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Abstract. Liu and Terzi proposed the notion of k -degree anonymity to
address the problem of identity anonymization in graphs. A graph is k -
degree anonymous if and only if each of its vertices has the same degree
as that of, at least, k-1 other vertices. The anonymization problem is to
transform a non-k -degree anonymous graph into a k -degree anonymous
graph by adding or deleting a minimum number of edges.

Liu and Terzi proposed an algorithm that remains a reference for k -
degree anonymization. The algorithm consists of two phases. The first
phase anonymizes the degree sequence of the original graph. The sec-
ond phase constructs a k -degree anonymous graph with the anonymized
degree sequence by adding edges to the original graph. In this work,
we propose a greedy algorithm that anonymizes the original graph by
simultaneously adding edges to the original graph and anonymizing its
degree sequence. We thereby avoid testing the realizability of the degree
sequence, which is a time consuming operation. We empirically and com-
paratively evaluate our new algorithm. The experimental results show
that our algorithm is indeed more efficient and more effective than the
algorithm proposed by Liu and Terzi on large real graphs.

1 Introduction

The data contained in social media raise the interest of marketers, politicians and
sociology researchers, as well as hackers and terrorists. The mining and analysis
of the graphs formed by entities and connections in online social networks, mes-
saging systems and the like, should only benefit legitimate users while no one,
and, more critically, no malicious user should be able to access or infer private
information.

Researchers, such as the authors of [1], quickly observed that simply hiding
the identities of the users in a network may not suffice to protect privacy. Indeed,
the structure of the graph itself may leak sufficient information for an adversary
with minimal external knowledge to infer identity of users, for instance. Con-
sequently several graph anonymization algorithms have been proposed that not
only remove identity but also perturb the graph content and structure while
trying to preserve utility for the sake of mining and analysis.

1.1 The K-Degree Anonymization Algorithm

Liu and Terzi [13] address the issue of identity disclosure of network users by
adversaries with the background knowledge of nodes degree. To prevent such
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attacks they propose the problem of k-degree anonymity. A graph is said to be
k-degree anonymous when each vertex in the graph has the same degree as at
least k − 1 other vertices. In other words, any vertex cannot be identified with
probability higher than 1/k if the adversary has the degree information of the
graph. The degree sequence of such a graph is said to be k-anonymous. Then
the problem is to transform a non-k -degree anonymous graph into a k -degree
anonymous graph by adding or deleting a minimum number of edges. For the
sake of simplicity, we consider only the addition of edges. Liu and Terzi [13] pro-
pose a two-phase algorithm. The first phase (degree anonymization) anonymizes
the degree sequence of the original graph to be k -anonymous. They propose a
dynamic programming algorithm which reproduces the algorithm in [9]. The sec-
ond phase (graph construction) constructs a k -degree anonymous graph with the
anonymized degree sequence based on the original graph. We call this algorithm
K-Degree Anonymization (KDA).

Typically, the degree distribution of large real world graphs follows a power-
law or exponential distribution (see [2,6]). Consequently, there are few vertices
with very large degrees and many vertices with the same small degrees. Moreover,
the difference between consecutive large degrees is great.

The dynamic programming in the degree anonymization phase of KDA is
designed to minimize the residual degrees, namely the difference between the
original degrees and the degrees in the anonymized degree sequence. On large
real world graphs, it generates a sequence at the expense of large residual degrees
for large original degrees, as the differences between these large original degrees
are great. It also generates the sequence with a small number of changes from
the original degree sequence, as many vertices with small original degrees are
already k -anonymous. It may then be impossible to compensate the large resid-
ual degrees. The sequence is then unrealizable. Our experience suggests that,
unlike what is claimed by Liu and Terzi, this situation is frequent. For instance,
as illustrated in the example below, their dynamic programming in the degree
anonymization phase does not generate a realizable degree sequence from the
given data set.

Example 1. Email-Enron is the network of Enron employees who have commu-
nicated by the Enron email. It is an undirected graph with 36692 vertices and
367662 edges. Each vertex represents an email address. An edge connects a pair of
vertices if there is at least one email communication between the corresponding
email users. The dataset is available at http://snap.stanford.edu/data/email-
Enron.html. The first 10 degrees of its degree sequence in descending order are
1383, 1367, 1261, 1245, 1244, 1143, 1099, 1068, 1026, 924. After the degree se-
quence is anonymized for k = 5, the 10 degrees become 1383, 1383, 1383, 1383,
1383, 1143, 1143, 1143, 1143, 1143. We see that the degree of the last vertex is
increased by 1143−924 = 219. This means that 219 vertices with residual degree
are required in order to compensate the residual degree of 219. However, dur-
ing the anonymization the number of vertices that have their degrees increased
is 212. Moreover, most of these vertices are those with small original degrees
which are already connected to that vertex. Thus there are no enough vertices
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with residual degrees to be wired to the last vertex. The k -anonymous degree
sequence is unrealizable.

Moreover, even if the anonymized degree sequence is realizable, the graph con-
struction phase of the algorithm may not succeed.

Liu and Terzi cater for these two situations by proposing a Probing scheme
that operates small random changes on the degree sequence until it is realizable
and the graph is constructed. Our experience shows that a large number of
Probing steps are in effect necessary to obtain a realizable sequence for practical
graphs. After each Probing is invoked, the realizability-testing is conducted.
The testing has a time complexity O(n2) where n is the number of vertices. As
Probing is invoked for a large number of repetitions, the complete algorithm is
very inefficient.

1.2 Our Contributions

Motivated by the above observations, we study fast k -degree anonymization on
graphs at the risk of marginally increasing the cost of degree anonymization, i.e.,
the edit distance between the anonymized graph and the original graph.

We propose a greedy algorithm that anonymizes the original graph by si-
multaneously adding edges to the original graph and anonymizing its degree
sequence. We thereby avoid realizability testing by effectively interleaving the
anonymization of the degree sequence with the construction of the anonymized
graph in groups of vertices.

Our algorithm results in larger edit distance on small graphs but smaller edit
distance on large graphs compared with the algorithm of Liu and Terzi. Our
algorithm is much more efficient than the algorithm of Liu and Terzi.

The rest of the paper is organized as follows. Section 2 discusses background
and related work on graph anonymization. Section 3 presents our novel algo-
rithm. Section 4 empirically and comparatively evaluates the performance of
our algorithm. Finally, we conclude in Section 5.

2 Related Work

The need for more involved graph anonymization stems from the shortcoming
of naive anonymization [1]. Naive anonymization replaces identities of vertices
with synthetic identifiers before publishing the graph. With minimal external
knowledge, adversaries may be able to recover these identities from the graph
structure. Hay et al. [10] further study the problem and quantify the risk of
re-identification via graph structural queries.

Several graphanonymizationtechniqueshavethenbeenproposed [13,23,5,18,17].
Generally speaking these techniques consists in modifying the graph struc-

ture so as to prevent re-identification while preserving sufficient utility. Most of
these works have built upon the concept of k-anonymity [16], which was first
introduced to anonymize relational micro-data.
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Several works consider rather general structural attacks. Namely, they try
and protect against attacks from adversaries with diverse background structural
knowledge. Hay et al. [10] propose the k-candidate anonymity model that requires
that, for any structural query, there be at least k candidate vertices. Liu and
Terzi [13] suggest to make the degree sequence k-anonymous so that each vertex
in the graph has the same degree as at least k − 1 other vertices. Vertices in k-
degree anonymous graph cannot be identified with probability higher than 1/k.
Zou et al. [23] propose to modify the graph to be k-automorphic before releasing.
Any vertex in such a graph cannot be distinguished from other at least k − 1
vertices via graph structure, thus all kinds of structure attacks are prevented. The
modifications are achieved by addition and deletion of edges and, occasionally,
addition of vertices. Similarly, Wu et al. [18] propose the k-symmetry model to
prevent identity disclosure. In a k-symmetric graph every vertex is structurally
indistinguishable from at least k− 1 other vertices. Cheng et al. [5] consider the
same problem as Zou et al. [23], as they also try to prevent general structural
attacks on published graphs and protect against not only identity but also link
and attribute disclosure. They propose the k-isomorphism model that forms k
pairwise isomorphic subgraphs, to provide sufficient privacy guarantee.

Although these approaches take all kinds of structural attacks into considera-
tion, and thus provide strong privacy guarantee, they often incur many changes
and therefore potentially a loss of utility. Song et al. [15] make a variety of graph
structure measurements on social networks both before and after anonymization.
They examine the state-of-the-art anonymization algorithm, k-automorphism al-
gorithm [23]. The significant changes on degree distribution, diameter, density,
algebraic connectivity and other metrics indicate the anonymization can per-
turb graph structure to a large degree and thus greatly impair data utility, even
though strong privacy guarantee is provided.

K-degree anonymity [13] specifically focuses on attacks leveraging an adver-
sary’s background knowledge of degree. By not being concerned with other struc-
tural attacks, it can achieve privacy with fewer modification and, therefore, at a
lesser utility cost. Stronger privacy guarantees than those of k-degree anonymity
are provided by models such as k2-degree anonymity by Tai et al. [17]. A k2-
degree anonymous graph prevents re-identification by adversaries with the back-
ground knowledge of the degrees of two vertices connected by an edge.

While the above works and some others focus on identity disclosure [22,3,8]
some research studied link discosure [21,19,11,14]. Several works [4,7,12,20] works
also look at graph models other than simple graph, for instance bipartite graphs.

3 The Algorithm

The algorithm that we propose simultaneously adds edges to the original graph
and anonymizes its degree sequence in groups of vertices.

The main idea of the algorithm is to cluster and anonymize the vertices of
the original graph into several anonymization groups. Each group contains at
least k vertices. The graph is transformed so as that vertices in each group have
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the same degree. In order to achieve small local degree anonymization cost, the
vertices in each group should have similar degrees. For this reason, our algorithm
sorts, examines and groups the vertices in the descending order of their degrees
in the original graph. This choice is motivated by the observation that practical
graphs often follow a power or exponential law with a long tail according to
which many vertices have and share a small degree. We therefore wire vertices
with larger degree to vertices with smaller degree in groups until the degree
sequence is k -anonymous, if it can be achieved.

Let v be the sorted vertex sequence. The greedy examination algorithm
clusters vertices into an anonymization group. An anonymization group is the
smallest subset of v that has at least k members and whose members have a
degree strictly higher than the remaining vertices. The cost of the subsequent
anonymization of such a group is necessarily the sum of residual degrees after
anonymization, namely, for an anonymization group (vi, · · · , vj) in descending

order of degrees,
∑j

l=i(di − dl), where dl is the degree of vertex vl.
The edge creation algorithm adds edges in order to anonymize the vertices

in a group. It wires vertices with insufficient degree in the anonymization group
to vertices with lesser degree in v until all vertices in the group have the same
degree di for an anonymization group (vi, · · · , vj) in descending order of degrees.
However, we constrain the algorithm never to increase the degrees of vertices in
and outside the group beyond that of the highest degree in the anonymization
group, namely, di, for an anonymization group (vi, · · · , vj) in descending order
of degrees. After adding edges, v is reordered according to the new degrees. At
the next iteration, vertices outside the group may be further added to the newly
anonymized group by greedy examination, if their degree is di.

The anonymization group is now k -anonymous, because it contains at least k
vertices with degree di.

The design choices in the algorithms above, in particular the wiring constraint,
have been made in order to minimize the need for reordering v and to allow as
sequential as possible a processing of vertices and groups.

Because of the wiring constraint, it is however possible that the above determin-
istic process does not find enough vertices to wire. Therefore it does not construct
a graph with an anonymized degree sequence. The relaxed edge creation algo-
rithm caters for such possible failures. It relaxes the wiring constraint.

The complete algorithm, Fast K-Degree Anonymization (FKDA), combines
the above three algorithms. FKDA always constructs a k -degree anonymous
graph.

3.1 The greedy examination Algorithm

At each iteration, the input to greedy examination is a sequence of vertices v of
length n sorted in the descending order of their degrees, an index i such that the
vertex sequence (v1, v2, . . . , vi−1) has been k -anonymous and the value of k. The
output is a number na such that the vertices vi, vi+1, . . . , vi+na−1 are selected
to be clustered into an anonymization group. Then greedy examination passes
v, i and na to edge creation.
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Algorithm 1. The greedy examination algorithm

Input: v: a sequence of n vertices sorted in the descending order of their
degrees, i: an index, k: the value of anonymity.

Output: na: the number of consecutive vertices that are going to be
anonymized.

1 Find the first vertex vj such that dj < di;
2 if vj is not found then
3 na = n− i+ 1;
4 else
5 if di = di−1 then
6 if n− j + 1 < k then na = n− i+ 1;
7 else na = j − i;

8 else
9 if n− i+ 1 < 2k or n− j + 1 < k then na = n− i+ 1;

10 else na =max(k, j − i);

11 end

12 end
13 Return na;

The algorithm begins with an sequential examination of v starting from vi,
until vj such that dj < di. If there is no such vj found, vi, vi+1, . . . , vn have
the same degree already. Below we show that there are at least k vertices from
vi to vn. Thereby v is already k -anonymous. na is set to be n − i + 1, i.e.,
the number of all the remaining vertices. If vj is found, there are two different
cases depending on the result of comparison between di and di−1

1. If di = di−1
2

which means that vi has the same degree as the degree of the last anonymization
group, greedy examination clusters vi, vi+1, . . . , vj−1 in a group and merges
them into the last anonymization group. Then na is set to be j − i. However,
there is an exception when n − j + 1 < k. This means that there are less than
k vertices after the current group. These vertices cannot be transformed to be
k -anonymous in a separated group. Thus greedy examination has to cluster
vi, vi+1, . . . , vn into a group. na is set to be n − i + 1. In the other case where
di < di−1, greedy examination forms a new anonymization group starting from
vi. If j − i ≥ k, which means there are at least k vertices having the same
degree, greedy examination clusters vi, vi+1, . . . , vj−1 into the new group. na

is set to be j − i. Otherwise, there are less than k vertices in the sequence
(vi, vi+1, . . . , vj−1). Thereby greedy examination clusters vi, vi+1, . . . , vi+k−1 in
the new anonymization group. na is set to be k. However, there are also two
exceptions when n − i + 1 < 2k or n − j + 1 < k. The former means that
vi, vi+1, . . . , vn cannot form two anonymization groups. The latter means that
vj , vj+1, . . . , vn cannot be clustered into a separated group. In either exception,
greedy examination has to cluster vi, vi+1, . . . , vn into an anonymization group.
Then na is set to be n− i+ 1.

The algorithm is described in Algorithm 1.

1 If i = 1, the comparison is between d1 with n.
2 This is caused by edge creation.
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3.2 The edge creation Algorithm

At each iteration, the input to edge creation is a sequence of vertices v of
length n sorted in the descending order of their degrees, an index i and a number
na. The goal is to anonymize the vertices vi, vi+1, . . . , vi+na−1 to degree di by
adding edges to the original graph. The output is an index, which equals i+ na

if the anonymization succeeds, or equals j if vj cannot be anonymized, where
i < j ≤ i+ na − 1.

For each vj in the vertex sequence (vi, vi+1, . . . , vi+na−1), edge creation

wires it to vl for j < l ≤ n, such that the edge (j, l) does not previously ex-
ist and dl < di, until dj = di. The former condition avoids creating multiple
edges. The latter condition minimizes the need for reordering v. If in the end
edge creation successfully anonymizes these na vertices, it reorders the new
vertex sequence v in the descending order of their degrees. Otherwise, it returns
the index j such that vj cannot be anonymized with the wiring constraint. Then
the repairing algorithm relaxed edge creation is invoked.

The algorithm is described in Algorithm 2.

Algorithm 2. The edge creation algorithm

Input: v : a sequence of n vertices sorted in the descending order of their
degrees, i : an index, na : the number of vertices that are going to be
anonymized starting from vi.

Output: j : an index.

1 for j ∈ (i+ 1, i+ na − 1) do
2 while dj < di do
3 Create an edge (j, l) where j < l ≤ n such that (j, l) does not previously

exist and dl < di.;
4 if The edge cannot be created then Return j;

5 end

6 end
7 Sort v in the descending order of degree;
8 Return j;

We consider three heuristics to examine the candidate vertices in v for the
creation of edges.

The first heuristics examines v from vj+1 to vn, that is, in the decreasing order
of their degrees, and creates the edge (j, l) whenever the constraint is satisfied.
The second heuristics examines v from vn to vj+1. The last heuristics randomly
selects a candidature vl and creates the edge (j, l). Below we denote by 1, 2, and
3, respectively, the variants of the complete algorithm with these three heuristics.

Intuitively, the first heuristics incurs larger anonymization cost than the sec-
ond heuristics does. This is because the first heuristics increases the degree
of vertices with large original degree, so that the largest degrees in the some
anonymization groups might be increase. In order to anonymize these groups,
more edges will be added. The third heuristics should behavior in between.
On the other hand, the first two heuristics construct deterministic anonymized
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graphs whereas the third heuristics can generate random anonymized graphs,
which, as we shall see, has consequences on the preservation of utility.

3.3 The relaxed edge creation Algorithm

The edge creation algorithm is not certain to output a k -degree anonymous
graph. The failure occurs when an edge (j, l) with the wiring constraint cannot
be created for some j. In this case, relaxed edge creation is invoked. It relaxes
the wiring constraint.

The algorithm examines v from vn to v1 and iteratively creates an edge (j, l) if
only theedgedoesnotpreviously exist,untildj = di.Thenrelaxed edge creation

returns the index l. Notice that this iteration can always stop because in the worst
case vj will bewired to all the other vertices. Finally relaxed edge creation sorts
the new vertex sequence v in the descending order of degree and feeds it as the input
of greedy examination in the next iteration.

The algorithm is described in Algorithm 3.

Algorithm 3. The relaxed edge creation algorithm

Input: v : a sequence of n vertices sorted in the descending order of their
degrees, i, j : two indices.

Output: l : an index.

1 for l = n to 1 do
2 if vj and vl are not connected then
3 Create an edge (j, l);
4 if dj = di then
5 Sort v in the descending order of degrees;
6 Return l;

7 end

8 end

9 end

Notice that this process may compromise the k -degree anonymity of the vertex
sequence (v1, v2, . . . , vi−1) if the returned l is less than i, i.e., vj is wired to some
vertex that has been anonymized. In this case, greedy examination needs to
examine v from the beginning in the next iteration, i.e., i is set to be 0. In the
other case where l > i, greedy examination still examines v starting from vi in
the next iteration. However, as relaxed edge creation examines v from small
degree to large degree, there is a high probability that (v1, v2, . . . , vi−1) is still
k -anonymous.

3.4 The Fast K -degree Anonymization Algorithm

The FKDA algorithm combines the greedy examination, edge creation and
relaxed edge creation algorithms. The input to FKDA is a graph G with n
vertices and the value of k. The output is a k -degree anonymous graph G′.



Fast Identity Anonymization on Graphs 289

FKDA first computes the vertex sequence v of G in the descending order
of degree. Then at each iteration, it invokes greedy examination to compute
the number na and passes it with i to edge creation. If edge creation suc-
cessfully anonymizes the na vertices, FKDA updates the value of i as i + na.
Then FKDA outputs the anonymized graph G′ if i > n, or enters the next iter-
ation otherwise. If edge creation fails to construct the graph, FKDA invokes
relaxed edge creation and updates the value of i according to the value of l
returned by relaxed edge creation. Notice that FKDA can always output a
valid k -degree anonymous graph because in the worst case a complete graph is
constructed.

The complete algorithm is described in Algorithm 4.

Algorithm 4. The Fast K -Degree Anonymization algorithm

Input: G : a graph of n vertices, k : the value of anonymity.
Output: G′ : a k -degree anonymous graph constructed from G.

1 v=the vertex sequence of G in the descending order of degree;
2 i = 1;
3 while i ≤ n do
4 na =greedy examination(v, i, k);
5 j =edge creation(v, i, na);
6 if j = i+ na then
7 i = i+ na;
8 else
9 l =relaxed edge creation(v, i, j);

10 if l < i then i = 0;

11 end

12 end
13 Return G′;

We provide the approximate bounds of the edit distance to the original graph
produced by FKDA. Suppose ideally the original vertex sequence v is clustered
as follows. The sequence (v1, v2, . . . , vik) is clustered into i groups, each of which
contains k vertices, i.e., the (j+1)th group contains the vertices vjk+1, vjk+2, . . . ,
v(j+1)k, 0 ≤ j ≤ i−1.The sequence (vik+1, vik+2, . . . , vn) is already k -anonymous3.
In the best case (which is encountered in the second heuristics of edge creation),
the vertices in the sequence (v1, v2, . . . , vik) are only wired to the vertices in the
sequence (vik+1, vik+2, . . . , vn) by edge creation. Suppose the latter sequence is
still k -anonymous after anonymization. Then we get the lower bound which is
boundl =

∑i−1
j=0

∑k
l=1(djk+1 − djk+l). In the worst case (which is encountered in

the first heuristics of edge creation), each vertex in the sequence (v1, v2, . . . , vik)
is wired to all of its antecedent vertices. Then the largest degree of the (j + 1)th

group becomes djk+1 + jk. Therefore the upper bound is boundu =
∑i−1

j=0

∑k
l=1(djk+1 + jk − djk+l) =

i×(i−1)
2 k2 × boundl.

3 This is the usual case for large graphs.
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4 Performance Evaluation

4.1 Experimental Setup

We implement KDA and three variants of FKDA, FKDA 1, FKDA 2 and FKDA
3, corresponding to the three heuristics in C++. We run all the experiments on a
cluster of 54 nodes, each of which has a 2.4GHz 16-core CPU and 24 GB memory.

4.2 Datasets

We use three datasets, namely, Email-Urv, Wiki-Vote and Email-Enron.
Email-urv contains the email communication among faculty and graduate

students at Rovira i Virgili University of Tarragona, Spain. It is an undirected
graph with 1133 vertices and 10902 edges. Each vertex represents an email ad-
dress. An edge connects a pair of vertices if there is at least one email com-
munication between the corresponding email users. The dataset is available at
http://deim.urv.cat/ aarenas/data/welcome.htm.

Wiki-Vote is the network of votes for the administrator election for Wikipedia
pages. It is a directed graph with 7115 vertices and 103689 edges. Each vertex
represents a user of Wikipedia. An edge links vertex i to vertex j if user i
votes on user j. The dataset is available at http://snap.stanford.edu/data/wiki-
Vote.html.

Email-Enron has been described in Section 1.1.
We conducts experiments on these three graphs. The different sizes of the three

graphs illustrate the performance of KDA and FKDA on small (1133 vertices),
medium (7115 vertices) and relatively large (36692 vertices) graphs.

4.3 Effectiveness Evaluation

We compare the effectiveness of the algorithms by evaluating the variation of
several utility metrics: edit distance (ED), clustering coefficient (CC) and average
shortest path length (ASPL) (following [13]).

We calculate the edit distance between the anonymized graph and the original
graph. The edit distance is the number of edges Δm added to the original graph.
For the sake of convenience for comparison, we normalize it to the number of
edges in the original graph and calculate Δm/m.

We also calculate the clustering coefficient. The clustering coefficient of a
vertex is defined as the fraction of the edges existing between the neighbors of
the vertex. Then the clustering coefficient of a graph is defined as the average
clustering coefficient of all the vertices.

We also calculate the average shortest path length. The shortest path length
between a pair of vertices in a simple graph is defined as the number of hops from
one vertex to the other. Then the average shortest path length of a graph is defined
as the average of the shortest path lengths between all reachable pairs of vertices.

We vary the value of k in the range {5, 10, 15, 20, 25, 50, 100}. For each value
of k, we run each algorithm 10 times on each dataset and compute the average
value of the metrics.
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Figure 1-3, 4-6 and 7-9 show the results on Email-Urv, Wiki-Vote and Email-
Enron, respectively.

Figure 1, 4 and 7 show the evaluation results of the normalized edit distance
on the three graphs.

We see that FKDA adds more edges to Email-Urv but less edges to Wiki-Vote
and Email-Enron compared to KDA. In Email-Urv which is a small graph with
1133 vertices, the differences between large degrees are not large. By using KDA
the residual degrees of the anonymized vertices with large original degrees can be
compensated by enough number of anonymized vertices with residual degrees,
that is, the anonymized degree sequence is realizable, with only a small number
of repetition of Probing. Thus the minimum edit distance found by dynamic
programming is still less than the edit distance produced by FKDA. To the
contrary, Wiki-Vote and Email-Enron are two relatively larger graphs with 7115
and 36692 vertices, respectively. The differences betweens large degrees of either
graph are considerably large. Therefore by using KDA, Probing is invoked a
significant number of times before a k -degree anonymous graph is constructed,
as explained in Section 1.1. Moreover, by comparing our relaxed edge creation

algorithm with Probing, we find that relaxed edge creation increases a small
degree only if the corresponding vertex can be wired to an anonymized vertex
with residual degree. To the contrary, Probing randomly increases a small degree
regardless the actual structure of the graph. The corresponding vertex may not
be able to be wired to an anonymized vertex with residual degree (There might
exist already an edge between the two vertices.). Consequently, more repetitions
of Probing are invoked. Thus we believe that eventually Probing adds more
noise than relaxed edge creation does to the degree sequences of the two large
graphs. Therefore FKDA adds less edges than KDA does to the two graphs.
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Figure 2, 5, 8 and Figure 3, 6, 9 show the evaluation results of clustering
coefficient and average shortest path length, respectively. The constant line shows
the value of corresponding metric in the original graph.

We see that FKDA produces less similar results with that in the original
graphs on Email-Urv and more similar results on Wiki-Vote and Email-Enron
than KDA does. This is generally consistent with the evaluation results of edit
distance, since FKDA adds more edges to Email-Urv and less edges to Wiki-Vote
and Email-Enron than KDA does.

We further compare the performances of the three variants of FKDA.
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In Section 3.2 we say the that first heuristics incurs larger anonymization
cost, i.e. edit distance, than the second heuristics does, and the third heuristics
performs in between. The results in Figure 4 and 7 support this claim, although
the differences are small. However, in the small graph Email-Urv, we observe
that FKDA 2 incurs much larger edit distance than the other two variants and
FKDA 1 incurs the smallest edit distance, for k = 50 and k = 100. The rea-
son is as follow. When k increases, after anonymization the residual degrees of
the vertices with large original degrees become larger. Therefore more residual
vertices with smaller original degrees are required to compensate these large
residual degrees. As FKDA 2 creates edges by wiring the anonymized vertices to
the vertices from with small degree to large degree, it makes the degrees of the
anonymized vertices and the degrees of the subsequent vertices closer to each
other than FKDA 1 does. Because of the wiring constraint in edge creation,
at some point there are no enough residual vertices to compensate the resid-
ual degree of a anonymized vertex. Then relaxed edge creation is invoked.
When k is too large for the number of vertices (for example, k = 50, 100 and
n = 1133 in Email-Urv), relaxed edge creation is invoked several times by
FKDA 2. Then the edit distance to the original graph is enlarged. To the con-
trary, FKDA 1 creates edges by wiring the anonymized vertex with large residual
degree to the vertices from with large degree to small degree. It maintains a suf-
ficient gap between the degrees of the anonymized vertices and the degrees of
the subsequent vertices. The residual degree of the anonymized vertices can be
compensated under the wiring constraint in edge creation, without invoking
relaxed edge creation. Therefore the edit distance is small. FKDA 3 creates
edges by wiring the anonymized vertices to random residual vertices, so that it
incurs the edit distance to the original graph in between.

The abilities of the three heuristics on the preservation of utility of the original
graph differ from each other, depending on the structure of the original graph.
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For example, Figure 6 shows that FKDA 1 incurs larger average shortest path
length in the anonymized Wiki-Vote than FKDA 2 does. This suggests that the
vertices in Wiki-Vote with similar degrees are more connected than the vertices
with very different degrees. So creating edges by wiring an anonymized vertex
to the vertices from with large degree to small degree (similar degree to different
degree) in edge creation of FKDA 1 does not reduce the average shortest path
length much. To the contrary, FKDA 2 links vertices with very different degrees
in edge creation, which results in a significant reduction in the average shortest
path length. However, Figure 9 shows the reverse result in the anonymized Email-
Enron, which suggests that the vertices in Email-Enron with similar degrees are
less connected than the vertices with very different degrees. The overall results
show that FKDA 1 and FKDA 2 preserve the utilities of the original graph better
than FKDA 3 does. Nevertheless, FKDA 3 has an interesting property that it
can generate a random k -degree anonymous graph.

4.4 Efficiency Evaluation

We compare the efficiency of the algorithms by measuring their execution time.
We vary the value of k in the range {5, 10, 15, 20, 25, 50, 100}. For each value

of k, we run each algorithm 10 times on each dataset and compute the average
execution time. We also compute the speedup of FKDA versus KDA for each
parameter setting.
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Figure 10, 11 and 12 show the execution times on Email-Urv, Wiki-Vote
and Email-Enron, respectively. Figure 13, 14 and 15 show the corresponding
speedups.

We see that FKDA is significantly more efficient than KDA. The speedup
varies from hundreds to one million on different graphs. The inefficiency of KDA
is due to the decoupling of the checking of realizability of the anonymized degree
sequences from the construction of graph.

The efficiency of the three FKDA variants is similar. FKDA 1 and FKDA 2
are slightly faster than FKDA 3. This is because FKDA 3 maintains additional
a list of candidate residual vertices in edge creation.
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5 Conclusion

In this paper, we propose a greedy k -degree anonymization algorithm that
anonymizes a graph by simultaneously adding edges and anonymizing its de-
gree sequence in groups of vertices.

The algorithm is designed to overcome the shortcomings of the KDA algo-
rithm proposed by [13]. The simultaneity of degree anonymization and graph
construction in the new FKDA algorithm eliminates the need for realizability
testing, which, as confirmed by our experiments, is a significant factor in the
poor efficiency of the KDA algorithm.

We propose three variants of the algorithm, corresponding to three wiring
heuristics. The comparative empirical performance evaluation on three real world
graphs shows that the three variants of FKDA are significantly more efficient
than KDA and more effective than KDA on large graphs.

We do not claim that our solution is a panacea for the anonymization of
graphs in general, that objective being anyway a chimerical target given the
generality of background knowledge potentially available to adversaries. It is
however a very effective and efficient solution for the protection of privacy in the
presence of background knowledge about vertex degrees. More importantly our
solution shows that it is possible to tightly knit realizability and construction
into one anonymization process and therefore paves the way to the development
of algorithms catering for a variety of background structural knowledge.
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