to work with tableau rules having a
significant number of branches that unavoidably lead to very large derivations.

It is widely known that proofs not involving cuts (or equivalently modus
ponens) can be very inefficient. For classical propositional logic, for instance,
cut-based proofs can be exponentially smaller than the shortest corresponding
cut-free proofs (see [2]). Still, the unrestricted use of the cut rule poses a seri-
ous challenge for proof-search. First proposed by Mondadori, KE tableaux for
classical logic, thoroughly studied in [6,9,7], are a cut-based tableau system that
employs only analytic cuts and which is known to polynomially simulate the
truth-table decision method, in the general case, bringing thus an exponential
gain over conventional cut-free tableau systems in the worst cases.

Recent interest in KE tableaux (e.g. [10]) stimulated us to consider exploring
a similar strategy, but now for producing classic-like cut-based tableau systems
for finite-valued logics in general, capitalizing on [4,5], to which an analytic
restriction of cut may be imposed, and which might in principle share the benefits
of KE tableaux in terms of proof complexity. This paper reports on such an
exploration.
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2 Background

Consider an alphabet with a denumerable set A of atoms and a finite set Σ of
primitive connectives. The arity of a given connective . ∈ Σ is to be denoted by
arg.. The set S of formulas is the carrier of the free Σ-algebra generated by A. In
dealing with finite-valued logics, Vn = {v0, v1, . . . , vn−1} will be used to denote
sets of truth-values, given n ∈ N, and these are supposed to be partitioned into
a set D = {vi | 0 ≤ i ≤ m} of designated values and a set U = {vi | m + 1 ≤
i ≤ n − 1} of undesignated values. As a matter of stipulation, we will denote
v0 by F and vn−1 by T . In general, an (n-valued) assignment of truth-values
to the atoms is any mapping ρ : A → Vn, and an (n-valued) valuation is any
extension w : S → Vn of such an assignment to the set of all formulas. An
n-valent semantics for S based on Vn, then, is simply a collection of n-valued
valuations. In particular, we will call bivalent any (classic-like) semantics where
V2 = {F, T } and D2 = {T }; the corresponding valuations are called bivaluations.
As usual, we call a valuation w a model of Δ ⊆ S if w(Δ) ⊆ D. A canonical
notion of entailment characterizing a logic L over S is associated to an n-valent
semantics Sem by setting Γ |= α iff every model of Γ in Sem is a model of {α}.
A remarkable case of n-valent semantics corresponds to those we call truth-
functional: such a semantics is given to the set of formulas S by defining an
appropriate Σ-algebra V with carrier Vn, by associating a k-ary interpretation
operator .̂ : Vkn → Vn to each . ∈ Σ with arg. = k, and by collecting in Sem
the set of all homomorphisms § : S → V. Any such homomorphism, as usual,
may be understood as the unique extension of an assignment ρ : A → Vn into
a valuation §ρ : S→ V where §(.(ϕ1, . . . , ϕk)) = .̂(§(ϕ1), . . . , §(ϕk)). Any logic
characterized by truth-functional means, for a given Vn, is called n-valued.

Let us now consider the total mapping t : Vn → V2 such that t(v) = T iff
v ∈ D and define, for any valuation § : S→ V of an n-valued semantics Sem, the
bivaluation b§ = t ◦ §. Though this bivalent semantics gives up the fundamental
feature of truth-functionality, we have shown in previous papers (check [3] and
the survey [5]) that it can still be very useful. As explained below, to accomplish
the bivalent reduction constructively, in order to be able to distinguish any
given value from any other value we just need to associate a unique ‘binary
print’ to each truth-value of a given n-valued logic L. Given vi, vj ∈ V , we write
vi & vj and say that vi and vj are separated in case t(vi) �= t(vj). Given two
formulas ϕi and ϕj and a valuation § such that vi = §(ϕi) �= §(ϕj) = vj yet
b§(ϕi) = b§(ϕj), we say that a one-variable formula θij(p) of L separates vi and vj
if §(θij(ϕi)) & §(θij(ϕj)) (or, equivalently, b§(θij(ϕi)) �= b§(θij(ϕj))). In that case
we will also say that the values vi and vj of L are effectively distinguishable, as
they may be separated using the original linguistic resources of L. Finally, we will
say that the logic L is effectively separable in case its truth-values are pairwise
effectively distinguishable, that is, for any pair of distinct values 〈vi, vj〉 ∈ D2∪U2

a one-variable formula θij(p) can be found in L that separates vi and vj . From
this point on, for simplicity of exposition, we assume that all the necessary
separators belong to the set Σ of primitive connectives of the logic — note
that this is not really a restriction, as one can always conservatively extend an
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n-valued logic L with a conveniently interpreted n-ary connective. Let Θ denote
a finite sequence [θr(p)]

s
r=0 = 〈θ0(p), θ1(p), . . . , θs(p)〉 of one-variable formulas

used as separators, where we assume θ0(p) = p. Obviously, θ0(p) by itself suffices
to separate any pair of values 〈vi, vj〉 ∈ (D × U) ∪ (U × D). We will call binary
print of a value v ∈ V the sequence v = [b§(θr(p))]sr=0, where §(p) = v. Notice
that for every pair of distinct values 〈vi, vj〉 ∈ V2 it is now obviously the case
that vi �= vj .

Example 1. Our running example will be �Lukasiewicz’s 3-valued logic, �L3. The
logic may be described by choosing as primitive connectives Σ = {¬, �,⊃}, with
arg¬ = arg� = 1 and arg⊃ = 2, and by considering the set of truth-values
V3 = {v0, v1, v2}, with v2 as the sole designated value. The operators interpreting
the connectives are described in Table 1.

Table 1. Interpretation operators in �L3

x ¬̂x �̂x
v0 v2 v0
v1 v1 v2
v2 v0 v2

x̂⊃y v0 v1 v2

v0 v2 v2 v2
v1 v1 v2 v2
v2 v0 v1 v2

We need to look for a way of separating the two undesignated values v0 and
v1, and accordingly we will have to set Θ = 〈p, θ1(p)〉, for some convenient
separator θ1. There are two obvious separators already in the alphabet of �L3. We
will here choose �Lukasiewicz’s ‘possibility’ operator � as θ1. The same choice
has in fact been made in [4], but there we have introduced � by abbreviation,

noticing that �̂x def
== (¬̂x)⊃̂x. Clearly, such choice originates the binary prints

〈F, F 〉, 〈F, T 〉 and 〈T, T 〉, respectively for v0, v1 and v2. Note that the sequence
〈T, F 〉 is unrealizable, as it does not correspond to any of the values in V3.
Below, when � appears in the role of the separator θ1 we will write it as θ, to
help calling attention to the two different roles played by this connective. In [12]
we have studied the effect of choosing �Lukasiewicz’s ‘negation’ operator ¬ as θ1.

In earlier work, we have used this bivalent setting to produce classic-like tableau
systems T (L, Θ) for any given n-valued logic L effectively separable by Θ =
[θr(p)]

s
r=0. We refer the reader to [4,5] for the full details. However, it is worth

mentioning here a few key ingredients of the procedure. Mirroring the classical
truth-values {F, T }, we work with 2-signed formulas X:ϕ such that X ∈ {F,T}
and ϕ ∈ S. As a matter of convention, we shall say that an n-valued valuation §
satisfies a labeled formula X:ϕ if b§(ϕ) = X . The notion of satisfaction extends
naturally to sets of labeled formulas. Given a binary print v = [Xr]

s
r=0, we use

vS(ϕ) to denote the sequence of signed formulas [Xr:ϕ]
s
r=0.

The cornerstone of T (L, Θ) is the recipe for obtaining elimination rules for
the connectives. Using & to represent conjunction in the classical metalan-
guage, || to represent disjunction, =⇒ to represent implication, and 	 to rep-
resent an absurd, we produce a tableau rule for each schematic signed formula
X:θ(.(ϕ1, . . . , ϕk)) where X ∈ {F,T}, θ ∈ Θ, and . ∈ Σ with arg. = k.
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We further demand that if θ = θ0, then . /∈ Θ, and we write more simply
X:. (ϕ1, . . . , ϕk) instead of X:θ0(.(ϕ1, . . . , ϕk)). The elimination rules are pro-
duced by collecting the tuples of binary prints that a homomorphic n-valuation §
can assign to the formulas ϕ1, . . . , ϕk in order to satisfy the signed formula. Let-
ting Bθ�X ([ϕi]

k
i=1) = {&[vi

S(ϕi)]
k
i=1 | t(θ̂(.̂([vi]ki=1))) = X}, the corresponding

tableau rule is then given by

X:θ(.([ϕi]ki=1)) =⇒ || Bθ�X ([ϕi]
k
i=1).

In our metalanguage the above expression represents a tableau rule: the an-
tecedent of each rule is the head, and the succedent describes the children nodes
that may be created once the head matches a node of a previously given branch.

Example 2. In the case of �L3 with the single separator θ = �, the above described
recipe would produce, for instance, a rule of the form

T:θ(¬ϕ1) =⇒ (F:ϕ1 & F:θ(ϕ1)) || (F:ϕ1 & T:θ(ϕ1))

simply because §(�(¬ϕ1)) = v2 if and only if �̂(¬̂(§(ϕ1))) = v2 if and only if
§(ϕ1) = v0 or §(ϕ1) = v1. Note that 〈F, F 〉 and 〈F, T 〉 are precisely the binary
prints associated respectively to v0 and v1.

Another example, now using the identity θ0, would yield

F:ϕ1 ⊃ ϕ2 =⇒ (F:ϕ1 & T:θ(ϕ1) & F:ϕ2 & F:θ(ϕ2))

|| (T:ϕ1 & T:θ(ϕ1) & F:ϕ2 & T:θ(ϕ2))

|| (T:ϕ1 & T:θ(ϕ1) & F:ϕ2 & F:θ(ϕ2))

because §(ϕ1 ⊃ ϕ2) �= v2 if and only if §(ϕ1)⊃̂§(ϕ2) �= v2 if and only if §(ϕ1) = v1
and §(ϕ2) = v0, or §(ϕ1) = v2 and §(ϕ2) = v0, or §(ϕ1) = v2 and §(ϕ2) = v1.

Such rules may be streamlined using classical equivalences in the metalan-
guage, and completeness of the tableau system is attained by the addition of
suitable closure rules (see [4]).

As it might be expected, the tableau systems produced using the above recipe
originate in general very redundant and highly branching derivations. The next
sections will show how to use a similar approach to obtain more efficient systems,
in which the only branching rule is an analytic version of the cut rule.

Before proceeding, we introduce some extra useful terminology and nota-
tion. As usual, each ϕi, for 1 ≤ i ≤ k, is called an immediate subformula
of .(ϕ1, . . . , ϕk). The set of proper subformulas of a given .(ϕ1, . . . , ϕk) con-
tains the immediate subformulas of this formula and the immediate subformu-
las of any formula therein contained. We here dub Θ-immediate subformula of
.(ϕ1, . . . , ϕk) any formula of the form θ(ϕi), for 1 ≤ i ≤ k and θ ∈ Θ. The
set of proper Θ-subformulas of a given formula has the obvious definition. A
Θ-formula is called atomic if it has no Θ-immediate subformulas. We also define
the size of a formula (signed or not) to be the cardinality of its set of subformulas
(forgetting the sign, in the case of a signed formula). For convenience, we will
assume FC = T and TC = F as the conjugates of the two classical truth-values,
and extend the notation accordingly to the syntactic labels T and F.
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In the next section we will illustrate the ideas behind our novel rule-extraction
algorithm by discussing what happens in the running example of �L3. After that
we will present and study our general method in full detail.

3 A Cut-Based Tableau System for �L3

The idea here is to find a suitable way of defining a tableau system for �L3 whose
only branching rule is a cut rule, in a way that generalizes the KE tableaux
of [6,9], proposed for classical logic. Recall that we consider �L3 separators Θ =
〈p, θ(p)〉, where θ = �. Our tableau system will consist of three classes of rules:
the cut rule, elimination rules, and closure rules.

The cut rule is the only branching rule, i.e., the only rule with more than one
branch in the succedent, and has the following typical form:

(�L3.Cut) =⇒ F:ϕ || T:ϕ

In Section 4 we will show that it is possible to restrict its use only to analytic
applications.

We will now take full advantage of the classic-like semantics of �L3 introduced
by its corresponding bivalent semantics, obtained following the procedure de-
tailed in [3], and extract from it suitable elimination and closure rules for our
novel cut-based system.

As explained and illustrated in Section 2, we will need suitable elimination
rules for signed formulas of the forms X:¬ϕ1, X:ϕ1 ⊃ ϕ2, X:θ(¬ϕ1), X:θ(ϕ1 ⊃ ϕ2)
and X:θ(�(ϕ1)), where θ = � and X ∈ {F,T}. Recall that, given a formula ϕ,
we can express its 3-valued truth-table as a bivalent one, where the value of ϕ
depends only on the values of its Θ-subformulas. Given that the procedure is
systematic, let us focus at a fragment of it, and consider the bivalent version of

Table 2. The bivalent version of ⊃

combination ϕ1 θ(ϕ1) ϕ2 θ(ϕ2) ϕ1 ⊃ ϕ2

0 F F F F T

1 F F F T T

2 F F T F –

3 F F T T T

4 F T F F F

5 F T F T T

6 F T T F –

7 F T T T T

8 T F F F –

9 T F F T –

10 T F T F –

11 T F T T –

12 T T F F F

13 T T F T F

14 T T T F –

15 T T T T T
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the truth-table corresponding to the formula ϕ1 ⊃ ϕ2. In Table 2 we include all
the combinations for the signs of ϕ1, θ(ϕ1), ϕ2, θ(ϕ2). A dash (–) in the last
column indicates that the corresponding combination contains a sequence 〈T, F 〉
for some 〈ϕ, θ(ϕ)〉 that corresponds to no binary print v, for v ∈ V3.

From Table 2 we can mechanically extract a set of elimination rules for �L3’s
‘implication’ connective ⊃. Indeed, consider the partial bivaluation bj described
at combination j of the table, in such a way that we shall say that Xj :ψ is satisfied
if ψ is at the head of some column and the j-th combination below it contains
value Xj . In our cut-based tableau system there will be a rule corresponding
to each collection R of signed formulas satisfied by some partial bivaluation bj
with the requirement that such collection must contain Xj :ϕ1 ⊃ ϕ2. For in-
stance, some possible such collections are {F:ϕ1 ⊃ ϕ2}, {F:ϕ1 ⊃ ϕ2,T:ϕ1} and
{T:ϕ1 ⊃ ϕ2,F:θ(ϕ1),T:θ(ϕ2)}. Each such collection R, read as a conjunction,
will form the antecedent of a tableau rule. Let Mod(R) be the set of all par-
tial bivaluations corresponding to combinations that satisfy R. The succedent
of the corresponding rule will contain the (possibly empty) collection, read as a
conjunction, of all signed formulas that are simultaneously satisfied by all the
bivaluations in Mod(R). As an example, let {F:ϕ1 ⊃ ϕ2} be the antecedent of a
given rule. Then we can restrict our attention to the combinations 4, 12 and 13
from Table 2. We may easily notice that {T:θ(ϕ1),F:ϕ2} is an invariant in these
combinations. The corresponding tableau rule will in this case read:

(�L3.⊃ 1∗) F:ϕ1 ⊃ ϕ2 =⇒ T:θ(ϕ1) & F:ϕ2.

Note that we omit the (empty) rules originating from partial bivaluations for
which in the derived restricted table we have no invariants (other than the signed
formulas fixed for the antecedent). For example, we do not have any rule with
{T:ϕ1 ⊃ ϕ2} as antecedent, since T:ϕ1 ⊃ ϕ2 itself is the only invariant in the
corresponding restricted table (it suffices to contrast combinations 0 and 15).
A general and formal account of this rule-extraction procedure will be given in
Section 4. Table 3 contains the full set of rules obtained, in particular, for the
connective ⊃.

It is clear that the procedure described above for the mechanical extraction of
elimination rules may generate a lot of redundancies. As a trivial example, one
may notice that the rule (�L3.⊃ 2∗) of Table 3 is redundant in the presence of
(�L3.⊃ 1∗) since they have the same succedent and the collection of antecedents
of one of them is included in the other. One may notice that the rule (�L3.⊃ 4∗)
is also redundant in the presence of (�L3.⊃ 1∗), given that the latter has a more
informative succedent than the former, even if it contains less hypotheses in the
antecedent. After the elimination of all such redundant rules, and repeating the
procedure for all connectives, with and without the separator θ, we obtain
the elimination rules in Table 4.

Finally, with respect to the closure rules, we follow [4] to the letter. Besides
the traditional closure rule for 2-signed tableaux, which says that a branch is
closed once it contains two signed formulas of the form F:ϕ and T:ϕ, additional
closure rules will be needed in order to exclude unrealizable binary prints — in
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Table 3. Rules automatically derived from the truth-table for ⊃

(�L3.⊃ 1∗) F:ϕ1 ⊃ ϕ2 =⇒ T:θ(ϕ1) & F:ϕ2

(�L3.⊃ 2∗) F:ϕ1 ⊃ ϕ2 & F:θ(ϕ2) =⇒ T:θ(ϕ1) & F:ϕ2

(�L3.⊃ 3∗) F:ϕ1 ⊃ ϕ2 & T:θ(ϕ2) =⇒ T:ϕ1 & T:θ(ϕ1) & F:ϕ2

(�L3.⊃ 4∗) F:ϕ1 ⊃ ϕ2 & F:ϕ2 =⇒ T:θ(ϕ1)

(�L3.⊃ 5∗) F:ϕ1 ⊃ ϕ2 & F:ϕ2 & F:θ(ϕ2) =⇒ T:θ(ϕ1)

(�L3.⊃ 6∗) F:ϕ1 ⊃ ϕ2 & F:ϕ2 & T:θ(ϕ2) =⇒ T:ϕ1 & T:θ(ϕ1)

(�L3.⊃ 7∗) F:ϕ1 ⊃ ϕ2 & T:θ(ϕ1) =⇒ F:ϕ2

(�L3.⊃ 8∗) F:ϕ1 ⊃ ϕ2 & T:θ(ϕ1) & F:θ(ϕ2) =⇒ F:ϕ2

(�L3.⊃ 9∗) F:ϕ1 ⊃ ϕ2 & T:θ(ϕ1) & T:θ(ϕ2) =⇒ T:ϕ1 & F:ϕ2

(�L3.⊃ 10∗) F:ϕ1 ⊃ ϕ2 & T:θ(ϕ1) & F:ϕ2 & T:θ(ϕ2) =⇒ T:ϕ1

(�L3.⊃ 11∗) F:ϕ1 ⊃ ϕ2 & F:ϕ1 =⇒ T:θ(ϕ1) & F:ϕ2 & F:θ(ϕ2)

(�L3.⊃ 12∗) F:ϕ1 ⊃ ϕ2 & F:ϕ1 & F:θ(ϕ2) =⇒ T:θ(ϕ1) & F:ϕ2

(�L3.⊃ 13∗) F:ϕ1 ⊃ ϕ2 & F:ϕ1 & F:ϕ2 =⇒ T:θ(ϕ1) & F:θ(ϕ2)

(�L3.⊃ 14∗) F:ϕ1 ⊃ ϕ2 & F:ϕ1 & F:ϕ2 & F:θ(ϕ2) =⇒ T:θ(ϕ1)

(�L3.⊃ 15∗) F:ϕ1 ⊃ ϕ2 & F:ϕ1 & T:θ(ϕ1) =⇒ F:ϕ2 & F:θ(ϕ2)

(�L3.⊃ 16∗) F:ϕ1 ⊃ ϕ2 & F:ϕ1 & T:θ(ϕ1) & F:θ(ϕ2) =⇒ F:ϕ2

(�L3.⊃ 17∗) F:ϕ1 ⊃ ϕ2 & F:ϕ1 & T:θ(ϕ1) & F:ϕ2 =⇒ F:θ(ϕ2)

(�L3.⊃ 18∗) F:ϕ1 ⊃ ϕ2 & T:ϕ1 =⇒ T:θ(ϕ1) & F:ϕ2

(�L3.⊃ 19∗) F:ϕ1 ⊃ ϕ2 & T:ϕ1 & F:θ(ϕ2) =⇒ T:θ(ϕ1) & F:ϕ2

(�L3.⊃ 20∗) F:ϕ1 ⊃ ϕ2 & T:ϕ1 & T:θ(ϕ2) =⇒ T:θ(ϕ1) & F:ϕ2

(�L3.⊃ 21∗) F:ϕ1 ⊃ ϕ2 & T:ϕ1 & F:ϕ2 =⇒ T:θ(ϕ1)

(�L3.⊃ 22∗) F:ϕ1 ⊃ ϕ2 & T:ϕ1 & F:ϕ2 & F:θ(ϕ2) =⇒ T:θ(ϕ1)

(�L3.⊃ 23∗) F:ϕ1 ⊃ ϕ2 & T:ϕ1 & F:ϕ2 & T:θ(ϕ2) =⇒ T:θ(ϕ1)

(�L3.⊃ 24∗) F:ϕ1 ⊃ ϕ2 & T:ϕ1 & T:θ(ϕ1) =⇒ F:ϕ2

(�L3.⊃ 25∗) F:ϕ1 ⊃ ϕ2 & T:ϕ1 & T:θ(ϕ1) & F:θ(ϕ2) =⇒ F:ϕ2

(�L3.⊃ 26∗) F:ϕ1 ⊃ ϕ2 & T:ϕ1 & T:θ(ϕ1) & T:θ(ϕ2) =⇒ F:ϕ2

(�L3.⊃ 27∗) T:ϕ1 ⊃ ϕ2 & F:θ(ϕ2) =⇒ F:ϕ1 & F:θ(ϕ1) & F:ϕ2

(�L3.⊃ 28∗) T:ϕ1 ⊃ ϕ2 & F:ϕ2 =⇒ F:ϕ1

(�L3.⊃ 29∗) T:ϕ1 ⊃ ϕ2 & F:ϕ2 & F:θ(ϕ2) =⇒ F:ϕ1 & F:θ(ϕ1)

(�L3.⊃ 30∗) T:ϕ1 ⊃ ϕ2 & F:ϕ2 & T:θ(ϕ2) =⇒ F:ϕ1

(�L3.⊃ 31∗) T:ϕ1 ⊃ ϕ2 & T:ϕ2 =⇒ T:θ(ϕ2)

(�L3.⊃ 32∗) T:ϕ1 ⊃ ϕ2 & F:θ(ϕ1) =⇒ F:ϕ1

(�L3.⊃ 33∗) T:ϕ1 ⊃ ϕ2 & F:θ(ϕ1) & F:θ(ϕ2) =⇒ F:ϕ1 & F:ϕ2

(�L3.⊃ 34∗) T:ϕ1 ⊃ ϕ2 & F:θ(ϕ1) & T:θ(ϕ2) =⇒ F:ϕ1

(�L3.⊃ 35∗) T:ϕ1 ⊃ ϕ2 & F:θ(ϕ1) & F:ϕ2 =⇒ F:ϕ1

(�L3.⊃ 36∗) T:ϕ1 ⊃ ϕ2 & F:θ(ϕ1) & F:ϕ2 & F:θ(ϕ2) =⇒ F:ϕ1

(�L3.⊃ 37∗) T:ϕ1 ⊃ ϕ2 & F:θ(ϕ1) & F:ϕ2 & T:θ(ϕ2) =⇒ F:ϕ1

(�L3.⊃ 38∗) T:ϕ1 ⊃ ϕ2 & F:θ(ϕ1) & T:ϕ2 =⇒ F:ϕ1 & T:θ(ϕ2)

(�L3.⊃ 39∗) T:ϕ1 ⊃ ϕ2 & F:θ(ϕ1) & T:ϕ2 & T:θ(ϕ2) =⇒ F:ϕ1

(�L3.⊃ 40∗) T:ϕ1 ⊃ ϕ2 & T:θ(ϕ1) =⇒ T:θ(ϕ2)

(�L3.⊃ 41∗) T:ϕ1 ⊃ ϕ2 & T:θ(ϕ1) & F:ϕ2 =⇒ F:ϕ1 & T:θ(ϕ2)

(�L3.⊃ 42∗) T:ϕ1 ⊃ ϕ2 & T:θ(ϕ1) & F:ϕ2 & T:θ(ϕ2) =⇒ F:ϕ1

(�L3.⊃ 43∗) T:ϕ1 ⊃ ϕ2 & T:θ(ϕ1) & T:ϕ2 =⇒ T:θ(ϕ2)

(�L3.⊃ 44∗) T:ϕ1 ⊃ ϕ2 & F:ϕ1 & F:θ(ϕ2) =⇒ F:θ(ϕ1) & F:ϕ2

(�L3.⊃ 45∗) T:ϕ1 ⊃ ϕ2 & F:ϕ1 & F:ϕ2 & F:θ(ϕ2) =⇒ F:θ(ϕ1)

(�L3.⊃ 46∗) T:ϕ1 ⊃ ϕ2 & F:ϕ1 & T:ϕ2 =⇒ T:θ(ϕ2)

(�L3.⊃ 47∗) T:ϕ1 ⊃ ϕ2 & F:ϕ1 & F:θ(ϕ1) & F:θ(ϕ2) =⇒ F:ϕ2

(�L3.⊃ 48∗) T:ϕ1 ⊃ ϕ2 & F:ϕ1 & F:θ(ϕ1) & T:ϕ2 =⇒ T:θ(ϕ2)

(�L3.⊃ 49∗) T:ϕ1 ⊃ ϕ2 & F:ϕ1 & T:θ(ϕ1) =⇒ T:θ(ϕ2)

(�L3.⊃ 50∗) T:ϕ1 ⊃ ϕ2 & F:ϕ1 & T:θ(ϕ1) & F:ϕ2 =⇒ T:θ(ϕ2)

(�L3.⊃ 51∗) T:ϕ1 ⊃ ϕ2 & F:ϕ1 & T:θ(ϕ1) & T:ϕ2 =⇒ T:θ(ϕ2)

(�L3.⊃ 52∗) T:ϕ1 ⊃ ϕ2 & T:ϕ1 =⇒ T:θ(ϕ1) & T:ϕ2 & T:θ(ϕ2)

(�L3.⊃ 53∗) T:ϕ1 ⊃ ϕ2 & T:ϕ1 & T:θ(ϕ2) =⇒ T:θ(ϕ1) & T:ϕ2

(�L3.⊃ 54∗) T:ϕ1 ⊃ ϕ2 & T:ϕ1 & T:ϕ2 =⇒ T:θ(ϕ1) & T:θ(ϕ2)

(�L3.⊃ 55∗) T:ϕ1 ⊃ ϕ2 & T:ϕ1 & T:ϕ2 & T:θ(ϕ2) =⇒ T:θ(ϕ1)

(�L3.⊃ 56∗) T:ϕ1 ⊃ ϕ2 & T:ϕ1 & T:θ(ϕ1) =⇒ T:ϕ2 & T:θ(ϕ2)

(�L3.⊃ 57∗) T:ϕ1 ⊃ ϕ2 & T:ϕ1 & T:θ(ϕ1) & T:θ(ϕ2) =⇒ T:ϕ2

(�L3.⊃ 58∗) T:ϕ1 ⊃ ϕ2 & T:ϕ1 & T:θ(ϕ1) & T:ϕ2 =⇒ T:θ(ϕ2)
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this case of �L3 and Θ, we are talking about 〈T, F 〉. Hence, an additional closure
rule will say that branches containing both a signed formula of the form T:ϕ
and a signed formula of the form F:θ(ϕ) may be closed. One might represent the
above mentioned such closure rules by writing:

(�L3.C0) F:ϕ & T:ϕ =⇒ 	
(�L3.C1) T:ϕ & F:θ(ϕ) =⇒ 	

Table 4. Streamlined elimination rules of the tableau system for �L3

(�L3.¬1) F:¬ϕ1 =⇒ T:θ(ϕ1)

(�L3.¬2) T:¬ϕ1 =⇒ F:ϕ1 & F:θ(ϕ1)

(�L3.⊃ 1) F:ϕ1 ⊃ ϕ2 =⇒ T:θ(ϕ1) & F:ϕ2

(�L3.⊃ 2) F:ϕ1 ⊃ ϕ2 & T:θ(ϕ2) =⇒ T:ϕ1 & T:θ(ϕ1) & F:ϕ2

(�L3.⊃ 3) F:ϕ1 ⊃ ϕ2 & F:ϕ1 =⇒ T:θ(ϕ1) & F:ϕ2 & F:θ(ϕ2)

(�L3.⊃ 4) T:ϕ1 ⊃ ϕ2 & F:θ(ϕ2) =⇒ F:ϕ1 & F:θ(ϕ1) & F:ϕ2

(�L3.⊃ 5) T:ϕ1 ⊃ ϕ2 & F:ϕ2 =⇒ F:ϕ1

(�L3.⊃ 6) T:ϕ1 ⊃ ϕ2 & T:ϕ2 =⇒ T:θ(ϕ2)

(�L3.⊃ 7) T:ϕ1 ⊃ ϕ2 & F:θ(ϕ1) =⇒ F:ϕ1

(�L3.⊃ 8) T:ϕ1 ⊃ ϕ2 & F:θ(ϕ1) & T:ϕ2 =⇒ F:ϕ1 & T:θ(ϕ2)

(�L3.⊃ 9) T:ϕ1 ⊃ ϕ2 & T:θ(ϕ1) =⇒ T:θ(ϕ2)

(�L3.⊃ 10) T:ϕ1 ⊃ ϕ2 & T:θ(ϕ1) & F:ϕ2 =⇒ F:ϕ1 & T:θ(ϕ2)

(�L3.⊃ 11) T:ϕ1 ⊃ ϕ2 & T:ϕ1 =⇒ T:θ(ϕ1) & T:ϕ2 & T:θ(ϕ2)

(�L3.θ¬1) F:θ(¬ϕ1) =⇒ T:ϕ1 & T:θ(ϕ1)

(�L3.θ¬2) T:θ(¬ϕ1) =⇒ F:ϕ1

(�L3.θ ⊃ 1) F:θ(ϕ1 ⊃ ϕ2) =⇒ T:ϕ1 & T:θ(ϕ1) & F:ϕ2 & F:θ(ϕ2)

(�L3.θ ⊃ 2) T:θ(ϕ1 ⊃ ϕ2) & F:θ(ϕ2) =⇒ F:ϕ1 & F:ϕ2

(�L3.θ ⊃ 3) T:θ(ϕ1 ⊃ ϕ2) & T:ϕ2 =⇒ T:θ(ϕ2)

(�L3.θ ⊃ 4) T:θ(ϕ1 ⊃ ϕ2) & F:θ(ϕ1) =⇒ F:ϕ1

(�L3.θ ⊃ 5) T:θ(ϕ1 ⊃ ϕ2) & F:θ(ϕ1) & T:ϕ2 =⇒ F:ϕ1 & T:θ(ϕ2)

(�L3.θ ⊃ 6) T:θ(ϕ1 ⊃ ϕ2) & T:ϕ1 =⇒ T:θ(ϕ1) & T:θ(ϕ2)

(�L3.θ(�1)) F:θ(�(ϕ1)) =⇒ F:ϕ1 & F:θ(ϕ1)

(�L3.θ(�2)) T:θ(�(ϕ1)) =⇒ T:θ(ϕ1)

Figure 1 shows an example of a tableau for �L3 using the set of rules obtained as
described above. In this example we get (2.1) and (2.2) by applying rule (�L3.⊃1)
to the formula (1). The same rule applies to (2.2) to originate (3.1) and (3.2). An
application of (�L3.⊃3) to (1) and (3.2) gives (4.1). Thenwe apply (�L3.θ ⊃1) to (4.1)
and get (5.1) and (5.2).We close the tableau by applying (�L3.C0) to (2.1) and (5.2).
Note that the derivation tree is linear as no use of (�L3.Cut) was necessary.

(1) F:(p0 ⊃ (p1 ⊃ p0))

(2.1) T:θ(p0)

(2.2) F:(p1 ⊃ p0)

(3.1) T:θ(p1)

(3.2) F:p0

(4.1) F:θ(p1 ⊃ p0)

(5.1) T:p1
(5.2) F:θ(p0)

�

Fig. 1. A refutation of p0 ⊃ (p1 ⊃ p0) in the cut-based tableau system for �L3
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4 The Tableau System

4.1 Rules

Let L be an effectively separable n-valued logic with a set of formulas S generated
over the set of connectives Σ by the set of atoms A, and having D ⊆ Vn as its
set of designated values. We assume also that its binary prints are produced by
a convenient sequence of separators Θ = [θr(p)]

s
r=0, where θ0(p) = p. In the

following, we will exhibit the rules of our novel cut-based tableau system for L.
As explained before, the only branching rule of our system is:

(L.Cut) =⇒ F:ϕ || T:ϕ

Below in this section, we will show that it is possible to restrict the use of such
cut rule only to analytic applications, that is, applications to tableau branches
of which ϕ is a Θ-subformula.

Let now BP = {F, T }s+1 be the set of all (s + 1)-long binary prints and let
a partial binary print be any sequence cR = [cr]r∈R such that R ⊆ {0, 1, . . . , s}
and each cr ∈ {F, T } (this definition includes, of course, all binary prints in BP,
as strict partiality occurs precisely when R is a proper subset of {0, 1, . . . , s}).
We say that a partial binary print dU extends cR if R ⊆ U and dr = cr for every
r ∈ R.

We say that a sequence [vi]
k
i=1 of binary prints satisfies a signed formula

X:θ(.([ϕi]ki=1)) if t(θ̂(.̂([vi]ki=1))) = X . Further, we say that a signed formula
is satisfiable by a sequence [ciRi

]ki=1 of partial binary prints if it is satisfied by
some sequence of binary prints that extends [ciRi

]ki=1 componentwise.
Let Ri, Ui ⊆ {0, 1, . . . , s} be such that Ri ∩ Ui = ∅, for each 1 ≤ i ≤ k,

let [ciRi
]ki=1 and [diUi

]ki=1 be two disjoint sequences of partial binary prints, and
let δ be the signed formula X:θ(.([ϕi]ki=1)). We say that [ciRi

]ki=1 entails [diUi
]ki=1

with respect to δ when, for every sequence [vi]
k
i=1 of binary prints satisfying δ,

if [vi]
k
i=1 extends [ciRi

]ki=1 then [vi]
k
i=1 extends [diUi

]ki=1.
We now produce elimination rules for each signed formula δ = X:θ(.([ϕi]ki=1))

such that if θ = θ0, then . /∈ Θ. We consider, for each sequence of partial binary
prints [ciRi

]ki=1 that satisfies δ, the following rule:

(L.Rθ�X [ciRi
]ki=1) X:θ(.([ϕi]ki=1)) & (&[ci

S
Ri
(ϕi)]

k
i=1) =⇒ &[di

S

Ui
(ϕi)]

k
i=1

where [diUi
]ki=1 is the largest sequence of partial binary prints entailed by [ciRi

]ki=1

with respect to δ. That is to say that diUi
extends any other sequence of partial

binary prints entailed by [ciRi
]ki=1 with respect to δ. Note that such a largest

partial binary print is well-defined. Indeed, given the fact that δ is satisfiable,
any two entailed sequences of partial binary prints [eiVi

]ki=1 and [fiWi
]ki=1 are

compatible, i.e., for each i, if j ∈ Vi ∩Wi then eij = fij , and can thus be joined
into [giVi∪Wi

]ki=1 such that, for each i, gij = eij if j ∈ Vi and gij = fij if j ∈ Wi.
Clearly, [giVi∪Wi

]ki=1 extends both sequences and is also entailed by [ciRi
]ki=1

with respect to δ.
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The set of elimination rules listed above might contain a lot of redundancies.
We can see an elimination rule as a pair of sets 〈Π1, Π2〉 where Π1 contains the
signed formulas in the antecedent and Π2 the signed formulas in the succedent
of the rule. In this case, we say that a rule (Δ1, Δ2) is redundant in a system T
if there is a different rule (Γ1, Γ2) in T such that: (i) Γ1 ⊆ Δ1; and (ii) Δ2 ⊆ Γ2.

Finally, closure rules look precisely as in the system of [5]. We briefly explain
the procedure below, for the sake of self-containment.

We consider first the usual classic-like closure rule:

(L.C0) F:ϕ & T:ϕ =⇒ 	

In addition, we have to consider the unrealizable binary prints. Let CS = BP\{v |
v ∈ Vn} be the set of all the bivalent sequences that are not produced as binary
prints of truth-values of L. Intuitively, any closuring sequence c ∈ CS brings
about information that is unobtainable, allowing one thus to close a tableau
branch that contains it. Information, even if partial, leading unambiguously to
a sequence in CS should always give rise to a closed tableau. Indeed, closur-
ing information is carried by any partial binary print cR such that all of its
2#(Θ)−#(R) possible total extensions are in CS. Hence, it would be reasonable to
add a different closure rule for each such partial closuring information. However,
it suffices to take into account just the minimal closuring situations, that is, clo-
suring partial sequences cR that cannot be obtained as extensions of any other
closuring partial sequence. In general, where cR = [cr]r∈R is some partial binary
print, we write cSR(ϕ) = [s(cr):θr(ϕ)]r∈R for the linguistic 2-signed version of
such sequence, where s(cr) = T if cr = T and s(cr) = F if cr = F . Accordingly,
for each minimal closuring partial binary print cR, we consider an additional
closure rule:

(L.Ck) &
(
cSR(ϕ)
)
=⇒ 	

Finally, we get further closure rules as particular cases in the production of
elimination rules. Namely, we need to consider when the formula X:θ(.([ϕi]ki=1))
is not satisfiable. For any such a case, we consider the additional closure rule:

(L.Cθ�X ) X:θ(.([ϕi]ki=1)) =⇒ 	

We can now define our full cut-based tableau system.

Definition 1. The tableau system T cut(L, Θ) for the logic L with respect to Θ
is composed of rule (L.Cut), non-redundant elimination rules (L.Rθ�X [ciRi

]ji=1),

and closure rules (L.C0), (L.Ck), (L.Cθ�X ) defined as above.

Tableaux are built as usual, by applying the above rules, given an initial sequence
of 2-signed formulas, and a branch is said to be closed if its closure is obtained
by the application of any of the (Ck) rules, including (C0), or of any Cθ�X rule.
Branches that are not closed are said to be open. A tableau is said to be closed
in case all of its branches are closed.
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4.2 Properties

We will now check the soundness and completeness of our cut-based tableau
systems T cut(L, Θ).

As usual, we say that the system is sound if the root of any closed tableau is
unsatisfiable. Conversely, we say that the system is complete if every unsatisfiable
finite set of signed formulas is the root of some closed tableau.

Theorem 1. The tableau system T cut(L, Θ) is sound and complete.

Proof. For soundness, it is sufficient to show that if a homomorphic n-valuation
§ : S → Vn satisfies the head of a rule then it must satisfy one of the branches
of its succedent. This is clearly the case for the cut rule. The property also
holds for the closure rules, as shown in [4,5]. We are thus left with proving the
claim for the linear elimination rules (L.Rθ�X [ciRi

]ki=1), which holds basically by

construction. Indeed, if § satisfies X:θ(.([ϕi]ji=1)) and [ci
S
Ri
(ϕi)]

k
i=1 then § must

also satisfy [di
S

Ui
(ϕi)]

k
i=1 because [ci

S
Ri
(ϕi)]

k
i=1 entails [di

S

Ui
(ϕi)]

k
i=1 with respect

to X:θ(.([ϕi]ji=1)).
We prove completeness of T cut(L, Θ) by exploiting the completeness of the

tableau system T (L, Θ) defined in [4,5]. Clearly, it is enough to show that all
the rules of T (L, Θ) are derivable in T cut(L, Θ). Closure rules are common to
both systems. Thus, we just need to show that it is possible to simulate in
T cut(L, Θ) the branching elimination rules of T (L, Θ), extracted as explained in
Section 2. Let us pick one arbitrary such rule

X:θ(.([ϕi]ki=1)) =⇒ || Bθ�X ([ϕi]
k
i=1)

where we recall that Bθ�X ([ϕi]
k
i=1) = {&[vi

S(ϕi)]
k
i=1 | t(θ̂(.̂([vi]ki=1))) = X}.

Given the root X:θ(.([ϕi]ki=1)), we start by using (L.Cut) to cut on all the
immediate Θ-subformulas of .([ϕi]ki=1). This will produce 2k·#(Θ) branches
corresponding to all possible combinations of classical values for θj(ϕi) with
j = 0, 1, . . . , s and i = 1, . . . , k. The branches that correspond to combina-
tions that satisfy the head of the rule coincide precisely with the elements of
Bθ�X ([ϕi]

k
i=1). Thus we are left with showing that the remaining branches can all

be closed. Some of these branches may close simply by means of an application
of some (L.Ck) rule because they correspond to combinations that include some
unrealizable binary print (as the dashed lines in Table 2). Hence, we only need
to analyze what happens with the branches corresponding to valid combinations
that assign the value XC to θ(.([ϕi]ki=1)). Consider the sequence of elements in
one such branch and take its largest prefix that turns X:θ(.([ϕi]ki=1)) satisfiable.
It is, of course, a proper prefix. Assume also that Y:θj(ϕi) is the next element in
the sequence. Clearly, the prefix corresponds to some sequence [ciRi

]ki=1 of par-

tial binary prints whose associated rule (L.Rθ�X [ciRi
]ki=1) will produce Y

C :θj(ϕi)
(or a simpler rule if this one is redundant). Finally, we may close the branch
using the rule (L.C0). #�

The strategy used in the completeness proof above is simple but often builds
unnecessarily complex tableaux. Below, when we study the proof complexity
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of our cut-based systems, we will show that such tableaux can be significantly
simplified. In any case, most importantly, the proof of Theorem 1 also shows the
completeness of the analytic version of our cut-based systems, i.e., a restriction
that allows applications of cut only to Θ-subformulas of the formulas occurring
in the root of the tree.

Corollary 1. The analytic restriction of T cut(L, Θ) is complete.

In the light of the analyticity result in Corollary 1, the cut-based tableau system
T cut(L, Θ) can be used as a decision procedure for the logic L. Since finite-valued
logics are already known to be decidable by the ‘brute force’ truth-table method,
it will be interesting to know more about the computational complexity of the
decision procedure associated to T cut(L, Θ). As in the case of the KE system for
classical logic (see [6]), it is expectable that our cut-based tableaux for finite-
valued logics fare significantly better than conventional tableaux in terms of
proof complexity, and in general not worse than the truth-table method. We
adapt from [8] the definition of some typical complexity measures to be used
below.

Definition 2. The size of a tableau π, denoted by |π| is the total number of
formulas occurring in π. The λ-complexity of a tableau π, denoted by λ(π), is
the number of nodes in π.The ρ-complexity of a tableau π, denoted by ρ(π), is
the maximum number of formulas in a node of π.

As an example, for the tableau π in Figure 1, we have |π| = 9, λ(π) = 6 and
ρ(π) = 2. Clearly, the following relation holds in general: |π| ≤ λ(π) · ρ(π). Note
that in the case of a tableau π produced within T cut(L, Θ), the ρ-complexity
of π is bounded by ρ(π) ≤ k(s+ 1), where s+ 1 is the cardinality of Θ and k is
the maximum arity of any connective from the alphabet of L.

The following theorem shows that the cut-based tableau systems given by
Definition 1 can polynomially simulate (p-simulate) the truth-table method.

Theorem 2. Given a valid signed formula X:ϕ of L with size a and containing v
distinct atoms, there is a refutation π of XC :ϕ in T cut(L, Θ) of complexity λ(π) =
O(a ·#(Θ) · 2v·#(Θ)).

Proof. First we apply (L.Cut) to all the atomic Θ-subformulas of ϕ. This will
generate a tree with 2v·#(Θ) branches. Then, for each such branch, we proceed
by applying (L.Cut) to a Θ-subformula ϕi of ϕ such that all of its immediate
Θ-subformulas are already in the branch. By construction, such a ϕi exists.
We note that at least one of the two branches thereby generated gives rise to a
contradiction and may be closed by applying at most one elimination rule and one
closure rule. Indeed, by the definition of the system, either the system contains
an elimination rule for ϕi whose application gives rise to a contradiction on one
of the Θ-subformulas of ϕi or, as a trivial case, ϕi is of the form θ(.(. . . )) and
we can apply a closure rule (L.Cθ�X ), that is, either F:ϕi =⇒ 	 or T:ϕi =⇒ 	.
If one of the branches does not close, we can reiterate on it the same procedure,
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by applying (L.Cut) to a further Θ-subformula of ϕ such that all its immediate
Θ-subformulas are in the branch.

We conclude by noticing that all the initial 2v·#(Θ) branches may be closed
by following the above described procedure, i.e., by applying (L.Cut) to at most
the Θ-subformulas of ϕ, and so linearly in a ·#(Θ). #�

We can further show that T cut(L, Θ) is not worse than T (L, Θ). Intuitively,
we must be able to reproduce efficiently in T cut(L, Θ) any tableau constructed
within T (L, Θ), and in particular more efficiently than we managed to do in
the proof of Theorem 1. To illustrate how we proceed, we show in particular
how it is possible to efficiently simulate in the cut-based tableau system for �L3

(Section 3) the branching rule for F:p ⊃ q (Example 2). While the tree on the
left of Figure 2 portrays an application of the rule obtained in Section 2, the one
on the right represents its efficient simulation by means of rules of the cut-based
system. In particular, we use (�L3.⊃1) to derive (2.1) and (2.2); then we cut on
p and obtain (3.1) and (3.2); finally, we obtain (4) by using (�L3.⊃3) on (1) and
(3.1) and we obtain (5.1) and (5.2) by cutting on θ(q).

F:p ⊃ q

F:p

T:θ(p)

F:q

F:θ(q)

T:p

T:θ(p)

F:q

F:θ(q)

T:p

T:θ(p)

F:q

T:θ(q)

(1) F:p ⊃ q

(2.1) T:θ(p)

(2.2) F:q

(3.1)F:p

(4)F:θ(q)

(3.2)T:p

(5.1)F:θ(q) (5.2)T:θ(q)

Fig. 2. Finding efficient simulations of branching elimination rules for �L3

The proof of the following theorem uses a similar strategy.

Theorem 3. For every proof π in the system T (L, Θ), there exists a proof πcut

with the same root in the system T cut(L, Θ) such that |πcut| ≤ |π|.

Proof. Building upon the proof of Theorem 1, it is enough to show that each
branching elimination rule of T (L, Θ) can be efficiently derived in the cut-based
system. Let us consider an arbitrary such rule

X:θ(.([ϕi]ki=1)) =⇒ || Bθ�X ([ϕi]
k
i=1)

where Bθ�X ([ϕi]
k
i=1) = {&[vi

S(ϕi)]
k
i=1 | t(θ̂(.̂([vi]ki=1))) = X}, as in Section 2.

Starting with root X:θ(.([ϕi]ki=1)), in T cut(L, Θ) we can follow a procedure
consisting in applying linear elimination rules for X:θ(.([ϕi]ki=1)) whenever pos-
sible, or (L.Cut) on some missing Θ-subformula if none of the elimination rules
can be applied. It is easy to see that, by construction, the amount of informa-
tion in the simulating tree is not bigger than the one produced by the given rule,
i.e., each formula in such a simulating tree also occurs in at least one branch of
the rule. #�
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The existence of extremely bad cases, in general, for T (L, Θ) is very likely,
although exploring that path lies beyond the scope of this paper. Together with
the above results, one would then certainly expect to be able to show, as in
the case of classical logic, that the cut-based systems allow in general for a
significantly better performance.

5 Conclusions

Other paths could have been explored for defining appropriate cut-based versions
of the tableau systems in [4,5]. Yet, we believe that the path explored here
achieves a good trade-off between efficiency of proof construction and usability
of the system. On what concerns the first aspect, as it is common in this area, we
measured efficiency in terms of size of the tableaux produced, by having in mind,
as a minimum requirement, that p-simulation of truth-tables must hold. Clearly,
the use of a larger number of rules would help in this sense; in particular, we
could add a closure rule for each unsatisfiable situation arising from the analysis
of truth-tables, as illustrated in Section 3 and formalized in Section 4. This would
in principle reduce —but asymptotically not in any significant way— the size of
the closed tableaux built as in the proof of Theorem 2, since each unsatisfiable
branch could be closed immediately. A further option would consist in allowing
only elimination rules such that all the immediate subformulas are involved in
the rule, either in the antecedent or in the succedent. As an example, the rule
(�L3.⊃ 1) would not be allowed in the system of Section 3. The systems resulting
from such approach allow for the p-simulation of the truth-table method (the
procedure described in the proof of Theorem 2 can still be applied) and have
the advantage of facilitating proof search, in the sense that for each formula in
a tableau one needs to apply at most one elimination rule. A drawback of such
systems is that they tend to require more uses of cut, e.g., the formula in the
example of Figure 1 (see Section 3) would not have a linear closed tableau.

On what concerns readability and compactness of the system, we mainly tried
to minimize the number of rules and the number of formulas per rule. With such
goal in mind, further simplifications could be proposed. As an example, one can
notice that the rule (�L3.⊃ 2) might be rewritten as

F:ϕ1 ⊃ ϕ2 & T:θ(ϕ2) =⇒ T:ϕ1

since the other formulas in the succedent may be obtained by an application of
(�L3.⊃ 1). By generalizing such simplifications, one would obtain a more compact
system for which, however, the result of Theorem 2 would not hold. Finally, we
note that the proof of Theorem 2 suggests a very simple decision procedure,
which is enough for p-simulating truth-tables. However, in general there might
be better heuristics for guiding the construction of a tableau. For example, the
canonical procedure given in [8] for the KE system for classical logic coincides,
in essence, with the procedure we adopted in the proof of Theorem 3.

As we have seen, the syntactic encoding of the truth-tabular semantics presup-
posed by our classic-like approach to cut-based tableaux generates in principle
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a multiplication of the number of rules. Moreover, in the resulting tableau sys-
tems, rules contain a number of expressions in the antecedent which need to be
simultaneously matched to the nodes of a given branch in order to be applied.
Even though proof-complexity theorists do not in general take into account the
costs implicit in the use of a deductive system with a large number of rules and
with rules which require a lot of pattern-matching effort, and we have here done
our study in accordance with that tradition, one might also think it wiser to
measure such costs in calculating the efficiency of a given proof system.

Though our methods cannot be expected to apply to infinite-valued logics in
general, it is predictable that they extend smoothly at least to those infinite-
valued logics with a finite-valued non-deterministic semantics [1]. The possible
connection between our approach and resolution-based sets-as-signs methods [11]
is another interesting topic for future research.
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