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Abstract. It has been shown [7,16] that feedforward Boolean networks
can learn to perform specific simple tasks and generalize well if only a
subset of the learning examples is provided for learning. Here, we extend
this body of work and show experimentally that random Boolean net-
works (RBNs), where both the interconnections and the Boolean transfer
functions are chosen at random initially, can be evolved by using a state-
topology evolution to solve simple tasks. We measure the learning and
generalization performance, investigate the influence of the average node
connectivity K, the system size N , and introduce a new measure that
allows to better describe the network’s learning and generalization be-
havior. Our results show that networks with higher average connectivity
K (supercritical) achieve higher memorization and partial generalization.
However, near critical connectivity, the networks show a higher perfect
generalization on the even-odd task.

1 Introduction

Pattern recognition is a task primates are generally very good at while machines
are not so much. Examples are the recognition of human faces or the recogni-
tion of handwritten characters. The scientific disciplines of machine learning and
computational learning theory have taken on the challenge of pattern recogni-
tion since the early days of modern computer science. A wide variety of very
sophisticated and powerful algorithms and tools currently exist [5]. In this paper
we are going back to some of the roots and address the challenge of learning with
networks of simple Boolean logic gates. To the best of our knowledge, Alan Tur-
ing was the first person to explore the possibility of learning with simple NAND
gates in his long forgotten 1948 paper, which was published much later [21, 25].
One of the earliest attempts to classify patterns by machine came from Olivier
Selfridge [19,20] in 1958. Later, many have explored random logical nets made up
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from Boolean or threshold (McCulloch-Pitts) neurons: [1–4, 18]. Martland [15]
showed that it is possible to predict the activity of a boolean network with ran-
domly connected inputs, if the characteristics of the boolean neurons can be
described probabilistically. In a second paper [14], Martland illustrated how the
boolean networks are used to store and retrieve patterns and even pattern se-
quences auto-associatively. Seminal contributions on random Boolean networks
came from Stuart Kauffman [9–11] and Weisbuch [26, 27].

In 1987, Patarnello and Carnevali [6,16] used simulated annealing and in 1989
also genetic algorithms [17] as a global stochastic optimization technique to train
feedforward Boolean networks to solve computational tasks. They showed that
such networks can indeed be trained to recognize and generalize patterns. Broeck
and Kawai [7] also investigated the learning process in feedforward Boolean
networks and discovered their amazing ability to generalize.

In 2007, Teuscher et al. [22] presented preliminary results that true RBNs, i.e.,
Boolean networks with recurrent connections, can also be trained to learn and
generalize computational tasks. They further hypothesized that the performance
is best around the critical connectivity K = 2.

In the current paper, we extend and generalize Patarnello and Carnevali’s re-
sults to random Boolean networks (RBNs) and use genetic algorithms to evolve
both the network topology and the node transfer functions to solve a simple
task. Our work is mainly motivated by the application of RBNs in the context
of emerging nanoscale electronics [23]. Such networks are particularly appealing
for that application because of their simplicity. However, what is lacking is a
solid approach that allows to train such systems for performing specific opera-
tions. Similar ideas have been explored with none-RBN building blocks by Tour
et al. [24] and by Lawson and Wolpert [12]. One of the broader goals we have
is to systematically explore the relationship between generalization and learning
(or memorization) as a function of the system size, the connectivity K, the size
of the input space, the size of the training sample, and the type of the problem to
be solved. In the current paper, we restrict ourselves to look at the influence of
the system size N and of connectivity K on the learning and generalization ca-
pabilities. In the case of emerging electronics, such as for example self-assembled
nanowire networks use to compute simple functions, we are interested to find
the smallest network with the lowest connectivity that can learn how to solve
the task with the least number of patterns presented.

2 Random Boolean Networks

A random Boolean network (RBN) [9–11] is a discrete dynamical system com-
posed of N nodes, also called automata, elements or cells. Each automaton is a
Boolean variable with two possible states: {0, 1}, and the dynamics is such that

F : {0, 1}N �→ {0, 1}N , (1)

where F = (f1, ..., fi, ..., fN ), and each fi is represented by a look-up table of
Ki inputs randomly chosen from the set of N nodes. Initially, Ki neighbors and
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a look-up table are assigned to each node at random. Note that Ki (i.e., the
fan-in) can refer to the exact or to the average number of incoming connections
per node. In this paper we use K to refer to the average connectivity.

A node state σt
i ∈ {0, 1} is updated using its corresponding Boolean function:

σt+1
i = fi(σ

t
i1 , σ

t
i2 , ..., σ

t
iKi

). (2)

These Boolean functions are commonly represented by look-up tables (LUTs),
which associate a 1-bit output (the node’s future state) to each possible K-bit
input configuration. The table’s out-column is called the rule of the node. Note
that even though the LUTs of a RBN map well on an FPGA or other memory-
based architectures, the random interconnect in general does not.

We randomly initialize the states of the nodes (initial condition of the RBN).
The nodes are updated synchronously using their corresponding Boolean func-
tions. Other updating schemes exist, see for example [8] for an overview. Syn-
chronous random Boolean networks as introduced by Kauffman are commonly
called NK networks or models.
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Fig. 1. Illustration of an 18-node RBN with 3 input nodes (node IDs 1, 2, and 3,
colored in blue) and 1 output node (node ID 18, colored in red). The average connec-
tivity is K = 2.5. The node rules are commonly represented by lookup-tables (LUTs),
which associate a 1-bit output (the node’s future state) to each possible K-bit input
configuration. The table’s out-column is commonly called the rule of the node.

The “classical” RBN is a closed system without explicit inputs and outputs.
In order to solve tasks that involve inputs and outputs, we modify the classical
model and add I input nodes and designate O nodes as output nodes. The input
nodes have no logical function and simply serve to distribute the input signals to
any number of nodes in the network. On the other hand, the output nodes are
just like any other network node, i.e., with a Boolean transfer function, except
that their state can be read from outside the network. Figure 1 shows an 18-node
RBN with 3 input nodes and 1 output node.
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3 Experimental Setup

We use genetic algorithms (GAs) to train the RBNs to solve the even-odd, the
mapping task, and the bitwise AND task. The even-odd task consists of deter-
mining if an l−bit input has an even or an odd number of 1s in the input. If
the number of 1s is an odd number, the output of the network must be 1, 0
otherwise. This task is admittedly rather trivial if one allows for counting the
number of 1s. Also, if enough links are assigned to a single RBN node, the task
can be solved with a single node since all the combinations can be enumerated in
the look-up table. However, we are not interested to find such trivial solutions,
instead, we look for networks that are able to generalize well if only a subset
of the input patterns is presented during the training phase. In Section 5 we
also use the bitwise AND task, which does exactly what its name suggests, i.e.,
form the logical AND operation bit by bit with two l−bit inputs and one l−bit
output. The mapping task is used in Section 6 and consists of a l−bit input and
an l−bit output. The output must have the same number of l−bits as the input,
but not necessarily in the same order. Throughout the rest of the paper, we use
I to refer to the total number of input bits to the network. For example, the
bitwise AND for two 3-bit inputs is a problem with I = 6 inputs.

To apply GAs, we encode the network into a bit-stream that consists of both
the network’s adjacency matrix and the Boolean transfer functions for each
node. The genetic operators consist of the standard mutation and one-point
crossover operators that are applied to the genotypes in the network population.
We further define a fitness function f and a generalization function g. For an
input space M ′ of size m′ and an input sample M of size m we write: EM =
1
m

∑
j∈M d(j) with f = 1 − EM , where d(j) is the Hamming distance between

the network output for the jth input in the random sample from the input space
and the expected network output for that input. Similarly, we write: EM ′ =
1
n

∑
j∈M ′ d(j) with g = 1 − EM ′ , where d(i) is the Hamming distance between

the network output for the ith input from the entire input space and the expected
network output for that input.

The simple genetic algorithm we use is as following:

1. Create a random initial population of S networks.
2. Evaluate the performance of the networks on a random sample of the input

space.
3. Apply the genetic operators to obtain a new population.
4. Continue with steps 2 and 3 until at least one of the networks achieves a

perfect fitness or after Gmax generations are reached.

To optimize feedforward networks (see Section 5), we have to make sure that the
mutation and crossover operators do not violate the feedforward topology of the
network. We add an order attribute to each node on the network and the nodes
accept connections only from lower order nodes.

Since RBNs have recurrent connections, their rich dynamics need to be taken
into account when solving tasks, and in particular interpreting output signals.
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Their finite and deterministic behavior guarantees that a network will fall into
a (periodic or fixed point) attractor after a finite number of steps. The transient
length depends on the network’s average connectivity K and the network size
N [11]. For our simulations, we run the networks long enough until they reach an
attractor. Based on [11], we run our networks (with k < 5) for 2N time steps to
reach an attractor. However, due to potentially ambiguous outputs on periodic
attractors, we further calculate the average activation of the output nodes over a
number of time steps equal to the size N of the network and consider the activity
level as 1 if at least half of the time the output is 1, otherwise the activity will
be 0. A similar technique was used successfully in [21].

4 Training and Network Performance Definitions

Patarnello and Carnevali [16] introduced the notion of learning probability as a
way of describing the learning and generalization capability of their feedforward
networks. They defined the learning probability as the probability of the training
process yielding a network with perfect generalization, given that the training
achieves perfect fitness on a sample of the input space.

The learning probability is expressed as a function of the fraction of the input
space, s = m

m′ , used during the training. To calculate this measure in a robust
way, we run the training process r times and store both the fitness f and the
generalization g values. We define the learning probability as a function of s,

δ(s) = Pr(g = 1|f = 1) = α′(s)
α(s) , where α(s) = Pr(f = 1) is the probability of

achieving a perfect fitness after training, i.e., f = 1, and where α′(s) = Pr(g = 1)
is the probability of obtaining a perfect fitness in generalization, g = 1. In
the following sections, we will define new measures to evaluate the network
performance more effectively.

One can say that the probabilistic measures, such as the learning probability
described above, only focus on the perfect cases and hence describe the perfor-
mance of the training process rather than the effect of the training on the network
performance. Thus, we define the mean training score as β(s) = 1

r

∑
r ffinal and

the mean generalization score as β′(s) = 1
r

∑
r gfinal, where ffinal and gfinal are

the training fitness and the generalization fitness of the best networks respec-
tively at the end of training.

To compare the overall network performance for different training sample
sizes, we introduce a cumulative measure for all four measures as defined above.
The cumulative measure is obtained by a simple trapezoidal integration [28]
to calculate the area under the curve for the learning probability, the perfect
training likelihood, the mean generalization score, and mean training score.

5 Learning in Feedforward Boolean Networks

The goal of this first experiment was to simply replicate Patarnello and
Carnevali’s [17] results with feedforward Boolean networks. Figure 2 shows the
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learning probability of such networks on the even-odd (RIGHT) and the bitwise
AND task (LEFT) forK = 2 networks. We observe that as the size I of the input
space increases, the training process requires a smaller number of training exam-
ples to achieve a perfect learning probability. For I = 3, some of the networks can
solve a significant number of patterns without training because the task is too
easy. We have initially determined the GA parameters (see figure legends), such
as the mutation rate and the maximum number of generations experimentally,
depending on how quickly we achieved perfect fitness on average. We have found
the GA to be very robust against parameter variations for our tasks. These result
shown in Figure 2 directly confirm Patarnello and Carnevali’s [17] experiments.
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Fig. 2. LEFT: The learning probability of feedforward networks on the bitwise AND
task for different input sizes I . s = m

m′ is the fraction of the input space used in training.
As I increases, the learning process requires a smaller fraction of the input space during
the training to achieve a perfect learning probability. RIGHT: The learning probability
of feedforward networks on the even-odd task for various input sizes I . As I increases,
the learning process requires a smaller fraction of the input space during the training
to achieve a perfect learning probability. For I = 3, some of the networks can correctly
classify a significant number of patterns without training because the task is too easy.
For both plots: N = 50, K = 2, Gmax = 3000, initial population size = 50, crossover
rate = 0.6, mutation rate = 0.3. The GA was repeated over 700 runs.

6 Learning in RBNs

Next, we trained recurrent RBNs for the even-odd and the mapping tasks. Figure
3 (LEFT) shows the learning probability of the networks on the even-odd task
with different input sizes I. While the problem size increases exponentially with
I, we observe that despite this state-space explosion, a higher number of inputs
I requires a smaller fraction of the input space for training the networks to
achieve a high learning probability. Figure 3 (RIGHT) shows the same behavior
for the mapping task, however, since the task is more difficult, we observe a worse
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generalization behavior. Also, compared to Figure 2, we observe in both cases
that the generalization for recurrent networks is not as good as for feedforward
Boolean networks. In fact, for the studied input sizes, none of the networks
reaches a learning probability of 1 without training it on all the patterns.
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Fig. 3. LEFT: The learning probability of RBNs on the even-odd task for different
problem sizes: I = 3, 4, 5, 7. With increasing I , the training process requires a smaller
fraction of input space in order to reach a higher learning probability. N = 20, Gmax =
500, init. population = 50, crossover rate = 0.7, mutation rate = 0.0. We calculate the
data over 400 runs for all Is. RIGHT: The learning probability of RBNs on the mapping
task for I = 3, 4, 5. We observe the same behavior, but the networks generalize even
worse because the task is more difficult. N = 40, same GA parameters.

To investigate the effect of the average connectivity K on the learning proba-
bility, we repeat the even-odd task for networks with K ∈ {1.0, 1.5, 2.0, 2.5, 3.0}.
The network size was held constant at N = 20. In order to describe the training
performance, we defined the perfect training likelihood measure α(s) as the prob-
ability for the algorithm to be able to train the network with the given fraction
(s) of the input space (see section 4 for definition).

Considering the perfect training likelihood, the results in Figure 4 (RIGHT)
show that for networks with subcritical connectivity K < 2, the patterns are
harder to learn than with supercritical connectivity K > 2. Close to the “edge
of chaos”, i.e., for K = 2 and K = 2.5, we see an interesting behavior: for sample
sizes above 40% of the patterns, the perfect training likelihood increases again.
This transition may be related to the changes in information capacity of the
network at K = 2 and needs further investigation with different tasks.

The significant difference between the learning probability and the perfect
training likelihood for s < 0.5 in Figure 4 is due to the small sample size. It is
thus very easy for the network to solve the task correctly, but over all r runs
of the experiment, there is no network that can generalize successfully despite
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achieving a perfect training score. Also, according to the definitions in Section 4,
it is not surprising that for a fraction s = 1 of the input space, i.e., all patterns
are presented, the learning probability and the perfect training likelihood are
different. Out of r runs, the GA did not find perfect networks for the task for all
example, but if the networks solve the training inputs perfectly, they will also
generalize perfectly because in this case, the training sample input includes all
possible patterns.
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Fig. 4. LEFT: The learning probability of networks with size N = 15 and K ∈
{1.0, 1.5, 2.0, 2.5, 3.0, 3.5, 4.5, 5.0} for the even-odd task of size I = 5. Networks with
connectivity K = 1.5, 2, 2.5 have a higher learning probability. RIGHT: The perfect
training likelihood for the same networks and the same task. As the training sample
size increases, subcritical connectivity networks are not able to correctly classify all
training patterns, while for K ≥ 2, correctly classifying them is easier.

7 Mean Generalization and Training Score

Figure 5 shows the learning probability (LEFT) and the perfect training likeli-
hood (RIGHT) measured as Patarnello and Carnevali did, i.e., they only counted
the number of networks with perfect generalization scores (see Section 4). Thus,
if a network generalizes only 90% of the patterns, it is not counted in their score.
That means that the probabilistic measures of performance that we used so far
have the drawback of describing the fitness landscape of the space of possible
networks rather than the performance of a particular network, which we are
more interested in. To address this issue, we introduce a new way of measur-
ing both the learning and the generalization capability. We define both of these
measures as the average of the generalization and learning fitness over r runs
(see section 4).

Figure 6 shows the generalization (LEFT) and the training score (RIGHT)
with this new measure. As opposed to Carnevali and Patarnello’s work, where
higher K led to a lower learning probability, our results with the new measures
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for higher K lead to a higher performance with a better generalization and
training score. Our measures therefore better represent the performance of the
networks with regards to a given task because they also include networks that
can partially solve the task.
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Fig. 5. Learning probability (LEFT) and perfect training likelihood (RIGHT). I =
3, N = 15, even-odd task. Compared to the learning probability for I = 5, there is
not much difference between the learning probability of networks with various K for
I = 3 because of the small input space. However, the perfect training likelihood still
increases with K. K ranges from 1.0 to 4.9 with 0.1 increments.

8 Cumulative Measures

In all the previous generalization figures, the question arises which networks are
“better” than others, in particular if they do not reach a maximal generalization
score when less than 100% of the patterns are presented. This behavior can be
observed in Figure 4 (LEFT) for the even-odd task.

Figure 7 shows the cumulative learning probability (LEFT) and the cumulative
training likelihood (RIGHT) determined by integrating numerically (see Section 4
for definitions) the area under the curves of Figure 5. Figure 7 (LEFT) shows that
K has no effect on the generalization and that the generalization capability is
very low. Figure 7 (RIGHT) shows that higher K increases the chance of perfect
training, i.e., the network can be trained to memorize all training patterns.
Each cluster of connectivities in Figure 5 (RIGHT) corresponds to a “step” in
the curves of Figure 7 (RIGHT).

Figure 8 shows the cumulative generalization score (LEFT) and the cumulative
training score (RIGHT) based on the new measure as introduced in Section 7.
We have used the even-odd task for two input sizes, I = 3 and I = 5. We
observe that K has now a significant effect on the generalization score. The
higher K, the better the generalization. Moreover, different intervals of K result
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Fig. 6. The new generalization (LEFT) and training score (RIGHT), which better
reflects the performance of the networks with regards to a given task. I = 3, N = 15,
even-odd task. K ranges from 1.0 to 4.9 with 0.1 increments.
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Fig. 7. LEFT: Cumulative learning probability. RIGHT: Cumulative training likeli-
hood. Each data point in this figure corresponds to the area under the curves shown in
Figure 5. N = 15 in both figures, even-odd task. As one can see, perfect memorization
is more likely with higher K, but perfect generalization is more likely for near-critical
connectivity 1.5 ≤ K ≤ 3. The cumulative learning probability and the perfect train-
ing likelihood represent the area under the learning probability and perfect training
likelihood curves respectively (see Figure 4 and 5, and Section 4).

in a step-wise generalization score increase. Figure 8 (RIGHT) shows that the
cumulative training score for higher K increases the chance of perfect training,
i.e., the network can be trained to memorize all training patterns. Also, the
higher the input size I, the better the generalization, which was already observed
by Patarnello and Carnevali (see also Section 5).
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In summary, we have seen so far that according to our new measures, higher
K networks both generalize and memorize better, but they achieve perfect gen-
eralization less often. The picture is a bit more complicated, however. Our data
also shows that for networks around K = 1.5, there are more networks in the
space of all possible networks that can generalize perfectly. For K > 1.5, the
networks have a higher generalization score on average, but there is a lower
number of networks with perfect generalization. That is because the fraction of
networks with perfect generalization is too small with respect to the space of all
the networks. For K < 1.5, the networks are hard to train, but if we manage to
do so, they also generalize well.
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Fig. 8. LEFT: Cumulative generalization score. RIGHT: Cumulative training score.
N = 15 in both figures, even-odd task, I = 3 and I = 5. As one can see, both the net-
work’s generalization and the memorization capacity increase with K. The cumulative
generalization and training score represent the area under the mean generalization and
training score curves respectively (see Figure 6 and Section 4).

Figure 9 shows the complete cumulative learning probability (LEFT) and
cumulative training likelihood (RIGHT) landscapes as a function of K and N .
We observe that according to these measures, neither the system size nor the
connectivity affects the learning probability. Also, the networks have a very low
learning probability, as seen in Figure 7. That means that the performance of
the training method does not depend on the system size and the connectivity
and confirms our hypothesis that Carnevali and Patarnello’s measure is more
about the method than the network’s performance.

Finally, Figure 10 shows the same data as presented in Figure 9 but with
our own score measures. For both the cumulative generalization score and the
cumulative training score, the network size N has no effect on the generalization
and the training, at least for this task. However, we see that for the cumulative
generalization score, the higher K, the higher the generalization score. The same
applies to the cumulative training score. This contrasts what we have seen in
Figure 9.
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Fig. 9. LEFT: Cumulative learning probability. RIGHT: Cumulative training likeli-
hood. Even-odd task.
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Fig. 10. LEFT: Cumulative generalization score. RIGHT: Cumulative training score.
Even-odd task.

9 Discussion

We have seen that Patarnello and Carnevali’s measure quantifies the fitness
landscape of the networks rather than the network’s performance. Our newly
defined measures applied to RBNs have shown that higher K networks both
generalize and memorize better. However, our results suggest that for large input
spaces and for for K < 1.5 and K > 3 networks, the space of the possible
networks changes in a way that makes it difficult to find perfect networks (see
Figures 4 and 5). On the other hand, for 1.5 ≤ K < 3, finding the perfect
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networks is significantly easier. This is a direct result of the change in the number
of possible networks and the number of networks that realize a particular task
as a function of K.

In [13], Lizier et al. investigated information theoretical aspects of phase tran-
sitions in RBNs and concluded that subcritical networks (K < 2) are more suit-
able for computational tasks that require more of an information storage, while
supercritical networks (K > 2) are more suitable for computations that require
more of an information transfer. The networks at critical connectivity (K = 2)
showed a balance between information transfer and information storage. This
finding is purely information theoretic and does neither consider input and out-
puts nor actual computational tasks. In our case, solving the tasks depends on
the stable network states and their interpretations. The results in Lizier et al.
do not apply directly to the performance of our networks, but we believe there
is a way to link the findings in future work. Compared to Lizier et al., our ex-
periments show that supercritical networks do a better job at both memorizing
and generalizing. However, from the point of view of the learning probability,
we also observe that for networks with 1.5 ≤ K < 3, we are more likely to find
perfect networks for our specific computational tasks.

10 Conclusion

In this paper we empirically showed that random Boolean networks can be
evolved to solve simple computational tasks. We have investigated the learn-
ing and generalization capabilities of such networks as a function of the system
size N , the average connectivity K, problem size I, and the task. As feedforward
Boolean networks, RBNs can learn simple tasks, however, their generalization ca-
pabilities are not as extraordinary as for feedforward Boolean networks. We have
seen that the learning probability measure used by Patarnello and Carnevali [16]
was of limited use and have thus introduced new measures, which better describe
what the networks are doing during the training and generalization phase. The
results presented in this paper are invariant of the training parameters and are
intrinsic to both the learning capability of dynamical automata networks and
the complexity of the computational task. Future work will focus on the under-
standing of the Boolean function space, in particular on the function bias.
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