
Silhouette-Based Label Placement
in Interactive 3D Maps

Christine Lehmann and Jürgen Döllner

Abstract This paper presents a silhouette-based technique for automated,
dynamic label placement for objects of 2D and 3D maps. The technique uses
visibility detection and analysis to localise unobstructed areas and sihouettes of
labeled objects in the viewplane. For each labeled object, visible silhouette points
are computed and approximated as a 2D polygon; the associated label is finally
rotated and placed along an edge of the polygon in a way that sufficient text
legibility is maintained. The technique reduces occlusions of geospatial informa-
tion and map elements caused by labels, while labels are placed close to labeled
objects to avoid time-consuming matching between legend and map view. It
ensures full text legibility and unambiguity of label assignments by using actually
visible 2D silhouette of objects for label placement. We demonstrate the appli-
cability of our approach by examples of 3D map label placement.

Keywords Labeling � Text visualization � Information visualization

1 Introduction and Related Work

Label placement or labeling is an old discipline that has its origin in 2D cartog-
raphy (Imhof 1985). Different labeling strategies have been devised to attach
textual information to objects. A large number of labeling strategies exist for point
feature labeling of 2D objects (Bekos et al. 2010; Christensen et al. 1994; Mote
2007; Wagner et al. 2001) and 3D objects (Stein and Décoret 2008; Maaß and
Döllner 2006b). The challenge in point feature labeling comes from the high
density of labeled objects or Point-of-Interests (Kern and Brewer 2008).

C. Lehmann (&) � J. Döllner
Computer Graphics Systems, Hasso-Plattner-Institute, University of Potsdam,
Potsdam, Germany
e-mail: christine.lehmann@hpi.uni-potsdam.de

M. Buchroithner et al. (eds.), Cartography from Pole to Pole,
Lecture Notes in Geoinformation and Cartography, DOI: 10.1007/978-3-642-32618-9_13,
� Springer-Verlag Berlin Heidelberg 2014

177



Algorithms commonly use external lines to connect label and labeled object,
which is called external labeling. Fewer strategies exist for line feature labeling
(Maaß and Döllner 2007) and area feature labeling (Maaß and Döllner 2006a),
which overlay objects with labels. Such approaches are referred to as internal
labeling approaches.

From cartography, general principles and requirements on text labels are well-
known (Imhof 1985), including legibility, clear graphic association, and, in par-
ticular, minimum covering of map content. In particular, the last issue represents a
major factor that affects the clarity of the visualization (Christensen et al. 1994).
With internal labeling, much content is covered by labels. With external labeling,
only one point of the labeled object is required. In case of illustrative labeling
examples, i.e., labels can be placed exclusively around the content and thus pro-
vide less covering of labeled objects. However, for general labeling examples,
external lines can also cover adjacent labeled objects.

In contrast to static label placement, dynamic label placement requires that
labeling algorithms are suitable for responsive visualization systems and interac-
tive applications (Kopetz 1993) and thus perform all computations fast enough.
Furthermore, interactive applications are characterized by frequent changes in
view and—in case of 3D visualizations-also by changes in perspective. This makes
it more difficult for the user to focus and perceive the desired information, com-
pared to a static map, for example, where the user has more time to study the given
single view. In the field of human user interfaces, this refers to the task of the user
to keep the ‘‘locus of attention’’ (Raskin 2000) in interactive applications, i.e., to
detect and interpret the difference between two consecutive views of the visuali-
zation. Hence, if there is too much information visualized, the user looses the locus
of attention and consequently does not perceive the message of the visualization
anymore. As a conclusion, our labeling method focuses on providing an appro-
priate amount of information to the user using visibility-driven label placement
(Lehmann and Döllner 2012). Using visibility information of labeled objects,
which we call visibility-driven label placement, is essential for dynamic label
placement, as it reduces missing labels and label cluttering (Lehmann and Döllner
2012).

In this paper, we present a novel labeling strategy, called silhouette-based label
placement that provides high visibility of underlying map content without losing
spatial closeness between label and labeled object. Labels are placed along the
visible silhouette of labeled objects (Fig. 1). In this sense, silhouette-based
labeling is a balance between external and internal labeling. Our method is fully
automated and does not require manual refinement. The label placement is
renewed for each frame and reacts on interactive frame rates. Hence, it is suitable
for interactive visualization applications.

We will further present how text and character transformations, which are
necessary to align labels to visible silhouettes, can be efficiently implemented.
With our font rendering method, we overcome legibility problems caused by
aliasing artifacts and enable dynamic transformations of text and single characters.

178 C. Lehmann and J. Döllner



Our GPU-based rendering method for text labels can be easily integrated into
existing rendering applications, e.g., into server-side applications that need text
visualizations, as the main part of text rendering is placed in a pixel shader. We
demonstrate the applicability of our labeling method for 2D and 3D visualization
applications by city and indoor labeling examples.

2 Silhouette-Based Label Placement

For each labeled object, pixels of the visible area are detected. As this detection is
performed in the image space, where both 2D and 3D objects are represented by
2D regions, our method can be applied for 2D and 3D maps. Visible regions of 3D
objects can consist of separate parts, for instance caused by occluding foreground
objects. These parts or clusters in the visible point set are detected using flat
Euclidean clustering (Jain et al. 1999). The cluster containing the highest number
of points is selected for further processing (Fig. 2). From the cluster, we extract the
boundary points or the visible silhouette. For each boundary, the vector pointing to
the next inner point is computed, which we call the inner vector in this context.
Hence, we call the resulting set of inner vectors for a given point set the inner
vector field. In the following, we present our completely automated technique for
aligning labels to visible edges of arbitrary 2D and 3D objects.

Fig. 1 Occlusions of labeled objects caused by labels are reduced to preserve their information,
while fast label assignment is enabled

Silhouette-Based Label Placement in Interactive 3D Maps 179



2.1 Detecting Visible Edges

We define an edge as a sorted list of 2D points that describes one side of the visible
boundary of a 3D object. Thereby, the edge points are sorted in ascending order by
their x-value. From the visible silhouette, i.e. the visible boundary points, we
classify into top, bottom, left, and right edge (edge classes). Visible regions can
have various shapes, for example, a shape closely matching a circle or a rectangle.
The challenge is to find edges for arbitrary shapes of visible regions. This is
difficult in case of shapes closely matching a circle, as a circle naturally has no
edges or sides. However, we can analyze a boundary point relatively to the inner
points of the shape. Hence, we use the inner vector field of the shape for edge
detection.

To assign a point Pi to the correct edge class, the inner vector field is used: the
point’s inner vector Ni points to the inside of the visible region. Hence, we dis-
tinguish edges using the dot products Ni;E0h i and Ni;E1h i, with E1 ¼ �1; 1ð ÞT and

E0 ¼ 1; 1ð ÞT (Fig. 3). For edge classification, only the sign of the dot product is
relevant, thus, normalization of E0 and E1 is not required. Visible edges are
classified using the following equations:

Bottom edge: Ni;E0h i[0 and Ni;E1h i[0.
Top edge: Ni;E0h i\0 and Ni;E1h i\0.
Left edge: Ni;E0h i[0 and Ni;E1h i\0.
Right edge: Ni;E0h i\0 and Ni;E1h i[0.

There are several ways to understand bottom, top, left, and right depending on
the reference coordinate system. We can use the coordinate system defined by the
eigenvectors of the visible point set, i.e., the 2D object or local coordinate system,
or the axis-aligned coordinate system, i.e., the image space coordinate system. We

Fig. 2 Visible regions of labeled objects (example: spherical object) are analyzed in image
space. a The distance field describes the distance for each visible point to the boundary. Points
with highest distance are depicted white. Using the distance field, the visible silhouette (c) is
selected. b The inner vector field describes the direction from each point to the inner points. It is
used to detect edges in the visible silhouette (d), i.e., left edge (red), bottom edge (green), right
edge (blue), and top edge (yellow). In this example, the label ‘‘Sphere’’ is aligned to the top edge

180 C. Lehmann and J. Döllner



use the axes of the image space coordinate system to compute the absolute top,
bottom, left, and right edge. When using a local coordinate system, the determi-
nation of common edges between adjacent labels is difficult, as edges cannot be
compared without complex coordinate system transformation.

In case of concave shapes or shapes with holes, multiple edges can be detected
for one edge class. In this case, the edges must be separated using flat clustering by
the Euclidean Distance, i.e., the pixel distance between the edge points.

2.2 Selecting Edges

To select an edge, to which a given text can be aligned, we apply the following
criteria:

1. The edge length in pixels must be sufficient for the given text length in pixels.
2. Horizontal edges (top and bottom edge) are preferred over vertical edges (left

and right edge).
3. The last selected edge is preferred, if it has a sufficient length, so that spatial

coherence between two consecutive views is improved.

Regarding criterion 1, the font size can be decreased to fit the text into the
longest edge, if no edge is sufficiently sized for the text in original font size.
According to cartography principles, objects of the same or similar type should
obtain text labels with the same or similar font. Consequently, we assume that font
size is constant for all labels, and blend out labels that do not fit to one of the four
edges.

Regarding criterion 2, we set the following order for edge priorities in our
examples: the highest priority is assigned to the top edge, followed by bottom
edge, left edge, and right edge. The choice of edge priorities is related to reading

x

y

e1e0 top

bottom
le

ft

ri
g

h
tNi

Fig. 3 To detect edges in the
visible silhouette of labeled
objects, the diagonal vectors
e1 and e0 are used, i.e., the
coordinate axes x and y
rotated by 45�. Using the
normal field and the diagonal
vectors, points are assigned to
one of the four regions left,
right, top, and bottom

Silhouette-Based Label Placement in Interactive 3D Maps 181



direction and, thus, depends on cultural aspects in text processing. For this reason,
priorities are user-defined in our implementation.

Labels are placed along the boundary, but still inside the visible area of the
labeled object. Hence, occlusions with other labels cannot occur, as visible areas
are disjoint by nature. However, labels of adjacent visible areas can be placed
closely, if the common edge is selected.

2.3 Computing Label Alignments

In the previous steps, we have computed the four visible edges, and selected one
edge for each labeled object. In this section, we explain how the associated label is
aligned to the selected edge, i.e., to the line sequence consisting of a tupel of 2D
points or pixels. Single characters of a text label are translated separately by an
offset vector. For the whole text, a list of offset vectors is computed. The start point
of the text label is set to the start point of the edge, i.e., the furthest point on the
left.

To generate the offset vector for the horizontally oriented edges (bottom and top
edge), we collect all relevant edge points for each character (Fig. 4). An edge point
is relevant for ith character, if it is located inside the character pixel bounding box
AABBi. From the relevant points, the average offset in y-direction is computed. For
the vertically oriented edges (left and right edge), offsets are accordingly generated
in x-direction.

offset3

AABB3

x

y

Fig. 4 Example offset computation: to align the character ‘‘e’’ of the label ‘‘Sphere’’ (3rd
character) to the edge points (blue marked), the translation in y-direction, the offset, is computed.
The offset is the average of the y-values of the edge points (red marked) inside the character
bounding box AABB. The character position ðx; yÞ of ‘‘e’’ (in image space) is then translated by
the offset vector 0; offsetð ÞT

182 C. Lehmann and J. Döllner



Edge points do not necessarily need to be equidistant, if the sampling distance
is higher than 1 pixel. Hence, a character can be located between two adjacent
edge points without intersections. As a result, the translation offset between two
adjacent characters can be very high, i.e., the character spacing between adjacent
characters can be too loose. To enable sufficient character spacing for character
translation in this case, we add the next adjacent edge points around the character
bounding box. Additionally, we interpolate offsets using the arithmetic mean. As a
result, we obtain a label alignment to a smoothed curve approximation of the edge.

The precision of the offset vector depends on the sampling distance. If the
sampling distance is chosen too large, label alignments do not match anymore to
the visible silhouette. Applying smaller sampling distances can lead insufficient
performance. In our application scenarios with Full-HD resolution, we tested with
a sampling distance of at least 10 pixels and maximally 50 pixels to provide
reasonable label alignments with interactive frame rates.1

If the whole text was transformed, legibility could be reduced due to text
distortion. Hence, to avoid artifacts in text rendering, we use a font rendering
technique that enables character transformation, i.e., single characters can be
transformed independently. However, we also allow transformations of the whole
text by translation or rotation. To enable real-time text alignment to curves, we
implemented a font rendering technique that completely runs on the GPU using a
single pixel shader with the following input textures: two font textures as well as a
text texture and an offset texture per label. As these textures are low-resolution
textures, the total GPU memory consumption is also low. The pixel shader for
character transforming and rendering is implemented using the OpenGL Shading
Language (GLSL) (Rost 2006).

The offset vectors are passed to the pixel shader as an additional 1D texture
(offset texture). In the pixel shader, each character is translated by the according
offset contained within the offset texture.

3 Conclusions

We presented a visibility-driven, silhouette-based labeling technique for 3D virtual
worlds such as 2D and 3D maps that reduces occlusions of labeled objects by
labels while fast assignment by placing labels close to labeled objects is preserved.
Our technique enables dynamic text transformations around the visible silhouette
of labeled objects using GPU-based font rendering that preserves text legibility.
Our method provides detailed user-defined configuration, including (1) the edges
priorities, i.e., the bottom edge is always preferred against the other edges, (2) the
label distance to the visible silhouette, i.e., labels can be aligned on the silhouette

1 We tested on the following hardware: Intel Xeon CPU 2 9 2.6 GHz, NVIDIA GeForce GTX
480.

Silhouette-Based Label Placement in Interactive 3D Maps 183



or to the inner/outer silhouette (Fig. 5), and (3) label resizing, i.e., labels are
allowed/not allowed to be resized, if no edge is sufficiently sized.

Our labeling method projects labeled 3D objects into image space, i.e., 3D
objects are represented as 2D areas in image space. Consequently, labeling of
volumetric objects is reduced to labeling of areal objects (area feature labeling) to
provide a generic approach for both 2D and 3D labeling. Kern and Brewer (2008)
stated that area feature labeling is most difficult, so labels for areas must be placed
first, followed by point and line feature labels. This ordering is mainly related to
occlusions caused by point or line feature labels contained in area features, which
are also labeled. With our approach, labels of objects, whose visible areas

Fig. 5 Example for silhouette-based labeling applied to an indoor scene. From a to d: distance
field, inner vector field, visible silhouettes, and aligned labels. In this example, we aligned labels
to the outer visible silhouette of labeled objects and applied further smoothing to character
translation

184 C. Lehmann and J. Döllner



degenerate to a point or a few points, are not depicted. They can be explored
interactively by zooming in.

In our examples, we used a monospaced font type, i.e., all character glyphs have
the same width. For a monospaced font type, the determination of offsets for edge
alignment can be handled significantly more efficiently, in computational time and
storage amount, than for a variable-width font type: for a variable-width font type,
an additional offset texture is required that contains the character width informa-
tion of the font type. Further, the pixel shader has to perform kerning and, thus,
more texture look-ups. On the CPU, more complex distance computations for the
offset vector have to be processed.

For future work, we want to compute the 2D skeleton of visible regions or
minor skeleton (Freeman and Ahn 1984) respectively. Using the minor skeleton,
we can align internal labels more precisely in the according visible regions. A real-
time capable algorithm for image-based computation of the minor skeleton is
provided by Telea and van Wijk (2002).

References

Abdi H, Williams L (2010) Principal component analysis. Comput Stat 2(4):433–459
Beauchemin SS, Barron JL (1995) The computation of optical flow. ACM Comput Surv

27(3):433–466
Bekos MA, Kaufmann M, Nöllenburg M, Symvonis A (2010) Boundary labeling with octilinear

leaders. Algorithmica 57(3):436–461 (Scandinavian Workshop on Algorithm Theory)
Christensen J, Marks J, Shieber S (1994) An empirical study of algorithms for point feature label

placement. ACM Trans Graph 14(3):203–232
Freeman H, Ahn J (1984) AUTONAP—an expert system for automatic map name placement. In:

Internaional symposium on spatial data handling, pp 544–569
Imhof E (1985) Positioning names on maps. Cartogr Geogr Inf Sci 2:128–144
Jain AK, Murty MN, Flynn PJ (1999) Data clustering: a review. ACM Comput Surv

31(3):264–323
Kern J, Brewer C (2008) Automation and the map label placement problem: a comparison of two

GIS implementations of label placement. Cartogr Perspect 60:22–45
Kopetz H (1993) Should responsive systems be event-triggered or time-triggered? Inst Electron

Inf Commun Eng E76-D:1325–1332
Lehmann C, Döllner J (2012) Automated image-based label placement in interactive 2D/2.5D/3D

maps. In: Symposium on service-oriented mapping
Maaß S, Döllner J (2006) Dynamic annotation of interactive environments using object-

integrated billboards. In: 14th international conference on computer graphics, visualization
and computer vision, pp 327–334

Maaß S, Döllner J (2006) Efficient view management for dynamic annotation placement in virtual
landscapes. In 6th international symposium on smart graphics 2006, vol 4073. Springer,
Heidelberg, pp 1–12

Maaß S, Döllner J (2007) Embedded labels for line features in interactive 3D virtual
environments. In: AFRIGRAPH ‘07: proceedings of the 5th international conference on
computer graphics, virtual reality, visualisation and interaction in Africa, pp 53–59

Mote, K. (2007). Fast point-feature label placement for dynamic visualizations. Inf Vis
6:249–260 (Data Structures and Algorithms)

Silhouette-Based Label Placement in Interactive 3D Maps 185



Raskin J (2000) The humane interface: new directions for designing interactive systems. ACM
Press, New York

Rost RJ (2006) OpenGL(R) shading language, 2nd edn. Addison-Wesley Professional, Boston
Stein T, Décoret X (2008) Dynamic label placement for improved interactive exploration. In:

NPAR (symposium on non-photorealistic animation and rendering), pp 15–21
Telea A, van Wijk JJ (2002) An augmented fast marching method for computing skeletons and

centerlines. In: Symposium on data visualisation
Vaaraniemi M, Treib M, Westermann R (2012) Temporally coherent real-time labeling of

dynamic scenes. In: 3rd international conference on computing for geospatial research and
applications. ACM, pp 17:1–17:10

Wagner F, Wolff A, Kapoor V, Strijk T (2001) Three rules suffice for good label placement.
Algorithm Special Issue GIS 2000:334–349

186 C. Lehmann and J. Döllner


	13 Silhouette-Based Label Placement in Interactive 3D Maps
	Abstract
	1…Introduction and Related Work
	2…Silhouette-Based Label Placement
	2.1 Detecting Visible Edges
	2.2 Selecting Edges
	2.3 Computing Label Alignments

	3…Conclusions
	References


