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Preface

This volume contains the papers of the 19th Workshop on Logic, Language,
Information and Computation (WoLLIC 2012), which was held during September
3-6, 2012 at the University of Buenos Aires.

The WoLLIC series of workshops series started in 1994 with the aim of fos-
tering interdisciplinary research in pure and applied logic. The idea is to have a
forum which is large enough for dialogues between logic and the sciences relating
to information and computation, and yet small enough for interactions among
participants.

A total of 16 papers were accepted out of 46 submissions for presentation at
WOoLLIC 2012 and for inclusion in the proceedings. Each submitted paper was re-
viewed by at least three members of the Program Committee, who were assisted
in their work by 62 external reviewers. We would like to thank the members of
the Program Committee and the external reviewers for their review work, as well
as Andrei Voronkov for providing the EasyChair system that proved invaluable
throughout the review process and the preparation of this volume. In addi-
tion to the contributed papers, the WoLLIC program contained invited lectures
by Andrea Asperti (Bologna), Hans van Ditmarsch (Sevilla), Laura Kallmeyer
(Diisseldorf), George Metcalfe (Nashville), Anca Muscholl (Bordeaux), Andre
Nies (Auckland), Peter Selinger (Halifax), and Nicole Schweikardt (Frankfurt).

Many people helped to make WoLLIC 2012 a success. We would like to
thank Carlos Areces (Local Co-chair), Santiago Figueira (Local Co-chair), Javier
Legris, and Anjolina G. de Oliveira; our sponsors: Departamento de Computacion,
Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires and
Facultad de Ciencias Econémicas, Universidad de Buenos Aires, and Centro de
Informética, Universidade Federal de Pernambuco, Brazil. Last, but not least,
we gratefully acknowledge the sponsorship of the following organizations: Inter-
est Group in Pure and Applied Logics (IGPL), Association for Logic, Language
and Information (FoLLI), Association for Symbolic Logic (ASL), European As-
sociation for Theoretical Computer Science (EATCS), European Association for
Computer Science Logic (EACSL), Sociedade Brasileira de Computagao (SBC),
and Sociedade Brasileira de Légica (SBL).

June 2012 Luke Ong
Ruy de Queiroz
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Formalizing Turing Machines

Andrea Asperti and Wilmer Ricciotti

Department of Computer Science, University of Bologna
{asperti,ricciott}@cs.unibo.it

Abstract. We discuss the formalization, in the Matita Theorem Prover,
of a few, basic results on Turing Machines, up to the existence of a
(certified) Universal Machine. The work is meant to be a preliminary
step towards the creation of a formal repository in Complexity Theory,
and is a small piece in our Reverse Complexity program, aiming to a
comfortable, machine independent axiomatization of the field.

1 Introduction

We have assisted, in recent years, to remarkable achievements obtained by means
of interactive theorem provers for the formalization and automatic checking of
complex results in many different domains, spanning from pure mathematics
[OIT4U5] to software verification [T9I825]T], passing through the metatheory and
semantics of programming languages [10J24].

Surprisingly, however, very little work has been done so far in major fields
of theoretical computer science, such as computability theory and, especially,
complexity theory. The only work we are aware of is [20], containing basic re-
sults in computability theory relying on A-calculus and recursive functions as
computational models. The computational constructs of both these models are
not finitistic and are not very suitable for complexity purposes: Turing Machines
still provide the standard foundation for this discipline.

Our work is an initial, preliminary contribution in this direction. In particular,
we present a formalization of basic definitions and results on Turing Machines,
up to the existence of a universal machine and the proof of its correctness. In
particular, in Section 2 we discuss the notion of Turing Machine and its seman-
tics; Section 3 provides means for composing machines (sequential composition,
conditionals and iteration); Section 4 contains the definition of basic, atomic
machines for textual manipulation of the tape; Section 5 introduces the notion
of Normal Turing Machine and its standard representation as a list of tuples;
Section 6 gives an outline of the universal machine; Section 7 and 8 are respec-
tively devoted to the two main routines of the universal machine, namely finding
the right tuple to apply, and ezecuting the corresponding action; in Section 10,
we summarize the main results which have been proved about the universal ma-
chine. In the conclusion we provide overall information about the size of the
contribution and the resources required for its development as well as more mo-
tivations for pursuing formalization in computability and complexity theory: in
particular we shall briefly outline our long term Reverse Complexity program,

L. Ong and R. de Queiroz (Eds.): WoLLIC 2012, LNCS 7456, pp. 1-£5] 2012.
(© Springer-Verlag Berlin Heidelberg 2012



2 A. Asperti and W. Ricciotti

alming to a trusted, comfortable, machine independent axiomatization of the
field suitable for mechanization.

In our development, we have been inspired by several traditional articles and
textbooks, comprising e.g. [I3II7ITTI23I2T]; however, it is worth to remark that
none of them provides a description of the topic, and especially of universal ma-
chines, sufficiently accurate to be directly used as a guideline for formalization.

The formalization work described in this paper has been performed by means
of the Matita Interactive Theorem Prover [8]. For lack of space we cannot provide
details about proofs; the development will be part of the standard library of
Matita since the next public release, and in the next few months will be made
accessible on-line through the new Web interface of the system [6].

2 The Notion of Turing Machine

Turing Machines were defined by Alan M. Turing in [22]. To Computer Scientists,
they are a very familiar notion, so we shall address straight away their formal
definition. Let us just say that, for the purposes of this paper, we shall stick to
deterministic, single tape Turing Machines. The generalization to multi-tape /non
deterministic machines does not look problematic

2.1 The Tape

The first problem is the definition of the tape. The natural idea is to formalize it
as a zipper, that is a pair of lists [ and r, respectively representing the portions of
the tape at the left and the right of the tape head; by convention, we may assume
the head is reading the first symbol on the right. Of course, the machine must
be aware this list can be empty, that means that the transition function should
accept an optional tape symbol as input. Unfortunately, in this way, the machine
is only able to properly react to a right overflow; the problem arises when the left
tape is empty and the head is moved to the left: a new “blank” symbol should be
added to the right tape. A common solution in textbooks is to reserve a special
blank character U of the tape alphabet for this purpose: the annoying consequence
is that tape equality should be defined only up to a suitable equivalence relation
ignoring blanks. To make an example, suppose we move the head to the left and
then back to the right: we expect the tape to end up in the same situation we
started with. However, if the tape was in the configuration ([],r) we would end
up in ([U], ). As anybody with some experience in interactive proving knows very
well, reasoning up to equivalence relations is extremely annoying, that prompts us
to look for a different representation of the tape.

! Tt is worth to recall that the choice about the number of tapes, while irrelevant for
computability issues, it is not from the point of view of complexity. Hartmanis and
Stearns [I5] have shown that any k-tape machine can be simulated by a one-tape ma-
chine with at most a quadratic slow-down, and Hennie [I6] proved that in some cases
this is the best we can expect; Hennie and Stearns provided an efficient simulation of
multi-tape machines on a two-tape machine with just a logarithmic slow-down [12].
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The main source of our problem was the asymmetric management of the left
and right tape, with the arbitrary assumption that the head symbol was part of
the right tape. If we try to have a more symmetric representation we must clearly
separate the head symbol from the left and right tape, leading to a configuration
of the kind (I, ¢, 7) (mid-tape); if we have no ¢, this may happen for three different
reasons: we are on the left end of a non-empty tape (left overflow), we are on the
right end of a non-empty tape (right overflow), or the tape is completely empty.

This definition of the tape may seem conspicuous at first glance, but it resulted
to be quite convenient.

rinductive tape (sig:FinSet) : Type := A
| niltape : tape sig

| leftof : sig — list sig — tape sig

| rightof : sig — list sig — tape sig

| midtape : list sig —sig — list sig — tape sig.

« o

For instance, suppose to be in a configuration with an empty left tape, that is
(midtape [] a l); moving to the left will result in (leftof a l); further moves to the
left are forbidden (unless we write a character to the uninitialized cell, therefore
turning the overflow into a mid-tape), and moving back to the right restores the
original situation.

Given a tape, we may easily define the left and right portions of the tape and
the optional current symbol (question marks and dots appearing in the code are
implicit parameters that the type checker is able to infer by itself):

s N
definition left :=M\sig.At:tape sig.match t with
[ niltape =[] | leftof =[] | rightof s 1 = s:1 | midtape ] =1]
definition right :=M\sig.At:tape sig.match t with
[ niltape =[] | leftof s r = sur | rightof =[] | midtape r =r].
definition current :=M\sig.At:tape sig.match t with
[ midtape ¢ = Some ?c| = None?].
J

Note that if (current t) = None than either (left t) or (right t) is empty.

2.2 The Machine

We shall consider machines with three possible moves for the head: L (left) R
(right) and N (None).
N

inductive move : Type :=| L : move | R : move | N : move.
N y

The machine, parametric over a tape alphabet sig, is a record composed of a
finite set of states, a transition function trans, a start state, and a set of halting
states identified by a boolean function. To encode the alphabet and the states, we
exploit the FinSet library of Matita, making extensive use of unification hints [7].
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rrecord TM (sig:FinSet): Type :=

{ states : FinSet;
trans : states x (option sig) — states x (option (sig X move));
start : states;

halt : states — bool}.
N J

The transition function takes in input a pair (g,a) where ¢ is the current
internal state and a is the current symbol of the tape (hence, an optional char-
acter); it returns a pair (g, p) where p is an optional pair (b, m) composed of a
new character and a move. The rationale is that if we write a new character we
will always be allowed to move, also in case the current head symbol was None.
However, we also want to give the option of not touching the tape (NOP), that
is the intended meaning of returning None as output.

Executing p on the tape has the following effect:

fdeﬁnition tape move :=M\sig.At:tape sig.Ap:option (sig X move).
match p with
[ None =t
| Some pl =
let (s,m) :=pl in
match m with
[ R = tape move right 7 (left 7 t) s (right ? t)
| L = tape move left ? (left ? t) s (right 7 t)
| N = midtape ? (left 7 t) s (right ? t) ] ].
N U
where

rdeﬁnition tape move left :=Asig:FinSet.Alt: list sig.Ac:sig.Art: list sig.
match It with
[ nil = leftof sig c rt
| cons c0 1t0 = midtape sig 1t0 c0 (c:rt) |.

definition tape move right :=Asig:FinSet.Alt: list sig.Ac:sig.Art: list sig.
match rt with
[ nil = rightof sig ¢ 1t

| cons cO rt0 =- midtape sig (c::1t) c0 rt0 |.
N U

A configuration relative to a given set of states and an alphabet sig is a record

composed of a current internal state cstate and a sig tape.

- D)
record config (sig, states:FinSet): Type :=

{ cstate : states;

ctape: tape sig }.
N U

A transition step between two configurations is defined as follows:

P
definition step :=Asig. AM:TM sig.Ac:config sig (states sig M).
let current char :=current ? (ctape 7?7 ¢) in
let (news,mv) :=trans sig M (cstate ?? c,current char) in

mk config ?? news (tape move sig (ctape ?? ¢) mv).
N U
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2.3 Computations

A computation is an iteration of the step function until a final internal state
is met. In Matita, we may only define total functions, hence we provide an
upper bound to the number of iterations, and return an optional configuration
depending on the fact that the halting condition has been reached or not.

flet rec loop (A:Type) n (fA—A) paonn:= A
match n with
[ O = None ?
| Sm = if p a then (Some 7 a) else loop Am fp (fa)].

N J

The transformation between configurations induced by a Turing machine M

is hence:

I N
definition loopM :=M\sig,M,i,inc.

loop 7 i (step sig M) (Ac.halt sig M (cstate ?? ¢)) inc.
U

The usual notion of computation for Turing Machines is defined according
to given input and output functions, providing the initial tape encoding and
the final read-back function. As we know from Kleene’s normal form, the output
function is particularly important: the point is that our notion of Turing Machine
is monotonically increasing w.r.t. tape consumption, with the consequence that
the transformation relation between configurations is decidable. However, input
and output functions are extremely annoying when composing machines and we
would like to get rid of them as far as possible.

Our solution is to define the semantics of a Turing Machine by means of a
relation between the input tape and the final tape (possibly embedding the input
and output functions): in particular, we say that a machine M realizes a relation
R between tapes (M = R), if for all t; and t5 there exists a computation leading
from (q,,t1), to (gr,t2) and t1 R to, where ¢ is the initial state and ¢y is some
halting state of M.

- N
definition initc :=MXsig. AM:TM sig.\t.
mk config sig (states sig M) (start sig M) t.
definition Realize :=M\sig. AM: TM sig.AR:relation (tape sig).
Vt.di.doutc.
loopM sig M i (initc sig M t) = Some ? outc AR t (ctape 77 outc).
Wy

It is natural to wonder why we use relations on tapes, and not on configura-
tions. The point is that different machines may easily share tapes, but they can
hardly share their internal states. Working with configurations would force us
to an input/output recoding between different machines that is precisely what
we meant to avoid.

Our notion of realizability implies termination. It is natural to define a weaker
notion (weak realizability, denoted M|= R), asking that t1 R ty provided there
is a computation between t1 and t,. It is easy to prove that termination together
with weak realizability imply realizability (we shall use the notation M | t to
express the fact that M terminates on input tape t).
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-
definition WRealize :=Xsig. AM:TM sig.AR:relation (tape sig).
Vt,1i,outc.

loopM sig M i (initc sig M t) = Some ? outc — R t (ctape ?? outc).

definition Terminate :=MAsig. AM: TM sig.At. Ji,outc.
loopM sig M i (initc sig M t) = Some ? outc.

lemma WRealize to Realize : Vsig.VM: TM sig.VR.
MMl t) > M |ER—-M ER.

2.4 A Canonical Relation

For every machine M we may define a canonical relation, that is the smallest
relation weakly realized by M

Is N
definition R TM :=MAsig. AM:TM sig.\q.At1,t2.
Ji,outc. loopM ? M i (mk config 77 q t1) = Some ? outc At2 = ctape 77 outc.
lemma Wrealize R TM : Vsig,M.
M |= R TM sig M (start sig M).
lemma R TM to R: Vsig,M,R. Vt1,t2.
M |E=R —-R TM ? M (start sig M) t1 t2 - R t1 t2.
U

2.5 The Nop Machine

As a first, simple example, we define a Turing machine performing no opera-
tion (we shall also use it in the sequel to force, by sequential composition, the
existence of a unique final state).

The machine has a single state that is both initial and final; the transition
function is irrelevant, since it will never be executed.

The semantic relation R nop characterizing the machine is just the identity
and the proof that the machine realizes it is entirely straightforward.

in this case, states are defined as initIN 1, that is the interval of natural
numbers less than 1. This is actually a sigma type containing a natural number
m and an (irrelevant) proof that it is smaller than n.

-
definition nop states :=initN 1.
definition start nop : initN 1 :=mk Sig 7?7 0 (len ...1).

definition nop :=MXalpha:FinSet.
mk TM alpha nop states
(Ap.let {q,a) :=p in (q,None 7))

start nop (A .true).
N U
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-
definition R nop :=Aalpha.At1,t2:tape alpha.t2 = t1.

lemma sem nop : Valpha.nop alpha = R nop alpha.
N J

3 Composing Machines

Turing Machines are usually reputed to suffer for a lack of compositionality.
Our semantic approach, however, allows us to compose them in relatively easy
ways. This will give us the opportunity to reason at a higher level of abstraction,
rapidly forgetting their low level architecture.

3.1 Sequential Composition

The sequential composition M; - My of two Turing Machines M; and Ms is a
new machine having as states the disjoint union of the states of M; and Ms.
The initial state is the (injection of the) initial state of M7, and similarly the
halting condition is inherited from Ms; the transition function is essentially the
disjoint sum of the transition functions of M7 and M, plus a transition leading
from the final states of M; to the (old) initial state of My (here it is useful to
have the possibility of not moving the tape).

fdeﬁnition seq trans :=MAsig. AM1,M2 : TM sig.
Ap. let (s,a) :=p in
match s with
[ inl s1 =
if halt sig M1 sl then (inr ... (start sig M2), None ?)
else let (newsl,m) :=trans sig M1 (sl,a) in (inl ...newsl,m)
| inr s2 =
let (news2,m) :=trans sig M2 (s2,a) in (inr ...news2,m)
]

definition seq :=Xsig. AM1,M2 : TM sig.
mk TM sig
(FinSum (states sig M1) (states sig M2))
(seq trans sig M1 M2)
(inl ... (start sig M1))
. (As.match s with [inl = false |inr s2 = halt sig M2 s2]). J
If My E Ry and Ms = Ro then My - Ms | Ry o Ro, that is a very elegant way to
express the semantics of sequential composition. The proof of this fact, however,
is not as straightforward as one could expect. The point is that M; works with
its own internal states, and we should “lift” its computation to the states of the
sequential machine.
To have an idea of the kind of results we need, here is one of the the key
lemmas:



8 A. Asperti and W. Ricciotti

rlemma loop lift : VA Bk, lift , f,g,h, hlift ,c,cl. A
(Vx. hlift (lift x) = hx) —
(Vx.h x = false — lift (f x) =g (lift x)) —
loop A kfhc=Some?cl —
loop B k g hlift (lift c¢) = Some ? (lift ...cl).
« Wy

It says that the result of iterating a function g starting from a lifted configuration
lift c is the same (up to lifting) as iterating a function f from ¢ provided that

1. a base configuration is halting if and only if its lifted counterpart is halting
as well;
2. f and g commute w.r.t. lifting on every non-halting configuration.

3.2 If Then Else

The next machine we define is an if-then-else composition of three machines
My, Ms and M3 respectively implementing a boolean test, and the two condi-
tional branches. One typical problem of working with single tape machines is the
storage of intermediate results: using the tape is particularly annoying, since it
requires moving the whole tape back and forward to avoid overwriting relevant
information. Since in the case of the if-then-else the result of the test is just a
boolean, it makes sense to store it in a state of the machine; in particular we
expect to end up in a distinguished final state gacc if the test is successful, and
in a different state otherwise. This special state gacc must be explicitly men-
tioned when composing the machines. The definition of the if-then-else machine
is then straightforward: the states of the new machine are the disjoint union of
the states of the three composing machines; the initial state is the initial state of
My; the final states are the final states of My and Mj; the transition function is
the union of the transition functions of the composing machines, where we add
new transitions leading from gacc to the initial state of Ms and from all other
final states of M; to the initial state of Ms.

I B
definition if trans :=Asig. AM1,M2 M3:TM sig. Aq:states sig M1.Ap.

let (s,a) :=p in
match s with
[ inl s1 =
if halt sig M1 sl then
if sl==q then (inr ... (inl ... (start sig M2)), None ?)
else (inr ... (inr ... (start sig M3)), None ?)
else let (newsl,m) :=trans sig M1 (sl,a) in
(inl ...newsl,m)
| inr 7 =
match s’ with
[ inl s2 = let (news2,m) :=trans sig M2 (s2,a) in

(inr ... (inl ...news2),m)
| inr s3 = let (news3,m) :=trans sig M3 (s3,a) in
(inr ... (inr ...news3),m) | |.
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rdeﬁnition ifTM :=M\sig. AcondM,thenM elseM:TM sig.\qacc: states sig condM.
mk TM sig

(FinSum (states sig condM) (FinSum (states sig thenM) (states sig elseM)))
(if trans sig condM thenM elseM qacc)
(inl ...(start sig condM))
(As.match s with

[ inl = false

| inr s’ = match s’ with

[ inl s2 = halt sig thenM s2

| inr s3 = halt sig elseM s3] ] ).
N J

Our realizability semantics is defined on tapes, and not configurations. In
order to observe the accepting state we need to define a suitable variant that we
call conditional realizability, denoted by M = [q : Ry, Ro]. The idea is that M

realizes R; if it terminates the computation on ¢, and Rs otherwise.

- N
definition accRealize :=Asig. AM:TM sig.\acc:states sig M.ARtrue,Rfalse.

vt.3i. Joutc.
loopM sig M i (initc sig M t) = Some ? outc A
(cstate 7?7 outc = acc — Rtrue t (ctape 77 outc)) A

(cstate 7?7 outc # acc — Rfalse t (ctape 77 outc)).
N Y

The semantics of the if-then-else machine can be now elegantly expressed in

the following way:

I B
lemma sem if: Vsig.VM1,M2 ,M3:TM sig.VRtrue,Rfalse,R2,R3,acc.

M1 k= [acc: Rtrue,Rfalse] - M2 = R2 -M3 = R3 —

ifTM sig M1 M2 M3 acc = (Rtrue oR2) U(Rfalse o R3).
N Y

It is also possible to state the semantics in a slightly stronger form: in fact,
we know that if the test is successful we shall end up in a final state of Ms and
otherwise in a final state of Mj. If M has a single final state, we may express the
semantics by a conditional realizability over this state. As we already observed,
a simple way to force a machine to have a unique final state is to sequentially
compose it with the nop machine. Then, it is possible to prove the following
result (the conditional state is a suitable injection of the unique state of the nop
machine):

flemma acc sem if: Vsig,M1,M2 M3 Rtrue,Rfalse,R2,R3,acc. A
M1 k= [acc: Rtrue, Rfalse] — M2 =R2 -M3 = R3 —
ifTM sig M1 (single finalTM ... M2) M3 acc =
[inr ...(inl ... (inr ...start nop)): Rtrue oR2, Rfalse o R3].
N J

3.3 Wahile

The last machine we are interested in, implements a while-loop over a body
machine M. Its definition is really simple, since we have just to add to M a
single transition leading from a distinguished final state ¢ back to the initial
state.
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rdeﬁnition while trans :=MAsig. AM : TM sig. Aq:states sig M. Ap. A
let (s,a) :=p in
if s == q then (start ? M, None 7)
else trans 7 M p.
definition whileTM :=MAsig. AM : TM sig. Aqacc: states 7 M.
mk TM sig
(states 7 M)
(while trans sig M qacc)
(start sig M)
(As.halt sig M s A —s==qacc).
N J

More interesting is the way we can express the semantics of the while machine:
provided that M = [q : Ry, Rz], the while machine (relative to ¢) weakly realizes
RT o Rgl

theorem sem while: Vsig,M,qacc,Rtrue,Rfalse. A
halt sig M qacc = true —
M k= [qacc: Rtrue,Rfalse] —
whileTM sig M qacc | (star ? Rtrue) oRfalse.
N J

In this case, the use of weak realizability is essential, since we are not guaranteed
to exit the while loop, and the computation can actually diverge. Interestingly,
we can reduce the termination of the while machine to the well foundedness of
Rtrue:

rtheorem terminate while: Vsig,M qacc,Rtrue,Rfalse,t. A
halt sig M gacc = true —
M k= [qacc: Rtrue,Rfalse] —
WF 7 (inv ...Rtrue) t — whileTM sig M qacc [t.

C J

4 Basic Machines

A major mistake we made when we started implementing the universal machine
consisted in modelling relatively complex behaviors by directly writing a corre-
sponding Turing Machine. While writing the code is usually not very complex,
proving its correctness is often a nightmare, due to the complexity of specifying
and reasoning about internal states of the machines and all intermediate con-
figurations. A much better approach consists in specifying a small set of basic
machines, and define all other machines by means of the compositional constructs
of the previous section. In this way, we may immediately forget about Turing
Machines’ internals, since the behavior of the whole program only depends on
the behavior of its components.

A very small set of primitive programs turned out to be sufficient for our
purposes (most of them are actually families of machines, parametrized over
some input arguments).
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write ¢ write the character ¢ on the tape at the current head position

move r move the head one step to the right

move 1 move the head one step to the left

test char f perform a boolean test f on the current character and enter state
tc true or tc false according to the result of the test

swap r swap the current character with its right neighbor (if any)

swap 1 swap the current character with its left neighbor (if any)

The specification of these machines is straightforward. Let us have a glance at
the swap r machine. In order to swap characters we need an auxiliary memory
cell; since tape characters are finite, we may use an internal state (register) of
the machine to this purpose. The machine will sequentially enter in the following
four states:

swap0: read the current symbol, save it in a register and move right

swapl: swap the current symbol with the register content, and move back to
the left

swap2: write the register content at the current position
swap3: stop

Here is the machine implementation:

fdeﬁnition swap r :=
Aalpha:FinSet.Afoo:alpha.
mk TM alpha (swap states alpha)
(Ap.let (q,a) :=p in
let (q’,b) :=q in
let q’ :=\fst q’ in (x extract the witness x)
match a with
[ None = ((swap3,foo),None ?) (x if tape is empty then stop *)
| Some &’ =
match q’ with
[ O = (x q0 %) ((swapl,a’),Some ? (a’,R)) (* save in register and move R x)
| Sq’ = match q’ with
[ O = (% gl x) ((swap2,a’),Some ? (b,L)) (* swap with register and move L *)
| Sq° = match q’ with
[ O = (x ¢2 x) ((swap3,foo),Some ? (b,N)) (x copy from register and stay *)
| S = (x ¢8 ) ((swap3,foo),None ?) (x final state x)
I111)

(swap0,foo)

(Aq:\fst g == swap3).
N U

q7
]

and this is its specification.

e N
definition Rswap r :=Malpha,t1,t2.

Va,b,ls,rs. t1 = midtape alpha ls b (a::rs) —t2 = midtape alpha Is a (b::rs).
N )
It is possibly worth to remark that an advantage of using relations is the possi-
bility of under-specifying the behavior of the program, restricting the attention
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to what we expect to be the structure of the input (e.g., in the previous case,
the fact of receiving a mid-tape as the input tape).

The proof that swap r realizes its specification is by cases on the structure of
the tape: three cases are vacuous; the case when the tape is actually a mid-tape
is essentially solved by direct computation.

4.1 Composing Machines

Let us see an example of how we can use the previous bricks to build more com-
plex functions. When working with Turing Machines, moving characters around
the tape is a very frequent and essential operation. In particular, we would like
to write a program that moves a character to the left until we reach a special
character taken as a parameter (move char [). A step of the machine essentially
consists of a swap operation, but guarded by a conditional test; then we shall
simply wrap a while machine around this step.

Is S
definition mcl step :=MAalpha:FinSet.Asep:alpha.

ifTM alpha (test char ? (Ac.—c==sep))
(single finalTM ... (swap r alpha sep - move 1 7)) (nop ?) tc true.

definition Rmcl step true :=MAalpha,sep,t1,t2.
Va,b,ls,rs.
t1 = midtape alpha ls b (a::rs) —
b # sep At2 = mk tape alpha (tail ? 1s) (option hd ? Is) (a::b:rs).

definition Rmcl step false :=MAalpha,sep,t1,t2.
right 7 t1 # [] — current alpha t1 # None alpha —
current alpha t1 = Some alpha sep At2 = t1.

definition mcls acc: Valpha:FinSet.Vsep:alpha.states ? (mcl step alpha sep)
:=Malpha,sep.inr ... (inl ... (inr ...start nop)).

lemma sem mcl step :
Valpha,sep.
mcl step alpha sep =
[mcls acc alpha sep: Rmcl step true alpha sep, Rmcl step false alpha sep]

Here is the full move char [ program:

-
definition move char 1 :=M\alpha,sep.
whileTM alpha (mcl step alpha sep) (mlcs acc alpha sep).

definition R move char 1 :=)\alpha,sep,t1,t2.
Vb,a,ls,rs. t1 = midtape alphals b (a::rs) —
(b =sep —>t2=1t1) A
(V1sl,ls2.1s = ls1@sep::1s2 —
b # sep — memb 7 sep Isl = false —
t2 = midtape alpha 1s2 sep (a::reverse ? ls1@b::rs)).
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IS S
lemma sem move char 1 : Valpha,sep.

WRealize alpha (move char 1 alpha sep) (R move char 1 alpha sep).
N y

In a very similar way, we may define two machines move left to and move right to
that move the head left or right until they meet a character that satisfies a given
condition.

5 Normal Turing Machines

A normal Turing machine is just an ordinary machine where:

1. the tape alphabet is {0,1};
2. the finite states are supposed to be an initial interval of the natural numbers.

By convention, we assume the starting state is 0.

record normalTM : Type :=

{ no_states : nat;
pos_no_states : (0 < no_states);
ntrans : (initN no_states) x Option bool — (initN no_states) x Option (boolxMove);
nhalt : initN no_states — bool}.

We may easily define a transformation from a normal TM into a traditional
Machine; declaring it as a coercion we allow the type system to freely convert
the former into the latter:

s B
definition normalTM to TM :=AM:normalTM.
mk TM FinBool (initN (no states M))
(ntrans M) (mk Sig ?? 0 (pos no states M)) (nhalt M).
coercion normalTM to TM.
N J

A normal configuration is a configuration for a normal machine: it only depends
on the number of states of the normal Machine:

e 3
definition nconfig :=An. config FinBool (initN n).
N U

5.1 Tuples

By general results on FinSets (the Matita library about finite sets) we know that
every function f between two finite sets A and B can be described by means
of a finite graph of pairs (a, fa). Hence, the transition function of a normal
Turing machine can be described by a finite set of tuples ({3, ¢), (j, action)) of
the following type:

(initN n x option bool) X (initN n x option bool x move)
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Unfortunately, this description is not suitable for a Universal Machine, since
such a machine must work with a fixed set of states, while the size on n is
unknown. Hence, we must pass from natural numbers to a representation for
them on a finitary, e.g. binary, alphabet. In general, we shall associate to a pair
({1, ¢), (4, action)) a tuple with the following syntactical structure

|w;x, wiy, 2

where
1. ”|” and 7, are special characters used as delimiters;
2. w; and wj are list of booleans representing the states ¢ and j;
3. x is special symbol null if ¢ = None and is the boolean a if ¢ = Some a
4. y and z are both null if action = None, and are respectively equal to b and
m’ if action = Some(b, m)
5. finally, m' =0ifm=L,m' =1ifm=Randm' =null if m=N

As a minor, additional complication, we shall suppose that every character is
decorated by an additional bit, normally set to false, to be used as a marker.

definition mk_tuple :=M\qin,cin,qout,cout,mv.
(bar, false) :: qin @ cin :: (comma,false) :: qout @ cout :: (comma,false) :: [mv].

The actual encoding of states is not very important, and we shall skip it: the
only relevant points are that (a) it is convenient to assume that all states (and
hence all tuples for a given machine) have a fixed, uniform length; (b) the first
bit of the representation of the state tells us if the state is final or not.

5.2 The Table of Tuples

The list of all tuples, concatenated together, provides the low level description
of the normal Turing Machine to be interpreted by the Universal Machine: we
call it a table.

The main lemma relating a table to the corresponding transition function is
the following one, stating that for a pair (s,t) belonging to the graph of trans,
and supposing that [ is its encoding, then [ occurs as a sublist (can be matched)
inside the table associated with trans.

lemma trans to match:
Vn.Vh.Vtrans: trans source n — trans target n.
Vinp,outp,qin, cin, qout,cout,mv. trans inp = outp —
tuple encoding n h (inp,outp) = mk tuple qgin cin gout cout mv —
match in table (S n) gin cin gout cout mv
(flatten ? ( tuples list n h (graph enum ?7 trans))).
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5.3 The Use of Marks

We shall use a special alphabet where every character can be marked with an
additional boolean. Marks are typically used in pairs and are meant to identify
(and recall) a source and a target position where some joint operation must be
performed: typically, a comparison or a copy between strings. The main generic
operations involving marks are the following;:

mark mark the current cell

clear mark clear the mark (if any) from the current cell

adv mark r shift the mark one position to the right

adv mark 1 shift the mark one position to the left

adv both marks shift the marks at the right and left of the head one position
to the right

match and advance f if the current character satisfies the boolean test f then
advance both marks and otherwise remove them

adv to mark r move the head to the next mark on the right

adv to mark 1 move the head to the next mark on the left.

5.4 String Comparison

Apart from markings, there is an additional small problem in comparing and
copying strings. The natural idea would be to store the character to be com-
pared/copied into a register (i.e. as part of the state); unfortunately, our seman-
tics is not state-aware. The alternative solution we have exploited is to have
a family of machines, each specialized on a given character. So, comparing a
character will consist of testing a character and calling the suitable machine
in charge of checking/writing that particular character at the target position.
This behavior is summarized in the following functions. The comp step subcase
takes as input a character ¢, and a continuation machine elseM and compares
the current character with c; if the test succeeds it moves to the next mark to
the right, repeats the comparison, and if successful advances both marks; if the
current character is not c, it passes the control to elseM.

definition comp_step_subcase :=Aalpha,c,elseM.
ifTM ? (test_char ? (Ax.x == ¢))
(mover ...- adv_tomark_r ? (is_marked alpha) - match_and_adv ? (Ax.x == c))
elseM tc_true.

A step of the compare machine consists in using the previous function to build
a chain of specialized testing functions on all characters we are interested in
(in this case, true, false, or null), each one passing control to the next one in
cascade:
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rdeﬁnition comp step := A

ifTM ? (test char ? (is marked 7))

(single finalTM ... (comp step subcase FSUnialpha (bit false,true)

(comp step subcase FSUnialpha (bit true,true)
(comp step subcase FSUnialpha (null,true)
(clear mark ...)))))

(nop ?)

tc true.
N U
String comparison is then simply a while over comp step
rdeﬁnition compare := A

whileTM ? comp step (inr ... (inl ... (inr ...start nop))).
N y

6 The Universal Machine

Working with a single tape, the most efficient way to simulate a given machine
M is by keeping its code always close to the head of the tape, in such a way
that the cost of fetching the next move is independent of the current size of the
tape and only bounded by the dimension of M. The drawback is that simulating
a tape move can require to shift the whole code of M; assuming however that
this is fixed, we have no further complexity slow-down in the interpretation. The
Universal Machine is hence fair in the sense of [3].

Our universal machine will work with an alphabet comprising booleans and
four additional symbols: “null”, “#” (grid), “|” (bar) and “,” (comma). In addi-
tion, in order to compare cells and to move their content around, it is convenient
to assume the possibility of marking individual cells: so our tape symbols will
actually be pairs of an alphabet symbol and a boolean mark (usually set to
false).

The universal machine must be ready to simulate machines with an arbitrary
number of states. This means that the current state of the simulated machine
cannot be kept in a register (state) of the universal machine, but must be mem-
orized on the tape. We keep it together with the current symbol of the simulated
tape

The general structure of the tape is the following:

Ot io - . qincittabledtp

where «, 8 and c¢ are respectively the left tape, right tape, and current character
of the simulated machine. If there is no current character (i.e. the tape is empty or
we are in a left or right overflow) then ¢ is the special “null” character. The string
W; = o - - - ¢in 1s the encoding of the current state ¢; of M, and table is the set
of tuples encoding the transition function of M, according to the definition of the
previous section. In a well formed configuration we always have three occurrences
of #: a leftmost, a middle and rightmost one; they are basic milestones to help the
machine locating the information on the tape. At each iteration of a single step
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of M the universal machine will start with its head (depicted with |} in the above
representation) on the first symbol g;o of the state.

Each step is simulated by performing two basic operations: fetching in the
table a tuple matching w;c (match tuple), and executing the corresponding ac-
tion (ezec action). The exec action function is also responsible for updating w;c
according to the new state-symbol pair w;d provided by the matched tuple.

If matching succeeds, match tuple is supposed to terminate in the following
configuration, with the head on the middle #

{
a#twic# ... |Jwictwid,m|. .. #S
~ -~

~
table

where moreover the comma preceding the action to be executed will be marked
(marking will be depicted with a * on top of the character). If matching fails,
the head will be on the # at the end of table (marked to discriminate easily this
case from the former one):

4
affw;cFtable 7;& 8

The body of the universal machine is hence the following uni step function,
where tc true is the accepting state of the test char machine (in the next section
we shall dwell into the details of the match tuple and exec action functions).

I B
definition uni step :=

ifTM 7 (test char STape (Ac.\fst ¢ == bit false))
(single finalTM ?
(init match - match tuple -
(if TM ? (test char ? (Ac.—is marked ? c))
(exec action - mover...)
(nop ?) tc true)))

(nop ?) tc true.
y

At the end of exec action we must perform a small step to the right to reenter
the expected initial configuration of uni step.
The universal machine is simply a while over uni step:

- N
definition universalTM :=whileTM 7 uni step us acc.
N U

The main semantic properties of uni step and universalTM will be discussed in
Section

7 Matching

Comparing strings on a single tape machine requires moving back and forth be-
tween the two stings, suitably marking the corresponding positions on the tape.
The following initialize match function initializes marks, adding a mark at the
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beginning of the source string (the character following the leftmost #, where the
current state, character pair begins), and another one at the beginning of the ta-
ble (the character following the middle #):

- )
definition init match :=
mark ? - adv to mark r ? (Ac:STape.is grid (\fst ¢)) - mover? -
mover ? - mark ? - movel? - adv to mark 1?7 (is marked 7).
N Y

The match tuple machine scrolls through the tuples in the transition table
until one matching the source string is found. It just repeats, in a while loop,
the operation of trying to match a single tuple discussed in the next section:

I N
definition match tuple :=

whileTM ? match tuple step (inr ... (inl ... (inr ...start nop))).
N Y

7.1 Match Tuple Step

The match tuple step starts checking the halting condition, that is when we have
reached a (rightmost) #. If this is not the case, we execute the “then” branch,
where we compare the two strings starting from the marked characters. If the
two strings are equal, we mark the comma following the matched string in the
table and then we stop on the middle #; otherwise, we mark the next tuple (if
any) and reinitialize the mark at the beginning of the current state-character
pair. If there is no next tuple, we stop on the rightmost grid after marking it.

If on the contrary the match tuple step is executed when the current character
is a #, we execute the “else” branch, which does nothing.

Is S
definition match tuple step :=

ifTM 7 (test char ? (Ac:STape.— is grid (\fst ¢)))
(single finalTM ?
(compare -
(ifTM 7 (test char ? (Ac:STape.is grid (\fst ¢)))
(nop ?)
(mark next tuple -
(ifTM 7 (test char ? (Ac:STape.is grid (\fst c)))
(mark ?) (move 1 7 - init current) tc true)) tc true)))

(nop ?) tc true.
N U

The match tuple step is iterated until we end up in the “else” branch, meaning
the head is reading a #. The calling machine can distinguish whether we ended
up in a failure or success state depending on whether the # is marked or not.

8 Action Execution

Executing an action can be decomposed in two simpler operations, which can be
executed sequentially: updating the current state and the character under the
(simulated) tape head (copy), and moving the (simulated) tape (move tape).
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Similarly to matching, copying is done one character at a time, and requires a
suitable marking of the tape (and a suitable initialization init copy). As we shall
see, the copy machine will end up clearing all marks, halting with the head on
the comma preceding the move. Since tape move expects to start with the head

on the move, we must move the head one step to the right before calling it.

s B
definition exec action :=

init copy - copy - mover ...- move tape.

8.1 Init Copy

The init copy machine initializes the tape marking the positions corresponding
to the the cell to be copied and its destination (with the head ending up on the
former). In our case, the destination is the position on the right of the leftmost
#, while the source is the action following the comma in the tuple that has been
matched in the table (that is the position to the right of the currently marked
cell). In graphical terms, the init copy machine transforms a tape of the form

4
o qio . QinCH .. Jwra ¥ gjo ... gind,m| . H#B
- ~ -
table

into
U
* *
a# Gio - - GinCH .. |WKG, GGo - . - Gind, M| .. F#S
- ~ -
table

This is the corresponding code:

f oy . . . \
definition init copy :=
init current on match - mover ? -
adv to mark r ? (is marked ?) - adv mark r 7.
C J
where
N

-
definition init current on match :=

move 1 7 - adv to mark 1 7 (Ac:STape.is grid (\fst c¢)) - mover ? - mark ?.
N U

8.2 Copy

The copy machine copies the portion of the tape starting on the left mark and
ending with a comma to a portion of the tape of the same length starting on the
right mark. The machine is implemented as a while machine whose body copies
one bit at a time, and advances the marks. In our case, this will allow us to pass
from a configuration of the kind

U
a# Gio - - - GinCH - . |WKG, Qo - - - Gind, M| ... F#S
- -

~
table
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to a configuration like

a#qio - - Qind# . .. Jwra, gjo . .. gjnd ¥t m| ... #p
~ ~ -
table

As a special case, d can be a null rather than a bit: this identifies those actions
that do not write a character to the tape. The copy machine acts accordingly,
ignoring nulls and leaving ¢ untouched. The copy machine removes all marks
before exiting.

8.3 Move Tape

Finally, the move tape machine mimics the move action on the simulated tape.
This is a complex operation, since we must skip the code of the simulated ma-
chine and its state. The main function just tests the character encoding the move
action and calls three more elementary functions: move tape r, move tape [, and
no move:

fdeﬁnition move tape := A
ifTM 7 (test char ? (Ac:STape.c == (bit false, false ) ))
(adv to mark r ? (Ac:STape.is grid (\fst c¢)) - move tape l)
(ifTM 7 (test char ? (Ac:STape.c == (bit true,false)))
(adv to mark r ? (Ac:STape.is grid (\fst c¢)) - move tape r)
(no move ?) tc true) tc true.
N y

The no move machine is pretty simple since it is merely responsible for resetting
the head of tape at the expected output position, that is on the leftmost #:

- 3
definition no move :=
adv to mark 1 7 (Ac:STape.is grid (\fst c))
move | ... adv to mark 1 ? (Ac:STape.is grid (\fst c¢)))
N y

The other two functions are pretty similar; we shall only discuss the first one.

8.4 Move Tape r

The move tape right is conceptually composed of three sub-functions, executed
sequentially: a fetch r function, that advances the head to the first character of
the simulated right tape (that is, the first character after the rightmost #), and
initializes it to null if the tape is empty; a set new current r function that moves
it to the “current” position, that is at the position at the left of the middle #;
and finally a move old current r, that moves the old “current” value (which is
now just at the left of the tape head), as first symbol of the left tape (that is, just
after the the leftmost #). The last two functions are in fact very similar: they
have just to move a character after the first # at their left (move after left grid).
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This is the evolution of the tape, supposing the right tape is not empty:

oFFw;d#table #ﬁ b3 fetch r
oFw;d#table % #05 move after left grid
oFw;d g H#table# move [

oFw; gb#table#ﬁ move after left grid
« 5 Hw;b#table# move T

ad #ﬁ w;b#table#S

This is the code for the above machines:

21

definition fetch.r :=
move.r ...- init_cell - movel...- swap.r STape (grid,false).

definition move_after_left_grid :=
move_l ... move_char1 STape (grid,false) - swap_r STape (grid, false}).

definition move_tape.r :=

fetch.r - move_after_ left_grid - movel...- move_after_left_grid - move.r .

J

init cell is an atomic machine defined in the obvious way.

9 Main Results

Given a configuration for a normal machine M, the following function builds the
corresponding “low level” representation, that is the actual tape manipulated by

the Universal Machine:

fdeﬁnition low config: VM:normalTM.nconfig (no states M) — tape STape :=
AM:normalTM.Ac.
let n :=no states M in
let h :=nhalt M in
let t :=ntrans M in
let q :=cstate ...cin
let q low := m bits of state n h q in
let current low :=
match current ... (ctape ...c) with
[ None = null | Some b = bit b] in
let low left :=map ... (Ab.(bit b,false)) (left ...(ctape ...c)) in
let low right :=map ... (Ab.(bit b,false)) (right ... (ctape ...c)) in
let table :=flatten ? ( tuples list n h (graph enum 77 t)) in
let right :=
q low@(current low,false) :: (grid, false ) :: table@(grid, false ) :: low right in

mk tape STape ((grid,false) :: low left ) (option hd ...right) (tail ...right).
N

J

Similarly, every relation over tapes can be reflected into a corresponding relation

on their low-level representations:
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rdeﬁnition low R :=AM,gstart,R,t1,t2.

Vtapel. t1 = low config M (mk config ?? gstart tapel) —

dq,tape2.R tapel tape2 A

halt ? M q = true At2 = low config M (mk config ?? q tape2).
N U

We expect the Universal Machine to be able to simulate on its tape each step

of the machine M, and to stop leaving the tape unchanged when M stops. The
machine must be able to end up in a special accepting state us acc in the former
case, and in a different state in the latter. The input-output relation realized by
the machine in the two cases are the following:

rdeﬁnition low step R true :=At1,t2. A
VM:normalTM.Vc: nconfig (no states M).
tl = low config M ¢ —
halt ? M (cstate ...c) = false At2 = low config M (step ? M c).
definition low step R false :=At1,t2.
VM:normalTM.
Ve: nconfig (no states M).
t1 = low config M ¢ —halt ? M (cstate ...c) = true Atl = t2.
lemma sem uni stepl:
uni step = [us acc: low step R true, low step R false |.
o

For the universal machine we proved that, for any normal machine M, it
weakly realizes the low level version of the canonical relation for M

N
theorem sem universal: YM:normalTM. Vgstart.

universalTM | (low R M gstart (R TM FinBool M gstart)).
y

From this result it is easy to derive that, for any relation weakly realized by M,
the universal machine weakly realizes its low level counterpart.

s 3
theorem sem universal2: VM:normalTM. VR.
M |= R — universalTM |= (low R M (start ? M) R).
Y
Termination is stated by the following result, whose proof is still in progress.
s 3
theorem terminate UTM: VM:normalTM.Vt.
M | t — universalTM | (low config M (mk config ?? (start 7 M) t)).
N Y

10 Conclusions

We provided in this paper some preliminary results about formal specification
and verification of Turing Machines, up to the definition of a universal machine
and the proof of its correctness. The work is organized in 15 files (see Figure[l),
for a total of 6743 lines (comprising comments). It has been developed by the two
authors during 2.5 months of intense joint work, at the good rate of more than
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name dimension content
mono.ma 475 lines mono-tape Turing machines
if machine.ma 335 lines conditional composition
while machine 166 lines while composition
basic machines.ma 282 lines basic atomic machines
move char.ma 310 lines character copying
alphabet.ma 110 lines alphabet of the universal machine
marks.ma 901 lines operations exploiting marks
compare.ma 506 lines string comparison
copy.ma 579 lines string copy
normalTM.ma 319 lines normal Turing machines
tuples.ma 276 lines normal Turing machines
match machines.ma 727 lines machines implementing matching
move tape.ma 778 lines machines for moving the simulated tape
uni step.ma 585 lines emulation of a high-level step
universal.ma 394 lines the universal machine
total 6743 lines

Fig. 1. List of files and their dimension in lines

300 lines per man-week (see [4] for an estimation of the cost of formalization at
the current state of the art).

One could possibly wonder what is the actual purpose for performing a similar
effort, but the real question is in fact the opposite one: what could be the reason
for not doing it, since it requires a relatively modest investment in time and
resources? The added value of having a complete, executable, and automatically
verifiable specification is clear, and it could certainly help to improve confidence
(of students, if not of researchers) in a delicate topic that, especially in modern
textbooks, is handled in a very superficial way.

The development presented in this paper is still very preliminary, under many
respects. In particular, the fact that the universal machine operates with a dif-
ferent alphabet with respect to the machines it simulates is annoying. Of course,
any machine can be turned into a normal Turing machine, but this transfor-
mation may require a recoding of the alphabet that is not entirely transparent
to complexity issues: for example, prefixing every character in a string x1 ...z,
with a 0 in order to get the new string Oz; .. .0z, could take, on a single tape
Turing Machine, a time quadratic in the length n of the string (this is precisely
the kind of problems that raises a legitimate suspicion on the actual complexity
of a true interpreter).

Complexity Theory, more than Computability, is indeed the real, final target
of our research. Any modern textbook in Complexity Theory (see e.g. [2]) starts
with introducing Turing Machines just to claim, immediately after, that the
computational model does not matter. The natural question we are addressing
and that we hope to contribute to clarify is: what matters?

The way we plan to attack the problem is by reversing the usual deductive
practice of deriving theorems from axioms, reconstructing from proofs the basic
assumptions underlying the major notions and results of Complexity Theory. The
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final goal of our Reverse Complexity Program is to obtain a formal, axiomatic
treatment of Complexity Theory at a comfortable level of abstraction, providing
in particular logical characterizations of Complexity Classes that could help
to better grasp their essence, identify their distinctive properties, suggest new,
possibly non-standard computational models and finally provide new tools for
separating them.

The axiomatization must obviously be validated with respect to traditional
cost models, and in particular w.r.t. Turing Machines that still provide the actual
foundation for this discipline. Hence, in conjunction with the “reverse” approach,
it is also important to promote a more traditional forward approach, deriving out
of concrete models the key ingredients for the study of their complexity aspects.
The work in this paper, is meant to be a contribution along this second line of
research.
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Abstract. Let E, F' be equivalence relations on N. We say that E is com-
putably reducible to F', written E < F', if there is a computable function
p: N — N such that zEy < p(z)Fp(y). We show that several natural X9
equivalence relations are in fact X9 complete for this reducibility. Firstly,
we show that one-one equivalence of computably enumerable sets, as
an equivalence relation on indices, is X9 complete. Thereafter, we show
that this equivalence relation is below the computable isomorphism rela-
tion on computable structures from classes including predecessor trees,
Boolean algebras, and metric spaces. This establishes the X9 complete-
ness of these isomorphism relations.

1 Introduction

Invariant descriptive set theory studies the complexity of equivalence relations
on the reals via Borel reductions (see [6]). An analog for equivalence relations on
natural numbers, where the reductions are computable functions, was already
introduced in [I], and has received considerable attention in recent years [7/3].

The isomorphism relation on a class of structures is a natural example of
an equivalence relation. A countable structure in a countable signature can be
encoded by a real. The complexity of the isomorphism relation on (reals encod-
ing) countable structures has been studied in invariant descriptive set theory
beginning with H. Friedman and Stanley [5]. For instance, they showed that
isomorphism of countable graphs is not Borel complete for analytic equivalence
relations.

We may assume that the domain of a countable structure is an initial segment
of N. Then the quantifier free statements involving elements of the structure
can also be encoded by natural numbers. Suppose the signature is computable.
We say that a presentation of a countable structure is computable if its atomic
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diagram, that is, all the quantifier free facts about the structure, is a computable
set. A computable index for the atomic diagram is also called a computable
indez for the structure. As a general rule, familiar countable structures all have
computable presentations. Examples include (Z, +) and (Q, <).

Following Fokina et al. [4], for a class K of structures, we denote by I(K)
the set of computable indices for structures in K. For common classes, this
will be an arithmetical set. Isomorphism can now be viewed as an equivalence
relation on I(K), and clearly is X}. Fokina et al. [4] studied possible analogs of
some results in [5] for isomorphism on computable structures. Their reduction,
denoted <gp, was a slight extension of computable reducibility which allows for
partial computable functions as reductions as long as their domain contains the
relevant set I(K). In contrast to the above-mentioned result of [5], they proved
as a main result that isomorphism of computable graphs is <pp complete for
X1 equivalence relations. Coding graphs into structures, they then obtained the
similar result for other classes, such as torsion free abelian groups, and linear
orders. Boolean algebras were notably absent.

In this paper, we go one step further in effectivizing the setting of [5]: we also
require that the isomorphisms are computable. For computable presentations
C, D of structures in the same computable signature, we write

C gcomp D

if there is a partial computable bijection between the domains of C, D (initial
segments of N) which induces an isomorphism of the structures. Clearly, if I(K)
is X9, then computable isomorphism on I(K) is also X¥.

We will show that for several classes of structures, the computable isomor-
phism relation is a X{-complete equivalence relation under computable reducibil-
ity: computable trees and graphs, computable Boolean algebras, and (with some
adjustment of terminology) metric spaces. Note that for some classes, however,
the computable isomorphism problem may be less complex than X9. For in-
stance, consider the class K of computable permutations of order 2. Then I(K)
is IT9. The computable isomorphism relation on I(K) is also II3. This is so be-
cause we only need to figure out whether for two given permutations, both have
the same number of 1-cycles, and the same number of 2-cycles.

Our completeness results rely on a recursion theoretic fact of interest by itself.
As usual let (W) en be an effective listing of the computably enumerable sets.
Recall that sets A, B C N are I-equivalent, A =, B, if there is a computable
permutation i of N such that h(A) = B.

Theorem 1. For each X9 equivalence relation S, there is a computable func-
tion g such that

ySz = Wy =1 Wy(z), and
—ySz = Wy(y), Wy(z) are Turing incomparable.

The proof will be given in Section Bl As an immediate consequence, we have:
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Corollary 2. Many-one equivalence and 1-equivalence on indices of c.e. sets
are X9 complete for equivalence relations under computable reducibility.

Note that this is significantly stronger than the mere X9 completeness of =,, as
a set of pairs of c.e. indices, which follows for instance because the m-complete
c.e. set have a X9 complete index set.

As a further consequence, Turing equivalence on indices of c.e. sets is a X9
hard equivalence relation for computable reducibility. However, this equivalence
relation is only X9. We conjecture that it is in fact X9 complete in our sense.

In the following Section 2l we will encode 1-equivalence on indices of c.e. sets
into computable isomorphism for the relevant classes. We then use Corollary
to conclude these isomorphism relations are X9 complete.

2 Computable Isomorphism of Computable Structures

2.1 Computable Trees and Computable Equivalence Relations

We use the terminology of Fokina, Friedman et al. [4]. In particular, a tree
is a structure in the language containing the predecessor function as a single
unary function symbol. The root is its own predecessor. A countable tree can be
represented by a nonempty subset B of w<“ closed under prefixes. The unary
predecessor function takes off the last entry of a non-empty tuple of natural
numbers, and maps the empty tuple to itself.

A tree has a computable presentation iff we can choose B c.e. For in that case
B is the range of a partial computable 1-1 function ¢ with domain an initial
segment of w; the preimage of the predecessor function under ¢ is the required
computable atomic diagram.

We let

T.={o: It = o[r € W]},

where the e-th c.e. set W, is now viewed as a subset of w<. Then (T,)ccn is a
uniform listing of all computable trees.
We say a tree has height k if every leaf has length at most k.

Proposition 3. Computable isomorphism of computable trees of height 2 where
every node at level 1 has out-degree at most 1 is a complete X3 equivalence
relation.

Proof. Let h be a computable function such for each e, T}, is the tree
{Mu{{z): z e w}U{{z,0): v € W,}.

Clearly, W, =1 W, iff T}, is computably isomorphic to T} .). Now we apply
Corollary 2

A similar argument shows:

Proposition 4. Computable isomorphism of computable equivalence relations
where every class has at most 2 members is a complete X3 equivalence relation.
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2.2 Boolean Algebras

For a linear order L with least element, Intalg L denotes the subalgebra of the
Boolean algebra P(L) generated by intervals [a,b) of L where a € L and b €
LU {oo}. Here oo is a new element greater than any element of L, and [a, 00) is
short for {x € L: = > a}. Note that Intalg L consists of all sets S of the form

n

S=Jlar by

r=1

where ag < bg < ay... < b, < oo. From a computable presentation of L as a
as a linear order, we may canonically obtain a computable presentation of the
Boolean algebra Intalg L.

Theorem 5. Computable isomorphism of computable Boolean algebras is com-
plete for X9 equivalence relations.

Proof. Let (V¢)een be an effective listing of the c.e. sets containing the even
numbers. The relation of l-equivalence =; of c.e. sets V¢ is X complete by
Theorem [ and its proof below. We will computably reduce it to computable
isomorphism of computable Boolean algebras. We define the Boolean algebra
C*¢ to be the interval algebra of a computable linear order L¢. Informally, to
define L¢, we begin with the order type w. For each 2 € w, when x enters V* we
replace x by a computable copy of [0, 1)g. More formally,

Le = @zEw M:reﬂ

where M¢ has one element m* = 2z, until z enters V¢; if and when that happens,
we expand M¢ to a computable copy of [0,1)g, using the odd numbers, while
ensuring that m% = min M¥ holds in L*. Also note that the domain of L¥ is N
because 0 € V¥,

Claim. V¢ =1 V' & C° X oy, C°.

=: Suppose V¢ =, V? via a computable permutation 7. We define a computable
isomorphism & : C° = C°.

(a) Let ¢(m&) = mjr(m). Once z enters V¢, we know that m(z) € V. So we may
always ensure that @ restricts to a computable isomorphism of linear orders
Mg =M.

n

(b) Consider an element S of C*. It is given in the form S = {J,_,[a,, b,) where
ap < by <ay...<by,fora.b. € L°U{oo} as above. If b,, < oo, we can compute
the maximal z € w such that Mt NS # . Define

B(S) = | o(S N My).

Note that the set (S N M) can be determined by (a).
If b, = oo, then let ®(S) be the complement in L? of #(L¢\ S).
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«: Now suppose that C¢ =4, C? via some computable isomorphism &. We
show that V¢ <; V? via some computable function f. Suppose we have defined
f(y) for y < z. We have &(M¢) = J!_, [ar, b.) where a,, b, € L'U{c0} as above.

If n > 1 then M¢ is not an atom in C°, whence x € V°. Thus let f(z) be the
least even number that does not equal f(y) for any y < z.

Now suppose n = 1. If a; = m;,bl = m;H then let f(z) = y. Otherwise,
again we know M¢ is not an atom in C°, and define f(z) as before.

By symmetry, we also have V¢ <; V¢ and hence V¢ =; V¢ by Myhill’s
theorem.

2.3 Metric Spaces

Let (M, d) be a metric space, and let («;);en be a dense sequence in M without
repetitions. We say that M = (M, d, (;)ien) is a computable metric space if
d(oy, o) is a computable real uniformly in 4,k. We call the elements of the
sequence (a;);en the special points. For background on computable metric spaces,
see [2].

A computable metric space is discrete if every point is isolated. For such a
space, necessarily every point is a special point.

Corollary 6. Computable isometry of discrete computable metric spaces is com-
plete for XY equivalence relations.

Proof. Given a computable tree B, create a discrete computable metric space Mp
as follows: if a string (z) enters B, add a point p,. If later (z,4) enters B for the
first ¢, add a further point ¢,. Declare d(p, ¢») = 1/4. Declare d(p,, p,) = 1 and
d(gz,py) =1 (if ¢, exists). Clearly for trees B, C as in Cor.[3l B is computably
isomorphic to C' iff Mp is computably isometric to M¢.

3 Proof of Theorem (1]

Since S is X9, there is a uniformly c.e. triple sequence

(Vy,z,i)y,z,i€w,y<z
of initial segments of N such that for each y < z,
ySz & FiVy . =w.

We build a uniformly c.e. sequence of sets A, = Wy(,) (z € w), g computable.
We meet the following coding requirements for all y < z and i € w.

Gyzit Vysi=w=A,=1 A,.
We meet diagonalization requirements for u # v,

Nywpe: u=minluls A v=min[v]g = A, # Pc(A,).
where @, is the e-th Turing functional, and [z]s denotes the S-equivalence class
of x. Meeting these requirements suffices to establish the theorem.
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The basic strategies to meet the requirements are as follows. If V,, .; = w,
a strategy for Gy, .; “finds out” that z is S-related to the smaller y. Hence it
builds a computable permutation h such that A, =, A via h.

A strategy for Ny, , . picks a witness n, and waits for ®.(A,;n) to converge.
Thereafter, it ensures that this computation is stable and A, (n) does not equal
its output ®.(A,;n) by enumerating n into A, if this output is 0.

The tree of strategies. To avoid conflicts between strategies that enumerate into
the same set A,, we need to provide the strategies with a guess at whether z
is least in its S-equivalence class [z]s. An N-type strategy will only enumerates
into A, if according to its guess, z is least in its [z]s; a G-type strategy only
enumerates into A, if according to its guess, z is not least.

Fix an effective priority ordering of all requirements. We define a tree T' of
strategies, which is a computable subtree T' of 2<“. We write « : R if strategy
a is associated with the requirement R. By recursion on |a|, we define whether
«a € T, and which is the requirement associated with a. We also define a function
L mapping a € T to a cofinite set L(«a) consisting of the numbers z such that
according to a’s guesses, x is least in its equivalence class.

Let L(@) = w. Assign to a the highest priority requirement R not yet assigned
to a proper prefix of a such that either (a) or (b) hold.

(a) Ris Gy . and z € L(w); in this case put both a0 and al on T, and define
L(a0) = L(a) — {z} while L(al) = L(«) (along a0 we know that x is no
longer the least in its equivalence class)

(b) R is Nyue and u,v € L(a); in this case put only a0 on T, and define
L(a0) = L(«).

For strings «, 8 € 2<%, we write o <, 3 if there is 7 such that o [;= 8 ];, a(i) =0
and B(i) = 1. We let @ < [ denote that « is a prefix of 8. We define a linear
ordering on strings by

a<fifa<p fora=p.

Construction of a u.c.e. sequence of sets (Ay)ren. We declare in advance that
Az(dm+1) =0 and A, (4m + 3) =1 for each x,m. The construction then only
determines membership of even numbers in the A,.

We define a computable sequence (Js)sen of strings on T of length s. Suppose
inductively that J; has been defined for ¢t < s. Suppose k < s and that n = J; [
has been defined. If n : Ny, let 65(k) = 0. Otherwise n : Gy.,;. Let t < s be
the largest stage such that t = 0 or n < &;. Let d5(k) = 0if V.56 # Vyzits
and otherwise d5(k) = 1.

The true path TP is the lexicographically leftmost path f € 2 such that
Yn3I*°s > n[ds [n=< f]. To initialize a strategy a means to return it to its first
instruction. If o : Gy,. ; we also make the partial computable function h, built
by the strategy o undefined on all inputs. At stage s, let init(c, s) denote the
largest stage < s at which « was initialized.

An N, , ¢ strategy a. At stages s:
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(a) Appoint an unused even number n > init(«, s) as a witness for diagonaliza-
tion. Initialize all the strategies 5 > a.

(b) Wait for @.(A,;n)[s] to converge with output r. If » = 0 then put n into
A, Initialize all the strategies 5 > a.

A Gy .; strategy o. If a0 is on the true path then this strategy builds a com-
putable increasing map h,, from even numbers to even numbers such that A, (k) =
A, (hq(k)) for each k. Furthermore, A, — range(hy) is computable. By our defi-
nitions of A, and A, on the odd numbers, this implies that i, can be extended
to a computable permutation showing that A, =; A, as required.

At stages s, if a0 C J;, let t < s be greatest such that ¢ = 0 or a0 C ¢, and
do the following.

(a) For each even k < s such that k ¢ dom(ha,) pick an unused even value
m = hq,s(k) > init(a, s) in such a way that h, remains increasing.

(b) From now on, unless « is initialized, ensure that A,(m) = Ay (k). (We will
verify that this is possible.)

The stage-by-stage construction is as follows. At stage s > 0 initialize all strate-
gies @ >, 5. Go through substages i < s. Let a = d5 [;. Carry out the strategy «
at stage s.

Verification. To show the requirements are met, we first check that there is no
conflict between different strategies that enumerate into the same set A, .

Claim. Let a: Gy, ;. Then (b) in the strategy for o can be maintained as long
as « is not initialized.

To prove the claim, suppose a strategy 5 # « also enumerates numbers into A, .
If a0 <y B then f is initialized when « extends its map h,, so the numbers
enumerated by S are not in the range of h,. If 8 < a0 then « is initialized
when S is active, so again the numbers enumerated by S are not in the range of
he. Now suppose neither hypothesis holds, so a0 < 5 or 5 < «.

Case B: N, y.. In this case a0 < 3 is not possible because z ¢ L(a0). If 8 < «
then « is initialized when § appoints a new diagonalization witness.

Case B: Gy ;. In this case a0 = [ is not possible because z ¢ L(a0). If
Bl = « then « is initialized each time 3 extends its map hg. Finally, 50 < a is
not possible because z ¢ L(80). This proves the claim.

Claim. Let o be the Ny, , . strategy on the true path. Suppose « is not initialized
after stage s. Then « only acts finitely often, and meets its requirement.

At some stage > init(q, s) the strategy a picks a permanent witness n. No
strategy 5 < a can put n into A, because u € L(«). No other strategy can put
n into A, because of the initialization « carries out when it picks n. Suppose now
that at a later stage ¢, a computation @.(A,;n)[t] converges. Since v € L(a), no
G-type strategy 8 < a enumerates into A,. Thus the initialization of strategies
v = « carried out by « at that stage ¢t will ensure that this computation is
preserved with value different from A, (n). This proves the claim.
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It is now clear by induction that each strategy « on the true path is initialized
only finitely often. Thus the N-type requirements are met. Now suppose a: Gy . ;
and a0 is on the true path. Then no strategy 8 > a0 enumerates into A,. Thus
by the initialization at stages s such that a0 < J;, the set A, —range(h,) is com-
putable. As noted earlier, this implies that h, can be extended to a computable
permutation showing that A, =1 A.. There is a computable bijection ¢ between
the set of odd numbers and the set of numbers that are odd, or even but not
in the range of hy, so that m € A, <> g(m) € A,. Now let the permutation be
qU hg.
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An Analysis of Directed Motion Expressions
with Lexicalized Tree Adjoining Grammars
and Frame Semantics™
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Abstract. We present an analysis of directed motion expressions in the
framework of Lexicalized Tree Adjoining Grammars (LTAG) enriched with a
decompositional frame semantics. This approach to the syntax-semantics inter-
face allows us to combine a detailed decomposition and composition of syntac-
tic building blocks with a parallel decomposition and composition of meaning
components. In LTAG, lexical anchors can be distinguished from unanchored el-
ementary trees which allows for the description of the meaning contributions of
constructions. Furthermore, due to the metagrammatical factorization of the de-
scriptions of unanchored elementary trees, the meaning contributions of single
argument realizations and of their combinations can be described in a principle
way.

1 Introduction

Investigating the interplay between the syntax and semantics of directed motion ex-
pressions, and of verb-based constructions in general, is faced with the following two
issues, among others: the distinction between arguments and adjuncts and the syntac-
tic mechanisms of semantic composition. In this paper, we show how these issues can
be naturally addressed within a framework that integrates Lexicalized Tree Adjoining
Grammars (LTAG) with Frame Semantics. Semantic frames have been established as
an expressive way to capture detailed aspects of meaning. So far, they are mainly used
to describe the meanings of single lexical items. This paper concentrates on frame-
based semantic composition and its interaction with syntactic operations. There are two
reasons for choosing LTAG in the context of semantic frame composition. Firstly, the
elementary trees in LTAG represent entire subcategorization frames, which facilitates
the linking of the syntactic components and the semantic frame components. Secondly,
the underlying “metagrammatical” specification of an LTAG allows a strong factoriza-
tion of the syntactic and semantic information of elementary trees and thereby enables
one to capture the specific meaning contributions of fragments of constructions.

The focus of this paper is on directional expression that are constructed from verbs
of motion and directional PPs. The relevant constructions include intransitive verbs of
locomotion[(T)]as well as transitive verbs of caused motion and transport[(2)]
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dation (DFG) as part of the SFB 991.

L. Ong and R. de Queiroz (Eds.): WoLLIC 2012, LNCS 7456, pp. 34-55] 2012.
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(1) a. Mary walked to the house.
. The ball rolled into the goal.

b

(2) a. John threw/kicked the ball into the goal.
b. John pushed/pulled the cart to the station.
c. John rolled the ball into the hole.

Directional specifications are not restricted to goal expressions as in and but
can also describe the source or the course of the path in more detail. Moreover, path
descriptions can be iterated to some extent [(3)] Below we will use this property as an
indicator for distinguishing between arguments and adjuncts.

(3) a. John walked through the gate along the fence to the house.
b. John threw the ball over the fence into the yard.

The paper is structured as follows. In Section 2, we discuss the semantics of directed
motion expressions, formulated with frames. The following section introduces LTAG.
Section 4 brings the previous sections together by proposing a frame-based LTAG se-
mantics for expressions of directed motion, distinguishing between the meaning of lex-
ical items and the meaning of unanchored elementary trees. Building on this, Section
5 develops a more fine-grained factorization of the syntax and semantics of the unan-
chored elementary trees, using the LTAG metagrammar.

2 Directed Motion Expressions

Modeling the syntax-semantics interface of directed motion expressions requires us to
be explicit about a number of issues concerning the syntactic and semantic structure of
such expressions, many of which have been discussed extensively in the literature.

2.1 Verbs of Motion

It is common to distinguish between manner-encoding and path-encoding verbs of mo-
tion. The first kind of verbs (run, roll) lexically encode the manner of the motion but no
path-related information, while the second kind of verbs (enter, leave) do not encode
the manner but specify the direction of motion. Manner-encoding motion verbs lexi-
cally characterize activities or processes. Directional information about the goal or path
can be added by appropriate adverbials (i.e., by “satellite framing” constructions [21]]).
In the following, we focus on manner-encoding verbs since our goal is to model the
syntactic and semantic processes of combining directional specifications with motion
expressions.

There are also motion verbs where the actor differs from the entity that undergoes
the motion. This class includes verbs of transport and caused motion (carry, drag, push,
throw). As with manner-of-motion verbs, transport and caused motion verbs do not lex-
ically specify a direction or goal. Again, directional information can be added by ad-
verbials. The verbs of transport and caused motion are basically transitive verbs whose
direct object refers to the moving entity. They can be sub-divided into different classes
depending on (i) how the motion of the object is enforced by the actor and (ii) to which
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extent the activity of the actor and the manner of motion are lexically specified (cf. [[7]]).
Concerning (i), we can distinguish between onset causation (throw, kick) and extended
causation (pull, drag), following the terminology of [20]. Verbs of the first type de-
scribe the punctual initiation of a motion event, verbs of the second type describe the
continuous enforcement of the motion. As to (ii), some of the verbs in question specify
the manner of motion of the moved object but say nothing about the activity of the actor
(roll, slide), while for other verbs the converse is true (pull, drag)m

In the following, we are concerned with locomotion/manner-of-motion verbs and
caused motion and transport verbs that occur in directional constructions like those

listed in[(DH3)

2.2 Syntactic Issues

In the context of the LTAG analysis presented in the following sections, a crucial issue
is whether to treat directional expression such as those in [[DH(3) as complements or
as adjuncts. Moreover, an argument can be determined by the base lexeme or it can
be introduced by a construction or a lexical rule. For instance, sentences of type
are often characterized as caused motion constructions or causative path resultatives
[[14]]. That is, the directional argument is constructionally introduced. Within the LTAG
approach both, the basic argument structure construction as well as the extended con-
struction are represented by elementary trees. The relation between these trees, and
the fact that one of them builds on the other, is captured in the class structure of the
metagrammar (cf. Section[3)).

Dowty [l6] counts directional PPs as adjuncts of motion verbs since their presences is
not obligatory and they do not “complete” but “modify” the meaning of the head verb.
Dowty distinguishes adjuncts from elliptical complements by characterizing the latter as
cases where a semantically required element must be inferred contextually. Van Valin &
LaPolla [22] classify directional PPs as “argument-adjuncts”. Like adjuncts, argument-
adjuncts are predicative, but they introduce an argument into the syntactic core of the
head verb and they typically share an argument with the predicate encoded by the verb.
A well-known distinction observed by Jackendoff, Verkuyl and Zwarts, among others,
is that between bounded and unbounded directional PPs, which give rise respectively

to telic and atelic event descriptions [[15123125]].

(4) a. She walked to the brook (in half an hour/*for half an hour).
b. She walked along the brook (*in half an hour/for half an hour).

With reference to this distinction and based on data from Dutch and other languages,
Gehrke [[13] argues that bounded directional PPs are complements of the verb while
unbounded PPs are adjuncts. For verbs of locomotion and transport, which are lexically
atelic, this means that a directional expression is regarded as a complement in case
it changes the aspectual type of the expression. This assumption is compatible with
the formal criterion that expressions that can be added iteratively (as, e.g., prenominal
adjectives) need to be analyzed as adjuncts. In the following, we take this criterion as a
preliminary working definition of adjuncthood.

L Cf. [7] for further distinctions.
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2.3 Motion, Paths, and Directions

A locomotion event is by definition associated with some trajectory, trace or path of the
moving entity. The approaches found in the literature differ with respect to the explicit
representation of the path in the lexical semantics of the respective verbs. While in [5]
and [[18]], paths are not part of the semantic representations of locomotion verbs, [25]]
proposes a thematic function TRACE that maps motion events to the path traversed by
the moving entity and in [19], it is assumed that “manner-of-motion predicates leave a
trail of the motion along an implicit path, as measured over time.” Similarly, [8] take
paths as part of the semantics of verbs of motion. The paths referenced by verbs are
here again understood as trajectories, that is, as the collection of “all points the object
occupies during its course.”

Paths, traces or trajectories provide a straightforward semantic link between motion
verbs and directional specifications. Directionals (in English) occur often morphologi-
cally combined with locatives. For example, the directional preposition into specifies a
path whose end point is in the interior of the goal expressed by the nominal complement
of the preposition. The interior region associated with an object, as well as other regions
specified by locatives, can be regarded as functional attributes of that object. We will
employ this view below for the frame representations of directional prepositions.

2.4 Frame-Semantic Representation

The semantics of directional expressions is often represented in terms of logical ex-
pression of one kind or another in the literature (cf. [8]). In our approach, we employ
frames for semantic representation, inspired by the programmatic outlines in [9] and
[2]. Frames in this context are to be understood as generalized typed feature structures
with relational constraints. In contrast to the flat role frames used in FrameNet [10]], we
take into account semantic decomposition, which gives rise to nested frame structures.
For example, the verb throw expresses a caused motion, that is, the described event
can be analyzed as a complex causation event whose cause component consists of the
activity of the thrower and whose effect is the ballistic motion of the thrown object.
A possible frame-semantic representation of this decompositional analysis is shown on
the right side of Fig. [l which also shows frames for walk and pull.

In the given representations, a good part of the lexical meaning is condensed in the
types or left implicit. For instance, the precise way of how the actor induces the (bal-
listic) motion of the object in throwing events is simply encoded by an atomic value of
the attribute MANNER. Similarly, the causation type of throwing events is encoded by
the type onset-causation of the main event. A more explicit representation would in-
clude the temporal characteristics of an onset causation, i.e., punctuality and temporal
precedence of the causing event. Notice that the path or trace of the moving entity is
made explicit by the frames in Fig.[Il As argued above, the trace of the moving object
is an inherent semantic component of locomotion events; the path provides the anchor
for directional specifications. It is important to keep in mind that the presence of the
PATH attribute in the frame representation of, say, walk does not imply by any means
that walk lexically encodes any information about the path of the movement.

For the frame representations of directional prepositions, we follow basically the
outline discussed in the previous section. The basic idea is that frames associated with
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walk throw
[locomotion-activity i [onset-causation )
ACTOR 1 [activity
MANNER walking ACTOR 1
path CAUSE THEME 2
PATH STARTP 2 | MANNER throwing
L ENDP 3 i [locomotion
THEME 2
pull EFFECT path
[ extended-causation ) PATH STARTP 3
[activity L ENDP 4
ACTOR 1 ) )
CAUSE
THEME 2
| MANNER pulling
[Tocomotion
THEME 2
EFFECT path
PATH STARTP 3
ENDP 4

Fig. 1. Possible frame-semantic representations of some verbs of (caused) motion

directional prepositions can unify with frames of pure locomotion to frames that express
directed motion. For example, the frame for the preposition info, which is shown on the
right of Fig. 2l represents (directed) motion to the interior region 2 of an object | which
is denoted by the nominal complement of the preposition. The frame constraint in the
last line encodes the condition that the end point 3 of the path or trajectory generated
by the motion is in fact contained in the region in question.

The semantic representations described so far allow us to introduce the basic ideas
of syntax-driven semantic frame composition in the following sections. Of course, in
a fully developed theory of frame representations for event semantics, the types and

to into
directed-motion directed-motion
GOAL l[AT-REGION 2} GOAL ]|:IN-REGION 2}
ath ath
PATH |:IIZNDP 3:| PATH |:IIZNDP 3:|
3C2 3C2

Fig. 2. Frame examples for directional prepositions
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event
activity motion causation
motion-activity locomotion onset-causation  extended-causation

locomotion-activity directed-motion

directed-motion-activity

Fig. 3. Partial sketch of the event type hierarchy

features used in the frames are systematically related to each other by a type hierarchy
and by feature constraints. For instance, the inheritance hierarchy of the event types
introduced so far would look like the one depicted in Fig. 3l Additional feature dec-
larations would then specify, e.g., that frames of type causation have a CAUSE and an
EFFECT attribute, and that the value of the CAUSE attribute of onset-causation events is
of type punctual-event.

3 LTAG and Grammatical Factorization

3.1 Introduction to TAG

Tree Adjoining Grammar (TAG, [16]) is a tree-rewriting formalism. A TAG consists of
a finite set of trees (elementary trees). The nodes of these trees are labelled with non-
terminals and terminals (terminals only label leaf nodes). Starting from the elementary
trees, larger trees are derived by substitution (replacing a leaf with a new tree) and
adjunction (replacing an internal node with a new tree). Sample elementary trees and a
derivation are shown in Fig.[l In this derivation, the elementary tree for John substitutes
into the subject slot of the elementary tree for came, the in tree for the temporal PP
modifier adjoins to the VP node and December substitutes into the NP leave of the
modifier tree.

In case of an adjunction, the tree being adjoined has exactly one leaf that is marked
as the foot node (marked with an asterisk). Such a tree is called an auxiliary tree. To
license its adjunction to a node n, the root and foot nodes must have the same label as n.
When adjoining it to #, in the resulting tree, the subtree with root n from the old tree is
attached to the foot node of the auxiliary tree. Non-auxiliary elementary trees are called
initial trees. A derivation starts with an initial tree. In a final derived tree, all leaves must
have terminal labels.

In a TAG, one can specify for each node whether adjunction is mandatory and which
trees can be adjoined. The subscripts NA and OA indicate adjunction constraints: NA
signifies that for this node, adjunction is not allowed while OA signifies that adjunction
is obligatory.
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derived tree:

S --VP S
NP VP« VB Pp NP VP
-
e b N\ John VP PP
% pNp - NP om
| | o \‘/ P/\ p
John came in December | N‘

came in December

Fig. 4. A sample derivation

Fig. 5. Feature structure unifications in FTAG

3.2 Feature Structure Based TAG

In order to be able to capture syntactic generalizations in a more satisfying way, the
non-terminal node labels in TAG elementary trees are usually enriched with feature
structures. The resulting TAG variant is called Feature-structure based TAG (FTAG,
[24])). In an FTAG, each node has a top and a bottom feature structure (except substitu-
tion nodes that have only a top). Nodes in the same elementary tree can share features
(extended domain of locality). In contrast to the original TAG, an FTAG does not have
separate adjunction constraints, since the constraints can be expressed by features.

During substitution and adjunction, the following unifications take place (see Fig.[3):
In a substitution operation, the top of the root of the new initial tree unifies with the top
of the substitution node. In an adjunction operation, the top of the root of the new
auxiliary tree unifies with the top of the adjunction site and the bottom of the foot of the
new tree unifies with the bottom of the adjunction site. Furthermore, in the final derived
tree, top and bottom must unify for all nodes.
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S
T (,f“"VP[AGR:2]
NPIAGR=1]  yplAGR=1] «--~~ /\VP*
STl 4 | [AGR=2 [PERS=3,NUM=sing]|
I ~a’ V
NP[AGR:[PERS:3,NUM:sing]] ‘
‘ singing 18

John

Fig. 6. Agreement with feature structures

Since nodes in the same elementary tree can share features, constraints among de-
pendent nodes can be more easily expressed than in the original TAG formalism. See
Fig. |6l for an example (the top feature structure is notated as a superscript, the bottom
feature structure as a subscript of the respective node).

3.3 LTAG Elementary Trees

The elementary trees of a TAG for natural languages respect certain principles [[L1{1].
Firstly, they are lexicalized, i.e., each elementary tree has at least one non-empty lexical
item, its lexical anchor. A lexicalized TAG (LTAG) is a TAG that satisfies this condition
for every elementary tree. Secondly, each elementary tree associated with a predicate
contains argument slots (leaves with non-terminal labels, i.e., substitution nodes or foot
nodes) for each of its arguments, i.e., for each of the elements it subcategorizes for,
including the subject. Furthermore, it contains argument slots only for the arguments of
its lexical anchor, and for nothing else (elementary tree minimality, [11]).

Most argument slots are substitution nodes, in particular the nodes for nominal ar-
guments (see the elementary tree for lives in Fig. ). Sentential arguments however are
realised by foot nodes. The reason is that we want to be able to extract material from
sentential arguments in long-distance dependencies such as[(5)] Such extractions can be
obtained by adjoining the embedding clause into the sentential argument.

(5) Whom does Paul think that Mary likes?

As we have seen, the elementary trees of an LTAG are lexicalized and contain non-
terminal leaves for all the arguments of their lexical head. Because of this extended
domain of locality, LTAG is particularly well-suited for a frame-based compositional
semantics. The semantic frame of a predicate specifies, among others, the thematic
roles of its arguments. In LTAG, these can be immediately linked to the corresponding
syntactic argument slots.

Concerning the modeling of the syntax-semantics interface, we follow approaches
that link a single semantic representation (in our case, a semantic frame) to an entire
elementary tree and which model semantic composition by unifications triggered by
substitution and adjunction [12/17]. A simplified example that illustrates the locality
of linking in this framework is given in Fig. [l The substitutions trigger unifications
between | and 3 and between 2 and 4 which leads to an insertion of the corresponding
argument frames into the frame of eats.
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S
’/\
NPli=s) -, NplI=1] VP NP,
Jo‘hn - /\[1:2] / .\7
Y NP ‘ pizza
3 person ate 4[pizza}
NAME John .
eating
AGENT 1
THEME 2

Fig. 7. Syntactic and semantic composition for John eats pizza

4 Motion Verbs and Directional PPs

4.1 Directed Motion Activities
This section deals with the combination of motion verbs and directional PPs as in[(6)]

(6) a. Mary walked/ran to/into/towards the house.
b. Mary walked/ran along the river.
c. Mary walked/ran over the bridge along the fence through the meadows.

Recall that our criterion for deciding whether a constituent is an argument or an adjunct
is for us its iterability. Constituents that cannot be iterated and that add a semantic role
(no matter whether this is already present in the frame contributed by the verb) are
taken to be complements in the sense of being integrated into the unanchored tree for
the verb within the metagrammar. For this reason, the examples in are treated as
PP complements while the PP in [(6-b)| is an adjunct. PPs of the type in [(6-b)] can be
iterated as can be seen in

In the complement cases, the preposition is however not part of the elementary tree
of the verb since it is not determined by the verb. This is in contrast to constructions
where a specific preposition is treated as a coanchor of the elementary tree. An example
is the elementary tree for remind of as for instance in where the preposition of is
taken to be a coanchor of the elementary tree.

(7) This picture reminds me of my little dog.

As explained above, we assume that the motion verb defines a locomotion activity that
takes place along a certain path. This path has a start and an end point.

In the construction, the additional PP adds a further argument with the semantic
role GOAL. The way this goal combines with the path, i.e., whether it is its end point,
whether it adds a direction to the path etc., depends on the preposition.

The unanchored elementary tree for an intransitive verb with an additional direc-
tional PP is given in Fig. [0l The lower VP node in the tree is inspired by the XTAG
choices. It serves to allow the adjunction of modifiers between the verb and the PP ob-
ject, as in[(8)] which would not be possible if the V and the PP were sisters. The empty
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V[E: 0] [locomotion-activity
‘ ACTOR 1
walked 0 path
PATH STARTP 2
ENDP 3
| MANNER walking

Fig. 8. Lexical entry for walked

S directed-motion-activity
NP[ﬂ 4 |ACTOR 5
/[E:“]\ GOAL 6
VolE=4] VP

VNA PP[I: 6][E=4]

Fig. 9. Unanchored tree and semantics of n0Vpp(dir) construction

V-tree below this additional VP carries a NA (null adjunction) constraint. IL.e., this node
does not allow for adjunction.

(8) He ran every day to the river.

The decoration of the elementary tree with features I and E makes sure that the substi-
tutions of the subject NP and the object PP will fill the corresponding argument roles
and, furthermore, adjunctions of modifiers to the VP node extend the event frame 4.

The preposition determines the relation between the path of the motion and the goal.
Fig. shows the elementary trees of different directional prepositions. We assume
that objects such as the house have a certain topological structure. They come with
different types of regions, an at-region that contains all points that can be said to be at
the object, an in-region that determines the space that constitutes the inner part of the
object etc. The preposition to refers to the at-region of an object; it expresses that the
endpoint of the path must be contained in the at-region of the object in the PP. Similarly,
into expresses that the endpoint must be contained in the in-region of the PP object. In
contrast to this, fowards does not determine the end or start point, it only says something
about the direction of the path.

The nature of the contained-in relation is different from the functional attributes in
frames. A region can of course be contained in several other regions, consequently a
formalization via a frame attribute CONTAINED IN is not possible. Therefore, the rela-
tion of containment between regions is formulated outside the attribute value structure
itself, i.e., we formalize it as an additional relation C between elements of type region
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PPu_7)e-s PPy 7)m=s)
P NplI=7] P Npl=7]
to into
directed-motion directed-motion
th th
g | PATH pa g | PATH pa
ENDP 10 ENDP 10
GOAL 7[AT—REGION 9} GOAL 7[IN—REGION 9
10 C 9 10 C 9
PP[1: 7][E=8] directed-motion
8 | PATH path
p Npl=7] DIRECTION 7
‘ GOAL 7
towards

Fig. 10. Elementary trees for prepositions

NP S [ directed-motion-activity |
1=5] -,
[‘ | NP[I:/I]\VP ACTOR |
John NN /\ GOAL 2
person VIE=0] VP 0 path
NAME John ‘ PATH STARTP 3
walked Vy, PPI=21E=0] ENDP 4
‘ MANNER walking
€ / NP
directed-motion et =10
¢ | PATH path PP, in g Dg\N
ENDP 10 (1="7][E=8] C
/\ the house
7l g house

- 9 —
GOAL 7[IN REGION } p NplI=
-
10 C 9 ‘ 10 [ AT-REGION 11

IN-REGION 12

Fig. 11. Derivation of

in our frames. We assume a mereological structure on regions where single location
points are considered as regions as well. This relation is a partial order relation, i.e., it

is reflexive, transitive and antisymmetric.
Now let us consider as an example the derivation of[(9)] Fig[TTlshows the elementary

trees and frames that are involved and how they are combined. The tree for the house
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directed-motion-activity

person
ACTOR 1

NAME John
house
GOAL 2 [ AT-REGION 11

IN-REGION 9

path
PATH STARTP 3
ENDP 4

MANNER walking

4C9

Fig. 12. Frame obtained for[(9)] John walked into the house

comes with both an in-region and an at-region. (The composition of the determiner
and the noun into the NP the house is left aside in this example.) The preposition info
links the in-region to the end point of the path traversed throughout the walking activity.
Because of the various substitution, we obtain the following equations: 1 = 5,2 =7 =
10 and 0 = 8. With the corresponding unifications, the resulting frame is the one given
in Fig.

(9) John walked into the house.

The difference between verbs of locomotion such as in[(9) and motion verbs as in[(10)]
that are turned into a directed motion by adding a goal and a path is the semantics of
the verb. walk comes with a path while dance does not. The lexical frame for dance is
shown in Fig.[[3l When combining it with the unanchored construction tree, the path
attribute is added and the goal argument is linked to the PP.

(10) Mary danced into the room.

motion-activity
ACTOR 1
MANNER dancing

Fig. 13. Frame for dance

4.2 Path Modification

Now let us consider the case where the directional PP is an adjunct that gives an ad-
ditional specification of the path of the event as in In these cases, the verb of
locomotion anchors an intransitive activity tree as in Fig.[I4l As before, walked comes
with a path. But there need not be a goal restricting this path.
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[directed-motion-activity | V S activity
X [E:O] /\ 4 5
ACTOR ‘ NpPI=5] VP[E:4] ACTOR
o path walked RN |
PATH STARTP 2 b yo[E=4)
ENDP 3
| MANNER walking
Fig. 14. Lexical anchoring for intransitive walked
S VP
NPI=3] yp VP*/\PP
[E=4] <~ [E=8] [1=7]
\
VIE=4] A 7
| P NpI=7]
walked ’
[directed-motion-activity along
ACTOR 5 directed-motion
8 th
4 path parn |7
PATH STARTP 2 REGION 10
ENDP 3 7 [AT—REGION 9}
| MANNER walking ] 10C9

Fig. 15. Derivation for [(TT)]

As an example, consider the derivation of Fig. [[3l shows the adjunction of the
along elementary tree into the anchored elementary tree of the intransitive walked. The
frame(s) linked to along express that the NP within the PP has an at-region that must
contain the entire region of the path. Note that the frame contributed by the preposition
does not have a unique root. The reason for this is that the NP does not contribute an
argument and therefore it does not fill a semantic role slot. The link between it and the
walking activity concerns only its at-region.

(11) John walked along the brook.

As a result, when combining further with the elementary trees for John and the brook,
we obtain the frame in Fig. We represent the frame using avms with relational con-
straints and, in order to emphasize that this frame is not a tree and, if we do not consider
the additional relation C, not even a connected graph, we also depict the corresponding
graph in Fig.

Obviously, examples with motion verbs that are not necessarily directional such as

work as well.
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_directed-motion-activity ) ; brook 10C9
person AT-REGION 9

ACTOR 5
NAME John

4 path

STARTP 2

PATH
ENDP 3
REGION 10

MANNER walking

NAME
ACTOR John

START?_—()
MANNER Pm

O
walklng REGION O e

Fig. 16. Frame for[(11)|

(12) Mary danced along the fence

AT-REGION

47

As a last example, let us consider a combination of argument directional PPs and ad-

joining directional PPs.

(13) Mary walked along the brook into the field

The derivation step combining the along the brook PP with the rest of the sentence is
shown in Fig.[I7l As one can see, when performing the unification of 8 and 0 triggered
by the adjunction, we obtain a resulting frame that combines the two constraints on the
path contributed by the two PPs: The entire path (i.e., its REGION) must be contained in
the AT-REGION of the brook and the ENDP (endpoint) of the path must be contained in

the IN-REGION of the field.

4.3 Caused Motion

We now turn to verbs of transport and caused motion as exemplified in

(14) a. Mary threw the ball into the hole.
b. Mary pulled the cart along the river.
c. Mary kicked the ball along the line into the goal.

Our proposal for the unanchored construction and its semantics is shown in Fig. [I8]
The difference to the directed motion construction without a direct object n0Vpp(dir)
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S
I=1
NPI= Ve,
E=0
VP Jon vIE=0] VP
A* el o
PP, _7) VP (g s, walked Vy;  PPI=2][E=0]
P NPI=7] z‘? P NplI=2]
along Det N into Det N
i \ \
the  brook the field
directed-motion _directed-motion-activity |
8 th
patn [P acTor  1|P¢"
REGION 10 NAME John
[brook field
7 | AT-REGION 9 o |GoAL 2 | AT-REGION 11
IN-REGION 11 IN-REGION 9
Ioco path
PATH STARTP 3
ENDP 4
MANNER walking
4C9
Fig. 17. Derivation of
S [ causation
NP[I% ACTOR 5
[E=0] GOAL 7
Vo NpUI=96] VP activity
[E=0][Emo=4] 0 |CAUSE |ACTOR 5
Vya  PPI=71Emo=4] THEME ©
‘ directed motion
€ EFFECT 4 |THEME 6
GOAL 7

Fig. 18. Unanchored tree and semantics of nOVnlpp(dir) construction

discussed above is that now the object, i.e., the theme is moved. This movement is the
effect of an action performed by the actor that affects the theme. Therefore the directed
motion of the object (the theme) is embedded as the effect of a causation whose cause
is an action performed by the subject.
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A difficulty with this construction is that the PP argument and also directional PP
modifiers want to access the embedded event 4 while other modifiers might want to
access 0. As a solution that makes both accessible and that distinguishes them, we
propose to use the feature E in the syntactic trees for the highest event (here 0) while
using a feature E,,, for the relevant motion event if this exists. In nOVpp(dir) the two
features have the same value.

Obviously, when using this construction, a directional PP argument that substitutes
into the PP slot as in can modify the embedded motion event via the E,,, feature.
Similarly, a directional PP that adjoins as a modifier to the lower VP node as in[(14-c)]
can also access the embedded event via the E,,, feature and modify its PATH attribute.

S Metagrammar Decomposition

This section deals with the further decomposition of the meaning of unanchored ele-
mentary trees.

5.1 Metagrammar and Factorization

LTAG allows for a high degree of factorization inside the lexicon, i.e., inside the set
of lexicalized elementary trees. Firstly, as we have seen above, unanchored elementary
trees are specified separately from their lexical anchors. The set of unanchored elemen-
tary trees is partitioned into tree families where each family represents the different
realizations of a single subcategorization frame. For transitive verbs such as hit, kiss,
admire, etc. there is a tree family (see Fig. [[9) containing the patterns for different re-
alizations of the arguments (canonical position, extraction, etc.) in combination with
active and passive. The node marked with a diamond is the node that gets filled by the
lexical anchor.

S
S / N\ S
\ /
S /A NP VP 1 NP S
NP /1 NP VP /\
NP VP , 1 ,Vo PP, | /\ ,NP VP
/ \ NP /\ e Vo / N\
Vo NP | /1 P NP /1 Vo NP
e Vo NP | P |
by | £
by

Fig. 19. Unanchored tree family for transitive verbs

Secondly, unanchored elementary trees are usually specified by means of a meta-
grammar [3l4] which consists of dominance and precedence constraints and category
assignments. The elementary trees of the grammar are defined as the minimal models
of this constraint system. The metagrammar formalism allows for a compact grammar
definition and for the formulation of linguistic generalizations. In particular, the meta-
grammatical specification of a subcategorization frame defines the set of all unanchored
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Class ExtractedSubj
Class CanSubj S
S ST~
VAN NpWH=yes] g Class Subj
NP VP VAN CanSubj \V ExtractedSubj
! NP VP
Vo |
£ Vo
Class ByObj Class ActV
VPpIVOICE=passive] VPIVOICE=active]
Class DirObj Py \
VP Vo PP Vo
/N ST~ Class PassV
Vo NP P NP VP[VOICE:passive]
| |
by Vo

Class Transitive
((Subj N\ ActV) V ByObj V' PassV) N (DirObj v (Subj N\ PassV))

Fig. 20. MG fragment for transitive verbs

elementary trees that realize this frame. Moreover, the formalism allows us to define
tree fragments that can be used in different elementary trees and tree families, thereby
giving rise to an additional factorization and linguistic generalization. Phenomena that
are shared between different tree families such as passivization or the extraction of a
subject or an object are specified only once in the metagrammar and these descriptions
become part of the descriptions of several tree families.

Let us illustrate this with the small metagrammar fragment given in Fig. which
is of course very incomplete in that many tree fragments are missing and features are
almost totally omitted. The first two tree fragments describe possible subject realiza-
tions: the subject can be in canonical position, immediately preceding the VP, or it can
be extracted, with a trace in the canonical subject position. The class Subj comprises the
different subject realizations. Similar classes exist for the different realizations of the
object, while in Fig.[20lonly the canonical position class is listed. Furthermore, there is
a class for the by-PP in a passive construction. This is used only for passive, therefore
the tree fragment contains a corresponding feature VOICE = passive. Besides these argu-
ment classes, our fragment contains two classes for active/passive morphology. Finally,
the class Transitive specifies for each argument its different grammatical functions: the
first argument can be the subject of an active sentence or the by-PP of a passive sen-
tence or it can be omitted in a passive sentence ] The second argument can be the direct
object or it can be promoted to a subject in a passive sentence. If we assume that the
metagrammar constraints require the identification of the lexical anchor nodes, then the
minimal models of this class are among others the first four tree in Fig.[I19l Note that the
difference between canonical subject and extracted subject is factored out in the class
Subj, which can also be used for the definition of other tree families.

2 We are computing minimal models, this is why the third possibility in the disjunction signifies
that this argument is not realized.
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/S\ . |:activity ] S directed-motion-activity
NPI=3] vp . ACTOR 3 NPUI=3] yp . 44 ACTOR 5
[I;:: ] [E=4][Emo=4] GOAL 6
VolE=4] VolE=4] VP
Vya PPI=C0][Emo=4]
€

Fig. 21. Unanchored trees for intransitive activity verbs, possibly with a directional PP

S [causation 7
NP[% ACTOR 5
[E=0][Emo=4] o
/\ activity
Vo NpPI=9] 0| CAUSE |ACTOR 5
THEME 6
motion
EFFECT 4
THEME 6
> [causation 7
/\
NP[I=21 vp ACTOR 5
B GOAL 7
Vo NPI=9] VP activity
[E=01[Emo=14] 0|CAUSE |ACTOR 5
Vaya  PPI=71Emo=4] THEME 6
directed motion
€ EFFECT 4 |THEME 6
GOAL 7

Fig. 22. Unanchored trees for transitive caused motion verbs, possibly with a directional PP

A similar factorization is possible within the semantics. The semantic contribution of
unanchored elementary trees, i.e., constructions, can be separated from their lexicaliza-
tion, and the meaning of a construction can be decomposed further into the meaning of
fragments of the construction. Due to this factorization, relations between the different
parts of a certain syntactic construction and the components of a semantic representa-
tion can be expressed.

5.2 Metagrammar Decomposition of Directed Motion Constructions

So far, we have seen how lexical anchoring contributes to semantic composition and
how substitutions and adjunctions trigger semantic unifications that yield then the frame
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Class Subj Class VSpine Class InTransitive
export: p syn: export: p
identities: p = 0 VP[ AGR=1] use classes V) :VSpinej
syn: N1 =Subj
S
o identities: V.V =N;.V,
AGR=1 —
NPlI= 1 [AGR=2] yp[AGR=2] VolAGR=1] p=Ni.p
[E=0]
NP < VP VolE=0]

sem: 0 activity
ACTOR 1

Fig.23. MG classes for intransitive activity verbs

of an entire sentence. Now we will have a look at the metagrammatical decomposition
of the unanchored trees for nOVpp(dir) and nOVnl1pp(dir), shown in Fig. 21land P21

In the following, we restrict ourselves to the base trees when explaining the syntactic
and semantic decomposition. Of course, other argument realizations are possible as well
and should be taken into account in the metagrammar classes. We leave this aside in this
paper.

Let us first consider the classes needed for the subject, the verbal spine and the intran-
sitive elementary trees. They are shown in Fig.[23l Each class has a name, a declaration
of variables that one can refer to when using this class (the export variables), a list of
equations, and a syntactic dimension and a semantic dimension. The syntactic dimen-
sion contains a tree description that is depicted in the usual way in the figure. L.e., solid
lines indicate immediate dominance, dotted lines indicate dominance and the order of
sisters indicates linear precedence (but not necessarily immediate linear precedence).
Furthermore, < denotes immediate linear precedence. In the class Subj for instance, the
tree description tells us that there are three nodes ny, np, n3 with labels S, NP and VP
such that n; has a top feature I with value 1. Furthermore, n; immediately dominates
ny and n3 (depicted by the edges) and n, immediately precedes n3 (constraint NP <
VP). The picture is a little sloppy since it mixes node variabes with node categories.
The subject adds an actor to the semantic frame i

Concerning the semantic dimension, we assume this to be a description of a typed
feature structure. When we say “unification”, speaking of combining frames in the meta-
grammar, we actually mean conjunction and feature value equation. So far, our impres-
sion is that we need only a simple feature logic without quantification or negation.

The class for the verbal spine takes care of the percolation of features (for instance
AGR) along the verbal spine. InTransitive combines the verbal spine with the subject.
This yields an identification of the VP and V nodes in both classes and the resulting
frame is the one coming from the subject class. When computing the minimal model of
InTransitive, we obtain the unanchored tree on the left of Fig. 211

3 This is of course not the only way this syntactic fragment can be used; other possibilities for
the semantic role of the subject exist as well.
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Note that we assume that, whenever we use a class, its meta-variables (0, 1, etc.) get
instantiated with fresh values. This avoids uninteded unifications.

Class DirPrepObj syn: VP sem:
export: x, p /\ o directed-motion
identities: x =1, p= 0 Vio VPz[Em:O] GOAL 1

Voya  PPI=11[Emo=0]

£ V, < PP

Class nOVpp(dir)
use classes V| =InTransitive, N, =DirPrepObj
identities: Np.p=V,.p,VI.V.=N,.V

Fig. 24. MG classes for intransitive construction with directional PP

For the construction involving an additional directional PP complement, we com-
bine the InTransitive class with a class DirPPObj for a directional PP-argument. The
PP contributes the goal of some directed motion. The higher class nOVpp(dir) arises
from a combination of the InTransitive class and the class for the directional PP. The
motion frame contributed by the PP is unified with the activity frame contributed by
the InTransitive class. Note that only in the nOVpp(dir) class, the E feature and the E,,,
feature get identified via the equation N,.p = Vi.p. The class DirPPObj can also be
used in a context where the E and E,,, features are different.

Class NPObj sem:

export: p causation

identities: p= 0 activity

syn: CAUSE

VP 0 THEME 2

HE=0][Emo=1] ,
P locomotion
EFFECT |1
Vio NplI=2] THEME 2
Vi < NP
Class n0Vnl
export: p ]
use classes V; =InTransitive, Ny =NPObj Class nOVnipp(dir) ' '
identities: p=V;.p=No.p, V1.V =N,.V use classes V| =n0Vnl, N3 =DirPPObj
sem: |causation identities: V.V =N3.V
ACTOR | sem: v ‘p[causati(m
p . EFFECT N3.p
activity
CAUSE
|:ACTOR 1 :|

Fig. 25. MG classes for the nOvn1pp(dir) construction
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For the class n0Vnl1pp(dir), we need a further argument class for the direct NP object
in this construction. A direct NP argument can have different roles of course. In the
context we are interested in, namely the caused motion, the NP object contributes an
argument that is the theme of the causing activity and also the theme of the caused
directed motion. Therefore we assume the metagrammar class NPObj from Fig.
When combining this with the intransitive class, the activity event denoted by the p
feature of the intransitive class gets further specified as being a causation where the
actor is also the actor of the causing event. This is expressed in the class n0Vnl. Its
minimal model is the unanchored tree on the left of Fig.

Finally, when adding the directional PP, its directed motion event becomes the EF-
FECT of the causation. This embedding is specified in the values of the EFFECT feature
in the class nOVnlpp(dir).

With this metagrammar decomposition we were able to capture the fact that the di-
rectional PP always contributes the goal of a directed motion, independent from the
construction it gets combined with. In the nOVpp(dir) case, the directed motion is the
event denoted by the lexical anchor while in the n0Vn1pp(dir) case, the directed motion
is embedded as the effect of the causation denoted by the lexical anchor.

6 Conclusion

In this paper, we proposed to combine an LTAG-based syntax-semantics interface with
a fine-grained frame-based semantics. We have shown that this architecture provides
the means to associate a detailed decomposition and composition of syntactic building
blocks with a parallel decomposition and composition of meaning components. Due to
its various possibilities for decomposing elementary trees and because of its extended
domain of locality, LTAG allows one to pair not only lexical items with lexical meaning
but also constructions with their meaning contributions. Furthermore, due to the meta-
grammatical specification of TAG elementary trees, the meaning contributions of single
argument realizations and of their combinations can be described in a principle way, in
parallel to a similar decomposition of the syntactic elementary trees.

We have discussed the case of directed motion expressions and we have shown how
to capture the various ways a directional PP adds information about the path of the mo-
tion event. Besides giving a detailed frame-based analysis of lexical and constructional
meaning aspects, our approach integrates this into a syntax-semantics interface. Via
substitution and adjunction, the frame-based characterization of the events described
by entire sentences can be compositionally derived.
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Abstract. The admissible rules of a logic (understood as a structural
consequence relation) may be described as rules that can be added to
the logic without producing any new theorems, or, equivalently, as rules
such that any substitution making the premises into theorems, also makes
the conclusion into a theorem. However, this equivalence collapses once
multiple-conclusion or other, more exotic, admissible rules are consid-
ered. The first aim of this paper is to explain how such distinctions can
be explained and characterized. The second aim is to explore how these
rules can be useful in determining properties of classes of algebras.

1 Introduction

The notion of an admissible rule was introduced explicitly by Lorenzen in the
1950s in the context of intuitionistic logic [20], but appears also, at least im-
plicitly, in Gentzen’s papers on the sequent calculus [I0] and Whitman’s work
on free lattices [2§]. Admissible rules have since been studied intensively by
many authors. In particular, Rybakov showed that the set of admissible rules
of intuitionistic logic is decidable, but not finitely axiomatizable [26]. An ele-
gant infinite axiomatization (conjectured by De Jongh and Visser) of this set of
rules was later provided by Iemhoff [14] (based on the work of Ghilardi [ITI2]
relating admissibility to unification) and, independently, by Roziere [25]. Ax-
iomatizations have also been provided for a range of intermediate logics [I5g],
transitive modal logics [I7], and various many-valued logics [I8I19/5], leading in
some cases also to proof systems for checking admissibility [I3IT6I3124].

The starting point for the work reported here is the observation that two
seemingly quite opposed notions of admissibility are employed in the literature.
Informally, for a system S and rules consisting of a finite set of premises and
finite set of conclusions:

(A) A rule is admissible in S if the set of theorems of S does not change when
the rule is added to the existing rules of S.

(B) A rule is admissible in S if each substitution mapping all of its premises to
theorems of S, also maps one of its conclusions to a theorem of S.

* Supported by Swiss National Science Foundation grant 20002 129507.

L. Ong and R. de Queiroz (Eds.): WoLLIC 2012, LNCS 7456, pp. 56-B9] 2012.
(© Springer-Verlag Berlin Heidelberg 2012
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In many cases — in particular, for the single-conclusion rules of a logic (structural
consequence relation) — these two notions of admissibility coincide. Moreover, in
an algebraic setting, with logics and single-conclusion rules corresponding, re-
spectively, to quasivarieties and quasiequations, admissibility amounts to validity
in free algebras on countably infinitely many generators. For multiple-conclusion
rules, however, and more exotic rules with restrictions on variables, these two
notions may diverge.

The first task of this paper, undertaken in Section [2] is to give an algebraic
account of admissibility according to notions (A) and (B), seeing where these two
notions agree and where the equivalence breaks down. (Note that a treatment
of admissibility for algebraizable logics, i.e., structural consequence relations
enjoying well-behaved translations between equations and formulas, follows di-
rectly from this algebraic account.) A new, more general, first-order framework
is then introduced in Section [3] relating admissibility to the preservation of cer-
tain classes of sentences (equations, quasiequations, etc.) by particular sentences
with respect to a given class of algebras. Finally, in Section ] some applications
of admissibility for determining properties of classes of algebras are described.

2 An Algebraic Perspective

For convenience, let us assume in what follows that £ is an algebraic language
and that an L-algebra A is an algebraic structure for this language with universe
A. We denote the term algebra (absolutely free algebra) for £ over countably
infinitely many variables by Tm, and let s,¢,u stand for L-terms in Tm.
An L-equation is an ordered pair of L-terms, written s ~ t, and we let the
metavariables I', A stand for finite sets of L£-terms. An L-clause is an ordered
pair of finite sets of L-equations, written I' = A, called an L-quasiequation if
|A| =1, an L-positive clause if T' = (), and identified with the single equation in
Aif [A|=1and T' = 0.

Throughout this paper, whenever £ contains a binary connective A, we make
use of s <t as an abbreviation for s At = s.

Let us fix a class of L-algebras IC and a finite set of L-equations TUA. We write
I' Ex A to denote that for every A € K and homomorphism h: Tm, — A,
I’ C ker h implies A Nker h # 0. In this case, we say that I' = A is valid in each
A € K. That is, I' = A may be understood as the universal formula (i.e., of
first-order logic) (VZ)(AT = \/ A) where Z are the variables occurring in I' U A
and A @ =1, \/ 0 = 0. Conversely, an arbitrary universal formula of the language
L may be associated (by putting the quantified formula into conjunctive normal
form) with a finite set of L-clauses. We abbreviate §) Fx A by Fx A, and
I' Fray A by I' Fa A. We also drop the brackets in I', A when no confusion
may occur. As usual, if the language is clear from the context we may omit the
prefix £ when referring to these concepts.

KC is said to be an L-universal class if there exists a set of L-clauses A such that
A € K iff all clauses in A are valid in A. If there exists such a A consisting only
of quasiequations, positive clauses, or equations, then K is called, respectively,
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an L-quasivariety, an L-positive universal class, or an L-variety. The wvariety
V(K), quasivariety Q(K), positive universal class UT(K), and universal class
U(K) generated by K are, respectively, the smallest variety, quasivariety, positive
universal class, and universal class containing /C.

Let H, I, S, P, and Py be, respectively, the class operators of taking homomor-
phic images, isomorphic images, subalgebras, products, and ultraproducts. Then
V(K) = HSP(K), Q(K) = ISPPy (K), UT(K) = HSPy (K), and U(K) = ISPy (K).
Moreover, if I is a finite set of finite algebras, these latter equivalences refine to
Q(K) = ISP(K), UT(K) = HS(K), and U(K) = IS(K) (see 4, Theorems I1.9.5,
I1.11.9, V.2.20, and V.2.25] and [6] Exercise 3.2.2] for further details).

Let us consider first the “standard” characterization of admissibility (notion
(B) from the introduction), fixing a quasivariety Q for the remainder of this sec-
tion. We say that an L-clause I' = A is Q-admissible if for every homomorphism
(substitution) o: Tmg — Tmg:

Eo o(s) =a(t) implies Ega(s) ~a(t)
forall s~tel for some s’ ~t' € A.

This notion of Q-admissibility is equivalent (at least in algebraic contexts) to
validity in the free algebra on countably many generators of Q. Recall that for
a cardinal k, an L-algebra B is called a free k-generated algebra Fg(r) if there
exists X C B such that |X| = x and B has the universal mapping property for
Q over X; that is, for every A € Q, and map f: X — A there exists a (unique)
homomorphism ¢g: B — A extending f.

Note that when considering admissibility, it can be helpful to view the ele-
ments of Fg(k) for k < w as equivalence classes [t] of terms ¢ containing at most
k variables, defined with respect to the congruence relating s and t whenever
Ex s ~ t. In particular, the canonical homomorphism hg: Tm, — Fg(w) is
the unique homomorphism mapping a term ¢ to its equivalence class [t] in Fg(w),
recalling (see [, Corollary II1.11.6]) that for each L-equation s = t:

Eos~t iff ':Fg(w) s~t iff ho(s) = ho(t). (1)

Quasivarieties are closed under taking products; hence, given any finite set of
L-equations I' U A:

F'Eoc A iff I'=g s~t forsomes~teA (2)
and combining () and [@):
Eo A iff Fo s~t for somes~teA iff Frow) A, (3)
Lemma 1. I' = A is Q-admissible iff T' Fg, ) A.

Proof. (=) Suppose that I' = A is Q-admissible and consider a homomorphism
g: Tm; — Fg(w) such that I' C ker g. Let o be a map sending each variable x
to a member of the equivalence class g(z). By the universal mapping property
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for Tm, for L-algebras, this extends to a homomorphism ¢: Tm, — Tm,.
But since hg(o(x)) = g(x) for each variable z, it follows that hg o o = g. Le.,
I' C ker(hg oo). So for each s’ = t' € T, also hg(o(s')) = hg(o(t')) and, by (),
o o(s’) = o(t’). Hence, by assumption, =g o(s) = o(t) for some s =t € A.
Therefore, again by [d), g(s) = ho(o(s)) = hg(o(t)) = g(t) as required.

(<) Suppose that I' =g, () A and let 0: Tm, — Tm, be a homomorphism
such that =g o(s") = o(t') for all s =~ t' € T'. But then also o(I') Fryw) 0(A),
S0 Fro(w) 0(A). By @), o o(s) = o(t) for some s =t € A as required. o

Example 1. The variety KA of Kleene algebras is generated as a quasivariety by
the three-element algebra Cz = ({L,a, T}, A,V,—, L, T) where L < a< T and
— swaps L and T, fixing a; that is, LA = Q(Cg). Since no term is constantly a,
the quasiequation

{r=-2} = z~y
is K A-admissible, but {z ~ —a} x4 = y (just consider mapping = to a and

y to L). Indeed, it is shown in [5] (using a natural duality for CA) that the
admissible quasiequations of KA are axiomatized relative to LA by

{~z<z, sA-y<-aVy} = y<y. (4)

That is, Q(Fia(w)) consists of all algebras in KA satisfying {)). An axioma-
tization of the admissible clauses of KA is also obtained in [5] by adding the
“disjunction property”

{zVvy=T} = {z=T, y=T} (5)
That is, U(Fx.4(w)) consists of all algebras in KA satisfying ().

There is, however, another natural notion of admissibility (notion (A) from the
introduction), which in logical contexts may be expressed as the property that
adding the rule to a consequence relation (i.e., considering the smallest conse-
quence relation containing both the rule and the original consequence relation)
does not change the set of theorems. Expressed algebraically, this characteriza-
tion corresponds to the following well-known equivalence (see, e.g., [26]):

Lemma 2. I' = s~ t is Q-admissible iff V(Q) = V{A € Q| T' |=a s = t}).

Example 2. The following quasiequation is admissible but not valid in the variety
of Heyting algebras H.A:

{Tr-z—-(yVvVza)} = Tr(~z—y) V(z—2). (6)

Hence H.A is generated as a variety (but clearly not as a quasivariety) by all
Heyting algebras satisfying (@)). Consider now also the variety of Godel algebras
GA: Heyting algebras satisfying T =~ (x — y) V (y — z). Validity and admissi-
bility in GA coincide; that is, GA = Q(Fga(w)) (GA is said to be structurally
complete) and indeed, GA = U(Fg4(w)) (GA is universally complete). Consider,
however, the class GAj;, of Godel algebras satisfying the positive clause.

= {z<y, y<a}
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Then GAjyn, the class of linearly ordered Godel algebras, generates GA as a
variety, i.e., V(GAu,) = GA. However, this clause does not hold in the free
algebra Fga(w).

As the previous example shows, the equivalence established in Lemma 2] does
not extend to clauses. Rather the added clause should not increase the set of
valid positive clauses.

Lemma 3. ' = A is Q-admissible iff UT(Q) = UT({A € Q| T =a A}).

Proof. (=) Suppose that I' = A is Q-admissible. Then since for any quasivariety
Q, we have Fgo(w) € Q, it follows by Lemma[that Fo(w) € {A € Q| T =4 A}
and UT(Fgo(w)) CUT({A € Q | T Ea A}) C UT(Q). But also UH(Q) =
Ut (Fg(w)), using [@B)). Hence UT(Q) =UT({A € Q|T Ea A}).

(<) Suppose that UT(Q) = Ut ({A € Q| T Ea A}) and let 0: Tmg —
Tm, be a homomorphism such that g o(s') &~ o(t') for all ' ~ ¢’ € I". Then
Ea o(A) for all A € Q such that T' A A. Hence also =g o(A). By @),
Eo o(s) = o(t) for some s =t € A as required. O

Note that Lemma [2] follows directly from this result, since Ut (Q) = V(Q), and
when |[A| =1, also UT({A € Q| T Ea A}) =V{A € Q|T Ea A}).

However, this raises the question as to what it means algebraically for a pos-
itive clause to “preserve” the set of valid equations, but perhaps not the set of
valid positive clauses. An answer is provided below for congruence distributive
varieties that makes use of Jénsson’s Lemma (referring to [4] for this result and
other undefined concepts from Universal Algebra). Indeed in this case all valid
quasiequations are preserved.

Lemma 4. If V is a congruence distributive variety, then the following are
equivalent:

(1) =a A for all subdirectly irreducible algebras A € V
(2) V=Q({AcV|E=aA})
(3) V=V{AecV]|FaA}.

Proof. (1) = (2) Follows immediately from the fact that V is generated as a
quasivariety by its subdirectly irreducible members.

(2) = (3) Trivial since V is a variety.

(3) = (1) Suppose that V =V({A € V| =a A}) and consider a subdirectly
irreducible algebra B € V. By Jénsson’s Lemma, B € UT({A € V | Ea A}).
Hence =g A as required. m]

This result of course raises further questions. For example, what does it mean
algebraically for a clause to “preserve” the set of valid equations (or quasiequa-
tions), but perhaps not the set of valid positive clauses?

Finally, for this section, observe that there are interesting and useful rules
employed in the literature that do not seem to have a direct algebraic interpre-
tation. Consider, for example, the following “density rule” for the variety G.A
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of Godel algebras, introduced by Takeuti and Titani in the logical setting of
first-order Godel logic [27]:

{Tr(s—=z)VE@—-t)Vu} = Tr(s—>t)Vu

where s, t, and u are terms not containing the variable x.

This rule was shown to be admissible for GA in [2] in the following sense: equa-
tions that can be derived in a proof system for GA extended with the rule can
also be derived in the proof system without the rule. This admissibility result was
extended to other classes of algebras in [22/[7] and used to show that these classes
are generated as quasivarieties by their linearly and densely ordered members.
We will have more to say on this issue in Section [El

3 A First-Order Framework

As the results and remarks of the previous section make plain, our two different
notions of admissibility coincide in some but not all contexts. The goal of this
section is to explain and explore these differences by considering admissibility in
the more expressive setting of first-order logic.

We will assume the usual terminology and definitions of classical first-order
logic with equality, making use of the symbols V, 3, M, U, =, ~, and ~. In
particular, for a first-order language £, Sen(L) is the set of sentences of £ with
respect to a countably infinite set of variables, denoting formulas by ¢, and
sets of formulas by ¥, ©. For a class of L-structures K and ¥ C Sen(L), we set

The(K) ={¢y € X | K |= ¢}
and say that ¢ € Sen(L) preserves 3 in K if
Thy(K) = Ths({A € K| A = ¢}).

In particular, if K is axiomatized by © C Sen(L), then ¢ € Sen(L) preserves £
in C if for all ¢ € X:

OFv iff OU{p} k1.

Let us again consider an algebraic language £, and denote the set of L-clauses
(understood now as first-order sentences) by C1(L), positive L-clauses by CIT (L),
L-quasiequations by Qe(L£), and L-equations by Eq(£). We recall that for classes
of L-algebras K; and Ko, V(K;) = V(Kq) iff 1 and Ko satisfy the same
L-equations, Q(KC1) = Q(K2) iff they satisfy the same L-quasiequations, and
UT (K1) = U (Ky) iff they satisfy the same positive £-clauses. Hence Lemmas 3]
and @l may be reinterpreted as:

Corollary 1. If Q is a quasivariety, then the following are equivalent for any
clause p € CI(L):

(1) Fo(w) F ¢
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(2) UH(Q) =UT({A € QA E¢})
(3) ¢ preserves CIT(L) in Q.

In particular, if ¢ € Qe(L), then (1)-(3) are equivalent also to:

(2) V(Q =V{AcQ|A¢})
(3’) ¢ preserves Eq(L) in Q.

Corollary 2. If V is a congruence distributive variety, then the following are
equivalent for any ¢ € CIT(L):

(1) A & ¢ for all subdirectly irreducible algebras A € V
(2) V=Q({AeVI[A |y}

(3) ¢ preserves Qe(L) in ¥V

4) V=V({AeV|A¢p})

(5) ¢ preserves Eq(L) in V.

Example 3. Consider the variety BA of Boolean algebras in a language Lpool
and the Lpyo-sentence:

=Vz)((z~L)U(z=T)).

Then ¢ preserves Qe(Lpool) in BA, since a quasiequation is valid in all Boolean
algebras iff it is valid in the standard two element Boolean algebra. Clearly,
however, Fg4 [~ ¢. On the other hand, —¢ also preserves Qe(Lpool) in BA,
since a quasiequation is valid in all Boolean algebras iff it is valid in the four
element Boolean algebra.

An L-sentence can be translated (in the standard way) into a set of clauses in an
expanded language: first find an equivalent L-sentence in prenex normal form,
then skolemize to obtain a universal sentence, possibly containing extra function
symbols, equivalent to a conjunction of clauses. In particular, consider again
an algebraic language £ and a prenex formula ¢ € Sen(L). The Skolem form
sk(y) € Sen(L’) of ¢ in an algebraic language £ extending £ with additional
function symbols is defined in the usual way, so that for any © U {¢o} C Sen(L):

OU{pt vy iff ©U{sk(e)} =

Let us fix I to be an elementary class of L-structures and, for any extension of
the language £" with additional function symbols, let K’ be the elementary class
of L'-structures whose L-reducts are in K.

Proposition 1. The following are equivalent for any ¥ U {p} C Sen(L):

(1) ¢ preserves 3 in K
(2) sk(p) € Sen(L') preserves ¥ in K'.

Proof. Suppose that K is axiomatized by © C Sen(£). Then ¢ preserves ¥ in K
iff for all ¥ € 3:

k¢ ifft OUu{p} .
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Axioms Cut rule
(ID) ssu ust (cuT)
t<t s<t
Left logical rules Right logical rules
bhss o sst oy
tiAta<s 7 s<tiVty —F
t2<s g sStz
tiAta<s 77 s<tiVty =7
< < < <
t1 ) ta ) (\/S) AN t1 s < ta (S/\)
t1 Via <s s <ti Ata

Fig. 1. The proof system GLat

But this holds iff for all ¢ € X:
Oky it OU{kp)E Y.
That is, ¢ preserves ¥ in K iff sk(p) € Sen(L’) preserves ¥ in K’. |

Example 4. Consider the variety of semilattices in a language £ with one binary
connective A, and the L-sentence:

e = (Vo) (Vy)(F2)(Vw)((z < 2) N (y < 2) N (2 Sw) N (y S w)) = (2 < w))).

Skolemizing, we obtain a language £ with an additional binary connective V,
and an L'-sentence sk(yp) of the form

(Vo) (Vy)(Vw)((z <z Vy) My <z Vy) N (e <w) Ny <w)) = (2 Vy <w))).
Moreover, we may interpret sk(p) as the clauses:

= z<zVy, = y<zVy {e<w y<w} = zVvVy<w.
It is not hard to see that semilattices satisfying ¢, are in fact lattices, and that

© preserves Eq(L£) in the variety of semilattices.

4 Applications

Let us turn our attention now to describing some applications of admissibility in
determining properties of classes of algebras. More precisely, we use admissible
rules to show that certain quasivarieties are generated as varieties or quasivari-
eties by their members satisfying order-theoretic properties such as boundedness,
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unboundedness, linearity, and density. The goal here is not to provide striking
new algebraic results, but rather to illustrate the potential of the methodology,
leaving more general investigations for future work.

We begin with the variety Lat of lattices in the language L., with operation
symbols A and V, making use of the proof system GLat of Fig. [l the lattice
fragment of the Full Lambek Calculus (see, e.g., [9] or [2I]). For a given proof
system GL, let us write Fqr, W to denote that there exists a derivation in
GL (a finite tree of structures built according to the rules of the system) with
root W, and say that GL admits cut-elimination if there exists a procedure for
transforming a derivation of W in GL into a derivation of W in GL that makes
no use of the rule (cut). (In fact, cut-elimination for GL implies that (cuT)
understood as a quasiequation is admissible in the quasivariety defined by the
other rules of GL.)

Theorem 1 (see, e.g., [21])

(a) Farat s <t iff Frar s <t
(b) GLat admits cut-elimination.

Ezxample 5. Note that by considering derivations in GLat that do not make use
of (cuT), we obtain

Erat 1A 82 <t1Viy 1implies |Erat s1 <t1Vig or rat S2 <t1 Vi or
Frat 51 A 82 <ty Or [Frap 51 A 52 < ta,
and therefore the Lat-admissibility of Whitman’s condition (see [28])
{rinze Syr1Vy} = {21 <y1Vye, 12 <y1Vye, T1AT2 <Y1, 11 AT < Yol

Let us consider now the following L/.¢-sentence for expressing boundedness:
ppa = (F2)(Fy)(V2)((z < 2) M (2 < y)).
Skolemizing this sentence gives
sk(ppa) = (V2)((L < 2)N(z < T))
in the expanded language C%at containing additional constants 1 and T.
Theorem 2. ¢pq preserves Eq(Lrat) in Lat.

Proof. Tt suffices by Proposition [I] to show that sk(ppq) preserves Eq(Lat) in
Lat® where Lat® consists of all lattices with additional constants L and T. Let
BLat = {A € Lat’ | A |= ¢pq}. Then it is enough, using Corollary I to show
that whenever Epra; s <t for s <t € Eq(Lat), also Epap s < t.

We define GBLat to be GLat extended with the rules:

1<t (<) and s<T (ST).
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Then it is easily shown that (a) Fgprat s < t iff Eprat s < t, and (b) GBLat
admits cut-elimination. Suppose that Fgprat s < ¢ for s <t € Eq(Lat). Then
there is a cut-free derivation of s <t in GBLat and hence also (since the extra
rules cannot be used in this derivation) in GLat. Le., FqLat s < t and therefore
E a8 <t as required. O

Hence by Corollary [, we obtain:
Corollary 3. Lat = V({A € Lat | A is bounded}).
We consider now the following L, ,t-sentence for expressing unboundedness:
Gunvi = (V2)(Fy) (32) (~(& <) N~(z < 7)),
Skolemizing this sentence gives
sk(unba) = (Vo) (-(z <lz) N =(Te < z))
in the expanded language £}, with additional unary function symbols | and 1.
Theorem 3. wunpa preserves Eq(Lra) in Lat.

Proof. Tt suffices by Proposition [l to show that sk(¢unbd) preserves Eq(Lzat) in
Lat" where Lat" consists of all lattices with additional unary functions | and 1.
Let ULat = {A € Lat" | A = punba}- Then it is enough to show that whenever
Fucat s <tfor s <t € Eq(Lrat), also Fram s < t.

We define GULat to be GLat extended with the rules:

u<lu Ttu <u

s<t (=) and s<t (TS).

Then it is easily shown that (a) FguLat s < t iff Fyrat s < ¢, GULat admits
cut-elimination, and (¢) Fgurats § < }t and HFgurasTs < t for all £%_,-terms s, t.
Hence, if Fourat s <t for s <t € Eq(Lat), then then there is a derivation of
s <t in GLat as required. a

Hence by Corollary [, we obtain:
Corollary 4. Lat = V({A € Lat | A is unbounded}).

Note that although these generation results for lattices are straightforward to
prove algebraically, for other classes of algebras this may no longer be the case.
In particular, we aim to use this methodology to provide general conditions for
classes of algebras to be generated as a variety by its bounded or unbounded
members. Note for example, that the variety of lattice-ordered abelian groups
cannot be generated by its bounded members (since there is only one, the triv-
ial algebra), and that a variety of commutative residuated lattices (see below)
satisfying weakening conditions such as z -y < x cannot be generated by its
unbounded members.
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Let us conclude by considering the more interesting case of the density rule
already mentioned at the end of Section 2 A commutative residuated lattice
for the language £ is an algebra A = (A, A,V, -, —,e) such that (4, A, V) is a
lattice, (4, -, e) is a commutative monoid, and z -y < z iff z <y — z for all
z,y,z € A. The algebra A is called semilinear if it is distributive and satisfies
e<(x —y) V(y — x) for all z,y € A. We denote the class of all semilinear
commutative residuated lattices by CRLC.

A proof system GCRLC for CRL®, originally defined with extra constants
in [22] (see also [23]), is presented in Fig. [2in the framework of hypersequents
(introduced by Avron in [I]). A (single-conclusion) sequent S is an ordered pair
consisting of a finite multiset of £-terms IT and a term ¢, written IT < ¢. A (single-
conclusion) hypersequent G is a finite multiset of sequents, written Sy | ... | Sp.
We define the following interpretation of sequents and hypersequents:

i(S1y. s Sm <t)=(S1... 8m) >t
i(<t) =t
i(S1|...]Sn) =4(S1) V... Vi(Sy)

and write Feree G iff Eeree e < i(G).
Theorem 4 (see [22], also [23])

(a) Faorie G iff Feree G-
(b) GCRLC admits cut-elimination.

Consider now the following L-sentence expressing linearity and density:

p = (Vo)(vy) B2)(((z <y) U (y <)) N (((z < 2) U (2 < y)) = (z <))

Skolemizing, we obtain the sentence

sk(p) = (V) (Vy) (((z < y)u(y < 2)N(((z < d(z, y))U(d(z,y) <y)) = (x < y))).
in an expanded language £? containing an additional binary function symbol d.
Theorem 5. ¢ preserves Eq(L) in CRLC.

Proof. Tt suffices by Proposition [l to show that sk(p) preserves Eq(£) in CRL®
where CRL® consists of all semilinear commutative residuated lattices with an
additional binary function d. Let CRL® = {A € CRL® | A = ¢}. Then
it is enough to show that whenever Fer o s < ¢ for s < ¢t € Eq(L), also

Fereer s <t.
We define GCRLP to be GCRLS extended with the rule:

Q\ngx\ﬂg,xgt
G|, I, <t

where x does not occur in G, II;, Ils, or ¢.

(DENSITY)

It is proved in [22] (see also [23]) that (a) Facrrer G iff Fegeer G, and (b)
for all G not containing d, Fgcrrer G iff Feorne G- Hence if Feg o s < t for
s <teEq(L), then Fqorrer s <t and so Facorre s < t as required. O
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Axioms Cut rule
G, t<u G|z <t
(D) (cut)
Glt<t G| 11,1z Swu
External weakening External contraction
GIH|H
7w R (w0
G|H G| H
Left logical rules Right logical rules
GlII<u
(e<) (Ze)
G|Me<u gl <e
G| <s G|, t<u GlI,s<t
(=) (=)
G|, Iz,s >t <u GlII<s—t
Gl s, t<wu Gl <s G|l <t
(<) (<)
Gg|lI,s-t<u G|, Il <s-t
GglI,s<wu G|lII<s
(A< (V)
GlI,sAt<u GglIO<sVt
G|Mt<u glm<t
(AS)2 (£V)2
GlI,sAt<u GlIO<sVt
GlMs<u G|Mit<u Glm<s G|m<t
(V<) (M)
Gg|lI,svt<u GlII<sAt
Fig. 2. GCRL®

Hence by Corollary [ we obtain:

Corollary 5. CRL® = V({A € Lat | A is linearly and densely ordered}).

Note finally that in [22] (see also [23]) it is proved that CRL® is generated as a
quasivariety by its linearly and densely ordered members. This follows here from
the previous corollary using the fact that a suitable local deduction theorem

holds for both classes of algebras.

Acknowledgements. 1 would like to thank both Leonardo Cabrer and
Christoph Rothlisberger for their helpful comments on the work reported here.
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1 Introduction

Distributed systems are notoriously difficult to understand and analyze in or-
der to assert their correction w.r.t. given properties. They often exhibit a huge
number of different behaviors, as soon as the active entities (peers, agents, pro-
cesses, ... ) behave in an asynchronous manner. Already the modelization of such
systems is a non-trivial task, let alone their formal verification.

Several automata-based distributed models have been proposed and studied
over the past twenty years, capturing various aspects of distributed behavior.
Depending on the motivation, such models fall into two large categories. In the
first one we find rather simple models, expressing basic synchronization mecha-
nisms, like Petri nets or communicating automata. In the second category we see
more sophisticated models, conceived for supporting practical system design, like
statecharts or I/O automata. It is clear that being able to develop automated
verification techniques requires a good understanding of the simpler models, in
particular since more complex ones are often built as a combination of basic
models.

This purpose of this paper is to discuss the problem of distributed monitoring
on a simple model of finite-state distributed automata based on shared actions,
called asynchronous automata. Monitoring is a question related to runtime veri-
fication: assume that we have to check a property L against an unknown or very
complex system A, so that classical static analysis is not possible. Therefore
instead of model-checking a monitor is used, that checks the property on the
underlying system at runtime. The question is which properties can be checked
in this way, that is, which properties L are monitorable. A classical example
for monitorable properties are safety properties, like “no alarm is raised”. A
monitor for a property L is an automaton M, that after each finite execution
tells whether (1) every possible extension of the execution is in L, or (2) every
possible extension is in the complement of L, or neither (1) nor (2) holds. The
notion of monitorable properties has been proposed by Pnueli and Zaks [15],
and the theory has been extended to various kinds of systems, for instance to
probabilistic systems [3II0] or real-time systems [II2].

We are interested here in monitoring distributed systems modelled as asyn-
chronous automata. It is natural to require that monitors should be of the same
kind as the underlying system, so we consider here distributed monitoring. A dis-
tributed monitor does not have a global view of the system, therefore we propose
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the notion of locally monitorable trace language. Our main result shows that if
the distributed alphabet of actions is connected and if L is a set of [-infinite
traces (for some subset of processes I') such that both L and its complement L¢
are countable unions of locally safety languages, then L is locally monitorable.
We also show that over I'-infinite traces, recognizable countable unions of locally
safety languages are precisely the complements of deterministic languages.

2 Preliminaries

The idea of describing concurrency by a fixed independence relation on a given
set of actions X goes back to the late seventies, to Mazurkiewicz [12] and
Keller [I1] (see also [6]). One can start with a distributed action alphabet (X, dom)
on a finite set Proc of processes, where dom : X — (2F7°¢\0) is a location function.
The location dom(a) of action a € X' comprises all processes that need to syn-
chronize in order to perform this action. It defines in a natural way an indepen-
dence relation I C X x X by letting (a, b) € I if and only if dom(a) N dom(b) = 0.

The execution order of two independent actions (a,b) € I is irrelevant, they
can be executed as a,b, or b,a - or even concurrently. More generally, we can
consider the congruence ~; on X* generated by I. An equivalence class [w]; of
~r is called a (finite) Mazurkiewicz trace, and it can be also viewed as labeled
pomset t = (V,<,A) of a special kind: if w = ag---a, then the vertex set
is V.= {0,...,n}, the labeling function is A\(¢) = a; and < =({(i,5) | 7 <
Ji (ai,a;) ¢ I})* is the partial order. The word w is a linearization of ¢ defined
as above, i.e., a total order compatible with the partial order of ¢.

Infinite traces can be defined is a similar way from w-words. Finite and infinite
traces are also called real traces, and the set of real traces is written R(X, I) (or
simply R when X I are clear from the context). A trace t is a prefix of a trace
t' (denotes as t < t') if ¢ is isomorphic to a downwards-closed subset of ¢’. The
set of prefixes of ¢ is denoted pref(t). If L C R then we denote by Lin(L) C X*°
the set of linearizations of traces from L.

A language K C X is called trace-closed if K = Lin(L) for some L C R.
Whenever convenient, we talk about trace languages L C R or trace-closed word
languages K C X°° in equivalent terms. A language L C R is recognizable if
Lin(L) C ¥ is a regular language of finite and infinite words.

Linear temporal properties like safety and liveness [14] can be translated into
topological properties, as closed and dense sets in the Cantor topology. For real
traces, these notions generalize smoothly to the Scott topology, by replacing
word prefixes by trace prefixes. The Scott topology corresponds to a global view
in traces, where one needs to reason on global configurations, i.e., configurations
involving several processes. However, in the setting of monitoring that we discuss
here, such a global view is not available. Therefore we use here local safety as
basic notion, as introduced in 4] and explained in the following.

A trace t = (V, <, \) is called prime if it is finite and has a unique maximal
element. That is, | max(¢)| = 1, where max(t) is the set of maximal elements of
t w.r.t. the partial order <. The set of prime traces in R is denoted P(R). The
set of prime prefixes of elements of L C R is denoted P(L).
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Definition 1. Let L C R.

1. L is called prime-open if it is of the form |J{pR | p € U} for some U C P.
Complements of prime-open sets are called prime-closed.

2. L is the intersection of all prime-closed sets containing L (and denoted as
prime-closure of L). Note that L is prime-closed.

3. A prime-closed, recognizable language L C R is called a locally safety lan-
guage.

Remark 1. 1. Every prime-open set is also Scott-open, and prime-open sets
are closed under union, but not under intersection. As an example consider
aR N bR which is not prime-open for (a,b) € I.

2. A first-order locally safety language L C R is a prime-closed set such that
Lin(L) is a first-order language. It is known from [4] that first-order locally
safety languages are characterized by formulas of the form G, with ¢ a
past formula in a local variant of LTL called LocTL.

We end this section by introducing our model for distributed automata. An
asynchronous automaton A = ((Sa)acProcs Sins (0a)acs) s given by

— for every process « a finite set S, of (local) states,
— the initial state sin € [[,cproc Sa
_ . .. . 2
for every action a € X a transition relation 6, C (I]neaom(a) Sa)” on tuples

of states of processes in dom(a).

For convenience, we abbreviate a tuple (so)acp of local states by sp, where
P C Proc. We also denote ] ¢ pyoc Sa as global states and [[,.p Sa as Sp.

An asynchronous automaton can be seen as a sequential automaton with the
state set S =] S, and transitions s — s’ if (Sdom(a)> s’dom(a)) € d,, and
5 Proc\dom(a) = s’Pmc\dom(a). By L(A) we denote the set of words labeling runs
of this sequential automaton that start from the initial state. It can be easily
noted that L£(A) is trace-closed. The automaton is deterministic if each §, is a
(partial) function.

a€ Proc

Ezample 1. Let us consider the asynchronous automaton A given by S, = {0},
Sq =Sy = {0, 1}, and transition function d,(sp, sq) = (Sp, 78q) if 54 = 1 (unde-
fined otherwise), d4(s,) = s, if s, = 1 (undefined otherwise), dp(sq, sr) = (1,1)
if 54 A's, = 0 (undefined otherwise) and d.(sp) = s,. Starting with sg = (0,0, 0),
an accepting run of A checks that between any two successive b-events, there is
either an a or a d (or both), and there is a b-event before all a and d.

Since the notion of a trace was formulated without a reference to an accepting
device, it is natural to ask if the model of asynchronous automata is powerful
enough for capturing the notion of regularity. Zielonka’s theorem below says that
this is indeed the case, hence these automata are a right model for the simple
view of concurrency captured by Mazurkiewicz traces.

Theorem 1. [17] Let dom : X — (2F7°¢\ {0}) be a distribution of letters. If a
language L C X* is regular and trace-closed then there is a deterministic asyn-
chronous automaton accepting L (of size exponential in the number of processes
and polynomial in the size of the minimal automaton for L, see [9]).
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p—(c) @}\
: o Uo7

Fig. 1. The pomset associated with the trace t = [cbadcbadb], with dom(a) = {p, ¢},
dom(t) = {,}, dom(c) = {p}, dom(d) = {r}

3 Safety Languages

A set of traces C' C R is called coherent if C C pref(t) for some t € R. This means
that UC € R exists, and it is a prefix of ¢. By L¢ we denote the complement
R\ L of L. Recall that P(L) is the set of prime prefixes of traces in L C R.

We use in our characterizations below a basic property of automata on traces,
which is for instance satisfied by (runs of) asynchronous automata, called forward
diamond property. A set K C X* satisfies the forward diamond property if the
following holds:

If ua € K and ub € K, then uab € K, for every u € ¥* and (a,b) € I.
Lemma 1. For L C R we have
L ={uC | CCP(L) and C is coherent} .
We have L = K if and only if P(L) = P(K).

Proof. Let X = {UC | C C P(L) and C is coherent}. By definition, X¢ = UR
with U = P\ P(L), thus X is prime-closed (and contains L). Let K 2O L be
prime-closed, thus K¢ = VR with V' C P. Consider some coherent set C C P(L),
and assume that LC' € vR for some v € V. But then v € P(L), thus KN L # 0,
a contradiction. So X C K, which shows that L = X.

Lemma 2. If L C R is recognizable, then the prime closure L is recognizable,
too. Moreover, on input (X, dom) and (sequential) Biichi automaton B such that
L = L(B) is trace-closed, we can compute an exponential-size, deterministic
asynchronous automaton A accepting L, such that all states of A are final.

Proof. Given L C R recognizable, we have that P(L) is recognizable, too. Then it
is easy to see that L is recognizable, by using for instance monadic second-order
logic over traces.

Let us consider the complexity of the construction of a deterministic asyn-
chronous automaton for L in more detail. We assume that the input L is given
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by a (sequential) Biichi automaton B. We first determinize B and get a deter-
ministic (say Rabin) automaton B’ for L. From B’ we can easily construct a DFA
accepting P(L): we just need to store the set of maximal processes in the control
state. The resulting DFA is exponential in both B and Proc. By applying the
construction cited in Thm. [[] we obtain a deterministic asynchronous automaton
A for P(L) which is still exponential in B and Proc. Using classical timestamping
we may assume that each local state reached by the maximal processes of a prime
trace contains the complete information about the global state of A reached on
that prime trace - the size of the deterministic asynchronous automaton A’ thus
obtained remains exponential. It remains to construct the automaton accepting
L. Recall that L contains precisely those traces where all prime prefixes belong
to P(L). Thus, it suffices to take A’ and forbid transitions that produce bad
local states of A’, that is, local states that are non-final viewed as global states
of A. On finite or infinite traces, the automaton A’ accepts precisely L. By
construction, all its reachable states are final.

Proposition 1. The following are equivalent characterizations for L C R:

1. L is a locally-safety language.

2. K = Lin(L) C X is a regular, prefiz-closed language such that K N X% is
a safety language, and K N X* satisfies the forward diamond condition.

3. L is accepted by a deterministic asynchronous automaton where all reachable
states are final.

Proof. The implications (1) = (2) and (3) = (1) are immediate. For (2) = (3)
let us assume that K = Lin(L) is regular, prefix-closed and satisfies the two
additional conditions in the statement. Since K N X* is prefix-closed, trace-
closed and satisfies the forward diamond property, there exists a deterministic
asynchronous automaton B recognizing K N X* (equivalently, the set of finite
traces in L) such that all reachable states are final [16]. Since K is assumed to
be prefix-closed and K N X“ is a safety language, we obtain that the automaton
B accepts precisely L = L over R.

Ezample 2. Assume that ¥ = {a,b,c} with dom(a) = {a}, dom(b) = {5} and
dom(c) = {a, B}. The trace language “no two consecutive ¢’s” is a locally safety
language, and it can be recognized by an asynchronous automaton where both
processes remember their last action, and do not allow two consecutive ¢’s.

The trace language “no a in parallel with a b” is not a locally safety language
(but it is Scott-closed).

For first-order languages we have, as usual, also a characterization by temporal
logics:

Proposition 2. The following are equivalent characterizations for L C R:

1. L is a locally-safety language definable in first-order logic.

2. L is definable by a globally past formula in LocTL.

3. K = Lin(L) C X is a first-order, prefiz-closed language such that K N X%
is a safety language, and K N X* satisfies the forward diamond property.
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Proof. The equivalence (1) < (2) follows from [4], and the implication (1) = (3)
is immediate. For (3) = (1) it suffices to show that L = L (since we know by [7]
that L must be first-order). So let ¢ = UC, with C C P(L) coherent. For every
uw € P(L) and every linearization = of u, we have x € K since K is prefix-
closed. Moreover, if {¢,t'} is coherent and K contains all linearizations of ¢ and
t’, respectively, then by the forward diamond property, K contains some (and
thus all) linearization(s) of ¢ U ¢'. This shows the claim for finite traces ¢. For
infinite traces it follows from K N X“ being a safety language.

4 Local Monitoring

Here and in the following we write s < L for a (finite) trace s € R and a language
L C R if there exists some ¢t € L with s < t.

Definition 2. A set L C R is called locally monitorable if for all s € P there
exists some t € P with (1) s <tR and (2) either tR C L or tR C L°.

Notice that in the definition of locally monitorable sets, the first condition says
that {s,t} is coherent. So a set L is locally monitorable if for every prime trace
s there is another prime trace t that is coherent with s and such that after ¢t we
know that every extension belongs either to L or to its complement L€.

The following lemma extends a well-known observation from words to traces:

Lemma 3. FEvery prime-closed trace language is locally monitorable. In partic-
ular, every locally-safety (or locally-co-safety) language is locally monitorable.

Proof. Let L = L and s € P. If sR is not a subset of L, then there exists some
t = sz € L°. Since L is prime-closed this means that there is some v € P\ P(L)
with w < ¢. But then {u, s} is coherent, thus s < uR and uR C L°.

The next proposition characterizes locally monitorable sets in terms of the clo-
sure operator defined in the previous section:

Proposition 3. L C R is locally monitorable if and only if L N L¢ does not
contain any non-empty prime-open subset.

Proof. First, assume by contradiction that L is locally monitorable, but sR C
L N Le¢ for some s € P. By symmetry in L and L¢ we may assume that we find
tePand s <tR C L. Hence, t ¢ P(L¢) and thus tRNL¢ = (). But sRN{R # (.
Contradiction.

For the other direction let s € P. We may assume (again by symmetry in L
and L) that sR N L° # 0. Hence, there is « ¢ L with s < z. This implies that
there is t € P\ P(L) with s < ¢R. Thus, tR C L° and L is locally monitorable.

We state now the main result of this section, which shows that whenever a
recognizable property over traces is locally monitorable, we can build a monitor
that is of the same type as the system on which it runs, i.e., an asynchronous
automaton.
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Theorem 2. Let L C R be recognizable. Then we can decide whether L is locally
monitorable. Moreover, if L is locally monitorable, then we find a deterministic
asynchronous finite state monitor for L.

Proof. By Lemma [2 there exist deterministic asynchronous automata A, A’
accepting L and L€, resp., such that all their reachable states are final.

Let (8a)acs, (0))aex be the transition functions of A, A’, resp. We modify
the product automaton A x A’ to a (deterministic) asynchronous automaton
C with transition functions (A, )qcx: first we add two local states L,, T, on
each process o € Proc. Consider a € X' and some trace ¢t on which A reaches
state s and A’ reaches state s’. Note that ta belongs to one of L or L¢ (or
both). If A has no a-transition on sgom(,) then we add Aq((sa, $4)acdom(a)) =
(La)acdom(a)- If A’ has no a-transition on s’dom(a) then we add the transition
Aa((8as84)acdom(a)) = (Ta)acdom(a)- The first case corresponds to taR N L =
0, the second one to taR N L¢ = (). Else, Aq((Sa,5h)dom(a)) i defined as the
componentwise product of §4(5gom(a)) and 6(/1(8/dom(a))' Finally, for each a € X
and each tuple 3gom(q) of states of A x A’: if some component of 54,y (q) is L,
then all components of Aq(540m(a)) become L, and symmetrically for T. The
language L is not locally monitorable if and only if the automaton C has some
infinite run where no process gets into state T or L.

Proposition 4. The following problem is PSPACE-hard:

— Input: A Biichi automaton B = (Q, X, 0, qo, F).
— Question: Is the accepted language L(B) C X* monitorable?

Proof. The universality problem for non-deterministic finite automata (NFA) is
one of the well-known PSPACE complete problems. We reduce this problem to
the problem of monitorability.

Start with an NFA A = (Q’, I",0', qo, F'). We will construct a Biichi automa-
ton B such that we have £(A) = I'* if and only if £(B) C X* is monitorable.

For this we use a new letter b and we let X = I" U {b}. We use three new
states d,e, f and we let Q = Q" U {d, e, f}. The repeated (or final) states of B
are defined as F' = {e, f}. The initial state is the same as before: gp. It remains
to define 5. We keep all arcs from ¢’ and we add the following new arcs.

fqi>di>ei>eforallq€Q’\F’andallaef’.
e d-2d
*qgf—%fforalquF’andalchZ.

In order to understand the construction, consider what happens if we reach state
d or state f. Starting in f we accept everything, because we loop in a final state
of B. On the other hand starting in d we accept all words except those which
end in b¥. Starting in d we are nowhere monitorable.

Now, let w € X*. This can be written as uv where v € I'* is the maximal
prefix without any occurrence of b.
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Assume we have L(A) = I'*, then there is path from ¢o to f labelled by wb
since reading u leads us to some state in F”. This implies that wbX* C L(B) for
all w € I'*; and £(B) is monitorable.

On the other hand, if £(A) # I'*, then there is some word w € I'* such that
u leads to states in @'\ F’, only. Thus, reading ub we are necessarily in state d.
The language £(B) is not monitorable, due to the word ub € X*.

We have a matching upper bound for Biichi automata in the theorem below.
Note that the input is a Biichi automaton accepting a trace-closed language,
therefore we may see the accepted language also as a subset of R.

Theorem 3. The following problem is PSPACE-complete:

— Input: A Biichi automaton B =(Q, X,0,qo, F) and (X, dom) such that L(B)
is trace-closed.
— Question: Is the accepted language L(B) C R locally monitorable?

Proof. For a subset P C @ let us write £(B, P) for the accepted language of
B when P is used as a set of initial states. We say that P is good if either
L(B, P) = X% or L(B, P) = (). The predicate whether P is good can be computed
in PSPACE. For a letter a € X and P,P’ C @ we define another predicate
Reach(P, P’ a), which is defined to be true, if:

P={qeQ|IpePItacP andpﬂq}.

Note that Reach(P, P’,a) is computable in PSPACE, too. If there is no a € ¥
such that Reach({qo}, P’, a) becomes true for some good P’ C Q, then L = L(B)
is not locally monitorable. Thus, we may assume that such P and a exist. If there
are two letters a and b in different connected components of (X, dom) with this
property, then L is locally monitorable. Hence we assume in the following that
there is only one component where such a letter a exist. Indeed, letters occurring
in some prime traces belong to a single connected component of (X, dom); and
due to Reach({qo}, P’,a) it is enough to consider monitorability of prime traces
which belong to the same component as the letter a. Since every such prime
trace can be made longer such that it ends with this letter a, we fix a in the
following.

Now, the language L C R is locally monitorable if and only if for all P C @
such that Reach({qo}, P,a) holds, there is some good subset P’ such that we
have Reach(P, P', a).

To see this, let L. C R be locally monitorable. Consider a subset P such
that Reach({qo}, P,a) holds. This corresponds to some word s such that the
corresponding trace s = s’a is a prime. Since L is locally monitorable, there
exists some prime ¢ such that s < tR and either tR C L or tR C L°. However,
by the assumption above, we may assume that s and ¢ belong to the same
component. We can make ¢ longer and actually assume s < t and such that
t = t'a. Choose some representing word w for ¢t. If P’ is the subset of states
we can reach after reading w starting in gy we have Reach(P, P’,a). The set
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P’ is good, because L is trace-closed. Indeed, if tR C L, then wX* C L, hence
L(B,P') =X Tf tR C L®, then L(B, P") = 0.

For the converse it is clear that the condition is strong enough to ensure local
monitorability of L.

The condition to monitor a single language might be an unnecessary restriction.
We can imagine a certain family of properties or languages L, ..., L, and we
content ourselves with a monitor which selects one of these possibilities, even if
certain L; and L; do intersect non-trivially for ¢ # j. This leads to the following
definition.

Definition 3. Let n € N and L1, ..., L, be subsets of R. We say that the
family {L1,...,L,} is locally monitorable, if

VsePdtePdl<i<n: s<tRCIL,.

Remark 2. A language L is locally monitorable if and only if the family {L, L¢}
is locally monitorable.

A distributed alphabet (X, dom) can be split into several connected components.
This is a partition X' = X; U --- U X} such that all Y; are non-empty and
YixX;ClIforall<i<j<k Wesaythat (X, dom) is connected, if k =1
and disconnected otherwise. For k > 2 we can write R = R’ x R” such that R’
and R” are both infinite.

4.1 Disconnected Case

We assume in this section that (X, dom) is disconnected and we write R =
R’ x R”. Let L C R. If L is locally monitorable then, necessarily sR C L or
sR C L€ for some prime s € P = P(R") UP(R"). By symmetry we may assume
s € P(R) and sR C L. As a consequence, there is no ¢t € P(R”) such tR C L°.
On the other hand, if there is some prime ¢t € P(R”) such tR C L, then L is
locally monitorable for a trivial reason: For every prime trace u € P we either
have v € R’ or u € R”; and by choosing either the prime s or ¢ in the other
component as u we satisfy the required condition for L to be locally monitorable.

Hence we are only interested in the case that there is no prime ¢ € R” such that
tR C L. In this case we can reduce the problem whether L is locally monitorable
to the component of R’ as follows: First, let us define languages of prime traces
Li={ueP®)|uR C L} and Ly = {u € P(R’) | uR C L°}. Note that if L is
recognizable, then L1, Lo, as well as L1R’, LoR’, are recognizable too. Moreover,
we can construct the corresponding automata.

Theorem 4. Let L CR = R'XR" and assume that there is some s € P(R’) such
that sR C L but there is not € P(R”) with tR C L. Then L is locally monitorable
if and only if the family {L1R’, LR’} is locally monitorable w.r.t. R'.

Proof. First, let L be locally monitorable and s € P be a prime. Choose some
prime t € P with s < tR such that either tR C L or tR C L°. We cannot have
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t € R” hencet € P(R’). Thus, either t € Ly or t € Ls. It follows that {R’ C L R’
or tR" C LoR’, and hence {L R/, LyR’} is locally monitorable w.r.t. R’.

For the other direction let {L1R’, LoR’} be locally monitorable w.r.t. R’. Then
for every prime u € P(R’) there is some v € P(R’) such that u < vR’ such that
either vR’ C LR’ or vR’ C LoR’. In particular, either v € L1 or v € Lo, since
r <wv with r € L; implies v € L;. By definition, either vR C L or vR C L°¢. Thus,
L is locally monitorable on all primes of R’. Now, let v € P(R"”). By assumption
there is some s € P(R’) such that sR C L. Since R = R’ x R” we have u < sR.
Thus, L is locally monitorable.

4.2 Connected Case

Recall that a distributed alphabet (X, dom) is connected if it cannot be parti-
tioned as X = Xy U X5 such that Xy x Xy C I with Xy # 0 # X5. For connected
(X, dom) we obtain a nicer characterization of locally monitorable sets:

Lemma 4. Let (X, dom) be connected. Then L is locally monitorable if and only
if

VseP3ds<teP: tRCLVIRCLC.
Proof. Let L be such that Vs e Pt € P: s <tR C LV s <tR C L°. We have
to show that we can choose s to be a prefix of t. But this is clear: if s < tR, then

there is a prime p with s < p and t < p. The result follows because pR C tR in
this case.

Proposition 5. The following assertions are equivalent.

1. (X, dom) is connected.
2. The family of locally monitorable sets is closed under finite union.
3. The family of locally monitorable sets is a Boolean algebra.

Proof. Since the locally monitorable property is symmetric for L, L¢, the last
two items of the proposition are equivalent. Let (X, dom) be connected, we show
that locally monitorable is preserved by taking finite unions. Let L and K be
locally monitorable and consider s € P. If we find s < ¢ € P and either tR C L
or tR C K, we are done. Hence there is s <t € P and tR C L°. Now, we may
assume that thereis t < u € Pand uR C K¢ But then s < u and uR C (LUK)°®.

Conversely, let a,b € X be in different connected components of (X, dom)
and let L = “no occurrence of ¢’ and K = “no occurrence of b”. Both sets are
locally monitorable, since they are prime-closed. However, for every prime s we
have s € LUK and sRN (LU K)¢ # (). This shows that L U K is not locally
monitorable.

Again, for connected alphabets and a family of languages, we can make the
condition to be locally monitorable more precise by using Lem. [l Indeed, if
(X, dom) is connected, then a family {L4,...,L,} is locally monitorable if and
only if

VsePds<tePdl<i<n: tRCIL,.
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Theorem 5. Let (X, dom) be connected, and Ly, ..., Ly be subsets of R such
that

1. R=LiU---UL,.
2. FEach Ly is a countable union of prime-closed sets.

Then the family {L1,..., Ly} is locally monitorable.

Proof. We give the proof for n = 2, the one for n > 2 is similar. Let L = L{ and
K = L§. Write L = ();5o UiR and K = (,5, ViR where all U;, V; C P. Without
restriction we have UgR = VoR = R. B

By contradiction, assume that {L1, L2} is not locally monitorable. This means
that we can find some s € P such that for all ¢ € P with {s,¢} coherent it holds
that tRNL # 0 #tRNK. Let pg = x0 = qo = Yo = S.

By induction let for some k& > 1 prime traces p;, z;, ¢;, and y; for all 0 < i < k
be defined such that U; 2 p; < x; <y, Vi 3 q; <w;, and y,—1 < ;.

We define zy,pr as follows. Since s < yr_1 € P we have by assumption
yk—1RN L # (), and thus we find yx_1 < z € L. Thus, there is pp € Uy with
pr < . The set {yx—1,px} is coherent, hence there is common finite trace w with
yr—1 < w and py < w. Since (X, dom) is connected, we find some prime zj € P
with w < x. The definition of y; follows the same pattern. We have s < z1 <
y1 < xp--- and @ = U{wx; | i € N} exists. However, z € (1,5, UiR N[5, ViR.
Contradiction, because L N K = {). B B

Remark 3. Notice that the above proof still works if (X, dom) has only two
connected components. In the general case it is open whether the statement of
Thm. [l still holds.

5 Infinite Traces

Prime-closed languages are prefix closed, so they always intersect. In particular,
for any language L C R, it can never happen that both L and L€ are countable
unions of prime-closed sets (or equivalently, countable intersections of prime-
open sets), as required by Thm. Bl

Thus, in order to define an trace analogue of G5 N F,, we will restrict our at-
tention to infinite traces where a (given) subset I" of processes is active infinitely
often and “sees” all other processes. In this way monitoring can be performed by
processes in I'. Another motivation for the new notion is due to the fact that in
order to monitor a language we should be able to gather information into longer
and longer prime prefixes.

For a finite trace t we write max(t) C I" if dom(a)NI" # 0 for each a € max(¢).

Definition 4. Let I" be a (non-empty) subset of Proc. A trace x is called I'-
infinite if

— FEvery process from I has infinitely many actions in x.
— x can be written as x = xoxy -+ such that max(x,) C I' for each n > 0.
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— alph(z) is connected.
The set of I'-infinite traces is written as Rp.

Remark 4. If I' is a singleton, then for every trace x € Rp, both alph(z) and
alphinf(z) are connected (and non-empty).

In the following everything is within I'-infinite traces, for a fixed set I" C Proc.
In particular, the notion of closed and open are meant to be induced. The notion
of locally monitorable is also relative to Rp: a set L C R is locally monitorable
ifVs e P(Rp)3Is <t € P(Rp) : tRNRp C LVIRNRy C L¢ (where L¢ = Rp\ L).

Definition 5. Let I' C Proc be a non-empty set of processes.

1. A set X C Rp is prime-Gs if it has the form X =\, U; where all U; are
prime-open in Rp. The family of prime-Gs-sets is denoted PGy.

2. A set X C Rp is prime-F, if its complement is prime-Gs. The family of
prime-Ggs-sets is denoted PF,.

Ezample 3. Let I' = Proc = {«a,} and ¥ = {a,b,d} with dom(a) = {a},
dom(b) = {5} and dom(d) = {«, 8}. Let L C Rp contain all traces without
the (trace) factor abd. Such traces are formed either by a trace from ((a* +
b*)dt)*(a* + b*)dT followed by a“b, or they belong to ((a* + b*)d*)*. Clearly,
L is prime-closed. The complement of L is in PF,, since L¢ = Uwez*,z‘,j>o Xuw,i
where X, ; ; contains all traces from R with prefix wa'b’d. Each X, ; ; is prime-
closed.

The next lemma generalizes the case of w-words. Note that we need the restric-
tion to Rp (or some similar restriction). As an example, consider X' = {a, b} with
(a,b) € I. The language L = aR is prime-open. But its complement L¢ = b>
cannot be written as countable intersection of prime-open sets in R, since we
cannot avoid occurrences of @ in such sets.

Lemma 5. Prime-closed sets of Rp are in PGs.

Proof. Let L C Rp be prime-closed. By definition, every UC € Rp where C' is
coherent and C C P(L), belongs to L. For K CP, a € I' and k € N let

Kor={pe K||p| >k, a € dom(max(p))}.

We claim that
L= () PLaxrRr.
kEN, ael

The inclusion from left to right follows from L C Rp and the definition of
Rpr. Let * € Rp be such that for every £ € N and a € I, there is some
Dok < & with po r € P(L)q . By definition of Ry and of P(L)4, %, we have that
= Hpak | k€N, a €I} Hence, x is of the form UC for C C P(L) coherent,
and thus in L.
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Theorem 6. 1. PGsNPF, is a Boolean algebra containing all prime-open and
all prime-closed subsets of Rp.
2. AllPGs NPF, subsets of Ry are locally monitorable.

Proof. PGy is closed under union. Hence, PGs N PF, is a Boolean algebra. It
contains all prime-open and all prime-closed subsets of Ry by Lem.

The proof of the second claim follows along the same lines as the one of
Thm. Bl Assume that R # () and choose some connected subalphabet X’ of X
that contains for each a € I'" some letter a with o € dom(a). The prime traces
Zk, Yy can be chosen such that max(zy) C I', max(yx) C I', and alph(xglyk) =
alph(y;jlxk) =X Thus, z = U;z; € Rp.

Asynchronous Biichi and Muller automata have been studied in [8l5].
McNaughton’s theorem [I3] stating the equivalence of non-deterministic Biichi
and deterministic Muller automata over omega-word languages, extends to recog-
nizable languages of infinite traces and asynchronous automata [5]. If we restrict
to traces from R, then the Biichi and Muller acceptance conditions are simpler:

Definition 6. Let I' C Proc be a non-empty set of processes, and let A =
{(Sa)aeProc; (0a)acs, 8°) be an asynchronous automaton.

1. A Biichi acceptance condition is a set F C Sp.
An infinite run s° = sg, ag, s1, a1, ... of A is accepting if for some fr € F
and for every a € I, there are infinitely many n > 0 with ($p)a = fa-

2. A Muller acceptance condition is a set F C [[,cp 25a,
An infinite run s° = sg,ag, s1,a1,... of A is accepting if for some Tr € F
and for every a € I, the set of states from S, such that (sp)a = fo for

infinitely many n, is precisely Ty,.

The language £(A) is the set of all traces from Ry that have an accepting run.
The next result is a generalization from w-word languages to R trace languages:

Theorem 7. Let L C Ry be recognizable. Then L is in PG if and only if L is
accepted by a deterministic Bilichi asynchronous automaton.

Proof. Assume first that L = L£(A), where A is a deterministic asynchronous
Biichi automaton, and fix a final state f € F. For n > 0, € I" we define K
as the set of all traces ¢t € P with o € dom(max(t)) and such that in the run of
A on t, at least n letters on process « are in state f,. It is easy to see that the
set U rer Nacrnso KI Rp is precisely £(A). The remaining of the proof will
show that PGs is closed under finite union, thus £(A) € PGs.

For the converse let L = ﬂn>0 U, € Rp be recognizable, with U,, prime-open
in Rp. We first define V;, = (,.<,, Un. It is not difficult to see that each V;, can
be assumed to be of the form K, Ry with max(t) C I" for each t € K,,. Let now
K] C K, consist of all elements of K, that have no proper prefix in K,. Let
K =,>¢ K, Xn, where X,, is the set of traces ¢ such that (1) max(t) C I', (2)
[t|]o > n for each oo € I', and (3) no proper prefix of ¢ satisfies (1) and (2).



On Distributed Monitoring of Asynchronous Systems 83

Let us first show that L = {UC | C C K, C coherent}. The inclusion from
left to right follows from L = (\,o0Un = Nyso KnRr = s K. Rr =
N> K XnRp. Conversely, let t = xoz; ... with zg - - -2, € K for all n. Observe
that we must have infinitely many n such that xg - - - z,,, € K, for some m, since
K is prefix-free. Thus, ¢ € V,, for infinitely many n and ¢t € U,, for all n.

To conclude, we show that if L = {UC' | C C K, C coherent} for some K, and
L C Ry is recognizable, then L is the language of a deterministic asynchronous
Biichi automaton. We assume as above that max(¢) C I for all t € K. Since L is
recognizable, there is some deterministic Muller automaton A with acceptance
condition F and £(A) = L. We may also assume that on every finite trace ¢ the
states of processes from dom(max(t)) reached on t determine the states of all
other processes. First we test for every T' € F if there is some trace from Rp
accepted with T'. Without restriction this is the case for all T € F. For each T
we can determine a reachable state s(T') € [ ], To and finite traces to(7T"), t(T')
with max(to(T), max(¢(T)) C I' such that (1) ¢o(7") leads from the initial state
to s(T), (2) ¢t(T") is a loop on state s(T') and (3) the set of a-states in the loop
t(T) is precisely T,,. In addition, to(T") is connected.

We claim that A accepts L with the following (Biichi) condition: a trace is
accepted if for some T € F, every state from T, occurs infinitely often, for
every a € I'. It is clear that all of L is accepted in this way by A. Conversely,
let « be an arbitrary trace with max(z) C I' and looping on state s(T'). We
have tot(T)¥ € L, so there is some ng and ug in K such that ug < to t(T)".
Since to t(T)™xt(T)¥ € L we find some ny such that u; < tot(T)™0xt(T)™
for some u; € K with ug < u;. In this way we can build a trace ¢t from Rp,
t =tot(T)xt(T)x---, with t = Up>ou, € {UC | C C K, C coherent} and
such that for each « € I', the set of states from S, repeated infinitely often is a
superset of T,,. The claim follows since L = {UC | C C K, C coherent}.

Remark 5. For the previous proof we do not need the connectedness assumption
in the definition of Rp. On the other hand, it is open whether without this
assumption all PG5 N PF, sets are still locally monitorable.

6 Conclusion

Our aim in this paper was to propose a reasonable notion of distributed mon-
itoring for asynchronous systems. We argued that distributed monitors should
have the same structure as the system that is monitored. We showed that prop-
erties over I'-infinite traces that are deterministic and co-deterministic, are lo-
cally monitorable. It would be interesting to consider alternative restrictions to
I'-infinite traces, that capture some reasonable (partial) knowledge about the
asynchronous system and for which PGy N PF, sets are locally monitorable.
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Abstract. In this talk I consider first-order formulas (FO, for short)
where, apart from the symbols in the given vocabulary, also predicates for
linear order and arithmetic may be used. For example, order-invariant for-
mulas are formulas for which the following is true: If a structure satisfies
the formula with one particular linear order of the structure’s universe,
then it satisfies the formula with any linear order of the structure’s uni-
verse. Arithmetic-invariant formulas are defined analogously, where apart
from the linear order other arithmetic predicates may be used in an invari-
ant way. The aim of this talk is to give an overview of the
state-of-the art concerning the expressive power of order-invariant and
arithmetic-invariant logics.

One way of enhancing the expressive power of a logic is to add predicates for
linear order and arithmetic on the elements of a structure, and to allow formulas
to use these predicates. To achieve closure under isomorphisms, one wants the
formulas to be invariant under the particular interpretation of these predicates.
For example, order-invariant formulas are formulas for which the following is
true: If a structure satisfies the formula with one particular linear order, then it
satisfies the formula with any linear order. From the Immerman-Vardi Theorem
it follows that the polynomial-time computable graph properties are precisely
captured by order-invariant IFP (cf., e.g., [9]). Similarly, arithmetic-invariant
FO captures the graph properties that belong to the circuit complexity class AC?
(and thus are highly parallelisable, as they can be checked in constant time using
a polynomial number of processors), and arithmetic-invariant IFP captures the
graph properties that belong to the class P/Poly [TOJTT].

In fact, restricting attention to logical formulas that use linear order and
arithmetic in an invariant way closely corresponds to restricting attention to
computations whose output is independent of the particular encoding of an in-
put graph. This way, invariant logics serve as natural candidates for providing
logical characterisations of complexity classes. However, Trakhtenbrot’s Theorem
implies that it is impossible to automatically check if a given formula is order-
or arithmetic-invariant. Thus, invariant logics do not have a decidable syntax.
When speaking of “invariant logics”, it therefore should be kept in mind that
these are “logical systems”, but not “logics” in the strict formal sense. The well-
known “quest for a logic capturing polynomial time” can thus be re-formulated
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as the quest for a logical system that has a decidable syntax and that has the
same expressive power as order-invariant IFP.

An easy application of Craig’s Interpolation Theorem shows that first-order
sentences that are order-invariant on the class of all structures (finite and infi-
nite), are no more expressive than plain first-order logic. When restricting atten-
tion to finite structures, however, the situation is different: A famous example by
Gurevich (cf., Theorem 5.3 in [9]) shows that order-invariant FO is strictly more
expressive than FO on a class of finite structures suitable for encoding Boolean
algebras. This was strengthened by Otto [I3] and Rossman [I4], showing that al-
ready epsilon-invariant FO and successor-invariant FO are more expressive than
FO on the class of all finite graphs (epsilon-invariant FO is an extension of FO
by invariant uses of an operator that allows to choose an arbitrary element in a
given set of elements). Up-to-date, no decidable characterisations of these logical
systems on the class of all finite structures are known.

In [I5], Rossman showed that the bounded variable hierarchy of order-invariant
FO, as well as arithmetic-invariant FO, is strict.

Grohe and Schwentick [0] showed that order-invariant FO queries are Gaif-
man local with respect to a constant locality radius. In [II2] it was shown that
arithmetic-invariant FO queries are Gaifman local with respect to a locality
radius that is polylogarithmic in the size of the underlying structure. For the
particular case of addition-invariant FO it remains open if the result can be
strengthened to a constant locality radius.

In [I7], Schweikardt and Segoufin obtained a decidable characterisation of
addition-invariant FO on the class of all finite coloured sets: On these struc-
tures, addition-invariant FO is precisely as expressive as FO,aq, the extension
of FO with predicates for testing the cardinality of a structure’s universe mod-
ulo some fixed number. In fact, as shown in [I7I7], FOcara precisely charac-
terises the regular word languages and the regular tree languages definable in
addition-invariant FO. It remains open, however, whether all languages definable
in addition-invariant FO are regular.

In [3], Benedikt and Segoufin showed that on trees and words, order-invariant
FO is no more expressive than plain FO, and that on finite graphs of bounded
valence or bounded tree-width, order-invariant FO is no more expressive than
monadic second-order logic MSO.

By results of Courcelle and Lapoire [4J§] it is known that order-invariant MSO
on finite graphs of bounded tree width has exactly the same expressive power
as the extension of MSO with counting quantifiers (CMSO, for short). Ganzow
and Rubin [5] proved, however, that on the class of all finite structures, order-
invariant MSO is strictly more expressive than CMSO.

Allowing addition-invariance rather than order-invariance with respect to
monadic logics drastically increases the expressive power: Already on the class of
finite word structures, addition-invariant monadic least fixed-point logic MLFP
can define all properties in Grandjean’s linear-time complexity class DLIN, and
addition-invariant MSO precisely corresponds to the linear-time hierarchy LinH
[T6112].
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Abstract. I will talk about some recent applications of logical methods
to quantum information theory. In computing, a higher-order function is
a function for which the input or output is another function. I will argue
that many of the interesting phenomena of quantum information theory
involve higher-order functions, although that is often not how they are
presented. I'll talk about the quantum lambda calculus as a possible
framework to describe such phenomena.
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Abstract. We review several logics with propositional quantification.

1 Introduction

You are uncertain whether Cordoba is in Spain. Carlos is in a position to inform
you. Let us assume for a moment that Cordoba is in fact in Spain (it’s that town
250 kilometers east of Sevilla). This may of course be contested in Argentina,
but we won’t. Carlos has two possible answers, he can say: “Yes, Cordoba is
in Spain,” or he can say, politely: “I am also uncertain whether Cordoba is in
Spain.” In other words, there is an announcement after which you know that
Cordoba is in Spain and there also is an announcement after which you do not
know that Cordoba is in Spain. What is the logic for ‘there is an announcement
after which’? In this paper we present our various recent proposals for proposi-
tional quantification in modal logics. We focus on open problems. Different ways
to quantify over information change include (where ¢ is a formula and G is a
subset of the set of agents):

— there is a public announcement after which ;

— there is a public announcement by the agents in group G after which ¢;
— there is an action after which ;

— there is a refinement after which .

By ‘action’ we mean epistemic/informative action. A public announcement is
such an epistemic action, but there are also other epistemic actions, e.g., pri-
vate announcements. By ‘refinement’ we mean the dual of simulation. From the
bisimulation requirements, a refinement relation satisfies atoms and back. We
will see that there are subtle differences between ‘there is an action’ and ‘there
is a refinement’, but that the two come quite close.

The original publication on propositional quantifiers is Fine’s [I3]. Such an
operator quantifies over subsets of the domain of a given structure. Fine dis-
tinguishes three different options: quantification (i) over subsets definable by
boolean combinations of propositional variables, (i) over modally definable sub-
sets, and (#i7) over any subset.
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Ezample 1
_ v(p) = a — w(-p) w(=p)
_b | | |
s(p) b b s(p) b
So | | S |
t(p) — a — u(-p) t(p) — a — u(-p)

The above (left) structure depicts that agent b knows whether p and that agent a
knows that p or is uncertain whether p. Agent b cannot distinguish states s, ¢, and
v (and in that case he knows that p) and he also cannot distinguish states u and
w (and in that case he knows that —p). Agent a knows p in s, or else is uncertain
about p. This is a multi-agent Kripke structure where accessibility relations
are equivalences, i.e., the ‘arrows’ are assumed to be transitive, symmetric, and
reflexive: they are mere links between indistinguishable states. States ¢ and v are
also indistinguishable in the stronger sense of being bisimilar: they cannot be
distinguished in the modal logical language. States u and w are also bisimilar.

The boolean definable subsets of the domain are {s,t,u,v,w}, {s,t,v}, and
{u,w}. The modally definable subsets are those and {s} (namely by O,p) and
{t,v} (by p A =O4p). The singleton {v} is not modally definable. If we restrict
the model to the domain minus v (on the right in the figure), state w has become
modally different from state u: w is now the unique state where a knows —p, and
u the unique one where b knows —p but a is uncertain about p.

Quantification of type (iii) is undesirable in a setting for information change,
as states where agents have indistinguishable beliefs could then after all after
become different. Avoiding this is a general requirement for all proposals that
we discuss.

An established area of different explorations in propositional quantification are
bisimulation quantified logics [34120], that have also been studied in combination
with epistemic logics [15]. That is not the topic of this survey. One might say that
we restrict ourselves to quantification over the formula parameters of dynamic
modalities (such as ‘@’ in a public announcement lp), i.e., quantification over
information change. There is overlap. The refinement modal logic of Section [1]
can be seen as a refinement quantified logic.

2 Dynamic Epistemic Logic

We present multi-agent epistemic logic, on the general level of a multimodal
logic. Its language, structures, and semantics are as follows.

Language

L 3 pu=ploo|(@Ap)]Cap

LY 3 eu=pl-el(@ne)]Cap| (o)

L) > pu=plw] (@A) ] Cap|{IMs)p
where propositional variable p is in a countable set P, agent a is in a finite set
A, and My is a finite action model to be defined below: we can see this as an
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inductively defined operator with a finite number of arguments of type formula,
where this operator is an element of a countable set of action model frames (as
in automata PDL). Other propositional connectives are defined by abbreviation
and we also define O, by abbreviation as =<, and similarly [l¢]v and [M].
For &, we read ‘agent a considers ¢ possible’ and for O,¢, ‘agent a knows ¢’.
For [lp]y) we read ‘after announcement of ¢, ¥ (is true)’.

Structures. An epistemic model M = (S, R, V) consists of a domain S of states
(or ‘worlds’), an accessibility function R : A — P(S x S), where each R(a), for
which we write R, (and we may write R,st for (s,t) € R,), is an accessibility
relation, and a valuation V : P — P(S), where each V(p) represents the set of
states where p is true. For s € S, a pair (M, s), for which we write Ms, is an
epistemic state, also known as a pointed Kripke model. The model class without
any restrictions is /L. The class of models where all accessibility relations are
equivalence relations is S5.

Let models M = (S,R,V) and M’ = (S',R',V’) be given. A non-empty
relation R C S x S’ is a bisimulation between M and M’, notation R : M <> M’,
if for all (s,s') € R and a € A:
atoms s € V(p) iff s € V'(p) for all p € P;
forth if R,(s,t), then there is a t’ € S’ such that R/ (s',t) and (¢,t') € R;
back if R (s',t'), then there is a t € S such that Rq(s,t) and (¢,t') € R.

We write M <> M, if there is a bisimulation between M and M’ linking s and

s’

Semantics. We first give the semantics for truthful public announcement logic
(PAL) [26]. The semantics for action models (the construct (!Ms)v) follows later.
Assume an epistemic model M = (S, R, V).

MsEDp iff seV,

MsE—p iff Mgl

MsE=pny iff Mgl @and M, =

M ECap iff thereisat €S : Ryst and My = ¢

M, | (W) it M ¢ and (M[Y)s ¢
where M|y := (S, R/, V') such that S’ :=={s € S | Mg = ¢}, R, := R, N (5" x
S, and V/(p) :=V(p)n 5.
Example 2 a Ip
l—0 > 1

M M’
Agent a is uncertain about p (she cannot distinguish state 1 where p is true
from state 0 where p is false). The actual state 1 is underlined. After truthful
announcement !p, she knows that p. We have that M; |= (p)0,p because M7 = p
and (M|p)1 | Qup. Note that we also have, e.g., My = p A —~0,p, so, strangely,
as Ogp implies —p V O,p which is equivalent to =(p A —=0,p) we have that M; |=
({(p A =Hap))~(p A ~Hap).
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Aziomatization. The well-known axiomatization of minimal modal logic K con-
tains axiom O,(p — ¥) — O, — Oy,9 and derivation rule ‘From ¢ infer
O,¢.” There are no multimodal interaction axioms. One of the axioms involving
announcements is [[W]0,¢ < (¥ — O4[1]e).

Action Models. An action model [7] (or event model) is a structure like a Kripke
model but with a precondition function instead of a valuation function. An action
model M = (S, R, pre) consists of a domain S of actions, an accessibility function
R: A — P(SxS), where each R, is an accessibility relation, and a precondition
function pre : S — L, where L is a logical language. A pointed action model Mg
is an epistemic action.

Performing an epistemic action in an epistemic state means computing their
restricted modal product. This product encodes the new state of information. It
is defined as follows.

Given an epistemic state My where M = (S, R, V) and an epistemic action
Ms where M = (S, R, pre). Let M, = pre(s). The update (M ® M, (s,s)) is an
epistemic state where (M ® M) = (S’, R, V') and

s’ = {69 | M, | pre(t)}
((t,1), (t',t) € R, iff R,tt’ and R,tt’
(t,t) € V'(p) ift teV(p)

In other words: the domain consists of the product but restricted to state/action
pairs (¢,t) such that M; = pre(t), i.e., such that the action can be executed in
that state; an agent considers a pair (¢,t) possible in the next epistemic state
if she considered the previous state ¢ possible, and the execution of action t in
that state; and the valuations do not change after action execution. (Example[7]
on page illustrates action model execution.)

The action model for truthful public announcement is a singleton action
model, with as precondition the announcement formula ¢, accessible to all
agents. So, public announcement logic is a specific action model logic.

In the language £(!!) with action models we associate a dynamic modal opera-
tor (IMs) to each finite epistemic action Ms. The clause (IMs)¢ is in fact inductive,
if we realize that the preconditions of all actions in M (this includes s) are also of
type formula. The interpretation of such modal operators for epistemic actions
is then as follows.

M ': <'MS>'I/} iff M; ): pre(s) and (M® M)(s,s) ): 'l/}
Aziomatization. Two crucial axioms of action model logic (AML) are

['Ms]p <> (pre(s) — p)
['Ms]Oat) < (pre(s) = A pyer, Bal!Me]?)

The axiom for knowledge after public announcement in the previous paragraph
is a special case of the above. Public announcement logic and also action model
logic are equally expressive as multi-agent epistemic logic. Epistemic actions can
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be eliminated from formulas by axioms such as the above. They function as
reduction rules. The dynamic modality is pushed ever more inward until it gets
eliminated by an application of the first axiom.

3 Arbitrary Announcement

Arbitrary public announcement logic (APAL) contains a quantifier over an-
nouncements. First, we introduce the languages that will serve us throughout
this contribution.

Definition 1 (Language) To the languages £, L(1), and L(!!) we can add in-
ductive clauses (either) 4 or @, where B C A. For Q{G}go we write §,p0. We
thus get L(#), L(1,4), L(!I,$), L(#p), etec.

The language of APAL is L(!, ¢).

Definition 2 (Semantics of arbitrary announcement) Given are M, (in

K)and o € L(, 4).
M |= 4¢ iff there is a v € L(!) such that M, = (1Y)

The restriction ¢ € £(!) is important: ¢ quantifies over formulas in the language
without the ¢ operator, i.e., the ‘¢-free formulas’. Given that public announce-
ment logic and epistemic logic are equally expressive, this means that we quantify
over epistemically definable subsets of the given model.

Example 3
a IT a Ip
M M JVe

Agent a can either make a truly informative announcement !p or a trivial an-
nouncement ! T. We have that M; = 40,p because My = (!p)0,p. On the other
hand we have that M; |= #-0,p because M; |= (IT)=0,p. Of course we do not
have M7 = #(0gp A =0O4p).

Validities. On the class S5 an illustrative validity is: 4#(0,p V O,—p). This for-
malizes that the agent a can always learn the value of an atomic proposition.
Either p is true, in which case the agent knows it after its announcement (or, in
case it already knew that p, still knows it after its announcement), or it is false,
in which case the agent knows that it is false after the announcement that p is
false. Some schematic validities of interest are

— 400 > 40 (4)
This expresses that a sequence of two announcements !¢ and !y is again an
announcement, namely [{l¢)x (or (¢ A [l]x)).

— My — o (T)
If p is true after any announcement, it is true after the trivial announcement.
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— ¢Hyp — Meo (Church-Rosser)
Given an epistemic state My and two (truthful) announcements !¢ and !x,
there are, respectively, two consecutive announcements !¢’ and !y’ such that
the same (or bisimilar) epistemic state results: (M |p|p)s < (M|w|Y')s.

— Hép — ¢Mp (McKinsey)
In combination with 4 this formalizes a property known as atomicity [§].

The operator 4 seems therefore to behave like S4. However, this is not the case.
It is not even a normal modal operator. For example, p — 40,p is valid but
(p A —-Oyp) — #0,(p A —O,p) is invalid (see Example ).

Aziomatization and Theory. The logic APAL has a complete axiomatization (for
the class S5, generalizable to the class K), is not compact [6], is undecidable [16]
(the usual tiling argument applies), and the model checking problem is PSPACE-
complete (an application of a result obtained in [2] for the similar logic GAL,
group announcement logic). A crucial semantic result is as follows.

Whenever M, = 41, then there exists a model M’ only differing from
M in the valuation of atoms not occurring in ¥ (including a p) such that

Mg E (Ip)y.

This is not trivial, because the value of a formula v does not merely depend on
the variables occurring in v but on the entire set of propositional variables, as ¢
implicitly quantifies over all propositional variables. This property is also used
to prove that APAL is more expressive than epistemic logic. An elegant proof
(due to Kooi) is as follows.

Let a formula in £(!, 4#) be given. We may as well assume that it has form
4. Suppose there is a x € L that is logically equivalent to 4. This x has a
certain modal depth. Now take two epistemic states identical up to that (finite!)
depth but different in some detail beyond there, and a formula ¢ expressing that
difference. Then (!p)1) is true in the one and false in the other epistemic state,
and therefore 41 as well. On the other hand, x cannot see that far ahead and
must be either true in both epistemic states or false in both epistemic states, in
contradiction with the assumption.

The axiomatization for the logic contains an axiom and derivation rule:

Wy — [IY]p where 1) is §-free
From ¢ — [!x][!p]e infer ¢p — [!x|My where p is not in ¢, x, ¥

This derivation rule is the convenient form of a more intuitive infinitary axiom.
The infinitary axiom says that if for all ¢ you can derive a formula n([!¢]¢) (of
a shape called ‘necessity form’ [I7], containing a unique occurrence [!1]y), then
you can also derive n(My). A intermediary finitary axiom infers n(My) from
n(['p]e), where p does not occur in ¢ — a technique pioneered by Gabbay. The
soundness of this intermediate rule follows from the semantic result above that
satisfiability of 4 implies that of (Ip)y for a p not in . The derivation rule
above then simplifies the intermediate rule.
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Knowability. The schema 40, for ‘there is an announcement after which the
agent knows ¢’ forms a specific interpretation of ‘p is knowable,” a suggestion
made by van Benthem in [28], an interesting setting for Fitch’s knowability para-
dox [I4]. Fitch addressed the question whether what is true can become known.
It is considered problematic (paradoxical even) that the existence of unknown
truths (there is a ¢ for which ¢ A =0,¢) is inconsistent with the requirement
that all truths are knowable (for any v, ¢ — #0,%). The inconsistency appears
by substituting p A—0,p for ©. Given the Fitch setting, an interesting validity in
APAL is ¢(0Oqp V O,¢) [33], because this states that ‘everything is knowable’.
This comes at a price: the Moore-sentence p A =0, p is knowable in this ‘get to
know if true or get to know if false’ sense, because after this is being truthfully
announced, agent a knows that it is false (see Example [2]).

Open Questions. The reason for the syntax restriction in the semantics of ¢
is that otherwise the definition is circular. Consider an ‘unlimited’ B version:
My is true in a state if [!¢]p is true there for all 1» — but that includes [!By]p.
So we need to go down the scale on some complexity measure. The solution in
APAL is to go down all the way, 1) has to be #-free. But one could imagine a
hierarchy of ever more expressive arbitrary announcement logics, e.g., By is true
in a state if [!9]p is true there for all ¢ ‘with strictly less 4 operators than By.’
This suggestion by Baltag was not followed up.

In her PhD thesis [12] Economou proposed various logics with propositional
quantification that are at least as expressive as APAL. We conjecture that they
are equally expressive. Her work has unfortunately not been published.

The semantics of 4y is uses public announcement operators. Given the se-
mantics for public announcement it could therefore also be

M = ¢p iff there is a ¢ € £ such that (M|y)s E ¢

We call this logic, for the language £(4) without announcements, knowability
logic. What is its axiomatization? It is not known. The axiom and rule for ¢
in APAL need to be replaced by something not using announcements. Possi-
bly, this may be syntactic relativization. That would make matters not simpler
but harder and even less elegant. An alternative road to success may be an ax-
iomatization without the occurrence of the fresh variable in the derivation rule,
where inspiration may be found in the — elegant, we think — axiomatization
of refinement modal logic (Section [7]).

4 Group Announcement

The announcements in truthful public announcement logic are supposed to be
made by an outside observer. For that case, ‘truthful’ simply means ‘true’. The
outside observer is not modelled as an agent and does not appear in the logical
language. If we wish to formalize a truthful public announcement of ¢ made by an
agent a that is modelled in the system, it is common to see this as the announce-
ment !O,p. Now, there is a difference between true and truthful. Truthful means
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that the agent believes what it announces. A truthful but false announcement by
a that ¢ satisfies = A Ogp. In group announcement logic (GAL) we investigate
what can be achieved by simultaneous truthful announcements by a subset of
the set of all agents. This includes communication protocols where agents take
turns in saying something. If a announces ¢ and subsequently b announces v,
we can also see this as: simultaneously a announces ¢ and b announces T (i.e.,
‘nothing’), and then, simultaneously a announces T and b announces ).

Definition 3 (Semantics of group announcement).Let B C A, p € L(!, 45).

M = By iff there are ¢y ...¢p € L(!) such that M, = (! /\ Oi)p
B

Ezample 4. Given two agents a,b such that a knows whether p and b knows
whether ¢ (and this is common knowledge), and let in fact p be true and g be
false (the underlined state). Anne (a) can achieve that Bill knows whether p
(namely by informing him of the value of p), and Bill (b) can achieve that Anne
knows whether ¢, but neither agent can achieve both outcomes at the same time.
However, together they can achieve that.

b
11 01 — 11

!Dap b !Db_‘q b

We can evualate in the square model in the middle that

— 10 = 4,0yp but 10 = ,0pp
— 10 = ¢,0,—¢q but 10 ~ ¢,0,—¢
— 10 = 445 (0pp A Og—q) but 10 = €4(0pp A Oy—q) and 10 = 4,(0pp A Og—q)

Whatever the actual state, a and b can get to know it by ‘collaborating’ in the
4., sense.

A number of validities are (B,C C A)

— $3écyp = $pucy
If an announcement by group B is followed by an announcement by group
C, then B and C could have made a joint announcement with the same
informative content.

— 4450 — #pp
A corollary of the previous.

— 4plcp — Hcépop
Church-Rosser for different groups of agents: let those in B announce some-
thing and those in C' announce something else, then there is a subsequent
C announcement in the first case and a subsequent B announcement in the
second case to reach the same epistemic state again, modulo bisimilarity.
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This group announcement logic (GAL) has been reported on in [3I2]. With GAL
one can formalize communication protocols, such as security protocols. Let Alice
be a sender a, Bob a receiver b, and Eve a spy / eavesdropper e. Let ¢ be
some information goal. For example, suppose Alice wishes to informs Bob of
the latest transatlantic scandal p, then an information goal could be that Alice,
Bob, and Eve commonly know that either Alice and Bob share knowledge of p or
Alice and Bob share knowledge of —p. (This can be more succinctly formalized
with common knowledge operators but we bypass these in this paper.) The
requirement that not only Alice and Bob but also they and Eve commonly know
this, is usual in a security setting. It formalizes that the protocol is known to have
terminated: we may assume that everything is public about the protocol except
the message (and private keys). There is also a security goal 1 that needs to be
preserved throughout protocol execution, e.g., Alice, Bob, and Eve commonly
know that Eve is ignorant about p (or some more involved aspect of p, such as
the identity of those involved in the scandal). A finite protocol for a and b to
learn the secret safely should observe

= ’ab(QO A T/J)

The logic GAL shares various properties with APAL, e.g., the axiomatization
is similar and the method to prove completeness, and the model checking com-
plexity is PSPACE-complete.

Agency. The expression 4gp has the smell of ‘group of agents G is able to
achieve ¢’ such that, taking a single agent, O,4,¢ (on 85 models) seems to
formalize that agent a knows that she is able to achieve @, as in logics combining
agency and knowledge [2I/IJ30]. These are tricky issues in the setting for group
announcements. For example:

— O, 4.0 — 4, is valid
‘If you know that you can do something, you can do it.’

— 4.0, — O, 4, is valid
This is known as ‘knowledge de re implies knowledge de dicto’.

— 0,4, — 4,0, is not valid (‘*knowl. de dicto does not imply knowl. de re’)
The problem is that in different states different announcements may be re-
quired to make ¢ true. As you do not know what the actual state is, you
therefore do not know what announcement makes ¢ true in the actual state.
You only know that in all states that you consider possible there is an an-
nouncement that makes ¢ true. For example, in state s formula ¢ is true
after you announce p, but not after you announce ¢; in indistinguishable
state ¢ formula ¢ is true after you announce ¢, but not after you announce
p. Should you announce p or should you announce g? You are not able to
achieve ¢!

Open Problems. The exact shape of group announcement specifications such as
the finite protocol specification 1 — #45(¢ A1) are of some interest.
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Group announcement logic GAL seems only a version of APAL. With group
announcements one can only get model restrictions that are (for the S5 case)
an intersection of unions of equivalence classes. E.g., in Example [] one cannot
get the submodel with domain {00, 10, 11}. This can be used in an expressivity
argument to show that APAL is strictly more expressive than GAL. But it is
unknown if GAL is strictly more expressive than APAL. For example, it is not
known if the existence of a finite two-agent protocol specification as above is
formalizable in APAL.

The logic GAL is probable also undecidable, but the tiling argument used for
APAL does not work with announcements known by agents.

5 Coalition Announcement

Another variation on APAL is coalition announcement logic (CAL). In group
announcement logic (GAL), we investigate the consequences of the simultaneous
announcement (joint public event) by G. The agents not in G' do not take part
in the action. In CAL we quantify over what the agents in G can achieve by their
joint announcement, no matter what the other agents simultaneously announce.
The semantics therefore should be clear. The language is the same as for GAL:
L(!, 4¢) — to distinguish the two #¢ operators we write QCC";' for the coalitional
version. Properties of CAL are again similar to those of APAL.

Definition 4 (Semantics of coalition announcement). Let B C A.

M = 4% iff there are 1, ... ,¥B| such that for all x1,...,X|A\B|,
M, |= ADi; and M, = (A Dy A A Ojx;)le

Ezample 5. Consider the four-state model of Example[d Although we have that
10 = ¢,—-0,—¢q (namely by simply doing nothing / announcing T), it is not the
case that 10 = 4%'=0,—q: agent b can prevent a from remaining ignorant by
announcing —q. We still have that 10 = 453/(0,p A O,—~q) — but this is trivial,
as there are no other agents around to say something to prevent it. The power
of group announcements by all agents is the same as that of an announcement
by the grand coalition.

The logic CAL is summarily discussed in [3], but no complete axiomatization is
given. A complete axiomatization is given for a much related logic in [24], that
also deals with many other aspects of such agency. Instead of a dynamic epis-
temic setting, [24] is an epistemic PDL-style dynamic setting that also involves
factual change. Such PDL action labels have preconditions that are the otherwise
announced formulas. Another difference is that simultaneous announcements by
the agents in group B need not be known by those agents.

The logics GAL and CAL are related in interesting ways. If the grand coalition
A can achieve ¢ in GAL, then obviously as well in CAL, as there are no remaining
agents to counteract it (Example [):

Cap— 650



Quantifying Notes 99

On the other hand, if the empty coalition () can achieve ¢ in CAL, then ¢ will
be true after any announcement (APAL):

’(caalw N .90

Pauly’s Coalition Logic [25] can be embedded in CAL. This includes the princi-
ples:

(5) (950N 9E) = #5Lc(0 A ) if BNC =0

(N) B0 — 650

and [3] also contains a summary but original interpretation of neighbourhood
semantics for a public announcement setting.

Open Problems. The relative expressivity of APAL, GAL and CAL remains un-
clear. The only obvious result is that APAL is strictly more expressive than GAL
and than CAL. Of particular interest is whether CAL is definable in GAL. The
forcing operator { B} proposed by van Benthem in [27] (and in [25]) quantifies
over sequences of moves/actions. Schema Q‘E'“Ba'go — Q‘E'go should be valid in
CAL (similar to GAL). Therefore 4%' models what coalition B can achieve/force
in any finite sequence of moves: the extensive game setting of van Benthem. A
quick way to that goal would be to show that coalition announcement 4% is

definable in GAL. The conjectured definition is
450 < ¢pl o

In other words: if coalition B can achieve ¢ no matter what the other agents
announce at the same time, then coalition B can achieve ¢ no matter what the
other agents announce afterwards.

6 From Arbitrary Announcements to Arbitrary Events

In the logic APAL we quantify over announcements. How about generalizations?
As the effect of an announcement is a model restriction (take a subdomain of
the domain, and restrict the valuation and accessibility relations to that subdo-
main), we can in the first place think of other restrictions of the model. In [35] a
quantification is proposed over restrictions of the accessibility relation. We will
get to that below.

A similar path but towards an even further generalization is as follows. In our
multi-agent setting, an announcement is a public event. By this we mean that all
agents observe the event similarly. Carlos’ announcement ‘Cordoba is in Spain’
is assumed to be heard by all agents present, and they can all assume that they
all know that they all hear this, and so on.

A non-public event is Carlos privately saying to you ‘Cordoba is in Spain’
while I am in another room. Now, there are complications. Firstly, the beliefs of
the other agents may become incorrect. I still believe that you were not informed
that Cordoba is in Spain, and therefore incorrectly believe that you do not know
that. Secondly, lack of synchronization is an issue. In dynamic epistemic logic it
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is usual to identify the observed execution of an action with a tick of the clock.
So the unobservant agents are therefore running behind.

In events that are sometimes called semi-public all agents know that something
happened, but they may have a different perspective on the action. Carlos writes
on a piece of paper whether Cordoba is in Spain (or not), folds it, puts it in a
letter, and hands me the letter in public telling me it contains the truth about
p, and then I open it in public. Now everybody knows that I know the truth
about p, but they still do not know if p is true or false. (If the alternatives in
semi-public events are mutually exclusive, this can be modelled as restriction of
accessibility relations, the first mentioned variation.)

Increasingly more complex scenarios can be worked out. Instead of quantifying
over announcements, public events, we can quantify over a more general class of
events, that includes announcements as a special case. The usual suspect is then
to quantify over the action models of Section 21

Unlike the previous sections, this section mainly consists of partial results and
open problems.

Restriction of Accessibility Relations. In [35], Wen et al. assume that accessibility
relations R, are equivalence relations ~, (and where ~ is a function that assigns
such an equivalence relation to each agent). A restriction of an accessibility
relation that is an equivalence relation is also known as a refinement of the
partition induced by the equivalence relation. In other words, ~/, C ~, means
that ~/, is a refinement of ~,. We write ~' C ~ for ‘for all agents a, ~/, C ~,’.

Definition 5 (Semantics of quantification over restr. of access. rel.).
Let M = (S,~,V) and ¢ € L(!, §) be given.

M,s = ®p iff there is a M’ that is as M but with ~' C ~,s.t. M’ ;s = ¢

Some of the semi-public actions mentioned above are partition refining, e.g., the
action in the envelope example. The authors discuss alternative solutions to the
knowability paradox in this setting.

We recall how Fine distinguished different forms of quantification, as presented
in Section [Il and that quantifying over all submodels allows us to distinguish
bisimilar states. This is also major disadvantage of mere restriction of accessi-
bility. The 4 operator of Definition [fl does not preserve bisimilarity of epistemic
states. We think this can easily be repaired by making the deletion of arrows
(refinement of equivalence classes) dependent on logical conditions. For exam-
ple, only delete arrows that start in states where some formula ¢ is true, or only
delete arrows that finish in states where some such ¢ is true, as in [23].

Quantifying over Action Models. The logic AAML (arbitrary action model logic),
interpreted over L(!!, 4), has a clear semantics (as stipulated in [0, p.329-330]).

Definition 6 (Semantics of arbitrary events).

M = ¢ iff there is a M with #-free preconditions, such that M, = (IMs)p
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In a manuscript by Balbiani and van Ditmarsch an axiomatization is proposed.
We recall the axiom and derivation rule for ¢ in APAL:

By — [[Y]p where v is ¢-free
From ¢ — [Ix][!p]e infer ¢p — [Ix]|My where p is not in ¢, x, ¥

The axiomatization for AAML consists of ‘the usual suspects’ for the reduction
and composition of action models (see Section [2]), plus the following axiom and
— tentatively proposed — rule. There is no completeness proof.

My — [[Md]p where all preconditions in M are ¢-free
From ¢ — [IM¢][!p]e infer » — [IMs]By where p not in ¢, 1 or precond. of M

The axiom is obviously correct. The rule could well be another (necessity) form
wherein an occurrence of [!p]e is replaced by an occurrence of By. Assuming
the rule is correct, the surprising aspect is that public announcement of variable
p is then sufficient to ‘witness’ the execution of any action model. This applies
a result from [31]: the execution of an action model in a given model M, has
the same effect as the announcement of fresh propositional variable p in a model
that is bisimilar to My except for p (and such that the value of p does not affect
the value of the ¢ evaluated in M;). On the level of the proof system, this might
mean that it is sufficient to have a derivation from a fresh atom (for any model)
in order to get it from any action model, no matter how complex.

Any Action That Satisfies . A public announcement ! is an event similarly
perceived by all agents with execution precondition ¢. The corresponding action
model is a singleton, accessible to all agents, with, obviously, precondition ¢.
Consider any epistemic action with precondition ¢. For example, any epistemic
action such that Cordoba is in Spain. Any communicative act is fine, such as
lying, deceiving, and private announcement. As long as Cordoba is in Spain.
This seems an interesting form of quantification. (It is somewhat similar to the
quantification described by de Lima in [24, p.110]: what holds if the agents in
group B make a simultaneous announcement ¢; A ... A ¢,, no matter what
the remaining agents simultaneously announce.) We reuse the notation !y for
this -satisfying epistemic action operator. It should obey that M, = (lp)
iff there is a Mg such that M, = (IM)¢ (from M, = (IMg)y also follows that
M, = pre(s)). More succinctly, where 4¢ is the quantification over action models
of this section:

Definition 7 (Quantifying over actions that satisfy ¢)
M, (o)t iff MsE@A &)

Such a quantification was suggested by Aucher in [5], based on the approach
presented in [4] where instead of action models an action language is presented,
on a par with the static language (see Section [§]). An intriguing question is if
we can axiomatize this logic in the language £(!), without action models and
without ¢.
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More Open Problems. The logic for arbitrary action models lacks an axioma-
tization, but another open problem is whether this logic is decidable. The ex-
pectation of the reader might be that, as APAL is undecidable, AAML is also
undecidable. But the mere fact that AAML quantifies over a larger set of objects
does not mean that that logic is therefore also undecidable. Refinement modal
logic (RML), presented in Section [1 is on finite models equivalent to AAML.
And RML is decidable. So why not AAML as well?

Group announcement logic GAL and coalition announcement logic CAL can
be generalized to action models — such very similar logics would clearly benefit
from a complete axiomization of AAML. We should then require that the pre-
conditions of all actions in the action models take the form A,z Oq@a (where
all ¢, are ¢-free). This would give us a more general meaning to ‘ability of a
group B’. For example, consider agents Anne, Bill, Cath, and Dave. Anne and
Bill know p but Cath and Dave don’t. The group consisting of Anne and Bill
has the ability to achieve that:

Cath knows p but is uncertain if Anne knows p, and Dave knows p but
is uncertain if Bill knows p.

The way to achieve that is:

Anne privately informs Dave that p and Bill privately informs Cath that
.

We cannot achieve the stipulated postcondition by a public announcement! Then,
Cath and Dave would have common knowledge that Anne and Bill know p.

7 Refinement Modal Logic

In arbitrary public announcement logic the quantification 4 is over announce-
ments !y, on the level of the syntax. But as we have seen there is a corresponding
structural operation: model restriction to the @-states. Another structural op-
eration used to quantify was restriction of the accessibility relation. The partic-
ular quantification we presented was deficient, because it was not bisimulation
preserving. But we can make it bisimulation preserving again by making the
restrictions dependent on logical (formula) conditions. Arbitrary action model
logic quantifies over pointed action models Ms. As such action models are param-
eters in the language, this is again a syntactic way to define the quantification
(their execution as the restricted modal product is relative to action precon-
ditions, that are formulas). Wouldn’t there be a more purely semantic way to
define quantification over information change? Somewhat surprisingly, there is.
It is called refinement.

Bisimulation determines when two structures have the same informative con-
tent. Bisimilar states have the same valuation (atoms), and for all agents every
step (arrow in the accessibility relation for that agent) that you do from one
state, can be matched by a step that you do from the other state (forth), and
vice versa (back). Simulation is widely used in computer science. We now only
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require atoms and forth. (Typically, simulation only requires inclusion of propo-
sitional variables: all variables true in the origin should be true in the image. We
require that for all literals.) We can think of a structure M, that is simulating a
structure M as containing all the structural properties of M but maybe more: in
M’ we can match all steps we do in M but there may be unmatched steps in M’
— back is not required. Now consider doing simulation in the other direction.
We require only atoms and back. This direction is called refinement. It corre-
sponds to structural loss instead of structural gain. But more structure means
more uncertainty and less structure means less uncertainty. So, less uncertainty
is more information. (Only for certain ‘positive’ aspects of information it is real
gain.) This suggests that existentially quantifying over informative change means
that there is a refinement of an epistemic model.

A model restriction due to an announcement is an example: given an M and
some restriction M|p, every state in the restriction has an original in M, and
every step one does in the restriction can be matched by the same step in M.
But not vice versa! Steps in M to —¢-states cannot be matched. So we have
back, but not forth. And trivially we have atoms, because states in the model
restriction do not change the value of atoms.

Ezample 6. Consider the following structure, for an anonymous agent (unlabeled
modality). The o state is the designated point. The arrows can be associated with
a modality.

E.g., &OOOL is true in the point. From the point of view of the modal language,
this structure is essentially the same structure (it is bisimilar) as

[ ] [ [ ] o] [ ] [ ] [ ]

This one also satisfies OO0 L, and any other modal formula that is true in
the first one as well, for that matter. A more radical structural transformation
would be to consider submodels, such as

[0} [ ] [ ]

A distinguishing formula between the two is OG<COL, which is true here and false
above. Can we consider other ‘submodel-like’ transformations that are neither
bisimilar structures nor strict submodels? Yes, we can. Consider

[ ] [0} [ ] [ ]

It is neither a submodel of the initial structure, nor is it bisimilar. It satisfies the
formula GO1L ACOOL that certainly is false in any submodel. It is a refinement
of the initial structure.

There still is a ‘submodel-like’ relation with the original structure. Look at its
bisimilar duplicate, the one with seven states. The last structure is a submodel
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of that copy. Such a relation always holds: a refinement of a given structure can
always be seen as the model restriction of a bisimilar copy of that structure.

We can think of the restriction as the result of the public announcement of a
variable p. But that variable has then first to be made true exactly in the four
states in the restriction and false elsewhere! This we can achieve, with respect
to the original structure, by choosing a duplicate that is bisimilar except for p,
and such that p is made true on the four states of the later restriction. In other
words: refinement is bisimulation except for p, followed by model restriction to
p. In syntactic terms: refinement quantification is bisimulation quantification
followed by relativization.

The logic based on the refinement operation has been presented in [3TJ32/9/T9I18].
It is also known as ‘future event logic’. The language of this logic is again £(4p)
(but in an entirely different usage of this parameter B than that in GAL and
CAL). For ¢4 we write §.

Definition 8 (Refinement). Given are epistemic states My and M., and let
B C A. A relation between the domains of M and M’ that satisfies (i) atoms,
(it) back for all agents in B, and (iii) forth and back all agents in A\ B
is a B-refinement. Epistemic state M., is then (also called) a B-refinement of
M; (i.e., given that (s,s') is in the relation), and we write Mg pM.,. An A-
refinement we call a refinement (plain and simple) and for {a}-refinement we
write a-refinement.

Definition 9 (Semantics of the refinement modality). Assume an epis-
temic model M = (S, R, V). Let B C A.

M, |= &y iff for all M., : Mg M|, implies M., = ¢

We have the validities ¢, 4,0 <> ¢4, and also 4,4, < .. It is therefore
sufficient to give results for a single agent ¢,. In this refinement modal logic
(RML) we see some by now familiar validities.

— W, — ¢ (reflexivity)
— 4.4, — $,0 (transitivity)
— 6,00 — W, 4,0 (Church-Rosser)

The 4, operator can also seen as implicit quantification over a propositional
variable, just as in bisimulation quantified logics we have explicit quantification
over propositional variables. The bisimulation variation except for one variable
followed by a model restriction in Example [6] is a general result. Refinement
quantification is bisimulation quantification plus relativization (modulo an in-
ductively defined translation), for ¢4 (¢) we get:

4 is equivalent to IppP

The chosen notion of relativization also matters: given the primitive ¢4, the re-
sult had to be obtained using the arrow elimination semantics for announcement,
not the state elimination semantics.
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Action Models and Refinement. There is a strong link between AAML (arbitrary
action model logic) and RML: executing an epistemic action in an epistemic state
produces a refinement of that epistemic state, and, dually, for every refinement
of a finite epistemic state there is an epistemic action such that the result of
its execution in that pointed model is a model bisimilar to the refinement [31]
Prop.4,5]. It is instructive to outline the proof of these results.

Given pointed model M, and epistemic action M, the resulting (M @ M),
is a refinement of M, by way the relation R consisting of all pairs (¢, (¢,t)) such
that M, = pre(t). Some states of the original model may get lost in the modal
product, namely if there is no action whose precondition can be executed there.
But all ‘surviving’ (state,action)-pairs simply can be traced back to their first
argument: clearly a refinement.

For the other direction, construct an epistemic action My, that is isomorphic
to a given refinement N of a model M, but wherein valuations (determining the
value of propositional variables) in states ¢ € N are replaced by preconditions for
action execution of the corresponding action points (also called) ¢. Precondition
pre(t) should be satisfied in exactly those states s € M such that (s,t) € R,
where R is the refinement relation linking M, and Ny . Now in a finite model,
we can single out these states by a distinguishing formula [10]. One then shows
that (M ® M), s is bisimilar to N, It is unknown if the finiteness restriction
can be lifted.

Ezxample 7. We illustrate that action model execution is refinement and vice
versa. Two agents a,b are uncertain about the value of a (true) fact p. An
informative event is possible after which a knows that p but b does not know
that. The initial state of information is on the left, and its refinement validating
the postcondition is on the right. (Actual states are underlined.)

........... Mo
1 ............ m ........... > 1 ;1
b
b b
a a b
....... Moo
0 >0

On the left, the formula 4(0,p A —~0,0,p) is true, because O,p A =0,0,p is
true on the right. On the right, in the actual state there is no alternative for
agent a (only the actual state itself is considered possible by a), so O,p is true,
whereas agent b also considers another state possible, wherein agent a considers
it possible that p is false. Therefore, =0,0,p is also true in the actual state on
the right.

The model on the right in the figure is neither an a-refinement of the model
on the left, nor a b-refinement of it, but an {a, b}-refinement. The right model
is mot bisimilar to the left model, e.g., from the underlined 1-state on the right
a cannot access a state where p is false.

Now we produce the right model as the execution of an epistemic action! The
epistemic action consists of two action points t and p, they can be distinguished
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by agent a but not by agent b. What really happens is p; it has precondition p.
Agent b cannot distinguish this from t with precondition T. In words: agent a
learns that p is true, but agent b is uncertain if that has happened or not (i.e.,
or if nothing has happened).

The execution of this action is below. The point of the structure is the one
with precondition p: in fact, a is learning that p, but b is uncertain between that
action and the ‘trivial’ action wherein nothing is learnt. The trivial action has
precondition T. It can be executed in both states of the initial model. The actual
action can only be executed in the state where p is true. Therefore, the resulting
structure is the refinement with three states.

1 p (1,t)

(1,p)
ab b ab

0 X t — (0,1

Axiomatization and Theory. The axiomatization RML has the following axioms
involving 4.

’avad5 A /\Lpegp <>a’a§0
¢V, @ & Vi{pc | 4.0} where a # b
¢ N VP & Ny $a V5P

This uses the cover operator V,. By abbreviation, V,® is defined as /\gaeﬁ Cap
O, \/w ca - The single-agent version of the axiomatization only contains the first
axiom. Consider the case where & = {1, ¢2}. The first axiom then says that if
there is a refinement with two accessible states, of which one validates ¢, and the
other s (so that we have Cgup1 and Oup2 and O, (1 V g2)), then already in the
initial model there should be two accessible states such that after a refinement
1 is true in one and 3 is true in the other (see also Example[8] next).

All these axioms are equivalences. This seems a recipe to eliminate by rewrit-
ing the refinement quantifiers from the epistemic language. And that is indeed
the case! In other words, the axiomatization is complete, the logic RML is equally
expressive as the base epistemic (or rather: multi-agent modal) logic, and there-
fore it is evidently also decidable, unlike APAL (and unlike AAML?). Such nice
results do not generalize straightforwardly to other model classes than K. The
problem is that the ‘implicit’ bisimulation aspect in the semantics makes it very
relevant over what class of models the quantification is. The above axioms may
be invalid for other model classes.

Ezample 8. On the class S5 the first axiom is invalid! Consider 4,V ,{O.p, ~0O,p}
and O, ¢,0,p A<, 4,-0,p. The first is inconsistent for S5. It implies that there
is a refinement in which ¢,0,p and ¢,—0,p are both true. In S5 this is equiv-
alent to both O,p and —~0O,p being true, an inconsistency: you cannot know and
not know p at the same time! But the second is very conceivable, if you are
uncertain about p, you consider it possible that you are informed about p, after
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which you know p, but you also consider it possible that you are kept in the
dark, after which you still do not know that p. So, there is no equivalence there,
this axiom does not hold for class S5.

Open Problems. There are a number of results on complexity and succinctness
for a version of refinement modal logic for the modal p-calculus, for this see [9]
(refinement p-calculus is non-elementary). The complexity of RML is reported
complete for AEX P, in a manuscript by Bozzelli, van Ditmarsch and Pinchi-
nat (AEX P, is the class of problems solvable by alternating Turing machines
running in single exponential time but only with a polynomial number of alter-
nations). French and Hales are investigating refinement modal logic for various
other classes than the results now available (for I, KXD45, and, recently, S5):
there are worthwhile results to obtain for axiomatization, complexity, and ex-
pressivity. It seems also worthwhile to investigate refinement in other modal
settings, e.g., refinement CTL and refinement PDL.

8 Other Variations and Conclusions

We presented a fair variety of quantifiers over information change. Fair, we hope,
but clearly not all. In the course of our investigations we came across other op-
tions of independent interest, and of which the relation to the proposals pre-
sented in this contribution, that are mainly our proposals, is unclear. Consider
the following.

Difference Operator. In the sabotage games proposed by van Benthem [29] a
network with multiple connections between nodes is given, a player called Run-
ner attempts to travel between two given nodes in the network and a player
Blocker attempts to sabotage the first player by removing nodes in the network
after every move of Runner. If Runner cannot reach his destination, Blocker
wins. Otherwise, Runner wins. The focus of [29] is on the complexities of solv-
ing such games (determine the winner). Van Benthem also proposes a modal
logical setting [29, p.271], as follows. We can think of removing a link between
states/destinations as the elimination of a state/world in a corresponding Kripke
model, such that we have:

M = ¢p iff thereis at # s such that (M —t)s E ¢

where M — t is the model restriction of M to the domain minus ¢. As far as
we know, the axiomatization of this logic is an open question. Surely there is a
relation with the difference operator proposed by de Rijke [I1].

Action Language Quantifiers. In works as [4J5] Aucher proposes a dynamic epis-
temic logic with an action language instead of action models. The idea is that the
standard modalities can have both a static and dynamic interpretation. Similar
ideas were proposed by Kooi in [22] Section 4.4.1], the ‘action language logic’
ALL, and the roots go back to [7]. Instead of having pointed action models
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as epistemic actions, consider having action language expressions as epistemic
actions. The base language is again £, multi-agent epistemic logic, but now in-
terpreted on action models. The action formula p is true on all action models Mg
such that pre(s) = p, but ©,q is true if agent a considers an alternative action
possible, accessible from s in M, with precondition ¢. The quantifier proposed in
Definition [7, over all action models with precondition ¢, is the action language
formula satisfying . Just like that. Consider —p A O,p, as an action language
expression. This stands for all actions satisfying —p where a incorrectly believes
that the action satisfies p is executed. That formula holds in a two-action ac-
tion model where you are lying to a that p, but also in any action model that
contains that as a substructure (so, in a way, in any action model simulating
the two-action minimal one). The relation to operators like 4, that quantify in
a way unrelated to any specific formula, is as yet unclear.

More and more quantifiers over information change... As Ramanujam says:
“These are all submodel operators. What are their properties?” Well, the ones in
this contribution are fairly S4-like, and satisfy ¢4¢ — 4p. And also By — .
But if we were to quantify over protocol execution logics, 4 would not hold. It is a
bit unclear what properties should always hold. The complexity picture for model
checking and for satisfiability is rather incomplete. Overviews of complexities of
dynamic epistemic logics such as the notes by Yanjing Wang are eagerly expected.
We encourage any reader to contribute to the further development and completion
of this new frontier in dynamic epistemic logics. This story is to be continued.
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Abstract. Well quasi-orders (wqo’s) are an important mathematical
tool for proving termination of many algorithms. Under some assump-
tions upper bounds for the computational complexity of such algorithms
can be extracted by analyzing the length of controlled bad sequences.

We develop a new, self-contained study of the length of bad sequences
over the product ordering of N”, which leads to known results but with
a much simpler argument.

We also give a new tight upper bound for the length of the longest
controlled descending sequence of multisets of N", and use it to give
an upper bound for the length of controlled bad sequences in the ma-
joring ordering of sets of tuples. We apply this upper bound to obtain
complexity upper bounds for decision procedures of automata over data
trees.

In both cases the idea is to linearize bad sequences, i.e. transform
them into a descending one over a well-order for which upper bounds
can be more easily handled.

1 Introduction

A quasi-order is a binary relation < over a given set A that is reflexive and
transitive. A sequence X = g, r1,Z2,... of elements of A is called good if there
are ¢ < j such that x; < ;. A sequence is bad if it is not good. A well quasi-order
(wqo) is a quasi-order where all infinite sequences are good, or, equivalently, all
bad sequences are finite.

Wqo’s are widely used in termination proofs of algorithms in constraint solv-
ing, automated deduction, program analysis, verification and model checking,
logic, etc. From the analysis of a termination proof of a given algorithm S,
whose correctness is grounded in the analysis of certain wqo, one may extract
a computational complexity upper bound for S. Roughly, the idea is that any
sequence of successive configurations of S (with a given input) is transformed
into a bad sequence in the wqo. Thus, having an upper bound for the length
of the bad sequence entails an upper bound for the number of steps that the
algorithm needs to terminate.
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However, in principle, a bad sequence over a wqo can be arbitrarily large. For
instance, the lexicographic ordering <jex over N" is a well-order, and hence a
wqo. Observe that for N? and any N, the sequence

<130>’ <03N>’ <OvN - 1>’ <OvN - 2>a ERR) <Ov 1>’ <030> (1)

is <jex-bad (which in a total order is equivalent to say that it is decreasing) and
has length greater than N. Therefore, in general there is no bound to the length
of a bad sequence starting with a given element: bad sequences in a wqo are
finite but could be arbitrarily large.

In practice, in the analysis of termination proofs, one has two additional as-
sumptions of a wqo (A, <). First, one has some effective way of measuring the
size of each element = € A, notated |z|4 or simply |z|.

Definition 1. [13] A norm function |-|4 over a set A is a mapping |-|a : A — N
that provides every element of A with a positive integer, its norm. The norm
function is said to be proper if {x € A | |x|a < n} is finite for every n.

Second, we may restrict ourselves to bad sequences x = zg,x1,22... with a
controlled behavior, which means that there is an effective way of computing,
given 4, an upper bound for |z;|.

Definition 2. Let g : N = N be a computable increasing function and let (A, <)
be a wqo with a proper norm. A bad sequence x = xg,T1,T2 ... s g, t-controlled
if for all i, |x;|a < g(t+1i). We say that g is the control function for x.

As a consequence of Konig’s Lemma, controlled bad sequences over wqos cannot
be arbitrarily large: given a control, there exist upper bounds for their lengths.
Let us go back to the example of the <) -decreasing sequence in (). If we
further impose that the sequence is g, 0-controlled, where g(0) = 2 and we fix
|z|nz to be the infinity norm of z then the reader may verify that the longest
g, 0-controlled decreasing sequence is

<17 1>’ <170>v <ng(2) - 1>v <ng(2) - 2>’ T <O’ 1>7 <0’0>' (2)

In this paper we give upper bounds for the length of g, t-controlled bad sequences,
when ¢ is a parameter. That is, given a well (quasi) order under study (we address
lexicographic, product, multiset and majoring) (A, <), we define L’g“(t) as the
length of the longest g, t-controlled bad sequence in (A, <), and we study upper
bounds for L;‘, which are classified in the Fast Growing Hierarchy (Fa)a<e, Of
Léb and Wainer [I0].

For a more detailed introduction to some topics of this paper, see [I].

Linearizing

Our technique to obtain an upper bound for Lﬁ is to linearize the wqo (A, <4)
with a proper norm |- |4 into a suitable well linear order (B, <pg) with a proper
norm | - |g. This means to find a function h : At — B such that for every
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ac At and a € A, if a~a is a bad sequence in (A, <y4) then h(a) >p h(a~a).
So if a = ag,...,ar is bad in (A4, <4) then

b= h(ao), h(ao,al), h(ao, ap, ag), ey h(a)

is descending in (B, <p). Furthermore, for any control function g we seek a
control function g such that if a is g, ¢t-controlled then |h(a)|p < g(|la| +t — 1)
—here |a| denotes the length of a. Hence if a is g,t-controlled then b is g,t-
controlled and therefore from a g, t-controlled bad sequence in (A4, <4) one can
get a g, t-descending sequence in (B, <p) of the same length. Hence Lg‘ < LgB,
and the task is now to find an upper bound for Lf . In practice, these upper
bounds are easier to devise for well-orders than for wqo’s.

Our Contributions

Product and lexicographic ordering. For some dimension n, let (N", <) be the
set of n-tuples of N ordered with the natural product ordering. Dickson’s Lemma
is the statement that (N", <) is a wqo. We denote L}' () the length of the
longest g, t-controlled bad sequence over (N7, <y.). Here we take |z|y» to be
|| oo -

McAloon [II] shows an upper bound for LYY, when g is linear, and places
it at the level §p,4+1 of the Fast Growing Hierarchy. Later Clote [2] simplifies
McAloon’s argument and finds an upper bound in §,1¢. Neither of these proofs
are self contained and both are quite complex. In [5] D. and S. Figueira, Schmitz
and Schnoebelen show an improved upper bound of §, with a simpler proof,
relying in a mathematical more general setting of disjoint unions of powers of
N. In fact, the main result is both more general and more precise than those of
McAloon and Clote: if g € §, then L} is bounded by a function in §y4n-1.
Although this proof is markedly simpler than those of [IT] and [2], there are still
some technical lemmas regarding this richer setting.

In Thm. @ we give an even shorter, elementary and self-contained proof of the
result of [5] which only uses a linearization of (N", <) into (N", <je). As a side
result, in Prop. Bl we obtain a tight upper bound for the length of the longest
decreasing sequence in (N", <j.y).

Magjoring and multiset ordering. Informally, if A and B are finite subsets of N™
then A <,,,j B iff every element of A is majorized (with respect to <p,) in B.
It is well-known that <,,,; over subsets of N” is a wqo, and this fact is used in
a number of decidability results.

In Cor. I3 we show an upper bound for LmaJ( ), the length of the longest
g, t-controlled <,,,j-bad sequence of finite subsets of N™. To obtain this upper
bound, we linearize the wqo into the multiset ordering over (N”, <j.), which
is a well-order. In Thm. and Thm. [[4 we show a tight upper bound for the
longest decreasing sequence of multisets.

We also give some applications on how our upper bound for Lﬁ*}j(t) can be
used in some decision procedures of some types of automata over data trees.
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Outline

In §2l we give the formal definitions of all the involved orders and the definition
of the Fast Growing Hierarchy. In §3 ¢4 g5 §6l we study the lexicographic,
product, multiset and majoring ordering, respectively. In §7l we mention some
applications of our upper bounds in concrete decision procedures. We close with
some conclusions and future work in §8

2 Basic Definitions

If A is a set then |A| denotes the cardinality of A. If z € A™ then the i-th coordi-
nate of x is denoted z[i], so x = (z[1],...,z[n]). Sequences are always in boldface
and if x is a finite sequence then |x| denotes its length. The concatenation of
the sequence x and the element z at the rightmost place is denoted x~z. We fix
g : N — N to be a computable and increasing function.

Given a set X provided with a total order <, (X, <) is called a well-order if
every non-empty subset of X has a minimum.

We work with the following wqo’s:

Lexicographic ordering. If x,y € N™ then it is the well-order defined as
& <iex y & 2[1] <y V (@[1] = y[ A (@[2],. .. 2[n]) <iex ¥[2),-- .. y[n]) -
Product ordering. If x,y € N™ then it is the wqo defined as

r <y & (Vie{l,...,n}) zfi] <yl
Multiset ordering. A multiset M over a set X is a function X — N. Intuitively a
multiset is a generalization of a set, where elements may be repeated. For x € X
M (x) is called the multiplicity of . A multiset is finite if the set of elements with
positive multiplicity is finite. We notate € M for M(z) > 0. Let Mo(X)
denote the class of finite multisets over X.
Let (X, <) be a poset and let M, N € M (X). We define

N<S MEMANANVzeX)[N(z)>M(z) = ByeX)[y>zAMy)>N(y)]).

Intuitively, this says that N can be obtained from M by replacing some elements
by finitely many (possibly zero) smaller (with respect to <) elements. If (X, <) is

a well-order then (Mo (X), SI(HSS)) is also a well-order. See [3] for more details.

We will study (M<o(N"), gfnf;ex)), the multiset ordering of finite multisets
of tuples with the underlying lexicographic ordering. In this context, we write

< for gﬁnﬁ;ex). Observe that it is a well-order because (N, <jy) is so.

Magjoring ordering. Let P<oo(X) denote the finite and non-empty parts of X.
For a wqo (X, <) and A, B € P.(X), the majoring ordering is defined as

A< BE (Vxe A(ByeB) z<y.

—maj
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We will study (P<oo(N™) <(=s pr)) the majoring ordering of finite sets of tuples

’» =maj
with the underlying product ordering. In this context, we write <,,,j for Sl(ri‘;)

Observe that it is a wqo because (N7, <,,,) is so (see for instance [4, Prop. 2.15]).
The Fast Growing Hierarchy (Fy)a<e,- Let €g be the least infinite ordinal o such
that w® = a. The Fast Growing Hierarchy is defined as

Fo(x) Sz +1  Fou(x) = F Y z) F\= By (2),

where in general g* denotes the k-th iteration of g (i.e. g* = g and g+ = gog¥),

a < € is an ordinal, A < ¢y is a limit ordinal and (A;)z<, Is an increasing
sequence of ordinals with limit A (a fundamental sequence), which we fix to be:

Y+ e Byt wf (@ +1) (Yt Byt

The class §, of the Fast Growing Hierarchy is the closure under substitution
and limited recursion of the constant, sum, projections, and the functions F,.
$o = §1 contains all linear functions, §2 contains all the elementary functions, §s
contains all the tetration functions. Un <w Sn is the class of all primitive recursive
functions and in general | J,, .« S« is the class of k-recursive functions [12]. There
are a number of important monotonicity results regarding the Fast Growing
Hierarchy: for ordinals a < 8 < €, the function Fy, is strictly increasing, F4+1 >
F,, F, is eventually majorized by Fp, and then §Fo C Fs (except o = 0 and
B = 1), ete. For more results on the Fast Growing Hierarchy, cf. [10].

3 The Lexicographic Ordering

We denote by Lf”; (t) the length of the longest g, t-controlled decreasing sequence
in (N, <jex). In [, Section V1], it is shown that

g(t)
LE%(t) = g(t),  Litig() =Y L5 (0h (), ong(t) Et+Li%(0).  (3)
j=1
Proposition 3. For any ordinal v > 1, if g € F then LleX has an upper bound
n SWJrnfl-
Proof. We proceed by induction on n. If n = 1 then Llex( ) = ¢(t), and by
hypothesis g € §,. Now suppose LleX < h € §y4n—1. We have ijlg( ) <
g(t) - L (oﬂ(tg) L) < g(t) - oﬂ(tg)( t) where the first inequality follows from (3)),
since oy, 4 is growing, and the second one because Li‘f’; < opg.
Since Lle’; < h € §y4n—1 then on ¢(t) < h(t)+t and so op,g € Fy4n—1. By [10,
Thm. 2.10], there is p such that F?,  , majorizes o, 4. Therefore

LY () < g(t) - FED (1)
< g(t)- Fé’f}z )1 (p-g(t) (by monononicity of Fyy,_1)
=g(t) - Fyin(p-g(t)),
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which lies in §,4, since it is the composition and product of functions in §,+n
(and since v +n > 2, Fy+n is closed by products). o

In [5, Prop. VI.3] it is shown that if ¢ = F, then sz > F,4n—1. Hence our
upper bound is tight.

4 The Product Ordering

In this section we linearize the wqo (N”, <,,) into the well-order (N”, <jex) and
derive an upper bound for Lgfg(t), the length of the longest g, t-controlled bad
sequence over (N, <p.).
The next result follows the idea of Harwood, Moller and Setzer [7] adapted to
controlled bad sequences. For the sake of completeness we include the full proof.
First, let us mention the intuition behind the proof. For z € N, define 1z &
{z e N" |z <, z}. Let n = 2, and suppose

X = <$0,yo>7 (x1,y1), <$2,y2>7 B <$k7yk>

is a bad sequence in (N?, <p;). Let a(x) = ming<;«|x| &, b(X) = ming<;<|x| ¥
and C(x) = Ma(x), b(x)) \Ug<;<|x T{@i, yi)- It is easy to see that C'(x) is finite.

Here is how we can linearize (N2, <,,) into (N?, <jo): Define h(x) = (a(x) +
b(x),|C(x)|) € N? and suppose that x~ (z,y) is bad. If # < a(x) Vy < b(x) then
h(x™(z,y))[1] < h(x)[1]; in case z > a(x)Ay > b(x) then C'(x~(x,y)) C C(x). In
this last case, since (z,y) € C(x)\ C(x"(z,y)), we have |C(x"(x,y))| < |C(x)].
Therefore h(x™(z,y)) <iex h(x). Furthermore, if x is g, t-controlled then C(x)
has at most g(t + |x| — 1)? elements, and a(x) + b(x) < 2g(t + |x| — 1). Hence if
X is g, t-controlled, then the sequence

y = h((l’o,y0>), h(<.’£(),y0>, <x1,y1>), R h(X),

is <jex-descending and g, t-controlled, where g(z) = 2g(x)?.

The argument for any n > 2 cannot be generalized straightforwardly, obtain-
ing a linearization into (N2, <joy). For instance, for n=3 and x= (0,0, 1), (0, 1, 0),
we would have C(x) = 1(0,0,0) \ (1(0,0,1) U1(0,1,0)) and this set is infinite
((N,0,0) € C(x) for any N). However, by an inductive argument (N", <) can
be linearized into (N, <jex).

Theorem 4. There is a function hy, : (N*)T — N™ such that if x"x is bad in
(N™, <pr) and x is nonempty, then hp(x"2) <iex hn(x). Furthermore if x is
g, t-controlled then |h,(x)|eo < g(|x| — 1 4+1¢), for g(x) = n! g(nz)™.

Proof. We define the functions h,, by induction in n. If x = zg,z1,22,..., Tk
is a bad sequence in N then define hi(zg,x1,x2,...,xk) e xp. Since in N the
product order and the lexicographic order coincide, we have hq (X" ) <jex h1(X).

For the inductive construction of h,, let n > 1 and assume the statement of
the theorem for dimension n — 1. For 1 < ¢ < n and x € N" we define

def

DEL;(z) = (z[l],...,z[i — 1], z[i + 1],..., z[n]),
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i.e. DEL;(z) deletes the i-th component of the n-tuple z. Given a finite and

nonempty bad sequence x = xg, Z1, ...,z of n-tuples, we define the set
BAD;(x) = {DEL;(2,),...,DEL;(2;,) | p > 0,0 < jo < -+ < j, <k, and
DEL;(Zj,), . .., DEL;(z;,) is bad},

i.e. BAD;(x) consists of the bad subsequences of (n — 1)-tuples of x in which the
i-th components of the n-tuples have been deleted. Finally we define

MIN; (X) = mine, {hn—1(y) | y € BAD;(x)} and

EXT,(x) = {z € N* | (Vi € {1,...,n}) MIN;(x) = MIN;(x"z), and
(Vj €{0,....k}) z; Lo 2},

which consists of the n-tuples with which the sequence x can be extended without
altering the MIN; values and yet while maintaining badness.

Fact 1. |EXT,(x)| < o0, and if x is g,t-controlled, then |EXT,(x)| < g(k +1)™.

Proof. Let z = DEL;(},), ..., DEL;j(z;,) € (N""!)T be a bad sequence, suppose
MIN;(x) = h,_1(z), and suppose that s € EXT,(x). If the sequence z"DEL;(s)
were bad, then by the ind. hyp. we would get that MIN; (x”s) <jex hn—1(2"DEL;(s))
<lex hn-1(z) = MIN;(x), contradicting s € EXT,(x). Therefore, since z is bad
but z"DEL,(s) is not, we have DEL;(x;,,) <pr DEL;(s) for some m. But since
S € EXT,(x) we have that x;,, £, s, and therefore s[i] < z;,,[i]. Now, since
this goes for all ¢, we conclude that |[EXT,, (x)| is finite.

Now if x is g, t-controlled, then x;[i] < g(k+t) for all j, because g is increasing.
By the above argument |EXT,(x)| < g(k + t)", but since x was nonempty and
xo & EXTp(x), we conclude |EXTy (x)| < g(k+t)™. O

We finally define
hn(x) = <Z MIN; (x), EXT,L(X)|> eN",
i=1

where the sum is taken componentwise and thus results in a tuple in N*~1. We
conclude the proof with the following two facts:

Fact 2. If x"x is bad then h,(X"x) <iex hn(X).

Proof. Suppose that y = x~a bad. Since for any ¢ € {1,...,n}, BAD;(x) C
BAD;(y), then MIN;(y) <jex MIN;(x); and if MIN;(y) = MIN;(x) for all ¢ then
EXTy(y) € EXTp(X), since EXT,(y) C EXTp(X) but 2 € EXT,(X) \ EXT,(y).
Thus |EXTy(y)| < |EXTp(X)]. O

Fact 3. If x is g,t controlled then |hn(X)|eoc < g(|x| — 1 4 t), where §(z) =
n! g(nx)™.
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Proof. By induction in n > 1. If n = 1 then If x = zg, ...,z is g, t-controlled,
then hix =x, < gt +k) =g+ x| —1) =g+ x| —1).

Since any y € BAD;(x) is a g, (t + k)-controlled bad sequence of N"~! by
inductive hypothesis we get

1Y)l < (n = 1)1 g((n = 1)(|ly| = 1)+t + k)"~
<(n-D'g((n—-1k+t+k)" !
=(n—1!gnk+t)""1.

In particular, for y such that MIN;(x) = h,—1(y), we conclude |MIN;(X)|oo <
(n — 1)! g(nk +t)""1, and so the first n — 1 coordinates of h,(x) are strictly
bounded by n! g(nk + t)"~! (the factor n comes from the n additions). By
Fact [Il the last coordinate of h,(x) is strictly bounded by g(k + ¢)™. Therefore,
| (%) |oo < max{n! g(nk+t)""1 g(k+t)"} <nl gnk+t)" < g(|x|-1+¢t). O

Let Lgfg(t) denote the length of the longest g,t-controlled bad sequence in
(N™,<pr), and let L) (t) denote the length of the longest g, ¢-controlled de-
creasing sequence in (N", <joy). We arrive to the same result as in [5]:

Corollary 5. L}’ < Lf’xg, for g as in Thm.[J} Hence if g € §~, and v > 2 is

an ordinal, then LY  has an upper bound in §yin—1.

Proof. The function g is defined through finite substitution from g and product.
Since §2 and higher levels are closed under finite products, we have § € §,. By
Prop. [3], there is a function h € $y+n—1 such that h > Lffﬁa- O

5 The Multiset Ordering

We need a notion of g, t-controlled sequence of (multi)sets. By Def. 2 it suffices
to give a proper norm:

Definition 6 (A proper norm of sets and multisets of tuples). Given
X € Mcow(N"), we define |X|, the norm of X, as the mazimum between
maxgenn X () and max{|z|e | € N* A X (2) > 0}. For X € Peoo(N"), |X]| is
defined analogously, as any set is a multiset.

We denote by Lgffl(t) the length of the longest g, t-controlled decreasing sequence

in (Mcoo(N"), SI(HSSI“"‘)), i.e. a sequence of finite multisets of N™, with the un-
derlying lexicographic ordering. In this section we give a tight upper bound for

Ly, (t) in terms of the Fast Growing Hierarchy.

5.1 Maximizing Strategy

To study the longest g, t-controlled <,s-descending sequence of multisets we de-
fine the maximizing strategy which, given a nonempty g, t-controlled multiset M,
determines the greatest g, (¢ + 1)-controlled multiset N which is smaller than M.
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The strategy says that to obtain N one should take out one of the minimum ele-
ments of M, say m, (i.e. decrement in one the multiplicity of m) and add as many
elements smaller than m as the control function permits.

For the rest of this subsection, assume (X, <) is a well-order. We write <y
instead of <§n§s). Let M € M.oo(X) which is g, t-controlled and a proper norm
|- |x =] -] for X. We define the g, t-predecessor of M as follows: For « € X,

gt+1)—1 z<minMA|z| <g(t+1);
PREDY(M)(z) £ { M(z)—1  x = minM;
M(x) otherwise.

where min M & min{z | M (z) > 0}.

Lemma 7. Let M be a nonempty finite multiset over a totally ordered set
P, which is g,t-controlled and let N = PRED{(M). Then (1) N is g, (t + 1)-
controlled; (2) N <ms M; and (3) if N' is g, (t + 1)-controlled and N' <ps M
then N’ << N.

Proof. (1) is clear from the definition of N and the fact that g is monotone
increasing. For (2), it is obvious that M # N. By definition, if N(z) > M (x)
then z < m = min M and M(m) > N(m).

For (3), assume N’ < M is g, (t+1)-controlled. We show that if N'(x) > N(z)
then there is z > x such that N(z) > N’'(z). Suppose N'(z) > N(z). First, if
x < min M then N(z) = g(t +1) — 1 > N'(z), contradicting N'(z) > N(z).
Second, suppose z > min M. Then N(z) = M (z) and therefore N'(z) > M (x).
Since N’ <y,s M there is z > z such that N(z) = M(z) > N’(z). Third, suppose
x = min M. Then N(z) = M(z) — 1, and so N'(z) > M(x). If N'(z) > M(z)
then, since M <y,s N’, there is z > z with M(z) > N’'(z). For such z, by
definition of N, we have N(z) = M(z) > N'(z). If N'(z) = M(x) then, since
N’ # M, there is y such that N'(y) # M (y). Any such y must be different
from x. Suppose that all such y’s were smaller than = min M. In this case
M <5 N’ and this contradicts the hypothesis. Hence there is y > x such that
N'(y) # M(y). If N'(y) > M (y), there is z > y > = such that N'(z) < M(z) =
N(z). If N'(y) < M(y), since M (y) = N(y), we conclude N'(y) < N(y). |

We represent a finite multiset M such that {x | M(z) > 0} = {x1,...,2,} as
M= M(zy) x4+ M(z,) - 2.

For a finite multiset M, let Ly as(t) denote the length minus one of the longest
g, t-controlled and <,s-decreasing sequence of multisets starting with the mul-
tiset M. For v € X, let 0 »(t) =t + Lg1.{2}(1)

Lemma 8. Ifk > 1 then Ly . (5 (t) = Zi‘:ol Lg 1o} (0] 4 (1))

Proof (Sketch). We write Ly, for Lg .15} and o for oy .. First show by induction
in 4 that o'(t) =t + Z;-;}) L1(0’(t)). Then show the statement of the Lemma by
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induction in k > 1. Observe that the longest g, t-controlled decreasing sequence
of multisets beginning with My = (k + 1) - {z} is

Ml >ms M2 >ms -+ -5 >ms Ml1 >ms N2 >ms NS >ms -+ - Zms Nl27

of length I3 +12 — 1 and where l; = Li(¢t)+1, M;, = 1-{a},lo = L1(t+ Li(t)) +1
and N, = (. Use straightforwardly the inductive hypothesis. a

Corollary 9. For k> 1, Ly p.{s} > Ls,l-{w}'

Corollary 10. For k > 1, L .2} (t) < k- Lg’l.{r}(olg“’;l(t)).

In the sequel we fix (X, <) to be (N, <iox). If M € Moo (N") then P, (M, 1)
denotes the length minus one of the longest g,t-controlled <,,s-decreasing se-
quence of multisets starting with M. If M consists of one copy of (z1,...,%,),

we simply write Py, (21, ..., 2y, t) instead of Py, (1-{(x1,...,2,)},t). Observe
that, having fixed (X, <), we have Ly p(t) = Py (M, ).

5.2 Lower Bound

Define G, : N**1\ {(0,...,0)} — N by multiple recursion as:

Gyn(0,...,0,1,8) = g(t+1) (4)
Gynlz,zn +1,8) = Ggffl+1)*1(x, ZTn,t), for x =21,..., -1 (5)

Gon(z,2; +1,0,8) = Gynlz, 25,9t +1) —1,0,t), for z = 21,..., 251 (6)

Equation (@l applies when z; > 0 for some 4, and (@) when j < n. G’;’n(a7 b) de-
notes the k-th iteration of Gy ,, in the last component, i.e. G} ,(a,b) = Gy n(a,b)
and G’gf"zl (a,b) = Ggnla, G’;’n(a7 b)).

Lemma 11. If g(x) >« + 1 then Py > Ggn.

Proof (Sketch). By induction in the lexicographic order of z1,...,z,. For {),
the longest g, t-controlled <,s-decreasing sequence starting with 1-{(0,1)} is

1-{(0,1)} >ms (gt +1) = 1) - {(0,0)} >ms - -- >ms 0-{(0,0)} =0,

which has length ¢g(t + 1) + 1 and then P, ,(0,...,0,1,¢) = g(¢t + 1). For (@),
the longest g,t-controlled <s-decreasing sequence of multisets starting with
1-{(x,xn+1)} contains the multiset M = (g(t+1)—1)-{(z, z,)}, so Py n(z, T, +
1,t) > P, n(M,t + 1). Now apply Cor. [ monotonicity of G4, and ind. hyp.
For (@), the longest g, t-controlled <,s-decreasing sequence of multisets starting
with 1-{(z,z;4+1,0)} contains 1-{(z1,...,z;,g(t+1)—1,0)} as one of its terms,
so Py n(z,2;+1,0,t) > Py (z,25,9(t+1) —1,0,¢). Then apply ind. hyp. O

Theorem 12. If g > Fy and g(z) > x + 2, then L5, > Fn.
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Proof (Sketch). Show that if x; > 0 for some i then Gy, (n—1,...,%0,t) >
F,(t), where « = w" 1 - 2,,_1 + -+ + 20 -w® by induction in (,_1,...,20). Use
monotonicity of G, ,, and the fact that g(z) > x + 2. Finally, for all ¢ we have

Ly (t) 2 Pyn(g(t) — 1,0,1)
> Py n(t+1,0,t)
> Ggn(t+1,0,t)
> Fn—1.41)(t) = Fon ().

The second inequality follows from the monotonicity of P, , and g(z) > = + 2;
the third one from Lem. [Tl O

5.3 Upper Bound

Define U, ,, : N**1\ {(0,...,0)} — N by multiple recursion as:
Ugn(0,...,0,1,¢) = g(t+1) (7)
Uy, n(x Tn+1,1) =gt +1)- Ug,n(x,xn,og(tﬂ) Lt +2)) (8)
Ugn(x,zj +1,0,t) = Uy (25, 9(t +1),0,t 4+ 2) (9)
where 0y, 5, (t) =t+Ugn(z1,...,Tn-1,2n,t); equation () applies when z; >
Oand x=z1,...,2n—1; and equation (@) applies when j < nand x=z1,...,2;_1.
Lemma 13. P, < Ug,.
Proof. By induction in the lexicographic order of z1,...,x,. For (@), as in the

proof of Lem. [0l the longest g,t-controlled <ps-decreasing sequence starting
with 1-{(0,1)} has length g(¢t + 1) + 1 and then P,,(0,1,t) = g(t +1) =
Uy.n(0,1,t). For (8)) the longest g, t-controlled <,,s-decreasing sequence starting
with My =1 {(z,2, + 1)} continues with a multiset M;whose <jex-maximum
element is (z, x,, ), of multiplicity g(¢+1) — 1. Therefore if N = g(t+1)-{(z,z,)}
then My >pns N > M7 and N is g, (¢ + 2)-controlled. Hence

gt +1) - Pyn(x, 20, 09<t+1> Lt +2))
<gt+1)- Ugm(x,xn,og(tH) 1(t +2)) =Ugnlx,x, +1,1)

SI’!L

where 04y, 4, (t) =t + Pyn(x1,...,2n,t), the second inequality follows from
Cor. [[0, and the third one from ind. hyp. and monotonicity of Uy ,. For (&)
the longest g, t-controlled <;,s-decreasing sequence of multisets starting with
My =1-{(z,z; +1,0)} continues with a multiset M| whose <jex-maximum
element is (z,z;,9(t+1)—1,...,g(t+1) — 1), of multiplicity g(t+ 1) — 1. Then
M} >ms N >ns M{, where N’ = 1 {(z,zj,9(t + 1),0)}, and hence N’ is
g, (t + 2)-controlled. Therefore by inductive hypothesis we have

Pyn(z,2;+1,0,t) < Py (z, 2,9t +1),0,t +2)
< Ugn(z,25,9(t +1),0,t +2) = Ug n(z,2; +1,0,1),
and this concludes the proof. a
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Theorem 14. If g is primitive recursive and g(t) > t+1 then LYY, has an upper
bound in F,n. Also, this bound is tight.

Proof. The fact that the bound is tight follows from Thm. Without loss of
generality suppose, t > 2 and let 2 < e < w such that g(t + 1) < F.(¢). By
(V*°z)p(x) we mean that ¢ holds for almost every z, i.e (3k)(Vz > k)p(z).

Fact 4. If x # 0 then (V1) (V2)Uygn (0,2, ) < Fyz_1)4e(t).

Proof. By induction in & # 0. For x = 1, observe that U, ,(0,1,t) = g(t +
1) < Fe(t). For the inductive step, o, =t + Uy n(0,7,t) <t + F3p_1)1e(t)
F3(z—1)4et1(t). Now

IN

Uy (0,2 + 1,) =gt + 1) - Ug (0,2, 0507V (¢ 4 2))

<g(t+1) - Fyomnyre(ofe V7 (8 42)) (ind. hyp.)
F.(t)- mﬂ%ﬂ1< +2))  (plx) E 3@ —1)+e)
Fo(t) - Fyo(Epiy it (g +1)
Fe(t) - Fya) (Fp(a)+2(9(t + 1))
<Fpa)+2(Fp)+2(Fpe) 12 (Fpa)+2(t)))
=Fyu)+2(t) < Fpy4s(t) = Faore. (t=>3)
This concludes the proof of the Fact a
Fact 5. If zg > 0 then (V°t)(VYan—1,...,20)[Ugn(Tn-1,...,20,t) < F,(t) =
Ugn(Tn—1,...,20+ 1,t) < F,13(t)].
Proof. Same idea as in Fact [l O
Fact 6. If z; > 0 for some i > 1 then (V°t)(Vo = 2p—_1,...,21)Uqyn(z,0,t) <
F,(t), where a = 21 - W P+ 20 W24 b a9 wi w1
Proof. By induction in x # 0. Uy ,(0,1,0,t) = Uy n(0,g(t+1),t+2) < Fyp(t+

2) < Fuya(d(t) = Fo(d(t) < For(t) where d(t) 2 3(g(t +1) — 1) + e, the
first inequality follows from Fact Ml and the last one is true for all ¢t > k;.
Next, Ugn(0,21 +1,0,t) = Uy n(0,21,9(t +1),t +2) < Fy\pr4r@(t+2) <

Fyyorir() (1) = Flay11)0(r(t) < Flay11)w41(8) where 7(t) = 3g(t+1), the
first inequality follows from ind. hyp. and Fact Bl and the last one is true for all

t > ko > k1 (independently of ).

Finally, let © = 2,_1,...,2;_1 and let 8 =21 - "t + - 4 2d7 1. w71,
Ugn(z, 2 +1,0,t) =Ug n(z, 25,9t +1),0,t +2)
SFpto;witgt+1)wi-141(t +2) (ind. hyp.)

<Fpia;wit(g(t+1)+1)wi-t (t +2)
SFpta;wit(g(t+1)+1)wi-1(9(t + 1))
SFt(o41)wi (9 + 1)) < Fpi(a;11)wit1(t),

where the last inequality is true for all ¢ > ks > ko (independently of z,z;). O
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Now, let ¢ be sufficiently large. If n = 1 then Ly (t) < Pyn(g(t),t +1) <
Ugon(9(6), 141) < Faptty1y2(t+1) < Fitotny-1yserr (Ba(t)-1)4e) = Fu(3(a(t)-
1)+ e)) € Fu, where the second inequality follows from Lem. [[3] and the third
one from Fact @l If n > 1 we have:

Ly (t) < Pyn(g(t),0,t41)
< Uyn(g(t),0,t+1)
< Fyywn—141(t+1)
< Flgt)+1)-wn—1(9(t)) = Fun(g(t)) € Tur.

The second inequality follows from Lem. [[3] and the third one from Fact O

6 The Majoring Ordering

Recall from §2 that the underlying order of <,a,j is <, and the underlying
order of <5 is <jex. We linearize the wqo (P<oo(N"), <iaj) into the well-order
(Mcoo(N™), <ps) and derive an upper bound for L'i(t), the length of the
longest g, t-controlled bad sequence of finite sets of n-tuples with respect to the
majoring ordering <,j. To do this, we use the results of §5l

Our linearization will be done in two steps. Given a <n.5-bad sequence X =
X0, X1, ... X} of finite and nonempty sets of n-tuples we define an intermediate
sequence Ty, T4, ..., Tk of trees whose nodes are decorated with n-tuples. From
these trees we define a sequence of finite and nonempty multisets of n-tuples
M = My, My, ..., M. We show that if X is <jaj-bad then M is <p,s-decreasing.
Furthermore, given a control for X, we find a control for M. Using the results
of §8l we give an answer to the question of the maximum possible length of a
controlled <,,j-bad sequence of finite sets of n-tuples.

Let X C N". We say X avoids z if for all y € X we have x £, y. Since
X = Xg,X1,..., X} is bad, then for any i < j, X; avoids some tuple of X;. In
particular for all j € {1,...,k}, X; avoids some tuple of Xy. If @ is the <p,-
supremum of X then X = {a}, X1,... Xi is also a bad sequence. Furthermore, if
X was g, t-controlled then X also is, and in this case a <p, (9(t)—1,...,9(t)—1).
Even more, if X is the longest such sequence then a = (g(t) — 1,...,g(t) — 1).
Therefore, without loss of generality we may assume that all <,,,j-bad sequences
of sets analyzed here have a singleton as the first element.

Construction of the trees T;. Without loss of generality suppose Xo = {ao}.
Define the following sequence of finite trees of n-tuples. By path we always refer
to a path from the root to a leaf. See Fig. [[l for an example of this construction.

— Tp is ag, the root.

— T;i41 is formed by extending T; as follows. For any path ag, ..., a,, in T; do
the following: if for all j = 0, ..., m, X;41 avoids a; then add all the elements
of X;11 as new children of a,,.
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(3,3) (3,3) (3,3) (3,3) (3,3)
(1) (@) <1m1> <1m1> <1m1>
P N \ P \
5,7 (32) 6D @2 ey GG @
(2.1) (2,1) @1 @1) 15
TO T1 T2 T3 T4

Fig. 1. Construction of the trees for the bad sequence Xo, X1, X2, X3, X4, where Xo =
{3,301 Xo ={(1,4), (4, ) }; Xo ={(5,1),(3,2)}; X5 ={(2,1)} ; Xa ={(L,5)}

Proposition 15. At least one path of T; is strictly extended in Tjy1.

Proof. Recall that X; # () for all j. It is clear that if all internal nodes of T} have
a child which is avoided by X, then there is a path ay, ..., a,, in T; such that
X1 avoids a; for all j.

If T;11 = T; then, by construction, there is no path ag, ..., a, with all of its
elements avoided by X;;1. Then there is an internal node of T3, say a, with none
of its children avoided by X;,1. But this contradicts the badness of X since by
construction the set of children of a is X; for some j <. a

As the example in Fig. [[lshows, the height of T;11 is not necessarily greater than
the height of T;. The following follows by construction:

Proposition 16. Any path in T; is a bad sequence of n-tuples with respect to
the product ordering. Furthermore if X is g,t-controlled then any such path is
g, (t + 1)-controlled.

Construction of the multisets M;. Let M; € M oo(N™) be defined as: M;(y) = d
iff there are exactly d paths in Tj, say pi,...,pd, such that h,(p;) =y for all j.
In other words, M; is the multiset where we put h,(p) for every path in Tj.

If the path @ = a1, ...,a,, in T; is extended to a,x in T;;; then by Thm. (4]
hn(a, ) <iex hn(a). Then M;t1 <ms M;. The need for working with multisets
and not simply with sets resides in the fact that h is not injective.

Proposition 17. If X = Xy,..., X}, is g, t-controlled then |My| < g(t + k), for
g(x) = n! g(nz)*=+D) £ 1.

Proof. Observe that the maximum multiplicity of an element in M}, is bounded
by H§=1 gt + )" < g(t + k)"* < g(t + k). By Prop. each of such path is
g, (t + k)-controlled and by the second part of Thm. [l we have that if z € Mj,
then |z|oo < n! g(n(k+t))™ < g(t + k). O

Altogether we have shown:

Theorem 18. There is a function f, : (P<oo(N"))t — Moo (N™) such that
if X°X is a bad sequence in (P<coo(N"), <maj), X is nonempty and X is a
nonempty set, then fn(X"X) <ms fn(X). Furthermore if X is g,t-controlled
then | f(X)| < §(|X| = 1+1t), for g as in Prop. [17
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Proof. Take fn(X) = M|x|—1 as in the above construction. O

Let Lﬁl’zj(t) denote the length of the longest g,t-controlled bad sequence in
(N™, <maj), and let Lf{‘fq(t) denote the length of the longest g,t-controlled de-
creasing sequence in (N™, <.

Corollary 19. For any primitive recursive g there is a primitive recursive §

such that Lgf;j < L% Hence there is an upper bound of Lg;i mn Fen .

Proof. Tt follows from Thm. I8 and Thm. [I4] O

7 Applications

In Jurdziniski and Lazié¢ [9] it is shown that for the class of incrementing tree
counter automata (ITCA) as well as the class of alternating top-down tree one
register automata (ATRA), the emptiness problem —i.e. whether the language ac-
cepted by an automaton of such classes is empty— is decidable over finite data
trees. Figueira [4] later showed that for some extensions of ATRA decidability
still holds. All these proofs go along the lines of interpreting the automata exe-
cution as a downward well-structured transition system, then showing that it is
reflexive-downward-compatible with respect to a wqo between sets of configura-
tions, and finally applying Finkel and Schnoebelen results [6] (mainly Prop. 5.4).
That wqo is precisely the majoring order.

From [9], we know that the computational complexity of such decision pro-
cedures is lower-bounded by a non-primitive recursive function. For the upper-
bound for ITCA’s, an algorithm can be given in a manner analogous to [5, §VIL.B.]
for finding the levels (a finite set of configurations) reachable from the initial level
—the emptiness problem is then reduced to testing whether the empty level is
amongst them. The complexity of such an algorithm is mainly determined by the
length of a bad sequence of levels V = Vj, V1,...,V,,. In more detail, suppose
an ITCA C has k counters and a finite set of states Q. Then a level of C is a
finite set of tuples of the form (g, v), where ¢ € Q and v = {ay,...,a;) € N¥ is
the current values of the k counters. The levels are ordered by the the majoring
ordering with the following underlying order

<pau> < <Qav>(<i:e§p:q/\u Spr v,

which is a wqo. The complexity of the emptiness problem can be bounded by
the length of the longest bad sequence in (P.oo(Q x N¥) <(S)). As one can

) —=maj
see, the application of Cor.[I9 is not entirely straightforward beéause it applies
to the majoring ordering of finite sets of tuples of N with the underlying <,
and not to levels with the underlying <. We reduce bad sequences of levels to
bad sequences of finite sets of tuples as follows. Suppose @ = {qo,...,qs—1}

and let ¢} = (i,5 — i) € N2, Clearly if p/ <pr ¢ then p’ = ¢ and so p = q.
Let V € Peoo(Q x NF) be a level. Define V! = {(p/,u) € N¥+2 | (p,u) € V}.

The reader can verify that if V and W are levels then V' S(S‘”) W' implies

maj
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\% Sl(fa)J W. Hence V = Vy, Vi, ..., V,,, a bad sequence of levels of an ITCA with
k counters, can be seen as a bad sequence of the same length V/ = Vj, V{,..., V),
in P (NF*2) with the majoring ordering studied in §6l Regarding how V' is
controlled, the analysis is almost the same as in [, §VIL.B.]. Let Vj = {(0, |Q| —
1,00} and V; = {ci1,...,¢p, }. From Def. [l we have that |V/| = max;{|c;j|s}
The change from V; to V;'; may involve a change of state or increment of ¢;’s
counters’ values by one. The ‘state part’ of ¢; is controlled by the constant |Q)|
and the ‘counters part’ is controlled by the successor function. Hence, the bad
sequence of sets is g, 0-controlled by ¢(t) = t+ 1+ |Q|. Now we can finally apply
Cor. I3 to conclude that the complexity of the emptiness problem for an ITCA
with k counters is upper bounded by a function in § k+z.

This immediately gives us an upper bound for the emptiness problem for
ATRA. From [9 Thm. 3.1] we have that emptiness for ATRA follows from a
PSPACE-reduction to emptiness for ITCA. If the ATRA A has s states then the
1TCA C constructed in the reduction has k(s) = 25 —1+4 2% counters[] Hence the
complezity of the emptiness problem for an ATRA with s states is upper bounded
by a function in § ks +2.

The above complexities are obtained by the straightforward codification of
levels V into V. This increases the dimension of tuples from n to n+2, and this
might be too wasteful. It seems plausible to work directly with levels (i.e. sets
of @ x N™) and obtain better upper bounds.

8 Conclusions

Upper bounds for controlled descending sequences in a well-order are easier to
obtain than for controlled bad sequences in a wqo’s. We studied upper bounds
for the length of controlled bad sequences of two wqo’s by linearizing them into
well-orders. Such bounds were placed in the Fast Growing Hierarchy.

For the product ordering of tuples, we gave a straightforward elementary
proof for an upper bound of controlled bad sequences, and we arrived to the
same general result as [5] but avoiding the “sum of powers of N” approach. This
last approach —being noticeably more understandable than previous proofs, and
also leading to a more general result— still needs some rather technical lemmas.
Our proof simply relies on a linearization of controlled bad sequences of tuples
in the product ordering into controlled descending sequences of tuples in the
lexicographic ordering, for which upper bounds can be easily obtained.

For the majoring ordering of sets of tuples, we gave an upper bound of con-
trolled bad sequences over such wqo by linearizing to controlled and descending
sequences of multisets with the natural multiset ordering. For the latter we also
gave a tight upper bound, which is of interest by itself. As applications we showed
complexity upper bounds for the emptiness problem for two types counter au-
tomata: ITCA and ATRA.

! In [9] there is typo in the number of counters in the auxiliary array ¢’. Where it says
2‘Q|4, it should read 249!,
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The fact that (P<oo(N™), <maj) is @ wqo follows from reducing finite sets of
tuples to finite strings over N and then applying Higman’s Lemma. Schmitz and
Schnoebelen [I3] developed an algebraic framework for handling normed wqo’s
where upper bounds for controlled bad sequences when using Higman’s Lemma
on finite alphabets are derived. Hence, another approach to obtain upper bounds
for the majoring ordering would be to try to extend this framework to deal with
strings over infinite alphabets.

As future research we will study lower bounds for the majoring ordering, and
upper bounds for the bad sequences over the dual of the majoring ordering, the
minoring ordering:

A<S) BE (vyeB)@ErecA) z<y.

This is not in general a wqo: one needs the underlying < to be an w?-wqo [8]
Thm. 1]. It would also be interesting to investigate how far one can generalize
this idea of linearization. Are there general ways in which one can relate the
length of a bad sequence over a wqo into the length of a linearization of it?
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Initiality for Typed Syntax and Semantics

Benedikt Ahrens

Université Nice Sophia Antipolis, France

Abstract. We give an algebraic characterization of the syntax and se-
mantics of a class of simply-typed languages, such as the language PCF:
we characterize simply—typed binding syntax equipped with reduction
rules via a universal property, namely as the initial object of some cate-
gory. For this purpose, we employ techniques developed in two previous
works: in [2], we model syntactic translations between languages over dif-
ferent sets of types as initial morphisms in a category of models. In [I],
we characterize untyped syntax with reduction rules as initial object in a
category of models. In the present work, we show that those techniques
are modular enough to be combined: we thus characterize simply—typed
syntax with reduction rules as initial object in a category. The universal
property yields an operator which allows to specify translations — that
are semantically faithful by construction — between languages over pos-
sibly different sets of types.

We specify a language by a 2-signature, that is, a signature on two
levels: the syntactic level specifies the types and terms of the language,
and associates a type to each term. The semantic level specifies, through
inequations, reduction rules on the terms of the language. To any given
2-signature we associate a category of models. We prove that this cat-
egory has an initial object, which integrates the types and terms freely
generated by the 2-signature, and the reduction relation on those terms
generated by the given inequations. We call this object the (program-
ming) language generated by the 2-signature.

1 Introduction

We give a characterization, via a universal property, of the syntax and semantics
of simply—typed languages with variable binding. More precisely, we characterize
the terms and sorts associated to a signature equipped with reduction rules as
the initial object in a category of models. Initiality in this category gives rise to
an iteration principle (cf. [Rem.45]) which allows to specify translations between
languages in a convenient way as initial morphisms. The category of models is
sufficiently large — and thus the iteration principle stemming from initiality is
sufficiently general — to account for translations between languages over different
sets of sorts. Furthermore, translations specified via this principle are ensured to
be faithful with respect to reduction in the source and target languages, as well as
compatible in a suitable sense with substitution on either side.

To illustrate the iteration operator stemming from initiality, we use it to
specify a translation from PCF to the untyped lambda calculus ULC. We do

L. Ong and R. de Queiroz (Eds.): WoLLIC 2012, LNCS 7456, pp. 127 2012.
© Springer-Verlag Berlin Heidelberg 2012
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so in the proof assistant Coq [B]; for this purpose, we prove formally, in Coq,
an instance of our main theorem for the 2-signature of PCF: the types and
terms of PCF, equipped with their usual reductions, form an initial object in
the category of models of PCF. We then use the iteration principle to obtain an
initial morphism — a translation, faithful with respect to reductions — to ULC,
as an executable Coq function. The Coq theory files as well as documentation
are available online at http://math.unice.fr/laboratoire/logiciels|

Summary. We define a notion of 2-signature which allows the specification of
the types and terms of a language — via an underlying 1-signature — as well
as its semantics in form of reduction rules. A 1-signature (S, ) is given by a
pair of a signature S for types and a binding signature 3 for terms typed over
the set of types associated to S. Reduction rules for terms generated by X are
specified via a set A of inequations over (S, X). A 2-signature ((S,X), A) is a
pair of a 1-signature (S, X) and a set A of inequations over (S, X). To such a
2-signature we associate a category of representations, for which the types and
terms generated by (S, X), equipped with reductions according to A, forms an
initial object.

1-signatures are defined in [2]. There, we associate a category Rep(S, X) of
representations to any l-signature (5, Y), and show that the types and terms
freely generated by (S, X') form an initial object in this category. Representations
there are built from monads on families of sets. In the present work, we build
a different category RepA(S, X of representations using relative monads from
sets to preordered sets, which allows — in a second step, cf. below — the inte-
gration of reduction rules to account for semantic aspects. The two categories of
representations, Rep(S, X) and RepA(S7 X)), are connected through an adjunc-
tion which transports the initial object of the former to the latter category (cf.
Lo 33).

Inequations over untyped 1-signatures are considered in [I]. There, we define
a notion of 2-signature for untyped syntax with semantics in form of reduc-
tion rules and show that its associated category of representations has an initial
object. In the present work, we define inequations over typed 1-signatures as
defined in [2]. Given a set A of inequations over a 1-signature (S, '), the repre-
sentations of (S, ) that satisfy each inequation of A, form a full subcategory of
Rep? (S, %), which we call the category of representations of (S, X', A). Our main
theorem (cf. [Thm. 44]) states that this category has an initial object, which inte-
grates the types and terms freely generated by (S, X), equipped with reduction
rules generated by the inequations of A.

Related Work. Related work is reviewed extensively in [1l2], as well as in the
author’s PhD thesis [3]. We give a brief overview: rewriting in nominal settings is
examined by Férnandez and Gabbay [6]. Ghani and Liith [§] present rewriting for
algebraic theories without variable binding; they characterize equational theories
resp. rewrite systems as coequalizers resp. coinserters in a category of monads
on the categories Set resp. Pre. Fiore and Hur [7] have extended Fiore’s work
to integrate semantic aspects into initiality results. In particular, Hur’s thesis
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[12] is dedicated to equational systems for syntax with variable binding. In a
“Further research” section [I2, Chap. 9.3], Hur suggests the use of preorders, or
more generally, arbitrary relations to model inequational systems. Hirschowitz
and Maggesi [9] prove initiality of the set of lambda terms modulo beta and
eta conversion in a category of exponential monads. In an unpublished paper
[10], they define a notion of half-equation and equation to express congruence
between terms. We adopt their definition in this paper, but interpret a pair of
half-equations as inequation rather than equation.

2 Relative Monads and Modules

Relative monads were defined by Altenkirch et al. [4] to overcome the restriction
of (regular) monads to endofunctors. In an earlier work [I], we define morphisms
of relative monads and modules over relative monads. In the following section we
define a more general notion of colax morphism of relative monads — which we
use in [Sect. 3to model translations between languages over different sets of types
— and generalize constructions of [I] to such colax morphisms. Some definitions
from [T2] which we use in the present work, are recalled at the beginning.

We denote by Set the category of sets and total maps of sets. We call Pre the
category of preordered sets and monotone maps between them.

Definition 1. We call A : Set — Pre the left adjoint of the forgetful functor
U : Pre — Set. The functor A associates to each set X the set itself together
with the smallest preorder, i.e. the diagonal of X, A(X) := (X, 0x).

Definition 2 (Category of Families). LetC be a category and T be a set, i.e.
a discrete category. We denote by CT the functor category, an object of which is a
T—indezed family of objects of C. We write V; := V (t) for objects and morphisms.
Given a functor F : C — D, we denote by FT : CT — DT the induced functor.

Definition 3 (Relative Monad on A”, enriched). We strengthen the defi-
nition of a relative monad P on AT by requiring the substitution map oxy to
be monotone with respect to the preorders induced by the preorders on PY

oxy : Pre’ (AX,PY) — Pre’ (PX, PY) .

From now on, a relative monad on A7 is meant to be enriched in the sense of
[Def 3l i.e. monotone in both the first— and the higher—order argument.

Ezxample 4 (Lambda Calculus as Relative Monad on AT). Let T := Tt c be
the set of types of the simply—typed lambda calculus, built from a base type
and a binary arrow constructor. Given a set family V € Set’™¢, we denote by
TLC(V) € Set”™c the set family of simply—typed lambda terms over Tr ¢ in
context V', which might be implemented in the proof assistant Coq as follows:
Inductive TLC (V : T —> Type) : T —> Type :=

| Var : forall t, Vt —> TLC V t

| Abs : forall st TLC (V +s)t —> TLC V (s ~> t)

| App : forallst, TLCV (s ~>t) —> TLCV s —> TLC V t.
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Here V + s is a notation denoting the context V extended by a fresh variable of
type s — the variable that is bound by the constructor Abs s t. We occasionally
leave the object type arguments of the constructors implicit and write AM and
M(N) for Abs st M and App st M N, respectively. The set family of lambda
terms is equipped with a structure of a monad TLC on the category Set’™c as
follows [I1]: the family n"-C is given by the family of constructors Var, and the
substitution map is given by capture-avoiding simultaneous substitution:

oxy : Set” (X, TLC(Y)) — Set” (TLC(X), TLC(Y)) .

Similarly, with the same operations 1 and o, we can consider it as a relative
monad on the functor ATmc,

TLCA : Set™mc — preTme |

The underlying object map TLCA associates, to each set family V', the family of
lambda terms in context V', equipped with the diagonal preorder, corresponding
to syntactic equality:

TLCA: V — (TLC(V), bric(v))

We equip each set TLC(V)(t) of lambda terms over context V' of object type ¢
with a preorder taken as the reflexive—transitive closure of the relation generated
by the beta rule

AM(N) € M= N] (8)

and its propagation into subterms:
TLCB: V (TLC(V),ﬁ;LC(V))

The beta rule in states that the application of a lambda abstraction
with body M to an argument N reduces to the term M in which the term NV
is substituted for the fresh variable of M — recall from above that M lives in
an extended context — in a capture—avoiding manner. This assignment defines
a relative monad TLCS on the functor AT : Set” — Pre’.

Modules over relative monads and their morphisms are defined in [I], together
with several constructions of modules. Recall that modules over P with codomain
£ and morphisms between them form a category called RMod(P, £). We give
some examples of modules and module morphisms over the monad TLCg, which
hold analogously for the monad TLCA:

Ezxample 5 cont.). The map TLCS : V +— TLCB(V) yields a module over
the relative monad TLCS, the tautological TLCG—module TLCGE. Given V' € Set”
and s € T, we denote by V* the context V enriched by an additional variable of
type s. The map TLCG® : V +— TLCB(V®) inherits the structure of a TLCS-module
from the tautological module TLC3. We call TLCS? the derived module with respect
to s € T of the module TLCB. Given ¢t € T, the map V + TLCB(V)(t) : Set” —
Pre inherits a structure of a TLCS—module, the fibre module [TLCG]; with respect
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tot € T. Given s,t € T, the map V — TLCB(V)(s ~ t) x TLCB(V)(s) inherits a
structure of a TLCG-module. Finally, the constructors of abstraction Abs s t and
application App s t are carriers of morphisms of TLCS-modules:

AbSS’t : [TLCﬁS]t — [TLCﬂ]Swt s Apps,t : [TLC/B}Swt X [TLCﬂ}S — [TLCﬂ}t .

Analogous remarks hold for the monad TLCA and modules over this monad.

As in[Ex4l we consider a language over a set T of types as a (relative) monad on
AT, Translations between languages are given by colaz morphisms of monads:

Definition 6. Suppose given two relative monads P : C LD and Q:C Ep.a
colax morphism of relative monads from P to Q is a quadruple h = (G,G', N, )
of a functor G: C — C', a functor G’ : D — D’ as well as a natural transformation
N : F'G — G'F and a natural transformation 7 : PG’ — GQ such that the
following diagrams commute for any objects ¢, d and any suitable morphism f:

G/"’P(f) c ! f
G'Pe > G/ Pd FGe Yra'Fe "y G/ Pe
Te Td Te
- - ng, -~
0Ge y QGd OGe.

o (‘rdoG’foNc)

Given a morphism of relative monads h : P — @ and a Q—module N with
codomain &, we define the pullback P-module h* N, also with codomain &:

Definition 7. We define the pullback of N along h with object map ¢ — M (Gc)
and with substitution map, for f : Fc — Pd, as <" M(f) :== ¢M(140G'f o N,.).
The pullback extends to module morphisms and is functorial.

Given two languages over different object types T and T”, modelled as relative
monads P and Q on AT and AT, respectively, we model a translation from P to
Q by a colax monad morphism whose underlying functors are retyping functors:

Definition 8 (Retyping Functor). Let g : T — T’ be a map of sets, and
let C be a cocomplete category. The map g induces a functor g* : cr - cT by
postcomposition, W — W o g. The retyping functor g : CT — €T associated to
g : T — T is defined as the left Kan extension operation along g, that is, we
have an adjunction g - g*.

Remark 9. We are going to use the following instance of [Def, 6t P and @ are
monads — e.g., languages — on AT and A", for sets T and T” of object types.
The functors G and G’ are the retyping functors (cf. [Def_§)) associated to some
translation of types g : T — T’, and N is the identity transformation. Then 7
denotes a translation of terms from P to Q:

T

A P
Set” > Pre” Set” > Pre”
g 14 g 7 [/ g
Set” AT > Pre’ Set” o Pre".
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A family of constructors, such as the family (Abs;¢)s ez of [EX Tl is modelled
via a family of module morphisms of suitable domain and codomain. Equiva-
lently, via uncurrying, we can consider such a family as one module morphism
between two suitable modules: intuitively, the idea is to write Abs(V,s,t) :
TLCB(V?®)(t) — TLCB(V)(s ~~ t) instead of Abs, (V). For this to work, an
object of the domain category of the source and target modules of Abs must be
of the form (V,s,t), where V' is a context and s,t € T c. More generally:

Definition 10 (Pointed index sets). Given a category C, a set T and a
natural number n, we denote by CL the category with, as objects, diagrams of
the form n LY C, written (V,t1,...,t,) with t; := t(i). A morphism h
to another such (W,t) with the same pointing map t is given by a morphism
h:V — W inCT.

Any functor F : CT — DT extends to F,, : CI — DI wvia F,(V,t) := (FV,t).
Also, any relative monad R over F induces a monad R,, over F,.

Given a map of sets g : T — T', by postcomposing the pointing map with g,
the retyping functor (cf. generalizes to the functor

gn):Cr —cl’ . (Vi) — (§V.got)
The category CI consists of T™ copies of CT', which do not interact. Due to the
“markers” (t1,...,t,) we can act differently on each copy, cf. [Defs. 12| and I3

Two important constructions on modules over monads of [2], derivation and
fibre modules, carry over to modules over monads on AT Intuitively, derivation
corresponds to considering terms in an extended context, whereas the fibre cor-
responds to picking terms of a specific object type. Since we consider varying
sets of types, the object type for context extension and fibre is chosen through
a natural transformation, which picks an element of any set.

Given u € T, we denote by D(u) € Set” the context with D(u)(u) = {*} and
D(u)(t) = 0 for u # t. For a context V € Set” we set V** :=V + D(u).

Given a category C and n € N, we denote by 7C,, the category an object of
which is a triple (7, V,t) of a set T', a T—indexed family V of objects of C and a
vector t of length n of elements of T'. Note that for a fixed set T, the category
CI' is the fibre over T of the forgetful functor 7U,, : 7C,, — Set which maps an
object (T, V,t) to its indexing set T'. Let 1 : 7C,, — Set be the constant functor
mapping to the singleton set. For a natural transformation 7 : 1 = 7U,,, we write
7(T,V,t) :=7(T,V,t)(x) € T, i.e. we omit the argument from the singleton set.
Intuitively, such 7 picks an element of T' of any object (T, V,t) € TC,,.

Example 11. For 1 < k <n, we denote by k: 1 = 7U, : 7C,, — Set the natural
transformation such that k(T,V,t)(x) := t(k).

Definition 12 (Context Extension). Let 7 be as above, and let T be a fized
set. Given a monad P on AL and a P-module M with codomain £, we define the
derived module of M with respect to 7 by setting M7 (V,t) := M(V*7(T:V:0) t),
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Definition 13 (Fibre). Let 7 be as in[Def. 13 Let P be a monad on AL and
M be a P-module with codomain category EL'. The fibre module [M], of M with
respect to 7 has object map (V,t) — M (V,t)(7(T, V,t)), that is, the component
7(T,V,t) of M, forgetting also the pointing map t.

Example 14 (Ex_3 cont.). Let T := Tric. According to we have a rela-
tive monad — and its associated tautological module — TLCS, on the functor
AT . Set; — Prej. Let i : 1 = TU, : TCy — Set, for i = 1,2, be a natural
transformation as in [Ex. 11l Then we have a TLCB,—module

TLCB,' : (V,s,t) > TLCB2(V®, 5,1) .
We also have a TLCS,-module
[TLCByJz & (V, 5,8) o TLCH (Vs £)(8) -
Again, as in [Ex._ 5 analogous remarks hold for TLCA.

Remark 15 (Module of Higher Degree corresponds to a Family of Modules). Let
T be a set and let R be a monad on the functor A”. Then a module M over
the monad R,, corresponds precisely to a family of R-modules (My)tern by
(un)currying. Similarly, a morphism « : M — N of modules of degree n is

equivalent to a family (at)tern of morphisms of modules of degree zero with
Qg Mt — Nt‘

3 Signatures, Representations, Initiality

We combine the techniques of [2] and [I] in order to obtain an initiality result for
simple type systems with reductions on the term level. As an example, we specify,
via the iteration principle stemming from the universal property, a semantically
faithful translation from PCF with its usual reduction relation to the untyped
lambda calculus with beta reduction. Analogously to [I], we define a notion of
2-signature with two levels: a syntactic level specifying types and terms of a
language, and, on top, a semantic level specifying reduction rules on the terms.

The syntactic level itself — given by a I-signature (S,X), cf. [Def 29 —
specifies the types of the language, via an algebraic signature S, as well as terms
that are typed over the types specified by S, via a signature X' over S. In a first
result (cf. [Cem. 34) we characterize the language generated by a 1-signature,
and equipped with the equality preorder, as an initial object of a category of
representations. An instance of this theorem is given in [Ex. 22 where TLCA,
equipped with two module morphisms given by the constructors Abs and App,
is characterized as the initial representation of a suitable 1-signature.

Afterwards we equip 1-signatures with inequations, yielding 2-signatures (cf.
[Def"42)). We prove an initiality result for those 2-signatures (cf. [[hm. 44)), an
instance of which characterizes the simply—typed lambda calculus TLCS with
beta reduction as initial representation (cf. [Ex_43)).
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Signatures for Types. We consider sets of types that are specified by algebraic
signatures, which are presented in [2]. We review briefly:

Definition 16 (Algebraic Signature). An algebraic signature is given by a
family of natural numbers.

Intuitively, each natural number of such a family specifies the number of argu-
ments of its associated type constructor.

Example 17. The types of the simply—typed lambda calculus are specified via
the algebraic signature Stic := {*:0, (~):2}.

Ezample 18. The language PCF [14] is a simply-typed lambda calculus with a
fixed point operator and arithmetic constants. The signature of the types of
PCF is given by Spce := {¢ : 0, 0: 0, (=) : 2}. A representation T of Spcr
is given by a set T and three operations of suitable arities. A morphism of
representations is a map of sets compatible with the operations on either side.

Lemma 19. Let S be an algebraic signature. The category of representations of
S has an initial object S.

Signatures for Terms. For the rest of the section, let S be a signature for
types. Signatures for terms over S are syntactically defined as in [2]. We call
degree of an arity the number of object type variables appearing in the arity. For
instance, the signature X7 ¢ of simply—typed lambda terms over the signature
Stic (cf. [EXTT) is given by two arities of degree 2:

ric:={abs: [([1,2)] = (1 ~2), app:[(,1~2),(],D] =2} . (1)

Intuitively, the numbers vary over object types. More precisely, for any repre-
sentation of St ¢ in a set T', the numbers vary over elements of 7.

In order to define representations of such a signature (.5, X'), we need to con-
sider set families where the indexing set is equipped with a representation of the
type signature S:

Definition 20. Given a category C — e.g., the category Set of sets — we define
the category SC,, to be the category an object of which is a triple (T,V,t) where
T is a representation of S, the object V € CT is a T —indexed family of objects of
C and t is a vector of elements of T of length n. We denote by SU,, : SC,, — Set
the functor mapping an object (T, V,t) to the underlying set T

We have a forgetful functor SC,, — TC, which forgets the representation
structure. On the other hand, any representation T of S in a set T gives rise to
a functor CI' — SC,,, which “attaches” the representation structure.

Recall from [2] that S(n) denotes terms of S with free variablesin {1,...,n}. The
meaning of a term s € S(n) as a natural transformation s : 1 = SU,, : SC,, — Set
is given by recursion on the structure of s:
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Definition 21 (Canonical Natural Transformation). Let s € S(n) be a
type of degree n. Then s denotes a natural transformation s : 1 = SU, : SC, —
Set defined recursively on the structure of s as follows: for s = a(ay,...,ay) the
image of a constructor a € S we set

s(T,V,t) = alar (T, V,t),...,a(T, V,t))

and for s = m with 1 < m < n we define s(T,V,t) = t(m). We call a natural
transformation of the form s € S(n) canonical.

The natural transformations of [Ex, 11] yield examples of canonical transforma-
tions. We now define representations of the l-signature (Stic, Zric) of the
simply—typed lambda calculus. Afterwards we define general 1-signatures and
their representations.

Ezample 22 cont.). Let S := Stic be the signature for types of TLC as
in [Ex. 171 We denote by i : 1 = SUs : SCy — Set, for i = 1,2, the natural trans-
formations defined analogously to those of [Ex. 14l We define the transformation
1~2:1= SU; as

(1 2)(V, s, )(x) =5

The constructors of the simply—typed lambda calculus thus constitute the car-
riers of two module morphisms,

Abs : [TLCA, ]y — [TLCA] s
App : [TLCAQ]]WQ X [TLCAQh — [TLCAQ}Q . (2)

Altogether we model the simply—typed lambda calculus with equality relation
via the following categorical structure:

— the relative monad TLCA on AT and
— two morphisms of TLCAs—modules Abs and App of type as in [Disp. (2)]

We thus define a representation of the simply—typed lambda calculus, specified

by the signature (Stic, Zric) (cf. Disp. (1)]), as a representation T of Stic in a
set T, a monad P on AT and two morphisms of P,~modules

Abs : [Pgl]g — [Pghwg and App : [Pghwg X [Pgh — [PQ]Q .

Together with a suitable definition of morphisms of representations, this yields
a category in which the triple (TLCA, Abs, App) is the initial object.

In general, an arity over S of degree n € N is given by a pair of functors, each
of which associates, to any suitable monad P, a source dom(s, P) and a target
dom(s, P) of a P,~module morphism. Each such functor is called a half-arity.
Representing an arity in the monad P then means specifying a module morphism
dom(s, P) — cod(s, P).

We define the source and target categories of half-arities; an object of the
source category is a pair of a representation of S in a set T' and a monad on AT,
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Definition 23 (Relative S—Monad). The category S-RMnd of relative S—
monads is the category whose objects are pairs (T, P) of a representation T of
S and a relative monad P on AT. A morphism from (T, P) to (T, P') is a pair
(g, f) of a morphism of S—representations g : T — T’ and a morphism of relative
monads f : P — P’ over § as in[Rem. 9.

Givenn € N, we write S-RMnd,, for the category whose objects are pairs (T, P)
of a representation T of S and a relative monad P over AL. A morphism from
(T, P) to (T', P') is a pair (g, f) of a morphism of S—representations g : T — T’
and a monad morphism f : P — P’ over the retyping functor g(n) (Def. 10).

The target categories mix modules over different relative monads:

Definition 24. Givenn € N, an algebraic signature S and a category D, we call
LRMod,, (S, D) the category an object of which is a pair (P, M) of a relative S—
monad P € S-RMnd,, and a P-module with codomain D. A morphism to another
such (Q, N) is a pair (f,h) of a morphism of relative S—monads f : P — Q in
S-RMnd,, and a morphism of relative modules h : M — f*N.

We sometimes just write the module — i.e. the second — component of an object
or morphism of the large category of modules. Given M € LRMod, (S, D), we
thus write M (V,t) or My ¢ for the value of the module on the object (V,t).

A half-arity over S of degree n is a functor from relative S—monads to the
category of large modules of degree n.

Definition 25. Given an algebraic signature S and n € N, a half-arity over S
of degree n is a functor o : S-RMnd — LRMod,,(S, Pre) which is pre—inverse to
the forgetful functor.

The basic building brick for the half-arities we consider is the tautological mod-
ule:

Definition 26. To any relative S—monad R we associate the tautological mod-

ule of R, (cf. [Def 10),
On(R) := (Rn, R,) € LRMod,, (S, Prel) .

From the tautological module, we build classic half—arities using canonical natu-
ral transformations (cf. [Def.21]); these transformations specify context extension
(derivation) and selection of specific object types (fibre):

Definition 27 (Classic Half-Arity). The following clauses define an induc-
tive set of classic half-arities, to which we restrict our attention:

— The constant functor  : R+ 1rMod(R,Pre) S a classic half-arity.

— Given any canonical natural transformation 7 : 1 = SU, (cf. [Def.21),
the point-wise fibre module with respect to T (cf. of the tautological
module O, : R+ (R, Ry,) (cf. is a classic half-arity of degree n,

[©,]; : S-RMnd — LRMod,,(S,Pre) , R [Ry], .
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— Given any (classic) half-arity M : S-Mnd — LMod,, (S, Pre) of degree n and
a canonical natural transformation T : 1 = SU,, the point-wise derivation
of M with respect to T is a (classic) half-arity of degree n,

M7 : 5-RMnd — LRMod,,(S,Pre) , R (M(R))" .

— Given two (classic) half-arities M and N of degree n, their pointwise product
of modules M x N is again a (classic) half-arity of degree n.

A half-arity of degree n thus associates, to any relative S—monad P over a set
of types T, a family of P-modules indexed by T, cf. [Rem. 15l

An arity of degree n € N for terms over an algebraic signature S is defined
to be a pair of functors from relative S—monads to modules in LRMod,, (.S, Pre).
The degree n corresponds to the number of object type indices of its associated
constructor. For instance, the arities of Abs and App of are of degree 2.

Definition 28 (Term—Arity, Signature over S). A classic arity « over S
of degree n is a pair s = (dom(a),cod(a)) of half-arities over S of degree n
such that dom(a) is classic and cod(a) is of the form [Oy]; for some canonical
transformation 7 as in [Def. 21, We write dom(a) — cod(a) for the arity «,
and dom(a, R) := dom(«)(R) and similar for the codomain and morphisms of
relative S—-monads. A term-signature X over S is a family of classic arities (of
varying degree) over S.

Definition 29 (1-Signature). A 1-signature is a pair (S, X)) consisting of an
algebraic signature S for sorts and a term—signature X over S.

Example 30 (Ez_22 cont.). The terms of the simply typed lambda calculus over
the type signature of [Ex. 17 are given by the arities

abs : [0]; = [6l1ma , app: [Oieg X [0 — [0y

both of which are of degree 2 — we leave the degree implicit. The outer lower
index and the exponent are to be interpreted as de Bruijn variables, ranging
over types. They indicate the fibre (cf. [Def 13 and derivation (cf. [Def12),
respectively, in the special case where the corresponding natural transformation
is given by a natural number as in [Def. 211

Ezample 31 (Ez_I8 cont.). The term-signature of PCF consists of an arity for
abstraction and an arity for application, each of degree 2, an arity (of degree
1) for the fixed point operator, and one arity of degree 0 for each logic and
arithmetic constant — some of which we omit:

abs: [0} — [@liz2 , app:[Olis2 x [0]1 — [0z , Fix:[Oli=1 — [O]: ,

n:x—[0], forneN , Succ:x—[0,>,, Zero?:x*x— [O],,

Definition 32 (Representation of an Arity, of a 1-Signature over 5). A
representation r of an arity o over S in an S—-monad R is a morphism of relative
modules r : dom(a, R) — cod(«, R). A representation R of a signature over S is
a given by a relative S—monad — called R as well — and a representation off
of each arity o of S in R.
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Representations of (S, X)) are the objects of a category Rep® (S, ), whose mor-
phisms are defined as follows:

Definition 33 (Morphism of Representations). Given representations P
and R of a typed signature (S, X)), a morphism of representations f : P — R is
given by a morphism of relative S—monads f : P — R, such that for any arity
a of X the following diagram of module morphisms commutes:

cod(a, f) o af = a® o dom(a, f) .

Lemma 34. For any I-signature (S, X), the category of representations of (S, X)
has an initial object.

Proof. The initial object is obtained, analogously to the untyped case (cf. [1]),
via an adjunction A, -4 U, between the categories of representations of (S, X)
in relative monads and those in monads as in [2]. We use that left adjoints are
cocontinuous, and thus preserve initial objects.

Inequations & 2—-Signatures. An inequation associates, to any representa-
tion of (S,X) in a relative monad P, two parallel morphisms of P-modules.
Similarly to arities, an inequation (of higher degree) may be given by a family
of inequations, indexed by object types. Consider the simply—typed lambda cal-
culus, which was defined with typed abstraction and application. Similarly, we
have a typed substitution operation for TLC and, more generally, for any monad
on AT (cf. [Def36). For s,t € Trc and M € TLC(V*¥), and N € TLC(V)s,
beta reduction is specified by

AM(N) ~ M[ := N] ,

where our notation hides the fact that abstraction, application and substitution
are typed operations. More formally, such a reduction rule might read as a family
of inequations between morphisms of modules

app, ;o (abss ¢ xid) < _[¥:= ],

where s,t € Tt ¢ range over types of the simply—typed lambda calculus. Analo-
gously to 1-signatures, we want to specify the beta rule without referring to the
set TTLc, but instead express it for an arbitrary representation R of the typed

signature (Stic, Xric) (cf. [Ex_30), as in

appfo (abs® xid) < [x:= ],

where both the left and the right side of the inequation are given by suitable
R—module morphisms of degree 2.

Definition 35. Let (S, X) be a 1-signature, and let U : Rep?(S, Y) — S-RMnd
be the forgetful functor. Given two (classic) half-arities dom(s) and cod(s) of
degree n € N, a half-equation « : dom(s) — cod(s) of degree n over (S, X) is
a natural transformation « : dom(s) o U — cod(s) o U. We call an inequation
classic when its codomain is given by a classic half-arity.
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Definition 36 (Substitution of one Variable as a Half-Equation). Let
T be a (nonempty) set and let P be a monad over AT. For any s,t € T and
X € Set” we define a binary substitution operation (y,z) — y[x = z] =
o ([nx,r + 2]) (y). For any pair (s,t) € T?, we thus obtain a morphism of P
modules

substl, : [P*]; x [P]s — [P]; .

Byl[Rem. 13 this family is equivalent to a module morphism of degree 2. We thus
have a half-equation of degree 2 with classic domain and codomain over any
typed signature,

subst : R — subst™ : [Ri]y x [Ra]; — [Ra] .

Example 37 (Ex_30 cont.). The following map yields a half-equation over the
signature TLC, as well as over the signature of PCF:

app o (abs x id) : R — app® o (abs™ xid®) : [R}]s x [Ra]1 — [Ra]s -

Definition 38 (Inequation). Given a signature (S,X), an inequation over
(S, %), or (S, X)-inequation, of degree n € N is a pair of parallel half-equations
of degree n. We write o < v for the inequation ().

Ezample 39 (Beta Reduction). For any suitable 1-signature — i.e. for any 1—-
signature that has an arity for abstraction and an arity for application — we
specify beta reduction using the parallel half-equations of [Def._36] and [Ex._ 37t

app o (abs x id) < subst : [@s]3 x [@2]; — [O2]2 .

Example 40 (Fizpoints and Arithmetics of PCF). We specify some of the reduc-
tion rules of PCF via inequations over the 1-signature of PCF (cf. [Ex_31)); for
space reasons we refrain from specifying all of them. The reader may fill in the
missing inequations, whose informal specification can be found, e.g., in [13].

Fix < appo (id,Fix) : [O]i=1 — [O1
appo (Pred,0) < 0 : x—[6)],
app o (Pred,app o (Succ,n)) < n : *x—[O)],
appo (Zero?,0) < T : x—[O],
app o (Zero?,app o (Succ,n)) < F : x— [0,

Definition 41 (Representation of Inequations). A representation of an
(S, X)—inequation o < v : U — V (of degree n) is any representation R over
a set of types T of (S,X) such that off < v pointwise, i.e. if for any pointed
context (X,t) € Set! x T™, anyt € T and any y € U(I}’t) 1), a®(y) < ~E(y),
where we omit the sort argument t as well as the context (X,t) from « and ~.
We say that such a representation R satisfies the inequation o < 7.

The category of representations of ((S, X)), A) is defined as the full subcategory
of RepA(S, X)) of representations satisfying each inequation of A. According to
[Bem. 13, the above inequation is equivalent to ask whether, for any t € T™, any
teT and any y € UF(X)(), af'(y) < %'(y)-
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Definition 42 (2—Signature). A 2-signature is a pair given by a 1-signature
(S,X) and a set A of classic inequations over (S, X).

Ezample 43 (Representations of TLC with 3). A representation of (St.c, Xric, )
is given by a representation (P, Abs, App) of (StiLc, Zric) over a set T “of types”
such that, for any context V € Set”, any s,t € T and any M € P*(V)(t) and
N € P(V)(s),

App, ;(Abss (M), N) < Ml[x:= NJ .

The initial such representation is given by the triple (TLCS3, Abs, App), where

Abs : [TLCﬂgl]z — [TLCB2]12
App : [TLCﬁQ]lwg X [TLCﬂQ]l — [TLCﬁQ]Q .

The above example is an instance of the following general theorem for 2—signatures:

Theorem 44. For any set of classic (S, X)—inequations A, the category of rep-
resentations of ((S,X), A) has an initial object.

A proof of the theorem can be found in the author’s PhD thesis [3].
The following remark gives a “manual” on how to use the universal property
of initiality in order to specify a translation between two languages:

Remark 45 (Iteration Principle by Initiality). The universal property of the lan-
guage generated by a 2-signature yields an iteration principle to define maps —
translations — on this language, which are compatible by construction with sub-
stitution and reduction in the source and target languages. A translation from
the language generated by (S, X, A) to the language generated by (S’, X7, A’) can
be obtained, via the universal property, as an initial morphism in Rep“ (S, X, A),
obtained by equipping the relative monad 214, underlying the target language
with a representation of the signature (S, X, A). In more detail:

1. we give a representation of the type signature S in the set S By initiality
of S, this yields a translation S — S’ of sorts.

2. Afterwards, we specify a representation of the term signature X’ in the monad
ZA’;‘, by defining suitable (families) of morphisms of ZA’;\,fmodules. This yields
a representation R of (S, ) in the monad %,

3. Finally, we verify that the representation R of (S, X) satisfies the inequations
of A, that is, we check whether, for each @ <y : dom(a) — cod(«) € A, and
for each context V, each t € § and = € dom(a)E(t), o (z) < ~F(x).

Ezample 46 (Translation from PCF to ULC). We use the aforementioned itera-
tion principle to specify a translation from PCF to ULC, which is semantically
faithful with respect to the usual reduction relation of PCF — generated by the
inequations of (and some more, see [I4]) — and beta reduction of ULC. For
space reasons, we cannot present this example here; we refer to [3]. This example
— initiality of the types and terms of PCF with its reductions, and a translation
to ULC with beta reduction via associated category—theoretic iteration operator
— has also been implemented in the proof assistant Coq. The source files and doc-
umentation are available on http://math.unice.fr/laboratoire/logiciels.
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Abstract. We study dynamic modal operators that can change the
model during the evaluation of a formula. In particular, we extend the
basic modal language with modalities that are able to swap, delete or
add pairs of related elements of the domain, while traversing an edge
of the accessibility relation. We study these languages together with the
sabotage modal logic, which can arbitrarily delete edges of the model. We
define a suitable notion of bisimulation for the basic modal logic extended
with each of the new dynamic operators and investigate their expressive
power, showing that they are all uncomparable. We also show that the
complexity of their model checking problems is PSpace-complete.

1 Introduction

Modal logics [2/4] are particularly well suited to describe graphs, and this is for-
tunate as many situations can be modeled using graphs: an algebra, a database,
the execution flow of a program or, simply, the arbitrary relations between a
set of elements. This explains why modal logics have been used in many, diverse
fields. They offer a well balanced trade-off between expressivity and computa-
tional complexity (model checking the basic modal language ML is only poly-
nomial, while its satisfiability problem is PSpace-complete). Moreover, the range
of modal logics known today is extremely wide, so that it is usually possible to
pick and choose the right modal logic for a particular application.

But if we want to describe and reason about dynamic aspects of a given
situation, e.g., how the relations between a set of elements evolve through time
or through the application of certain operations, the use of modal logics (or
actually, any kind of logic with classical semantics) becomes less clear. We can
always resort to modeling the whole space of possible evolutions of the system as
a graph, but this soon becomes unwieldy. It would be more elegant to use truly
dynamic modal logics with operators that can mimic the changes that structure
will undergo. This is not a new idea, and a clear example of this kind of logics
is the sabotage logic introduced by Johan van Benthem in [12].

Consider the following sabotage game. It is played on a graph with two players,
Runner and Blocker. Runner can move on the graph from node to accessible
node, starting from a designated point, and with the goal of reaching a given
final point. He should move one edge at a time. Blocker, on the other hand, can

L. Ong and R. de Queiroz (Eds.): WoLLIC 2012, LNCS 7456, pp. 142-[53] 2012.
(© Springer-Verlag Berlin Heidelberg 2012
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delete one edge from the graph, every time it is his turn. Of course, Runner
wins if he manages to move from the origin to the final point in the graph, while
Blocker wins otherwise. van Benthem discusses in [12] how to transform the sa-
botage game into a modal logic. van Benthem’s original idea has been studied
in several other works [6J10] where the sabotage operator is defined as:

M, w = (gs)e iff there is a pair (u,v) of M such that Mf(u oy W E o,

where Mf(u’v)} is identical to M except that the edge (u,v) has been removed
from the accessibility relation.

It is clear that the (gs) operator changes the model in which a formula is eva-
luated. As van Benthem puts it, (gs) is an “external” modality that takes evalua-
tion to another model, obtained from the current one by deleting some transition.
It has been proved that solving the sabotage game is PSpace-hard, while the
model checking problem of the associated modal logic is PSpace-complete and
the satisfiability problem is undecidable. The logic fails to have both the finite
model property and the tree model property [G/10].

In this article, we will investigate various model changing operators. The first
one, (sw), has the ability to swap the direction of a traversed arrow. The (sw)
operator is a ) operator — to be true at a state w it requires the existence of an
accessible state v where evaluation will continue— but it changes the accessibility
relation during evaluation — the pair (w, v) is deleted, and the pair (v, w) added
to the accessibility relation. A picture will help understand the dynamics of (sw).
The formula (sw)(T is true in a model with two related states:

(sw)QT OT
w v Y A

As we can see in the picture, evaluation starts at state w with the arrow pointing
from w to v, but after evaluating the (sw) operator, it continues at state v with
the arrow now pointing from v to w. We will investigate two other dynamic
operators in this article. (Is), for local sabotage, is a ¢ operator that destroys the
traversed arrow, while (br), for bridge, models the opposite situation: it adds an
arrow to an inaccessible point of the model and moves over there.

We have chosen these model changing operators with the intention of covering
a sufficiently varied sample of alternatives. The goal is to investigate whether the
differences among them lead to different properties of the logics they defined,
and how they vary in expressive power. Clearly, other operators could have
been included in this exploration, and actually some alternative choices have
been already investigated in the literature, e.g., the adjacent sabotage operator
discussed in [10].

Summing up then, we will study and compare the expressive powers of
ML((sw)), ML({gs)), ML((ls)) and ML({br)), and we provide complexity

results for their model checking problems.
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2 Syntax and Semantics

The syntax of the dynamic modal logics we will study is a straightforward ex-
tension of the basic modal logic (see [2]):

Definition 1 (Syntax). Let PROP be a countable, infinite set of propositional
symbols. Then the set FORM of formulas over PROP is defined as:

FORM == L |p|—¢| oAt | #p,

where p € PROP, & € {0, (sw), (gs), (Is), (br)} and ¢, € FORM. Other opera-
tors are defined as usual. In particular, By is defined as —4—p.

Formulas of the basic modal language ML are those that contains only the ¢
operator beside the Boolean operators. We call ML(#) to the extension of ML
allowing also the & operator, for & € {(sw), (gs), (Is), (br)}.

Semantically, formulas of ML((sw)), ML({gs)), ML((ls)) and ML((br)) are
evaluated in standard relational models, and the meaning of all the operators
of the basic modal logic is unchanged. When we evaluate formulas containing
dynamic operators, we will need to keep track of the edges that have been mo-
dified. To that end, let us define precisely the models that we will use. In the
rest of this article we will use wv as a shorthand for {(w,v)} or (w,v). Context
will always disambiguate the intended use.

Definition 2 (Models and Model Updates). A model M is a triple M =

(W, R, V), where W is a non-empty set whose elements are called points or states;

R C WXW is the accessibility relation; and V : PROP +— P(W) is a valuation.
Given a model M = (W, R, V), we define the following notations:

(swapping) M, = (W, R:, V), with R}, = (R\wv)Uvw, wv € R.

vw?

(sabotaging) M, = (W,R,,,V), with R, = R\wv, wv € R.

wv?

(bridging) ME, = (W,R},, V), with R}, = RUwv, wv € (WxW)\R.

wv?

Let w be a state in M, the pair (M, w) is called a pointed model; we will usually
drop parenthesis and call M,w a pointed model.

We are now ready to introduce the semantics.

Definition 3 (Semantics). Given a pointed model M,w and a formula ¢ we
say that M, w satisfies ¢, and write M,w = ¢, when

M,w=p iff weV(p)

MowE-p  iff MjwEe

MwEeAY iff MywE e and M,w E

M,w = Op  iff for somev €W s.t. wRv, M,v = ¢

E (sw)p iff for somev € W s.t. wRv, M v =@

E (gs)p iff for some v,u € W, s.t. vRu, M, w = ¢
E (Is)p iff for somev € W s.t. wRv, Mz, v = ¢

E (br)y iff for somev €W s.t. -wRv, Mt v E .

b
b

M, w
M, w
M, w
M, w

)
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@ 1is satisfiable if for some pointed model M,w we have M,w = .

We write M, w =¢ N, v when both models satisfy the same £-formulas, i.e.,
for all o € £, M,w = ¢ if and only if N',v = . We will drop the ¢ subindex
when no confusion arises.

Once syntax and semantics are in place, the following result that distinguishes
the dynamic logics from ML can be easily established. A basic result for ML
shows that it has the tree model property: every satisfiable formula of ML can
be satisfied at the root of a model where the accessibility relation defines a tree
(i.e., there is a root, the relation is irreflexive, all elements different from the
root can be reached from the root via the transitive closure of the accessibility
relation, and no element has two different predecessors).

Theorem 4. ML(#) does not have the tree model property, for ¢ € {{sw), (gs),

(Is), (br)}

Proof. For details see the appendix. We present formulas that ensure that the
accessibility relation does not define a tree. The (gs) case has already been proved
in [6]. Suppose the following formulas hold at some point w:

1. pA (A< <i<3 EIZ—\p) (sw)OOp, then w has a reflexive successor;
2. OOT A [Is]OL then w is reflexive;
3. 00T A [gs]OL then w is reflexive;
4. (br)OL, then w and some different point v are unconnected.
In each case, the formula cannot be satisfied in a tree. a

As the four logics we introduced are conservative extensions of ML, the for-
mulas above show that each is strictly more expressive than ML. A natural
question is whether these dynamic logics are different from each other. We will
use bisimulations to answer this question.

Because we need to keep track of the changes on the accessibility relation that
the dynamic operators can introduce, we will define bisimulations as relations
that link a point of evaluation together with the current accessibility relation.

Definition 5 (Bisimulations). Given models M = (W, R,V) and M’ = (W',
R, V'), together with points w € W and w' € W' we say that they are bisimilar
and write M,w < M’ w' if there is a relation Z C (W x P(W?2)) x (W' x
P(W'?)) such that (w, R)Z(w', R') satisfying conditions from Figure Q. Which
conditions have to be satisfied depends on the operators present in the language.
If needed, we write <+ ¢ to indicate that the bisimulation corresponds to £.

Theorem 6 (Invariance for Dynamic Logics). For ML(¢), ¢ € {{sw), (gs),
(Is), (br)}, M, w < pqz9) M 0" implies M, w =pqp9) M 0"

Proof. We will only prove the ML((sw}) case by structural induction.

The base case holds by (agree), and the A and — cases are trivial.

[Op case:] Let M = (W, R, V) and M’ = (W', R, V'). Suppose M,w = Q.
Then there is v in W s.t. wRv and M,v | ¢. Since Z is a bisimulation, by
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always (nontriv) Z is not empty
always (agree) If (w,S)Z(w’,S"), w and w’' make the same propositional variables
true.
o (zig) If wSv, there is v'eW’ s.t. w'S"v" and (v, S)Z(v', ")
(zag) If w’S"v', there is vEW s.t. wSv and (v, S)Z(v', S’)
(sw) (sw-zig) If wSw, there is v'eW’' s.t. w'S'v" and (v, S;,)Z (', S )

(sw-zag) If w'S"v', there is veW s.t. wSv and (v, Sp)Z (v, S W)
(gs)  (gs-zig) If vSu, there is v, v'eW’ s.t. v'S'v and (w, S,,)Z(w', S../)
(gs-zag) If v'S'u/, there is v,u€W s.t. vSu and (w, Sy,)Z(w', S’ )

(Is)  (ls-zig) If wSw, there is v'€W’ s.t. w'S"v" and (v, S,,)Z (v, S/ ,)
(Is-zag) If w'S'v’, there is vEW s.t. wSv and (v, Sy,)Z(V', S0, ,,)

(br)  (br-zig) If —wSv, there is v'€W’ s.t. =w’'S"v" and (v, S;5,)Z (v, S5F,)
(br-zag) If —w'S"v', there is vEW s.t. ~wSv and (v, S5,)Z(v', S’ )

w'v

Fig. 1. Conditions for M L(#)-bisimulations

(zig) we have v" € W' s.t. w' R'v" and (v, R)Z(v', R'). By inductive hypothesis,
M’ v = ¢ and by definition M’ w’ |= Qp. For the other direction use (zag).

[(sw)p case:] For the left to the right direction suppose M, w | (sw)p. Then
there is v € W s.t. wRv and M}, v = ¢. Because Z is a bisimulation, by
(sw-zig) we have v/ € W’ sit. w' RV and (v, R}, )Z (v, R),,/). By inductive
hypothesis, M5, ,,v" = ¢ and by definition M’,w’ = (sw)g. For the other
direction use (sw-zag). O

3 Expressive Power

With the appropriate notions of bisimulation at hand we can now start the
comparison of the expressive power of the different dynamic modal logics we
introduced. We will use the following standard definition of when a logic is at
least as expressive as another.

Definition 7 (£ < L£'). We say that L' is at least as expressive as L (notation
L < L) if there is a function Tr between formulas of L and L' such that for
every model M and every formula ¢ of L we have that

ML ¢ iff M=o Tr(p).

M is seen as a model of L on the left and as a model of L' on the right, and we
use in each case the appropriate semantic relation |=r or Epr as required.
We say that £ and L' are uncomparable if £L £ L' and L' & L.

By inspecting suitable models we can establish the following result.

Theorem 8. For all 41,42 € {(sw), (gs), (Is), (br)} with &1 # &2, ML(#1)
and ML(¥2) are uncomparable.
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M M Distinct by Bisimilar for

. . Qo T MCL((Is))
v W' (g5)T ML((sw))
. G ey (s)0T ML((sw))
w w (gs)OT ML((br))
y * ¢ (sw){sw)OOOOL ML((gs))
l l [br][br] L ML((Is))

Ceetmes Yo (sw)oOL ML((br))
w o—.>o<. w’ o<—>o<. <l8><>|:]L ME((gs))

Fig. 2. Bisimilar models and distinguishing formulas

Proof. In Figure Pl we summarize our results by presenting pairs of models that
are bisimilar for a given logic and distinguishable by another. More precisely,
the formulas given in the third column are false at M, w and true at M’ w’.

That the models are bisimilar for the given logics can be easily verified for
the first two rows. In the third row, the given models are bisimilar for ML({gs))
and ML({ls)) because they are bisimilar for ML, they are acyclic and (for
ML({gs))) they contain the same number of edges. In the fourth row, both
models are ML((br))-bisimilar since they are infinite, hence one can add as
many links as needed to points that are modally bisimilar.

Finally, the pointed models of the last row are the same graph with a different
evaluation point. The graph is a star that has infinitely many ingoing branches,
and infinitely many ingoing-outgoing branches. w is a point located at the end
of an ingoing branch, and w’ is at the end of an ingoing-outgoing branch. Let us
present the ML({gs))-bisimulation as a game between Spoiler and Duplicator.
If Spoiler moves to the center of the star, Duplicator can do the same and
both situations become undistinguishable. If Spoiler deletes one of the ingoing
edges that has w or w’ as origin, then Duplicator does the same on the other
graph, and any further edge deletion can also be imitated. If Spoiler deletes the
outgoing edge that goes from the center of the graph towards w’, then Duplicator
can delete any outgoing edge without changing the graph, given that there are
infinitely many edges of both kinds. O

4 Model Checking Dynamic Logics

In this section we establish complexity results for the model checking task in the
various dynamic modal logics we presented. All the results are established using a
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similar argument: hardness proofs are done by encoding the satisfiability problem
of Quantified Boolean Formulas (QBF) [8] as the model checking problem of each
logic. While the idea behind the encoding is the same for all the logics involved,
the encoding needs to be slightly modified in each case taking into consideration
the semantics of the various dynamic operators.

PSpace-hardness for global sabotage was already proved in [7J6], but we pro-
vide here a more direct proof.

Theorem 9. For ¢ € {(sw), (gs), (Is), (br)}, model checking for any of the log-
ics ML(#¥) is PSpace-hard.

Proof. We will reduce the PSpace-complete satisfiability problem of Quantified
Boolean Formulas (QBF) to the model checking problem of each of these logics.
For a complete proof of the case of ML({sw)), consult the appendix.

Consider ML({sw)). Let a be a QBF formula with variables {z1,...,z}.
Without loss of generality we can assume that « has no free variables and no
variable is quantified twice. One can build in polynomial time the relational
structure My = (W, R, V) over a signature with one relational symbol and
propositions {pT,p1,...,pr}, where:

 SpTIS 7N

Vipr) = {w} |1<i<k) proe )
R = {(w,w}), (w,w?) |1 <i<k} D1 D1 Pk Dk

Let ()" be the following linear translation from QBF to ML({sw))

(Bwi.0)’ = (sw)(ps A O0))
(zi)" =0 ApT)
(ma)  =—(a)
(@np) = (@) A(B)
It remains to see that « is satisfiable if, and only if, My, w | (a)" holds. This
part of the proof is in the appendix. This shows that the model checking problem
of ML({sw)) is PSpace-hard.
For ML({(gs)) and ML((ls)), we use the following model:

W ={wyu{whwd|1<i<k} / “\\‘
pz) w%’w ° pPT . .

v PT e

! w)’(wo w) D1 b1 Pk Dk
1

Let ()’ be the following linear translation from QBF to ML({ls)):

(Fzi.a) = (Is)(pi A O()')
() =0 ApT)
(ma)" ==(a)

(anB) =(a) AN(B).
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From QBF to ML({gs)), we provide the following translation:

(Bzi.)’ = (gs) (=0 (s A pT) V =0(pi A =pT)) A O(pi A O(a)'))
(z:)" = =0(pi ApT)
(ma)’  ==(a)f
(@np) = () N (B).
In both cases, showing that a QBF formula « is satisfiable if, and only if,
M, w = () holds can be done similarly to the case of ML((sw)).
Finally, to prove PSpace-hardness for ML({br)), build the following model:

i e N ZAN

Vipr) = {w! |1<i <k}

R ={(wj,w), (w,w) | 1 <i <k} b PR P
And use the following linear translation ( )’
(Fzi.0)" = (br)(pi A O(a)’)
(%) = Q(pi ApT)
(m@)’  ==(a)
(@A B) = () A (B) .

Theorem 10. Model checking for ML({sw), {gs), (Is), (br)) is in PSpace.

Proof. The evaluation of the truth of a formula in a model can be done by a
polynomial space algorithm that follows Definition [l

The algorithm works on the same copy of the model, except when dealing
with formulas whose main connector is (sw), (gs), (Is) or (br) (i.e., dynamic
operators). In such cases, by proceeding depth-first among at most |W| possible
choices, the algorithm only allocates as much additional space as the size of the
initial model to store the modified copy. This memory can be reclaimed once
the result of the recursive call is known. The maximum number of copies of the
input model in memory is bounded by the nesting of dynamic operators of the
input formula. Hence the algorithm runs using only polynomial space. a

With the previous results we get:

Theorem 11. For ¢ € {(sw), (gs), (Is), (br)}, model checking for any of the
logics ML(®) is PSpace-complete.

5 Conclusions

In this article we investigate dynamic modal logics that can modify the model
during the evaluation of a formula. Dynamic Epistemic Logics (DEL) as those
investigated in [IBITIIT3] are well known examples of languages which can also
update the model during evaluation. The standard update operation used in
DELSs is to move evaluation to a submodel defined by a certain ‘announcement’,
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e.g., to the model representing the fact that ¢ is now known, obtained as the
restriction to all the nodes satisfying a formula ¢. Instead, in this article we
investigate logics that can explicitly modify the accessibility relation, as the
sabotage logics first introduced by van Benthem in [12].

We introduce a number of operators with both local and global effects, and
which can add, delete and modify edges in the accessibility relation. The goal
was to investigate the different degrees of liberty that the operators offered, and
how much overlap there was between the logics they defined, and the models
they could describe.

We show in Sections 2 and [B] that the languages obtained by the extension of
the basic modal logic with each of the dynamic operators can be characterized
using bisimulations. Actually, even though each operator requires a particular
pair of zig and zag conditions, the definition is modular and the set up homo-
geneous. All the bisimulations involved are of the same type, linking a pair of
point of evaluation and accessibility relation in one model, with a similar pair
in the other. Moreover, a suitable definition of bisimulation for the basic modal
logic extended with any combination of the new dynamic operators can be ob-
tained by using the adequate zig and zag conditions associated to the operators
involved. Summing up then, even though the logics obtained are different in each
case, they are all amenable to fairly classical modal analysis.

In Section ] we turn to model checking, and show that the complexity of this
reasoning task is PSpace-complete for all the logics considered. Once more, the
proofs are fairly homogeneous in all cases. The general set up is the encoding
of the PSpace-complete QBF satisfiability problem in each of the logics. In each
case, a suitable representation for the assignment and the concrete translation
used needs to be defined, but once this is done the proof is similar.

More precisely, we established the complexity of the combined model check-
ing task, measured in function of the length of an input model and an input
formula. It is also possible to consider the task of model checking against a fixed
model, measuring its complexity in function of the size of an input formula (this
is known as the formula complexity). One can also fix a formula and measure
the complexity of model checking in function of the length of an input model
(known as the program complexity or data complexity). Both notions were in-
troduced in [I4], and it has been shown in [6] that the formula complexity and
the program complexity of ML({gs)) are respectively linear and polynomial. We
believe that the proof generalizes to ML((ls)), ML({sw)) and ML({br)) with
identical results.

Another natural direction for future research would be to investigate the com-
plexity of the satisfiability problem of these logics. From [6], we already know
that ML({gs)) is undecidable. We conjecture that using techniques from [3I[IJ,
it is possible to prove that the problem is undecidable in all remaining cases.
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Appendix

Theorem 4. ML(#) does not have the tree model property, for ¢ € {{sw), (gs),
(Is), (br)}

Proof. We are going to list formulas that force no-treelike models:

1.

The formula
e=pA( /\ O'—p) A (sw)OOp
1<i<3
is true at a state w in a model, only if w has a reflexive successor.

Suppose we evaluate @ at some state w of an arbitrary model. The ‘static’
part of the formula pA (A, ;5 O°—p) makes sure that p is true in w and that
no p state is reachable within three steps from w (in particular, w cannot be
reflexive).
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Because (sw)OOp is true at w, there should be an R-successor v where
QOp holds once the accessibility relation has been updated to R},,. That
is, v has to reach a p-state in exactly two R, -steps. But the only p-state
sufficiently close is w which is reachable in one step. As w is not reflexive, v
has to be reflexive so that we can linger at v for one loop and reach p in the
correct number of states.

2. The formula
e=00T A [ls]OL

is true at a state w in a model, only if w is reflexive.

Suppose we evaluate ¢ at some state w of an arbitrary model. On one
hand, the ‘static’ part of the formula QT ensures it is possible to take two
accessibility relations. On the other hand, the ‘dynamic’ part of the formula
[ls]OL tells us that after taking any accessibility relation and eliminating
it, it is no longer possible to go anywhere else. This can only happen if the
point w is reflexive and does not have any other outgoing links.

3. The formula
e =00T A [gs]OL

(from [0]) is true at a state w in a model, only if w is reflexive.
4. The formula
v = (br)dL

is only satisfiable in models that have at least two unconnected points. 0O

Theorem 11. Model checking for ML({sw)) is PSpace-hard.

Proof. We will reduce the PSpace-complete satisfiability problem of Quantified
Boolean Formulas (QBF) to the model checking problem of ML({sw)).

Let a be a QBF formula with variables {1, ...,z }. Without loss of generali-
ty we can assume that « has no free variables and no variable is quantified twice.
One can build in polynomial time the relational structure My, = (W, R, V') over
a signature with one relational symbol and propositions {pT,p1,...,pr}, where:

i e B

Vipr) ={w; [1<i<k}
R = {(w,w}), (w,w?) |1 <i<k} pL pr T Pk Dk

%

Let ()" be the following linear translation from QBF to ML({sw))

)" = (sw)(pi A O()')
zi) =0 ApT)
a)  =-(a)

anp) =(a) A(B).

It remains to see that « is satisfiable iff My, w E («)’ holds. Let us write
v =gt o if valuation v @ {z1,...,25} — {0, 1} satisfies . For a model M with
relation R we define vg : {z1,..., 7} as “vg(z;) = 1 iff (w,w}) € R, in the
present case, iff the link between w and w} has been swapped.

dz

(
(
(
(
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Let 8 be any subformula of . We will show by induction on 5 that M,w =
(8)" it vp E=qbr B. The first observation is that R satisfies i) if z; is free in S,
then (w,w;}) & R or (w,w!) ¢ R but not both, and ii) if ; is not free in 3 then
(w,w}) € R and (w,wY) € R. From here it will follow that My, w | (a) iff
v E=qbt @ for any v since a has no free variables, iff « is satisfiable.

For the base case, vg FEqvr @i iff (w,w}) ¢ R which implies (from the defi-
nition of M) M,w | (x;)". For the other direction, suppose M,w W (z;)".
Hence M, w = O(p; A pt) which implies (w,w}) € R and ug FEqbt ;-

The boolean cases follow directly from the inductive hypothesis.

Consider the case § = Jz;.y. Since no variable is bound twice in « we know
(w,w}) € R and (w,w?) € R. We have vg Equr B iff (vr[z; — 0] Eqbe v or
vg[T; = 1] Eqbr ) iff (Ungw Eqbs 7y or Vgt Eqbf 7). By inductive hypothesis,
this is the case if and only if (/\/lw?w,w? E O(y) or /\/lwilw,wi1 E O(y)) iff
M,w = (sw)(p; A O(Y)) it Myw = (3ziy). |
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Abstract. We provide general conditions on hypersequent calculi that
guarantee standard completeness for the formalized logics. These condi-
tions are implemented in the PROLOG system AziomCalc that takes as
input any suitable axiomatic extension of Monoidal T-norm Logic MTL
and outputs a hypersequent calculus for the logic and the result of the
check. Our approach subsumes many existing results and allows for the
computerized discovery of new fuzzy logics.

1 Introduction

Standard completeness, that is completeness of a logic with respect to algebras
based on truth values in [0, 1], has received increasing attention in the last few
years. In a standard complete logic connectives are interpreted by suitable func-
tions on [0, 1], and this makes it a fuzzy logic in the sense of [I1]. For example,
conjunction and implication can be interpreted by a t-norml} and its residuum
or by classes of t-norms. Godel and Lukasiewicz being prominent examples of
logics based on particular t-norms, while e.g. Monoidal t-norm logic MTL [§] is
based on the class of left-continuous t-norms. MTL is a useful basic system as
many interesting logics, including Godel and Lukasiewicz logics, can be obtained
by extending MTL with suitable properties expressed as Hilbert axioms.

Checking or discovering whether a logic is standard complete is sometimes a
challenging task which deserves a paper for each specific logic, e.g., [5,[10,12].
It is traditionally established by semantic techniques which are inherently logic-
specific. Given a logic L described in a Hilbert-style system, semantic proofs
usually consist of the following four steps (see, e.g., [5L7, 810} TTLT5]):

1. The algebraic semantics of the logic is identified (L-algebras).

2. It is shown that if a formula is not valid in an L-algebra, then it is not valid
in a countable £-chain (linearly ordered L-algebra).

3. It is shown that any countable L£-chain can be embedded into a countable
dense L-chain by adding countably many new elements to the algebra and
extending the operations appropriately. This establishes rational complete-
ness: a formula is derivable in L iff it is valid in all dense £-chains.

4. Finally, a countable dense L-chain is embedded into a standard L-algebra,
that is an L-algebra with lattice reduct [0, 1], using a Dedekind-MacNeille-
style completion.

! T-norms are the main tool in fuzzy set theory to combine vague information.

L. Ong and R. de Queiroz (Eds.): WoLLIC 2012, LNCS 7456, pp. 154-[[67] 2012.
(© Springer-Verlag Berlin Heidelberg 2012
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The crucial step 3. above (rational completeness) is the most difficult to es-
tablish as it relies on finding the right embedding, if any. A different approach to
step 3. was proposed in [I3] by using proof-theoretic techniques. The idea in [13]
is that the admissibility of a particular syntactic rule (called density) in a logic
L can lead to a proof of rational completeness for L. This is for instance the case
when L is any axiomatic extension of MTL. Introduced by Takeuti and Titani
n [I7], the density rule formalized Hilbert-style has the following form

(A-pVvV((p—-B)VvC
(A—>B)vC

where p is a propositional variable not occurring in A, B, or C. Ignoring C, this
can be read contrapositively as saying (very roughly) “if A > B, then A > p and
p > B for some p”; hence the name “density” and the intuitive connection with
rational completeness.

The new approach was used in [I3] to establish standard completeness for
various logics for which semantic techniques do not appear to work. Following
this method, to establish standard completeness for a logic L we need to

(a) define a suitable proof system HL for L extended with the density rule

(b) check that this rule is eliminable (or admissible) in HL, i.e. that density does
not enlarge the set of provable formulas

(c) standard completeness may then be obtained in many cases (but not in
general) by means of the Dedekind-MacNeille completion.

A convenient proof system HMTL for MTL uses hypersequents, which are a
simple generalization of Gentzen sequents, see [I[14].

Step (b) above (density-elimination) was shown in [2[13] for various calculi,
including HMTL. The proofs in [2,[I3] are calculi-specific and use heavy combi-
natorial arguments, in close analogy with Gentzen style cut-elimination proofs.
A different method to eliminate applications of the density rule from derivations
was introduced in [6]. It shows that each hypersequent calculus obtained by
extending HMTL by certain sequent rules admits density-elimination. Though
more general than the proofs in [2L[13], this result does not apply to many inter-
esting extensions of MTL whose additional axioms require hypersequent rules;
e.g., it does not apply to weak nilpotent minimum logic WNM [4,[g].

The aim of this paper is to automate standard completeness proofs for large
classes of axiomatic extensions of MTL.

We introduce the program AziomCalc that automates steps (a)-(c) above for
propositional logics extending MTL by any Hilbert axiom within the class Ps
in the syntactic classification of [4]. The main theoretical contribution of this
paper is the identification of sufficient conditions on hypersequent rules that
ensure standard completeness for the formalized logics. As shown in Section [3]
our conditions allow indeed density-elimination (and hence, by [I3], they lead
to rational completeness). Standard completeness follows, being the axioms we
deal with preserved under suitable forms of Dedekind-MacNeille completions [3].
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AziomCalc implements the systematic procedure in [4] to define cut-free hy-
persequent calculi from Hilbert systems for large classes of logics (step (a)), and
the check of our sufficient conditions which account for steps (b) and (c) at once.

Our approach subsumes many existing results on standard completeness for
specific logics and allows for the computerized discovery of new fuzzy logics. For
instance, it applies to WINM and to the logics obtained by extending MTL with
the axioms —=(a - B)" V ((a AB)" "t — (a- B)") for each n > 2. The latter family
of logics is new and was discovered by playing with the PROLOG system Az-
iomCalc, available at http://www.logic.at/people/lara/axiomcalc.html.

2 Automated Proof Theory for Extensions of MTL

In this section we present the system AziomCalc and describe the calculi that it
generates. The program is a PROLOG-implementation of the algorithm in [4].

The basic system we will deal with is Monoidal T-norm Logic MTL [8] which
was shown in [I0] to be the logic of left continuous t-normdd and their residua.
MTL is obtained by adding the prelinearity axiom (¢« — 5) V (8 — «a) to
intuitionistic logic without contraction (also known as HBCK [16] or Full Lambek
calculus with exchange and weakening FLew).

Formulas of MTL are built from propositional variables and the constants
0 and 1 by using — (implication), A (additive conjunction), - (multiplicative
conjunction), and V (disjunction). We use -« as an abbreviation for a — 0.

In the following «, 3, ... will stand for both formulas and for metavariables
for formulas. To distinguish between rule applications and rule schemas we
will denote finite (possibly empty) multisets of formulas with I'; A, X, ©, A and
metavariables for multisets of formulas with I', A, X, ©, A. Metavariables IT, ¥
will stand for stoups, i.e., either a formula or the empty set.

Definition 1. A hypersequent is a finite multiset Sy | ... | S, where each S;,i =
1...n is a sequent, called a component of the hypersequent.

The symbol “|” is intended to denote disjunction at the meta-level. In this
paper we will only consider hypersequents whose components contain at most
one formula on their right-hand side.

Henceforth we will denote hypersequents by G, H and sequents (possibly built
from metavariables) by S;, C;. The hypersequent calculus contains initial axioms,
cut, and logical rules. These are as in sequent calculus, the only difference being
the presence of a (possibly empty) side hypersequent G. Structural rules are
divided into two groups: internal and external rules. The latter, which permit
interaction between components, increase the expressive power of the hyperse-
quent calculus with respect to sequent calculus.

2 A t-norm is a commutative, associative, increasing function * : [0,1]? — [0, 1] with
identity element 1. x is left continuous iff whenever {z}, {yn} (n € N) are increasing
sequences in [0, 1] s.t. their suprema are = and y, then sup{xn *yn :n € N} =z xy.
The residuum of * is a function —* where  —* y = max{z | z * z < y}.
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Table 1. Hypersequent calculus HMTL for MTL

GII'sa Gla,A=10

Cut init 0l
G| A= 1T (Cui) Gla = a 0 clo= O
G|I'=« G\Aéﬁ( ) Glo, 8, I'=11 D G| I'=1II (1)
. .
G| IMA=a-f Gla-8,I'=1I G|, I'=1I
GlI'sa G|B,A=1T Gla,I'=f G|I'=
(=10 (=) (0r)
GlI''na— p,A=11 Gl I'sa—p G|I'=0
GlI'sa G|I'=p Glog, I’ = I
| | (Ar) | (ND) (1r)
GII'sanp Glaga Nao, ' =11 Gl=1
Gla,I' =1 G|, =11 G|II'= o G|II'=1
(Vi) vr (wl)
GlaVvg,T'= 11 GII'= a1 Va GlI'a=1
G| I'=sIH|I'=11 G| =
e (EC) ¢ wwy T
G|II'=s1I GII'=1 G|II'=s1
G|F1,A1:>H1 G|F2,A2:>H2
(com)
G|F1,F2:>H1‘A1,A2:>H2
Po P1 Po Ps Pa X ..
No M No N3 Ny e

Fig. 1. Classification (N, Pr) [4]

The (cut-free) hypersequent calculus HMTL for MTL is obtained by adding
Avron’s communication rule (com) to the hypersequent version of the sequent
calculus for FLew, see Table [Il (Note that a sequent rule can be easily trans-
formed into a hypersequent rule by adding the context G everywhere).

A classification of Hilbert axioms in the language of FLew was introduced
in [4]. It is based on classes (N, P,,) which intuitively account for the difficulty
to deal with the axioms proof theoretically.

The general grammar for determining the class of each axiom is as follows (A
is the set of atomic formulas):

Po=Nyu=A
Pn+1 L= Nn ‘ Pn+1 . PnJrl | PnJrl \/PnJrl | 1
ML-‘,—l L= Fn ‘ Pn+1 _>ML+1 |Nn+1 AML+1 | 0
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Table 2. Some axioms and their corresponding logics

Class Axiom Rule (cf. Table B) Logic
N a—a-a (c) Godel logic G
Po aV o (em) Classical Logic CL
Ps —a Voo (lg) SMTL
aV(ia—=pB)V(aAB—7) (bc2) 3-valued G (with (c))
—(a-B)V(eAB—a-P) (wnm,) WNM
@BV (@A™ > (a @) (wnm)” new!

Table 3. Some analytic rules

F,F,Aiﬂ G‘F,Aén G|F1,F2:>
(c) (em) (lg)
I''A=1I GII's |A=11 GI'= |I'=
G|F1,A2:>H2 G|F1,A3:>H3 G‘F2,A3:>H3 (bg)
C
G|A3:>H3‘F2,A2:>H2‘F1,A1:>H1
G|I2, 1, A1 =111 G|I'1, T3, A1 = 114
G| I, 1, A1 =111 G|I'2, T3, A= 114
(wnm)
G‘FQ,F3:> |F1,A1:>H1
{G(Ii, T'5)™, X = I h<ij<(n-1)
{G (I, Tnt2i—1)" X = M hi<i<(n-1)1<j<n
{G|(Tnt2i—2,15)", X = H}i<icni<i<(n-1)
{G| (I'ny2i—2, I'ny2j—1)", ¥ = I }i<ij<n n
(wnm,)

CT“lﬂn»"'aI_‘(?m,fl):> |F15’“7Fn7172:>ﬂ

A graphical representation of this classification is depicted in Figure[Il Note that
the arrows — stand for inclusions C of the classes.

Paper [4] also contains a procedure to transform axioms within the classes
N3, P, and P3 into equivalent rules which preserve cut-admissibility once added
to the (hypersequent version of) the calculus for FLew.

Ezample 1. The axiom —(a - 8)2V ((a A B) — (a - 3)?) (that is ~(a- B- - B) V
((aANB) = (a-B-a-f))) is in the class P3. The equivalent rule generated by
the algorithm in [4] is

(G317, S = Thacs (G| T0, Y= Myacica G|IT3 05,5 =11

(wnm,)?
G‘FQ,Fg,F4,F5:> ‘F1,2:>H

3 An explicit description of the axioms in these classes is given in Appendix.
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where the notation X* within inference rules stands for X, ..., X k times, with
k > 0. For further examples see Tables 2] and

2.1 Density and Convergent Rules

The density rule was introduced by Takeuti and Titani in their axiomatization
of first-order Godel logic [I7]. In hypersequent calculi (an instance of) this rule
has the form:

!

G \CZ';/,péH|A:>p (D)

| X, A=11
where p is a propositional variable not occurring in X, A, IT or G’ (p is an eigen-
variable). Note that adding the density rule to a hypersequent calculus can have
a dramatic effect. Consider, e.g., HMTL + (em), i.e., HMTL extended with the
rule (em) (cf. Table[): by adding (D) we are able to prove the empty sequent as
follows:

p=p (init)

S op (em)

g = (D)

A similar situation arises for HMTL + (bc2) + (c). This is no surprise since, as
shown in [I3], the addition and subsequent elimination of (D) from an extension
of HMTL leads to rational completeness for the formalized logic, and the two
calculi above formalize logics that are not rational complete: classical and 3-
valued Gédel logic (see Table [2).

However, for many extensions of HMTL, adding (D) has no effect on which
hypersequents are derivable: applications of (D) can be eliminated from deriva-
tions. Below we identify properties that, when satisfied by hypersequent rules
generated using the algorithm in [4], ensure density-elimination of the corre-
sponding extensions of HMTL. Rules satisfying these properties will be called
convergent.

Given a sequent S henceforth we will denote by L(S) its left hand side and by
R(S) its right hand side. Let S := I'\, Iy = I, we indicate by S[I*/4]'[*/s=w]”
the sequent A, I, Y = ¥. The notations apply also to metasequents, i.e., se-
quents built from metavariables.

In what follows we will refer to any hypersequent rule generated by the pro-
cedure in [] as completed.

Definition 2. Let (r) be a completed hypersequent rule:

G|S ... G|Sm
G|Cy|...|C,

Let G|S; and G|S; be among its premises.

(0-pivot) G|S; is a O-pivot if there is an s € {l,...,q} such that R(S;) =
R(Cs) and the different metavariables in L(S;) are contained in those

of L(Cs).
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(n-pivot) G|S; is an n-pivot for G|S;, for n > 0, if the following conditions hold:
e G|S; is a O-pivot

R(Si) = R(S))

L(S]) = L(Si[Fl /Al" . .F" /A,,L}l) fOT’Fl, N Fn € L(Sz) and Al, N An S

L(5S;)

If n>1, G|S; is a (n-1)-pivot for n premises G|Sj, ...G|S;,, and

L(Sj) = LS5 (" pys -7 A, sl [ Airr S A0

for 'y, ... Tica, Diga, oo, o € L(Sy,), Aryeey Aimr, Aiga, -0, A €

L(S;) andi=1,...,n.

Definition 3. A completed hypersequent rule () is convergent if for each premise
G|S; one of the following conditions holds: (1) R(S;) =0, (2) G|S; is a 0-pivot, or
(3) there is a premise G|S; which is an n-pivot for G|S;, withn > 0.

Intuitively, the conclusion of a convergent rule results from a “minimal interplay”
among its premises. Indeed for a premise G|S;, in which R(S;) is not empty, two
cases can arise: either the metavariables contained in it are already present in
a component of the rule’s conclusion, or there is a premise G|S; having this
property and which allows us to obtain G|S; by suitable replacements of the
metavariables.

Ezample 2. Convergent rules are all internal structural rules, (wnm,), (lg) and
(wnm)™, see Table Bl For instance, in the particular case of (wnm)? (cf. Ex. [):

— All different metavariables in the premise P; = G| F?,F?,Z = II are con-
tained in the component I'1, ¥ = II of the conclusion. Therefore, P, is a
0-pivot.

— The premise P; is a I-pivot for all premises G | Mris=1m2<i<5as
they differ from P; only by one metavariable.

— Py is a 2-pivot for the remaining premises of (wnm)?.

Completed rules that are not convergent are (em) and (bc2).

AxiomCalc. The procedure in [4] to transform axioms into equivalent ana-
lytic (hyper)sequent rules is implemented in the PROLOG-system AziomCalc.
It takes as input any axiom provided by the user, indicates the class N,, or P,
to which the axiom belongs and, for axioms within N>, Py and Ps, it generates
(a paper that contains) the equivalent (hyper)sequent rules. Finally, the system
checks whether the generated rules are convergent.

3 Sufficient Conditions for Density Elimination

In this section we prove that HMTL extended with any set of convergent rules
admits density-elimination. Our proof uses and refines the method in [6] of
density elimination by substitutions, which is outlined below: Let d be a sub-
derivation ending in the following uppermost application of density
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“d
G| Y p=I|A=p
G|, A=1 "
(D) is removed by substituting the occurrences of p in d in an “asymmetric”
way, according to whether p occurs in the left or in the right hand side of a
sequent. More precisely, each component S of a hypersequent in d is replaced by
S[P/A]'[P/s=n]". This way, the application of (D) above is simply replaced by
(EC).

A problem: the resulting labeled tree, denoted by d*, is in general not a cor-
rect derivation anymore. The reason being the presence in d of external struc-
tural rules different from (EW) and (EC), that, by mixing the content of various
conclusion components, might lead to p-azioms in their premises, i.e. to hyperse-
quents of the form G|O, p* = p derivable from axioms simply using weakenings;
the problem is that the asymmetric substitution on a p-axiom leads, e.g., to
G|6, A¥, X2 = II, which is no longer derivable in the same way.

The proof in [6]: Density-elimination was proved for calculi containing only
(EC), (EW) and (com) as external structural rules. The only problematic case
was when in d one of the premises of (com) led to a p-axiom. This case was
handled by removing in d* this application of (com) and replacing it with a
suitable (sub)derivation starting from the other premise.

The addition of convergent rules: We show below that, though a convergent
rule (r) can manipulate more hypersequent components at once and hence might
create p-axioms, (r) behaves well with respect to the asymmetric substitutions.
Indeed, intuitively, if one or more premises of (r) led in d to a p-axiom, say
G|O,p* = p, the special premises of (r) called pivot are used to derive their
substituted version G|©, A¥, X = IT which allow us to correctly apply (7).

The length |d| of a derivation d is, as usual, the (maximal number of inference
rules) + 1, occurring on any branch. A (D)-free derivation is a derivation not
containing the (D) rule. The following lemma, which allows us to suitably “move”
multisets of formulas between components, is the key for our main proof.

Lemma 1. Given HMTL + R, with R any set of convergent rules.

1. Any derivation d of H can be transformed into a derivation of H[P /o] [P/ =a]",
for any formula o and propositional variable p.

2. Let d' and dy be derivations of G'\X,p = A= p (p ¢ G', X, II,A) and
G'|©,A = W¥. We can find a derivation of G'|O, A = ¥|X A= II.

Proof. 1. Just replace p in d everywhere with «. The claim is proved by induction
on the length of the resulting derivation, as convergent rules are completed (and
hence substitutive, cf. the definition and the analogous lemma in [6]).

2. By 1. and d' we have a derivation dy of G'|¥,©A = II|A = ©A where
®A stands for the multiplicative conjunction - of the formulas in A (note that
p ¢ G',X II, A). The desired derivation follows by applying (Cut) between
G'10,A4 = ¥|A = ©A and the end hypersequent of
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:dl
' dy G0, A= w
G504 = MA= 0A (16,04 = W|S,0A = 11
G0, A=>w|X,0A=> 11

(D) + (EW)
(Cut)

We are now ready for the main theorem. Henceforth we denote by S} the se-
quent S;[P/ 4]'[P/s=m]", and by G* ,H*, the hypersequents G,H, where the same
substitution is applied to each one of their components.

Theorem 1 (Density Elimination). HMTL extended with any set R of con-
vergent rules admits density elimination

Proof. To perform density elimination, it is sufficient to remove topmost appli-
cations of (D). Take the derivation d above in HMTL + (D) + R, ending in an
application of (D) and let d’ be the (D)-free derivation ending in

G| Y, p=1I|A=p

As convergent rules are particular completed rules, they preserve cut-elimination
when added to HMTL. Hence we assume that d’ is cut-free.

Claim: For each hypersequent H in d' that is not a p-azxiom, one can find a
(D)-free derivation of G'|H*.

The result on density elimination follows from this claim. Just let H be G'|4 =
p|X,p = II. We get that G' |G’ |A, Y = II|A, X = II is derivable (note
that (G')* = G’ by the eigenvariable condition on p). The desired proof of
G'|A, X = II follows by multiple applications of (EC).

The proof of the claim proceeds by induction on the length of the cut-free
subderivation dg of H in HMTL + R. We distinguish cases according to the
last rule (r) applied in dg. The cases |dg| = 0, or when (r) is (EC) or (EW)
are easy. The proof for logical rules and for (com) proceeds as in [6].

Convergent rules: Assume that (r) is a convergent rule of the form

G|S1 ... G|Sm
(r)

G|Cy|...|C,
and that the conclusion of (r) contains no p-axiom. We show how to find a
derivation of

a'\G|Cyl ... |Cr

Take a premise G|S;. If G|S; is not a p-axiom, the inductive hypothesis gives
us a derivation of G'|G*|S;. Note that this is always the case when R(S;) = 0,
and when G|S; is a 0-pivot as in the latter case the metavariables instantiated
to obtain S; are all included in one component of the conclusion. Thus, if G|S;
was a p-axiom, the conclusion would be a p-axiom as well, thus contradicting
the assumption.
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Assume now that G|S; is a p-axiom. We show below that we can always obtain
a (D)-free derivation of
GG S7|CE
for some s € {1,...,¢q}. Being (r) convergent, there is an n-pivot premise G|S;
for G|S;. We show how to use G|S; to obtain the required derivation.

— Case n = 1: There is a 1-pivot premise G|S; for G|S;, i.e., (the metasequent
leading to) S; differs only in 1 metavariable from (that of) S;. By Defini-
tion 2l G|S; is also a 0-pivot and hence it is not a p-axiom. Let G|S; and
G|S; be obtained as instantiations of the following premised] of (r):

S; is obtained from O, A'= T and §; from ©,A"" =11

As G|S; is a p-axiom and G|S; is not, only I' can be instantiated with a
propositional variable p. The most general case is when I is instantiated by
I',p", the metavariable A by the multiset A, @ by @ and II by p. Hence

G|S; is GO, " AL p™ = p and G|S; is G|6, A = p.

As G|S; is not a p-axiom, by the inductive hypothesis we have a derivation
for G'|G*|©, Akl 32 = II. Using the derivation d’ of G’ | X,p = I | A = p,
by k applications of Lemma[1l2 with (EW) and (EC) we get

GG O, A" ALY =TT 2, A= 11
Now, by multiple applications of internal weakenings (wl), we have
G'|G* O, I* Ak ALYy = T\ 2, A=11

From further repeated applications of (wl) on the fourth component, we
finally obtain G'|G*| S} |CZ, where C, stands for the component of the
conclusion to which all the metavariables in (the metasequent leading to) S
belong.

— Assume that there is an n-pivot premise G|S; for G|S;, with n > 1. By
Def. 2 (the metasequent leading to) G|S; differs from (that of) G|S; by n
metavariables and there exist n other premises for which G|S; is an (n — 1)-
pivot. As in the previous case, let S; and S; be obtained respectively as
instantiations of the following premises of (r)

k1411 kn+ln

o.r, . I Al A s w and @AV ARt S g

Assume w.l.o.g. that G|S; is:
G|O,APTh Akt = p

Two cases have to be considered, according to the possible instantiations of
the metavariables I; with the propositional variable p in G|S;:

4 To simplify the notation © stands for all the metavariables in common, except A.
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In G|S; all the metavariables I'; are instantiated with a multiset I;
together with at least one occurrence of p. Then we repeatedly apply
Lemma [112 to d’ and G|S; together with (EW) and (EC) to replace
Aq, ..., A, with A in Sj, respectively ki, ...k, times. This way we get
Gle, Ak AR AL Al S = TTAL Y = .. |A,, Y = T
The desired hypersequent G’ | G* | S} | C follows by suitable applications
of (wl) and (EC) (as in the 1-pivot case, Cs stands for the component
of the conclusion to which all the metavariables in S; belong).

In G|S; all the metavariables I'; are instantiated with I, p™ and m; > 0
only for 7 of them (1 < r < n). (Note that in this case Lemmal[ll2 would
replace each metavariable A; with A, leading to at least n occurrences
of A, and n > r). The idea here is to find another premise of (r) which
is not a p-axiom, for which suitable applications of Lemma [112 do the
job. The existence of (at least one) such a premise is guaranteed by the
notion of n-pivot.

We first illustrate the way we proceed with an example for n = 3.
Assume that S; arises as an instantiation of I'y,I'2,I's = II and S,
as an instantiation of Ay, As, Az = IT (G|S; is a 3-pivot for G|S;). By
definition of 3-pivot, there exist 3 premises in (r) for which G|S; is a 2-
pivot. For each of these premises, there exist 2 premises in (r) for which
G|S; is a 1-pivot. In the figure below we show how all these premises are
related w.r.t the metavariables they instantiate.

G|S; is l-pivot for

(Case r = 1) If only 1 metavariable, say I'1, is instantiated in S; with
I'1,p we need to find a corresponding premise which will not contain
a p-axiom, i.e., that does not contain I'i. The first occurrence of such
a premise is among the premises that have G|S; as a 2-pivot, that is
Al, Fg, I's=1II.

(Case r = 2) Assume now that 2 metavariables, say I'y, Iy, are in-
stantiated with Iy, p and I%,p, respectively. Again, we need to find a
corresponding premise that is not a p-axiom. In this case, the set of
premises that have G|S; as a 2-pivot does not suffice because each of
them contains either I'y or I's. The first occurrence of a premise that is
not a p-axiom is among the premises that have G|S; as a 1-pivot, i.e.,

Al,AQ,F3:>H.
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In general, we can eventually find a premise that is not a p-axiom
among those that have G|S; as (n — r)-pivot. Assume for the general
case that the occurrences of p in G|S; are related to the instantiation of
r different metavariables, w.l.o.g I, ..., I}, i.e., S; is
o, Flkl, e F,]f", Alll,. .. ,Ai{‘,pmlkﬁ“‘er"'k"' =p withmy,...,m, >0
Then we can find premises for which G|S; is an (n—r)-pivot; (the metase-
quent leading to) those premises differ from that of G|S; in r metavari-
ables. (At least) one of these premises will not be a p-axiom, and hence
it will have the form:

k1+1 ke pkrir brt1 kn  Aln
G|O, ATV A S A T Ay = p
By inductive hypothesis we have a derivation of:
Al ki+1 krtlr phrer Alrta kn  Aln
G'|G"|O,A7 T LAY AL T Ay X = T

Then we repeatedly apply Lemmal[ll2 together with (EW) and (EC) to
replace Aq,..., A, with A, respectively k1, ..., k. times. After suitable
applications of internal weakening and further external contractions, we

finally get
G'|G*|S;|Cr.

In summary, when the last rule in dgy is convergent, for each premise G|S; we
have:

— If G|S; does not contain any p-axiom, G'|G*|S} is (D)-free derivable.
— If G|S; contains a p-axiom, then G'|G*|SF|C? is (D)-free derivable.

The required derivation of G'|G*|C1*|...|C,* follows by (r) and subsequent ap-
plications of (EC), if needed. This completes the proof of the main claim.

4 From Density Elimination to Standard Completeness

Theorem [I together with the results in [3,[13] lead to standard completeness
for any logic L extending MTL with any set A of axioms having equivalent
convergent rules. (For all concepts of universal algebra below we refer to [39/13]).

As shown in [13], density elimination is indeed a uniform method to estab-
lish rational completeness for any extension of MTL. From Theorem [I] we can
therefore state the following: let £ be an MT L-algebra (see [8] and steps 1-4 in
the introduction) satisfying the equations A* corresponding to the axioms in A

A formula « is satisfied in each dense £-chain < « is derivable in MTL + A.

Standard completeness is then achieved through so called Dedekind Mac-Neille
completion, which generalizes to various ordered algebraic structures Dedekind’s
embedding of the rational numbers into the reals.
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It is shown, e.g. in [I3], that the Dedekind-McNeille completion of a dense
MT L-chain is still a dense MTL-chain (in other words, it is preserved by
Dedekind-MacNeille-completion). It is easy to see that the results in [3] on the
preservation of equations by this completion hold for the equations A* when re-
stricting to MT L-chains. Hence the Dedekind-MacNeille completion of a dense
L-chain is still a dense £-chain, and in addition it is order-isomorphic to [0, 1].
This leads to standard completeness for the logic L.

Remark. Our sufficient condition for density-elimination can be easily extended
to first-order calculi, hence leading, by the results in [6], to standard completeness
proofs for axiomatic extensions of first-order MTL. In contrast, convergency of
rules might be too weak to ensure density-elimination for hypersequent calculi
not containing (wl) and (wr). For these calculi, formalizing logics which extend
Uninorm Logic UL [I3], only calculi-tailored proofs of density-elimination are
available; the proof in [6] applies indeed to very few of them, namely, those
extending the calculus for UL only with additional internal structural rules
having a very simple structure (e.g. contraction (¢) is not one of them).

4.1 A Case Study

As a corollary of our results follows that the family of logics obtained by ex-
tending MTL with the axioms (wnm)™: =(a- 8)" V ((a A B)""t = (a- B)"), for
n > 2 (here z" stands for = - --- -z, n times) are standard complete and hence
they are fuzzy logics in the sense of [I1]. This new family of logics, discovered by
playing with AxziomCalc, contains infinitely many different logics. This can be
easily seen by noticing that (wnm)™ is valid in the m-valued logic of Lukasiewicz
if and only if m <n+ 1.

Acknowledgments. Work supported by the FWF START Y544-N23 and the
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Appendix

The normal form of axioms within the classes Aa, P2 and Ps is the following.

Na:

7)2:

7)3:

Axioms have the form A,_,_,, d;, in which every 6; is a a1 - -y — 3

where: o

—pf=0or B V-V B and each [; is a multiplicative conjunction of
propositional variables and

—each o; is of the form A\, ;. %j — ﬁg where
) ﬁg = 0 or a propositional variable, and
) 'yg is a multiplicative conjunction or a disjunction of propositional
variables (or 1).

Axioms have the form \/,_,.,, d;, where each ¢; is of the form

Ni<jem @i = Bj or \j<j<p, @ Where:

—each o is a multiplicative conjunction or disjunction of propositional
variables and 1, and

— B; = 0 or a propositional variable.

Axioms have the form §; V -- -V §,,, where each ¢; is in N5.
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Abstract. We present a logic for reasoning about the evidence-based
knowledge and beliefs and the evidential dynamics of non-logically
-omniscient agents. We do this by adapting key tools and techniques from
Dynamic Epistemic Logic, Justification Logic, and Belief Revision so as
to provide a lightweight, yet fine-grained approach that characterizes
well-known epistemic and doxastic attitudes in terms of the evidential
reasoning that justifies these attitudes. We then add the dynamic oper-
ations of evidence introduction, evidence-based inference, strong accep-
tance of new evidence (evidential “upgrade”), and irrevocable acceptance
of additional evidence (evidential “update”). We exemplify our theory by
providing a formal dynamic account of Lehrer’s well-known Gettier-type
scenario involving the famous Ferrari and the infamous Messrs. Nogot
and Havit.

Keywords: Dynamic Epistemic Logic, Justification Logic, Belief Revi-
sion.

1 Introduction

As shown by the famous Gettier counterexamples [8], “knowledge” cannot simply
be equated with “justified true belief.” But what is the missing ingredient in this
old Platonic equation? While epistemologists have proposed different answers
to fill the gap, all would agree that not just any justification will do in order
to turn an item of true belief into knowledge. It is essential that “knowledge”
comes equipped with a correct, or “good,” justification. Taking this insight as
our starting point, we offer in this paper a new formalization for a plethora
of notions ranging from justified belief to defeasible knowledge, each of which
comes with its own justification based on how well an agent’s evidence supports
her epistemic attitude.
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The so-called Defeasibility Theory defines “knowledge” as true justified be-
lief that is stable under belief revision with any new evidence: “if a person has
knowledge, then that person’s justification must be sufficiently strong that it is
not capable of being defeated by evidence that he does not possess” (Pappas
and Swain |13]). One of the problems is interpreting what “evidence” means in
this context. One possible interpretation, considered by at least one author |15],
takes “evidence” to mean “any proposition,” meaning we include possible misin-
formation: “real knowledge” should be robust even in the face of false evidence.
This interpretation corresponds to our “infallible knowledge” modality K, which
could be called “absolutely unrevisable belief.” This is a fully introspective type
of knowledge, satisfying all the laws of the modal system S5.

However, the most common interpretation of Defeasibility Theory is to take it
as requiring persistence of belief only in the face of “any ¢rue information.” The
resulting notion of “knowledge” was formalized by Stalnaker in [17], and defined
there as follows: “an agent knows that ¢ if and only if ¢ is true, she believes
that ¢, and she continues to believe ¢ if any true information is received”. This
interpretation corresponds to our “defeasible knowledge” modality O, which is
positively (but not necessarily negatively) introspective, satisfying all the axioms
of the modal system S4.

In [6], two of the authors of this paper studied these two notions in detail,
using a dynamic logic of belief change to make precise the sense in which these
modal operators match the above-mentioned characterizations in terms of their
potential (in)defeasibility. However, both the above notions of “knowledge” suffer
from the problem of logical omniscience. So at best they can be taken to capture
some kind of implicit, or potential, knowledge. Moreover, Lehrer’s conception
[10, [11] of defeasible knowledge is more sophisticated: he requires, not only that
the belief itself be stable in the face of any true evidence, but also that the
justification supporting this belief be similarly stable.

In this paper, we formalize the explicit defeasible knowledge that can be ac-
tually possessed by a (non-logically omniscient) agent. For this, we develop a
version of Justification Logic (JL), in the tradition of [2], with the new feature
that it borrows concepts from Belief Revision theory to deal with “soft” (falli-
ble) evidence. Furthermore, we combine this approach with ideas and techniques
from Dynamic Epistemic Logic (DEL) [4-6, 120], including important ideas from
the temporal DEL literature [14, 16, 22], obtaining a Dynamic Justification Logic
that can deal with justified belief change and soft evidential dynamics.

Thus, in essence we bring together the work of two traditions in Logic (DEL
and JL), while using models coming from a third tradition (Belief Revision
theory). The added value comes from the interplay of these settings, which
in particular allows us to capture several of the subtle distinctions made in
[10, [12], pointing to scenarios in which an agent has a justified true belief but
no good evidence to turn his belief into knowledge. We formalize various types
of epistemic-evidential actions, and we use them to give dynamic characteriza-
tions of explicit “knowledge” (in both its defeasible and its infallible versions).
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We provide complete, decidable proof systems for these logics, and apply them
to the analysis of one of the well-known Gettier-type counterexamples in the
literature.

The approaches in the available literature that are closest to our work are
Artemov’s paper |1 on the Gettier problem, and the work of van Benthem and
Veldzquez-Quesada [19, 121] on the dynamics of evidence. In our last section we
make a more detailed comparision between these papers and ours. For now, it
suffices to say that our solution is closely related to these approaches and was
in fact inspired by them, but it is nevertheless original and avoids some of the
problems encountered in these works.

2 Belief, Justification, Awareness, and Knowledge

2.1 Syntax

Definition 1 (Language). Given a set ¢ of atomic sentences, the language
L = (T,F) consists of the set T of evidence terms t and the set F of
propositional formulas (sentences) ¢ defined by the following double recursion:

pu=L|pl-pleAp|Et|t>¢|0p|[Ke|Ye withpe®
to=cy|t-t]t+t

Notation: let & denote =0, let K denote -K—, and let Y denote =Y —. The
set sub(t) of subterms of a term t is defined by induction on the construction
of t as follows: sub(c,) = {c,}, sub(s - u) = {s- u} Usub(s) Usub(u), sub(s +
u) = {s + u} Usub(s) Usub(u). The set sub(p) of subformulas of a formula
@ is defined by induction on the construction of ¢ as follows: sub(L) := {L},
sub(p) := {p}, sub(—0) := {=0} Usub(h), sub(O A") := {0 A0’} Usub(8) Usub(6'),
sub(Et) := {Et}, sub(t>>0) := {t>> 0}, sub(00) := {00} U sub(h), sub(K0) :=
{K6}Usub(0), and sub(Y 9) := {Y8}Usub(0). We define an operation (-)¥ : T U
F = TUZF by setting: (c,)Y = cpvy, (t-5)" =17 -sY, and (t435)Y =¥ 45
for terms; and LY := 1, p¥ :=p, ()Y = =Y, (pAY)Y = oY AY | (Bt)Y =
BtY, (t>e) =tV >¢", (K¢)" =YKy, (Op)" :=Y0p, (Y¢)" :==YYp.

Et says that evidence t is available to the agent (though not necessarily accepted
by her). ¢ > ¢ says that ¢ is admissible evidence for o: if accepted, this evidence
supports . Oy says that the agent (implicitly) defeasibly knows ¢. K says that
the agent (implicitly) infallibly knows ¢. Y says that “yesterday” (i.e., before
the last epistemic action) ¢ was true. ¢, is an evidential certificate: a “canonical”
piece of evidence in support of sentence ¢. t- s is a compound evidence, obtained
by combining (using Modus Ponens) the two pieces of evidence ¢ and s. Finally,
t+ s is a body of evidence that aggregates (without performing logical inference)
all the evidence provided by ¢ and s; t- s therefore supports both the statements
supported by ¢ and those supported by s.

By “defeasible knowledge” O we mean here knowledge in the sense of the
Defeasibility Theory: justified true belief that cannot be defeated by any new
true information that the agent might receive. By “infallible” knowledge K we
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mean “absolutely certain,” absolutely unrevisable, fully introspective knowledge:
belief that cannot fail to be true, and so it cannot be defeated by any new infor-
mation (including false testimony). We will later show that our formal operators
match these characterizations. Note that both these notions are forms of implicit
knowledge. We will later introduce the corresponding types of explicit knowledge.

Definition 2 (Admissibility). Admissibility is the smallest binary relation
> C . x.F satisfying the following conditions: (1) ¢, > ¢; (2) if t> (¥ = ¢)
and s>, then (t-s)>p; (3) if t> ¢ or s>, then (t + s) > ¢. Note that
admissibility is both a syntactic meta-relation and a symbol in the language. It
will be clear from context which is which.

Lemma 1 (Temporal Admissibility). t>> ¢ implies t¥ > Y.
Proof. By induction on the construction of ¢. a

Lemma 2 (Computability of Admissibility). The map t — {¢ | t>>p} of
type T — @(.F) is computable, and for every t the set {p | t>> ¢} is finite.

Proof. The map is recursive, and the finiteness of {¢ | t>> ¢} can be proved by
induction on the complexity of terms. a

Definition 3. .7°:={t € J | 3p : t>> ¢} is the set of admissible terms.

Definition 4 (Propositional Content). For every term t € 7, we define the
propositional content con; of t as the conjunction of all the formulas for which t
is admissible evidence: con, := \{0 | t>>0}. Fort & T°¢, this is the conjunction
of an empty set of formulas, so in this case (if we intrepret N\ as infimum in
the complete Boolean algebra of propositions) we get tautologically true content:
cong = T :=—1L.

Definition 5 (Implicit Belief, Implicit Acceptance, Implicit Evidence).
We introduce the following abbreviations for the language L :

By =<0p says that the agent (implicitly) believes ¢,

A(t) := /\%eSub(t) By says that the agent (implicitly) accepts evidence ¢,

G(t) == A, esubr) D¥ says that tis good (implicit) evidence,

I(t) := /\%eSub(t) K says that t is infallible (implicit) evidence, and

t:p = A({t) ANt> ¢ says that t is (implicit) evidence for belief of ¢.
Like the implicit knowledge notions K and O, implicit belief suffers from logical
omniscience. We now introduce the corresponding explicit notions, which reflect
the beliefs, knowledge and justifications that are actually possessed by a (non-
logically-omniscient) agent.

Definition 6 (Explicit Belief and Knowledge). We introduce the following
additional abbreviations for the language L :
B°p = By A Fc, says that the agent explicitly believes ¢,
D¢ :=0p A Ec, says that the agent explicitly defeasibly knows ¢,
K¢p := Ko A Ec, says that the agent explicitly infallibly knows ¢, and
t:cp:=t: o ANEt says that t is explicit evidence for belief of ¢.
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2.2 Semantics

Definition 7 (Model). A model M = (W, [],~,>,~, E) is a structure con-
sisting of a nonempty set W of possible worlds; a valuation map [-] : & — p(W);
binary relations ~, >, and ~ on W, with ~ (“epistemically indistinguishable
from”) representing epistemic possibility/indistinguishability, > (“no more plau-
sible than”) representing relative plausibility, and ~ (“is the temporal predecessor
of”) representing immediate temporal precedence (going forward in time from a
moment to the next moment); as well as an evidence map E : W — p(7); all
satisfying the following conditions:

— ~ is an equivalence relation and > is a preorder

— Indefeasibility: w > v = w ~ v.

— Local Connectedness: w ~v = (w > v Vv > w).

— Propositional Perfect Recall: (w ~» v ~v') = Jw'(w ~w' ~ ).

— Evidential Perfect Recall: w ~ w' = {t¥ |t € E(w)} C E(w').

— Uniqueness of Past: (v ~» w A w” ~ w) = v =w".

— Persistence of Facts: w ~» w’' = (w € [p] & w' € [p]).

— (Implicit) Evidential Introspection: w ~ v = E(w) = E(v).

— Subterm Closure: If t -t/ € E(w) ort +t € E(w), thent € E(w) and
t' € E(w).
This says that a compound evidence is actually available to the agent only if
its component pieces of evidence are available.

— Certification of Evidence: If t € E(w) and t> ¢, then ¢, € E(w).
This says that every actual evidence in support of a sentence ¢ can be
converted into a certificate of correctness: a canonical piece of evidence c,
that certifies it. All explicit knowledge can be certified.

A pointed model is a pair (M,w) consisting of a model M and a designated
world w in M called the “actual world.”

Many authors in the Belief Revision literature require their models to satisfy
some version of the following requirement:

Definition 8. The Best Worlds Assumption applies to a model iff for every
non-empty set P C W of indistinguishable worlds (i.e., such that w ~ w’ for all
w,w’ € P), the set

min P:={w € P |w >w for allw’ € P}
(consisting of the most plausible worlds in P) is also non-empty.

The Best Worlds Assumption is useful, since it allows for a very natural and
intuitive definition of (conditional) belief B(p|P). Some authors (e.g., Grove [9])
weaken this condition to cover only the sets P that are definable by some sentence
1 in their language: this is indeed enough to define syntactical conditional belief
operators B(p|v). However, in this paper, we will consider an even stronger
condition, called standardness:

L A preorder is a reflexive and transitive binary relation. For a preorder >, we denote
by > the strict version given by ¢t > s := (s > t) A (¢t # s). We denote by < and <
the converse relations.
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Definition 9 (Standard Model). A model M = (W, [], ~, >, ~, E) is said to
be standard if both the strict converse-plausibility relation < and the immediate
temporal predecessor relation ~~ are well-founded. This means that there are no
infinite chains wg > wy > wq > - -+ of more and more plausible worlds, and there
are no infinite chains wy e~ w1 «~ wg «~ -+ going back in time. Observe that
well-foundedness implies acyclicity, so in a standard model there are no temporal
loops. Note also that the well-foundedness of ~~ together with the Propositional
Perfect Recall condition imply “temporal perfect recall”: w ~ v implies w +# v.
Similarly, note that every standard model satisfies the Best Worlds Assumption

Definition 10 (Truth). We now define a satisfaction relation (M,w) = ¢
between pointed models (M, w) and formulas ¢ € .. We also denote (M, w) |= ¢
in the more familiar way by w = @, omitting the subscript M when M is fized.

wE L
wkp  iffwe[p]
wk e iffw e

wh A iffw = g andw k= Y
wE Et  ifft € E(w)

wEt> e ift>e

wiEOp  iffvE @ for everyv <w
wkE K iffvE @ for every v ~w
wEYye iffviE g for every v~ w

Given a model M = (W, [-],~,>,~,E), we can extend the valuation map [-]
to all sentences, by putting [¢] = {w € W | w = ¢}. Validity |= ¢ means that
(M, w) = ¢ for every standard pointed model (M, w).

The following result shows that belief, as defined above, fits with its most widely
accepted definition in standard models:

Lemma 3. In a standard model M = (W, [-], ~, >,~, E), “belief” is the same
as “truth in the most plausible worlds” :

wkEMm Be  iff W Em e foradlw €min{w €W |w~uw'} .

2.3 Example of the Gettier Problem

The following example of a Gettier problem is adapted from [12]. Our (unnamed)
agent (Lehrer’s “Claimant,” who we assume to be a woman) is the professor of
a class consisting of two students, Mr. Nogot and Mr. Havit. Let us denote by p
the sentence “Mr. Nogot owns a Ferrari” and by ¢ the sentence “Mr. Havit owns
a Ferrari.”

Mr. Nogot tells our agent that he owns a Ferrari and shows her the title
papers and a picture of him driving a Ferrari. This testimonial evidence supports
sentence p, and so it is admissible for p; hence, we will denote this evidence by c,.

% Indeed, it is easy to see that this condition follows from the well-foundedness of <
together with the above Local Connectedness assumption.
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The evidence term ¢, is thus available to our agent (since it was made available
to her by Mr. Nogot). Let us further assume that this evidence is accepted by
her: on the basis of ¢, she believes p (i.e., that Mr. Nogot owns a Ferrari).
Moreover, let us assume that this belief is actually false: in fact, Mr. Nogot does
not own a Ferrari, he just lied to our agent, forged the car title and faked the
picture (using Photoshop to edit himself into the driver’s seat). Furthermore, let
us assume that, unknown to our agent, Mr. Havit actually does own a Ferrari.
Based on her available accepted evidence ¢, and using propositional inference,
our agent concludes that some student in her class owns a Ferrari (pV ¢). This
belief is true (since in fact Mr. Havit owns one), it is justified (given Mr. Nogot’s
testimony and the rules of logic), but it is not “knowledge” in Lehrer’s sense. Of
course, pV ¢ is not infallible knowledge (in the absolutely certain sense captured
by the operator K above), since the agent posseses no “hard” evidence for pV gq.
Indeed, testimonial evidence is “soft”: the fact that Mr. Nogot claims that he
owns a Ferrari is still consistent with the possibility that nobody in the class owns
any car. Moreover, our agent’s justified belief in pV q is easily defeasible, even by
true evidence: if in the future she would (correctly) learn that Mr. Nogot does
not in fact own a Ferrari (—p), then she would be forced to drop her (correct)
belief in p V q. Hence, this true justified belief is not “knowledge,” even in the
fallible, defeasible sense, captured in our formalism by the operator. o

Here is a simple model of the epistemic situation described in this story:

w w/ w// wl//

Fig. 1. The Nogot-Havit scenario

The set of possible worlds is W = {w,w’,w”,w"”'} and the valuation is [p] =
{w”,w"},[q] = {w,w”}. In Figure [ we represent each possible world by a
circle (labeled with the name of the world and encompassing the atomic sentences
true at that world). The double-circled world indicates the real world or current
state of affairs (in which ¢ is true and p is false; i.e., Mr. Havit has a Ferrari
and Mr. Nogot does not). We represent the plausibility relations > by horizontal
arrows (pointing from a world w to all the worlds v < w that are at least as
plausible as w), but we omit the arrows that can be obtained by reflexivity
(looping) and transitivity (arrow composition). The one-way arrow from w’ to
w’” (and the one-way arrows, obtained by transitivity, from w to both w” and w"”’
and from w’ to w”) show the p-worlds are more plausible than the —p-worlds.
As a consequence, the agent implicitly believes p (since p is true in all the
most plausible worlds w” and w"’). The epistemic indistinguishability relation
is not directly represented but can be recovered by closing the horizontal arrows
under transitivity, reflexivity and symmetry. So here all the four worlds are
epistemically indistinguishable, which expresses the fact that the agent has no
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hard evidence concerning p and ¢, and thus she has no infallible knowledge (K)
concerning their truth values: all four Boolean combinations are epistemically
possible (in the sense of K). The available evidence is the same at all four
worlds (in agreement with the condition of Implicit Evidential Introspection) and
consists of Nogot’s testimonial evidence ¢,, logical evidence c,—pv4 Supporting
the axiom p = pV g, inferential evidence cp—pvq - ¢p (obtained by combining
the previous two in accordance with Modus Ponens) supporting p V ¢, and a
certificate cpyv, confirming that she derived p V q. According to our definitions,
the agent has (both implicit and) explicit true justified belief in pV¢: the sentence
(pVag)ANB(pV q) A (cp=pvq - cp): (pV q) holds at the real world w. However,
she does not have (either implicit or explicit) knowledge of p V ¢ (either in the
infallible sense of K or in the defeasible sense of O).

In this model, all evidence is accepted: ¢p=pvq is infallibly so (since the agent
has implicit infallible knowledge of axioms) and ¢, is incorrectly accepted (since
the agent implicitly believes p but p is in fact false). But this is not a general
requirement in our setting: availability does not imply acceptance. Indeed, mu-
tually inconsistent evidence terms might be available (in the sense that the agent
is aware of them, can compute them or is considering them), while in our models,
belief is always consistent. For instance, our agent may be aware of some very
weak evidence against p, say the fact (denoted by c-p) that she never actually
saw Mr. Nogot in a Ferrari, but she might choose to reject such evidence. In this
case, she still keeps the same (implicit and explicit) beliefs as in the above story,
as illustrated by the following model:

w w/ w// w///
E ={cp, cp=pva: Co=pvg * Cps Cpvgs Cop}

Fig. 2. The Nogot-Havit scenario with additional evidence c-,

Note that in both the above models, the agent has no explicit introspection
about her beliefs or about her justifications! She simply does not consider such
issues. If we want to model a situation in which the agent uses introspection to
become aware of her explicit belief in p, then we obtain the model in Figure [B

w wl wl/ wl//

Fig. 3. The Nogot-Havit scenario with introspection of belief

The fact that there are no ~~»-arrows in any of these diagrams simply expresses
the fact that we chose the current moment as the starting point (moment 0) in
our story. Of course, a more accurate representation would include the history
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5
ol
=

Ey : {ep}

v

Ey = {cy, CP;’(PWI)}

\

Es = {Cp> Cp=(pVvq)s Cp=(pVq) " Cp> Cp\/q}

Fig. 4. Temporal development leading to the Nogot-Havit scenario

of how our agent came to believe p V q. A possible such history could be given
by the model in Figure @

The real world at the current moment (previously denoted by w) is now de-
noted by ws. The vertical arrows represent the immediate temporal precedence
relation, going from one moment to the next moment. So the time flows down-
ward in this diagram. According to this history, originally (at the “true” initial
moment wy) the agent had no evidence (E = )), and no non-trivial beliefs about
p and ¢, so she considered all four Boolean combinations to be equally plausible.
After this, she received and accepted Mr. Nogot’s testimonial evidence ¢, lead-
ing her to explicitly believe p (at moment w1 ), and thus implicitly (but not yet
explicitly!) believe p V ¢q. At the next moment ws, she thought about the logical
axiom p = pV ¢, became aware of its applicability to this particular instance,
and so the infallible evidence c,— 4 became available to her. She then used
Modus Ponens, thereby computing the evidence term c,—pvq - ¢, that supports
the conclusion pV g, certified this derivation by adding cpy4 to her evidence set,
and therefore acquired an explicit belief in p V ¢ (at the current moment ws).

2.4 Proof System
Definition 11 (Theory). JB, the theory of justified belief, is defined in Table[ll

Lemma 4 (Derivable Principles). We have the following.

1. Application for Admissibility: b (s> @) = (> (@ = ¥) & (t-5)>1).
2. Application: - (s> ¢) = (t: (g = V) Asip & (t-5):9).

3. Weakening of Justified Belief: - t:p = Byp.

4. Certification of Implicit Belief: = By = c,: .
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Table 1. The theory JB

AXIOM SCHEMES

Classical Logic: Axioms of Classical Propositional Logic
Knowledge of Available Evidence: - Et = KFEt
Subterm Closure: - E(t - s) = Et A Es
FE({t+s)= EtANEs
Certification of Evidence: - t> ¢ A Et = Fc,
Admissibility: F ¢t > ¢ whenever ¢ > ¢
F =(t> ) whenever t % ¢
Infallible Knowledge: S5 axioms for K
Defeasible Knowledge: S4 axioms for O
Indefeasibility: - K¢ = Ogp
Local Connectedness: - K(p VOyY) A K(¢ vV Op) = (Kp V Kv)
Normality of Y: F Y (p = ¢) = (Yo = Y))
Propositional Perfect Recall: HF Y K¢ = KY ¢
Evidential Perfect Recall - Y Et A =Y L = EtY
Uniqueness of Past: - Yy = Y-
Persistence of Facts: - Yp < (=Y L = p)

RULES

=1 ® ® ®
» (MP) a (ON) Ko (KN) Yo (YN)

Weakening of Justified Defeasible Knowledge: = (t>> ¢) A G(t) = Oep.
. Certification of Defeasible Knowledge: - Op = (¢, > @) A G(cy).
Weakening of Justified Infallible Knowledge: = (t>>¢) ANI(t) = K.
Certification of Infallible Knowledge: = K¢ = (cp, > @) AN (cy).

> o

=N

Proof. (@) follows by the definition of admissibility. (@) follows by the definition
of u:6, (), and classical reasoning. () follows by the definition of A(c,). (@)
follows by the definition of G(c,). () follows by the definition of I(c,).

. Re.calling.that u:0 = A(u) Au>> 0 and A(u) = A\, coub(u) BO: the proof of (@)
is by induction on the construction of ¢. Base case: - ¢, : ¢ = By follows by the
definition of A(c,) and classical reasoning. Induction step: assuming - s;:6 =
B and for each i € {1,2} and 0 € .%#, we wish to show that F (s1-s2): ¢ = Bo.
Let S:={¢ | s1> @ = p) Asa>¢} If S =0, then - —(s1 - s2) > ¢ and so
we have - (s1 - s2):¢ < L and hence F (s1 - $2):¢ = Byp. So let us assume
that S # (. We then have by classical reasoning that - (s1 - s2):¢ < s1: (¢ =
©) A s2:1 for an arbitrarily selected 1) € S # (). By the induction hypothesis
and classical reasoning, we then have b (s1-s2): ¢ = B(¢) = ¢) A By). Applying
modal reasoning, it follows that = (s1 - s2): ¢ = Bep.

Recalling that G(u) = A, csub(u) GO, the proof of (@) is by induction on the
construction of t. Base case: t = ¢, and the result follows by the definition of G(c,,)
and classical reasoning. Induction step: assuming - (s; > 0)AG(s;) = Ogp for each
i € {1,2} and 0 € %, we wish to show that b (s1 - s2) > ¢ A G(s1 - s2) = Oep.
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We define S := {¢ | 51> (¥ = p) Ase >t} If S =0, then - —(s1 - 52) > and
hence - (s1-82) > @ AG(s1 - s2) < L, from which the result follows by classical
propositional reasoning. So let us assume that S # . Choosing an arbitrary
Y €S, we have F (s1-52) >0 AG(s1-52) & s1> (W) = ) Asa>UAG(s1) A
G(s2) by classical propositional reasoning, the definition of admissibility, and
the definition of G(u). But we then have - (s1 - s2) >0 AG(s1 - s2) = O(¢ =
) A 09 by the induction hypothesis and classical reasoning and therefore that
F (s1-82)> ¢ AG(s1 - s2) = Op by modal reasoning.

The argument for () is similar to that for (&l). O

A common criticism of epistemic modal logic is that it suffers from logical om-
niscience: the agent believes all logical consequences of her beliefs, including
in particular all valid formulas. But in JB, only implicit belief By and implicit
knowledge—either infallible K or defeasible Op—satisfies logical ommniscience.
That is, K¢ (or Og) says only that the agent can come to infallibly (or de-
feasibly) know ¢ only in principle. Implicit knowledge may be thought of as
“potential knowledge” of ¢ that the agent might in principle obtain, though
perhaps she will never have this knowledge in actuality.

Ezplicit knowledge K¢y (or O¢) is very different. This represents the agent’s
actual knowledge, in that K¢p = Ky A Ec, and O° = Dy A Ec, say that the
agent not only has the potential to realize her implicit knowledge of ¢ but also
that she has in fact gone through the trouble of obtaining and correctly validating
the certificate of correctness c, for ¢ (i.e., Ec,). Therefore, explicit knowledge
does not satisfy logical omniscience.

Definition 12 (Iterated Axioms and Logical Terms). An iterated axiom
s a formula of the form

X1X2X3~~~Xng0 s

~ ~ -

zero or more X;’s
where each X; € {0, K, Y} and ¢ is an axiom. The set of logical terms is the
smallest set that contains certificates c, for each iterated aziom ¢ and is closed
under the evidence-combining operator t - s (for Modus Ponens).

The logical terms are those that are built by applying the inference operator -
to certificates of knowledge ¢, for iterated axioms ¢. We may think of logical
terms as the logical arguments we use to justify iterated axioms and their logical
consequences. The forthcoming Theorem [Ilshows that the agent can in principle
always find purely logical justification to support infallible knowledge of logical
truths.

Lemma 5 (Necessitation Elimination). For each ¢ € %, we have & ¢ iff ¢
is provable from iterated axioms without the use of necessitation rules (i.e., KN,
ON, or YN).

Proof. By induction on the number of necessitations. a

Theorem 1 (Theorem Internalization). For each ¢ € %, we have - ¢ iff
there exists a logical term t such that = I(t) At> .
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Proof. The right-to-left direction follows by Lemma HI[7), so we focus on the
left-to-right direction. We write F* ¢ to mean that ¢ is provable from iterated
axioms without the use of necessitation rules. By Lemma [l it suffices for us to
prove by induction on the proof length that F* ¢ implies there is a term ¢ such
that F* (£>> @) A I(t). Proceeding, we recall that I(s) = /\Cw&sub(s) K.

— Case: @ is an iterated axiom.
Since ¢ is an iterated axiom, c, is a logical term and F* K¢. Hence -*
I(c,). Further, we have ¢, > ¢ by the definition of admissibility and hence
F ¢, > . Conclusion: H* (¢, > @) A (cy).

— Case: @ follows by MP from ¢ = ¢ and 1.
By the inner induction hypothesis, there exist logical terms ¢ and s such
that F* t> (¢ = @) AI(t) and F* (s> ) A I(s). Hence F* (¢ - s) > and
F* I(t-s). Conclusion: F* ((t-s)> @) AI(t-s). a

Theorem 2 (Soundness and Completeness for Non-Standard Models).
JB is sound and strongly complete with respect to the class of all models.

Proof. Soundness is by induction on the length of derivation. We omit the de-
tails. Completeness is by way of a canonical model construction. We define the
canonical model 2 := (W% [-],~,>,~, E) by setting

W .= {I' C .Z | T is maximal consistent} ,
[Pl :={reWl|perl},
'~ Aiff{0| K6} CA,
'>Aiff{#|00el}C A,
I'~Aiff {0|Y0ec A} C I, and
E(IN:={tc 7 |Etel} .

It is easy to see that (2 is a model: most properties follow by standard correspon-
dence theory [7], while the properties of Evidential Perfect Recall, Knowledge
of Available Evidence, Subterm Closure, and Certification of Evidence follow by
modal reasoning using axioms of the same name.

What remains is for us to prove the Truth Lemma: for each I' € W¥ and
each § € %, we have § € I' iff ' = 0. The proof is by induction on the
construction of 8. All steps of this induction are standard [7], except the ones
refering to formulas of the form Et or t>>¢. For formulas Et, to have Et €
I'" is what it means to have t € E(I'), which is itself equivalent to I' | Et
by the definition of truth. For formulas ¢>> ¢, it follows immediately from the
Admissibility axioms (Table[]), maximal consistency, and the definition of truth
that we have (t>>¢) € I iff I' = ¢t > ¢. This completes the proof of the Truth
Lemma. Strong completeness follows immediately in the usual way [7]. a

Theorem 3 (Completeness for Standard Models, Finite Model Prop-
erty). JB is sound and weakly complete with respect to the class of standard
models. Moreover, it is also weakly complete with respect to the class of finite
standard models.
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Proof (Proof Sketch). First, we unravel the canonical model to {2 obtain another
model {2 x Z in which ~~ is acyclic. For this, we take copies (w, k) of each world
w in {2 and each integer k£ € Z. Accordingly, the set of worlds of our new
model 2 x Z will be W x Z with (w,k) ~ (w', k') iff & = k" and w ~ w’,
(w, k) > (W', E) iff k =k and w > o', (w, k) ~ (', k") il ¥ =k —1 and
w ~ v, E(w, k) = E(w), and [p] = {(w,k) | w € [p]}. We obtain a (non-
standard) model 2 x Z, in which the relation ~~ is acyclic. One can easily check
(by induction on formulas) that (w, k) Faxz ¢ iff w o ¢ for each k € Z and
pEZF.

Fix a consistent formula ¢ and a world v in (2 satisfying v =, ¥ and hence
(v,0) Faexz ¥. Take the submodel M := (£2 X Z),,0) generated by (v, 0) via the
relations ~, >, and «; i.e., M is the restriction of (the relations, functions, and
valuation of) the model 2 X Z to the set

WM = {(w,k) | (w,k) ~* (v',0) for some v/ ~ v} .

Here we use the iterated temporal arrows ~~™ and ~~*, which are defined induc-
tively by setting w ~»° w’ iff w = w’, w ~"T1 w’ iff there exists w” such that
w ~" w” ~ w', and w ~* w’ iff there exists some n € N such that w ~" w'.
It is easy to see that the set WM is closed (as a submodel of 2 x Z) under the
relations ~, >, and «~. (The proof for ~ uses Propositional Perfect Recall, and
the proof for > uses Indefeasibility and the result for ~; see Definition[d) So M
is indeed a generated submodel, and hence by standard results in modal logic
about generated submodels [7], it follows that for every (w,n) € WM and every
formula ¢, we have (w,n) Eum ¢ iff w o . Hence (v,0) Epr 9. Tt is also
easy to see that each temporal layer of this model is connected: (w,n) ~ (w',n’)
holds in M iff n =n'.

Let now m be the modal Y-depth of formula 4; that is, m is the maximum
number of nested Y-modalities occuring in . For each 0 < n < m, let ¥, :=
sub,, (1) be the set of all subformulas of ¥ of modal Y-depth less than or equal
to n. We construct a new model M’ by “cutting” M to depth m (i.e., deleting
all worlds (w,n) having n > m) and applying to the n*® temporal layer of the
resulting submodel (for each nonnegative n < m) the transitive filtration with
respect to the set ¥,,_,,. More precisely, we define an equivalence relation = on
WM by

(w,n) = (w',n') iff (n=n") AVp € Up_pn((w,n) Epm @& (W, n) Er ) .

The set W’ of possible worlds in our new model M’ will consist of all the =-
equivalence classes of worlds of depth at most m:

W = {(w,n) | (w,n) € WM and 0 <n <m},
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where (w,n) = {(w’,n') € WM | (w,n) = (w',n)}. For R € {~,~}, we take
the induced relations on classes (the “smallest filtration”):

(w,n)R(w’,n’) iff (v, k) € (w,n), I, k") € (w,n'): (v,k)R(W', K .

In the case of ~, this amounts to (w,n) ~ (w’,n’) iff n = n’, and in the case of
~- this boils down (with the aid of Propositional Perfect Recall) to

(w,n) ~ (w',n')iff (' =n—-1)A
Fw’ (W~ w AV € Un_p(w =g ¢ & w” o @) .
For >, we take the transitive filtration:
(w,n) > (w',n') iff (n' =n)AVp € Uy, (w Ep Op = w' Eq Op)

The valuation is defined as in any filtration. Formulas of the form Et and ¢ > ¢
are treated in the same way that filtration treats atomic formulas. (For formulas
E't, this works because all worlds in M belonging to the same temporal layer
n are ~-indistinguishable and so agree on the truth values of formulas Et by
Evidential Perfect Recall. For formulas ¢ >> ¢, it works because all worlds in {2
agree on the truth values of formulas ¢ > ¢.)

The resulting model M’ is finite and inherits all the properties of the previous
models, in particular ~» is acyclic and > is transitive and irreflexive (and hence
also acyclic). Since every acyclic relation on a finite set is well-founded, M’ is a
standard model. Finally, it is trivial to check (by induction on n) that, for every
0 < n < m, every world (w,m —n) € W and every formula ¢ € ¥,,, we have
(w,n) Em ¢ < (w,n) Eum . In particular, we obtain (v,0) = 1. O

Corollary 1 (Decidability). The logic JB is decidable.

Proof. The size of the finite model M’ constructed in the above proof is bounded
by N = m - 21*2(¥)l where m is the modal Y-depth of . Hence we can simply
investigate one by one all models (up to isomorphism) of size at most N, checking
whether v is satisfied in any of them. O

It is common in Justification Logic to have “evidence internalization terms” !¢
and 7t that allow the agent to introspectively verify his evidence or lack thereof
according to the following schemes:

PC. t:o=lt:(t:9)
NC. =t = 7t:(—t:p)

PC (“Positive Checker”) says that if the agent has potential evidence ¢ for ¢,
then she can in principle use 't (pronounced “bang t”) to check that ¢ is indeed
potential evidence for ¢. NC (“Negative Checker”) says that if ¢ is not potential
evidence for ¢, then the agent can in principle check this as well using 7¢t. PC
is typically required in order for the Theorem Internalization result to hold.
However, as we saw above, positive checker is not needed to prove this result for
JB. The reason is that our certificates ¢, allow us to recover a form of PC. In
fact, certificates allow us to recover a form of NC as well. Indeed, the following
schemes are derivable in our system
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PC. t:o=(ct.p):(t:9)
NC. =t = (ct:p): (Tt @)

The next result is a kind of “doxastic internalization,” showing that all the im-
plicit beliefs of a rational agent are in principle justifiable, all her explicit beliefs
are explicitly justified, and all her (infallible, or at least, defeasible) knowledge
can be given a correct (i.e., infallible, or at least “good”) justification.

Theorem 4 (Knowledge and Belief Internalization). For each ¢ € Z:

w Enm By iff there is a term t such that w =t ;

w = By iff there is a term t such that w Ep t:%p ;

w =n Op  iff there is a term t such that w =p t: o AG(T) ;
w = 0% iff there is a term t such that w l=p t: e AG(E) ;
w En Ko iff there is a term t such that w =pr t: o ANI(E) ;
w En Ko iff there is a term t such that w f=pr t:%p A I(t) .

In words: something is (implicit or explicit) belief iff it is (implicitly or explicitly)
Justifiable by some (implicitly or explicitly accepted) evidence; something is (im-
plicit or explicit) defensible knowledge iff it is (implicitly or explicit