


Lecture Notes in Computer Science 7446
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Germany

Madhu Sudan
Microsoft Research, Cambridge, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbruecken, Germany



Stephen W. Liddle Klaus-Dieter Schewe
A Min Tjoa Xiaofang Zhou (Eds.)

Database and Expert
Systems Applications
23rd International Conference, DEXA 2012
Vienna, Austria, September 3-6, 2012
Proceedings, Part I

13



Volume Editors

Stephen W. Liddle
Brigham Young University, Marriott School
784 TNRB, Provo, UT 84602, USA
E-mail: liddle@byu.edu

Klaus-Dieter Schewe
Software Competence Center Hagenberg
Softwarepark 21, 4232 Hagenberg, Austria
E-mail: kd.schewe@scch.at

A Min Tjoa
Vienna University of Technology, Institute of Software Technology
Favoritenstraße 9-11/188, 1040 Wien, Austria
E-mail: amin@ifs.tuwien.ac.at

Xiaofang Zhou
University of Queensland
School of Information Technology and Electrical Engineering
Brisbane, QLD 4072, Australia
E-mail: zxf@uq.edu.au

ISSN 0302-9743 e-ISSN 1611-3349
ISBN 978-3-642-32599-1 e-ISBN 978-3-642-32600-4
DOI 10.1007/978-3-642-32600-4
Springer Heidelberg Dordrecht London New York

Library of Congress Control Number: 2012943836

CR Subject Classification (1998): H.2.3-4, H.2.7-8, H.2, H.3.3-5, H.4.1, H.5.3, I.2.1,
I.2.4, I.2.6, J.1, C.2

LNCS Sublibrary: SL 3 – Information Systems and Application, incl. Internet/Web
and HCI

© Springer-Verlag Berlin Heidelberg 2012
This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.
The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply,
even in the absence of a specific statement, that such names are exempt from the relevant protective laws
and regulations and therefore free for general use.

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)



Preface

This volume includes invited papers, research papers, and short papers presented
at DEXA 2012, the 23rd International Conference on Database and Expert Sys-
tems Applications, held in Vienna, Austria. DEXA 2012 continued the long and
successful DEXA tradition begun in 1990, bringing together a large collection of
bright researchers, scientists, and practitioners from around the world to share
new results in the areas of database, intelligent systems, and related advanced
applications.

The call for papers resulted in the submission of 179 papers, of which 49 were
accepted as regular research papers, and 37 were accepted as short papers. The
authors of these papers come from 43 different countries. The papers discuss a
range of topics including:

– Database query processing, in particular XML queries
– Labeling of XML documents
– Computational efficiency
– Data extraction
– Personalization, preferences, and ranking
– Security and privacy
– Database schema evaluation and evolution
– Semantic Web
– Privacy and provenance
– Data mining
– Data streaming
– Distributed systems
– Searching and query answering
– Structuring, compression and optimization
– Failure, fault analysis, and uncertainty
– Predication, extraction, and annotation
– Ranking and personalization
– Database partitioning and performance measurement
– Recommendation and prediction systems
– Business processes
– Social networking

In addition to the papers selected by the Program Committee two interna-
tionally recognized scholars delivered keynote speeches:

Georg Gottlob: DIADEM: Domains to Databases

Yamie Aı̈t-Ameur: Stepwise Development of Formal Models for Web Services
Compositions – Modelling and Property Verification



VI Preface

In addition to the main conference track, DEXA 2012 also included seven
workshops that explored the conference theme within the context of life sciences,
specific application areas, and theoretical underpinnings.

We are grateful to the hundreds of authors who submitted papers to DEXA
2012 and to our large Program Committee for the many hours they spent care-
fully reading and reviewing these papers. The Program Committee was also
assisted by a number of external referees, and we appreciate their contributions
and detailed comments.

We are thankful for the Institute of Software Technology at Vienna Univer-
sity of Technology for organizing DEXA 2012, and for the excellent working
atmosphere provided. In particular, we recognize the efforts of the conference
Organizing Committee led by the DEXA 2012 General Chair A Min Tjoa. We
are gratefull to the Workshop Chairs Abdelkader Hameurlain, A Min Tjoa, and
Roland R. Wagner.

Finally, we are especially grateful to Gabriela Wagner, whose professional
attention to detail and skillful handling of all aspects of the Program Committee
management and proceedings preparation was most helpful.

September 2012 Stephen W. Liddle
Klaus-Dieter Schewe

Xiaofang Zhou



Organization

Honorary Chair

Makoto Takizawa Seikei University, Japan

General Chair

A Min Tjoa Technical University of Vienna, Austria

Conference Program Chair

Stephen Liddle Brigham Young University, USA
Klaus-Dieter Schewe Software Competence Center Hagenberg and

Johannes Kepler University Linz, Austria
Xiaofang Zhou University of Queensland, Australia

Publication Chair

Vladimir Marik Czech Technical University, Czech Republic

Program Committee

Witold Abramowicz The Poznan University of Economics, Poland
Rafael Accorsi University of Freiburg, Germany
Hamideh Afsarmanesh University of Amsterdam, The Netherlands
Riccardo Albertoni OEG, Universidad Politécnica de Madrid,

Spain
Rachid Anane Coventry University, UK
Annalisa Appice Università degli Studi di Bari, Italy
Mustafa Atay Winston-Salem State University, USA
James Bailey University of Melbourne, Australia
Spiridon Bakiras City University of New York, USA
Zhifeng Bao National University of Singapore, Singapore
Ladjel Bellatreche ENSMA, France
Morad Benyoucef University of Ottawa, Canada
Catherine Berrut Grenoble University, France
Debmalya Biswas Nokia Research, Germany
Athman Bouguettaya RMIT, Australia
Danielle Boulanger MODEME,University of Lyon, France
Omar Boussaid University of Lyon, France
Stephane Bressan National University of Singapore, Singapore
Patrick Brezillon University of Paris VI (UPMC), France
Yiwei Cao RWTH Aachen University, Germany
Silvana Castano Università degli Studi di Milano, Italy



VIII Organization

Barbara Catania Università di Genova, Italy
Michelangelo Ceci University of Bari, Italy
Cindy Chen University of Massachusetts Lowell, USA
Phoebe Chen La Trobe University, Australia
Shu-Ching Chen Florida International University, USA
Hao Cheng Yahoo
James Cheng Nanyang Technological University, Singapore
Reynold Cheng The University of Hong Kong, China
Max Chevalier IRIT - SIG, Université de Toulouse, France
Byron Choi Hong Kong Baptist University, Hong Kong
Henning Christiansen Roskilde University, Denmark
Soon Ae Chun City University of New York, USA
Eliseo Clementini University of L’Aquila, Italy
Oscar Corcho Universidad Politécnica de Madrid, Spain
Bin Cui Peking University, China
Deborah Dahl Conversational Technologies
Jérôme Darmont Université de Lyon (ERIC Lyon 2), France
Andre de Carvalho University of Sao Paulo, Brazil
Guy De Tré Ghent University, Belgium
Olga De Troyer Vrije Universiteit Brussel, Belgium
Roberto De Virgilio Università Roma Tre, Italy
John Debenham University of Technology, Sydney, Australia
Hendrik Decker Universidad Politécnica de Valencia, Spain
Zhi-Hong Deng Peking University, China
Vincenzo Deufemia Università degli Studi di Salerno, Italy
Claudia Diamantini Università Politecnica delle Marche, Italy
Juliette Dibie-Barthélemy AgroParisTech, France
Ying Ding Indiana University, USA
Zhiming Ding Chinese Academy of Sciences, China
Gillian Dobbie University of Auckland, New Zealand
Peter Dolog Aalborg University, Denmark
Dejing Dou University of Oregon, USA
Cedric du Mouza CNAM, France
Johann Eder University of Klagenfurt, Austria
David Embley Brigham Young University, USA
Suzanne M. Embury The University of Manchester, UK
Bettina Fazzinga University of Calabria, Italy
Leonidas Fegaras The University of Texas at Arlington, USA
Stefano Ferilli University of Bari, Italy
Flavio Ferrararotti Victoria University of Wellington, New Zealand
Filomena Ferrucci Università di Salerno, Italy
Flavius Frasincar Erasmus University Rotterdam,

The Netherlands
Bernhard Freudenthaler Software Competence Center Hagenberg,

Austria



Organization IX

Hiroaki Fukuda Shibaura Institute of Technology, Japan
Steven Furnell University of Plymouth, UK
Aryya Gangopadhyay University of Maryland Baltimore County, USA
Yunjun Gao Zhejiang University, China
Manolis Gergatsoulis Ionian University, Greece
Fabio Grandi University of Bologna, Italy
Carmine Gravino University of Salerno, Italy
Sven Groppe Lübeck University, Germany
William Grosky University of Michigan, USA
Jerzy Grzymala-Busse University of Kansas, USA
Francesco Guerra Università degli Studi Di Modena e Reggio

Emilia, Italy
Giovanna Guerrini University of Genoa, Italy
Antonella Guzzo University of Calabria, Italy
Abdelkader Hameurlain Paul Sabatier University, Toulouse, France
Ibrahim Hamidah Universiti Putra Malaysia, Malaysia
Wook-Shin Han Kyungpook National University, Korea
Takahiro Hara Osaka University, Japan
Theo Härder TU Kaiserslautern, Germany
Francisco Herrera University of Granada, Spain
Steven Hoi Nanyang Technological University, Singapore
Estevam Rafael Hruschka Jr. Federal University of Sao Carlos, Brazil, and

Carnegie Mellon University, USA
Wynne Hsu National University of Singapore, Singapore
Yu Hua Huazhong University of Science and

Technology, China
Jimmy Huang York University, Canada
Xiaoyu Huang South China University of Technology, China
Ionut Emil Iacob Georgia Southern University, USA
Sergio Ilarri University of Zaragoza, Spain
Abdessamad Imine University of Nancy, France
Yoshiharu Ishikawa Nagoya University, Japan
Adam Jatowt Kyoto University, Japan
Peiquan Jin University of Science and Technology, China
Anne Kao Boeing Phantom Works, USA
Dimitris Karagiannis University of Vienna, Austria
Stefan Katzenbeisser Technical University of Darmstadt, Germany
Yiping Ke Institute of High Performance Computing,

Singapore
Sang-Wook Kim Hanyang University, Korea
Hiroyuki Kitagawa University of Tsukuba, Japan
Carsten Kleiner University of Applied Sciences and Arts

Hannover, Germany
Ibrahim Korpeoglu Bilkent University, Turkey
Harald Kosch University of Passau, Germany



X Organization

Michal Krátký VSB-Technical University of Ostrava,
Czech Republic

Arun Kumar IBM Research, India
Ashish Kundu IBM T.J. Watson Research Center, Hawthorne,

USA
Josef Küng University of Linz, Austria
Kwok-Wa Lam University of Hong Kong, Hong Kong
Nadira Lammari CNAM, France
Gianfranco Lamperti University of Brescia, Italy
Mong Li Lee National University of Singapore, Singapore
Alain Toinon Leger Orange - France Telecom R&D, France
Daniel Lemire LICEF Research Center, Canada
Lenka Lhotska Czech Technical University, Czech Republic
Wenxin Liang Dalian University of Technology, China
Lipyeow Lim University of Hawai at Manoa, USA
Tok Wang Ling National University of Singapore, Singapore
Sebastian Link University of Auckland, New Zealand
Volker Linnemann University of Lübeck, Germany
Chengfei Liu Swinburne University of Technology, Australia
Chuan-Ming Liu National Taipei University of Technology,

Taiwan
Fuyu Liu Microsoft Corporation, USA
Hong-Cheu Liu University of South Australia, Australia
Jorge Lloret Gazo University of Zaragoza, Spain
Miguel Ángel López Carmona University of Alcalá de Henares, Spain
Jiaheng Lu Renmin University, China
Jianguo Lu University of Windsor, Canada
Alessandra Lumini University of Bologna, Italy
Hui Ma Victoria University of Wellington, New Zealand
Qiang Ma Kyoto University, Japan
Stéphane Maag TELECOM SudParis, France
Nikos Mamoulis University of Hong Kong, Hong Kong
Elio Masciari ICAR-CNR, Università della Calabria, Italy
Norman May SAP AG, Germany
Jose-Norberto Mazón University of Alicante, Spain
Dennis McLeod University of Southern California, USA
Brahim Medjahed University of Michigan - Dearborn, USA
Harekrishna Misra Institute of Rural Management Anand, India
Jose Mocito INESC-ID/FCUL, Portugal
Riad Mokadem IRIT, Paul Sabatier University, France
Lars Mönch FernUniversität in Hagen, Germany
Yang-Sae Moon Kangwon National University, Korea
Reagan Moore University of North Carolina at Chapel Hill,

USA



Organization XI

Franck Morvan IRIT, Paul Sabatier University, Toulouse,
France

Mirco Musolesi University of Birmingham, UK
Ismael Navas-Delgado University of Málaga, Spain
Wilfred Ng University of Science and Technology,

Hong Kong
Javier Nieves Acedo Deusto University, Spain
Mourad Oussalah University of Nantes, France
Gultekin Ozsoyoglu Case Western Reserve University, USA
George Pallis University of Cyprus, Cyprus
Christos Papatheodorou Ionian University and “Athena” Research

Centre, Greece
Marcin Paprzycki Polish Academy of Sciences, Warsaw

Management Academy, Poland
Oscar Pastor Lopez Universidad Politecnica de Valencia, Spain
Jovan Pehcevski European University, Macedonia
Reinhard Pichler Technische Universität Wien, Austria
Clara Pizzuti ICAR-CNR, Italy
Jaroslav Pokorny Charles University in Prague, Czech Republic
Elaheh Pourabbas National Research Council, Italy
Fausto Rabitti ISTI, CNR Pisa, Italy
Claudia Raibulet Università degli Studi di Milano-Bicocca, Italy
Isidro Ramos Technical University of Valencia, Spain
Praveen Rao University of Missour-KaNSAS City, USA
Rodolfo F. Resende Federal University of Minas Gerais, Brazil
Claudia Roncancio Grenoble University / LIG, France
Edna Ruckhaus Universidad Simon Bolivar, Venezuela
Massimo Ruffolo ICAR-CNR, Italy
Igor Ruiz Agúndez Deusto University, Spain
Giovanni Maria Sacco University of Turin, Italy
Shazia Sadiq University of Queensland, Australia
Simonas Saltenis Aalborg University, Denmark
Carlo Sansone Università di Napoli ”Federico II”, Italy
Igor Santos Grueiro Deusto University, Spain
N.L. Sarda I.I.T. Bombay, India
Marinette Savonnet University of Burgundy, France
Raimondo Schettini Università degli Studi di Milano-Bicocca, Italy
Erich Schweighofer University of Vienna, Austria
Florence Sedes IRIT, Paul Sabatier University, Toulouse,

France
Nazha Selmaoui University of New Caledonia, France
Patrick Siarry Université Paris 12 (LiSSi), France
Gheorghe Cosmin Silaghi Babes-Bolyai University of Cluj-Napoca,

Romania
Leonid Sokolinsky South Ural State University, Russia



XII Organization

Bala Srinivasan Monash University, Australia
Umberto Straccia Italian National Research Council, Italy
Darijus Strasunskas Strasunskas Forskning, Norway
Lena Stromback Swedish Meteorological and Hydrological

Institute, Sweden
Aixin Sun Nanyang Technological University, Singapore
David Taniar Monash University, Australia
Cui Tao Mayo Clinic, USA
Maguelonne Teisseire Irstea - TETIS, France
Sergio Tessaris Free University of Bozen-Bolzano, Italy
Olivier Teste IRIT, University of Toulouse, France
Stephanie Teufel University of Fribourg, Switzerland
Jukka Teuhola University of Turku, Finland
Taro Tezuka University of Tsukuba, Japan
Bernhard Thalheim Christian Albrechts Universität Kiel, Germany
J.M. Thevenin University of Toulouse I Capitole, France
Helmut Thoma Thoma SW-Engineering, Basel, Switzerland
A Min Tjoa Technical University of Vienna, Austria
Vicenc Torra IIIA-CSIC, Spain
Traian Truta Northern Kentucky University, USA
Theodoros Tzouramanis University of the Aegean, Greece
Marco Vieira University of Coimbra, Portugal
Jianyong Wang Tsinghua University, China
Junhu Wang Griffith University, Brisbane, Australia
Qing Wang The Australian National University, Australia
Wei Wang University of New South Wales, Sydney,

Australia
Wendy Hui Wang Stevens Institute of Technology, USA
Andreas Wombacher University Twente, The Netherlands
Lai Xu Bournemouth University, UK
Ming Hour Yang Chung Yuan Christian University, Taiwan
Xiaochun Yang Northeastern University, China
Haruo Yokota Tokyo Institute of Technology, Japan
Zhiwen Yu Northwestern Polytechnical University, China
Xiao-Jun Zeng University of Manchester, UK
Zhigang Zeng Huazhong University of Science and

Technology, China
Xiuzhen (Jenny) Zhang RMIT University Australia, Australia
Yanchang Zhao RDataMining.com, Australia
Yu Zheng Microsoft Research Asia, China
Qiang Zhu The University of Michigan, USA
Yan Zhu Southwest Jiaotong University, Chengdu,

China



Organization XIII

External Reviewers

Hadjali Allel ENSSAT, France
Toshiyuki Amagasa Tsukuba University, Japan
Flora Amato University of Naples Federico II, Italy
Abdelkrim Amirat University of Nantes, France
Zahoua Aoussat University of Algiers, Algeria
Radim Bača Technical University of Ostrava,

Czech Republic
Dinesh Barenkala University of Missouri-Kansas City, USA
Riad Belkhatir University of Nantes, France
Yiklun Cai University of Hong Kong
Nafisa Afrin Chowdhury University of Oregon, USA
Shumo Chu Nanyang Technological University, Singapore
Ercument Cicek Case Western Reserve University, USA
Camelia Constantin UPMC, France
Ryadh Dahimene CNAM, France
Matthew Damigos NTUA, Greece
Franca Debole ISTI-CNR, Italy
Saulo Domingos de Souza

Pedro Federal University of Sao Carlos, Brazil
Laurence Rodrigues

do Amaral Federal University of Uberlandia, Brazil
Andrea Esuli ISTI-CNR, Italy
Qiong Fang University of Science and Technology,

Hong Kong
Nikolaos Fousteris Ionian University, Greece
Filippo Furfaro DEIS, University of Calabria, Italy
Jose Manuel Gimenez Universidad de Alcala, Spain
Reginaldo Gotardo Federal University of Sao Carlos, Brazil
Fernando Gutierrez University of Oregon, USA
Zeinab Hmedeh CNAM, France
Hai Huang KAUST, Saudi Arabia
Lili Jiang Lanzhou University, China
Shangpu Jiang University of Oregon, USA
Hideyuki Kawashima University of Tsukuba, Japan
Selma Khouri LIAS/ENSMA, France
Christian Koncilia University of Klagenfurt, Austria
Cyril Labbe Université Joseph Fourier, Grenoble, France
Thuy Ngoc Le National University of Singapore, Singapore
Fabio Leuzzi University of Bari, Italy
Luochen Li National University of Singapore, Singapore
Jing Li University of Hong Kong
Xumin Liu Rochester Institute of Technology, USA
Yifei Lu University of New South Wales, Australia
Jia-Ning Luo Ming Chuan University, Taiwan



XIV Organization

Ivan Marsa Maestre Universidad de Alcala, Spain
Ruslan Miniakhmetov South Ural State University, Chelyabinsk,

Russia
Jun Miyazaki Nara Institute of Science and Technology,

Japan
Bo Ning Dalian Maritime University, China
Goke Ojewole NVIDIA, USA
Ermelinda Oro ICAR-CNR, Italy
Constantin Pan South Ural State University, Chelyabinsk,

Russia
Mandeep Pannu Coventry University, UK
Srivenu Paturi University of Missouri-Kansas City, USA
Xinjian Qi Case Western Reserve University, USA
Gang Qian University of Central Oklahoma, USA
Jianbin Qin University of New South Wales, Australia
Vineet Rajani Max Planck Institute for Software Systems,

Germany
Hongda Ren Tsinghua University, China
Sara Romano University of Naples Federico II, Italy
Sherif Sakr NICTA, Australia
Federica Sarro University of Salerno, Italy
Wei Shen Tsinghua University, China
Vasil Slavov University of Missouri-Kansas City, USA
Daniela Stojanova Jozef Stefan Institute, Slovenia
Umberto Straccia ISTI-CNR, Italy
Guilaine Talens MODEME labs, University of Lyon-Jean

Moulin Lyon, France
Bin Wang Northeastern University, China
Changzhou Wang Boeing Research and Technology, USA
Hao Wang University of Hong Kong
Jia Wang The Chinese University of Hong Kong,

Hong Kong
Yousuke Watanabe Tokyo Institute of Technology, Japan
Huanhuan Wu The Chinese University of Hong Kong,

Hong Kong
Zhiqiang Xu Nanyang Technological University, Singapore
Kefeng Xuan Monash University, Australia
Da Yan University of Science and Technology,

Hong Kong
Qi Yu Rochester Institute of Technology, USA
Gneg Zhao Monash University, Australia
Zhou Zhao University of Science and Technology,

Hong Kong
Mikhail Zymbler South Ural State University, Chelyabinsk,

Russia



Table of Contents – Part I

Keynote Talks

DIADEM: Domains to Databases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Tim Furche, Georg Gottlob, and Christian Schallhart

Stepwise Development of Formal Models for Web Services Compositions:
Modelling and Property Verification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

Yamine Ait-Ameur and Idir Ait-Sadoune

XML Queries and Labeling I

A Hybrid Approach for General XML Query Processing . . . . . . . . . . . . . . 10
Huayu Wu, Ruiming Tang, Tok Wang Ling, Yong Zeng, and
Stéphane Bressan

SCOOTER: A Compact and Scalable Dynamic Labeling Scheme for
XML Updates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

Martin F. O’Connor and Mark Roantree

Reuse the Deleted Labels for Vector Order-Based Dynamic XML
Labeling Schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

Canwei Zhuang and Shaorong Feng

Computational Efficiency

Towards an Efficient Flash-Based Mid-Tier Cache . . . . . . . . . . . . . . . . . . . . 55
Yi Ou, Jianliang Xu, and Theo Härder

Evacuation Planning of Large Buildings Using Ladders . . . . . . . . . . . . . . . 71
Alka Bhushan, Nandlal L. Sarda, and P.V. Rami Reddy

A Write Efficient PCM-Aware Sort . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
Meduri Venkata Vamsikrishna, Zhan Su, and Kian-Lee Tan

XML Queries

Performance Analysis of Algorithms to Reason about XML Keys . . . . . . . 101
Flavio Ferrarotti, Sven Hartmann, Sebastian Link,
Mauricio Marin, and Emir Muñoz

Finding Top-K Correct XPath Queries of User’s Incorrect XPath
Query . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

Kosetsu Ikeda and Nobutaka Suzuki



XVI Table of Contents – Part I

Analyzing Plan Diagrams of XQuery Optimizers . . . . . . . . . . . . . . . . . . . . . 131
H.S. Bruhathi and Jayant R. Haritsa

Data Extraction

Spreadsheet Metadata Extraction: A Layout-Based Approach . . . . . . . . . . 147
Somchai Chatvichienchai

Automated Extraction of Semantic Concepts from Semi-structured
Data: Supporting Computer-Based Education through the Analysis of
Lecture Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161

Thushari Atapattu, Katrina Falkner, and Nickolas Falkner

A Confidence–Weighted Metric for Unsupervised Ontology Population
from Web Texts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176

Hilário Oliveira, Rinaldo Lima, João Gomes, Rafael Ferreira,
Fred Freitas, and Evandro Costa

Personalization, Preferences, and Ranking

Situation-Aware User’s Interests Prediction for Query Enrichment . . . . . . 191
Imen Ben Sassi, Chiraz Trabelsi, Amel Bouzeghoub, and
Sadok Ben Yahia

The Effective Relevance Link between a Document and a Query . . . . . . . 206
Karam Abdulahhad, Jean-Pierre Chevallet, and Catherine Berrut

Incremental Computation of Skyline Queries with Dynamic
Preferences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219

Tassadit Bouadi, Marie-Odile Cordier, and René Quiniou

Databases and Schemas

Efficient Discovery of Correlated Patterns in Transactional Databases
Using Items’ Support Intervals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 234

R. Uday Kiran and Masaru Kitsuregawa

On Checking Executable Conceptual Schema Validity by Testing . . . . . . . 249
Albert Tort, Antoni Olivé, and Maria-Ribera Sancho

Querying Transaction–Time Databases under Branched Schema
Evolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 265

Wenyu Huo and Vassilis J. Tsotras



Table of Contents – Part I XVII

Privacy and Provenance

Fast Identity Anonymization on Graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . 281
Xuesong Lu, Yi Song, and Stéphane Bressan

Probabilistic Inference of Fine-Grained Data Provenance . . . . . . . . . . . . . . 296
Mohammad Rezwanul Huq, Peter M.G. Apers, and
Andreas Wombacher

Enhancing Utility and Privacy-Safety via Semi-homogenous
Generalization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 311

Xianmang He, Wei Wang, HuaHui Chen, Guang Jin,
Yefang Chen, and Yihong Dong

XML Queries and Labeling II

Processing XML Twig Pattern Query with Wildcards . . . . . . . . . . . . . . . . 326
Huayu Wu, Chunbin Lin, Tok Wang Ling, and Jiaheng Lu

A Direct Approach to Holistic Boolean-Twig Pattern Evaluation . . . . . . . 342
Dabin Ding, Dunren Che, and Wen-Chi Hou

Full Tree-Based Encoding Technique for Dynamic XML Labeling
Schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 357

Canwei Zhuang and Shaorong Feng

Data Streams

Top-k Maximal Influential Paths in Network Data . . . . . . . . . . . . . . . . . . . . 369
Enliang Xu, Wynne Hsu, Mong Li Lee, and Dhaval Patel

Learning to Rank from Concept-Drifting Network Data Streams . . . . . . . 384
Lucrezia Macchia, Michelangelo Ceci, and Donato Malerba

Top-k Context-Aware Queries on Streams . . . . . . . . . . . . . . . . . . . . . . . . . . . 397
Löıc Petit, Sandra de Amo, Claudia Roncancio, and Cyril Labbé

Structuring, Compression and Optimization

Fast Block-Compressed Inverted Lists (Short Paper) . . . . . . . . . . . . . . . . . . 412
Giovanni M. Sacco

Positional Data Organization and Compression in Web Inverted
Indexes (Short Paper) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 422

Leonidas Akritidis and Panayiotis Bozanis

Decreasing Memory Footprints for Better Enterprise Java Application
Performance (Short Paper) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 430

Stoyan Garbatov and João Cachopo



XVIII Table of Contents – Part I

Knowledge-Driven Syntactic Structuring: The Case of Multidimensional
Space of Music Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 438

Wladyslaw Homenda and Mariusz Rybnik

Data Mining I

Mining Frequent Itemsets Using Node-Sets of a Prefix-Tree . . . . . . . . . . . . 453
Jun-Feng Qu and Mengchi Liu

MAX-FLMin: An Approach for Mining Maximal Frequent Links and
Generating Semantical Structures from Social Networks . . . . . . . . . . . . . . . 468

Erick Stattner and Martine Collard

Road Networks and Graph Search

Sequenced Route Query in Road Network Distance Based on
Incremental Euclidean Restriction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 484

Yutaka Ohsawa, Htoo Htoo, Noboru Sonehara, and Masao Sakauchi

Path-Based Constrained Nearest Neighbor Search in a Road Network
(Short Paper) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 492

Yingyuan Xiao, Yan Shen, Tao Jiang, and Heng Wang

Efficient Fuzzy Ranking for Keyword Search on Graphs
(Short Paper) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 502

Nidhi R. Arora, Wookey Lee, Carson Kai-Sang Leung,
Jinho Kim, and Harshit Kumar

Author Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 511



Table of Contents – Part II

Query Processing I

Consistent Query Answering Using Relational Databases through
Argumentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

Cristhian A.D. Deagustini, Santiago E. Fulladoza Dalibón,
Sebastián Gottifredi, Marcelo A. Falappa, and Guillermo R. Simari

Analytics-Driven Lossless Data Compression for Rapid In-situ Indexing,
Storing, and Querying . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

John Jenkins, Isha Arkatkar, Sriram Lakshminarasimhan,
Neil Shah, Eric R. Schendel, Stephane Ethier, Choong-Seock Chang,
Jacqueline H. Chen, Hemanth Kolla, Scott Klasky, Robert Ross, and
Nagiza F. Samatova

Prediction, Extraction, and Annotation

Prediction of Web User Behavior by Discovering Temporal Relational
Rules from Web Log Data (Short Paper) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

Xiuming Yu, Meijing Li, Incheon Paik, and Keun Ho Ryu

A Hybrid Approach to Text Categorization Applied to Semantic
Annotation (Short Paper) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

José Luis Navarro-Galindo, José Samos, and
M. José Muñoz-Alférez

An Unsupervised Framework for Topological Relations Extraction from
Geographic Documents (Short Paper) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

Corrado Loglisci, Dino Ienco, Mathieu Roche,
Maguelonne Teisseire, and Donato Malerba

Failure, Fault Analysis, and Uncertainty

Combination of Machine-Learning Algorithms for Fault Prediction in
High-Precision Foundries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

Javier Nieves, Igor Santos, and Pablo G. Bringas

A Framework for Conditioning Uncertain Relational Data . . . . . . . . . . . . . 71
Ruiming Tang, Reynold Cheng, Huayu Wu, and Stéphane Bressan

Cause Analysis of New Incidents by Using Failure Knowledge
Database . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

Yuki Awano, Qiang Ma, and Masatoshi Yoshikawa



XX Table of Contents – Part II

Ranking and Personalization

Modeling and Querying Context-Aware Personal Information Spaces
(Short Paper) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

Rania Khéfifi, Pascal Poizat, and Fatiha Säıs

Ontology-Based Recommendation Algorithms for Personalized
Education (Short Paper) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

Amir Bahmani, Sahra Sedigh, and Ali Hurson

Towards Quantitative Constraints Ranking in Data Clustering . . . . . . . . . 121
Eya Ben Ahmed, Ahlem Nabli, and Fäıez Gargouri

A Topic-Oriented Analysis of Information Diffusion in a Blogosphere . . . 129
Kyu-Hwang Kang, Seung-Hwan Lim, Sang-Wook Kim,
Min-Hee Jang, and Byeong-Soo Jeong

Searching I

Trip Tweets Search by Considering Spatio-temporal Continuity of User
Behavior . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

Keisuke Hasegawa, Qiang Ma, and Masatoshi Yoshikawa

Incremental Cosine Computations for Search and Exploration of Tag
Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156

Raymond Vermaas, Damir Vandic, and Flavius Frasincar

Impression-Aware Video Stream Retrieval System with Temporal
Color-Sentiment Analysis and Visualization . . . . . . . . . . . . . . . . . . . . . . . . . 168

Shuichi Kurabayashi and Yasushi Kiyoki

Database Partitioning and Performance

Dynamic Workload-Based Partitioning for Large-Scale Databases
(Short Paper) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183

Miguel Liroz-Gistau, Reza Akbarinia, Esther Pacitti,
Fabio Porto, and Patrick Valduriez

Dynamic Vertical Partitioning of Multimedia Databases Using Active
Rules (Short Paper) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191

Lisbeth Rodŕıguez and Xiaoou Li

RTDW-bench: Benchmark for Testing Refreshing Performance of
Real-Time Data Warehouse . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199

Jacek Jedrzejczak, Tomasz Koszlajda, and Robert Wrembel

Middleware and Language for Sensor Streams (Short Paper) . . . . . . . . . . . 207
Pedro Furtado



Table of Contents – Part II XXI

Semantic Web

Statistical Analysis of the owl:sameAs Network for Aligning Concepts
in the Linking Open Data Cloud . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215

Gianluca Correndo, Antonio Penta, Nicholas Gibbins, and
Nigel Shadbolt

Paragraph Tables: A Storage Scheme Based on RDF Document
Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 231

Akiyoshi Matono and Isao Kojima

Data Mining II

Continuously Mining Sliding Window Trend Clusters in a Sensor
Network (Short Paper) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 248

Annalisa Appice, Donato Malerba, and Anna Ciampi

Generic Subsequence Matching Framework: Modularity, Flexibility,
Efficiency (Short Paper) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 256

David Novak, Petr Volny, and Pavel Zezula

Distributed Systems

R-Proxy Framework for In-DB Data-Parallel Analytics . . . . . . . . . . . . . . . 266
Qiming Chen, Meichun Hsu, Ren Wu, and Jerry Shan

View Selection under Multiple Resource Constraints in a Distributed
Context . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 281

Imene Mami, Zohra Bellahsene, and Remi Coletta

Web Searching and Query Answering

The Impact of Modes of Mediation on the Web Retrieval Process
(Short Paper) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 297

Mandeep Pannu, Rachid Anane, and Anne James

Querying a Semi-automated Data Integration System . . . . . . . . . . . . . . . . . 305
Cheikh Niang, Béatrice Bouchou, Moussa Lo, and Yacine Sam

Recommendation and Prediction Systems

A New Approach for Date Sharing and Recommendation in Social
Web . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 314

Dawen Jia, Cheng Zeng, Wenhui Nie, Zhihao Li, and Zhiyong Peng

A Framework for Time-Aware Recommendations . . . . . . . . . . . . . . . . . . . . . 329
Kostas Stefanidis, Irene Ntoutsi, Kjetil Nørv̊ag, and
Hans-Peter Kriegel



XXII Table of Contents – Part II

A Hybrid Time-Series Link Prediction Framework for Large Social
Network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 345

Jia Zhu, Qing Xie, and Eun Jung Chin

Query Processing II

A Comparison of Top-k Temporal Keyword Querying over Versioned
Text Collections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 360

Wenyu Huo and Vassilis J. Tsotras

An Efficient SQL Rewrite Approach for Temporal Coalescing in the
Teradata RDBMS (Short Paper) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 375

Mohammed Al-Kateb, Ahmad Ghazal, and Alain Crolotte

HIP: Information Passing for Optimizing Join-Intensive Data
Processing Workloads on H adoop (Short Paper) . . . . . . . . . . . . . . . . . . . . . 384

Seokyong Hong and Kemafor Anyanwu

Query Processing III

All-Visible-k -Nearest-Neighbor Queries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 392
Yafei Wang, Yunjun Gao, Lu Chen, Gang Chen, and Qing Li

Algorithm for Term Linearizations of Aggregate Queries with
Comparisons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 408

Victor Felea and Violeta Felea

Evaluating Skyline Queries on Spatial Web Objects (Short Paper) . . . . . . 416
Alfredo Regalado, Marlene Goncalves, and Soraya Abad-Mota

Alternative Query Optimization for Workload Management
(Short Paper) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 424

Zahid Abul-Basher, Yi Feng, Parke Godfrey, Xiaohui Yu,
Mokhtar Kandil, Danny Zilio, and Calisto Zuzarte

Searching II

Online Top-k Similar Time-Lagged Pattern Pair Search in Multiple
Time Series (Short Paper) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 432

Hisashi Kurasawa, Hiroshi Sato, Motonori Nakamura, and
Hajime Matsumura

Improving the Performance for the Range Search on Metric Spaces
Using a Multi-GPU Platform (Short Paper) . . . . . . . . . . . . . . . . . . . . . . . . . 442

Roberto Uribe-Paredes, Enrique Arias, José L. Sánchez,
Diego Cazorla, and Pedro Valero-Lara



Table of Contents – Part II XXIII

A Scheme of Fragment-Based Faceted Image Search (Short Paper) . . . . . 450
Takahiro Komamizu, Mariko Kamie, Kazuhiro Fukui,
Toshiyuki Amagasa, and Hiroyuki Kitagawa

Indexing Metric Spaces with Nested Forests (Short Paper) . . . . . . . . . . . . 458
José Martinez and Zineddine Kouahla

Business Processes and Social Networking

Navigating in Complex Business Processes . . . . . . . . . . . . . . . . . . . . . . . . . . 466
Markus Hipp, Bela Mutschler, and Manfred Reichert

Combining Information and Activities in Business Processes
(Short Paper) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 481

Giorgio Bruno

Opinion Extraction Applied to Criteria (Short Paper) . . . . . . . . . . . . . . . . 489
Benjamin Duthil, François Trousset, Gérard Dray,
Jacky Montmain, and Pascal Poncelet

SocioPath: Bridging the Gap between Digital and Social Worlds
(Short Paper) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 497

Nagham Alhadad, Philippe Lamarre, Yann Busnel,
Patricia Serrano-Alvarado, Marco Biazzini, and
Christophe Sibertin-Blanc

Data Security, Privacy, and Organization

Detecting Privacy Violations in Multiple Views Publishing
(Short Paper) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 506

Deming Dou and Stéphane Coulondre

Anomaly Discovery and Resolution in MySQL Access Control
Policies (Short Paper) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 514

Mohamed Shehab, Saeed Al-Haj, Salil Bhagurkar, and Ehab Al-Shaer

Author Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 523



DIADEM: Domains to Databases�

Tim Furche, Georg Gottlob, and Christian Schallhart

Department of Computer Science, Oxford University,
Wolfson Building, Parks Road, Oxford OX1 3QD

firstname.lastname@cs.ox.ac.uk

Abstract. What if you could turn all websites of an entire domain into
a single database? Imagine all real estate offers, all airline flights, or
all your local restaurants’ menus automatically collected from hundreds
or thousands of agencies, travel agencies, or restaurants, presented as a
single homogeneous dataset.

Historically, this has required tremendous effort by the data providers
and whoever is collecting the data: Vertical search engines aggregate
offers through specific interfaces which provide suitably structured data.
The semantic web vision replaces the specific interfaces with a single one,
but still requires providers to publish structured data.

Attempts to turn human-oriented HTML interfaces back into their
underlying databases have largely failed due to the variability of web
sources. In this paper, we demonstrate that this is about to change: The
availability of comprehensive entity recognition together with advances
in ontology reasoning have made possible a new generation of knowledge-
driven, domain-specific data extraction approaches. To that end, we in-
troduce diadem, the first automated data extraction system that can
turn nearly any website of a domain into structured data, working fully
automatically, and present some preliminary evaluation results.

1 Introduction

Most websites with offers on books, real estate, flights, or any number of other
products are generated from some database. However, meant for human
consumption, they make the data accessible only through, increasingly sophisti-
cated, search and browse interfaces. Unfortunately, this poses a significant chal-
lenge in automatically processing these offers, e.g., for price comparison, market
analysis, or improved search interfaces. To obtain the data driving such applica-
tions, we have to explore human-oriented HTML interfaces and extract the data
made accessible through them, without requiring any human involvment.

Automated data extraction has long been a dream of the web community,
whether to improve search engines, to “model every object on the planet”1, or to

� The research leading to these results has received funding from the European Re-
search Council under the European Community’s Seventh Framework Programme
(FP7/2007–2013) / ERC grant agreement DIADEM, no. 246858.

1 Bing’s new aim, http://tinyurl.com/77jjqz6.

S.W. Liddle et al. (Eds.): DEXA 2012, Part I, LNCS 7446, pp. 1–8, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

http://tinyurl.com/77jjqz6


2 T. Furche, G. Gottlob, and C. Schallhart

Semantic API 
(RDF)

Product 
provider

Structured API 
(XML/JSON)

2

HTML 
interface

2

1

3

Form filling

Object 
identification

Energy Performance Chart

Maps

Floor plans

Tables

Flat Text

Cleaning & 
integration

Other 
Provider Other 

Provider

Other 
Provider

Whole Domain
Single schema
Rich attributes

Single agency
Few attributes

Domain database

DIADEM

Other 
Provider

O
th

er
 p

ro
vi

de
rs

4

template

Fig. 1. Data extraction with DIADEM

bootstrap the semantic web vision. Web extraction comes roughly in two shapes,
namely web information extraction (IE), extracting facts from flat text at very
large scale, and web data extraction (DE), extracting complex objects based on
text, but also layout, page and template structure, etc. Data extraction often
uses some techniques from information extraction such as entity and relationship
recognition, but not vice versa. Historically, IE systems are domain-independent
and web-scale [15,12], but at a rather low recall. DE systems fall into two cate-
gories: domain-independent, low accuracy systems [3,14,13] based on discovering
the repeated structure of HTML templates common to a set of pages, and highly
accurate, but site-specific systems [16,4] based on machine learning.

In this paper, we argue that a new trade-off is necessary to make highly
accurate, fully automated web extraction possible at a large scale. We trade off
scope for accuracy and automation: By limiting ourselves to a specific domain
where we can provide substantial knowledge about that domain and the repre-
sentation of its objects on web sites, automated data extraction becomes possible
at high accuracy. Though not fully web-scale, one domain often covers thousands
or even tens of thousands of web sites: To achieve a coverage above 80% for typi-
cal attributes in common domains, it does not suffice to extract only from large,
popular web sites. Rather, we need to include objects from thousands of small,
long-tail sources, as shown in [5] for a number of domains and attributes.



DIADEM: Domains to Databases 3

Figure 1 illustrates the principle of fully automated data extraction at domain-
scale. The input is a website, typically generated by populating HTML templates
from a provider’s database. Unfortunately, this human-focused HTML interface
is usually the only way to access this data. For instance, of the nearly 50 real
estate agencies that operate in the Oxford area, not a single one provides their
data in structured format. Thus data extraction systems need to explore and
understand the interface designed for humans: A system needs to automatically
navigate the search or browse interface (1), typically forms, provided by the
site to get to result pages. On the result pages (2), it automatically identifies
and separates the individual objects and aligns them with their attributes. The
attribute alignment may then be refined on the details pages (3), i.e., pages that
provide comprehensive information about a single entity. This involves some of
the most challenging analysis, e.g., to find and extract attribute-value pairs from
tables, to enrich the information about the object from the flat text description,
e.g., with relations to known points-of-interest, or to understand non-textual
artefacts such as floor plans, maps, or energy performance charts. All that infor-
mation is cleaned and integrated (4) with previously extracted information to
establish a large database of all objects extracted from websites in that domain.
If fed with a sufficient portion of the websites of a domain, this database provides
a comprehensive picture of all objects of the domain.

That domain knowledge is the solution to high-accuracy data extraction at
scale is not entirely new. Indeed, recently there has been a flurry of approaches
focused on this idea. Specifically, domain-specific approaches use background
knowledge in form of ontologies or instance databases to replace the role of
the human in supervised, site-specific approaches. Domain knowledge comes in
two fashions, either as instance knowledge (that “Georg” is a person and lives
in the town “Oxford”) or as schema or ontology knowledge (that “town” is a
type of “location” and that “persons” can “live” in “locations”). Roughly, existing
approaches can be distinguished by the amount of schema knowledge they use
and whether instances are recognised through annotators or through redundancy.
One of the dominant issues when dealing with automated annotators is that text
annotators have low accuracy. Therefore, [6] suggests the use of a top-k search
strategy on subsets of the annotations provided by the annotators. For each
subset a separate wrapper is generated and ranked using, among others, schema
knowledge. Other approaches exploit content redundancy, i.e., the fact that there
is some overlapping (at least on the level of attribute values) between web sites
of the same domain. This approach is used in [11] and an enumeration of possible
attribute alignments (reminiscent of [6]). Also [2] exploits content redundancy,
but focuses on redundancy on entity level rather than attribute level only.

Unfortunately, all of these approaches are only half-hearted: They add a bit
of domain knowledge here or there, but fail to exploit it in other places. Un-
surprisingly, they remain stuck at accuracies around 90 − 94%. There is also no
single system that covers the whole data extraction process, from forms over
result pages to details pages, but rather most either focus on forms, result or
details pages only.



4 T. Furche, G. Gottlob, and C. Schallhart

HTML page

Text 
annotations

Detectors Reasoners

HTML 
rendering

Document  
structure

Image
features

Flat text 
dependencies

URL
analysis

…

Table 
understanding

Domain 
knowledge

EPC chart 
understanding

Floor plan
understanding

Block 
classification Form 

Understanding

Object 
identification & alignment 

Context-driven
block analysis 

Observed phenomena Infered phenomena Phenomenology Concepts

Domain 
specific

Fig. 2. DIADEM knowledge

To address these shortcomings, we introduce the diadem engine which
demonstrates that through domain-specific knowledge in all stages of data ex-
traction we can indeed achieve high accuracy extraction for entire domain.
Specifically, diadem implements the full data extraction pipeline from Figure 1
integrating form, result, and details page understanding. We discuss diadem,
the way it uses domain knowledge (Section 2) and performs an integrated anal-
ysis (Section 3) of a web site of a domain in the rest of this paper, concluding
with a set of preliminary results (Section 4).

2 diadem Knowledge

diadem is organised around knowledge of three types, see Figure 2:

1. What to detect? The first type of knowledge is all about detecting instances,
whether instances of domain entities or their attributes, or instances of a tech-
nical concept such as a table, a strongly highlighted text, or an advertisement.
We call such instances phenomena and distinguish phenomena into those that
can be directly observed on a page, e.g., by means of text annotators or visual
saliency algorithms, and those inferred from directly observed ones, e.g., that
similar values aligned in columns, each emphasising its first value, constitute a
table with a header row.

2. How to interpret? However, phenomena alone are fairly useless: They are
rather noisy with accuracy in the 70−80% range even with state of the art tech-
niques. Furthermore, they are not what we are interested in: We are interested
in structured objects and their attributes. How we assemble these objects and
assign their attributes is described in the phenomenology that is used by a
set of reasoners to derive structured instances of domain concepts from the phe-
nomena. Thus a table phenomenon may be used together with price and location



DIADEM: Domains to Databases 5

annotations on some cell values and the fact that there is a price refinement form
to recognise that the table represents a list of real estate offers for sale. Similarly,
we assemble phenomena into instances of high-level interaction concepts such as
real-estate forms or floor plans, e.g., to get the rooms and room dimensions from
edge information and label annotations of a PDF floor plan.

3. How to structure? Finally, thedomainknowledgeguides thewaywestructure
the final data and resolve conflicts between different interpretations of the phenom-
ena (e.g., if we have one interpretation that a flat has two bedrooms and one that it
has 13 bedrooms, yet the price is rather low, it is more likely a two bedroom flat).

For all three layers, the necessary knowledge can be divided into domain-specific
and domain-independent. For quick adaptability of diadem to new domains, we
formulate as much knowledge as possible in general, domain independent ways,
either as reusable components, sharing knowledge, e.g., on the UK locations
between domains, or as domain independent templates which are instantiated
with domain specific parameters. Thus, to adapt diadem to a given domain,
one needs to select the relevant knowledge, instantiate suitable templates, and
sometimes provide additional, truly domain specific knowledge.

Where phenomena (usually only in the form of textual annotators) and on-
tological knowledge are fairly common, though never applied to this extent in
data extraction, diadem is unique in the use of explicit knowledge for the map-
ping between phenomena. These mappings (or phenomenology) are described in
Datalog±,¬ rules and fall, roughly, into three types that illustrate three of the
most profligate techniques used in the diadem engine:

1. Finding repetition. Fortunately, most database-backed websites use tem-
plates that can be identified with fair accuracy. Exploiting this fact is, indeed,
the primary reason why DE systems are so much more accurate that IE that do
not use this information. However, previous approaches are often limited by their
inability to distinguish noise from actual data in the repetition analysis (and thus
get, e.g., confused by different record types or irregular advertisements). Both
is addressed in diadem by focusing the search for repetition carrying relevant
phenomena (such as instances of domain attributes).

2. Identifying object instances through context. However, for details pages not
enough repetition may be available and thus we also need to be able to identify
singular object occurrences. Here, we exploit context information, e.g., from the
search form or from the result page through which a details page is reached.

3. Corroboration of disparate phenomena. Finally, individual results obtained
from annotations and patterns must be corroborated into a coherent model,
building not only a consistent model of individual pages but of an entire site.

3 diadem Engine

All this knowledge is used in the diadem engine to analyse a web site. It is
evident that this analysis process is rather involved and thus not feasible for
every single page on a web site. Fortunately, we can once again profit from the



6 T. Furche, G. Gottlob, and C. Schallhart

21

Flat Text

Form 
Understanding & Filling

Object 
identification & alignment 

Context-driven
block analysis 

3

OXPath 
Wrapper

Cloud extraction

Data integration

Result pages Single entity (details) pages

Energy Performance Chart

Maps

Floor plans

Tables

Fig. 3. DIADEM pipeline

template structure of such sites: First, diadem analyzes a small fraction of a
web site to generate a wrapper, and second, diadem executes these wrappers
to extract all relevant data from the analyzed sites at high speed and low cost.
Figure 3 gives an overview of the high-level architecture of diadem. On the left,
we show the analysis, on the right the execution stage. In practice, there are
far more dependencies and feedback mechanisms, but for space reasons we limit
ourselves to a sequential model.

In the first stage, with a sample from the pages of a web site, diadem generates
fully automatically wrappers (i.e., extraction program). This analysis is based
on the knowledge from Section 2, while the extraction phase does not require
any further domain knowledge. The result of the analysis is a wrapper program,
i.e., a specification how to extract all the data from the website without further
analysis. Conceputally, the analysis is divided into three major phases, though
these are closely interwoven in the actual system:

(1) Exploration: diadem automatically explores a site to locate relevant ob-
jects. The major challenge here are web forms: diadem needs to understand
such forms sufficiently to fill them for sampling, but also to generate exhaus-
tive queries for the extraction stage, such that all the relevant data is extracted
(see [1]). diadem’s form understanding engine opal [8] uses an phenomenology
of relevant domain forms for these tasks.

(2) Identification: The exploration unearths those web pages that contain
actual objects. But diadem still needs to identify the precise boundaries of these
objects as well as their attributes. To that end, diadem’s result page analysis
amber [9] analyses the repeated structure within and among pages. It exploits
the domain knowledge to distinguish noise from relevant data and is thus far
more robust than existing data extraction approaches.

(3) Block analysis: Most attributes that a human would identify as struc-
tured, textual attributes (as opposed to images or flat text) are already identi-
fied and aligned in the previous phase. But diadem can also identify and extract
attributes that are not of that type by analysing the flat text as well as specific,
attribute-rich image artefacts such as energy performance charts or floor plans.
Finally, we also aim to associate “unknown” attributes with extracted objects, if
these attributes are associated to suitable labels and appear with many objects
of the same type,



DIADEM: Domains to Databases 7

At the end of this process, we obtain a sample of instance objects with rich
attributes that we use to generate an OXPath wrapper for extraction. Some of
the attributes (such as floor plan room numbers) may require post-processing
also at run-time and specific data cleaning and linking instructions are provided
with the wrapper.

The wrapper generated by the analysis stage can be executed independently.
We have developed a new wrapper language, called OXPath [10], the first of its
kind for large scale, repeated data extraction. OXPath is powerful enough to
express nearly any extraction task, yet as a careful extension of XPath main-
tains the low data and combined complexity. In fact, it is so efficient, that page
retrieval and rendering time by far dominate the execution. For large scale exe-
cution, the aim is thus to minimize page rendering and retrieval by storing pages
that are possibly needed for further processing. At the same time, memory should
be independent from the number of pages visited, as otherwise large-scale or con-
tinuous extraction tasks become impossible. With OXPath we obtain all these
characteristics, as shown in Section 4.

4 diadem Results

To give an impression of the diadem engine we briefly summarise results on
three components of diadem: its form understanding system, opal; its result
page analysis, amber; and the OXPath extraction language.

Figures 4a and 4b report on the quality of form understanding and result page
analysis in diadem’s first prototype. Figure 4a [8] shows that opal is able to
identify about 99% of all form fields in the UK real estate and used car domain
correctly. We also show the results on the ICQ and Tel-8 form benchmarks,
where opal achieves > 96% accuracy (in contrast recent approaches achieve
at best 92% [7]). The latter result is without use of domain knowledge. With
domain knowledge we could easily achieve close to 99% accuracy as well. Fig-
ure 4b [9] shows the results for data area, record, and attribute identification on
result pages for amber in the UK real estate domain. We report each attribute
separately. amber achieves on average 98% accuracy for all these tasks, with a
tendency to perform worse on attributes that occur less frequently (such as the
number of reception rooms). amber is unique in achieving this accuracy even in
presence of significant noise in the underlying annotations: Even if we introduce
an error rate of over 50%, accuracy only drops by 1 or 2%.

For an extensive evaluation on OXPath, please see [10] . It easily outperforms
existing data extraction systems, often by a wide margin. Its high performance
execution leaves page retrieval and rendering to dominate execution (> 85%) and
thus makes avoiding page rendering imperative. We minimize page rendering by
buffering any page that may still be needed in further processing, yet manage
to keep memory consumption constant in nearly all cases including extraction
tasks of millions of records from hundreds of thousands of pages.



8 T. Furche, G. Gottlob, and C. Schallhart

0.97

0.98

0.99

1

Precision Recall F-score

0.93

0.94

0.95

0.96

UK Real Estate (100) UK Used Car (100) ICQ (98) Tel-8 (436)

(a) opal

94.0%

96.0%

98.0%

100.0%

da
ta

 a
re

a
re

co
rd

s

pr
ic

e
de

ta
ils

 U
R

L
lo

ca
tio

n

le
ga

l
po

st
co

de
be

dr
oo

m
pr

op
er

ty
 ty

pe
re

ce
pt

io
n

ba
th

precision recall

(b) amber

Fig. 4. diadem results

References

1. Benedikt, M., Gottlob, G., Senellart, P.: Determining relevance of accesses at run-
time. In: PODS (2011)

2. Blanco, L., Bronzi, M., Crescenzi, V., Merialdo, P., Papotti, P.: Exploiting Informa-
tion Redundancy to Wring Out Structured Data from the Web. In: WWW (2010)

3. Crescenzi, V., Mecca, G.: Automatic information extraction from large websites.
J. ACM 51(5), 731–779 (2004)

4. Dalvi, N., Bohannon, P., Sha, F.: Robust web extraction: an approach based on a
probabilistic tree-edit model. In: SIGMOD (2009)

5. Dalvi, N., Machanavajjhala, A., Pang, B.: An analysis of structured data on the
web. In: VLDB (2012)

6. Dalvi, N.N., Kumar, R., Soliman, M.A.: Automatic wrappers for large scale web
extraction. In: VLDB (2011)

7. Dragut, E.C., Kabisch, T., Yu, C., Leser, U.: A hierarchical approach to model
web query interfaces for web source integration. In: VLDB (2009)

8. Furche, T., Gottlob, G., Grasso, G., Guo, X., Orsi, G., Schallhart, C.: Opal:
automated form understanding for the deep web. In: WWW (2012)

9. Furche, T., Gottlob, G., Grasso, G., Orsi, G., Schallhart, C., Wang, C.: Little Knowl-
edge Rules the Web: Domain-Centric Result Page Extraction. In: Rudolph, S.,
Gutierrez,C. (eds.)RR2011.LNCS, vol. 6902, pp. 61–76. Springer,Heidelberg (2011)

10. Furche, T., Gottlob, G., Grasso, G., Schallhart, C., Sellers, A.: Oxpath: A language
for scalable, memory-efficient data extraction from web applications. In: VLDB
(2011)

11. Gulhane, P., Rastogi, R., Sengamedu, S.H., Tengli, A.: Exploiting content redun-
dancy for web information extraction. In: VLDB (2010)

12. Lin, T., Etzioni, O., Fogarty, J.: Identifying interesting assertions from the web.
In: CIKM (2009)

13. Liu, W., Meng, X., Meng, W.: Vide: A vision-based approach for deep web data
extraction. TKDE 22, 447–460 (2010)

14. Simon, K., Lausen, G.: Viper: augmenting automatic information extraction with
visual perceptions. In: CIKM (2005)

15. Yates, A., Cafarella, M., Banko, M., Etzioni, O., Broadhead, M., Soderland, S.:
Textrunner: open information extraction on the web. In: NAACL (2007)

16. Zheng, S., Song, R., Wen, J.R., Giles, C.L.: Efficient record-level wrapper induction.
In: CIKM (2009)



 

S.W. Liddle et al. (Eds.): DEXA 2012, Part I, LNCS 7446, p. 9, 2012. 
© Springer-Verlag Berlin Heidelberg 2012 

Stepwise Development of Formal Models  
for Web Services Compositions:  

Modelling and Property Verification 

Yamine Ait-Ameur1 and Idir Ait-Sadoune2 

1 IRIT/INPT-ENSEEIHT, 2 Rue Charles Camichel. BP 7122,  
31071 TOULOUSE CEDEX 7, France 

yamine@enseeiht.fr 
2 E3S/SUPELEC, 3, rue Joliot-Curie, 

91192 GIF-SUR-YVETTE CEDEX, France 
idir.aitsadoune@supelec.fr 

With the development of the web, a huge number of services available on the web 
have been published. These web services operate in several application domains like 
concurrent engineering, semantic web, system engineering or electronic commerce. 
Moreover, due to the ease of use of the web, the idea of composing these web services 
to build composite ones defining complex workflows arose. Even if several industrial 
standards providing specification and/or design XML-oriented languages for web 
services compositions description, like BPEL, CDL, OWL-S, BPMN or XPDL have 
been proposed, the activity of composing web services remains a syntactically based 
approach. Due to the lack of formal semantics of these languages, ambiguous inter-
pretations remain possible and the validation of the compositions is left to the testing 
and deployment phases. From the business point of view, customers do not trust these 
services nor rely on them. As a consequence, building correct, safe and trustable web 
services compositions becomes a major challenge.  

It is well accepted that the use of formal methods for the development of informa-
tion systems has increased the quality of such systems. Nowadays, such methods are 
set up not only for critical systems, but also for the development of various informa-
tion systems. Their formal semantics and their associated proof system allow the sys-
tem developer to establish relevant properties of the described information systems.  

This talk addresses the formal development of models for services and their com-
position using a refinement and proof based method, namely the Event B method. The 
particular case of web services and their composition is illustrated. We will focus on 
the benefits of the refinement operation and show how such a formalization makes it 
possible to formalise and prove relevant properties related to composition and adapta-
tion. Moreover, we will also show how implicit semantics carried out by the services 
can be handled by ontologies and their formalisation in such formal developments. 
Indeed, once ontologies are formalised as additional domain theories beside the de-
veloped formal models, it becomes possible to formalise and prove other properties 
related to semantic domain heterogeneity. 

The case of BPEL web services compositions will be illustrated.  



A Hybrid Approach

for General XML Query Processing

Huayu Wu1, Ruiming Tang2, Tok Wang Ling2,
Yong Zeng2, and Stéphane Bressan2

1 Institute for Infocomm Research, Singapore
huwu@i2r.a-star.edu.sg

2 School of Computing, National University of Singapore
{tangruiming,lingtw,zengyong,steph}@comp.nus.edu.sg

Abstract. The state-of-the-art XML twig pattern query processing al-
gorithms focus on matching a single twig pattern to a document. How-
ever, many practical queries are modeled by multiple twig patterns with
joins to link them. The output of twig pattern matching is tuples of
labels, while the joins between twig patterns are based on values. The
inefficiency of integrating label-based structural joins in twig pattern
matching and value-based joins to link patterns becomes an obstacle pre-
venting those structural join algorithms in literatures from being adopted
in practical XML query processors. In this paper, we propose a hybrid
approach to bridge this gap. In particular, we introduce both relational
tables and inverted lists to organize values and elements respectively.
General XML queries involving several twig patterns are processed by
the both data structures. We further analyze join order selection for a
general query with both pattern matching and value-based join, which
is essential for the generation of a good query plan.

1 Introduction

Twig pattern is considered the core query pattern in most XML query languages
(e.g., XPath and XQuery). How to efficiently process twig pattern queries has
been well studied in the past decade. One highlight is the transfer from using
RDBMS to manage and query XML data, to processing XML queries natively
(see the survey [10]). Now the state-of-the-art XML twig pattern query process-
ing techniques are based on structural join between each pair of adjacent query
nodes, which are proven more efficient than the traditional approaches using
RDBMS for most cases [16]. After Bruno et al. [4] and many subsequent works
bringing the idea of holistic twig join into the structural join based algorithms,
it seems that the XML twig pattern matching techniques are already quite de-
veloped in terms of efficiency. However, one simple question is whether twig
pattern matching is the only issue for answering general XML queries. XQuery
is powerful to express any complex query. It is quite often that in an XQuery
expression there are multiple XPath expressions involved, each of which corre-
sponds to a twig pattern query; and value-based joins are used to link those

S.W. Liddle et al. (Eds.): DEXA 2012, Part I, LNCS 7446, pp. 10–25, 2012.
c© Springer-Verlag Berlin Heidelberg 2012



A Hybrid Approach for General XML Query Processing 11

computing_faculty
(1:1028,1)

group
(2:117,2)

name
(3:4,3)

‘database’

students
(5:116,3)

student
(6:15,4)

name
(7:8,5)

gender
(9:10,5)

interest
(11:12,5)

interest
(13:14,5)

‘John’ ‘M’ ‘data mining’ ‘skyline query’

group
(118:213,2)

name
(119:120,3)

‘Networking’

students
(121:212,3)

student
(122:131,4)

name
(123:124,5)

gender
(125:126,5)

interest
(127:128,5)

‘Tom’ ‘M’ ‘sensor network’

……student
(16:23,4)

name
(17:18,5)

gender
(19:20,5)

interest
(21:22,5)

‘Lisa’ ‘F’ ‘XML’

……

……

(a) (d1) Computing faculty document

conference_list
(1:1028,1)

area
(2:99,2)

name
(3:4,3)

‘Computing’

conference
(5:28,3)

name
(6:7,4)

chair
(8:9,4)

topic
(11:12,5)

topic
(13:14,5)

‘A’ ‘Roy’

‘XML’ ‘RDBMS’

……conference
(29:58,3)

name
(30:31,4)

chair
(32:33,4)

scope
(34:57,4)

‘B’ ‘Peter’……

scope
(10:27,4)

topic
(35:36,5)

topic
(37:38,5)

‘sensor network’ ‘security’

……

area
(100:197,2)

name
(101:102,3)

‘Engineering’

……

……

(b) (d2) Research community document

Fig. 1. Two example documents with node labeled

XPath expressions (twig patterns). Matching a twig pattern to a document tree
can be efficiently done with current techniques, but how to join different sets of
matching results based on values is not as trivial as expected. This limitation
also prevents many structural join algorithms in literatures being adopted by
practical XQuery processors. In fact, nowadays many popular XQuery proces-
sors are still based on relational approach (e.g. MonetDB[15], SQL Server[14])
or navigational approach (e.g. IBM DB2[3], Oracle DB[24], Natix[8]).

Consider two example labeled documents shown in Fig. 1, and a query to
find all the computing conferences that accept the same topic as Lisa’s research
interest. The core idea to express and process this query is to match two twig
patterns, as shown in Fig. 2, separately in the two documents, and then join the
two sets of results based on the same values under nodes interest and topic. Twig

student

name interest

‘Lisa’

conference

name topic

area

name

‘Computing’

Fig. 2. Two twig patterns to be matched for the example query



12 H. Wu et al.

pattern matching returns all occurrences of a twig pattern query in an XML doc-
ument tree, in tuples of positional labels. The matching result for the first twig
pattern contains the label (21:22,5) for the interest node in the first document,
and the result for the second twig pattern contains (11:12,5), (13:14,5), (35:36,5)
and so on for the topic node in the second document. We can see that it makes no
sense to join these two result sets based on labels. Actually we need to join them
based on the value under each interest and topic node found. Unfortunately,
twig pattern matching cannot reflect the values under desired nodes. To do this,
we have to access the original document (probably with index) to retrieve the
child values of the resulting nodes, and then perform the value-based join. Fur-
thermore, in this attempt, a query processor can hardly guarantee a good query
plan. If only one conference has the same topic as Lisa’s interest, i.e., XML, by
joining the two sets of pattern matching results we only get one tuple, though
the pattern matching returns quite a lot of tuples for the second twig as inter-
mediate results. A better plan to deal with this query is after matching the first
pattern, we use the result to filter the topic labels, and finally use the reduced
topic labels to match the second twig pattern to get result.

The above situation happens not only for queries across multiple documents,
but also for queries across different parts of the same document, or queries
involving ID references.

Of course, this problem can be solved by the pure relational approach, i.e.,
transforming the whole XML data into relational tables and translating XML
queries into SQL queries with table joins. However, to support value-based join
with pure relational approach is not worth the sacrifice of the optimality of many
algorithms for structural join (e.g., [4][6]).

In this paper, we propose a hybrid approach to process general XML queries
which involve multiple twig patterns linked by value-based joins. “Hybrid” means
we adopt both relational tables and inverted lists, which are the core data struc-
tures used in the relational approach and the structural join approach for XML
query processing. In fact, the idea of hybridising two kinds of approaches is pro-
posed in our previous reports to optimize content search in twig pattern matching
[18], and to semantically reduce graph search to tree search for queries with ID
references [20]. The contribution of this paper is to use the hybrid approach to
process all XML queries that are modeled as multiple twig patterns with value-
based joins, possibly across different documents. The two most challenging parts
of the hybrid approach are (1) how to smoothly bridge structural join and value-
based join, and (2) how to determine a good join order for performance concern.
Thus in this paper, we first propose algorithms to link up the two joins and
then investigate join order selection, especially when the value-based join can
be inner join or outer join. Ideally, our approach can be adopted by an XML
query (XQuery) processor, so that most state-of-the-art structural join based
twig pattern matching algorithms can be utilized in practice.

The rest of the paper is organized as follows. We revisit related work in
Section 2. The algorithm to process XML queries with multiple linking pat-
terns is presented in Section 3. In Section 4, we theoretically discuss how to



A Hybrid Approach for General XML Query Processing 13

optimize query processing, with focus on join order selection for queries with
inner join and outer join. We present the experimental result in Section 5 and
conclude this paper in Section 6.

2 Related Work

In the early stage, many works (e.g., [16][23]) focus on using mature RDBMS
to store and query XML data. They generally shred XML documents into rela-
tional tables and transform XML queries into SQL statements to query tables.
These relational approaches can easily handle the value-based joins between twig
patterns, however, the main problem is they are not efficient in twig pattern
matching, because too many costly table joins may be involved.

To improve the efficiency in twig pattern matching, many native approaches
without using RDBMS are proposed. Structural join based approach is an impor-
tant native approach attracting most research interests. At the beginning, binary
join based algorithms are proposed [2], in which a twig pattern is decomposed
into binary relationships, and the binary relationships are matched separately
and combined to get final result. Although [22] proposed a structural join order
selection strategy for the binary join algorithms, they may still produce a large
size of useless intermediate result. Bruno et al. [4] first proposed a holistic twig
join algorithm, TwigStack, to solve the problem of large intermediate result size.
It is also proven to be optimal for queries with only “//”-axis. Later many sub-
sequent works [7][12][11][6] are proposed to either optimize TwigStack, or extend
it for different problems. However, these approaches only focus on matching a
single twig pattern to a document. Since many queries involve multiple twig
patterns, how to join the matching results from different twig patterns is also
an important issue affecting the overall performance.

We proposed a hybrid approach for twig pattern matching in [18]. The basic
idea is to use relational table to store values with the corresponding element
labels. Then twig pattern matching is divided into structural search and content
search, which are performed separately using inverted lists and relational tables.
In [19] we theoretically and experimentally show that this hybrid approach for
twig pattern matching is more efficient than pure structural join approach and
pure relational approach for most XML cases. Later we extend this approach for
queries with ID references, by using tables to capture semantics of ID reference
[20]. However, the previous work is not applicable for general XML queries with
random value-based joins to link multiple twig patterns.

3 General XML Query Processing

For illustration purpose, we first model a general XML query as a linked twig
pattern (LTP for short).



14 H. Wu et al.

3.1 Linked Twig Pattern

Definition 1. (LTP) A linked twig pattern is L = ((T, d)∗, (u, v)∗), where T
is a normal twig pattern representation with the same semantics, d is document
identifier, (u, v) is a value link for value-based join between nodes u and v. Each
value link (u, v) is associated to a label l∈{inner join, left outer join, right outer
join, full outer join}, to indicate the type of the join based on u and v.

In graphical representation, we use solid edge for the edges in T, and dotted
edge with or without arrow for each (u, v). Particularly, a dotted edge without
arrow means an inner join; a dotted edge with an arrow at one end means a
left/right outer join; and a dotted edge with arrows at both ends means a full
outer join. The output nodes in an LTP query are underlined.

It is possible that there are multiple dotted edges between two twig patterns
in an LTP query, which means the two patterns are joined based on multiple
conditions. Theoretically, the multiple dotted edges between two twig patterns
must be in the same type, as they stand for a unique join between two patterns,
just with multiple conditions.

Example 1. Recall the previous query to find all the computing conferences that
accept the same topic as Lisa’s research interest. Its LTP representation is shown
in Fig. 3(a). Another example LTP query containing outer join is shown in Fig.
3(b). This query aims to find the names of all male students in the database
group, and for each such student it also optionally outputs the names of all
conferences that contain the same topic as his interest, if any.

student

name interest

‘Lisa’

conference

name topic

area

name

‘Computing’

d1: d2:

(a) Query with inner join

group

name

‘database’

student

gender

‘M’

interest

conference

name topic

d1:

d2:

name

(b) Query with outer join

Fig. 3. Example LTP queries with inner join and outer join

To process an LTP query, intuitively we need to match each twig pattern in
the query to the given documents, and then perform joins (either inner join or
outer join, as indicated in the LTP expression) over pattern matching results.

3.2 Algebraic Expression

In this section, we introduce the algebraic operators used to express LTP queries.

Pattern Matching - PM(T): Performs pattern matching for a twig pattern
T. When we adopt a structural join based pattern matching algorithm, we also
use another notation to express pattern matching, which is DHT ��

sDTT , where
DHT and DTT are dummy head and dummy tail of twig pattern T which can



A Hybrid Approach for General XML Query Processing 15

be any query node in T, and ��s indicates a serial of structural joins starting
from DHT , through all other nodes in T and ending at DTT , to match T to the
document. When a pattern matching is after (or before) a value-based join in
a query, DHT (or DTT ) represents the query node in T that is involved in the
value-based join. For example, in Fig. 3(a), any node except interest in the left
hand side twig pattern (temporarily named T1) can be considered as a dummy
head, while interest is the dummy tail of T1 because it is involved in the value-
based join with the right hand side twig pattern. Suppose we consider ‘Lisa’
as DHT1 , then DHT1��

sDTT1 means a series of structural joins between ‘Lisa’
and name, name and student, and student and interest, to finish the pattern
matching. The purpose to introduce this notation is for the ease to investigate
join order selection for the mixture of structural joins and value-based joins, as
shown later.

Value-based join - ��lc: This operator joins two sets of tuples based on the
value condition(s) specified in c. The label l∈{null, ←, →, ↔} indicates the type
of value-based join, where {null, ←, →, ↔} correspond to inner join, left outer
join, right outer join and full outer join respectively.

The LTP query shown in Fig. 3(a) and 3(b) can be expressed by the proposed
algebra as follows, where T1 and T2 represent the two twig patterns involved in
each query:

PM(T1)��T1.interest=T2.topicPM(T2)

and PM(T1)��
→

T1.interest=T2.topicPM(T2)

Alternatively, we can substitute PM(Tn) by DHTn��
sDTTn , which is helpful to

explain join order selection, as discussed later.

3.3 LTP Query Processing

To process an LTP query, generally we need to match all twig patterns and join
the matching results according to specified conditions. Thus how to efficiently
perform the two operators ��s and ��lc is essential to LTP query processing. As
reviewed in Section 2, there are many efficient twig pattern matching algorithms
proposed. In this part, we focus on how to incorporate value-based join with
twig pattern matching .

Joining results from matching different twig patterns is not so trivial as ex-
pected. Most twig pattern matching algorithms assign positional labels to doc-
ument nodes, and perform pattern matching based on node labels. There are
many advantages of this attempt, e.g., they do not need to scan the whole XML
document to process a query, and they can easily determine the positional re-
lationship between two document nodes from their labels. However, performing
pattern matching based on labels also returns labels as matching results. After
matching different twig patterns in an LTP query, we have to join them based
on relevant values, instead of labels. How to link those pattern matching results
by value-based joins becomes a problem for LTP query processing.



16 H. Wu et al.

We introduce relational table to associate each data value to the label of its
parent element node in a document. This data structure is helpful for performing
value-based join between sets of labels.

3.3.1 Relational Tables
Relational tables are efficient for maintaining structured data and performing
value-based joins. Most structural join based pattern matching algorithms ignore
the important role of relational tables in value storage and value-based join, thus
they have to pay more on redundant document access to extract values before
they can perform value-based join, as well as return final value answers. In our
approach, we use a relational table for each type of property node to store the
labels of the property and the property values. Thus the relational tables are
also referred as property tables in this paper.

Definition 2. (Property Node) A document node which has a child value (text)
is called a property node (property in short), irrespective of whether it appears
as an element type or an attribute type in the XML document.

Definition 3. (Property Table) A property table is a relational table built for
a particular type of property. It contains two fields: property label and property
value. The table name indicates which property type in which document the table
is used for.

In the documents in Fig. 1, name, gender, interest, topic, and so on, are all
properties. The property tables for interest and topic are shown in Fig. 4.

Rd1_interest

label
(11:12,5)
(13:14,5)

value

(21:22,5)
… 

data mining
skyline query
XML
… 

Rd2_topic

label
(11:12,5)
(13:14,5)

value

(35:36,5)
(37:38,5)

XML
RDBMS
sensor network
security

(127:128,5) sensor network
… … 

… … 

Fig. 4. Example property tables for interest and topic in the two documents

3.3.2 Linking Structural Join and Value-Based Join
When we perform a sequence of joins in relational databases, a query optimizer
will choose one join to start based on the generated plan, and the result will be
pipelined to the second join and so on. Our approach follows a similar strategy,
but the difference is in our LTP algebraic expression pattern matching and value-
based join occur alternately. A pair of consecutive value-based joins can be easily
performed as they are similar to table joins in relational systems. For a pair
of consecutive pattern matchings, existing pattern matching algorithms can be
easily extended to perform it, as both the input and the output of a twig pattern
matching algorithm are labels. In this section, we investigate how to perform a
pair of consecutive pattern matching and value-based join, which needs property
tables to bridge the gap between labels and values.



A Hybrid Approach for General XML Query Processing 17

We propose algorithms to handle the two operations: (1) a value-based join fol-
lows a pattern matching, i.e. (DHT ��

sDTT )��
l
c S or S��lc(DHT ��

sDTT ), and
(2) a pattern matching follows a value-based join, i.e. (S��lcDHT )��

sDTT or
DHT ��

s(DTT ��
l
cS) (S is a set of intermediate result from other operations).

Case 1: Pattern matching before value-based join

Because of the commutativity property1 of value-based join, we only take the
expression (DHT ��

sDTT )��
l
cS for illustration. S��lc(DHT ��

sDTT ) can be pro-
cessed in a similar way. The algorithm to process the query expression with
pattern matching followed by value-based join is shown in Algorithm 1.

Algorithm 1. Pattern Matching First

Input: a query (DHT ��sDTT )��l
p1=p2S and property tables Rp1 and Rp2

Output: a set of resulting tuples
1: identify the output nodes o1, o2, ... om in Tand S
2: identify the property fields p1 in T, and p2 in S
3: load the inverted list streams for all the query nodes in T
4: perform pattern matching for T using inverted lists, to get the result set RS
5: project RS on output nodes and p1 to get PRS
6: join PRS, Rp1 , Rp2 and S based on conditions PRS.p1 = Rp1 .label, Rp1 .value = Rp2 .value

and Rp2 .label = S.p2

7: return the join result with projection on o1, o2, ... om

The main idea is to use corresponding property tables to bridge the two sets
of lable tuples during value-based join. Since each property table has have two
fields: label and value, we can effectively join two sets of label tuples based on
values using property tables. Also in our illustration, we use only one condition
for value-based join. It is possible that two or more conditions are applied.

Example 2. Consider the LTP query shown in Fig. 3(a). Suppose we process this
query based on the default order of its algebraic expression:

DHT1��
sDTT1��T1.interest=T2.topicDHT2��

sDTT2

We first match the pattern T1 to the document d1, i.e., performingDHT1��
sDTT1 ,

and project the result on interest as it is used for value-based join. By any twig
pattern matching algorithm, we can get the only resulting label (21:22,5). Then
we join this result with DHT2 , which corresponds to all labels for topic (dummy
head of T2, as it is the property in T2 for value-based join), through Rd1 interest

and Rd2 topic (shown in Fig. 4), and get a list of labels (11:12,5), etc.

Case 2: Value-based join before pattern matching

In this case a value-based join will be performed first, and then using the resulting
tuples on relevant properties, we perform structural joins for pattern matching.
Similarly, due to the commutativity property of DHT ��

sDTT , we only concern
the expression (S��lcDHT )��

sDTT , ignoringDHT ��
s(DTT ��

l
cS). The algorithm

is shown in Algorithm 2.

1 S1��cS2=S2��cS1, S1��
→

cS2=S2��
←

cS1, S1��
↔

cS2=S2 ��↔cS1.



18 H. Wu et al.

Algorithm 2. Value-based Join First

Input: a query (S��l
p1=p2DHT )��sDTT and property tables Rp1 and Rp2

Output: a set of resulting tuples
1: identify the output nodes o1, o2, ... om in S and T
2: identify the property fields p1 in S, and p2 in T
3: join S, Rp1 and Rp2 based on the condition S.p1 = Rp1.label and Rp1 .value = Rp2 .value, to

get RS
4: project RS on output nodes and p2, and sort the labels by p2 in document order to form Ip2
5: load the inverted list streams for all the query nodes, except p2 in T
6: perform pattern matching for T using Ip2 and other loaded inverted lists, to get the result RS

7: return the matching result with projection on o1, o2, ... om

The advantage of performing value-based join before pattern matching is that
value-based join may reduce the number of labels for the relevant property node
in the twig pattern, so that the performance of pattern matching is improved.
However, the trade-off is the higher cost for value-based join, compared to the
first case where pattern matching is first performed to reduce the labels for
value-based join. The details of join order selection are discussed in Section 4.

Example 3. Still consider the query in Fig. 3(a). Suppose DHT1��
sDTT1 is al-

ready performed and returns a label (21:22,5). Now we join this intermediate
result with Rd1 interest to materialize the interest values, and then join the val-
ues with Rd2 topic to get a smaller set of topic labels. We use these labels to
construct a new inverted list for the topic node in T2, then T2 can be matched
more efficiently with less labels scanned.

Example 2 and 3 take inner join between twig patterns to illustrate the pro-
cess. Note that the algorithms are also applicable for outer join.

4 Query Optimization

In this section, we discuss how to optimize LTP query processing. We have pro-
posed an approach to optimize twig pattern matching [18]. Generally, it performs
content search in each twig pattern query before structural joins, because content
search normally leads high selectivity. This is similar to the selection push-ahead
in relational database systems. This technique will be inherited when we perform
an LTP query with multiple pattern matchings. Now we focus on how to choose
a good join order to process LTP queries.

An LTP query expression can be considered as a sequence of mixed structural
joins and value-based joins. In particular, any twig pattern matching can be
considered as a sequence of structural joins, and to link different twig patterns,
we need value-based joins. As in most state-of-the-art twig pattern matching
algorithms, the structural joins are performed in a holistic way to reduce useless
intermediate result, then it is reasonable to consider a pattern matching wholly
as one operation. As mentioned above, we use DHT ��

sDTT to express a pattern
matching for twig T, in which ��s means a set of structural joins to holistically
find the matched results. When a pattern matching is before or following a value-
based join, the dummy tail DTT or the dummy head DHT of T represent the
sets of properties, based on which the value-based join is performed.



A Hybrid Approach for General XML Query Processing 19

We start with a simple case that the query only involves inner value-based
joins between twig patterns. After that we discuss how to handle outer joins.

4.1 Query with Inner Join Only

The rationale behind join order selection in a relational optimizer is the commu-
tativity and the associativity of inner table join. During a pattern matching, how
to select the order of structural joins does not affect the matching result [22], so
we consider a pattern matching is commutative, i.e. DHT ��

sDTT≡DTT ��
sDHT .

An inner value-based join has no difference from an inner table join, so it is also
commutative. Now we discuss the associativity of a join sequence with both
pattern matching and inner value-based joins.

Proposition 1. An algebraic expression with both pattern matchings (��s) and
inner value-based joins (��c) operators is reorderable, i.e., (DHT ��

sDTT )��cS ≡
DHT ��

s(DTT ��cS), where S is a set of labels.

Proof. [Sketch] A tuple t is in the resulting set of (DHT ��
s DTT )��cS if and

only if t satisfies two conditions: (1) it corresponds to a subtree that matches
T, and (2) the label l of a relevant property in t has the same child value
as the corresponding label in S. Now consider DHT ��

s(DTT ��cS). Since value-
based join ��c returns all the tuples satisfying (2), and pattern matching ��s

also soundly and completely return all matches satisfying (1) [4], t also exists
in the result of DHT ��

s(DTT ��
lS). Similarly, we can prove that any tuple from

DHT ��
s(DTT ��

lS) also exists in (DHT ��
sDTT )��

lS.
Based on Proposition 1, there may be multiple execution plans for a LTP

query. Consider the example query in Fig. 3(a):

(DHT1��
sDTT1)��interest=topic(DHT2��

sDTT2)

some possible execution plans are shown in Fig. 5. Note that we ignore the outer
set and inner set selection for the value-based join.

With an effective cost model of each operation and an efficient method to
estimate result size after each step, we can choose a good query plan to proceed.

Cost Models

Twig Pattern Matching: It is proven in [4] that in the worst case, the I/O and
CPU time for the holistic join based twig pattern matching algorithm is linear

s

c

s

DHT1 DTT1

DTT2

DHT2

s

c

s

DHT2 DTT2

DHT1

DTT1

s

DHT2 DTT2

s

DHT1 DTT1

c
s

s

c

DTT1 DHT2

DTT2

DHT1

s

DTT1 DHT2

DHT1

DTT2

s

c

(1) (2) (3) (4) (5)

Fig. 5. Different execution plans



20 H. Wu et al.

to the size of input lists and the size of results. The cost of pattern matching
is fin*sum(|I1|, ..., |In|)+fout*|RSp out|, where fin and fout are the factors for
input size and output size, |Im| is the size of m-th inverted list and |RSp out| is
the size of output result set.

Value-Based Join: We adopt the cost model for inner table join in relational
query optimizer for set join. As relational query optimization has been studied
for many years, the details are not repeated here.

Result Size Estimation

There are many approaches to estimate the result size of an inner join in RDBMS.
Those approaches can also be used to estimate the result size of a value-based
join. Estimating result size of structural joins is also studied in many previous
research works, e.g. [21]. We can use them in our approach.

4.2 Handling Outer Value-Based Join

Outer join may appear as a structural join within a twig pattern, or as a value-
based join between different twig patterns. The difference is the outer structural
join is based on positional labels, while the outer value-based join is based on
values. Outer structural join can be handled during pattern matching [6]. In this
part, we focus on the outer value-based join between twig patterns.

Generating different query plans relies on the associativity of join opera-
tors. Unfortunately, an LTP query expression with outer value-based join may
not always be reorderable. In an LTP query execution plan, there are three
cases that an operator is adjacent to an outer value-based join: (1) two outer
value-based joins are adjacent (S1��

→/↔
cS2��

→/↔
cS3)

2, (2) an inner value-
based join and an outer value-based join are adjacent (S1��

→/↔
c S2��cS3 or

S1��cS2��
→/↔

cS3), and (3) a structural join and an outer value-based join are
adjacent (S1��

→/↔
cDHT ��

sDTT or S1��
sDHT ��

→/↔
cDTT ).

Case (1) and Case (2):

The associativity of inner/outer join between tables (sets) have been well stud-
ied [9][13]. Generally, based on a null-rejection constraint, in which an outer join
condition is evaluated to false when referring a null value, Case (1) expressions
can be reordered. For Case (2), some expressions are natively reorderable, e.g.
(S1��c S2)��

→
cS3≡S1��c (S2��

→
cS3). For those expressions that are not reorder-

able, [13] invents a generalized outer join operator to replace the original join,
to ensure the reorderability. We do not repeat the details in this paper.

Case (3):

Now we discuss the reorderability of outer value-based join and structural join.

Proposition 2. An expression with a structural join (pattern matching) fol-
lowed by a right outer join is reorderable, i.e.

(DHT ��
sDTT )��

→
cS≡DHT ��

s(DTT ��
→

cS).

2 Since S1��
←

cS2≡S2��
→

cS1, we omit left outer join.



A Hybrid Approach for General XML Query Processing 21

Proof. [Sketch] (DHT ��
sDTT )��

→
cS preserves all the matches of T in the rel-

evant XML document, because of the right outer join. Also in this expression,
every tuple t in S that satisfies c will be bound to the corresponding match
of T. Now consider the second expression. DTT ��

→
cS preserves all labels of

DTT (relevant query nodes in T, based on which value-based join is performed),
so DHT ��

s(DTT ��
→

cS) preserves all the matches of T. Each tuple t in S that
satisfies both c and pattern constraint T is also preserved. Thus the two expres-
sions are equivalent.

Example 4. Consider the query in Fig. 3(b). Suppose we match the second twig
pattern first and get a result set S, as shown in Fig. 6(a). Now we need to execute
the expressionDHT1��

sDTT1��
→

T1.interest=S.topicS to answer the query. Fig. 6(b)
shows the intermediate and final results of two query plan: (DHT1��

s

DTT1)��
→

T1.interest=S.topicS and DHT1��
s(DTT1��

→
T1.interest=S.topicS). We can

see that the two expressions return the same result.

S
name
(6:7,4)
(6:7,4)

topic
(11:12,5)
(13:14,5)

… … 
(30:31,4) (35:36,5)
(30:31,4) (37:38,5)
… … 

(a) Intermediate set

DHT1 DHT
s

namestudent

(7:8,5)
(7:8,5)

interest
(11:12,5)
(13:14,5)

(DHT1 DHT )s
interest=topic

namestudent

(7:8,5)
… 

nameconference

null

… 

S

… … 

interest
(11:12,5)
(13:14,5)

nameconference

null

null

DHT1 (DHT
s

interest=topic

namestudent

(7:8,5)
… 

nameconference

null

… 

S)

(21:22,5) (6:7,4)

DHT interest=topicS

… … 

(b) Join results from different expressions

Fig. 6. Reorderable expression example

However, when a structural join is followed by a left outer join, i.e., (DHT ��
s

DTT )��
←

cS (it is equivalent to a right outer join followed by a structural join,
i.e. S��→c(DHT ��

sDTT )), then expression is not reorderable.

Example 5. Consider the same query in Fig. 3(b). This time we match the first
twig pattern first, to get a result set S shown in Fig. 7(a). Then we execute the
expression S��→S.interest=T2.topic(DHT2��

sDTT2). The results are shown in the
first two tables in Fig. 7(b). By comparing this result with the execution result
of a second expression (S��→S.interest=T2.topicDHT2)��

sDTT2 (shown in the last
two tables in Fig. 7(b)), we can see that the expression is not reorderable.

The reason driving the two query plans of an expression S��→cDHT ��
sDTT

to have different results is: when we perform the right outer join as the last
operation, we can always preserve the tuples in S in the final result; but when we
perform the structural join as the last operation, it is not guaranteed to preserve
any information (some inverted list contains empty entries for structural join).



22 H. Wu et al.

S
name
(7:8,5)
(7:8,5)

interest
(11:12,5)
(13:14,5)

… … 

(a) Intermediate set

DHT2 DTT2
s

nameconference

(6:7,4)
(6:7,4)

topic
(11:12,5)
(13:14,5)

(DHT2 DTT2)s
interest=topic

namestudent

(7:8,5)
… 

nameconference

null

… 

S

… … 

namestudent

(7:8,5)
… 

topic
null

… 

namestudent nameconference

DHT2interest=topicS DHT2) DTT2
s

interest=topic(S

(empty set)

(b) Join results from different expressions

Fig. 7. Unreorderable expression example

To make expressions reorderable in this case, we introduce an extended twig
pattern matching operator, ��sA:

DHT ��
s
ADTT=(DHT ��

sDTT )
⋃

((πA(DHT ) −
πA(DHT ��

sDTT )) × {null[DHT ]+[DTT ]−A})

where [R] is the schema of R, A is a set of properties, πA(S) is a projection on S
based on A, and nullS is a tuple with schema of S and all entries are null values.
It is easy to check that DHT ��

s
ADTT preserves all values in A.

Example 6. Consider the two lower resulting tables in Fig. 7(b). The expres-
sion S��→S.interest=T2.topicDHT2 returns a set of intermediate results, Ri, con-
taining the tuple ((7:8,5), null). If we perform Ri ��s[S]DTT2 , we will get a
set of results containing ((7:8,5), null), which is the same as the results from
S��→S.interest=T2.topic (DHT2��

sDTT2) in the second table in Fig. 7(b).

Proposition 3. The following reordering holds:

S��→c (DHT ��
sDTT ) = (S��→cDHT )��

s
[S]DTT .

Proof. [Sketch] S��→c (DHT ��
sDTT ) preserves all tuples in S, and binds each

matching result of T to the corresponding tuple in S (if any). When we perform
the right outer join first, as in the second expression, S��→cDHT results all
tuples in S, plus possible DHT values. Since ��s[S] preserves S tuples after pat-
tern matching, the final results also contain all tuples in S, and attach matched
patterns to corresponding S tuples.

Proposition 4. The following reordering holds:

S��↔c (DHT ��
sDTT ) = (S��↔cDHT )��

s
[S]DTT .

The proof is similar to the proof of Proposition 3 and thus omitted. With the
help of the new pattern matching operator ��sA, expressions with both outer
join and structural join are reorderable, for good query plan selection.

5 Experiments

In our experiment, we used an 110MB XMark [1] data set and selected seven
meaningful complex queries (queries involving multiple twig patterns), in which



A Hybrid Approach for General XML Query Processing 23

the first four queries contain two twig patterns in each and the last three contains
three twig patterns in each3. The experiments were implemented with Java, and
performed on a dual-core 2.33GHz processor with 3.5G RAM.

5.1 Effectiveness of Join Order Selection

In this part, based on our cost model we compare the good plan (with lowest
estimated cost) and a median plan (with median estimated cost) on estimated
cost and real cost. The worst estimated cost of each query is always from the
plan that performs value-based join before pattern matching, and the cost is
very expensive. Thus we do not compare with the worst plan. Similar to any
relational optimizer, the purpose of our query plan selection is to avoid bad
plans, rather than finding the best plan to perform a query, which can be hardly
guaranteed. The results are shown in Fig. 8. Fig. 8(a) shows the comparison of
estimated cost between the selected plan and the median plan for each query,
while Fig. 8(b) shows the real costs. From the figures, we can see that our query
plan selection mechanism can find a relatively good query processing plan based
on the estimated cost for all queries.

query
1 open_auction[id="open_auction599"]/itemref/item->item/name
2 item[id="item4407"]/incategory/category->category/name
3 bidder[date="08/17/2000"][time="20:44:05"]/personref/person->person
4 person[name="Muneo Ponthieu"][//city="Texarkana"]//watch/open_auc
5 closed_auction[itemref/item="item1"]/buyer/person (J) person[id][watch
6 closed_auction[itemref/item]/buyer/person->person[id]/interest/catego
7 open_auction[itemref/item="item0"]/seller/person->person[id]//watch->

0 
1000 
2000 
3000 
4000 
5000 
6000 
7000 

Q1 Q2 Q3 Q4 Q5 Q6 Q7 

Es
tim

at
ed

 co
st

 

Queries 
Good Plan Median Plan 

(a) Estimated cost

query
1 open_auction[id="open_auction599"]/itemref/item->item/name
2 item[id="item4407"]/incategory/category->category/name
3 bidder[date="08/17/2000"][time="20:44:05"]/personref/person->person
4 person[name="Muneo Ponthieu"][//city="Texarkana"]//watch/open_auc
5 closed_auction[itemref/item="item1"]/buyer/person (J) person[id][watch
6 closed_auction[itemref/item]/buyer/person->person[id]/interest/catego
7 open_auction[itemref/item="item0"]/seller/person->person[id]//watch->

0 

1000 

2000 

3000 

4000 

5000 

6000 

Q1 Q2 Q3 Q4 Q5 Q6 Q7 

Re
al

 co
st

 (m
s)

 

Queries 
Good Plan Median Plan 

(b) Real running time

Fig. 8. Query optimization test

5.2 Comparison with Other Approaches

In this part, we compare our hybrid approach with relational approach and
structural join approach. We do not compare with commercial XQuery proces-
sors because most of them build many extra indexes to speed up query pro-
cessing during document loading. Thus, we simply compare with the approaches
appearing in literatures. For the relational approach, we use the schema-aware
relational approach (SAR for short) which is first proposed in [16] and refined
in [10]. It is generally more efficient than other schemaless approaches [10]. We
also compare with a structural join approach. We take the TwigStack [4] al-
gorithm for the implementation in our hybrid approach (Hybrid for short) and
compared structural join approach (SJ for short). Other improved algorithms

3 Due to the space limitation, we do not present the query details in the paper. The
meaning, XQuery expression and LTP representation of each query can be found in
http://www.comp.nus.edu.sg/~tang1987/queries

http://www.comp.nus.edu.sg/~tang1987/queries


24 H. Wu et al.

query good plan est.
1 open_auction[id="open_auction599"]/itemref/item->item/name
2 item[id="item4407"]/incategory/category->category/name 1
3 bidder[date="08/17/2000"][time="20:44:05"]/personref/person->person/add 1
4 person[name="Muneo Ponthieu"][//city="Texarkana"]//watch/open_auction 1
5 closed_auction[itemref/item="item1"]/buyer/person (J) person[id][watch]/na 1
6 closed_auction[itemref/item]/buyer/person->person[id]/interest/category->c 1
7 open_auction[itemref/item="item0"]/seller/person->person[id]//watch->ope 1

1 

10 

100 

1000 

10000 

100000 

Q1 Q2 Q3 Q4 Q5 Q6 Q7 
Ti

m
e 

(m
s)

 

Queries 
SAR SJ Hybrid 

Fig. 9. Different approaches comparison

are also adoptable for both SJ and Hybrid, but taking TwigStack is enough to
reflect the difference between the two approaches. In SJ, for each query all twig
patterns are matched first, and then results are joined based on values. This is
the only way to extend SJ for LTP queries.

The result is shown in Fig. 9. Note that the Y-axis is in logscale. SAR is the
worst approach, because too many table joins seriously affect the performance.
Hybrid is the most efficient approach for all queries. This proves that the idea
of integrating relational tables and inverted lists in SAR and SJ is promising.

6 Conclusion

In this paper, we propose a hybrid approach which uses both relational tables
and inverted lists to process general XML queries with multiple twig patterns.
We highlight that our approach can bridge the gap between label-based struc-
tural join and value-based join, which is a bottleneck in many other approaches.
We design algorithms to process XML queries with consecutive structural joins
and value-based joins. Furthermore, we theoretically extend the approach in re-
lational optimizers to optimize general XML queries. Specially, we discuss how
to reorder a query expression with pattern matching and outer value-based join.
We conduct experiments to validate our query optimization and the performance
advantage of our approach over pure relational approach and structural join
approach.

References

1. http://www.xml-benchmark.org/

2. Al-Khalifa, S., Jagadish, H.V., Koudas, N., Patel, J.M., Srivastava, D., Wu, Y.:
Structural joins: A primitive for efficient XML query pattern matching. In: ICDE,
pp. 141–154 (2002)

3. Beyer, K.S., Cochrane, R., Josifovski, V., Kleewein, J., Lapis, G., Lohman, G.M.,
Lyle, R., Ozcan, F., Pirahesh, H., Seemann, N., Truong, T.C., Van der Linden,
B., Vickery, B., Zhang, C.: System RX: One part relational, one part XML. In:
SIGMOD, pp. 347–358 (2005)

4. Bruno, N., Koudas, N., Srivastava, D.: Holistic twig joins: optimal XML pattern
matching. In: SIGMOD, pp. 310–321 (2002)

5. Chen, L., Gupta, A., Kurul, M.E.: Stack-based algorithms for pattern matching on
DAGs. In: VLDB, pp. 493–504 (2005)

http://www.xml-benchmark.org/


A Hybrid Approach for General XML Query Processing 25

6. Chen, S., Li, H.-G., Tatemura, J., Hsiung, W.-P., Agrawal, D., Candan, K.S.:
Twig2stack: Bottom-up processing of generalized-tree-pattern queries over XML
documents. In: VLDB, pp. 283–294 (2006)

7. Chen, T., Lu, J., Ling, T.W.: On boosting holism in XML twig pattern matching
using structural indexing techniques. In: SIGMOD, pp. 455–466 (2005)

8. Fiebig, T., Helmer, S., Kanne, C., Moerkotte, G., Neumann, J., Schiele, R., West-
mann, T.: Anatomy of a native XML base management system. VLDB J. 11(4),
292–314 (2002)

9. Galindo-Legaria, C., Rosenthal, A.: Outerjoin simplification and reordering for
query optimization. ACM Trans. Database Syst. 22(1), 43–74 (1997)

10. Gou, G., Chirkova, R.: Efficiently querying large XML data repositories: a survey.
IEEE Trans. Knowl. Data Eng. 19(10), 1381–1403 (2007)

11. Lu, J., Chen, T., Ling, T.W.: Efficient processing of XML twig patterns with parent
child edges: a look-ahead approach. In: CIKM, pp. 533–542 (2004)

12. Lu, J., Ling, T.W., Chan, C.Y., Chen, T.: From region encoding to extended dewey:
On efficient processing of XML twig pattern matching. In: VLDB, pp. 193–204
(2005)

13. Rao, J., Pirahesh, H., Zuzarte, C.: Canonical abstraction for outerjoin optimization.
In: SIGMOD, pp. 671–682 (2004)

14. Rys, M.: XML and relational database management systems: inside Microsoft SQL
Server 2005. In: SIGMOD, pp. 958–962 (2005)

15. Boncz, P.A., Grust, T., van Keulen, M., Manegold, S., Rittinger, J., Teubner, J.:
MonetDB/XQuery: a fast XQuery processor powered by a relational engine. In:
SIGMOD, pp. 479–490 (2006)

16. Shanmugasundaram, J., Tufte, K., Zhang, C., He, G., DeWitt, D.J., Naughton,
J.F.: Relational databases for querying XML documents: Limitations and oppor-
tunities. In: VLDB, pp. 302–314 (1999)

17. Wang, H., Li, J., Luo, J., Gao, H.: Hash-based subgraph query processing method
for graph structured XML documents. In: VLDB, pp. 478–489 (2008)

18. Wu, H., Ling, T.-W., Chen, B.: VERT: A Semantic Approach for Content Search
and Content Extraction in XML Query Processing. In: Parent, C., Schewe, K.-D.,
Storey, V.C., Thalheim, B. (eds.) ER 2007. LNCS, vol. 4801, pp. 534–549. Springer,
Heidelberg (2007)

19. Wu, H., Ling, T.W., Chen, B., Xu, L.: TwigTable: ssing semantics in XML twig
pattern query processing. JoDS 15, 102–129 (2011)

20. Wu, H., Ling, T.W., Dobbie, G., Bao, Z., Xu, L.: Reducing Graph Matching to
Tree Matching for XML Queries with ID References. In: Bringas, P.G., Hameurlain,
A., Quirchmayr, G. (eds.) DEXA 2010. LNCS, vol. 6262, pp. 391–406. Springer,
Heidelberg (2010)

21. Wu, Y., Patel, J.M., Jagadish, H.V.: Estimating Answer Sizes for XML Queries.
In: Jensen, C.S., Jeffery, K., Pokorný, J., Šaltenis, S., Bertino, E., Böhm, K., Jarke,
M. (eds.) EDBT 2002. LNCS, vol. 2287, pp. 590–608. Springer, Heidelberg (2002)

22. Wu, Y., Patel, J.M., Jagadish, H.V.: Structural join order selection for XML query
optimization. In: ICDE, pp. 443–454 (2003)

23. Zhang, C., Naughton, J.F., DeWitt, D.J., Luo, Q., Lohman, G.M.: On supporting
containment queries in relational database management systems. In: SIGMOD
Conference, pp. 425–436 (2001)

24. Zhang, N., Agarwal, N., Chandrasekar, S., Idicula, S., Medi, V., Petride, S.,
Sthanikam, B.: Binary XML storage and query processing in Oracle 11g.
PVLDB 2(2), 1354–1365 (2009)



SCOOTER: A Compact and Scalable Dynamic

Labeling Scheme for XML Updates

Martin F. O’Connor and Mark Roantree

Interoperable Systems Group, School of Computing,
Dublin City University, Dublin 9, Ireland
{moconnor,mark}@computing.dcu.ie

Abstract. Although dynamic labeling schemes for XML have been the
focus of recent research activity, there are significant challenges still to be
overcome. In particular, though there are labeling schemes that ensure
a compact label representation when creating an XML document, when
the document is subject to repeated and arbitrary deletions and inser-
tions, the labels grow rapidly and consequently have a significant impact
on query and update performance. We review the outstanding issues to-
date and in this paper we propose SCOOTER - a new dynamic labeling
scheme for XML. The new labeling scheme can completely avoid rela-
beling existing labels. In particular, SCOOTER can handle frequently
skewed insertions gracefully. Theoretical analysis and experimental re-
sults confirm the scalability, compact representation, efficient growth
rate and performance of SCOOTER in comparison to existing dynamic
labeling schemes.

1 Introduction

At present, most modern database providers support the storage and querying of
XML documents. They also support the updating of XML data at the document
level, but provide limited and inefficient support for the more fine-grained (node-
based) updates within XML documents. The XML technology stack models an
XML document as a tree and the functionality provided by a tree labeling scheme
is key in the provision of an efficient and effective update solution. In particular,
throughout the lifecycle of an XML document there may be an arbitrary number
of node insertions and deletions. In our previous work, we proposed a labeling
scheme that fully supported the reuse of deleted node labels under arbitrary
insertions. In this paper, we focus on the more pressing problem that affects
almost all dynamic labeling schemes to-date, the linear growth rate of the node
label size under arbitrary insertions, whether they are single insertions, bulk
insertions, or frequently skewed insertions.

1.1 Motivation

The length of a node label is an important criterion in the quality of any dy-
namic labeling scheme [2] and the larger the label size, the more significant is

S.W. Liddle et al. (Eds.): DEXA 2012, Part I, LNCS 7446, pp. 26–40, 2012.
c© Springer-Verlag Berlin Heidelberg 2012



SCOOTER: A Compact and Scalable Dynamic Labeling Scheme 27

the negative impact on query and update performance [6]. In the day-to-day
management of databases and document repositories, it is a common experi-
ence that more information is inserted over time than deleted. Indeed in the
context of XML documents and repositories, a common insertion operation is
to append new nodes into an existing document (e.g.: heart rate readings in
a sensor databases, transaction logging in financial databases) or to perform
bulk insertions of nodes at a particular point in a document. These insertion
operations are classified as frequently skewed insertions [20]. Over time, such in-
sertions can quickly lead to large label sizes and consequently impact negatively
on query and update performance. Furthermore, large label sizes lead to larger
storage costs and more expensive IO costs. Finally, large node labels require
higher computational processing costs in order to determine the structural re-
lationships (ancestor-descendant, parent child and sibling-order) between node
labels. Our objectives are to minimize the update cost of inserting new nodes
and while minimizing the label growth rate under any arbitrary combination of
node insertions and deletions.

1.2 Contribution

In this paper, we propose a new dynamic labeling scheme for XML called
SCOOTER. The name encapsulates the core properties - Scalable, Compact, Or-
dered,Orthogonal,TrinaryEncodedReusable dynamic labeling scheme.The prin-
ciple design goal underpinning SCOOTER is to avoid and bypass the congestion
and bottleneck caused by large labels when performing fine-grained node-based
updates of XML documents. SCOOTER is scalable insofar as it can support an
arbitrary number of node label insertions and deletions while completely avoiding
the need to relabel nodes. SCOOTERprovides compact label sizes by constraining
the label size growth rate under various insertions scenarios. Order is maintained
between nodes at all times by way of lexicographical comparison. SCOOTER is
orthogonal to the encoding technique employed to determine structural relation-
ships between node labels. Specifically, SCOOTER can be deployed using a prefix-
based encoding, containment-based encoding or a prime number based encoding.
SCOOTER employs the quaternary bit-encoding presented in [9] and uses the
ternary base to encode node label values. SCOOTER supports the reuse of shorter
deleted node labels when available.

This paper is structured as follows: in §2, we review the state-of-the-art in
dynamic labeling schemes for XML, with a particular focus on scalability and
compactness. In §3, we present our new dynamic labeling scheme SCOOTER
and the properties that underpin it. We describe how node labels are initially
assigned and we analyse the growth rate of the label size. In §4, we present our
insertion algorithms and our novel compact adaptive growth mechanism which
ensures that label sizes grow gracefully and remain compact even in the presence
of frequently skewed node insertions. We provide experimental validation for our
approach in terms of execution time and total label storage costs by comparing
SCOOTER to three dynamic label schemes that provide similar functionality
and present the results in §5. Finally in §6, our conclusions are presented.



28 M.F. O’Connor and M. Roantree

2 Related Research

There are several surveys that provide an overview and analysis of the principle
dynamic labeling schemes for XML proposed to date [15], [4], [16], [12]. In review-
ing the state-of-the-art in dynamic labeling schemes for XML, we will consider
each labeling scheme in its ability to support the following two core proper-
ties: scalability and compactness. By scalable, we mean the labeling scheme can
support an arbitrary number of node insertions and deletions while completely
avoiding the need to relabel nodes. As the volume of data increases and the size
of databases grow from Gigabytes to Terabytes and beyond, the computational
cost of relabeling node labels and rebuilding the corresponding indices becomes
prohibitive. By compact, we mean the labeling scheme can ensure the label size
will have a highly constrained growth rate both at initial document creation and
after subsequent and repeated node insertions and deletions. Indeed almost all
dynamic labeling schemes to-date [14], [9], [2], [3], [8], [7], [13], [1] are compact
only when assigning labels at document creation, but have a linear growth rate
for subsequent node label insertions which quickly lead to large labels.

To the best of our knowledge, there is only one published dynamic labeling
scheme for XML that is scalable, and offers compact labels at the document
initialisation stage, namely the QED labeling scheme [9] (subsequently renamed
CDQS in [10]). The Quaternary encoding technique presented in [9] overcomes
the limitations present in all other binary encoding approaches. A comprehen-
sive review of the various binary encoding approaches for node labels and their
corresponding advantages and limitations is provided in [10]. We now briefly
summarise their findings and supplement them with our own analysis.

All node labels must be stored as binary numbers at implementation, which
are in turn stored as either fixed length or variable length. It should be clear that
all fixed length labels are subject to overflow (and are hence, not scalable) once all
the assigned bits have been consumed by the update process and consequently
require the relabeling of all existing labels. The problem may be temporarily
alleviated by reserving labels for future insertions, as in [11] but this leads to
increased storage costs and only delays the relabeling process. There are three
types of variable encoding: variable length encoding, multi-byte encoding and
bit-string encoding. The V-CDBS labeling scheme [10] employs a variable length
encoding. Variable length encodings require the size of the label to be stored in
addition to the label itself. Thus, when many nodes are inserted into the XML
tree, at some point the original fixed length of bits assigned to store the size
of the label will be too small and overflow, requiring all existing labels to be
relabeled. This problem has been called the overflow problem in [9]. The Ordpath
[14], QRS [1], LSDX [3] and DeweyID [17] labeling schemes all suffer from the
overflow problem. In addition, Ordpath is not compact because it only uses odd
numbers when assigning labels during document initialisation.

UTF-8 [21] is an example of a multi-byte variable encoding. However UTF-8
encoding is not as compact as the Quaternary encoding. Furthermore, UTF-8
can only encode up to 231 labels and thus, cannot scale beyond 232. The vector
order labeling scheme [19] stores labels using a UTF-8 encoding. Cohen et al.



SCOOTER: A Compact and Scalable Dynamic Labeling Scheme 29

[2] and EBSL [13] use bitstrings to represent node labels. Although they do not
suffer from the overflow problem they have a linear growth rate in label size
when assigning labels during document initialisation and also when generating
labels during frequently skewed insertions - consequently they are not compact.
The Prime number labeling scheme [18] also avoids node relabeling by using
simultaneous congruence (SC) values to determine node order. However, order-
sensitive updates are only possible by recalculating the SC values based on the
new ordering of nodes and in [9], they determined the recalculation costs to be
highly prohibitive.

Lastly, we consider the problem of frequently skewed insertions. To the best
of our knowledge, there are only two published dynamic labeling schemes that
directly address this problem. The first is the vector order labeling scheme [19]
which as mentioned previously uses a UTF-8 encoding for node labels which
does not scale. We will detail in our experiments section that for a relatively
small number of frequently skewed insertions that are repeated a number of
times, the vector order labels can quickly grow beyond the valid range permitted
by UTF-8 encoding. The second labeling scheme is Dynamic Dewey Encoding
(DDE) [20] which has the stated goal of supporting both static and dynamic
XML documents. However, although the authors indicate their desire to avoid a
dynamic binary encoding representation for their labels due to the overhead of
encoding and decoding labels, they do not state the binary representation they
employ to store or represent labels and thus, we are not in a position to evaluate
their work.

In summary, there does not currently exist a dynamic labeling scheme for
XML that is scalable, can completely avoid relabeling node labels and is com-
pact at both document initialisation and during arbitrary node insertions and
deletions, including frequently skewed insertions.

3 The SCOOTER Labeling Scheme

In this section, we introduce our new dynamic labeling scheme for XML called
SCOOTER, describe how labels are initially assigned at document creation and
then, highlight the unique characteristics of our labeling scheme.

SCOOTER adopts the quaternary encoding presented in [9] so we now briefly
introduce quaternary codes. A Quaternary code consists of four numbers, “0”,
“1”, “2”, “3”, and each number is stored with two bits, i.e.: “00”, “01”, “10”,
“11”. A SCOOTER code is a quaternary code such that the number “0”, is re-
served as a separator and only “1”, “2”, “3” are used in the SCOOTER code it-
self. The SCOOTER labeling scheme inherits many of the properties of the QED
labeling scheme, such as being orthogonal to the structural encoding technique
employed to represent node order and to determine relationships between nodes.
Specifically, node order is based on lexicographical order rather than numerical
order and SCOOTER may be deployed as a prefix-based or containment-based
labeling scheme. The containment based labeling schemes exploit the proper-
ties of tree traversal to maintain document order and to determine the various



30 M.F. O’Connor and M. Roantree

input : k - the kth node to be labelled.
input : childCount
input : base - the base to encode in.
output: label - the label of node k.

1 digits = �logbase (childCount + 1)�
2 divisor = basedigits

3 quotient = k
4 label = null

5 while (i=1; i < digits; i++) do
6 divisor ←− divisor / base
7 code ←− 	 quotient / divisor 
 + 1
8 label ←− label ⊕ code
9 remainder ←− quotient % divisor

10 if remainder == 0 then
11 return label
12 else
13 quotient ←− remainder
14 end

15 end
16 return label ←− label ⊕ (quotient + 1)

(a) Function AssignNodeK.

Total Size 104 100

Decimal SCOOTER SCOOTER QED
2 digits 3 digits

1 12 112 112
2 13 113 12
3 2 12 122
4 22 122 123
5 23 123 13
6 3 13 132
7 32 132 2
8 33 133 212
9 2 22

10 212 222
11 213 223
12 22 23
13 222 232
14 223 3
15 23 312
16 232 32
17 233 322
18 3 323
19 312 33
20 313 332

Total Size 104 100

(b) SCOOTER & QED labels

Fig. 1

structural relationships between nodes. Two SCOOTER codes are generated
to represent the start and end intervals for each node in a containment-based
scheme. In a prefix-based labeling scheme, the label of a node in the XML tree
consists of the parent’s label concatenated with a delimiter (separator) and a
positional identifier of the node itself. The positional identifier indicates the po-
sition of the node relative to its siblings. In the prefix approach, the SCOOTER
code represents the positional identifier of a node, also referred to as the selflabel.

3.1 Assigning Labels

A SCOOTER code must end in a “2” or a “3” in order to maintain lexico-
graphical order in the presence of dynamic insertions due to reasons outlined
in [10]. For the purpose of presenting our algorithms, we shall assume a prefix-
based labeling scheme in this paper. The QED labeling scheme adopts a recur-
sive divide-and-conquer algorithm to assign initial labels at document creation
[9]. The SCOOTER AssignInitialLabels algorithm presents a novel approach
described in algorithm 1. The SCOOTER codes presented in Figure 1(b) are
examples generated using algorithm 1. The algorithm takes as input a parent
node P (the root node is labeled ‘2’), and childCount - the number of children of
P. When childCount is expressed as an positive integer of the base three, Line 1
computes the minimum number of digits required to represent childCount in the
base three. The minimum number of digits required will determine the maximum
label size generated by our AssignInitialLabels algorithm.



SCOOTER: A Compact and Scalable Dynamic Labeling Scheme 31

Algorithm 1. Assign Initial Labels.
input : P - a parent node
input : childCount - the number of child nodes of P
output: a unique SCOOTER selflabel for each child node.

maxLabelSize = �log3 (childCount + 1)�1
selfLabel[1] = null2

/* Compute the SCOOTER selflabel of the first child. */
while (i=1; i < maxLabelSize; i++) do3

selfLabel[1] ←− selfLabel[1] ⊕ 1 ; // ⊕ means concatenation.4
end5
selfLabel[1] ←− selfLabel[1] ⊕ 26

/* Now compute the SCOOTER selflabels for all remaining children. */
while (i=2; i <= childCount; i++) do7

selfLabel[i] ←− Increment (selfLabel[i - 1], maxLabelSize)8
end9

There are a small number of rules used to determine the assignment of labels
in order to ensure a compact label size and to maintain lexicographical order be-
tween labels. The first 4 of these rules concern the first label while the remaining
2 rules, determine remaining labels.

– The first label must terminate with “2”.
– It must have no other “2” other than the final digit.
– It can never have the digit “3”.
– It will always be the maximum allowable length.
– The second and remaining labels can never end in “1”.
– The second and remaining labels can be of any allowable length.

As previously stated, the first label will always end with a ‘2’ symbol but as it
must be of maximum length, it is preceded by a sequence of ‘1’ symbols. The
sequence of ‘1’ symbols may be zero (empty) if the minimum number of digits
required to represent childCount in the base three is one digit. All subsequent
child labels after the first label are generated by incrementing the child label
immediately preceding it. Figure 1(b) shows the sequence of labels for both 2-
and 3-digit initially assigned labels. The maximum number of labels that may
be assigned with D digits is 3D - 1 labels.

The Increment algorithm (algorithm 2) takes as input a node label and the
maxLabelSize and returns a new node label that is the immediate lexicographical
increment of the input node. The Increment algorithm will never receive a la-
bel longer than maxLabelSize. Furthermore, the Increment algorithm will never
receive a label with a length of maxLabelSize and consisting of all ‘3’ symbols
by virtue of line 1 in algorithm 1. Lastly, although the Increment algorithm will
never receive a node label from the AssignInitialLabels algorithm that ends with
a ‘1’ symbol, we may pass substrings of labels that end with a ‘1’ symbol to the
Increment algorithm when handling dynamic node label insertions and deletions
(discussed in the next section).

SCOOTER’s AssignInitialLabels algorithm has three distinct properties which
make it quite different from the QED labeling scheme.



32 M.F. O’Connor and M. Roantree

Algorithm 2. Increment
input : Nleft - a node label; maxLabelSize - maximum number of symbols allowed in label.
output: Nnew - a new self label such that Nleft ≺ Nnew

Ntemp ←− Nleft1

if Length(Ntemp) == maxLabelSize then2
if Last symbol in Ntemp is ‘1’ then3

Nnew ←− Ntemp with last symbol changed to ‘2’4
else if (Last symbol in Ntemp is ‘2’ then5

Nnew ←− Ntemp with last symbol changed to ‘3’6
else if (Last symbol in Ntemp is ‘3’ then7

while last symbol of Ntemp is ‘3’ do8
Ntemp ←− Ntemp with last symbol removed.9

end10
if Last symbol in Ntemp is ‘1’ then11

Nnew ←− Ntemp with last symbol changed to ‘2’12
else if (Last symbol in Ntemp is ‘2’ then13

Nnew ←− Ntemp with last symbol changed to ‘3’14
end15

end16

else if Length(Ntemp) < maxLabelSize then17
while (i = Length(Ntemp) + 1; i < maxLabelSize; i++) do18

Ntemp ←− Ntemp ⊕ 119
end20
Nnew ←− Ntemp ⊕ 221

end22
return Nnew23

1. Firstly, each SCOOTER label can be determined solely based on the label
of the node to the immediate left (and immediate right but we omit the
Decrement algorithm due to lack of space). This is a key property which
we will exploit to enable and maintain compact node labels in the presence
of an arbitrary number of node insertions and deletions. This property also
facilitates the reuse of deleted node labels. In contrast, the QED encoding
algorithm employs the mathematical round function which introduces an
approximation function into the QED assign initial labels process. In order
words, the label value of node n is not and cannot be determined solely from
the label values of node n+1 or node n-1. The QED encoding algorithm can
guarantee lexicographical order but cannot guarantee the accurate calcula-
tion of the size of a node label n or indeed the label n itself, based solely on
the node labels immediately adjacent to node n. It follows that when node
n is deleted, the QED labeling scheme cannot guarantee the accurate cal-
culation of the deleted node label n (and its size), and consequently cannot
guarantee that the deleted node label n will be reused.

2. One significant limitation arising from the sequential determination of ini-
tially assigned node labels is that to generate a label for node n, we must first
generate all n-1 node labels. This limitation can be a significant bottleneck
when processing very large XML files. Hence, the second distinct property:
the SCOOTER initially assigned labels may also be computed independent
of each other as illustrated in function AssignNodeK in Figure 1(a). Specif-
ically, given n child nodes to be labeled, the function AssignNodeK can de-
termine an arbitrary k th child node label without having to compute any
other child node label. When parsing very large XML documents, the ability
to compute node labels independent of one another opens up the possibility



SCOOTER: A Compact and Scalable Dynamic Labeling Scheme 33

of parallel processing in a multi-threaded and multi-core environment and
may offer sizeable gains in computation time.

3. The third distinct property: the SCOOTER label encoding mechanism is in-
dependent of the underlying numeric base, as illustrated by function Assign-

NodeK in Figure 1(a). Our SCOOTER dynamic labeling scheme and compact
adaptive growth mechanism may be applied and implemented using any nu-
meric base greater than or equal to two. In mathematical numeral systems,
the base or radix is the number of unique symbols that a positional numeral
system uses to represent numbers. For example, the decimal system uses the
base 10, because it uses the 10 symbols from 0 through 9. The highest symbol
usually has the value of one less than the base of that numeric system. In [5],
the authors demonstrate the most economical radix for a numbering system
is e, the base of the natural logarithms, with a value of approximately 2.718.
Economy is measured as the product of the radix and the number of digits
needed to express a range of given values. Consequently the economy is also
a measure of how compact is the numerical representation of a given radix.
In [5], the authors also demonstrate that the integer 3, being the closest
integer to e, is almost always the most economical integer radix or base. For
this reason, in this paper, we have chosen to use the numeric base 3 and
consequently quaternary codes to represent SCOOTER labels.

4 Compact Adaptive Growth Mechanism

In this section, we present our novel compact adaptive growth mechanism and
related node label insertion algorithms which ensure a highly constrained label
growth rate irrespective of the quantity of arbitrary and repeated node label
insertions and deletions. We will begin with a simple example to provide an
overview of the conceptual approach followed by a more detailed analysis of the
underlying properties.

Consider an XML tree consisting of a root node R and two child nodes with
selflabels ‘2’ and ‘3’.We insert a sequence of 100 nodes to the right of the rightmost
child node. Table 1 in Figure 2(a) illustrates the first 18 insertions. The first two
(31 − 1) node labels generated consist of a prefix string ‘3’ and a postfix string
that mirrors the labels normally generated for a maxLabelSize of 1 digit (i.e.: ‘2’
and ‘3’). For the next 8 (32 − 1) insertions, from the third to the tenth insertion
inclusive, the newly generated labels consist of a prefix string ‘33’ and a postfix
string that mirrors the labels generated for a maxLabelSize of 2 digits (e.g.: ‘12’,
‘13’, ‘2’ and so on). For the next 26 (33 − 1) insertions, from the 11th to the 36th

insertion inclusive, labels consist of a prefix string ‘3333’ and a postfix string that
mirrors the labels generated for a maxLabelSize of 3 digits (e.g.: ‘112’, ‘113’, ‘12’
and so on). This process is repeated as many times as required.

We now provide an analysis of the underlying properties. Conceptually, we
consider a label as comprising of two components: a prefix and a postfix. We
define the smallest permissible prefix length to be 1 symbol. When the prefix
has length 1, we define the maximum postfix length permissible to be 1 also



34 M.F. O’Connor and M. Roantree

Insert
after
rightmost
node

SCOOTER
Label

2
3

1 32
2 33
3 3312
4 3313
5 332
6 3322
7 3323
8 333
9 3332
10 3333
11 3333112
12 3333113
13 333312
14 3333122
15 3333123
16 333313
17 3333132
18 3333133

(a) Table 1.

Range
Start

Range
End

Node Start Node End Prefix
Length

Postfix
Length

Maximum
SCOOTER
SelfLabel
Length

SCOOTER
SelfLabel
Total bits

30 31 – 1 1 2 1 1 2 4
31 32 – 1 3 10 2 2 4 8
32 33 – 1 11 36 4 3 7 14
33 34 – 1 37 116 7 4 11 22
34 35 – 1 117 358 11 5 16 32
35 36 – 1 359 1,086 16 6 22 44
36 37 – 1 1,087 3,272 22 7 29 58
37 38 – 1 3,273 9,832 29 8 37 74
38 39 – 1 9,833 29,514 37 9 46 92
39 310 – 1 29,515 88,562 46 10 56 112
310 311 – 1 88,563 265,708 56 11 67 134
311 312 – 1 265,709 797,148 67 12 79 158
312 313 – 1 797,149 2,391,470 79 13 92 184
313 314 – 1 2,391,471 7,174,438 92 14 106 212
314 315 – 1 7,174,439 21,523,344 106 15 121 242
315 316 – 1 21,523,345 64,570,064 121 16 137 274
316 317 – 1 64,570,065 193,710,226 137 17 154 308
317 318 – 1 193,710,227 581,130,714 154 18 172 344
318 319 – 1 581,130,715 1,743,392,180 172 19 191 382
319 320 – 1 1,743,392,181 5,230,176,580 191 20 211 422

(b) Table 2. Label Insertion - Compact Adaptive Growth Rate

Fig. 2

(please refer to Table 2 in Figure 2(b)). The maximum label length will always
equal the sum of the prefix length and the maximum postfix length.

– When inserting a new rightmost node label, we extend the length of the
prefix if and only if the current rightmost label consists of all ‘3’ symbols
and the length of the current rightmost node label equals the sum of the
current prefix length and maximum postfix length. For example, given the
current rightmost node label ‘33’ with a prefix length of 1 and a maximum
postfix length of 1; in order to insert a new node after node ‘33’, we must
extend the prefix and postfix lengths.

– The rule governing the adaptive growth rate of the prefix and postfix lengths
is simple: the new prefix length is assigned the value of the previous max-
imum label length; the new maximum postfix length is assigned the value
of the previous maximum postfix length plus 1. This rule is codified in lines
6–13 in algorithm 3.

All bit-string dynamic labeling schemes (including QED) have a label growth
rate of one bit per node insertion. Therefore, after one thousand insertions and
one million insertions, the largest selflabel sizes are 1,000 and 1,000,000 bits
respectively. In contrast, after one thousand insertions and one million insertions,
the largest SCOOTER selflabels are 44 bits and 184 bits respectively. Thus,
SCOOTER labels may be several orders of magnitude smaller than the labels
of all existing bit-string labeling schemes when processing frequently skewed
insertions. Furthermore, in contrast to all existing dynamic labeling schemes,
SCOOTER generates compact labels without requiring advance knowledge of



SCOOTER: A Compact and Scalable Dynamic Labeling Scheme 35

Algorithm 3. Insert New Node After Rightmost Node.
input : left self label Nleft, Nleft is not empty.
output: New self label Nnew such that Nleft ≺ Nnew

if first symbol in Nleft is ‘1’ then1
Nnew ←− ‘2’2

else if first symbol in Nleft is ‘2’ then3
Nnew ←− ‘3’4

else if first symbol in Nleft is ‘3’ then5
numConsecThrees ←− the number of consecutive ‘3’ symbols at start of Nleft6
prefixLength ←− postfixLength ←− 17
labelLength ←− prefixLength + postfixLength8
/* Compute the prefixLength and postfixLength based on numConsecThrees. */
while labelLength <= numConsecThrees do9

prefixLength ←− prefixLength + postfixLength10
postfixLength ←− postfixLength + 111
labelLength ←− prefixLength + postfixLength12

end13
postfix ←− substring(Nleft, 1 + prefixLength, length(Nleft))14
if postfix is not empty then15

/* An arbitrary number of nodes may have been deleted, thus the label may be
longer than the postfixLength. If it is longer, trim it. */

postfix ←− substring(postfix, 1, postfixLength)16
if last symbol in postfix is ‘1’ then17

postfix ←− postfix with last symbol changed to ‘2’18
else19

postfix ←− Increment (postfix, postfixLength)20
end21

else if postfix is empty then22
while i=1; i < postfixLength; i++ do23

postfix ←− postfix ⊕ 124
end25
postfix ←− postfix ⊕ 226

end27
prefix = null28
while i=1; i <= prefixLength; i++ do29

prefix ←− prefix ⊕ 330
end31
Nnew ←− prefix ⊕ postfix32

end33
return Nnew34

the number of nodes to be inserted. The compact adaptive growth mechanism is
made possible by virtue of the deterministic property of our AssignInitialLabels
algorithm. The compact adaptive growth mechanism may also be applied when
inserting new nodes before the leftmost node, however in this case we count the
number of consecutive ‘1’ symbols to determine the length of the prefix.

4.1 Insertion between Two Consecutive Non-empty Node Labels

The most difficult insertion scenario is between two non-empty consecutive node
labels. Between any two consecutive nodes, there may have been an arbitrary
number of node deletions. The ability to determine whether deletions have oc-
curred must be determined from the information encoded in the label alone. In
addition, there are 4 distinct insertion scenarios permitted when inserting a new
node between two consecutive node labels:



36 M.F. O’Connor and M. Roantree

Algorithm 4. InsertBetweenTwoNodes LessThan.
input : left self label Nleft; right self label Nright; both labels not empty.
output: New self label Nnew such that Nleft ≺ Nnew ≺ Nright.

if length(Nleft) < length(Nright) then1
if Nleft is a prefix of Nright then2

if symbol at Nright[length(Nleft)+1] is a ‘3’ then3
Nnew ←− Nleft ⊕ 24

else if symbol at Nright[length(Nleft)+1] is a ‘2’ then5
Nnew ←− Nleft ⊕ 126

else7
Ntemp ←− Nleft8
Let P ←− length(Nleft) + 19
while symbol at position P in Nright is ‘1’ do10

Ntemp ←− Ntemp ⊕ 111
P ←− P + 112

end13
if symbol at Nright[P] is a ‘3’ then14

Nnew ←− Ntemp ⊕ 215
else16

Nnew ←− Ntemp ⊕ 1217
end18

end19

else if Nleft is not a prefix of Nright then20
Let P ←− first position of difference between Nleft and Nright21
if P == 1 then22

Nnew ←− Increment (first symbol in Nleft, 1)23
else if P > 1 then24

Ntemp ←− substring(Nleft, 1, P - 1)25
Nnew ←− Ntemp ⊕ Increment (symbol at position P in Nleft, 1)26

end27

end28

end29
return Nnew30

1. The left label is a prefix string of the right label;
2. The left label is shorter than the right label but not a prefix of the right

label;
3. The left label is the same length as the right label; or
4. The left label is longer than the right label

The SCOOTER labeling scheme provides the same highly constrained adaptive
growth rate when processing node label insertions in all four scenarios. In the
remainder of this section, we analyse the four algorithms and highlight some
observations.

In algorithm 4, the InsertBetweenTwoNodes LessThan algorithmprocesses the
first two insertion scenarios. The new label returned will always be shorter than
both input labels if and only if a shorter deleted node label is available for reuse.
By available, we mean a shorter unique and valid SCOOTER code that is lexico-
graphically ordered between the left and right node labels. If no shorter label is
available (such as when the left label is a prefix of the right label), the algorithm
will still return the smallest valid label lexicographically ordered between the two
input labels. When the two labels are the same size, if the position of difference
between the two input labels is the last symbol in both labels, then both input la-
bels must be lexicographical neighbours with no deleted node label available be-
tween them. Consequently a new label is generated by concatenating a ‘2’ symbol



SCOOTER: A Compact and Scalable Dynamic Labeling Scheme 37

Algorithm 5. InsertBetweenTwoNodes GreaterThan.
input : left self label Nleft; right self label Nright; both labels not empty.
output: New self label Nnew such that Nleft ≺ Nnew ≺ Nright.

if length(Nleft) > length(Nright) then1
Let P←− first position of difference between Nleft and Nright2
if P < length(Nright) then3

/* If the position of difference is not the last symbol of Nright */
Ntemp ←− substring(Nleft, 1, P)4
Nnew ←− InsertBetweenTwoNodes LessThan (Ntemp, Nright)5

else if P == length(Nright) then6
Ntemp ←− substring(Nleft, 1, P - 1)7
if (symbol at position P in Nleft is ‘1’) and (symbol at position P in Nright is ‘3’ )8
then

Nnew ←− Ntemp ⊕ 29
else10

Affix ←− substring(Nleft, 1, P)11
Ntemp ←− substring(Nleft, P + 1, length(Nleft))12
numConsecThrees←− the number of consecutive ‘3’ symbols at start of Ntemp13
if numConsecThrees == 0 then14

postfix←− Increment (first symbol of Ntemp, 1)15
Nnew ←− Affix ⊕ postfix16

else if numConsecThrees > 0 then17
/* Replace the PLACEHOLDER with lines 7 through 31 inclusive from

Algorithm 3, substituting all references to Nleft with Ntemp. */
PLACEHOLDER18
Nnew ←− Affix ⊕ prefix ⊕ postfix19

end20

end21

end22

end23
return Nnew24

to the end of the left input label. Otherwise, the left input label is trimmed and
algorithm InsertBetweenTwoNodes LessThan is invokedwhichwill reuse a shorter
deleted node label lexicographically ordered between the two input labels. Finally,
in algorithm5, the InsertBetweenTwoNodes GreaterThanalgorithmprocesses the
fourth insertion scenario: the left input label is longer than the right input label.
Algorithm 5 will reclaim and reuse the shortest deleted node label, if one exists.
Otherwise, it will ensure that all newly generated labels will be assigned according
to our compact adaptive growth rate insertion mechanism.

1

10

100

1000

10000

100000

1000000

10000000

10000000

St
or

ag
e

Co
st

s(
bi

ts
)

10^2
nodes

10^3
nodes

10^4
nodes

10^5
nodes

10^6
nodes

SCOOTER 1104 15004 190008 2300010 27000014

QED 968 13828 180336 2222876 26405704

Vector 1600 16000 215504 2936880 36441376

VCDBS 880 12987 163631 2068946 23951445

1

(a) AssignInitialLabels Storage Costs.

1

10

100

1000

10000

100000

1000000

Ex
ec

ut
io

n
Ti

m
e

(m
s)

10^3
nodes

10^4
nodes

10^5
nodes

10^6
nodes

10^7
nodes

SCOOTER 2 21 235 2530 26677

QED 12 132 1372 14440 141589

Vector 4 38 375 3760 38060

VCDBS 6 63 653 6635 69033

(b) AssignInitialLabels Execution Time.

Fig. 3



38 M.F. O’Connor and M. Roantree

5 Experiments

In this section, we evaluate and compare our SCOOTER labeling scheme with
three other dynamic labeling schemes, namely QED [9], Vector [19] and V-CDBS
[10]. The three labeling schemes were chosen because they each offer those prop-
erties we have encapsulated in SCOOTER - scalability, compactness and the
ability to process frequently skewed insertions in an efficient manner. QED is
the only dynamic labeling scheme that offers a compact labeling encoding at
document initialisation, while overcoming the overflow problem and completely
avoiding node relabeling. The SCOOTER labeling scheme inherits these proper-
ties by virtue of the quaternary encoding. The Vector labeling scheme is the only
dynamic labeling scheme that has as one of its design goals, the ability to process
frequently skewed insertions efficiently. SCOOTER has also been designed with
this specific property in mind. Lastly, V-CDBS is the most compact dynamic
labeling scheme presented to-date, as illustrated in [10]. Although V-CDBS is
subject to the overflow problem and thus, cannot avoid relabeling nodes, we
want to compare SCOOTER against the most compact dynamic encoding avail-
able. All the schemes were implemented in Python and all experiments were
carried out on a 2.66Ghz Intel(R) Core(TM)2 Duo CPU and 4GB of RAM. The
experiments were performed 10 times and the results averaged.

In Figure 3(a), we illustrate the total label storage cost of 102 through 106

initially assigned node labels. As expected V-CDBS is the most compact, QED
in second place and SCOOTER has marginally larger storage costs than QED.
However, SCOOTER has the most efficient processing time, illustrated in Fig-
ure 3(b), when generating initially assigned labels, due to the efficient Increment
algorithm. Although SCOOTER theoretical scales efficiently under frequently
skewed insertions - a result that was validated by experimental analysis - it was
necessary to evaluate SCOOTER under multiple frequently skewed insertions
and in this process, revealed some interesting results. Figure 4(a) illustrates
large skewed node label insertions performed at a randomly chosen position and
repeated a small number of times. Figure 4(b) illustrates small skewed node

1000
10000

100000
1000000

10000000
10000000

1E+09

Co
st

s(
bi

ts
)

100
insertions
x 10 times

200
insertions
x 20 times

500
insertions
x 50 times

1000
insertions

x 100
times

SCOOTER 49669 242226 2736355 16072693

QED 94358 876376 22766866 217649216

Vector 57240

VCDBS 86235 806358 17496678 232421978

St
or

ag
e

C

(a) Large and Infrequent Skewed Random
Insertions.

100000

1000000

10000000

10000000

1E+09

Co
st

s(
bi

ts
)

10
insertions x
100 times

20
insertions x
200 times

50
insertions x
500 times

100
insertions x
1000 times

SCOOTER 35171 141173 1505118 9037869

QED 33288 152080 2670636 25325716

Vector 45139 172464

VCDBS 27102 137924 2510338 24100698

10000

St
or

ag
e

C

(b) Small and Frequent Skewed Random
Insertions.

Fig. 4



SCOOTER: A Compact and Scalable Dynamic Labeling Scheme 39

label insertions performed at a randomly chosen position and repeated many
times. SCOOTER initially performs best in the former case, because our adap-
tive growth mechanism is designed to give greater savings as the quantity of
insertions increase. As the quantity or frequency of insertions scale, SCOOTER
offers significant storages benefits in all cases. The vector labeling scheme is ab-
sent from some of the results because the label sizes grew beyond the storage
capacity permitted by UTF-8 encoding.

6 Conclusions

Updates for XML databases and caches provide ongoing problems for both aca-
demic and industrial researchers. One of the primary issues is the labeling scheme
that provides uniqueness and retrievability of nodes. In this, there are two major
issues for researchers: the length of the label as it may negatively impact perfor-
mance; and an efficient insertion mechanism to manage updates. In this paper,
we introduced the SCOOTER labeling scheme and algorithms for assigning node
labels and inserting new labels. We developed new algorithms for assigning la-
bels and a novel highly compact adaptive insertion mechanism that compare
favourably to all existing approaches. Our evaluations confirmed these findings
through a series of experiments that examined both a very large number of label
assignments and similarly large insertion operations.

Although SCOOTER offers compact labels at document initialisation, we
are investigating the possibility of an improved AssignInitialLabels algorithm
that generates deterministic labels as compact as the labels initially assigned by
V-CDBS. Secondly, SCOOTER generates and maintains compact labels under
frequently skewed insertions, such as appending a large number of node labels
before or after any arbitrary node. However, when a large number of node labels
are inserted at a fixed point, the label size grows rapidly. We are investigating a
modification to our compact adaptive growth mechanism, such that label sizes
will always have a highly constrained growth rate under any insertion scenario.
Lastly, we are adapting SCOOTER to work in binary (and not use the quater-
nary encoding) and we are investigating a new binary encoding to overcome the
overflow problem that the quaternary encoding set out to address.

References

1. Amagasa, T., Yoshikawa, M., Uemura, S.: QRS: A Robust Numbering Scheme for
XML Documents. In: ICDE, pp. 705–707 (2003)

2. Cohen, E., Kaplan, H., Milo, T.: Labeling Dynamic XML trees. In: PODS, pp.
271–281. ACM, New York (2002)

3. Duong, M., Zhang, Y.: LSDX: A New Labelling Scheme for Dynamically Updating
XML Data. In: ADC, pp. 185–193 (2005)

4. Härder, T., Haustein, M.P., Mathis, C., Wagner, M.: Node Labeling Schemes for
Dynamic XML Documents Reconsidered. Data Knowl. Eng. 60(1), 126–149 (2007)



40 M.F. O’Connor and M. Roantree

5. Hayes, B.: Third Base. American Scientist 89(6), 490–494 (2001)
6. Kay, M.: Ten Reasons Why Saxon XQuery is Fast. IEEE Data Eng. Bull. 31(4),

65–74 (2008)
7. Kobayashi, K., Liang, W., Kobayashi, D., Watanabe, A., Yokota, H.: VLEI code:

An Efficient Labeling Method for Handling XML Documents in an RDB. In: ICDE,
pp. 386–387 (2005)

8. Li, C., Ling, T.-W.: An Improved Prefix Labeling Scheme: A Binary String Ap-
proach for Dynamic Ordered XML. In: Zhou, L.-Z., Ooi, B.-C., Meng, X. (eds.)
DASFAA 2005. LNCS, vol. 3453, pp. 125–137. Springer, Heidelberg (2005)

9. Li, C., Ling, T.W.: QED: A Novel Quaternary Encoding to Completely Avoid
Re-labeling in XML Updates. In: CIKM, pp. 501–508 (2005)

10. Li, C., Ling, T.W., Hu, M.: Efficient Updates in Dynamic XML Data: from Binary
String to Quaternary String. VLDB Journal 17(3), 573–601 (2008)

11. Li, Q., Moon, B.: Indexing and Querying XML Data for Regular Path Expressions.
In: VLDB, pp. 361–370 (2001)

12. O’Connor, M.F., Roantree, M.: Desirable Properties for XML Update Mechanisms.
In: EDBT/ICDT Workshops (2010)

13. O’Connor, M.F., Roantree, M.: EBSL: Supporting Deleted Node Label Reuse in
XML. In: Lee, M.L., Yu, J.X., Bellahsène, Z., Unland, R. (eds.) XSym 2010. LNCS,
vol. 6309, pp. 73–87. Springer, Heidelberg (2010)

14. O’Neil, P.E., O’Neil, E.J., Pal, S., Cseri, I., Schaller, G., Westbury, N.: ORDPATHs:
Insert-Friendly XML Node Labels. In: SIGMOD Conference, pp. 903–908 (2004)

15. Sans, V., Laurent, D.: Prefix based Numbering Schemes for XML: Techniques,
Applications and Performances. PVLDB 1(2), 1564–1573 (2008)

16. Su-Cheng, H., Chien-Sing, L.: Node Labeling Schemes in XML Query Optimiza-
tion: A Survey and Trends. IETE Technical Review 26, 88–100 (2009)

17. Tatarinov, I., Viglas, S., Beyer, K.S., Shanmugasundaram, J., Shekita, E.J., Zhang,
C.: Storing and Querying Ordered XML using a Relational Database System. In:
SIGMOD Conference, pp. 204–215 (2002)

18. Wu, X., Lee, M.L., Hsu, W.: A Prime Number Labeling Scheme for Dynamic
Ordered XML Trees. In: ICDE, pp. 66–78 (2004)

19. Xu, L., Bao, Z., Ling, T.-W.: A Dynamic Labeling Scheme Using Vectors. In: Wag-
ner, R., Revell, N., Pernul, G. (eds.) DEXA 2007. LNCS, vol. 4653, pp. 130–140.
Springer, Heidelberg (2007)

20. Xu, L., Ling, T.W., Wu, H., Bao, Z.: DDE: From Dewey to a Fully Dynamic XML
Labeling Scheme. In: SIGMOD Conference, pp. 719–730 (2009)

21. Yergeau, F.: UTF-8, A Transformation Format of ISO 10646, Request for Com-
ments (RFC) 3629 edn. (November 2003)



S.W. Liddle et al. (Eds.): DEXA 2012, Part I, LNCS 7446, pp. 41–54, 2012. 
© Springer-Verlag Berlin Heidelberg 2012 

Reuse the Deleted Labels for Vector  
Order-Based Dynamic XML Labeling Schemes 

Canwei Zhuang and Shaorong Feng* 

Department of Computer Science, Xiamen University, 361005 Xiamen, China 
cwzhuang0229@163.com, shaorong@xmu.edu.cn 

Abstract. Documents obeying XML standard are intrinsically ordered and typi-
cally modeled as a tree. Labeling schemes encode both document order and 
structural information so that queries can exploit them without accessing the 
original XML file. When XML data become dynamic, it is important to design 
labeling schemes that can efficiently facilitate updates as well as processing 
XML queries. Recently, vector order-based labeling schemes have been pro-
posed to efficiently process updates in dynamic XML data. However the up-
dates are focused on how to process the labels when a node is inserted into the 
XML; how to process the deleted labels is not considered in the previous re-
searches. In this paper, we propose new algorithms to generate the labels with 
smallest size and therefore reuse all the deleted labels to control the label size 
increasing speed; meanwhile the algorithms can completely avoid the re-
labeling also. Extensive experimental results show that the algorithms proposed 
in this paper can control the label size increasing speed and enhance the query 
performance.  

Keywords: XML, Dynamic labeling schemes, reuse the deleted labels. 

1 Introduction 

XML has become a standard of information exchange and representation on the web. 
To query XML data effectiveness and efficiency, the labeling schemes are widely 
used to determine the relationships such as the ancestor-descendant between any two 
elements. If the XML is static, the current labeling schemes, for examples, contain-
ment scheme [1], Dewey scheme [2] and prime scheme [3]can process different que-
ries efficiently. However, when XML data become dynamic, a large amount of nodes 
need re-labeling, which is costly and becomes a bottleneck for XML-Database per-
formance. Designing dynamic labeling schemes to avoid the re-labeling of existing 
nodes has been recognized as an important research problem. 

Different labeling schemes [4-9] have been proposed to support dynamic XML 
document. One state-of-the-art approach to design dynamic labeling schemes is as-
signing labels based on vector order rather than the numerical order. Vector order can 
be applied to both range-based and prefix-based labeling schemes. The resulting  

                                                           
* Corresponding author. 



42 C. Zhuang and S. Feng 

labeling schemes including V-containment [7], V-Prefix [8], DDE [9] and CDDE [9] 
are not only tailored for static documents, but also can completely avoid re-labeling 
for updates. However, the previous works are focused on how to update the labels 
when nodes are inserted into the XML. How to process the deleted labels are not dis-
cussed previously. We think that the deleted labels should be reused for the benefit of 
reducing the label size and improving the query performance. Thus the objective of 
this paper is to propose algorithms to reused the deleted labels and meanwhile to keep 
the low update cost. We design the algorithm which can find the vector with the smal-
lest size between any two consecutive vectors. It can be applied broadly to different 
vector order-based labeling schemes to control the label size increasing speed in the 
update environment with both insertions and deletions. 

2 Preliminary and Motivation 

In this section, we describe the related labeling schemes and show the limitations of 
vector order-based labeling schemes which motivate this paper. 

2.1 Labeling Tree-Structured Data 

Containment Labeling Scheme. In containment labeling scheme[1], every node is 
assigned three values: start, end and level, where start and end denote an interval and 
level refers to the level of the node in the XML tree. For any two nodes u and v, u is 
an ancestor of v if and only if the interval of v is contained in the interval of u. Addi-
tionally, with using the level of a node, the parent-child relationship can be deter-
mined efficiently. Document order can also be deduced well by the comparison of 
start values.  

Dewey Labeling Scheme[2] assigns each node a Dewey label which is a concate-
nation of its parent's label and its local order. The local order of a node is i if it is the 
ith child of its parent. A Dewey label uniquely identifies a path from the root to an 
element. Thus structural information can be derived from Dewey labels. Fig.1 shows 
examples of containment labeling scheme and Dewey labeling scheme. 

 
(a).containment labeling scheme           (b).Dewey labeling scheme  

Fig. 1. Labeling tree-structured data 

While both containment labeling scheme and Dewey labeling scheme work well 
for static XML documents, an insertion of a node incurs relabeling of large amounts 
of nodes, which is costly and becomes a performance bottleneck. 

4,9,2    

1,10,1 

1.2   
1.1 

1 

2.3.2 

5,6,3 7,8,3 1.2.21.2.1



 Reuse the Deleted Labels for Vector Order -Based Dynamic XML Labeling Schemes 43 

2.2 Vector Order and Updates Processing 

Vector order[7] is proposed to efficiently process XML updates. We review the vector 
order and vector order-based schemes in this section. 

2.2.1   Vector Order and Updates Processing 
Definition 2.1 (Vector Code). A vector code is a two-tuple of the form (x, y) where x 
and y are integers with y≠0. 

Given two vector codes A:(x1, y1) and B:(x2, y2), vector preorder and vector equivalent 
are defined as: 

Definition 2.2 (Vector preorder). A precedes B in vector preorder (denoted as A v 
B) if and only if and only if x1/y1<x2/y2. 

Definition 2.3 (Vector equivalence). A is equivalent to B (denoted as A ≡v B) if and 
only if x1/y1=x2/y2. 

A vector code (x, y) can be interpreted as a fraction x/y, and a fraction x/y can be 
represented as a vector code(x, y). Given the one-to-one correspondence between 
vector and fraction, we will use the two terms interchangeably in the rest of the paper. 

Let A=(x1, y1) and B=(x2, y2) be two vector codes. Addition of A and B and Multip-
lication of a scalar r and a vector A are defined as:  

A + B = (x1 + x2, y1 + y2) 
r × A = (r × x, r × y) 

Let A:(x1, y1) and B:(x2, y2) be two vector codes, the following property can be easily 
deduced: 

Lemma 2.1. Suppose A v B, then A v (A + B)  v B. 

The following theorem guarantees that the vector order-based labeling schemes can 
process updates without relabeling. 

Theorem 2.1. Given two vector codes VL and VR where VL  v VR, it can be always 
find VM which is also a vector code such that VL v VM  v VR. 

VM can be calculated based on Lemma 2.1. 

2.2.2   V-Containment Labeling Scheme 
The ranges in a set of containment labels come from a sequence of integers from 1 to 
2n for an XML tree with n elements. Linear transformation is defined to transform the 
integers to vector codes such that the vector codes preserve the order of the original 
labels. Let Z denote the set of integers and V denote the set of vector codes, Linear 
transformation f : Z → V is defined as: f(i) = (i, 1) for i∈Z. It is an order-preserving 
transformation since, given any i, j∈Z such that i < j, then f(i)  v f(j). 

Appling linear transformation to containment scheme is called V-containment 
scheme[7]. Based on Theorem 2.1, it can be always inserted a new vector code  



44 C. Zhuang and S. Feng 

between two consecutive ones in vector order, and thus V-containment scheme can 
completely avoids re-labeling for updates in XML document. Fig.2 shows an example 
of processing insertion with V-containment labeling scheme. Node “a” is inserted 
between two consecutive element nodes. Its start and end should be between the end 
of its preceding sibling (6,1)and the start of its following siblings (7,1). Thus, the 
start of “a” should be (13, 2), which is equal to (6,1)+(7,1). and end of “a” should be 
(20, 3), which is equal to (13, 2) + (7,1). 

 

Fig. 2. V-containment labeling scheme  

2.2.3   V-Prefix Labeling Scheme 
V-Prefix labeling scheme[8] is the straight forward application of vector order to 
Dewey labeling scheme. It is derived from Dewey labeling scheme by transforming 
every Dewey label into a sequence of vector codes through linear transformation. V-
Prefix label can be seen as a generalized Dewey label where every component is a 
vector code. Similar to V-containment scheme, V-Prefix scheme can process updates 
without re-labeling. Fig.3. shows an example of processing insertion with V-Prefix 
labeling scheme. Node “a” is inserted between two consecutive element nodes. Its 
parent label is the same as its parent’s label whereas its local order should fall be-
tween the local orders of its two siblings. That is, (3,2)=(1,1)+(2,1). 

 

Fig. 3. V-Prefix labeling scheme 

2.2.4   DDE and CDDE 
DDE[9] and CDDE[9] assign labels based on vector order as well. By viewing every 
component of a Dewey label as a vector code, DDE directly transforms the static 
Dewey into a fully dynamic labeling scheme. The initial labeling of DDE labeling 
scheme is the same as Dewey. However, the semantic meanings of DDE and Dewey 
are different. A DDE label x.y1.y2… ym is considered as v1.v2…vm where v1=(y1, x), 
v2=(y2, x),…, vm=(ym, x). That is, the DDE label is interpreted as a sequence of vector 

(1,1).(2,1)   

(1,1) 

(1,1).(11) 

a
(1,1).(2,1).(2,1) 

(1,1).(2,1).(1,1) 
(1,1).(2,1).(3,2) 

(4,1),(9,1),2     

(1,1),(10,1),1 

(2,1),(3,1),2 

a
(7,1),(8,1),3 (5,1),(6,1),3 (13,2) , (20,3) ,3 



 Reuse the Deleted Labels for Vector Order -Based Dynamic XML Labeling Schemes 45 

codes that share a common Y component. In this way, DDE is dynamic enough to 
completely avoid re-labeling while introducing minimum additional complexity to 
static documents. In addition, paper [9] also introduced CDDE which is designed to 
optimize the performance of DDE for insertions. Both DDE and CDDE can be incor-
porated into existing systems and applications that are based on Dewey labeling 
schemes with minimum efforts. 

2.3 Motivation 

It can be seen that the vector order-based labeling schemes avoid the node re-labeling 
when a node is inserted into the XML. But they cannot reuse the deleted labels and 
guarantee that the inserted label has the smallest size when there are deletions as well. 

Example 1. When we delete V-containment label “(2,1), (3,1)” (see Fig.2) and want 
to insert another node at this place, the inserted label will be “(5,2), (9,3)”, which is 
equal to “((1,1)+(4,1)),((5,2)+(4,1))”. The deleted label “(2,1), (3,1)” is not reused 
although it has small size. The original scheme cannot reuse the deleted label and 
therefore its size increases fast. It is the same for other vector-order based schemes. 

It is not good to process the deleted labels in this way. If we want to improve the 
query performance, all the deleted labels should be reused. Therefore we propose the 
improved method for vector order-based schemes to reuse the deleted labels and to 
control the label size increasing speed in the update environment. 

3 Reuse the Deleted Labels for Vector-Order Based Schemes 

We first introduce a definition Granularity Sum[7] used to measure the size of a 
vector.  

Definition 3.1(Granularity Sum). The Granularity Sum of a vector V:(x, y) is defined 
as |x|+|y|(denoted by GS(V)). 

We then propose another definition. 

Definition 3.2 (Middle Vector With the Smallest Granularity Sum, MVWSGS).  Giv-
en two vectors VL:(x1, y1) and VR:(x2, y2) where VL VR, the Middle Vector With the 
Smallest Granularity Sum is the vector VM such that VL VM VR and GS (VM ) is 
smallest (denoted by MVWSGS(VL,VR) or MVWSGS(x1, y1, x2, y2)). 

Vector-order based labeling schemes are the applications of vector order. When up-
dating takes place, the core operation is to find the middle vector VM such that VL  VM

 VR. The choice is not unique, actually there are infinitely many vectors possible; 
however, to reuse the deleted labels and slow down the increase rate of label size, we 
would want to find the vector that has the smallest Granularity Sum, i.e. VM should be 
MVWSGS(VL,VR). Although we can always use the sum of the two consecutive vec-
tors, the resulting vector may not always yield the minimum Granularity Sum. 



46 C. Zhuang and S. Feng 

3.1 Designing the MVWSGS's Algorithm 

We design the algorithm to compute MVWSGS(x1, y1, x2, y2). With no loss of generali-
ty, we consider the case that all the four arguments are nonnegative integers, and  
satisfy that: (1). x1/y1< x2/y2; (2). x1 and y1 are relatively prime; (3). x2 and y2 are rela-
tively prime. 

We first propose some elementary properties of the MVWSGS function. 

Property 3.1. Let (m, n)=MVWSGS(x1, y1, x2, y2), then MVWSGS(y2, x2, y1, x1)=(n, m ). 

Proof. Suppose to the contrary that MVWSGS(y2, x2, y1, x1)=(n', m'), where (n', m')≠ 
(n, m). Then we have y2/x2 < n'/m' < y1/x1 and n'+ m'<n+ m, which implies x1/y1< m'/n' 
<x2/y2and m'+ n' < m+ n. That is, we can construct a new middle vector V '= (m', n'), 
such that (x1, y1) V ' (x2, y2); however, GS(V ')=m'+ n'< m+ n =GS((m, n)), which 
is contrast to the fact MVWSGS(x1, y1, x2, y2) = (m, n).                               □        

Property 3.2. Let (m, n)=MVWSGS(x1, y1, x2, y2) and t be a integer no larger than 
⌊x1/y1⌋, then MVWSGS (x1 – t y1, y1, x2 – t y2, y2) = ( m – t n, n ). 

Proof. Suppose to the contrary that MVWSGS (x1 – t y1, y1, x2 – t y2, y2) = (m', n'), 
where (m', n') ≠ (m– t n, n). Then we have: (x1 – t y1)/y1< m'/n' < (x2–t y2)/y2 and 
GS(m', n') < GS (m – t n, n ), i.e. m'+ n'< m – t n + n. 

If n'≥ n, then the inequality m'+ n'< m – t n + n implies m'< m–t n + n–n' ≤ m–t n. 
Thus m'/n < (m–t n)/n = m/n – t < x2/y2 – t = (x2–t y2)/y2; and since n' ≥ n, then 
m'/n>m'/n'>(x1 – y1)/y1; Therefore, (x1 – y1)/y1< m'/n <(x2–t y2)/y2. Consequently, x1/y1 
< (m'+ t n)/n < x2/y2. That is, we can construct a vector V '= (m'+ t n, n), such that (x1, 
y1)  v V ' v (x2, y2); However, GS(V ')=m'+t n + n < m–t n +t n+ n= m + n=GS((m, 
n)), which is contrast to the fact MVWSGS(x1, y1, x2, y2)= (m, n). 

If n'< n, then consider two cases. Case 1: m–t n < m'. Then (m–t n)/ n'< m'/ n'< (x2–
t y2)/y2; and since n'< n, then (m–t n)/ n'>(m–t n)/n>(x1–t y1)/ y1. Thus, (x1–t y1)/y1< 
(m–t n)/n' < (x2–t y2)/y2. Consequently, x1/y1<(m–t n+ t n')/ n' < x2/y2. That is, we can 
construct a vector V '= (m–t n+ t n', n'), such that (x1, y1) v V ' v (x2, y2). However, 
GS(V ') = m–t n+ t n'+ n' < m – t n' +t n' + n= m+ n = GS((m, n)), which is contrast to 
the fact MVWSGS(x1, y1, x2, y2)= (m, n);Case 2: m – t n ≥ m'. Since (x1–t y1)/y1< m'/n'< 
(x2–t y2)/y2, we have x1/y1<( m'+ t n')/ n' < x2/y2. That is, we can construct a vector V ' 
= (m' +t n', n'), such that (x1, y1)  v V ' v (x2, y2). However, GS(V ') = m'+ t n'+ n' < 
m–t n +t n +n=m +n=GS((m, n)), which is contrast to MVWSGS(x1, y1, x2, y2) = (m, 
n). For all cases, the property is proved.                                              □                           

The following theorem is derived by Property 3.1 and Property 3.2 . 

Theorem 3.1. Let (m, n)=MVWSGS(x1, y1, x2, y2), then MVWSGS(y2, x2–⌊x1/y1⌋y2, y1, 
x1 mod y1) = (n, m–⌊x1/y1⌋n). 

Proof. Let t in Property 3.2 be ⌊x1/y1⌋, we have x1 – t y1 = x1 –⌊x1/y1⌋ y1 = x1 mod y1.  
Property 3.2 then implies: MVWSGS (x1 mod y1, y1, x2 –⌊x1/y1⌋ y2, y2)=( m –⌊x1/y1⌋ n, 
n ). Then from Property 3.1, we have MVWSGS(y2, x2 –⌊x1/y1⌋ y2, y1, x1 mod y1 )=(n, 
m–⌊x1/y1⌋n ).                                                                        □ 



 Reuse the Deleted Labels for Vector Order -Based Dynamic XML Labeling Schemes 47 

To compute MVWSGS, we introduce the other theorem.  

Theorem 3.2. If ⌊x1/y1⌋+ 1 < x2/y2 , then MVWSGS(x1, y1, x2, y2) =(⌊x1/y1⌋ + 1, 1). 

Proof. Suppose to the contrary that MVWSGS(x1, y1, x2, y2)=(m, n), where (m, 
n)≠(⌊x1/y1⌋ + 1, 1). Then we have: x1/y1<m/n< x2/y2 , and GS((m, n)) < GS((⌊x1/y1⌋ + 
1, 1)), i.e. m + n <⌊x1/y1⌋+2. If n=1, then m<⌊x1/y1⌋+1. Thus m ≤ x1/y1 and m/n ≤ 
x1/y1, which is contrast to the inequality m/n > x1/y1; If n>1, the inequality m+ 
n<⌊x1/y1⌋+ 2 implies m <⌊x1/y1⌋. Thus m/n<⌊x1/y1⌋/y<⌊x1/y1⌋/1 ≤ x1/y1, which is 
also contrast to the inequality m/n > x1/y.                                            □                             

Algorithm. MVWSGS's algorithm is expressed as a recursive program based directly 
on Theorem 3.1 and Theorem 3.2. The inputs x1, y1, x2, y2 are nonnegative integers, 
satisfying that: (1). x1/y1< x2/y2; (2). x1 and y1 are relatively prime; (3). x2 and y2 are 
relatively prime. 

Algorithm 1. MVWSGS(x1, y1, x2, y2)  // MVWSGS is a recursive algorithm 
1 if  ⌊x1/y1⌋+ 1 < x2/y2  then 
2     return  (⌊x1/y1⌋ + 1, 1); 
3 else 
4     (m', n') ←MVWSGS ( y2, x2 –⌊x1/y1⌋ y2, y1, x1 mod y1); 
5     return  ( n' + ⌊x1/y1⌋ m', m');  
6 end 

If ⌊x1/y1⌋+ 1 < x2/y2, then Algorithm 1 returns the correct result based on Theorem 
3.2. Otherwise, to obtain (m, n) such that (m, n) = MVWSGS(x1, y1, x2, y2), Algorithm 
1 first computes (m', n') such that (m', n')=MVWSGS (y2, x2 –⌊x1/y1⌋ y2, y1, x1 mod y1); 
Based on Theorem 3.1, we have: m'=n; n'=m –⌊x1/y1⌋ n. Thus n = m' and m = n' + 
⌊x1/y1⌋m', proving the correctness of Algorithm 1.  

We then show that the algorithm can always terminate. To obtain MVWSGS(x1, y1, 
x2, y2), the algorithm first calls MVWSGS(y2, x2 –⌊x1/y1⌋ y2, y1, x1 mod y1); then conti-
nuously calls: MVWSGS (x1 mod y1, y2 –t (x1 mod y1), x2–⌊x1/y1⌋y2, y2–t (x2–
⌊x1/y1⌋y2)) (t =⌊y2/(x2–⌊x1/y1⌋y2)⌋). We can see that after each two recursive calls, 
none of the four arguments increases and at least one of the four arguments strictly 
decreases(except the case that x1<y1and t=0, however, this case implies x1/y1<1 and 
x2/y2 >1,and the algorithm terminates without any recursive call). Together with the 
fact that all the arguments are always nonnegative, the algorithm cannot recurse  
indefinitely. 

MVWSGS(x1, y1, x2, y2) makes the recursive call MVWSGS( y2, x2 –⌊x1/y1⌋ y2, y1, x1 
mod y1). Since x1 and y1 are relatively prime, then y1 and (x1 mod y1) are relatively 
prime. And since x2 and y2 are relatively prime, then (x2 –⌊x1/y1⌋ y2) and y2 are rela-
tively prime. Therefore, the fact that the first argument and the second argument are 
relatively prime and the fact that the third argument and the fourth argument are rela-
tively prime always hold in each recursive call. 

Fig. 4 illustrates the execution of Algorithm 1 with the computation of MVWSGS 
(8, 5, 5,3),which makes four recursive calls. 

 



48 C. Zhuang and S. Feng 

 

 

 

 

Fig. 4. An example of the execution of MVWSGS's algorithm 

The running time of MVWSGS's algorithm. We discuss the worst-case running 
time of the algorithm of MVWSGS(x1, y1, x2, y2). We assume with no loss of generality 
that x1>y1≥ 1. This assumption can be justified by the discussion of the following 
cases: (1). x1= 0. The procedure terminates at once or after one recursive call; (2). 
y1=0. The case is not permitted since there is no vector larger than (x1,y1) where y1=0; 
(3). x1=y1>1. Since x1 and y1 are relatively prime, thus x1=y1=1 and the procedure 
terminates at once or after one recursive call; (4). x1 <y1. If x2 > y2, then ⌊x1/y1⌋+1< 
x2/y2 and the procedure terminates at once; If x2 = y2, then x2 = y2=1 and the procedure 
terminates after two recursive calls at most. If y2>x2, MVWSGS(x1, y1, x2, y2) imme-
diately makes the recursive call MVWSGS (y2, x2, y1, x1) with first argument larger 
than the second. That is, MVWSGS spends one recursive call swapping its arguments 
and then proceeds. 

MVWSGS(x1, y1, x2, y2) calls MVWSGS (y2, x2', y1, x1 mod y1 ) (here x2'=x2 –⌊x1/y1⌋ 
y2) recursively. Since x1>y1≥ 1 implies y1> (x1 mod y1), thus y1/( x1 mod y1)> 1. If y2 < 
x2', then ⌊y2/x2'⌋=0 and the procedure terminates as ⌊y2/x2'⌋+ 1 < y1/(x1 mod y1). If y2 
= x2', then y2 = x2'=1 and the procedure terminates after one recursive call at most. 
Thus for the worst case, y2 > x2'. That is, the first argument should be still larger than 
the second one after each recursive call. We therefore make the other assumption that 
the first argument is always larger than the second one in each recursive call to dis-
cuss the worst running time of MVWSGS 's algorithm. 

The overall running time of MVWSGS is proportional to the number of recursive 
calls it makes. The worst running time analysis makes use of the EUCID algorithm 
[10] designed for computing the greatest common divisor of two integers efficiently.  

EUCID(x, y)  

1  if y=0 then return x;  
2  else return EUCID(y, x mod y); 

EUCID(x, y) first calls EUCID(y, x mod y), and then continuously calls EUCID( x 
mod y, y mod (x mod y) ). Compared EUCID with MVWSGS, MVWSGS(x1, y1, x2, y2) 
first calls MVWSGS(y2, x2–⌊x1/y1⌋ y2, y1, x1 mod y1), and then continuously calls 
MVWSGS (x1 mod y1, y1 –t (x1 mod y1), x2–⌊x1/y1⌋y2, y2–t (x2–⌊x1/y1⌋y2)) (t =⌊y2/(x2–
⌊x1/y1⌋y2)⌋). That is, after two recursion, EUCID(x, y) calls EUCID( x mod y, y mod 
(x mod y) ) and MVWSGS(x1, y1, x2, y2) calls MVWSGS (x1 mod y1, y1 –t (x1 mod y1), 
x2', y2'). We have make the assumption that the first argument of MVWSGS is  
larger than the second one in each recursive call to discuss the worst running time  
of MVWSGS's algorithm, i.e. x1 mod y1> y1 - t (x1 mod y1). Then we have  

               x1   y1   x2  y2   result 
Inputs       8   5   5   3   (13, 8) 
1th call      3   2   5   3   (8, 5) 
2th call      3   2   2   1   (5, 3) 
3th call      1   1   2   1   (3, 2) 
4th call      1   1   1   0   (2, 1) 



 Reuse the Deleted Labels for Vector Order -Based Dynamic XML Labeling Schemes 49 

t > -1 + y1/(x1 mod y1), Thus, y1 - t ( x1 mod y1) ) ≤ y1 mod (x1 mod y1). That is to say, 
after two recursive calls, the first argument of MVWSGS is the same as EUCID, and 
the second argument of MVWSGS is no larger than EUCID. [10] has proved that the 
number of recursive calls in EUCID(x, y) is O(lg y), and hence the number of recur-
sive calls in MVWSGS(x1, y1, x2, y2) is O(lg y1). 

3.2 Optimization 

If there are only insertions in updates, the original vector order-based label schemes 
guarantee that the inserted label has the smallest size; that is, if there is no deleted 
label with smaller size than its neighbor labels, directly using the sum of the two con-
secutive vectors to compute the middle vector may yield the minimum Granularity 
Sum, i.e. MVWSGS(x1, y1, x2, y2)=(x1+x2, y1+y2). In this section, we establish the pre-
mise to hold the equation and prove it, which therefore improve the running time of 
MVWSGS's algorithm when no deletion occurs between two vector order-based labels. 
Our method is based on the Stem-Brocot tree[11]. 

Stem-Brocot tree is one beautiful approach to construct the set of all nonnegative 
fractions x/y with x and y are relatively prime. Its idea is to start with the two fractions 
0/1 and 1/0 and then to repeat the following operation as many times as desired: Insert 
(x1+x2)/(y1+y2)between two adjacent fractions x1/y1 and x2/y2.  

For example, the first step gets one new entry between 0/1 and 1/0: 0/1, 1/1, 1/0;  
and the next gives two more:0/1, 1/2, 1/1, 2/1, 1/0;  
and then it will get 4, 8 and so on.  

The entire array can be regarded as an infinite binary tree structure whose top le-
vels look like Fig.5. 

 

Fig. 5. Stem-Brocot tree[11] 

In the Stem-Brocot tree, each fraction V is derived by the sum of its two special an-
cestors, defined as leftV and rightV, i.e. V =leftV +rightV, where leftV is the nearest 
ancestor above and to the left, and rightV is the nearest ancestor above and to the 
right. Based on the construction, Consecutive Fractions[11] is defined as follows. 

Definition 3.3 (Consecutive Fractions). If VL and VR are consecutive fractions at any 
stage of the construction, then VL and VR are consecutive fractions. 



50 C. Zhuang and S. Feng 

The followings are some properties of consecutive fractions. 

Lemma 3.1. If VL and VR are consecutive fractions and VM =VL + b × VR , then VM and 
VR are consecutive fractions. 

Proof. Initially, (0,1) and (1,0) are consecutive fractions. The new fraction V is de-
rived by the sum of two consecutive fractions: VL and VR. Thus, (VL + VR) and VR are 
consecutive fractions. (VL +2VR) and VR are consecutive fractions since (VL + 2VR) is 
derived by the sum of consecutive fractions (VL + VR) and VR. Recursively, (VL + b ×

VR) and VR are consecutive fractions.        □ 

Lemma 3.2. If VL and VR are consecutive fractions and VM is an another fraction such 
that VL VM VR, then VM =a × VL +b × VR where a and b are positive integers. 

Proof. All of the possible fractions can occur in Stem-Brocot tree exactly once(the 
proof can refer to [11]), and Stem-Brocot tree is strictly order-preserved (an inorder 
traversal of the tree visits the fractions in increasing order). Thus, all of the fractions 
between two consecutive fractions VL and VR can be derived by starting with the two 
fractions VL and VR and then repeating the following operation as many times as de-
sired: Insert (x1+x2)/(y1+y2) between two adjacent fractions x1/y1 and x2/y2. 

That is, the first step gets one new entry between VL and VR: VR, VL + VR, VR;  
and the next gives two more: VL, 2VL + VR, VL + VR, VL +2VR, VR;  
and then it will get 4, 8 and so on. 
Thus, all of the fractions between VL and VR can be expressed as a × VL +b × VR.  □ 

Lemma 3.3.  If x2 y1-x1 y2=1, then VL:(x1, y1)and VR:(x2, y2) are consecutive fractions. 

Proof.  We prove equivalently that if VL:(x1, y1) and VR:(x2, y2) are not consecutive 
fractions, then x2 y1-x1 y2 > 1. There are three cases to be considered. 

Case 1: VR is an ancestor of VL in the Stem-Brocot tree but they are not consecutive 
fractions. Since leftVR and VR are consecutive fractions and leftVR  VL VR, thus VL 
= a × leftVR + b × VR(by Lemma 3.2) where a> 0 and b > 0. Furthermore, a cannot be 
1 since if a=1, then VL=leftVR + b × VR and VL and VR can be consecutive fractions(by 
Lemma 3.1).Thus a>1. Suppose leftVR=(x, y), then x1=ax+ bx2 and y1 = ay + by2. We 
have x2 y1– x1y2 =x2(a x+bx2) – (ax +b x2) y2= a (x2 y – x y2) = a > 1. 

Case 2: VL is an ancestor of VR but they are not consecutive fractions. This case can 
be proved similarly to that of case 1. 

Case 3: VL and VR are not of Ancestor-Descendent relationships. Denote the common 
ancestor of VL and VR as V, then VL=a × leftV+b × V and VR=c × rightV + d × V (a, b, 
c and d are positive integer). Suppose V=(m, n), leftV=(m1, n1) and rightV = (m2, n2), 
then x1=am1+bm, y1=a n1 +bn, x2=cm2+dm and y2=cn2+dn. Therefore, x2y1–
x1y2=ac(m2n1–n2m1)+bc(m2n–mn2)+ad (mn1–m1n)=ac+bc+ad >1.   □   

Now we are ready to provide the premise which guarantees the equation 
MVWSGS(x1, y1, x2, y2) =(x1+x2, y1+y2). 

Theorem 3.3.  If x2 y1-x1 y2=1, then MVWSGS(x1, y1, x2, y2)=(x1+x2, y1+y2). 



 Reuse the Deleted Labels for Vector Order -Based Dynamic XML Labeling Schemes 51 

Proof.  From Lemma 3.3, VL:(x1, y1) and VR:(x2, y2) are consecutive fractions. Sup-
pose VM is an another fraction such that VL  VM  VR, then VM = a × VL+ b × VR 
where a and b are both positive integer(Lemma 3.2). GS(VM) is smallest if a=1 and 
b=1. Thus, MVWSGS(x1, y1, x2, y2)=VL+VR=(x1+x2, y1+y2).                           □  

We can combine Theorem 3.3 with Algorithm 1 for the better performance to com-
pute MVWSGS, as we show in Algorithm 2. 

Algorithm 2.  Extended-MVWSGS(x1, y1, x2, y2) 
1 if  x2 y1-x1 y2=1  then return  (x1+x2, y1+y2); 
2 else return  MVWSGS(x1, y1, x2, y2); //Algorithm 1 

The Running Time Analysis. If there are only insertions in updates, there is no de-
leted label to be reused and the running time of Extended-MVWSGS(x1, y1, x2, y2) is 
O(1) since the cases implies that x1/y1 and x2/y2 are consecutive fractions and “x2 y1-x1 
y2=1”. If there are deletions as well, the chance that we have “⌊x1/y1⌋+ 1 < x2/y2 ” (see 
line 1 in Algorithm 1) is actually high especially in the case that large amounts of 
nodes are deleted. The worst running time of MVWSGS is O(lg y1) as we have shown 
in Sec.3.1. Considering that it is highly unlikely for y1to be very large in practice, the 
computation of MVWSGS is efficient. This extra computation is worthy because it can 
guarantee that the inserted label has the smallest size and therefore reduce the label 
sizes and enhance the query performances. On the other hand, since the original ap-
proaches usually have the larger label sizes, their advantage in running time is not 
noticeable. In most cases, the different updating time between our methods and the 
original approaches is actually negligible. 

4 Experiment and Results 

We evaluate our improved methods against the original vector order-based labeling 
schemes, including V-containment scheme, V-Prefix scheme, DDE and CDDE. We 
present the results of our Improved-CDDE against the original CDDE only as the 
others show similar trends. The initial labels of Improved-CDDE is the same as the 
original CDDE. We evaluate and compare the update performances of different 
schemes. The test dataset is “Hamlet.xml”[12]. Hamlet has totally 6,636 nodes, and 
there are 5 “act” sub-trees under root. We repeat the following operations ten 
times(noted that each time is based on the file generated by the last time): the odd 
positions of the 5 “act” sub-trees, i.e. the first, the third and the fifth “act” sub-trees, 
are deleted then inserted; then based on the new file, the even positions of the five 
“act” sub-trees are deleted and inserted in the same way. 

Updating Time. We evaluate the updating time of different schemes and the results 
are shown in Fig.6. We observe that the updating time of our Improved-CDDE is 
approximately similar to that of the original CDDE. This result conforms to our pre-
vious discussions that the different updating time between our improved methods and 
the original approaches is actually negligible.  



52 C. Zhuang and S. Feng 

1 2 3 4 5 6 7 8 9 10
0

10

20

30

40  Original CDDE 
 Improved CDDE

Updated  Series
U

pd
at

ed
 T

im
e 

(m
s)

 

Fig. 6. Updating Time 

Label Size. After every update, the new Hamlet is the same as the original; however, 
the labels are different. We evaluate the average label size of different schemes and 
show the results in Fig.7. We observe that the label sizes of Improve-CDDE does not 
increase in all the cases since we produce the optimal size and thus reuse all the de-
leted labels. On the other hand, the label size of Original-CDDE increases fast. The 
reason is that Original-CDDE computes the middle vector using the sum of the two 
consecutive vectors and therefore cannot reused the deleted labels for the inserted 
nodes. The experimental results confirm that our Improved-CDDE can reuse all the 
deleted labels, and therefore efficiently control the increasing speed of the label size. 

 

0 1 2 3 4 5 6 7 8 9 10
0

20

40

60

80  Original CDDE 
 Improved CDDE

Updated  Series

A
ve

ra
ge

 L
ab

el
 S

iz
es

 (
bi

ts
)

 

Fig. 7. Label Size 

Query Performance. We evaluate the query performance on the updated labels after 
ten deletions and insertions. We test the performance by computing the most com-
monly used five relationships: document order, AD, PC, sibling and LCA. We choose 
all the 6,636 labels and compute all the five relationships for each pair of the labels. 
As shown in Fig.8, for all the five functions our method outperforms than the pre-
vious scheme. The reason is clear from analysis of the label sizes of different 
schemes. The original CDDE has the large label size and therefore degrade the query 
performance. Moreover, the original CDDE cannot support the computation of LCA 
as we discuss before. The results confirm that our method improves the query perfor-
mance and has a better query support. 

 



 Reuse the Deleted Labels for Vector Order -Based Dynamic XML Labeling Schemes 53 

Order PC AD Sibling LCA
0

100

200

300

C
om

pu
ta

tio
n 

T
im

e 
(s

)

Relationships

 Original CDDE
 Improved CDDE

 

Fig. 8. Query Performance 

5 Conclusion 

In this paper, we propose the algorithms which can be applied broadly to different 
vector order-based labeling schemes to reuse all the deleted labels. In this way, we 
efficiently control the label size increasing speed and thus optimize query perfor-
mance when XML frequently updates. The experimental results also show that with 
the algorithms we can greatly decrease the label size when a lot of nodes are deleted 
and inserted. In summary, our improved methods are more appropriate to process the 
dynamic XML updates.  

References  

1. Zhang, C., Naughton, J.F., DeWitt, D.J., Luo, Q., Lohman, G.M.: On Supporting Con-
tainment Queries in Relational Database Management Systems. In: SIGMOD (2001) 

2. Tatarinov, I., Viglas, S., Beyer, K.S., Shanmugasundaram, J., Shekita, E.J., Zhang, C.: 
Storing and Querying Ordered XML Using a Relational Database System. In: SIGMOD 
(2002) 

3. Wu, X., Lee, M., Hsu, W.: A prime number labeling scheme for dynamic order XML tree. 
In: ICDE (2004) 

4. O’Neil, P., O’Neil, E., Pal, S., Cseri, I., Schaller, G., Westbury, N.: ORDPATHs: Insert-
friendly XML Node Labels. In: SIGMOD (2004) 

5. Li, C., Ling, T.W., Hu, M.: Efficient Updates in Dynamic XML Data: from Binary String 
to Quaternary String. VLDB J. (2008) 

6. Li, C., Ling, T.W.: QED: A Novel Quaternary Encoding to Completely Avoid Re-labeling 
in XML Updates. In: CIKM (2005) 

7. Xu, L., Bao, Z., Ling, T.-W.: A Dynamic Labeling Scheme Using Vectors. In: Wagner, R., 
Revell, N., Pernul, G. (eds.) DEXA 2007. LNCS, vol. 4653, pp. 130–140. Springer,  
Heidelberg (2007) 

8. Xu, L., Ling, T.W., Wu, H.: Labeling Dynamic XML Documents: An Order-Centric  
Approach. TKDE (2010) 

 
 



54 C. Zhuang and S. Feng 

9. Xu, L., Ling, T.W., Wu, H., Bao, Z.: DDE: from Dewey to a fully dynamic XML labeling 
scheme. In: SIGMOD (2009) 

10. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms, 2nd 
edn. (2001) 

11. Graham, R.L., Knuth, D.E., Patashnik, O.: Concrete Mathematics (1989) 
12. NIAGARA Experimental Data, http://www.cs.wisc.edu/niagara/data 



Towards an Efficient Flash-Based

Mid-Tier Cache

Yi Ou1, Jianliang Xu2, and Theo Härder1

1 University of Kaiserslautern
{ou,haerder}@cs.uni-kl.de

2 Hong Kong Baptist University
xujl@comp.hkbu.edu.hk

Abstract. Due to high access performance and price-per-byte consider-
ations, flash memory has been recommended for use as a mid-tier cache
in a multi-tier storage system. However, previous studies related to flash-
based mid-tier caching only considered the indirect use of flash memory
via a flash translation layer, which causes expensive flash-based cache
maintenance. This paper identifies the weaknesses of such indirect meth-
ods, with a focus on the cold-page migration problem. As improvements,
we propose two novel approaches, an indirect approach called LPD (log-
ical page drop) and a native approach called NFA (native flash access).
The basic idea is to drop cold pages proactively so that the garbage col-
lection overhead can be minimized. Our experiments demonstrate that
both approaches, especially the native one, effectively improve the use of
flash memory in the mid-tier cache. NFA reduces the number of garbage
collections and block erasures by up to a factor of five and improves the
mid-tier throughput by up to 66%.

1 Introduction

Despite fast page-oriented random access, storage devices based on flash memory
(flash-based devices), e. g., flash SSDs, are still too expensive to be the prevalent
mass storage solution. In fact, flash memory perfectly bridges the gap between
RAM and magnetic disks (HDDs) in terms of price per capacity and perfor-
mance1. Therefore, using them in the mid-tier of a three-tier storage hierarchy
is a much more realistic approach. In such a hierarchy, the top tier incorporates
fast but expensive RAM-based buffer pools, while the bottom tier is based on
slow but cheap storage devices such as HDDs or even low-end flash SSDs. The
middle tier acts as a cache larger but slower than the top-tier buffer pool. Such
a three-tier storage system can be deployed as, e. g., the storage sub-system
of a database (DB) system. Nevertheless, flash memory has some distinguishing
characteristics and limitations that make its efficient use technically challenging.
This paper studies its efficient use for mid-tier caching.

1 We focus on NAND flash memory due to its suitability for storage systems.

S.W. Liddle et al. (Eds.): DEXA 2012, Part I, LNCS 7446, pp. 55–70, 2012.
c© Springer-Verlag Berlin Heidelberg 2012



56 Y. Ou, J. Xu, and T. Härder

1.1 Flash Memory and FTL

Flash memory supports three basic operations: read, program, and erase. Read
and program (also known as write) operations must be performed in units of flash
pages, while erase operations have to be done at a larger granularity called flash
block (block), which contains a multiple of (e. g., 128) flash pages. Read operations
have a very small latency (in the sub-millisecond range). However, program
operations are much slower than them, typically by an order of magnitude.
Erase operations are even slower than program operations, by another order
of magnitude. Let Cfr, Cfp, and Cfe be the costs of read, program, and erase
operations, respectively, we have: Cfr < Cfp < Cfe.

An erase operation turns a block into a free block, and, consequently, each of
its flash pages into a free flash page, which is a flash page that has never been
programed after the block erasure. Only free flash pages can be programed, i. e.,
a non-free flash page can become programmable again – but only after an erase
of the entire block. This limitation, known as erase-before-write, implies that an
in-place update of flash pages would be very expensive [1]. Furthermore, after
enduring a limited number of program/erase (P/E) cycles2, a block becomes
highly susceptible to bit errors, i. e., it becomes a bad block.

Mainly due to the aforementioned limitations, flash memory is often accessed
via an intermediate layer called flash translation layer (FTL), which supports
logical read and write operations, i. e., reading and writing of logical pages. A
flash page normally consists of a main area of several KBs for storing user data,
and a spare area of a few bytes to facilitate the FTL implementation. For brevity,
we assume that (the size of) a logical page corresponds to a bottom-tier page
(e. g., a DB page) and they are of the same size of the main area, and we use the
term page to refer to a logical page, which is to be distinguished from a physical
page, i. e., a flash page.

To avoid the expensive in-place updates, FTL follows an out-of-place update
scheme, i. e., each logical page update is served using a free flash page prepared
in advance. Consequently, multiple writes to a logical page can result in multiple
page versions co-existing in flash memory. The term valid page refers to the latest
version, while invalid pages refer to the older versions. Similarly, a valid flash
page is the physical page where the latest version resides. When free flash pages
are in short supply, some space taken by invalid pages has to be reclaimed. This
is done by a procedure called garbage collection (GC), which reduces the number
of invalid pages and increases the number of free flash pages.

To keep track of the valid flash page of a (logical) page, an address mapping
mFTL : AF �→ Af is maintained, where AF represents the set of FTL logical
addresses (FLAs), i. e., logical page numbers supported by the FTL, and Af the
set of FTL physical addresses (FPAs), i. e., flash page addresses available on the
device. Depending on the map-entry granule of the mFTL implementation, FTL
algorithms can be classified into three categories: page-level mapping [2,3], block-
level mapping [4,5], and hybrid mapping [6,7]. Among them, page-level mapping

2 The number of cycles depends on density, vendor, and flash memory type. SLC
NAND flash memory is typically rated for ∼100,000 P/E cycles.



Towards an Efficient Flash-Based Mid-Tier Cache 57

Fig. 1. Three-tier storage system with indirect use of flash memory by the mid-tier
cache. FTL makes the native interface of the flash memory transparent to the mid-tier
cache manager. The two components of a flash-based device, surrounded by the dashed
line, appear as a “black box” and act together as a persistent array of logical pages
that can be read and overwritten.

has the greatest performance potential, but it also has the highest resource
requirements, mainly due to the mapping table size. However, recent studies
have shown that the resource problem of page-level mapping can be effectively
dealt with using methods such as demand paging of the mapping table [8] or new
hardware such as PCM (phase-change memory) as the mapping table storage
media [9]. Therefore, in this paper, we focus on page-level mapping in favor of
the performance potential, although the problems studied and the basic ideas
leading to our solutions are not specific to any FTL implementation.

1.2 Problem

Previous studies on flash-based mid-tier caching only considered the indirect use
of flash memory, i. e., the use of flash memory via an FTL, as shown in Fig. 1.
Although simplifying the use of flash memory, the indirect approach has some
fundamental problems. FTL implementations are usually vendor-specific and
proprietary [1,10]. The proprietary FTL logic makes it impossible to accurately
model or predict the performance of flash-based devices. This is not acceptable
for performance-critical applications, because their optimization is often based
on the cost model of the underlying storage devices. Furthermore, without direct
control over potentially expensive procedures such as GC, the response time
becomes indeterministic for the application. It has been reported that GC can
take up to 40 seconds[11], which is not only an issue for applications with real-
time requirements, but also intolerable for normal use cases.

For flash-based mid-tier caching, the indirect approach has an even more
serious problem related to GC. This problem is explained in the following with
the help of a simplified GC procedure, which involves three steps:



58 Y. Ou, J. Xu, and T. Härder

1. Select a set of garbage blocks, which are blocks containing some invalid pages.
2. Move all valid pages from the garbage blocks to another set of (typically

free) blocks, and update the corresponding management information.
3. Erase the garbage blocks, which then become free blocks.

If a block has M pages and Step 1 selects only one garbage block, which has v
valid pages, then Step 2 consumes v free flash pages, and the procedure increases
the total number of free flash pages by M −v, at a total cost of (Cfr+Cfp)×v+
Cfe, where (Cfr +Cfp)× v is caused by Step 2, and Cfe caused by Step 3. The
ratio v/M is called block utilization. Obviously, GC is more effective and also
more efficient for smaller values of v/M , because more free flash pages are gained
at a lower cost. Therefore, v/M is an important criterion to be considered for
the garbage block selection in Step 1. If the entire flash memory is highly utilized,
i. e., v/M is statistically close to 1, GC becomes relatively expensive, ineffective,
and has to be invoked frequently.

Although for a cache, only hot pages should be kept and cold pages should
be evicted, FTL must guarantee each valid page is accessible no matter the
page is cold or hot. This means that, during GC processing, cold pages have
to be moved along with hot pages (Step 2), while the cold ones, which make
v/M unnecessarily high, could actually be discarded from the cache manager
perspective. We call this problem the cold-page migration (CPM) problem.

More specifically, the CPM problem negatively impacts mid-tier performance
in two aspects: 1. The cost of GC, due to the (unnecessary) CPM; 2. The fre-
quency of GC, because, if cold pages are regarded valid, fewer pages can be
freed by one invocation of GC, and, as a result, the subsequent GCs have to be
invoked earlier. Furthermore, the GC frequency is proportional to the number
of block erases, which is inversely proportional to the device life time due to the
endurance limitation.

A similar problem exists when flash SSDs are used as the external storage
under a file system. File deletion is a frequent operation, but the information
about deleted files is normally kept in OS and not available to the SSD. The
latter has to keep even the deleted data valid, at a potentially high operational
cost. As solution, a Trim attribute for the Data Set Management command has
been recently proposed and become available in the ATA8-ACS-2 specification
[12]. This attribute enables disk drives to be informed about deleted data so that
their maintenance can be avoided.

However, no sufficient attention has been paid to the CPM problem, which
actually impacts the performance in a more serious way. First, when used in the
mid-tier cache, flash-based devices experience a much heavier write traffic than
that of file systems, because pages are more frequently loaded into and evicted
from the cache. To flash-based devices, heavy write traffic means frequent GCs.
Second, the capacity utilization of a mid-tier cache is always full, which makes
GC expensive and ineffective (especially for heavy write workloads). In contrast,
the GC issue is less critical to file systems, because typically a large portion of
their capacity is unused.



Towards an Efficient Flash-Based Mid-Tier Cache 59

1.3 Solution

To solve the CPM problem, we develop two approaches, which share the same
basic idea: drop cold pages proactively and ignore them during GCs.

1. The first approach, LPD (logical page drop), accesses flash memory indirectly
via an extended FTL, which can be informed about proactively evicted cold
pages, and ignore them during GCs.

2. The second approach, NFA (native flash access), manages flash memory in a
native way, i. e., it implements the out-of-place update scheme and handles
GC by the cache manager, without using an FTL.

According to our experiments, both approaches significantly outperform the nor-
mal indirect approach, by improving the GC effectiveness and reducing its fre-
quency. For example, NFA reduces the GC frequency by a factor of five, which
not only contributes to the data access performance, but also implies a greatly
extended device life time. In terms of overall performance (IOPS), NFA achieves
an improvement ranging from 15% to 66%, depending on the workload.

1.4 Contribution

To the best of our knowledge, our work is the first that identifies the CPM prob-
lem. Our work is also the first that considers managing flash memory natively
in the mid-tier cache. Our further major contributions are:

– We propose two novel approaches for flash-based mid-tier caching: LPD and
NFA, both of them effectively deal with the CPM problem.

– Our study shows that, for a flash-based mid-tier cache, our native approach
significantly improves the storage system performance while reducing the
resource requirements at the same time.

– More importantly, the results of our study urge the reconsideration of the
architectural problem of optimally using flash memory in a DB storage sys-
tem, i. e., whether it should be managed natively by the DBMS or indirectly
via the proprietary FTL implementations.

1.5 Organization

The remainder of this paper is organized as follows: Section 2 discusses related
works. Section 3 presents and discusses our approaches. Section 4 reports our
experiments for the evaluation of both approaches. The concluding remarks are
given in Section 5.

2 Related Work

Before flash memory became a prevalent, disruptive storage technology, many
studies, e. g., [13,14,15,16], addressed the problem of multi-level caching in the



60 Y. Ou, J. Xu, and T. Härder

context of client-server storage systems, where the first-level cache is located at
the client side and the second-level (mid-tier) cache is based on RAM in storage
server. However, these studies did not consider the specific problems of a flash-
based mid-tier cache. Our proposals are orthogonal to and can be combined
with their approaches, because their primary goal is to reduce the disk I/O of
the storage server, while our approaches primarily focus on the operational costs
of the middle tier.

In one of the pioneer works on flash-aware multi-level caching [17], Koltsidas
et al. studied the relationships between page sets of the top tier and the mid-tier
caches, and proposed flash-specific cost models for three-tier storage systems. In
contrast, a detailed three-tier storage system implementation and performance
study was presented in [18]. Their empirical study has demonstrated that, for
certain spectrum of applications, system performance and energy efficiency can
be both improved at the same time, by reducing the amount of energy-hungry
RAM-based memory in the top tier and using a much larger amount of flash
memory in the middle tier.

Not only academia, but also industry has shown great interest in flash-based
mid-tier caching. Canim et al. [19] proposed a temperature-aware replacement
policy for managing an SSD-based mid-tier, based on access statistics of disk
regions. In [20], the authors studied three design alternatives of an SSD-based
mid-tier, which mainly differ in the way how to deal with dirty pages evicted
from the first-tier, e. g., write through or write back.

Although flash-specific cost models and their difference to those of traditional
storage devices have been taken into account by previous works on flash-based
mid-tier caching [17,18,19,20], they commonly only consider the indirect ap-
proach, while hardly any efforts have been made to examine the internals of
flash-based devices when used as a mid-tier cache. Such efforts fundamentally
distinguish our work from the previous ones.

3 Our Approaches

As introduced in Section 1.3, our basic idea is to drop cold pages proactively
and ignore them during GCs. A question critical to the success is to what extent
valid but cold pages are dropped. Note, if we drop valid pages too greedily, the
benefit will not be covered by the cost of increased accesses to the bottom tier.

Which pages are cold and can be dropped is the decision of the cache manager,
while the decision, when and how to do GC, is typically made by the FTL –
if we follow the architecture of Fig. 1. Therefore, another important question is
how to bring these two pieces of information together.

3.1 LPD

The LPD approach is basically an indirect approach, which follows the architec-
ture shown in Fig. 1. However, to make the basic idea working, we propose, as an
extension to the FTL interface, a delete operation, in addition to the read and



Towards an Efficient Flash-Based Mid-Tier Cache 61

Algorithm 1. Allocation of a
free cache slot by LPD

data: parameter d, set F of free
slots, set S of occupied slots

1 if F �= ∅ then
2 remove and return one

element from F ;

3 else
4 cache slot v ← select and

remove a victim from S ;
5 evict the page cached in v ;
6 for 0 to d and S �= ∅ do
7 cache slot s ← select and

remove a victim from S ;
8 evict the page cached in s ;
9 FTL.delete(s) ;

10 add s to F ;

11 return v ;
Fig. 2. Example of logical page drop.
Note mLPD is not shown in the figure.

write operations. Similar to the read and write operations, the delete operation is
also a logical operation. Upon such a delete request, FTL should mark the corre-
sponding flash page invalid (and update other related management information
properly) so that it can be discarded by subsequent GCs.

LPD has some typical cache manager data structures. To tell whether and
where a page is cached, it maintains an address mapping table mLPD : Ab �→ AF ,
where Ab denotes the set of bottom-tier addresses (BTAs) and AF the set of
FLAs. A cache slot is a volatile data structure corresponding to exactly one FLA.
In addition to the FLA, the cache slot uses one bit to represent the clean/dirty
state of the cached page. A dirty page contains updates not yet propagated to
the bottom tier. Therefore, evicting such a page involves writing it back to the
bottom tier. A free3 cache slot is a cache slot ready to cache a new page. Such a
slot is needed when a read or write cache miss occurs, so that the missing page
can be stored at the corresponding FLA. Storing the page turns a free cache slot
into an occupied slot, which becomes free again when the page is evicted.

For the mid-tier cache manager to make use of the extended FTL, the proce-
dure of allocating a free cache slot has to be enhanced by some additional code
as shown in Algorithm 1. The piece of code (Line 6 to 10) evicts up to the d
coldest pages and instructs FTL to delete them, i. e., dropping a page involves
evicting it from the cache and deleting it logically via the extended FTL. Page
dropping happens after the standard logic of cache replacement (Line 4 to 5),
which is only required when there is no free cache slot available.

An example of LPD is shown in Fig. 2, where the cache slot with FLA = 1 was
just dropped and became free. The corresponding flash page, although containing

3 There is no connection between free cache slot and free flash page, although both
concepts use the word “free” by convention.



62 Y. Ou, J. Xu, and T. Härder

Fig. 3. NFA architecture Fig. 4. NFA flash page states

the latest version of page A (A2 in the figure), was invalidated (shown in grey).
If later block 1 is garbage-collected, A2 can be simply discarded.

The tuning parameter d controls how greedily cold pages are dropped. When
d = 0, LPD degenerates to the normal indirect approach without using the
extension. In contrast, when d > 0, the d coldest pages are dropped and the
same number of cache slots are turned into free slots, ready to be used for
the subsequent allocations of free cache slots (Line 1 to 2).

The LPD approach is orthogonal to the cache replacement policy responsible
for the victim selection (Line 4 and Line 7), which shall identify the coldest page
as per its own definition. In other words, LPD is compatible with other cache
management techniques, which can be used to further improve the hit ratio.

3.2 NFA

In contrast to the indirect approaches, NFA does not require an FTL. Instead, it
manages flash memory natively. As shown in Fig. 3, the operations available to
the NFA cache manager are read and program of flash pages, and erase of blocks.
Besides the common cache management functionality, NFA has to provide the
implementation of an out-of-place update scheme and GC.

For the cache management functionality, NFA maintains a mapping table
mNFA : Ab �→ Af , where Ab denotes the set of BTAs and Af the set of FPAs.
Note in LPD (and other indirect approaches), two mapping tables are required:
mLPD for cache management, and mFTL maintained by FTL (see Section 1.1).

A volatile data structure, block management structure (BMS) represents the
state of a block. BMS contains two bit vectors, validity and cleanness, which
mark the valid/invalid and clean/dirty states for each flash page in the block.
Validity is used by the GC processing, while cleanness is checked when dropping
a page. Furthermore, BMS stores, for each of its valid flash pages, the corre-
sponding BTA to speed up reverse lookups, and the corresponding last access
time, which is used by the page-dropping logic. The memory consumption of
BMS is very low, e. g., using 4 bytes per BTA and another 4 bytes per access
time, for 8 KB pages, the memory overhead of BMS is 0.1% at maximum.



Towards an Efficient Flash-Based Mid-Tier Cache 63

Algorithm 2. Allocation of a
free flash page by NFA

data: pointer wp, set F of free
blocks, watermarks wl, wh

1 if current block is fully written
then

2 wp ← the first flash page of a
free block ;

3 if |F | ≤ wl then
4 while |F | < wh do GC;

5 return wp ;

6 else
7 return wp ← wp+ 1 ;

Algorithm 3. NFA GC

data: page-dropping threshold t
1 block b ← select a garbage block ;
2 if all pages in b are valid then
3 b ← select a victim block ;
4 t ← the last access time of b ;

5 foreach page p ∈ b do
6 if last access time of p ≤ t

then
7 drop(p) ;
8 else
9 move p to a free flash page ;

10 erase b and mark it a free block ;

Following the out-of-place update scheme, both serving a write request and
caching a (not yet cached) page consume a free flash page, which is allocated
according to Algorithm 2. The algorithm maintains a write pointer wp, which
always points to the next free flash page to be programed. After the program
operation, wp moves to the next free flash page in the same block, until the block
is fully written – in that case, wp moves to the begin of a new free block.

Because GC is a relatively expensive procedure, it is typically processed by
a separate thread. NFA uses a low watermark wl and a high watermark wh to
control when to start and stop the GC processing. GC is triggered when the
number of free blocks is below or equal to wl, and stops when it reaches wh,
so that multiple garbage blocks can be processed in one batch. The available
number of blocks and the high watermark determine the logical capacity of the
cache. If we have K blocks with M pages per block, the logical capacity of the
cache is: (K − wh) ×M . We say that wh blocks are reserved for GC processing.

Note that the out-of-place update scheme and the use of reserved blocks for
GC processing shown in Algorithm 2 are common FTL techniques. They are pre-
sented here for comprehension and completeness, because they are now integral
to the NFA approach.

The NFA GC procedure (shown in Algorithm 3) is similar to that of a typical
FTL in some steps (Line 1, 9, and 10 roughly correspond to Step 1, 2, and 3 of the
simplified GC discussed in Section 1.2). The difference is due to the dropping of
victim blocks and cold pages. Victim blocks are selected by a victim-selection pol-
icy based on the temporal locality of block accesses. In contrast, garbage blocks
are selected by a garbage-selection policy, for which block utilization is typically
the most important selection criterion. Except for these basic assumptions, the
NFA approach is neither dependent on any particular garbage selection policy
(Line 1) nor on any particular victim selection policy (Line 3).

Dropping of a victim block happens when the selected garbage block is fully
utilized, i. e., all its pages are valid. Garbage-collecting such a block would
not gain any free flash page. Furthermore, such a garbage block signals that
the overall flash memory utilization is full or close to full (otherwise the



64 Y. Ou, J. Xu, and T. Härder

garbage-selection policy would return a block with lower block utilization).
Therefore, instead of processing the garbage block, a victim block is selected
by the victim-selection policy (Line 3). The last access time of the block is used
to update the page-dropping threshold t. This has the effect that all pages of the
victim block are then dropped immediately (Line 6 to 7). The dynamically up-
dated threshold t is passed on to subsequent GC invocations, where the threshold
makes sure that valid pages accessed earlier than t are dropped as well.

A flash page managed by NFA has the same set of possible states (shown in
Fig. 4) as those managed by a FTL: free, valid, and invalid. However, NFA has
a different set of possible state transitions, e. g., a read or write page miss in an
NFA cache can trigger a program operation (for storing the missing page) which
changes the state of a free flash page into valid, while for FTL, serving a read
request does not require a program operation. Obviously, the drop transition is
not present in any FTL, either. The semantic of NFA page dropping is similar to
that of LPD: the page is evicted (removing the corresponding entry from mNFA,
and, if the page is dirty, it is written back to the bottom tier), and then the
corresponding flash page is marked invalid.

From the NFA cache manager perspective, the free flash pages for storing
pages newly fetched from the bottom tier (due to page faults) are completely
provided by the GC procedure in units of blocks. Therefore, NFA does not require
page-level victim selection and eviction, which are common in classical caching.

3.3 Discussion

Although sharing the same basic idea, the presented approaches, LPD and NFA,
are quite different from each other. While NFA directly integrates the drop logic
into the GC processing, LPD can only select the drop candidates and delete
them logically. LPD can not erase a block due to the indirection of FTL – the
intermediate layer required by an indirect approach. Therefore, contiguously
dropped logical pages may be physically scattered over the flash memory and
LPD has no control when these pages will be garbage-collected, which is again
the responsibility of FTL. Such dropped pages can neither contribute to the
mid-tier cache hit ratio nor contribute to the reduction of GC cost, until the
space taken by them is eventually reclaimed by some GC run. In contrast to
the LPD approach, the pages dropped by NFA immediately become free flash
pages.

To control how greedily pages are dropped, LPD depends on the parameter d,
for which an optimal value is difficult to find, while the “greediness” of NFA is
limited toM pages (one block at maximum). However, due to the victim selection
based on block-level temporal statistics, the NFA hit ratio could be slightly
compromised and a few more accesses to the bottom tier would be required.

4 Experiments

To evaluate our approaches, we implemented a three-tier storage system simu-
lator supporting both architectures depicted in Fig. 1 and Fig. 3. The simulated



Towards an Efficient Flash-Based Mid-Tier Cache 65

Table 1. Size ratios of the top tier and mid-tier relative to the DB size

trace top tier middle tier DB size (max. page number)

TPC-C 2.216% 13.079% 451,166

TPC-H 0.951% 5.611% 1,051,590

TPC-E 0.002% 0.013% 441,138,522

flash memory and HDD modules used in our experiments were identical for both
architectures.

The workloads used in our experiments originate from three buffer traces,
which contain the logical page requests received by DB buffer managers under
the TPC-C, TPC-H, and TPC-E benchmark workloads. The TPC-C and TPC-H
buffer traces were recorded by ourselves, while the TPC-E trace was provided by
courtesy of IBM. Therefore, the buffer traces represent typical, strongly varying
workloads to the top tier and our results are expected to be indicative for a
broad spectrum of applications.

The logical page requests recorded in the buffer traces were sent to the top tier
to generate the mid-tier traces running the experiments. The top tier, which had
a buffer pool of 10,000 pages managed under an LRU replacement policy, served
the requests directly from the buffer pool whenever possible. In cases of buffer
faults or eviction of dirty pages, it had to read pages from and write pages to
the middle tier. The sequences of read and write requests received by the middle
tier were recorded and served as the mid-tier traces used in the experiments.
We used them to stress the systems containing the middle and bottom tiers.
As a result, the access statistics to the flash memory and HDD modules were
collected for the performance study.

Three approaches were under comparison: NFA, LPD (with d = 1024 unless
otherwise specified), and a baseline (BL), which is a mid-tier cache with indirect
flash access (but without the delete extension). Our FTL implementation uses
page-level mapping, which is the ideal case for the indirect approaches LPD and
BL. For all three approaches, the LRU replacement policy was used for selecting
victim cache pages (LPD and BL) or victim blocks (NFA), and the greedy policy
[21,22] is used for selecting garbage blocks, which always selects the block having
the least number of valid pages.

For each approach, the flash memory module was configured to have 512
blocks of 128 pages. Similar to [23] and [24], the low and high watermarks for
GC were set to 5% and 10%, respectively. Due to this setting, the logical size
of the mid-tier cache is 59,008 pages ((512 − 51) × 128) for all approaches. In
Table 1, we list the ratios of the top-tier buffer pool size and the logical size of
the mid-tier cache relative to the DB size (using the maximum page number as
an estimate4).

4 For the TPC-E trace, the DB size estimation is coarse because the trace was con-
verted from a proprietary format addressing more than 20 DB files whose sizes and
utilization were unavailable to us.



66 Y. Ou, J. Xu, and T. Härder

4.1 Overall Performance

We use the throughput of the mid-tier, i. e., the throughput seen by the top
tier, as the overall performance metric, which is defined as: throughput = N/tv,
where N is the number of page requests in a trace and tv its execution time,
which is further defined as:

tv = tm + tb (1)

tm represents the total operational cost in the flash memory, and tb the total
disk I/O cost. tm is defined as tm = nfr × Cfr + nfp × Cfp + nfe × Cfe, where
nfr, nfp, and nfe are the numbers of flash read, program, and erase operations.
tb is similarly defined as tb = nH × CH , with CH being the cost of a disk access
and nH the number of disk accesses. Therefore, the trace execution time tv is
the weighted sum of all media access operations performed in the middle tier
and bottom tier while running the trace.

For the costs of flash operations, Cfr, Cfp, and Cfe, we used the correspond-
ing performance metrics of a typical SLC NAND flash memory of a leading
manufacturer, while the disk access cost corresponds to the average latency of a
WD1500HLFS HDD [25]. These costs are listed in Table 2.

Fig. 5 compares the overall performance of the three approaches under the
TPC-C, TPC-H, and TPC-E workloads. Our two approaches, NFA and LPD,
significantly outperformed BL, and NFA had a clear performance advantage over
LPD. For the TPC-C workload, NFA achieved an improvement of 43% and 66%
compared with LPD and BL respectively.

The performance improvement of our approaches can be entirely credited to
the cost reduction in the mid-tier, because both of our approaches do not focus on
minimizing disk accesses. In fact, they even had a slightly higher number of disk
accesses due to proactive page dropping. It is expected that a small fraction of the
dropped pages are re-requested shortly after the dropping, which increases disk
accesses. However, this is the small price we have to pay in order to achieve the
overall performance gain.

Fig. 6 confirms our expectation, where we provide a breakdown of the execu-
tion times according to (1). The mid-tier cost tm is further broken down into two
fractions: the fraction caused by GCs, denoted as tg, and the fraction caused by

Table 2. Operation costs

operation cost (ms)

Cfr 0.035

Cfp 0.350

Cfe 1.500

CH 5.500  150

 200

 250

 300

 350

 400

TPC-C TPC-H TPC-E

BL

LPD

NFA

Fig. 5. Throughput (IOPS)



Towards an Efficient Flash-Based Mid-Tier Cache 67

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

BL LPD NFA

t
b
t
c

t
g

(a) TPC-C

 0

 5000

 10000

 15000

 20000

 25000

BL LPD NFA

t
b
t
c

t
g

(b) TPC-H

 0

 1000

 2000

 3000

 4000

 5000

 6000

BL LPD NFA

t
b
t
c

t
g

(c) TPC-E

Fig. 6. Breakdown of the trace execution time (seconds) into the fractions of GC tg,
cache overhead tc, and disk accesses tb

normal caching operations (e. g., read operations due to cache hits and program
operations due to cache replacements), denoted as tc, such that

tv = tm + tb = (tg + tc) + tb

As clearly shown in Fig. 6, both our approaches effectively improved the GC
fraction, without significantly increasing the cost of other two fractions.

The remainder of this section is a detailed analysis of the experimental results.
Due to space constraints, we only focus on the performance metrics collected
under the TPC-C workload and omit those of the TPC-H and TPC-E workloads,
from which similar observations were made.

4.2 Detailed Analysis

To further understand why our approaches improved the GC efficiency and re-
duced the number of its invocations, we plotted, in Fig. 7, the distribution of
the number of valid pages in garbage-collected blocks. The majority of blocks
garbage-collected in the BL configuration had a number of valid pages very close
to 128, which resulted in a poor efficiency of GC. Compared with Fig. 7a, the
dense region in Fig. 7b is located slightly farther to the left, meaning fewer valid
pages in the garbage blocks. For NFA, the majority of garbage-collected blocks
had less than 96 valid pages per block, i. e., more than 32 pages could be freed
for each garbage block.

Interestingly, in Fig. 7c, the region between 96 and 127 is very sparse. This is
the filtering effect (Line 6 to 7 of Algorithm 3). The valid pages in a block either
become invalidated due to logical overwrites or are filtered out when they become
cold. Therefore, the probability that a block has full or close-to-full utilization
is artificially reduced.

For LPD, we ran the trace multiple times scaling d from 0 up to 65,536,
which controls how greedily pages are dropped from the cache. For d = 0, LPD
is equivalent to BL, which does not use the extended FTL and does not drop
any pages. For d = 65536, it drops all pages from the cache whenever a cache
replacement occurs (Line 5 to 11 of Algorithm 1).



68 Y. Ou, J. Xu, and T. Härder

 0

 5000

 10000

 15000

 20000

 25000

 0  32  64  96  128

(a) BL

 0

 2000

 4000

 6000

 8000

 10000

 12000

 0  32  64  96  128

(b) LPD

 0

 200

 400

 600

 800

 1000

 0  32  64  96  128

(c) NFA

Fig. 7. Distribution of the number of valid pages in garbage-collected blocks. A bar of
height y at position x on the x-axis means that it happened y times that a block being
garbage-collected contains x valid pages. Note the different scales of the y-axis.

Under the same workload (independent of d), NFA processed 22,106 GCs and
achieved a hit ratio of 0.7438. Relative to these values, Fig. 8 plots the number
of GCs and the hit ratio of LPD, with d scaled from 0 to 65,536. For d = 0,
LPD (and BL, due to equivalence) obtained a slightly higher hit ratio than NFA
(by 5.84%), however, its number of GCs was much higher than that of NFA (by
a factor of five). For d = 65536, although LPD’s number of GCs was greatly
reduced (still higher than that of NFA by 21%), its hit ratio drastically dropped
and became only 63.1% of the NFA hit ratio. Note, we could not find a value for
d ∈ [0, 65536] for LPD, such that the number of GCs is lower and the hit ratio
is higher than those of NFA at the same time.

4.3 Wear Leveling

So far, we have not discussed other aspects of flash memory management such as
wear leveling and bad block management, which are not the focus of our current
work, because they can be dealt with using standard techniques proposed in
previous works related to FTL. However, fortunately, our approaches seem to

 1

 2

 3

 4

 5

 6

 7

 8

0 128 1024 8192 65536

0.6

0.7

0.8

0.9

1.0

1.1

1.2

1.3
relative number of GC (left y-axis)

relative hit ratio (right y-axis)

Fig. 8. Number of GCs and hit ratio of
LPD relative to NFA, when d is scaled
from 0 to 65,536

 0

 50

 100

 150

 200

 250

 300

 350

 400

 0  100  200  300  400  500

NFA

LPD

BL

Fig. 9. Number of erases for each
block. Each position on the x-axis refers
to a block.



Towards an Efficient Flash-Based Mid-Tier Cache 69

have automatically distributed the erases uniformly to the blocks, as shown in
Fig. 9, where the number of erases for each of the 512 blocks is plotted for all
three approaches under comparison.

5 Conclusion

In this paper, we studied the problem of efficiently using flash memory for a
mid-tier cache in a three-tier storage system. We identified the problems of us-
ing flash memory indirectly, which is the common approach taken by previous
works. Among these problems, the most important one is the CPM problem,
which not only greatly impacts performance, but also shortens the life time of
flash-based devices used in the cache. Our basic idea to solve this problem is
to drop cold pages proactively and ignore them during GCs. Based on this ba-
sic idea, we proposed two approaches, an indirect one and a native one, that
effectively handle the problem, as shown by our experiments. The experiments
also demonstrated the gravity of the CPM problem, which is ignored so far
by typical indirect approaches represented by the baseline. The cache-specific
knowledge (e. g., which pages can be dropped) and the direct control over the
flash memory (e. g., when is the GC to be started) is the key to the significant
performance gain achieved by NFA, the native approach.

We believe that the optimal use of flash memory in a mid-tier cache can only be
achieved when the flash memory is managed natively by the cache management
software. For similar reasons, system designers should seriously consider how to
natively support flash memory in the database software.

Acknowledgement. Yi Ou’s work is partially supported by the German Re-
search Foundation and the Carl Zeiss Foundation. Jianliang Xu’s work is par-
tially supported by Research Grants Council (RGC) of Hong Kong under grant
nos. HKBU211510 and G HK018/11. The authors are grateful to German Aca-
demic Exchange Service (DAAD) for supporting their cooperation. They are also
grateful to anonymous referees for valuable comments.

References

1. Gal, E., Toledo, S.: Algorithms and data structures for flash memories. ACM Com-
puting Surveys 37(2), 138–163 (2005)

2. Ban, A.: Flash file system, US Patent 5,404,485 (April 1995)
3. Birrell, A., Isard, M., Thacker, C., Wobber, T.: A design for high-performance flash

disks. SIGOPS Oper. Syst. Rev. 41(2), 88–93 (2007)
4. Ban, A.: Flash file system optimized for page-mode flash technologies. US Patent

5,937,425 (October 1999)
5. Estakhri, P., Iman, B.: Moving sequential sectors within a block of information in

a flash memory mass storage architecture. US Patent 5,930,815 (July 1999)
6. Kim, J., Kim, J.M., et al.: A space-efficient flash translation layer for CompactFlash

systems. IEEE Trans. on Consumer Electronics 48(2), 366–375 (2002)



70 Y. Ou, J. Xu, and T. Härder

7. Lee, S.W., Park, D.J., et al.: A log buffer-based flash translation layer using fully-
associative sector translation. ACM Trans. Embed. Comput. Syst. 6(3) (July 2007)

8. Gupta, A., Kim, Y., Urgaonkar, B.: DFTL: a flash translation layer employ-
ing demand-based selective caching of page-level address mappings. In: Proc. of
ASPLOS 2009, pp. 229–240. ACM, New York (2009)

9. Kim, J.K., Lee, H.G., et al.: A PRAM and NAND flash hybrid architecture for
high-performance embedded storage subsystems. In: Proc. of EMSOFT 2008, pp.
31–40. ACM, New York (2008)

10. Chung, T., Park, D., Park, S., Lee, D., Lee, S., Song, H.: A survey of flash trans-
lation layer. Journal of Systems Architecture 55(5), 332–343 (2009)

11. Chang, L.P., Kuo, T.W., Lo, S.W.: Real-time garbage collection for flash-memory
storage systems of real-time embedded systems. ACM Trans. Embed. Comput.
Syst. 3(4), 837–863 (2004)

12. INCITS T13: Data Set Management commands proposal for ATA8-ACS2 (revision
6) (2007), http://t13.org/Documents/UploadedDocuments/docs2008/e07154r6-
Data Set Management Proposal for ATA-ACS2.doc

13. Zhou, Y., Chen, Z., et al.: Second-level buffer cache management. IEEE Trans. on
Parallel and Distributed Systems 15(6), 505–519 (2004)

14. Chen, Z., Zhang, Y., et al.: Empirical evaluation of multi-level buffer cache collab-
oration for storage systems. In: Proc. of SIGMETRICS 2005, pp. 145–156. ACM
(2005)

15. Jiang, S., Davis, K., et al.: Coordinated multilevel buffer cache management with
consistent access locality quantification. IEEE Trans. on Computers, 95–108 (2007)

16. Gill, B.: On multi-level exclusive caching: offline optimality and why promotions
are better than demotions. In: Proc. of FAST 2008, pp. 1–17. USENIX Association
(2008)

17. Koltsidas, I., Viglas, S.D.: The case for flash-aware multi-level caching. Technical
report, University of Edinburgh (2009)

18. Ou, Y., Härder, T.: Trading Memory for Performance and Energy. In: Xu, J., Yu,
G., Zhou, S., Unland, R. (eds.) DASFAA Workshops 2011. LNCS, vol. 6637, pp.
241–253. Springer, Heidelberg (2011)

19. Canim, M., Mihaila, G., et al.: SSD bufferpool extensions for database systems. In:
Proc. of VLDB 2010, pp. 1435–1446 (2010)

20. Do, J., DeWitt, D., Zhang, D., Naughton, J., et al.: Turbocharging DBMS buffer
pool using SSDs. In: Proc. of SIGMOD 2011, pp. 1113–1124. ACM (2011)

21. Rosenblum, M., Ousterhout, J.K.: The design and implementation of a log-
structured file system. ACM Trans. Comput. Syst. 10, 26–52 (1992)

22. Kawaguchi, A., Nishioka, S., Motoda, H.: A flash-memory based file system. In:
Proc. of TCON 1995. USENIX Association, Berkeley (1995)

23. On, S.T., Xu, J., et al.: Flag Commit: Supporting efficient transaction recovery on
flash-based DBMSs. IEEE Trans. on Knowledge and Data Engineering 99 (2011)

24. Prabhakaran, V., Rodeheffer, T.L., Zhou, L.: Transactional flash. In: Proc. of OSDI
2008, pp. 147–160. USENIX Association, Berkeley (2008)

25. Western Digital Corp.: Specifications for the 150 GB SATA 3.0 Gb/s VelociRaptor
drive, model WD1500HLFS (2011),
http://wdc.custhelp.com/app/answers/detail/search/1/a_id/2716

http://t13.org/Documents/UploadedDocuments/docs2008/e07154r6-Data_Set_Management_Proposal_for_ATA-ACS2.doc
http://t13.org/Documents/UploadedDocuments/docs2008/e07154r6-Data_Set_Management_Proposal_for_ATA-ACS2.doc
http://wdc.custhelp.com/app/answers/detail/search/1/a_id/2716


Evacuation Planning of Large Buildings

Using Ladders

Alka Bhushan, Nandlal L. Sarda, and P.V. Rami Reddy

GISE Lab., Department of Computer Science and Engineering,
Indian Institute of Technology Bombay,

Mumbai, India
{abhushan,nls,pvrreddy}@cse.iitb.ac.in

http://www.cse.iitb.ac.in

Abstract. Evacuation planning of a building in case of an emergency
has been widely discussed in literature. Most of the existing approaches
consider a building as a static graph with fixed, predefined exits. How-
ever, in severe disaster situations, it is desirable to create additional
exits for evacuation purposes. A simple and practical way of creating
additional exits is to place ladders at those locations that can reduce
evacuation time effectively. For large buildings, finding optimal locations
for a limited number of available ladders to utilize them effectively is not
possible without using any systematic approach.

In this paper, we first show that the problem of finding optimal lo-
cations for a given number of ladders among all feasible locations to
minimize either the average evacuation time or evacuation egress time is
NP-hard. The feasible locations for ladders are referred as dynamic exit
points and the exits created by ladders are referred as “dynamic exits”.
Next, we propose a heuristic for placing a given number of ladders at
dynamic exit points based on the distribution of evacuees in the build-
ing. We extend the existing capacity constrained route planner (CCRP)
algorithm for dynamic exit based evacuation planning.

Our model is illustrated by performing a set of experiments and com-
paring it with existing optimization models that minimize either the
average evacuation time or the evacuation egress time. The results show
that the proposed heuristic produces close to the optimal solution and
has significantly less computational cost as compared to the optimization
models.

Keywords: Evacuation planning, Routing and scheduling, Dynamic
Exits, Building network.

1 Introduction

Building evacuation planning is necessary to move occupants safely from danger
areas to safe areas in case of emergency events such as fire, terrorist attack etc.

Over the years, the evacuation planning problem has been studied as an
optimization problem by various research communities. Typical aims of such

S.W. Liddle et al. (Eds.): DEXA 2012, Part I, LNCS 7446, pp. 71–85, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

http://www.cse.iitb.ac.in


72 A. Bhushan, N.L. Sarda, and P.V. Rami Reddy

approaches have been to minimize average evacuation time, minimize evacua-
tion egress time or maximize flow of evacuees. Some of these optimization based
models are presented in [2,3,6,10]. These optimization based models produce
optimal solutions but are suitable only for small sized buildings due to high
computational cost.

Recently, a heuristic, namely capacity constrained route planner (CCRP) has
been widely discussed in the literature as a spatio temporal database approach
[9,11,12,14,15]. The aim of this approach is to reduce computational time while
minimizing evacuation time. The proposed heuristic works efficiently and pro-
duces high quality solution.

Most of these approaches consider a building as a static graph with fixed,
predefined exits. However, in the event of severe disasters, it is desirable to
create additional exits, to reduce the evacuation time. A simple and effective
means of creating such additional exits is to create exits by placing ladders. A
building potentially may have large number of places such as window, balcony
etc., where ladders can be placed. An interesting problem then is to identify the
places to use for limited number of available ladders to reduce the evacuation
time to an acceptable value.

Usage of ladders in building evacuation planning was first suggested in [4].
Recently, optimization based models have been proposed for various scenarios
to incorporate dynamic exits in the evacuation planning [1]. The proposed mod-
els are formulated as integer linear programming problems and produces optimal
solutions. These models require large memory and have high computational com-
plexity. Also, they need an estimated upper bound on evacuation egress time.
If estimated upper bound is less than the actual evacuation egress time then
solution becomes infeasible.

The main objectives of this paper are as follows: (1) show that the problem
of finding optimal locations for a given number of ladders among all feasible
locations to minimize either the average evacuation time or the evacuation egress
time is NP-hard (2) present a heuristic approach for placing a given number of
ladders at dynamic exit points based on the distribution of evacuees in the
building, and (3) extend the existing CCRP for dynamic exit based evacuation
planning.

To the best of our knowledge, this paper presents the first efficient heuristic
approach for finding an evacuation plan using ladders.

The paper is structured as follows: in Section 2, we briefly describe modeling
of a building and a ladder as considered in this paper. In Section 3, we present
a formal statement of the problem considered in this paper. In Section 4, we
prove that the problem of finding optimal locations for a given number of lad-
ders among all feasible locations to minimize either the average evacuation time
or evacuation egress time is NP-hard. In Section 5, we describe integer linear
programming formulations for solving the evacuation planning problem using dy-
namic exits. The heuristics proposed for evacuation planning using ladders are
described in Section 6. In Section 7, we present results for various experiments
before concluding the paper in Section 8.



Evacuation Planning of Large Buildings Using Ladders 73

2 Modeling of A Building with Ladders

For evacuation planning purposes, generally a building is modeled as a directed
graph [2,3,6,10,11], where nodes represent the corridors, lobbies, rooms and inter-
section points while edges represent stairways, hallways or connections between
two nodes. Each node is associated with a maximum capacity equal to the max-
imum number of people that can be accommodated there. Each edge has an
in-take capacity equal to the maximum number of people that can be admit-
ted per unit of time. Direction of each edge is given by predetermining possible
movements of evacuees towards exits, which is possible only if exits are known
beforehand. In case of adding additional exits during evacuation process, it is
unreasonable to determine again the direction of every edge for a large building.

We suggest the following modifications in the modeling of a building, and the
modeling of a ladder for our purposes. A detailed discussion can be found in [1].

1. We consider the edges to be bidirectional unless an edge is specifically re-
stricted to be unidirectional. Since the in-take capacity of an edge is deter-
mined by the width of the corresponding edge, an edge can be used in both
direction using the same in-take capacity with an additional constraint that
the total number of evacuees present on it at any point of time should not
be more than its maximum in-take capacity.

2. A ladder can be placed at wide window, balcony etc. Since these places
are associated with a room therefore a corresponding node is marked as a
dynamic exit point.

3. A ladder is modeled as an edge (ladder edge) which connects a dynamic
exit point to the ground. Without loss of generality, distinct destination
nodes corresponding to the ground are considered for each ladder. These
destination nodes are called as “dynamic exits”. The following characteristics
are associated with each ladder edge.

– In-take capacity of each ladder is taken to be 1.
– Travel time of a ladder is a function of length of the ladder which is

nothing but a function of height of the corresponding dynamic exit point.
– Unlike other conventional edges of a building graph, a ladder may not

be strong enough to bear load equal to its travel time multiplied by
its in-take capacity. Hence, a new parameter denoted as maximum load
is introduced for a ladder which represents the maximum number of
evacuees that can be present on the ladder at any point of time.

– A ladder may not be set up in zero time and need some time to place at
the desired location. Further, each ladder need not require same amount
of placement time since it would depend on the position and height of
the location. Thus, placement time is associated with each ladder edge
and a ladder edge becomes active after its placement time.

– A dynamic exit point may have wide space to place more than one ladder.
Thus more than one ladder can be placed at the same location. Further,
different types of ladders can be placed at the same location and hence
maximum load, placement time and travel time would differ for each



74 A. Bhushan, N.L. Sarda, and P.V. Rami Reddy

N1

N2N2

N3 N4

{0,b}

{8,10}

N2 : room 2

N1 : room 1

N3 : lobby

window 1

w
in

do
w

 2

N4 : exit

{2,5}

{intial occupancy, maximum capacity}
(in−take capacity, travel time)

(2,2)

(3,4)

(2,2)

(2,2)
(2,2)

{0,20}

do
or

 2

door 4door 3

door 1

Fig. 1. Building and the corresponding graph for the example

type of ladder. To keep our model simple, we assume that only one type
of ladder can be placed at one dynamic exit point. Further, we assume
that only one ladder can be placed at a dynamic exit point.

Thus, a ladder edge at a dynamic exit point has the following characteristics:

pi : ladder placement time
σi : maximum load
bi : ladder in-take capacity (= 1)
λi : travel time

Example: The example presented in Figure 1 is adapted from [7]. Initial number
of evacuees and node capacity is listed next to each node. For example, node 2
has 8 evacuees initially and can accommodate at most 10 evacuees. Further, each
edge is labeled with its in-take capacity and travel time. For example, edge (2,4)
has in-take capacity 3 and travel time equal to 4. Nodes 1 and 2 are marked as
possible dynamic exit points. The characteristics of these dynamic exit points
are shown in Table 1.

Table 1. Characteristics of dynamic exit points 1 and 2

Parameters Node 1 Node 2

ladder placement time (p) 0 1
maximum load (σ) 1 1
ladder in-take capacity (b) 1 1
travel time (λ) 2 2

This example is used later to explain the results of our heuristic algorithm.

3 Problem Statement

Let an undirected graph G = (N,E) and L number of ladders be given for a
building, where N is the node set and E is the edge set.



Evacuation Planning of Large Buildings Using Ladders 75

– Each node i is associated with maximum capacity (ai) and initial occupancy
(qi).

– Each edge (i, j) is associated with in-take capacity (bij) and travel time (λij).

– Each dynamic exit point i is associated with ladder placement time (pi),
maximum load (σi), ladder in-take capacity (bi) and travel time on a ladder
(λi).

All nodes of non-zero initial occupancy are included in source node set S. Simi-
larly, all destination nodes and dynamic exit points are included in destination
node set D and dynamic exit point set P , respectively.

Problem: Find an evacuation plan that finds positions for placing L number of
available ladders, a set of source-destination routes, and a schedule of evacuees
on each route.

Objective: minimize either the evacuation egress time which is the maximum
evacuation time taken by an evacuee or the average evacuation time which is the
average time taken by any evacuee.

4 Complexity

We denote the problem of finding optimal dynamic exit points for placing a given
L number of ladders to minimize the evacuation egress time as SDEP. A problem
can be shown an NP-hard problem by reducing a known NP-hard problem into
the problem. Here, we reduce the k-center problem, an NP-hard problem into the
SDEP problem and show that an algorithm which solves SDEP in polynomial
time can also solve k-center problem in polynomial time. The k-center problem
is shown to be an NP-hard problem in [5].
k-center problem: Given an undirected complete graph G′ = (N ′, E′) with
node set N ′, edge set E′, and weight on each edge that satisfies triangle inequal-
ity, and an integer k, find a set C ⊆ N ′ such that |C| ≤ k and it minimizes the
following function

max
i∈N ′

min
j∈C

wij

where wij is the weight of edge (i, j).

Lemma 1. SDEP is NP-hard.

Proof. We reduce the k-center problem into SDEP by converting the graph G′

into a new graph G′new as follows:

1. Assign one evacuee to each node i ∈ N ′.
2. Make each node i ∈ N ′ as a dynamic exit point and assign 0 value to place-

ment time and value 1 to travel time, maximum load and in-take capacity.

3. Assign ∞ value to the maximum capacity of each node and in-take capacity
of each edge.



76 A. Bhushan, N.L. Sarda, and P.V. Rami Reddy

Weight of each edge corresponds to its travel time. Since weights of edges sat-
isfy triangle inequality, the edge (i, j) is always the shortest path between the
corresponding nodes i and j. Since ladder travel time is 1 unit of time for each
dynamic exit point, it will not change the output. Hence, output of SDEP for
graph G′new must be the optimal output of k-center problem for graph G′.

Similarly, it can be shown that the problem of selecting dynamic exit points
for a given L number of ladders to minimize the average evacuation time is NP-
hard by showing a reduction from the k-median problem to the problem. The
k-median problem is also a well known NP-hard problem [5].

5 Integer Linear Programming Formulation

Evacuation planning problem has been formulated as a linear programming prob-
lem whose objective is to minimize the average evacuation time of each evacuee
[2,7]. Triple optimization theorem presented in [8] states that a flow which min-
imizes average evacuation time also minimizes the evacuation egress time. But,
optimal locations for a given number of ladders to minimize the average evac-
uation time may not be the optimal locations for the given number of ladders
to minimize the evacuation egress time. Thus, separate algorithms are required
to optimize the each objective. We have presented integer linear programming
formulations for each scenarios [1]. We also showed that the formulation which
minimizes the average evacuation time for a given number of ladders does not
necessarily minimizes the evacuation egress time and vice versa. Our integer
linear programming formulations have used the constraints used in the linear
programming formulation given in [7] in addition to the new constraints needed
for our problem.

6 A Heuristic for Evacuation Planning Using Ladders

We propose an algorithm for placing a given number of ladders at dynamic
exit points based on the distribution of evacuees in the building. We need to
modify CCRP since the edges representing ladders need to be handled differently
from other edges in the building graph. A modified CCRP, namely DCCRP in
presented in Section 6.2. We next present an algorithm for selecting dynamic
exit points.

6.1 An Algorithm for Selecting Dynamic Exit Points

Our approach is based on the following two observations: (i) high density areas
would need more exits, and (ii) a ladder placed at a dynamic exit point would be
mainly used by the evacuees located in nearby locations. One simple method to
calculate the density for each dynamic exit point is to compute the total number
of evacuees located in l-neighborhood. The l-neighborhood of a node i can be
defined as

l-neighborhood(i) = {j|d(i, j) ≤ l}



Evacuation Planning of Large Buildings Using Ladders 77

Algorithm 1. Calculate density of each dynamic exit point

densityFactor(i,j) ← 0 /* for all source nodes i and all dynamic exit points j */
density(j) ← 0 /* for all dynamic exit points j */
sum(i) ← 0 /* for all source nodes i */
for each source node i ∈ S do

for each dynamic exit point j ∈ P do
compute shortest travel time travel-time(i,j) from node i to dynamic exit point
j
densityFactor(i,j) = 1

travel-time(i,j)
sum(i) = sum(i) + densityFactor(i,j)

end for
end for
for each dynamic exit point j ∈ P do

for each source node i ∈ S do

density(j) = density(j) +
qi×densityFactor(i,j)

sum(i)

end for
end for

where d(i, j) is the shortest path from node i to node j.
But, this method has the following drawbacks.

– For a small value of l, a source node containing large number of evacuees may
not be in l-neighborhood of any dynamic exit point and thus all dynamic
exit points near it may not be selected. If we increase l then initial occupancy
of a source node may be added in large number of dynamic exit points. In
both the cases, selection of a dynamic exit point based on l-neighborhood
function may not lead to a good selection of dynamic exit points.

– Each source node in l-neighborhood of a dynamic exit point is contributing
equally for selection. However, a source node nearer to a dynamic exit point
should contribute more than a source node farther from it.

– There can be more than one dynamic exit point who have common source
nodes in l-neighborhood and can be selected for placing ladders due to large
density which may not be a good selection.

To overcome these problems, we propose a new approach to calculate the density
of each dynamic exit point such that each source node contribute a fraction of
its initial occupancy to each dynamic exit point based on its distance.

The pseudo code for calculating the density of each dynamic exit point is
given in Algorithm 1.

Once density for each dynamic exit point is calculated, L dynamic exit points
are selected whose density is largest among all the dynamic exit points. Ladders
can be used at these dynamic exit points until all evacuees evacuate the building.

6.2 DCCRP: Modified Capacity Constrained Route Planner

In this section, first we briefly summarize CCRP given in [11]. The CCRP con-
siders an input graph as a directed graph with maximum capacity and initial



78 A. Bhushan, N.L. Sarda, and P.V. Rami Reddy

occupancy on every node, in-take capacity and travel time on every edge, and
fixed destination nodes. A supersource node is added and connected to each
source node by an edge of infinite capacity and zero travel time. The CCRP
iterates over the following steps until no evacuees are left to assign a route:

1. compute a shortest path from the supersource node to a destination node
such that minimum available capacity of the path is nonzero and the path is
smallest among all shortest paths of non-zero capacity between supersource
node and all destination nodes.

2. compute the minimum of maximum available capacity of the path (the actual
number of evacuees who will traverse through the path) and the remaining
number of evacuees.

3. reserve the capacity of nodes and edges of the selected path for those evac-
uees.

For our purposes, we modify the CCRP in the following two ways:

1. Since we consider each undirected edge as bidirectional until it is restricted to
be bidirectional, the sum of flows on both direction should not be more than
the in-take capacity of an edge at any point time. We add this constraint in
the CCRP.

2. For a ladder edge, we need to ensure that at any point of time total number
of evacuees on it should not be more than its maximum load. This constraint
is added by creating a time window of length equal to its travel time which
is open when an evacuee enters into the ladder edge. It remains open until
its length and allows to enter evacuees on the ladder edge until number of
evacuees is less than its load.

Pseudocode of our evacuation planner using ladders is given in Algorithm 2.

Algorithm 2. Evacuation Planner using Ladders

for each dynamic exit point i do
compute density(i) using algorithm 1

end for
select L dynamic exit points whose density is largest among all dynamic exit points
for each selected dynamic exit point i do

create a new exit li of infinite capacity
create a new ladder edge (i, li) and set in-take capacity equal to bi, travel time
equal to λi, maximum load equal to σi

set start time for the ladder edge to placement time pi
end for
run DCCRP

Consider Example given in Figure 1. When we run our planner for 0 ladder
(which is equivalent to CCRP), it gives 6 units of evacuation egress time. When
we run our planner for 1 ladder, it reduces evacuation egress time from 6 time
units to 5 time units and selects node 2 for placing the ladder. The corresponding
evacuation plans are presented in Table 2. Values in parentheses give the time
when an evacuee reaches the node written adjacent to it.



Evacuation Planning of Large Buildings Using Ladders 79

Table 2. Evacuation Schedule of the Example 1 for 0 ladder and 1 ladder

0 Ladder

SourceNo. of
Evac.

Route with Schedule Dest.
Time

1 2 1(0.0)–3(2.0)–4(4.0) 4.0
2 3 2(0.0)–4(4.0) 4.0
2 3 2(1.0) – 4(5.0) 5.0
2 2 2(2.0)–4(6.0) 6.0

1 Ladder

SourceNo. of
Evac.

Route with Schedule Dest.
Time

1 2 1(0.0)–3(2.0)–4(4.0) 4.0
2 1 2(1.0)–ladder-exit(3.0) 3.0
2 3 2(0.0)–4(4.0) 4.0
2 1 2(3.0)–ladder-exit(5.0) 5.0
2 3 2(1.0) – 4(5.0) 5.0

6.3 Computational Complexity

Our proposed evacuation planner involves the following main steps: (i) comput-
ing density of each dynamic exit point and (ii) running DCCRP. Algorithm 1
is used in computing the density for each dynamic exit point. In the algorithm,
dominating step is to compute shortest path from each source node to each
dynamic exit point which can be done by using single source shortest path algo-
rithm from each source node. If m number of evacuees are present then at most
m source nodes will be in the graph. Since single source shortest path algorithm
requires O(|N | log |E|) time, the upper bound on running time for computing
the density for all dynamic exit points is O(m|N | log |E|).

The upper bound of CCRP is O(m|N | log |E|) which remains the same for the
DCCRP.

Thus, the upper bound on the running time of the evacuation planner using
ladders is still O(m|N | log |E|).

7 Experimental Results

We consider our department building named as Kanwal Rekhi (KR) Building
to generate test data for our experiments. KR is a five floor building and the
corresponding graph contains 342 nodes and 362 edges. The nodes representing
rooms with windows are marked as dynamic exit points. Two other buildings
are also used from the literature namely Building 101 and Building 42 [2,13].
The Building 101 is a 11 floor building and the corresponding graph contains 56
nodes and 66 edges. The Building 42 is a six floor building and the corresponding
graph contains 111 nodes and 140 edges. We have taken the same input data for
nodes and edges of these buildings as taken in [1]. We have taken travel time as
1 for each edge whose travel time is 0.

The experiments are performed on a dual-CPU AMD Athlon(tm) II X2 250
processor with 3.8 GB of memory running Linux (Ubuntu 10.04). The language
used is java. We use ILOG CPLEX R© solver in java to solve the optimization
model [1].

We next compare the results of each experiment with the optimization models
DEEP-1 and DEEP-2 proposed in [1]. The objective of DEEP-1 is to minimize



80 A. Bhushan, N.L. Sarda, and P.V. Rami Reddy

the average evacuation time while the objective of DEEP-2 is to minimize the
evacuation egress time.

7.1 Experiment 1: Varying the Number of Ladders

For this experiment, KR building is used. For the given number of evacuees
at each source node, number of ladders are varied from 0 to 50 to compute
average evacuation time and evacuation egress time. Total number of evac-
uees are equal to 300 and number of source nodes are equal to 49. For models
DEEP-1 and DEEP-2, we have taken 39 time units as an upper bound on evac-
uation egress time.

Figure 2 contains two plots depicting the variation in average evacuation time
as a function of the number of ladders. While plot A shows average evacuation
time obtained by our proposed planner, plot B shows optimal average evacuation
time obtained by DEEP-1. From these plots we find that the use of ladders
significantly reduces the average evacuation time. For example, in plot B the
average evacuation time obtained with 50 ladders is 53 percent lower than the
evacuation time obtained without using any ladder. Further we observe that our
planner gives results close to the optimal for all the cases with the maximum
and average deviation from the optimal times being 10.44 and 4.86 percent.

The variation in evacuation egress time with the number of ladders is displayed
in Figure 3. Plot A shows evacuation egress time obtained by our proposed
planner while plot C shows optimal evacuation egress time obtained by DEEP-
2. Similar to the result in Figure 2, we find that the use of ladders reduces the
evacuation egress time by upto 53 percent. Further, compared to the optimal
solutions, the maximum deviation in the evacuation egress times computed by
our proposed approach is 16.66 percent with the average deviation being 4.97
percent.

Figure 4 shows three plots depicting the running time of each model. Plots
A, B, C show the running times obtained by our model, DEEP-1 and DEEP-2

Fig. 2. Average evacuation time vs number
of ladders (experiment 1)

Fig. 3. Evacuation egress time vs number
of ladders (experiment 1)



Evacuation Planning of Large Buildings Using Ladders 81

Fig. 4. Running time for varying number of
ladders (experiment 1)

Fig. 5. Running time for varying distri-
bution of evacuees (experiment 2)

respectively. From these plots we observe that there is a significant reduction
in the running times for our model compared to the optimization models. To
illustrate, the maximum running time required by DEEP-1 and DEEP-2 is 80
and 99 minutes respectively while the maximum run time for our model is only
4.02 seconds. Further, from plot A it is interesting to note that the running time
of the proposed approach decreases with increasing number of ladders which in
turn corresponds to decreasing evacuation egress time (Figure 3 ).

This experiment shows that our planner gives better results for average evac-
uation time than evacuation egress time and improves running time significantly
as compared to DEEP-1 and DEEP-2.

7.2 Experiment 2: Varying Distribution of Evacuees

For this experiment, KR building is used. For a given number of evacuees and
number of ladders, distribution of evacuees is varied and the average evacuation
times and the evacuation egress times are computed. In all, 300 evacuees and
20 ladders are taken for the experiment. The upper bound on evacuation egress
time for DEEP-1 and DEEP-2 is taken to be 30 time units. Following scenarios
are considered for different distributions of 300 evacuees: (i) all evacuees are on
lower floors, (ii) all evacuees are on middle floors, (iii) all evacuees are on higher
floors, and (iv) the evacuees are spread across all floors. The results are presented
in Figures 5-7.

Figure 6 shows the variation in average evacuation time for different distri-
bution of evacuees. In particular, plot A depicts this variation for our proposed
planner while plot B is for DEEP-1 model. For all the cases, our heuristic solu-
tion is close to the optimal solution, with maximum deviation being 8.19 percent
and average deviation being 5.47 percent.

Figure 7 shows two plots on variation in evacuation egress time for differ-
ent distribution of evacuees. Plot A shows evacuation egress time obtained from



82 A. Bhushan, N.L. Sarda, and P.V. Rami Reddy

our planner and Plot B shows optimal evacuation egress time obtained from
DEEP-2. The maximum and the average deviation in our results is 11.11 and
8.33 percent.

Figure 5 shows the running times of the three models: plot A for proposed
model, plot B for DEEP-1 model, and plot C for DEEP-2 model. Similar to ex-
periment 1, from these plots also we observe that there is a significant reduction
in the running time for our model when compared to the optimization models.
In particular, the maximum times taken by DEEP-1 and DEEP-2 models are
49.5 and 29.8 minutes while our model took at most 2.13 seconds for the various
scenarios of distribution of evacuees.

Another interesting observation from Figures 5 and 7 is that the running time
of our proposed model seems to behave in the same manner as the corresponding
egress time. This behavior is consistent with that observed for experiment 1.

7.3 Experiment 3: Varying Number of Nodes

For this experiment, building 101, building 42 and KR building are used. These
buildings contain 56, 111 and 342 nodes, and 323, 678 and 504 evacuees re-
spectively. Number of ladders used for all buildings is 4. The upper bound on
evacuation egress time for DEEP-1 and DEEP-2 models is 47 time units. The
results are presented in Figures 8-10.

Figure 8 shows the variation in average evacuation times obtained by the
proposed (plot A) and DEEP-1 (plot B) models. Compared to the optimal times,
the maximum and average deviations in the times computed by our proposed
approach are 6.62 and 3.07 percent.

Figure 9 shows the variation in evacuation egress time for varying number
nodes. As before plot A shows evacuation egress times obtained by our proposed
model while plot C shows optimal evacuation egress times obtained by DEEP-2.

Fig. 6. Average evacuation time vs differ-
ent distribution of evacuees (experiment 2)

Fig. 7. Evacuation egress time vs different
distribution of evacuees (experiment 2)



Evacuation Planning of Large Buildings Using Ladders 83

Fig. 8. Average evacuation time vs num-
ber of nodes (experiment 3)

Fig. 9. Evacuation egress time vs number
of nodes (Experiment 3)

Fig. 10. Run time for varying number of nodes

For this scenario, the maximum and the average deviations in our results, when
compared to the optimal time, are 16 and 5.26 percent.

Figure 10 shows the running times for the three models: plot A for the pro-
posed model, and plots B and C for DEEP-1 and DEEP-2 models. Once again,
the running times required by our proposed approach are much lower than those
required by the optimization models. Further, similar to Experiments 1 and 2,
the running time for our proposed model behaves in the same manner as the
evacuation egress times.

8 Conclusions

An effective and practical way of creating additional exits in a building to re-
duce evacuation times is to place ladders at optimally selected locations. In this



84 A. Bhushan, N.L. Sarda, and P.V. Rami Reddy

work, we have shown that the problem of finding optimal locations of ladders
to minimize either the average evacuation time or the evacuation egress time
is NP-hard. We also propose a heuristic method for evacuation planning using
ladders. The proposed approach places the ladders at suitable locations identi-
fied based on the distribution of evacuees. This is followed by implementation of
a modification of the well known CCRP algorithm that makes it applicable for
developing evacuation plans using the placed ladders.

The performance of the proposed approach is compared with existing opti-
mization models. The results indicate that solutions which are reasonably close
to the optimal solutions can be obtained by our approach while achieving sig-
nificant reduction in the running times compared to the optimization models.

In this work, we have assumed that only one ladder can be placed at a given
dynamic exit point. We plan to extend our model to incorporate scenarios where
multiple ladders can be placed at a dynamic exit point. We also plan to test our
model by applying it to more complex buildings.

References

1. Bhushan, A., Sarda, N.L.: Building evacuation planning using dynamic exits. Fire
Safety Journal (under review)

2. Chalmet, L., Francis, R., Saunders, P.: Network models for building evacuation.
Management Science 28(1), 86–105 (1982)

3. Choi, W., Hamacher, H., Tufekci, S.: Modelling of building evacuation problems
with side constraints. European Journal of Operational Research 35(1), 98–110
(1988)

4. Garg, P.: Modeling of evacuation planning using dynamic exits, M.Tech Thesis,
Department of Computer Science and Engineering, Indian Institute of Technology
Bombay, India (2011)

5. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory
of NP-Completeness. W.H. Freeman, San Francisco (1979)

6. Gupta, A., Yadav, P.: SAFE-R a new model to study the evacuation profile of a
building. Fire Safety Journal 39(7), 539–556 (2004)

7. Hamacher, H., Tjandra, S.: Mathematical modelling of evacuation problems - a
state of the art. In: Pedestrian and Evacuation Dynamics, pp. 227–226. Springer
(2002)

8. Jarvis, J.J., Ratliff, H.D.: Some equivalent objectives for dynamic network flow
problems. Management Science 28(1), 106–109 (1982)

9. Kim, S., George, B., Shekhar, S.: Evacuation route planning: Scalable heuristics.
In: Proceedings of the 15th Annual ACM International Symposium on Advances
in Geographic Information Systems, p. 20. ACM (2007)

10. Kisko, T., Francis, R.: Evacnet+: a computer program to determine optimal build-
ing evacuation plans. Fire Safety Journal 9(2), 211–220 (1985)

11. Lu, Q., George, B., Shekhar, S.: Capacity Constrained Routing Algorithms for
Evacuation Planning: A Summary of Results. In: Medeiros, C.B., Egenhofer, M.,
Bertino, E. (eds.) SSTD 2005. LNCS, vol. 3633, pp. 291–307. Springer, Heidelberg
(2005)



Evacuation Planning of Large Buildings Using Ladders 85

12. Lu, Q., Huang, Y., Shekhar, S.: Evacuation Planning: ACapacity Constrained Rout-
ing Approach. In: Chen, H., Miranda, R., Zeng, D.D., Demchak, C.C., Schroeder, J.,
Madhusudan, T. (eds.) ISI 2003. LNCS, vol. 2665, pp. 111–125. Springer, Heidelberg
(2003)

13. Tjandra, S.: Dynamic network optimization with application to the evacuation
problem. PhD thesis, Department of Mathematics, University of Kaiserslautern,
Kaiserslautern, Germany (2003)

14. Zeng, M., Wang, C.: Evacuation Route Planning Algorithm: Longer Route Pref-
erential. In: Yu, W., He, H., Zhang, N. (eds.) ISNN 2009. LNCS, vol. 5551, pp.
1062–1071. Springer, Heidelberg (2009)

15. Zhou, X., George, B., Kim, S., Wolff, J., Lu, Q., Shekhar, S.: Evacuation planning:
A spatial network database approach. IEEE Data Engineering Bulletin (Special
Issue on Spatio-temporal databases) 33(2), 26–31 (2010)



A Write Efficient PCM-Aware Sort

Meduri Venkata Vamsikrishna�, Zhan Su, and Kian-Lee Tan

School of Computing, National University of Singapore
meduri@cwi.nl,

{suzhan,tankl}@comp.nus.edu.sg

Abstract. There is an increasing interest in developing Phase Change
Memory (PCM) based main memory systems. In order to retain the
latency benefits of DRAM, such systems typically have a small DRAM
buffer as a part of the main memory. However, for these systems to be
widely adopted, limitations of PCM such as low write endurance and
expensive writes need to be addressed. In this paper, we propose PCM-
aware sorting algorithms that can mitigate writes on PCM by efficient
use of the small DRAM buffer. Our performance evaluation shows that
the proposed schemes can significantly outperform existing schemes that
are oblivious of the PCM.

1 Introduction

Design of database algorithms for modern hardware has always been a promi-
nent research area. Phase Change Memory (PCM) is a latest addition to the
list of modern hardware demanding the design of PCM-friendly database al-
gorithms. With PCM being better than flash memory (SSD) in terms of write
endurance, read and write latency, focus has shifted to exploring the possibilities
of exploiting PCM for databases. Because of the high density and lower power
consumption of PCM as compared to DRAM, it is evident that PCM might be
an alternative choice for main memory [2,3]. However, as PCM has a low write
endurance and high write latency as compared to DRAM, it is essential to de-
sign algorithms such that they do not incur too many writes on PCM and thus
prevent the hardware from getting worn out soon.

In-memory sorting is a write-intensive operation as it involves huge movement
of data in the process of ordering it. Quick sort is the most expensive in terms of
data movement though it is the best in time complexity. Selection sort involves
fewest data movement but it has quadratic time complexity and also incurs a
lot of scans on the data. In this paper, we design write-aware in-memory sorting
algorithms on PCM. Like [3], we also use a small DRAM buffer to alleviate
PCM writes using efficient data structures. We assume that the data movement
between DRAM and PCM can happen seamlessly. This can be achieved through
a hardware driven page placement policy that migrates pages between DRAM
and PCM [6].

� Please note that this work was done while the author was at the National University
of Singapore.

S.W. Liddle et al. (Eds.): DEXA 2012, Part I, LNCS 7446, pp. 86–100, 2012.
c© Springer-Verlag Berlin Heidelberg 2012



A Write Efficient PCM-Aware Sort 87

Our first sort algorithm constructs a histogram that allows us to bucketize the
in-memory data such that either the depth or width of each bucket is DRAM-size
bound. This is an important heuristic that we introduce to make our algorithm
write-efficient as well as run-time efficient. Quick sort is employed on buckets that
are depth bound and counting sort is used to sort the buckets that are width
bound such that minimum writes are incurred on PCM. We further minimize
PCM writes aggressively with an improved version of our algorithm. In this
variant, we construct the histogram even before the data is read into PCM by
sampling data directly from the disk.

If the unsorted data on disk sorted doesn’t entirely fit into the PCM at one
go, external sort is performed which involves getting the data in chunks to main
memory one by one, sorting the chunk, creating the runs on disk and finally
merging those runs. We show in the experiments that our algorithm performs
well even in the scenario where the entire data is not memory resident.

There have been few works in adapting database algorithms for PCM. In
[1], a B+ tree index structure that incurs fewer writes to PCM (which is used
as main memory) is proposed. Though the idea to reduce memory writes is
beneficial, the B+ tree nodes (at least the leaves) are kept unsorted to obtain
fewer modifications during insertion and deletion of data to the index. This leads
to more expensive reads. An algorithm to adapt hash join is also proposed in
[1] which minimizes the writes from the partitioning phase on PCM by storing
the record ids of the tuples (or the differences between consecutive record ids)
in the hash partitions. The records are in-place accessed during the join phase
using the record ids. The algorithm also aims at achieving fewer cache misses.

PCM-aware sorting is of significance in the context of databases as it is used
in many query processing and indexing algorithms. Our work to produce a PCM
aware and efficient sorting algorithm can help alleviate the heavy read exchange
the existing B+ tree index algorithm in [1] does. It can also be extended to
obtain a PCM-aware sort merge join algorithm. To our knowledge, this is the
first report work on sorting algorithms in memory-based PCM.

We present our basic and advanced PCM sorting algorithms in Sections 2.3
and 2.4 respectively. We report results of an extensive performance study in
Section 3.

2 PCM-Aware Sorting Algorithm

Our goal is to design efficient sorting algorithms that incur as few writes on
PCM as possible. As context, we consider external multi-way merge sort that
comprises two main phases: (a) generating sorted runs, and (b) merging the
runs into a single sorted file. Our key contribution is in the first phase where
PCM-aware in-memory sorting is proposed.

For our hybrid architecture, we divide the main memory into three sections.
PCM is divided into two partitions - a large chunk to hold the incoming unsorted
data and a small chunk for use by a histogram. We refer to the first partition as
sort-chunk, and the second partition as hist-chunk. The DRAM forms the third
partition.



88 M.V. Vamsikrishna, Z. Su, and K.-L. Tan

In the following subsection, we describe the run generation phase. We first
look at a naive strategy, afterwhich we present our two proposed solutions.

2.1 A Naive Approach

Under the naive strategy, we fill the sort-chunk with as many tuples from disk as
possible. Next, we adopt the scheme in [4] to generate an equi-depth histogram
(in hist-chunk) using a single scan of the data in the sort-chunk.

The depth of each bucket in our equi depth histogram will be no greater than
DRAM size. Once the histogram is constructed, the input data in the PCM
buffers is shuffled according to the bucket ranges in the histogram. That means,
the data belonging to each bucket range is brought together such that data
belonging to bucket 0 is placed first, bucket 1 next and so on. So the input data
is sequentially arranged according to the bucket intervals, still unsorted within
each interval. Now each bucket is sent to the DRAM and a quick sort is done
upon the bucket data in DRAM. The sorted data will be written to the sorted
run on disk directly (assuming DRAM has direct access to the disk). Figure 1
illustrates the manner in which bucket transfer is done from PCM to DRAM.

Data to be sorted 

30-100 
150-1000 
1200-5000 

DRAM Size of 
DRAM=d 

d 
d 
d 

PCM 

d 

Transfer to DRAM and perform quick sort 

Write to sorted run file 

Fig. 1. PCM-aware sorting scheme (naive)

The PCM writes in this scheme will not exceed 2n + sizeof(Histogram)
(including the disk fetches) where “n” denotes the total size of the input block
of data fetched into PCM. This is because, histogram storage on PCM and
shuffling of unsorted data according to bucket range contribute to writes.

2.2 Refining the Naive Sorting Scheme

We observe that the naive scheme described above is insensitive to data skew.
Where data is skewed, using quicksort is an overkill (and costly). Instead, we can
potentially improve the performance by adopting the Counting Sort. Instead of
swapping the elements to be sorted, it focusses on the count of each element. If
the data range is small enough to fit in memory, a count array is constructed with
array index starting from minimum element of the input data to the maximum
element. The count array determines the number of elements less than or equal
to each data element. Thus it determines the final positions of each data element
in the sorted array. Please refer to [10] for complete description of the algorithm.



A Write Efficient PCM-Aware Sort 89

One of the key disadvantages of Counting Sort is that it is effective only for
small data ranges. However, this seemingly disadvantageous trait indeed benefits
our scheme. For skewed data, our naive scheme fails to identify the skewedness
and constructs several equi depth buckets. Whereas, if we can identify that the
frequency of values in a certain range is higher and if the range manages to fit
into DRAM, we can replace quick sort with counting sort for the elements of
that range.

– The bucket data need not fit into DRAM. Instead if the count array is smaller
than DRAM size, it can help us sort many elements in one go, thus saving
time.

– This makes our histogram hybrid and compact: either its width or the depth
is DRAM-bound.

In the example shown in Figure 2, DRAM size is 50 elements, and PCM holds
an unsorted data block of 600 elements. These 600 data elements are distributed
over three non-overlapping ranges as 50, 500 and 50 elements. It can be observed
that the ranges of the first and third buckets are large spanning over 1000 element
width, but the depth is just 50. On the other hand, the middle bucket which
has just a range of 50 elements holds 500 elements because of several duplicates.
Not paying attention to the skewed range of a small interval holding a whopping
500 values, an equi-depth histogram is constructed by our naive scheme with 12
buckets of 50 elements each since 50 is the available DRAM size. But if we can pay
attention to the width of each bucket and strive to make it DRAM-contained,
we can achieve a compact histogram with just 3 buckets. This is because the
second bucket’s width is 50 (<= size of DRAM) and hence a DRAM-contained
count array can be constructed for the data in the second bucket. Buckets 1 and
3 are depth-bound, so quick sort is employed to sort them by transferring the
bucket data to DRAM.

That means, while constructing a bucket we need to check whether the depth
or width of a bucket is hitting the DRAM limit first as input (unsorted) data
keeps getting added to a bucket. Whichever parameter hits the limit later is the
one we use to decide the bucket boundaries. For example, if the data is sparsely
distributed, bucket width crosses DRAM limit easily but it will take a while
for its depth to hit the DRAM limit, in that case the bucket is depth-bound.

  0 - 1000   1001-1050   1051-2000 

50 500 50 

Equi depth histogram 

        Dram size=50 

. 

. 

. 

. 

. 

. 

12 buckets 
50 

50 

. 

. 

. 

. 

. 

. 

DRAM-bounded histogram 

  0 - 1000 50 

  1001-1050 500 

  1051-2000 50 

3 buckets 

Fig. 2. Compact Histogram achieved using Counting Sort for normal data distribution



90 M.V. Vamsikrishna, Z. Su, and K.-L. Tan

In case of densely distributed data, it is the other way round and the bucket
becomes width bound. So our histogram is robust to both sparsely and densely
distributed data.

One more advantage in having a compact histogram is that, the amount of
data that has to be transferred to DRAM is minimal. Whenever there is an
opportunity to avoid data transfer, we grab it by employing counting sort. In the
worst case where the entire data is uniformly distributed, our hybrid histogram
gracefully reduces to an equi-depth histogram since the need to use counting sort
arrives only in the case of non-uniformly distributed data. Perhaps, a constraint
in using counting sort is that it is basically applicable to sorting integers.

2.3 Algorithm 1: Basic PCM-Aware Sorting

Our scheme consists of the following steps:

– Construction of the hybrid DRAM-bounded width / depth histogram
– Shuffling the input data block according to bucket range
– Since the histogram constructed is not 100% accurate, efforts should be made

to combat it
– Transfer of data / range to DRAM to perform quick / counting sort

Once the hybrid histogram is constructed (Refer Figure 3), the algorithm trans-
fers the bucket data to DRAM and performs quick sort if the depth ≤ DRAM
size. On the contrary, if the width ≤ DRAM size, the count array is built in
DRAM and accordingly the data is moved within PCM to its final places by
looking up to the count array. It should be noted that we do not use a separate
output array for counting sort, rather the data on PCM is moved in-place to
reach the sorted order.

BucketData (depth or width bound) 

>d 
    <=d 

DRAM Size of 
DRAM=d 

<=d 
>d 

PCM 

    <=d <=d 

Width Depth 

Histogram 

Transfer each bucket data / range to DRAM and perform quick / count sort 

Fig. 3. Basic PCM-aware sort scheme

Construction of Histogram. We follow a similar way of histogram construc-
tion as [5]. A scan of the input elements in PCM is performed to uniformly pick
up “d” random elements, two of them being the minimum and maximum of the
scanned block. The reason for including maximum and minimum values in the
sample is to let them participate in fixing the bucket boundaries of the first
and the last buckets respectively. Else, we would miss some potential values we



A Write Efficient PCM-Aware Sort 91

need to sort. With “d” being the DRAM size, the sampled elements are sorted
inside DRAM using quicksort. Now the sorted sample array present in DRAM
is scanned to construct the required histogram.

The constructed histogram is for the sample array and it needs to be scaled
up for the original PCM resident data. It should be understood that the width
(range) of each bucket in the histogram is appropriate because we made sure we
did not even miss including the original data’s minimum and maximum values
while fixing the bucket ranges. The only difference is that, since we are operating
on the sampled array, the maximum allowed depth of each bucket (in cases

where the width has already exceeded the DRAM limit) is d2

sizeof |inputelements| as
against the regular value of d. Here inputelements refers to the original unsorted
data residing in the PCM. Since the histogram is constructed on PCM, the depth
values of all the buckets are scaled up before storing them in the histogram.

Firstly, PCM writes are incurred by the histogram after its construction (be-
cause it is stored on PCM). The number of writes is equal to the size of the
histogram.

Kolmogorovs statistic gives a theoretical support to sampling. It fixes a bound
of 0.05 error for sample size of 1024 tuples and 740 tuples with confidence 99%
and 95% respectively([5]).

Shuffling of Data According to Histogram Buckets. The unsorted data
held in the PCM buffer is re-arranged such that all the elements belonging to
the same bucket are brought to contiguous locations though unsorted. This is
used in our naive scheme as well (refer section 2.1). The easiest way to do this is
to create a new array and to transfer the elements from the original array to the
new array according to the requirement. But we choose to do in-place shuffling
to be memory conscious.

If the total number of PCM elements are “n”, at max, there can only be
“n” moves and thus “n” integer writes, i.e, n ∗ sizeof(int) byte writes. On
the other hand if we are sorting tuples, the number of writes would rather be
n ∗ sizeof(tuple).

Appropriating the Hybrid Histogram. We make use of Kolmogorovs statis-
tic to reduce the error in bucket depths, followed by a rigorous bucket correction
procedure.

We introduce a tightening factor Δ into the bucket depth to reduce the possi-
bility of errors. As errors in the histogram are induced because of miscalculating
bucket depths, we apply the tightening factor to depth bound and not width
bound. Instead of DRAM size “d”, the depth bound is fixed to (1−Δ)∗d, where
Δ could range from 0.05 to 0.1 meaning 5% to 10% error is accommodated.
Even though this bound tightening is applied, bucket depths can still cross the
DRAM size with a small probability. To correct it we apply iterative splitting
and shuffling on the erring buckets till we reach a correct hybrid histogram.

The extra writes incurred during histogram correction are dependant on the
number of buckets which are corrected. Each time a bucket is split, it incurs
a new bucket write on the histogram and the PCM data belonging to that



92 M.V. Vamsikrishna, Z. Su, and K.-L. Tan

bucket alone is shuffled incurring PCM writes. If “new” is the number of new
buckets that are created because of additional splits, on an average it leads to
new ∗ (hist bucket + PCM bucket data) writes on PCM because of histogram
manipulation and bucket shuffling. These writes are few, because on an average,
very few buckets are corrected and no bucket from our experiments encounters
more than two rounds of additional splits.

Writes During Quick / Counting Sort. As mentioned in section 2.1, quick
sort is done in DRAM for those buckets whose depth is DRAM bounded and
the sorted elements can be written directly to the disk provided DRAM in the
hybrid architecture has direct access to the disk incurring zero PCM writes. In
cases where the bucket width is DRAM bounded, the count array is computed
in the DRAM. Out of memory consideration, we perform in-place movement
of data on PCM looking up to the aggregated count array present in DRAM.
So the writes are again at max “n” provided there are “n” data elements. It is
clear that because of counting sort, to get the sorted order a linear number of
writes happen on PCM. But these writes are minimum and worthwhile given
the speed and compact histogram we achieve because of counting sort using
our hybrid scheme. Moreover if the data is uniformly distributed, our algorithm
automatically reduces to our naive scheme.

Because we use counting sort for width-bound buckets, we achieve some linear-
ity in time complexity. Since counting sort is used only in the case of non-uniform
data distribution, suppose “r” buckets are depth bound and “n− r” buckets are
width bound, the computation goes as

∑r−1
i=0 O(ni logni) +

∑n−1
i=r O(ni + ki)

where ki indicates the width of “i”th bucket as against a relatively expensive∑n−1
i=0 O(ni logni) incurred by a non-skew aware scheme.

2.4 Algorithm 2: Advanced PCM-Aware Sorting

The best running time is achieved by quick sort and the least memory writes
are achieved by selection sort. But quick sort is worse in terms of writes because
of numerous swaps and selection sort is bad in terms of the huge reads and long
sorting time. We try to achieve an algorithm which is close to both the ideal
attributes of least writes and running time in our algorithm 1.

In this section, we design an algorithm that improves over the basic PCM
aware sort scheme by aggressively reducing the PCM writes. The writes in-
curred in main memory because of comparisons and swaps have already been
reduced using the basic PCM aware algorithm. The aspect that incurs any ex-
tra writes (other than disk fetches to PCM) is histogram creation and shuffling.
We already ensure that the histogram is always compact. But shuffling is write-
intensive. Because our histogram is constructed after fetching the data from disk
to memory, we need to shuffle the data in the memory to ensure the unsorted
data belonging to each bucket gets collected together. This causes a number of
writes directly proportional to the data size that is memory resident, because in
the worst case each tuple (assuming that we are sorting tuples) has to move to
get to its intended bucket.



A Write Efficient PCM-Aware Sort 93

Our idea is to construct the histogram even before the data is fetched into
main memory (please refer Figure 4(a)), so that once the actual data from disk
starts arriving, it can directly go to its respective bucket and thus avoid a shuffle.
This can avoid PCM writes totally except for the disk fetch. The efficiency of
this approach still depends on the accuracy of the histogram. And the accuracy
of the histogram depends on the extent to which sampling helps us. But this
incurs a lot of random reads from the disk.

So we adopt two steps to enhance the accuracy of our histogram while keeping
the random reads from disk within limit.

– While fetching the data from the disk to DRAM to construct the sampling
array for sorting, we drop all attributes in the tuples other than the sorting
attribute.

– At the same time, we do not fill the entire DRAM with the sampling array.
We just use a small fraction of the DRAM to construct the sample array.
So this avoids the overhead of sorting too many tuples beforehand and the
overhead of random reads from the disk.

• Pre construction of histogram for advanced PCM aware sort

PCM (empty)

DRAM

Sorted
Sample
array in
DRAM

Unsorted file on disk

Fix the bucket boundaries

>d
<=d
<=d

<=d
>d

<=d
Create hybrid histogram

(a) Pre-construction of histogram

DRAM

sorted
overflow
array in
DRAM

Block Fetch fromdisk to PCM

overflow

PCM

underflow overflow underflow

>d
<=d
<=d

<=d
>d

<=d
hybrid histogram

Unsorted
file on disk

Overflow file for
bucket 1

Overflow file for
bucket3

B1 B2 B3 B4

Bucket 1 overflow

Bucket 3 overflow

Swap with the 1st bucket
• Creation of overflow array in DRAM for advanced PCM aware sort

(b) Creation of Overflow array in DRAM

Fig. 4. The Advanced PCM-Aware Sort

It is important to note that in this advanced scheme, we do not need to re-scan
data and correct the histogram depths. Correction is done as the data is fetched
from disk to PCM.

Errors and Correction during Memory Fetch. As the tuples are fetched
into PCM, they go into their respective bucket boundaries which are computed
from the histogram widths. But in this case, both widths and depths can be at
fault unlike algorithm 1 which needs to correct wrong depths. Since the histogram
is being pre-constructed, the minimum and maximum elements of the fetched
block are not known. So the first bucket and the last bucket in our histogram
can be erroneous with respect to the minimum boundary of the first bucket and
the maximum range boundary of the last bucket. To accommodate the wrong
estimate, we keep extending the border buckets’ boundaries as elements come
in. If a tuple with its sort attribute value ≤ minimum-boundary of bucket 1, the



94 M.V. Vamsikrishna, Z. Su, and K.-L. Tan

new tuple will now belong to bucket 1 and the minimum boundary is updated.
The same applies to elements arriving beyond the last bucket as well. But there
are two problems with this.

– The new elements can cause the depth to go beyond the estimate. If the
depths cross DRAM size and if the bucket is depth-bound, sorting the bucket
using DRAM is difficult.

– The new element can cause the width to go beyond the estimated boundary.
If the bucket is width bound and if counting sort was planned to be employed,
the bucket can no longer be sorted using DRAM as the count array is too
big to fit into DRAM.

The width error is solved using a slack (Δ) 5% to 10% (same as the tightening
factor in Section 2.3) which is sufficient for uniformly distributed data. But in
the case of non-uniformly distributed data, the global maximum and minimum
which we know from pre-computed database statistics are always included. This
is because if the skew in data distribution is extremely high, it is impossible for
slack to control width errors.

To correct depth errors, we introduce the construction of an overflow array. If
there is a bucket whose depth was under-estimated, there should be some other
bucket with an over-estimated depth. So if there is no space to accommodate
some of the elements (tuples) belonging to a particular bucket due to an overflow,
they can still find a place on the PCM in some of the holes created because of
some underflowing buckets. But the management of these holes requires a lot of
meta data and a very tedious way of maintaining bucket information. An overflow
from some bucket may have to be distributed over multiple small underflows from
several underflow buckets. To avoid such cumbersome management, we make use
of a separate overflow array.

The overflow array is constructed in DRAM and is transferred to PCM once
buckets start arriving to DRAM for their sort as shown in Figure 4(b). So all
the tuples which overflow will at first be stored in DRAM in the overflow array.
The number of overflow tuples is expected to be under DRAM size, given the
accuracy of the histogram is not so bad. Otherwise, the overflow elements spill
over to the disk in the individual overflow files, one for each bucket.

There are two cases that need to be handled during the actual sort of the buck-
ets on PCM. The first of them is when the overflow is restricted to main memory
alone, which means the overflow array doesn’t exceed the DRAM size. In such a
case, the overflow array is sorted in DRAM first according to bucket id’s and next
according to the sort attribute, before transferring it to the PCM. Before the first
PCM-resident bucket data moves over to DRAM for sorting, the sorted overflow
is also prepared for movement to PCM in the void space. This swap of memory
blocks takes place using some vacant input or output buffer as the intermediate
swap media. The crucial condition for this to happen is that the first bucket is al-
ways depth-bound. Otherwise, if the bucket is width-bound, the count array needs
to be constructed in DRAM and the overflow elements have no place to go. It is
always theoretically possible to make a bucket depth bound by enumerating ele-
ments during histogram construction, than to make it width bound as the values



A Write Efficient PCM-Aware Sort 95

of the elements and distribution are beyond our control. Once the overflow ar-
ray is transferred to PCM, it will stay there till the sort of all the PCM-resident
buckets finishes.

Sorting during in-memory Overflow. If the bucket is width bound, a count-
ing array is constructed over the data present in PCM buffers as well as the over-
flow array and an in-place counting sort is performed on this aggregate array.In
case of a depth bound bucket, the bucket data in DRAM is first quick sorted
and merged with the already sorted overflow data belonging to the same bucket
residing in PCM (See Figure 5(a)).

DRAM

Block Fetch fromdisk to PCM

Sorted
Overflow
Array for
all buckets

PCM

underflow overflow underflow

>d
<=d
<=d

<=d
>d

<=d
hybrid histogram

Unsorted
file on disk

Overflow file for
bucket 1

Overflow file for
bucket3

B2 B3 B4

DRAM

empty

B1 data

Quick sort andmerge / counting sort

• Mainmemory overflow for advanced PCM aware sort

(a) Handling main memory overflow for
a bucket.

Disk overflow: Overflow aware replacement selection

DRAM

Tuples Fetch fromdisk to PCM

Unsorted Overflow Array for all buckets PCM

>d
<=d
<=d

<=d
>d

<=d
hybrid histogram

Unsorted
file on disk

Overflow file for B1
(non empty)

Overflow file for
bucket 3

Buckets 2,3 & 4

DRAM

Min heap
Bucket 1
data

Tuple value Bid frozen

150xxxx

70xxxx

1

1 0

Min left=60

(b) Overflow aware replacement selec-
tion.

Fig. 5. Advanced PCM sort-aware scheme

Sorting for Disk Overflow. For buckets whose overflow elements are on disk,
neither quick sort nor counting sort is applicable. So, a variant of replacement
selection is applied. Our algorithm is different from the conventional replacement
selection as we have two main memory resident data structures that need to be
maintained. One is the overflow array and another one is the minimum-heap
constructed over the bucket data present in DRAM. But sorting the overflow
array by constructing a heap on it is avoided as it incurs additional PCM writes.
It is important to note that the overflow array was previously sorted when it was
formed inside DRAM. Now it is no longer sorted as new elements keep entering
it from the disk. And moreover we have overflow elements belonging to several
buckets keep arriving into the PCM-resident overflow array.

So in addition to bucket id (bid), we maintain one more field called “frozen”
which accepts a boolean value (see Figure 5(b)). If an overflow element belonging
to any bucket has left the overflow array, it makes space for the disk resident
overflow tuples belonging to the current bucket. Though these elements arrive
in unsorted order, they belong to the current run as along as they are ≥ the
minimum value (or root) that has just left the min-heap. Else the element is
marked as frozen and belongs to the next run.

Once there is no more space for any more disk elements to enter the PCM
overflow array, the bucket elements present in the min-heap of DRAM will start



96 M.V. Vamsikrishna, Z. Su, and K.-L. Tan

initiating the replacement selection. The root of the min-heap will scan the
PCM-resident overflow array to know if any elements ≤ itself belonging to the
same bucket are present. If yes, those elements are sent out to the sorted run
before the current root. Once the current root leaves the min-heap, another
element from the overflow array is brought into the DRAM for min-heap recon-
struction and the fetch of overflow elements from disk into the overflow array is
repeated provided it has space. If the overflow array is filled with other bucket
values and there no more elements in the overflow array belonging to the current
bucket, our overflow based replacement selection reduces to the conventional re-
placement selection. And the elements from the disk are fetched straight into
the DRAM heap. Finally the frozen elements in the overflow array and in the
DRAM belonging to the current bucket will get unfrozen to resume min-heap
reconstruction.

The bottomline is, to have a run at least as long as the traditional replacement
selection and if possible a longer run, we utilize the overflow space in PCM and
the DRAM buffer to implement our variant of replacement selection. So we
manage two buffers, one in PCM and one in DRAM, while fetching data from
disk for replacement selection. During this, frozen elements are created in both
the buffers. Though the PCM overflow space is an asset that can be exploited to
produce longer runs, we have to conduct a few additional scans (reads) on it to
avoid PCM writes. Figure 6(a) portrays elements arriving from disk to the PCM
buffer and being assigned a frozen value depending on their comparison with the
min-heap root present in DRAM. Likewise, Figure 6(b) shows elements from disk
directly arriving into the DRAM heap following the absence of unfrozen current
bucket elements and space in the PCM buffer.

3 Performance Study

Our PCM simulator is actually DRAM based and uses the measures from [1]
to simulate the PCM write latency on DRAM. By default our hybrid memory
architecture reserves 3% of the simulatorś main memory obtained from actual
DRAM for simulated DRAM and 97% behaves like PCM.

Overflow aware replacement selection for Bucket Bid 1: 
Managing PCM Buffer 

Tuple Bid frozen 

Overflow array B1 

DRAM Min-Heap 

Curr. root:  30xxx 
50xxx 1 0 

1 

3 

1 

1 

0 

0 

20xxx 

55xxx 

27xxx 

Old. root:  25xxx 

Write to sorted run 
before curr. root 

Bring it to min-heap 
and reconstruct min-
heap after curr. root is 
written to  sorted run 

Data fetch to PCM 
overflow array 

PCM overflow 

(a) Managing PCM buffer

New Unfrozen & 
frozen elements 
included in DRAM 
Min heap 

Overflow array B1 

DRAM Min-Heap 
Curr. root:  40xxx 

PCM overflow 

Tuple Bid frozen 

70xxx 2 0 
1 

3 

4 

1 

0 

0 

20xxx 

55xxx 

64xxx 

No more unfrozen 
bucket 1 elements in 
filled up PCM buffer 

Overflow aware replacement selection for Bucket Bid 1: 
Managing DRAM Buffer 

(b) Managing DRAM buffer

Fig. 6. Managing buffer for replacement selection



A Write Efficient PCM-Aware Sort 97

The experiments were run on a PC with Intel(R) Xeon(R) 2.33GHz CPU. All
the experiments are performed with a default simulator memory size of 1,000,000
tuples with each tuple being 100 bytes wide. The experiments are conducted on
data with uniform and non-uniform distribution. The default file size is kept at
1 million tuples.

Our basic and advanced PCM aware sort schemes were compared against
quick sort, selection sort and counting sort. Our comparison is with the sort
having best running time at one end and other existing sorts which can po-
tentially provide few PCM writes at the other end of the spectrum. For fair
comparison we allocate the total PCM + DRAM main memory to all other
schemes we compare with. Due to space constraint, we only present representa-
tive results here.

3.1 Uniform Distribution

Figure 7(a), 7(b) and 7(c) compare the various schemes in terms of their ef-
ficiency (time), total number of PCM writes (after the final merge) and total
number of PCM reads (after the final merge) respectively. The data size varies
from 1 to 5 million tuples, and the data are uniformly distributed data. Selec-
tion sort takes the longest sorting time as against quick sort which is the fastest.
Beyond an unsorted disk file size of 5,000,000 tuples, selection sort takes longer
than 4 hours of sort time. As expected, quick sort is the weakest in write en-
durance and incurs lot of writes and reads (during and after merge). Selection
sort, though good in writes, performs poorly with respect to PCM reads. It is

0 

2000 

4000 

6000 

8000 

10000 

12000 

14000 

1.00E+06 2.00E+06 3.00E+06 4.00E+06 5.00E+06 

To
ta

l s
or

t t
im

e 
on

 si
m

ul
at

or
 (s

ec
on

ds
) 

# Tuples on Disk 

QS  

SS  

PCM 

Adv PCM 

(a) Response Time - Uni-
form

0 

2000 

4000 

6000 

8000 

10000 

12000 

1.00E+06 2.00E+06 3.00E+06 4.00E+06 5.00E+06 

PC
M

 w
rit

es
(M

B)
 a

ft
er

 m
er

ge
 

#Tuples on disk 

QS 
SS  
PCM  
Adv PCM  

(b) PCM Writes - Uniform

0 

5000 

10000 

15000 

20000 

25000 

1.00E+06 2.00E+06 3.00E+06 4.00E+06 5.00E+06 

PC
M

 re
ad

s(
M

B)
 a

ft
er

 m
er

ge
 

#Tuples on disk 

QS  

SS  

PCM  

Adv PCM  

(c) PCM Reads - Uniform

0 

500 

1000 

1500 

2000 

2500 

1000000 2000000 3000000 4000000 5000000 

So
rt

  t
im

e 
in

 se
co

nd
s (

on
 si

m
ul

at
or

) 

# Tuples on Disk 

QS  

CS  

PCM  

Adv PCM  

(d) Response Time -
Nonuniform

0 

2000 

4000 

6000 

8000 

10000 

12000 

1000000 2000000 3000000 4000000 5000000 

PC
M

 w
rit

es
 (M

B)
 a

ft
er

 fi
na

l m
er

ge
 

#Tuples on disk 

QS  

CS 

PCM  

Adv PCM  

(e) PCM Writes - Nonuni-
form

0 

5000 

10000 

15000 

20000 

25000 

1000000 2000000 3000000 4000000 5000000 

PC
M

 re
ad

s (
M

B)
 a

ft
er

 fi
na

l m
er

ge
 

#Tuples on disk 

QS  

CS  

PCM  

Adv PCM  

(f) PCM Reads - Nonuni-
form

Fig. 7. Comparison among various sorting schemes



98 M.V. Vamsikrishna, Z. Su, and K.-L. Tan

interesting to note that there are no readings for Counting Sort in Figure 7 owing
to its inability to deal with uniform distribution. Counting sort creates numerous
runs with tiny run size that it takes too long to finish run generation and merge.
The runs are small because, the incoming block has its range too wide in the
case of a uniform distribution. So counting sort ends up fetching small blocks to
let their count array fit into the main memory.

PCM-aware sort(basic) comes close to quick sort in running time, and also
good in reads but it is worse than selection sort with respect to PCM writes.
This can be attributed to the writes expended in shuffling of data after the
construction of histogram. Since advanced PCM sort was designed with an aim
to get rid of those writes, it performs as well as selection sort in terms of writes.
It also incurs the least PCM reads.

3.2 Non-uniform Distribution

For non-uniform distribution, we use the normal distribution. The skew is set to
a default value by fixing the values of mean and variance. While mean is set to
(min+max)/2, standard deviation is set to (max−min)/k by basic definitions.
In our default settings, k = 100. Figure 7(d), 7(e) and 7(f) shows the response
time, PCM write counts and PCM read counts for the various schemes. The
values of selection sort are not plotted in Figure 7 because the performance
of selection sort remains similar to that of the uniform distribution. Counting
sort is applicable here as it is sensitive to the distribution of elements. However,
in our experiments, counting sort sustains upto an unsorted disk file size of 3
million as it can be seen from the figures. Though the counting sort PCM writes
during run creation are good (not shown owing to space constraint), the overall
writes after the final merge phase are worse. This is because of the multiple
merges counting sort undergoes owing to the multiple small runs it produced
during run creation phase. The expensive merge phase also causes counting sort
to have a long sorting time. Our basic PCM aware sort scheme performs well
with respect to sort time and also incurs reasonably small PCM writes and reads.
But our advanced PCM sort scheme, though with a penalty of extra sorting time
than our basic scheme, outperforms all other schemes in PCM writes and reads
by aggressively reducing them to a minimum.

3.3 Varying the Extent of Sampling

Sampling array that is constructed in the DRAM for the construction of his-
togram can have major impact on our advanced PCM-aware scheme alone. Fig-
ures 8(a) and 8(b) show that advanced PCM aware sort scheme is the only
sensitive scheme to this sampling size variation. This is because, the sample
size determines the number of random reads that the advanced scheme does in
advance to fetch the sample array from the disk to DRAM and eventually pre-
construct the histogram. Overflow elements to disk increase if the sampling is
poor. But here the overhead in random disk reads to construct a large sample
array outweigh the savings obtained by accuracy from it. We can see the decline



A Write Efficient PCM-Aware Sort 99

0 

20 

40 

60 

80 

100 

120 

140 

160 

2 4 10 25 

So
rt

 ti
m

e 
in

 se
co

nd
s o

n 
PC

M
 si

m
ul

at
or

 

frac=DRAM size / Sampling array size 

CS  

PCM  

Adv PCM 

(a) Sort time (Non-Uniform)

0 

100 

200 

300 

400 

500 

600 

2 4 10 25 

PC
M

 w
rit

es
 in

 M
B 

af
te

r m
er

ge
 p

ha
se

 

frac = DRAM size / Sampling array size 

CS 

PCM  

Adv PCM  

(b) Total PCM writes

Fig. 8. Effect of sampling

in the sorting time and PCM writes count of the advanced PCM sorting scheme
as the sample array gets smaller. Counting sort is plotted just for reference.

3.4 Varying DRAM Size

DRAM size influences every scheme because it helps alleviate PCM writes in
all the schemes. Figure 9 shows the results. We do not present the results for
the selection sort because of its long running time. As we know counting sort
can perform well in special cases when there is a large DRAM to fit the count
array of the entire memory block. As shown in the result, counting sort is faster
when a DRAM as large as 20% of the main memory is available. Beyond 10%
of DRAM size, the sample array becomes large demanding more random reads
from advanced PCM sort. This is unrealistic as such a large DRAM buffer is
not good for a hybrid PCM architecture because it defeats the purpose of using
PCM as main memory. Basic PCM sort performs well with respect to time, PCM
reads and writes. As usual, though advanced PCM sort takes longer to sort, it
aggressively reduces PCM reads and writes. Counting sort performs poorly in
PCM reads. Realistically, if we consider the interval of 3% to 10% for DRAM
buffer size, advanced PCM sort emerges the overall winner.

0 

20 

40 

60 

80 

100 

120 

140 

160 

180 

3% 10% 20% 

To
ta

l s
or

t t
im

e 
in

 se
co

nd
s o

n 
 si

m
ul

at
or

 

DRAM size % of main memory 

QS  

CS  

PCM  

Adv PCM  

(a) Sort time

0 

200 

400 

600 

800 

1000 

1200 

1400 

1600 

1800 

2000 

3% 10% 20% 

PC
M

 w
rit

es
 (M

B)
 a

ft
er

 m
er

ge
 p

ha
se

 

DRAM size % of main memory 

QS  

CS  

PCM  

Adv PCM  

(b) Total PCM writes

0 

500 

1000 

1500 

2000 

2500 

3000 

3500 

4000 

3% 10% 20% 

PC
M

 re
ad

s (
M

B)
 a

ft
er

 m
er

ge
 p

ha
se

 

DRAM size % of main memory 

QS  

CS  

PCM  

Adv PCM  

(c) Total PCM reads

Fig. 9. Effect of DRAM size (non-uniform distribution)



100 M.V. Vamsikrishna, Z. Su, and K.-L. Tan

4 Conclusion

In this paper, we have proposed two PCM-aware sorting algorithms that can
mitigate writes on PCM by efficient use of the small DRAM buffer. Our perfor-
mance evaluation shows that the proposed schemes can significantly outperform
existing schemes.

References

1. Chen, S., Gibbons, P.B., Nath, S.: Rethinking Database Algorithms for Phase
Change Memory. In: CIDR, pp. 21–31 (2011)

2. Lee, B.C., Ipek, E., Mutlu, O., Burger, D.: Architecting phase change memory as
a scalable dram alternative. In: ISCA, pp. 2–13 (2009)

3. Qureshi, M.K., Srinivasan, V., Rivers, J.A.: Scalable high performance main mem-
ory system using phase-change memory technology. In: International Symposium
on Computer Architecture (2009)

4. Mousavi, H., Zaniolo, C.: Fast and accurate computation of equi-depth histograms
over data streams. In: EDBT, pp. 69–80 (2011)

5. Piatetsky-Shapiro, G., Connell, C.: Accurate Estimation of the Number of Tuples
Satisfying a Condition. In: SIGMOD Conference, pp. 256–276 (1984)

6. Ramos, L.E., Gorbatov, E., Bianchini, R.: Page placement in hybrid memory sys-
tems. In: ICSC, pp. 85–95 (2011)

7. Goetz, M.A.: Internal and tape sorting using the replacement-selection technique.
Commun. ACM, 201–206 (1963)

8. Graefe, G.: Implementing sorting in database systems. ACM Computing Surveys
(CSUR) 38(3) (2006)

9. Knuth, D.: The Art of Computer Programming, 2nd edn. Sorting and Searching,
vol. 3. Addison-Wesley (1998)

10. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms,
2nd edn. (2001)



Performance Analysis of Algorithms

to Reason about XML Keys�

Flavio Ferrarotti1, Sven Hartmann2, Sebastian Link3, Mauricio Marin4,
and Emir Muñoz4,5,��

1 Victoria University of Wellington
2 Clausthal University of Technology

3 The University of Auckland
4 Yahoo! Research

5 University of Santiago de Chile
Flavio.Ferrarotti@vuw.ac.nz

Abstract. Keys are fundamental for database management, indepen-
dently of the particular data model used. In particular, several notions
of XML keys have been proposed over the last decade, and their expres-
siveness and computational properties have been analyzed in theory. In
practice, however, expressive notions of XML keys with good reasoning
capabilities have been widely ignored. In this paper we present an efficient
implementation of an algorithm that decides the implication problem for
a tractable and expressive class of XML keys. We also evaluate the per-
formance of the proposed algorithm, demonstrating that reasoning about
expressive notions of XML keys can be done efficiently in practice and
scales well. Our work indicates that XML keys as those studied here have
great potential for diverse areas such as schema design, query optimiza-
tion, storage and updates, data exchange and integration. To exemplify
this potential, we use the algorithm to calculate non-redundant covers
for sets of XML keys, and show that these covers can significantly re-
duce the number of XML keys against which XML documents must be
validated. This can result in enormous time savings.

1 Introduction

The increasing popularity of XML for persistent data storage and data pro-
cessing has triggered the demand for efficient algorithms to manage XML data.
Both industry and academia have long since recognized the importance of keys in
XML data management. Over the last decade, several notions of XML keys have
been proposed and discussed in the database community. The most influential
proposal is due to Buneman et al. [3,4] who defined keys on the basis of an XML

� This research is supported by the Marsden Fund Council from Government funding,
administered by the Royal Society of New Zealand.

�� The contribution of this author was based on his Master’s thesis, which was sup-
ported by grants from the University of Santiago de Chile and Yahoo! Labs.

S.W. Liddle et al. (Eds.): DEXA 2012, Part I, LNCS 7446, pp. 101–115, 2012.
� Springer-Verlag Berlin Heidelberg 2012



102 F. Ferrarotti et al.

tree model similar to the one suggested by DOM [1] and XPath [6]. While Bune-
man et al. studied keys as a concept orthogonal to schema specification (such
as DTD or XSD), their proposal has been adopted by the W3C for the XML
Schema standard [15] subject to some minor, though essential modifications (see
[2] for a discussion). Today, all major XML-enabled DBMS, XML parsers and
editors (such as XMLSpy) support keys.

Example 1. Figure 1 shows an XML tree, in which nodes are annotated by their
type: E for element nodes, A for attribute nodes, and S for text nodes. For
the data represented in Figure 1 we have the following keys: (a) A project node
is identified by pname, no matter where the project node appears in the docu-
ment. (b) A team node can be identified by tname relatively to a project node.
(c) Within any given subtree rooted at team, an employee node is identified by
name. The first key is an example of an absolute key since it must hold globally
throughout the entire tree. The last two are examples of relative keys since they
hold locally within some subtrees. Note that a given team of employees can work
on several projects and thus a team node cannot be identified in the entire tree
by its tname. However, it holds locally within each subtree rooted at a project
node. Similarly, a given employee can work on different teams and thus cannot
be identified in the entire tree by its name. ��

E

E

E

A

E E

A
A A

E E E

A

Member
Team

rol

A
Team

Member

rol

A

Leader
Team

rol

E E

E

S
Smith

E

S
Dexter

E

S
Cooper

E

E

S

William

E

S
Bell

E

A
Team

Member

rol

E

E

S
Dexter

E

E

S
Cooper

A

E

E

S
William

E

S
Bell

E

A

E

E

S
Davis

E

S
Brook

E

S
John

project

db

team

Riders

team

tname

Coyotes

pname

Phobia MediaLow

pname

project

tname

employee
employee

employee

name name

lnamefnamelnamefname

name

fname lname

employee

name

fname lname

employee

rol

Team
Member

name

fname lname

employee

Team
Leader

rol

name

fname lname

Fig. 1. An XML tree representing an XML document

For relational data, keys have been widely used to improve the performance of
many perennial tasks in database management, ranging from consistency check-
ing to query answering. The hope is that keys will turn out to be equally bene-
ficial for XML. One of the most fundamental questions on keys is that of logical
implication, that is, deciding if a new key holds given a set of known keys. Among
other things, this is important for minimizing the cost of validating that an XML
document satisfies a set of keys gathered as business rules during requirements
engineering.

Example 2. Suppose, the database designer has already specified the keys (a),
(b) and (c). Now she considers a further key (d) which expresses that a project
node can be identified by its child nodes pname and team. By key (a) one already
knows that a project node can also be identified by just its pname. It is easy



Performance Analysis of Algorithms to Reason about XML Keys 103

to see that (a) actually implies (d), in the sense that every XML tree that
satisfies (a) also satisfies (d). Thus, instead of checking whether an XML tree T
satisfies (a) and (d), we could just check whether T satisfies (a). We would like
to emphasize that project nodes have complex content. Thus, checking whether
two project nodes in T violate (d) is quite costly in terms of time, since it
involves testing whether the subtrees rooted at their team nodes are isomorphic
to one another with the identity on string values. In contrast, checking whether
two project nodes violate (a) only involves checking equality on text of their
respective pname attribute nodes. ��

Example 3. No less important, the implication of XML keys is of interest for
semantically rich data exchange. Suppose, the company wants to share part
of their project data with a business partner. For that they generate a view
over the XML tree T but skip the lname nodes for the sake of privacy. Thus,
key (c) is no longer meaningful. To provide the business partner with relevant
semantic information it should be checked whether the specified keys allow one
to conclude a further key stating that an employee node is identified by their
remaining descendant nodes fname and role within any given team subtree. ��

The definition of keys adopted by the W3C for XML Schema [15] is currently
the industry standard for specifying keys. However, Arenas et al. [2] have shown
the computational intractability of the associated consistency problem, i.e., the
question whether there exists an XML document that conforms to a given XSD
and satisfies the specified keys. A further issue pointed out by Buneman et al.
[3] is the fact that XML Schema restricts value equality to string-valued data
items. But there are cases in which keys are not so restricted (see Section 7.1 of
[3] for discussion). In particular, keys (c) and (d) in our examples utilize a less
restricted notion of equality, since they require to test equality between name
nodes and team nodes, respectively, none of which are string-valued. On the other
hand, the expressiveness and computational properties of XML keys with good
reasoning capabilities have been deeply studied from a theoretical perspective
[3,4,9]. In practice, however, expressive yet tractable notions of XML keys have
been ignored so far.

Aiming to fill this gap between theory and practice, we initiate in this work
an empirical study of an expressive XML key fragment, namely the fragment of
XML keys with nonempty sets of simple key paths. As shown in [4,9], automated
reasoning about this XML key fragment can be done efficiently, in theoretical
terms. Our work confirms this fact in practice. Incidentally, note that all the
examples of XML keys described above belong to this fragment.

In this paper, we describe an efficient implementation of an algorithm that
decides the implication problem for an expressive fragment of XML keys and
thoroughly evaluate its performance. Our performance tests give first empirical
evidence that reasoning about expressive notions of XML keys is practically
efficient and scales well. Our work indicates that XML keys have great potential
for database management tasks similar to their counterparts for relational data.



104 F. Ferrarotti et al.

Exploiting our algorithm we compute non-redundant covers for sets of XML
keys. A set Σ of keys is non-redundant if there is no key σ in Σ such that σ is
implied by Σ − {σ}. Thus, considering such covers has the potential to reduce
significantly the number of keys against which an XML document must be val-
idated. This can result in enormous time savings. Our experiments show that
the time to compute a cover for a given set of keys is just a small fraction of the
average time needed to validate an XML document against a single key. Sur-
prisingly, even though several algorithms that validate XML documents against
sets of certain XML keys have been proposed and tested with promising results
(see e.g. [5,12]), none of them makes use of the reasoning capabilities of XML
keys as proposed in our work.

The paper is organized as follows. We recall basic notions in Section 2, in-
cluding the central notion of XML keys which is used through this work. In
Section 3, we present the algorithm for deciding XML key implication, and de-
scribe an implementation thereof in Section 4. In Section 5, we discuss how this
implementation can be reused to speed up the validation of XML documents
against sets of XML keys. Section 6 summarizes experimental results obtained
from applying our implementations to publicly available XML data, including
DBLP, the SIGMOD Record, and the Mondial database. We conclude the paper
in Section 7 with final remarks.

2 Keys for XML

We use the common representation of XML data as ordered, node-labelled trees.
Thus, an XML tree is a 6-tuple T = (V, lab, ele, att, val, r) where V is a set of
nodes, and lab is a mapping V → L = E ∪ A ∪ {S} assigning a label to every
node in V . A node v ∈ V is an element node if lab(v) ∈ E, an attribute node if
lab(v) ∈ A, and a text node if lab(v) = S. Here E ∪ A ∪ {S} form a partition of
L. Moreover, ele and att are partial mappings defining the edge relation of T :
for any node v ∈ V , if v is an element node, then ele(v) is a list of element and
text nodes in V and att(v) is a set of attribute nodes in V . The partial mapping
val assigns a string to each attribute and text node. Finally, r is the unique and
distinguished root node.

The XML keys studied in this work are defined using the path language PL
consisting of expressions given by the following grammar:Q → 	 | ε | Q.Q | ∗.
Here 	 ∈ L is any label, ε denotes the empty path expression, “.” denotes the
concatenation of two path expressions, and “ ∗” denotes the variable length “don’t
care” wildcard. Let Q be a word from PL. A path v1, . . . , vn in an XML tree
T is called a Q-path if lab(v1). · · · .lab(vn) can be obtained from Q by replacing
variable length wildcards in Q by words from PL. For a node v ∈ V , v[[Q]]
denotes the set of nodes in T that are reachable from v following any Q-path.
We use [[Q]] as an abbreviation for r[[Q]] where r is the root node of T . We denote
as PLs the subset of PL expressions containing all words over the alphabet L,
i.e., we do not allow wildcards in PLs expressions. Q ∈ PL is valid if it does not
have labels 	 ∈ A or 	 = S in a position other than the last one.



Performance Analysis of Algorithms to Reason about XML Keys 105

We define formally the concept of XML key following [4]. For that, we need the
concept value equality. Two nodes u, v ∈ V are value equal, denoted by u =v v,
iff the subtrees rooted at u and v are isomorphic by an isomorphism that is the
identity on string values. As an example, the third and fifth employee-nodes are
not value equal while their respective child nodes labeled as name are.

Definition 1. An XML key ϕ in the class K is an expression of the form
(Qϕ, (Q

′
ϕ, {P

ϕ
1 , . . . , P

ϕ
kϕ

})) where kϕ ≥ 1, Qϕ and Q′ϕ are PL expressions, and

for all i = 1, . . . , kϕ, P
ϕ
i is a PLs expressions such that Qϕ.Q

′
ϕ.P

ϕ
i is a valid PL

expression. An XML tree T satisfies the key (Q, (Q′, {P1, . . . , Pk})) if and only
if for every node q ∈ [[Q]] and all nodes q′1, q

′
2 ∈ q[[Q′]] such that there are nodes

xi ∈ q′1[[Qi]], yi ∈ q′2[[Pi]] with xi =v yi for all i = 1, . . . , k, then q′1 = q′2. There-
fore, Qϕ is called the context path, Q′ϕ is called the target path, and Pϕ

1 , . . . , P
ϕ
kϕ

are called the key paths of ϕ.

In particular, the four keys described informally in the introduction, belong to
this class and can be expressed formally as follows: (a) (ε, (project , {pname}));
(b) (project , (team{tname})); (c) ( ∗.team , (employee , {name})); (d) (ε, (project ,
{pname, team})).

3 Deciding XML Key Implication

Let Σ ∪ {ϕ} be a finite set of XML keys in a class C. We say that Σ implies ϕ,
denoted by Σ |= ϕ, if and only if every finite XML tree T that satisfies all σ ∈ Σ
also satisfies ϕ. The implication problem for C is to decide, given any finite set
Σ ∪ {ϕ} of keys in C, whether Σ |= ϕ.

A finite axiomatization for the implication of keys in the class of XML keys
with nonempty sets of simple key paths K, was established in [9]. The complete-
ness proof of this axiomatization is based on a characterization of key implication
in terms of the reachability problem for fixed nodes in a suitable digraph. This
characterization, together with the efficient evaluation of Core XPath [8], re-
sulted in a compact algorithm to decide XML key implication in time quadratic
in the size of the input key. This algorithm, which is described next, forms the
basis for our implementation. We need the following technical concepts.

Mini-trees and Witness Graphs. Let Σ∪{ϕ} be a finite set of keys in K. Let
LΣ,ϕ denote the set of all labels 	 ∈ L that occur in path expressions of keys in
Σ ∪ {ϕ}, and fix a label 	0 ∈ E − LΣ,ϕ. Let Oϕ and O′ϕ be the PLs expressions
obtained from the PL expressions Qϕ and Q′ϕ, respectively, by replacing each
wildcard “ ∗” by 	0. Let p be an Oϕ-path from a node rϕ to a node qϕ, let p

′ be
an O′ϕ-path from a node r′ϕ to a node q′ϕ and, for each i = 1, . . . , kϕ, let pi be a
Pϕ
i -path from a node rϕi to a node xϕ

i , such that the paths p, p′, p1, . . . , pkϕ are
mutually node-disjoint. From the paths p, p′, p1, . . . , pkϕ we obtain the mini-tree
TΣ,ϕ by identifying the node r′ϕ with qϕ, and by identifying each of the nodes
rϕi with q′ϕ. The marking of the mini-tree TΣ,ϕ is a subset M of the node set of
TΣ,ϕ: if for all i = 1, . . . , kϕ we have Pϕ

i �= ε, then M consists of the leaves of
TΣ,ϕ, and otherwise M consists of all descendant nodes of q′ϕ in TΣ,ϕ.



106 F. Ferrarotti et al.

����
����
����
����

����
����
����
����

�����
�����
�����
�����
�����

�����
�����
�����
�����
�����

����
����
����
����

����
����
����
����

����
����
����
����

����
����
����
����

E

S

E

dbE

E public

national

project

E

S

E project

E

S

E

S

(1)

(3)

E

E

E national

public

(2)

yearpname

pname year

××1 2

′

rϕ = qϕ

r′ϕ

r
ϕ
1 r

ϕ
2

qϕ

q′ϕq′ϕ

x
ϕ
1

x
ϕ
1

x
ϕ
2

x
ϕ
2

v′

1v′

1

v′

2v′

2

w1

w1

w′

1

w′

1

p

pp

p

(a) Mini tree TΣ,ϕ

db

E

E

E

E E

SS

public

national

project

E

yearpname

××

qϕ

q′ϕ

p

pp

p

(b) Witness graph

GΣ,ϕ

Node 1

Node 2

vertexEle
Node 1

edgeEle

nodeEle

(public)

Node 3 Node 0

vertexEle
Node 2

edgeEle edgeEle

nodeEle

(national)

Node 4 Node 6 Node 1

vertexEle
Node 3

edgeEle edgeEle edgeEle

nodeEle

(project)

(S)

Node 7

(db)vertexEle

edgeEle

nodeEleNode 0

L

.....

p

pp

p

(c) Adj. list for GΣ,ϕ

Fig. 2. Mini-tree, Witness-graph and Adjacency list

Example 4. Let Σ = {σ1, σ2} where σ1 and σ2 are the XML keys (ε, (public. ∗,
{project .pname.S, project.year.S})) and (public, ( ∗.project , {pname.S, year.S})),
respectively. Let ϕ = (ε, (public. ∗.project, {pname.S, year.S})). The construc-
tion of the mini-tree TΣ,ϕ is schematized in Figure 2 (a).

The mini-trees are used in the algorithm as a base to calculate the impact of
a key in Σ on a possible counter-example tree for the implication of ϕ by Σ.
To distinguish keys that have an impact from those that do not, the following
notion of applicability is needed. Let TΣ,ϕ be the mini-tree of the key ϕ with
respect to Σ, and let M be its marking. A key σ is said to be applicable to ϕ
if and only if there are nodes wσ ∈ [[Qσ]] and w′σ ∈ wσ[[Q

′
σ]] in TΣ,ϕ such that

w′σ[[P σ
i ]] ∩ M �= ∅ for all i = 1, . . . , kσ. We say that wσ and w′σ witness the

applicability of σ to ϕ.
We define the witness graph GΣ,ϕ as the node-labeled digraph obtained from

TΣ,ϕ by inserting additional edges: for each key σ ∈ Σ that is applicable to
ϕ and for each pair of nodes wσ ∈ [[Qσ]] and w′σ ∈ wσ[[Q

′
σ]] that witness the

applicability of σ to ϕ, GΣ,ϕ contains the directed edge (w′σ , wσ) from w′σ to wσ.

Example 5. Let Σ and ϕ be as in Example 4. Both keys in Σ are applicable to
ϕ. The witness graph GΣ,ϕ is shown in Figure 2 (b). It contains a witness edge
from national to db that arises from σ1 and a witness edge from project to public
that arises from σ2.

The algorithm. Algorithm 1 decides XML key implication. Its correctness is
an immediate consequence of Theorem 1.

Theorem 1. ([9]) Let Σ ∪ {ϕ} be a finite set of keys in the class K. We have
Σ |= ϕ if and only if qϕ is reachable from q′ϕ in GΣ,ϕ.



Performance Analysis of Algorithms to Reason about XML Keys 107

Algorithm 1. (XML key implication in K)

Input: finite set of XML keys Σ ∪ {ϕ} in K
Output: yes, if Σ |= ϕ; no, otherwise
1: Construct GΣ,ϕ for Σ and ϕ;
2: if qϕ is reachable from q′ϕ in G then return yes;

else return no; end if

4 An Efficient Implementation

In this section we discuss our implementation of Algorithm 1 and analyze its
theoretical complexity. The implementation was developed in C++ using gcc
version 4.4.3 from the GNU compiler collection.

Data Structures. We need data structures suitable to represent mini-trees and
witness-graphs. The obvious candidates are adjacency matrices and adjacency
lists. Since the algorithm does not require frequent determination of edge exis-
tence, we choose the latter in order to minimize the memory requirements. In
our implementation, a mini-tree TΣ,ϕ is represented by using a list L of length
n = |V | where V is the vertex set of TΣ,ϕ. Each element ei ∈ L is represented by
an object of type vertexEle that has a pointer to the adjacency list of the i-th
vertex vi in some fixed enumeration of the vertices in V , a pointer to the data
component of the vertex vi, and a pointer to the next element ei+1 in the list.
In turn, the data component of a vertex vi is represented by an object of type
nodeEle, and an element in the adjacency list of a vertex vi is represented by
an object of type edgeEle. An object of type nodeEle has an id component that
uniquely identifies vi, a label component with the label of vi, a flag visited, and
a type component with the type E (element), A (attribute) or S (PCDATA) of
vi. An object of type edgeEle has a pointer to an object of type vertexEle and a
pointer to the next object of type edgeEle in the adjacency list. Witness graphs
are represented likewise. Figure 2(b) shows a witness graph and Figure 2(c) a
corresponding representation using adjacency lists.

The Implementation. We implemented Step 1 of Algorithm 1, using the fol-
lowing strategy:

i. Construct TΣ,ϕ;
ii. Determine the marking of TΣ,ϕ;
iii. For each σ ∈ Σ, add the edge (w′σ, wσ) to TΣ,ϕ whenever wσ and w′σ witness

the applicability of σ to ϕ.

Substep (i) involves constructing the mini-tree TΣ,ϕ using the data structures
defined at the beginning of this section. Note that we can find a label 	0 that is
not among the labels used in the XML keys in Σ ∪ {ϕ} in time

∑
σi∈Σ |σi|+ |ϕ|,

where |σi| and |ϕ| denote the sum of the lengths of all path expressions in σi

and ϕ, respectively. Once we have got a suitable label, 	0, TΣ,ϕ can be built in
time O(|ϕ|), since the mini-tree TΣ,ϕ has only |ϕ| + 1 nodes.



108 F. Ferrarotti et al.

Regarding Substep (ii), if Pϕ
i �= ε we can determine the marking of the mini-

tree TΣ,ϕ by simply traversing the list L marking the nodes whose adjacency
list is empty. Note that those nodes correspond to leaves in TΣ,ϕ. Otherwise,
we mark all nodes in the adjacency list of the element ei in L that repre-
sents q′ϕ, and recursively mark all descendants of those nodes. This step takes
O(|ϕ|) time.

In principle, Substep (iii) requires, for each σ ∈ Σ, to evaluate w′σ[[P
σ
i ]] for

i = 1, . . . , kσ, for all w
′
σ ∈ wσ[[Q

′
σ]] and all wσ ∈ [[Qσ]]. However, we do not need

to determine all witness edges (w′, w) to decide whether qϕ is reachable from q′ϕ
in the witness graph GΣ,ϕ. Let W

′
σ be the set of all nodes w′ in TΣ,ϕ for which

there exists some node w in TΣ,ϕ such that w and w′ witness the applicability
of σ to ϕ. Further, for each w′ ∈ W ′σ, let Wσ(w

′) be the set of all nodes w in
TΣ,ϕ such that w and w′ witness the applicability of σ to ϕ. The witness edges
are just the pairs (w′, w) with w′ ∈ W ′σ and w ∈ Wσ(w

′). As shown in [9], it
is not necessary to determine the entire set Wσ(w

′) for each w′ ∈ Wσ. We can
actually restrict ourselves to the top-most ancestor of q′ϕ in TΣ,ϕ that belongs
to Wσ(w

′), which we denote by wtop
σ (w′) (if it exists).

So, we need first to determine W ′σ, and then, for each w′ ∈ W ′σ, we need to
determine wtop

σ (w′) (if it exists). By definition, W ′σ consists of all nodes w′ ∈
[[Qσ.Q

′
σ]] in TΣ,ϕ such that, for each i = 1, . . . , kσ, there is a marked node in

w′[[P σ
i ]]. Since a query of the form v[[Q]] is a Core XPath query and can be

evaluated on a node-labelled tree T in O(|T |× |Q|) time, it follows that [[Qσ.Q
′
σ]]

can be evaluated in TΣ,ϕ in O(|ϕ|×|Qσ.Q
′
σ|) time. Next, fix some i ∈ {1, . . . , kσ}.

Let v be a marked node, and let u denote the ancestor of v that resides |P σ
i |

levels atop of v in TΣ,ϕ (if it exists). We can then check whether v ∈ u[[P σ
i ]],

that is, whether the unique path from u to v is a P σ
i -path. This can be done in

O(min{|P σ
i | , |ϕ|}) time, since P σ

i is a PLs expression. By inspecting all nodes
v ∈ M, we obtain the set Uσ

i of all nodes u in TΣ,ϕ for which u[[P σ
i ]] ∩ M �= ∅.

Overall, this takes O(|M|×|P σ
i |}) time. Since W ′σ is the intersection of [[Qσ.Q

′
σ]]

with the sets Uσ
i , i = 1, . . . , kσ, we get that W

′
σ can be determined in O(|ϕ|×|σ|)

time. Regarding wtop
σ (w′), note that if Q′σ is a PLs expression, then wtop

σ (w′) is
the node |Q′σ| levels atop of w′ in TΣ,ϕ. Otherwise Q′σ contains a ∗, and thus
has the form A. ∗.B where A is a PLs expression and B is a PL expression.
In this case, as shown in [9], wtop

σ (w′) is the top-most ancestor w of q′ϕ in TΣ,ϕ

that belongs to [[Qσ]] and for which w[[A]] is non-empty. In particular, wtop
σ (w′)

is independent from the choice of w′ in W ′σ . Thus, we propose Algorithm 2 to
determine wtop

σ (w′) for a given node w′.
Since [[Qσ.A]] can be evaluated in O(|ϕ| × |Qσ.A|) time, we can conclude

from the previous algorithm that wtop
σ (w′) for a given w′ can be determined in

O(|ϕ| × |Qσ.A|) time. Thus, it takes us O(|ϕ| × |σ|) time to determine all the
witness edges arising from σ that are needed for deciding the reachability of qϕ
from q′ϕ inGΣ,ϕ. Finally, Step 2 of Algorithm 1 can be implemented by applying a
depth-first search algorithm to GΣ,ϕ with root q′ϕ. This algorithm works in time
linear in the number of edges of GΣ,ϕ [11]. Over all, our implementation can
decide the implication problem Σ |= ϕ in O(|ϕ| × (

∑
σi∈Σ |σi| + |ϕ|)) time.



Performance Analysis of Algorithms to Reason about XML Keys 109

Algorithm 2. (Determine wtop
σ (w′))

Input: a mini-tree TΣ,ϕ, a set W ′σ, and a node w′ ∈ W ′σ.
Output: wtop

σ (w′)
1: if Q′σ is a PLs expression then
2: return The node |Q′σ| levels atop of w′ in TΣ,ϕ

3: else
4: Determine the set [[Qσ.A]] of nodes in TΣ,ϕ

5: if [[Qσ.A]] �= ∅ then
6: Choose a topmost node v
7: Select the node w that is |A| levels atop of v in TΣ,ϕ

8: if w is an ancestor of q′ϕ then
9: return w
10: else
11: return ⊥ //wtop

σ (w′) does not exist.
12: end if
13: end if
14: end if

5 Applying XML Key Reasoning to Document Validation

Fast algorithms for the validation of XML documents against keys are crucial
to ensure the consistency and semantic correctness of data stored in databases
or exchanged between applications. In this section we explain how our imple-
mentation of the implication algorithm for XML keys can be used to compute
non-redundant cover sets of XML keys, which in turn can be used to significantly
speed up the process of XML document validation against sets of XML keys.
This is, up to our knowledge, the first time that the reasoning capabilities of
XML keys are used in this context.

Cover Sets for XML Keys. We define the concept of cover set of XML keys
following the notion given in [13] for functional dependencies in the relational
model.

Definition 2. Let Σ∗ denote the set of all XML keys implied by a given set
Σ. Two sets Σ1 and Σ2 of XML keys are equivalent, denoted by Σ1 ≡ Σ2, if
Σ∗1 = Σ∗2 . If Σ1 and Σ2 are equivalent we call them a cover of one another. This
means that Σ1 and Σ2 imply exactly the same XML keys.

For all cover Σ2 of Σ1, if an XML tree TD satisfies Σ2 (TD |= Σ2), then TD |= Σ1

too. If Σ1 ≡ Σ2, then for each XML key ψ in Σ∗1 , Σ2 |= ψ, because Σ∗2 = Σ∗1 .
In particular, Σ2 |= ψ for each key ψ in Σ1.

Definition 3. A set Σ2 of XML keys is non-redundant if it is not equivalent
to any of its proper subsets. Σ2 is a non-redundant cover for a set Σ1 of XML
keys if Σ2 is non-redundant and a cover for Σ1.

An important property is that a non-redundant cover set has in most cases fewer
keys that the original one (in the extreme case both sets are equal). This can



110 F. Ferrarotti et al.

result in enormous time saving when validating an XML document against a set
of XML keys, as we will show in the experimental results.

A characterization of non-redundancy is that Σ is non-redundant if there is
no key ψ in Σ such that Σ − {ψ} |= ψ. A key ψ ∈ Σ is called redundant if
Σ − {ψ} |= ψ. Thus, we propose Algorithm 3 to compute, given a set Σ of XML
keys, a non-redundant cover Θ of Σ.

Algorithm 3. (Non-redundant Cover for XML keys)

Input: finite set Σ of XML keys
Output: a non-redundant cover for Σ
1: Θ = Σ;
2: for each key ψ ∈ Σ do
3: if Θ − {ψ} |= ψ then
4: Θ = Θ − {ψ};
5: end if
6: end for
7: return Θ;

It is important to note that a set Σ can have more than one non-redundant
cover set and there can exist non-redundant cover sets that are not included
in Σ.

The complexity of Algorithm 3 is determined by the complexity of the implica-
tion algorithm which is executed once for every key in Σ. Thus a non-redundant
cover set for a set Σ of XML keys in K can be computed in O(|Σ| × (max{|ψ| :
ψ ∈ Σ})2) time.

6 Experimental Results

In the following we present a performance analysis of the algorithms proposed
in this work. Up to our knowledge, this is the first time that the theory on
automated reasoning about XML keys is tested in practice. The running time
results were obtained in an Intel Core 2 Duo 2.0 GHz machine, 3GB RAM, and
Linux kernel 2.6.32.

The Data Set. We used a collection of large XML documents from [14]. The
collection consists of the following XML documents. A characterization of the
documents is shown in Table 1.

– 321gone.xml and yahoo.xml. Auction data converted to XML.
– dblp.xml. Bibliographic information on computer science.
– nasa.xml Astronomical Data converted from legacy flat-file format into XML.
– SigmodRecord.xml. Index of articles from SIGMOD Record.
– mondial-3.0.xml. World geographic database from several sources.

We defined, for each document in the collection, a corresponding set of 5 to 10
appropriate (in the context of the document) XML keys.



Performance Analysis of Algorithms to Reason about XML Keys 111

Table 1. XML Documents

Doc ID Document No. of
Elements

No. of
Attributes

Size Max.
Depth

Average
Depth

Doc1 321gone.xml 311 0 23 KB 5 3.76527
Doc2 yahoo.xml 342 0 24 KB 5 3.76608
Doc3 dblp.xml 29,494 3,247 1.6 MB 6 2.90228
Doc4 nasa.xml 476,646 56,317 23 MB 8 5.58314
Doc5 SigmodRecord.xml 11,526 3,737 476 KB 6 5.14107
Doc6 mondial-3.0.xml 22,423 47,423 1 MB 5 3.59274

Then, in order to test the scalability of the implication algorithm, we gen-
erated large sets of XML keys in the following two systematic ways. Firstly,
using the manually defined sets of XML keys as seeds, we computed new im-
plied keys by successively applying the inference rules from the axiomatization
of XML keys presented in [9]. For instance, by applying the interaction rule to
(listing, (auction info, {high bidder. bidder name.S, high bidder.bidder rating.
S})) and (listing.auction info, (high bidder, {bidder name.S, bidder rating.S}
)), we derived the implied key (listing, (auction info.high bidder, {bidder name.
S, bidder rating.S})). Each key generated by this method was added to the
original set. We applied the interaction, context-target, subnodes, context-path
containment, target-path containment, subnodes-epsilon and prefix-epsilon rules
whenever possible, since those are the rules which can produce implied keys with
corresponding non trivial witness graphs (see the proof of Lemma 3.6 in [9]). Sec-
ondly, we defined some non-implied (by the keys defined previously) XML keys.
We did that by taking non-implied XML keys ϕ, building their corresponding
mini-trees TΣ,ϕ, adding several witness edges to it while keeping qϕ not reachable
from q′ϕ, and finally defining new non-implied XML keys corresponding to those
witness edges. As an example, let us take the mini-tree in Figure 3 which corre-
sponds to the key ϕ = (conference, (issue. ∗.articles.article.author, {first.S,
last.S})). From the witness edges (a), (b) and (c), we obtained the keys, (conf -
erence.issue, ( ∗, { articles.article.author.first.S})), (conference.issue. ∗, (ar-
ticles.article, {author.first.S})) and (conference.issue. ∗.articles, (article.
au- thor{first.S})), respectively.

E E EEEEE

E S

E Sau
th

or

db co
nf

er
en

ce

is
su

e

ar
tic

le
s

ar
tic

le la
st

fir
st

×
×q

ϕ

q
′ ϕ

�
0
=

c
o
n
t
e
n
t

Fig. 3. Mini-tree corresponding to a non-implied key



112 F. Ferrarotti et al.

This process gave us a robust collection of XML keys to thoroughly test the
performance of the implication algorithm.

Deciding Implication of XML Keys: Tests Results. The results regarding
running times for deciding the implication of XML keys are shown in Figures 4(a)
and 4(b). In both figures, the x-axis corresponds to the number of keys in Σ, and
the y-axis corresponds to the average running time required to decide whether Σ
implies a given key ϕ. More precisely, let time(Σ,ϕ) be the running time required
to decide Σ |= ϕ and let Φ be a set of XML keys such that Σ∩Φ = ∅, the running
time shown in Figures 4(a) and 4(b), corresponds to

(∑
ϕi∈Φ time(Σ,ϕi)

)
/|Φ|.

In our experiments the sets Φ were composed of 20 fixed XML keys each. We
tested the scalability of the algorithm by adding, in each iteration, 5 new XML
key to the corresponding Σ sets. The actual XML keys included in all these sets
were created using the strategy explained above.

We consider Σ sets composed by (i) only absolute keys (“abs”), (ii) only
relative keys (“rel”) or (iii) both types of keys (“mix”). Given that an input key
ϕ can be either absolute or relative, we have a total of six test cases. The results
obtained in these experiments are summarized in Figure 4(a). For a small set Σ
with about 5 XML keys, the execution takes 0.2ms in average, whereas for a large
set of about 100 XML keys, the execution takes 1.7ms in average. This indicates
that our implementation of the implication algorithm is practically efficient and
scales well regardless of the type of XML keys considered.

Note that the resulting running time is slightly lower when ϕ is an absolute key
and Σ is composed by either absolute or relative keys. This is mainly due to the
fact that Qϕ = ε, which means that the construction of the mini-tree involves less
steps and that the qϕ node corresponds to the root node, making it unnecessary
to perform a search for such node. On the other hand, the performance shown
by the “abs-rel” curve in Figure 4(a) is slightly degraded due to the fact that, in
general, the algorithm needs to traverse more nodes to determine whether qϕ is
reachable from q′ϕ. This is consistent with the way in which the witness graphs
are defined.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 0  20  40  60  80  100  120  140

abs-abs
abs-rel
rel-abs
rel-rel

mix-abs
mix-rel

T
im

e
[m

s]

Size of Σ

(a) XML key implication (all cases)

 0

 0.5

 1

 1.5

 2

 2.5

 0  20  40  60  80  100  120  140

mix-rel
wildcard

T
im

e
[m

s]

Size of Σ

(b) Increased number of wildcards

Fig. 4. Performance of the Algorithm for the Implication of XML Keys



Performance Analysis of Algorithms to Reason about XML Keys 113

To isolate the effect of wildcards in the performance of the algorithm, we du-
plicated the number of wildcards in the keys of the test case “mix-rel”, replacing
some of the labels in the context and target paths of those keys by the variable
length wildcard. Figure 4(b) shows the running times for the original set of keys
(curve “mix-rel”) and the set with increased number of wildcards (curve “wild-
card”). The results show that the presence of wildcards in the path expressions
increases the running time for the test sets with large number of keys, but such
increase is not significant in practice.

Document Validation: Tests Results. We use the same data set as before.
The aim is to determine the viability of computing non-redundant cover sets to
speed up the validation of XML documents against XML keys. By validating an
XML document against a set of XML key, we refer to the task of checking, for
every XML key in the set, whether the document satisfies such key.

To validates XML keys, we use a naive algorithm that parses the XML docu-
ment into a DOM tree and then evaluates the XML keys on the resulting tree,
by using XPath queries to express their context, target and key paths. We do
need to use sophisticated validation algorithms such as [5,12], since the proposed
optimization based in cover sets is independent of the particular algorithm used
for XML key validation.

The results (in milliseconds (ms)) obtained from the computation of non-
redundant cover sets is summarized in Figure 5 (a). We emphasize that the
behavior of the Algorithm 3 is linear in practice. For example, for a set of 146
keys, calculating a non-redundant cover set takes around 155ms. A total of 102
keys are discarded reducing the set to 44 keys.

Figure 5 (b) shows the optimization achieved by pre-calculating non-redundant
cover sets during the validation process of the documents in Table 1. The results

XML doc. Key Set Time[ms]

321gone & Processed Keys: 23 3.458
yahoo Discarded keys: 15
(Doc1) Cover set: 8 keys

DBLP Processed Keys: 36 12.757
(Doc2) Discarded keys: 24

Cover set: 12 keys

nasa Processed Keys: 35 9.23
(Doc3) Discarded keys: 28

Cover set size: 7 keys

Sigmod Processed Keys: 24 5.294
Record Discarded Keys: 19
(Doc4) Cover set: 5 keys

mondial Processed Keys: 26 4.342
(Doc5) Discarded Keys: 16

Cover set: 10

(a) Non-redundant Cover Sets.

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

Doc1 Doc2 Doc3 Doc4 Doc5 Doc6

R
u
n
n
in

g
 T

im
e
 [
m

s
]

XML documents

952ms 1329ms

Full-set
Cover-set

>30min >25min 1.88min 5min

(b) Validation Against Cover Sets.

Fig. 5. Non-redundant Cover Sets of XML keys and Validation of XML Documents



114 F. Ferrarotti et al.

indicate that the running time required to compute a non-redundant cover set
is just a tiny fraction of the overall running time required to validate a single
XML document against a key. Note that in most cases the validation time can be
significantly reduced by pre-computing the non-redundant covers. This can be
clearly observed in the case of the DBLP document (’Doc3’) and Nasa document
(’Doc4’). In these cases the running time of the validation against the original
set of XML keys is approximately 63 times greater than the running time of the
validation against its non-redundant cover-set.

7 Conclusion

Our research was motivated by two objectives. Firstly, we wanted to demonstrate
that there are expressive classes of XML keys that are not only tractable in
theory but can be reasoned about efficiently in practice. For that we studied a
fragment of XML keys as originally introduced by Buneman et al. [3,4], namely
the class K of XML keys with nonempty sets of simple key paths. For these keys
it was known that their implication problem can be decided in quadratic time
in theory [9]. Here we have presented an efficient implementation thereof, and
our experiments show that it also runs fast in practice and scales well.

Secondly, we wanted to show that our observations on the problem of decid-
ing implication is not only of interest for the problem itself but has immediate
consequences for other perennial tasks in XML database management. As an
example we study the problem of validating an XML document against a set of
XML keys. We have presented an optimization method for this validation that
computes a non-redundant cover for the set of XML keys given as input so that
satisfaction only needs to be checked for the keys in this cover. This can reduce
the number of keys significantly, and our experiments show that enormous time
savings can be achieved in practice. This holds true even though the validation
procedure is able to decide value equality among element nodes with complex
content as this is required for the XML keys studied here (and distinguishes
them from the keys defined in XML Schema). This illustrates the advantage of
having efficient reasoning capabilities at hand for integrity constraints.

We would like to emphasize that the use of non-redundant covers does not
depend on the particular choice of the XML fragment but can be tailored to
any class of XML constraints for which the implication problem can be solved
efficiently. We plan to extend our studies to other expressive classes of XML keys
and related constraints such as those studied in [10,7].

References

1. Apparao, V., et al.: Document object model (DOM) level 1 specification, W3C
recommendation (1998), http://www.w3.org/TR/REC-DOM-Level-1/

2. Arenas, M., Fan, W., Libkin, L.: What’s Hard about XML Schema Constraints? In:
Hameurlain, A., Cicchetti, R., Traunmüller, R. (eds.) DEXA 2002. LNCS, vol. 2453,
pp. 269–278. Springer, Heidelberg (2002)

http://www.w3.org/TR/REC-DOM-Level-1/


Performance Analysis of Algorithms to Reason about XML Keys 115

3. Buneman, P., Davidson, S., Fan, W., Hara, C., Tan, W.: Keys for XML. Computer
Networks 39(5), 473–487 (2002)

4. Buneman, P., Davidson, S., Fan, W., Hara, C., Tan, W.: Reasoning about keys for
XML. Inf. Syst. 28(8), 1037–1063 (2003)

5. Chen, Y., Davidson, S., Zheng, Y.: Xkvalidator: a constraint validator for XML.
In: CIKM 2002: Proceedings of the 2002 ACM CIKM International Conference on
Information and Knowledge Management, pp. 446–452. ACM (2002)

6. Clark, J., DeRose, S.: XML path language (XPath) version 1.0, W3C recommen-
dation (1999), http://www.w3.org/TR/xpath

7. Ferrarotti, F., Hartmann, S., Link, S.: A Precious Class of Cardinality Constraints
for Flexible XML Data Processing. In: Jeusfeld, M., Delcambre, L., Ling, T.-W.
(eds.) ER 2011. LNCS, vol. 6998, pp. 175–188. Springer, Heidelberg (2011)

8. Gottlob, G., Koch, C., Pichler, R.: Efficient algorithms for processing XPath
queries. Trans. Database Syst. 30(2), 444–491 (2005)

9. Hartmann, S., Link, S.: Efficient reasoning about a robust XML key fragment.
ACM Trans. Database Syst. 34(2) (2009)

10. Hartmann, S., Link, S.: Numerical constraints on XML data. Inf. Comput. 208(5),
521–544 (2010)

11. Jungnickel, D.: Graphs, Networks and Algorithms. Springer (1999)
12. Liu, Y., Yang, D., Tang, S., Wang, T., Gao, J.: Validating key constraints over

XML document using XPath and structure checking. Future Generation Comp.
Syst. 21(4), 583–595 (2005)

13. Maier, D.: Minimum Covers in the Relational Database Model. J. ACM 27, 664–674
(1980)

14. Suciu, D.: XML Data Repository, University of Washington (2002),
http://www.cs.washington.edu/research/xmldatasets/www/repository.html

15. Thompson, H., Beech, D., Maloney, M., Mendelsohn, N.: XML Schema Part 1:
Structures Second Edition, W3C Recommendation (2004),
http://www.w3.org/TR/xmlschema-1/

http://www.w3.org/TR/xpath
http://www.cs.washington.edu/research/xmldatasets/www/repository.html
http://www.w3.org/TR/xmlschema-1/


Finding Top-K Correct XPath Queries

of User’s Incorrect XPath Query

Kosetsu Ikeda and Nobutaka Suzuki

University of Tsukuba
1-2, Kasuga, Tsukuba Ibaraki 305-8550, Japan

{lumely,nsuzuki}@slis.tsukuba.ac.jp

Abstract. Suppose that we have a DTD D and XML documents valid
against D, and consider writing an XPath query to the documents. Un-
fortunately, a user often does not understand the entire structure of D
exactly, especially in the case where D is very large and/or complex or
D has been updated but the user misses it. In such cases, the user tends
to write an incorrect XPath query q. However, it is difficult for the user
to correct q by hand due to his/her lack of exact knowledge about the
entire structure of D. In this paper, we propose an algorithm that finds,
for an XPath query q, a DTD D, and a positive integer K, ”top-K”
XPath queries ”most similar” to q among the XPath queries conforming
to D so that a user select an appropriate query among the K queries.
We also present some experimental studies.

1 Introduction

Suppose that we have a DTD D and XML documents valid against D, and let
us consider writing an XPath query to the documents. Unfortunately, a user
often does not understand the entire structure of D exactly, especially in the
case where D is a very large and/or complex DTD or D has been updated but
the user misses the update. In such cases, the user tends to write an incorrect
XPath query q in the sense that q does not conform to D or the answer of q is
disappointing due to his/her structural misunderstanding of D. However, it is
difficult for the user to correct q by hand due to his/her lack of exact knowledge
about the entire structure of D. On the other hand, a query q written by a
user is at least an important “hint” in order to find a correct query, even if q
is incorrect. Therefore, in this paper we propose an algorithm that finds, for an
(possibly incorrect) XPath query q, a DTD D, and a positive integer K, top-
K XPath queries “similar”(syntactically close) to q among the XPath queries
conforming to D, in order that a user may select a desirable query from the
top-K queries.

As a brief example of our algorithm, let us consider the following DTD D.

<!ELEMENT html (div)*>
<!ELEMENT div (div|p)+>
<!ELEMENT p (#PCDATA|span)*>
<!ELEMENT span (#PCDATA)>
<!ATTLIST p color CDATA "blue">

S.W. Liddle et al. (Eds.): DEXA 2012, Part I, LNCS 7446, pp. 116–130, 2012.
c© Springer-Verlag Berlin Heidelberg 2012



Finding Top-K Correct XPath Queries of User’s Incorrect XPath Query 117

Suppose that a user wants every span element in a paragraph whose color is “red”
and that he/she tries to use an XPath query q = /p[@color = "red"]/spen,
which does not conform to D. Our algorithm finds XPath queries similar to q
based on the edit distance between XPath queries, introduced in this paper. In
this example, our algorithm lists the following top-K XPath queries similar to
q (assuming that K = 3). Each XPath query q′ is followed by the edit distance
between q and q′, assuming that the cost of relabeling l with l′ is the normalized
string edit distance between l and l′ [13].

1. //p[@color = "red"]/span (0.75)
2. //div/p[@color = "red"]/span (1.75)
3. /html/div/p[@color = "red"]/span (2.25)

As above, by our algorithm the user can obtain top-K correct XPath queries
similar to q without modifying q by hand. Although the above DTD D is very
small, DTDs used in practice are larger and more complex [3]. In such a situation,
a user tends not to understand the entire structure of a DTD exactly, and thus
our algorithm is helpful to write correct XPath queries on such DTDs.

In this paper, we focus on an XPath fragment using child, descendant-or-
self, following-sibling, preceding-sibling, and attribute axes. Although our XPath
fragment supports no upward axes, this gives usually no problem since the ma-
jority of XPath queries uses only downward axes[8]. Thus, we believe that our
algorithm is useful to correct a large number of XPath queries.

There have been a number of eminent studies related to this paper. Ref. [4]
proposes an algorithm that finds valid tree pattern queries most similar to an
input query. Their algorithm and ours are incomparable due to the underlying
data models; in their data model a tree is unordered and a schema is represented
by a DAG supporting multiple type for element name (as in XML Schema),
while we use DTD (recursion is supported) and a tree is ordered. Note that Choi
investigated 60 DTDs and 35 of the DTDs are recursive [3], which suggests that
it is meaningful to support recursive schemas. Besides query correction, several
related but different approaches have been studied for XML. Ref. [16] proposes
the node insertion operation that is also proposed in this paper. Ref. [15] takes a
query expansion approach instead of correcting queries. Refs. [1,2,7,6] deal with
a top-K query evaluation for XML documents to derive inexact answers, i.e.,
evaluating a “relaxed” version of the input query, if it is unsatisfiable. Inexact
querying is also studied in Refs. [10,11], in which a user can write an XQuery
query without specifying exact connections between elements. Ref. [14] proposes
an interactive system for generating XQuery queries. There has been a number
of studies on XML keyword search (e.g., [19,9,18]), which are especially suitable
for users that are not familiar with XML query languages.

2 Preliminaries

Let Σe be a set of labels (element names) and Σa be a set of attribute names
with Σe ∩ Σa = ∅. A DTD is a triple D = (d, α, s), where d is a mapping



118 K. Ikeda and N. Suzuki

Table 1. Syntax of XP

XP ::= “/” RelativePath | “/” RelativePath “@” Attribute
RelativePath ::= LocationStep | LocationStep “/” RelativePath
LocationStep ::= Axis “::” Nodetest | Axis “::” Nodetest Predicate

Axis ::= “↓” | “↓∗” | “→+” | “←+”
Nodetest ::= Label | “∗”

Label ::= (any label in Σe)
Attribute ::= (any label in Σa)
Predicate ::= “[” Exp “]”

Exp ::= PredPath | PredPath Op Value
PredPath ::= RelativePath | “@” Attribute | RelativePath “@” Attribute

Op ::= “=” | “<” | “>” | “=<”| “=>”
Value ::= ‘”’ (any string other than ‘”’) ‘”’

from Σe to the set of regular expressions over Σe, α is a mapping from Σe to
2Σa, and s ∈ Σe is the start label. For example, the DTD in Section 1 is a
triple (d, α, html), where d(html) = div∗, d(div) = (div|p)+, d(p) = (ε|span)∗,
d(span) = ε, α(p) = {color}, and α(e) = ∅ for any element e �= p. By L(d(a))
we mean the language of d(a). For labels b, c, if there is a string str ∈ L(d(a))
such that str[i] = c and str[j] = b with i < j (i > j), then we say that b can
be right (resp., left) to c in d(a), where str[i] denotes the ith character of str.
For example, e can be right to c in d(a) = c(f |e)∗. For a DTD D = (d, α, s) and
labels a, b ∈ Σe, b is reachable from a in D if (i) a = b or b appears in d(a),
or (ii) for some label a′, a′ is reachable from a and b appears in d(a′). In the
following, we assume that any label in a DTD is reachable from the start label
of the DTD.

The XPath fragment used in this paper, denoted XP, is a set of location paths
using child (↓), descendant-or-self (↓∗), following-sibling (→+), preceding-sibling
(←+), and attribute (@) axes. Formally, XP is defined in Table 1. Thus an XPath
query (query for short) q in XP can be denoted

/ax[1] :: l[1][exp[1]]/ · · ·/ax[m] :: l[m][exp[m]], (1)

where ax[i] ∈ Axis and l[i] ∈ Σe for 1 ≤ i ≤ m − 1, exp[i] ∈ Exp for 1 ≤ i ≤ m,
ax[m] ∈ Axis∪ {@}, and l[m] ∈ Σa if ax[m] = @, l[m] ∈ Σe otherwise. If the ith
location step has no predicate, then we write exp[i] = ε.

Let q be a query in (1) containing no ‘∗’ as node test. For indexes i, j such
that ax[i] ∈ {↓, ↓∗} and that ax[i + 1], · · · , ax[j] ∈ {→+,←+}, we say that l is
the parent label of l[j] in q if (i) ax[i] =↓ and l = l[i − 1], or (ii) ax[i] =↓∗, l is
reachable from l[i − 1], and l[i] appears in d(l). For example, if q = / ↓:: a/ ↓::
b/→+:: c/←+:: d, then a is the parent label of b, c, d in q. Let D = (d, α, s) be
a DTD. Then q conforms to D if the following conditions hold.

– ax[1] = ↓ and l[1] = s, or, ax[1] = ↓∗ and l[1] ∈ Σe

– The following condition holds for every 2 ≤ i ≤ m

• ax[i] = ↓ and l[i] appears in d(l[i − 1]),

• ax[i] = ↓∗ and l[i] is reachable from l[i − 1] in D,



Finding Top-K Correct XPath Queries of User’s Incorrect XPath Query 119

• ax[i] = →+ and l[i] can be right to l[i− 1] in d(l), where l is the parent
label of l[i] (the case where ax[i] = ←+ is defined similarly), or

• ax[i] = @, i = m, and l[i] ∈ α(l[i − 1]).
– For every 1 ≤ i ≤ m with exp[i] �= ε, query /↓:: l[i]/exp[i] conforms to DTD

(d, α, l[i]).

Let q be a query in (1) containing ‘∗’s as node tests. Then q conforms to D if for
some l1 ∈ L(l[1]), · · · , lm ∈ L(l[m]), /ax[1] :: l1[exp[1]]/ · · ·/ax[m] :: lm[exp[m]]
conforms to D.1 By |q| we mean the number of location steps in q, e.g., if
q = / ↓:: a/ ↓:: ∗[←+:: d], then |q| = 3. If a query q has neither predicate nor
attribute axis, then we say that q is simple.

3 Edit Operations to XPath Query

In this section, we define edit operations to queries. We use the following four
kinds of edit operations.

– Axis substitution: substitutes axis ax with ax′, denoted ax → ax′. For ex-
ample, by applying ↓ → ↓∗ to /↓:: a we obtain /↓∗:: a.

– Label substitution: substitutes label (possibly ‘∗’) l with l′, denoted l → l′.
For example, by applying a → b to /↓:: a we obtain /↓:: b.

– Location step insertion: inserts location step ax :: l, denoted ε → ax :: l. For
example, by applying ε →↓:: b to the tail of /↓:: a we obtain /↓:: a/↓:: b.

– Location step deletion: deletes location step ax :: l, denoted ax :: l → ε. For
example, by applying ↓:: a → ε to the first location step of / ↓:: a/ ↓:: b we
obtain /↓:: b.

We next define the position of a location step ls, denoted pos(ls). Let q =
/ax[1] :: l[1][exp[1]]/ · · ·/ax[m] :: l[m][exp[m]] ∈ XP. We define that pos(ax[i] ::
l[i]) = i for 1 ≤ i ≤ m. As for location steps in predicates, let exp[i] = ax′[1] ::
l′[1][exp′[1]]/ · · · /ax′[n] :: l′[n][exp′[n]]. Then we define that pos(ax′[j] :: l′[j]) =
i.j for 1 ≤ j ≤ n. The position of a location step in exp′[j] can be defined
similarly. For example, let q = /↓:: a/↓:: b[↓:: ∗[↓:: g]]/→+:: c. Then pos(↓:: b) =
2, pos(↓:: ∗) = 2.1, and pos(↓:: g) = 2.1.1. By [op]pos, we mean an edit operation
op applied to the location step at position pos. If op is an edit operation inserting
a location step ls, then [op]pos inserts ls just after the location step at pos.

Let q ∈ XP. An edit script for q is a sequence of edit operations having a
position in q. For an edit script s for q, by s(q) we mean the query obtained by
applying s to q. For example, let s = [ε → ↓:: b]1 [c → f ]3 and q = / ↓∗:: a/ ↓::
d/ ↓:: c. Then we have s(q) = / ↓∗:: a/ ↓:: b/ ↓:: d/ ↓:: f . Throughout this paper,
we assume the following. Let U = {↓, ↓∗}, S = {→+,←+}, and A = {@}.

– An axis can be substituted with an axis of “same kind” only, that is, ax ∈ U
(resp., S,A) can be substituted with an axis in U (resp., S,A) only.

– A location step ax :: l can be inserted to a query only if ax ∈ U and l ∈ Σe.

1 L(l[i]) = {l[i]} if l[i] is a label, L(l[i]) = Σe if l[i] = ‘∗’.



120 K. Ikeda and N. Suzuki

A cost function assigns a cost to an edit operation. By γ(op) we mean the cost
of an edit operation op, where γ is a cost function. In the following, we assume
that γ(op) ≥ 0. A cost function can be a general function as well as a constant.
For example, γ(op) can be a string edit distance between l and l′ if op = l → l′.
For an edit script s = op1op2 · · · opn, by γ(s) we mean the cost of s, that is,
γ(s) =

∑
1≥i≥n γ(opi). For a DTD D, a query q, and a positive integer K, the

K optimum edit script for q under D is a sequence of edit operations s1, · · · , sK
if (i) each of s1(q), · · · , sK(q) conforms to D, (ii) γ(s1) ≤ · · · ≤ γ(sK), and (iii)
s1, · · · , sK are optimum, that is, for any edit script s for q such that s(q) conforms
to D, s(q) ∈ {s1(q), · · · , sK(q)} or γ(s) ≥ γ(sK). We say that s1(q), · · · , sK(q)
are top-K queries similar to q under D.

4 Xd-Graph Representing Queries Conforming to DTD

In this section, we introduce a graph called xd-graph, which forms the basis of
our algorithm. Throughout this section, we assume that a query is simple.

To find top-K queries similar to a query q under a DTD D, we take the
following approach.

1. We first construct an xd-graph for q and D. The graph is designed so that
each path in the graph represents a simple query q′ such that (a) q′ is ob-
tained by applying some edit script to q and that (b) q′ conforms to D.

2. Then we solve the K shortest paths problem on the xd-graph. The result
corresponds to top-K queries similar to q under D. The details of this step
are presented in Section 5.

4.1 Xd-Graph Examples

To construct an xd-graph, we need a graph representation of DTD. The DTD
graph G(D) of a DTD D = (d, α, s) is a directed graph (V,E), where V = Σe

and E = {l → l′ | l′ is a label appearing in d(l)}. For example, Fig. 1(a) is
the DTD graph of D = (d, α, s), where d(s) = ba∗, d(a) = c|d, d(b) = d,
d(c) = ε, d(d) = b|ε.

Now let us illustrate xd-graph. We first present the following three cases by
examples (assuming that no ‘∗’ can be used), then define xd-graph formally.

Case A) Only child (↓) can be used as an axis.
Case B) Descendant-or-self (↓∗) can be used as well as ↓.
Case C) Sibling axes (→+, ←+) can be used as well as ↓ and ↓∗.

Case A). Let us first illustrate the xd-graph constructed from a simple query
q = / ↓:: a/ ↓:: d and the DTD graph G(D) in Fig. 1(a). Since only ↓ axis
is allowed, it suffices to consider location step insertion, location step deletion,
and label substitution. Fig. 1(b) shows xd-graph G(q,G(D)). The xd-graph is
constructed from 3 copies of G(D) with their nodes connected by several edges.
Here, n0, n1, n2 are newly added nodes, which correspond to the “root node” in



Finding Top-K Correct XPath Queries of User’s Incorrect XPath Query 121

s

a

b

c

d

s

a

b

c

d

s

a

b

c

d

n 1

n 2

l

1

1 1

2

2 2

2

1

2

n 0 0

0 0

0

a::

d::

{
{

DTD graph

start

ε

l ε

l l’

:

:

:

::

::

0

1

s

a b

c d

(a) (b)

Fig. 1. (a) a DTD graph G(D) and (b) an xd-graph G(q,G(D))

the XPath data model. Each node is subscripted, e.g., the node s in G(D) is
denoted s0 on the topmost DTD graph of G(p,G(D)), s1 on the second topmost
DTD graph, and so on, as shown in Fig. 1(b).

We have the following three kinds of edges in an xd-graph.

– A “horizontal” edge l → l′ corresponds to a location step insertion.

– A “slant” edge l ��� l′ corresponds to a label substitution.

– A “vertical” edge l � l′ corresponds to a location step deletion.

More concretely, let us first consider horizontal edge n0 → s0 in Fig. 1(b). This
edge means “moving from the root node to child node s, using no location step
of q”. In other words, the edge n0 → s0 represents adding a location step ↓:: s,
that is, the edge represents an edit operation [ε →↓:: s]0. Let us next consider
slant edge s0 ��� b1 in Fig. 1(b). This edge means “moving from node s to child
node b using the first location step ↓:: a of q”. Since the target node is b rather
than a, we have to substitute the label of ↓:: a with b, that is, the edge s0 ��� b1
represents [a → b]1. Finally, consider vertical edge b1 � b2 in Fig. 1(b). This
edge means “staying the same node b by ignoring (deleting) the second location
step ↓:: d of q”. Thus the edge b1 ��� b2 represents [↓:: d → ε]2.

In Fig. 1(b), n0 is called start node and d2 is called accepting node. Each path
from the start node to the accepting node represents a simple query conforming
to D obtained by correcting q. For example, let us consider a path p = n0 →
s0 ��� a1 ��� d2 in Fig. 1(b). Recall that q = /↓:: a/↓:: d. The first edge n0 → s0
represents a location step insertion [ε →↓:: s]0. The second edge s0 ��� a1
represents a label substitution [a → a]1, i.e., the first location step “↓:: a” of
q is unchanged. Similarly, the location step “↓:: d” of q is unchanged. Thus,
p represents a query q′ = / ↓:: s/ ↓:: a/ ↓:: d, which is obtained by applying
[ε →↓:: s]0[a → a]1[d → d]2 to q. Note that q′ conforms to D.



122 K. Ikeda and N. Suzuki

s

a

b

c

d

n 0 0

0 0

0 0

d:: {
start

s

a

b

c

d

n 1

1

1 1

::lε *

1

1

s

a

b

c

d

n 0 0

0 0

0 0

d:: {
start

s

b

c

d

n 1 1

1

1 1

::l’*: ::d

1a

(a) (b)

:

Fig. 2. Edges representing (a) location step insertion and (b) axis substitution

Case B). In this case, we can use ↓∗ axes as well as ↓ axes. Let us first consider
an edit operation inserting location step ↓∗:: l to a query. For this insertion, we
add edges representing the edit operation to an xd-graph. Fig. 2(a) shows the
xd-graph constructed from the DTD graph in Fig. 1(a) and a query q = /↓:: d.
Each dashed edge in Fig. 2(a) represents a location step insertion. For example,
s0 ��� d0 means “moving from node s to node d via ↓∗ axis, using no location step
of q”, that is, inserting a location step ↓∗:: d at position 0 of q, i.e., [ε →↓∗:: d]0.
As stated before, every path from the start node to the accepting node represents
a simple query conforming to D, which is obtained by correcting q. For example,
n0 → s1 ��� d1 represents a simple query / ↓:: s/ ↓∗:: d obtained by applying
[d → s]1[ε →↓∗:: d]1 to q = /↓:: d.

Let us next consider axis substitution between ↓ and ↓∗. Fig. 2(b) shows the
xd-graph constructed from the same DTD graph as above and the same query
q = / ↓:: d. In the figure, for simplicity we omit some of the edges representing
location step insertion, location step deletion, and label substitution. In Fig. 2(b),
a dashed edge represents substituting ↓:: a with ↓∗:: l. For example, n0 ��� a1
means “moving from the root node to a with ↓∗ axis”, i.e., substituting ↓:: d with
↓∗:: a. Here, consider path p = n0 → s0 ��� d1 in Fig. 2(b). p represents a query
/↓:: s/↓∗:: d, which is obtained by applying [ε →↓:: s]0[↓→↓∗]1 to q = /↓:: d.

Finally, substituting ↓∗ with ↓ can be represented by a slant edge similar to
label substitution (l → l′), and the deletion of a location step using ↓∗ axis can
be handled similarly to the location step deletion in Case A.

Case C). Let us consider handling →+ and ←+ axes. Fig. 3 shows the xd-graph
constructed from the same DTD graph as above and a query q = /→+:: d. First,
let us consider edges connecting the same labels having distinct subscripts, e.g.,
s0 → s1 and a0 → a1. Such an edge means that the position does not change
(ignoring →+:: d of q) and →+:: d is deleted from q. Let us next consider dashed
edges connecting “sibling labels”. For example, we have four edges between a0, b0



Finding Top-K Correct XPath Queries of User’s Incorrect XPath Query 123

s

a

b

c

d

n 0 0

0 0

0 0

d:: {
start

s

a

b

c

d

n 1 1

1 1

1 1

+

d::+ l::+:

d::+ l::+:

d::+ ε:

Fig. 3. Edges dealing with →+ and ←+ axes

and a1, b1 (e.g., a0 ��� b1, b0 � a1) since a and b are siblings in d(s) = ba∗. A
dashed edge � represents substituting a sibling axis (→+ or ←+) with →+,
and another dashed edge ��� represents substituting a sibling axis with ←+.
For example, a0 ��� b1 means “moving from node a to b via ←+ axis”, that is,
substituting the location step →+:: d of q with ←+:: b. An xd-graph has no edge
violating a DTD, e.g., Fig. 3 does not have edge b0 ��� a1 since d(s) = ba∗ and
a cannot be left to b.

Wildcard Node Test). To handle wild card node test ‘∗’, we duplicate each
“slant” edge in Fig. 1(b). For example, between s0 and a1 we use two edges

s0 ��� a1 and s0
∗��� a1 instead of a single edge s0 ��� a1. The former of

the two represents substituting a label with a as in Case A, and the latter
represents substituting a label with ‘∗’ rather than a. Similarly, each dashed edge
in Fig. 2(b) is duplicated. The details are skipped because of space limitation.

4.2 Formal Definition of Xd-Graph

Let D = (d, α, s) be a DTD, G(D) = (V,E) be the DTD graph of D, and
q = /ax[1] :: l[1]/ · · ·/ax[m] :: l[m] be a simple query. Let Gi(D) = (Vi, Ei)
be a graph obtained by adding a subscript i to each node of G(D), that is,
Vi = {li | l ∈ V } and Ei = {li → l′i | l → l′ ∈ E} for 0 ≤ i ≤ m. The xd-graph
for q and G(D), denoted G(q,G(D)), is a directed graph (V ′, E′), where

V ′ = {n0, · · · , nm} ∪ V0 ∪ · · · ∪ Vm,

E′ = Einsc ∪ (E′0 ∪ · · · ∪ E′m) ∪ (F1 ∪ · · · ∪ Fm). (2)

Here, Einsc in (2) is the set of edges inserting ↓:: l (correspond to ”ε →↓:: l” in
Fig. 1(b)), that is, Einsc = {n0 → s0, · · · , nm → sm} ∪ (E0 ∪ · · · ∪ Em), where
Ei is the set of edges of Gi(D). E′i in (2) is the set of edges inserting ↓∗:: l
(corresponding to “ε →↓∗:: l” in Fig. 2(a)) and define as follows.

E′i = {ni → li | li ∈ Vi} ∪ {li → l′i | l′ is reachable from l in D}.



124 K. Ikeda and N. Suzuki

Fi in (2) is the set of edges between Gi−1(D) and Gi(D) defined as follows. We
have two cases to be considered.
1) The case where ax[i] ∈ {↓, ↓∗}: Fi = Di ∪ Ci ∪ C∗i ∪ Ai ∪ A∗i , where

Di = {ni−1 → ni} ∪ {li−1 → li | l ∈ V }, (3)

Ci = {ni−1 → si} ∪ {li−1 → l′i | l → l′ ∈ E},
C∗i = {ni−1

∗→ si} ∪ {li−1 ∗→ l′i | l → l′ ∈ E},
Ai = {ni−1 → li | li ∈ Vi} ∪ {li−1 → l′i | l′ is reachable from l in D},
A∗i = {ni−1

∗→ li | li ∈ Vi} ∪ {li−1 ∗→ l′i | l′ is reachable from l in D}.

Here, Di is the set of edges corresponding to “↓:: l → ε” in Fig. 1(b), Ci is the
set of edges corresponding to “l → l′” in Fig. 1(b), and Ai is the set of edges
corresponding to “↓:: d →↓∗:: l” in Fig 2(b). C∗i (A∗i ) is the set of “duplicated”
edges of Ci (resp., Ai) to handle ‘∗’.
2) The case where ax[i] ∈ {←+,→+} : Fi = Di ∪ Li ∪ Ri, where

Li = {li−1 → l′i | l′ can be left to l, l′′ is the parent label of l, l′ in d(l′′)},
Ri = {li−1 → l′i | l′ can be right to l, l′′ is the parent label of l, l′ in d(l′′)},

and Di is the same as the previous case. Li (resp., Ri) is the set of edges corre-
sponding to “→+:: d → ←+:: l” (resp., “→+:: d → →+:: l”) in Fig. 3.

Finally, we define the cost of an edge in G(q,G(D)) = (V ′, E′). Suppose that
γ(l → l′), γ(ax → ax′), γ(ε → ax :: l), and γ(ax :: l → ε) are defined for any
l, l′ ∈ Σe and any axes ax, ax′. Then the cost of an edge e ∈ E′, denoted γ(e),
is defined as follows.

– The case where e ∈ Einsc: We can denote e = li → l′i. Since this edge
represents inserting a location step ↓:: l′, γ(e) = γ(ε → ↓:: l′).

– The case where e ∈ E′i: We can denote e = li → l′i. Since this edge represents
inserting a location step ↓∗:: l′, γ(e) = γ(ε →↓∗:: l′).

– The case where e ∈ Di: We can denote e = li−1 → li. Since this edge
represents deleting a location step ax[i] :: l[i], γ(e) = γ(ax[i] :: l[i] → ε).

– The case where e ∈ Ci: We can denote e = li−1 → l′i. Since this edge repre-
sents substituting ax[i] with ↓ and substituting l[i] with l′, γ(e)=γ(ax[i] →↓)
+ γ(l[i] → l′). The case where e ∈ C∗i can be defined similarly.

– The case where e ∈ Ai: We can denote e = li−1 → l′i. Since this edge
represents substituting ax[i] with ↓∗ and substituting l[i] with l′, γ(e) =
γ(ax[i]→↓∗) + γ(l[i] → l′). The case where e ∈ A∗i can be defined similarly.

– The case where e ∈ Li: We can denote e = li−1 → l′i. Since this edge
represents substituting ax[i] with ←+ and substituting l[i] with l′, γ(e) =
γ(ax[i] →←+)+γ(l[i] → l′). The case where e ∈ Ri can be defined similarly.

5 Algorithm for Finding Top-K Queries

In this section, we present an algorithm for finding top-K queries similar to an
input query under a DTD. We first consider the case where a query is simple,



Finding Top-K Correct XPath Queries of User’s Incorrect XPath Query 125

then present an algorithm for queries in XP. Because of space limitation, the
proofs of the correctness and the running time estimations of the algorithm are
skipped.

5.1 Method for Simple Query

Let D be a DTD, Σe be the set of labels in D, q = /ax[1] :: l[1]/ · · ·/ax[m] :: l[m]
be a simple query, and G(q,G(D)) = (V ′, E′) be the xd-graph for q and G(D).
Moreover, let n0 ∈ V ′ be the start node and (l[m])m ∈ V ′ be the accepting node
of G(q,G(D)). If l[m] /∈ Σe (due to user’s typo), then the label l ∈ Σe “most
similar” to l[m] is selected and lm ∈ V ′ is used as the accepting node.2 Currently,
we select l ∈ Σe such that the edit distance between l and l[m] is the smallest.

By the definition of xd-graph, in order to find top-K queries similar to q
under D, it suffices to solve the K shortest paths problem over the xd-graph
G(q,G(D)) between the start node and the accepting node. The resulting K
shortest paths represent the top-K queries similar to q under D. Thus we have
the following.

Theorem 1. Let D be a DTD, q be a simple query, and K be a positive integer.
Then the above method outputs top-K queries similar to q under D. �
Let us consider the time/space complexity of the method. First, the size of
G(q,G(D)) is in O(|q| · |Σe|2). Then the time complexity of the method depends
on the algorithm to solve the K shortest paths problem. Among a number of
algorithms for solving this problem (e.g., [12,5]), we currently use the extended
Dijkstra’s algorithm to implement our algorithm. In this case, the time complex-
ity of the method is in O(K · |q| · |Σe|2 · log(|q| · |Σe|)).

5.2 Algorithm for General Query

We present an algorithm that finds, for a query q ∈ XP and a DTD D, top-K
queries similar to q under D. We first give some definitions. Let q = /ax[1] ::
l[1][exp[1]]/ · · ·/ax[m] :: l[m][exp[m]] ∈ XP. By sp(q) we mean the selection path
of q obtained by dropping every predicate in q and the last location step of q if
ax[m] = @; that is,

sp(q) =

{
/ax[1] :: l[1]/ · · · /ax[m − 1] :: l[m − 1] if ax[m] = @,
/ax[1] :: l[1]/ · · · /ax[m] :: l[m] otherwise.

Suppose that ax[m] = @. By definition the set of edit operations applicable to
ax[m] :: l[m] is S = {ax[m] :: l[m] → ε} ∪{l[m] → l | l ∈ α(l[m−1])}. We say that
op1, · · · , opK are K optimum edit operations for ax[m] :: l[m] if op1, · · · , opK ∈ S,
opi �= opj for any i �= j, γ(op1) ≤ · · · ≤ γ(opK), and γ(opK) ≤ op for any
op ∈ S \ {op1, · · · , opK} (we assume that op|S|+1 = · · · = opK = nil with
γ(nil) = ∞ if |S| < K).

2 G(q,G(D)) can also have multiple accepting nodes. But since this approach tends
to output “too diverse” answers, we currently use a single accepting node.



126 K. Ikeda and N. Suzuki

We now present the algorithm. To find top-K queries similar to a query q
under a DTD D, we again construct an xd-graph G(sp(q), G(D)) and solve the
K shortest paths problem on the xd-graph. But since q may not be simple, before
solving the K shortest paths problem we modify G(sp(q), G(D)) as follows.3

– Suppose exp[i] �= ε. The cost of deleting location step ax[i] :: l[i][exp[i]] should
be γ(ax[i] :: l[i] → ε)+γ(exp[i] → ε), where “exp[i] → ε” stands for the delete
operations that delete every location step in exp[i] (line (3-a) below).
We also have to consider correcting exp[i]. To do this, we call the algorithm
for query /l[i]/exp[i] and DTD (d, α, l[i]) recursively. The obtained result
is incorporated into G(sp(q), G(D)) by using the gadget in Fig. 4 (node li
corresponds to l[m]); the obtained K optimum edit scripts are assigned to
the K edges e1, · · · , eK in the gadget (line (3-b)).

– If ax[m] = @, we have to modify G(sp(q), G(D)) in order to incorporate the
K optimum edit operations for ax[m] :: l[m] (line 4).

FindKPaths(D, q,K)

Input: A DTDD = (d, α, s), a query q = /ax[1] :: l[1][exp[1]]/ · · · /ax[m] :: l[m][exp[m]],
and a positive integer K.
Output: K optimum edit scripts s1, · · · , sK for q under D.

1. Construct the DTD graph G(D) of D.
2. Construct the xd-graph G(sp(q),G(D)) for q and G(D).
3. For each 1 ≤ i ≤ m with exp[i] �= ε, modify G(sp(q), G(D)) as follows.

(a) For each edge e ∈ Di (defined in Eq. (3)), let γ(e) ← γ(e) + γ(exp[i] → ε).
(b) For each node li ∈ Vi, do the following (i) – (iii).

i. Replace li with its corresponding gadget (Fig. 4).
ii. Call FindKPaths(D′, q′,K), where D′ = (d, α, li) and q′ = /li/exp[i].

4

Let s′1, · · · , s′K be the result.
iii. γ(ej) ← γ(s′j) for every 1 ≤ j ≤ K.

4. If ax[m] = @, modify G(sp(q), G(D)) as follows.
(a) Replace the accepting node lm−1 of G(sp(q), G(D)) with its corresponding

gadget (Fig. 4).
(b) Let op1, · · · , opK be the K optimum edit operations for ax[m] :: l[m].
(c) γ(ej) ← γ(opj) for every 1 ≤ j ≤ K.

5. Delete the nodes unreachable from the accepting node in G(sp(q),G(D)).
6. Solve the K shortest paths problem on G(sp(q),G(D)) modified as above.
7. Let s1, · · · , sK be the result of line 6. Return s1, · · · , sK .

The above algorithm runs in O(K · |q| · |Σe|2 · log(|q| · |Σe|)) time. We also have
the following.

Theorem 2. Let D be a DTD, q ∈ XP a query, and K be a positive integer.
Then the algorithm outputs K optimum edit scripts for q under D. �
3 Since it is fairly difficult to correct the right hand side and the comparison operator
of exp[i] exactly, we focus on correcting the left hand side of exp[i].

4 Since li is added as the first location step of q′, for each recursive call we assume
that γ(n0 → l) = 0 if l = (li)0 and γ(n0 → l) = ∞ otherwise, where n0 is the start
node of the constructed xd-graph in the recursive call.



Finding Top-K Correct XPath Queries of User’s Incorrect XPath Query 127

l
...

... l’
...

...l
...

e1

eK

edges in A     A*    D

i i i

ii. . .
edges in A     A*    C     C*    Dii i edges in C     C*iU U U Ui i U i

U U i

Fig. 4. Node li and its gadget, where l′i is a new node and e1, · · · , eK are new edges

Pruning Xd-Graph. An xd-graph may contain unnecessary nodes, e.g., in
Fig. 1(b) the accepting node d2 is unreachable from c0, c1, and c2, and thus
these three nodes are unnecessary. By pruning such nodes (as in line 5 above)
we can save space and time. Such a pruning is effective especially if a DTD
has a tree-like structure. For example, suppose that the DTD graph D(G) is a
complete k-ary tree and that query q contains no sibling axis and no predicate.
For a leaf node n in D(G), the number of nodes from which n is reachable is
in O(log |Σe|). Thus the size of the xd-graph can be reduced from O(|q| · |Σe|2)
to O(|q| · log2 |Σe|), and the time complexity of the algorithm in this subsection
can be reduced to O(K · |q| · log2 |Σe| · log(|q| · log |Σe|)).

We also make an experiment to evaluate the effect of this pruning. This is
shown in Section 6.1.

6 Experimental Results

In this section, we present two experimental results. The first experiment eval-
uates the execution time, and the second experiment evaluates the “quality” of
the output of the algorithm. The algorithm is implemented in Ruby, and the
experiments are performed on Apple Xserve with Mac OS X Server 10.6.8, Xeon
2.26GHz CPU, 6GB Mem, 2.16GB HDD, and Ruby-1.9.3.

6.1 Running Time of the Algorithm

Since the size of an xd-graph may become very large, pruning of xd-graph is
important to obtain top-K queries efficiently. We evaluate the execution time of
the algorithm, as follows.

1. We create a set Q of 10 queries (not shown because of space limitation).
These queries are generated by XQGen [20], which is an XPath expression
generator, under auction.dtd of XMark [17]. The average size of the queries
in Q is 4.1. Two of the queries contains predicates and the others are simple.

2. For each query obtained above and for each K = 1, · · · , 10, we execute the
algorithm and measure its execution time. In this experiment, we use the
following simple cost function.



128 K. Ikeda and N. Suzuki

Fig. 5. Execution time and ratios at which the outputs contain correct answers

γ(l → l′) = the normalized string edit distance between l and l′

γ(ax → ax′) =
{
0 if ax = ax′

0.5 otherwise

γ(ε → ax :: l) = γ(ax :: l → ε) = 1

Fig. 5(left) plots the average execution times for Q, with/without pruning. With
pruning the average execution time for Q is about 30 to 250 milliseconds, but
without pruning the average execution time is increased by a factor of 4 to 100.
Thus, with pruning the algorithm runs efficiently and the pruning brings a huge
reduction of the execution time of the algorithm.

6.2 Quality of the Output of the Algorithm

For a DTD D and an incorrect query q written by a user, there are a number
of queries similar to q under D, and thus our algorithm need to output a result
containing the “correct query” that the user requires. We evaluate the ratio at
which the results of the algorithm contain the correct queries.

The outline of this experiment is as follows. We first prepare a set of pairs
(qc, qi), where qc is a correct query (a query a user should write) and qi is an
incorrect query (a query a user actually writes). Then for each pair (qc, qi), we
execute the algorithm to obtain top-K queries similar to qi and calculate the
ratio at which the top-K queries contain qc.

Let us give the details of the experiment. The experiment is achieved by the
following five steps.

1. We generate 30 queries (not shown because of space limitation) by using
XQGen under auction.dtd of XMark. The average size of these queries is
about 5.4. There queries are treated as “correct queries”.

2. For each query qc obtained above, we make a “question”, which describes
the meaning of qc in words. Fig. 6 shows an example of a simple question
for //interval/start. Each question is carefully described so that it does
not permit more than one correct queries. We obtain 30 questions.



Finding Top-K Correct XPath Queries of User’s Incorrect XPath Query 129

Write a minimum XPath query    satisfying the following two conditions.

1. The target element of    is "start".
2.    must use an "interval" element.

q

q
q

Fig. 6. An example of a question

3. We request six people to solve the 30 questions obtained in step 2. That is,
for each question they are asked to write a query whose semantics coincides
with what the question means. In this step they can see auction.dtd at any
time. We obtain 180 answers (i.e., queries written by users) in total.

4. We checked the 180 queries by hand and find 17 incorrect ones. Now we
obtain 17 pairs (qc, qi) of correct queries and incorrect queries such that qc
and qi share the same question.

5. For each query qi of the 17 incorrect queries and each K = 1, · · · , 10, we
execute the algorithm for qi and check whether the corresponding correct
query qc is contained in the output of the algorithm. We use the same cost
function as the previous experiment. Fig. 5(right) illustrates the result.

As shown in the figure, the algorithm fairly succeeds in generating top-K queries
containing correct queries. The reason why the ratio does not reach 100% is as
follows. Auction.dtd contains a cycle and a correct query traverses the cycle, but
a user write an incorrect query that “skips” the intermediate elements on the
cycle and the algorithm cannot predict the correct query since too much elements
are skipped. More concretely, the query written by a user is the following,

//closed_auctions/closed_auction/annotation/description/text

and the corresponding correct query is as follows. The algorithm does not predict
it since four elements are skipped.

//closed_autcions/closed_auction/annotation

/description/parlist/listitem/parlist/listitem/text

Thus, we may have to improve the algorithm to deal with cycles more appropri-
ately.

7 Conclusion

In this paper, we proposed an algorithm that finds, for a query q, a DTD D, and
a positive integer K, top-K queries similar to q under D. Experimental results
suggests that the algorithm outputs “correct” answers efficiently in many cases.

This is an ongoing work and we still have a lot of things to do. One of the
important future work is to devise a method for determining reasonable costs
of edit operations automatically, since it may be difficult for users to specify
the cost of each edit operation exactly. Another future work is to improve the
efficiency of the algorithm.



130 K. Ikeda and N. Suzuki

References

1. Amer-Yahia, S., Cho, S., Srivastava, D.: Tree Pattern Relaxation. In: Jensen, C.S.,
Jeffery, K., Pokorný, J., Šaltenis, S., Bertino, E., Böhm, K., Jarke, M. (eds.) EDBT
2002. LNCS, vol. 2287, pp. 89–102. Springer, Heidelberg (2002)

2. Amer-Yahia, S., Lakshmanan, L.V., Pandit, S.: Flexpath: Flexible structure and
full-text querying for xml. In: Proc. SIGMOD, pp. 83–94 (2004)

3. Choi, B.: What are real dtds like? In: Proc. WebDB, pp. 43–48 (2002)
4. Cohen, S., Brodianskiy, T.: Correcting queries for xml. Information Systems 34(8),

690–710 (2009)
5. Eppstein, D.: Finding the k shortest paths. SIAM J. Computing 28(2), 652–673

(1998)
6. Fazzinga, B., Flesca, S., Furfaro, F.: Xpath query relaxation through rewriting

rules. IEEE Transactions on Knowledge and Data Engineering 23, 1583–1600
(2011)

7. Fazzinga, B., Flesca, S., Pugliese, A.: Retrieving xml data from heterogeneous
sources through vague querying. ACM Trans. Internet Technol. 9(2), 7:1–7:35
(2009), http://doi.acm.org/10.1145/1516539.1516542

8. Ives, Z.G., Halevy, A.Y., Weld, D.S.: An xml query engine for network-bound data.
The VLDB Journal 11(4), 380–402 (2002)

9. Li, G., Feng, J., Wang, J., Zhou, L.: Effective keyword search for valuable lcas over
xml documents. In: Proc. ACM CIKM, CIKM 2007, pp. 31–40. ACM (2007)

10. Li, Y., Yu, C., Jagadish, H.V.: Schema-free xquery. In: Proc. VLDB, pp. 72–83
(2004)

11. Li, Y., Yu, C., Jagadish, H.V.: Enabling schema-free xquery with meaningful query
focus. The VLDB Journal 17, 355–377 (2008)

12. Martins, E.: K-th shortest paths problem,
http://www.mat.uc.pt/~eqvm/OPP/KSPP/KSPP.html

13. Marzal, A., Vidal, E.: Computation of normalized edit distance and applications.
IEEE Transactions on Pattern Analysis and Machine Intelligence 15, 926–932
(1993)

14. Morishima, A., Kitagawa, H., Matsumoto, A.: A machine learning approach to
rapid development of xml mapping queries. In: Proc. ICDE, pp. 276–287 (2004)

15. Schenkel, R., Theobald, M.: Feedback-Driven Structural Query Expansion for
Ranked Retrieval of XML Data. In: Ioannidis, Y., Scholl, M.H., Schmidt, J.W.,
Matthes, F., Hatzopoulos, M., Böhm, K., Kemper, A., Grust, T., Böhm, C. (eds.)
EDBT 2006. LNCS, vol. 3896, pp. 331–348. Springer, Heidelberg (2006)

16. Schlieder, T.: Schema-Driven Evaluation of Approximate Tree-Pattern Queries. In:
Jensen, C.S., Jeffery, K., Pokorný, J., Šaltenis, S., Bertino, E., Böhm, K., Jarke,
M. (eds.) EDBT 2002. LNCS, vol. 2287, pp. 514–532. Springer, Heidelberg (2002),
http://dl.acm.org/citation.cfm?id=645340.650204

17. Schmidt, A., Waas, F., Kersten, M., Carey, M., Manolescu, I., Busse, R.: Xmark:
A benchmark for xml data managemet. In: Proc. VLDB, pp. 974–985 (2002)

18. Termehchy, A., Winslett, M.: Using structural information in xml keyword search
effectively. ACM Trans. Database Syst. 36(1), 4 (2011)

19. Xu, Y., Papakonstantinou, Y.: Efficient keyword search for smallest lcas in xml
databases. In: Proc. ACM SIGMOD Conf., pp. 527–538. ACM (2005)

20. Wu, Y., Lele, N., Aroskar, R., Chinnusamy, S., Brenes, S.: Xqgen: an algebra-based
xpath query generator for micro-benchmarking. In: Proc. CIKM, pp. 2109–2110
(2009)

http://doi.acm.org/10.1145/1516539.1516542
http://www.mat.uc.pt/~eqvm/OPP/KSPP/KSPP.html
http://dl.acm.org/citation.cfm?id=645340.650204


Analyzing Plan Diagrams of XQuery Optimizers

H.S. Bruhathi and Jayant R. Haritsa

Database Systems Lab., SERC/CSA
Indian Institute of Science, Bangalore 560012, India

Abstract. The automated optimization of declarative user queries is a classical
hallmark of database technology. XML, with its support for deep data hierarchies
and powerful query operators, including regular expressions and sibling axes,
renders the query optimization challenge significantly more complex. In this pa-
per, we analyze the behavior of industrial-strength XQuery optimizers using the
notion of “plan diagrams”, which had hitherto been applied solely to relational
engines. Plan diagrams visually characterize the optimizer’s query plan choices
on a parametrized query space, and extending them to the XML environment re-
quires redesigned definitions of the parameters and the space. Through a compre-
hensive set of experiments on a variety of popular benchmarks, we demonstrate
that XQuery plan diagrams can be significantly more dense and complex as com-
pared to their relational counterparts. Further, they are more resistant to “anorexic
reduction”, requiring substantially larger cost-increase thresholds to achieve this
objective. These results suggest that important research challenges remain to be
addressed in the development of effective XQuery optimizers.

1 Introduction

Over the last decade, the flexibly structured XML language has become the de-facto
standard for data representation and information exchange between applications. XML
data was initially stored in traditional DBMS formats by shredding into relational tuples
(e.g. [10]). However, in recent times most database vendors have augmented their SQL
engines to provide native support for XML storage and XQuery interfaces, resulting in
the so-called “hybrid” processors – examples include IBM DB2 [8], Oracle [14] and
Microsoft SQL Server [15].

The automated optimization of declarative SQL queries is a classical hallmark of
database technology. XML with its support for deep data hierarchies and powerful query
operators, including regular expressions and sibling axes, has far more expressive power
than SQL. Therefore, the optimization challenge becomes significantly more complex,
motivating us to investigate, in this paper, the behavior of industrial-strength XQuery
optimizers. For our analysis, we use the notion of “plan diagrams” developed in [9],
which had hitherto been applied solely to relational engines, to drive the evaluation.
Plan diagrams visually characterize the optimizer’s query plan choices over an input
parameter space, whose dimensions may include database, query and system-related
features. In a nutshell, plan diagrams pictorially capture the geometries of the optimality
regions of the parametric optimal set of plans (POSP) [5].

For a given database and system setup, the plan choices made by query optimizers
are primarily a function of the selectivities of the predicates appearing in the query.

S.W. Liddle et al. (Eds.): DEXA 2012, Part I, LNCS 7446, pp. 131–146, 2012.
c© Springer-Verlag Berlin Heidelberg 2012



132 H.S. Bruhathi and J.R. Haritsa

Accordingly, our focus here is on plan diagrams obtained through selectivity varia-
tions on parametrized XQuery templates. In this process, we have to tackle a variety
of questions, including: (1) At what data granularity should the selectivity be varied –
specifically, document level and/or node level?; (2) What is the mechanism for varying
selectivities – specifically, through structural predicates and/or value predicates?; (3)
How are selectivities to be reliably estimated from the metadata available in these en-
gines?; and (4) What constraints need to be imposed on the construction of XQuery
templates such that the resulting diagrams are semantically meaningful?

We begin this paper by describing our attempts to address the above issues. Subse-
quently, using the developed framework, we carry out a detailed analysis of a popular
commercial hybrid XQuery/SQL optimizer, which we refer to as XOpt, through an
extensive set of plan diagrams generated on three benchmark environments – XBench
[13], TPoX [7] and TPCH X, the XML equivalent of the classical TPC-H [16] relational
benchmark. Our experimental results suggest that even two-dimensional plan diagrams
are often extremely dense, featuring hundreds of different plans, and further, exhibiting
intricate geometric patterns. This was especially the case when the XQuery template
featured order by clauses, wild cards, and navigational axes.

We also observed that when an XQuery template is rewritten in an equivalent XML/
SQL format [4], the plan diagrams produced are markedly different, clearly demon-
strating that the choice of interface has a sizeable impact on the optimal plans’ cost
behavior.

Finally, it had been empirically found in the relational world that even complex plan
diagrams could be simplified to retain just a few plans with only a marginal impact on
the query processing quality – this property was termed “anorexic reduction” in [3], and
has several useful applications, including providing robustness to selectivity estimation
errors. In the XML environment, however, we find instances wherein achieving anorexic
reduction incurs a very substantial deterioration of query processing quality.

Taken in toto, these results suggest that important challenges remain to be addressed
in the development of effective XQuery optimizers.

2 Background on Plan Diagrams

To set the stage, we first overview the notion of plan diagrams, developed in [9].
Consider a parametrized SQL query template that defines a relational selectivity
space – for example, QT8 shown in Fig. 1, which is based on Query 8 of the TPC-
H benchmark. Here, selectivity variations on the SUPPLIER and LINEITEM relations are
specified through the s acctbal :varies and l extendedprice :varies predicates, re-
spectively.1

The corresponding plan diagram for QT8, produced on a commercial database en-
gine, is shown in Fig. 2(a). In this picture2, each colored region represents a specific
plan, and a set of 42 different optimal plans (from the optimizer’s perspective), P1
through P42, cover the selectivity space. The value associated with each plan in the

1 We implement :varies using one-sided range predicates of the form Relation.attribute≤const.
2 The figures in this paper should ideally be viewed from a color copy, as the grayscale version

may not clearly register the features.



Analyzing Plan Diagrams of XQuery Optimizers 133

select o year, sum(case when nation = ’BRAZIL’ then volume else 0 end) / sum(volume)
from (select YEAR(o orderdate) as o year, l extendedprice * (1 - l discount) as volume, n2.n name as nation

from part, supplier, lineitem, orders, customer, nation n1, nation n2, region
where p partkey = l partkey and s suppkey = l suppkey and l orderkey = o orderkey and o custkey =

c custkey and c nationkey = n1.n nationkey and n1.n regionkey = r regionkey and s nationkey =
n2.n nationkey and r name = ’AMERICA’ and p type = ’ECONOMY ANODIZED STEEL’ and
s acctbal :varies and l extendedprice :varies

) as all nations
group by o year
order by o year

Fig. 1. Example SQL query template (QT8)

legend indicates the percentage area covered by that plan in the diagram – the biggest,
P1, for example, covers about a quarter (26.86%) of the region.

(a) Plan diagram (b) Cost diagram (c) Reduced PD (λ = 20%)

Fig. 2. Plan, cost and reduced plan diagrams (QT8)

Related and complementary to the plan diagram is the “cost diagram”, which quanti-
tatively depicts the optimizer’s (estimated) query processing costs of the plans featuring
in the plan diagram. The cost diagram for the QT8 example is shown in Fig. 2(b).

Plan diagrams are often found to be complex and dense, featuring high plan cardi-
nalities and intricate geometries, as can be observed in Fig. 2(a). However, these dense
diagrams can typically be reduced to much simpler pictures retaining only a few plans
from the POSP set, while ensuring that the processing quality of any individual query is
not increased by more than a user-defined threshold λ. For example, the plan diagram in
Fig. 2(a) can be reduced to that shown in Fig. 2(c), where only three of the original 42
plans are retained, while ensuring that no query suffering a plan replacement has had its
cost increased by more than λ = 20%. It has been empirically observed in [3] that, for
templates based on the TPC-H and TPC-DS relational benchmarks, λ = 20% is typi-
cally sufficient to bring the plan cardinality in the final reduced picture down to around
ten plans or fewer, referred to as “anorexic” (small absolute number) plan diagrams.

3 Generation of XML Plan Diagrams

As mentioned in the Introduction, a variety of issues crop up when we attempt to extend
the concept of plan diagrams to the XML world. We discuss our approach to handling
these issues in this section.



134 H.S. Bruhathi and J.R. Haritsa

3.1 Varying XML Selectivity

In XML, information is organized in the form of nodes and documents containing these
nodes. Therefore, selectivities can be computed at the granularity of nodes and/or of
documents. For example, consider the scenario where 100 XML nodes are organized in
a single document, and the other extreme where there are 100 documents, each contain-
ing one of these nodes. In the former case, the document selectivity will always be 0
(no node in the document satisfies the predicate) or 1 (at least one node in the document
satisfies the predicate), whereas in the latter, the document selectivity will represent the
fractional number of nodes satisfying the predicate. So, variations in the selectivity of
XML data can potentially be achieved at the level of documents, or of nodes. In fact,
it would even be possible to obtain plan diagrams among which selectivities of differ-
ent dimensions are varied at different levels. However, in this paper, we only focus on
obtaining plan diagrams by varying the selectivity of XML data at the node level, since
irrespective of how data is distributed – in single or multiple documents – selectivity
variations can be brought about in a desired range.

Our next task is to determine the mechanisms for varying the selectivities of XML
data. Given a path expression, there are two kinds of selectivities to be estimated – the
structural selectivity and the value selectivity. For example, consider the path //pers-
on/name="Gray". Here, estimating the cardinality of the name nodes that have
a person node as their parent corresponds to structural selectivity, and estimating
the cardinality of name nodes with "Gray" as their content corresponds to value-
based selectivity. To jointly vary this pair of selectivities in a controlled manner from
an external interface is rather complex with today’s database engines. However, the
operator algorithms that are employed in XOpt are designed to enable the concurrent
application of both predicates. We leverage this fact and vary the selectivity of cho-
sen paths in the XML documents, through the application of parametrized value-based
predicates to these paths. To ensure that both types of predicates are applied together,
we create value-based indexes on the required paths. As a case in point, consider the
path /person/name – here, we vary the path selectivity by applying suitable value-
based predicates to name nodes that are direct descendants of person nodes emanat-
ing from the document root, after ensuring that a value-based index is present on the
/person/name path.

It is to be noted that the above selectivity variations are brought about externally,
through mechanisms that operate totally outside the database engine. Also, in our cur-
rent work, we focus solely on varying the selectivities of predicates that are applied to
document collections as the first step in the query execution plan. Selectivity variations
of join predicates applied between document collections are not considered.

3.2 XQuery Template Construction

An XQuery template is used to specify the paths whose selectivities are to be var-
ied through the application of value-based predicates. We will hereafter use the term
VSX (Variable Selectivity XML element path)3 to denote these varying dimensions.

3 Our usage of the term element here denotes both XML elements as well as XML attributes.



Analyzing Plan Diagrams of XQuery Optimizers 135

1. for $cust in xmlcol(CUSTOMER.CUSTOMER) /customers/customer[address id :varies]

2. for $order in xmlcol(ORDER.ORDER)

3. /order[customer id=$cust/@id]/order lines/order line[quantity of item :varies]

4. return <Res> {$order} {$cust/first name} {$cust/last name} {$cust/phone number} </Res>

Fig. 3. Example XQuery template

An example template is shown in Fig. 3, where there are two VSXs corresponding to
customer addresses and customer orders, respectively. This template returns the names
and phone numbers of customers located within a (parametrized) zip code and whose
orders feature item quantities within a (parametrized) value.

The element path in a VSX predicate typically consists of a logical segment, denoted
L, that defines the semantic object whose selectivity is desired to be varied, and a phys-
ical segment, denoted P, which is downstream of L and whose value is actually varied.
To make this concrete, consider the VSX /order/order lines/order line
[quantity of item :varies] in Fig. 3. Here L is the segment /order/ord-
er lines/order line, while P is the downstream segment order line/qua-
ntity of item – the parametrized variation across order lines is achieved
through varying the values of quantify of item. As a final point, note that it is
also acceptable to have templates where the logical segment itself terminates with the
variable element, and there is no distinct P segment.

The value constants that would result in the desired selectivities of the VSXs are es-
timated by essentially carrying out an “inverse-transform” of the statistical summaries
(histograms) corresponding to the VSXs. These path-specific value histograms are au-
tomatically built by the database engine whenever an index is declared on the associated
paths, which as mentioned earlier, is important for our selectivity variation strategy. We
employ linear interpolation mechanisms on these summaries to estimate the constants
corresponding to the query locations in the selectivity space.

XQuery statements can often be complex, involving powerful constructs from second
order logic such as regular expressions and navigational paths. Therefore, it is extremely
important that the associated templates be constructed carefully, otherwise we run the
risk of producing plan diagrams that are semantically meaningless since the intended
selectivity variations were not actually realized in practice. Accordingly, we list below
the conditions to be satisfied by a valid XQuery template, arising out of conceptual
reasons.

1. Many-to-one relationships are not permitted to occur in the P segment (if present)
of a VSX predicate. This translates to requiring, in the graphical representation of
the XML schema [10], that there should be no ‘*’ (wild card) node appearing in the
path corresponding to P.

2. A collection C of XML documents adhering to a common schema can participate
in at most one VSX. Further, they can also participate in join-predicates with other
XML document collections, but are not permitted to be subject to additional selec-
tion predicates.

3. The VSXs should appear sufficiently frequently in the documents and their value
predicates should be over dense domains.



136 H.S. Bruhathi and J.R. Haritsa

(a) customer Schema Graph (b) order Schema Graph

Fig. 4. XQuery template constraints

To illustrate the constraints on XQuery templates, consider an XML database with
Customer and Order document collections adhering to the schema graphs shown in
Figs. 4(a) and 4(b), respectively. On this database, consider the XQuery template shown
in Fig. 3 – this template is compatible with respect to all of the above conditions. How-
ever, if the query template were to be slightly altered to

/order[customer id=$cust/@id and order lines/order line/quantity of item :varies]

in line 3, the template becomes invalid due to violating Requirement 1 above – a ‘*’
node is present in the order lines/(‘*’)order line/quantity of item physical segment.

4 Experimental Results

In this section, we describe the experimental framework on which the XOpt optimizer
was evaluated, and discuss the results obtained on a variety of benchmark environments.

4.1 Experimental Setup

Our experiments were carried out on a vanilla hardware platform – specifically, a SUN
ULTRA 20 system provisioned with 4GB RAM running Ubuntu Linux 64 bit edition
9.10. The XOpt engine was was run at its default optimization level, after enabling all
options that enhanced the scope for optimization.

Databases. We operated with three different XML databases: XBench, TPoX and
TPCH X. TPoX and XBench are native XML benchmarks, while TPCH X is an XML
equivalent of the classical TPC-H relational benchmark. XBench and TPCH X rep-
resent decision-support environments, whereas TPoX models a transaction processing
domain – their construction details are given below.

XBench. This benchmark [13] supports four different kinds of databases, of which we
chose the DC/MD (Data Centric, Multiple Documents) flavor, since it symbolises busi-
ness data spread over a multitude of documents, and appears the most challenging from



Analyzing Plan Diagrams of XQuery Optimizers 137

the optimizer’s perspective. The DC/MD generator was invoked with the “large” op-
tion, resulting in a database size of around 1 GB, with all data conforming to a uniform
distribution. For the physical schema, indexes were created for all paths involved in join
predicates, and additionally for all paths appearing in VSXs.

TPoX. The data generator of the TPoX benchmark [7] was invoked at the XXS scale,
resulting in 50000 CUSTACC, 500000 ORDER and 20833 SECURITY documents, col-
lectively taking about 1GB of space. The data in these documents follow a variety of
distributions, ranging from uniform to highly skewed. For the physical schema, all the
24 recommended indexes (10 on CUSTACC, 5 on ORDER and 9 on SECURITY) were
created. These indexes covered all the paths involved in the join predicates and VSXs
featured in our templates.

TPCH X. Here, the relations of the TPCH [16] benchmark: NATION, REGION, SUP-
PLIER, CUSTOMER, PART, PARTSUPP, ORDERS, LINEITEM were first converted to their
equivalent XML schemas, with ORDER and LINEITEM combined into the Order XML
schema, and PART and PARTSUPP merged into Part XML schema. This merging was
carried out since individual orders and parts are associated with multiple lineitems and
suppliers, respectively, and these nested relationships are directly expressible in XML
through its organic support for hierarchies.

Then, the TPC-H relational data at scale 1 was translated to these XML schemas
using the Toxgene [1] tool, resulting in a database of around 1 GB size. For the physical
schema, indexes were created on all paths that featured in join predicates and in VSXs.

XQuery Templates. For simplicity and computational tractability, we have restricted
our attention to two-dimensional XQuery templates in this study. These templates were
created from representative queries appearing in the above-mentioned benchmarks (X-
Bench has a suite of 15 XQueries, TPoX has 11 XQueries and 11 SQL/XML queries,
while TPCH X has 22 XQueries). The templates were verified to be compatible with
the constraints specified in Sect. 3, and the VSX value predicates are on floating-point
element values (explicit indexes are created on the VSXs, resulting in value based com-
parisons).

The plan diagrams are produced at a resolution of 300 points in each dimension,
unless specified otherwise – this means that close to a hundred thousand queries are
optimized in each 2D diagram. Since optimizing an individual query takes between
100 to 200 milliseconds, generating the complete plan diagram typically requires a few
hours (3-5 hours). Finally, for plan diagram reduction, which falls into the NP-hard
complexity class, we employed the the Cost-Greedy heuristic algorithm described in
[3], with the default cost-increase threshold λ set to 20%.

In the remainder of this section, we present results for XQuery plan diagrams pro-
duced on the XBench, TPoX and TPCH X environments.

4.2 Plan Diagrams with XBench

We present here the results for two XQuery templates that cover the spectrum of query
complexity: the first, referred to as QTXB1, features the basic constructs, whereas the
second, referred to as QTXB2, includes a rich variety of advanced operators.



138 H.S. Bruhathi and J.R. Haritsa

for $order in xmlcol(ORDER.ORDER)/order,

$cust in xmlcol (CUSTOMER.CUSTOMER)/customers/customer

where $order/customer id = $cust/@id and $order/total :varies and $cust/address id :varies

order by $order/order date

return <Output> {$order/@id} {$order/order status} {$cust/address id}
{$cust/first name} {$cust/last name} {$cust/phone number} </Output>

Fig. 5. XQuery template for XBench (QTXB1)

Basic Template. The basic template, QTXB1, is based on Query 19 of the benchmark
and is shown in Fig. 5. Its objective is to retrieve all purchases within a (parametrized)
total value for which the associated customers are located within a (parametrized) ad-
dress value, the result being sorted by the purchase date.

The plan diagram for QTXB1 is shown in Fig. 6(a), and we observe that, even for this
basic template, as many as 42 plans are present with intricate spatial layouts. Further,
the area distribution of the plans is highly skewed, with the largest plan occupying a
little over 20% of the space and the smallest taking less than 0.001%, the overall Gini
(skew) co-efficient being close to 0.9.

Most of the differences between the plans are due to operator parameter switches,
rather than the plan tree structures themselves. For example, the difference between
plan pairs is often solely attributable to the presence or absence of the TMPCMPRS

switch, associated with the TEMP and SORT operators. When such switch differences
are ignored, the number of plans comes down sharply to just 10! It is interesting to note
that the switch by itself contributes very little to the overall plan cost.

In Fig. 6(a), the plans P1 (red) and P2 (dark blue) blend together in a wave-like pat-
tern. The operator trees for these plans are shown in Figs. 7(a) and 7(b), respectively.
We see here that the plans primarily differ on their join orders with respect to the docu-
ment collections – P1 computes Order � Customer whereas P2 evaluates Customer
� Order – that is, they differ on which document collection is outer, and which is inner,
in the join.

Near and parallel to the Y-axis, observe the yellow vertical strip corresponding to
plan P4, sprinkled with light orange spots of plan P16. The P4 and P16 plans differ
only in their positioning of an NLJOIN-XSCAN operator pair, where the expressions
$ord/order status, $ord/@id and $ord/order date of the return clause
are evaluated. In XOpt, the XSCAN operator parses the input documents with a SAX
parser and evaluates complex XPath expressions in a single pass over these documents.

The associated cost diagram is shown in Fig. 6(b), and we observe a steep and affine
relationship for the expected execution cost with regard to the selectivity values.

When plan diagram reduction with λ = 20% is applied, we obtain Fig. 6(c), where
the cardinality is brought down to 21 from the original 42. Although there is an ap-
preciable degree of reduction, it does not go to the extent of being “anorexic” (around
10 plans or less) – this is in marked contrast to the relational world, where anorexic
reduction was invariably achieved with this λ setting [3]. More interestingly, anorexia
could not be achieved even after substantial increases in the λ setting – in fact, only at
the impractically large value of λ = 150% was this objective reached!



Analyzing Plan Diagrams of XQuery Optimizers 139

Complex Template. We now turn our attention to QTXB2, the complex XQuery tem-
plate shown in Fig. 8. This template attempts to retrieve the names, number of items
bought, and average discount provided for customers who live within a (parametrized)

(a) Plan diagram (b) Cost diagram (c) Reduced PD (λ = 20%)

Fig. 6. Plan, cost and reduced plan diagrams for XBench QTXB1
(X-Axis: ORDER /order/total, Y-Axis: /customers/customer/address id)

(a) Plan P1 (red) (b) Plan P2 (blue)

Fig. 7. Plan trees (QTXB1)



140 H.S. Bruhathi and J.R. Haritsa

address value and whose total purchases are within a (parametrized) value, with the out-
put sorted on the discount rates. QTXB2 is based on XQueries 9, 14 and 19 of XBench
and incorporates most features provided by the XQuery language. Specifically, it has all
the FLWOR clauses, expressions involving wild cards ($ord//item id), and naviga-
tion on the sibling axis ($ord//item id/parent::order line/discount
rate) in the return clause. It also has predicates involving positional node access
($add/exists($add/street address[2])) in the where clause. Finally, ag-
gregate functions provided by XQuery, such as count and avg are also employed.

for $cust in xmlcol (CUSTOMER.CUSTOMER)/customers/customer[address id :varies]

let $add := xmlcol(ADDRESS.ADDRESS)/addresses/address[@id=$cust/address id]

let $order in xmlcol(ORDER.ORDER)/order[total :varies and customer id=$cust/@id]

where exists($ord) and $add/exists($add/street address[2])

order by $cust/discount rate

return <Customer> {$cust/user name} {$cust/discount rate} <NoOfItems>

{count($ord//item id)} </NoOfItems> <AvgDiscount>

{avg($ord//item id/parent::order line/discount rate)} </AvgDiscount> </Customer>

Fig. 8. XQuery template for XBench (QTXB2)

The plan diagram produced with QTXB2 is shown in Fig. 9(a), produced at a res-
olution of 1000*1000. We observe here that there are as many as 310 different plans!
With a cursory glance, it would almost seem as though a different plan is chosen for
each selectivity value. Further, the spatial layouts of these plans are extremely complex,
throughout the selectivity range. Finally, the Gini skew co-efficient has a very high
value of 0.95 indicating that a miniscule number of plans occupy virtually all of the
area. In contrast to the basic template, QTXB1, even when the differences that arise due
to parameter switches are disregarded, we are still left with 222 structurally different
plans.

Drilling down into these plan structures, we find that the differences arise due to
many factors, including changes in access methods and join orders, as well as ancillary
operators such as SORT. However, variations in the position of application of the struc-
tural and value-based predicates result in the largest number of differences. These dif-
ferences manifest themselves in the positioning of the NLJOIN-XSCAN operator pairs,
where both types of predicates are applied.

An important point to note in Fig. 8 is that the structural volatility of plans in the
diagram space is extremely high – that is, neighboring plans, even in adjacent parallel
lines, are structurally very dissimilar and incorporate most of the differences discussed
above. Another interesting observation is that the SORT operator corresponding to the
order by clause is not always deferred to the end – this is in contrast to SQL query plans,
where such sorts are typically found in the terminal stem of the plan tree. In fact, here,
it is even found at the leaves of some plans!

The associated cost diagram is shown in Figure 9(b), where we see that along the
/order/total VSX axis, the cost steadily increases with selectivity until 50%, and
then saturates. Along the /customers/customer/address id VSX axis, how-
ever, the cost monotonically increases with the selectivity throughout the range.



Analyzing Plan Diagrams of XQuery Optimizers 141

(a) Plan diagram (b) Cost diagram (c) Reduced PD (λ = 20%)

Fig. 9. Plan, cost and reduced plan diagrams for XBench QTXB2
(X-Axis: /customers/customer/address id, Y-Axis: /order/total)

Finally, when reduction at λ = 20% is applied to the plan diagram, Fig. 9(c) is ob-
tained wherein 13 plans are retained. The geometries of these surviving plans continue
to be intricate even after reduction, whereas in the relational world, cardinality reduc-
tion was usually accompanied by a corresponding simplification in the geometric layout
as well.

4.3 Plan Diagrams with TPoX

Here, we present the results obtained with an XQuery template on the TPoX XML
transaction processing benchmark. The query template, which is shown in Fig. 10, is
based on the cust sold security.xqr XQuery given as part of the benchmark. This tem-
plate, which we will hereafter refer to as QTX SEC, returns details of customers with
account(s) whose working balance(s) are within a (parametrized) value, and have traded
one or more securities, with the trading amounts of the associated orders being within a
(parametrized) value – the final result is alphabetically sorted on customer last names.

The plan diagram (at a resolution of 1000*1000) for QTX SEC is shown in Fig.
11(a). It consists of 23 plans with plan P1 occupying about three-quarters of the space
and plan P23 present in less than 0.001% of the diagram, resulting in an overall Gini co-
efficient of 0.34. Further, the plan cardinality decreases to 10, when differences between
plan trees due to parameter switches, such as PREFETCH and SORT, are not considered.
We also see that the plan diagram predominantly consists of vertical blue bands (plan
P2) on the red region (plan P1). Only close to the X and Y-axes do we find other plans,

declare default element namespace “http://www.fixprotocol.org/FIXML-4-4”;

declare namespace c=“http://tpox-benchmark.com/custacc”;

for $cust in xmlcol(CUSTACC.CADOC)/c:Customer/c:Accounts/c:Account[c:Balance/c:WorkingBalance :varies]

for $ord in xmlcol(ORDER.ODOC)/FIXML/Order[@Acct=$cust/@id/fn:string(.) and OrdQty/@Cash :varies]

order by $cust/../../c:Name/c:LastName/text()

return <Customer> {$cust/../../c:Name/c:LastName} {$cust/../../c:Nationality} </Customer>

Fig. 10. XQuery template for TPoX (QTX SEC)



142 H.S. Bruhathi and J.R. Haritsa

(a) Plan diagram (b) Cost diagram (c) SQL/XML plan diagram

Fig. 11. Plan and cost diagrams for TPoX QTX SEC; Equivalent SQL/XML plan diagram
(X-Axis: /c:Customer/c:Accounts/c:Account/c:Balance/c:WorkingBalance, Y-Axis: /FIXML/Order/OrdQty/@Cash)

such as the yellow vertical stripe of plan P4, and the brown and purple horizontal bands
of plans P3 and P5, respectively.

The associated cost diagram is shown in Fig. 11(b), where we observe a strongly
non-linear behavior with respect to the VSX selectivities. When the plan diagram is
reduced with λ = 20%, the number of plans comes down to 11 plans, with the blue
bands (P2) being swallowed by the red plan (P1).

The TPoX benchmark also features a semantically equivalent SQL/XML version of
the XQuery example used above. We converted this version into an equivalent template,
for which we obtained the plan diagram shown in Fig. 11(c). The operators found in the
plans of the SQL/XML plan diagram are the same as those found in the XQuery plan
diagram. However, the choice of optimal plans vastly differs across the diagrams – note
that the SQL/XML plan diagram throws up only 18 plans, and that too, without any
striking patterns.

Further, although the end query results are identical, there are substantial cost varia-
tions between the two query template versions. Specifically, the SQL/XML template has
minimum and maximum costs of 2.77E3 and 1.14E7, respectively, whereas the XQuery
template has minimum and maximum costs of 2.76E3 and 1.65E6, respectively. These
differences in costs are due to the application of the SORT operator at different positions
in the plan trees. Sorting is always carried out at the stem of the plan tree, after applying
all predicates, in the case of SQL/XML, whereas the application of sorting is sometimes
done earlier in the case of XQuery. For the cases where sorting is applied at the stem
level for both types of queries, there is also a difference in the estimated cardinalities,
which is reflected in the cost estimates. This indicates that, even when the underlying
data and the query semantics are the same, the specific choice of query interface may
have a material impact on the runtime performance.

4.4 Plan Diagrams with TPCH X

An XQuery template based on Query 10 of TPCH X is shown in Fig. 12(a). This tem-
plate retrieves the names, home nations, and marketing segments of customers, and the
identifiers of all their purchases, with the results ordered on the marketing segments.
The plan diagram for this template is shown in Fig. 13(a), where we again observe



Analyzing Plan Diagrams of XQuery Optimizers 143

for $c in xmlcol(CUSTOMERS.CUSTOMERS)

/Customers/Customer/[AcctBal :varies]

let $n:=xmlcol(NATIONS.NATIONS)/Nations/Nation[@key=$c/NationKey]

let $o := xmlcol(ORDERS.ORDERS)

/Orders/Order[$c/@key=CustKey and TotalPrice :varies]

where fn:exists($o)

order by $c/MktSegment

return <Customer> {$c/Name} {$n/Name} {$c/MktSegment}
{$o/OrderKey} </Customer>

(a) XQuery template

select c name, n name,
c mktsegment, o orderkey
from customer, nation, orders
where c acctbal :varies and

c natkey=n natkey and
o custkey=c custkey
and o totalprice :varies

order by c mktsegment

(b) SQL query template

Fig. 12. XQuery and SQL templates for TPCH X/TPCH

an extremely complex diagram populated with 61 different plans, appearing mostly
as rapidly alternating bands of colors. When this diagram is subject to reduction with
λ = 20%, we obtain Fig. 13(b), which retains 19 plans and is therefore not anorexic in
nature. In fact, λ had to be increased to as much as 50% to obtain an anorexic diagram.

(a) Plan diagram (b) Reduced PD (λ = 20%) (c) SQL plan diagram

Fig. 13. Plan and reduced plan diagrams for TPCH X and plan diagram for TPCH
(X-Axis: /Customers/Customer/AcctBal, Y-Axis: /Orders/Order/TotalPrice)

As a matter of curiosity, we also investigated the behavior of the equivalent (in terms
of the result set) SQL query template, shown in Fig. 12(b). The associated plan dia-
gram in Fig. 13(c) throws up a much simpler picture, both in terms of cardinality (34
plans) and in the spatial layouts of the optimality regions. Further, the estimated exe-
cution costs for the XQuery template are orders of magnitude higher in comparison to
those obtained with the SQL template! Assuming that the optimizer’s modeling quality
is similar in both environments, these results indicate that database administrators of
hybrid systems must make a careful choice of data representation to provide the best
performance for their users.

4.5 General Observations

During the course of our experimentation on XQuery plan diagrams, a few general
observations emerged, which are highlighted below:



144 H.S. Bruhathi and J.R. Haritsa

– The presence of an order by clause in the XQuery templates results in a dramatic
increase in the richness of plan diagrams, with respect to both the density and ge-
ometric complexity. The reason is as follows: XML is inherently ordered, and re-
sults are always produced in document order (without the presence of order by).
With the presence of order by on a path, a low-cost sort can potentially be accom-
plished at several steps in the optimization process, and hence there is a large set
of similarly-costed alternative plans to choose from, many of which surface as the
locally-optimal plan at one or the other location in the selectivity space.

– The complexity of the plan diagrams increases with the complexity of the predi-
cates involved in the XQuery template, with advanced features such as navigation
on different axes (sibling and parent), wild cards and positional node access trig-
gering this behavior.

– The position of predicates – whether appearing in the XPath expression or in the
where clause of the XQuery templates – has a significant impact on the complexity
of plan diagrams in terms of both plan cardinality and spatial distribution. Further,
and very importantly, this shift of position also results in plans with substantially
changed costs. Ideally, in a truly declarative world, all equivalent queries should
result in the optimizer producing the same plan – however, we see here that XOpt
is not able to automatically sniff out these important rewriting opportunities.

Taken in toto, the above results seem to suggest that considerable scope remains for
improving on the construction of current hybrid optimizers.

5 Related Work

To the best of our knowledge, there has been no prior work on the analysis of industrial-
strength native XQuery optimizers using the plan diagram concept. The closest related
effort is the plan-diagram-based study of SUCXENT [2], an XML processing system
that uses Microsoft SQL Server as the backend relational storage engine. They studied
the behavior of this optimizer in the context of XPath processing, by first converting all
XPath queries to their equivalent SQL versions.

An XML plan diagram instance was also shown in [11], using IBM DB2, to motivate
the need for accurate cardinality estimations of XQuery expressions – in their experi-
mental setup, the optimal plan choice is highly volatile, varying with small changes in
selectivity, and inaccurate estimations of cardinalities result in choosing plans that are
worse than the optimal by orders of magnitude.

A flexible optimization framework, incorporating both rules and cost estimates, was
presented in [12] for visualizing the XQuery optimization process in a native XML
DBMS environment. The framework supports implementing, evaluating, and reconfig-
uring optimization techniques, even during run-time, through a visual tool. However, all
these features are applicable to individual queries, and are not intended for visualization
over a parameter space.

Finally, an evaluation of open-source XQuery processors was carried out in [6], but
their focus was on characterizing the response time performance for specific benchmark
queries.



Analyzing Plan Diagrams of XQuery Optimizers 145

6 Conclusions and Future Work

In this paper, we have attempted to analyze the behavior of XOpt, an industrial-strength
XQuery/SQL hybrid optimizer, using the concept of plan diagrams proposed some
years ago in [9]. We first addressed the issue of what comprises a XML selectivity
space, and the mechanisms to be used to bring about the desired selectivity variations.
Then, we enumerated the constraints that need to be satisfied in formulating XQuery
templates so as to obtain meaningful plan diagrams. Subsequently, we provided a de-
tailed report on XOpt’s plan diagram behavior over a representative set of complex
XQuery templates constructed over popular XML benchmarks.

Our experimental results indicate that XML plan diagrams are significantly more
complex than their relational counterparts in terms of plan cardinalities, densities and
spatial layouts. In particular, we observe a pronounced “banding” effect resulting in
wave-like patterns. Further, the presence of even syntactic expressions, such as order
by, visibly increase the complexity of the resulting diagrams. We also find that these dia-
grams are not always amenable to anorexic reduction at the 20% cost-increase threshold
found sufficient in the relational literature, often requiring substantially higher thresh-
olds to achieve the same goal. Another interesting facet is that equivalent XML and
SQL queries typically produce substantially different cost estimations from the opti-
mizer. Overall, these results suggest that important challenges remain to be addressed
in the development of effective hybrid optimizers.

While our analysis was restricted to XOpt in this study, it would be interesting to
profile the plan diagram behavior of other industrial-strength XML query processing
engines as well. Further, going beyond the two-dimensional query templates evaluated
here to higher dimensions will provide greater insight into addressing the design issues
underlying these systems.

References

1. Barbosa, D., Mendelzon, A., Keenleyside, J., Lyons, K.: ToXgene: An extensible template-
based data generator for XML. In: Proc. of 5th Intl. Workshop on the Web and Databases
(WebDB 2002) (June 2002)

2. Bhowmick, S., Leonardi, E., Sun, H.: Efficient Evaluation of High-Selective XML Twig
Patterns with Parent Child Edges in Tree-Unaware RDBMS. In: Proc. of 16th ACM Conf.
on Information and Knowledge Management (CIKM) (November 2007)

3. Harish, D., Darera, P., Haritsa, J.: On the Production of Anorexic Plan Diagrams. In: Proc.
of 33rd Intl. Conf. on Very Large Data Bases (VLDB) (September 2007)

4. Eisenberg, A., Melton, J.: SQL/XML and the SQLX Informal Group of Companies.
SIGMOD Record (30) (September 2001)

5. Hulgeri, A., Sudarshan, S.: Parametric Query Optimization for Linear and Piecewise Linear
Cost Functions. In: Proc. of 28th Intl. Conf. on Very Large Data Bases (VLDB) (August
2002)

6. Manegold, S.: An empirical evaluation of XQuery processors. Information Systems Journal
(April 2008)

7. Nicola, M., Kogan, I., Schiefer, B.: An XML Transaction Processing Benchmark (TPoX).
In: Proc. of 2007 ACM SIGMOD Intl. Conf. on Management of Data (June 2007)



146 H.S. Bruhathi and J.R. Haritsa

8. Nicola, M., Linden, B.: Native XML support in DB2 universal database. In: Proc. of 31th
Intl. Conf. on Very Large Data Bases (VLDB) (August 2005)

9. Reddy, N., Haritsa, J.: Analyzing Plan Diagrams of Database Query Optimizers. In: Proc. of
31st Intl. Conf. on Very Large Data Bases (VLDB) (August 2005)

10. Shanmugasundaram, J., Tufte, K., Zhang, C., He, G., DeWitt, D., Naughton, J.: Relational
Databases for Querying XML Documents: Limitations and Opportunities. In: Proc. of 25th
Intl. Conf. on Very Large Data Bases (VLDB) (September 1999)

11. Teubner, J., Grust, T., Maneth, S., Sakr, S.: Dependable Cardinality Forecasts for XQuery.
In: Proc. of 34th Intl. Conf. on Very Large Data Bases (VLDB) (August 2008)

12. Weiner, A., Härder, T., Silva, R.O.: Visualizing Cost-Based XQuery Optimization. In: Proc.
of 26th Intl. Conf. on Data Engineering (ICDE) (March 2010)

13. Yao, B., Ozsu, M., Khandelwal, N.: XBench Benchmark and Performance Testing of XML
DBMSs. In: Proc. of 20th Intl. Conf. on Data Engineering (ICDE) (March 2004)

14. http://docs.oracle.com/cd/B14117 01/appdev.101/
b10790/xdb01int.htm

15. http://msdn.microsoft.com/en-us/library/
ms345117(v=sql.90).aspx

16. http://www.tpc.org/tpch

http://docs.oracle.com/cd/B14117_01/appdev.101/b10790/xdb01int.htm
http://docs.oracle.com/cd/B14117_01/appdev.101/b10790/xdb01int.htm
http://msdn.microsoft.com/en-us/library/ms345117(v=sql.90).aspx
http://msdn.microsoft.com/en-us/library/ms345117(v=sql.90).aspx
http://www.tpc.org/tpch


 

S.W. Liddle et al. (Eds.): DEXA 2012, Part I, LNCS 7446, pp. 147–160, 2012. 
© Springer-Verlag Berlin Heidelberg 2012 

Spreadsheet Metadata Extraction:  
A Layout-Based Approach 

Somchai Chatvichienchai 

Dept. of Information and Media Studies, University of Nagasaki, 
somchaic@sun.ac.jp 

Abstract. Metadata is an essential part of modern information system since it 
helps people to find relevant documents from disparate repositories. This paper 
proposes an innovative metadata extraction method for spreadsheets. Unlike 
traditional methods which concern only content information, this paper consid-
ers both layout and content. The proposed method extracts metadata from the 
spreadsheets whose metadata is stored under certain conditions. Data types 
(such as date, number, etc.) of metadata are taken into account in order to real-
ize document search based on metadata of various data types. Furthermore, the 
extracted metadata is semantically classified and hierarchically grouped in order 
to allow end-users to define complex search queries and the meanings of search 
keywords. System implementation of the proposed method is also discussed. 

Keywords: Metadata, schema, spreadsheet, data model, XML. 

1 Introduction 

Spreadsheet programs, such as Microsoft Excel[11], Lotus 1-2-3[8] and Calc[13], are 
used by millions of users as a routine all-purpose data management tool. As more and 
more spreadsheets become electronically available, finding the spreadsheets that fit 
users’ needs from disparate repositories is becoming increasingly important. Current 
search tools, such as Google Desktop Search[5], X1 Professional Client[20], create an 
index of all the words in a document. However, just indexing words that appears in 
the documents is not enough to provide an effective search because they will return 
the document results including those that do not match with user’s search objective. 
Consider a search of the purchase orders, which have been ordered by Tanaka Book 
Store after 2011/8/10. The first problem is that current search tools did not know 
which documents contain purchase order data and which fields are customer name 
and order date. They basically find the files which include inputted keywords. As the 
result, the search tools return many irrelevant document files. The second problem is 
that current search tools cannot find the spreadsheets when data formats of search 
keywords (such as date, number etc.) do not match with those of metadata of the  
documents.  

In order to solve the above problems, my previous work[2] proposed a metadata 
extraction method that (1) binds the cells storing metadata of Excel template with 
XML schema[17] which defines classes of metadata of a document type, and (2)  



148 S. Chatvichienchai 

 

embeds a VBA macro[19] into the template to output metadata into XML[18] files 
when users save spreadsheets created from the template. Figure 1(c) illustrates an 
example of metadata which is generated from a spreadsheet of Fig.1(b). The metadata 
is stored as XML data so that XML tags present classes of the metadata and the 
nested structure of XML presents hierarchical structure of metadata classes. For ex-
ample, <orderDate>2011/8/15</orderDate> is a sub-element of header element. It 
states that “2011/8/15” is classified to the order date which is a sub-class of the head-
er. The metadata files, which are outputted by the VBA macro, will be read by index-
er for search index creation. However, the previous method has two drawbacks. The 
first is that it cannot extract metadata from the spreadsheets created before imple-
menting it. The last is that VBA macro of these spreadsheets may be disabled by users 
who are not sure of security of the macro. Therefore, metadata of these spreadsheets 
cannot be outputted by the macro. 

The objective of this paper is to propose an innovative metadata extraction method 
that can solve the above problems of the previous work. Many organizations usually 
 

(a) 

              …. 
<po> 

<header> 
<orderDate> 2011/8/15 </orderDate> 

        <customer> Tanaka Book Store 
</customer>  

              …. 
</header> 

    <table> 
       <productName> Introduction to Cloud  
              Computing </productName> 
       <qty> 10 </qty> 
       <amt> 20,000 </amt> 
    </table> 
              …. 

(b) 

(c) (d) 

Fig. 1. (a) An example of a v-metadata schema, (b) an example of a spreadsheet whose 
cells are bound with the v-metadata schema elements, (c) metadata of the spreadsheet of 
(b), and (d) another spreadsheet whose layout is similar to that of (b). 



 Spreadsheet Metadata Extraction: A Layout-Based Approach 149 

 

use templates which are pre-designed documents formatted for common purposes 
such as a purchase order, invoice or sales report. A new template may be created from 
the existing template by changing some layout and data fields. In case of minor layout 
modification, the spreadsheets created from the new template tend to have layouts 
which are similar to those created from the old template. The proposed method will be 
effectively applied for the spreadsheets having similar layout. Figure 1(d) depicts a 
spreadsheet having a worksheet whose layout is similar to that of Fig.1(b). By consi-
dering the synonym of the word “customer” of spreadsheet of Fig.1(b) and the word 
“client” of spreadsheet of Fig.1(d), it can be deduced that “Abe Book Store” be meta-
data that should be classified as the customer name. The proposed method discovers 
the spreadsheets whose metadata is organized in the patterns defined by users. This 
paper focuses on the spreadsheets that are edited by Microsoft Office Excel 
2003/2007/2010 (Excel, for short) since Excel is used in many public and private 
organizations. However, the proposed method can be extended to handle the spread-
sheets of other software. Here, the term “spreadsheets” denotes the spreadsheets 
edited by Excel. 

The rest of the paper is organized as follows. Section 2 introduces basic concepts 
of spreadsheet data model, metadata and XML. Section 3 presents a method of locat-
ing metadata of a spreadsheet by schema binding. In section 4, issues in metadata 
extraction of spreadsheets are discussed. Metadata extraction algorithm is presented in  
section 5. Section 6 discusses implementation of the proposed algorithm. In section 7, 
the related work is discussed. Finally, the last section concludes this paper and future 
work. 

2 Basic Concept 

2.1 Spreadsheet Data Model 

A spreadsheet is a set of worksheets. A worksheet consists of cells. A cell of a work-
sheet is defined as follows. 

Definition 2.1 (Worksheet Cells). A worksheet cell c is represented by the coordi-
nate <w, x, y> where w is the name of a worksheet, x is the column number, and y is 
the row number.                                                      □ 

Following spreadsheet conventions, cell coordinates x and y are numbered starting 
from 1 and can also be denoted using capital letters for column numbering followed 
by numbers for rows numbering. For example, <sheet1, 1, 3> can also be denoted as 
cell A3 of worksheet sheet1. Cell A1 is the upper-leftmost cell of a worksheet. A 
rectangular subset of cells is called a cell range (or a range, for short) and is conven-
tionally denoted by its upper-leftmost and lower-rightmost cells separated by a colon. 
For example, a range A13:E14 of worksheet w is represented by {<w, x, y> | 1 ≤ x ≤ 
5; 13 ≤ y ≤ 14}. A range <w, x1, y1>:< w, x2, y2> always verifies 1 ≤ x1 ≤ x2 and 1 ≤ y1 
≤ y2. Note that if x1 = x2 and y1 = y2, then <w, x1, y1>:<w, x2, y2> = <w, x1, y1> is 
 



150 S. Chatvichienchai 

 

 
derived. This means that a cell can be seen as a range of one row and one column. 
Merge cell is a function of Excel that allows multiple adjacent cells to be combined 
into a single larger cell which is called a merged cell. In this paper, the location of a 
merged cell is defined by the upper-leftmost of the cells that are combined. 

Let r1 = <w, x1, y1>:<w, x2, y2> and r2 = <w, x3, y3>:<w, x4, y4> be cell ranges of 
worksheet w. Distance from r1 to r2 is defined as follows. 

• Column distance from r1 to r2 represented by c_dist(r1, r2) is equal to x1 - x3. There-
fore, the column distance between r1 and r2 is equal to |c_dist(r1, r2)|. 

• Row distance from r1 to r2 represented by r_dist(r1, r2) is equal to y1 - y3. Therefore, 
the row distance between r1 and r2 is equal to |r_dist(r1, r2)|. 

2.2 Metadata 

Metadata is data about data, more specifically a collection of key information about a 
particular content, which can be used to facilitate the understanding, use and man-
agement of data. In this paper, the metadata defined for searching spreadsheets is 
classified into the following two categories: K-metadata is the data used to compare 
with inputted search keywords, and F-metadata is the data used to locate the corres-
ponding K-metadata. Location relationship between K-metadata and F-metadata is 
defined as following conditions. For example, “Product Name” of cell B12 of the 
spreadsheet of Fig.1(b) is F-metadata for K-metadata stored at the range B13:B14. 
“Customer” of cell A5 is F-metadata for K-metadata stored at cell B5.  

2.3 XML 

XML provides a way to describe metadata. XML tags are used to define the structure 
and types of the data itself. Users can define an unlimited set of XML tags. XML uses 
a set of tags to delineate elements of data. Each element encapsulates a piece of data 
that may be very simple or very complex. XML schema is a document used to define 
and validate the content and structure of XML data, just as a database schema defines 
and validates the tables, columns, and data types that make up a database. XML 
Schema defines and describes certain types of XML data by using the XML Schema 
definition language (XSD). In this paper, an XML schema is logically viewed as a 
tree which is defined as follows.  

Definition 2.2 (XML Schema Trees) An XML schema tree is a finite node labelled 
and edge labelled tree T = (V, E, Nm, r, lbl, C, fC), where V is a set of vertices (nodes) 
representing elements and attributes of the schema, E ⊆ V × V is a set of edges, Nm is 
a set of element and attribute names, r is the root of the schema, lbl is a labelling 
function assigning a name from Nm to a node in V, C is the set {+, *, ?} called cardi-
nality, and fC is a partial function assigning a label from C to an edge in Ed. It should 
be clear that edge labels indicate the occurrence of sub-element to be expected: +, *, ? 



 Spreadsheet Metadata Extraction: A Layout-Based Approach 151 

 

meaning “one or more”, “zero or more”, and “zero or one”, respectively. An edge 
with no label indicates that the occurrence of sub-element is “exactly one”.        □ 

3 Locating Metadata of a Spreadsheet by Schema Binding 

3.1 K-Metadata Schemas 

A K-metadata schema defines K-metadata for searching spreadsheets of the same type 
(such as purchase order, sales report, etc.). In this paper, it is assumed that each or-
ganization assigns a person who is responsible for managing document search system 
of the organization. In this paper, this person is called system manager. K-metadata 
schema is defined by the system manager under by the following criteria. 

• Criteria 1: The name of a leaf node of K-metadata schema tree denotes the class of 
corresponding K-metadata. 

• Criteria 2: In order to enforce that a set of K-metadata stored in the same work-
sheet, the leaf nodes presenting these metadata should be defined as child nodes of 
the same parent node. The cardinality of the parent node under the root node is 
one. 

• Criteria 3: In order to define a set of K-metadata stored in the same table, the leaf 
nodes presenting these metadata should be defined as child nodes of the same par-
ent node. The cardinality of the parent node under the root node is ‘+’ or ‘*’.  

Figure 1(a) depicts the schema of K-metadata for the spreadsheet of Fig.1(b). The root 
node is po which states that the document type is purchase order. The root node has 
two child nodes: header and table nodes. According to criteria 2, Header node con-
tains child nodes denoting K-metadata stored in the same worksheet. For example, 
orderDate node is bound to cell E5 of spreadsheet of Fig.1(b). Therefore, the string 
“2011/8/15” of cell E5 is classified to the order date. The cardinality of table node is 
‘+’ which denotes that number of table nodes under po node is greater than or equal 
to one. Therefore, each table node has child nodes which define K-metadata stored in 
the same table row. For example, productName is bound to cells B13:B14. Then, the 
strings “Introduction to Cloud Computing” and “Introduction to Information Securi-
ty” are classified to the product name.  

Let limit_dist be the limited distance between K-metadata and the corresponding  
F-metadata. This value is defined by the system manager to match with layout of 
spreadsheets of the organization. 

Definition 3.1 (Well-formed Spreadsheets). A spreadsheet S is a well-formed 
spreadsheet if S holds the following properties. 

• For each range r of S that does not store K-metadata as table data, (1) r’s  
F-metadata stored in the same row as r, (2) r is the nearest range for its F-metadata, 
and (3) the column distance from r to its F-metadata is less than limit_dist.  

• For each range r of S that stores K-metadata as table data, its F-metadata is the 
column header of the table data.                                        □ 



152 S. Chatvichienchai 

 

3.2 Schema Binding 

Excel 2003, Excel 2007 and Excel 2010 have the ability to attach an XML Schema 
file to any spreadsheet by using the XML Source task pane to map ranges of the 
spreadsheet to elements of the schema. Once users have mapped the XML elements to 
a spreadsheet, users can seamlessly import and export XML data into and out of the 
mapped ranges. Location of K-metadata of a spreadsheet can be defined by binding 
each schema element of K-metadata schema to a range of the spreadsheet. 

Definition 3.2 (Well-formed Spreadsheets bound with K-metadata Schema). Let 
S be a spreadsheet, T = (V, E, Nm, r, lbl, C, fC) be a K-metadata schema tree, P⊂V be 
the set of the parent nodes of leaf nodes whose cardinality is one, and P′⊂V be the set 
of the parent nodes of leaf nodes whose cardinality is ‘+’ or ‘*’. S is a well-formed 
spreadsheet bound by T if and only if  

(a) S is a well-formed spreadsheet; 
(b) ∀pi∈P, ∀vj∈child(pi), vj is bound to a range of the same worksheet of S; and 
(c) ∀p′i∈P′, ∀v′j∈child(p′i), v′j is bound to column data of the same table of S.   □ 

Condition (b) and (c) enforce binding schema elements to ranges of spreadsheet ac-
cording to criteria (2) and (3), respectively of K-metadata schema definition. Note 
that Excel provides a function that outputs mapped ranges of spreadsheet S as an in-
stance of T. 

4 Issues on Metadata Extraction of Spreadsheets 

4.1 How to Handle the Difference of Presenting Format of the Same Data 
Type 

The difference of presentation format of the same data type makes search engines 
unable to compare metadata with search keywords precisely. For example, the format 
of order date of the PO shown in Fig.1(b) is yyyy/m/d while that of the PO shown in 
Fig.1(d) is yyyy/mm/dd. If users input a query searching the purchase orders which 
were ordered before 2011/8/30. Based on string comparison of general search en-
gines, string 2011/09/02 is decided to be smaller than the string 2011/8/30. This 
makes the name of this irrelevant document to be included into the query result. The 
same problem also occurs in case comparing number having comma separator with 
those having no comma separator. In order to solve the above problem, standard pres-
entation format for each data type is defined (see TABLE I). For example, the string 
2010/8/15 is converted to 2010/08/15. The string 34,125 is converted to 00034125. 
The string “Sato Ichiro” is converted to “sato ichiro”. Metadata extraction can per-
form data format conversion properly by checking data types of K-metadata from the 
K-metadata schema.  
 
 



 Spreadsheet Metadata Extraction: A Layout-Based Approach 153 

 

Table 1. Presentation Format for Each Data Type 

Data type Standard Presentation Format 

Date yyyy/mm/dd 

Number n-digit number (which leading zeros are added to and comma se-
parators are removed)   
Note that n is the number of digits defined by the system manager. 

String All-lowercase string 

4.2 How to Handle Synonyms 

In order to extract metadata precisely from other spreadsheets, metadata extraction 
program has to identify the ranges which store F-metadata before identifying the 
ranges that store the corresponding K-metadata. However, users may use synonyms to 
present F-metadata. For example, As “Order Date” of PO of Fig.1(b) is synonymous 
to “Issued Date” of PO of Fig.1(d). In order to identify F-metadata of a spreadsheet 
properly, the system manager needs to define the synonyms of F-metadata of the 
same class. An example of synonym definition file that is stored in XML format is 
shown in Fig.2. Based on this example, both “Order Date” and “Issued Date” are 
defined as synonyms of the orderDate class. 

<?xml version="1.0" encoding="UTF-8"?> 
<Def> 
   <synonym class="orderDate"> 
      <data>Order Date</data> 
      <data>Issued Date</data> 
   </synonym> 
   <synonym class="poNumber"> 
      <data>Purchase No.</data> 
      <data>PO#</data> 
   </synonym> 
      ... 
   <synonym class="productName"> 
      <data>Product Name</data> 
      <data>Description</data> 
   </synonym> 
      ... 
 
</Def> 

Fig. 2. An example of synonym definition file 



154 S. Chatvichienchai 

 

4.3 How to Identify the Spreadsheets Whose Metadata Can Be Extracted 
According to a Given K-Metadata Schema 

In this paper, a spreadsheet whose metadata can be extracted according to a K-
metadata schema is called a candidate spreadsheet. The definition of a candidate 
spreadsheet is given as follows. 

Definition 4.1 (Candidate Spreadsheets). Let S = {w1, w2, .. , wq} be a spreadsheet 
where wk is a worksheet and 1 ≤ k ≤ q, limit_disc be the limited distance between  
K-metadata and corresponding F-metadata. Let T = (V, E, Nm, r, lbl, C, fC) be a  
K-metadata schema treee, P⊂V be the set of the parent nodes of leaf nodes of T whose 
cardinality is one, and P′⊂V be the set of the parent nodes of leaf nodes of T whose 
cardinality is ‘+’ or ‘*’. Let syn_def be the synonym definition file. S is a candidate 
spreadsheet according to T, syn_def and limit_disc if and only if  

• Condition 1: ∀pi∈P, ∀vj∈child(pi) such that there is a range r of wk storing a text 
string and a range r′ of wk storing F-metadata which is defined as a synonym classi-
fied by lbl(vj) of syn_def  and c_dist(r, r′) < limit_dist. 

• Condition 2: ∀p′i∈P′, ∀vj∈child(p′i), there exists a table t of wk such that t’s col-
umn data part stores text strings and the corresponding column header storing F-
metadata which is defined as a synonym classified by lbl(vj) of syn_def.        □ 

Assume that limit_dist is two. According to the above definition, the spreadsheet of 
Fig.1(b) is a candidate spreadsheet according to K-metadata schema of Fig.1(a) and 
the synonym definition file of Fig.2. 

5 Metadata Extraction Algorithm 

This section presents the MetadataExtract algorithm that extracts K-metadata from a 
given spreadsheet.  
 
MetadataExtract (S, T, syn_def, limit_disc, flag, result).  
Input:  

• S = {w1, w2, .. , wq} be a spreadsheet whose metadata will be extracted where wk 
is a worksheet and 1 ≤ k ≤ q, 

• T = (V, E, Nm, r, lbl, C, fC) be a K-metadata schema tree,  
• syn_def  is the synonym definition file,  
• limit_disc is the limited distance between K-metadata and corresponding F-

metadata. 

Output: 

• flag = ‘yes’ if S is justified to be a candidate spreadsheet according to T, syn_def  
and limit_disc. Otherwise, flag = ‘no’. 

• result stores K-metadata of S. 

 



 Spreadsheet Metadata Extraction: A Layout-Based Approach 155 

 

Process: 
1. flag = ‘no’  
2. Let P ⊂ V be the set of the parent nodes of leaf nodes of T, and 

child(pi) be the set of child nodes of pi where pi∈P. 
3. For each pi∈P do the following 
4.    If the cardinality of pj is “+” or ‘*’ then  
5.       /* Process table data */ 

      If S has table tk (where k≥1) satisfied by the following  
          condition: 
          ∀vj∈child(pi), there exists a column header of tk such 
          that the column header stores F-metadata of vj class  
          defined by syn_def and its column data stores text  
          strings. 

Then  
6.          For each vj∈child(pi) do the following  
7.             Bind column data of tk with vj where its column header  

            stores F-metadata of vj class defined by syn_def.  
8.       Else return. 
9.    Else /* Process non-table data */ 
10.       If there exists worksheet wm (where 1≤m≤q) of S satisfied  

         by the following condition: 
         ∀vj∈child(pi), there exist a range rk of wm such that 
         rk stores F-metadata of vj class defined by syn_def. 

Then 
11.          For each vj∈child(pi) do the following 
12.             Let rk be a range of wm storing F-metadata of vj class 

            defined by syn_def.  
13.             If there exists a range r’k’ such that  

              (1)r’k’ stores a text string and  
              (2)r’k’ is in the same row as rk and  
              (3)r’k’ is the nearest range of rk and                
              (4)c_dist(r’k’, rk) < limit_disc then  

14.                Bind r’k’ with vj. 
15.             Else return. 
16.       Else return. 
17. flag = ‘yes’ 
18. Output the data of S which is bound to T as XML data into result.  
19. Return. 

Theorem 1.  The result of MetadataExtract is complete and correct. 
Proof: Based on definition 4.1, MetadataExtract justifies whether S is a candidate 
spreadsheet according to T, syn_def and limit_disc. If S is not the candidate spreadsheet, 
then flag is set to ‘no’ and the algorithm terminates. Otherwise, MetadataExtract binds 
S with T. Based on the properties of a candidate spreadsheet, S is a well-formed spread-
sheet bound with T. This makes result outputted by MetadataExtract is an instance of T. 
Therefore, the result of MetadataExtract is complete and correct.                  □ 

Time Complexity of MetadataExtract 
Let r be the number of ranges storing strings of spreadsheet S, n be the number of 
nodes of K-metadata schema tree T, and d be the size of synonym definition file 
syn_def. Gottlob et al.[6] has proposed an XPath query processing algorithm that 
works in quadratic time and linear space with respect to the size of the XML docu-
ment. Therefore, the query time on the synonym definition file is bound to O(d2). 



156 S. Chatvichienchai 

 

Given S, T, and syn_def, the process time for MetadataExtract to output the result is 
bound to O(d2nr). 

6 Implementation of the Proposed Algorithm 

MetadataExtract is implemented as a part of crawler of office document search sys-
tem[2]. The K-metadata outputted by the algorithm are inputted by indexer to gener-
ate XML-based search index which is completely different from conventional search 
index. The main reason of storing metadata as XML data is that tag names of XML 
are used to present the classes of metadata. For sake of scalability, the search index is 
implemented into PostgreSQL v8.3[14] which was enhanced with integrated XML 
data type. PostgreSQL v8.3 includes implementation of standard SQL/XML functions 
and support of XPath[16] expressions. Each file type (e.g. spreadsheet file, word file 
etc.) has the data structure that is different from that of other type. Based on this fact 
and program maintainability, a crawler is designed to extract metadata from docu-
ments of the same file type (such as .doc, .xls, etc.). Since this paper focuses on 
spreadsheets, the specification of prototype of spreadsheet crawler will be explained.  

As shown in Fig.3, the inputs of the program are (1) a sample spreadsheet bound 
with K-metadata schema, (2) the file path of the folder containing spreadsheets whose 
K-metadata is extracted, and (3) the synonym definition file. Note that the sample 
spreadsheet is necessary to generate a query form for searching spreadsheet of that 
type. The F-metadata of the sample spreadsheet will appear in the query form. The 
outputs of this program are (a) a list processed files, (b) XML-based K-metadata files, 
and (c) a log file that records the process result. The system manager can investigate 
the files that the crawler cannot generate K-metadata. Information of the log file is 
used to improve MetadataExtract. The program is developed by using Visual Ba-
sic .NET programing language[15] of Microsoft Visual Studio 2010[12]. 

 

Fig. 3. A sample screenshot of metadata extraction program for spreadsheets 



 Spreadsheet Metadata Extraction: A Layout-Based Approach 157 

 

Metadata-based Search Index 

The first design goal of search index is to enable users specifying the meaning of 
inputted keywords to attain high precision search result. This leads to design of  
special search index containing K-metadata and their semantic definitions. The 
second goal is that the search index should be able to address files of various applica-
tion types. XML data is viewed as a tree where a sub-tree under the root presents  
K-metadata and file property of an indexed document file. The outline of the search 
index is shown in Fig.4. As described in the beginning of this section, the search in-
dex is stored in PostgreSQL V8.3 database in order to return search result as fast as 
possible. The search index is separated into the following two tables. 

• t_doc_kind table stores document types and index sizes and number of files to be 
indexed.  

• t_xml_data table stores the name of indexed file and K-metadata of each document 
type. The attribute xml_data stores the K-metadata set which is coded in XML 
format. PostgreSQL V8.3 provides XML functions that allow programmers to 
query XML data stored in the table attributes. 

Query User Interface 

In order to eliminate the need to remember how metadata is classified, this paper also 
proposes a search user interface that facilitates non-expert users in posing query. This 
interface shows a list of document types recorded in the search index. After a user 
selects a document type that she wants to search, the interface generates a query  
form for the selected document type. The query form shows user familiar field names 

 

Fig. 4. The outline of the search index 



158 S. Chatvichienchai 

 

(e.g. Ordered date, Product Amount) by looking up metadata definition file of the 
selected document type. This file also contains data type definitions of the input fields 
in order to transform them to match to standard presentation format (see TABLE I). 
The query form allows users defining options to sort search result by file creation date 
or file modification date in ascending or descending order. The reader can find more 
detail of the query interface at the previous work[2]. The query response time of this 
work for searching 10 target files from 100,000 files is about 0.03 seconds which is 
about 3,600 times faster than that of the previous work[2]. 

7 Related Work 

Recently, metadata-based search has received attention as an effective approach to 
retrieve pertinent digital documents. Much work has been done in metadata extraction 
which is one of the most important components of metadata-based search. The har-
vesting of metatags (from generic HTML and <meta> tags) is the simplest form of 
metadata generation. DC-dot[4] is the most well-known of a group of tools that ex-
tracts metatags from web pages in order to generate Dublin Core metadata. The effec-
tiveness of these tools is obviously constrained by the number and quality of metatags 
found in the source document. Clearly, such tools are not useful for auto-generating 
metadata values for properties that are not already described. Metadata Miner Pro[10] 
is a commercial application developed by Soft Experience. Its primary purpose is to 
extract descriptive information, such as title, author, subject, keyword, from common 
document formats (Microsoft Office applications, OpenOffice, HTML, Adobe PDF, 
and Apple Mac file comments).  

The approach proposed by Cvetković et al.[3] extracted metadata from scientific li-
terature, as well as their visualization. The extraction approach assumes PDF format 
of file and IEEE reference writing standard. Rules for reference writing are defined as 
regular expressions and later extracted using finite state machine. SemreX[7] system 
extracts document metadata from both the header and bibliographic fields to get dee-
per information about the document, and stores the extracted information in a seman-
tic database to assist the semantic search process. Automatic Metadata Generation at 
the Catholic University of Leuven[1] for extracting limited descriptive metadata (e.g. 
title, author and keywords) these often rely on structured documents (e.g. HTML and 
XML) and their precision and usefulness is constrained. TableSeer[9] crawls scientif-
ic documents from digital libraries, identifies documents with tables, extracts tables 
from documents, represents each table with a unique table metadata file, indexes 
tables and provides an interface to enable the end-users to search for tables. 

8 Conclusion and Future Work 

This paper has presented an innovative method that extracts metadata from the 
spreadsheets whose metadata is stored under certain conditions. Classification of me-
tadata is based on its meaning and document type (such as purchase order, application 
forms, etc.). Metadata of spreadsheets of the same type is defined by XML schema. 



 Spreadsheet Metadata Extraction: A Layout-Based Approach 159 

 

By this way the names of schema elements define classes of the metadata. Further-
more, hierarchical structure of metadata classes can also be defined. Given a spread-
sheet, metadata schema tree, synonym definition file, the metadata extraction algo-
rithm of the proposed method justifies whether metadata conformed to the metadata 
schema tree can be extracted from the given spreadsheet. Data types (such as date, 
number, etc.) of metadata are taken into account in order to realize document search 
based on metadata of various data types. The metadata outputted from the algorithm 
will be used to create an XML-based search index. By implementing the XML-based 
search index in PostgreSQL V8.3 that allows programmers to query XML data stored 
in the table attributes, the query response time is much faster than that of my previous 
work. Based on metadata classification of this work, end-users can define the mean-
ings of search keywords. Therefore, they can make queries that meet to their search 
requirements better than those of conventional keyword search.  

As the future work, I plan to make an experiment that compares the proposed me-
thod with other work in terms of search precision and recall. Furthermore, I plan to 
extend the proposed metadata extraction method to extract metadata stored in pic-
tures, text boxes and shapes of spreadsheets. 

References 

1. Automatic Metadata Generation (2011), http://ariadne.cs.kuleuven.be/ 
SAmgI/design/SimpleAmgInterface_1_0_prealpha.pdf 

2. Chatvichienchai, S., Tanaka, K.: Office Document Search by Semantic Relationship Ap-
proach. International Journal of Advances on Information Sciences and Service 
Sciences 3(1), 30–40 (2011) 

3. Cvetković, S., Stojanović, M., Stanković, M.: An Approach for Extraction and Visualiza-
tion of Scientific Metadata. In: ICT Innovations 2010 Web Proceedings, pp.161–170 
(2010) 

4. DC-dot (2011), http://www.ukoln.ac.uK-metadata/dcdot/  
5. Google, Google Desktop Search (2011), http://desktop.google.com/ 
6. Gottlob, G., Koch, C., Pichler, R.: Efficient algorithms for processing XPath queries. ACM 

Trans. Database Syst. 30(2), 444–491 (2005) 
7. Guo, Z., Jin, H.: A Rule-Based Framework of metadata Extraction from Scientific Papers. 

In: 10th International Symposium on Distributed Computing and Applications to Business, 
Engineering and Science, JiangSu, China, pp. 400–404 (2011) 

8. IBM. Lotus 1-2-3 (2011),  
http://www-01.ibm.com/software/lotus/products/123/  

9. Liu, Y., Bai, K., Mitra, P., Giles, C.: Searching for tables in digital documents. In: 9th Int’l 
Conf. on Document Analysis and Recognition (ICDAR 2007), pp. 934–938 (2007) 

10. Metadata Miner Pro (2011), http://peccatte.karefil.com/software/ 
Catalogue/MetadataMiner.htm 

11. Microsoft Excel (2010), http://office.microsoft.com/en-us/excel/ 
excel-2010-features-and-benefits-HA101806958.aspx 

12. Microsoft Visual Studio (2010), 
 http://www.microsoft.com/visualstudio/en-us 

13. OpenOffice, Calc: The all-purpose spreadsheet (2011),  
http://www.openoffice.org/product/calc.html 



160 S. Chatvichienchai 

 

14. PostgreSQL (2012),  
http://www.postgresql.org/docs/8.3/static/functions-xml.html 

15. Vick, P.: The Visual Basic.NET Programming Language. Addison-Wesley Professional 
(March 2004) 

16. W3C, XML Path Language (XPath) Version 1.0, REC-xpath-19991116 (1999),  
http://www.w3.org/TR/1999/ 

17. W3C, XML Schema (2001), http://www.w3c.org/XML/Schema 
18. W3C, Extensible Markup Language (XML) 1.0, 4th edn. (2006),  

http://www.w3.org/TR/2006/REC-xml-20060816/  
19. Walkenbach, Excel 2007 Power Programming with VBA. Wiley (2007) 
20. X1 Technologies, X1 Professional Client (2011),  

http://www.x1.com/products/professional-client 



 

S.W. Liddle et al. (Eds.): DEXA 2012, Part I, LNCS 7446, pp. 161–175, 2012. 
© Springer-Verlag Berlin Heidelberg 2012 

Automated Extraction of Semantic Concepts from  
Semi-structured Data: Supporting Computer-Based 

Education through the Analysis of Lecture Notes 

Thushari Atapattu, Katrina Falkner, and Nickolas Falkner 

School of Computer Science, 
University of Adelaide, Adelaide, Australia 

{thushari,katrina,jnick}@cs.adelaide.edu.au 

Abstract. Computer-based educational approaches provide valuable supple-
mentary support to traditional classrooms. Among these approaches, intelligent 
learning systems provide automated questions, answers, feedback, and the rec-
ommendation of further resources. The most difficult task in intelligent system 
formation is the modelling of domain knowledge, which is traditionally under-
taken manually or semi-automatically by knowledge engineers and domain ex-
perts. However, this error-prone process is time-consuming and the benefits are 
confined to an individual discipline. In this paper, we propose an automated so-
lution using lecture notes as our knowledge source to utilise across disciplines. 
We combine ontology learning and natural language processing techniques to 
extract concepts and relationships to produce the knowledge representation. We 
evaluate this approach by comparing the machine-generated vocabularies to 
terms rated by domain experts, and show a measurable improvement over exist-
ing techniques. 

Keywords: ontology, POS tagging, lecture notes, concept extraction. 

1 Introduction 

Computer-based intelligent education systems have been an area of research for the 
past decade. Early systems, such as SCHOLAR [1], provided intelligent assistance 
without human intervention by presenting a single set of digital materials to all stu-
dents. Subsequently, research efforts have focused on creating student-centered learn-
ing environments, supporting learner’s diversity and individual needs. Intelligent 
Tutoring systems, question answering systems and student-centered authoring sys-
tems are examples of ‘one-to-one teaching’, which provide individual attention for 
each student [2-5]. These systems are capable of generating customised questions for 
students, responding to unanticipated questions, identifying incorrect answers, provid-
ing immediate feedback and guiding students towards further knowledge acquisition.  

The foremost effort in intelligent system development is allocated for knowledge-
base modeling. Traditionally, knowledge engineers and domain experts formulate the 
domain knowledge manually [13] and the success of any intelligent system is heavily 



162 T. Atapattu, K. Falkner, and N. Falkner 

 

dependent on the quality of the underlying knowledge representation. Manual efforts 
are constrained in their usefulness due to their error-prone nature and time-delays in 
the ability to incorporate new domain knowledge.  

Accordingly, research has focused on overcoming the knowledge acquisition bottle-
neck, including the use of authoring shells [4-6]. This semi-automatic approach allows 
teachers to define pedagogical annotations of teaching materials, which includes peda-
gogical purpose, difficulty level, evaluation criteria and performance level [6]. These 
authoring environments provide natural language interfaces for teachers, and knowledge 
engineering tools are required to transform them into a machine comprehensible form. 
A significant problem with both manual and semi-automated processes is that any ex-
tracted knowledge is not reusable due to its domain-specific nature. 

The goal of our research is to further automate the knowledge acquisition process 
from domain independent data, using digital lecture notes as our knowledge source. In 
this paper, we discuss terminology extraction from PowerPoint slides written in  
natural language. The purpose is to migrate from a full-text representation of the doc-
ument to a higher-level representation, which can then be used to produce activity 
generation, automated feedbacks, etc. According to Issa and Arciszewski [7], an on-
tology is “a knowledge representation in which the terminologies have been struc-
tured to capture the concepts being represented precisely enough to be processed and 
interpreted by people and machines without any ambiguity”.  Therefore, our system 
extracts domain-specific vocabularies from lecture notes and stores them in an ontol-
ogy which complies with an underlying knowledge model comprising concepts, in-
stances, relations and attributes.    

Generally, lecturers (domain experts) dedicate significant effort to produce  
semantically-rich, semi-structured lecture slides based on extensive knowledge and 
experience. Our research is based upon reusing this considerable effort and expertise, 
enabling computers to automatically generate activities for students. 

We combine natural language processing techniques such as part-of-speech tag-
ging (POS tagging) [8], lemmatisation [9] with pre and post-processing techniques to 
extract domain-specific terms. Information-retrieval based weighting models are uti-
lised to arrange the precedence of concepts, placing a higher weight upon those that 
are more important [10]. In order to evaluate our approach, a comparison has been 
carried out between machine generated vocabularies and concepts identified by inde-
pendent human evaluators.  

The domain knowledge extracted from the lecture notes can be used to model the 
knowledge base of intelligent education systems (e.g. intelligent tutoring systems, 
question answering systems). Moreover, the ontologies generated from this research 
can be used as a knowledge source for semantic web search [12] and support for 
knowledge transfer for tutors and teaching assistants [13]. According to Rezgui [15], 
ontologies provide a perspective to migrate from a document to a content-oriented 
view, where knowledge items are interlinked. This structure provides the primitives 
needed to formulate queries and necessary resource descriptions [15]. Therefore, we 
use ontology reasoning techniques to generate questions for students and answer  
student questions in the forums of Learning Management System. Simultaneously, 
students can ask discipline-oriented questions from the system, with algorithms  



 Automated Extraction of Semantic Concepts from Semi-structured Data 163 

 

defined to traverse within the particular ontology to find suitable answers. If we can 
make use of lecture slides as a source, then this will be a valuable technique, as lec-
ture slides are a commonly used and widely available teaching tool. 

This paper includes a background study in section 2. A detailed description of me-
thodology including concept and hierarchy extraction can be found in section 3, 4  
and 5 respectively. In section 6, we evaluate the concept extraction algorithm using 
human judgment as a reference model. We discuss the overall work and provide a 
conclusion in section 7. 

2 Background 

At present, people share an enormous amount of digital academic materials (e.g. lec-
ture notes, books and scientific journals) using the web. Educators and students utilise 
these knowledge resources for teaching and learning, however this digital data is not 
machine processable unless manipulated by humans. For instance, a computer cannot 
construct activities from a book available on the web without the involvement of a 
teacher; there is no simple transition pathway from semi-structured content (book) to 
teaching activities. Artificial intelligence researchers have attempted to automate 
knowledge acquisition, with the purpose of improving computer-based education, 
semantic web search and other intelligent applications. 

Hsieh et al. [11] suggest the creation of a base ontology from engineering hand-
books. They utilise semi-structured data, such as table of contents, definitions and the 
index, from earthquake engineering handbooks for ontology generation. Although the 
glossary development is automatic, the authors cite the importance of the participation 
of domain experts and ontology engineers in defining upper level concepts and com-
plex relationships. The evaluation and refinement of this research is a manual process, 
which they believe to be an essential part to improve the quality of the base ontology. 
Similar to our approach, Gantayat and Iyer [12] indicate the automated generation of 
dependency graphs from lecture notes in courseware repositories. Although our con-
cern is to extract contents of particular lecture notes, this research focuses on extract-
ing only the lecture topics to build dependency graphs. During the online courseware 
search, this system recommends ‘prerequisites’ and ‘follow-up’ modules. They use 
the ‘tf-idf’ measure for terminology extraction, and their relationship building only 
corresponds to determine whether the other concept is prerequisite or follow-up (hie-
rarchical order). Similarly, Rezgui [15] uses ‘tf-idf’ and metric cluster techniques to 
extract concepts and relations from the documents in the construction engineering 
domain. Although this automated approach reduces the knowledge acquisition bottle-
neck, this knowledge is not reusable over a diverse range of domains. 

The authors of [13] propose the construction of a semantic network model from 
PowerPoint lecture notes. Teaching assistants gain knowledge of the sequence of 
teaching contents from the proposed semantic network model, creating a graph  
structure from each slide and combining all the graphs to form a semantic network 
 



164 T. Atapattu, K. Falkner, and N. Falkner 

 

reporting an agreement rate of 28%, which is the degree of agreement between human 
experts and the generated semantic network, measured by correlation of concepts. 
Ono et al. [13] argue that some teachers disagree with this model as the semantic 
network does not contain the original ideas of lecturers. Instead, it contains a machine 
generated overview of the lecture. Furthermore it also does not contain the knowledge 
of graphs and figures as in the lecture, resulting in a further negative attitude towards 
the new model. Concept map generation in [16] indicates the automatic construction 
of concept maps from an e-learning domain. The e-learning domain is an emergent 
and expanding field of research. The manual construction of the e-learning domain 
over months or years can produce obsolete knowledge. Therefore, automating the 
domain construction from e-learning journal and conference articles is significant not 
only for novice users but also for experts [16]. The extracted key word list from scien-
tific articles is used to build the concept map and indicate the relations to guide learn-
ers to other areas which related to current topic.  

Kerner et al. [14] suggest base line extraction methods and machine learning for key 
phrases acquisition from scientific articles. The results found Maximal Section Headline 
Importance (MSHI) to be the best base line extraction method over Term frequency, 
Term Length, First N Terms, Resemblance to Title, Accumulative Section Headline 
Importance, etc. Besides, in machine learning approach, optimal learning results are 
achieved by C4.5 algorithm over multilayer perceptron and naïve Bayes [14].  

The majority of related works utilise the popular ‘tf-idf’ measure for concept ex-
traction, filtering the most frequently occurred concepts in the domain over linguisti-
cally important nouns. Despite contemporary efforts to combine natural language 
processing and earlier techniques, the field is still open to considerable development. 

3 Our Model 

The proposed methodology, illustrated in Figure 1, consists of concept extraction 
techniques to construct the domain-specific vocabulary and concept hierarchy extrac-
tion algorithm to arrange the extracted vocabularies. 

We have implemented a PowerPoint reader to process text and multimedia contents 
of Microsoft PowerPoint documents using Apache POI API [17]. This reader is capable 
of acquiring rich text features such as title, bullet offset, font color, font size and under-
lined text. We make use of these features in our research with the purpose of identifying 
emphasised key terms. Later sections of this paper discuss the importance of empha-
sised key terms in selecting concepts in the domain. In this paper, we address text-based 
extraction; multimedia processing will be addressed in a later publication. 

We assume all the PowerPoint slides presented to the system are well structured 
(e.g. include titles, text/multimedia content) and contain no grammatical errors in 
natural text. Our system automatically corrects spelling errors using the in-built  
Microsoft spell checker.  

 
 
 



 Automated Extraction of Semantic Concepts from Semi-structured Data 165 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 1. An overview of our methodology 

4 Concept Extraction 

This section consists of four stages of concept extraction: pre-processing; natural 
language processing (NLP) tagging; post-processing and weighting model. 

4.1 Pre-processing 

In order to improve the acquisition, we normalise the PowerPoint text contents before 
preparing them for linguistic annotation. This normalisation includes; 

1. splitting statements at the occurrence of periods, comma or semi colon, 
2. replacing non-alphanumeric symbols, 
3. processing punctuation marks (e.g. hyphen, &), 
4. expanding abbreviations, and 
5. removing white spaces. 

4.2 Natural Language Processing Tagging 

NLP tagging is categorised into two parts: lemmatisation and Part-of-speech (POS) 
tagging. In this stage, we first annotate the normalised statements using lemmatisation 
[9], where words are mapped to their base form (e.g. activities => activity, normalisa-
tion =>normalise). We have selected lemma annotation over the most popular stem-
ming or morphological analysis techniques as the latter two techniques will entirely 
remove suffixes of term. This often gives different meaning of the term [9] (e.g. 
Computation, computing, computer => compute).  

Semantic extraction 

Normalised text 

Tagged 
text 

Filtered data 

Pre-
processing 

NLP 
tagging 

Post-
processing 

Weighting 
model 

Concepts  
& 

Hierarchical relations 

Hierarchy extraction 

Hierarchy extractor 

Link-distance algorithm 

Concept hierarchy 

Semantic concept 

PowerPoint Reader 

PowerPoint slides 

PPT layout PPT text 



166 T. Atapattu, K. Falkner, and N. Falkner 

 

The POS tagger found in the Stanford Core NLP project [8] identifies nouns, 
verbs, adjectives, adverbs and other part-of-speech definitions in phrases or sentences 
[18]. The following parse tree illustrates the POS tagging of a sample sentence, and 
the creation of a parse tree that represents the structured interpretation of the sentence. 

Sentence: The authors are extracting semantic concepts from lecture slides. 

Parse tree: (ROOT (S (NP (DT The) (NNS authors)) (VP (VBP are) (VP (VBG 
extracting) (NP (JJ semantic) (NNS concepts)) (PP (IN from) (NP (NN lecture) 
(NNS slides))))) (. .)))  

The parse tree shows the term and its corresponding POS tagger in bold and underline 
respectively. The same statement is clearly shown in Table 1 with the term, its corres-
ponding lemma and the POS definition. 

Table 1. Annotated example sentence 

Word The authors are extracting semantic concepts from lecture slides 
Lemma The author be extract semantic concept from lecture slide 
POS DT NNS VBP VBG JJ NNS IN NN NNS 

 
The definitions of POS tags can be found in the Brown Corpus [18]. The Brown 

Corpus includes a list of POS tags and their definitions (e.g. VB => verb, IN =>  
preposition, CC => coordinating conjunction like and, or). Our algorithm extracts 
adjectives (JJ), comparative adjectives (JJR), singular or mass noun (NN), possessive 
singular noun (NN$), plural noun (NNS), proper noun (NP), possessive proper noun 
(NP$) and plural proper noun (NPS) for annotations. There are some verbs (VB) 
which rarely indicate as concepts in particular domains. We plan to integrate the ex-
tractions of such verbs as a future work. 

Our retrieval results have indicated that domain-specific concepts are combinations 
of numerous POS tag patterns (e.g. nouns followed by adjectives, compound nouns). 
A careful analysis confirms the requirement for a priority-based processing mechan-
ism for these retrieved term or phrases. We define a list of regular expressions to ar-
range the n-grams (i.e. contiguous sequence of n items from given text or speech) on 
the basis of matching patterns. This list is processed in order and when the first one 
that matches is applied, the algorithm will eliminate that phrase from the sentence and 
apply the regular expressions recursively until the sentence has no more singular 
nouns (because singular nouns are the least prioritised pattern).  

For example, let us assume a particular sentence includes a noun followed by an ad-
jective, four consecutive nouns and a singular noun. According to the defined regular 
expressions list, we extract four consecutive nouns (four-grams) at the beginning. Then 
we eliminate that pattern from the sentence. Then the algorithm will return the noun 
followed by an adjective (bi-grams) and a singular noun (uni-gram) respectively. 

4.3 Post-processing  

We notice that the NLP tagger returns the terms such as example, everything, some-
body as nouns. However, in the computing education context, we can identify that 



 Automated Extraction of Semantic Concepts from Semi-structured Data 167 

 

these terms are not of high importance. In order to improve our results, we have im-
plemented our own stop-words filter which includes 468 stop-words (e.g. a, also, the, 
been, either, unlike, would), enabling the elimination of common words. Further, 
stop-words are not permitted in bi-grams and can only be used as a conjunction word 
in between tri-grams (e.g. point-to-point communication) or any other n-grams  
(n > 2). Thus, stop-words are not allowed at the beginning or end of a phrase. 

4.4 Weighting Model 

Although our algorithm returns nouns and compound nouns, it may include phrases 
which do not belong to domain-specific categories (e.g. ‘authors’ in table 1). In order 
to refine the results, a weighting model has been employed which places highest 
weighted terms as the most important concepts. We have developed a new model by 
building on term frequency-based approaches and incorporating this with n-gram 
count and typography analysis. We then present four weighting models that are based 
on these weighting factors as discuss below. 

Term Frequency 
The system counts the occurrence of each concept in the lecture notes (tf). We assign 
the ‘log frequency weighting’ [10] for each term to normalise the occurrences within 
a controlled range. For instance, if the term frequency is 1, weight will be 0.3 and for 
100, weight will be 2.0. This prevents a bias towards high frequency terms in  
determining the threshold value and important concepts. This will result in the term 
frequency being an important and influential factor in choosing important concepts 
rather than the only factor. 

 Termweight = Log (1 + tf) (1) 

N-gram Count and Location 
In our analysis, we identify that the majority of noun phrases that are confirmed as 
concepts are brief PowerPoint statements rather than a fragment of long sentences. 
Therefore, we count the number of tokens (n-grams) included in each item of bullet 
text and assigns a weight to the bullet text based on its n-gram count (n=1 to 5).  If the 
count is more than five, which implies the bullet text is a moderate to long sentence. 
According to the evaluation results, shorter statements are more likely to be chosen as 
concepts over long statements and our experiments verified that text locations (e.g. 
title, topic, bullet or sub-bullet) are not effective in the judgment of concept selection. 

Typography Analysis 
In PowerPoint slides, lecturers often emphasise terms or phrases to illustrate their 
importance in the given domain, frequently employing larger fonts, different colors or 
different font faces. Underlined, bold or italic terms are also considered as empha-
sised. In our algorithm, we introduce a probability model (illustrated in Table 2) to 
assign unique weights for these terms.  



168 T. Atapattu, K. Falkner, and N. Falkner 

 

Table 2. Weight assignment of emphasised text based on probability 

Probability of emphasised text (%) Weight (out of 1) 

50 < P <= 100 0 
20 < P <= 50 0.05 

10 < P <= 20 0.15 

5 < P <= 10 0.3 

0 < P <= 5 0.5 

Model Selection 
Finally, we have defined weighting models based on the weighting factors discussed 
above. The indication of letters - N: No weight, L: Logarithm term frequency weight, 
T: weight of n-gram count, E: emphasized probabilistic weight. 

• NNN: We do not apply any weighting models at this instance and measure the 
performance from the concepts extracts from linguistic annotation (i.e. all noun 
phrases and adjectives). 

• LNN: This model considers log frequency weight as the factor for refining the 
extracted concept list. The terms with high frequency occurrence will be selected 
as important concepts in this setup. 

• LTN: This model considers the accumulated weights of log frequency and n-gram 
count as the judgment factor for filtering the most important concepts 

• LTE: This model calculates the accumulated weight of log frequency, n-gram 
count and emphasised probability as the selection factor. 

We compare the performance of each of these weighting models in the evaluation 
section to select the best model for concept extraction algorithm. 

5 Concept Hierarchy Extraction 

The success of automated ontology construction depends not only on the accuracy of 
concept extraction but also the capability of building concept hierarchies and lexical 
relations effectively. In this paper, we propose an approach to extract the concept 
hierarchies based on PowerPoint document layout [20]. 

The PowerPoint document layout has been used as a key feature in extracting hie-
rarchies based on a top-down approach [19]. In concept extraction, we store the text 
features (e.g. topic, title, bullet, sub bullet) of each term and arrange the terms based 
on the sequence of topic, title, bullet and sub bullet respectively.  

Figure 2 shows the relationship defined between the different indentation levels of 
bullets. The bold text shows the returned terminology from the concept extraction 
algorithm (Figure 2a) and the hierarchy extraction algorithm arranges sub points as 
children (is-a) of bulleted-points according to subsumption relationship (Figure 2b). 
This relation indicates that the IP, TCP and HTTP are specialization of Protocol. 
Thus, Protocol is a generalization of IP and can be specified as ‘IP is a Protocol’.  



 Automated Extraction of Semantic Concepts from Semi-structured Data 169 

 

 
• OSI seven layers model has its own protocols, 

─ IP 

─ TCP 

─ HTTP 

  
 (a)   (b) 

Fig. 2. (a) Example slide (b) hierarchy of concepts 

When considering the structure of PowerPoint slides, a concept can occur in mul-
tiple levels in the hierarchy (e.g. title, sub-bullet). In order to avoid the conflicts of 
multiple occurrences in tree-levels, we have introduced and implemented the follow-
ing algorithm (link-distance algorithm), which determines the correct occurrence of 
the concept by its number of corresponding links and distance from the root node. 
This defines the concept as a more specific one rather than general concept with the 
most number of links. 

Document (d) has more than one occurrences of similar 
term (s) 
For si (i=1 to n; n € R) 
 Calculate number of links term si has - Li 
 Consider si corresponds to Li where Li= max (L1,L2,..,Ln) 
If (number of max(m)) > 1 
 For sj (j=1 to m; m € R) 
  Calculate number of nodes from root to term sj - tj 

  Consider sj corresponds to tj where tj= max(t1,..,tm) 
Else 
 Get si 

Due to the semi-structured nature of lecture slides, it is possible for there to exist mul-
tiple concepts within a single level, for instance, where the lecturer has joined two or 
more concepts in a title or descriptive sub-point. When considering the case of mul-
tiple concepts within a title, sub-points will then inherit features from multiple par-
ents, introduced multiple inheritance. Although allowable in ontology specification, 
the additional complexity introduced by multiple inheritance makes it undesirable. 
When considering ontology development, we must also consider the need to specify a 
single root node, or most general concept, and restrictions on the expansion of our 
ontology, as it is constrained to have only four levels (in this case: topic, title, bullet, 
sub-bullet). Because of these additional constraints, and to preserve the simplicity and 
understandability of our ontology, we eliminate the concepts with more than four 
parents of multiple inheritance when applying our relationship extraction process. 

Although the relationships are usually of a hierarchical nature, our expectation is to 
improve lexical relationship extractions based on computational linguistics and syn-
tactic textual patterns [19] in the next stage of our work. 

According to the ontology layer cake, identifying concepts, hierarchies and  
relations is an iterative process, which modifies each stage recursively [19]. As a re-
sult, we can improve the concept acquisition at the relationship extraction stage.  

   Protocol 

      IP   TCP   HTTP 



170 T. Atapattu, K. Falkner, and N. Falkner 

 

For example, when arranging a relationship, if we discover that one end of the arc is 
missing (i.e. not extracted using our concept extraction algorithm), we can add that 
concept to the ontology. Simultaneously, we can omit all isolated concepts which do 
not indicate any link with other concepts. 

6 Evaluation 

This section discusses the details of our data set, performance matrices, evaluation 
and analysis of the results.  

6.1 Data Set 

In this stage, we analysed 40 randomly selected lecture slide sets as training data from 
various sources such as web, open course ware, university lectures and book slides. As 
discussed in section 4.4, we obtained the performance of each weighting models (e.g. 
NNN, LNN, LTN, LTE) and increased their performance further by adjusting weights 
and threshold value (an experimental value used to filter least important concepts). 

After those improvements, we tested the algorithm for thirty lecture slide sets  
chosen from two core computer science courses (computer networking and software 
engineering), comprising a combination of text, figures, examples, case studies, sce-
narios and source code. Evaluation was carried out by six independent evaluators. The 
evaluators are teaching assistants in computer science, and are experienced in tutor-
ing, paper marking or completing the particular subject with highest grades. The task 
of the evaluator is to judge the terminology of the given lectures having the concept 
map in their mind. Each evaluator is given five lecture slide sets (each slide set con-
tains approximately fifty slides). 

6.2 Evaluation Matrices 

We utilise common evaluation techniques from the information retrieval domain, 
including the confusion matrix used in predictive analysis for comparing two models 
[10] (see Table 3). 

Table 3. Confusion matrix 

 True False 
Positive tp fp 
Negative tn fn 

Based upon this matrix, we use precision, recall and F-measure to find the perfor-
mance of our algorithm. 

 Precision = tp / (tp + fp) (2) 

 Recall = tp / (tp + fn) (3) 



 Automated Extraction of Semantic Concepts from Semi-structured Data 171 

 

 F-measure = 2 x (precision * recall)/ (precision + recall) (4) 

For inter-human agreement, we have selected positive specific agreement (Ppos) [21] 
over the more popular kappa statistic [10], as the latter technique considers the num-
ber of valid concepts that neither evaluator selected. Although it is possible to identify 
this in document relevancy measures in information retrieval applications, the number 
of potential concepts that neither evaluator marked cannot be defined objectively in 
our approach.  

Table 4.  Agreement between two independent evaluators 

 
Evaluator 
1’s 
Judgement 

            Evaluator 2’s judgement 
 Positive Negative 
Positive a b 
Negative c d 

 
Table 4 demonstrates an example of applying the positive specific agreement 

technique, where two evaluators are asked to select potential concepts from the same 
data source, and agree as follows: 

a: the number of concepts that both evaluators agree as potential concepts 
d: the number of concepts that both evaluators agree as not potential concepts  
b and c: the number of concepts that the evaluators disagree on.  
 
We calculate the positive specific agreement as follows, 

 Positive specific agreement = 2a / (2a + b + c) (5) 

In this research, we used three independent evaluators per each lecture. Accordingly, 
we calculate average of pairwise between all three evaluators in Section 6.3 and in-
cluded in Table 6. 

6.3 Analysis 

This section includes a comparison between machine generated terms and human 
rated terms in order to measure the machine performance over traditional manual 
extraction. Additionally, it summarises the comparison of different weighting models 
and the inter-human agreement between independent evaluators.  

Table 5. Evaluation results of randomly selected lecture slides; L: Log term frequency, N: No 
weight, T: N-gram count, E: emphasised weight, P: Precision, R: Recall, F: F-measure 

Slide 
set 

NNN LNN LTN LTE 
P R F P R F P R F P R F 

1 0.238 0.876 0.375 0.636 0.157 0.252 0.535 0.426 0.475 0.534 0.528 0.531 
2 0.242 0.893 0.381 0.35 0.148 0.208 0.355 0.340 0.347 0.278 0.723 0.402 
3 0.367 0.925 0.526 0.678 0.158 0.256 0.711 0.658 0.683 0.611 0.733 0.666 
4 0.219 0.847 0.348 0.305 0.239 0.268 0.349 0.630 0.449 0.329 0.630 0.432 
5 0.244 0.801 0.374 0.583 0.143 0.230 0.477 0.438 0.457 0.471 0.458 0.465 



172 T. Atapattu, K. Falkner, and N. Falkner 

 

Table 5 shows the precision, recall and F-measure results for five randomly se-
lected lecture slide sets, using each of the weighting models identified in Section 4.4. 

According to Table 5, it is evident that relatively low precision and very high recall 
is discovered from the model which does not apply any weights (NNN). This model 
returns almost all the terms that match with the NLP tagger without a restriction. As a 
result, it includes the highest number of true positive values. However, it measures the 
precision based on the ratio between true positive to number of computer generated 
terms, resulting in a low precision value. Consecutively, we get the highest amount of 
matches between true positive to number of relevant terms indicated by domain ex-
perts. This confirms the high recall values from experiments. 

The second model (LNN) has given priority to the highest frequency terms. But the 
analysis of recall identified that the highest frequency occurrence did not produce any 
impact for the selection of concepts.  

Based on the summary of the results, we obtain best precision, recall and F-
measure from the LTN and LTE models. Both of these models provide equivalent 
performance for all three matrices, however, both the NNN and LNN models indicate 
a diverse range of values for each measure. For instance, the NNN model provides 
very low precision values and very high recall values, whereas, the LNN model 
presents average values for precision and very low values for recall and F-measure 
respectively. 

From our evaluation, lectures with plain text (which are not emphasised) produce 
the best results from the LTN model. However, our algorithm occasionally underper-
forms when considering lecture slides with long statements or very short statements 
(token count of statement). Overall, the LTE model performs best when considering 
lecture slides with varied content.  

We achieved 35%, 60% and 42% of overall performance for precision, recall and 
F-measure respectively for a collection of 70 lecture slides from the LTE model. This 
is a considerable improvement over other existing researches completed to date, as 
shown in [13]. 

Inter-Human Agreement 
Table 6 presents indication for the agreement on same task between all allocated in-
dependent evaluators based on LTE weighting model. 

Table 6. Comparison of independent evaluators  

Lecture notes 1 2 3 4 5 6 7 8 9 10 

Agreement 
(average) 

0.518 0.598 0.540 0.54 0.516 0.428 0.454 0.465 0.353 0.388 

 
In Table 6, the first five lecture notes refer to software engineering lectures which 

comparatively include meaningful sentences, satisfactory hierarchy and good summa-
rization. The three evaluators who judged these lecture notes have fair agreement 
around 0.55 since the potential concepts have a clear separation from the redundant 
data. The last five lecture notes refer to networking lectures which contain brief 
phrases where some evaluators consider the entire slide is important without  



 Automated Extraction of Semantic Concepts from Semi-structured Data 173 

 

considering any of the individual slide concepts, etc. This results in a lower rate of 
agreement between independent evaluators. This occurred repeatedly throughout their 
evaluations, indicating coarseness in granularity when using human involvement. In 
addition, each evaluator had to deal with more than 50 slides in one lecture, causing 
them to miss some important concepts in the review. These issues emphasise the er-
ror-prone and variable nature of manual knowledge extraction and ontology creation, 
stressing the importance of machine extraction to generate explicit knowledge. 

6.4 Discussion 

The analysis results indicate pros and cons of utilising the PowerPoint lecture notes as 
our knowledge source. The PowerPoint lecture notes regularly contain brief phrases 
(the number of tokens per PowerPoint statement/bullet is generally between 2 to 5). 
As discussed in Section 4.4 and evaluation, we have provided evidence that this Po-
werPoint pattern improves the automatic extraction to some extent. 

The machine interpretation of natural text frequently deals with the issue of anaphora 
expressions, which occur when one sentence refers to another preceding sentence (e.g. 
John and Arthur went to city. They saw the Aquarium). In the example, the term ‘they’ 
refers to John and Arthur. In order to identify this, we need an improved anaphora reso-
lution algorithm. However, the natural hierarchy of PowerPoint documents includes 
contextual information which is related to each slide title. As a result, we do not need to 
apply anaphora resolution techniques to concept extraction and instead can utilise con-
cept hierarchies to arrange contextual information within a slide. 

Although there are certain benefits in using PowerPoint lecture notes as our know-
ledge source, PowerPoint often contains grammatically incomplete sentences. As dis-
cussed above, when the contextual content of a slide has a relation with its title, lecturers 
tend to include such incomplete sentences since humans can interpret the natural lan-
guage and its conceptual relations easily. However, machines need improved natural 
language processing algorithms to interpret these ambiguous sentences. 

7 Conclusion 

Computer-based education approaches provide valuable support for traditional teach-
ing methods, but are constrained by our current abilities to automatically extract 
knowledge from educational domains. In this paper, we have described our approach 
to the automatic extraction of concepts and concept hierarchies from digital lecture 
notes, enabling the reduction of semantic gap between natural language and forma-
lised knowledge. According to our analysis, we have achieved 42% of overall ma-
chine performance (F-measure) in our initial knowledge extraction. This represents a 
measurable increase over existing techniques.  

There is considerable further work that can be achieved in this area. In addition to 
enhancements to the core algorithm, in order to achieve higher levels of performance, 
we intend to consider additional multimedia contents that are included within digital 
lecture notes, such as figures and graphs. We expect to integrate image feature extrac-
tion from PowerPoint slides as a future expansion. 



174 T. Atapattu, K. Falkner, and N. Falkner 

 

Further, human judgement on concept extraction is a subjective process, and to 
confirm the accuracy and utility of our approach, we must consider improvements to 
the effectiveness of computer-based learning and teaching. Evaluating the real success 
of our approach depends on the capability of the generated ontology to be used in this 
context, through assisting lecturers in organising teaching materials to best facilitate 
human concept extraction, supporting teaching assistants to understand key course 
objectives and materials, and semantic web searching. We intend to utilise our results 
to further research into the automated generation of activities for students, including 
the generation of question banks, automated forum participation, and the generation 
and identification of resources based on personalised learning needs. 

References  

1. Carbonell, J.R.: AI in CAI: An Artificial-Intelligence Approach to Computer-Assisted In-
struction. IEEE Transactions on Man-machine Systems 11(4), 190–202 (1970) 

2. McArthur, D., Stasz, C., Hotta, J., Peter, O., Burdorf, C.: Skill-oriented task sequencing in 
an intelligent tutor for basic algebra. RAND Note 17(4), 281–307 (1988) 

3. Butz, C.J., Hua, S., Maguire, R.B.: A Web-Based Intelligent Tutoring System for Comput-
er Programming. In: IEEE/WIC/ACM International Conference on Web Intelligence, pp. 
159–165. IEEE Computer Society, USA (2004) 

4. Stankov, S., Rosic, M., Itko, B., Grubisic, A.: TEx-Sys model for building intelligent tutor-
ing systems. Computer and Education 51(3), 1017–1036 (2008) 

5. Zitko, B., Stankov, S., Rosic, M., Grubisic, A.: Dynamic test generation over ontology-
based knowledge representation in authoring shell. Expert Systems with Applica-
tions 36(4), 8185–8196 (2009) 

6. Zhuge, H., Li, Y.: KGTutor: A Knowledge Grid Based Intelligent Tutoring System. In: 
Yu, J.X., Lin, X., Lu, H., Zhang, Y. (eds.) APWeb 2004. LNCS, vol. 3007, pp. 473–478. 
Springer, Heidelberg (2004) 

7. Issa, R., Arciszewski, T.: Ontology: An Introduction, Teaching Modules (PowerPoint 
presentation). In: ASCE Global Center of Excellence in Computing (2011) 

8. Toutanova, K., Klein, D., Manning, C., Singer, Y.: Feature-Rich Part-of-Speech Tagging 
with a Cyclic Dependency Network. In: North American Chapter of the Association for 
Computational Linguistics on Human Language Technology, pp. 252–259. Association for 
Computational Linguistics, Canada (2003) 

9. The Stanford NLP (Natural Language Processing) Group, 
http://nlp.stanford.edu/software/corenlp.shtml 

10. Manning, C.D., Raghavan, P., Schutze, H.: Introduction to Information Retrieval. Cam-
bridge University Press, New York (2008) 

11. Hsieh, S., Lin, H., Chi, N., Chou, K., Lin, K.: Enabling the development of base domain 
ontology through extraction of knowledge from engineering domain handbooks. Advanced 
Engineering Informatics 25, 288–296 (2011) 

12. Gantayat, N., Iyer, S.: Automated building of domain ontologies from lecture notes in 
courseware. In: IEEE International Conference on Technology for Education, pp. 89–95. 
IIT Madras, India (2011) 

13. Ono, M., Harada, F., Shimakawa, H.: Semantic Network to Formalize Learning Items 
from Lecture Notes. International Journal of Advanced Computer Science 1(1), 10–15 
(2011) 



 Automated Extraction of Semantic Concepts from Semi-structured Data 175 

 

14. HaCohen-Kerner, Y., Gross, Z., Masa, A.: Automatic Extraction and Learning of Keyp-
hrases from Scientific Articles. In: Gelbukh, A. (ed.) CICLing 2005. LNCS, vol. 3406, pp. 
657–669. Springer, Heidelberg (2005) 

15. Rezgui, Y.: Text-based domain ontology building using tf-idf and metric clusters tech-
niques. The Knowledge Engineering Review 22(4), 379–403 (2007) 

16. Chen, N., Kinsuk, Wei, C., Chen, H.: Mining e-Learning Domain Concept Map from Aca-
demic Articles. In: Sixth International Conference on Advanced Learning Technologies, 
pp. 694–698. IEEE Computer Society, Netherlands (2006) 

17. Apache POI- the Java API for Microsoft Documents, http://poi.apache.org/ 
18. Brown Corpus, http://en.wikipedia.org/wiki/Brown_Corpus 
19. Cimiano, P.: Ontology Learning and Population from Text: Algorithms, Evaluation and 

Applications. Springer, New York (2006) 
20. Understanding the PowerPoint MS-PPT Binary File Format, 

http://msdn.microsoft.com/ 
en-us/library/gg615594.aspx#UnderstandMS_PPT_Overview 

21. Hripcsak, G., Rothschild, A.S.: Agreement, the F-measure, and reliability in information 
retrieval. J. Am. Med. Inform. Assoc. 12(3), 296–298 (2005) 
 



 

S.W. Liddle et al. (Eds.): DEXA 2012, Part I, LNCS 7446, pp. 176–190, 2012. 
© Springer-Verlag Berlin Heidelberg 2012 

A Confidence–Weighted Metric for Unsupervised 
Ontology Population from Web Texts 

Hilário Oliveira1, Rinaldo Lima1, João Gomes1, Rafael Ferreira1,  
Fred Freitas1, and Evandro Costa2 

1 Informatics Center, Federal University of Pernambuco, Recife, Brazil 
{htao,rjl4,jeag,rflm,fred}@cin.ufpe.br 

2 Computing Institute, Federal University of Alagoas, Maceió, Brazil 
evandro@ic.ufal.br 

Abstract. Knowledge engineers have had difficulty in automatically construct-
ing and populating domain ontologies, mainly due to the well-known know-
ledge acquisition bottleneck. In this paper, we attempt to alleviate this problem 
by proposing an unsupervised approach for extracting class instances using the 
web as a big corpus and exploring linguistic patterns to identify and extract on-
tological class instances. The prototype implementation uses shallow syntactic 
parsing for disambiguation issues. In addition, we propose a confidence-
weighted metric based on different versions of the classical PMI metric, Word-
Net similarity measures, and heuristics to calculate the final confidence score 
that can altogether improve the ranking of candidate instances retrieved by the 
system. We conducted preliminary experiments comparing the proposed confi-
dence metric against some versions of the PMI metric. We obtained promising 
results for the final ranking of the candidate instances, achieving a gain in pre-
cision up to 24%. 

Keywords: Ontology Population, Ontology-Based Information Extraction,  
Similarity Measure, Heuristics. 

1 Introduction 

In recent years, there has been an increasing interest in ontologies, mainly because 
they have become very popular as a means for representing and sharing machine-
readable semantic knowledge. From the computer science point of view, ontologies 
can also be defined as logical theories that are able to encode knowledge about a cer-
tain domain in a declarative way. In addition, ontologies can provide conceptual and 
terminological agreement among the members of a group (humans or computational 
agents) that need to share electronic documents and information, independently of the 
way this knowledge can be used. Currently ontologies are extensively used in applica-
tions for information integration, knowledge management, information retrieval, and 
specially, the Semantic Web.  

The Semantic Web [1] is a global initiative aiming to achieve a semantically anno-
tated Web, in which search engines are able to process resources from a semantic 
point of view. In this scenario, the Semantic Web can intensely increase the quality of 



A Confidence–Weighted Metric for Unsupervised Ontology Population from Web Texts 177 

 

the information to users by providing a uniform data access and integration layer for 
elaborated services. However, the first step to this end equally requires a global con-
sensus in defining the appropriate semantic structures for representing any possible 
domain of knowledge, which implies in the development of domain or task-specific 
ontologies. Thus, once the ontology for a specific domain is available, the next step is 
to semantically annotate related web resources. 

On the other hand, although domain or task-based ontologies are recognized as es-
sential resources for the Semantic Web, the development of such ontologies relies on 
domain experts or knowledge engineers that typically adopt a manual construction 
process. It turns out that this manual construction process is very time-consuming and 
error-prone [2]. Thus, an automated or semi-automated mechanism to convert the 
information contained in existing web pages into ontologies is highly desired. Ontol-
ogy-Based Information Extraction (OBIE) [3], a subfield of Information Extraction, is 
a promising candidate of such a mechanism. According to [3] an OBIE system can 
process unstructured or semi-structured natural language text through a mechanism 
guided by ontologies to extract certain types of information, and present the output 
using ontologies. As had been pointed out by [4, 5], OBIE systems can be used for 
semantic annotation of web pages as well.  

This paper describes our approach that is instantiated by an OBIE system for ex-
tracting class instances from web pages. The proposed system integrates linguistic 
patterns to identify text realizations of ontological classes, and shallow syntactic in-
formation for disambiguation purposes, as well as for increasing coverage of our pat-
tern matching mechanism. Additionally, the system employs a confidence-weighted 
metric based on different versions of the classical Pointwise Mutual Information 
(PMI) [4] metric, WordNet similarity measures, and simple heuristics to calculate the 
final confidence score which can improve the ranking of candidate instances. The 
prototype operates in a fully automated, unsupervised manner, which means that it 
does not need any training corpus with annotated examples. Moreover, it considers 
the web as an enormous corpus to overcome data sparseness problems. 

The rest of this paper is organized as follows: Section 2 presents related work. Sec-
tion 3 presents the assumptions and a detailed description of our approach. We report 
our experimental setup and results in Section 4. Finally, Section 5 concludes this paper. 

2 Related  Work 

Much research work has already followed the idea of using the web as a big corpus 
[4, 5, 6, 7, 11] applying domain-independent linguistics patterns on the web, such as 
Hearst´s patterns [8] through the use of search engines. In the following, we present 
some systems that adopt a similar approach to ours. 

KnowItAll [4] learns instances and other relations from the web. This system is 
domain-independent and extracts information in an automated manner relying on the 
redundancy of the web to bootstrap its information extraction process. To assess the 
candidate instances, KnowItAll uses the PMI metric on the web to compute features, 
and a Naive Bayes classifier to combine those features for achieving a rough estimate 
of the probability that each candidate instance is correct. 



178 H. Oliveira et al. 

 

Cimiano et al. [5] have implemented an OBIE system, named Pattern-based Anno-
tation through Knowledge on the Web (PANKOW). This system semantically anno-
tates web pages using web-based search engines. It extracts all proper nouns from the 
text and conducts searches for every combination of identified proper nouns with all 
concepts of the input ontology by using a set of linguistic patterns. Later an improved 
version of PANKOW, the C-PANKOW system, operated on the same principles, but 
improving its classification results by considering the context of the extracted sen-
tences. The computational efficiency was also improved by reducing the number of 
queries to the search engine. Both systems are concerned with semantic annotation 
tasks and assess the candidate instances only using basic PMI information. 

On the other hand, the OntoSyphon system [7] focuses on particular parts of an in-
put ontology and tries to learn instances about those ontological classes from two 
representative corpora: a local one, containing 60 million web pages; and the whole 
web. In [7], the authors have performed many experiments for evaluating several 
normalized confidence metrics based on simple hit counts for instance classification 
and instance ranking, in an analogous way as we did in the present work. Besides the 
exact precision, they also used another evaluation metric called Learning accuracy [6] 
that takes into account the ontology hierarchy in the evaluation process. 

The current work focuses on the evaluation of a confidence-weighted metric that, 
besides PMI information as it has been done in all related work above, also considers  
semantic features and some simple heuristics for improving the classification perfor-
mance of candidate instances. That constitutes the main difference between the me-
thod presented in this paper and previous work. 

3 The Chop System 

The CHOP (Combined Heuristics for Ontology Population) system implements our 
unsupervised approach to automatically acquire ontological class instances from the 
web. This approach shows that it can yield promising results by using the web as a big 
corpus. The main idea is to take profit of the high redundancy present in the web con-
tent. Indeed, several authors pointed it out as an important feature because of the 
amount of redundant information can represent a measure of its relevance [9, 10, 11]. 
Moreover, we take into account the portability issue, i.e., the approach has to be able 
to perform independently of the domain ontology. Taking a domain ontology as input, 
the knowledge engineer or the ontology expert selects the most relevant concepts that 
will be populated with instances provided by the extraction component from our func-
tional architecture shown in Fig. 1.  

The CHOP System relies on a set of domain-independent linguistic patterns from 
which it creates extraction rules for each class in an input ontology. Actually, the 
input ontology guides both the selection and the extraction process of candidate in-
stances. Furthermore, the same ontology may be used as a repository for the extracted 
instances, which characterizes a typical task of Ontology Population [12]. 



A Confidence–Weighted Metric for Unsupervised Ontology Population from Web Texts 179 

 

In addition, the system uses a shallow syntactic parser for English (OpenNLP pars-
er1). This parser performs the preprocessing tasks we need for identifying Noun 
Phrases (NP) as candidate instances of ontological classes. In order to assess such 
candidate instances, i.e., to decide which one to choose as an actual instance for the 
output ontology, we propose a combination of different measures and heuristics that 
explore different levels of evidence. Fig. 1 illustrates the main components of the 
proposed solution. The whole process described in Fig.1 follows an iterative cycle 
that can be executed for each class of the input ontology. 

The rest of this section describes the four main components of our prototype: (i) 
Corpus Retrieval, (ii) Extraction and Filtering of Candidate Instances, (iii) Classifi-
cation of Candidate Instances, and (iv) Ontology Population. 

 

Fig. 1. Functional architecture of the proposed approach 

3.1 Corpus Retrieval 

The corpus retrieval process starts retrieving relevant documents from web in order to 
automatically establish a working corpus. We use a set of domain-independent linguistic 
patterns for collecting documents from the web. Then, a web search engine assists this 
component with the searches. Table 1 presents the queries needed to gather some rele-
vant documents for the class labeled as “SPORT” in our domain ontology. 

The left column in Table 1 represents the linguistic patterns originally proposed in 
[8]. These hand-crafted patterns denote a certain relation to find candidate instances 
of ontological classes using the web as a corpus. On the other hand, the right column 
specifies the instantiated queries derived from Hearst´s patterns. 

                                                           
1 http://opennlp.apache.org 



180 H. Oliveira et al. 

 

Table 1. Patterns for retrieving relevant documents 

Extraction Pattern Search Query 
class such as candidates “sports such as” 
such class as candidates “such sports as” 

candidates and other class “and other sports” 
candidates or other class “or other sports” 

class especially candidates “sports especially” 
class including candidates “sports including” 

Due to performance reasons, for each pattern given in Table 1, we had to limit the 
number of web documents that the system retrieved to the first N documents. At the 
end of this phase, we will have (N * Numbers of Patterns) documents which makes up 
the working corpus for a specific class from the input ontology. In our experimental 
setup we specified N = 500 and Number of Patterns = 6. 

3.2 Extraction and Filtering of Candidate Instances 

The aim of this component consists in extracting and filtering candidate instances 
from the documents gathered by the corpus retrieval phase. The main steps performed 
by this component are presented below. 

1. The preprocessing of the selected web documents is done in order to extract only 
clean text sentences. Several types of document formats can be found on the web; 
therefore, it is very important to handle the main formats of interest. For instance, 
for web pages, we need to get rid of unnecessary HTML tags and other elements. 

2. The candidates part of the extracted sentences is typically formed by a list of noun 
phrases. We use Natural Language Processing (NLP) techniques, including Toke-
nization, Sentence Splitter, Stemming, POS Tagger, and NP Chunking for analyz-
ing the aforementioned lists. Particularly, we rely on the stemming technique as an 
attempt to improve recall in the extraction process, since it reduces words to their 
root representations and eliminates some variations expressed as plural and verb 
tenses, for example. 

The list of noun phrases are extracted as candidates instances. In addition, each 
candidate instance keeps a list containing the extraction patterns that were respon-
sible to extract it. This step is iterated over all extraction patterns until all docu-
ments have been processed. Table 2 shows two examples of candidate instances for 
the Sport class. In each row, we have the name of the candidate instance followed 
by the patterns that extracted it. 

Table 2. Candidate instances produced for the Sport class 

Class Candidate Instance List of Extraction Patterns 

Sport Basketball 
[class such as candidates]

[class including candidates] 

Sport Soccer 
[such class as candidates]
[candidates or other class] 



A Confidence–Weighted Metric for Unsupervised Ontology Population from Web Texts 181 

 

3. In order to avoid invalid and repeated candidate instances, the following filters are 
applied in this preprocessing step: 
─ Stop word filtering. Some words in the retrieved sentences are useless. In this 

way, this filter removes words that appear in a Stop List. In addition, candidate 
instances with invalid characters, such as “>”, “)”, etc. are removed as well. 

─ Redundant candidates: The system picks up a candidate instance and verifies if 
it was previously found; or if the candidate instance actually represents a class 
on the input ontology. In either case, the candidate instance is removed. 

─ Syntactic filtering: By using a stemming algorithm, the system identifies syntac-
tic variations of candidate instances. In this case, if two candidate instances are 
syntactically equivalent, just one of the syntactic forms is maintained (e.g., the 
singular form takes precedence over plural), and the lists of extraction patterns 
of both forms are merged. 

─ Semantic filtering: two candidate instances can be syntactically different, but 
semantically equivalent. For instance, the candidate instances "USA" and "The 
United States of America” both refer to the same instance of the Country class. 
In order to identify these cases among the set of candidate instances, the system 
retrieves a list of synonyms of the two candidates using the WordNet repository. 
Then, in case of one candidate is a synonym of the other, they are considered 
semantically equivalent. This semantic filtering is restricted only to candidates 
having an entry in the WordNet2. The list of extraction patterns are merged in 
analogous way as in Syntactic Filtering. 

3.3 Classification of Candidates Instances 

The previous component produces a set of candidate instances. Next, the system has 
to decide which candidate instance to choose as an actual instance for a given class of 
the input ontology. The CHOP system uses several web-scale statistics and semantic 
metrics for evaluating confidence scores to be applied to the specific task of ontology 
population. Such a confidence metric should estimate the likelihood that a candidate 
instance is an actual instance of the related class. 

Instead of using just one alternative, i.e., PMI scoring for ranking candidate instances 
as it has been done in related work presented in Section 2, we looked for an approach 
that would combine several alternatives aiming at yielding better results than simply 
using one of them separately. Hence, we propose a confidence-weighted metric based 
on variations of the PMI metric found in [7], WordNet similarity measures, and simple 
heuristics to calculate a final confidence score that can improve altogether the ranking 
of candidate instances retrieved by the system. In the following, we explain the consti-
tuents of our proposed confidence score and how they are put together. 

Pointwise Mutual Information. In this work, we use web-scale statistics to assess 
the likelihood between words and phrases that is estimated from the hit counts re-
turned by web search engines. For instance, for estimating the likelihood that "Pox" is 

                                                           
2 http://wordnet.princeton.edu 



182 H. Oliveira et al. 

 

an instance of the Disease class, we have to consider the number of hits between a 
phrase such as "Diseases such as Pox” and “Pox”. In our experiments, we have cho-
sen three variations of the PMI measure presented in [7].  

In the following formulas, hits(ci, c, p) is the number of hits returned by the search 
engine for the pair (ci, c) corresponding to a candidate instance ci, and a class c, using 
the pattern p; whereas hits(ci)  is the hit count for the candidate instance ci alone. 

1. Strength. This metric gives the number of times a candidate pair (ci, c) was ob-
served for each pattern p belonging to the set of extraction patterns P listed in Sec-
tion 3.1. Thus, the higher the Strength score, the higher is the likelihood that the 
pair (ci, c) is correct. 

 Strength(ci,c) ( , , )
p P

hits ci c p
∈

=  (1) 

2. Str-INorm-Thresh. As pointed out in [7], the Strength metric is biased towards very 
frequent instances. In order to compensate this, we normalize the above metric by 
the number of hits of the candidate instance ci, hits(ci). However, even using this 
normalized version, ones can be mislead when the candidate instance is very rare 
or misspelled. Thus, the normalization factor hits(ci) is modified to be constrained 
to have at least a minimum value. This value is determined by sorting the candidate 
instances by hits(ci) and then selecting Count25, the hit count that appears at the 
25th percentile (see Formula 2.). As reported in [7], other percentiles could also 
work well for addressing this problem. 

 
25

( , , )

Str-INorm-Thresh(ci,c)
max( ( ), )

p P

hits ci c p

hits ci Count
∈=


 (2) 

3. Str-ICNorm-Thresh. Continuing with the normalization idea, we also adopted the 
normalized version of the Strength metric that combines normalization factors for 
both the candidate instance ci and the class c at the same time. The Formula 3 
shows how to calculate this metric. 

 c)Thresh(ci,-ICNorm-Str =
25

( , , )

max( ( ), ) ( )
p P

hits ci c p

hits ci Count hits c
∈

⋅


 (3) 

WordNet Similarity. Semantic similarity measures based on WordNet have been 
widely used in NLP applications [13], and they typically take into account the Word-
Net structure to produce a numerical value for assessing the degree of the semantic 
similarity between two concepts. In what follows, we briefly describe two distinct 
similarity measures based on WordNet adopted in this research work: 

1. Lin [14]. Lin defines the similarity between two concepts as the ratio of the shared 
information content to the information content that separately describe each con-
cept. This measure estimates the specificity of a concept, deriving empirical infor-
mation from corpora, and only exploiting concepts in the WordNet is-a hierarchy. 



A Confidence–Weighted Metric for Unsupervised Ontology Population from Web Texts 183 

 

2. Wu and Palmer [15]. This similarity measure relies on finding the most specific 
concept that subsumes both the concepts under measurement. The path length from 
the shared concept to the root is scaled by the sum of the distances of the concepts 
to the subsuming concept. This measure has the advantage of both being easy for 
implementation and having competitive performance against other similarity 
measures.  

We refer the reader to [14, 15] for more information about the above similarity 
measures. 

In the CHOP System, these similarity measures provide the degree of similarity be-
tween the class c and the candidate instance ci. The two measures above-mentioned 
range from 0 to 1. We use the sum of them (WNS) as our semantic similarity score. 
Therefore, the maximum similarity score (MaxWNS) assigned for each candidate 
instance is 2. 

Number of Extra Patterns. This heuristic is based on the main idea that if a candi-
date instance is extracted by many extraction patterns, this gives a strong evidence 
that this candidate instance is a valid instance for the related class. Based on this as-
sumption, we defined the Extra Pattern Score (EPS) as the number of extraction pat-
terns that extracted a particular candidate instance. In this manner, the maximum 
score (MaxEPS) assigned to a candidate instance is equal to the size of the initial list 
of extractions patterns, i.e., MaxEPS = 6. 

Direct Matching. This last heuristic is based on the idea of finding the label of the 
class within the instance candidate [16]. To this end, we employ a classical stemming 
algorithm on both labels of the class and the candidate instance. If they match, then 
the system assigns 1 as its Direct Matching Score (DMS), or 0 otherwise. For exam-
ple, given the University class and the candidate instance ‘University of London’, 
then the candidate is flagged as an admissible positive instance. 

At this point, we are finally able to define the proposed confidence-weighted score 
function. For simplicity, we define the Confidence Score (ConfScore) of a candidate 
instance as the weighted sum of all constituent scores shown above, i.e., PMI variant 
(PMI_Var), combined with WordNet Similarity measures, Number of Extra Patterns 
utilized, and Direct Matching of candidate instances. The Formula 4 shows how to 
calculate the final score ConfScore for a given candidate instance ci of a class c. 

 
1

( , ) PMI_Var( , )
1

EPS WNS DMS
ConfScore ci c ci c

MaxEPS MaxWNS MaxDMS

+ + += ⋅
+ + +

 (4) 

The Formula 4 reflects our central idea of combining different measures in order to 
obtain better results than using only one of them isolatedly. We have distributed the 
weights based on our initial hypotheses according to what we believed that were the 
most reliable heuristic. On the other hand, since we are in an ongoing project, we 
have not tried other alternative scoring formula yet. As future work, after analyzing 
the results obtained in the experiments, we expect to assess the impact of each above-
mentioned measure on the final confidence score value, and then empirically evaluate 
different alternatives to the confidence score function.  



184 H. Oliveira et al. 

 

By the end of this phase, the system generates a list of candidate instances sorted in 
decreasing order based of their confidence values determined by the Formula 4. 

3.4 Ontology Population 

Some incorrect candidate instances are resulted from typical noisy information found 
on the web. Spurious candidate instances may also take place for other reasons, such 
as incorrect parsing of noun phrases, misspelled instance names, etc. We argue that it 
is imperative to provide reliable estimation of the quality of the extracted instances. 
Accordingly, the CHOP system removes candidate instances having a confidence 
value below a given threshold.  

It is worth mentioning that the CHOP system does not take into account the class hie-
rarchy when assigning class instances to the classes in the input ontology. It restricts 
itself to only populating the class chosen at the beginning of the population process. 

4 Experimental Evaluation 

This section describes the experimental setup conducted in this research work in order 
to evaluate the CHOP system. We wanted to experimentally evaluate the effect that 
our confidence-weighted metric had on the final ranking of the candidate instances 
generated by the system. 

4.1 Experimental Setup 

Dataset Description. The dataset used for the experiments reported in this section 
was constructed using the six extraction patterns listed in Table 1 (Section 3.1). We 
used an ontology containing 10 classes3  for our experiments and used each pattern to 
query up to 500 web pages, totalizing 3000 documents for each class in the input 
ontology. The documents were gathered using the Bing Search Engine Application 
Programming Interface (API)4.  

The primary reason why we used 500 web pages was due to the computational ef-
fort required to perform both the web searches and the preprocessing tasks. When we 
compare this number of pages against 1.800 ones used in the experiments in [7], it 
may seem insufficient. However, the researchers in [7] were allowed to use the output 
of the BE Engine5, which returned all pages already preprocessed at no cost. Contrari-
ly, we had to perform all the preprocessing work from scratch. Nevertheless, we argue 
that 500 web pages is a reliable and significant basis for validating our approach. 

After running the CHOP system on this dataset, we selected the first 300 candidate  
instances sorted by confidence score in descending order for each pair (class, PMI score). 

                                                           
3 Mammals, Birds, Cities, Diseases, Foods, Fruits, Movies, Sports, TV Series, and Universities 
4 http://www.bing.com/developers/s/APIBasics.html 
5 The Bindings Engine (BE) is an efficient search engine for natural language applications that 

enables information extraction, by using a generalized query language based on POS tags. 



A Confidence–Weighted Metric for Unsupervised Ontology Population from Web Texts 185 

 

Finally, a considerable annotation effort was necessary in which three humans evaluators 
were in charge of manually confirming the system predictions. 

Evaluation Measures and Preliminary Results. With the aim of validating the  
effectiveness of our approach, we compared the system results using the proposed confi-
dence-weighted score (ConfScore) against the three PMI variations (Strength, Str-INorm-
Thresh, Str-ICNorm Thresh) presented in Section 3.3. The classification precision of our 
system can be evaluated at a given cut-off rank, considering only the n topmost candidate 
instances returned by the system. In our experimental setup, we determined four cut-off 
points corresponding to the top 25, 50, 100, and 300 in the list of candidate results. Thus, 
Precision at the top n candidate instances, P(n), is defined as follows: 

               

    
( )  

number of correct system predictions
P n

n
=

               
(5) 

The grouped bar graphs depicted in Figures 2-5 report our experimental results for 10 
classes. In all graphs, we compare the precision values of each PMI metric variant 
(Strength, Str-INorm-Thresh, and Str-ICNorm-Thresh) with its weighted version, i.e., 
CS(Str), CS(Str-INorm), and CS(Str-ICNorm), respectively. For instance, considering 
the second group in the Figure 2 which corresponds to the class Bird, the first black 
bar represents the precision value obtained by the Strength PMI metric (indicated by 
Str), whereas the second black bar represents the precision value of the weighted ver-
sion of it, i.e., ConfScore(Strength), indicated by CS(Str). As shown in the legend, the 
other compared pairs, Str-INorm-Thresh vs. CS(INorm) and Str-ICNorm-Thresh vs. 
CS(ICNorm), are depicted in different grayscale colors. 

 

Fig. 2. Precision results for all classes evaluated in Top 25 



186 H. Oliveira et al. 

 

 

Fig. 3. Precision results for all classes evaluated in Top 50 

 

Fig. 4. Precision results for all classes evaluated in Top 100 



A Confidence–Weighted Metric for Unsupervised Ontology Population from Web Texts 187 

 

 

Fig. 5. Precision results for all classes evaluated in Top 300 

4.2 Discussion 

Analyzing the results shown in Fig. 2-5, one can notice that the system was able to 
successfully extract a considerable amount of positive instances for most classes. Due 
to the use of domain-independent linguistic patterns, some classes yielded better re-
sults than others. In our experiments, the best score results were obtained by the City, 
Movie, and TV Series classes in the top 300 candidate instances. One possible reason 
is that it is quite common to find text fragments that match the patterns "cities such 
as" and "such movies as" followed by positive instances of the respective classes. 
Other classes like Fruit, Food, and Bird did not present the same behavior.  

Another reason for the decreasing of precision for some classes was due to the 
presence of noisy information as a hampering factor during the extraction process. 
The main difficulty lies in extracting noun phrases matching the pattern "NP and/or 
NP", because the sentences extracted by this pattern usually represent a single noun 
phrase, which, in most cases, generates erroneous candidate instances. However, dur-
ing the evaluation phase, some of the candidates extracted by the previous pattern 
showed a high PMI value, resulting in misclassification of such candidates usually 
putting them between the top 50 and 300. Yet, the simple separation of the two noun 
phrases using the delimiter "and/or" would result in an erroneous fragmentation of 
some candidate expressed by compound nouns. This happens, for instance, with the 
candidate instance for the TV Series class "Two and Half Men", in which it would 
result in two false candidates like "Two" and "Half Men". This problem is a limitation 
of the proposed approach and we intend to investigate how to solve it in future work. 



188 H. Oliveira et al. 

 

The Table 3 summarizes the results of all comparisons showed in Fig. 2-5 between 
the three PMI versions (Strength, Str-INorm-Thresh, Str-ICNorm-Thresh) and the 
related ConfScore results, for each threshold (25, 50, 100, 300). 

Table 3. Comparison results 

Results Top 25 (%) Top 50 (%) Top 100 (%) Top 300 (%) 
Highest improvement   24  10 8 3,4 

Average of improvement 9,71 5 3,44 1,60 
Highest loss   8 4 3 2,7 
Average loss 6,4 2,66 2,14 1,21 

As Table 3 shows, there was an improvement on precision results in most compari-
sons, with an encouraging gain observed for some classes. For the Top 25, there was 
an improvement up to 24% comparing ConfScore against Str-INorm-Thresh. By con-
trast, the highest loss (8%) occurred in a few comparisons, e.g. for the City class in 
Top 25. In all comparisons, the average precision improvement using our ConfScore 
was higher than the average loss. We also observed that positive candidate instances 
having a high hit count, but with no entry in WordNet, tended to decrease accuracy in 
the top 50 positions, even using the ConfScore metric, specially for the City and Mov-
ie classes. A possible reason for that lies in the ConfScore calculation, since the 
weight distribution may decrease the assessment value of positive candidates, while 
promoting false positives in the top 50 positions. On the other hand, as we expand the 
sample up to the top 300, the City and Movie classes had a considerable gain in preci-
sion for the ConfScore metric. In general, classes containing an entry in WordNet had 
large variation in precision values when contrasting ConfScore against all PMI varia-
tions separately, which was observed for the Disease and Bird classes. Thus, the re-
sults suggest that the WordNet similarity measure, when applied, has a strong impact 
on the final classification. 

On the one hand, the Extra Pattern heuristic caused a significant impact on the 
ConfScore metric, as we observed that candidate instances extracted by more than 
four patterns confirmed to be positive instances. On the other hand, the DM heuristic 
did not have a notable influence on ConfScore, unless for the University class. 

By analyzing the Fig. 2-5, the influence of the ConfScore metric is clearly dimi-
nishing as N increases. The bottom line is that the ConfScore metric actually pro-
motes positive instances to the top positions, which was confirmed by the highest 
precision values achieved by the system for the Top 25 and 50. Indeed, statistical 
significance tests were performed for each possible combination of PMI variants and 
the ConfScore. They have demonstrated a significance difference at α = 0,05 for the 
Top 25 and 50, whereas this also occurred for the Top 100 (CS vs Str) and Top 300 
(CS vs ICNorm) at α = 0,1. Moreover, this assessment showed that the ConfScore 
(Str-INorm-Thresh) incremented precision for most classes analyzed. 

It is important to mention that we did not compare the CHOP system with other 
systems listed in related work because that would be only possible if the compared 
systems were under the same experimental setup (same corpus, same domain ontolo-
gy, etc). Since we use the web as a big corpus, and considering the dynamic nature of 
it, we cannot provide a fair and direct comparison against other OBIE systems. 



A Confidence–Weighted Metric for Unsupervised Ontology Population from Web Texts 189 

 

5 Conclusion and Future Work 

We have proposed an unsupervised approach for ontology population based on a con-
fidence-weighted metric that assess candidate instances extracted from web texts. 
Additionally this paper described the full implementation of our approach - the CHOP 
system - using classical linguistic patterns and a combination of PMI metrics, Word-
Net similarity measures, and simple heuristics for tackling the specific problem of 
finding candidate instances of ontological classes. We have conducted some experi-
ments in order to evaluate the impact that the proposed confidence-weighted metric 
would have on three PMI variants.  

Although we have achieved encouraging results in this research work, there are still 
many opportunities for improvement. Thus, we intend to provide a detailed quantitative 
analysis of the actual contribution of each weight factor used in our confidence-
weighted metric, aiming to select the more reliable factors in the instance ranking 
process. More work is needed for improving the extraction of candidate instances by 
using more efficient filters, enabling the system to eliminate false candidate derived 
from typical noisy data found on the web. Another expected improvement concerns the 
integration of a new component in the system architecture for suggesting specific lin-
guistic patterns in order to expand the initial set of extraction patterns. 
 
Acknowledgment. The authors would like to thank the National Council for Scientif-
ic and Technological Development (CNPq/Brazil) for financial support (Grant No. 
140791/2010-8).  

References 

1. Berners-Lee, T., Hendler, J., Lassila, O.: The Semantic Web. Scientific American 284(5), 
34–43 (2001) 

2. Cimiano, P.: Ontology Learning and Population from Text: Algorithms, Evaluation and 
Applications. Springer, New York (2006) 

3. Wimalasuriya, D.C., Dou, D.: Ontology-based information extraction: An introduction and 
a Survey of Current Approaches. J. Information Science 36(3), 306–323 (2010) 

4. Etzioni, O., Cafarella, M., Downey, D., Kok, S., Popescu, A., Shaked, T., Soderland, S., 
Weld, D., Yates, A.: Web-Scale Information Extraction in KnowItAll. In: Proc. of the 13th 
Inter. WWW Conference (WWW 2004), New York City, New York, pp. 100–110 (2004) 

5. Cimiano, P., Handschuh, S., Staab, S.: Towards the self-annotating web. In: Proceedings 
of the 13th International Conf. on World Wide Web, pp. 462–471. ACM, New York 
(2004) 

6. Cimiano, P., Ladwig, G., Staab, S.: Gimme The Context: Context driven Automatic Se-
mantic Annotation with CPANKOW. In: Proc. of the 14th Inter. Conf. on WWW, Japan, 
pp. 332–341 (2005) 

7. McDowell, L.K., Cafarella, M.: Ontology-Driven, Unsupervised Instance Population. Web 
Semantics: Science, Services and Agents on the World Wide Web 6(3), 218–236 (2008) 

8. Hearst, M.A.: Automatic Acquisition of Hyponyms from Large Text Corpora. In: 14th 
Conference on Computational Linguistics, COLING 1992, Nantes, France, vol. 2,  
pp. 539–545. Morgan Kaufmann (1992) 



190 H. Oliveira et al. 

 

9. Wu, F., Weld, D.S.: Autonomously Semantifying Wikipedia. In: CIKM, pp. 41-50. ACM 
(2007) 

10. Brill, E.: Processing Natural Language without Natural Language Processing. In: Gelbukh, 
A. (ed.) CICLing 2003. LNCS, vol. 2588, pp. 360–369. Springer, Heidelberg (2003) 

11. Ciravegna, F., Dingli, A., Guthrie, D., Wilks, Y.: Integrating Information to Bootstrap In-
formation Extraction from Web Sites. In: IJCAI 2003 Workshop on Intelligent Information 
Integration, pp. 9–14 (2003) 

12. Petasis, G., Karkaletsis, V., Paliouras, G., Krithara, A., Zavitsanos, E.: Ontology Popula-
tion and Enrichment: State of the Art. In: Paliouras, G., Spyropoulos, C.D., Tsatsaronis, G. 
(eds.) Multimedia Information Extraction. LNCS, vol. 6050, pp. 134–166. Springer,  
Heidelberg (2011) 

13. Pedersen, T.: Information Content Measures of Semantic Similarity Perform Better With-
out Sense-Tagged Text. In: Proc. of the 11th Annual Conf. of the North American Chapter 
of the Association for Computational Linguistics, Los Angeles, pp. 329–332 (2010) 

14. Lin, D.: An Information-Theoretic Definition of Similarity. In: Proceedings of Internation-
al Conference on Machine Learning, Madison, Wisconsin (1998) 

15. Wu, Z., Palmer, M.: Verb Semantics and Lexical Selection. In: 32nd Annual Meeting of 
the Association for Computational Linguistics, Las Cruces, New Mexico, pp. 133–138 
(1994) 

16. Monllaó, C.V.: Ontology-based Information Extraction. Dissertation Thesis, Polytechnic 
University of Catalunya (2011) 



Situation-Aware User’s Interests Prediction

for Query Enrichment

Imen Ben Sassi1, Chiraz Trabelsi1, Amel Bouzeghoub2, and Sadok Ben Yahia1,2

1 Faculty of Sciences of Tunis, University Tunis El-Manar, 2092 Tunis, Tunisia
2 Department of Computer Science, Télécom SudParis,

UMR CNRS Samovar, 91011 Evry Cedex, France
imen.bsassi@gmail.com, {chiraz.trabelsi,sadok.benyahia}@fst.rnu.tn,

Amel.Bouzeghoub@it-sudparis.eu

Abstract. Situation-Aware User’s Interest Prediction aims at enhanc-
ing the information retrieval (IR) capabilities by expanding explicit user
requests with implicit user interests, to better meet individual user needs.
However, not all user interests are the same in all situations, especially
for the case of a mobile environment. Thus, user interests are complex,
dynamic, changing, and even contradictory. Consequently, they should be
adapted to the user’s specific search context. In this paper, we introduce
a new approach that aims at building a dynamic representation of the
semantic situation of ongoing mobile environment retrieval tasks. The
semantic situation is then used to activate different classification rules
of user’s past interests at run time. Doing so, the best interest class’s
is proposed to expand the user’s request. Our approach makes use of a
semantic enrichment using Dbpedia, providing enriched descriptions of
the semantic situations involved for discovering user interests, and en-
abling the definition of effective means to related contexts. Carried out
experiments, undertaken versus Google search, emphasize the relevance
of our proposal and open many promising issues.

Keywords: Mobile information retrieval, Classification rules, Situation-
Aware, Dbpedia.

1 Introduction

The emergence of smartphones - mobile phones capable of functions typically as-
sociated with personal digital assistants (PDAs) or even personal computers -
has made mobile information access an everyday reality. Thus, mobile computing
emerged as a new paradigm of personal computing and communications. Facing
the large volume of information available in the internet and the constraints of
mobile devices such as difficulties of query input and limited display zone, user
queries are more likely to be shorter and more ambiguous. Indeed, studies of the
query of mobile users [8] showed that the average length of mobile applications
is 2.56 words and 16.8 characters. As a primary means of addressing many of the
issues in mobile computing, situation-awareness offers a way to adapt the search
result to each usage situation, location, environment, user goal, etc. More gener-
ally, determining the user’s situation serves as a convenient means of limiting the

S.W. Liddle et al. (Eds.): DEXA 2012, Part I, LNCS 7446, pp. 191–205, 2012.
c© Springer-Verlag Berlin Heidelberg 2012



192 I. Ben Sassi et al.

search space. Indeed, the mobile user may merely “have questions” and will need
very specific (and thus potentially terse) answers. Hence, using situation informa-
tion to limit the scope will make it easier to provide more user-friendly answers.

The aim of contextual retrieval is to “combine search technologies and knowl-
edge about query and user context into a single framework in order to provide the
most appropriate answer for a user’s information needs”. In a typical retrieval en-
vironment, we are given a query and a large collection of documents. The basic
IR problem is to retrieve relevant documents to the query. A query gathers all the
information that we have to guess about user’s needed information and to deter-
mine its relevance. Typically, a query contains only a few keywords, which are not
always a good descriptor of content. Given this absence of adequate query informa-
tion, it is important to consider how other information sources could be exploited
to grasp the information need, such as user’s situation. Situational retrieval is
based on the hypothesis that situation information be of help to describe a user’s
needs and consequently improve retrieval performance. Especially, in situation-
aware systems, the additional information of mobile users’ locations creates vast
opportunities for personalization of information retrieval results.

Example 1. Suppose that a user submits a query Mona Lisa. It is not clear
whether the user is interested in the famous Leonardo Da vinci’s painting or the
Julia Robert’s movie. Without understanding the user’s search intent, many ex-
isting methods may classify the query into both categories “Arts” and “Movies”.
However, if we find that the user’s location is museum, it is likely that he is in-
terested in the category of “Arts”. Conversely, if the user’s location is cinema,
it may suggest that the user is interested in the topics related to “Movies”.

In fact, any modern information retrieval system is based on an autocompletion
engine and can hence obtain the most popular query terms or phrases from in-
dexed pages. Such elements can be used to interactively complete user’s queries.
Indeed, an autocompletion tool can be helpful both by saving typing time and by
finding new, serendipitous terms. However, a pure syntactic approach can present
difficulties, because it will be based on the matching of string representations
(words), but not in concepts and their relationships. The corollary is that, the
autocompletion mechanism will be helpful if the user intends to use the same
word that the system is expecting. But if, for instance, a synonym is in user’s
mind, the system will be unable to recognize and autocomplete it. The previous
facts have led us to introduce a concept-driven semantic and situation-aware
user’s interest prediction approach.

Hence, in this paper, we investigate a new approach of Information retrieval
based on the prediction of the user’s interests. This approach aims at build-
ing a dynamic representation of the semantic situation of ongoing mobile envi-
ronment retrieval tasks. The semantic situation, is then used to activate different
classification rules of user’s past interests at run time, in such a way that the
better interest class’s is proposed to expand the user’s request.

The rest of the paper is organized as follows. Section 2 scrutinizes the related
work dedicated to IR personalization. In Section 3, we thoroughly describe, SA-
IRI, our approach for situation-aware personalized IR system based on interests



Situation-Aware User’s Interests Prediction for Query Enrichment 193

prediction. Section 4 presents the experimental results of the introduced ap-
proach. Finally, Section 5 concludes and points out avenues of future work.

2 Background and Related Work

In this section, we start by introducing the key concepts that will be of use in
the remainder.

2.1 Key Concepts

Situation Awareness. The situation awareness may be defined as: The percep-
tion of the elements in the environment within a volume of time and space, the com-
prehension of their meaning and the projection of their status in the near future [5].
In fact, mobile devices have more features than their computer counterparts, in-
cluding location information, time and social networks. We can use information
from these additional features to create new research areas. IR and data mining of
the new information will require novel technologies specifically developed to pro-
cess information such as time, location and semantics [15]. Specifically, in situation-
aware systems, the additional information of mobile users’ locations creates vast
opportunities for personalization of information retrieval results.

Query Enrichment. The query enrichment process consists in reformulating
the initial user query by applying a pre-treatment and adding concepts describing
his/her interests. In our work, the query enrichment process is defined as a
mapping between a user’s initial query Q and an enriched one Q

⋃
I, where I

represents user’s extracted interest.
In the following, we present a scrutiny of the related work.

2.2 Scrutiny of the Related Work

The expansion of mobile devices has promoted the research on the benefit of
contextual information, introducing new requirements and expectations. In this
respect, the main challenge introduced by context-awareness is to come up with a
flexible and unambiguous representation of the Context. Indeed, Dey in [4], sug-
gests the following general definition of Context and context-awareness: Context
is any information that can be used to characterize the situation of an entity. An
entity is a person, place, or object that is considered relevant to the interaction
between a user and an application, including the user and application themselves.
A system is context-aware if it uses the Context to provide relevant information
and/or services to the user, where relevancy depends on the users task. Ac-
cording to this definition, the Context could be considered the current data dis-
played on the screen, the surrounding environment or even the whole application.
For that reason, every context-aware application must explicitly specify what
information is part of the Context. Although, contextual information has been
previously exploited for improving web search, there is no agreement on context
interpretation and scope.



194 I. Ben Sassi et al.

Thus, in [9,10], the authors consider the history of visited pages as web search
context. Following that criteria, they try to analyze and extract the most im-
portant keywords found in those pages, and use them to ensure that further
queries will keep on subject. While these solutions can improve web search on
the desktop, mobile search should go beyond, considering additional variables
like location, weather situation or guessed user intentions [6]. In fact, the Con-
text is inherently dynamic and constantly changing. A few properties will be
barely modified over time, like user name or age, but other ones may frequently
vary, like time or location. Context properties must be thus, kept up to date [13].
In addition, White et al., in [17] uses the current page and 5 distinct sources of
information for modeling user interests during Web interaction: (i) social : the
combined interests of other users that also visited the current page; (ii) col-
lection: pages with hyperlinks to the current page; (iii) task : pages related to
the current page by sharing the same search engine queries; (iv) historic: the
longterm interests for the current user, and; (v) interaction: recent interaction
behavior preceding the current page.

Other research studies have attempted to include context information during
the search process by exploiting query expansion techniques in order to complete
the submitted query with additional terms [6,14]. Such terms can be synonyms,
disambiguating subject-related words or special keywords that aim at clarifying
the intention, like “how to”, “ways to”, “what is”, etc. Another way to contex-
tualize the search is by re-ranking the obtained result set according to given
properties: subject, proximity to user’s location or intentions. These aforemen-
tioned approaches ensure that the most contextually-relevant results will appear
on the top of the result set, which reduces the number of interactions needed to
find restricted results [8]. A context-aware approach is developed within the UP-
CASE project in [12], it uses different type of sensors (sound, GPS, temperature,
etc.) explored to define users contexts (walking, hot temperature, etc.). In this
work, an inference process is used to generate relations between environment and
contexts. However, this approach does not provide a solution to reduce the size
of the decision tree containing different contexts, which makes its maintenance
a difficult process. While, Sohn et al., in [16] conduct a two-week diary study to
better understand mobile information needs and how they can be explored in
information retrieval personalization. In fact, user contexts can be described by
four categories: Activity, Location, Time, and Conversation. (i) Activity reflects
what the user was doing at that time; (ii) location is the place where the person
was at and includes any additional artifacts at that specific location; (iii) time is
the time when the need arose, and; (iv) conversation is any phone or in-person
conversation the participant was involved in at that time.

The context concept can be seen as particulary, based on a limited number of
dimensions, as user situation. In fact, in [18], the authors use this term to describe
their technique, called SAP-IR, combining situation-based adaptation and profile-
based personalization in a mobile environment. In this work, user’s actions are
generated to learn his behaviors, interests and intentions, then to generate his sit-
uation using its context (time, location, light intensity and noise level). The main



Situation-Aware User’s Interests Prediction for Query Enrichment 195

limit of this study is the lack of semantics in the generation of the user’s situation.
More recently, in [11], the authors have addressed this problem by introducing
a situation-aware mobile search to personalize user’s search results. This latter
exploits a case-based reasoning (CBR) method to modelize the past research. In-
deed, when a new situation S is constructed, the CBR nodes are explored to check
for the existence of a similar situation to S and to extract its related interest. Oth-
erwise, this situation is added to the knowledge base as a new entry without check-
ing its accuracy level.

To sum up, mobile Web Search introduces new thriving challenges in tra-
ditional Information retrieval field. Indeed, users normally own modern smart
phones which allow them to be permanently online anywhere, anytime. A typical
mobile web search scenario consists of a user outdoors with an information need.
At this point he/she takes his/her phone and uses a web search engine to find an
answer to a query. The main moan that can be addressed to the above surveyed
approaches, stands on the fact they do not actually take advantage of seman-
tic information and the situation of the user to generate useful rules that can
be reused in future research sessions, in order to predict the user’s information
needs. To palliate such drawbacks, we introduce in the following a new approach,
called SA-IRI, towards a situation-aware user’s predicted interests for IR per-
sonalization. The main thrust of this approach stands in the conjunction of the
associative classification as well as the relying on the semantic web through its
sweeping of Dbpedia1.

3 SA-IRI: Situation Aware Information Retrieval Based
Interests

The idea of IR personalization, proposed and developed in the remainder, re-
sponds to the fact that human interests are multiple, heterogeneous, changing,
and even contradictory, and should be understood in context with the user search
intention. In this context, the problem to be addressed includes how to represent
the user situation? how to determine it at runtime? and how to use it to influ-
ence the activation of user interests and to personalize the search results? To
answer these questions, we propose our approach for IR personalization based
situation-aware (c.f., figure 1). In order to select the most adequate user profile
to be used for personalization, we compare the similarity between a new search
situation and the past ones.

In the following, we introduce a new situation-aware approach used to per-
sonalize search results in mobile environment. This situation is generated by a
mapping between the user situation, and the semantic concepts extracted from
the Dbpedia ontology contained in Linked Data [2]. For example, if the user is
at the location “ 36.851111, 10.226944 ” and the time is “ Mond February 27
11:00:00 2012 ”, then we can guess that he is “ at museum, winter, morning ”.
Thus, SA-IRI approach operates through three steps: (i) User’s semantic situ-
ation construction: Semantic information is extracted from the user’s physical

1 http://dbpedia.org/About

http://dbpedia.org/About


196 I. Ben Sassi et al.

User
query Q

Construction of the 
user situation

User’s semantic situation construction

museum

User’s interests discovering

mond February 27 11:00:00 2012 winter 
morning

Lat x Lon : 
36.851111, 10.226944

S=(museum,winter,morning)

Qe=QUI

User’s query enrichment

semantic treatment
mapping data/concepts

The generic
association
rules mining

Interest prediction

User
situation S

User
interest I

association rules
generation

situation
classification: GARC

Fig. 1. SA-IRI approach

situation (location, time and season), in order to guess its interest behind such
situation; (ii) User’s interests discovering : The interest related to the user’s se-
mantic situation is predicted, using the Dbpedia dataset, and; (iii) User’s query
enrichment : The initial user’s query is extended with the interest previously
predicted. These steps are detailed in the following:

3.1 Step1: User’s Semantic Situation Construction

To model the user situation, we propose to concentrate on a semantic representa-
tion the user’s current location and time. Our hypothesis is that users interests
are related to the semantic signification of physical entities. For example, it
does not matter where the user is actually located in “Petit Palace Museum” or
“Louvre museum” but it is of importance to guess that he/she is in a “museum”.
Thus, we propose to model the user’s situation by a vector of three dimensions:

– Location: refers to the type of user’s position (beach, museum, university,
etc.) extracted from a Linked data ontology;

– Season: refers to a year’s season (autumn, winter, spring or summer). This
dimension can influence the preferences of the user;

– Time of the day: refers to a day’s part (morning, noon or night). This data
determines the type of activities that can be performed by the user (work
activities, entertainment, etc.).

Thus, the user’s situation is presented by the 3-dimensional vector S= (Sl,Ss,St)
where : Sl (resp. Ss and St) refers to location type (resp. season and time of the
day). This situation is used, in the step2, to extract the user’s interest.

Example 2. If the user is standing in the location defined by the following GPS
coordinates “ 35.1877778, 8.655 ” and the time is “ Sun January 29 13:00:00
2012 ”, then we can describe its situation by the following 3-dimensional vector:



Situation-Aware User’s Interests Prediction for Query Enrichment 197

S = (Sl, Ss, St) = (mountain, winter, noon)

Assuming that this user is running a web search “sport”. Then, the name of the
mountain from which he launched its query is irrelevant compared to the type
of the location (beach, mountain, etc.).

In general, two types of sporting activities can be distinguished in this
situation:

– If the season is winter, then we can restrict the search to “winter sports”
such as: ski, snowboard, etc.

– Otherwise, we can consider that the user is interested in other types of
mountain sports like rock climbing.

3.2 Step 2: User’s Interests Discovering

Based on the nature of mobile environment, user interests may change anytime
due to changes in their situation (location, time, etc.). Static approaches for
building the user profile are poorly useful, so we rather focus on more dynamic
techniques, that are capable of adjusting the user interests to the current search
situation. In this context, based on multiple users’ situations and the correla-
tion situation/interest, this step fuses a classification technique with a semantic
treatment.

Firstly, in order to minimize the number of user’s situations and interests we
apply the informative generic association rules extracted by IGB [1]. In partic-
ular, the IGB basis generates rules with reduced-size premise parts presenting
the user’s situation (Sl,Ss and St) and large conclusion parts presenting its ac-
tual interest. Secondly, we apply a generic association classification technique
[3], with an aim of obtaining a concentration of only useful prediction rules, that
associate an interest to each user’s situation. Thus, a set of intuitive generic
classification prediction rules, whose conclusion’s part present a user’s interest
is generated, e.g., Sl ∧, . . . ,∧ St ⇒ Interesti.

The choice of the association rules is based on the intuitive relation between
users’ situations and interests, and a comparison with the Case Based Reasoning
that shows many limitations of this learning technique, i.e., (1) Handling noisy
data: Users might rely on previous experience without validating it in the new
situation; and (2) Handling large case bases : The maintenance of rule bases
becomes a difficult process as the size of the rule base increases and the problem
of redundant rules. The results of this comparison are shown in section 4.

Example 3. By applying the generic association classification technique on the
context given by Table 1 describing a set of interests, each one associated to a
situation, we can derive the following generic classification rules:

– R1: mountain, summer ⇒ camping
– R2: beach, summer ⇒ surf
– R3: night, summer ⇒ shopping
– R4: spring, night ⇒ art
– R5: noon ⇒ art



198 I. Ben Sassi et al.

In the following, we briefly remind the definition of the formal context.

Definition 1. Formal context: A formal context is a triplet K = (O, I,R),
where O represents a finite set of transactions stored in a learning base, I is a
finite set of items and R is a binary (incidence) relation ( i.e., R ⊆ O × I).
Each couple (o, i) ∈ R expresses that the transaction {o} ∈ O contains the item
{i} ∈ I.

Example 4. Let us consider the formal context sketched by table 1, where:

– O is the set of transactions such that O={1,. . . , 5};
– I is the set of items {attribute1, attribute2, attribute3, Class}, where:

• attribute1 ∈ {“autumn”, “winter”, “spring”, “summer”} defined by Ss

the 2nd dimension in the situation vector;
• attribute2 ∈ {“morning”, “noon”, “night”} defining St the 3

rd dimension
in the situation vector;

• attribute3 is the user’s current type of location defining Sl the 1st di-
mension in the situation vector;

• Class is the user’s interest extracted from DbPedia.

– R is the relation that links the user’s interest to its actual situation. This
binary relation aims to associate each transaction (new situation) to an item
(single interest).

Table 1. An example of an extraction context K
Attribute1 Attribute2 Attribute3 Class

autumn winter spring summer morning noon night museum theatre beach mountain mall Interest

1 × × × art

2 × × × art

3 × × × surf

4 × × × camping

5 × × × shopping

Based on the classification rules previously generated, the new user’s situation
S is compared to each rule premise to select the most similar past situation. In
the case where a similar situation is found, the rule conclusion is extracted to
explain the user’s interest related to his/her actual situation. Note that two
situations are similar if and only if they share at least two dimensions.

Example 5. Considering the context given by Table 1, and based on rules gen-
erated in example 3. Assuming that S = (beach, summer,morning) is the new
user’s situation, the most similar premise to our new situation is obtained thanks
to R2. In this case, the surf conclusion is extracted to explain the interest related
to the user’s current situation.

In the case of no rule with similar situation to the current one is extracted,
a semantic treatment is carried out to discover the new user’s interest. Thus,
the user’s query is mapped into concepts using Dbpedia. Such concepts are
identified by the property rdfs:label, i.e., to those concepts for which there is



Situation-Aware User’s Interests Prediction for Query Enrichment 199

an RDF 2 triple in Dbpedia. Thus, the concept stands for the subject, the data
property is rdfs:label and the object stands for a string exactly matching the
user’s query. Two cases have to be distinguished:

– The user’s query matches a category in Dbpedia such as sport, art, etc.
In this case, we extract all subcategories that have a semantic relationship
with the user’s type of location previously defined. This relation is defined
by the skos:broader property. For example, if the user submits the query
“sport” at beach location, then the subcategories returned by our system are
the beach-sports (beach soccer, beach polo, rowing, beach volleyball, etc.)
presenting the interests concepts.

– The user’s query defines a subcategory in Dbpedia such as a film title, a
painting name, etc. In this case, we have to disambiguate its query. To do so,
we look for super-classes in connection with the user’s type of location that
will be defined as user’s interest using the dcterms:subject property. For
example, suppose that the user submits a query “Mona Lisa”. It is not clear
whether the user is interested in the famous Leonardo Da Vinci painting or
the Julia Roberts movie “Mona Lisa Smile”. Interestingly, if we find that
the user’s type of location is cinema, then it is likely that he is interested in
“films”. Conversely, if the user’s type of location is museum, then we may
guess that the user is interested in topics related to “art”.

If many concepts have been found, then the most frequent concept is retained as
the better candidate to mimic the user’s new interest. Finally, a new transaction
is added to the learned base in order to extract other classification rules in the
next execution of the system (launch of a new query).

Example 6. Let us consider the context given by Table 1, and the rules set gener-
ated with GARC given in example 3. Assume that S = (cinema,winter, night)
(resp. Mona Lisa) is the new user’s situation (resp. query). In this case, no rule
with similar situation to the current one is extracted, then using Dbpedia, a set
of interests is returned to extract the most frequent one having as label “film”.
Then the vector, (winter,night,cinema,film) is added to the learning base, as
a new transaction, in order to enrich the knowledge base with the next execution
of our system.

3.3 Step 3: User’s Query Enrichment

User queries are usually short and ambiguous in order to accurately describe an
information need. One way to tackle this problem is to enrich the original query
by adding terms. So, having as goal the improvement of the user’s results, we
enrich his/her query with the interest related to his/her actual situation and
extracted during step 2.

Example 7. With respect to the interest predicted in Example 6, the user’s query
“Mona Lisa” is enriched by its interest. Thus, the new expanded query “Mona
Lisa film” is executed to provide a list of personalized results to the user.

2 http://www.w3.org/RDF

http://www.w3.org/RDF


200 I. Ben Sassi et al.

In the following, we present the QueryEnrichment algorithm, whose pseudo-code
is given by algorithm 1. It shows the different steps of user’s query enrichment.

Algorithm 1. QueryEnrichment

Input: Q: A new query.
Output: Qe: An enriched query

1 begin
2 S= situationConstruction();
3 {r}= situationClassification(S);
4 if {r} �= ∅ then
5 if {r}.size=1 then
6 I= r.conclusion;

7 else
8 I=mostFrequentClassExtraction(r);

9 else
10 I=DBpediaInterestExtraction(Q,Sl);
11 LB = LB

⋃{(S, I)};
12 return Qe = Q

⋃
I ;

QueryEnrichment algorithm takes as input the query Q and outputs an en-
riched queryQe= (Q

⋃
I). The algorithm operates as follows: firstly, it constructs

the user’s situation S described by the 3-dimensional vector (Sl,Ss,St) (c.f. line 2).
Then, in line 3, this situation is used to generate a set of classification rules contain-
ing similar situations, by invoking the situationClassification() function, that
generates a set of association rules of use during the classification process. There-
fore, if this set of rules is not empty, then the most frequent rule conclusion is used
to enrich user’s interest (c.f. line 8). Otherwise, a new interest is predicted by in-
voking the DBpediaInterestExtraction() function, and the learning base is
extended with a new transaction T=(S,I) (c.f. line 11). Once identified, the user’s
interest I is used to enrich his/her query Q (c.f. line 12).

4 Experimental Results

4.1 Evaluation Framework

– The 1st Evaluation Methodology: The Diary Study
The main limit we encountered to evaluate our approach, is the absence
of an evaluation benchmark for evaluating situation-aware approaches for
IR. Thus, we conducted a dairy study, where each user is asked to save
the time, the date, the location and the query. 6 participants (3 men and 3
women) whose ages vary between 24 and 34 years, have participated in our
study (mainly people from our laboratory) and all of them have already an
experience in web research. This study lasted 2 months and has generated
60 entries, with an average of 10 requests per participant (minimum = 2 and
maximum = 25).



Situation-Aware User’s Interests Prediction for Query Enrichment 201

Table 2. An example of entries retrieved from the dairy study

User Time Place Query

1 Sat Dec 31 13:04:00 2011 Mall Puma
2 Sun Feb 5 16:30:00 2012 The Louvre museum MonaLisa
3 Mond Jan 2 11:00:00 2012 The Marsa beach Sport

Table 2 shows some examples of queries collected, each one described by
the user identifier, the time, the date and the place of request transmission.
For the evaluation of our approach, we split the gathered data, i.e., the set
of user transaction, in two subsets, i.e., a training set (of 50 entries) and a
test set (of 10 entries).

– The 2nd Evaluation Methodology: The Quaero Challenge
In the following, we describe the dataset of Quaero Evaluation for Task
2.6 on Contextual Retrieval Version 3.1 3 used in our second evaluation
approach. This dataset comprises 25 topics representing information needs
of real users, where such topic includes: (i) The title presenting the user’s
information need or its query; (ii) The geolocation of the user at the time
he/she submitted its query; (iii) The search history presenting the user’s past
queries and the clicked resources, i.e., resources jugged pertinent. Thus, for
each topic, we split user’s queries in a training set gathering user’s search
history, and a test set containing user’s current query.

The training set is used to extract a set of classification rules that will be used
during the interest discovering step, i.e., when a new query is submitted (test
query), the user’s situation is classified to extract its interest describing its re-
search intention. In the case where the result of the classification algorithm is
negative (no similar situation is found by the classification rules), then infor-
mation collected from DBPEDIA is of use to predict the user’s new interest.

4.2 Results and Discussion

In our experiments, we aim at evaluating the effectiveness of situation-aware
information retrieval that integrates the user interests.

– Evaluating the SA-IRI precision based on the diary study
First, thenumberof resources returnedwascomparedto thatofGoogle 4 results
as shown in Table 3. Then, to perform an information retrieval test, we used 10
keyword queries and computed the precision values of both systems, i.e., SA-
IRI vs those of Google Search engine. To do so, each participant triedmanually
the results of its requests., with those shown in Table 4. The judgments rele-
vance were established on a scale of two values: relevant and irrelevant.

The results obtained by our approach were compared with the interests
representing the actual research intentions of users, as shown in Table 5.

3 http://quaero.profileo.com/modules/movie/scenes/home
4 https://www.google.com

http://quaero.profileo.com/modules/movie/scenes/home
https://www.google.com


202 I. Ben Sassi et al.

As detailed by the statistics of Table 3, we highlight that the total number
of resources returned by our approach is much lower compared to those
returned by Google, except for the case of the query 5 where the number of
resources is increased due to the inaccuracy of the predicted interest. Thus,
the SA-IRI approach ensures the reduction of the research space.

Table 3. Comparison of SA-IRI and Google Results

Query # Resources retrieved by Google #Resources retrieved by SA-IRI

Query1 920,000,000 21,900,000
Query2 2,250,000 2,250,000
Query3 13,200,000 8,480,000
Query4 1,860,000,000 822,000,000
Query5 3,640,000,000 3,800,000,000
Query6 5,750,000 571,000
Query7 73,900,000 73,100,000
Query8 177,000,000 8,830,000
Query9 48,400,000 1,490,000
Query10 48,400,000 634,000

Table 4. Comparison of the accuracy of SA-IRI and Google results

Query Top10 retrieved by Google Top10 retrieved by SA-IRI

Query1 8 of 10 relevant resources 10 of 10 relevant resources
Query2 1 of 10 relevant resources 1 of 10 relevant resources
Query3 0 of 10 relevant resources 10 of 10 relevant resources
Query4 1 of 10 relevant resources 4 of 10 relevant resources
Query5 2 of 10 relevant resources 8 of 10 relevant resources
Query6 3 of 10 relevant resources 0 of 10 relevant resources
Query7 1 of 10 relevant resources 1 of 10 relevant resources
Query8 0 of 10 relevant resources 1 of 10 relevant resources
Query9 2 of 10 relevant resources 2 of 10 relevant resources
Query10 2 of 10 relevant resources 10 of 10 relevant resources

Table 4 sketches a comparison, in terms of number, of the resources
deemed pertinent returned using SA-IRI approach and that returned by
Google. Interestingly enough, the accuracy of the results is highly improved
thanks to the use of SA-IRI.

Considering that the Precision metric is defined as follows:

Precision =
{relevant resources}

⋂
{retrieved resources}

{retrieved resources} (1)

Figure 2 shows a comparison between the average precision values of preci-
sion based on the number of the test queries obtained by both SA-IRI and
Google. Indeed, for #queries=1, the average precision of our approach is
0.95, while, the average precision of Google is 0.8, i.e., an improvement in
the average precision of 15%.



Situation-Aware User’s Interests Prediction for Query Enrichment 203

 0

 0.2

 0.4

 0.6

 0.8

 1

1 5 10

P
re

ci
si

on

#queries

SA-IRI precision
Google precision

Fig. 2. Variation of the Average preci-
sion values vs those of Google

 0

 0.2

 0.4

 0.6

 0.8

 1

1 5 10

P
re

ci
si

on

#queries

SA-IRI precision
CBR precision

Fig. 3. Variation of the Average preci-
sion values vs those of CBR

Table 5. Precision of interest prediction

Query Relevant predicted interests Total number of predicted interests

Query1 1 1
Query2 1 5
Query3 3 4
Query4 1 2
Query5 3 3
Query6 1 1
Query7 2 3
Query8 2 3
Query9 3 5
Query10 3 3

The results presented in Table 5 show the level of precision of our inter-
est prediction. Indeed, the total number of the predicted interests sketches
the interests with the maximum weight (the highest number of appearance)
returned by SA-IRI, while relevant predicted interests are those considered
by the user.

Figure 3 shows the average values of precision of our approach and a Case
Based Reasoning approach [11], in interest prediction, based on the number
of test queries. Indeed, for #queries=1, the average precision is equal to
0.92, while, with the CBR technique the prediction precision is equal to
0.5. Whereas, for #queries=5, we have an average precision of 0.73 with
our approach, i.e., a decrease in the average precision of 19%. These results
show the quality of the SA-IRI precision compared to the CBR technique
precision. They are justified by the compactness and the flexibility of the
knowledge representation using the generic associative rules, opposing to
the CBR model limitations. The case based technique satisfy the “Good
for me now so always good for all” assumption. In fact, based on mobile
environment specificities, the user can have two different interests in the same
situation. In this case, using the CBR technique and without the update of
the case base, only the 1st predicted interest is considered, and the 2nd one is
ignored. Thus, user’s interests are assumed to be invariant, witch contradicts
the mobile context properties.



204 I. Ben Sassi et al.

– Evaluating the SA-IRI precision based on the Quaero Challenge
A comparison between the average precision of the SA-IRI approach and
those of Google, based on the dataset of Quaero, is shown in Figure 4. The
variation of results is explained by the fact that users topics are divided in
two types: 20 topics sensitive to the user’s situation and 5 not sensitive to
its situations. Indeed, for #queries=20, the average precision is equal to
0.393, while, for #queries=25, the precision is equal to 0.404. However, for
#queries=25, the average precision of Google is 0.328. Such results show the
efficiency of the SA-IRI approach even with not sensitive situations queries.

 0

 0.2

 0.4

 0.6

 0.8

 1

5 10 15 20 25

P
re

ci
si

on

#queries

SA-IRI precision
Google precision

Fig. 4. The average precision of resources returned by our approach vs those of Google

5 Conclusion and Future Work

Situation is an increasingly common notion in Information Retrieval. This is not
surprising since it has been long acknowledged that the whole notion of rele-
vance, at the core of IR, is strongly dependent from context. In fact, several
authors in the IR field have explored approaches that are similar to our in that
they find indirect evidence of searcher interests by extracting implicit meanings
in information objects manipulated by users in their retrieval tasks [7,10,14]. A
first distinctive aspect in our approach is its snugness connection with semantic
concepts, Dbpedia, to describe the user’s situation and interests. In particular,
these concepts allow to identify the inherent relationship that links the situation
of the user and his search intentions, and to predict its interests related to the
current situation. In addition, our approach presents an originality since it com-
bines the semantic IR and a data mining technique (i.e., the classification rules),
in order to reduce the size of the knowledge base and improve the prediction of
user’s interests. In the near future, we plan to take into consideration the social
aspect in the user’s interests prediction by using one of the social ontologies, i.e.,
The Foaf ontology, to take advantage of the user’s social circle, e.g., activities,
interests, relationships, etc.

Acknowledgements. This work was partially supported by the project Utique
CMCU 11G1417.



Situation-Aware User’s Interests Prediction for Query Enrichment 205

References

1. Ben Yahia, S., Gasmi, G., Nguifo, E.M.: A new generic basis of factual and im-
plicative association rules. Intelligent Data Analysis (IDA) 13(4) (2009)

2. Berners-Lee, T.: Design issues: Linked data (2009),
http://www.w3.org/DesignIssues/LinkedData.html

3. Bouzouita, I., Elloumi, S., Ben Yahia, S.: GARC: A New Associative Classification
Approach. In: Tjoa, A.M., Trujillo, J. (eds.) DaWaK 2006. LNCS, vol. 4081, pp.
554–565. Springer, Heidelberg (2006)

4. Dey, A.K.: Providing architectural support for building context-aware applications.
Phd thesis, Georgia Institute of Technology, Atlanta, GA, USA (2000)

5. Endsley, M.R.: Design and evaluation for situation awareness enhancementl. In:
Proceedings of the Human Factors Society 32nd Annual Meeting Santa Monica,
pp. 97–101 (1988)

6. Hattori, S., Tezuka, T., Tanaka, K.: Context-aware query refinement for mobile
web search. In: Proceedings of the 2007 International Symposium on Applications
and the Internet Workshops. IEEE Computer Society, Washington, DC (2007)

7. Jones, G., Brown, P.: The role of context in information retrieval. In: Proc. of the
SIGIR Information Retrieval in Context Workshop, Sheffield, UK (2004)

8. Kamvar, M., Baluja, S.: Deciphering trends in mobile search. Computer 40(5),
58–62 (2007)

9. Kraft, R., Maghoul, F., Chang, C.: Y!q: contextual search at the point of inspi-
ration. In: Proceedings of the 14th ACM International Conference on Information
and Knowledge Management, pp. 816–823. ACM, New York (2005)

10. Finkelstein, L., Gabrilovich, E., Matias, Y., Rivlin, E., Solan, Z., Wolfman, G.,
Ruppin, E.: Placing search in context: The concept revisited. ACM Transactions
on Information Systems 20(1), 116–131 (2002)

11. Bouidghaghen, O., Tamine, L., Boughanem, M.: A Diary Study-Based Evaluation
Framework for Mobile Information Retrieval. In: Cheng, P.-J., Kan, M.-Y., Lam,
W., Nakov, P. (eds.) AIRS 2010. LNCS, vol. 6458, pp. 389–398. Springer, Heidel-
berg (2010)

12. Santos, A.C., Cardoso, J.A.M.P., Ferreira, D.R., Diniz, P.C., Cháınho, P.: Pro-
viding user context for mobile and social networking applications. Pervasive Mob.
Comput. 6(3), 324–341 (2010)

13. Schmidt, A.: A Layered Model for User Context Management with Controlled
Aging and Imperfection Handling. In: Roth-Berghofer, T.R., Schulz, S., Leake,
D.B. (eds.) MRC 2005. LNCS (LNAI), vol. 3946, pp. 86–100. Springer, Heidelberg
(2006)

14. Lawrence, S.: Context in web search. IEEE Data Engineering Bulletin 23(3), 25–32
(2000)

15. Tsai, F.S., Etoh, M., Xie, X., Lee, W.C., Yang, Q.: Introduction to mobile infor-
mation retrieval. IEEE Intelligent Systems 10, 1541–1672 (2010)

16. Sohn, T., Li, K., Griswold, W.: Diary study of mobile information needs. In: Pro-
ceedings of the Twenty-sixth Annual SIGCHI Conference on Human Factors in
Computing Systems (CHI 2008), Florence, Italy, pp. 433–442 (2008)

17. White, R.W., Bailey, P., Chen, L.: Predicting user interests from contextual in-
formation. In: Proceedings of the 32nd International ACM SIGIR Conference on
Research and Development in Information Retrieval, vol. (8), pp. 363–370 (2009)

18. Yau, S.S., Liu, H., Huang, D., Yao, Y.: Situation-aware personalized information
retrieval for mobile internet. In: Proceedings of the 27th Annual International
Conference on Computer Software and Applications, pp. 638–645 (2003)

http://www.w3.org/DesignIssues/LinkedData.html


The Effective Relevance Link

between a Document and a Query

Karam Abdulahhad1, Jean-Pierre Chevallet2, and Catherine Berrut1

1 UJF-Grenoble 1
2 UPMF-Grenoble 2,

LIG laboratory, MRIM group
{karam.abdulahhad,jean-pierre.chevallet,catherine.berrut}@imag.fr

Abstract. This paper proposes to understand the retrieval process of
relevant documents against a query as a two-stage process: at first an
identification of the reason why a document is relevant to a query that
we called the Effective Relevance Link, and second the valuation of this
link, known as the Relevance Status Value (RSV). We present a formal
definition of this semantic link between d and q. In addition, we clarify
how an existing IR model, like Vector Space model, could be used for
realizing and integrating this formal notion to build new effective IR
methods. Our proposal is validated against three corpuses and using
three types of indexing terms. The experimental results showed that the
effective link between d and q is very important and should be more
taken into consideration when setting up an Information Retrieval (IR)
Model or System. Finally, our work shows that taking into account this
effective link in a more explicit and direct way into existing IR models
does improve their retrieval performance.

1 Introduction

Information Retrieval Systems (IRSs) are supposed to classify documents in two
sets: the set of relevant documents to a query q, and the set of documents that
are not relevant. An IRS computes a machine relevance that is supposed to be
closed to a human relevance judgment, i.e. the judgment from the author of the
query, also called user relevance. Moreover, IRSs usually compute a relevance
score: a Relevance Status Value (RSV ), against all documents, or against only
those that are retrieved1.

This distinction is very important because, that means there are two different
notions in IR: the relevance notion and the valuation of this relevance computed
by the RSV . Unfortunately, if the RSV is computed against all documents of
a corpus, the first notion disappears. In this case, only a ranking of documents
based on the RSV is computed.

1 The set of retrieved documents is implicitly the set of relevant documents from the
machine point of view.

S.W. Liddle et al. (Eds.): DEXA 2012, Part I, LNCS 7446, pp. 206–218, 2012.
c© Springer-Verlag Berlin Heidelberg 2012



The Effective Relevance Link between a Document and a Query 207

For practical reason, many IRSs compute RSV only against the set of doc-
uments that share terms with the query: we interpret this as the minimal con-
straint often chosen to build the set of retrieved document is a non empty term
intersection between a retrieved document and a query. We feel that this poor
constraint hides a more semantical constraint that a document should fulfill in
order to be retrieved by a system: there should be a hidden semantic link and a
reasoning process that could be followed to demonstrate this relevance. We call
this link the Effective Relevance Link and we denoted it d ↔ q in this paper.
Hence the effective link between a document d and a query q is related to the
reason or reasons that make d a candidate document to be retrieved for q. We
also think that this Effective Semantic Link can be expressed in some logic. For
example, we can state that for having d ↔ q, the system should explicitly has a
logical reason like: if d is relevant to q, then there should exist a logical deduction
chain that starts from d and ends at q, written as d → q.

Information Retrieval (IR) models include more or less this effective link, each
model in its own way. Vector Space Model (VSM) [18] assumes that both d and
q are vectors in a specific term space and the link d ↔ q is simply equivalent
to a non empty terms intersection. Probabilistic Models (PM) [14] propose the
probabilistic ranking principle for ranking documents by decreasing probability of
their relevance to queries. Different estimations of the previous probability mean
different variants of PM. Language Models (LM) [13] borrow their notion from
the speech recognition community. LMs suppose that each document is a language
and then they estimate the ability of document’s language to reproduce the query.

Actually, the two notions are mixed in most of classical IR models: the effective
link d ↔ q, or in other words, why d is a candidate answer for q, and how much
d ↔ q is strong, i.e. the relevance score RSV (d, q). Therefore, we think one
should study d ↔ q and RSV (d, q) that characterizes it, as separate notions.

Moreover, most IRS compute first an RSV (d, q) and then deduce d ↔ q, for
example by an implicit thresholding of the RSV value of the ordered documents
list. We think the correct view should first be the study and computation of
d ↔ q, and then computation of the strength of this link.

In this work, we separate the two notions through introducing a formal-logical
definition for d ↔ q. In addition, we study the influence of this separation on
the performance of some IR methods.

The paper is structured as follow: In section 2, we present a more formal
definition of d ↔ q using the two notions Exhaustivity and Specificity. We show
the importance of d ↔ q and the attempts of using it in IR literatures, in section
3. Then in section 4, we show a practical view of d ↔ q. In section 5, we describe
our concrete framework for integrating d ↔ q in IR methods. We show our
experiments for validating our hypothesis, in section 6. We conclude the paper
in section 7.

2 A Tentative Formal-Logical Definition of d ↔ q

We introduced d ↔ q in a subjective way. In order to build a more formal and
general definition, we model it in a logical framework.



208 K. Abdulahhad, J.-P. Chevallet, and C. Berrut

Many researchers argued that the retrieval process could be formalized as a
logical implication from a document d to a query q noted d → q. One of the
earliest studies in this direction is the one of Rijsbergen [21], who introduced the
use of logic as a theoretical IR foundation. He proposes to see d and q as a set
of logical sentences in a specific logic. Then d is a candidate answer for q iff it
logically implies q noted d → q. In other words, if q is deducible based on d.
However, IR is an uncertain process [5], because:

• The query q is an imperfect representation of the user needs;
• The document model d is also an imperfect representation of the semantic
content of the document:

• Relevance judgment depends on an external factor, which is the user knowl-
edge.

Therefore, another component, beside the logic, should be added to estimate the
certainty of an implication and to offer a ranking mechanism. In other words,
a measure P should exist and be able to measure the certainty of the logical
implication between d and q, noted P (d → q). This formulation already split the
matching computation into two stages: first establish the truth of the effective
link d → q and then compute a score P , on this link.

This proposal exhibits a non symmetrical Effective Link, and leads to this
question: are the two implications d → q and q → d the same? Nie [12], distin-
guishes the Exhaustivity of a document to a query d → q, which means that d
satisfies all themes of q, from the Specificity of a document to a query q → d,
which means that d’s themes are all related to q.

In other words, Exhaustivity means that all themes of q should be referred in
d. In this manner, suppose that we have a document d where d → q is valid, if we
build another document d′ by adding more themes to d then d′ → q should be
still valid. However, d is more relevant to q because it is more specific. Therefore,
we need the other notion of “Specificity” in order to retrieve the most specific or
precise document that already covers q [6]. The ideal case is when d contains all
and only all the themes of q, that means, we can prove both d → q and q → d.

Formal logic has a syntax but can also have semantics2. This semantic trans-
lates the formal sentences of that logic into another mathematical world. For
example, we get the semantic of a logical sentence in the Propositional Logic by
assigning a truth value (T or F ) to each proposition in that sentence. Hence,
each logical sentence s can have several translations or interpretations Is de-
pending on the truth values assignations. The subset Ms of Is that make s true
is called the set of models of s.

For any two sentences s1 and s2, we say that s1 logically entails s2, written
as Ms1 |= s2, or simply s1 |= s2, if s2 is true in all models of s1. In other words,
any interpretation that makes s1 true should also make s2 true. Obviously, |= is
not commutative. In this manner, the Exhaustivity d → q could be translated
into d |= q whereas the Specificity into q |= d.

2 We would like to warn the reader unfamiliar with logic formalisms that this notion
of semantics (called formal semantics) is not related to “human” meaning.



The Effective Relevance Link between a Document and a Query 209

The more terms a document has, the less number of models validating that
document exist. For example, with the indexing vocabulary V = {t1, t2, t3, t4, t5},
one can have 25 different interpretations over V . If a document d is indexed by
the terms {t1, t2, t3}, then one can associate with d the set of 4 models Md that
make t1, t2, t3 true. Another document d′ indexed by {t1, t2, t3, t4} is associated
with the set Md′ of only 2 models3. In this example any model of d′ is also a
model of d which means Md′ ⊆ Md. In other words4, if d |= q then d′ |= q.

By taking the uncertainty into account, the two notions Exhaustivity and
Specificity could be rewritten as follow:

• Exhaustivity P (d → q): means to which limit Md andMd∩Mq are close, or
in other words, P (d → q) could be equivalent to evaluate an other function
P (Md,Md ∩ Mq). The best case is when Md ⊆ Mq, which means Md =
Md ∩ Mq.

• Specificity P (q → d): means to which limit Mq and Md ∩ Mq are close, or
in other words, P (q → d) could be equivalent to P (Mq,Md ∩Mq). The best
case is when Mq ⊆ Md, which means Mq = Md ∩ Mq.

After this detailed description of d ↔ q and after clarifying the potential inter-
action between Exhaustivity and Specificity, instead of calculating the relevance
score between d and q as a degree of certainty of the logical implication P (d → q),
now the relevance score is a function of the two implications [12] (1):

RSV (d, q) = F [P (d → q) , P (q → d)] (1)

3 d ↔ q in IR Models

Many IR models, one way or another, try to integrate d ↔ q in the process of
computing the Relevance Status Value (RSV ) between d and q. Abdulahhad (et
al.) [1] exploit the semantic relations between document’s concepts and query’s
concepts and use the attached weights of those relations for computing the final
matching value between d and q.

Other studies Rocchio [16], Salton (et al.) [19] and Buckley (et al.) [4], need a
second round of evaluation for integrating d ↔ q, through query reformulation
using several prejudged documents. In fact after using RSV for sorting retrieved
documents, they make the hypothesis that only some of them are really relevant,
i.e. satisfies the effective relevance link. This technique is known as relevance
feedback.

In classical bag-of-terms based IR methods, d ↔ q is implicitly integrated.
For example, in BM25 [15] and Pivoted Normalization Method [20], d ↔ q
appears timidly through the sum over shared terms (

∑
t∈d∩q). The same thing

3 One that makes t1, t2, t3, t4 true and t5 false, and the other that make t1, t2, t3, t4
and t5 true.

4 Note that this is not necessarily true for all logical IR models. For example, this does
not hold for the classical IR boolean model because documents are associated with
only one interpretation.



210 K. Abdulahhad, J.-P. Chevallet, and C. Berrut

for Language Models [13], but instead of sum, it is the product (
∏

t∈d∩q). It is
also true for Information-based methods [2] [7].

Several studies Wilkinson (et al.) [22] and Rose (et al.) [17] show that users
prefer documents sharing more distinct terms with queries. Moreover, Fang (et
al.) [10] determine several retrieval constraints for building effective retrieval
methods. The second constraint TFC 2 implies another constraint, which en-
courages promoting documents with more distinct query terms.

Historically, one of the earliest methods of ranking was the number of shared
terms between d and q (|d ∩ q|). This method is added to the Boolean Model
in order to rank retrieved documents. In addition, the ranking formula of VSM
could be restricted to |d∩ q| when using binary weights for document and query
terms (1 if t occurs in d, 0 otherwise).

From the previous presentation, we can see that in spite of the importance of
d ↔ q, represented by d ∩ q, it is not sufficiently integrated in the classical IR
methods. In this study, we try to explicitly integrate the d ↔ q in the process
of estimating the retrieval score between d and q: RSV (d, q), in order to build a
more precise and effective retrieval method.

4 d ↔ q and Weighting

In all IR models, e.g. Language Models [13], Probabilistic Models [14], Vector
Space Models (VSM) [18], etc. the weight of an indexing term t is usually esti-
mated depending on three sources of information:

1. The document d is usually used for estimating the descriptive power or the
local weight wd

t of t in d. For example, the term frequency of t in d.
2. The query q: the weight wq

t is whether manually assigned by users or esti-
mated through the term frequency of t in q.

3. The corpus or document collection D is used for estimating the discrimi-
native power wD

t of t in D. For example, the Inverse Document Frequency
(IDF), or the smoothing component of Language Models [23].

In general, at the time of computing the matching value between a specific
document d and a specific query q:

1. The value of wd
t is independently estimated of q. For certain d and t, wd

t is
constant whatever is q.

2. The value of wq
t is independently estimated of d. For certain q and t, wq

t is
constant whatever is d.

3. The value of wD
t is independently estimated of both d and q. For certain D

and t, wD
t is constant whatever is d and q.

We think that this is an insufficient modeling because each weight is indepen-
dently computed from the effective link d ↔ q. Hence, we propose the matching
score computation to take into account the d ↔ q in an explicit manner, in
addition to wd

t , wq
t and wD

t .



The Effective Relevance Link between a Document and a Query 211

We illustrate this problem using one of the classical IR methods, the Pivoted
Normalization Method [20] (2).

RSV (d, q) =
∑

t∈d∩q

1 + ln
(
1 + ln

(
tf t,d

))
(1 − s) + s |d|avdl

× tf t,q × ln
N + 1

nt
(2)

where tf t,d is the term frequency of t in d, tf t,q is the term frequency of t in q, s is
a constant (normally s = 0.2), |d| is the length of d, avdl is the average document
length in the corpus, N is the total number of documents in the corpus, and nt

is the number of documents that contain t.

RSV (d, q) =
∑

t∈d∩q w
d
t × wq

t × wD
t

wd
t =

1+ln(1+ln(tft,d))

(1−s)+s |d|
avdl

wq
t = tft,q wD

t = lnN+1
nt

(3)

(3) shows that wd
t is independent of q, wq

t is independent of d, and wD
t is inde-

pendent of both d and q.
As most of IR methods are based on the bag-of-terms paradigm, the most

evident indication to d ↔ q could be the shared terms between d and q: d ∩ q,
because what makes d a candidate answer for q is having shared terms with q:
d ∩ q �= ∅. The shared terms compose the ground where both d and q interact
with each other. Without shared terms (d ∩ q = ∅), there is no explicit link
between d and q, hence d is not potentially a relevant document. Actually this
is not quite correct because of the term-mismatch problem [8], where two terms
are used for expressing on the same meaning, e.g. flat vs. apartment. However,
the term-mismatch problem is out of the scope of this study.

5 Revisiting the VSM with d ↔ q

The Vector Space Model (VSM) is a well known model that can benefit from an
explicit integration of the Effective Relevance Link. Before revisiting the VSM
model, let’s analyze the relationship between the logical description of d ↔ q
and a term set representation.

In the previous section, we rewrote the two implications d → q and q → d
using Md∩Mq. One can associate a set of terms d with a set of models Md in the
following way: Md are the models where each term of d is true. Hence adding a
term to the set d reduces the model set Md. Moreover, if q ⊆ d then Md ⊆ Mq,
and finally Md ∩ Mq is equivalent to d ∩ q: see Fig. 1.

For example, with the vocabulary set {t1, t2, t3, t4}, given the document d =
{t1, t2, t3}. Then using the VSM notation (with 1 for true):

Md = {〈1, 1, 1, 0〉, 〈1, 1, 1, 1〉}

If q = {t1, t2} then:

Mq = {〈1, 1, 0, 0〉, 〈1, 1, 0, 1〉, 〈1, 1, 1, 0〉, 〈1, 1, 1, 1〉}



212 K. Abdulahhad, J.-P. Chevallet, and C. Berrut

(a) Normal case (terms) (b) Exhaustivity (terms) (c) Specificity (terms)

(d) Normal case (models) (e) Exhaustivity (models) (f) Specificity (models)

Fig. 1. The different cases of interaction between d and q

In this example q ⊆ d whereas Md ⊆ Mq. In this case the document cover the
query in an exhaustive manner. See Figs. 1(b) and 1(e).

According to Nie [12], the RSV value between d and q could be estimated as
a function F of the degree of certainty of the two implications (1).

According our definition of Exhaustivity and Specificity, the (1) could be
rewritten as follow (4):

RSV (d, q) = F [P (Md,Md ∩ Mq) , P (Mq,Md ∩ Mq)] (4)

By assuming that documents and queries are sets of terms instead of assuming
that they are logical sentences with sets of models, (1) could be written as (5).
There is always a possibility to go from a logical sentence to a set of terms and
vice-versa [11], through: 1- using the Propositional Logic, 2- assuming that each
term is a proposition, and 3- assuming that each document is a logical sentence
of conjunctive propositions or it is a set of terms.

RSV (d, q) = F [P (q, d ∩ q) , P (d, q ∩ d)] (5)

Actually, we need a concrete framework for computing the RSV (d, q). Therefore,
we need to realize the following abstract elements:



The Effective Relevance Link between a Document and a Query 213

– The document d.
– The query q.
– The shared terms d ∩ q.
– The function F .
– The uncertainty measure P .

In IR field, there are many frameworks for doing that, e.g. Vector Space Frame-
work [18], Probabilistic Framework [14], Language Models [13], etc. In this study,
we choose the Vector Space Framework. Therefore, the previous abstract ele-
ments become:

– The document
−→
d is a vector in term space T . For each term t ∈ T , there is

a correspondent component in
−→
d : wd

t , where wd
t > 0 is the weight of t in d

if t occurs in d or 0 otherwise.
– The query −→q is a vector in term space T . For each term t ∈ T , there is

a correspondent component in −→q : wq
t , where wq

t = 1 if t occurs in q or 0
otherwise.

– The shared terms
−−−→
d ∩ q is a vector in term space T . For each term t ∈ T ,

there is a correspondent component in
−−−→
d ∩ q: wd∩q

t , where wd∩q
t = 1 if t

occurs in both d and q or 0 otherwise.
– The function F : there are many choices for F , e.g. sum, weighted sum for fa-

voring Exhaustivity over Specificity or vice-versa, product, etc. In this study,
we suppose that both Exhaustivity and Specificity are equally important and
we choose the product (×).

– The uncertainty measure P : in Vector Space Framework there are many
choices for computing the distance between two vectors [9]. Here, we choose
the inner-product measure.

Finally, P (q, d ∩ q) is the distance between −→q and
−−−→
d ∩ q, same for P (d, d ∩ q).

The (5) could be rewritten as follow (6):

RSV (d, q) =
(

−→q · −−−→
d ∩ q

)
×
(−→
d · −−−→

d ∩ q
)

(6)

where (·) is the inner-product (dot-product). Then the retrieval formula becomes
(7):

RSV (d, q) =

[∑
t∈T

wq
t × wd∩q

t

]
×
[∑
t∈T

wd
t × wd∩q

t

]
= |d ∩ q| ×

∑
t∈d∩q

wd
t (7)

where |d ∩ q| is the number of shared terms between d and q.
The only remaining component that should be clarified is the weight of a

term t in a document d or wd
t . Several weighting formulas exist e.g. Pivoted

Normalization [20], BM25 [15], DFR [2], TF-IDF, etc. Here we will use a version
of the TF-IDF formula. Our final retrieval formula becomes (8):

RSV (d, q) = |d ∩ q| ×

⎡
⎣ ∑
t∈d∩q

tft,d
tft,d + |d| × N

nt

⎤
⎦ (8)



214 K. Abdulahhad, J.-P. Chevallet, and C. Berrut

6 Experiments

To validate our hypothesis about the utility of integrating the d ↔ q into IR
models, we apply (8) on corpuses and compare the performance against the
performance of some classical IR methods. We use for the comparison the Mean
Average Precision (MAP) metric.

6.1 Experiments Setup

We use in our experiments three different corpuses and three types of indexing
terms.

The types of indexing terms: each type of indexing terms represents a dif-
ferent facet of documents and queries.

• 5Grams (5G) / 4Grams (4G): we used five-characters-wide / four-characters-
wide window for extracting 5grams / 4grams with shifting the window one
character each time.

• Words (W ): we eliminated the stop words and stemmed the remaining words
using Porter algorithm to get finally the list of words that indexes documents
and queries.

• Concepts (C): we mapped the text into UMLS’s concepts using MetaMap,
where UMLS5 is a multi-source knowledge base in the medical domain.
Whereas, MetaMap6 [3] is a tool for mapping text into UMLS concepts.

Corpuses: we validate our hypothesis against three corpuses. One from Image-

CLEF20107 and two from ImageCLEF2011 (Table 1):

Table 1. Corpuses statistics. avdl and avql are the average length of documents and
queries.

Corpus #d #q Type avdl avql

image2010 77495 16
5G 627.23 29.88
W 62.12 3.81
C 157.27 12.0

image2011 230088 30
5G 468.86 32.1
W 44.83 4.0
C 101.92 12.73

case2011 55634 10
4G 30380.17 192.4
W 2594.5 19.7
C 5752.38 57.5

5 Unified Medical Language System.
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=nlmumls

6 http://metamap.nlm.nih.gov/
7 http://www.imageclef.org/

http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=nlmumls
http://metamap.nlm.nih.gov/
http://www.imageclef.org/


The Effective Relevance Link between a Document and a Query 215

• image2010: contains short medical documents and queries.
• image2011: also contains short medical documents and queries. However, it
is larger than image2010.

• case2011: contains long medical case description documents and long queries.

IR models: from one side, the performance of TF-IDFd∩q (8) is compared to
the performance of the same formula but without |d ∩ q| component (TF-IDF).
We did that for showing the positive effect of integrating d ↔ q into weighting
formulas. From another side, we compare the performance of TF-IDFd∩q to the
performance of Pivoted Normalization Method PIV (2), BM25 method (9), and
Dirichlet language model DIR (10), where p (t,D) is the probability of t given by
the collection language model D. Through this comparison, we show the validity
of our hypothesis.

s, k1, b, k3, and μ are all constants. They usually have the following values:
s = 0.2 [20]. k1 = 1.2, b = 0.75, and k3 = 1000 [10]. μ = 2000 [23].

RSV (d, q) =
∑

t∈d∩q ln
N−nt+0.5
nt+0.5 × (k1+1)×tft,d

k1×((1−b)+b× |d|
avdl )+tft,d

× (k3+1)×tft,q
k3×tft,q

(9)

RSV (d, q) =
∑

t∈d∩q
tft,q × ln

(
1 +

tft,d
μ × p (t,D)

)
+ |q| × ln

μ

|d| + μ
(10)

6.2 Results and Discussion

Table (2) shows the experimental results of (8), applying on the three corpuses
and using the three types of terms. Table (2) shows that using |d∩q|, or in other
words, explicit d ↔ q integration into IR methods, improves considerably the
average precision. This conclusion is valid for all corpuses and all types of terms.
That means, our hypothesis is valid for short and long documents and queries,
in addition, it is also valid for different facets of documents and queries.

Table (3) show the experimental results of (8) and some classical IR methods
(2, 9, and 10). They show that for all types of terms and for all corpuses, (8)

Table 2. The experimental results of applying (8) to the three corpuses and using the
three types of terms.

image2010 image2011 case2011

Type Formula MAP gain MAP gain MAP gain

5G / 4G
TF-IDFd∩q 0.3165

+16%
0.1474

+26%
0.0755

+26%
TF-IDF 0.2739 0.1169 0.0599

W
TF-IDFd∩q 0.3332

+14%
0.2069

+51%
0.1044

+33%
TF-IDF 0.2916 0.1368 0.0786

C
TF-IDFd∩q 0.3248

+13%
0.1672

+13%
0.1605

+19%
TF-IDF 0.2883 0.1484 0.1347



216 K. Abdulahhad, J.-P. Chevallet, and C. Berrut

Table 3. The experimental results of applying (8) and some classical IR methods (2,
9, and 10) to the three corpuses and using the three types of terms

Type Formula image2010 image2011 case2011

5G / 4G

TF-IDFd∩q 0.3165 0.1474 0.0755
PIV 0.2872 0.1069 0.0759
BM25 0.2733 0.1302 0.0062
DIR 0.2947 0.1241 0.0775

W

TF-IDFd∩q 0.3332 0.2069 0.1044
PIV 0.2992 0.1546 0.1023
BM25 0.2745 0.1995 0.0964
DIR 0.2960 0.1534 0.1295

C

TF-IDFd∩q 0.3248 0.1672 0.1605
PIV 0.2530 0.1096 0.1037
BM25 0.2123 0.1552 0.0956
DIR 0.2455 0.1228 0.1036

performs better than the other formulas, except when using words with long
documents and queries. In other words, even a simple non-parametric formula
(8) performs better than classical IR methods, through simple integration of
|d ∩ q| into the formula, where |d ∩ q| is an indication to d ↔ q.

In conclusion, the effective link between d and q (d ↔ q) is a very important
component, and it should be correctly exploited for improving the performance
of IR methods.

7 Conclusion

We study in this paper the explicit integration of the effective link d ↔ q into
an IR matching model. We have presented a formal definition of d ↔ q based
on logical framework through two notions: Exhaustivity and Specificity. Those
notions describe an interesting relevance link between d and q. According to
Exhaustivity and Specificity, the best answer for a query q is the most specific
(smallest) document that fully contains q.

We revisit the Vector Space Model, and test the effect of integrating d ↔ q
into the matching formula. Experimental results on three test corpuses show
that our hypothesis about the importance of integrating d ↔ q into IR models
is valid. We also validated our hypothesis against three types of indexing terms
and we get similar positive results.

The next steps of this work concern the revisiting of other IR models like
the probabilistic and language models, and some experimentation on other test
collections, not specifically in the medical domain.



The Effective Relevance Link between a Document and a Query 217

References

1. Abdulahhad, K., Chevallet, J.-P., Berrut, C.: Solving concept mismatch through
bayesian framework by extending umls meta-thesaurus. In: la huitième édition de la
COnférence en Recherche d’Information et Applications (CORIA 2011), Avignon,
France, March 16–18 (2011)

2. Amati, G., Van Rijsbergen, C.J.: Probabilistic models of information retrieval
based on measuring the divergence from randomness. ACM Trans. Inf. Syst. 20(4),
357–389 (2002)

3. Aronson, A.R.: Metamap: Mapping text to the UMLS metathesaurus (2006)
4. Buckley, C., Salton, G., Allan, J., Singhal, A.: Automatic Query Expansion Using

SMART: TREC 3. In: TREC (1994)
5. Chiaramella, Y., Chevallet, J.P.: About retrieval models and logic. Comput. J. 35,

233–242 (1992)
6. Chiaramella, Y., Mulhem, P., Fourel, F.: A model for multimedia information re-

trieval. Technical report (1996)
7. Clinchant, S., Gaussier, E.: Information-based models for ad hoc ir. In: Proceedings

of the 33rd International ACM SIGIR Conference on Research and Development
in Information Retrieval, SIGIR 2010, pp. 234–241. ACM, New York (2010)

8. Crestani, F.: Exploiting the similarity of non-matching terms at retrievaltime. Inf.
Retr. 2(1), 27–47 (2000)

9. Dominich, S.: Mathematical Foundations of Information Retrieval, 1st edn. Math-
ematical Modelling: Theory and Applications. Springer (March 2001)

10. Fang, H., Tao, T., Zhai, C.: A formal study of information retrieval heuristics. In:
Proceedings of the 27th Annual International ACM SIGIR Conference on Research
and Development in Information Retrieval, SIGIR 2004, pp. 49–56. ACM, New
York (2004)

11. Losada, D.E., Barreiro, A.: A logical model for information retrieval based on
propositional logic and belief revision. The Computer Journal 44, 410–424 (2001)

12. Nie, J.: An outline of a general model for information retrieval systems. In: Pro-
ceedings of the 11th Annual International ACM SIGIR Conference on Research
and Development in Information Retrieval, SIGIR 1988, pp. 495–506. ACM, New
York (1988)

13. Ponte, J.M., Bruce Croft, W.: A language modeling approach to information re-
trieval. In: Proceedings of the 21st Annual International ACM SIGIR Conference
on Research and Development in Information Retrieval, SIGIR 1998, pp. 275–281.
ACM, New York (1998)

14. Robertson, S.E.: The probability ranking principle in IR. In: Readings in Infor-
mation Retrieval, pp. 281–286. Morgan Kaufmann Publishers Inc., San Francisco
(1997)

15. Robertson, S.E., Walker, S.: Some simple effective approximations to the 2-poisson
model for probabilistic weighted retrieval. In: Proceedings of the 17th Annual In-
ternational ACM SIGIR Conference on Research and Development in Information
Retrieval, SIGIR 1994, pp. 232–241. Springer-Verlag New York, Inc., New York
(1994)

16. Rocchio, J.: Relevance Feedback in Information Retrieval, pp. 313–323 (1971)
17. Rose, D.E., Stevens, C.: V-twin: A lightweight engine for interactive use. In: TREC

(1996)
18. Salton, G., Wong, A., Yang, C.S.: A vector space model for automatic indexing.

Communications of the ACM (18), 613–620 (1975)



218 K. Abdulahhad, J.-P. Chevallet, and C. Berrut

19. Salton, G., McGill, M.J.: Introduction to Modern Information Retrieval. McGraw-
Hill, Inc., New York (1986)

20. Singhal, A., Buckley, C., Mitra, M.: Pivoted document length normalization. In:
Proceedings of the 19th Annual International ACM SIGIR Conference on Research
and Development in Information Retrieval, SIGIR 1996, pp. 21–29. ACM, New
York (1996)

21. van Rijsbergen, C.J.: A non-classical logic for information retrieval. Comput.
J. 29(6), 481–485 (1986)

22. Wilkinson, R., Zobel, J., Sacks-Davis, R.: Similarity measures for short queries. In:
TREC (1995)

23. Zhai, C., Lafferty, J.: A study of smoothing methods for language models applied
to ad hoc information retrieval. In: Proceedings of the 24th Annual International
ACM SIGIR Conference on Research and Development in Information Retrieval,
SIGIR 2001, pp. 334–342. ACM, New York (2001)



Incremental Computation of Skyline Queries
with Dynamic Preferences

Tassadit Bouadi1, Marie-Odile Cordier1, and René Quiniou2

1 IRISA - University of Rennes 1
2 IRISA - INRIA Rennes

Campus de Beaulieu, 35042 RENNES, France
{tassadit.bouadi,marie-odile.cordier}@irisa.fr, rene.quiniou@inria.fr

Abstract. Skyline queries retrieve the most interesting objects from a
database with respect to multi-dimensional preferences. Identifying and
extracting the relevant data corresponding to multiple criteria provided
by users remains a difficult task, especially when the data are large. In
2008-2009, Wong et al. showed how to avoid costly skyline query com-
putations by deriving the skyline points associated with any preference
from the skyline points associated with the most preferred values. They
propose to materialize these points in a structure called IPO-tree (Im-
plicit Preference Order Tree). However, its size is exponential with re-
spect to the number of dimensions. We propose an incremental method
for calculating the skyline points related to several dimensions associ-
ated with dynamic preferences. For this purpose, a materialization of
linear size which allows a great flexibility for dimension preference up-
dates is defined. This contribution improves notably the computation
cost of queries. Experiments on synthetic data highlight the relevance of
EC2Sky compared to IPO-Tree.

1 Introduction

Skyline queries aim at retrieving the most interesting objects from a database
with respect to given criteria. In a multidimensional space where the dimension
domains are ordered, skyline queries return the points which are not dominated
by any other point. A point p dominates a point q if p is strictly better than
q on at least one dimension and p is better or equal than q on the remaining
dimensions. Skyline queries can formulate multi-criteria queries [1], for example
to find the cheapest hotels close to the beach. Identifying and extracting relevant
data according to many criteria is often a difficult task especially when dealing
with large volumes of data. Several studies [2,3,4,5,6,7,8,9,10] were carried out
on skyline analysis as a retrieval tool in a decisional context.

However, most of the work mentioned above assume that there exists a prede-
fined order on the domain of each dimension. When users are allowed to define
or to change their own preferences online, the order may change dynamically on
some dimensions and the skyline evolves accordingly. A naive solution is to re-
calculate the skyline from scratch for each dynamic preference that has changed.
However, it is too expensive on large databases of high dimensionality. The chal-
lenge is thus the following: how to efficiently recalculate the least amount of
skyline points while minimizing the required memory space.

S.W. Liddle et al. (Eds.): DEXA 2012, Part I, LNCS 7446, pp. 219–233, 2012.
c© Springer-Verlag Berlin Heidelberg 2012



220 T. Bouadi, M.-O. Cordier, and R. Quiniou

Wong et al. [3] propose a semi-materialization method based on a specific data
structure called IPO-tree (Implicit Preference Order Tree). An IPO-tree stores
partial useful results corresponding to every combination of first order prefer-
ences. A first order preference states that one value is most preferred in some
dimension and that the other values are left unordered. An n order preference
specifies an order over n values from some dimension, whereas the other values
are less preferred and left unordered. Wong et al. also introduced the merging
property which makes possible to derive skyline of any n-th order preference by
simple operations on the skyline related to the first order preferences on the same
dimension. However, this approach has a main drawback: the merging property
is applicable to only one dimension at a time. The size of an IPO tree is thus in
O(cm) (where m is the number of dimensions associated with dynamic prefer-
ences and c is the cardinality of a dimension). In the context of large databases
of high dimensionality this structure becomes very complex. In [4], Wong et
al. propose another structure, called CST (Compressed Ordered skyline Tree),
to materialize all possible preference orders. However, this method turns to be
incomplete and very complex and, so, it cannot be used.

While reusing the merging property proposed by Wong et al. to deal with
the refinement of preferences on a single dimension, we propose an incremental
method, called EC2Sky, for calculating the skyline points related to several di-
mensions associated with dynamic preferences. This work improves and extends
the short contribution presented in [11]. As a side effect, EC2Sky can return the
most relevant knowledge by emphasizing the compromises associated with the
specified preferences. The benefits of this proposition are twofold. On the one
hand, the complexity in space of the materialization of precomputed skylines re-
duces to O(c ∗m). On the other hand, the number of dominance tests decreases
significantly. We proved experimentally, that the total computation cost is much
lower than in Wong et al.’s method.

The rest of the paper is organized as follows. In Section 2, we introduce the
basic concepts related to skyline queries and dynamic preferences. We develop
the formal aspects of EC2Sky in Section 3 and its implementation in Section
4. In Section 5, we present the results of the experimental evaluation performed
on synthetic datasets and highlight the relevance of the proposed solution. We
conclude the paper in Section 6.

2 Basic Concepts

Let D = {d1, ..., dn} be an n-dimensional space, E a data set defined in space D
and p, q ∈ E. We denote by p(di) the value of p on dimension di. The following
definitions concern a subspace D′ ⊆ D. Obviously, these definitions can be gen-
eralized to the full dimension space D. In a subspace D′ ⊆ D, a point p is said
to dominate another point q, denoted by p ≺D′ q, if ∀di ∈ D′, p(di) ≤di q(di)
(i.e. p is preferred or equal to q on D′) and ∃di ∈ D′, p(di) <di q(di) (i.e. p is
strictly preferred to q on di). When D′ = D, p ≺D′ q is simply noted p ≺ q.

A preference on the domain of a dimension di is defined by a partial order
≤di. We distinguish two types of preferences: static preferences which correspond
to a predefined order relation, and dynamic preferences which correspond to an
order relation that can vary from one user to another or from one user session



Incremental Computation of Skyline Queries with Dynamic Preferences 221

to another. By abuse of language we write dynamic (resp. static) dimension in-
stead dimension associated with dynamic (resp. static) preferences. In the sequel,
S denotes the subspace associated with static preferences and Z the subspace
associated with dynamic preferences: D = S

⋃
Z and S

⋂
Z = ∅.

Definition 1. (Skyline) The skyline set of the dataset E on the subspace D′
with Z being the subspace associated with the dynamic preferences ℘, is defined
by Sky(D′, E)(Z,℘) = {p ∈ E| ∀q ∈ E, q ⊀D′ p}.
If ℘ = ∅, Sky(D′, E)(Z,℘) is simply written Sky(D′, E).

The set Sky(D′, E) contains points, denoted MaxSky(D′, E), that are the best
along at least one dimension. It contains also points denoted CompSky(D′, E)
that are not dominant on any dimension of D′ while being better than any point
of E on at least one dimension. These compromise points represent interesting
solutions for the user from a decision making point of view.

Definition 2. (MaxSky, CompSky)
Let D′ ⊆ D. Sky(D′, E) = MaxSky(D′, E)

⋃
CompSky(D′, E) with :

MaxSky(D′, E) = {p ∈ Sky(D′, E)|∃D′′ ⊆ D′, ∀q ∈ E, p �D′′ q}
CompSky(D′, E) = {p ∈ Sky(D′, E)|∀q ∈ E, ∃D′′ ⊆ D′, p ≺D′′ q ∨ p =D′ q}.
If D′ is reduced to one dimension (D′ = {di}), Sky(D′, E) = MaxSky(D′, E).

Example 1. (Running example) In this paper, we use as a running example
the dataset E in Table 1 that contains 8 points described by 4 dimensions.
S = {Price,Distance}: the values of these two dimensions follow the order rela-
tion ≤ specifying that the lower the price (resp. the distance), the more preferable
the hotel (e.g. a(Price) <Price d(Price)). This order is accepted by any user, so
dimensions Price and Distance are static.
Z = {Gr,Air}: no order relation is defined a priori on dimensions Gr,Air which
are dynamic. The definition of an order is left to users and may vary from one
user to another.
Sky(S,E) = {a, b, e}. MaxSky(S,E) = {a, b} since a(Price) (resp. b(Price))
is the most preferred value on dimension Price (resp. Distance).
CompSky(S,E) = {e} since the value of e is not the most preferred either
on Price or on Distance. However, e(Price)<Price b(Price) and e(Distance)
<Distance a(Distance). So, e is better then any MaxSky point on at least one
dimension.

Table 1. A set of hotels

Hotel ID Price Distance Hotel group (Gr) Airline (Air)

a 1600 4 T (Tulips) G(Gonna)

b 2400 1 T(Tulips) G(Gonna)

c 3000 5 H(Horizon) G(Gonna)

d 3600 4 H(Horizon) R(Redish)

e 2300 2 T(Tulips) R(Redish)

f 3000 3 M(Mozilla) W(Wings)

g 3600 4 M(Mozilla) R(Redish)

h 3000 3 M(Mozilla) R(Redish)



222 T. Bouadi, M.-O. Cordier, and R. Quiniou

Sky(S
⋃
Z,E) = {a, b, e, c, d, f, h} when no preferences are given on the dynamic

dimensions Gr and Air.

Conventional skyline queries retrieve the most interesting objects of a multidi-
mensional dataset. Our goal is to aid a user explore his dataset by letting him
express various preferences on dynamic dimensions and assess the consequences
of such choices by retrieving the skyline points. Different users may have dif-
ferent preferences on a dynamic dimension, e.g Hotel group. When a customer
prefers Hotel groupHorizon to other values, hotels c, d, f and h are added in the
skyline since they become the best along dimension Hotel group. However, for
another customer preferring Tulips to other values, c, d, f and h don’t belong to
the skyline since they are dominated by a, b and e. An interesting observation is
that hotels a, b and e are always in the skyline no matter which preference order
on the Hotel group is chosen (because a has the lowest price, b has the smallest
distance from the beach and e represent a good compromise for the dimensions
Price and Distance).

A user who formulates a query involving a dynamic dimension di can specify
the preference order on the |di| values of this dimension. The order is total if
all these values are ordered. But this is not always possible and the user may
order only n of the |di| values. Implicitly, the user considers that they are more
preferred than the (|di| − n) remaining values which are left unordered. This
corresponds to the notion of n-th order implicit preference introduced in [3].

Definition 3. (n-th order preference) Let di ∈ Z and |di| = m. ℘i is a n-th
order preference on di iff :

– ℘i = v1 <di . . . <di vn <di ∗, with vj ∈ dom(di), j ∈ {1, .., n} and n ≤ m,
– ∀k ∈ {n+ 1, ..,m}, vn <di vk.
– When n = 1, ℘i = v1 <di ∗ is called a first order preference.

℘i = v1 <di . . . <di vn <di ∗ denotes the set of binary preferences ℘i = {v1 <di

v2, v2 <di v3, . . . , vn <di ∗}. In the sequel, we use both notations for ℘i. The
absence of preference on dimension di is denoted by ℘i = ∅. Note the importance
of first order preferences: they are sufficient to determinate the dominant points
of a dimension.

Example 2. For the dimension Hotel group in Table 1, a user prefers T (Tulips)
to M(Mozilla), T to H(Horizon) and M to H (i.e. T <Group M <Group H).
This preference is a third order preference and defines a total order. Some other
user could prefer Hotel group T to any other group (i.e., T <Group ∗). In this
case, the preference is a first order preference which defines a partial order.

We give below some useful properties of the preference relationship. These prop-
erties will be used later to reduce the number of domination tests during sky-

line computation. In the following, ℘ =
⋃|Z|

i=1 ℘i denotes the set of dynamic
preferences associated with Z ⊆ D combined implicitly with the set of static
preferences associated with S ⊆ D.

Property 1. (Monotonicity of preference refinement) Let ℘′ and ℘′′ two
preferences sets on Z. If ℘′′ is a refinement of ℘′ (i.e. ℘′ ⊆ ℘′′ ) then,
Sky(D,E)(Z,℘′′ ) ⊆ Sky(D,E)(Z,℘′ ).



Incremental Computation of Skyline Queries with Dynamic Preferences 223

Property 1 indicates that when preferences are refined, the skyline may become
smaller and so, some skyline points may be disqualified. Also, if a point is not
in the skyline related to some preference it won’t belong to the skyline related
to a refined preference.

The following theorem formulates an important property called the merging
property that was introduced by Wong et al. [3]. This property provides a means
to derive the skyline related to any possible n-th order preference by operations
on sets related to first order preferences on the same dimension.

Theorem 1. (Merging property) Let ℘
′
and ℘

′′
be two preferences differing

only on dimension di, i.e. ℘
′
j = ℘

′′
j for all j �= i. Let ℘

′
i = v1 <di . . . < vk−1 <di ∗

and ℘
′′
i = vk <di ∗. Let PSky(D,E)(Z,℘′ ) be the set of points in Sky(D,E)(Z,℘′ )

with di values in {v1 . . . vk−1}. Let ℘′′′
be a preference differing from ℘

′
and ℘

′′

only on dimension di and ℘
′′′
i = v1 < . . . < vk−1 < vk < ∗. Then the skyline

associated with ℘
′′′

is
Sky(D,E)(Z,℘′′′ ) = (Sky(D,E)(Z,℘′ )

⋂
Sky(D,E)(Z,℘′′ ))

⋃
PSky(D,E)(Z,℘′ ).

Wong et al. have proposed successively two methods, IPO-tree [3] and CST [4],
for skyline computation based on the properties and theorem 1 above. However,
the implementation of these two proposals raises several problems. First, the size
of an IPO-Tree is O(cm), wherem is the number of dynamic dimensions and c the
cardinality of a dimension. So it is intractable in the context of large databases
with high dimensionality and does not allow scaling. It is worth-noting that the
merging property is applicable to only one dimension at a time. Second, the CST
method does not solve the IPO-Tree problems: its algorithm is incomplete (it
disqualifies points which should be in the skyline).

To cope with several dynamic dimensions, Wong et al. propose to store the
skyline of every combination of the first order preferences on dynamic dimen-
sions. So, the size of the proposed materialization structure is exponential, which
is prohibitive when dealing with several dimensions. We propose in Section 3 an
incremental method which makes possible to introduce dynamic dimensions one
by one.

3 EC2Sky: An Incremental Skyline Computation

In the following, we assume that the subset of dimensions Di is such that
Di = Di−1 ∪ di, with di ∈ Z, i ∈ {1, .., |Z|}, Di ⊆ D and D0 = S. This
notation represents the incremental addition of dimensions in skyline computa-
tion. Consider the addition of a dynamic dimension di to a set Di−1. The first
task is to compute Sky(di ∪ S,E)(Z,℘), the skyline related to dimension di as if
it were independent of the other dynamic dimensions. Note that every skyline of
di∪S related to a first-order preference on di can be pre-computed. Wong et al.’s
method can be used to achieve this task. However, this set may contain skyline
points that are disqualified i.e. they are dominated on the dynamic dimensions
of the subspace Di−1. Precisely, let p, q ∈ Sky(di ∪ S,E)(Z,℘) be two skyline
points with the same values on every dimension of di ∪ S. If q is preferred on
Di−1 it will dominate p and disqualify it from the skyline Sky(Di, E)(Z,℘). This
set of points is denoted CutSky(di ∪ S,E).



224 T. Bouadi, M.-O. Cordier, and R. Quiniou

Definition 4. (Disqualified skyline points from di ∪ S) The set of skyline
points related to the subspace di ∪S that are disqualified by the introduction of
the subspace Di−1 is defined by CutSky(di ∪ S,E) =
{p ∈ Sky(di ∪ S,E)(Z,℘) | ∃q ∈ Sky(di ∪ S,E)(Z,℘), p =di

⋃
S q ∧ q ≺Di−1 p}.

On the other hand, the old skyline Sky(Di−1, E)(Z,℘) may contain points that
are disqualified by dominant points brought by the new dimension di. Precisely,
let p, q ∈ Sky(Di−1, E)(Z,℘) and having the same values on every dimension of

Di−1. If q is preferred on the new dimension di it will dominate p and disqualify it
from the skyline Sky(Di, E)(Z,℘). This set of points is denoted CutSky(Di−1, E).

Definition 5. (Disqualified skyline points from Di−1) The set of skyline
points related to the subspace Di−1 that are disqualified by the introduction of
dimension di is defined by CutSky(Di−1, E) =
{p ∈ Sky(Di−1, E)(Z,℘) | ∃q ∈ Sky(Di−1, E)(Z,℘), p =Di−1 q ∧ q ≺di

⋃
S p}.

Example 3. Let Di−1 = D1 = {Price,Distance,Gr}, di = Air, the new di-
mension, and the preferences: {M <Gr H <Gr T } and {G <Air R <Air W}.
Sky(D1, E)(Z,℘) = {a, b, e, f, h}. CutSky({Air} ∪ S,E) = {} and

CutSky(D1, E) = {f} as f should not be in the skyline Sky(D2, E)(Z,℘) since it
is dominated by h on the new dimension di = Air.

Finally, some points should appear in the new skyline. Precisely, before taking
into account the new dimension di, some points may be dominated on every
dimension of Di−1⋃S and, so, are not in the skyline. But, when dimension
di is introduced, being better on di than some skyline points they were dom-
inated by, they may well be no longer dominated by any skyline point from
Sky(Di−1, E)(Z,℘) on some dimensions from Di−1: they are new compromise

skyline points. This set of points is denoted NewCompSky(Di, E).

Definition 6. (New compromise skyline) Let C = (Sky(Di−1, E)(Z,℘)

⋃
Sky(di

⋃
S,E)(Z,℘))− (CutSky(Di−1, E)

⋃
CutSky(di

⋃
S,E)).

The set of new compromise skyline points is defined by
NewCompSky(Di, E) = {p ∈ E − C | ∀q ∈ C, ∃dk ∈ Di−1, p ≺dk

q} .

Example 4. Let Di−1 = D1 = {Price,Distance,Gr}, di = Air, the new di-
mension, and the preferences: {M <Gr H <Gr T } and {G <Air R <Air W}.
Sky(D1, E)(Z,℘) = {a, b, e, f, h}, Sky({Air}

⋃
S,E)(Z,℘) = {a, b, e},

CutSky({Air}
⋃
S,E) = {} and CutSky(D1, E) = {f}. But, if we consider si-

multaneously the two dimensions Gr and Air then c is no longer dominated by
f . As f was the only point c was dominated by, c becomes a new skyline point.
Since c is the only such “promoted” point, NewCompSky(D2, E) = {c}.

The following theorem states that the skyline of the extended subspace can be
computed by removing disqualified skyline points from the old skyline and by
adding the new skyline points brought by the preference on the new dimension.
The new skyline points are either dominant points on the new dimension or new
compromise skyline points introduced by the new preference.



Incremental Computation of Skyline Queries with Dynamic Preferences 225

Theorem 2. (Incremental skyline)1

Let E be a |D|-dimensional dataset, Z ⊆ D the subspace of size |Z| = m with
dynamic preferences ℘ = {℘j}j=1,..,m on D, Sky(di ∪ S,E) the skyline of the
subspace {di} ∪ S and Di = Di−1⋃{di}, with i = {1, ..,m}.
Sky(Di, E)(Z,℘) = (Sky(Di−1, E)(Z,℘)

⋃
Sky(di ∪ S,E)(Z,℘))

− (CutSky(Di−1)
⋃
CutSky(di ∪ S))

⋃
NewCompSky(Di, E)

Example 5. (Illustration of Theorem 2) Let D1 = {Price,Distance,Gr},
D2 = {Price,Distance,Gr,Air} and the preferences of the previous example.
Sky(D2, E)(Z,℘)

= (Sky(D1, E)(Gr,H<GrM<GrT )

⋃
Sky({Air} ∪ S,E)(Air,G<AirW<AirR))

− ((CutSky(D1, E)
⋃
CutSky({Air} ∪ S,E))

⋃
NewCompSky(D2, E)

= ({a, b, e, f, h}
⋃

{a, b, e}) − ({f}
⋃

{}) ∪ {c} = {a, b, c, e, h}.
Theorem 2 provides a scheme for an incremental computation of skyline queries
associated with several dynamic dimensions. In the following, we describe more
precisely the structure EC2Sky that stores the precomputed sets and we give
the algorithms.

4 EC2Sky Implementation

In this section, we present the implementation of incremental skyline computa-
tion and we introduce definitions to characterize the points that are involved in
the incremental computation of skyline points and facilitate the specification of
the algorithms and of the materialization structure. To ensure an efficient and
online computation of skyline, we provide an effective materialization structure
detailed in the sequel. We propose a trade-off between (i) materialize all the
skyline points for all possible preferences and (ii) calculate, for each user query,
the skyline points associated with the preferences formulated in the query. Our
approach is based on three steps:

1. compute and store the skyline on static dimensions. One can adopt any
existing algorithm (e.g. [12]) that computes the skyline for partially ordered
domains;

2. for each dimension with dynamic preferences, compute and store the candi-
date skyline points according to any possible first order preference;

3. rely on the information stored in step 1 and 2 to compute the skyline points,
for user query with any preferences on dynamic dimensions.

4.1 Skyline Associated with Static Dimensions

In step 1 we compute all the skyline points corresponding to the defined on static
dimensions of D. Two concepts introduced by Wong et al. in [4] are helpful. They
decompose the set Sky(D,E), corresponding to the defined static preferences of
D and denoted by ℘∅, into two subsets: the global skyline set GSky(D,E) and
the order-sensitive skyline set OsSky(D,E).

The points in the global skyline set GSky(D,E) remain in the skyline when-
ever any preference on some dimension of Z is added.

1 Due to limited space we skip the proof of the Theorem.



226 T. Bouadi, M.-O. Cordier, and R. Quiniou

Definition 7. (Global skyline points) The global skyline set of the space
D = S

⋃
Z on the dataset E, is defined by GSky(D,E) =

{p ∈ Sky(D,E) | ∀ q ∈ Sky(D,E), � di ∈ Z, p =S q ∧ p(di) �=di q(di)}
Some skyline points are qualified order-sensitive skyline points because, depend-
ing on the preferences associated with dynamic dimensions, these points may be
skyline or not. Note first that no global skyline points is order sensitive. Second,
CutSky points have to be searched among order sensitive skyline points.

Definition 8. (Order-sensitive skyline points) The order-sensitive skyline
set of the space D on the dataset E, is defined by
OsSky(D,E) = {p ∈ Sky(D,E) | p /∈ GSky(D,E)} or equivalently
OsSky(D,E) = Sky(D,E) − GSky(D,E).

Example 6. Let S = {Price, Distance} and Z = {Gr, Air}.
Then GSky(D,E) = {a, b, e} and OsSky(D,E) = {c, d, f, h}.

4.2 Skyline Associated with Dynamic Dimensions

This section details step 2 of our approach. In this step, we pre-compute the
useful information that does not depend on the dynamic preferences provided
by users. For each dimension di with dynamic preferences, we introduce the
candidate skyline point (CPdi), the new skyline point set (NewSky(di,℘

j
i )
) and

the compromise candidate point set (CandComp(di,℘
j
i )
).

The set CPdi represents the points that may become skyline points over the
dimension di. It is the set of points from OsSky(D,E):

(1) having on di ∈ Z a value different from any point of GSky(D,E) that
dominates them,

(2) having the same value on the static dimensions but different values on di ∈ Z.

In the following, p ≺j
di

⋃
S q indicates that p dominates q on the subspace di

⋃
S

according to the first order preference ℘j
i of the dimension di.

Definition 9. (Candidate skyline points) The candidate skyline point set
of the dynamic dimension di, is defined by CPdi =
{p ∈ OsSky(D,E) | ∃ q ∈ GSky(D,E), q ≺S p, p(di) �=di q(di)}

⋃
{p ∈ OsSky(D,E) | ∃ q ∈ OsSky(D,E), q =S p, p(di) �=di q(di)}

Example 7. Let S = {Price, Distance} and di = {Gr}. Then CPGr = {c, d, f, h}.
To find the new skyline after the introduction of the new dimension di, it is
sufficient to test the points in CPdi instead of all non-skyline points. This can
reduce significantly the number of domination tests.

NewSky(di,℘
j
i )

is the set of points in CPdi that are preferred to the points in

GSky(D,E) according to the first order preference ℘j
i = vj <di ∗. Intuitively,

NewSky points are equivalent to MaxSky points on di according to ℘j
i .

Definition 10. (New skyline points)
The new skyline point set of the dynamic dimension di, is defined by
NewSky(di,℘

j
i )

= {p ∈ CPdi | ∀ q ∈ GSky(D,E)
⋃

{ CPdi − p}, q ⊀j
di

⋃
S p}



Incremental Computation of Skyline Queries with Dynamic Preferences 227

Algorithm 1. Calculate CandComp(di,℘
j
i )

input : di: a dimension, ℘j
i : a first order preference on di, NewSky

(di,℘
j
i
)
: skyline points

added by di for ℘j
i , GSky(D,E): global skyline set, CPdi

: candidate skyline set
output: CandComp

(di,℘
j
i
)

CandComp
(di,℘

j
i
)
← ∅

1

foreach p ∈ {CPdi
−NewSky

(di,℘
j
i
)
} do

2
Setp ← ∅3
foreach q ∈ {GSky(D,E)

⋃
NewSky

(di,℘
j
i
)
} do

4
foreach dk ∈ {di}

⋃
S do5

if p ≺j
dk

q then6
Setp ← Setp

⋃
q7

CandComp
(di,℘

j
i
)
← CandComp

(di,℘
j
i
)

⋃{(p, Setp)}8

Example 8. NewSky(Gr,H<Gr∗) = {c, d, f, h}.

CandComp(di,℘
j
i )

represents the set of points that may become skyline com-

promises (i.e. compromise candidates) when considering a new dimension (cf.

Algorithm 1). They are computed for each first order preference ℘j
i on di.

Definition 11. (Compromise candidate points)
Let E′ = (CPdi - NewSky(di,℘

j
i )
) and E′′ = (GSky(D,E)

⋃
NewSky(di,℘

j
i )
).

The compromise candidate points associated with the preference ℘j
i is a set of

pairs (p, Setp) defined by CandComp(di,℘
j
i )

=

{(p, Setp) ∈ E′ ×P(E′′) | ∀q ∈ P(E′′), ∃dk ∈ {di}
⋃
S, p ≺j

dk
q}.

Example 9. CandComp(Air,R<Air∗) = {(f, {a})} where the notation {(f, {a})}
means that f belongs to CandComp(Air,R<Air∗) because f dominates a on at least
one dimension from {Air}

⋃
S (here Distance).

4.3 EC2Sky Structure

Now, let us consider how to construct an EC2Sky data structure to store ef-
ficiently all the precomputed information. Our aim is to avoid building a data
structure containing all the combinations of the dynamic preferences on all di-
mensions as proposed in [3] . In section 5.1 and 5.2 and thanks to theorem 2, we
have shown that the skyline of an extended dimensional subspace can be com-
puted by taking into account first order preferences only. We propose to store in
the EC2Sky structure all the sets NewSky and CandComp associated to each
first order preference in each dimension.

For each dimension di of Z, we compute and store CPdi and for each first
order preference on di, we compute and store the two sets: NewSky(di,℘

j
i )

and

CandComp(di,℘
j
i )

related to first order preference j on dimension di. The sets

NewSky(di,℘
j
i )

and CandComp(di,℘
j
i )

associated with any possible first order

preference on dimension Hotel group or Airline are presented in Table 2.



228 T. Bouadi, M.-O. Cordier, and R. Quiniou

Now, we evaluate the space complexity of the EC2Sky structure. Let m be the
number of dynamic dimensions and c be the maximal cardinality of a dynamic
dimension. The space complexity of the EC2Sky structure is given by:

m∑

i=0

(c) = O(c.m)

We can note that the size of the EC2Sky structure is significantly smaller than
the number of possible n − th order preferences given by:

(

c−1∑

i=0

(Pi(c)))
m = O((c.c!)m)

Where Pi(c) is the number of permutations of ordering i elements from c ele-
ments. The space complexity of the EC2Sky structure is also significantly smaller
than the space complexity of IPO-tree structure given by:

m∑

i=0

(c + 1)
i
= O(c

m
)

For example, when m = 3 and c = 40, the number of stored preferences in the
EC2Sky structure is 123 only, while in IPO-tree structure is 70, 644, and the
number of all possible n − th order preferences (n ∈ 1, .., c), is 4.1 ∗ 109. This is
574.35 times smaller than the IPO-tree and 714, 502, 572 times smaller than the
number of all possible n − th order preferences. The difference is more obvious
when the number of dimensions m is high.

4.4 Query Evaluation

In this section, we describe step 3 of our proposal. The information precomputed
and stored in step 1 and 2 is used in step 3 to calculate, interactively, the skyline
set according to the specified preferences in the user query.

One dimension with dynamic preferences. First, we consider only one dimension
with dynamic preferences in the dimensional space D. According to the user
query, we are faced with two cases:

(i) Query with first order preferences : the skyline associated with a first-order

preference ℘j
i is : Sky({di

⋃
S,E)(Z,℘j

i )
=GSky(D,E)

⋃
NewSky(di,℘

j
i )
. The two

latter sets are stored in step 2. Recall that, when dealing with one dimension
only, there is no compromise points (CompSky = ∅).

Example 10. We use the EC2Sky structure in Table 2 to illustrate the different
steps of a query evaluation. The skyline (stored in Table 2) associated with the

Table 2. The EC2Sky structure of the running example

GSky = {a, b, e}
CPGr = {c, d, f, h} CPAir = {f}

℘ = M <Gr ∗ ℘ = T <Gr ∗ ℘ = H <Gr ∗ ℘ = R <Air ∗ ℘ = G <Air ∗ ℘ = W <Air ∗
NewSky{Gr,℘} NewSky{Air,℘}

{f, h} {} {c, d, f, h} {} {} {f}
CandComp{Gr,℘} CandComp{Air,℘}

{} {(f, {a}), (h, {a})} {} {(f, {a})} {(f, {a})} {}



Incremental Computation of Skyline Queries with Dynamic Preferences 229

Algorithm 2. Calculate NewCompSky(Di, E)

input : EC2Sky structure, GSky(D,E): global skyline points

output: NewCompSky(Di, E)

CandCompSet =

i⋃ j⋃
CandComp

(di,℘
j
i
)1

NewCompSky(Di, E)← ∅2
foreach p ∈ CandCompSet do3

// Compute the set of points dominated by p on at least one dimension of Z
Dominated(p) ← {q|∃di ∈ Z, p ≺di

q}4

if5

Dominated(p) = Sky(Di−1, E)
⋃

Sky(di
⋃

S,E)− (CutSky(Di−1)
⋃

CutSky(di
⋃

S)
then

NewCompSky(Di, E)← NewCompSky(Di, E)
⋃{p}6

Dominance test over all the elements of the set NewCompSky(D,E)7

preference ℘1 = {M <Gr ∗} is computed as follow:
Sky({Gr}

⋃
S,E)(Z,M<Gr∗)= GSky(D,E)

⋃
NewSky{Gr,M<Gr∗}

= {a, b, e}
⋃

{f, h}= {a, b, e, f, h}.

(ii) Query with n− th order preferences : in this case we use the merging property
of Wong et al. [3] (see Theorem 1). This is illustrated by the following example.

Example 11. Suppose now that preference ℘1 is refined to ℘′ = {M <Gr

H <Gr ∗}. The resulting skyline can be computed from the skyline related to
the preferences ℘1 = {M <Gr ∗} and ℘2 = {H <Gr ∗} (stored in Table 2), as
follow:
Sky({Gr}

⋃
S,E)(Z,M<Gr∗) = {a, b, e, f, h} ( cf. example 10), which is the sky-

line for ℘1. In the same way, Sky({Gr}
⋃
S,E)(Z,H<Gr∗) = {a, b, e, c, d, f, h},

which is the skyline for ℘2. Finally, to compute ℘′ = {M <Gr H <Gr ∗}, we use
the merging property (Theorem 1): Sky(D,E)(Z,M<GrH<Gr∗) =
(Sky({Gr}

⋃
S,E)(Z,M<Gr∗)

⋂
Sky({Gr}

⋃
S,E)(Z,H<Gr∗))

⋃
PSky(D,E)(Z,M<Gr∗)= ({a, b, e, f, h}

⋂
{a, b, e, c, d, f, h})

⋃
{f, h}={a, b, e, f, h}

Several dimensions with dynamic preferences. Second, we consider the case of
several dynamic dimensions which is more complex. According to definition 4
and 6, some skyline points (CutSky points) may be disqualified when a new
dimension is introduced, while new skyline points (CompSky points) may appear
(the computation of CompSky points is described by Algorithm 2).

We are now in position to detail the EC2Sky method. Algorithm 3 describes
the general process of EC2Sky dedicated to step 3 (the computation of changing
elements of the skyline). The sets CompSky (Algorithm 3, line 11) and the union
of CutSky (Algorithm 3, line 10) are computed. As stated by the incremental
skyline theorem (Theorem 2), the final skyline is obtained by eliminating all the
CutSky points and by adding all the CompSky points to the union of skylines
related to queries involving one dynamic preference (Algorithm 3, line 12).

Example 12. The skyline associated with the preferences ℘ = {M <Gr H <Gr

∗, G <Air ∗} is computed from the skyline associated with the preferences
℘1 = {M <Gr H <Gr ∗} and ℘2 = {G <Air ∗}. Let D1 = {Price,Distance,Gr}
and D2 = {Price,Distance,Gr,Air}. The skyline associated with ℘1 and ℘2 is



230 T. Bouadi, M.-O. Cordier, and R. Quiniou

Algorithm 3. EC2Sky(Sky(D,E)(Z,℘))

input : Sky(D,E)(Z,℘):skyline query, EC2Sky structure
output: Sky(D,E)(Z,℘)

Sky(D
0
, E)(Z,℘) ← GSky(D,E)1

for i← 1 to m = |Z| do2
if ℘i = ∅ then3

Sky(di

⋃
S,E)(Z,℘) ← GSky(D,E)

⋃
CPdi4

else5

if ℘i = ℘j
i then6

Sky(di

⋃
S,E)(Z,℘) ← GSky(D,E)

⋃
NewSky

(di,℘
j
i
)7

else8
Use merging property9

Computation of CutSky(Di−1) (resp. CutSky(di

⋃
S))10

Computation of NewCompSky(Di, E); // Algorithm 211

Sky(Di, E)(Z,℘) ← Sky(Di−1, E)(Z,℘)

⋃
Sky(di

⋃
S,E)(Z,℘)

⋃
12

NewCompSky(Di, E)− (CutSky(Di−1)
⋃

CutSky(di
⋃

S))

Sky(D,E)(Z,℘) ← Sky(Dm, E)(Z,℘)13

computed as in example 11. Sky(D1, E)(Z,℘1) = {a, b, e, f, h} and
Sky({Air}

⋃
S,E)(Z,℘2) = {a, b, e}.

Since, we have two dimensions with dynamic preferences we compute the sets
CutSky(D1), CutSky({Air}

⋃
S) and NewCompSky(D2, E). For this exam-

ple, CutSky(D1) = ∅, CutSky({Air}
⋃
S) = ∅ and NewCompSky(D2, E) =

∅. Finally, Sky(D2, E)(Z,℘) = Sky(D1, E)(Z,℘1)

⋃
Sky({Air}

⋃
S,E)(Z,℘2) =

{a, b, e, f, h}.
Our proposal provides the user with a way to express preferences and with the
ability to change them without being penalized by long response times. A good
performance is achieved by storing only the minimal amount of information re-
quired to enable quick and easy updates. The experimental evaluation presented
in the following highlights the relevance of the proposed solution.

5 Experiments

In this section, we report an experimental evaluation of our algorithm EC2Sky
on synthetic data sets. EC2Sky is implemented in C/C++ and the experiments
were performed on a 3GHz CPU with 16-Gbyte memory on a Linux platform. For
the static dimensions, the data were produced by the generator released by the
authors of [8]. Three kinds of data sets were generated: independent data, corre-
lated data and uncorrelated data. The description of these data sets can be found
in [8]. Like in [3], we only show the experimental results for the uncorrelated data
sets. The results for independent data sets and correlated data sets are similar,
but the execution times are much shorter for correlated data sets. The dynamic
dimensions were generated according to a Zipfian distribution [13]. By default, we
set the Zipfian θ parameter to 1.We obtained 200, 000 tuples for 4 dimensions with
static order. The number of dynamic dimensions varied from 5 to 8 and the car-
dinality of these dimensions from 2 to 5. We chose a query template such that the
most frequent value of some dynamic dimension has the highest priority over all
other values. This represents a parameter that becomes more difficult to manage
as the skyline tends to be larger.



Incremental Computation of Skyline Queries with Dynamic Preferences 231

Fig. 1. Scalability with respect to dimensionality

Fig. 2. Scalability with respect to database size

In the following experiments, we compare the performance of our algorithm
EC2Sky with algorithm IPO-tree [3], in terms of the execution time and the
storage size.

Scalability with Respect to Dimensionality. We fix the number of static
dimensions to 4 and we vary the number of dynamic dimensions from 1 to 4.
Figure 1 shows that the execution time and the storage size of both EC2Sky
and IPO-tree increase with the number of dynamic dimensions. However, the
increase rate of IPO-tree is greater than the increase rate of EC2Sky. This is
because of the complexity of the preferences tree built by IPO-tree. In contrast
with the size of the IPO-tree which is in O(c ∗ m). The table built by EC2Sky
has a size in O(c∗m). This induces a substantial increase of the storage size but
which evolves more slowly than the IPO-tree. We have also studied the variation
of the number of dimensions with static preferences when the number of dynamic
dimensions is fixed to be 2. The results are similar to those in Figure 1.

Scalability with Respect to the Database Size. In this experiment, the
number of tuples of the dataset varies from 50, 000 to 200, 000. Figure 2 shows
that the execution time and the storage size of both EC2Sky and IPO-tree in-
crease with the size of the dataset. This is because the size of the information
stored and analyzed increases with the size of the dataset. However, our method



232 T. Bouadi, M.-O. Cordier, and R. Quiniou

Fig. 3. Scalability with respect to the cardinality of the dynamic dimensions

is more efficient than the IPO-tree method. IPO-tree stores all the skylines as-
sociated to all possible combinations of the different first order preferences of all
the dynamic dimensions whereas EC2Sky stores only the skyline points corre-
sponding to the first order preferences. The skyline of the various combinations
of preferences are derived from simple operations of intersection and union.

Scalability with Respect to the Cardinality of Dynamic Dimensions.
We vary the cardinality of the dynamic dimensions from 2 to 5. Figure 3 shows
that the execution time and the storage size of both EC2Sky and IPO-tree
increase when the cardinality of the dimensions increases. Once more, EC2Sky
is more efficient than IPO-tree. Due to its exponential size, the IPO-tree becomes
more complex and larger when the cardinality of dimensions (c) increases. We
can also observe a significant increase of the related execution time.

6 Conclusion

In this paper, we have proposed a new efficient method to compute skyline
queries in the presence of dimensions associated with dynamic user preferences.
We have investigated preferences on dimension values that can be expressed by
any partial or complete order, with a particular focus on the compromise points
which are important in decision making. Our approach, is based on a materializa-
tion of the first order preferences, that can respond efficiently to skyline queries
related to user preferences even in the context of large volumes of data. The ex-
perimentations presented in this paper highlight the performance improvements
of EC2Sky compared to IPO-tree [3].

The consideration of dimensions with dynamic preferences opens several
promising future research directions. First, to demonstrate the usefulness of our
method, we want to experiment our algorithm on a real data set. We are partic-
ularly interested in the analysis of simulation results from a biophysical model
to extract the most polluting plots in a watershed with respect to different anal-
ysis criteria. Another possible future direction is to investigate how to compute
skyline queries in the context of hierarchical and aggregated data. The adopted
approach would search the best compromises along the set of axes. However, this
approach raises several problems. One is to define a computation adapted to the
level of the explored hierarchy. Another is to define the semantics of skyline
points at different levels of granularity.



Incremental Computation of Skyline Queries with Dynamic Preferences 233

Acknowledgments. This work is part of the ACASSYA project supported by
the French National Agency for Research (ANR SYSTERRA).

References

1. Sawaragi, Y., Nakayama, H., Tanino, T.: Theory of Multiobjective Optimization.
Academic Press, Orlando (1985)

2. Räıssi, C., Pei, J., Kister, T.: Computing closed skycubes. PVLDB 3(1), 838–847
(2010)

3. Wong, R.C.W., Fu, A.W.C., Pei, J., Ho, Y.S., Wong, T., Liu, Y.: Efficient skyline
querying with variable user preferences on nominal attributes. PVLDB 1(1), 1032–
1043 (2008)

4. Wong, R.C.W., Pei, J., Fu, A.W.C., Wang, K.: Online skyline analysis with dy-
namic preferences on nominal attributes. IEEE Trans. Knowl. Data Eng. 21(1),
35–49 (2009)

5. Yuan, Y., Lin, X., Liu, Q., Wang, W., Yu, J.X., Zhang, Q.: Efficient computation
of the skyline cube. In: VLDB, pp. 241–252 (2005)

6. Tao, Y., Xiao, X., Pei, J.: Efficient skyline and top-k retrieval in subspaces. IEEE
Trans. on Knowl. and Data Eng., 1072–1088 (2008)

7. Huang, Z., Guo, J., Sun, S., Wang, W.: Efficient optimization of multiple subspace
skyline queries. J. Comput. Sci. Technol, 103–111 (2008)

8. Borzsonyi, S., Kossmann, D., Stocker, K.: The skyline operator. In: Proc. of the
17th ICDE, pp. 421–430. IEEE Computer Society (2001)

9. Mindolin, D., Chomicki, J.: Preference elicitation in prioritized skyline queries.
VLDB J 20(2), 157–182 (2011)

10. Brando, C., Goncalves, M., González, V.: Evaluating Top-k Skyline Queries over
Relational Databases. In: Wagner, R., Revell, N., Pernul, G. (eds.) DEXA 2007.
LNCS, vol. 4653, pp. 254–263. Springer, Heidelberg (2007)

11. Bouadi, T., Bringay, S., Poncelet, P., Teisseire, M.: Requêtes skyline avec prise en
compte des préférences utilisateurs pour des données volumineuses. In: EGC 2010,
pp. 399–404 (2010)

12. Balke, W., Guntzer, U., Siberski, W.: Exploiting indifference for customization of
partial order skylines. In: Proc. of the 10th IDEAS, pp. 80–88. IEEE Computer
Society (2006)

13. Trenkler, G.: Univariate discrete distributions : N.L. Johnson, S. Kotz and A.W.
Kemp: 2nd edn. John Wiley, New York (1992) ISBN 0-471-54897-9; Computational
Statistics & Data Analysis, 240–241 (1994)



Efficient Discovery of Correlated Patterns

in Transactional Databases
Using Items’ Support Intervals

R. Uday Kiran and Masaru Kitsuregawa

Institute of Industrial Science, The University of Tokyo, Komaba-ku, Tokyo, Japan
{uday_rage,kitsure}@tkl.iis.u-tokyo.ac.jp

http://www.researchweb.iiit.ac.in/~uday_rage

http://www.tkl.iis.u-tokyo.ac.jp/Kilab/Members/memo/kitsure_e.html

Abstract. Correlated patterns are an important class of regularities
that exist in a transactional database. CoMine uses pattern-growth tech-
nique to discover the complete set of correlated patterns that satisfy
the user-defined minimum support and minimum all-confidence con-
straints. The technique involves compacting the database into FP-tree,
and mining it recursively by building conditional pattern bases (CPB)
for each item (or suffix pattern) in FP-tree. The CPB of the suffix pat-
tern in CoMine represents the set of complete prefix paths in FP-tree
co-occurring with itself. Thus, CoMine implicitly assumes that the suf-
fix pattern can concatenate with all items in its prefix paths to generate
correlated patterns of higher-order. It has been observed that such an as-
sumption can cause performance problems in CoMine. This paper makes
an effort to improve the performance of CoMine by introducing a novel
concept known as items’ support intervals. The concept says that an item
in FP-tree can generate correlated patterns of higher-order by concate-
nating with only those items in its prefix-paths that have supports within
a specific interval. We call the proposed algorithm as CoMine++. Exper-
imental results on various datasets show that CoMine++ can discover
high correlated patterns effectively.

Keywords: Data mining, Knowledge Discovery in Databases, Corre-
lated patterns and Pattern-growth technique.

1 Introduction

Mining frequent patterns [2] from transactional databases has been actively and
widely studied in data mining [3,5]. A major obstacle for the popular adoption
of frequent pattern mining in real-world applications is its failure to capture the
true correlation relationship among data objects [4]. To confront the obstacle,
researchers have made efforts to discover correlated patterns using alternative
measures [4,9,11,12]. Although there exists no universally accepted best measure
to judge the interestingness of a pattern, all-confidence [9] is emerging as a
measure that can disclose true correlation relationships among data objects [13].

S.W. Liddle et al. (Eds.): DEXA 2012, Part I, LNCS 7446, pp. 234–248, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

http://www.researchweb.iiit.ac.in/~uday_rage
http://www.tkl.iis.u-tokyo.ac.jp/Kilab/Members/memo/kitsure_e.html


Discovering Correlated Patterns in Transactional Databases 235

An interesting application of correlated patterns is the activity recognition for
people with dementia [10]. The model of frequent and correlated patterns is as
follows [8].

Let I = {i1, i2, · · · , in} be a set of items, and DB be a database that consists
of a set of transactions. Each transaction T contains a set of items such that
T ⊆ I. Each transaction is associated with an identifier, called TID. Let X ⊆ I
be a set of items, referred as an itemset or a pattern. A pattern that contains
k items is a k-pattern. A transaction T is said to contain X if and only if
X ⊆ T . The support of a pattern X in DB, denoted as S(X), is the number
of transactions in DB containing X . The pattern X is frequent if it occurs no
less frequent than the user-defined minimum support (minSup) threshold, i.e.,
S(X) ≥ minSup. The all-confidence of a pattern X , denoted as all-conf(X),
can be expressed as the ratio of its support to the maximum support of an

item within it. That is, all-conf(X) =
S(X)

max{S(ij)|∀ ij ∈ X} . A pattern X is

said to be all-confident or associated or correlated if S(X) ≥ minSup and
all -conf (X ) ≥ minAllConf , where minAllConf is the user-defined minimum
all-confidence threshold.

Example 1. Consider the transactional database of 20 transactions shown in
Table 1. The set of items I = {a, b, c, d, e, f, g, h}. The set of items a and b,
i.e., {a, b} is a pattern. It is a 2-pattern. For simplicity, we write this pattern as
“ab”. It occurs in 8 transactions (tids of 1, 2, 7, 10, 11, 13, 16 and 19). Therefore,
the support of “ab,” i.e., S(ab) = 8. If the user-specified minSup = 3, then
“ab” is a frequent pattern because S(ab) ≥ minSup. The all -confidence of “ab”,
i.e., all -conf (ab) = 8

max(11,9) = 0.72. If the user-specified minAllConf = 0.63,

then “ab” is a correlated pattern because S(ab) ≥ minSup and all -conf (ab) ≥
minAllConf .

Table 1. Transactional database

TID ITEMS TID ITEMS TID ITEMS TID ITEMS

1 a, b 6 a, c 11 a, b 16 a, b
2 a, b, e 7 a, b 12 a, c, f 17 c, d
3 c, d 8 e, f 13 a, b, e 18 a, c
4 e, f 9 c, d, g 14 b, e, f, g 19 a, b, h
5 c, d 10 a, b 15 c, d 20 c, d, f

The problem statement of mining correlated patterns is as follows. Given
a transactional database (DB), and user-defined minimum support (minSup)
and minimum all-confidence (minAllConf) thresholds, discover the complete
set of correlated patterns in DB that satisfy both minSup and minAllConf
thresholds.

CoMine [8] extends FP-growth [6] to discover the complete set of correlated
patterns in a database. In particular, CoMine uses pattern-growth technique to
discover the patterns. The technique involves the following steps.



236 R. Uday Kiran and M. Kitsuregawa

i. The given database is compressed into a tree known as frequent pattern-tree
(FP-tree). The FP-tree retains the pattern association information.

ii. Using each item in the FP-tree as an initial suffix item (or pattern)1, CoMine
constructs its Conditional Pattern Base (CPB) consisting of the set of com-
plete prefix paths in the FP-tree co-occurring with the suffix item, then
construct its conditional FP-tree and perform mining recursively on such
a tree. The pattern-growth is achieved by the concatenation of the suffix
pattern with the frequent patterns generated from the conditional FP-tree.

The construction of initial CPB for the suffix item in FP-tree is a key step
because it reduces the search space effectively. Since the CPB of a suffix pattern
represents the set of complete prefix paths in the FP-tree co-occurring with
itself, the CoMine implicitly assumes that the suffix item can concatenate with
all items in its prefix paths to form correlated patterns of higher-order. This
assumption causes performance problems in CoMine. The reason is that all-
confidence facilitates the suffix item to generate correlated patterns of higher-
order by combining with only those items in its prefix-paths that have supports
within a specific interval range.

This paper makes an effort to discover correlated patterns effectively. The key
contributions of this paper are as follows:

i. This paper introduces a novel concept known as items’ support intervals. It
states that an item can combine with only those items having supports within
a specific interval to form correlated (or interesting) patterns of higher-order.
A methodology to find items’ support intervals for the correlated pattern
model has also been discussed in the paper.

ii. An improved CoMine, called CoMine++, has also been presented in the
paper using items’ support intervals. Unlike CoMine, the CPB of the suffix
item in CoMine++ represents the set of partial prefix-paths (i.e., involving
only those items that have support within the support interval of suffix item)
in FP-tree co-occurring with itself.

iii. Using the prior knowledge regarding the construction and mining of FP-tree,
CoMine++ uses a novel pruning technique to construct the CPB of the suffix
item effectively.

iv. Experimental results on both synthetic and real-world datasets show that
mining high correlated patterns with CoMine++ is time and memory effi-
cient, and highly scalable as well.

The rest of this paper is organized as follows. Section 2 discusses previous works
on mining correlated patterns. Section 3 describes the working of CoMine. Sec-
tion 4 discusses the performance problems of CoMine and introduces CoMine++
to mine correlated patterns. Experimental evaluations of CoMine and CoMine++
are reported in Section 5. Finally, Section 6 concludes with future research
directions.

1 In this paper, the suffix pattern with one item has been referred as suffix item for
simplicity purpose.



Discovering Correlated Patterns in Transactional Databases 237

2 Related Work

Since the introduction of frequent patterns in [2], numerous algorithms have been
discussed in the literature to mine frequent patterns from transactional databases
[5]. FP-growth [6] is a popular algorithm to discover frequent patterns. It uses
pattern-growth technique (discussed in Section 1) to discover frequent patterns.
The initial CPB of a suffix item in FP-growth represents the set of complete
prefix paths in the FP-tree co-occurring with itself. Such a CPB for the suffix
item is valid for FP-growth. It is because every suffix item (or pattern) in FP-
tree can concatenate with all other items in its prefix-paths to form frequent
patterns of higher-order.

Brin et al. [4] have introduced correlated pattern mining using lift and χ2 as
the interestingness measures. Lee et al. [8] have shown that correlated patterns
can be effectively discovered with all-confidence measure as it satisfies both
null-invariance and downward closure properties. The null-invariance property
facilitates the measure to disclose genuine correlation relationships without being
influenced by the object co-absence in a database. The downward closure property
facilitates in the reduction of search space as all non-empty subsets of a correlated
pattern must also be correlated. An FP-growth-like algorithm known as CoMine
was proposed in [8] to discover the patterns using both all-confidence and support
values. The performance issues of CoMine and the techniques to improve the
same are discussed in later parts of this paper.

CCMine is a variant of CoMine to discover confidence-closed correlated pat-
terns. Please note that CCMine also suffers from the same performance problems
as the CoMine. However, this paper focuses only on CoMine algorithm.

Kim et al. [7] havemade an effort to discover top-k correlated patterns using the
measures that satisfy null-invariance property. Since some of those measures (e.g.
cosine) do not satisfy anti-monotonic property, an apriori-like algorithm,
NICOMINER, has been proposed by introducing new pruning techniques.
Although their work is closely related to our work, their pruning techniques
cannot be directly extendable to discover correlatedpatterns using support and all-
confidencemeasures. The reason is that their work have not discussed anymethod-
ology to determine the support intervals for items if correlatedpatterns are defined
using both support and all-confidence measures. Moreover, NICOMINER suffers
from the same performance problems as the Apriori algorithm, which includes the
generation of huge number of candidate patterns andmultiple scans on the dataset.

CoMine performs better than NICOMINER as it is specifically designed only
for support and all-confidence measures using downward closure property. In the
next section, we describe the working of CoMine.

3 Working of CoMine

The CoMine uses pattern-growth technique to discover the complete set of cor-
related patterns in a database. The technique involves: (i) compressing the
database into FP-tree and (ii) recursive mining of FP-tree to discover the com-
plete set of correlated patterns.



238 R. Uday Kiran and M. Kitsuregawa

The FP-tree is a compact data structure for storing all necessary information
about frequent patterns in a database. Every branch of the FP-tree represents
a pattern, and the nodes along the branch are ordered decreasingly by the fre-
quency of the corresponding item, with leaves representing the least frequent
items. Compression is achieved by building the tree in such a way that overlap-
ping patterns are represented by sharing pre-fixes of the corresponding branches.
It has a header table containing two fields: item name (I), and their support
count (S). A row in the header table also contains the head of a list that links
all the corresponding nodes of the FP-tree.

The FP-tree is constructed with only two scans on the database. In the first
scan, all frequent items are found and sorted in support descending order. Using
the sorted order, the second scan constructs the FP-tree which stores all fre-
quency information of the original dataset. Mining the database then becomes
mining the FP-tree. For the user-defined minSup = 3 and minAllConf = 0.63,
the set of sorted frequent items found after first scan on the database of Table 1
are {{a : 11}, {b : 9}, {c : 9}, {d : 6}, {e : 5}, {f : 5}}. Figure 1 shows the FP-tree
constructed after performing the second scan on the database.

Mining correlated patterns using FP-tree of Figure 1 is shown in Table 2
and detailed as follows. Consider the item f , which is the last item in FP-tree,
as a suffix item. The item f occurs in four branches of the FP-tree of Figure
1. The paths formed by these branches are 〈acf : 1〉, 〈cdf : 1〉 〈ef : 2〉 and
〈bef : 1〉. Therefore, considering f as a suffix, its corresponding four prefix paths

{}null

a:11

b:8

e:2

c:6

d:6

f:1

e:2

f:2

b:1

e:1

f:1

c:3

f:1

I S NL
a

b
c
d
e
f

11

9
9
6
5
5

Fig. 1. FP-tree. The terms ‘I’, ‘S’ and ‘NL’ respectively denote item, support and
node-link.

Table 2. Mining correlated patterns with CoMine

Suffix Conditional Conditional Correlated
item Pattern Base FP-tree Patterns

f {{ac : 1}, {cd : 1}, {e : 2}, 〈e : 3〉 {ef : 3}
{be : 1}}

e {ab : 2} - -

d {c : 6} 〈c : 6〉 {cd : 6}
c {a : 3} - -

b {ea : 8} 〈a : 8〉 {ab : 8}



Discovering Correlated Patterns in Transactional Databases 239

are 〈ac : 1〉, 〈cd : 1〉, 〈e : 2〉 and 〈be : 1〉, which form its conditional pattern
base. Its conditional FP-tree contains only a single path, 〈e : 3〉. The items a,
b, c and d are not included in Conditional FP-tree because their support of 1
is less than minSup (also, the all-confidence values of af , bf , cf and df are
less than minAllConf). The concatenation of suffix pattern with conditional
FP-tree generates the correlated pattern {ef : 3}. Similar process is repeated for
other items in the FP-tree to discover the complete set of correlated patterns.

In the next section, we discuss the performance issues of CoMine and propose
techniques to improve its performance.

4 Proposed Algorithm

In this section, we first introduce the concept of items’ support intervals. This
term simplifies the understanding of performance issue in CoMine, which is dis-
cussed subsequently. Next, we propose the basic idea of incorporating the pro-
posed concept in CoMine to improve its performance. We call the improved
CoMine as CoMine++.

4.1 Items’ Support Intervals

The concept of items’ support intervals say that every item can generate inter-
esting patterns by combining with only those items having supports within a
specific interval. Finding the support interval for each item in the database is
non-trivial because it depends upon the following two factors: (i) the support
of an item and (ii) the user-defined threshold values’ for the measures. In this
paper, we make an effort to identify the items’ support interval for correlated
pattern model defined using support and all-confidence measures.

For the user-definedminAllConf andminSup thresholds, the support interval

of an item ij ∈ I is

⎡
⎣max

(
S(ij) × minAllConf,

minSup

)
,max

⎛
⎝ S(ij)

minAllConf
,

minSup

⎞
⎠
⎤
⎦.

The correctness is shown in Theorem 1, and is based on Properties 1 and 2 and
Lemmas 1 and 2.

Property 1. If X and Y are two patterns such that X ⊂ Y , then S(X) ≥ S(Y ).

Property 2. The maximum support a pattern X can have is min(S(ij)|∀ij ∈ X).
Therefore, the maximum all-confidence a pattern X can have is
min(S(ij)|∀ij ∈ X)

max(S(ij)|∀ij ∈ X)
.

Lemma 1. Let minAllConf be the user-defined minimum all-confidence thresh-
old value. The lower limit of a support interval for an item iq ∈ I having support
S(iq) is S(iq) × minAllConf .



240 R. Uday Kiran and M. Kitsuregawa

Proof. Let ‘ip’ and ‘iq’ be the two items (or 1-patterns) having supports such that
S(ip) < S(iq). The maximum all-confidence the pattern ‘ipiq’ (={ip, iq}) can

have is
S(ip)
S(iq)

(Property 2). If S(iq)×minAllConf > S(ip), then minAllConf >
S(ip)
S(iq)

(= all-conf(ipiq)). If S(iq) × minAllConf = S(ip), then minAllConf =
S(ip)
S(iq)

(= all-conf(ipiq)). Therefore, the lower limit of a support interval for an

item iq ∈ I with support S(iq) is S(iq) × minAllConf .

Lemma 2. Let minAllConf be the user-defined minimum all-confidence thresh-
old value. The upper limit of a support interval for an item iq ∈ I having support

S(iq) is
S(iq)

minAllConf
.

Proof. Let ‘iq’ and ‘ir’ be the two items (or 1-patterns) having supports such that
S(iq) < S(ir). Using Property 2, the maximum all-confidence for the pattern

‘iqir’ (={iq, ir}) can be
S(iq)
S(ir)

. If S(ir) >
S(iq)

minAllConf
, then minAllConf >

S(iq)

S(ir)
(= all-conf(iqir)). Therefore, the upper limit of a support interval for an

item iq ∈ I is
S(iq)

minAllConf
.

Theorem 1. For the user-defined minSup and minAllConf thresholds, the
support interval for an iq ∈ I with support S(iq) is⎡
⎣max

(
S(iq) × minAllConf,

minSup

)
, max

⎛
⎝ S(iq)

minAllConf
,

minSup

⎞
⎠
⎤
⎦.

Proof. The support interval for an item iq ∈ I for support measure is
[minSup, ∞). In other words, items having support no less than minSup can
combine with one another in all possible ways to generate frequent patterns of
higher-order. Using Lemmas 1 and 2, the support interval of an item iq ∈ I for

all-confidence measure is

[
S(iq) × minAllConf,

S(iq)

minAllConf

]
. Therefore, the

support interval for an item iq ∈ I for both support and all-confidence measures

is

⎡
⎣max

(
S(iq) × minAllConf,

minSup

)
, max

⎛
⎝ S(iq)

minAllConf
,

minSup

⎞
⎠
⎤
⎦.

Example 2. The support of f in Table 1 is 5. If minAllConf = 0.63 and
minSup = 3, then f can generate correlated patterns by combining with only
those items having frequencies in the range of [3, 8] (= [max(5 × 0.63, 3),
max( 5

0.63 , 3)]).

4.2 Performance Problems in CoMine

Since the initial CPB of a suffix item constitutes of the set of complete prefix
paths in the FP-tree co-occurring with itself, CoMine implicitly assumes that



Discovering Correlated Patterns in Transactional Databases 241

the suffix item can generate correlated patterns of higher-order by concatenating
with all items in its prefix path. However, this is not the seldom case because
all-confidence facilitates the suffix item to concatenate with only those items in
its prefix paths that have support within a specific interval range to generate the
patterns. As a result, CoMine suffers from the performance problems pertaining
to both memory and runtime requirements.

Example 3. Since the CPB of f contains a, b and c, CoMine implicitly assumes
that f can concatenate with a, b and c items to generate correlated patterns.
However, any correlated pattern containing f can never have the items, a, b and
c. It is because their supports do not lie within the support interval of f .

4.3 Basic Idea: Pruning Technique

Using the concept of items’ support intervals, the complete set of correlated
patterns can be discovered from FP-tree by building the CPB of the initial
suffix item with the set of partial prefix paths involving only those items that
have supports within its support interval.

To construct such CPB for a suffix item, one can assume that the support of
every item present in the prefix path of the suffix item needs to tested, which is
same as constructing CPB with complete set of prefix paths (as in CoMine). This
paper argues that such a process is not necessary. It is because of the following
pruning technique. If an item at level k in the prefix path of the suffix item fails
to have its support within the support interval of corresponding suffix item, then
all items lying in between the root node and the failed item (i.e., items lying in
levels 1 to k−1) will also fail to have their supports within the support interval of
corresponding suffix item. The correctness is shown in Lemma 3 and illustrated
in Example 4.

Lemma 3. Let 〈i1, i2, · · · , ik, ik+1〉, 1 ≤ k < n, be a branch in FP-tree such
that S(i1) ≥ S(i2) ≥ · · · ≥ S(ik) ≥ S(ik+1). If all-conf(ikik+1) < minAllConf ,
then all-conf(ijik+1) < minAllConf , where 1 ≤ j < k.

Proof. The prefix path for the suffix item ik+1 is 〈i1, i2, · · · , ik〉. If
all-conf(ik, ik+1) < minAllConf , then S(ik) >

S(ik+1)

minAllConf
(using Lemma

2). Since FP-tree is constructed in support descending order of items, it turns

out that S(ij) ≥ S(ik) >
S(ik+1)

minAllConf
, where 1 ≤ j < k. In other words,

all-conf(ijik+1) < minAllConf , 1 ≤ j < k.

Example 4. A prefix path for the suffix item f in FP-tree of Figure 1 is 〈a, c :
1〉. The support of c does not lie in the support interval of f , i.e., S(c) >

S(f)

minAllConf
. As a result, it can be stated without testing that the support

of a will not lie in the support interval of f , i.e., S(a) >
S(f)

minAllConf
.



242 R. Uday Kiran and M. Kitsuregawa

4.4 CoMine++ Algorithm

The proposed CoMine++ involves two steps: (i) Construction of FP-tree and
(ii) Mining FP-tree to discover the complete set of correlated patterns. The first
step is same as in CoMine. However, the second step is different, and is as fol-
lows. Considering each frequent item in the FP-tree as a suffix item, CoMine++
constructs its CPB with the set of partial prefix paths containing only those
items having supports within its support interval. Next, compress the CPB by
performing tree-merging operations, which involves merging the common nodes
in the CPB by summing up their respective supports. Next, conditional FP-tree
is built usingminSup andminAllConf constrains. The conditional FP-tree con-
tains only those items that have generated correlated patterns by concatenating
with the suffix item. Thus, subsequent recursive mining on conditional FP-tree
involves constructing CPBs with the set of complete prefix paths co-occurring
with the suffix pattern. The pattern-growth is achieved by the concatenation
of the suffix pattern with the correlated patterns generated from a conditional
FP-tree.

The working of CoMine++ is shown in Algorithm 1, Procedure 2 and Proce-
dure 3. The input parameters to CoMine++ are transactional database and the
user-defined minSup and minAllConf thresholds. The Algorithm 1 constructs
FP-tree using minSup threshold and calls Procedure 2 for mining correlated
patterns from FP-tree. Procedure 2 builds CPB for the suffix item with the set
of partial prefix paths involving only those items having supports within its sup-
port interval, performs tree-merging operation to compress the CPB, constructs
conditional FP-tree for the suffix item and calls Procedure 3 for recursive mining
of conditional FP-tree of the suffix item. The working of Procedure 3 resembles
Procedure 2. However, the variation is that Procedure 3 builds the CPB of the
suffix pattern with the complete set of prefix paths.

We now explain the working of CoMine++ using the database shown in
Table 1. Let minSup = 3 and minAllConf = 0.63. First, FP-tree shown in
Figure 1 is created using minSup = 3. Next, mining correlated patterns using
FP-tree is shown in Table 3 and detailed as follows. Consider the item f as
a suffix item. The support interval of f is [3, 7]. The item f occurs in four
branches of the FP-tree of Figure 1. The paths formed by these branches are
〈acf : 1〉, 〈cdf : 1〉 〈ef : 2〉 and 〈bef : 1〉 (see Figure 2(a)). Therefore, considering
f as a suffix, its corresponding four prefix paths are 〈ac : 1〉, 〈cd : 1〉, 〈e : 2〉
and 〈be : 1〉 (see Figure 2(b)). In the prefix path 〈ac : 1〉, the item c fails the
test (i.e., its support does not lie in the support interval of the suffix item f).
Using the pruning technique discussed in the basic idea, we neglect testing of
a in the prefix path (line 6 in Procedure 2) and directly select another prefix
path for testing. In the prefix path 〈cd : 1〉, the item d satisfies the test. As a
result, the item c is tested and is found that it fails the test. Similar process is
repeated for the other prefix paths of f . Finally, we neglect the items a, b and c
and construct CPB of f with only the items d and e, resulting in three branches
〈e : 1〉, 〈d : 1〉 and 〈e : 2〉 (see Figure 2(c)). Since two branches in the CPB
of f contain a common item e, tree-merging operation (line 8 in Procedure 2)



Discovering Correlated Patterns in Transactional Databases 243

Algorithm 1. CoMine++

INPUT: Transactional database DB, minimum support (minSup) and minimum all-
confidence (minAllConf)
OUTPUT: Complete set of correlated patterns.

1: The FP-tree is constructed in the following steps:

i. Scan the transactional database D once. Collect F , the set of frequent items,
and their support counts. Sort F in support descending order as L, the list of
frequent items.

ii. Create the root of an FP-tree, and label it as “null.” For each transaction t in D
do the following. Select and sort the frequent items in t according to the order
of L. Let the sorted frequent item list in t be [p|P ], where p is the first element
and P is the remaining list. Call insert tree([p|P ], T ), which is performed
as follows. If T has a child N such that N.item-name = p.item-name, then
increment N ’s count by 1; else create a new node N , and let its count be 1, its
parent link be linked to T , and its node-link to the nodes with the same item-
name via the node-link structure. If P is non-empty, call insert tree(P,N)
recursively.

2: The FP-tree is mined by calling Co-mine 1(Tree, null).

is performed on the CPB of f to create two branches 〈d : 1〉 and 〈e : 3〉 (see
Figure 2(d)). The conditional FP-tree of f contains only a single path, 〈e : 3〉,
d is not included because its support of 1 is less than minSup. The concatena-
tion of suffix pattern with conditional FP-tree generates the correlated pattern
{ef : 3}. Similar process is repeated for other items in the FP-tree to discover
the complete set of correlated patterns.

{}null

a:11 c:6

d:6

f:1

e:2

f:2

b:1

e:1

f:1

c:3

f:1

{}null

a:1 c:1

d:1

e:2b:1

e:1c:1

{}null

e:2d:1

{}null

e:3

(a) (b) (c) (d)

e:1 d:1

Fig. 2. Generating conditional pattern base of f . (a) Branches of FP-tree containing
f , (b) prefix paths of f , (c) partial prefix paths of f and (d) Final conditional pattern
base of f after merging its partial prefix paths.

5 Experimental Results

In this section, we evaluate the perform of CoMine and CoMine++ algorithms.
We show that CoMine++ is a better algorithm to mine highly correlated patterns
in different types of datasets. The algorithms are written in GNU C++ and run



244 R. Uday Kiran and M. Kitsuregawa

Procedure 2. Co-mine 1(Tree, α); Constructing the conditional pattern base
for frequent item or length-1 suffix pattern.

1: for each ai in the header of Tree do

2: Generate pattern β = α ∪ ai with all-conf =
S(β)

max item sup(β)
. {S(β) = S(ai)

in α-projected database}
3: Construct β-projected database as follows.
4: for each prefix path PPk of ai do
5: Starting from the last item in PPk and moving up the prefix path, test whether

their support is no less than max( S(ai)
minAllConf

,minSup).
6: Skip testing other items in PPk if an item at level l in PPk fails the test. It

is because other items lying in between the root node and the failed item in
PPk will fail the test.

7: Create a temporary branch involving only those items in PPk that satisfy the
test. Preserve the node counts of the items and their order in the temporary
branch.

8: Add the temporary branch in β-projected database. This step is similar to
insert tree function in Procedure 1. Reduce the size of β-projected database
by merging the common nodes and summing up their node counts.

9: end for{CoMine do not perform the above steps (i.e., lines from 4 to 9). It
simply constructs β-projected database with every item in a prefix path of β.}

10: Let Iβ be the set of items in β-projected database.
11: For each item in Iβ, compute its count in β-projected database;
12: for each bj ∈ Iβ do
13: if S(β ∪ bj) < minSup then
14: delete bj from Iβ; {pruning based on minimum support}
15: end if
16: if all-conf(β ∪ bj) < minAllConf then
17: delete bj from Iβ; {pruning based on minimum all-confidence}
18: end if
19: end for
20: construct β-conditional FP-tree with items in Iβ Treeβ.
21: if Treeβ �= ∅ then
22: Co-mine k(Treeβ, β);
23: end if
24: end for

Table 3. Mining correlated patterns with CoMine++

Item Conditional Conditional Correlated
Pattern Base FP-tree Patterns

f {{d : 1}, {e : 3}} 〈e : 3〉 {ef : 3}
e - - -

d {c : 6} 〈c : 6〉 {cd : 6}
c {a : 3} - -

b {a : 8} 〈a : 8〉 {ab : 8}



Discovering Correlated Patterns in Transactional Databases 245

Procedure 3. Co-mine k(Tree, α); Constructing the conditional pattern base
for length-k suffix pattern, where k ≥ 2.

1: for each ai in the header of Tree do

2: Generate pattern β = α ∪ ai with all-conf =
S(β)

max item sup(β)
. {S(β) = S(ai)

in α-projected database}
3: Get a set Iβ of items to be included in β-projected database. {No need to check

whether S(ij) ≤ min item sup(β)

minAllConf
}

4: for each item in Iβ, compute its count in β-projected database;
5: for each bj ∈ Iβ do
6: if S(β ∪ bj) < minSup then
7: delete bj from Iβ; {pruning based on minimum support}
8: end if
9: if all-conf(β ∪ bj) < minAllConf then
10: delete bj from Iβ; {pruning based on minimum all-confidence}
11: end if
12: end for
13: construct β-conditional FP-tree with items in Iβ Treeβ.
14: if Treeβ �= ∅ then
15: Co-mine k(Treeβ, β);
16: end if
17: end for

with the Ubuntu 10.04 operating system on a 2.66 GHz machine with 1GB mem-
ory. The runtime is expressed in seconds and specifies the total execution time,
i.e., CPU and I/Os.We pursued experiments on synthetic (T10I4D100K) and real-
world (BMS-WebView-1,BMS-WebView-2, Mushroom and Kosarak) datasets.
The datasets are available at Frequent Itemset Mining repository [1]. The details
of these datasets are shown in Table 4.

Please note that we are not comparing the proposed CoMine++ with the
NICOMINER [7]. It is because of two reasons: (i) CoMine performs better than
the NICOMINER as the latter suffers from the same performance problems as
the Apriori and (ii) NICOMINER is meant to discover top-k correlated patterns
and not the complete set of correlated patterns in a database.

Table 4. Dataset Characteristics. The terms “Max.”, “Avg.” and “Tran.” are respec-
tively used as the acronyms for “maximum”, “average” and “transaction“

Dataset Transa- Distinct Max. Avg. Type
ctions Items Trans. Trans.

Size Size

T10I4D100k 100000 870 29 10.102 sparse

BMS-WebView-1 59602 4971 267 2.5 sparse

BMS-WebView-2 77512 33401 161 2 sparse

Mushroom 8124 119 23 23.0 dense

Kosarak 990002 41270 2498 8.1 sparse



246 R. Uday Kiran and M. Kitsuregawa

5.1 Memory Tests on CoMine and CoMine++ Algorithms

Figure 3 (a), (b), (c) and (d) respectively show the number of nodes gener-
ated by CoMine and CoMine++ algorithms at different minAllConf values in
T10I4D100k, BMS-WebView-1, BMS-WebView-2 and Mushroom datasets, re-
spectively. The minSup used in these datasets are 0.1%, 0.1%, 0.1% and 25%,
respectively. The following observations can be drawn from this graph: (i) In-
crease in minAllConf (keeping minSup constant) has decreased the number of
nodes getting generated in both CoMine and CoMine++. It is because of the de-
crease in correlated patterns with the increase in minAllConf . (ii) CoMine++
generates relatively fewer numbers of nodes than CoMine with the increase in
minAllConf value. It is because of the decrease in the width of items’ support
intervals with the increase in minAllConf value.

Since the memory requirement of an algorithm depends on the number of
nodes being generated by an algorithm, it turns out that CoMine++ is more
memory efficient than CoMine.

 1e+06

 1.5e+06

 2e+06

 2.5e+06

 3e+06

 3.5e+06

 4e+06

 4.5e+06

 5e+06

 0  0.2  0.4  0.6  0.8  1

N
um

be
r 

of
 n

od
es

minAllConf

CoMine

CoMine++

 100000

 150000

 200000

 250000

 300000

 350000

 400000

 450000

 500000

 550000

 0  0.2  0.4  0.6  0.8  1

N
um

be
r 

of
 n

od
es

minAllConf

CoMine
CoMine++

 0

 200000

 400000

 600000

 800000

 1e+06

 1.2e+06

 1.4e+06

 0  0.2  0.4  0.6  0.8  1

N
um

be
r 

of
 n

od
es

minAllConf

CoMine
CoMine++

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 18000

 20000

 0  0.2  0.4  0.6  0.8  1

N
um

be
r 

of
 n

od
es

minAllConf

CoMine
CoMine++

(a) T10I4D100K (b) BMS-WebView-1

(c) BMS-WebView-2 (d) Mushroom

Fig. 3. Number of nodes generated in
CoMine and CoMine++ algorithms

 0

 20

 40

 60

 80

 100

 120

 140

 0  0.2  0.4  0.6  0.8  1

ru
nt

im
e

minAllConf

CoMine

CoMine++

 2.5

 3

 3.5

 4

 4.5

 5

 5.5

 6

 6.5

 7

 7.5

 0  0.2  0.4  0.6  0.8  1
ru

nt
im

e
minAllConf

CoMine
CoMine++

 8

 10

 12

 14

 16

 18

 20

 22

 24

 0  0.2  0.4  0.6  0.8  1

ru
nt

im
e

minAllConf

CoMine
CoMine++

 0.95

 1

 1.05

 1.1

 1.15

 1.2

 1.25

 0  0.2  0.4  0.6  0.8  1

ru
nt

im
e

minAllConf

CoMine
CoMine++

(a) T10I4D100K (b) BMS-WebView-1

(c) BMS-WebView-2 (d) Mushroom

Fig. 4. Runtime (in seconds) comparison
of CoMine and CoMine++ algorithms

5.2 Runtime Tests on CoMine and CoMine++ Algorithms

Figure 4 (a), (b), (c) and (d) respectively show the runtime taken by CoMine
and CoMine++ algorithms at different minAllConf values in T10I4D100k,
BMS-WebView-1, BMS-WebView-2 and Mushroom datasets, respectively. The
minSup used in these datasets are 0.1%, 0.1%, 0.1% and 25%, respectively. The
following three observations can be drawn from these graphs. (i) Increase in
minAllConf has decreased the runtime in both CoMine and CoMine++ algo-
rithms. It is because of decrease in the number of correlated patterns with the
increase in minAllConf value. (ii) CoMine++ has outperformed CoMine at
higher minAllConf values. It is because of the decrease in items’ support inter-
val which resulted in the construction of the initial CPB of a suffix item timely.
(iii) CoMine has performed better than CoMine++ at low minAllConf values.
It is because of increase in items’ support interval which resulted in CoMine++
to construct the CPB of the suffix item with almost all items in its prefix paths.



Discovering Correlated Patterns in Transactional Databases 247

5.3 Scalability Test on CoMine and CoMine++ Algorithms

In this experiment, we evaluate the scalability performance of CoMine and
CoMine++ algorithms on memory and runtime requirements by varying the
number of transactions in a database. We use real-world kosarak dataset for the
scalability experiment, since it is a huge sparse dataset. We divided the dataset
into ten portions of 0.1 million transactions in each part. Then we investigated
the performance of CoMine and CoMine++ algorithms after accumulating each
portion with previous parts while performing correlated pattern mining each
time. We fixed minSup = 0.1% and minAllConf = 0.5 for each experiment.
The experimental results are shown in Figure 5. The memory (represented in
number of nodes) and time in y-axes of the left and right graphs in Figure 5
respectively specify the required memory and total runtime with the increase
of database size. It is clear from the graphs that as the database size increases,
overall tree construction and mining time, and required memory increase. How-
ever, CoMine++ requires relatively less memory (nearly half of the memory
requirements of CoMine) and runtime with respect to the database size. There-
fore, it can be observed from the scalability test that CoMine++ can efficiently
mine correlated patterns over large datasets and distinct items with considerable
amount of runtime and memory.

 0
 20000

 40000

 60000

 80000

 100000

 120000

 140000

 160000

 180000

 200000

 1  2  3  4  5  6  7  8  9  9.9

n
u

m
b

e
r 

o
f 

n
o

d
e
s

database size

CoMine
CoMine++

(a) (b)

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 1  2  3  4  5  6  7  8  9  9.9

ru
n

ti
m

e

database size

CoMine
CoMine++

Fig. 5. Scalability test. (a) Memory requirement and (b) Runtime

In many real-world applications, users are generally interested in highly corre-
lated patterns. Thus, the proposed CoMine++ algorithm is a better choice over
the existing CoMine algorithm.

6 Conclusion

This paper argues that a pattern-growth algorithm that simply constructs the
CPB of the suffix item with every item in its prefix path can suffer from perfor-
mance problems. It is because some measures facilitate an item to combine with
only those items having supports within a specific interval to generate interesting
patterns of higher order. This paper introduced the concept of items’ support
intervals and proposed a methodology to determine it for the correlated pattern
model defined using support and all-confidence measures. A pattern-growth algo-
rithm, called CoMine++, has also been proposed to discover correlated patterns



248 R. Uday Kiran and M. Kitsuregawa

effectively. Unlike the traditional pattern-growth algorithms (such as CoMine),
CoMine++ discovers the complete set of correlated patterns by constructing the
initial CPB of the suffix item with only those items in its prefix paths that have
support within its support interval. A novel pruning technique has also been dis-
cussed to construct CPB of the suffix item effectively. Experimental results have
shown that proposed CoMine++ algorithm can efficiently mine highly correlated
patterns over the existing CoMine algorithm.

As a part of future work, we would like to extend the notion of items’ support
intervals to improve the performance of CCMine algorithm to discover closed
coverage patterns effectively. In addition, we would like to investigate the meth-
ods to determine the items’ support intervals for other measures.

References

1. Frequent itemset mining repository, http://fimi.cs.helsinki.fi/data/
2. Agrawal, R., Imieliński, T., Swami, A.: Mining association rules between sets of

items in large databases. In: SIGMOD 1993, pp. 207–216. ACM (1993)
3. Agrawal, R., Srikant, R.: Fast algorithms for mining association rules in large

databases. In: VLDB 1994, pp. 487–499 (1994)
4. Brin, S., Motwani, R., Silverstein, C.: Beyond market baskets: generalizing associ-

ation rules to correlations. SIGMOD Rec. 26(2), 265–276 (1997)
5. Han, J., Cheng, H., Xin, D., Yan, X.: Frequent pattern mining: Current status and

future directions. Data Mining and Knowledge Discovery 14(1) (2007)
6. Han, J., Pei, J., Yin, Y., Mao, R.: Mining frequent patterns without candidate

generation: A frequent-pattern tree approach. Data Min. Knowl. Discov. 8(1), 53–
87 (2004)

7. Kim, S., Barsky, M., Han, J.: Efficient Mining of Top Correlated Patterns Based on
Null-Invariant Measures. In: Gunopulos, D., Hofmann, T., Malerba, D., Vazirgian-
nis, M. (eds.) ECML PKDD 2011, Part II. LNCS, vol. 6912, pp. 177–192. Springer,
Heidelberg (2011)

8. Lee, Y.K., Kim, W.Y., Cai, D., Han, J.: Comine: efficient mining of correlated
patterns, pp. 581–584 (November 2003)

9. Omiecinski, E.R.: Alternative interest measures for mining associations in
databases. IEEE Trans. on Knowl. and Data Eng. 15(1), 57–69 (2003)

10. Sim, K., Phua, C., Yap, G., Biswas, J., Mokhtari, M.: Activity recognition using
correlated pattern mining for people with dementia. In: Conf. Proc. IEEE Eng.
Med. Biol. Soc. (2011)

11. Tan, P.-N., Kumar, V., Srivastava, J.: Selecting the right interestingness measure
for association patterns. In: KDD 2002, pp. 32–41. ACM, New York (2002)

12. Wu, T., Chen, Y., Han, J.: Re-examination of interestingness measures in pattern
mining: a unified framework. Data Min. Knowl. Discov. 21(3), 371–397 (2010)

13. Kim, W.-Y., Lee, Y.-K., Han, J.: CCMine: Efficient Mining of Confidence-Closed
Correlated Patterns. In: Dai, H., Srikant, R., Zhang, C. (eds.) PAKDD 2004. LNCS
(LNAI), vol. 3056, pp. 569–579. Springer, Heidelberg (2004)

http://fimi.cs.helsinki.fi/data/


S.W. Liddle et al. (Eds.): DEXA 2012, Part I, LNCS 7446, pp. 249–264, 2012. 
© Springer-Verlag Berlin Heidelberg 2012 

On Checking Executable Conceptual  
Schema Validity by Testing 

Albert Tort, Antoni Olivé, and Maria-Ribera Sancho 

Universitat Politècnica de Catalunya – Barcelona Tech 
{atort,olive,ribera}@essi.upc.edu 

Abstract. Ensuring the semantic quality of a conceptual schema is a 
fundamental goal in conceptual modeling. Conceptual schema testing is an 
emerging approach that helps to achieve this goal. In this paper, we focus on 
“what to test” and, more specifically, on the properties that test sets of 
conceptual schemas should have. We propose and formally define a set of four 
adequacy criteria which can be automatically checked in order to ensure, by 
testing, the necessary conditions for schema validity (correctness and 
relevance). The proposed criteria are independent from the languages of the 
schema and of the testing program. The criteria have been implemented in a 
prototype of a test processor able to execute test sets. The criteria have been 
applied to the test sets of large conceptual schemas. 

Keywords: Conceptual modeling, Validation, Semantic quality, Testing, 
Coverage, UML/OCL. 

1 Introduction 

According to the conceptual modeling quality framework proposed by [1], a 
conceptual schema of an information system has semantic quality when it is valid and 
complete. Validity means that the schema is correct and relevant. A conceptual 
schema is correct if the knowledge it defines is true for the domain, and it is relevant 
if the knowledge it defines is necessary for the system. Completeness means that the 
conceptual schema includes all relevant knowledge. 

Ensuring that a conceptual schema has semantic quality is a fundamental goal for 
its validation. This goal can be achieved by checking that the knowledge the system 
requires to know, in order to perform its functions, is the same as the knowledge 
defined by the conceptual schema.  

Some requirements engineering methodologies define the functions the system 
must perform by means of use cases. In these methodologies, checking the semantic 
quality of the conceptual schema can only be done with the participation of the 
system's stakeholders, using manual validation techniques such as inspections, desk-
checks, walkthroughs or prototypes [2,3].  

However, in modern requirements engineering methodologies, the functions the 
system must perform are defined by both use cases and concrete scenarios [2].  



250 A. Tort, A. Olivé, and M.-R. Sancho 

In these methodologies, checking the semantic quality of a conceptual schema can be 
automatically done by means of testing techniques. This is possible when three 
conditions are met: (1) the expected system's functions are captured by a set of 
concrete scenarios written in a formal language; (2) the conceptual schema is 
executable; and (3) there is a test processor that allows defining and executing test 
cases. When this happens, each scenario can be written as a test case. The test 
processor can execute it and check whether or not the conceptual schema makes the 
test case pass. 

When the system's functions are captured by a complete and correct set of 
scenarios written as test cases, and their execution produces the expected results, then 
we can ascertain that the conceptual schema is complete. If the conceptual schema 
were not complete, then some test case would not succeed. We can also ascertain that 
the part of the conceptual schema involved in the execution of the scenarios is correct, 
again because otherwise some test case would fail. However, it may happen that the 
conceptual schema is not valid, because the schema could include knowledge that is 
not relevant for the scenarios, and this irrelevant knowledge could even be incorrect.  

The main contribution of this paper is a set of four properties for checking the 
validity of conceptual schemas by testing. These properties are inspired by what is 
called adequacy criteria in the software testing field [4]. If a test set satisfies an 
adequacy criterion, then it is considered adequate to test the conceptual schema.  

We show that each of these criteria is a necessary condition for conceptual schema 
validity. The criteria are independent of each other but taken together they ensure the 
relevance of the defined knowledge. They also have the unifying (and interesting) 
characteristic that they ensure the satisfiability of the entity types, relationship types, 
integrity constraints and domain event types defined in a schema, which is 
a necessary property for its correctness [5].  

Moreover, the proposed criteria are independent from the conceptual schema 
language and from the testing language. We have implemented them in our test 
processor prototype [6] for test sets written in CSTL [7] and conceptual schemas 
written in UML/OCL. The proposed adequacy criteria have been applied in the testing 
of a condensed version of the osCommerce conceptual schema [8], a popular and 
widely used e-commerce system. Moreover, they have been used in the development 
of the complete conceptual schema of the popular osTicket system [9]. 

As far as we know, in the literature there have not been proposals of adequacy 
criteria for checking conceptual schema validity by testing. The work most related to 
ours is the study of desirable properties of conceptual schemas and the development 
of automated or semi-automated reasoning procedures for checking them (a 
representative set of recent papers is [10-16]). The most studied general properties are 
satisfiability and non-redundancy of integrity constraints, satisfiability of an entity or 
relationship type, and operation executability (or, in our terms, domain event 
occurrence). However, it is well known that the problem of reasoning with integrity 
constraints and derivation rules in its full generality is undecidable. Therefore, these 
procedures are restricted to certain kinds of constraints and derivation rules or 
domains, or they may not terminate in some circumstances [12]. In contrast, testing 
techniques can be applied to conceptual schemas with any kind of constraint or 



 On Checking Executable Conceptual Schema Validity by Testing 251 

derivation rule and they determine the relevance of the defined knowledge according 
to the expected functionalities.  

The structure of the paper is as follows. In the next section, we briefly review 
the main concepts and the notation used to define the conceptual schemas under test 
and the test sets. A conceptual schema of a civil registry domain is used as a running 
example throughout the paper. In Section 3 we present the four adequacy criteria. 
Section 4 comments on our implementation of the test criteria and reports two case 
study applications. Section 5 summarizes the conclusions and points out future work.  

2 Basic Concepts and Notation 

In this section, we briefly review the concepts and the notation we use to define the 
conceptual schemas. We also review the main characteristics of the Conceptual 
Schema Testing Language (CSTL) used in this paper in order to specify the example 
test sets. A complete definition of the CSTL language can be found in [7]. 

2.1 Conceptual Schema under Test  

A conceptual schema consists of a structural (sub)schema and a behavioral 
(sub)schema. The structural schema consists of a taxonomy of entity types (a set of 
entity types with their generalization/specialization relationships and the taxonomic 
constraints), a set of relationship types (attributes and associations), the cardinality 
constraints and a set of other constraints formally defined in OCL [17].  

We adopt UML/OCL as the conceptual modeling language, but the ideas presented 
here can also be applied to schemas in other languages [18,19]. Figure 1 shows the 
structural schema of a civil registry domain example that will be used throughout the 
paper. The civil registry records information about the birth and death of the people 
registered in municipalities. The marital status and the marriage relationships of the 
inhabitants are also maintained. The main purpose of civil registration systems is 
computing demographic information such as the population, the life expectancy, etc.  

The conceptual schema of Fig. 1 includes the specification of an OCL integrity 
constraint (Country::identifiesInhabitantsByCitizenId) in order to ensure that the 
inhabitants of a country are identifiable by a unique citizen identifier.  

Entity and relationship types may be base or derived. The population of the base 
entity and relationship types is explicitly represented in the Information Base (IB). If 
they are derived, there is a formal derivation rule in OCL that defines their population 
in terms of the population of other types. Figure 1 includes the derivation rules of five 
derived attributes (DeadPerson::ageAtDeath, Municipality::population, 
Municipality::lifeExpectancy, Country::population and Country::lifeExpectancy).  

The behavioral schema consists of a set of event types. We take the view that an 
event can be modeled as a special kind of entity, which we call event entity [20]. An 
event entity is an instance of an event type. Event types have characteristics, 
constraints and an effect. The characteristics of an event are the set of relationships 
(attributes or associations) in which it participates. The constraints are the conditions 
that events must satisfy in order to occur. An event constraint involves the 
characteristics and the state of the IB before the event occurrence. 



252 A. Tort, A. Olivé, and M.-R. Sancho 

citizenId : String
name : String
dateOfBirth : Date

Person

AlivePerson

maritalStatus : MaritalStatus

Municipality

name : String
/population : Natural
/lifeExpectancy : Real

DeadPerson

dateOfDeath : Date
/ageAtDeath : Real

Country

name : String
/population : Natural
/lifeExpectancy : Real

MaritalStatus

Single
Married
Divorced
Widowed

WomanMan

{disjoint, complete}

{disjoint, complete}

«enumeration»

IsRegisteredIn 1*

wife
0..1

husband
0..1

1*

mother
0..1

child
*

child
*

father
0..1

 

 
Fig. 1. Structural schema fragment of the civil registry example 

An event may occur in the state S of the IB if S satisfies all constraints and the 
event satisfies its event constraints. Each event type has an operation called effect() 
that gives the effect of an event occurrence. The effect is declaratively defined by the 
postcondition of the operation. We define both the event constraints and the 
postcondition in OCL.  

For domain event types, the postcondition defines the state of the IB after the event 
occurrence. It is assumed that the state of the IB after the event occurrence also 
satisfies all constraints defined over the IB. We deal with executable conceptual 
schemas, and therefore we need a procedural specification of the method of the 
effect() operation. A method is correctly specified if the IB state after its execution 
satisfies the postcondition and the IB constraints. In the work reported here, we write 
those methods using a subset of the CSTL, although we envision the use of standard 
languages for writing actions in UML schemas, such as the recent Action Language 
for Foundational UML (Alf) [21] proposed by the OMG, as soon as they become 
mature and associated compilers are developed. 

The example used throughout this paper considers the ordinary domain events 
Birth, Death, Marriage and Divorce.  Events that create countries and municipalities 
of a country are also considered (MunicipalityCreation and CountryCreation). 

Figure 2 shows the complete and formal specification in UML/OCL of the domain 
event Marriage including its initial integrity constraint (marriageIsAuthorized), its 
postcondition and the method of its effect() operation. 

 

context Country inv identifiesInhabitantsByCitizenId:  
 self.municipality.person->isUnique(citizenId) 

OCL Derivation rules
 

context Municipality::population:Natural 
derive: self.person->select(oclIsTypeOf(AlivePerson))->size() 
 

context Municipality::lifeExpectancy:Real 
derive: let deadPeople:Set(Person)=self.person->select(oclIsTypeOf(DeadPerson))   
        in  if deadPeople->size()>0 then 
    deadPeople.oclAsType(DeadPerson).ageAtDeath->sum() / deadPeople->size() 
 else 0.0  
 endif 

 

context Country::population:Natural 
derive: self.municipality.population->sum() 
 
context Country::lifeExpectancy:Real 
derive: let deadPeople:Set(Person)=  
   self.municipality.person->select(oclIsTypeOf(DeadPerson))->asSet()   
        in  if deadPeople->size()>0 then 
    deadPeople.oclAsType(DeadPerson).ageAtDeath->sum() / deadPeople->size() 
 else 0.0  
 endif 
 

context DeadPerson::ageAtDeath:Real  
 derive: dateOfDeath-dateOfBirth 
 
OCL Integrity constraints 



 On Checking Executable Conceptual Schema Validity by Testing 253 

 
Fig. 2. Marriage domain event specification 

2.2 The CSTL Language 

A CSTL program consists of a fixture (may be empty) and a set of one or more test 
cases. It is assumed that the execution of each test case of a CSTL program starts with 
an empty IB state. With this assumption, the test cases of a program are independent 
each other, and therefore the order of their execution is irrelevant. The fixture is a set 
of statements that create an IB state and define the values of the common program 
variables. The execution of a test case starts with the execution of the fixture.  

The basic construct of CSTL is the concrete test case. Figure 3 shows a test 
program that consists of a fixture and two test cases. 

The last statement of a concrete test case is an assertion, but in general there may 
be several assertions in the same test case. The verdict of a concrete test case is Pass 
if the verdict of all of its assertions is Pass. The objective of the conceptual modeler is 
to write test cases whose final verdict is Pass. 

In CSTL there are five kinds of assertions, but in this paper only two are used: 
asserting the occurrence of domain events and asserting the contents of an IB state, 
which we briefly describe in the following.  

In CSTL, an instance of an event type EventType1 is created with the statement: 

eventId := new EventType1(att1:= value1,...,attn:= valuen, 

       r1:= participants1,...,rm:= participantsm); 

The statement creates the instance eventId of EventType1, and assigns a value to its 
characteristics (attributes att1,...,attn and binary links with roles r1,...,rm). Figure 3 
shows several examples of statements that create an instance of a domain event type. 
Once the concrete event eventId has been created in a test case, in order to assert that 
it may occur in the current state of the IB the conceptual modeler writes: 

assert occurrence eventId; 

 

Marriage

effect()

«iniIC»marriageIsAuthorized()

WomanMan

«DomainEvent»

husband 1 wife1

Event constraint 

context Marriage::marriageIsAuthorized():Boolean  
 body: self.husband.oclIsTypeOf(AlivePerson)and self.wife.oclIsTypeOf(AlivePerson)and 
       self.husband.oclAsType(AlivePerson).maritalStatus <> MaritalStatus::Married and   
       self.wife.oclAsType(AlivePerson).maritalStatus <> MaritalStatus::Married 

 

Event postcondition

context Marriage::effect() 
 post: self.husband.wife=self.wife and 
   self.husband.oclAsType(AlivePerson). 
    maritalStatus=MaritalStatus::Married and 

self.wife.oclAsType(AlivePerson). 
    maritalStatus=MaritalStatus::Married 
 

Event method 

method Marriage::effect(){ 
self.husband.wife := self.wife; 
self.husband.maritalStatus := MaritalStatus::Married; 
self.wife.maritalStatus := MaritalStatus::Married; 
}



254 A. Tort, A. Olivé, and M.-R. Sancho 

The verdict of this assertion is determined as follows: 

− Check that the current IB state is consistent. The verdict is Error if that check fails 
(events may not occur in inconsistent IB states).  

− Check that the constraints of the event are satisfied. The verdict is Fail if any of the 
event constraints is not satisfied.  

− Execute the method of the corresponding effect() operation. 

 

Fig. 3. CSTL program about people registration in the civil registry example 

testprogram PeopleRegistration{ 
 

belgiumCreation := new CountryCreation(name:=’Belgium’); 
assert occurrence belgiumCreation; 
belgium := belgiumCreation.createdCountry; 
brusselsCreation := new MunicipalityCreation(name:=’City of Brussels’, country:=belgium); 
assert occurrence brusselsCreation;  
brussels := brusselsCreation.createdMunicipality; 
antwerpCreation := new MunicipalityCreation(name:=’Antwerp’, country:=belgium); 
assert occurrence antwerpCreation;  
antwerp := antwerpCreation.createdMunicipality; 
 
test familyWithoutChildren{ 

audreyBirth := new Birth(citizenId:=’AUU’, name:=’Audrey’, sex:=Sex::Woman, 
    dateOfBirth:=’10-10-1934’, municipality:=brussels); 
assert occurrence audreyBirth;  
audrey:= audreyBirth.createdPerson; 
assert true audrey.oclAsType(AlivePerson).maritalStatus = MaritalStatus::Single; 
alexBirth := new Birth(citizenId:=’ALL’, name:=’Alex’, sex:=Sex::Man,  
                       dateOfBirth:=’02-31-1936’, municipality:= antwerp); 
assert occurrence alexBirth;  
alex:= alexBirth.createdPerson; 
assert true alex.oclAsType(AlivePerson).maritalStatus = MaritalStatus::Single; 
assert equals brussels.population 1; 
assert equals antwerp.population 1; 
assert equals belgium.population 2; 
m := new Marriage(husband:=alex, wife:=audrey); 
assert occurrence m; 
assert true alex.oclAsType(AlivePerson).maritalStatus = MaritalStatus::Married; 
assert true audrey.oclAsType(AlivePerson).maritalStatus = MaritalStatus::Married; 
alexDeath := new Death(person:=alex, dateOfDeath:=’06-11-2003’); 
assert occurrence alexDeath; 
assert equals belgium.population 1; 
assert true audrey.oclAsType(AlivePerson).maritalStatus = MaritalStatus::Widowed; 

} 
 
test familyWithADaughter{ 

vincentBirth := new Birth(citizenId:=’VVV’, name:=’Vincent’, sex:=Sex::Man, 
          dateOfBirth=’01-01-1918’, municipality:= brussels); 
assert occurrence vincentBirth;  
vincent:= vincentBirth.createdPerson; 
emmaBirth := new Birth(citizenId:=’EEE’, name:=’Emma’, sex:=Sex::Woman,  
                       dateOfBirth:=’01-01-1922’, municipality:= brussels); 
assert occurrence emmaBirth;  
emma:= emmaBirth.createdPerson; 
m := new Marriage(husband:=vincent, wife:=emma); 
assert occurrence m; 
julieBirth := new Birth(citizenId:=’JJJ’, name:=’Julie’, sex:=Sex::Woman,  
                        dateOfBirth:=’01-01-1953’,  
                        father:=vincent, mother:=emma, municipality:= brussels); 
assert occurrence julieBirth;  
div := new Divorce(husband:=vincent, wife:=emma); 
assert occurrence div; 
vincentDeath := new Death(person:=vincent, dateOfDeath:=’01-01-1996’); 
assert occurrence vincentDeath; 
emmaDeath := new Death(person:=emma, dateOfDeath:=’01-01-2007’); 
assert occurrence emmaDeath; 
assert equals brussels.lifeExpectancy 81.5; 
assert equals belgium.lifeExpectancy 81.5; 

} 
}  



 On Checking Executable Conceptual Schema Validity by Testing 255 

− Check that the new IB state is consistent. The verdict is Fail if any of the 
constraints is not satisfied. 

− Check that the event postcondition is satisfied. The verdict is Fail if the 
postcondition is not satisfied; otherwise the verdict of the whole assertion is Pass. 

It is often useful to include in a test case an assertion on the current state of the IB. Its 
purpose may be to check that derivation rules, navigational expressions or domain 
events behave as expected. In CSTL, to assert that the current state of the IB satisfies 
a boolean condition defined in OCL, the conceptual modeler writes: 

assert true booleanExpression; 

where booleanExpression is an OCL expression over the types of the IB and the 
variables of the test case. The verdict of the assertion is Error if the current state is 
inconsistent. The verdict is Pass if booleanExpression is true, and Fail otherwise. 
Additionally, CSTL includes similar assertions such as assert false, assert equals, 
assert not equals, etc. 

The test program of Fig. 3 contains several assertions about the state of the IB. The 
statement assert equals brussels.lifeExpectancy 81.5, for example, asserts 
that the life expectancy of the City of Brussels is 81.5. The verdict of this assertion is 
Pass if the conceptual schema derives the life expectancy as expected. The life 
expectancy in this example is expected to be the average of the ages at death 
(measured in years) of all the registered dead people within the municipality. 

3 Test Adequacy Criteria 

The main purpose of conceptual schema testing is exercising the schema in order to 
trigger failures [22]. In the previous section, we have seen how to test an executable 
conceptual schema CS by writing a set of tests TS and making them pass. However, 
not all possible test sets are equally adequate in order to increase the confidence about 
the semantic quality of the conceptual schema.  

For example, given a conceptual schema CS and having a test set TS whose verdict 
is Pass is not sufficient to check the schema validity. The reason is that the CS may be 
incomplete or may contain elements whose relevance has not been proved by TS.   

Then, the following question arises: Which are the basic properties that these tests 
should have? The key concept developed in the software testing field for this purpose 
is that of adequacy criterion [4]. A typical example, in program testing, is the criterion 
that requires that each statement of a program is executed at least once by a test set. 
Of course, many other criteria are possible. In the context of conceptual schema 
testing, we can say that an adequacy criterion C is a requirement on a test set TS of a 
conceptual schema CS such that if TS satisfies C then TS is considered adequate to 
test CS according to C.  

In this section, we present the main contribution of this paper: a basic set of four 
adequacy criteria for checking the validity of conceptual schemas by testing. The 
overall goal of this set is threefold: 1) determining which parts of the conceptual 
schema have been exercised by a test case, 2) determining which elements of the 



256 A. Tort, A. Olivé, and M.-R. Sancho 

schema are potentially irrelevant (or even incorrect) and 3) ensuring the satisfiability 
of the entity types, relationship types, integrity constraints and domain event types, 
which is a necessary property for correctness.  

If the four proposed criteria are simultaneously satisfied, then all the defined 
elements of the schema are relevant and satisfiable.  

In the following, we formally define the four criteria. We denote by TS a test set 
that consists of a set of one or more test cases TCi. The execution of a test case 
implies the execution of one or more test assertions TAk. TA denotes the set of all the 
test assertions whose verdict is Pass. 

3.1 Base Type Coverage 

The base types (entity types, attributes and associations) defined in a conceptual 
schema are valid if they are relevant and correct [1,2,20].  We denote by Tbase the set 
of base types. The relevance of each base type Ti ∈ Tbase can be ensured by means of 
testing. The test set TS should include at least one test case TCj such that it: 

− builds a state of the IB having at least one instance of Ti, and 
− makes an assertion TAk that can only Pass if the above IB state is consistent (that 

is, it satisfies all constraints).  

If the test set includes such test case TCj, and the execution of TAk gives the verdict 
Pass, then it is experimentally proved that Ti is relevant according to the expectations 
formalized as test cases.  

This is the rationale for the test adequacy criterion that we call base type coverage, 
which can be formally stated as follows. Let:  

BaseTypes(TAk) = {Ti|Ti ∈ Tbase and there are one or more instances of Ti in at least  
one of the IB states found consistent during the evaluation of TAk}  
BaseTypes(TA) = 

TATA

k

k

TABaseTypes
∈

)( . 

We say that a test set TS satisfies the base type coverage criterion if and only if 
Tbase = BaseTypes(TA). Then, it is experimentally proved that all types Ti ∈ Tbase 
defined in a conceptual schema are relevant. It is important to remark, that the 
accomplishment of this criterion has the interesting property of ensuring the 
satisfiability of Tbase (which is a necessary condition for the correctness of Tbase). 

The analysis of the set of uncovered base types (Tbase - BaseTypes(TA)) allows us 
to identify which base types of the schema have not been exercised in any consistent 
scenario. Either they need more testing in order to satisfy the base type coverage 
criterion or they are irrelevant or incorrect.  

In the test program of Fig. 3, the fixture initializes two municipalities (the City of 
Brussels and Antwerp) located in a country (Belgium). In a test program, the 
execution of any of its test cases implies the execution of its fixture. Therefore, the 
entity types Municipality and Country, its basic attributes and the relationship type 
between them are covered according to this criterion. 



 On Checking Executable Conceptual Schema Validity by Testing 257 

Moreover, the test case familyWithoutChildren registers the births of a woman 
(audrey) and a man (alex), the marriage between them and the death of alex. The 
execution of this test case implies that the entity types Man, Woman, AlivePerson, 
DeadPerson (and Person due to the taxonomy), their basic attributes, and the 
relationship types IsRegisteredIn and husband-wife are also covered.  

However, by taking into account only the test case familyWithoutChildren, the 
coverage analysis identifies that the relationship types father-child and mother-child 
are not covered. If we consider that the test set also includes the test case 
familyWithADaughter, then all the basic types of the example become covered. 

3.2 Derived Type Coverage 

Entity and relationship types may be derived. For each derived type, the conceptual 
schema includes a derivation rule that defines the population of that type in terms of 
the population of other types. In UML, derivation rules are formally written in OCL. 
Derived types defined in a schema are valid if they are relevant and correct [1,20].   

We denote by Tder the set of derived types defined in a conceptual schema. The 
relevance of a derived type can be checked by means of testing. The test set TS should 
include a test case that makes an assertion TAk whose evaluation requires the 
derivation of at least one instance of that type. 

We denote by DerTypes(TAk) the set of derived entity types such that TAk has 
derived one or more instances of them during its evaluation, and by DerTypes(TA) the 
set of derived entity types that have instances derived during the evaluation of TA.  
Formally: 

DerTypes(TAk) = {Ti | Ti ∈ Tder and the evaluation of TAk in a state found consistent  
has required the derivation of one or more instances of Ti } 

DerTypes(TA) = 
TATA

k

k

TADerTypes
∈

)(  

We say that a test set TS satisfies the derived type coverage criterion if and only if                 
Tder = DerTypes(TA). Then, it is experimentally proved that all types Ti ∈ Tder defined 
in a conceptual schema are relevant. Moreover, the accomplishment of this criterion 
has the interesting property of ensuring the satisfiability of Tder (which is, in turn, a 
necessary condition for the correctness of Tder). 

The analysis of the set of uncovered derived types (Tder - DerTypes(TA)) allows us 
to identify which derived types have not been exercised in any consistent scenario. 
Either they need more testing in order to satisfy the derived type coverage criterion or 
they are irrelevant or incorrect. 

The first test case (familyWithoutChildren) of the test program shown in Fig. 3, 
makes assertions about the population of the municipalities and the country initialized 
in the fixture.  
assert  equals  brussels.population 1;  

assert  equals  antwerp.population 1; 

assert equals belgium.population 2;  



258 A. Tort, A. Olivé, and M.-R. Sancho 

The verdict of these assertions is Pass because the conceptual schema has the 
knowledge to derive the population as expected. Consequently, this test case ensures 
that the derived attributes Municipality::population and Country::population have 
been correctly derived in a consistent state.  

In contrast, the derived attributes Municipality::lifeExpectancy, 
Country::lifeExpectancy and DeadPerson::ageAtDeath are not covered if we only 
consider the test case familyWithoutChildren. However, if we add the test case 
familyWithADaughter all derived types become covered. 

3.3 Valid Type Configuration Coverage  

In conceptual models that admit multiple classification (like the UML), an entity may 
be an instance of two entity types, E1 and E2, such that (1) E1 does not subsume E2; (2) 
E2 does not subsume E1; and (3) no E3 is subsumed by both E1 and E2. In multiple-
classification models, correctness and relevance do not only apply to the individual 
entity types, but also to the set of valid configurations of entity types [20]. These 
configurations are completely determined by the entity types and the taxonomic 
constraints of the conceptual schema.  

The example of Fig. 1 assumes multiple classification. There are six valid type 
configurations: {Person, Man, AlivePerson}, {Person, Woman, AlivePerson}, 
{Person, Man, DeadPerson}, {Person, Woman, DeadPerson}, {Municipality} and 
{Country}. 

The relevance of a valid type configuration VTCi = {E1, …, En} can be checked by 
means of testing. The test set TS should include a test case TCj such that it: 

− builds a state of the IB having at least one entity that is an instance of VTCi, and 
− makes an assertion TAk that can only Pass if the above IB state is consistent. 

Therefore, if we want to experimentally prove that all valid type configurations VTCi ∈ VTC defined in a conceptual schema are relevant, we must require that for each of 
them there is at least one test assertion that checks the consistency of one or more IB 
states having at least one instance of VTCi.  

This is the rationale for the test adequacy criterion that we call valid type 
configuration coverage, which can be formally stated as follows.  

Let VTC(TAk) = {VTCi | VTCi ∈ VTC and there are one or more instances of VTCi in  
at least one of the IB states found consistent during the evaluation of TAk }  

VTC(TA) = 
TATA

k

k

TAVTC
∈

)(  

We say that a test set TS satisfies the valid type configuration coverage criterion if 
and only if VTC = VTC(TA). Then, it is experimentally proved that all types VTCi ∈ 
VTC defined in a conceptual schema are relevant. Additionally, the accomplishment 
of this criterion has the interesting property of ensuring the satisfiability of VTC 
(which is, in turn, a necessary condition for the correctness of VTC) [20]. 

When VTC ≠ VTC(TA) then there is at least one VTCi ∈ VTC but VTCi ∉ VTC(TA). 
The analysis of the set of uncovered valid type configurations (VTC - VTC(TA)) 



 On Checking Executable Conceptual Schema Validity by Testing 259 

allows us to identify which type configurations may not be valid. This means that a 
valid type configuration VTCi allowed by the conceptual schema has not been tested. 
If the domain experts confirm that VTCi is valid in the domain, then the conceptual 
modeler must write more test cases. Otherwise, if VTCi is invalid in the domain, then 
the conceptual modeler must change the taxonomy to prevent it. 

The test case familyWithoutChildren proves that all the entity types are covered 
according to the Base Type Coverage (see Section 3.1). However, the CSUT example 
(Fig. 1) assumes multiple classification. Therefore, when analyzing the Valid Type 
Configuration Coverage satisfaction, we realize that {Person, Woman, DeadPerson} 
is not covered (no valid instances of a dead woman participate in the test case). If we 
also consider the test case familyWithADaughter, then all VTCs become covered. 

In single-classification schemas, the satisfaction of the base type coverage criterion 
implies the satisfaction of the valid type configuration coverage criterion.  

3.4 Domain Event Type Coverage  

Domain event types must be relevant and correct [20]. We denote by Dev the set of 
domain event types. The relevance of a domain event type Devi∈Dev can be checked by 
means of testing. The test set TS should include a test case TCj such that it 1) builds a 
state of the IB, 2) creates an instance d of Devi, and 3) asserts the occurrence of d. 

If the test set includes such test case TCj, and its execution gives the verdict Pass, 
then it is experimentally proved that Devi is relevant. If Devi is not relevant, then the test 
set should not include any assertion stating the occurrence of Devi.  

This is the rationale for the test adequacy criterion that we call domain event type 
coverage, which can be formally stated as follows. Let TAk be the assertion of a domain 
event occurrence. We denote by DevTypes(TAk) the type of the domain event whose 
occurrence is asserted and by DevTypes(TA) the set of domain event types that have 
instances whose occurrence has been asserted during the evaluation of TA. Formally:  

DevTypes(TA) = 
TATA

k

k

TADevTypes
∈

)(  

We say that a test set TS satisfies the domain event type coverage criterion if and only 
if Dev = DevTypes(TA). Then, it is experimentally proved that all types Devi∈Dev 
defined in a conceptual schema are relevant. Again, note that the accomplishment of 
this criterion has also the interesting property of ensuring the satisfiability of Dev 
(which is, in turn, a necessary condition for the correctness of Dev). Satisfiability 
comprises applicability (the initial IB state has been found consistent and the event 
constraints have been satisfied) and executability (the new IB state has been found 
consistent and the event postconditions have been satisfied). 

The set of uncovered event types (Dev - DevTypes(TA)) allows us to identify which 
event types do not have valid occurrences in any test case. Either they need more 
testing to satisfy the criterion or they are irrelevant (or even incorrect).  

The example test case familyWithoutChildren (Figure 3) exercises the valid 
execution of all the domain events considered in the example (see Section 2.1), with 



260 A. Tort, A. Olivé, and M.-R. Sancho 

the exception of the event Divorce that becomes covered if we also consider the test 
case familyWithADaughter. The satisfaction of the domain event type coverage 
criterion ensures that these domain events are satisfiable.  

The structural and the behavioral subschema should be consistent [23,24] between 
them. If the domain event type coverage criterion is satisfied but the base type 
coverage criterion is not satisfied, then either the uncovered base types are not 
relevant, or some event types are missing in the schema, or the existing ones must be 
instantiated in other test cases.  

3.5 Coverage Criteria Satisfaction and Schema Validity 

If there exists a test set TS that satisfies the four coverage criteria defined in sections 
3.1, 3.2, 3.3 and 3.4, then we can ensure that all base and derived types, type 
configurations and domain event types are relevant and satisfiable, which is a 
necessary condition for correctness.  

Formally, if we denote the relevance by Rel and the satisfiability by Sat, then: 
 

)(),()( basebasebase TSatTSTRelTABaseTypesT ∧→=

 )(),()( derderder TSatTSTRelTADerTypesT ∧→=  
)(),()( VTCSatTSVTCRelTAVTCVTC ∧→=

 )(),()( DevSatTSDevRelTADevTypesDev ∧→=  
 

The test program PeopleRegistration of Fig. 3 completely satisfies the proposed basic 
set of test adequacy criteria. Therefore, we can conclude that all the schema elements 
have been exercised by a test case in at least one consistent scenario, that there are no 
potentially irrelevant elements, and that these elements are satisfiable. Additionally, 
detailed steps of the coverage checking process for a condensed version of the 
osCommerce case study are reported in [8]. 

4 Implementation 

Figure 4 shows the relationships between the definition of the conceptual schema and 
its tests, and their execution by the information processor and the test processor. 
Details about the implementation of the tool that supports this testing environment are 
given in [6]. We have extended our test processor in order to provide automatic 
coverage analysis (Section 4.1.). We have also applied the proposed criteria in two 
case studies of real-sized information systems (section 4.2). 

4.1 The Coverage Processor 

The Coverage Processor (grey box of the test processor in Fig. 4) automatically 
checks the satisfaction of the test adequacy criteria proposed in this paper.  

 Domain event type coverage: 

 Valid type configuration coverage: 

 Derived type coverage: 

 Base type coverage: 



 On Checking Executable Conceptual Schema Validity by Testing 261 

The preprocessor initializes the coverage database. This database maintains the set 
of covered elements for each test adequacy criterion. For each adequacy criterion, the 
preprocessor requests to the information processor the set of elements to be covered. 
Each element is registered in the database and marked as uncovered. 

When the execution of a collection of test cases is requested, the test manager 
selects the test programs and requests to the test interpreter their execution. The test 
interpreter communicates information about the tests execution to the adequacy 
criteria analyzer, which updates the coverage database as follows: 

− Every time the test interpreter asserts the consistency of the IB, it communicates to 
the analyzer the set VTC(TA) of valid type configurations and the set 
BaseTypes(TA) that have valid instances in the current state of the IB. The analyzer 
marks as covered all the uncovered valid type configurations included in VTC(TA). 
It also marks as covered the entity types included in BaseTypes(TA). 

− Every time the test interpreter requests the evaluation of a derivation rule to the 
information processor, the test interpreter communicates it to the analyzer. The 
corresponding derived type is marked as covered. A derivation rule may be 
implicitly evaluated when an integrity constraint is checked, when evaluating other 
derivation rules, when asserting the contents of the IB or when executing an event. 
 

 

Fig. 4. The coverage processor in the testing environment 

− The test interpreter informs the analyzer every time a valid domain event occurs 
The asserted domain event types are marked as covered. 

After the execution of all test programs, the adequacy criteria analyzer queries the 
coverage database in order to obtain the sets of covered and uncovered elements for 
each criterion. The analyzer also computes some statistical information about the 
coverage results. This information is used by the coverage results to show the results. 
The set of uncovered elements helps the tester to define new relevant test cases.  

More information, source files, screenshots and a video demonstration about the 
use of the CSTL processor for analyzing the coverage of the conceptual schema 
example explained in this paper may be found in the website of the project [25]. 



262 A. Tort, A. Olivé, and M.-R. Sancho 

4.2 Case Studies 

The basic set of adequacy criteria has been checked in the testing that has been done 
during the development of (1) a condensed version of the conceptual schema of an e-
commerce system (osCommerce) [8]; and (2) the complete conceptual schema of a 
real-sized and widely-used customer support system (osTicket) [9].   

Fig. 5 summarizes the properties of the conceptual schema of each case study, the 
executed test cases, and its computation time (including test case execution and 
coverage analysis) by using a 3.40 GHz processor. 

 

Case Study  

Conceptual Schema Under Test Test Set Time 

Classes Attributes Associations 
Event 
types 

Derived 
types Constraints 

Test 
Cases 

CSTL  
lines 

Test execution 
& coverage 

osCommerce 24 49 17 16 19 23 7 185 0.6 sec 

osTicket 28 92 44 24 3 54 101 2002 4.3 sec 

Fig. 5. Case studies summary 

5 Conclusions 

Executable conceptual schemas can be tested [6,7]. Testing may be an important and 
practical means for the validation of conceptual schemas. However, a test set whose 
verdict is Pass is not sufficient to ensure the necessary conditions for the validity of 
the conceptual schema under test.  

The overall framework of the research presented here is that of design science [26]. 
The problem we try to solve is that of formalizing a set of test adequacy criteria aimed 
to ensure the necessary conditions for the validity (correctness and relevance) of a 
conceptual schema, according to a set of user stories formalized as test cases. As far 
as we know, this is the first proposal of a set of basic adequacy criteria for 
ascertaining conceptual schema validity.  

The goals of this set are determining which parts of the schema have been 
exercised by a test case; analyzing which elements of the schema are potentially 
irrelevant (or even incorrect); and ensuring the satisfiability of the entity types, 
relationship types, integrity constraints and domain event types, which is a necessary 
property for correctness.  

These basic criteria are independent from the conceptual schema and the testing 
languages and can be automatically checked. We have shown an implementation of 
the four adequacy criteria in a prototype test processor, which handles the testing of 
conceptual schemas written in UML/OCL with test programs written in the CSTL 
language. The criteria have been illustrated by a running example, but we also refer 
the evaluation of its utility in the incremental definition of the schema of the osTicket 
system [9] and a comprehensive application in the osCommerce case study [8]. 

We have defined the four criteria for conceptual schemas that include both the 
structural and the behavioral subschemas. However, it is possible to define a variant 



 On Checking Executable Conceptual Schema Validity by Testing 263 

of these criteria which is applicable when only the structural subschema is available. 
The idea in this context is that the test cases do not build the IB states by means of the 
occurrence of domain events, but by means of explicit insertion, deletion and update 
(CSTL) statements. This variant is useful in projects that aim at developing only the 
structural schema, or in the initial phases of the development of a complete schema. 

All test sets should satisfy the proposed criteria given that they ensure the 
necessary conditions for conceptual schema validity. However, several additional 
criteria may be envisaged in order to enhance the confidence about the conceptual 
schema correctness. As further work, we mention two of them here. The first is 
similar to the branch coverage criterion in program testing [4], aiming at ensuring that 
all branches of the OCL integrity constraints have been tested. The second is a 
criterion that ensures that all integrity constraints that must be enforced by the system 
have at least one domain event precondition that prevents the occurrence of a domain 
event that could lead to its violation. 
 
Acknowledgments. This work has been partly supported by the Ministerio de Ciencia 
y Tecnología and FEDER under the project TIN2008-00444, Grupo Consolidado.  

References  

1. Lindland, O.I., Sindre, G., Solvberg, A.: Understanding Quality in Conceptual Modeling. 
IEEE Software 11(2), 42–49 (1994) 

2. Pohl, K.: Requirements Engineering. Fundamentals, principles, and techniques. Springer, 
Berlin (2010) 

3. Van Lamsweerde, A.: Requirements Engineering: From System Goals to UML Models to 
Software Specifications. Wiley (2009) 

4. Zhu, H., Hall, P.A.V., May, J.H.R.: Software unit test coverage and adequacy. ACM 
Computing Surveys 29(4), 366–427 (1997) 

5. Thalheim, B.: Entity-Relationship Modeling: Foundations of Database Technology. 
Springer (2000) 

6. Tort, A., Olivé, A., Sancho, M.-R.: The CSTL Processor: A Tool for Automated 
Conceptual Schema Testing. In: De Troyer, O., Bauzer Medeiros, C., Billen, R., Hallot, P., 
Simitsis, A., Van Mingroot, H. (eds.) ER Workshops 2011. LNCS, vol. 6999, pp. 349–352. 
Springer, Heidelberg (2011) 

7. Tort, A., Olivé, A.: An approach to testing conceptual schemas. Data Knowl. Eng. 69(6), 
598–618 (2010) 

8. Tort, A.: A basic set of test cases for a fragment of the osCommerce conceptual schema. 
Research Report UPC (2009), http://hdl.handle.net/2117/6130 

9. Tort, A.: Development of the conceptual schema of the osTicket system by applying 
TDCM. Research Report UPC (2011), http://hdl.handle.net/2117/12369 

10. Berardi, D., Calvanese, D., De Giacomo, G.: Reasoning on UML class diagrams. Artificial 
Intelligence 168(1-2), 70–118 (2005) 

11. Brambilla, M., Tziviskou, C.: An Online Platform for Semantic Validation of UML 
Models. In: Gaedke, M., Grossniklaus, M., Díaz, O. (eds.) ICWE 2009. LNCS, vol. 5648, 
pp. 477–480. Springer, Heidelberg (2009) 



264 A. Tort, A. Olivé, and M.-R. Sancho 

12. Queralt, A., Teniente, E.: Reasoning on UML Conceptual Schemas with Operations. In: 
van Eck, P., Gordijn, J., Wieringa, R. (eds.) CAiSE 2009. LNCS, vol. 5565, pp. 47–62. 
Springer, Heidelberg (2009) 

13. Gogolla, M., Kuhlmann, M., Hamann, L.: Consistency, Independence and Consequences 
in UML and OCL Models. In: Dubois, C. (ed.) TAP 2009. LNCS, vol. 5668, pp. 90–104. 
Springer, Heidelberg (2009) 

14. Kalyanpur, A., Parsia, B., Sirin, E., Hendler, J.: Debugging unsatisfiable classes in OWL 
ontologies. Web Semantics: Science, Services and Agents on the World Wide Web 3(4), 
268–293 (2005) 

15. Jarrar, M.: Towards Automated Reasoning on ORM Schemes. In: Parent, C., Schewe, K.-
D., Storey, V.C., Thalheim, B. (eds.) ER 2007. LNCS, vol. 4801, pp. 181–197. Springer, 
Heidelberg (2007) 

16. Gogolla, M., Bohling, J., Richters, M.: Validating UML and OCL Models in USE by 
Automatic Snapshot Generation. Software & Systems Modeling 4(4), 386–398 (2005) 

17. Object Management Group (OMG). Object Constraint Language Specification. Version 
2.2., formal/2010-02-01, http://www.omg.org/spec/OCL/2.2/ 

18. Pastor, O., Molina, J.C.: Model-Driven Architecture in Practice. Springer (2007) 
19. Halpin, T.A.: Information modeling and relational databases. Morgan Kaufmann (2001) 
20. Olivé, A.: Conceptual Modeling of Information Systems. Springer, Berlin (2007) 
21. Object Management Group (OMG). Action Language for Foundational UML (Alf). FTF-

Beta 1, ptc/2010-10-05, http://www.omg.org/spec/ALF/1.0/Beta1/ 
22. Meyer, B.: Seven Principles of Software Testing. IEEE Computer 41(8), 99–101 (2008) 
23. Salay, R., Mylopoulos, J.: Improving Model Quality Using Diagram Coverage Criteria. In: 

van Eck, P., Gordijn, J., Wieringa, R. (eds.) CAiSE 2009. LNCS, vol. 5565, pp. 186–200. 
Springer, Heidelberg (2009) 

24. Pilskalns, O., Andrews, A., Knight, A., Ghosh, S., France, R.: Testing UML designs. 
Information and Software Technology 49(8), 892–912 (2007) 

25. Tort, A.: The CSTL Processor website, 
http://www.essi.upc.edu/~atort/cstlprocessor 

26. Hevner, A.R., March, S.T., Park, J., Ram, S.: Design science in information systems 
research. MIS Quarterly 28(1), 75–105 (2004) 

 



 

S.W. Liddle et al. (Eds.): DEXA 2012, Part I, LNCS 7446, pp. 265–280, 2012. 
© Springer-Verlag Berlin Heidelberg 2012 

Querying Transaction–Time Databases  
under Branched Schema Evolution 

Wenyu Huo and Vassilis J. Tsotras 

Department of Computer Science and Engineering, 
University of California, Riverside, USA 
{whuo,tsotras}@cs.ucr.edu 

Abstract. Transaction-time databases have been proposed for storing and que-
rying the history of a database. While past work concentrated on managing the 
data evolution assuming a static schema, recent research has considered data 
changes under a linearly evolving schema. An ordered sequence of schema ver-
sions is maintained and the database can restore/query its data under the appro-
priate past schema. There are however many applications leading to a branched 
schema evolution where data can evolve in parallel, under different concurrent 
schemas. In this work, we consider the issues involved in managing the history 
of a database that follows a branched schema evolution. To maintain easy 
access to any past schema, we use an XML-based approach with an optimized 
sharing strategy. As for accessing the data, we explore branched temporal in-
dexing techniques and present efficient algorithms for evaluating two important 
queries made possible by our novel branching environment: the vertical histori-
cal query and the horizontal historical query. Moreover, we show that our me-
thods can support branched schema evolution which allows version merging. 
Experimental evaluations show the efficiency of our storing, indexing, and 
query processing methodologies. 

1 Introduction 

Due to the collaborative nature of web applications, information systems experience 
evolution not only on their data content but also under different schema versions. For 
example, Wikipedia has experienced more than 170 schema changes in its 4.5 years 
of lifetime [5]. Schema evolution has been addressed for traditional (single-state) 
database systems and issues on how data is efficiently transferred to the latest schema 
have been examined [4]. Consider however the case where the application maintains 
its past data (typically for archiving, auditing reasons etc.) which may have followed 
different schemas. A temporal database can be facilitated to manage the historical 
data, but issues related to how data can be queried under different schemas arise. The 
pioneering work in PRIMA system [8] addresses the issues of maintaining a transac-
tion-time database under schema evolution by introducing: (i) an XML-based model 
for archiving historical data with evolving schemas, (ii) a language of atomic schema 
modification operators (SMOs), and (iii) query answering and rewriting algorithms 
for complex temporal queries spanning over multiple schema versions. Nevertheless, 



266 W. Huo and V.J. Tsotras 

 

PRIMA considers only a linear evolution: a new schema is derived from the latest 
schema and at each time there is only one current schema. 

In many applications, however, the schema may change in a more complex way. 
For instance, in a collaborative design environment, an initial schema may be 
branched into a number of parallel schemas whose data can evolve concurrently. 
Another common case of non-linear evolution is in software development manage-
ment. Revision control enables the modifications and developments happening in 
parallel along multiple branches. The release history of Mozilla Firefox [1] shows that 
10 branches of versions have been developed and 4 more branches are on the way. 

In this paper we address the issues involved in archiving, managing and querying a 
branched schema evolution. In particular, we maintain the branched schema versions 
in an XML-based document (BMV-document) using schema sharing. This choice was 
made because the number of schema changes is relatively smaller than data changes 
and the hierarchal structure of XML allows for easy schema querying. The data level 
changes are stored in column-like tables (BC-Tables), one table for each temporal 
attribute, with the support of applicable temporal indexing. To the best of our know-
ledge, this is the first work to examine both data and schema evolution in a branched 
environment. Our contributions can be summarized as:  

1. We utilize a sharing strategy with lazy-mark updating, to save space and update 
time when maintaining the schema branching. 

2. We employ branched temporal indexing structures and link-based algorithms to 
improve temporal query processing over the data. Moreover, we propose various 
optimizations for two novel temporal queries involving multiple branches, the ver-
tical and horizontal queries. 

3. We further examine how to support version merging within the branched schema 
evolution environment. 

4. Our experiments show the space effectiveness of our sharing strategy while the op-
timized query processing algorithms achieve great data access efficiency. 

The rest of the paper is organized as follows. Section 2 summarizes work on linear 
schema evolution (PRIMA). Section 3 introduces branched schema evolution while 
section 4 presents the BMV-Document for storing schema versions and the BC-
Tables for storing the underlying data changes (with the support of branched temporal 
indexing). Section 5 provides algorithms and optimizations for efficient processing of 
temporal queries. The merging challenges are discussed in section 6 and the experi-
mental evaluations are presented in section 7. Finally, conclusions appear in section 8. 

2 Preliminaries 

2.1 A Linear Evolution Example 

Consider the linear schema evolution shown in Table 1 and Fig. 1(a), of an employee 
database, which is used as the basic running example in this paper. When the database 
was first created at T1, using schema version V1.1, it contains three tables: engineer-
personnel, otherpersonnel and job. As the company seeks to uniformly manage the 



 Querying Transaction–Time Databases under Branched Schema Evolution 267 

 

personnel information, the DBA applies first schema modification at T2, which 
merges two tables engineerpersonnel and otherpersonnel, producing schema V1.2. 
Each schema version is valid for all times between its start-time Ts and its end-time Te 
(the time it was updated to a new schema). The rest schema versions and their respec-
tive time intervals appear as well until the latest schema V1.5. A special value “now” is 
used to represent the always increasing current time. 

Table 1. A linearly evolving employee database 

 

Schema changes are represented by Schema Modification Operators (SMOs) [4]; 
each operator performs an atomic action on both the schema and the underlying data, 
like CREATE/MERGE/PARTITION TABLE, ADD/DROP/RENAME COLUMN. For example, 
two tables in V1.1 were merged to one table by a MERGE TABLE operation in V1.2. In 
the following discussion we will use the term SMO to denote a change operator ap-
plied to one schema without detailing which SMO was actually used. 

2.2 XML Representation of a Linear Schema Evolution 

The history of the relational database content and its schema evolution can be pub-
lished in the form of XML, and viewed under a temporally grouped representation 
whereby complex temporal queries can be easily expressed in standard XQuery [8, 9]. 
The MV-Document [8] intuitively represents both schema versions and data tuples 
using XPath notation, as: /db/table-name/row/column-name. Each of the nodes, 
representing respectively: databases, tables, tuples, and attributes, has two more 
attributes, start-time (ts) and end-time (te), respectively representing the (transaction-) 
time in which the element was added to and removed from the database. 

Consider our running example: when the three-table schema in version V1.1 was 
created, three table nodes with names engineerpersonnel, otherpersonnel and job 
were created in the MV-Document, each with interval [T1, “now”). Similarly, the 
nodes for their attributes etc., were added in the XML document. In V1.2 the schema 
evolved into the two tables employee and job; these changes were updated in the 
MV-Document by changing the end-time of engineerpersonnel and otherpersonnel 
to T2 (as well as the intervals of their attribute and tuple nodes). Meanwhile, a new 
table node for employee is added with interval [T2, “now”). Since the job relation 
continues in the new version, there is no update on that table node. 



268 W. Huo and V.J. Tsotras 

 

To make the storage and querying of MV-Documents more scalable, [9] uses rela-
tional databases and mappings between the XML views and the underlying database 
system. This is facilitated by the use of H-Tables, firstly introduced in [12]. Consider 
the employee (id, title, deptno, salary) relation of schema V1.5 in Table 1. Its history 
is stored in four H-Tables, namely: (i) a key table, employee_key (id, ts, te), that 
stores the interval (ts, te) during which tuple with key id was stored in the correspond-
ing relation. (ii) three attribute history tables: employee_title (id, title, ts, te), em-
ployee_deptno (id, deptno, ts, te) and employee_salary (id, salary, ts, te) that 
maintain how the individual attributes of a tuple (identified by id) changed over time, 
and (iii) an entry in the global relation table relations (relationname, ts, te) which 
records the time spans covered by the various relations in the database. 

3 Branched Schema Evolution 

Many modern complex applications need to support schema branching; examples 
include scientific databases, collaborative design environment, web-based information 
systems, etc. With branched schema evolution enabled, a new branch can be created 
by updating the schema of a parent version Vp. If version Vp is a current schema ver-
sion and the data populating the first schema of the new branch is adapted from the 
currently alive data of Vp, we have a current branching (c-branching). An example of 
c-branching appears in Fig. 1(b) where the most current version of branch B1 is V1.5. 
At the current time T6 branch B2 is created out of V1.5 (i.e., the B2 creation time is T6) 
by applying SMOs on the relations that V1.5 has at T6. For example, under branch B2 a 
new attribute status was added in empbio to describe the marital status of employees. 
As a result, data can start evolving concurrently under two parallel schemas, V1.5 and 
V2.1. A real life scenario leading to c-branching is the case when a company establish-
es a subsidiary. These two companies share the same historical database (branch B1 
from T1 to T6) but in the future their schema and data evolve independently. Note that 
a version can start from any past version (h-branching). In this paper however, we 
concentrate on c-branching due to the challenges of the parallel evolving it imposes. 

 

Fig. 1. Linear evolution and branching 

As more branches occur, effectively the different schema versions create a Version 
Tree; an example (assuming c-branching) with six branches is shown in Fig. 2, which 
is an extension of the branched employee DB example from Fig. 1(b). Such version 
tree can easily display the parent-child relationship among versions and branches; this 
relationship information is very useful for further optimizations. 

employee (id, title, deptno, salary)
dept (deptno, deptname, managerid)
empbio (id, name, sex, status)

Branch B1

Branch B2

(b) c-branching

V1.1 V1.2 V1.3 V1.4 V1.5 The only branch

(a) linear schema evolution

V1.1 V1.2 V1.3 V1.4 V1.5

V2.1

T1 T2 T3 T4 T5 T1 T2 T3 T4 T5 T6



 Querying Transaction–Time Databases under Branched Schema Evolution 269 

 

The novel problems in supporting c-branching are emanated from its sharing of da-
ta: the same original data can evolve in parallel under different branches. To provide 
efficient access and storage in a branched environment, we use different structures to 
maintain the evolution of schema versions and their underlying data. Since schema 
changes are much less frequent, we adopt an XML-based model that enables complex 
querying (BMV-Document). In contrast, the data evolution over time creates large 
amounts of historical, disk-resident data, so our focus is on branched column tables 
(BC-Tables) and efficient index methods. 

 

 

Fig. 2. Example of Version Tree Fig. 3. Illustration of BMV-
Document 

4 BMV-Document and BC-Tables 

4.1 BMV-Document 

The BMV-Document is an extension of the MV-Document for storing the branched 
evolving schema versions in an XML-based representation. The main upgrades are: 
(i) branch identifier bid is needed, because a single timestamp cannot uniquely identi-
fy the appropriate schema version. (ii) The BMV-Document refers only to the sche-
ma-level storage, and does not detail the data level. (iii) The BMV-Document uses a 
sharing strategy between versions with various update options and a validity interval 
(bid:ts, bid:te) is thus required, as shown in Fig. 3. When a c-branching is created, 
the child branch may only modify a relatively small part of its parent schema. Simply 
copying the schemas of all live tables and their columns from the parent version 
would incur storage overhead. 

Schema Sharing. Consider the c-branching on B1 that creates a new branch B2 in Fig. 
1(b). B2’s creation time is the start time of its first version, namely V2.1, which ema-
nated from V1.5 by applying some SMOs. 

One approach for schema sharing is full-mark which adds new (B2:ts, B2:te) inter-
val to all corresponding tables and their columns explicitly for the new branch. While 
this is better than copying all tables and columns, it still requires update work, espe-
cially when there are many current tables and columns. To archive better efficiency, 
we develop a lazy-mark approach, which adds a new (B2:ts, B2:te) interval to the db 

V1.1 V1.2 V1.3 V1.4 V1.5

V2.1 V2.2

V3.1

V5.1

V4.1 V4.2

V2.3

V1.6
B1

B5

B2

B4

B3

nowT1

V6.1
B6

T2 T3 T4 T5 T6 T7 T8 T9 T10

db
name tables

table
name columns

column
name

column

……

……

table

Bi:ts Bi:te
validity… …

Bi:ts Bi:te
validity… …

Bi:ts Bi:te
validity… …



270 W. Huo and V.J. Tsotras 

 

node only, and leaves all shared tables and columns unchanged. If the c-branching 
partially updated the parent schema, besides adding a validity interval on the db node, 
the lazy-mark approach updates only the modified tables and columns (based on the 
corresponding table-level and column-level SMOs).  

Therefore, the lazy-mark approach can be summarized as: For each update the path 
to the corresponding level (db, table or column) is visited and the related nodes are 
updated. Later on, SMOs can update the BMV-Document within a branch as well, 
and we re-mark those lazy-marked nodes. As a result, the complexity of each schema 
update for the lazy-mark sharing strategy remains constant per SMO. 

Schema Querying. While using schema sharing and lazy-mark to save updating time 
and storage space, the BMV-Document can still provide efficient access to all 
branched schema versions. A typical schema query is: “show the schema version at 
time t for branch Bi”. This implies finding the valid tables, as well as their columns,  
at time t for branch Bi. The procedure of checking whether a table is valid at a given 
time is shown in Algorithm 1. The interesting case is if table node T does not have a 
validity interval for Bi; the algorithm should then check whether this table is shared 
from one of Bi’s ancestor branches through lazy marking (line 7-16). For example, 
consider the case when branch B2 is created at time T6 by adding a status attribute in 
empbio table (Fig. 1(b)). Due to lazy-marking, the table empbio has only the B1 
branch id in its interval. However, when we check it for branch B2, following Algo-
rithm 1, we determine that it has been inherited from B1 and shared by B2 at time T6. 
 

Algorithm 1:    CheckTable (T, t, Bj) 
Check whether table node T is valid at time t for branch Bi, 
where t is later than Bi’s start time. 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 

if T has a validity interval for Bi then 
if Bi:ts = null then return false; 
else 

if Bi:ts <= t < Bi:te then return true; 
else return false; 

else 
Bh = Bi’s parent; Bg = Bi; 
while (Bh != null) 

if T has a validity interval for Bh then 
if Bh:ts = null then return false; 
else 

tt = Bg’s start time; 
if Bh:ts<tt<Bh:te then return true; 
else return false; 

Bg = Bh; Bh = Bg’s parent; 
end while

4.2 BC-Tables 

While the BMV-Document maintains the branched schema versions, the BC-Tables 
are used to store the underlying evolving data changes. Like H-Table [12], each  
BC-Table stores the (history of) values for a certain attribute of a base relation.  



 Querying Transaction–Time Databases under Branched Schema Evolution 271 

 

A BC-Table starts from a particular time and may span over multiple schema ver-
sions. However, there are considerable improvements: (i) a BC-Table can be shared 
by multiple branches; (ii) each data record carries only the start time of its time inter-
val; (iii) suitable branched temporal indexing methods are built on top of BC-Tables. 

For indexing a BC-Table we facilitate the branched temporal index ([6, 10]) which 
is a directed acyclic graph over data and index pages. Data pages (which are at the 
leaf level) contain temporal data, while index pages contain the searching information 
to lower level pages. In data pages, due to data sharing, a compact data representation 
<key, data, ts> is used, where ts corresponds to the record’s start time (which will be 
a bid:time in our BC-Tables) of the original record. In an index page, an entry refe-
rencing a child page C is of the form <KR(C), TI(C), address(C)>, where KR is the 
key-range of the child page, and TI is a list of temporal interval(s) for the shared mul-
tiple branches of C. 

Splitting occurs when a page becomes full. However, unlike in B+-tree page split-
ting, when a temporal split happens, the data records currently valid, are copied to a 
new page. Thus data records are in both the old page and the new page. The motiva-
tion for copying valid data from the full page is to make the temporal query efficient. 
Splits (temporal-split, key-split, and consolidation) cluster data in pages so that when 
a data page is accessed, a large fraction of its data records will satisfy the query. 

Index page splits and consolidations are similar to those of data pages. Since in in-
dex page temporal splits, children entries can be copied, this creates multiple parents 
for these children. As a result, the branched-temporal index is a DAG, not a tree [6]. 

When the search for a given key k, branch Bi and time t, is directed to a particular 
data page P through the index page(s), the algorithm checks all the records in P with 
key k, and finds the record with the largest start time ts, such that ts <= Bi:t.  
    Nevertheless, page P may have been shared by branch Bi, in which case some of 
its Bi related entries may not contain the Bi interval. Those entries are inherited from 
Bi’s ancestor branches. Therefore, we need to extend the search algorithm of the 
branched-temporal index [6,10]. In particular, we extend the meaning of the “<” com-
parison when comparing bid:time tokens. Given two tokens Bi:Ti and Bj:Tj the com-
parison Bi:Ti < Bj:Tj is satisfied whether (Bi=Bj ∧ Ti<Tj) or (Bi:Ti < Par(Bj):Ts(Bj)”), 
where Par(Bj) is the parent branch of Bj in the version tree, and Ts(Bj) is the start time 
of Bj. 

For example, assume that a data page is shared by branch B1 and B2, having en-
tries: <a, v1, B1:t1>, <b, v2, B1:t2>, <c, v3, B1:t3>, <b, v4, B2:t14>, <c, v5, B1:t15>, and let 
branch B2 be created from B1 at time t10. So the valid data entries for B1 at time t15 are 
<a, v1, B1:t1>, <b, v2, B1:t2>, <c, v5, B1:t5>; while the valid data entries for B2 at time 
t15 are <a, v1, B1:t1>, <b, v4, B2:t14>, <c, v3, B1:t3>. 

5 Query Processing 

Data queries are temporal queries on the data records (stored in the BC-Tables and 
indexed by the branched temporal index). As with traditional temporal queries [11], a 
user may ask for: (i) a snapshot query, or (ii) a time interval query. In a linear schema 



272 W. Huo and V.J. Tsotras 

 

evolution, snapshot or interval queries deal with a single branch. In a branched sche-
ma evolution, the following multiple-branch queries (first introduced in [7]) are also 
of interest: (i) vertical query and (ii) horizontal query. We first discuss how to process 
temporal snapshot and interval queries within one branch, and then proceed to vertical 
and horizontal queries over multiple branches. 

5.1 Queries within a Single Branch 

In this case, the temporal constraint (time snapshot or interval) falls within the life-
time of branch Bi. For a snapshot query, the target schema version that stores the 
queried data is unique and can be identified easily (from the BMV-
Document). The corresponding BC-Tables are then accessed through their 
branched temporal indices. 

Processing a time interval query is more complicated because of two challenges: (i) 
the time interval may have multiple target schema versions (thus even for a single 
attribute, multiple BC-Tables may be accessed); (ii) in one BC-Table, many data pag-
es may intersect with the time interval, so the search algorithm needs to avoid dupli-
cations. The first challenge also appeared in PRIMA [8]: the original temporal query 
should be reformulated by query rewriting into different sub temporal interval queries 
for each related BC-Table and the final results are merged from those BC-Tables. 

For the second challenge, even in one BC-Table with branched temporal indexing, 
the naïve depth-first traversal strategy leads to two problems: first, the response set 
can contain duplicates (due to page splitting copies); second, the same directory entry 
can be accessed more than once while a query is evaluated. This effect is illustrated in 
Fig. 4 where the gray-colored rectangles display the pages of the branched temporal 
index visited for a time-interval query. The naïve algorithm would visit pages 1, 2, 5 
once, pages 3, 4, 7 twice, page 8 thrice and page 6 four times.  

Traditional duplicate elimination methods such as hashing or sorting may require 
storage/time overhead, and they are not easy to solve index entry duplication. There-
fore, we adopt the Linkbased algorithm proposed in [3] for (linear) multi-version index 
structures. The BC-Tables’ data pages are equipped with external links pointing to 
their temporal predecessors. 

 

             Fig. 4. Visited pages                    Fig. 5. Data pages with links 

An example is presented in Fig. 5 where each page is viewed as the time-key rec-
tangle of the records it contains. A key-range time-interval query (the grey rectangle) 
intersects pages B, C, D, E, G and H. The Linkbased algorithm consists of two steps. 

1 2

3 4 5

6 7 8

… …

key

timet1 t2 t3 t4 t5
A B

C D E J
H

IFG
t0



 Querying Transaction–Time Databases under Branched Schema Evolution 273 

 

First, the right border of the query rectangle is used to perform a key-range snapshot 
query. In Fig 5, this snapshot query will access data pages H and E. Second, for each 
qualifying page obtained in step 1, its temporal predecessor pages are checked to see 
whether they contain an answer. If they do, the corresponding pages are put into the 
buffer, answers are reported and the process is repeated. If the left border of the page 
is already earlier than the left border of the query rectangle, then we do not proceed 
further. The worst-case performance of LinkBased is O(logBn + a/B + u/B) where B 
is the page capacity, n is the number of records at right-border time t, a is the number 
of answers, and u denotes the number of updates in the query time period. 

5.2 Data Queries Over Multiple Branches 

Vertical Query. The vertical query is an extension of a single branch query, 
seeking information for a given branch and its ancestors. An example of a vertical 
query is: “find the data within a key range KR for a given branch Bi and its ancestor 
branches, at a time stamp t” (or “during a time interval I”). The time stamp t or inter-
val I must be no later than the end time of branch Bi. 

For a vertical snapshot query of branch Bi and at time t, if t is earlier than the start 
time of Bi, then the result conceptually lies in one of Bi’s ancestors Bj, whose lifetime 
covers time t. For a vertical interval query, the time interval may span multiple 
branches along a path in the version tree. For example, in Fig. 6, to find titles of em-
ployees within a range KR for branch B4 and its ancestors in a time interval [T5, T10), 
we need to access data from branches B4, B2 and B1. 

 

Fig. 6. A part of Version Tree fron Fig. 2. 

To process a vertical interval query, we first divide the whole query interval I for 
branch Bi into multiple smaller adjacent sub-intervals {I1, I2,…, Ik}, one for each 
ancestor branch along the path {Bi1, Bi2,…, Bik} (where Bi1 = Bi, Bi2 = Bi’s parent and 
so on). In the above example, querying for B4 with a time interval I = [T5, T10), I 
should be divided to [T8, T10) for B4, [T6, T8) for B2 and [T5, T6) for B1 (depicted as 
the thick orange line in Fig. 6). Then we process the vertical interval query by 
answering multiple interval queries for each branch and merge the results 
together.                                                                    □ 

However, certain sub-intervals from different branches may be sharing the same BC-
Tables, hence a BC-Table could be processed multiple times by different  

V1.5
V2.1 V2.2

V3.1
V5.1

V4.1 V4.2V2.3V1.6 B1

B5

B2

B4

B3

now

V6.1 B6

T5 T6 T7 T8 T9 T10



274 W. Huo and V.J. Tsotras 

 

sub-queries. Notice that the sub-intervals are adjacent and the shared data pages are 
connected by backward links (Linkbased approach). Therefore, an optimized processing 
on vertical interval query is to unite the multiple adjacent sub-queries for the same 
BC-Table into one “super-query”. This optimization, called reunion, can guarantee 
that each BC-Table is processed only once for any vertical interval query. 

In the above query example, “find the title of employees within a KR for B4 and its 
ancestors during [T5, T10)”, we assume that the employee_title table schema is never 
changed by any branches after it was created at T5. With the naïve method, we need to 
process this table three times for three branches with three time intervals as [B4:T8, 
B4:T10), [B2:T6, B2:T8) and [B1:T5, B1:T6). When utilizing the optimized method, the 
three sub-queries are united into one super-query with an interval [B1:T5, B4:T10). 

Horizontal Query. The Horizontal query accesses temporal information for a given 
branch and its descendants. An example is: “find data within a key range KR for a 
given branch Bi and its descendants, at time point t” (or during “a time period I”). The 
time stamp t or interval I must be no earlier than the start time of branch Bi. 

A horizontal snapshot query can be visualized as a snapshot of multiple relevant 
branches from a sub-tree of the version tree. For example, the query: “find data for 
branch B2 and its descendants at time now”, corresponds to the vertical dash line in 
Fig 6, involving branches B2, B4 and B6. To process a horizontal snapshot query on 
time t, we first determine which descendants of branch Bi (including itself) are valid 
at t, and then issue multiple vertical snapshot queries, one for each branch. 

A horizontal interval query can be visualized as a branch-time rectangle on a sub-
tree of the version tree. For example, the query: “find data for branch B2 and its des-
cendants during time interval [T7, now)”, corresponds to the grey rectangle in Fig 6, 
involving branches B2, B4 and B6. To process a horizontal snapshot query on time t, 
we again first issue multiple vertical interval queries, one for each descendant branch. 

However, this naïve processing method for the horizontal interval query will not be 
efficient if the multiple vertical interval queries have common parts. In the above 
example, the vertical interval queries for B2, B4 and B6 during interval [T7, now) have 
common parts: [B2:T7, B2:T8) and [B4:T8, B4:T10), as depicted in Fig. 6 by the thick 
orange line inside the grey rectangle. 

As a result, for the multiple vertical interval queries, instead of using the same 
original query time interval I, we should use different intervals for those descendant 
branches. For each descendant branch Bj, the new query time interval Ij is the inter-
section of [STj, SEj) with I, where STj and SEj is the start time and end time of branch 
Bi. For the above example, the optimized vertical interval queries are: [B6:T10, 
B6:now), [B4:T8, B4:now), and [B2:T7, B2:now). This rearrange optimization can im-
prove horizontal interval querying by preventing multiple visits of common parts. 

6 Merging of Branches 

Since branching is allowed for schema evolution, it is quite natural for us to consider 
the possibility of merging multiple branches. Branching and merging are two key 
aspects in many modern environments, such as web-based information systems,  



 Querying Transaction–Time Databases under Branched Schema Evolution 275 

 

collaborative framework, and software development managing tools. Branching pro-
vides isolation and parallelism, while merging provides subsequent integration. In this 
section, we consider how to support current version merging (c-merging). 

With c-branching, any currently alive version can create a branch; for a c-merging, 
the currently alive version of branch Bi can merge to another currently alive version 
from a different branch Bj by creating a new common schema version.  In the exam-
ple shown in Fig. 7, both branching and merging are applied. Such schema evolution 
will form a Version Graph instead of a version tree. 

 

Fig. 7. Schema evolution with branching and merging 

6.1 Merging in BMV-Documents 

When branch Bi’s latest version Bi.x merges to branch Bj’s latest version Bj.y at time t, 
the branch Bi and version Bi.x should be ended and a new version Bj.y+1 should be 
created for branch Bi. The branch and version termination can be achieved by updat-
ing the end time for corresponding nodes and the lazy-mark process can be utilized 
for only updating the db and table nodes without reaching to column nodes. After 
figuring out which elements are discarded from Bj.y to Bj.y+1, and which are added 
from Bi.x to Bj.y+1, we apply the updates for the corresponding tables and columns. 
Suitable schema duplication elimination and conflict resolution are applied. 

6.2 Merging in BC-Tables 

When merging is applied in BC-Tables at the data level records, we still can use the 
same sharing strategy with the branched temporal index but with special extensions. 
Assume branch Bi merges to Bj at time t. For both branches, some data records have 
remained while others are removed (especially when there are conflicts). In BC-
Tables, we only delete the removed records by adding null values and keep the re-
mained records unchanged, which is consistent with our sharing method in section 5. 
Data duplication elimination and conflict resolution are applied as well. 

For data accessing, certain extensions should be implemented for merging, since 
merging integrates data records from two branches into one. Exploring of a branch’s 
ancestors due to lazy mark is extended from one single path to multiple paths with 

V1.1 V1.2 V1.3 V1.4 V1.5

V2.1

V3.1
V4.1

V5.1
V1.6 V1.7 V1.8

V2.3
V6.1V3.2

V4.2
V2.2

nowT1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 T13

B1B5

B2B4
B3

B6



276 W. Huo and V.J. Tsotras 

 

depth-first or breath-first search along the version graph. Meanwhile, the branched 
temporal indexing can be adapted for merging with certain modifications. 

6.3 Query Processing 

Here we concentrate on data querying within multiple branches. For vertical queries 
seeking temporal information for a given branch and its ancestor branches, the ances-
tors include not only the ones formed by branching but also those by merging. So 
even for a snapshot querying, the vertical query may need to traverse multiple paths 
along the version graph by DFS or BFS. For example, assume that in the example of 
Fig. 8, we want to find some records for branch B1 and its ancestors at time T10. Tra-
versing the version graph backward for B1 from now to T10, we meet two merging 
points at time T12 and T11. Hence the final result unites the response records from not 
only branch B1 but also B5, B6 and B3 at time T10. 

To process a vertical interval query we access data from multiple parallel paths 
which may have common parts. The rearrange optimization proposed for horizontal 
querying under branching can be used here. For example, as shown in Fig. 7, assume 
we want to find some data for branch B1 and its ancestors during time interval [T9, 
T13). From the version graph, we know that B3 and B5 merged to B1 at time T12 and B6 
merged to B1 at time T11. We can avoid visiting the common paths [B1:T12, B1:T13) 
four times and [B1:T11, B1:T12) twice by utilizing rearrange to make querying inter-
vals as [B1:T9, B1:T13), [B3:T9, B3:T12), [B5:T9, B5:T12), and [B6:T9, B6:T11). 

7 Experimental Evaluation 

To illustrate the efficiency of our framework we present several experiments based on 
the running example of the employee DB in Fig 2. First, we extend it with more 
schema versions and branches. The first ten schema changing points (from T1 to T10) 
are shown in Fig 2. After that, we make another ten schema changing points (from T11 
to T20) in two rounds. In each round, there are five schema changes: the first two are 
linear schema evolutions followed by one schema version branching and two linear 
schema evolutions. For each linear schema evolution, we choose 50% of the existing 
branches and make new schema versions for them updating 20% tables and 20% col-
umns in those tables. For each schema branching, we chose all existing branches and 
make a new branch for each by updating 20% tables and columns. In the end, we have 
20 schema changing points with 24 branches of 104 schema versions. 

In addition to linear and branched schema evolution, we also create content-level 
data changes. From T1 to T20, after each schema changing point, we update the 
record-level data value 500 times. For each time, we update all existing branches, and 
for each branch we update 0.2% of all employees for salary, title, and some other 
randomly chosen attributes. In the end, we have 10,000 time instants of content-level 
data updates. The Employee DB schema is initialized with 1,000 tables and average 5 
columns in each table. We also produce 10,000 employees with 100 titles and other 
relevant information. For both schema changes and data changes, the tables, attributes 



 Querying Transaction–Time Databases under Branched Schema Evolution 277 

 

and tuples are chosen randomly with a uniform distribution. The page size of our 
system is 4KB and we set the data page capacity as B = 100 records. 

7.1 BMV-Documents 

The sharing strategies among multiple branches and the lazy-mark approach are ad-
vantageous in space saving for the BMV-Document without sacrificing querying 
efficiency. We store the branched schema versions, in XML-based BMV-Documents 
with three different options when branching occurs: (i) copy the schema without any 
sharing (Non-Shared); (ii) use the sharing strategy and full-mark approach (Shared); 
(iii) use the sharing strategy and lazy-mark approach (Lazy-mark). Fig. 8 depicts the 
size per branch (total size / number of versions) of the documents under certain sche-
ma changing points: T10 (6 branches), T15 (12 branches), and T20 (24 branches). The 
options using sharing strategies use much less space than the non-shared option. 
Compared to the full-mark, the lazy-mark approach is more efficient. 

 

    Fig. 8. Space saving in BMV-Documents      Fig. 9. Space saving in employee_title table 

7.2 BC-Tables 

Space Saving. In addition to the shared BC-Tables (SBT), we use a non-shared me-
thod which simply copies alive records from the parent branch when a c-branching 
happens. The non-shared copying method (NSC) utilizes the MVBT ([2]) to store data 
in each branch separately, so that each single branch has its own data pages and index 
structure. The total sizes of data pages and index pages for all tables of all 24 
branches are: NSC 71.4 GB and SBT 54.9 GB; clearly, the shared BC-Tables provide 
significant space saving. Nevertheless, the querying performance of the non-shared 
method will be better than the fully shared BC-Tables since data has been fully mate-
rialized at each branch. Therefore, we consider a trade-off between space and query-
ing performance by applying an enforced copying method (EC), which only allows at 
most p branches that can be shared in one BC-Table. If a shared BC-Table already 
reaches this number p, then for a later c-branching, we enforce copying (make a new 
BC-Table for the newly branch) instead of sharing. The fully shared BC-Tables and 
non-shared method are two extreme situations for this enforced copying (p = 1 cor-
responds to the non-shared method). In our experiments we implemented an enforced 
copying method EC with p = 12 (EC-12) and p = 6 (EC-6). 

0

5

10

15

20

25

30

35

40

T10 T15 T20

Si
ze

 p
er

 b
ra

nc
h 

(M
B)

Non-Shared Shared Lazy-mark

0.5

0.6

0.7

0.8

0.9

1

NSC SBT EC-12 EC-6

N
or

m
al

iz
ed

 S
pa

ce



278 W. Huo and V.J. Tsotras 

 

In order to factor out the query reformulating, we choose one particular BC-Table 
employee_title, whose schema never changes from the beginning and is shared by all 
branches. To compare space usage of the employee_title table by the four methods 
(NSC, SBT, EC-12 and EC-6), we depict a normalized space usage. Since NSC has 
the largest storage usage (data pages + index pages), the normalized space is com-
puted by (methodi’s space) / (NSC’s space). As shown in the Fig. 9, the shared em-
ployee_title BC-Table provides the best space savings followed by EC-12 and EC-6. 

Snapshot querying. We use the following query: “find titles of all employees whose 
ids are within a key range of size 100, for branch Bi at time t” and test on all 24 
branches. For each branch, we randomly pick 100 time instants which are in the lifes-
pan of that branch and measure the average snapshot querying time. The average 
results of all 24 branches are calculated and depicted as normalized page I/O (Fig. 
10). The SBT method has the largest I/O usage, so the normalized page I/O is com-
puted by (methodi’s I/O) / (SBT’s I/O). The non-shared copying method has a better 
snapshot querying performance because data records are stored separately for each 
branch. However, considering the space saved, shared BC-Tables are performing 
relatively well on query time. The trade-off methods (EC) gain better querying per-
formance while controlling the space overhead. 

 

         Fig. 10. Snapshot Querying               Fig. 11. Vertical interval querying 

Interval Query Processing. For interval query processing we implement the LinkBased 
algorithm along with the reunion and rearrange optimizations in shared BC-Tables. 
First, we test vertical interval queries involving multiple branches: “find titles of em-
ployees whose ids are within a key range of size 100 for branch B24 and its ancestors 
in the time interval I”. Five different time intervals are used and their coverage rates 
with respect to the whole temporal data lifetime are 5%, 10%, 20%, 50%, and 100% 
correspondingly. Two methods are implemented here: one is the basic solution (Ba-
sic) which divides the query interval into multiple sub-intervals for each branch. The 
other is the optimized reunion method (Reunion) that unites the sub-intervals into one 
super-interval if they are sharing the same BC-Table. The I/O ratio of these two me-
thods (Reunion’s I/O) / (Basic’s I/O) is shown in Fig. 11. Clearly the reunion optimi-
zation can improve the vertical interval querying, and the improvements are more 
significant when the query interval covers more ancestor branches. 

Then we consider horizontal interval queries involving multiple branches: “find 
titles of employees whose ids are within a key range of size 100 for branch B1 and its 

0.5

0.6

0.7

0.8

0.9

1

NSC SBT EC-12 EC-6

N
or

m
al

iz
ed

 P
ag

e 
I/

O

0.5

0.6

0.7

0.8

0.9

1

5% 10% 20% 50% 100%

Re
un

io
n 

/ 
B

as
ic

Interval Coverage Rate

I/O ratio



 Querying Transaction–Time Databases under Branched Schema Evolution 279 

 

descendants in the time interval I”. The different interval I coverage rates are used as 
same as above. We again implement two methods: one is the basic solution (Basic) 
that issues multiple vertical queries with the same query interval for each descendant 
branch, and the other is the optimized rearrange method (Rearrange) that arranges 
different query intervals for each descendant branch to achieve querying efficiency. 
The I/O ratio of these two methods (Reunion’s I/O) / (Basic’s I/O) is shown in Fig. 
12. As seen, the rearrange optimization can effectively improve the horizontal inter-
val querying especially when the query interval covers more common parts. 

 

        Fig. 12. Horizontal interval querying          Fig. 13. Querying with merging added 

7.3 Branched Schema Evolution with Merging 

Finally, we employ schema merging into the branched system as well. The branched 
schema versions and datasets are extended as follows: We randomly insert 5 schema 
merging points into the 20 schema changing points, and for each such schema merg-
ing point, we randomly pick some existed branches to do the merges. A parameter mr 
(0 ~ 1) is used to control the merging rate. For example, if mr = 50%, we randomly 
pick half of existed branches to do the merges. The content-level data changes are 
generated as before: the data is updated 500 times after each schema changing point 
(evolving, branching and merging). The total number of time instants with data up-
dates is increased from 10,000 to 12,500. 

Below we only show results for the horizontal interval querying for branch B1. We 
set up five different querying interval coverage rates as same as above with two dif-
ferent merging rates as mr = 50% and mr = 100%. The methods we test include (i) the 
basic method (Basic) without avoiding the common sub-paths and (ii) the optimized 
method (Optimized) with both reunion and rearrange implemented. The I/O ratio of 
these two methods (Optimized’s I/O) / (Basic’s I/O) is shown in Fig 13 for the two mr 
rates. The optimized method has an advantage in interval querying processing, and 
this becomes more apparent for larger merging rates and longer query intervals. 

8 Conclusion 

We addressed branched schema evolution for transaction-time databases. To the best 
of our knowledge, this is the first attempt to examine both data and schema evolution 

0.5

0.6

0.7

0.8

0.9

1

5% 10% 20% 50% 100%

O
p

ti
m

iz
ed

 /
 B

as
ic

Interval Coverage Rate

mr = 50%

mr = 100%

0.5

0.6

0.7

0.8

0.9

1

5% 10% 20% 50% 100%

R
ea

rr
an

ge
 /

 B
as

ic

Interval Coverage Rate

I/O ratio



280 W. Huo and V.J. Tsotras 

 

in a branched environment. Efficient schema sharing strategies with smart lazy-mark 
updates are used. Schema versions are stored in XML-based documents for ease of 
querying. Data records are stored in relational column tables with branched and tem-
poral indexing. We also explored temporal querying optimizations, especially for 
vertical and horizontal interval queries. The feasibility of supporting schema merging 
was also examined. In future research, we will investigate temporal joins and aggre-
gations under schema evolution with branching and merging. 
 
Acknowledgements. This work is partially supported by NSF grant IIS-0910859. 

References 

[1] http://en.wikipedia.org/wiki/History_of_Firefox 
[2] Becker, B., Gschwind, S., Ohler, T., Seeger, B., Widmayer, P.: An asymptotically optim-

al multiversion b-tree. VLDB Journal (1996) 
[3] Bercken, J., Seeger, B.: Query Processing Techniques for Multiversion Access Methods. 

In: VLDB 1996 (1996) 
[4] Curino, C.A., Moon, H.J., Zaniolo, C.: Graceful Database Schema Evolution. In: VLDB 

(2008) 
[5] Curino, C.A., Moon, H.J., Zaniolo, C.: Managing the history of metadata in support for 

db archiving and schema evolution. In: ECDM (2008) 
[6] Jiang, L., Salzberg, B., Lomet, D., Barrena, M.: The BT-Tree: A branched and temporal 

access method. In: VLDB (2000) 
[7] Landau, G.M., Schmidt, J.P., Tsotras, V.J.: Historical Queries along Multiple Lines of 

Time Evolution. VLDB Journal (1995) 
[8] Moon, H.J., Curino, C.A., Deutsch, A., Hou, C.-Y., Zaniolo, C.: Managing and Querying 

Transaction-time Databases under Schema Evolution. In: VLDB (2008) 
[9] Moon, H.J., Curino, C.A., Zaniolo, C.: Scalable Architecture and Query Optimization for 

Transaction-time DBs with Evolving Schemas. In: SIGMOD (2010) 
[10] Salzberg, B., Jiang, L., Lomet, D., Barrena, M., Shan, J., Kanoulas, E.: A Framework for 

Access Methods for Versioned Data. In: Bertino, E., Christodoulakis, S., Plexousakis, D., 
Christophides, V., Koubarakis, M., Böhm, K. (eds.) EDBT 2004. LNCS, vol. 2992, pp. 
730–747. Springer, Heidelberg (2004) 

[11] Tsotras, V.J., Jensen, C.S., Snodgrass, R.T.: An Extensible Notation for Spatiotemporal 
Index Queries. SIGMOD Record 27(1) (1998) 

[12] Wang, F., Zaniolo, C., Zhou, X.: Archis: An xml-based approach to transaction-time 
temporal database systems. VLDB Journal (2008) 

 



Fast Identity Anonymization on Graphs

Xuesong Lu, Yi Song, and Stéphane Bressan

School of Computing, National University of Singapore
{xuesong,songyi,steph}@nus.edu.sg

Abstract. Liu and Terzi proposed the notion of k -degree anonymity to
address the problem of identity anonymization in graphs. A graph is k -
degree anonymous if and only if each of its vertices has the same degree
as that of, at least, k-1 other vertices. The anonymization problem is to
transform a non-k -degree anonymous graph into a k -degree anonymous
graph by adding or deleting a minimum number of edges.

Liu and Terzi proposed an algorithm that remains a reference for k -
degree anonymization. The algorithm consists of two phases. The first
phase anonymizes the degree sequence of the original graph. The sec-
ond phase constructs a k -degree anonymous graph with the anonymized
degree sequence by adding edges to the original graph. In this work,
we propose a greedy algorithm that anonymizes the original graph by
simultaneously adding edges to the original graph and anonymizing its
degree sequence. We thereby avoid testing the realizability of the degree
sequence, which is a time consuming operation. We empirically and com-
paratively evaluate our new algorithm. The experimental results show
that our algorithm is indeed more efficient and more effective than the
algorithm proposed by Liu and Terzi on large real graphs.

1 Introduction

The data contained in social media raise the interest of marketers, politicians and
sociology researchers, as well as hackers and terrorists. The mining and analysis
of the graphs formed by entities and connections in online social networks, mes-
saging systems and the like, should only benefit legitimate users while no one,
and, more critically, no malicious user should be able to access or infer private
information.

Researchers, such as the authors of [1], quickly observed that simply hiding
the identities of the users in a network may not suffice to protect privacy. Indeed,
the structure of the graph itself may leak sufficient information for an adversary
with minimal external knowledge to infer identity of users, for instance. Con-
sequently several graph anonymization algorithms have been proposed that not
only remove identity but also perturb the graph content and structure while
trying to preserve utility for the sake of mining and analysis.

1.1 The K-Degree Anonymization Algorithm

Liu and Terzi [13] address the issue of identity disclosure of network users by
adversaries with the background knowledge of nodes degree. To prevent such

S.W. Liddle et al. (Eds.): DEXA 2012, Part I, LNCS 7446, pp. 281–295, 2012.
c© Springer-Verlag Berlin Heidelberg 2012



282 X. Lu, Y. Song, and S. Bressan

attacks they propose the problem of k-degree anonymity. A graph is said to be
k-degree anonymous when each vertex in the graph has the same degree as at
least k − 1 other vertices. In other words, any vertex cannot be identified with
probability higher than 1/k if the adversary has the degree information of the
graph. The degree sequence of such a graph is said to be k-anonymous. Then
the problem is to transform a non-k -degree anonymous graph into a k -degree
anonymous graph by adding or deleting a minimum number of edges. For the
sake of simplicity, we consider only the addition of edges. Liu and Terzi [13] pro-
pose a two-phase algorithm. The first phase (degree anonymization) anonymizes
the degree sequence of the original graph to be k -anonymous. They propose a
dynamic programming algorithm which reproduces the algorithm in [9]. The sec-
ond phase (graph construction) constructs a k -degree anonymous graph with the
anonymized degree sequence based on the original graph. We call this algorithm
K-Degree Anonymization (KDA).

Typically, the degree distribution of large real world graphs follows a power-
law or exponential distribution (see [2,6]). Consequently, there are few vertices
with very large degrees and many vertices with the same small degrees. Moreover,
the difference between consecutive large degrees is great.

The dynamic programming in the degree anonymization phase of KDA is
designed to minimize the residual degrees, namely the difference between the
original degrees and the degrees in the anonymized degree sequence. On large
real world graphs, it generates a sequence at the expense of large residual degrees
for large original degrees, as the differences between these large original degrees
are great. It also generates the sequence with a small number of changes from
the original degree sequence, as many vertices with small original degrees are
already k -anonymous. It may then be impossible to compensate the large resid-
ual degrees. The sequence is then unrealizable. Our experience suggests that,
unlike what is claimed by Liu and Terzi, this situation is frequent. For instance,
as illustrated in the example below, their dynamic programming in the degree
anonymization phase does not generate a realizable degree sequence from the
given data set.

Example 1. Email-Enron is the network of Enron employees who have commu-
nicated by the Enron email. It is an undirected graph with 36692 vertices and
367662 edges. Each vertex represents an email address. An edge connects a pair of
vertices if there is at least one email communication between the corresponding
email users. The dataset is available at http://snap.stanford.edu/data/email-
Enron.html. The first 10 degrees of its degree sequence in descending order are
1383, 1367, 1261, 1245, 1244, 1143, 1099, 1068, 1026, 924. After the degree se-
quence is anonymized for k = 5, the 10 degrees become 1383, 1383, 1383, 1383,
1383, 1143, 1143, 1143, 1143, 1143. We see that the degree of the last vertex is
increased by 1143−924 = 219. This means that 219 vertices with residual degree
are required in order to compensate the residual degree of 219. However, dur-
ing the anonymization the number of vertices that have their degrees increased
is 212. Moreover, most of these vertices are those with small original degrees
which are already connected to that vertex. Thus there are no enough vertices



Fast Identity Anonymization on Graphs 283

with residual degrees to be wired to the last vertex. The k -anonymous degree
sequence is unrealizable.

Moreover, even if the anonymized degree sequence is realizable, the graph con-
struction phase of the algorithm may not succeed.

Liu and Terzi cater for these two situations by proposing a Probing scheme
that operates small random changes on the degree sequence until it is realizable
and the graph is constructed. Our experience shows that a large number of
Probing steps are in effect necessary to obtain a realizable sequence for practical
graphs. After each Probing is invoked, the realizability-testing is conducted.
The testing has a time complexity O(n2) where n is the number of vertices. As
Probing is invoked for a large number of repetitions, the complete algorithm is
very inefficient.

1.2 Our Contributions

Motivated by the above observations, we study fast k -degree anonymization on
graphs at the risk of marginally increasing the cost of degree anonymization, i.e.,
the edit distance between the anonymized graph and the original graph.

We propose a greedy algorithm that anonymizes the original graph by si-
multaneously adding edges to the original graph and anonymizing its degree
sequence. We thereby avoid realizability testing by effectively interleaving the
anonymization of the degree sequence with the construction of the anonymized
graph in groups of vertices.

Our algorithm results in larger edit distance on small graphs but smaller edit
distance on large graphs compared with the algorithm of Liu and Terzi. Our
algorithm is much more efficient than the algorithm of Liu and Terzi.

The rest of the paper is organized as follows. Section 2 discusses background
and related work on graph anonymization. Section 3 presents our novel algo-
rithm. Section 4 empirically and comparatively evaluates the performance of
our algorithm. Finally, we conclude in Section 5.

2 Related Work

The need for more involved graph anonymization stems from the shortcoming
of naive anonymization [1]. Naive anonymization replaces identities of vertices
with synthetic identifiers before publishing the graph. With minimal external
knowledge, adversaries may be able to recover these identities from the graph
structure. Hay et al. [10] further study the problem and quantify the risk of
re-identification via graph structural queries.

Several graphanonymizationtechniqueshavethenbeenproposed [13,23,5,18,17].
Generally speaking these techniques consists in modifying the graph struc-

ture so as to prevent re-identification while preserving sufficient utility. Most of
these works have built upon the concept of k-anonymity [16], which was first
introduced to anonymize relational micro-data.



284 X. Lu, Y. Song, and S. Bressan

Several works consider rather general structural attacks. Namely, they try
and protect against attacks from adversaries with diverse background structural
knowledge. Hay et al. [10] propose the k-candidate anonymity model that requires
that, for any structural query, there be at least k candidate vertices. Liu and
Terzi [13] suggest to make the degree sequence k-anonymous so that each vertex
in the graph has the same degree as at least k − 1 other vertices. Vertices in k-
degree anonymous graph cannot be identified with probability higher than 1/k.
Zou et al. [23] propose to modify the graph to be k-automorphic before releasing.
Any vertex in such a graph cannot be distinguished from other at least k − 1
vertices via graph structure, thus all kinds of structure attacks are prevented. The
modifications are achieved by addition and deletion of edges and, occasionally,
addition of vertices. Similarly, Wu et al. [18] propose the k-symmetry model to
prevent identity disclosure. In a k-symmetric graph every vertex is structurally
indistinguishable from at least k − 1 other vertices. Cheng et al. [5] consider the
same problem as Zou et al. [23], as they also try to prevent general structural
attacks on published graphs and protect against not only identity but also link
and attribute disclosure. They propose the k-isomorphism model that forms k
pairwise isomorphic subgraphs, to provide sufficient privacy guarantee.

Although these approaches take all kinds of structural attacks into considera-
tion, and thus provide strong privacy guarantee, they often incur many changes
and therefore potentially a loss of utility. Song et al. [15] make a variety of graph
structure measurements on social networks both before and after anonymization.
They examine the state-of-the-art anonymization algorithm, k-automorphism al-
gorithm [23]. The significant changes on degree distribution, diameter, density,
algebraic connectivity and other metrics indicate the anonymization can per-
turb graph structure to a large degree and thus greatly impair data utility, even
though strong privacy guarantee is provided.

K-degree anonymity [13] specifically focuses on attacks leveraging an adver-
sary’s background knowledge of degree. By not being concerned with other struc-
tural attacks, it can achieve privacy with fewer modification and, therefore, at a
lesser utility cost. Stronger privacy guarantees than those of k-degree anonymity
are provided by models such as k2-degree anonymity by Tai et al. [17]. A k2-
degree anonymous graph prevents re-identification by adversaries with the back-
ground knowledge of the degrees of two vertices connected by an edge.

While the above works and some others focus on identity disclosure [22,3,8]
some research studied link discosure [21,19,11,14]. Several works [4,7,12,20] works
also look at graph models other than simple graph, for instance bipartite graphs.

3 The Algorithm

The algorithm that we propose simultaneously adds edges to the original graph
and anonymizes its degree sequence in groups of vertices.

The main idea of the algorithm is to cluster and anonymize the vertices of
the original graph into several anonymization groups. Each group contains at
least k vertices. The graph is transformed so as that vertices in each group have



Fast Identity Anonymization on Graphs 285

the same degree. In order to achieve small local degree anonymization cost, the
vertices in each group should have similar degrees. For this reason, our algorithm
sorts, examines and groups the vertices in the descending order of their degrees
in the original graph. This choice is motivated by the observation that practical
graphs often follow a power or exponential law with a long tail according to
which many vertices have and share a small degree. We therefore wire vertices
with larger degree to vertices with smaller degree in groups until the degree
sequence is k -anonymous, if it can be achieved.

Let v be the sorted vertex sequence. The greedy examination algorithm
clusters vertices into an anonymization group. An anonymization group is the
smallest subset of v that has at least k members and whose members have a
degree strictly higher than the remaining vertices. The cost of the subsequent
anonymization of such a group is necessarily the sum of residual degrees after
anonymization, namely, for an anonymization group (vi, · · · , vj) in descending

order of degrees,
∑j

l=i(di − dl), where dl is the degree of vertex vl.
The edge creation algorithm adds edges in order to anonymize the vertices

in a group. It wires vertices with insufficient degree in the anonymization group
to vertices with lesser degree in v until all vertices in the group have the same
degree di for an anonymization group (vi, · · · , vj) in descending order of degrees.
However, we constrain the algorithm never to increase the degrees of vertices in
and outside the group beyond that of the highest degree in the anonymization
group, namely, di, for an anonymization group (vi, · · · , vj) in descending order
of degrees. After adding edges, v is reordered according to the new degrees. At
the next iteration, vertices outside the group may be further added to the newly
anonymized group by greedy examination, if their degree is di.

The anonymization group is now k -anonymous, because it contains at least k
vertices with degree di.

The design choices in the algorithms above, in particular the wiring constraint,
have been made in order to minimize the need for reordering v and to allow as
sequential as possible a processing of vertices and groups.

Because of the wiring constraint, it is however possible that the above determin-
istic process does not find enough vertices to wire. Therefore it does not construct
a graph with an anonymized degree sequence. The relaxed edge creation algo-
rithm caters for such possible failures. It relaxes the wiring constraint.

The complete algorithm, Fast K-Degree Anonymization (FKDA), combines
the above three algorithms. FKDA always constructs a k -degree anonymous
graph.

3.1 The greedy examination Algorithm

At each iteration, the input to greedy examination is a sequence of vertices v of
length n sorted in the descending order of their degrees, an index i such that the
vertex sequence (v1, v2, . . . , vi−1) has been k -anonymous and the value of k. The
output is a number na such that the vertices vi, vi+1, . . . , vi+na−1 are selected
to be clustered into an anonymization group. Then greedy examination passes
v, i and na to edge creation.



286 X. Lu, Y. Song, and S. Bressan

Algorithm 1. The greedy examination algorithm

Input: v: a sequence of n vertices sorted in the descending order of their
degrees, i: an index, k: the value of anonymity.

Output: na: the number of consecutive vertices that are going to be
anonymized.

1 Find the first vertex vj such that dj < di;
2 if vj is not found then
3 na = n− i+ 1;
4 else
5 if di = di−1 then
6 if n− j + 1 < k then na = n− i+ 1;
7 else na = j − i;

8 else
9 if n− i+ 1 < 2k or n− j + 1 < k then na = n− i+ 1;

10 else na =max(k, j − i);

11 end

12 end
13 Return na;

The algorithm begins with an sequential examination of v starting from vi,
until vj such that dj < di. If there is no such vj found, vi, vi+1, . . . , vn have
the same degree already. Below we show that there are at least k vertices from
vi to vn. Thereby v is already k -anonymous. na is set to be n − i + 1, i.e.,
the number of all the remaining vertices. If vj is found, there are two different
cases depending on the result of comparison between di and di−11. If di = di−12

which means that vi has the same degree as the degree of the last anonymization
group, greedy examination clusters vi, vi+1, . . . , vj−1 in a group and merges
them into the last anonymization group. Then na is set to be j − i. However,
there is an exception when n − j + 1 < k. This means that there are less than
k vertices after the current group. These vertices cannot be transformed to be
k -anonymous in a separated group. Thus greedy examination has to cluster
vi, vi+1, . . . , vn into a group. na is set to be n − i + 1. In the other case where
di < di−1, greedy examination forms a new anonymization group starting from
vi. If j − i ≥ k, which means there are at least k vertices having the same
degree, greedy examination clusters vi, vi+1, . . . , vj−1 into the new group. na

is set to be j − i. Otherwise, there are less than k vertices in the sequence
(vi, vi+1, . . . , vj−1). Thereby greedy examination clusters vi, vi+1, . . . , vi+k−1 in
the new anonymization group. na is set to be k. However, there are also two
exceptions when n − i + 1 < 2k or n − j + 1 < k. The former means that
vi, vi+1, . . . , vn cannot form two anonymization groups. The latter means that
vj , vj+1, . . . , vn cannot be clustered into a separated group. In either exception,
greedy examination has to cluster vi, vi+1, . . . , vn into an anonymization group.
Then na is set to be n − i+ 1.

The algorithm is described in Algorithm 1.

1 If i = 1, the comparison is between d1 with n.
2 This is caused by edge creation.



Fast Identity Anonymization on Graphs 287

3.2 The edge creation Algorithm

At each iteration, the input to edge creation is a sequence of vertices v of
length n sorted in the descending order of their degrees, an index i and a number
na. The goal is to anonymize the vertices vi, vi+1, . . . , vi+na−1 to degree di by
adding edges to the original graph. The output is an index, which equals i+ na

if the anonymization succeeds, or equals j if vj cannot be anonymized, where
i < j ≤ i+ na − 1.

For each vj in the vertex sequence (vi, vi+1, . . . , vi+na−1), edge creation

wires it to vl for j < l ≤ n, such that the edge (j, l) does not previously ex-
ist and dl < di, until dj = di. The former condition avoids creating multiple
edges. The latter condition minimizes the need for reordering v. If in the end
edge creation successfully anonymizes these na vertices, it reorders the new
vertex sequence v in the descending order of their degrees. Otherwise, it returns
the index j such that vj cannot be anonymized with the wiring constraint. Then
the repairing algorithm relaxed edge creation is invoked.

The algorithm is described in Algorithm 2.

Algorithm 2. The edge creation algorithm

Input: v : a sequence of n vertices sorted in the descending order of their
degrees, i : an index, na : the number of vertices that are going to be
anonymized starting from vi.

Output: j : an index.

1 for j ∈ (i+ 1, i+ na − 1) do
2 while dj < di do
3 Create an edge (j, l) where j < l ≤ n such that (j, l) does not previously

exist and dl < di.;
4 if The edge cannot be created then Return j;

5 end

6 end
7 Sort v in the descending order of degree;
8 Return j;

We consider three heuristics to examine the candidate vertices in v for the
creation of edges.

The first heuristics examines v from vj+1 to vn, that is, in the decreasing order
of their degrees, and creates the edge (j, l) whenever the constraint is satisfied.
The second heuristics examines v from vn to vj+1. The last heuristics randomly
selects a candidature vl and creates the edge (j, l). Below we denote by 1, 2, and
3, respectively, the variants of the complete algorithm with these three heuristics.

Intuitively, the first heuristics incurs larger anonymization cost than the sec-
ond heuristics does. This is because the first heuristics increases the degree
of vertices with large original degree, so that the largest degrees in the some
anonymization groups might be increase. In order to anonymize these groups,
more edges will be added. The third heuristics should behavior in between.
On the other hand, the first two heuristics construct deterministic anonymized



288 X. Lu, Y. Song, and S. Bressan

graphs whereas the third heuristics can generate random anonymized graphs,
which, as we shall see, has consequences on the preservation of utility.

3.3 The relaxed edge creation Algorithm

The edge creation algorithm is not certain to output a k -degree anonymous
graph. The failure occurs when an edge (j, l) with the wiring constraint cannot
be created for some j. In this case, relaxed edge creation is invoked. It relaxes
the wiring constraint.

The algorithm examines v from vn to v1 and iteratively creates an edge (j, l) if
only theedgedoesnotpreviously exist,untildj = di.Thenrelaxed edge creation

returns the index l. Notice that this iteration can always stop because in the worst
case vj will bewired to all the other vertices. Finally relaxed edge creation sorts
the new vertex sequence v in the descending order of degree and feeds it as the input
of greedy examination in the next iteration.

The algorithm is described in Algorithm 3.

Algorithm 3. The relaxed edge creation algorithm

Input: v : a sequence of n vertices sorted in the descending order of their
degrees, i, j : two indices.

Output: l : an index.

1 for l = n to 1 do
2 if vj and vl are not connected then
3 Create an edge (j, l);
4 if dj = di then
5 Sort v in the descending order of degrees;
6 Return l;

7 end

8 end

9 end

Notice that this process may compromise the k -degree anonymity of the vertex
sequence (v1, v2, . . . , vi−1) if the returned l is less than i, i.e., vj is wired to some
vertex that has been anonymized. In this case, greedy examination needs to
examine v from the beginning in the next iteration, i.e., i is set to be 0. In the
other case where l > i, greedy examination still examines v starting from vi in
the next iteration. However, as relaxed edge creation examines v from small
degree to large degree, there is a high probability that (v1, v2, . . . , vi−1) is still
k -anonymous.

3.4 The Fast K -degree Anonymization Algorithm

The FKDA algorithm combines the greedy examination, edge creation and
relaxed edge creation algorithms. The input to FKDA is a graph G with n
vertices and the value of k. The output is a k -degree anonymous graph G′.



Fast Identity Anonymization on Graphs 289

FKDA first computes the vertex sequence v of G in the descending order
of degree. Then at each iteration, it invokes greedy examination to compute
the number na and passes it with i to edge creation. If edge creation suc-
cessfully anonymizes the na vertices, FKDA updates the value of i as i + na.
Then FKDA outputs the anonymized graph G′ if i > n, or enters the next iter-
ation otherwise. If edge creation fails to construct the graph, FKDA invokes
relaxed edge creation and updates the value of i according to the value of l
returned by relaxed edge creation. Notice that FKDA can always output a
valid k -degree anonymous graph because in the worst case a complete graph is
constructed.

The complete algorithm is described in Algorithm 4.

Algorithm 4. The Fast K -Degree Anonymization algorithm

Input: G : a graph of n vertices, k : the value of anonymity.
Output: G′ : a k -degree anonymous graph constructed from G.

1 v=the vertex sequence of G in the descending order of degree;
2 i = 1;
3 while i ≤ n do
4 na =greedy examination(v, i, k);
5 j =edge creation(v, i, na);
6 if j = i+ na then
7 i = i+ na;
8 else
9 l =relaxed edge creation(v, i, j);

10 if l < i then i = 0;

11 end

12 end
13 Return G′;

We provide the approximate bounds of the edit distance to the original graph
produced by FKDA. Suppose ideally the original vertex sequence v is clustered
as follows. The sequence (v1, v2, . . . , vik) is clustered into i groups, each of which
contains k vertices, i.e., the (j+1)th group contains the vertices vjk+1, vjk+2, . . . ,
v(j+1)k, 0 ≤ j ≤ i−1.The sequence (vik+1, vik+2, . . . , vn) is already k -anonymous3.
In the best case (which is encountered in the second heuristics of edge creation),
the vertices in the sequence (v1, v2, . . . , vik) are only wired to the vertices in the
sequence (vik+1, vik+2, . . . , vn) by edge creation. Suppose the latter sequence is
still k -anonymous after anonymization. Then we get the lower bound which is
boundl =

∑i−1
j=0

∑k
l=1(djk+1 − djk+l). In the worst case (which is encountered in

the first heuristics of edge creation), each vertex in the sequence (v1, v2, . . . , vik)
is wired to all of its antecedent vertices. Then the largest degree of the (j + 1)th

group becomes djk+1 + jk. Therefore the upper bound is boundu =∑i−1
j=0

∑k
l=1(djk+1 + jk − djk+l) =

i×(i−1)
2 k2 × boundl.

3 This is the usual case for large graphs.



290 X. Lu, Y. Song, and S. Bressan

4 Performance Evaluation

4.1 Experimental Setup

We implement KDA and three variants of FKDA, FKDA 1, FKDA 2 and FKDA
3, corresponding to the three heuristics in C++. We run all the experiments on a
cluster of 54 nodes, each of which has a 2.4GHz 16-core CPU and 24 GB memory.

4.2 Datasets

We use three datasets, namely, Email-Urv, Wiki-Vote and Email-Enron.
Email-urv contains the email communication among faculty and graduate

students at Rovira i Virgili University of Tarragona, Spain. It is an undirected
graph with 1133 vertices and 10902 edges. Each vertex represents an email ad-
dress. An edge connects a pair of vertices if there is at least one email com-
munication between the corresponding email users. The dataset is available at
http://deim.urv.cat/ aarenas/data/welcome.htm.

Wiki-Vote is the network of votes for the administrator election for Wikipedia
pages. It is a directed graph with 7115 vertices and 103689 edges. Each vertex
represents a user of Wikipedia. An edge links vertex i to vertex j if user i
votes on user j. The dataset is available at http://snap.stanford.edu/data/wiki-
Vote.html.

Email-Enron has been described in Section 1.1.
We conducts experiments on these three graphs. The different sizes of the three

graphs illustrate the performance of KDA and FKDA on small (1133 vertices),
medium (7115 vertices) and relatively large (36692 vertices) graphs.

4.3 Effectiveness Evaluation

We compare the effectiveness of the algorithms by evaluating the variation of
several utility metrics: edit distance (ED), clustering coefficient (CC) and average
shortest path length (ASPL) (following [13]).

We calculate the edit distance between the anonymized graph and the original
graph. The edit distance is the number of edges Δm added to the original graph.
For the sake of convenience for comparison, we normalize it to the number of
edges in the original graph and calculate Δm/m.

We also calculate the clustering coefficient. The clustering coefficient of a
vertex is defined as the fraction of the edges existing between the neighbors of
the vertex. Then the clustering coefficient of a graph is defined as the average
clustering coefficient of all the vertices.

We also calculate the average shortest path length. The shortest path length
between a pair of vertices in a simple graph is defined as the number of hops from
one vertex to the other. Then the average shortest path length of a graph is defined
as the average of the shortest path lengths between all reachable pairs of vertices.

We vary the value of k in the range {5, 10, 15, 20, 25, 50, 100}. For each value
of k, we run each algorithm 10 times on each dataset and compute the average
value of the metrics.



Fast Identity Anonymization on Graphs 291

Figure 1-3, 4-6 and 7-9 show the results on Email-Urv, Wiki-Vote and Email-
Enron, respectively.

Figure 1, 4 and 7 show the evaluation results of the normalized edit distance
on the three graphs.

We see that FKDA adds more edges to Email-Urv but less edges to Wiki-Vote
and Email-Enron compared to KDA. In Email-Urv which is a small graph with
1133 vertices, the differences between large degrees are not large. By using KDA
the residual degrees of the anonymized vertices with large original degrees can be
compensated by enough number of anonymized vertices with residual degrees,
that is, the anonymized degree sequence is realizable, with only a small number
of repetition of Probing. Thus the minimum edit distance found by dynamic
programming is still less than the edit distance produced by FKDA. To the
contrary, Wiki-Vote and Email-Enron are two relatively larger graphs with 7115
and 36692 vertices, respectively. The differences betweens large degrees of either
graph are considerably large. Therefore by using KDA, Probing is invoked a
significant number of times before a k -degree anonymous graph is constructed,
as explained in Section 1.1. Moreover, by comparing our relaxed edge creation

algorithm with Probing, we find that relaxed edge creation increases a small
degree only if the corresponding vertex can be wired to an anonymized vertex
with residual degree. To the contrary, Probing randomly increases a small degree
regardless the actual structure of the graph. The corresponding vertex may not
be able to be wired to an anonymized vertex with residual degree (There might
exist already an edge between the two vertices.). Consequently, more repetitions
of Probing are invoked. Thus we believe that eventually Probing adds more
noise than relaxed edge creation does to the degree sequences of the two large
graphs. Therefore FKDA adds less edges than KDA does to the two graphs.

 0

 0.5

 1

 1.5

 2

 2.5

5 10 15 20 25 50 100

N
or

m
al

iz
ed

 E
di

t D
is

ta
nc

e

K

KDA
FKDA 1
FKDA 2
FKDA 3

Fig. 1. ED: Email-Urv

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0.18

 0.2

 0.22

 0.24

5 10 15 20 25 50 100

Lo
ca

l C
lu

st
er

in
g 

C
oe

ffi
ci

en
t

K

Original
KDA
FKDA 1
FKDA 2
FKDA 3

Fig. 2. CC: Email-Urv

 2.4

 2.6

 2.8

 3

 3.2

 3.4

 3.6

 3.8

5 10 15 20 25 50 100

A
ve

ra
ge

 S
ho

rt
es

t P
at

h 
Le

ng
th

K

Original
KDA
FKDA 1
FKDA 2
FKDA 3

Fig. 3. ASPL: Email-Urv

Figure 2, 5, 8 and Figure 3, 6, 9 show the evaluation results of clustering
coefficient and average shortest path length, respectively. The constant line shows
the value of corresponding metric in the original graph.

We see that FKDA produces less similar results with that in the original
graphs on Email-Urv and more similar results on Wiki-Vote and Email-Enron
than KDA does. This is generally consistent with the evaluation results of edit
distance, since FKDA adds more edges to Email-Urv and less edges to Wiki-Vote
and Email-Enron than KDA does.

We further compare the performances of the three variants of FKDA.



292 X. Lu, Y. Song, and S. Bressan

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

5 10 15 20 25 50 100

N
or

m
al

iz
ed

 E
di

t D
is

ta
nc

e

K

KDA
FKDA 1
FKDA 2
FKDA 3

Fig. 4. ED: Wiki-Vote

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 0.55

 0.6

 0.65

5 10 15 20 25 50 100

Lo
ca

l C
lu

st
er

in
g 

C
oe

ffi
ci

en
t

K

Original
KDA
FKDA 1
FKDA 2
FKDA 3

Fig. 5. CC: Wiki-Vote

 2

 2.2

 2.4

 2.6

 2.8

 3

 3.2

 3.4

5 10 15 20 25 50 100

A
ve

ra
ge

 S
ho

rt
es

t P
at

h 
Le

ng
th

K

Original
KDA
FKDA 1
FKDA 2
FKDA 3

Fig. 6. ASPL: Wiki-Vote

 0

 0.1

 0.2

 0.3

 0.4

 0.5

5 10 15 20 25 50 100

N
or

m
al

iz
ed

 E
di

t D
is

ta
nc

e

K

KDA
FKDA 1
FKDA 2
FKDA 3

Fig. 7. ED: Email-Enron

 0.3

 0.35

 0.4

 0.45

 0.5

 0.55

 0.6

 0.65

 0.7

 0.75

5 10 15 20 25 50 100

Lo
ca

l C
lu

st
er

in
g 

C
oe

ffi
ci

en
t

K

Original
KDA
FKDA 1
FKDA 2
FKDA 3

Fig. 8. CC: Email-Enron

 2.8

 3

 3.2

 3.4

 3.6

 3.8

 4

5 10 15 20 25 50 100

A
ve

ra
ge

 S
ho

rt
es

t P
at

h 
Le

ng
th

K

Original
KDA
FKDA 1
FKDA 2
FKDA 3

Fig. 9. ASPL: Email-Enron

In Section 3.2 we say the that first heuristics incurs larger anonymization
cost, i.e. edit distance, than the second heuristics does, and the third heuristics
performs in between. The results in Figure 4 and 7 support this claim, although
the differences are small. However, in the small graph Email-Urv, we observe
that FKDA 2 incurs much larger edit distance than the other two variants and
FKDA 1 incurs the smallest edit distance, for k = 50 and k = 100. The rea-
son is as follow. When k increases, after anonymization the residual degrees of
the vertices with large original degrees become larger. Therefore more residual
vertices with smaller original degrees are required to compensate these large
residual degrees. As FKDA 2 creates edges by wiring the anonymized vertices to
the vertices from with small degree to large degree, it makes the degrees of the
anonymized vertices and the degrees of the subsequent vertices closer to each
other than FKDA 1 does. Because of the wiring constraint in edge creation,
at some point there are no enough residual vertices to compensate the resid-
ual degree of a anonymized vertex. Then relaxed edge creation is invoked.
When k is too large for the number of vertices (for example, k = 50, 100 and
n = 1133 in Email-Urv), relaxed edge creation is invoked several times by
FKDA 2. Then the edit distance to the original graph is enlarged. To the con-
trary, FKDA 1 creates edges by wiring the anonymized vertex with large residual
degree to the vertices from with large degree to small degree. It maintains a suf-
ficient gap between the degrees of the anonymized vertices and the degrees of
the subsequent vertices. The residual degree of the anonymized vertices can be
compensated under the wiring constraint in edge creation, without invoking
relaxed edge creation. Therefore the edit distance is small. FKDA 3 creates
edges by wiring the anonymized vertices to random residual vertices, so that it
incurs the edit distance to the original graph in between.

The abilities of the three heuristics on the preservation of utility of the original
graph differ from each other, depending on the structure of the original graph.



Fast Identity Anonymization on Graphs 293

For example, Figure 6 shows that FKDA 1 incurs larger average shortest path
length in the anonymized Wiki-Vote than FKDA 2 does. This suggests that the
vertices in Wiki-Vote with similar degrees are more connected than the vertices
with very different degrees. So creating edges by wiring an anonymized vertex
to the vertices from with large degree to small degree (similar degree to different
degree) in edge creation of FKDA 1 does not reduce the average shortest path
length much. To the contrary, FKDA 2 links vertices with very different degrees
in edge creation, which results in a significant reduction in the average shortest
path length. However, Figure 9 shows the reverse result in the anonymized Email-
Enron, which suggests that the vertices in Email-Enron with similar degrees are
less connected than the vertices with very different degrees. The overall results
show that FKDA 1 and FKDA 2 preserve the utilities of the original graph better
than FKDA 3 does. Nevertheless, FKDA 3 has an interesting property that it
can generate a random k -degree anonymous graph.

4.4 Efficiency Evaluation

We compare the efficiency of the algorithms by measuring their execution time.
We vary the value of k in the range {5, 10, 15, 20, 25, 50, 100}. For each value

of k, we run each algorithm 10 times on each dataset and compute the average
execution time. We also compute the speedup of FKDA versus KDA for each
parameter setting.

 0.01

 0.1

 1

 10

 100

5 10 15 20 25 50 100

E
xe

cu
tio

n 
T

im
e 

(S
ec

on
d)

K

KDA
FKDA 1
FKDA 2
FKDA 3

Fig. 10. Execution time on
Email-Urv

 0.1

 1

 10

 100

 1000

 10000

 100000

 1e+06

5 10 15 20 25 50 100

E
xe

cu
tio

n 
T

im
e 

(S
ec

on
d)

K

KDA
FKDA 1
FKDA 2
FKDA 3

Fig. 11. Execution time on
Wiki-Vote

 1

 10

 100

 1000

 10000

 100000

 1e+06

5 10 15 20 25 50 100

E
xe

cu
tio

n 
T

im
e 

(S
ec

on
d)

K

KDA
FKDA 1
FKDA 2
FKDA 3

Fig. 12. Execution time on
Email-Enron

Figure 10, 11 and 12 show the execution times on Email-Urv, Wiki-Vote
and Email-Enron, respectively. Figure 13, 14 and 15 show the corresponding
speedups.

We see that FKDA is significantly more efficient than KDA. The speedup
varies from hundreds to one million on different graphs. The inefficiency of KDA
is due to the decoupling of the checking of realizability of the anonymized degree
sequences from the construction of graph.

The efficiency of the three FKDA variants is similar. FKDA 1 and FKDA 2
are slightly faster than FKDA 3. This is because FKDA 3 maintains additional
a list of candidate residual vertices in edge creation.



294 X. Lu, Y. Song, and S. Bressan

 100

 1000

 10000

5 10 15 20 25 50 100

S
pe

ed
up

K

FKDA 1 vs. KDA
FKDA 2 vs. KDA
FKDA 3 vs. KDA

Fig. 13. Speedup of FKDA
vs. KDA on Email-Urv

 1000

 10000

 100000

 1e+06

5 10 15 20 25 50 100

S
pe

ed
up

K

FKDA 1 vs. KDA
FKDA 2 vs. KDA
FKDA 3 vs. KDA

Fig. 14. Speedup of FKDA
vs. KDA on Wiki-Vote

 1000

 10000

 100000

5 10 15 20 25 50 100

S
pe

ed
up

K

FKDA 1 vs. KDA
FKDA 2 vs. KDA
FKDA 3 vs. KDA

Fig. 15. Speedup of FKDA
vs. KDA on Email-Enron

5 Conclusion

In this paper, we propose a greedy k -degree anonymization algorithm that
anonymizes a graph by simultaneously adding edges and anonymizing its de-
gree sequence in groups of vertices.

The algorithm is designed to overcome the shortcomings of the KDA algo-
rithm proposed by [13]. The simultaneity of degree anonymization and graph
construction in the new FKDA algorithm eliminates the need for realizability
testing, which, as confirmed by our experiments, is a significant factor in the
poor efficiency of the KDA algorithm.

We propose three variants of the algorithm, corresponding to three wiring
heuristics. The comparative empirical performance evaluation on three real world
graphs shows that the three variants of FKDA are significantly more efficient
than KDA and more effective than KDA on large graphs.

We do not claim that our solution is a panacea for the anonymization of
graphs in general, that objective being anyway a chimerical target given the
generality of background knowledge potentially available to adversaries. It is
however a very effective and efficient solution for the protection of privacy in the
presence of background knowledge about vertex degrees. More importantly our
solution shows that it is possible to tightly knit realizability and construction
into one anonymization process and therefore paves the way to the development
of algorithms catering for a variety of background structural knowledge.

References

1. Backstrom, L., Dwork, C., Kleinberg, J.M.: Wherefore art thou R3579X?:
Anonymized social networks, hidden patterns, and structural steganography. Com-
mun. ACM 54(12) (2011)

2. Barabási, A.-L., Albert, R.: Emergence of Scaling in Random Networks. Sci-
ence 286, 509–512 (1999)

3. Bhagat, S., Cormode, G., Krishnamurthy, B., Srivastava, D.: Class-based graph
anonymization for social network data. PVLDB 2(1) (2009)

4. Campan, A., Truta, T.M.: A clustering approach for data and structural anonymity
in social networks. In: PinKDD (2008)



Fast Identity Anonymization on Graphs 295

5. Cheng, J., Fu, A.W.-C., Liu, J.: K-isomorphism: privacy-preserving network pub-
lication against structural attacks. In: SIGMOD (2010)

6. Clauset, A., Shalizi, C.R., Newman, M.E.J.: Power-law distributions in empirical
data. SIAM Reviews (2007)

7. Cormode, G., Srivastava, D., Yu, T., Zhang, Q.: Anonymizing bipartite graph data
using safe groupings. PVLDB 19(1) (2010)

8. Francesco Bonchi, A.G., Tassa, T.: Identity obfuscation in graphs through the
information theoretic lens. In: ICDE (2011)

9. Ghinita, G., Karras, P., Kalnis, P., Mamoulis, N.: Fast data anonymization with
low information loss. In: VLDB, pp. 758–769 (2007)

10. Hay, M., Miklau, G., Jensen, D., Towsley, D., Weis, P.: Resisting structural re-
identification in anonymized social networks. PVLDB 1(1), 102–114 (2008)

11. Korolova, A., Motwani, R., Nabar, S.U., Xu, Y.: Link privacy in social networks.
In: CIKM (2008)

12. Li, Y., Shen, H.: Anonymizing graphs against weight-based attacks. In: ICDM
Workshops (2010)

13. Liu, K., Terzi, E.: Towards identity anonymization on graphs. In: SIGMOD Con-
ference, pp. 93–106 (2008)

14. Liu, L., Wang, J., Liu, J., Zhang, J.: Privacy preserving in social networks against
sensitive edge disclosure. In: SIAM International Conference on Data Mining (2009)

15. Song, Y., Nobari, S., Lu, X., Karras, P., Bressan, S.: On the privacy and utility of
anonymized social networks. In: iiWAS (2011)

16. Sweeney, L.: K-anonymity: a model for protecting privacy. International Journal
of Uncertainty, Fuzziness and Knowledge-Based Systems 10(5) (2002)

17. Tai, C.-H., Yu, P.S., Yang, D.-N., Chen, M.-S.: Privacy-preserving social network
publication against friendship attacks. In: SIGKDD (2011)

18. Wu, W., Xiao, Y., Wang, W., He, Z., Wang, Z.: K-symmetry model for identity
anonymization in social networks. In: EDBT (2010)

19. Ying, X., Wu, X.: Randomizing social networks: a spectrum perserving approach.
In: SDM (2008)

20. Yuan, M., Chen, L., Yu, P.S.: Personalized privacy protection in social networks.
PVLDB 4(2) (2010)

21. Zheleva, E., Getoor, L.: Preserving the Privacy of Sensitive Relationships in Graph
Data. In: Bonchi, F., Malin, B., Saygın, Y. (eds.) PInKDD 2007. LNCS, vol. 4890,
pp. 153–171. Springer, Heidelberg (2008)

22. Zhou, B., Pei, J.: Preserving privacy in social networks against neighborhood at-
tacks. In: ICDE (2008)

23. Zou, L., Chen, L., Özsu, M.T.: K-automorphism: a general framework for privacy-
preserving network publication. PVLDB 2(1) (2009)



Probabilistic Inference

of Fine-Grained Data Provenance

Mohammad Rezwanul Huq, Peter M.G. Apers, and Andreas Wombacher

University of Twente, 7500 AE Enschede, The Netherlands
{m.r.huq,p.m.g.apers,a.wombacher}@utwente.nl

Abstract. Decision making, process control and e-science applications
process stream data, mostly produced by sensors. To control and monitor
these applications, reproducibility of result is a vital requirement. How-
ever, it requires massive amount of storage space to store fine-grained
provenance data especially for those transformations with overlapping
sliding windows. In this paper, we propose a probabilistic technique to
infer fine-grained provenance which can also estimate the accuracy be-
forehand. Our evaluation shows that the probabilistic inference technique
achieves same level of accuracy as the other approaches do, with minimal
prior knowledge.

1 Introduction

Sensors produce data tuples in form of streaming and these tuples are used by
the applications to take decisions as well as to control operations. In case of any
wrong decision, it is important to have reproducibility to validate the previous
outcome. Reproducibility refers to the ability of producing the same output after
having applied the same transformation process on the same set of input data,
irrespective of the process execution time. To be able to reproduce results, we
need to store provenance data, a kind of metadata relevant to the transformation
process and associated input and output dataset.

Data provenance refers to the derivation history of data from its original sources
[15]. It can be defined either at the tuple-level or at the relation-level [6] also known
as fine-grained and coarse-graineddata provenance respectively. Fine-grained data
provenance can achieve reproducibility because it documents the used set of input
tuples for each output tuple and the transformation process as well. On the other
hand, coarse-grained data provenance cannot achieve reproducibility because of
the updates and delayed arrival of tuples. However, maintaining fine-grained data
provenance in stream data processing is challenging. In stream data processing,
a transformation process is continuously executed on a subset of the data stream
known as a window. Executing a transformation process on a window requires to
document fine-grained provenance data for this processing step to enable repro-
ducibility. If a window is large and subsequent windows overlap significantly, the
size of provenance data becomes a multiple of the actual sensor data. Since prove-
nance data is ’just’ metadata and less often used by the end users, this approach
seems to be infeasible and too expensive [11].

S.W. Liddle et al. (Eds.): DEXA 2012, Part I, LNCS 7446, pp. 296–310, 2012.
c© Springer-Verlag Berlin Heidelberg 2012



Probabilistic Inference of Fine-Grained Data Provenance 297

Fig. 1. Example workflow

The storage requirement can be significantly reduced if the fine-grained data
provenance is not explicitly documented, but inferred based on coarse-grained
data provenance and reproducible states of the database enabled by a temporal
data model [12], known as basic provenance inference. Since the characteristics
of a stream data processing often varies over time, the inference mechanism has
to account for this dynamics. In particular, two parameters are important:

– Processing delay or δ refers to the time required to execute the transforma-
tion process on the current window.

– Sampling time or λ refers to the time between the arrival of the current tuple
and the subsequent one.

The inference algorithm proposed in this paper uses the given processing delay, δ
and sampling time, λ distribution to improve the basic inference algorithm. In par-
ticular, the inputwindow is shifted such that the achievable accuracy of the inferred
fine-grained data provenance is optimized. The distance of the shift is determined
by the relationship among δ, λ distribution and tuples arrival within a window.

The proposed probabilistic approach has an advantage over the approach dis-
cussed in [10], which requires to observe specific distributions deduced from the
sampling time distribution at runtime. As a consequence, estimating the accu-
racy of the inference algorithm is not possible at the design time of the processing,
since the special distributions are not known in prior. The probabilistic method
can estimate the accuracy of the inference at design time since the method has
no requirement of observing any distribution. Inference of tuple-based windows
is independent of these special distributions, thus the results are not repeated
here and we only focus on time-based windows in this paper.

2 Motivating Scenario

RECORD1 is one of the projects in the context of the Swiss Experiment2, which
is a platform to enable real-time environmental experiments. Several sensors have
been deployed to monitor river restoration effects. Some of them measure electric
conductivity of water which indicates the number of ions in the water. Increasing
conductivity refers to higher level of salt in the water. We are interested to control

1 http://www.swiss-experiment.ch/index.php/Record:Home
2 http://www.swiss-experiment.ch/

http://www.swiss-experiment.ch/index.php/Record:Home
http://www.swiss-experiment.ch/


298 M.R. Huq, P.M.G. Apers, and A. Wombacher

the operation of a nearby drinking water well by facilitating the available online
sensor data.

Fig. 1 shows the workflow. There are three sensors, known as: Sensor#1, Sen-
sor#2 and Sensor#3. They are deployed in different geographic locations in a
known region of the river. For each sensor, there is a corresponding source pro-
cessing element named PE1, PE2 and PE3 which provides data tuples in a view
S1, S2 and S3 respectively. These views are the input for the Union processing
element which produces a view V1 as output. Each data tuple in the view V1

is attached with an explicit timestamp referring to the point in time when it is
inserted into the database (also known as transaction time). Next, the view V1 is
fed to the processing element P1 which calculates the average value per window
and then generates a new view V2. The task of P2 is to calculate the maximum
and minimum value per input window of view V2 and store the aggregated value
in view V3. Next, V3 is used by P3 which calculates the difference between the
maximum and minimum electric conductivity over the selected region at a par-
ticular point in time. The view V4 holds these output data tuples along with
the transaction time and gives significant information about the fluctuation of
electric conductivity. Later, Visualization processing element facilitates V4 to
produce a contour map of the fluctuation of the electric conductivity in that
selected region of the river. If the map shows any abnormality, researchers may
want to reproduce results to validate their model. We consider the shaded part
in Fig. 1 to discuss and evaluate our proposed solution later in this paper.

3 Basic Provenance Inference

The basic provenance inference algorithm has been reported in [12]. Since our
proposed probabilistic provenance inference algorithm is based on the funda-
mental principle of the basic algorithm, we discuss this algorithm first and then
explain its limitations and propose the probabilistic provenance inference algo-
rithm. To explain this algorithm, we consider the processing element P1 shown
in Fig.1, that takes view V1 as input and produces view V2. Moreover, we assume
that, sampling time is 2 time units, window size is 5 time units and the window
triggers after every 5 time units.

3.1 Document Coarse-Grained Provenance

At first, we document coarse-grained provenance of P1 which is a one-time ac-
tion, and performed during the setup of this processing element. The stored
provenance information is quite similar to process provenance reported in [16].
Inspired from this, we keep the following information of a processing element
specification based on [17] as coarse-grained data provenance.

– Number of sources: indicates the total number of source views.
– Source names: a set of source view names.
– Window types: a set of window types; one element for each source. The value

can be either tuple or time.



Probabilistic Inference of Fine-Grained Data Provenance 299

Fig. 2. Request, Reconstruction & Inference of Provenance Algorithm

– Window predicates: a set of window predicates; one element for each source.
The value actually represents the size of the window.

– Trigger type: specifies how the processing element will be triggered for exe-
cution (e.g. tuple or time based)

– Trigger predicate: specifies when a processing element will be triggered for
execution.

3.2 Reconstruct Processing Window

This phase will be only executed if the provenance information is requested for
a particular output tuple T generated by P1 and it returns the set of tuples
which reconstruct the processing window. Here, the tuple T is referred to as
chosen tuple for which provenance information is requested and the horizontal
dashed line indicates the time when that particular window triggers, known as
triggering point (see Fig. 2.A).

We apply a temporal data model on streaming sensor data to retrieve appro-
priate data tuples based on the given timestamp. The temporal attributes are:
i) valid time represents the point in time a tuple was created by a sensor and
ii) transaction time is the point in time a tuple is inserted into a database.
The valid and transaction time is also known as application and system times-
tamp. While valid time is anyway maintained in sensor data, transaction time
attribute requires extra storage space.

Fig. 2.B shows the reconstruction phase. The transaction time of the chosen
tuple is t10 which is the reference point to reconstruct the processing window.
Since window size is 5 time units, we retrieve the tuples having transaction time
within the boundary [t5, t10) from the view V1. This set of tuples reconstruct the
processing window which is shown by the tuples surrounded by a light shaded
rectangle in Fig. 2.B.

3.3 Provenance Inference

The last phase of the basic provenance inference establishes the relationship
among the chosen output tuple with the set of contributing input tuples.



300 M.R. Huq, P.M.G. Apers, and A. Wombacher

This mapping is done by facilitating the input-output mapping ratio of the
processing element and the tuple order in the respective views. P1 takes all the
input tuples (i.e. n number of tuples) and produces one output tuple. Therefore,
for P1, the input-output ratio is n : 1. Therefore, we conclude that all the tuples
in the reconstructed window contribute to produce the chosen tuple. In Fig.2.C,
the dark shaded rectangle shows the original processing window which exactly
coincides with our inferred processing window. Therefore, in this case, we achieve
accurate provenance information. For processing elements with input-output ra-
tio 1 : 1, we have to identify the contributing input tuple by facilitating the
monotonicity in tuple ordering property in both views V1 and V2. This prop-
erty ensures that input tuples of view V1 producing output tuples of view V2 in
the same order of their transaction time and this order is also preserved in the
output view V2.

3.4 Discussion

The basic provenance inference algorithm has few requirements to be satisfied.
Most of the requirements are already introduced to process streaming data in
literature. In [13], authors propose to use transaction time on incoming stream
data. We assume that the windows are defined and evaluated based on trans-
action time, i.e. system timestamp. However, our inference-based methods are
also applicable if the window is built on valid time or application timestamp.
In this case, if an input tuple arrives after the window execution, we can ignore
that tuple since it’s transaction time is greater than the transaction time of the
output tuple. Ensuring temporal ordering of data tuples is another requirement
for provenance inference.

The basic inference method performs well if the processing delay is not signif-
icant, i.e. processing is infinitely fast. However, in case of a significant processing
delay and variable sampling time it cannot infer accurate provenance. The next
section demonstrates few cases where inaccurate provenance is provided by the
basic inference method.

4 Inaccuracy in Time-Based Windows

To explain different cases where inaccurate provenance is inferred, we introduce
few basic concepts of our inference model first. For the processing element Pj ,
λj refers to the sampling time of the input view of Pj . The windows are defined
over the input view of Pj and assuming that W be the set of processing windows
where W = {wi | wi ε W} where i = 1, 2, ..., n. There might be a small time gap
between the starting of the window wi and appearance of the first tuple in wi.
This time gap is denoted by α(wi). Accordingly, the time between the last tuple
in wi and the triggering point is denoted by β(wi). Then, each wi needs some
time to finish the processing, i.e. processing delay, which is denoted as δ(wi).

Fig. 3 shows different cases in a time-based window of 5 time units which
triggers after every 5 time units, defined over the input view V1 of the processing



Probabilistic Inference of Fine-Grained Data Provenance 301

Fig. 3. Inaccuracy in time-based windows

element P1 with λ1 = 2 time units. The first case shown in Fig. 3.A, is the case
described in Section 3. The window w2 triggers at t10 shown by the dashed
line and the output tuple is also produced at t10. Therefore, processing delay
δ(w2) = 0 time unit. Since the processing is infinitely fast, both original and
inferred processing window have the same boundary [t5, t10). Therefore, the basic
provenance inference provides accurate provenance in this case.

Fig. 3.B shows another case where the same window w2 triggers at t10 and
the output tuple is produced at t11. Therefore, δ(w2) = 1 time unit. Earlier,
the window w2 began at t5 and the transaction time of the first tuple within
w2 is also t5. Therefore, α(w2) = 0 time unit. Based on the basic provenance
inference technique, the reconstructed processing window contains tuples having
transaction time within [t6, t11) shown by the light shaded rectangle. However,
the original window w2 has the boundary [t5, t10) shown by the dark shaded
rectangle. Therefore, the inferred provenance is inaccurate since the input tuple
with transaction time t5 is not included in the reconstructed window. This failure
of providing accurate provenance can be defined as follows.

Failure 1. Exclusion of a contributing tuple from the lower end of the window wi

may occur if the processing delay δ(wi) is longer than the difference between the
first input tuple in wi and the time at which wi starts. If the following condition
holds, we have a failure: α(wi) < δ(wi)

Fig. 3.C shows the last case where the window w2 triggers at the same time
as in the previous cases and the output tuple is produced at t12. Therefore,
δ(w2) = 2 time units. As described in the previous case, α(w2) remains the same
which is 0 time unit. The transaction time of the last tuple within w2 is t9.
Therefore, β(w2) = 1 time unit. The basic algorithm returns the reconstructed
window with the boundary [t7, t12). However, the original window w2 has the
boundary [t5, t10). Therefore, the inferred provenance is inaccurate and one of
the reasons for that is the input tuple with transaction time t11 is included in the
reconstructed window which was not contributing to produce the chosen tuple
during the original processing. This failure can be defined as follows.



302 M.R. Huq, P.M.G. Apers, and A. Wombacher

Failure 2. Inclusion of a newly arrived non-contributing input tuple may occur
due to arrival of the new input tuple before the processing of the window wi is
finished. If the following holds, we have a failure: λj − β(wi) < δ(wi)

5 Probabilistic Provenance Inference

5.1 Overview of the Algorithm

Probabilistic provenance inference allows us to use the given δ and λ distributions
only to decide the shifting of the window so that we can achieve optimal accuracy
of inferred provenance information. The former approach discussed in [10] needs
to observe both distributions along with α and β distributions. The probabilistic
approach facilitates Markov chain modeling on the arrival of data tuples within
a window to calculate both α and β distributions which are then used in the
process of adapting the window size. A Markov chain is a mathematical system
that represents the undergoing transitions from one state to another in a chain-
like manner [4].

The major advantage of using the probabilistic method is that it can estimate
the accuracy at the design time since it depends on the given distributions.
This accuracy estimation provides users useful hint about the applicability of
the inference mechanism beforehand. Furthermore, our evaluation shows that
the actual accuracy achieved using probabilistic inference is comparable to the
accuracy of the adaptive approach [10] although less prior knowledge is required
for the probabilistic approach to achieve this level of accuracy.

5.2 Required Parameters

We propose a novel tuple-state graph based on the principle of a Markov chain
to calculate both α and β distributions which eventually help us to infer fine-
grained data provenance. To do so, different parameters are required. The num-
ber of vertices in the tuple-state graph depends on the given window size of the
processing element. The transitions from one vertex to another depend on the
λ distribution and the trigger rate. We use the example described in Section 3
where a time-based window is defined over the input view of P1 with window
size = 5 time units and trigger rate = 5 time units.

Furthermore, to build the tuple-state graph, the given λ and δ distributions are
used. The λ distribution of the input view V1, i.e. λ1, follows poisson distribution
with the following values: P (λ1 = 1) = 0.37, P (λ1 = 2) = 0.39 and P (λ1 = 3) =
0.24 where mean = 2. The δ distribution of P1 also follows poisson distribution
with mean = 1. The values of the δ distribution are: P (δ(wi) = 1) = 0.68,
P (δ(wi) = 2) = 0.32.

5.3 Building Tuple-State Graph to Calculate α Distribution

Based on the given λ1 distribution, it is possible to construct a Markov model
for determining the α distribution, i.e., the probability for a tuple arriving with
a specific distance from the start of the window.



Probabilistic Inference of Fine-Grained Data Provenance 303

Fig. 4. Tuple-state graph to calculate α distribution

For each processing element Pi, a tuple-state graph Gα has to be built to
compute the corresponding α distribution. Each vertex in the tuple-state graph
represents a state, which identifies the position of a tuple within a processing
window w.r.t. the start of the window. There are two different types of states in
a tuple-state graph. These are:

1. First states: These states represent that the current tuple is the first tuple
of a particular window. These are denoted as the arrival timestamp of the
tuple in the window w.r.t the start of the window followed by a letter ’F’
(e.g. OF, 1F, 2F).

2. Intermediate states: These states represent the arrival of tuples within a
window without being the first tuple. The states are represented by the
arrival timestamp of the new tuple in the window w.r.t the start of the
window followed by a letter ’I’ (1I, 2I, 3I, 4I).

The construction of the tuple-state graph for processing element P1 mentioned in
Fig. 3 is described below. First, a set of first and intermediate states as vertices
are added to Gα(V,E). The number of vertices in both states is bounded by

the window size. It can be expressed as: V =
⋃WS1

j=0 {jF, jI} where WS1 be the
window size of V1 which is the input view of P1.

Next, we add edges from all vertices based on the value of the tuple arrival
distribution λ1. An edge is defined via the start vertex (from vertex ), the end
vertex (to vertex ), and the probability of this edge occurring (weight).

A directed edge can be defined from every point in the window to a later point
in the window without crossing the window boundary. The start vertex could
be a first or intermediate state, while the end vertex is an intermediate state.
Assume that, TR1 be the trigger rate of P1, the formula below represents these
edges, where the weight associated to an edge corresponds to the probability of
two subsequent tuples arriving with a distance of k − j time units.

E1 =

WS1−1⋃
j=0

j+max(λ1)⋃
k=j+1

{ { ( jF, kI, P (λ1 = k − j) ),

( jI, kI, P (λ1 = k − j) ) } | k < TR1}



304 M.R. Huq, P.M.G. Apers, and A. Wombacher

Furthermore, directed edges can be defined which are crossing window bound-
aries. In this case, the start vertex is either a first or an intermediate state, while
the end vertex is a first state. The formula below represent these edges.

E2 =

WS1−1⋃
j=0

j+max(λ1)⋃
k=j+1

{ { ( jF, k′F, P (λ1 = k − j) ),

( jI, k′F, P (λ1 = k − j))}|k ≥ TR1 ∧ k′ = k mod TR1}

The complete set of edges in the tuple-state graph is the union of E1 and E2.

E = E1 ∪ E2

Fig. 4 depicts a tuple-state graph to calculate α distribution for the processing
element P1. Given, P (λ1 = 1) = 0.37, P (λ1 = 2) = 0.39 and P (λ1 = 3) = 0.24.
Starting from the vertex 0F , edges are added to 1I, 2I and 3I with weight 0.37,
0.39 and 0.24 respectively. These edges are the elements of set E1. As another
example, consider starting from vertex 4I, we add edges to 0F , 1F and 2F with
weight 0.37, 0.39 and 0.24 respectively. These edges are elements of set E2. This
process will be continued for all the veritces to get a complete Gα.

5.4 Steady-State Distribution Vector

The long-term behavior of a Markov chain enters a steady state, i.e. the prob-
ability of being in a state will not change with time [9]. In the steady state,
the vector s represents the average probability of being in a particular state.
To optimize the steady state calculation, vertices with no incoming edges can
be ignored. Since the steady state analysis of the Markov model considers these
states irrelevant those vertices and associated edges are removed.

Assuming uniformly distributed initial probabilities, the steady state of
the Markov model can be derived. The probabilities of states with suffix ’F’
form the α distribution for processing element P1, i.e., the probabilities of
the first tuple in a window arrives after a specific number of time units. The
steady state distribution vector sα for the tuple-state graph, Gα (see Fig. 4) is:

sα =

(
0F 1F 2F 1I 2I 3I 4I
0.20 0.13 0.05 0.07 0.15 0.20 0.20

)
The components of the states 0F, 1F, 2F represent the probability of the value

of α = 0, 1 and 2 respectively. After normalizing the probability of these values,
we get the model-given distribution of α. Table 1.a shows that the α distribution
achieved facilitating the tuple-state graph Gα is comparable with the observed
α distribution.

5.5 Calculating β Distribution

Along the lines of the previous two subsections, also the β distribution indicating
the probability distribution on the distance between the last tuple in a window
and the end of the window can be calculated. Due to a lack of space we do not
describe this construction in detail.



Probabilistic Inference of Fine-Grained Data Provenance 305

Table 1. Comparison of α distributions and Joint prob. distribution of α & δ

(a) Observed vs. model-
given α distribution

α observed model-given

0 0.532 0.535
1 0.347 0.337
2 0.121 0.128

(b) Joint probability distribu-
tion of model-given α and δ

α = x δ = y P(α = x, δ = y)

0 1 0.364 (a)
0 2 0.171 (b)
1 1 0.229 (c)
1 2 0.108 (d)
2 1 0.087 (e)
2 2 0.041 (f)

5.6 Accuracy Estimation and Shifting of the Window

The proposed probabilistic technique shifts the window based on the model-given
α and the given δ distribution. The original window should be shifted in such a way
that we can avoid both failures described in Section 4. Before shifting the window,
the transaction time of the chosen tuple is referred to as the current reference point
which also indicates the upper end of the window beyond which no more tuples
would be considered. At first, the upper end of the window is adjusted and the
point in time after the adjustment is known as the new reference point. The time
gap between current and new reference point is called as offset. Therefore, the
formula to calculate the upper end is: UpperEnd = TransactionTime - offset. To
calculate the lower end of the window, we subtract the window size from the upper
end, i.e. LowerEnd =TransactionTime -windowSize - offset. The value of offset is
determined using the joint probability distribution of model-given α and the given
δ distribution. Both of these distributions are related to the processing element P1

which is mentioned in Fig. 3.
Since α and δ are two independent variables, the joint probability distribu-

tion of these two variables can be calculated and is shown in Table 1.b. The δ
distribution given in Section 5.2 is used for the calculation. If the offset is set to
0, the value of δ remains the same. Based on the definitions of failures in Section
4 and from Table 1.b, it is clear that if the offset = 0, only about 36% (c+e+f)
accurate provenance could be achieved. However, if the offset is set to 1, δ is
also subtracted by 1 which greatly reduces the chance of inaccuracy. According
to our failure conditions discussed in Section 4 and from Table 1.b, the chance of
inaccuracy is 17% (b). Therefore, setting the offset value 1 would achieve around
83% accuracy. If the offset is 2 then the percentage of inaccuracy again increases
mainly due to the inclusion of non-contributing tuples from the lower end of the
window. Therefore, based on the joint probability distribution, we choose offset
= 1 which gives the optimal estimated accuracy of 83%.

In Fig. 3, we discuss three different cases by altering the δ value. Since δ = 0
in the first case, it falls outside the scope of our proposed algorithm because
the proposed probabilistic approach assumes that there exists some processing
delay. Applying our probabilistic inference algorithm with offset= 1 for the other



306 M.R. Huq, P.M.G. Apers, and A. Wombacher

two cases, case B would return the inferred window w2= [t5, t10) which exactly
coincides with the actual window w2. Thus, we infer accurate provenance. For
case C, the inferred window w2 contains tuples within the range [t6, t11) which
differs from the actual window w2. This is one of the examples where probabilistic
inference provides inaccurate provenance due to the bigger processing delay.

6 Evaluation

6.1 Evaluating Criteria, Test Cases and Datasets

We evaluate our proposed probabilistic provenance inference algorithm using
i) accuracy and ii) storage consumption. To compare accuracy, the traditional
fine-grained provenance information, also known as explicit method, is used as
a ground truth. We compare the accuracy among basic [12], adaptive [10] and
probabilistic approach proposed in this paper through a simulation.

The simulation is executed for 10000 time units for the processing element P1

mentioned in Section 2. Based on queuing theory, we assume that both sampling
time λ and processing delay δ distribution follows poisson distribution. The 6
test cases shown in Table 2 are chosen carefully. Test case 1 is used through
out this paper to explain our method. Test case 2 and 3 is almost similar to
each other except the trigger rate. Test case 4 and 5 are the example of non-
overlapping, tumbling windows with the only difference in the processing delay.
Test case 6 is similar to test case 4 except the deviation in the sampling time.

Furthermore, we compare the storage requirement of inference-based
approaches with explicit method of maintaining provenance. A real dataset3 re-
porting electric conductivity of the water, collected by the RECORD project is
used for this purpose. The input dataset contains 3000 tuples consuming 720kB.

6.2 Accuracy

Table 2 shows the accuracy achieved using the different algorithms for the afore-
said test cases. Test case 1 is the one which is used as the example through

Table 2. Different test cases used for evaluation and Evaluation result

Test Cases Accuracy

Test Window Trigger avg(λ) max(λ) avg(δ) max(δ) Basic Adaptive Probabilistic
case size rate Estimated Achieved

1 5 5 2 3 1 2 36% 83% 84% 83%
2 10 5 2 3 1 2 40% 83% 82% 83%
3 10 10 2 3 1 2 39% 85% 82% 83%
4 10 10 3 5 1 2 53% 87% 87% 87%
5 10 10 3 5 2 3 41% 75% 75% 74%
6 10 10 4 6 1 2 61% 92% 91% 92%

3 http://data.permasense.ch/topology.html\#topology



Probabilistic Inference of Fine-Grained Data Provenance 307

Fig. 5. Influence of Sampling Time over the accuracy

out this paper. In test case 1 & 2, only the window size is changed with other
parameters remain unchanged. In both cases, we achieve almost the same level
of accuracy for all algorithms. Therefore, it seems that window size does not
influence the accuracy.

Next, we discuss the accuracy achieved comparing test case 2 and 3. These two
cases have the same parameters except the trigger rate. Nevertheless, the result
is again almost identical for all algorithms. This might indicate that trigger rate
has very little influence to the accuracy.

The difference in parameters between test case 3 and 4 is avg(λ) and max(λ).
The accuracy achieved in test case 4 for all the approaches is higher than those
of case 3. The reason is that increasing the sampling time of tuples and keeping
the processing delay the same, may lower the chance of inaccuracy.

Test case 4 and 5 differ in avg(λ) and max(δ) parameters. The processing
takes longer in test case 5 which influences the level of accuracy. The accuracy
achieved in test case 5 is around 74% for our probabilistic approach where as it
is 87% in test case 4. Therefore, keeping the sampling time equal and increasing
the processing delay might cause to achieve lower accuracy.

Lastly, we introduce another test case for better understanding of the influence
of sampling time on the accuracy. Test case 6 has the same parameters like test
case 3 and 4 except avg(λ) and max(λ). The value of avg(λ) is 4 and max(λ)
is 6 time units. Figure 5 shows the accuracy achieved for test case 3, 4 and 6
for the different approaches. From Fig. 5, we observe that increasing sampling
time with other parameters unchanged, might provide more accurate inferred
provenance information. Therefore, it might give a useful hint that the higher
the sampling time, the higher the accuracy.

Our probabilistic algorithm uses minimal prior knowledge to infer fine-grained
provenance data. However, the proposed probabilistic algorithm provides the
same level of accuracy compared to the adaptive approach. The reason is that
the α-distribution given by our tuple-state graph is very similar to the observed
α-distribution produced for all test cases (see Table 1.a for test case 1).



308 M.R. Huq, P.M.G. Apers, and A. Wombacher

Furthermore, the estimated accuracy provided by the probabilistic algorithm
is almost identical to the achieved accuracy of the algorithm. Since, the estimated
accuracy can be calculated before the actual experiment, it is a useful indicator
for the applicability of the algorithm for a given set of distributions.

6.3 Storage Requirement

We measure the storage overhead to maintain fine-grained data provenance for
the same processing element P1. The result is reported in Table 3 for test case 1
and 2 which are the examples of non-overlapping and overlapping windows re-
spectively. All three inference based approaches: basic, adaptive and probabilistic
method have the same storage cost and they are referred to as inference-based
methods.

Table 3. Provenance data storage consumption (in KB)

Method Non-Overlapping Overlapping
(Test Case 1) (Test Case 2)

Space consumed Ratio Space consumed Ratio

Explicit method 950 5.5:1 1925 11:1
Inference-based methods 175 175

Table 3 shows the storage cost to maintain fine-grained provenance data for
different methods. In case of test case 1, inference-based methods take almost
6 times less space than the explicit method. Since the trigger rate is the same,
test case 2 also produces as many output tuples as produced in test case 1.
The storage cost of inference-based methods only depends on the number of
input and output tuples. Therefore, the storage consumed in test case 2 by the
inference-based methods remains the same. However, the consumed storage space
for the explicit method gets bigger due to the larger window size and overlapping
windows. Therefore, in test case 2, the inference-based methods take 11 times
less space than the explicit method. This ratio of course will vary based on the
window size, overlapping between windows and number of output tuples. The
bigger the window and overlapping between windows, the higher the ratio of space
consumption between explicit and inference-based approaches.

7 Related Work

The work reported in [2] and [1] discuss the projects which facilitate the exe-
cution of continuous queries and stream data processing . All these techniques
proposed optimization for storage space consumed by sensor data. However, none
of these systems offer fine-grained data provenance in stream data processing.

In [5], authors described a data model to compute provenance on both relation
and tuple level. This data model follows a graph pattern and shows case studies
for traditional data but it does not address how to handle streaming data and
associated overlapping windows.



Probabilistic Inference of Fine-Grained Data Provenance 309

In [8], authors have presented an algorithm for lineage tracing in a data ware-
house environment. They have provided data provenance on tuple level. LIVE
[14] is an offshoot of this approach which supports streaming data. It is a com-
plete DBMS which preserves explicitly the lineage of derived data items in form
of boolean algebra. However, these techniques incur extra storage overhead to
maintain fine-grained data provenance.

In sensornet republishing [13], the system documents the transformation of
online sensor data to allow users to understand how processed results are derived
and support to detect and correct anomalies. They used an annotation-based
approach to represent data provenance explicitly. However, our proposed method
does not store fine-grained provenance data rather infer provenance data.

In [7], authors proposed approaches to reduce the amount of storage required
for provenance data. To minimize provenance storage, they remove common
provenance records; only one copy is stored. Then, using an extra provenance
pointer, data tuples can be associated with their appropriate provenance records.
Their approach seems to have less storage consumption than traditional fine-
grained provenance in case of sliding overlapping windows.

A layered model to represent workflow provenance is introduced in [3]. The
layers presented in the model are responsible to satisfy different types of prove-
nance queries including queries about a specific activity in the workflow. A re-
lational DBMS has been used to store captured provenance data. The authors
have not introduced any inference mechanism for provenance data.

Our earlier work described in [12] can infer fine-grained provenance informa-
tion for one processing step only. This technique is known as basic provenance
inference. However, it did not take system dynamics into account. Adaptive in-
ference technique provides inferred provenance considering the changes in sys-
tem characteristics [10]. However, it requires to have some additional knowledge
about different specific distributions which must be observed during runtime.
Proposed probabilistic provenance inference can infer provenance and estimate
the accuracy without observing those specific distributions.

8 Conclusion and Future Work

The proposed probabilistic approach is capable of addressing the dynamics of a
streaming system because of it’s adaptivity based on tuple arrival patterns and
processing delay. Further, it provides highly accurate provenance. We compare
the probabilistic method with other inference-based methods and the results show
that it gives the same accuracy as the adaptive inference method. However, the
advantage of using the probabilistic method is to have a guaranteed accuracy level
based on the given distributions. Furthermore, it also reduces storage costs to
maintain provenance data like any other inference-based methods. In future, we
will extend this technique to infer provenance for a chain of processing elements.



310 M.R. Huq, P.M.G. Apers, and A. Wombacher

References

1. Abadi, D., et al.: The design of the borealis stream processing engine. In: CIDR
2005, Asilomar, CA, pp. 277–289 (2005)

2. Babcock, B., et al.: Models and issues in data stream systems. In: ACM
SIGMOD-SIGACT-SIGART Symposium, pp. 1–16. ACM (2002)

3. Barga, R., Digiampietri, L.: Automatic capture and efficient storage of e-science
experiment provenance. Concurrency and Computation: Practice and Experi-
ence 20(5), 419–429 (2008)

4. Bishop, C.M.: Patter Recognition and Machine Learning. Springer Sci-
ence+Business Media LLC (2006)

5. Buneman, P., Khanna, S., Tan, W.-C.: Why and Where: A Characterization of
Data Provenance. In: Van den Bussche, J., Vianu, V. (eds.) ICDT 2001. LNCS,
vol. 1973, pp. 316–330. Springer, Heidelberg (2001)

6. Buneman, P., Tan, W.C.: Provenance in databases. In: SIGMOD, pp. 1171–1173.
ACM (2007)

7. Chapman, A., et al.: Efficient provenance storage. In: SIGMOD, pp. 993–1006.
ACM (2008)

8. Cui, Y., Widom, J.: Lineage tracing for general data warehouse transformations.
VLDB Journal 12(1), 41–58 (2003)

9. Gebali, F.: Analysis of Computer and Communication Networks. Springer Sci-
ence+Business Media LLC (2008)

10. Huq, M.R., Wombacher, A., Apers, P.M.G.: Adaptive inference of fine-grained
data provenance to achieve high accuracy at lower storage costs. In: 7th IEEE
International Conference on e-Science, pp. 202–209. IEEE Computer Society Press
(2011)

11. Huq, M.R., Wombacher, A., Apers, P.M.G.: Facilitating fine grained data prove-
nance using temporal data model. In: Proceedings of the 7th Workshop on Data
Management for Sensor Networks (DMSN), pp. 8–13 (2010)

12. Huq, M.R., Wombacher, A., Apers, P.M.G.: Inferring Fine-Grained Data Prove-
nance in Stream Data Processing: Reduced Storage Cost, High Accuracy. In:
Hameurlain, A., Liddle, S.W., Schewe, K.-D., Zhou, X. (eds.) DEXA 2011, Part
II. LNCS, vol. 6861, pp. 118–127. Springer, Heidelberg (2011)

13. Park, U., Heidemann, J.: Provenance in Sensornet Republishing. In: Freire, J.,
Koop, D., Moreau, L. (eds.) IPAW 2008. LNCS, vol. 5272, pp. 280–292. Springer,
Heidelberg (2008)

14. Das Sarma, A., Theobald, M., Widom, J.: LIVE: A Lineage-Supported Versioned
DBMS. In: Gertz, M., Ludäscher, B. (eds.) SSDBM 2010. LNCS, vol. 6187, pp.
416–433. Springer, Heidelberg (2010)

15. Simmhan, Y.L., et al.: A survey of data provenance in e-science. SIGMOD
Rec. 34(3), 31–36 (2005)

16. Simmhan, Y.L., et al.: Karma2: Provenance management for data driven workflows.
International Journal of Web Services Research 5, 1–23 (2008)

17. Wombacher, A.: Data workflow - a workflow model for continuous data processing.
Technical Report TR-CTIT-10-12, CTIT, University of Twente, Enschede (2010)



Enhancing Utility and Privacy-Safety

via Semi-homogenous Generalization

Xianmang He1, Wei Wang2, HuaHui Chen1,
Guang Jin1, Yefang Chen1,�, and Yihong Dong1

1 School of Information Science and Technology, NingBo University
No.818, Fenghua Road, Ning Bo, 315122, P.R. China

{hexianmang,chenhuahui,jinguang,chenyefang,dongyihong}@nbu.edu.cn
2 School of Computer Science and Technology, Fudan University,

No.220, Handan Road, Shanghai, 200433, P.R. China
weiwang1@fudan.edu.cn

Abstract. The existing solutions to privacy preserving publication can
be classified into the homogenous and non-homogenous generalization.
The generalization of data increases the uncertainty of attribute values,
and leads to the loss of information to some extent. The non-homogenous
algorithm which is based on ring generalization, can reduce the informa-
tion loss, and in the meanwhile, offering strong privacy preservation. This
paper studies the cardinality of the assignments based on the ring gen-
eralization, and proved that its cardinality is αn(α > 1). In addition, we
propose a semi-homogenous algorithm which can meet the requirement of
preserving anonymity of sensitive attributes in data sharing, and reduce
greatly the amount of information loss resulting from data generalization
for implementing data anonymization.

Keywords: non-homogenous algorithm, privacy preservation, ring gen-
eralization, semi-homogenous algorithm.

1 Introduction

Disseminating aggregate statistics of private data has much benefit to the public.
Organizations may need to release private data for the purposes of facilitating
data analysis and research. For example, medical records of patients may be
released by a hospital to aid the medical study. Assume that a hospital wants
to publish records of Table 1, which is called microdata (T ). Since attribute
Disease is sensitive, we need to ensure that no adversary can accurately infer
the disease of any patient from the published data. For this purpose, any unique
identifier of patients, such as Name should be anonymized or excluded from the
published data. However, it is still possible for the privacy leakage if adversaries
have certain background knowledge about patients. For example, if an adversary
knows that Alex is of age 19, Zipcode 14k and Sex F, s/he can infer that Bob’s
disease is emphysema since the combination of Age, Zipcode and Sex uniquely

� Corresponding author.

S.W. Liddle et al. (Eds.): DEXA 2012, Part I, LNCS 7446, pp. 311–325, 2012.
c© Springer-Verlag Berlin Heidelberg 2012



312 X. He et al.

identify each patient in Table 1. The attribute set that uniquely identify each
record in a table is usually referred to as a quasi-identifier(QI for short) of the
table.

To overcome the privacy threat under the attack guided by background knowl-
edge, k-anonymity (k ≥ 2) was firstly proposed. A data set is k-anonymous if
each record in the data set is indistinguishable from at least k − 1 other records
with the same data set. The larger the value of k, the better the privacy is
protected. A plethora of of k-anonymization algorithms have been developed,
some of them but not limited to these are: Incognito [1], Mondrian [2], Util-
ity anonymization [3], Spatial indexing techniques [4], Fast algorithm [5],etc.
All these algorithms share a common framework: partition the table into many
QI-groups such that the size of each QI-group is not smaller than k, and then
generalize each QI-group. Such an approach, to which we refer as homogeneous
generalization.

1.1 Homogeneous and Non-homogeneous Generalization

Homogeneous generalization has been widely used in many anonymization solu-
tions [3, 6–10]. In a typical homogenous-based solution, tuples are first divided
into subsets (each subset is referred to as a QI-group). Then, QI-values of each
QI-group are generalized to the same generalized value in all quasi-identifiers
within a partition. As an example, in order to achieve 4-anonymity, we gener-
alize Table 1 into a QI-group. In other words, the homogenous generalization
results into 1 equivalent classes with QI-values (< 19 − 25, 12 − 20k, F/M >).
That is, assign the same generalized QI-values to tuples in the same group.

In contrast, non-homogeneous approach was proposed in recently years [11].
This approach allows tuples within a QI-group to take different generalized quasi-
identifier values for groups of size larger than k. After a random assignment was
posed on the sensitive attributes( an assignment is essentially a permutation,
see Definition 1), it can provide better privacy protection and security, be able
to resist various attacks.

Definition 1 (Math, Assignment [11]). Given a table T and its anonymized
table T ∗, a match m is a 2-tuple < ti, t

′
j >, where ti ∈ T , t′j ∈ T ∗ and the QI-

values of ti is included in that of t′j . An assignment a is a set of matches mi =<
txi , t

′
yj

>, where txi ∈ T , t′yj
∈ T ∗, and for each pair of matches mi,mj ∈ a,

then xi �= xj and yi �= yj.

Example 1. Table 1 is anonymized into Table 2 by a strategy called ring gener-
alization: to assign the k consecutive tuples gen(ti, ti+1, · · · , ti+k−1) to ti. Note
that if i+ j > |T1|, we use i+ j − |T1| instead(|T1| is the size of table T1). Thus,
tuples Alex, Lucy and Lily have a different generalized QI-values. Let gen be
a generalization function that takes as input a set of tuples and returns a gen-
eralized domain. Lucy=gen(Lucy,Lily, Jane, Bob) ={[19-25], [12k-18k], [F/M]}.
Similarly, Lily=gen(Lily, Jane, Bob, Sarah),Jane=gen (Jane, Bob, Sarah, Alex),
Bob=gen (Bob, Sarah, Alex, Lucy), Sarah=gen(Sarah, Alex, Lucy,Lily). Finally,



Enhancing Utility and Privacy-Safety via Semi-homogenous Generalization 313

Table 1. Microdata T

Name Age Zip Sex Disease
Alex 19 14k F Emphysema
Lucy 21 12k F Dyspepsia
Lily 19 12k F Bronchitis
Jane 21 13k F Pneumonia
Bob 25 18k M Gastritis
Sarah 21 20k M Flu

Table 2. Non-Generalization T ∗

Name Age  Zip Sex Disease

Alex [19-21] [12k-14k] F Emphysema

Lucy [19-25] [12k-18k] F/M Dyspepsia

Lily [19-25] [12k-20k] F/M Bronchitis

Jane [19-25] [12k-20k] F/M Pneumonia

Bob [19-25] [12k-20k] F/M Gastritis

Sarah [19-21] [12k-20k] F/M Flu

a random assignment of sensitive attributes (tuples can only be replacement to
those covered by its quasi-identifier values) is: {Emphysema, Dyspepsia, and
Bronchitis, Pneumonia, Gastritis, Flu} was replaced by {Emphysema, Dyspep-
sia, Pneumonia, Gastritis, Flu, and Bronchitis}.

By intuition, the smaller the sizes of intervals in the generalized tuples, the
less information loss in the anonymization. Non-homogeneous generalization can
achieve less information loss than homogeneous generalization. In our example,
the NCP of homogenous generalized table is 18, while the non-homogenous gen-
eralized table is 15 1

3 . (See the NCP in definition 2).
Although non-homogeneous-based or homogeneous-based algorithms have suc-

cessfully achieved the privacy protection objective, as well recognized in many
data analysis applications, another issue utility still needs to be carefully ad-
dressed. One of the direct measures of the utility of the generalized data is
information loss. In order to make the anonymized data as useful as possible, it
is required to reduce the information loss as much as possible. Consistent efforts
have been dedicated to developing algorithms that improve utility of anonymized
data while ensuring enough privacy-preservation.

Then, we may wonder, does generalization have to be homogeneous or non-
homogeneous? In this paper, we propose a cross approach between homogenous
and non-homogenous generalization to anonymize data. We will give the basic
idea of our approach in the next subsection.

1.2 Semi-homogeneous Generalization

We propose Semi-homogeneous anonymization as our solution to improve the
utility of generalization approaches while ensuring privacy preservation. The
framework consists of the following major steps. First, we partition the tuples of
the microdata into several QI-groups based on certain strategies, such that each
QI-group has at least k tuples. Then, we generalize QI-values of each current
QI-group such that for each tuple in the table the accumulated size of all QI-
groups satisfying the tuple is not less than k by taking advantage of overlaps of
generalized groups. To resist various attacks, the third step is to assign a random
permutation on the sensitive attribute.

As an example, we illustrate the details to generalize Table 1 by our approach.
Table 1 is partitioned into 3 sub-groups, denoted by G1, G2, G3, respectively.



314 X. He et al.

Table 3. Small QI-groups Table T3

G_ID Age Zip Sex Disease

[19-21] [12k-13k] F Bronchitis

[19-21] [12k-13k] F Pneumonia

[19-21] [12k-14k] F Emphysema

[19-21] [12k-14k] F Dyspepsia

[21-25] [18k-20k] M Gastritis

[21-25] [18k-20k] M Flu

G2

G1

G3

Table 4. Semi-homogenous Table T4

Name Age  Zip Sex Disease

Lily [19-25] [12k-20k] F/M Gastritis

Jane [19-25] [12k-20k] F/M Flu

Alex [19-21] [12k-14k] F Bronchitis

Lucy [19-21] [12k-14k] F Pneumonia

Bob [19-25] [12k-20k] F/M Emphysema

Sarah [19-25] [12k-20k] F/M Dyspepsia

Secondly, by exchanging the position ofG1 andG2, we reorder {G1, G2, G3} to
{G2, G1, G3} as indicated by the group-ID shown in Table 3. Order of other QI-
groups is not significant. We construct 4-anonymized table to assign gen(G1, G2)
to G2, gen(G2, G3) to G3, gen(G3, G1) to G1.

Let us take this example a little further. For tuples in G2, we add tuples of Lily
and Jane into the input of the procedure generalizing G2, as a result we have the
generalized QI-values of G2 as gen

(
{Alex, Lucy, Lily, Jane}

)
={19-21, 12k-14k,

F}. Similarly, for tuples in G3, G3’s QI-values will be generalized from G2’s tu-
ples as well as tuples of Sarah and Bob. As a result,G2’s QI-values are updated to
be gen

(
{Sarah, Bob, Alex, Lucy}

)
={19-25, 12k-20k, F/M,}. The QI-values of G1

are updated from its own tuples as well as tuples from the third group. Eventu-
ally, each tuple in the Table 4 satisfies the 4-anonymity requirement, that is, the
projection of each tuple in Table 4 on Age, Zip, Sex will contain at least 4 tuples.

The final step is to assign a random assignment to the sensitive attribute of
{G1, G2, G3}. In our example, { {Bronchitis, Pneumonia}, {Emphysema, Dys-
pepsia}, { Gastritis, Flu} } was replaced by {{Gastritis, Flu}, {Bronchitis,
Pneumonia}, {Emphysema, Dyspepsia}}. The number of such replacement is
O(αn), α > 1, which is proved in this paper. The cardinality is far larger than
the privacy level k therefore, the attacker will be very difficult to success.

From the prospective of data security, we can see that the semi-homogeneous
method provides stronger privacy preservation. Assume that the attacker has
some background knowledge about Lucy. He/She found that Lucy belongs to
the second tuple in Table 2, and Lucy’s sensitive value has not been replaced,
then the attacker is easy to infer her sensitive value is Dyspepsia. As for our
method, in the face of the same attacker, the attacker only come to learn that
Lucy belongs the second QI-group in the table 4, even if the attacker captures
that her sensitive values has been replaced to the third QI-group, the final success
probability is only 50% (Emphysema or Dyspepsia). (Please note that these small
groups in Table 4 is homogenous. )

To test the utility improvement of our approach, we calculate NCP (See the
definition 2) for Table 2 and Table 4 are 15 1

3 , 12
1
6 , respectively. The significant

decrease of NCP of Table 4 strongly suggests that information loss has been
successfully reduced by our semi-homogeneous anonymization approach.

In this paper, our contribution consists of two parts: first, we study the car-
dinality of the random assignments, and prove the cardinality theorem; Then, we



Enhancing Utility and Privacy-Safety via Semi-homogenous Generalization 315

provide a technique to which we refer to semi-homogeneous that generates a
cross between homogenous and non-homogenous generalization to anonymize
the microdata. We conduct extensive experiments on real data sets to show the
performance and utility improvement of our model.

The rest of the paper is organized as follows. In Section 2, we give the basic
definitions and problem definition. In Section 3, the cardinality theorem is in-
troduced. In Section 4, we present the details of our generalization algorithm.
We review the previously related research in Section 5. In Section 6, we experi-
mentally evaluate the efficiency and effectiveness of our techniques. Finally, the
paper is concluded in Section 7.

2 Preliminaries

In this section, we will first discuss several fundamental concepts, then give the
formal definition of major problem that will be studied in this paper. At last,
the complexity of semi-homogenous anonymization is analyzed.

2.1 Basic Notations

Let T be a microdata table that contains the private information of a set of
individuals and has d QI-attributes A1, ..., Ad, and a sensitive attribute (SA) S.
We consider that S is categorical, and every QI-attribute Ai(1 ≤ i ≤ d) can be
either numerical or categorical. All attributes have finite and positive domains.
For each tuple t ∈ T, t.Ai(1 ≤ i ≤ d) denotes its value on Ai, and t.As represents
its SA value. Now, we are ready to clarify several fundamental concepts.

A quasi-identifier QI = {A1, A2, · · · , Ad} ⊆ {A1, A2, · · · , An} is a minimal
set of attributes, which can be joined with external information in order to reveal
the personal identity of individual records.

A partition P consists of several subsets Gi(1 ≤ i ≤ m) of T , such that each
tuple in T belongs to exactly one subset and T =

⋃m
i Gi. We refer to each subset

Gi as a QI-group.

Example 2. Table 3 stems from the following partition of table 1. P1={{Lucy,
Alex}, {Jane, Lily}, {Jame, Linda}, {Sarah, Bob}}.

2.2 Problem Definition

In our anonymization framework, K-anonymity of T ∗ is achieved by QI-groups
with size of k. In general, we use a divisor of K as k such that each tuple in T ∗

satisfies K
k QI-groups through linking operation simultaneously. The number of

QI-groups satisfying a tuple is called the order of our anonymization approach.
It is better but not necessary that k is a divisor of K. Assume that a publisher
plans to anonymize a table to be 100-anonymity, which can be achieved by either
20-anonymity with order 5 or 34-anonymity with order 3.



316 X. He et al.

A

B

CD

E

Fig. 1. Assignment Graph G

A

B

CD

E

Fig. 2. Assignment 3

A

B

CD

E

Fig. 3. Assignment 13

Some methods have been developed to measure the information loss in
anonymization. In this paper, we adopt the normalized certainty penalty to mea-
sure the information loss. We aim to produce a utility-friendly version anonymiza-
tion for a microdata such that the privacy can be guaranteed and the information
loss quantified by NCP is minimized.

Definition 2 (Normalized Certainty Penalty [3]). Suppose a table T is
anonymized to T ∗. In the domain of each attribute in T , suppose there exists a
global order on all possible values in the domain. If a tuple t in T ∗ has range
[xi, yi] on attribute Ai(1 ≤ i ≤ d), then the normalized certainty penalty in t on

Ai is NCPAi(t) = |yi−xi|
|Ai| , where |Ai| is the domain of the attribute Ai. For

tuple t, the normalized certainty penalty in t is NCP (t) =
∑d

i wi · NCPAi(t),
where wi are weights of attributes. The normalized certainty penalty in T is∑

t∈T∗ NCP (t).

Now, we are ready to give the formal definition about the problem that will be
addressed in this paper.

Definition 3 (Problem Definition). Given a table T and an integer K,
anonymize it to be T ∗ such that T ∗ is K-anonymity by semi-homogenous gener-
alization and information loss is minimized.

2.3 Complexity

The studies [2,12,13] show that the problem of optimal k-anonymity is NP-hard
even a simple quality metric is employed. Paper [3] proved that under the metric
of NCP , the K-anonymity is NP-hard for K ≥ 2. We have the following results
on the complexity for linking-based model proposed in this paper.

Theorem 1. (Complexity) The problem of optimal semi-homogenous
anonymization is NP-hard.

Proof. We can show that the suppression model used in [14] is a special case of
the k-anonymity model defined here, where all weight are set to 1. It is clearly
that the theorem follows from the result in [14].



Enhancing Utility and Privacy-Safety via Semi-homogenous Generalization 317

3 The Cardinality of Assignments

We start this section by an example, which is to help us to understand the
cardinality theorem.

Example 3. Consider that a table with five tuples {A, B, C, D, E} as illustrated
in Figure 1. The Assignment Graph was constructed from the ring-generalization
with k = 3: A = gen(A,B,C), B = gen(B,C,D), C = gen(C,D,E), D =
gen(D,E,A), E = gen(E,A,B). Figure 2-3 show 2 assignments, while
Table 5 provides all the assignments.

Table 5. All assignments

Please note that the larger the cardinality of assignments, the better privacy
protection achieved. In order to determine the cardinality of assignments, we
use an assignment graph which is used to visualize the assignments.

Definition 4 (Assignment Graph). Consider a table T and its anonymized
table T ∗. An assignment graph G(V,E) is a directed graph with n vertices, which
represent the tuples(for simplify, we use n to denote the number of tuples in T ). For
i = 1 to n, vertex vi ∈ V represents Gi and G′i. An edge vi −→ vj is present if and
only if the generalized QI-values of ti is included in that of t′j, that is, ti ∈ t′j.

Now, we are ready to give our main theorem.

Theorem 2 (Cardinality Theorem). Let G(V,E) be an assignment graph.
Assume that G have n vertices, and each vertex has one self-circuit and e−1 out-
edges (e > 2). Denote by ϕn

e the cardinality of all assignments which satisfying
Definition 4, then ϕn

e = O(αn), where α > 1.

Proof. It’s a trivial case for e = 2, thus we assume e > 2 in the following text.
1) According to the length of the circuit containing A (is equal to or greater

than 1, all the assignments can be divided into two categories:
a) The length is greater than 1, i.e., the circuits start from A and then come

back A through other points. Denote by Ee
n the cardinality of all such circuits

in the category.
b) The length is equal to 1. Delete point A and associated edges, and compare

the remainder graph toG, then it can be inferred that the cardinality of all circuits
in this category is less than that in the above category. Thus, Ee

n < ϕe
n < 2 · Ee

n.
2) Now we consider the point next to A in the circuits of Category a), the

points can be B,C, · · · etc. In other words, there are e− 1 choices. According to
the addition rule, the following recursion holds:

Ee
n ≥ Ee

n−1 + Ee
n−2 + · · · ,+Ee

n−e+1



318 X. He et al.

By comparing the above inequality to the famous Fibonacci Sequence (Fn =
Fn−1 + Fn−2), the theorem holds.

The cardinality theorem demonstrates that given the the assignment graph,
the cardinality is bounded in O(αn), where (α > 1). Here are some examples:
ϕ5
4 = 53, ϕ10

4 = 870, ϕ12
4 = 2922, ϕ12

5 = 28450. It is worth noting that only two
trivial assignments when e = 2.

4 Generalization Algorithm

In this section, we will elaborate the details of our semi-homogeneous anonymiza-
tion as our major solution to the problem defined in Definition 3. This algorithm
is an improved version of ring generalization proposed in [11]. The example in
the section 1.2 illustrates the general process of the algorithm.

To prepare the semi-homogenous algorithm, we need to define the relationship
between two multi-attribute domain. We use Di ≤ Dj to denote the fact that
domain Dj is either identical to or one of its generalization of Di. When Di ≤ Dj

and Di �= Dj , we denote it by Di < Dj. For quasi-identifer consisting of multi-
ple attributes (A1, A2, · · · , Ad), we can define corresponding d-dimension vector
VA = 〈DA1 , DA2 , · · · , DAd

〉 with each DAi being the domain of Ai. Such kind
of d-dimension vector for the set of d attributes is referred to as multi-attribute
domain. The multi-attribute domain of the G1 in Table 4 is 〈[19-25], [12k-20k],
F/M〉. Given two d-dimension attribute domains VA = 〈DA1 , DA2 , · · · , DAd

〉
and VB = 〈DB1 , DB2 , · · · , DBd

〉, VB is a multi-attribute domain generalization
of VA (this relationship is also denoted by ≤ ) if for each j, DAj ≤ DBj .

Now, we elaborate the detailed procedure. In general, we first divide the mi-
crodata table T into a partition P={G1, G2, · · · , Gm} by certain off-the-shelf
partitioning algorithms, such as the partition algorithm used in [11]. The algo-
rithm framework is shown in Figure 4. At the beginning, if the size of QI-group
Gi in P is equal to k exactly, we generalized this group directly. To reduce in-
formation loss, we sort the tuples in Gi into the ascending order of their values
of
∑d

i=1
t.Ai

|Ai| (step 2) when the size of Gi > k. Then, varying the order from 2

to k, for each order ord, distribute the tuples into c different sub-groups, where

c = |Gi|∗ord
k (step 5-6). Sort these sub-groups {g1, g2, · · · , gc} by the above defi-

nition of multi-attribute domain generalization. The two steps (step 2 and step
7) of sorting is to distribute the tuples sharing the same or quite similar QI-
attributes into the same sub-groups. Step 9-10 is to generalize each sub-group
to satisfy k-anonymous. We can get total information loss IL =

∑c
i=1 NCP (gi).

Step 4 to step 11, for different order, we can get (k-1) different partitions of
Gi. Among all the k − 1 partitions, we pick the one that minimizes the sum
of
∑c

i=1 NCP (gi) as the final partition. The final step is to assign a random
assignment to the recorded partition(step 14).

In addition, we can easily show that it can give equal or better utility com-
pared to the non-homogeneous presented in [11].



Enhancing Utility and Privacy-Safety via Semi-homogenous Generalization 319

Input: a partition P={G1, G2, · · · , Gm} of microdata T , Privacy Level k
Output: generalization table T ∗;
Method:
For each QI-group Gi ∈ P , DO
1. IF |Gi| = k, RETURN;
2. sort the tuples in Gi;
3. FOR ord = 2 to k

4. let gsize = k
ord

, c = |Gi|
gsize

, bestIL = MAX FLOAT ;

5. distribute tuples into c groups {g1, g2, · · · , gc}:
6. g1 = {t1, t2, · · · , tgsize}, g2 = {tgsize+1, · · · , t2·gsize}, · · · ,

gc = {tgsize·(c−1)+1, · · · , t|Gi|}
7. sort the groups {g1, g2, · · · , gc} ;
8. ring generalization for each group gi:
9. for i = 1 to ord
10. gi = gen(gi, gi+1, · · · , gi+ord mod c) ;
11. compute the the total information loss IL =

∑c
i=1 NCP (gi)

12. IF the current partition is better than previous tries: bestIL > IL,
13. record {g1, g2, · · · , gc} and bestIL = IL;
14. assign a random assignment to the recorded partition {g1, · · · , gc};
—————————————————————————————————————

Fig. 4. The framework of semi-homogenous algorithm

Theorem 3. Semi-homogeneous generalization gives a k-anonymized table of
equal or better utility than that given by a non-homogeneous generalization under
the same partition P .

Proof. Note that the step 3 in Figure 4, the value of order varies from 2 up to
k. When order equals k, it is the case of the non-homogenous algorithm. For
the different order, step 3 to step 11 makes the k − 1 different partitions of Gi.
Among all the k−1 different partitions, the step 12 picks the one that minimizes
the sum of

∑c
i=1 NCP (gi) as the final partition, thus, the theorem holds.

5 Related Work

In this section, previous related work will be surveyed. In this section, previ-
ous related work will be surveyed. All the privacy-preserving transformation
of the microdata is referred to as recoding, which can be classified into two
of classes of models: global recoding and local recoding. In global recoding, a
particular detailed value must be mapped to the same generalized value in all
records, which implies that the data space will be partitioned into a set of non-
overlapping regions. While local recoding allows the same detailed values being
mapped to different generalized values of different QI-groups. Obviously, global
recoding is a more special case of local recoding and local recoding is more flex-
ible and has the potential to achieve lower information loss. Efficient greedy
solutions following certain heuristics have been proposed [3, 11, 15, 16] to obtain
a near optimal solution. Generally, these heuristics are general enough to be
used in many anonymization models. Incognito [1] provides a practical frame-
work for implementing full-domain generalization, borrowing ideas from frequent



320 X. He et al.

item set mining, while Mondrian [2] takes a partitioning approach reminiscent
of KD-trees. To achieve K-anonymity, [5] presents a framework mapping the
multi-dimensional quasi-identifiers to 1-Dimensional(1-D) space. For 1-D quasi-
identifiers, an algorithm of O(K ·N) time complexity for optimal solution is also
developed. It is discovered that K-anonymizing a data set is strikingly similar
to building a spatial index over the data set, so that classical spatial indexing
techniques can be used for anonymization [4].

The idea of non-homogeneous generalization was first introduced in [17], which
studies techniques with a guarantee that an adversary cannot associate a gener-
alized tuple to less than K individuals, but suffering additional types of attack.
Authors of paper [11] proposed a randomization method that prevents such type
of attack and showed that k-anonymity is not compromised by it, but its par-
titioning algorithm is only a special of the top-down algorithm presented in [3].
The anonymity model of the paper [11,17] is different to us. In their model, the
size of QI-groups is fixed as 1, while in our model it is varying from 1 to K.

6 Empirical Evaluation

In this section, we will experimentally evaluate the effectiveness and efficiency
of the proposed techniques. Specifically, we will show that by our technique
(presented in Section 4) have significantly improved the utility of the anonymized
data with quite small computation cost.

In the following experiments, we compare our semi-generalization anonymity
algorithm (denoted by HG) with the existing state-of-the-art technique: the Non-
homogeneous generalization [11](NH for short). For a fair comparison, the two al-
gorithms are processed under the same partition, which is generated by certain
off-the-shelf partitioning algorithm used in [11]. Two widely-used real databases
SAL and INCOME(downloadable from http://ipums.org) with 500k and 600k tu-
ples, respectively, will be used in following experiments. Each tuple describes the
personal information of an American. The two data sets are summarized in Table
6. In order to examine the influence of dimensionality, we create two sets of micro-
data tables from SAL and INCOME. The first set has 4 tables, denoted as SAL-4,
· · · , SAL-7, respectively. Each SAL-d (4 ≤ d ≤ 7) has the first d attributes in Table
6 as its QI-attributes and Occupation as its sensitive attribute(SA). For example,
SAL-4 is 5-Dimensional, and contains QI-attributes: Age, Gender, and Education,
Marital. The second set also has 4 tables INC-4, · · · , INC-7, where each INC-d
(4 ≤ d ≤ 7) has the first d attributes as QI-attributes and income as the SA.

In the experiments, we investigate the influence of the following parameters on
information loss of our approach: (i) number of tuples n; (ii) number of attributes
d in the QI-attributes; (iii) value of K in K-anonymity. Table 7 summarizes the
parameters of our experiments, as well as their values examined. Default values
are in bold font. Data sets with different cardinalities n are also generated by
randomly sampling n tuples from the full SAL-d or INC-d (4 ≤ d ≤ 7). All
experiments are conducted on a PC with 1.9 GHz AMD Dual Core CPU and
1 gigabytes memory. All the algorithms are implemented with Microsoft VC++



Enhancing Utility and Privacy-Safety via Semi-homogenous Generalization 321

Table 6. Summary of attributes

Age 78   Numerical  
Gender 2   Categorical  

Education 17  Numerical  
Marital 6  Categorical  
Race 9   Numerical  

Work-class 10  Categorical  
Country 83   Numerical  

Occupation 50 Sensitive

 Attribute 
 Number of

distinct values
 Types  

  Age 78 Numerical
Occupation  711 Numerical

Birthplace 983 Numerical
 Gender 2 Categorical

Education 17 Categorical
Race 9 Categorical

Work-class 9  Categorical
 Marital 6 Categorical
Income    [1k,10k] Sensitive

 Number of
distinct values

 Types   Attribute 

(a) SAL (b) INCOME

Table 7. parameters and tested values

k  250,200,150,100,50
cardinality n 100k,200k,300k,400k,500k

number of QI-attributes d  3,4,5,6

Parameter Values

2008. In all following experiments, without explicit statements, default values in
Table 7 will be used for all other parameters.

6.1 Privacy Level K

In order to study the influence of k on data utility, we observe the evolution of
GCP that has been widely used to measure the information loss of the gener-
alized tables by varying k from 50 to 250 with the increment of 50. The results
on SAL-d and INC-d (4 ≤ d ≤ 7) data are shown in Figure 4 (a)-4(h). From
the results, we can clearly see that for all the tested data, information loss of
our model is quite significantly smaller than that of NH-anonymization. Another
advantage of our model over NH is that the utility achieved by our model is less
sensitive to domain size than NH. From the figures, we can see that data sets
generated by NH has a lower GCP on SAL-d than that on INC-d (4 ≤ d ≤ 7)
due to the fact that domain size of SAL is smaller than that of INC. Such a fact
implies that the information loss of NH is positively correlated to the domain
size. However, in our model, domain size of different data set has less influence
on the information loss of the anonymized data. Results of this experiment also
suggest that for almost all tested data sets the GCP of two algorithms grows
linearly with K. This can be reasonably explained since larger K will lead to
more generalized QI-groups, which inevitably will sacrifice data utility.

6.2 QI-Attributes Dimensionality d

Experiments of this subsection is designed to show the relation between the
information loss of two algorithms and data dimensions d. In general, the in-
formation loss will increase with d, since data sparsity or more specifically the



322 X. He et al.

50 100 150 200 250
0.06

0.1

0.14

0.18

0.22

Privacy Level K

In
fo

rm
at

io
n 

Lo
ss

 (
G

C
P

)

NH
HG

50 100 150 200 250
0.22

0.26

0.28

0.32

0.36

Prviacy Level K

In
fo

rm
at

io
n 

Lo
ss

 (
G

C
P

)

NH
HG

(a) SAL-d (b) INC-d

Fig. 5. The Global Certainty Penalty vs. Privacy Level K

3 4 5 6 7
0

0.04

0.08

0.12

0.16

0.18

Sal−d

In
or

m
at

io
n 

Lo
ss

 (
G

C
P

)

NH
HG

3 4 5 6 7
0.2

0.22

0.24

0.26

0.28

0.29

INC−d

In
fo

rm
at

io
n 

Lo
ss

 (
G

C
P

)

NH
HG

(a) SAL-d (b) INC-d

Fig. 6. The Global Certainty Penalty vs. QI-Dimensionality d

data space characterized by a set of attributes exponentially increases with the
number of attributes in the set, i,e, dimensions of the table. Figure 6(a) and
6(b) compare the information loss of the anonymization generated by the two
methods with respect to different values of d on SAL-d and INC-d, respectively.
It is clear that the anonymization generated by the linking-based method has
a lower global certainty penalty compared to that of NH. The advantage of LB
over NH is obvious, and such an advantage of LB can be consistently achieved
when d lies between 4 to 7.

6.3 Cardinality of Data Set n

In this subsection, we investigate the influence of the the table size n on infor-
mation loss of LB and NH. The results of experiments on two data sets SAL-7
and INC-7 are shown in Figure 7(a) and 7(b), respectively. We can see that
the information loss of two methods on both two data sets decreases with the
growth of n. This observation can be attributed to the fact that when the table
size increases more tuples will share the same or quite similar QI-attributes. As
a result, it is easier for the partitioning strategies to find very similar tuples to
generalize. Similar to previously experimental results, our method is the clear
winner since information loss of LB is significantly small than that of NH, which
is consistently observed for various database size.

6.4 Efficiency

Finally, we evaluate the overhead of performing anonymization. Figure 8(a) and
8(b) show the computation cost of the two anonymization methods on two data



Enhancing Utility and Privacy-Safety via Semi-homogenous Generalization 323

100 200 300 400 500
0.18

0.2

0.22

0.24

0.26

Cardinality n

In
fo

rm
at

io
n 

Lo
ss

 (
G

C
P

)

NH
HG

100 150 200 250 300
0.04

0.06

0.08

0.1

0.12

Privacy Level k

In
fo

rm
at

io
n 

Lo
ss

 (
G

C
P

)

NH
HG

(a) SAL-7 (b) INC-7

Fig. 7. The Global Certainty Penalty vs. Cardinality n

100 200 300 400 500
0

10

20

30

40

50

60

Cardinality n

R
un

ni
ng

 T
im

e 
(s

)

NH
HG

100 200 300 400 500
0

10

20

30

40

50

60

Cardinality n

R
un

ni
ng

 T
im

e 
(s

)

NH
HG

(a) SAL-7 (b) INC-7

Fig. 8. Running time vs. Cardinality n

sets, respectively. The running time of both two algorithms increases linearly
when n grows from 100k to 500k, which is expected since more tuples that need to
be anonymized will consume longer time to finish the anonymization procedure.
Comparison results show that the advantages of our method in anonymization
quality do not come for free. However, in the worst case, our algorithm can be
finished in 60 seconds, which is acceptable. In most real applications, quality
is more important than running time, which justifies the strategy to sacrifice
certain degree of time performance to achieve higher data utility.

Summary. Through these sets of experiments(Figure 5-7) , we can conclude
that the HG algorithm is indeed reduce the infromation loss, comparing with
NH algorithm, as proved in Theorem 3 and illustrated in section 1.2. Calcula-
tions show that on the SAL data sets the HG algorithm compared with the NH
algorithm, reduces about 3.01% and 8.98% probably, while on INC data set,
probably reduced by between 5.28% and 7.83%.

The trad-off of high anonymization quality is the runtime and the NH method
is more efficient. However, the runtime of the HG method is not far away from
that of the NH in practice. Moreover, for anonymization, the computation time
is often a secondary consideration yielding to the quality.

7 Conclusion

In this paper, we systematically investigate the cardinality of the assignments.
We propose a technique called semi-generalization which uses QI-groups with



324 X. He et al.

varying size to achieve k-anonymity. As verified by extensive experiments, the
produced anonymization tables by our approach not only guarantees the privacy
safety of published data but also the high utility.

Acknowledgement. This work was supported in part by the National Natural
Science Foundation of China (NO.60973047), the Natural Science Foundation of
Zhejiang Province of China under Grant No.Y1091189 and No.Y12F020065.

References

1. LeFevre, K., DeWitt, D.J., Ramakrishnan, R.: Incognito: efficient full-domain k-
anonymity. In: SIGMOD 2005: Proceedings of the 2005 ACM SIGMOD Interna-
tional Conference on Management of Data, pp. 49–60. ACM, New York (2005)

2. LeFevre, K., DeWitt, D.J., Ramakrishnan, R.: Mondrian multidimensional k-
anonymity. In: ICDE 2006: Proceedings of the 22nd International Conference on
Data Engineering, p. 25. IEEE Computer Society, Washington, DC (2006)

3. Xu, J., Wang, W., Pei, J., Wang, X., Shi, B., Fu, A.W.-C.: Utility-based anonymiza-
tion using local recoding. In: KDD 2006: Proceedings of the 12th ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining, pp. 785–790.
ACM, New York (2006)

4. Iwuchukwu, T., Naughton, J.F.: K-anonymization as spatial indexing: toward scal-
able and incremental anonymization. In: VLDB 2007: Proceedings of the 33rd In-
ternational Conference on Very Large Data Bases, pp. 746–757. VLDB Endowment
(2007)

5. Ghinita, G., Karras, P., Kalnis, P., Mamoulis, N.: Fast data anonymization with low
information loss. In: VLDB 2007: Proceedings of the 33rd International Conference
on Very Large Data Bases, pp. 758–769. VLDB Endowment (2007)

6. Samarati, P., Sweeney, L.: Generalizing data to provide anonymity when disclos-
ing information (abstract). In: PODS 1998: Proceedings of the Seventeenth ACM
SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems, p.
188. ACM, New York (1998)

7. Sweeney, L.: k-anonymity: a model for protecting privacy. Int. J. Uncertain. Fuzzi-
ness Knowl.-Based Syst. 10(5), 557–570 (2002)

8. Samarati, P.: Protecting respondents’ identities in microdata release. IEEE Trans.
on Knowl. and Data Eng. 13(6), 1010–1027 (2001)

9. Xiao, X., Tao, Y.: M-invariance: towards privacy preserving re-publication of dy-
namic datasets. In: SIGMOD 2007: Proceedings of the 2007 ACM SIGMOD In-
ternational Conference on Management of Data, pp. 689–700. ACM, New York
(2007)

10. Tao, Y., Chen, H., Xiao, X., Zhou, S., Zhang, D.: Angel: Enhancing the utility of
generalization for privacy preserving publication. IEEE Transactions on Knowledge
and Data Engineering 21, 1073–1087 (2009)

11. Wong, W.K., Mamoulis, N., Cheung, D.W.L.: Non-homogeneous generalization in
privacy preserving data publishing. In: SIGMOD 2010: Proceedings of the 2010
International Conference on Management of Data, pp. 747–758. ACM, New York
(2010)

12. Meyerson, A., Williams, R.: On the complexity of optimal k-anonymity. In: PODS
2004: Proceedings of the 23nd ACM SIGMOD-SIGACT-SIGART Symposium on
Principles of Database Systems, pp. 223–228. ACM, New York (2004)



Enhancing Utility and Privacy-Safety via Semi-homogenous Generalization 325

13. Bayardo, R.J., Agrawal, R.: Data privacy through optimal k-anonymization. In:
ICDE 2005: Proceedings of the 21st International Conference on Data Engineering,
pp. 217–228. IEEE Computer Society, Washington, DC (2005)

14. Aggarwal, G., Feder, T., Kenthapadi, K., Motwani, R., Panigrahy, R., Thomas, D.,
Zhu, A.: Anonymizing Tables. In: Eiter, T., Libkin, L. (eds.) ICDT 2005. LNCS,
vol. 3363, pp. 246–258. Springer, Heidelberg (2005)

15. Fung, B.C.M., Wang, K., Yu, P.S.: Top-down specialization for information and pri-
vacy preservation. In: International Conference on Data Engineering, pp. 205–216
(2005)

16. LeFevre, K., DeWitt, D.J., Ramakrishnan, R.: Workload-aware anonymization. In:
KDD 2006: Proceedings of the 12th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, pp. 277–286. ACM, New York (2006)

17. Gionis, A., Mazza, A., Tassa, T.: k-anonymization revisited. In: ICDE 2008: Pro-
ceedings of the 2008 IEEE 24th International Conference on Data Engineering, pp.
744–753. IEEE Computer Society, Washington, DC (2008)



Processing XML Twig Pattern Query

with Wildcards�

Huayu Wu1, Chunbin Lin2, Tok Wang Ling3, and Jiaheng Lu2

1 Institute for Infocomm Research, Singapore
huwu@i2r.a-star.edu.sg

2 School of Information, Renmin University of China
{jiahenglu,chunbinlin}@ruc.edu.cn

3 School of Computing, National University of Singapore
lingtw@comp.nus.edu.sg

Abstract. In this paper, we present a novel and complementary tech-
nique to optimize XML twig pattern queries with wildcards(*). Our ap-
proach is based on utilizing a new axis called AD-dis, to equivalently
rewrite a query with wildcards (non-branching as well as branching wild-
cards) into a single query without any wildcards. We present efficient
rewriting algorithms and also twig pattern matching algorithms to pro-
cess the rewritten queries with AD-dis, which is proven to be I/O and
CPU optimal. In addition, the experimental results not only verify the
scalability and efficiency of our extended matching algorithms, but also
demonstrate the effectiveness of our rewriting algorithms.

1 Introduction

With the growing importance of XML in information exchange, how to efficiently
query an XML document becomes a hot research topic. XML employs a tree-
structured model for representing data. In most XML query languages (e.g.,
XPath and XQuery), the queries are expressed by twig (i.e., small tree) patterns.
Finding all occurrences of a twig pattern in an XML database is a core operation
in XML query processing.

The twig pattern queries solved by existing algorithms require each query
node to be either a tag name or a value comparison, and the relationship between
each pair of adjacent query nodes to be either a parent-child edge (“/”) or an
ancestor-descendant edge (“//”). However XPath is more expressive than the
twig pattern representation solved by these algorithms. Although some works
try to extend twig pattern matching for more practical features, e.g., NOT-
predicate [11], OR-predicate [5] and advanced content search in predicate [10],
there are still important XPath features that are not carefully considered by the
existing works, such as wildcards.

Wildcard(*) is widely used in many practical queries when the element names
are unknown or do not matter. Consider the football team document (fragment)

� We may use wildcard node and * node exchangeably in this paper.

S.W. Liddle et al. (Eds.): DEXA 2012, Part I, LNCS 7446, pp. 326–341, 2012.
c© Springer-Verlag Berlin Heidelberg 2012



Processing XML Twig Pattern Query with Wildcards 327

team

namecoach players
1.2

name

name goalkeeper striker

awardsagename

“Barcelona”

“Guardiola”

1.1

name

“Messi”“Valdes”

“World’s best
player 2009”

1

age
1.1.1

1.3

1.3.1

1.3.1.1 1.3.1.2
country

name

“Spain”

1.3.1.3

1.3.1.3.1
“25”“30”

1.3.11.1 1.3.11.2 1.3.11.3

1.3.11.3.1

players

name
(b) A query with a wildcard node

players

name

goalkeeper

players

name

striker

(c) A set of twig pattern queries
without wildcards(a) The football team document labeled by prefix labeling scheme

Fig. 1. Example XML tree and twig pattern query with wildcard node

shown in Fig. 1(a). Assume a user wants to find all players’ names, no mat-
ter what position they play. She/He may issue a query as //players//name.
However, this query cannot get the correct answer, since the country names
and the award names are also returned. In order to meet the requirement, a
query with wildcard (i.e., //players/*/name, as shown in Fig. 1(b)) should be
issued. Otherwise, the user needs to create all the possible queries (e.g., //play-
ers/goalkeeper/name and //players/striker/name, as shown in Fig. 1(b)) and
merge the results from them. This example illustrates the usefulness of wildcard
in XML query expression.

Wildcard brings in convenience for users to issue queries, on the other hand,
it also poses challenges in query evaluation. For example, in the structural join
based XML query processing algorithms, processing a query ”//*//b” would re-
quire accessing all the document nodes to match the wildcard query node. The
most common way to resolve wildcards is to replace * nodes by all possible ele-
ment nodes under the help of schematic information (e.g., DTD) before pattern
matching [7]. Then the query in Fig. 1(b) can be equivalently transformed into
the union of a set of queries that replace the * node with all the possible player
positions (e.g., striker), which are shown in Fig. 1(c). Obviously this approach
is tightly bound to document schema. Also, combining all possible elements for
a wildcard during pattern matching is very inefficient. In addition, a query may
contain more than one * nodes, and a certain * node may appear as a branching
node (whose out-degree is at least 2). The cost to identify possible elements for
all * nodes may increase exponentially w.r.t. the number of * nodes.

In this paper, we propose native rewriting algorithms to equivalently rewrite
the queries with wildcards to wildcard-free queries by using a new axis called
AD-dis. Further, we extend the most popular twig pattern matching approach,
i.e., the structural join based approach to process twig pattern queries with
wildcards more efficiently without enumerating all the possible queries to reduce
the I/O and CPU cost. In addition, we also discuss the optimality of the our
algorithms. The contributions can be summarized as follows:



328 H. Wu et al.

– We propose a rewriting algorithm to remove the * nodes in a path query
safely by using a new axis, named AD-dis edge, to transform the queries
with * nodes into one single query with AD-dis edges. (Section 3)

– Based on the rewriting rule, we propose two algorithms, Path* (Section 4)
and Twig* (Section 5) to efficiently process path queries and twig pattern
queries with wildcards.

– We conduct experiments to show that our algorithm is more efficient than
the existing approach to process queries with wildcards. (Section 6)

2 Related Works

The structural join based approach is considered the most efficient native ap-
proach, therefore, this paper focus on structural join based twig pattern matching
approach. At the beginning, binary join based approaches were proposed, e.g.,
[12]. However, such prior works would produce a large size of intermediate re-
sult during twig pattern matching. TwigStack [2] is the first work on holistic
structural join, which significantly improves the space usage and is proven op-
timal for queries containing “//”-axis only. There were many subsequent works
to optimize TwigStack in terms of I/O, or extend it for different kinds of prob-
lems. For example, [6] introduced a list structure to make it optimal for queries
containing parent-child relationships under non-branching nodes. There are also
some extensions to enrich twig pattern matching for general XPath queries. E.g.,
[11] and [5] made twig pattern matching support NOT and OR predicates, [10]
enhanced twig pattern matching to handle advanced content search. However,
all these structural join based twig pattern matching algorithms are not suitable
for queries containing wildcards.

[3] proposed an optimization to wildcards in XPath queries. However, it failed
to build a connection between their optimized XPath queries and the state-of-
the-art query processing algorithms. We implemented their optimization strategy
and compare it with our algorithm in Section 6. The only work we identified
to process twig pattern queries with wildcards is the extension proposed by
[7], which replaces * nodes by element nodes based on schema, to process twig
pattern queries. As mentioned in Section 1, this approach is inefficient.

More related works can be found in the full version [9] of our work.

3 Path Rewriting

Matching a path query is essential to twig pattern matching. Existing algorithms
have already made it efficient and optimal to perform structural joins in matching
a path query without wildcards. However, when we consider the * node within a
path query, the existing structural join algorithms will fail to work. In this section,
we propose a rewriting algorithm to rewrite a path query by removing all * nodes.
Then we extend the existing path matching algorithms to solve the path query.

In a twig pattern query, a query edge can be either a parent-child (PC) edge,
denoted by “/”, or an ancestor-descendant (AD) edge, denoted by “//”. We
propose a new type of query edge to aid our query rewriting.



Processing XML Twig Pattern Query with Wildcards 329

Definition 1. (AD-dis edge) An AD-dis edge (dis is an abbreviation for dis-
tance) in a path query is an extension to an AD edge by assigning a distance
condition to constraint the ancestor and descendent query nodes. It is denoted
as “//range”, where range is an interval to specify the distance range of the cor-
responding AD edge. In the twig pattern representation of a path query, we put
a range beside an AD edge to declare it as an AD-dis edge.

For example, a path query A//[2,4]B contains an AD-dis edge. It aims to find
an A-typed node and a B-typed node which are in AD relationship, and the
distance between them is at least 2 and at most 4.

Algorithm 1. Path rewriting
1: tokenize the input path query by the delimiters of non-* nodes
2: while there are more tokens do
3: let e to be the next token
4: if e contains * then
5: replace e by an AD-dis edge //range

6: let n = total number of PC and AD edges in e
7: if e contains only PC edges then
8: set range to [n, n]
9: else
10: set range to [n, ∞)
11: merge the tokens by the corresponding delimiters to form a new path query

The general idea to rewrite a path query with * nodes is to replace the PC
and AD edges that connect several consecutive * nodes to non-* element nodes
by a single AD-dis edge, in which the range is calculated based on the number
PC and AD edges in the original path query. We first tokenize a path query
by the non-* nodes. There are three cases of each token: (1) a PC edge, (2) an
AD edge, and (3) a set of PC/AD edges connected by * nodes. We do not care
the first two cases, but only concentrate on the last case. We replace all the
PC/AD edges with * nodes by an AD-dis edge. To decide the distance range of
the AD-dis edge, we rely on the type of original edges. If all edges in the original
path are PC edges, then the distance of the AD-dis edge is exactly the number
of edges in the original path. If the edges in the original path contains both PC
edges and AD edges, the distance will be at least the number of total edges. The
detailed path rewriting algorithm is presented in Algorithm 1.

The rewriting rule is based on the semantic meaning of PC and AD edges, i.e.,
the PC edge means the distance of exact 1 and the AD edge means the distance
is at least 1 between the two connected nodes.

Example 1. Suppose we have a path query */A//B/C /*//*/D//*. After ap-
plying the path writing algorithm on it, the original path query is rewritten as
follows:

*/A//B/C/*//*/D//* ≡ //[1,1]A//B/C//[3,∞)D//[1,∞)

4 Algorithm Path*

In this section, we present our algorithm Path* to process path queries with
wildcards. We follow the idea of the PathStack [2], which is a well known algo-
rithm to process path query, to maintain multiple stacks to achieve optimality of



330 H. Wu et al.

path matching. In Path*, we rewrite a path query with wildcards by replacing
all * nodes and relevant AD and PC edges by AD-dis edges, as presented in
Section 3. After that the existing algorithms can be extended to optimally pro-
cess the rewritten queries. We do not repeat their work on how to use stacks to
achieve optimality in structural joins. The only difference between our rewritten
path query and the normal path query they solve is the additional AD-dis edge
requiring structural join. Thus we only need to specially handle the structural
join between two nodes connected by an AD-dis edge.

In existing algorithms, they use the labels of two document nodes to perform
structural join for PC edge and AD edge. In particular, using Dewey IDs in the
prefix labeling scheme (as shown under each labeled node in the document in Fig.
1), two nodes v and u are in AD relationship if the Dewey ID of v is the prefix of
the Dewey ID of u; furthermore, if the length gap of their Dewey IDs is 1, they are
also in PC relationship. In order to check the AD-dis, Dewey IDs are also utilized
in our paper. We can use the prefix property to check the AD relationship, and
the gap of the length of the IDs to identify the distance range in the AD-dis edge.
For example, the query in Fig. 1(b) can be rewritten to be players//[2,2] name,
and the nodes “players (1.3)” and “name (1.3.1.2)” in Fig. 1 satisfy the query,
since 1.3 is the prefix of 1.3.1.2 and the length gap between them is 2, which meet
the distance constraint. Therefore, the path “players/goalkeeper/name=Valdes”
is an answer. Note that, there are two special cases: 1) the AD-dis edge is the
prefix of a path query; 2) the AD-dis edge is the postfix of a path query. We will
discuss this two cases as follows.

4.1 AD-dis Edge as Prefix

In this case, we firstly execute the path query without the prefix AD-dis edge.
Then we check whether the Dewey ID of the data node matching the first node in
the path query satisfies the recorded range in its length. For example, to process
a rewritten path query //[m,∞)A//B, we first process the path A//B, and then
get the final results by checking whether the length of the Dewey ID of each
A-typed node is longer than m.

4.2 AD-dis Edge as Postfix

Similar to the prefix processing, we first execute the partial path query without
the postfix edge, and then get the answers by checking whether the length of the
leaf node satisfies the range specified in the AD-dis edge. The original Dewey ID
of a certain node can only identify the distance to its ancestor nodes, but here
we want to know the distance to the bottom node of the path. Therefore, we
define “Gap label” to record the distance between a node and the deepest node
below it.

Definition 2. (Gap label) A gap label is assigned to each document node, be-
side the Dewey label during document labeling. A gap label indicates the distance
between the current node to its deepest descendant node.



Processing XML Twig Pattern Query with Wildcards 331

For an example query A//B//[m,∞), after matching A//B to the document, we
check whether each matched B-typed node has a gap value greater than m.

Since the core technique of path matching, i.e., using stack to achieve optimal-
ity, is proposed in previous work [2] and our extension is easy to understand, we
do not present the pseudo-code of Path*. Compared with the naive extension of
existing path matching algorithms which replaces the * nodes in a path query,
our approach by query rewriting (1) does not need schematic information for
query replacing, and (2) reduces the number of query nodes and the number of
structural joins in a path query, thus achieve a better performance. Note that if
a path query does not contain any * node, Path* will omit the rewriting step,
and thus it is exactly the same as PathStack.

5 Algorithm Twig*

In this section, we propose Twig* to process twig pattern queries with wildcards
as the following four steps:(i) Optimize a twig pattern query by simplifying the
all-* subtwigs (defined later). (ii) Decompose the optimized twig pattern query
into paths and rewrite the paths as we discussed above. (iii) Match the rewritten
path queries and merge the results to get actual twig answers. (iv) Browse the
matches to the all-* subtwigs, if necessary. In this paper, we only focus on the
first three steps and omit the last step, because it is less important and rarely
necessary. Step 4 can be fond in our full report [9].

5.1 [Step 1]: All-* Subtwig Optimization

The cost of performing structural joins among wildcards is very expensive, In
addition, multiple wildcard nodes are usually not the return node in the query,
but only play the role of structural constraint. Thus before processing a query,
we first optimize the all-* subtwig.

Definition 3. (All-* subtwig) In a twig pattern query with wildcards, if a
subtwig is rooted at an element query node whose descendant query nodes are all
* nodes, we call it an all-* subtwig.

For example, in Fig. 2(a), the subtree rooted at “B” is an all-* subtwig.

Lemma 1. If a document node matches the root of an all-* subtwig T in a query
Q, it must match the path in T which starts at the root and ends at the lowest
* node in T, and vice versa.

Proof [sketch]. When a node n satisfies the deepest path with level of l in
an all-* subtwig T rooted at n, i.e., n has a descendant l levels below, then n
satisfies any other paths with depth less than l in T, i.e., n also has descendants
less than l levels below. �

Based on Lemma 1, the longest path in an all-* subtwig can fully represent the
subtwig, however, there might be more than one such paths. For example, in
Fig. 2(b), path Pa = B/ ∗2 //∗3 and Pb = B/ ∗2 /∗4 have the same length, since



332 H. Wu et al.

they both contain two * nodes, and they both are the longest path in the all-*
subtwig. Therefore, we need to discuss whether the two paths having the same
length in the same all-* subtwig are equivalent.

Lemma 2. For a given node N in a query, the path queries N/* and N//* are
equivalent to qualify an N-typed node.

Lemma 3. For a given all-* subtwig, the two paths having the same length are
equivalent to qualify the root of the all-* subtwig.

The proof to Lemma 2 and 3 can be found in [9]. According to Lemma 1-3, we
can reduce all-* subtwig to any longest path in the subtwig. For example, the
all-* subtwig rooted at B in the twig pattern query shown in Fig. 2(a) can be
reduced as shown in Fig. 2(b) (when we optimize the subtwig rooted at *2, we
can keep either *3 or *4, based on Lemma 3.).

A

*
*B

* *

* *

D E

(a) Twig query

AB

* *

* *
* B

(b) All-* subtwig optimization

1 2

3 4

B

*

*

2

3

*

(c) Optimizing sibling wildcard nodes

A

* B

* *

Fig. 2. All-* subtwig and sibling wildcard nodes optimization

We have discussed how to reduce the all-* subtwig. However, in practice, a
subtwig usually contains both element nodes and * nodes. The above lemmas
actually can also be applied to simplify the subtwig which is not an all-* subtwig
but contains sibling * nodes. Fig. 2(c) shows such an example.

We design a recursive algorithm to optimize an all-* subtwig. We also discuss
how to browse all matches to an all-* subtwig, as the last step of query processing.
Due to the space limitation, these are omitted in this paper, and can be found
in our full report [9].

5.2 [Step 2]: Twig Pattern Query Decomposition and Path
Rewriting

In the second step, we decompose a twig pattern query, resulted from Step 1,
into path queries. When we do this, we need to record down the branching nodes
so that after matching every path query we can join the path results based on
the correct branching node. Consider the twig pattern query shown in Fig. 3(a),
which is a simplified pattern of the query in Fig. 2(a), after Step 1. There are
three leaf nodes in this query, thus the query is intuitively decomposed into three
path queries, as shown in Fig. 3(b). In each path query, we need to mark out
the branching node appearing in the original twig pattern query. For example,
we can mark that ∗1 in P1 is a branching node in the twig pattern query with
respect to P2 and P3. Such a branching node is called the lowest common node
(LCN) of the corresponding decomposed paths.



Processing XML Twig Pattern Query with Wildcards 333

A

*
*B

*
*

D E

1

2

3

4

A
*
B

*
*

1

2

3

A

*

*
D

1

4

A

*

*
E

1

4

P1 P2 P3

A

B

A

D

A

E
P1' P2' P3'

[2,    )
([1,    ),{p2',p3'})
[1,    )

[2,    )

[3,    )

([1,    ),{p3'})([1,1]),{p1'}) ([1,1],{p2'})([1,1]),{p1'})

[3,    )

[1,    )[1,    )

(a) Twig query (b)Decomposed path queries (c)Rewritten paths

Fig. 3. Twig pattern query with wildcards decomposition examples

Definition 4. Lowest Common Node (LCN) In a twig pattern, no matter
a query or a matched data pattern, if a branching node v contains m child nodes,
then after decomposing the twig into paths, v is called the lowest common node
(LCN for short) of the paths that contain these m nodes.

For example, ∗1 is a branching node in the twig pattern query shown in Fig.
3(a), and it is also the LCN of paths P1, P2 and P3 in Fig. 3(b). Knowing the
LCN of a set of decomposed path queries, we can easily merge these path queries
to the original twig pattern query.

When a path query contains * nodes, we rewrite the query by removing the
* nodes based on Algorithm 1 in Section 3. After performing path rewriting,
all non-* LCNs remain in rewritten path queries. Thus we can simply add a
label beside each non-* LCN node to indicate all other path queries that branch
at this LCN from the current path query, just like what they do in existing
approaches for twig pattern matching without wildcards. However, after path
rewriting, the * LCNs of original path queries cannot be identified any more, as
they are hidden within relevant AD-dis edges.

In our approach, for each rewritten decomposed path query, we record all
LCNs along it, together with participating path queries and location information.

Definition 5. (LCN label) When some unknown node within an AD-dis edge
is an LCN, we assign an LCN label to the AD-dis edge. An LCN label contains
two components: (1) a range to indicate the relevant distance from the LCN to
its lower LCN, or to the non-* query node at the lower end of the AD-dis edge,
and (2) a list of path queries (IDs) which share this LCN with the current path.

Since an AD-dis edge may contain multiple LCN labels w.r.t. different sets of
query paths, we use an LCN label list to store all LCN labels within each AD-dis
edge in bottom-up order. Suppose the AD-dis edge has a non-* node at its lower
end, the range of each LCN label is the distance from this LCN to the non-*
query node at the lower end of the AD-dis edge, or to its child LCN, depending
on whether it is the lowest LCN in the edge. To find the range in an LCN label,
we can adopt the similar approach in finding the range of an AD-dis edge, as
shown in Section 3. If an AD-dis edge does not have a lower-end non-* node, we
keep a null for the range of the lowest LCN.

The last label we record for an AD-dis edge involving LCNs is the top distance
label. Using the top distance label and the LCN label list, we can determine the
location of all LCNs along an AD-dis edge.



334 H. Wu et al.

Definition 6. (Top distance label) In an AD-dis edge, the top distance label
records the distance range from the top LCN in this edge to the node at the upper
end of this edge. If there is no non-* node at the upper end of the AD-dis edge,
the top distance label measures the distance range from the top LCN to the root
of the original twig pattern query.

Example 2. Consider the twig pattern query in Fig. 3(a) and its decomposed
path queries in Fig. 3(b). After path rewriting, the new path queries are shown in
Fig. 3(c). There are three lines of labels beside each AD-dis edge containing LCNs
in Fig. 3(c). The first line is the range label of the AD-dis edge, as introduced
in Section 3. The second line is the LCN label list. In the first AD-dis edge
in P1’, the LCN label list contains only one LCN label, i.e., ([1,∞),{P2’,P3’}).
The first component [1,∞) indicates the corresponding LCN node is at least
1 level above the node B. The second component means it is the LCN of the
current path and the paths P2’ and P3’. The LCN label list in the AD-dis edge
in P2’ contains more than one LCN labels. Especially, the second LCN label
([1,1],{P1’}) indicates the second LCN in this edge is exactly 1 level above the
previous LCN, and it is the LCN of the current path and path P1’. The third
line in each AD-dis edge is the corresponding top distance label, indicating that
the top LCN in every AD-dis edge is at least 1 level lower than the node A.

5.3 [Step 3]: Matching Rewritten Paths and Merging Results

This is the main step of Twig*, we match each rewritten decomposed path
query, and then merge the results to get twig answers. To reduce redundant
path matches, we follow the idea of holistic join first proposed in TwigStack
[2], and extend it by adding the function to perform structural join for AD-
dis edges, to match each rewritten query. For example, a twig pattern query is
decomposed into three rewritten path queries in Fig. 4. Using the holistic joins in
TwigStack, we can guarantee that the A-typed nodes in all path matches to P1
must have a descendant C-typed node and descendant a D-typed node satisfying
the constraints in P2 and P3. This cannot be guaranteed by PathStack. Thus by
extending TwigStack, our algorithm will also significantly reduce the number of
useless intermediate results. Furthermore, other extended algorithms to improve
TwigStack, e.g., [6], are also feasible to extend our approach during pattern
matching.

* D

* C

2

3

A

*1

* D
B C

2

A

*1

A

B

P1

([1,1],{p2})([1,   ),{p3})
[3,    )

[1,    )

A

C

P2

([1, ),{p1})([1, ]),{p3})
[3, )

[1, )

A

D

P3

([1,1],{p1,p2})
[2,2]

[1,1]

AP1

(null,{p2})([1, ),{p3})
[3,    )

A

C

P2

([1, ),{p1})([1, ]),{p3})
[3, )

[1,1]

A

D

P3

([1,1],{p1,p2})
[2,2]

[1,1]

(a)P1 with descendant non-* node (b)P1 without descendant non-* node

Fig. 4. Path query merging example



Processing XML Twig Pattern Query with Wildcards 335

After matching each decomposed path queries in a holistic manner, now we
put more focus on merging the matched path results. This process can be easily
done by joining sorted path results based on labels of relevant branching nodes in
TwigStack, for queries without wildcards. However if a query contains branching
wildcard nodes as in our examples, it is not so trivial. Because when a branching
node is a * node, it will hide in a certain AD-dis edge in the corresponding
rewritten query. We cannot simply merge two path answers by the equivalence
of any two node labels, but have to rely on the positional relationship of answer
nodes. We present how Twig* merges path results based on wildcard LCNs.

Merge Order. From the LCN label list of each AD-dis edge in the decomposed
path queries, we can merge the path queries into original twig pattern query in
any order. However, in our approach, we need to adopt a bottom-up fashion to
merge paths, i.e., merging the paths share the lowest LCN first. This is because
the LCN labels along each AD-dis edge are sorted in bottom-up order. Thus we
always start merging from a path which contains the lowest LCN and also has
a non-* node as a leaf.

Example 3. Consider a twig pattern query and its rewritten decomposed path
queries shown in Fig. 4(a). Suppose we have three path instances, P1-matched
path, P2-matched path and P3-matched path. We merge P1-matched path and
the P2-matched first (assumed mergeable) because the LCN of these two paths
is lower. After deciding the position of the node matching the LCN of the two
paths, i.e., *2, we then check whether the intermediate answer can be merged
with the P3-matched path at an LCN at least 1 level above the *2-matched node.

Path Result Merging. When merging two path instances from two path
queries, if the LCN is an element node, we simply check whether the labels of
the two nodes matching the LCN are equivalent or not. This is what they do
in existing approaches. However, if the LCN is a * node, during path matching
we can only find the nodes matching the two non-* nodes at the ends of the
corresponding AD-dis edge, but cannot decide where exactly the LCN is between
the two non-* nodes. To solve this, we use the property of prefix label to find
the LCN match.

Proposition 1. The Dewey ID of a common ancestor of two nodes u and v
must be a common prefix of the Dewey IDs of the two nodes, and vice versa.

According to Proposition 1, we can merge two path answers based on the labels
of two nodes below the LCN and their distances to the LCN. We consider two
cases when merging a new path to a merged intermediate result w.r.t. the AD-dis
edge involving the LCN: (1) both the AD-dis edges have non-* query nodes at
lower ends, and (2) one such AD-dis edge does not have a non-* query node at its
lower end. It is not possible that neither of the AD-dis edges has a non-* query
node at lower end, because this case can be avoided in Step 1. The general idea
is that for the first case, we find each common prefix of the two node labels that
match the lower-end query nodes or the previously decided LCN nodes in the
two AD-dis edges. Then check whether each common prefix is in the right level



336 H. Wu et al.

to satisfy the range constraints in the LCN labels, as well as the top distance
labels if the LCN is the top LCN in each AD-dis edge. For the second case, we do
not need to compute the common prefix. Instead we simply check each ancestor
of the node matching the only lower-end query node by also considering its
gap label, to see whether its position satisfies the range constraints in the LCN
labels or the top distance labels. There are some special cases such as an AD-dis
edge involving LCNs does not have an upper-end node. Basically, with the LCN
labels and the top distance label in the AD-dis edge we can easily determine the
location of branching wildcard nodes. Then by checking the position and the
common prefix of relevant nodes, we can merge the path answers. The detailed
algorithm of Twig* is omitted here due to the space limitation and can be found
in the full version [9].

Example 4. Consider the query and decomposed paths in Fig. 4(a). Suppose
two paths 1//1.1.2.3.2 and 1//1.1.2.3.5.1 match P1 and P2 respectively. When
we try to merge these two paths, we first check whether they have the same
ancestor node. Then we find the common prefixes of the two descendant node,
including 1, 1.1, 1.1.2 and 1.1.2.3. We check that only 1.1.2.3 satisfies the range
specified in the first LCN label of the AD-dis edge in P1, i.e., the distance between
1.1.2.3 and 1.1.2.3.2 in P1 is exactly 1. Similarly, the constraint in the first
LCN label in P2 is also satisfied by 1.1.2.3, so we can output the merged result
1//1.1.2.3[//1.1.2.3.2]//1.1.2.3.5.1. Next, we match this intermediate result to
a P3 path 1//1.1.4. The common prefixes of 1.1.2.3 and 1.1.4 are 1 and 1.1.
Now only 1.1 satisfies the range constraint in the two LCN labels and the top
distance label, i.e., 1.1 is exactly 1 level below the A-typed node 1 in P3 and
exactly 1 level higher than the D-typed node 1.1.4 in P3. Then we output the
final matched pattern 1//1.1[//1.1.2.3[//1.1.2.3.2]//1.1.2.3.5.1] //1.1.4.

For the query in Fig. 4(b), suppose we merge a P1 path 1 (actually a single
A-typed node) and a P2 path 1//1.1.2.3.5.1 first. P1 does not have a lower-end
node, so we simply check all the ancestor nodes of 1.1.2.3.5.1 in the P2 path.
There are four possible LCNs to merge P1 and P2, i.e., 1.1, 1.1.2, 1.1.2.3, and
1.1.2.3.5. Then we merge four intermediate results to a P3 path 1.1.4, to get the
only LCN for the three paths, which is 1.1. �

Theorem 1. Consider a query twig pattern q with n nodes (among which there
are m (m <= n) wildcard nodes), and only ancestor-descendant edges, and an
XML database D. Algorithm Twig* has worst-case I/O and CPU time complex-
ities linear in the sum of size of the (n − m) input lists and the output list.
Further, the worst-case space complexity of Algorithm Twig* is the minimum of
(i) the sum of sizes of n-m input lists, and(ii) n-m times the maximum length
of a root-to-leaf path in D.

If m = 0, Twig* equals to TwigStack, which has been proven to be both I/O and
CPU optimal in the wildcard-free queries with only ancestor-descendant edges. If
m > 0, according to our rewritten strategy, all the wildcards are removed. Thus,
Twig* selectively loads only the data nodes whose labels are explicitly referenced
in the query (i.e.,n−m nodes) instead of loading the entire input data into main



Processing XML Twig Pattern Query with Wildcards 337

memory to evaluate the query, which is independent of the number of wildcards.
In addition, the non-wildcard nodes are processed in the way of TwigStack, as
desired.

5.4 Discussion

In this section, we would like to show that all the existing twig pattern matching
algorithms based on Dewey-class labeling (e.g.,Extended Dewey [8], JDewey[4])
could be extended to answer the queries with AD-dis axis. The above four steps
are available for any other matching algorithms. And the key operation is to
(i) identify the LCN nodes and (ii) calculate the distance between two nodes
connected with an AD-dis axis. For (i), the above approaches could be adopted,
while for(ii), any two Dewey-class IDs could efficiently calculate the distance by
checking whether they share the common prefix and the size gap of their Ids.

6 Experiments

In this section, we report an extensive experimental evaluation of our algorithms,
using three real-life datasets. Our experiments were conducted to verify the
efficiency and scalability of our algorithms.

Implementation and Environment. All the algorithms were implemented in
Java and the experiments were performed on a dual-core Intel Xeon CPU 2.0GHz
running Windows XP operating system with 2GB RAM and a 320GB hard disk.

Datasets. We use three datasets including DBLP1, XMark2 and TreeBank3

to test the efficacy of our algorithms in the real world. The characters of the
three datasets are as follows: DBLP is 127MB with max/average depth of 6/2.9,
XMark is 110MB with max/average depth of 12/5.5 and TreeBank is 83MB with
max/average depth of 36/7.8.

DataSize ID Xpath Expression DataSize ID Xpath Expression
Q1 //*//book//author="Jim Gray" Q9 //*/S/VP/NP/NN
Q2 //inproceedings//*//author="Stephen F. Smith" Q10 //EMPTY/*/VP/S/*//NP/*/PP/NP/NNPS
Q3 //proceedings[//number]//title//* Q11 /FILE/EMPTY/S/VP/*/*
Q4 /dblp//*/*[/sub]/i Q12 //*/S/VP/S[/TO]/NP/_NONE_
Q5 //*//item/description/parlist/listitem Q13 //EMPTY/*[/*/PP]//VP[//IN]/VBZ
Q6 /site/*//*/item//description/* Q14 //EMPTY//S/*[/TO][/NP]//PP[/IN]//*/_COMMA_
Q7 //*/regions[//*/location][/*//shipping]//mail/* Q15 //*//S[/NP/*]/VP[/VBZ]/PP[/*]/*
Q8 /site/*/europe/item[./incategory][//*/from]//*/listitem

DBLP

XMark

TreeBank

Fig. 5. Experimental queries for performance comparison

Queries. Regarding to the real-world user queries, the most recent 100 queries
are selected from the query logs, e.g., from a DBLP online demo [1]. Then we
create the queries with wildcards by replacing some nodes in those queries or

1 http://dblp.uni-trier.de/xml/
2 http://www.xml-benchmark.org/
3 http://www.cs.washington.edu/research/xmldatasets/www/repository.html

http://dblp.uni-trier.de/xml/
http://www.xml-benchmark.org/
http://www.cs.washington.edu/research/xmldatasets/www/repository.html


338 H. Wu et al.

merging some queries with a wildcard as the branching nodes. Figure 5 reports
some of the queries in our experiments.

Compared Algorithms and DataBases. In order to verify the efficiency and
scalability of our algorithms, we compared our algorithms with three different
types of approaches: (i) DataBases, including (1) famous commercial relational
databases that supporting XML queries (e.g., SQL/XML), here we hide the
name of the database and call it RDB; (2) pure XML database, here we choose
BaseX 7.1.1. We execute the XML queries in BaseX with and without indexes,
respectively, called BaseX-I and BaseX respectively. (ii) The approaches in
[3], we implemented the wildcard-step elimination strategy (i.e., layer+eval) as
well as the selective-loading evaluation strategy (i.e., layer+optEval) proposed
in [3]. (iii) The existing twig pattern matching method for the queries with
wildcards proposed in [7], called TwigMS, i.e., replacing * nodes by possible
element nodes according to XML schemes (e.g.,DTD).

(b) XMark(a) DBLP (c) TreeBank

0

5

10

15

20

25

30

35

Q1 Q2 Q3 Q4

R
un

ni
ng

 T
im

e(
Se

c)

RDB
BaseX-I
BaseX
Twig*

0

5

10

15

20

25

30

35

Q5 Q6 Q7 Q8

R
un

ni
ng

 ti
m

e(
Se

c)

RDB
BaseX-I
BaseX
Twig*

0

2

4

6

8

10

12

14

16

18

1 2 3 4 5
# of wildcards

R
un

ni
ng

 ti
m

e 
(S

ec
)

Twig*
layer+eval
layer+optEval

Fig. 6. The running time on DBLP and XMark datasets are reported for comparing
the efficiency of Twig* and relational databases and pure XML databases, while the
running time on TreeBank dataset is drawn to show the comparison results of Twig*
and the approaches proposed in [3].

6.1 Experimental Results

We inspected all the results returned from all the tested algorithms and found
that their results are all the same, which verifies the validity of our algorithms.
Each experiment was repeated over 10 times and the average numbers are re-
ported here.

Compared with Databases. In Figure 6(a)(b), we test the running time
for Twig*, RDB, BaseX-I and BaseX by executing the queries Q1 Q8 in the
DBLP and XMark respectively. As shown, Twig* outperforms the other three
approaches, sine twig* only needs to read data nodes whose labels are explic-
itly referenced in the query which is independent to the number of wildcards in
the query. RDB achieves the worst performance since SQL/XML language does
not optimize queries with wildcards. We observed that BaseX-I also achieves a
good performance and less running time than BaseX due to the indexes and
both of them outperform RDB, the reason is that pure XML databases carefully
optimize the queries with wildcards.



Processing XML Twig Pattern Query with Wildcards 339

Compared with Algorithms in [3]. To test the efficiency of twig* and the
algorithms proposed in [3], i.e., layer+eval and layer+optEval. We vary the num-
ber of wildcards from 1 to 5 in the TreeBank dataaset. As shown in Figure 6(c),
Twig* outperforms the other two algorithms, more precisely, Twig* is about one
order of magnitude more efficient than layer+eval method and saves 4.6 times of
running time than layer+optEval, which indicates the effects of our algorithm.

(a)DBLP (b)XMark (c)TreeBank

(d)DBLP (e)XMark (f)TreeBank

0

5

10

15

20

25

30

Q1 Q2 Q3 Q4

Ex
ec

ut
io

n 
tim

e(
Se

c)

TwigMS
Twig*

0
2
4
6
8

10
12
14
16
18
20

Q5 Q6 Q7 Q8

Ex
ec

ut
io

n 
tim

e(
Se

c)

TwigMS
Twig*

0

5

10

15

20

25

Q9 Q10 Q11 Q12 Q13 Q14 Q15

Ex
ec

ut
io

n 
tim

e(
Se

c)

TwigMS
Twig*

0

20

40

60

80

100

120

Q1 Q2 Q3 Q4

A
cc

es
se

d 
by

te
s(

M
B

)

TwigMS

Twig*

0
5

10
15
20
25
30
35
40
45
50

Q5 Q6 Q7 Q8

A
cc

es
se

d 
by

te
s(

M
B

)

TwigMS

Twig*

0

10

20

30

40

50

60

70

80

Q9 Q10 Q11 Q12 Q13 Q14 Q15

A
cc

es
se

d 
by

te
s(

M
B

)

TwigMS

Twig*

Fig. 7. The execution time and space usage on DBLP, XMark and TreeBank

Compared with Twig Pattern Join Algorithm. Figure 7(a)(b)(c) report
the execution time of the Twig* and TwigMS. As shown, Twig* is faster than
TwigMS. The first reason is that Twig* does not need to consider different
possible element nodes for each * node, thus it avoids reading many useless
labels . We further validate this point by showing the data size read by the two
approaches during query processing in Figure 7(d)(e)(f). The second reason is
that Twig* performs structural join across each * node. This attempt will have
less round of structural joins compared to that in TwigMS.

However, when the possible element nodes for the * nodes is quite limited and
the structural joins saved is not expensive, the two approaches should perform
similarly. For example, in the first query to the DBLP and XMark documents
(Q1 and Q5) there is only one possible element node to replace the * node in
TwigMS. Moreover in these two queries the * node corresponds to an element
with very few labels, which means the structural joins between the * node and
the adjacent nodes are not very expensive. Thus the execution time of the two
approaches are quite similar.



340 H. Wu et al.

(a)Execution time on TreeBank (b)Space usage on TreeBank

0
2
4
6
8

10
12
14
16
18

1 2 3 4 5
# of wildcard nodes

Ex
ec

ut
io

n 
tim

e(
Se

c)

TwigMS
Twig*

0

20

40

60

80

100

120

140

1 2 3 4 5
# of wildcard nodes

A
cc

es
se

d 
by

te
s(

M
B

) TwigMS
Twig*

Fig. 8. The execution time on TreeBank

Scalability. Since the TreeBank data is deep and complex in structure, we
choose one path query in the TreeBank and increase the number of * nodes to
test the scalability of the two approaches. The results are shown in Figure 8. We
can see that with the increasing of the number of wildcard nodes in the query,
both the execution time and space usage of TwigMS increase rapidly. This can
be easily understood. In our approach, the execution time is rather stable, and
the space usage even decreases because there are less element nodes requiring
structural join when the number of * nodes increases, which verifies the optimal
properties of Twig* as we proposed in Theorem 1.

7 Conclusion

In this paper, we propose a novel structural join based approach to process twig
pattern queries with wildcards effectively. Different from the existing structural
join algorithms, we do not need to replace the * query nodes by element query
nodes based on schemas. Instead, we propose a new query edge (i.e., AD-dis
edge) and a rewriting algorithms to remove the * nodes in a query. In addition,
we experimentally verify the effectiveness and efficiency of approaches.

References

1. Bao, Z., Ling, T.W., Chen, B., Lu, J.: Effective xml keyword search with relevance
oriented ranking. In: ICDE, pp. 517–528 (2009)

2. Bruno, N., Koudas, N., Srivastava, D.: Holistic twig joins: optimal xml pattern
matching. In: SIGMOD Conference, pp. 310–321 (2002)

3. Chan, C.Y., Fan, W., Zeng, Y.: Taming xpath queries by minimizing wildcard
steps. In: VLDB, pp. 156–167 (2004)

4. Chen, L.J., Papakonstantinou, Y.: Supporting top-k keyword search in xml
databases. In: ICDE, pp. 689–700 (2010)

5. Jiang, H., Lu, H., Wang, W.: Efficient processing of XML twig queries with
OR-predicates. In: SIGMOD, pp. 59–70 (2004)

6. Lu, J., Chen, T., Ling, T.W.: Efficient processing of XML twig patterns with parent
child edges: a look-ahead approach. In: CIKM, pp. 533–542 (2004)



Processing XML Twig Pattern Query with Wildcards 341

7. Lu, J., Ling, T.W., Bao, Z., Wang, C.: Extended XML tree pattern matching:
theories and algorithms. IEEE Trans. Knowl. Data Eng. (2010)

8. Lu, J., Ling, T.W., Chan, C.Y., Chen, T.: From region encoding to extended
Dewey: On efficient processing of XML twig pattern matching. In: VLDB, pp.
193–204 (2005)

9. Wu, H., Lin, C., Ling, T.W., Lu, J.: Processing xml twig pattern queries with
wildcards. Technical report, http://datasearch.ruc.edu.cn/full

10. Wu, H., Ling, T.-W., Chen, B.: VERT: A Semantic Approach for Content Search
and Content Extraction in XML Query Processing. In: Parent, C., Schewe, K.-D.,
Storey, V.C., Thalheim, B. (eds.) ER 2007. LNCS, vol. 4801, pp. 534–549. Springer,
Heidelberg (2007)

11. Yu, T., Ling, T.-W., Lu, J.: TwigStackList¬: A Holistic Twig Join Algorithm for
Twig Query with Not-Predicates on XML Data. In: Lee, M.L., Tan, K.-L., Wu-
wongse, V. (eds.) DASFAA2006. LNCS, vol. 3882, pp. 249–263. Springer, Heidelberg
(2006)

12. Zhang, C., Naughton, J.F., DeWitt, D.J., Luo, Q., Lohman, G.M.: On supporting
containment queries in relational database management systems. In: SIGMOD,
pp. 425–436 (2001)

http://datasearch.ruc.edu.cn/full


A Direct Approach

to Holistic Boolean-Twig Pattern Evaluation

Dabin Ding, Dunren Che, and Wen-Chi Hou

Department of Computer Science
Southern Illinois University, Carbondale, IL 62901, USA

{dding,dche,hou}@cs.siu.edu

Abstract. XML has emerged as a popular formatting and exchanging
language for nearly all kinds of data, including scientific data. Efficient
query processing in XML databases is of great importance for numerous
applications. Trees or twigs are the core structural elements in XML data
and queries. Recently, a holistic computing approach has been proposed
for extended XML twig patterns, i.e., B-Twigs (Boolean Twigs), which
allows presence of AND, OR, and NOT logical predicates. This holistic
approach, however, resorts to pre-normalization on input B-Twig queries,
and therefore causes extra processing time and possible expansion on
input queries. In this paper, we propose a direct, holistic approach to B-
Twig query evaluation without using any preprocessing or normalization,
and present our algorithm and experimental results.

Keywords: Query processing, XML Query, Boolean Twig, Twig join,
Tree Query, Twig Query, Tree Pattern, Logical Predicate.

1 Introduction

XML (Extensible Markup Language) as a de facto standard for data exchange
and integration is ubiquitous over the Internet. Many scientific datasets are
represented in XML, such as the Protein Sequence Database, which is an inte-
grated collection of functionally annotated protein sequences [1] and the scientific
datasets at NASA Goddard Astronomical Data Center [2]. XML is frequently
adopted for representing meta data for scientific and other computing tasks. In
addition, numerous domain-specific XML markup languages are defined, such
as the Chemical Markup Language (CML), the Mathematics Markup Language
(MathML) and the Geography Markup Language (GML). Efficiently querying
XML data is a fundamental request to fulfill these scientific applications. In ad-
dition to examine the contents and values, an XML query requires matching
implied twig patterns against XML datasets. Twig pattern matching is a core
operation in XML query processing. In the past few years, many algorithms have
been proposed to solve the XML twig pattern matching problem. Holistic twig
pattern matching has been demonstrated as so far the most efficient approach
to XML twig pattern computation. Well-known holistic twig join/matching al-
gorithms include [5], [10], [6], [11], [12], [15], [8], [14], [7].

S.W. Liddle et al. (Eds.): DEXA 2012, Part I, LNCS 7446, pp. 342–356, 2012.
c© Springer-Verlag Berlin Heidelberg 2012



A Direct Approach to Holistic Boolean-Twig Pattern Evaluation 343

These algorithms, however, can only deal with twig queries which contain lim-
ited types of predicates. However, queries in practical applications may contain
all three boolean predicates (AND, OR, NOT). Such kinds of twigs are called
Boolean-Twigs or B-Twigs for short. Some example B-Twig XML queries are
given below (in XPath-like format):

Q1: /department/employee [age > 30 OR city = “NYC” ]/name

Q2: /vehicle/car/[[made = “ford” AND year< 2005] OR [NOT[type = “coupe”]
AND color = “white”]]

Q1 selects the employees who are either older than 30 or live in NYC. Q2 (involv-
ing all three types of logical predicates) selects the cars that are either “made
by FORD and before 2005” or “white but not a coupe”.

OR and NOT predicates are very important not only in theory but also
in practical applications. It is hence a very natural requirement to support
these two types of predicates, in addiction to ANDs, in twig pattern match-
ing algorithms. We have seen several efforts being made toward holistically
computing B-Twig pattern matches. Jiang et al. [6] proposed a solution to
AND/OR-twigs; Yu et al. [15] proposed an algorithm for holistically evaluating
AND/NOT-twigs; most recently, Che et al. (in our own group) [7] proposed the
first algorithm, called BTwigMerge, for holistic computing of full B-Twigs (i.e.,
AND/OR/NOT-twigs), but requiring significant preprocessing (normalization)
on input B-Twigs first. Normalization helps control the complexity in holistic B-
Twig pattern matching, but inevitably introduces an extra processing step and
may cause query expansion especially when NOTs are pushed down to lower
levels in the B-Twigs. In this paper, we propose the first, direct holistic B-Twig
pattern matching algorithm, called DBTwigMerge, without relying on any pre-
processing or normalization on the input B-Twig queries. Compared with our
prior algorithm, BTwigMerge [7], our new algorithm, DBTwigMerge, relies
on a new mechanism, called status which is associated with every query node, to
unify the processing needed for different types of query nodes (including AND,
OR, and NOT nodes) into a coherent holistic processing framework. Our new
algorithm thus can very elegantly process any input B-Twig without the need to
normalize [7] it first, and yet our new algorithm remains runtime optimal, i.e.,
linear to the total size of input and output. We believe what we achieved and
reported in this paper represents one major advance in the area of XML query
processing as our algorithm is unique and is the first of its kind – as a holistic
twig join algorithm designed to be directly applied to arbitrary input B-Twig
queries.

The remainder of the paper is organized as follows. Section 2 discusses related
works. Section 3 provides preliminary knowledge, including our data model and
the tree representation used in this paper. Section 4 elaborates on the novel
DBTwigMerge algorithm that directly applies to arbitrary B-Twig queries
without relying on any preprocessing or normalization on the input queries. Sec-
tion 5 presents the result of our performance study. Finally, Section 6 concludes
this paper.



344 D. Ding, D. Che, and W.-C. Hou

2 Related Work

Twig pattern matching is a core operation in XML query processing. Naive navi-
gation (or pointer-chasing), structural joins, and holistic twig joins have all been
studied for twig pattern matching. In the following, we review representative
works on structural joins and particularly on holistic twig joins.

The first structural join (or containment join) algorithm was proposed by
Zhang et al. [16], which extends the traditional merge join to multi-predicate
merge join (MPMGJN). Al-Khalifa et al. [4] later proposed two families of struc-
tural join algorithms, i.e., tree-merge and stack-based structural joins, as prim-
itives for XML twig query processing. In 2002, Bruno et al. [5] first proposed
the so-called holistic twig join approach to XML twig queries, of which the main
goal was to overcome the drawback of structural joins that usually generate large
sets of unused intermediate results. Bruno et al. designed the holistic twig join
algorithm, named TwigStack, which is optimal for twigs with only AD edges
(but not with PC edges). The work of Lu et al. [11] aimed at making up this flaw
and they presented a new holistic twig join algorithm called TwigStackList, in
which a list structure is used to cache limited elements in order to identify a
larger optimal query class. Chen et al. [8] studied the relationship between dif-
ferent data partition strategies and the optimal query classes for holistic twig
joins. Lu et al. [12] proposed a new labeling scheme, called extended Dewey, and
an interesting algorithm, named TJFast, for efficient processing of XML twig
patterns. Unlike all previous algorithms based on region encoding, to answer
a twig query, TJFast only needs to access the labels of the leaf query nodes.
The result of Lu et al. [12] includes enhanced functionality (can process limited
wildcard), reduced disk access, and increased total query performance. The same
group [13] also studied efficient processing for ordered XML twig patterns using
their proposed encoding scheme. S.K. Izadi et al. [17] proposed a series of algo-
rithm called S3. Twig queries are first evaluated against structural summary of
documents to avoid document access as far as possible. Later on, they published
newer version of their algorithms to support B-Twig queries [18]. NOT and OR
operators are processed by special techniques in their algorithms. Overall, their
series of S3 algorithms are based on structural joins and do not produce match-
ing result holistically. Additional techniques are introduced in [18] to reduce
intermediate results and redundant I/O.

In an ordinary twig, the multiple sibling nodes under a common parent node
automatically signify the AND logic relationship among them, and all holistic
twig join algorithms discussed above already support this implied AND logic in
their implementation schemes. Users would take all the three commonly used
logical predicates, AND, OR, and NOT, as granted facilities in formulating their
XML queries and thus would expect full support from a query engine for unlim-
ited use of all these predicates in their XML queries. Jiang et al. [6] made the
first effort toward incorporating support for OR predicates into the holistic twig
join approach pioneered by Bruno et al. [5]. Jiang et al. [6] presented an inter-
esting framework for holistic processing of AND/OR-twigs based on the concept
of OR-blocks. With resort to the mechanism of OR-blocks, an AND/OR-twig



A Direct Approach to Holistic Boolean-Twig Pattern Evaluation 345

is transformed to an AND-only twig carrying OR-blocks. Yu et al. [15] made
effort for supporting NOT predicates in XML twig queries. The recent publi-
cation of Xu et al. [14] proposed another interesting algorithm that claims to
be able to efficiently compute the answers to XML queries without holistically
computing the twig patterns — the answers obtained contain individual elements
corresponding to designated output query nodes. So basically this work does not
belong to the category of holistic twig join algorithms. But what is interesting of
their work [14] is the proposed path-partitioned element encoding scheme, which
bears efficiency potential and may be adopted in the future course of seeking
improved performance on holistic B-Twig pattern matching.

Most recently, to support query that contains AND/NOT/OR predicates,
we [7] proposed normalization procedure to regulate the arbitrary combination
of AND, NOT, OR predicates in B-Twig. Normalization transforms the original
B-Twig into an equivalent one that resembles the DNF form of Boolean logic, and
which is then evaluated by an efficient computing scheme. However normalization
comes with a cost- extra processing steps and possible query expand.

Our goal in this paper is to design a more powerful, holistic computing scheme
that can directly apply to arbitrary input B-Twigs without normalization. Our
approach and new algorithms are to be detailed in the subsequent sections.

3 Preliminaries

In this section, we address the data model and tree representation of XML data
and XML queries.

We adopt the general perspective [5] that an XML database is a forest of
rooted, ordered, and labeled trees, each node corresponds to a data element or
a value, and each edge represents an element-subelement or element-value rela-
tion. The order among sibling nodes implicitly defines a total order on the tree
nodes. Node labels are important for efficient processing of twig pattern queries,
as properly designed node labels may leave out the necessity of accessing the
node contents during query evaluation. This is especially true with twig pattern
matching, which is at the core of XML query processing. Node labels typically
encode the region information of data elements and reflect the relative positional
relationships among the elements in the source data file. We assume a simple en-
coding scheme — a triplet region code (start, end, level) — which is assigned to
each data element in a XML document. When multiple documents are present,
the document-id is added to the labels to differentiate the documents. Region
code can be conveniently obtained through preorder document-tree traversing.
For example, region codes for each XML data element are given in Fig. 1(a).
Region code can preserve the tree structure among nodes. For twig pattern eval-
uation, our algorithm only need to store and access the region code of each
data element. Each element type node in input twig pattern is associated with
a stream of data elements (represented in region code) of that type. As in Fig.
1(a), the stream of element type Author is (3,6,3)(7,10,3)(18,21,3)(22,25,3). Each
XML query implies a twig pattern, small or large. The smallest twig may contain



346 D. Ding, D. Che, and W.-C. Hou

just a single node, but a typical twig usually comprises a number of nodes. In
this paper, we will use upper case letters to denote the query nodes in a twig
query, and the same lower case letters to denote the current data elements in
their associated streams. The target of our investigation is B-Twigs that allow
arbitrary combination of ANDs, ORs, and NOTs. In general, a B-Twig may con-
sist of two general categories of nodes: ordinary query nodes standing for element
types (or tags) and the special connective nodes denoting logical predicates —
ANDs, ORs, and NOTs. More specifically, we introduce the following types of
nodes that a B-Twig may contain:

– QNode: An ordinary query node, associates with an element type (or tag
name) in an XML database, and is further associated with an input stream
(of which the data elements are represented by their region code, respec-
tively).

– LgNode: A logical node, can be either an AND node, an OR node, or a NOT
node. An LgNode does not have any stream associates with it. We further
introduce the following specific types of LgNodes:

• ANode: An AND logical node, always takes the text ’AND’ as its content.
It connects two or more child subtrees through the AND logic.

• ONode: An OR logical node, always takes the text ’OR’ as its content.
It connects two or more child subtrees through the OR logic.

• NNode: The NOT logical node, always takes the text ’NOT’ as its con-
tent. It negates the node below it;

– DAQ: a Direct Ancestor Query node. Every node (either QNode or LgNode)
has a DAQ node. We define the DAQ of a LgNode to be the first QNode
met when traversed up in query tree; and the DAQ of a QNode to be itself.

For the convenience of presentation, we use “a query node” to generally refer to
any node (QNode or LgNode) that appears in the B-Twig query under discussion.
In contrast, an ordinary node refers to a QNode in the B-Twig. There are two
kinds of relationship between two connected query nodes, parent-child(PC) or
ancestor-descendant(AD) relationship.

Every B-Twig XML query can be represented as tree (as shown in figure 1(b))
or in an XPath-like expression. The answer to a B-Twig query is a set of qualified
twig instances (i.e., the embedding of the twig pattern into the XML database).
We assume the following output model for B-Twigs: each output twig instance
of a B-Twig query comprises of elements from only those QNodes that are not
inside of any predicate. The sub-twig resulted from the original input B-Twig
after pruning all predicate branches (which are subtrees rooted at a predicate
node) is called the output twig of the B-Twig query. Each remaining QNode on
the output twig is called an output node, and each leaf on the output twig is
called an output leaf.

4 Direct B-Twig Evaluation

As pointed out earlier, precious efforts have been made toward holistic
B-Twig pattern matching: GTwigMerge for AND/OR-twigs, TwigStackList¬



A Direct Approach to Holistic Boolean-Twig Pattern Evaluation 347

for AND/NOT-twigs, and BTwigMerge for normalized B-Twigs, and none for
general B-Twigs. Developing a holistic approach for general B-Twigs involves
great challenges, and requires new, creative supporting mechanism.

4.1 Status Mechanism

A general B-Twig query may contain arbitrary combination of logical nodes. For
arbitrary combination of logical predicates, we mean that there is no limitation
on the usage of logical predicates as long as they are meaningful and bear no
redundancy. All the meaningless queries, e.g. NOT as a leaf node, and redundant
queries, e.g. NOT/NOT branch can be easily eliminated by a simple preprocess-
ing process. For arbitrary B-Twigs, what most troublesome is the involvement of
multiple NOT nodes; in that case, the repeated negations implied in the B-Twig
can be very hard to interpreted and programmatically dealt with.

The real challenge in B-Twig pattern matching is centered around the LgN-
odes in the B-Twig and their evaluation. It is possible for a B-Twig query to
have more than four levels of LgNodes between any two QNodes. To deal with
complex combination of logical predicates, we need to take the LgNodes into
consideration during path-match and subtree match. The nodes in B-Twig need
to bear a status of its subtree matching result and LgNodes need to inherit a
fake region code from its DAQ node. To facilitate the evaluation process, we
introduce an explicit status flag (true or false) for each LgNode and each QN-
ode. Our algorithm continuously detects the status of the current node. More
formally, we give the following definition for the status mechanism of every node
in a B-Twig:

Definition 1 (Status of Node). Every node in a B-Twig is associated with a
boolean flag, called the status of the node; the status of a node takes the value
of either true or false, indicating whether a match for the sub-tree rooted at this
node is found.

To motivate the new status mechanism which is fundamental to our algorithm,
we look at the twig query in Fig. 1(b) and the sample XML data in Fig. 1(a).
To save up space, we will use I# to denote the data element, e.g., I1 denotes
Refinfo(1,15,1) and I3 denotes Author(3,6,3). Initially, I12/’1962’ is read in, then
the status of QNode Year is set as true since it is a match. LgNode NOT is set
as false since the status of its child is true, which should be negated. When I3
is processed, the status of QNode Author is false, then later on the stream of
Author is advanced and I7 is being processed and the status of Author is updated
to be true. After all two child branches of LgNode OR are updated, then the
status of OR can be determined as true since one of the child branch, Author, is
true. Finally we can find out that the status of QNode Refinfo is true for I1, and
I1/I12/’1962’ is a matching instance and be outputted. Similarly, I16/I27/’1988’
can also be found as a matching instance.

To summarize, we introduced the status for each query node and each logical
node in a B-Twig; based on this mechanism, we are able to uniformly deal
with all the nodes (logical and query nodes) in the B-Twig during the matching



348 D. Ding, D. Che, and W.-C. Hou

process. Now we can envision our holistic B-Twig matching process as follows: we
simultaneously keep an eye on the input B-Twig and an eye on the input streams;
we start from the root of the input B-Twig and probe into the associated streams
to see if we can find a match; often, whether an element is a match is not only
decided by the element itself, but also by whether the lower level nodes in the B-
Twig can find a match from their input streams; stream heads need be promptly
advanced during this process when the head element is found disqualified by
probing the range covering relationship between the elements; the whole process
consists of repeatedly deciding the status of all query nodes in the input B-
Twig, outputting successful matches (resulting in a ‘true’ status value on the
root query node), advancing stream heads, and updating the statuses of query
nodes (including logical nodes). Our direct, holistic B-Twig join algorithm is
designed based on the above process.

Refinfo

OR

NOT

Year

Author

‘1962’

‘Smith, E.L.’

ProteinEntry

Refinfo(1)

Authors Year

Author Author

Refinfo(2)

Authors Year

Author Author

‘Matsubara, H.’ ‘Smith, E.L.’

‘1962’

‘Evans, M.J.’

‘1988’

‘Scarpulla, R.C.’

(a) XML Data (b) B-twig Query

(2,11,2)

(0,32,0)

(1,15,1) (16,31,1)

(12,15,2) (17,26,2) (27,30,2)

(3,6,3) (7,10,3) (18,21,3) (22,25,3)

Fig. 1. Illustrative XML data and query

4.2 DBTwigMerge Algorithm Design

Status updating is going to be a primary supporting mechanism in our direct,
holistic B-Twig join algorithm. We will discuss how the status of different types
of query node is going to be updated. First, we need to define some terms and
prerequisites. As mentioned earlier, we use upper case letters (e.g., Q) to denote
query nodes, and same lower case letters (e.g., q) to denote the current data
instances in the corresponding streams. R(Q,S) denotes the region covering re-
lationship between query nodes Q and S, which is supported by and equals to
R(q,s), where q and s refer to the two corresponding, stream head instances. A
special case is when S is a LgNode, then R(Q,S) is always set as true. For an
AD relationship of Q//S, R(q,s) is true (i.e., q covers s) iff q.Start≤s.Start,
q.End≥s.End, and q.Level<s.Level. For a PC relationship of Q/S, R(q,s) is
true (i.e., q covers s) iff q.Start≤s.Start, q.End≥s.End, and q.Level=s.Level-1.



A Direct Approach to Holistic Boolean-Twig Pattern Evaluation 349

In this paper, we further denote the status of a query node Q as SQ. The following
equations are defined for the status updating with regard to different types of
query node.

A QNode Q may connect to zero or more child subtrees Qi, i ∈ [0, n]. The
status of Q is decided by the following equation:

SQ = ∧
i∈[0,n]

{SQi ∧ R(Q,Qi)}

In the beginning, the statuses of all QNodes are set as ’true’.
The statuses of different LgNodes are respectively calculated as follows:
ANode: the status updating of an AND node is basically the same as a QNode,

except that an AND node does not have data stream associated with it; instead,
it inherit a fake region code from its DAQ’s to determine its status. An ANode
connects to zero or more child subtrees, ANDi, i ∈ [1, n]. The status of an AND
node is defined as:

SAND = ∧
i∈[1,n]

{SANDi ∧ R(DAQAND, ANDi)}

DAQAND denotes the DAQ of an AND node, similarly for DAQOR and
DAQNOT .

ONode: an OR node connects to one or more subtrees ORi, i ∈ [1, n]. The
status of an ONode is defined as:

SOR = ∨
i∈[1,n]

{SORi ∧ R(DAQOR, ORi)}

NNode: a NOT node connects to only one subtree, NOTc. The status of an
NNode is defined as:

SNOT = ¬(SNOTc ∧ R(DAQNOT , NOTc))

In our implementation, the initial statuses of all ANodes and NNodes are set
as true, but the initial statuses of all ONodes are set as false; status initial-
ization and updating are implemented through the key supporting function,
hasExtension which is given in Algorithm 1.

In Algorithm 1, line 1 sets up initial statuses of query nodes. All nodes’ statuses
are set to true, except for ONodes; lines 2-12 update the statuses of different
kinds of nodes according to the equations given above; line 13 returns the status
of the current node.

Another key support function is getNextNode, which is given in Algorithm
2. It recursively calls itself to find and return the next query node that has been
confirmed to have a matching instance in the input streams.

In Algorithm 2, lines 1-3 return current q if q is a leaf node. Lines 4 sets
local variable DAQ to the DAQ of q if q is a logical node, otherwise to q itself.
Lines 5-6 reset qMax and qMin of q to be null. Each node keeps track of max
(qMax) and min (qMin) child nodes in the subtrees. In lines 7-35, the function
recursively call itself to return q or qMin depending on which is associated with



350 D. Ding, D. Che, and W.-C. Hou

Algorithm 1. hasExtension(QueryNode Q)

1: setInitialStatus();
2: for all Qi : Q.getChildrenList() do
3: if Q.isQNode then
4: Q.status = (Q.status ∧Qi.status ∧R(Q,Qi));
5: else if Q.isANode then
6: Q.status=(Q.status ∧Qi.status ∧R(Q.DAQ,Qi));
7: else if Q.isONode then
8: Q.status=(Q.status ∨ (Qi.status ∧R(Q.DAQ,Qi)));
9: else if Q.isONode then
10: Q.status=!(Qi.status ∧R(Q.DAQ,Qi));
11: end if
12: end for
13: RETURN Q.status;

a stream element with a smaller start value, or return the query node q with
status equals to true. In lines 8, it recursively calls itself for child node qi to
find a matching for the subtree at qi. If the matching node is not qi (root of
subtree) then return this node directly, as this node might be part of previous
solutions. In lines 12-14, if qi is older than the current DAQ (e.g., beyond left
boundary of DAQ), then return qi for the same reason as explained above. In
lines 15-18, update qMin and qMax of q by qi, except when qi is a NNode —
in that case, ancestor node q does not need to update its qMax and qMin, as
q does not need to advance its stream according to children NNodes later on.
In lines 20-21, if q is connected to a OR-NOT branch, then we do not need to
advance q to qMax because instances between current q and qMax might satisfy
the NOT branch. This will prevent some solutions being missed. In lines 23-25,
the stream of q is advanced according to qMax. Lines 27-35 deal with the return
of this function. If hasExtention(q) evaluates to be true, then the current q is
a match and returned, otherwise, q or qMin is returned depending on which
associates with an element with a smaller start .

Our main algorithm, DBTwigMerge, is slightly different from the original
TwigStack algorithm. We doest not give it here for space reason. One special
case is added in the main loop as q.stream can be advanced immediately if
q.status is false after q is returned from getNextNode function.

4.3 Cost Analysis

In this subsection, we analyze the I/O and CPU cost of our algorithm,
DBTwigMerge. For ease of presentation, the following parameters are defined:

– |Q|: the total number of nodes in queries Q, including QNodes and LgNodes.

– |Input|: the total size of all the input streams relevant to query Q.

– |Output|: the total count of the data elements included in all output B-Twig
instances produced for query Q.



A Direct Approach to Holistic Boolean-Twig Pattern Evaluation 351

For a query with only AD edges, our algorithm guarantees that all the input
streams are read in once and no backtrack. So the I/O cost of our algorithm
is proportional to |Input| + |Output|, i.e., linear to input and output. Due to
the holistic processing feature, our DBTwigMerge does not generate useless
intermediate paths on stacks, the total CPU cost is linear to |Q| ∗ |Input| +
|Output|. In summary, our DBTwigMege remains optimal in CPU cost and
have linear I/O cost. Please note that the selection ratio of query have direct
relation with |Output|, so we did not take selection ratio as a parameter here.

For queries containing PC edges, as our algorithm does not make strict
checking on these edges, some unused intermediate results may occur. So
DBTwigMerge is no longer optimal in CPU cost when an input B-Twig con-
tains PC edges, but it is still linear in I/O cost.

5 Experiments

In this section we present the experiment results of our algorithm and compare
its performance with relevant algorithms on the aspects that they are related. We
select the following algorithms to compare with: TwigStack [5] ,GTwigMerge
[6], TwigStackList¬ [15] and BTwigMerge [7]. All those algorithms used the
same region encoding schemes for XML documents. We focus our comparison
on running time of each algorithm.

5.1 Experimental Setup

Before proceeding to the details of our experiment study, we address a few related
issues regarding this experimental study.

Platform Setup. The platform of our experiments contains an Intel Core 2
DUO 2.2 GHz running Windows 7 System with 4GB memory and a 250GB
hard disk. Java SE is the software platform on which these algorithms are im-
plemented and tested. A simple Java code based on SAX 2.0 [3] is implemented
to parse XML datasets and generates region code for all elements. Region codes
of elements are stored as external files on hard disk. Test queries are kept in an
external query file that is parsed and transformed into in-memory query trees
before sent for execution.

Dataset. To avoid potential bias of using a single dataset, we did experiments
with multiple popular XML datasets, and obtained basically consistent results.
But for space reason, herein we choose to present only the results with the Pro-
tein Sequence Database (PSD) [1]. PSD is an integrated collection of functionally
annotated protein sequences. It is published by Georgetown Protein Information
Resource, and is freely downloadable [1]. The size of this dataset is 683MB. PSD
contains 21,305,818 elements, 1,290,647 attributes, with max depth of 7, aver-
age depth of 5.15147. PSD is the largest XML datasets available at [1], which
facilitates scalability and robustness test of our algorithms. For experimentally
“verifying” the correctness of our implementation, we transformed and stored a



352 D. Ding, D. Che, and W.-C. Hou

Algorithm 2. getNextNode(QueryNode q)

1: if q.isLeaf() then
2: return q;
3: end if
4: DAQ= q.isLogicalNode()? q.DAQ : q;
5: q.updateQmax(null);
6: q.updateQmin(null);
7: for all qi ∈ q.getChildrenList() do
8: ni = getNextNode(qi);
9: if ni �= qi then
10: return ni;
11: end if
12: if qi.nextL() < DAQ.nextL() then
13: return qi;
14: end if
15: if ¬qi.isNotNode() then
16: q.updateQmin(qi);
17: q.updateQmax(qi);
18: end if
19: end for
20: if q.hasORNOTBranch() then
21: break;
22: else
23: while (q.nextR() < q.getQmax().nextL()) do
24: q.advanceStream();
25: end while
26: end if
27: if hasExtension(q) then
28: return q;
29: else
30: if q.nextL() < q.getQmin().nextL() then
31: return q;
32: else
33: return q.getQmin();
34: end if
35: end if

portion of this dataset into an Oracle 11g Database that is queried through SQL
and led the same query results as the holistic algorithms over the input streams
with region encoded elements.

Query Set. We design our test queries with consideration of the following as-
pects: topology of twigs, distribution of LgNodes, and selection ratio of queries.
With regard to topology, attention is directed to the number of nodes, the depth
and fanout of twigs. With regard to distribution of LgNodes, we design queries
that have LgNodes at different depths and with different combinations. With re-
gard to selection ratio, we require our queries to have a full range (0% to 100%)
varying selection ratio. We define selection ratio as the ratio between the count



A Direct Approach to Holistic Boolean-Twig Pattern Evaluation 353

of total query results and the count of all data elements in the data set. We de-
signed totally four sets of queries, each representing a distinct class of B-Twigs.
Query set 1 (T1) is a set of plain (or AND-only) twig queries. Query set 2 (T2)
is a set of AND/OR-twigs. Query Set 3 is a set of AND/NOT-twigs. Query set
4 (T4) is a set of AND/NOT/OR-twigs.

Performance Metric. This study focused on the key performance metric –
CPU cost, and accordingly, we only compare the algorithms in terms of their
execution times on the tested queries.

5.2 Experiment Results

We now present the performance results of the four sets of queries, respectively.

Experiment 1: Plain Twig Queries
The performance result of this set of queries is plotted in Fig. 2(a). With this set
of plain twig queries, all five tested algorithms show similar performance. On all
five test queries, DBTwigMerge performs slightly worse than the others. The
reason is that the status updating mechanism that consumes extra time (but
necessary for handling B-Twigs). However, this disadvantage can be eliminated
by pre-probing into the query in the future, and if it is plain query, existing
algorithms like TwigStack can be called instead.

0

5

10

15

20

q1 q2 q3 q4 q5

Ru
nn

in
g

Ti
m

e(
se

c)

T1 (Plain Twig Queries)

TwigStack GTwigMerge TwigStackListNot

BTwigMerge DBTwigMerge

(a) Experiment 1 (query set T1)

0

2

4

6

8

10

12

q1 q2 q3 q4 q5

Ru
nn

in
g

Ti
m

e(
se

c)

T2 (AND/OR Twig Queries )

GTwigMerge BTwigMerge DBTwigMerge

(b) Experiment 2 (query set T2)

Fig. 2. Experiment 1 and 2

Experiment 2: AND/OR-twig Queries
For AND/OR-twigs, TwigStack and TwigStackListNot are not applicable. The
performance results are shown in Fig. 2(b). We notice that GTwigMerge and
BTwigMerge slightly outperform DBTwigMege. Especially with q4, which has
3 OR nodes in it, extra iterations are rendered by DBTwigMege because of its
status updating mechanism.

Experiment 3: AND/NOT-twig queries
With AND/NOT-twig queries, TwigStack and GTwigMerge are not appli-

cable and the performance varies according to different queries according to Fig.
3(a). For the first three queries, TwigStackList¬ and BTwigMerge perform al-
most the same, and both preforms slightly better than DBTwigMerge. For q4,



354 D. Ding, D. Che, and W.-C. Hou

TwigStackList¬ and BTwigMerge take a big advantage over DBTwigMerge.
In this set of queries, q4, with 12 QNodes and 4 LgNodes, has the most nodes
among all five queries, and the status updating mechanism of DBTwigMerge
slows its performance to the most (but still comparable). For q5, BTwigMerge
performs worse than the other two because of the extra query nodes introduced
by BTwigMerge after normalization. More specifically, on q5, the normaliza-
tion step of BTwigMerge introduces 50% of new nodes into the query, which
explains the degradation its performance (The total number of nodes in the
query increased from 8 to 12).

Experiment 4: AND/OR/NOT Twig Queries
For this set of queries, all three boolean nodes(AND/OR/NOT) are intro-
duced and the query patterns get more complex and only two algorithms,
BTwigMerge, and DBTwigMerge are applicable. As seen from Fig. 3(b)
DBTwigMerge showed similar performance as BTwigMerge on the first four
queries, and outperformed on q5. This result is somehow counter-expectation
– we expected DBTwigMerge (which waived the normalization) to out-
perform BTwigMerge (which requires normalization). The reason is that
DBTwigMerge iterates over all query nodes (including logical nodes) because
of its status updating mechanism, while BTwigMerge iterates only over regular
query nodes (i.e., QNodes), which saves processing time for BTwigMerge.

0

5

10

15

20

q1 q2 q3 q4 q5

Ru
nn

in
g

Ti
m

e(
se

c)

T3 (AND/NOT Twig Queries)

TwigStackListNot BTwigMerge DBTwigMerge

(a) Experiment 3 (query set T3)

0

5

10

15

20

25

q1 q2 q3 q4 q5

Ru
nn

in
g

Ti
m

e(
se

c)

T4 (AND/OR/NOT Twig Queries)

BTwigMerge DBTwigMerge

(b) Experiment 4 (query set T4)

Fig. 3. Experiment 3 and 4

In summary, the overall performance of DBTwigMerge is not as good as we
and anyone else would expect, actually more or less a surprise, but we gained
precious insight into the complex issue of holistic B-Twig pattern matching.
Faced a great challenge, DBTwigMerge was intentionally designed to get rid
of the normalization step of BTwigMerge [7], and logically it should outper-
form BTwigMerge in all aspects. However, instead of win, it lose in all cases
except for one case – i.e., when an input B-Twig has a NOT node at a high lever
(close to the root), which is the worst case that normalization causes B-Twig
expansion in BTwigMerge. In all (or most) other cases, the overhead saved from
normalization is offset by the extra iterations introduced in DBTwigMerge for
uniformly dealing with all kinds of query nodes in a B-Twig. From BTwigMerge



A Direct Approach to Holistic Boolean-Twig Pattern Evaluation 355

to DBTwigMerge, we switched from one extreme (normalization-based) to an-
other extreme (without any normalization), and neither beats out the other
completely. The conclusion we drew from our experience with BTwigMerge
and DBTwigMerge can be summarized as follows. Normalization indeed helps
control the logical complexity of B-Twigs and leads to an effective, holistic B-
Twig pattern matching algorithm, BTwigMerge [7], but has to pay the cost
of potential expansion on B-Twig queries; DBTwigMerge on the other hand
(in addition to its elegance), has to rely on a more complex processing scheme
(i.e., iterating over all query nodes to check and update the statuses of all the
nodes) that degrades its performance. We herein envision a new approach that
would outperform all previous approaches in all aspects – this must be one that
can combine the advantages of both DBTwigMerge and BTwigMerge. This
envisioned a new approach that shall retain the normalization step but reduce
it to the minimum, get the complexity of arbitrary B-Twigs under control, and
avoid the rather complex processing in DBTwigMerge.

6 Summary

Holistic twig join is a critical operation in XML query processing. All the three
types of logical predicates, AND, OR, and NOT, are equally important and
needed for general XML queries. However, nearly all previously proposed holistic
twig join algorithms failed to provide an integral solution for efficient processing
of all these predicates in a single algorithmic framework. In this paper, we pre-
sented a direct approach to holistic computing of B-Twigs. We developed a novel
algorithm, DBTwigMerge, that directly evaluates arbitrary B-Twig queries. A
key supporting mechanism in DBTwigMerge is its novel status updating mech-
anism that aids the holistic evaluation of B-Twigs. We reported analytical and
experimental results of our algorithm with regard to its validity and performance,
and drew inspiring conclusions.

As future work, we plan to do the following:

(1) Design a new holistic B-Twig join algorithm, as envisioned in Section
5, which is going to be a compromise, combining the advantages of both
BTwigMerge and DBTwigMerge.

(2) Investigate the potential introduction of new label encoding schemes such
as Extended Dewey [12] and path partitioned [14] into the framework of our
algorithms to further boost their performance as these encoding schemes have
the potential of extracting ancestor elements’ labels without accessing them.

References

1. University of Washington XML repository,
http://www.cs.washington.edu/research/xmldatasets/

2. NASA Goddard Astronomical Data Center (ADC) ’Scientific Dataset’ in XML,
http://xml.coverpages.org/nasa-adc.html

3. Simple API for XML(SAX), http://www.saxproject.org/about.html

http://www.cs.washington.edu/research/xmldatasets/
http://xml.coverpages.org/nasa-adc.html
http://www.saxproject.org/about.html


356 D. Ding, D. Che, and W.-C. Hou

4. Al-Khalifa, S., Jagadish, H.V., Patel, J.M., et al.: Structural joins: A primitive for
efficient XML query pattern matching. In: ICDE 2002 Conf. Proc., pp. 141–152
(2002)

5. Bruno, N., Koudas, N., Srivastava, D.: Holistic twig joins: Optimal XML pattern
matching. In: SIGMOD 2002 Conf. Proc., pp. 310–321. ACM (June 2002)

6. Jiang, H., Lu, H., Wang, W.: Efficient processing of twig queries with OR-
predicates. In: SIGMOD 2004 Conf. Proc., pp. 59–70 (2004)

7. Che, D., Ling, T.W., Hou, W.-C.: Holistic boolean twig pattern matching for ef-
ficient XML query processing. IEEE Transactions on Knowledge and Data Engi-
neering, preprint available:
http://www.computer.org/portal/web/csdl/doi/10.1109/TKDE.2011.128

8. Chen, T., Lu, J., Ling, T.W.: On boosting holism in XML twig pattern matching
using structural indexing techniques. In: SIGMOD 2005 Conf. Proc., pp. 455–466
(June 2005)

9. Jagadish, H.V., Al-Khalifa, S., Chapman, A., et al.: Timber: A native XML
database. The VLDB Journal 11(4), 274–291 (2002)

10. Jiang, H., Wang, W., Lu, H., Yu, J.X.: Holistic twig joins on indexed XML docu-
ments. In: VLDB 2003 Conf. Proc., pp. 273–84 (September 2003)

11. Lu, J., Chen, T., Ling, T.W.: Efficient processing of XML twig patterns with par-
ent child edges: A look-ahead approach. In: CIKM 2004 Conf. Proc., pp. 533–542
(November 2004)

12. Lu, J., Ling, T.W., Chan, C.-Y., Chen, T.: From region encoding to Extended
Dewey: On efficient processing of XML twig pattern matching. In: VLDB 2005
Conf. Proc., pp. 193–204 (August 2005)

13. Lu, J., Ling, T.-W., Yu, T., Li, C., Ni, W.: Efficient Processing of Ordered XML
Twig Pattern. In: Andersen, K.V., Debenham, J., Wagner, R. (eds.) DEXA 2005.
LNCS, vol. 3588, pp. 300–309. Springer, Heidelberg (2005)

14. Xu, X., Feng, Y., Wang, F.: Efficient processing of XML twig queries with all
predicates. In: ICIS 2009 Proc., pp. 457–462. IEEE/ACIS (June 2009)

15. Yu, T., Ling, T.-W., Lu, J.: TwigStackList¬: A Holistic Twig Join Algorithm
for Twig Query with Not-Predicates on XML Data. In: Li Lee, M., Tan, K.-
L., Wuwongse, V. (eds.) DASFAA 2006. LNCS, vol. 3882, pp. 249–263. Springer,
Heidelberg (2006)

16. Zhang, C., Naughton, J., DeWitt, D., et al.: On supporting containment queries
in relational database management systems. In: SIGMOD 2001 Conf. Proc, pp.
425–436 (May 2001)

17. Izadi, S.K., Harder, T., Haghjoo, M.S.: S3: Evaluation of tree pattern XML queries
supported by structural summaries.Data andKnowledgeEngineering 68(1), 126–145
(2009)

18. Izadi, S.K., Haghjoo, M.S.: Theo Harder, S3: Processing tree-pattern XML queries
with all logical operators. Data Knowledge Engineering 72, 31–62 (2012)

http://www.computer.org/portal/web/csdl/doi/10.1109/TKDE.2011.128


S.W. Liddle et al. (Eds.): DEXA 2012, Part I, LNCS 7446, pp. 357–368, 2012. 
© Springer-Verlag Berlin Heidelberg 2012 

Full Tree-Based Encoding Technique  
for Dynamic XML Labeling Schemes  

Canwei Zhuang and Shaorong Feng* 

Department of Computer Science, Xiamen University, 361005 Xiamen, China 
cwzhuang0229@163.com, shaorong@xmu.edu.cn 

Abstract. It is important to design dynamic labeling schemes which can 
process the updates when nodes are inserted into or deleted from the XML tree. 
One class of these schemes is based on lexicographical order. Lexicographical 
order allows dynamic insertions and thus supports updates in dynamic XML. 
However, these schemes are of inefficient memory usage when initial labeling. 
They all require creating an encoding table to produce dynamic labels. As the 
size of the encoding table can be prohibitively large for large XML documents 
and main memory remains the limiting resource, having encoding algorithms of 
memory efficiency is desirable. In this paper, we propose an encoding tech-
nique which can be applied broadly to lexicographical-based schemes to pro-
duce dynamic labels with high memory usage. Meanwhile, since we don’t need 
the costly table creation, the labeling time of our encoding technique is also ef-
ficient. The experimental results confirm that our proposed techniques substan-
tially surpass previous dynamic label schemes. 

Keywords: XML Data, Dynamic Labeling Scheme, Lexicographical order. 

1 Introduction 

Documents obeying XML standard are typically modeled as a tree. Labeling schemes 
encode structural information so that queries can exploit them without accessing the 
original XML file. If XML data are static, the labeling schemes, such as containment 
scheme[1] and prefix scheme[2], can determine the ancestor–descendant, etc. rela-
tionships efficiently. However, if XML data become dynamic, it incurs costly relabe-
ling of large amounts of nodes. Designing dynamic labeling schemes to efficiently 
update the labels is an important research topic.  

Several schemes [4, 5, 6, 7, 8, 9, 10] have been proposed to support dynamic XML. 
One class of these schemes is assigning labels based on lexicographical order. Lex-
icographical order allows dynamic insertions and thus without re-encoding the exist-
ing labels. Such schemes include CDBS [7, 8] and QED [9, 10] which transform the 
original labels to binary strings and quaternary strings respectively. The following 
example illustrates the application of CDBS to containment scheme, which is the 
representative of encoding schemes based on lexicographical order. 
                                                           
* Corresponding author. 



358 C. Zhuang and S. Feng 

Example 1. Fig.1(a) shows the original containment scheme using integers to label 
every node in a XML tree. When CDBS is applied, the integers are transformed into 
CDBS Codes based on the encoding table in Fig.1(b). Fig.1(c) shows the CDBS-
containment labels. CDBS supports that a new code can be inserted between any two 
consecutive codes with the orders kept and hence avoid re-labeling. 

 

Fig. 1. Applying CDBS encoding scheme to containment labeling scheme 

The ranges in a set of containment labels come from a sequence of integers from 1 
to 2n for an XML tree with n elements. Application of lexicographical order is 
through the process of order-preserving transformation. The transformation is defined 
as a mapping f from the original integer codes to the target codes such that the target 
codes preserve the order of the original labels and the total size of the target codes are 
minimized for a given range. The mapping may be different for different ranges. The 
following example illustrates how this mapping is derived based on CDBS encoding 
scheme. QED encoding schemes adopt similar algorithm. 

Example 2. The CDBS encoding algorithm is a recursive procedure to create the encod-
ing table (Fig.1.(b) is an example). Given an encoding range m (when labeling for an 
XML tree with n elements, m=2n), CDBS assigns empty string to the 0th position and 
the (m+1)th  position. CDBS encodes a middle position PM by applying an insertion 
algorithm takes the encoded codes of the start position PL and that of the last position 
PR. The insertion algorithm takes two CDBS codes as input and output another CDBS 
code that are lexicographically between them with smallest size. Then the encoding 
algorithm is recursively applied to [PL, PM] and [PM , PR] until all the positions are as-
signed CDBS codes. Since CDBS encodes the numbers randomly--not sequentially, the 
encoding algorithm needs the temporary array with size O(m) but cannot drop it when 
labeling XML documents with m elements, which is memory costly. 

We classify both CDBS and QED as memory-based schemes since they create an 
encoding table with size O(n) for labeling XML documents with n elements. It may 
fail to process a large-scale XML when memory is limited. Since XML documents 

(a) Containment Labels             (b) Encoding Table                        (c) CDBS Containment Labels  

Decimal
Number

CDBS
Code

1 001
2 0011
3 01
4 011
5 0111
6 1
7 101
8 1011
9 11

10 1101
11 111
12 1111

0011, 01

101, 1011

011, 0111
     

101, 1011

1, 111

001, 1111

4, 5      

1, 12

7, 8

6, 11     

9, 10   

2, 3



 Full Tree-Based Encoding Technique for Dynamic XML Labeling Schemes 359 

can be prohibitively large but main memory remains the limiting resource, it is desir-
able to have a both memory and computation efficient encoding algorithm. In this 
paper, we present a Full Tree-based (FT) encoding technique which is not only high 
memory usage but also computationally efficient. FT encoding technique make it 
possible to generate the codes in the encoding table sequentially and thus no table is 
needed when XML initial labeling. Importantly, our memory efficiency is not at the 
sacrifice of labeling time. The advantages of our FT encoding are more significant 
when applied to improve the performance of QED. 

2 Preliminary 

In this section, we review the related work on labeling schemes.  

Containment Labeling Schemes. In containment scheme, each element node is as-
signed two values: “start” and “end” where “start” and “end” define a range that con-
tains all its descendant’s ranges. Although containment labeling schemes work well 
for static XML, node insertions may led to costly re-labeling due to the limitation of 
continuous integers. 

Dynamic codes based on lexicographical order are proposed to avoid the re-
labeling when XML updating, which include CDBS code[7, 8] and QED code[9, 10]. 
CDBS Code is a binary string that ends with “1”. QED code is a quaternary string that 
ends with “2” and “3”. Only “1”, “2” and “3” are used in the QED code itself and “0” 
is used as the separator. Both CDBS Code and QED Code are compared based on 
lexicographical order and robust enough to allow insertions without re-labeling. 

Example 3.  Let “1”, “11” be two CDBS codes satisfying “1 “11”lexicographically, we 
can insert “101” which is another CDBS code between them and we have “1”  “101”
 “11”. To continue to insert between“1” and “101”, we can use“1001”, satisfying “1”
 “1001” “101”. In fact, given any two CDBS codes SL and SR satisfying SL SR, we 
can always find a middle code SM such that SL SM SR. And the same for QED.  

A dynamic encoding scheme can be defined as a mapping from the original contain-
ment labels to the dynamic codes. CDBS scheme and QED scheme firstly create an 
encoding table with preserving order and optimal size to realize the mapping, which 
are memory inefficiencies. 

Search Tree-Based(ST) Encoding Technique[13]. ST encoding provide a novel 
order-preserving and size-optimal mapping from integer codes in the containment 
labels to the dynamic codes. The mapping is derived based on ST tree. To encode a 
range m with ST technique is to realize the mappings represented by an ST table of 
size m which can be achieved by traversing the ST tree of size m in inorder. ST en-
coding technique can be applied to CDBS codes and QED codes, and are called STB 
and STQ encoding schemes respectively. STB tree and STQ tree are two basic data 
structures for STB and STQ encoding schemes respectively.  



360 C. Zhuang and S. Feng 

STB tree. An STB tree is a complete binary tree. The STB code of root is “1”.Given a 
code n in STB tree, the codes of its left child lc and right child rc are derived as follows: 
Clc=Cn with the last “1”replaced with “01”; Crc=Cn⊕“1” (⊕means concatenation).  

STQ tree. An STQ tree is a complete ternary tree of each node associated with two 
STQ codes: left code (L) and right code (R) where R = L with the last number “2” 
change to “3”. The codes of root are “2” and “3”. Given a node n in the STQ tree, the 
left code of its left child (lc), middle child (mc) and right child (rc) can be derived as 
follows: Llc=Ln with the last number “2” change to “12”;Lmc= Ln⊕“2”; Lrc=Rn⊕“2”. 
Additionally, for every node, we have R=L with the last number “2” change to “3”. 
Fig. 2 shows an STB tree and an STQ tree of the same size 12. 

 

Fig. 2. STB and STQ encoding of ranges 12 

Theorem 1. An inorder traversal of the STB tree visits the STB codes in increasing 
lexicographical order and of optimal size. And the same for the STQ tree. 

Proof  [Sketch] In an STB tree, the left subtree of a node n contains STB codes  
lexicographically less than Cn; The right subtree of n contains STB codes lexico-
graphically greater than Cn. Thus, inorder traversal sequence is of order preserving. 
Moreover, an STB tree has all the possible STB codes of length i at level i (except 
possibly the lowest level). STB codes with length i are always used up before STB 
codes with length i+1 are used. Therefore the codes in STB tree are of optimal total 
size. The proof of STQ follows similarly.                                            □ 

Based on Theorem 1, encoding a range m can be achieved by inorder traversing the 
ST tree of size m. Our Full Tree-based(FT) encoding provides a technique to avoid 
the construction of the encoding table but achieve the codes in ST tree sequentially. 
FT-based encoding technique can be applied to both CDBS and QED, and we call 
them BFT Encoding Technique and QFT Encoding Technique respectively. 

0001      0011       0101         0111        1001     

001                         011                         101                          111

01                                                            11
4                                                              11

1

8      

(a) An STB tree of size 12

1             3              5             7               9      

2                             6                              10                           12

(b) An STQ tree of size 12

3      6              8         9            11      12 

12   13         22  23         32      33

112 113        122    123

2    3
7 10  

I-Index
STB
Code

STQ
Code

1 0001 112

2 001 113

3 0011 12

4 01 122

5 0101 123

6 011 13

7 0111 2

8 1 22

9 1001 23

10 101 3

11 11 32

12 111 331       2                4   5   

           (c) the STB Table and STQ Table 



 Full Tree-Based Encoding Technique for Dynamic XML Labeling Schemes 361 

3 BFT Encoding Technique 

The ranges in a set of containment labels come from a sequence of integers from 1 to 
2n for an XML tree with n elements. Application of dynamic encoding is through the 
process of order-preserving transformation. As we have shown in sec.2, STB encod-
ing provide an order-preserving and size-optimal mapping from integer codes in the 
containment labels to the target codes. For encoding a range m, the STB mapping f 
can be represented by an STB table of size m, i.e. f(i) = STB-TABLE[i]. STB encoding 
cannot avoid table creation to realize the mapping. Our BFT encodings provide a 
technique that doesn't need to create the encoding table, but can calculate the codes in 
STB-TABLE on the fly. BFT encoding technique is based by the data structure we call 
BFT tree(Binary Full Tree). We first introduce the BFT tree and then show how BFT 
technique realize the mappings f(i) = STB-TABLE[i] with no encoding table needed. 

3.1 Binary Full Tree(BFT) 

The STB codes are the binary strings that ended with “1”. We construct the BFT tree 
of level l to cover all the STB codes of which the size is not larger than l.  

Data Structure. A BFT tree is a full binary tree where each node is associated with a 
STB code. The rule assigning codes to BFT is the same as that of STB tree(see Sec.2). 
Fig.3(a) shows a BFT tree with 4 levels.  

 

Fig. 3. A BFT tree and a TMP tree with 4 levels 

I-Index
BFT
Code

TMP
Code

1 0001 0001
2 001 0010
3 0011 0011
4 01 0100
5 0101 0101
6 011 0110
7 0111 0111
8 1 1000
9 1001 1001

10 101 1010
11 1011 1011
12 11 1100
13 1101 1101
14 111 1110
15 1111 1111

0001     0011       0101 0111      1001     1011      1101       1111

0010                   0110                    1010                      1110

0100                                                        1100

4                                                                 12

1000

8      

1 3 5 7 9 11 13 15

2                           6                              10                           14

(b)  A TMP tree with 4 levels 

0001     0011     0101     0111      1001        1011     1101          1111

001                        011                      101                         111

01                                                           11
4                                                                 12

8      

1 3 5 7 9 11 13 15

2                             6                              10                          14

(a)  A BFT tree with 4 levels 

1

(c)  BFT_TABLE 
and  TMP TABLE



362 C. Zhuang and S. Feng 

A BFT tree of l levels has 2l–1 STB codes. Since there are 2l–1 possible STB codes 
of size less than or equal to l, thus a BFT tree of l levels covers all the possible STB 
codes of which the size is not larger than l. In additional, BFT tree is order preserving 
as STB tree(see Theorem 1). An inorder traversal of the BFT tree visits STB codes 
lexicographically. 

Basic Functions. We use a table BFT-TABLE to stores the codes of a BFT tree in 
order of inorder traversal and use I-Index to denote the index in BFT-TABLE. We 
define BFT-TABLE[i] to denote the ith code in the table. Additionally, given the BFT 
tree level l and the code S in BFT-TABLE, we define BFT-NEXT(S, l) to produce the 
code after S in the table. 

To compute the functions defined above, we construct a temp full tree TMP which 
has the same level as BFT. The strings in TMP are of same size l where l is equal to 
the tree level. Fill “0”s to the end of each string in BFT if its size less than l, and then 
assign the new string to correspondent node in TMP. Fig.3(b) shows a TMP tree with 
4 levels. The strings in TMP are of great regularity as is shown in Theorem 2.  

Theorem 2.  The string in TMP tree is equal to the binary form of its I-Index. 

Proof. A TMP tree of l levels has 2l–1 codes. Excluding the binary string in which all 
the bits are ‘0’, there are 2l–1 possible string of which the size is equal to l, and hence 
a TMP tree of l levels covers all possible binary strings of size l excluding the string 
“0l”(“0l” means l ‘0’s). Furthermore, an inorder traversal of the tree visits these 
strings in increasing lexicographical order. Thus if we view a string as a binary integ-
er stored with fixed size l, then the inorder traversal sequence is: 1,2,…,(2l–1), which 
is the same as the sequence of I-Indexes. Therefore the theorem hold.                □ 

We define TMP-TABLE, TMP-TABLE[i], and TMP-NEXT(S, l) similar to those of 
BFT. Based by Theorem 2, we know that the TMP-TABLE stores a sequence of in-
creasing binary integers with fixed size l and hence we can derived the TMP-
TABLE[i] , and TMP-NEXT as follows: 

 TMP-TABLE[i]:return the binary form of i; //the size of binary form is equal to l 
 TMP-NEXT(S, l):return substring(S,1,p–1)⊕“1”⊕“0l-p”,where p is the position of 

last encountered “0” in S.                 //self-increasing of a binary integer 

We can calculate the BFT functions BFT-TABLE[i] and BFT-NEXT based by the 
correlation between TMP tree and BFT tree. BFT-TABLE[i]=TMP-TABLE[i] with 
discarding all last zeros. Thus we have: 

 BFT-TABLE[i]: return i's binary form with discarding all last zeros;  

We then compute the function BFT-NEXT(S, l). Let T be the correspondent string of S 
in TMP tree, if size(S)<l, then T=S⊕“0l-size(S)” and TMP-NEXT (T, l)=S⊕“0l-size(S)-

1”⊕“1”. Thus BFT-NEXT (S, l)=S⊕“0l-size(S)-1”⊕“1”; If size(S)=l, then T=S. Denoting 
the position of last encountered “0” of T as p, we get that TMP-NEXT(T, l)= sub-
string(S, 1, p–1)⊕“1”⊕“0l-p”. Thus BFT-NEXT (S, l)=substring(S, 1, p–1)⊕“1”. The 
implements of BFT-NEXT is shown in Algorithm 1. 

 



 Full Tree-Based Encoding Technique for Dynamic XML Labeling Schemes 363 

Algorithm 1. BFT_NEXT(S, l) //return the code after S in the BFT-TABLE of tree level l 
1 if size(S)<l  
2     then return  S⊕“0l-size(S)-1”

⊕“1”; 
3 else   
4      denote the position of last encountered “0” in S as p; 
5      return substr(S, 1, p – 1)⊕“1”; 
6 endif 

The implement of BFT-TABLE[i] shows that we don't need to store strings in a 
BFT-TABLE but can calculate them on the fly. BFT-NEXT provides the other way to 
get the strings in the BFT-TABLE. Initializing S to be null, we can get all strings in a 
BFT-TABLE with l levels by (2l–1) iterations of BFT-NEXT. We will use these two 
functions to discuss how BFT technique labeling initial XML without table needed. 

3.2 Labeling Initial XML without Encoding Table 

To encode a range m is to realize the mappings represented by an STB-TABLE of size 
m. This can be achieved by our BFT tree of the same level as STB tree(see Fig.4 
which is an example of encoding a range 12). 

 

Fig. 4. Achieving the STB codes by the BFT tree 

In STB, denote the I-Index of the last node in the lowest level as INDEXLast(the 
value is 9 in Fig.4(a)). We can see that when i ≤ INDEXLast, the string with I-Index of i 
in STB is equal to that with I-Index of i in BFT. And when i>INDEXLast, the string 

I-Index
BFT
Code

1 0001
2 001
3 0011
4 01
5 011
6 011
7 0111
8 1
9 1001

10 101
11 1011
12 11
13 1101
14 111
15 1111

I-Index
STB
Code

1 0001
2 001
3 0011
4 01
5 0101
6 011
7 0111
8 1
9 1001

10 101
11 11
12 1111

(d)  BFT_TABLE

(b)  STB_TABLE

(c) A BFT tree with 4 levels

001                        011                     101                           111

01                                                              11
4                                                            11

1

8      

(a)  An STB tree of 12 nodes

2                              6                             10                          12

0001     0011     0101      0111 1001        1011 1101        1111

001                         011                      101                            111

01                                                             11
4                                                                 12

1

8      

1              3              5             7                9             11        13       15

2                              6                             10                             14

0001      0011     0101       0111       1001     

1             3           5             7               9



364 C. Zhuang and S. Feng 

with I-Index of i in STB is equal to that with I-Index of [i+(i-INDEXLast –1)] in BFT, 
which is (2i–INDEXLast –1). Thus we have:  

_ [ ] ,
_ [ ]

_ [2 1 ],
Last

Last Last

BFT TABLE i when i INDEX
STB TABLE i

BFT TABLE i INDEX when i INDEX

                                ≤
=               − −     >       

(1) 

To label XML documents, we just need transforming the integer codes i in the con-
tainment labels to STB codes by the mapping: f(i) = STB-TABLE[i]. Since we have 
discussed how to calculate BFT_TABLE[i] without table needed(see sec. 3.1), we can 
calculate STB_TABLE[i] without table needed as well based on (1). Therefore, we can 
cast away any encoding table but label the initial document correctly. 

However, if we produce STB codes based on (1), we need to compute the binary 
form of all integers from 1 to m when encoding a range m, which is time-consuming 
when encoding a large range. We observe that the transformation from the integer 
codes i to STB_TABLE[i] is in sequential order when XML labeling. That is, 
STB_TABLE[1] is assigned firstly, and then STB_TABLE[2],…,and so on. Thus, we 
can implement the function STB_NEXT(S) which produces the STB code from its 
previous code S in STB_TABLE to produce all the STB codes. On the other fact, the 
adjacent STB codes have a long common prefix and have only a little difference be-
tween their last bits. Therefore we can avoid the repeated computation of common 
prefix and hence improve the performance when producing STB codes through 
STB_NEXT.  

STB_NEXT can be implemented by BFT_NEXT(see sec. 3.1). In STB tree, denote 
the level of STB tree as l and the last node in lowest level as SLast (the values are 4 and 
“1001” in Fig.4(a)). We can see that when S > SLast, STB_NEXT (S)=BFT_NEXT  

(S, l-1); and when S ≤ SLast, STB_NEXT (S)=BFT_NEXT (S, l).  
Note that when encoding a range m, the variable l is equal to 1+log2 m and SLast is 

equal to the binary form of integer 2×(m –2l-1 )+1. It is easy to get l, so we only illu-
strate how to calculate SLast. Denote the number of nodes in last level as k, since the 
first node in last level is equal to the binary form of integer 1, and the second is equal 
to the binary form of integer 3…so SLast is equal to the binary form of integer 2k–1. 
Further more we can get k=m – 2l-1 +1. Therefore SLast is equal to the binary form of 
integer 2×(m –2l-1 )+1.  

We show the implement of STB_NEXT(S) in Algorithm 2. 

Algorithm 2. STB_NEXT(S)      //return the code after S in STB-TABLE 

1 if  S>SLast                           // SLast is the last node in the lowest level 
2     then return BFT_NEXT(S, l-1);    // l is the level of STB tree  
3 else return  BFT_NEXT(S, l);        

Initializing S to be null, we can produce all the m STB codes in STB-TABLE se-
quentially by m iterations of STB-NEXT, which has both computational and memory 
efficiencies when applied to transform the integer codes in the containment labels to 
STB codes in order to label the initial XML documents. 



 Full Tree-Based Encoding Technique for Dynamic XML Labeling Schemes 365 

4 QFT Encoding Technique 

As we have shown in sec.2, STQ encoding provide an order-preserving and size-
optimal mapping from integer codes in the containment labels to the STQ codes. For 
encoding a range m, the STQ mapping f can be represented by an STQ table of size m, 
i.e. f(i) = STQ-TABLE[i]. Similar to BFT, our QFT encodings provide a technique that 
doesn't need to create the encoding table, but can calculate the codes in STQ-TABLE 
on the fly. QFT encoding technique is based by the data structure we call QFT 
tree(Quaternary Full Tree). We first introduce the QFT tree and then show how QFT 
technique realize the mappings f(i) = STQ-TABLE[i] with no encoding table needed. 

4.1 Quaternary Full Tree(QFT) 

The STQ codes are the quaternary strings that ended with “2” or “3”. We construct 
QFT tree of l levels to cover all the STQ codes of which the size are not larger than l. 
A QFT tree is a full ternary tree where each node is associated with two STQ codes. 
The rule assigning codes to QFT is the same as that of STQ(see sec.2). Additionally, 
we construct a temp ternary full tree QTMP which has the same level as QFT. The 
strings in QTMP are of the same size l. Fill “1”s to the end of each string in QFT if its 
size is less than l, and then assign the new string with every “symbol–1” to the corres-
pondent node in QTMP, where “symbol–1” means if the symbol is “3”, then return 
“2”; if “2”, then “1”; and if “1”, then “0”.A QFT tree and a QTMP tree with 2 levels 
are shown in Fig.5. The strings in QTMP tree are of great regularity as is shown in 
Theorem 4. We omit the proof since it is of similar details to that of BFT. 

Theorem 4. The string in QTMP tree is equal to the ternary form of its I-Index. 

 

Fig. 5. A QFT tree and a QTMP tree with 2 levels 

We define QFT-NEXT(Q, l) similar to that of BFT. We implement it(see  
Algorithm 3) based by Theorem 4 and the correlation between QFT and QTMP. The 
details are ignore here as they are similar to those of BFT. 

1      2               4   5                 7 8
01 02              11 12            21    22

10    20

3     6  

1   2               4        5               7  8

3       6  

(a) A QFT tree of 2 levels

2 3

12 13           22      23          32 33

(c) QFT_TABLE and QTMP_TABLE

I-Index
QFT
Code

QTMP  
Code

1 12 01

2 13 02

3 2 10

4 22 11

5 23 12

6 3 20

7 32 21

8 33 22

(b) A QTMP tree of level 2



366 C. Zhuang and S. Feng 

Algorithm 3. QFT_NEXT(Q, l)//return the code after Q in QFT-TABLE of tree level l 
1 if size (Q)<l   
2     then return Q⊕“1 l-size(Q)– 12”; 
3 else 
4     denote the position of last encountered “1” or “2” as p; 
5     if substring(Q, p, p)=“1”  then return substr( Q, 1, p – 1)⊕“2”; endif 
6     if substring(Q, p, p)= “2”  then return substr( Q, 1, p – 1)⊕“3”; endif 
7 endif; 

4.2 Labeling Initial XML without Encoding Table 

How QFT technique labeling for initial XML is similar to that of BFT. Algorithm 
4 shows the implement of STQ_NEXT which are used in QFT technique to label 
the initial XML without encoding table. Compared to that of BFT, one difference 
is the values of l(equal to 1+log3 m in QFT)and the value of QLast (equal to the 
ternary form of integer (3×(m–3l ) + 2)/2 in QFT). The other difference is when Q 
is equal to QLast and the last symbol of QLast is “2”, then we skip the next code of 
Q as it is not a code we need and STQ_NEXT(Q)=QFT_NEXT (QFT_NEXT(Q, 
l ) )(line 5). 

Algorithm 4  STQ_NEXT(Q)  //return the code after Q in STQ-TABLE  

1 if  Q<QLast   // QLast is the last node in lowest level 

2     then return QFT_NEXT(Q, l); // l is the level of STQ tree 
3 else if Q> QLast             
4    return  QFT_NEXT (Q, l-1);  
5 if  last symbol of Q is “2”  then Q←QFT_NEXT(Q, l);  endif  
6 return  QFT_NEXT(Q, l); 

5 Experiment and Results 

We experimentally evaluate and compare our BFT and QFT encodings against the 
previous schemes including CDBS and QED using containment labels. The compari-
sons of CDBS and QED with the other labeling schemes are beyond the scope of this 
paper and can be found in [8]. Besides, we don’t compare our FT against ST [13] 
since the ST is just beneficent when labeling multiple ranges as we have discussed 
previously. 

We use Dev-C++ for our implementation and all the experiments are carried out on 
AMD 2.8GHZ with 2G of RAM running on windows XP. The test datasets choose 
from real world and their characteristics are shown in table 2. 

 
 



 Full Tree-Based Encoding Technique for Dynamic XML Labeling Schemes 367 

Table 1. Test data sets 

Data set Document Name No. of nodes Max depth Average depth 
D1 Hamlet 6,636 6 4.79 
D2 All_shakes 179,690 7 5.58 
D3 Nasa 476,646 8 3.16 
D4 Lineitem 1,022,976 3 2.94 
D5 Treebank 2,437,666 36 7.87 

 
When labeling initial XML documents, both FT encoding techniques and memory-

based labeling schemes produce labels of optimal size. Thus we just evaluate their 
different encoding times and different memory usages which are dominated by the 
encoding table. The results are shown in Fig.6. We observe clear difference of memo-
ry usages between FT encodings and memory-based schemes: Our BFT and QFT 
both need no table while both CDBS and QED need encoding tables of size O(N). 
Furthermore, we observe the encoding time of BFT is approximately similar to that of 
CDBS, and QFT needs significantly fewer encoding time over QED since QED has 
very time-consuming division operation by “3” to create the encoding table. We can 
draw a conclusion that the high memory usage for our encoding is not at the sacrifice 
of labeling time but can reduce the computation. The advantages are more signifi-

cant for our QFT encoding technique. The results confirm that our FT techniques 
substantially surpass the memory-based encoding especially when processing large 
XML data sets with limited memory available. 

D1 D2 D3 D4 D5
0
5

10
15
20
25
30
35
40
45

E
nc

od
in

g 
T

im
e(

s)

Data Sets

 BFT
 CDBS
 QFT
 QED

   

D1 D2 D3 D4 D5
0

1000

2000

3000

4000

5000

T
ab

le
 S

iz
e(

K
)

Data Sets

 BFT
 CDBS
 QFT
 QED

 
(a) Comparison of encoding time                     (b) Comparison of memory usage 

Fig. 6. Performance study on initial labeling 

6 Conclusion 

In this paper, we propose FT technique to optimize the performance of both CDBS 
and QED. Compared with former encodings which are memory-based, our FT encod-
ing technique labels initial XML with no encoding table needed and is therefore able 
to process very large XML with limited memory. Moreover, the advantage of high 
memory usage of our encoding is not at the sacrifice of the encoding time but  com-

putationally efficient. The experimental results have also demonstrated the benefits 
of our encoding techniques compared to previous approaches. 



368 C. Zhuang and S. Feng 

References 

1. Zhang, C., Naughton, J.F., DeWitt, D.J., Luo, Q., Lohman, G.M.: On Supporting Con-
tainment Queries in Relational Database Management Systems. In: SIGMOD (2001) 

2. Tatarinov, I., Viglas, S., Beyer, K.S., Shanmugasundaram, J., Shekita, E.J., Zhang, C.: 
Storing and Querying Ordered XML Using a Relational Database System. In: SIGMOD 
(2002) 

3. Wu, X., Lee, M., Hsu, W.: A prime number labeling scheme for dynamic order XML tree. 
In: ICDE (2004) 

4. O’Neil, P., O’Neil, E., Pal, S., Cseri, I., Schaller, G., Westbury, N.: ORDPATHs: Insert-
friendly XML Node Labels. In: SIGMOD (2004) 

5. Xu, L., Bao, Z., Ling, T.-W.: A Dynamic Labeling Scheme Using Vectors. In: Wagner, R., 
Revell, N., Pernul, G. (eds.) DEXA 2007. LNCS, vol. 4653, pp. 130–140. Springer,  
Heidelberg (2007) 

6. Xu, L., Ling, T.W., Wu, H., Bao, Z.: DDE: from Dewey to a fully dynamic XML labeling 
scheme. In: SIGMOD (2009) 

7. Li, C., Ling, T.W., Hu, M.: Efficient Processing of Updates in Dynamic XML Data. In: 
ICDE (2006) 

8. Li, C., Ling, T.W., Hu, M.: Efficient Updates in Dynamic XML Data: from Binary String 
to Quaternary String. In: VLDB J. (2008) 

9. Li, C., Ling, T.W.: QED: A Novel Quaternary Encoding to Completely Avoid Re-labeling 
in XML Updates. In: CIKM (2005) 

10. Li, C., Ling, T.-W., Hu, M.: Reuse or Never Reuse the Deleted Labels in XML Query 
Processing Based on Labeling Schemes. In: Lee, M.L., Tan, K.-L., Wuwongse, V. (eds.) 
DASFAA 2006. LNCS, vol. 3882, pp. 659–673. Springer, Heidelberg (2006) 

11. Paul, F.: Dietz. Maintaining order in a linked list. In: Annual ACM Symposium on Theory 
of Computing (1982) 

12. Cohen, E., Kaplan, H., Milo, T.: Labeling Dynamic XML Trees. In: SPDS (2002) 
13. Xu, L., Ling, T.W., Bao, Z., Wu, H.: Efficient Label Encoding for Range-Based Dynamic 

XML Labeling Schemes. In: Kitagawa, H., Ishikawa, Y., Li, Q., Watanabe, C. (eds.) 
DASFAA 2010. LNCS, vol. 5981, pp. 262–276. Springer, Heidelberg (2010) 



Top-k Maximal Influential Paths in Network Data

Enliang Xu, Wynne Hsu, Mong Li Lee, and Dhaval Patel

School of Computing, National University of Singapore
{xuenliang,whsu,leeml,dhaval}@comp.nus.edu.sg

Abstract. Information diffusion is a fundamental process taking place in net-
works. It is often possible to observe when nodes get influenced, but it is hard to
directly observe the underlying network. Furthermore, in many applications, the
underlying networks are implicit or even unknown. Existing works on network
inference can only infer influential edges between two nodes. In this paper, we
develop a method for inferring top-k maximal influential paths which can cap-
ture the dynamics of information diffusion better compared to influential edges.
We define a generative influence propagation model based on the Independent
Cascade Model and Linear Threshold Model, which mathematically model the
spread of certain information through a network. We formalize the top-k maxi-
mal influential path inference problem and develop an efficient algorithm, called
TIP, to infer the top-k maximal influential paths. TIP makes use of the properties
of top-k maximal influential paths to dynamically increase the support and prune
the projected databases. We evaluate the proposed algorithms on both synthetic
and real world data sets. The experimental results demonstrate the effectiveness
and efficiency of our method.

1 Introduction

The prevalence of online social media such as Facebook, Twitter, Flickr and YouTube
has led to research on social analytics with important applications in online advertising,
viral marketing, and recommendation. For example, a company could target a small
number of influential users to adopt a new product in the hope that through the “word
of mouth” in the social network, these users may persuade their friends and followers
to adopt the same product. Early attempts to find the top-k influential users/nodes in
a social network assume the existence of a social graph with edges labeled with prob-
abilities of influence between users [9,10,11,17,4,3]. However, this assumption is not
realistic as such edges are often implicit or even unknown in the networks.

Recent works aim to infer the “hidden” network from a list of observations of when
and where an event occurs [6,16]. The work in [6] infers top-k influential edges in
the context of information propagation among blogs and online news sources where
bloggers write about newly discovered information without explicitly citing the source.
In other words, we can only observe the time when a blog gets influenced but not where
it got the influence from.

Figures 1(a) and 1(b) show the top-5 influential nodes and top-5 influential edges ob-
tained from the MemeTracker dataset [12]. Each node in the network is a news website
and a directed edge from node a to node b indicates that information has propagated from

S.W. Liddle et al. (Eds.): DEXA 2012, Part I, LNCS 7446, pp. 369–383, 2012.
c© Springer-Verlag Berlin Heidelberg 2012



370 E. Xu et al.

us.rd.yahoo.com

blog.myspace.com

uk.news.yahoo.com

rss.feedsportal.com

news.originalsignal.com

(a) Top-5 influential nodes

us.rd.
yahoo.com

philly.com news.originalsignal.com

blog.beliefnet.com

seattletimes.
nwsource.com

breitbart.com

(b) Top-5 influential edges

breitbart.com

philly.com

blog.beliefnet.com

seattletimes.nwsource.com

blog.myspace.com

uk.news.yahoo.com

forum.prisonplanet.com

us.rd.yahoo.com

news.originalsignal.com

(c) Top-5 influential paths

Fig. 1. MemeTracker

a to b. Based on the influential edges, we can only know that when the website seattle-
times.nwsource.com has new information, it gets propagated to either blog.beliefnet.com
or news.originalsignal.com or both. However, if we have the top-5 influential paths as
shown in Figure 1(c), then we see that a new piece of information gets propagated from
us.rd.yahoo.com to seattletimes.nwsource.com to blog.beliefnet.com. Further, we observe
that if the top-5 influential paths have some node(s) in common, then any disruptions to
these common nodes may lead to news blackout. We call these nodes as critical nodes
which should have mirror sites.

Another important application of top-k influential paths and critical nodes is in the
surveillance of computer virus propagation. Inferring the top-k influential paths from
the list of sites infected by computer virus allows one to better understand how the virus
spreads over time. For example, Figure 2(c) shows the top-5 influential paths generated
from Code-Red Worm1. We can identify the critical nodes in these top-5 influential
paths and stop the virus propagation by bringing down these sites.

cn

us

jp de

kr

(a) Top-5 influential nodes

cn

hk de

tw us

jp

(b) Top-5 influential edges

cn

kr jp

de tw us

hk

(c) Top-5 influential paths

Fig. 2. Code-Red Worm

In this paper, we develop a method for inferring top-k maximal influential paths
which can truly capture the dynamics of information diffusion. Given a log of prop-
agation observations of some information over a hidden network, our goal is to infer
the top-k maximal influential paths that best explain these observations. We define a
generative influence propagation model based on the Independent Cascade Model and
the Linear Threshold Model [9], which mathematically model the spread of certain
information through a network. We design an algorithm called TIP to infer the top-k
maximal influential paths. TIP utilizes the properties of top-k maximal influential paths
to dynamically increase the support and prune the projected databases. We evaluate

1 http://www.caida.org/data/passive/codered_worms_dataset.xml

http://www.caida.org/data/passive/codered_worms_dataset.xml


Top-k Maximal Influential Paths in Network Data 371

the proposed algorithms on both synthetic and real world data sets. The experimental
results demonstrate the effectiveness and efficiency of our method.

2 Influence Propagation Model

An influence network aims to capture the propagation of influence among a set of en-
tities based on a list of observations. We model the network using a directed graph
G = (V,E) where V and E are the sets of nodes and edges respectively.

A node u in V denotes an entity and can be active or inactive. It is considered active
if it has been influenced. Nodes can switch from being inactive to active, but not vice
versa. When a node u gets influenced, it in turns may influence each of its currently
inactive neighbors v with some small probability. Node u can only influence its neighbor
v if their time difference is within some time threshold τ .

Each directed edge (u,v) ∈ E has a weight weight(u,v) ∈ [0,1] denoting the likeli-
hood of node v being influenced by node u. Suppose tu and tv are the times at which
nodes u and v get influenced respectively. Then weight(u,v) = 0 if tv ≤ tu, i.e., nodes
cannot be influenced by nodes from the future time points. Otherwise, weight(u,v) =

e− tv−tu
α where α is radius of influence.

We associate each node u with an influence measure which is computed from the
weights of the edges connecting u to its active neighboring nodes as follows:

in f luence(u,S) = 1 − ∏
w∈S

(1 − weight(w,u)) (1)

where S is the set of active neighbors of u.
One immediate concern is the cost of updating in f luence(u,S) when the status of

nodes change. Since the node status changes frequently, this update cost can be compu-
tationally expensive. We derive an expression that allows in f luence(u,S) to be updated
incrementally.

Suppose a new neighboring node w of u becomes active. Then

in f luence(u,S ∪ {w}) = 1 − (1 − weight(w,u))∗ ∏
u′∈S

(1 − weight(u′,u))

= 1 − (1 − weight(w,u))∗ (1 − in f luence(u,S))

= in f luence(u,S)+ (1 − in f luence(u,S))∗ weight(w,u) (2)

We observe that the influence measure in f luence(u,S) is both monotonic and sub-
modular.

A function f (.) is monotonic if f (S) ≤ f (T ), for S ⊆ T . From Equation 2, we have

in f luence(u,S ∪ {w})− in f luence(u,S)= (1 − in f luence(u,S))∗ weight(w,u)≥ 0

A function f (.) is submodular if f (S ∪ {w})− f (S) ≥ f (T ∪ {w})− f (T ), for S ⊆ T .
This means that adding a node w to S increases the score more than adding w to T when
S ⊆ T . We show that in f luence(u,S) is sub-modular as follows:

in f luence(u,S ∪ {w})−in f luence(u,S)−(in f luence(u,T ∪ {w})+in f luence(u,T)

= (1 − in f luence(u,S))∗ weight(w,u)− (1 − in f luence(u,T))∗ weight(w,u)

= (in f luence(u,T )− in f luence(u,S))∗ weight(w,u) (3)



372 E. Xu et al.

By monotonicity, in f luence(u,T ) ≥ in f luence(u,S). Hence,

(in f luence(u,T )− in f luence(u,S))∗ weight(w,u)≥ 0

Definition 1. An observation o = < (u1, t1), (u2, t2), · · · , (un, tn) > is a sequence of
tuples (ui, ti) where ti is the time when node ui becomes active, and ∀ i < j, ti < t j.
Further, ui �= u j ∀ i �= j. The length of observation o, denoted as |o|, is the number of
(ui, ti) tuples in o.

Definition 2. An in f luentialpath is a sequence of nodes, denoted as p = < v1 → v2 →
··· → vn >, such that weight(vi,vi+1) is larger than some user defined threshold for all
i, 1 ≤ i ≤ n − 1. The length of p is given by |p| = n − 1.

Definition 3. An observation o supports an influential path p if

– ∀v ∈ p, v ∈ { ui | (ui, ti) ∈ o}, and
– if ui and u j are nodes in o that correspond to vi′ and vi′+1, then 0 < t j − ti < τ , 1 ≤

i′ ≤ n − 1.

Let D be an observation database. The support of an influential path p, denoted as
support(p), is the fraction of observations in D that support p.

The score of a path p = < v1 → v2 → ··· → vn > w.r.t. an observation o is defined
as

score(p,o) = log(in f luence(v1,S) ∏
1≤i≤n−1

weight(vi,vi+1))− logε, (4)

where ε ∈ [0,1] is some small value and S is the set of active neighbors of v1 w.r.t. o.
Let Sp be the set of observations in D that support influential path p. The total score

of p, denoted as total score(p), is defined by

total score(p) = ∑
o∈Sp

score(p,o). (5)

An influential path p = < v1 → v2 → ··· → vm > is a sub-path of another influential
path p′ = < v′

1 → v′
2 → ··· → v′

n >, denoted as p ! p′, if and only if ∃ i1, i2, · · · , im,
such that 1 ≤ i1 < i2 < · · · < im ≤ n, and v1 = v′

i1
, v2 = v′

i2
, · · · , and vm = v′

im . We also
call p′ a super-path of p.

An influential path p is maximal if there exists no influential path p′ such that p !
p′ and support(p) = support(p′).

Definition 4. An influential path p is a top-k maximal influential path if p is maximal
and there exist no more than (k − 1) maximal influential paths whose total score is
greater than that of p.

The following theorem states the relation between the support and total score of two
maximal influential paths. This theorem is utilized by our proposed algorithm in Section
3 to effectively prune off the search space.

Theorem 1. For any two maximal influential paths p and p′, if support(p) >
support(p′) and ε < e−|D|(|o|+1)τ , then total score(p) > total score(p′) where o is
an observation with maximum length in database D.



Top-k Maximal Influential Paths in Network Data 373

Proof. Let p be a maximal influential path with support s and length |p|. We can calcu-
late the total score of path p as

total score(p) = ∑
o∈Sp

score(p,o)

> (loge−τ + |p| ∗ loge−τ − logε)∗ s

= −sτ − s|p|τ − s ∗ logε
= −sτ − s|p|τ − s ∗ logε + logε − logε
= (− logε)∗ (s − 1)+ (−sτ − s|p|τ − logε)

> (− logε)∗ (s − 1)+ (−sτ − s|p|τ − loge−|D|(|o|+1)τ)

= (− logε)∗ (s − 1)+ (|D|(|o|+ 1)− s(|p|+1))τ
> (− logε)∗ (s − 1)

Since (|D|(|o|+ 1)− s(|p|+ 1)) ≥ 0, we have (loge−τ + |p| ∗ loge−τ − logε) ∗ s >
(− logε) ∗ (s − 1). Note that (loge−τ + |p| ∗ loge−τ − logε) ∗ s is the lower bound for
the total score of any maximal influential path with support s, and (− logε) ∗ (s − 1)
is the upper bound for the total score of any maximal influential path with support
(s − 1). Further, the value of total score decreases with the length of a path. Hence,
(loge−τ + |p| ∗ loge−τ − logε) ∗ s > (− logε) ∗ (s − 1) implies that the total score of
any maximal influential path with support s is greater than all the maximal influential
paths whose support is less than s. ��

3 The TIP Algorithm

In this section, we describe our method, TIP, for mining top-k maximal influential paths
without the need to specify a minimum support threshold. TIP is a prefix-based in-
fluential path mining method. It extends the classical projection-based pattern growth
method [13] with time constraint. Instead of projecting observation databases by con-
sidering all possible occurrences of prefixes, TIP examines the frequent prefix sub-paths
and projects only the corresponding valid observations which satisfy the time constraint
into the projected databases. The influential paths are then extended by exploring the
valid frequent nodes in the projected databases.

Given an influential path p = < v1 → v2 → ··· → vn > and a node α , we can extend
p by α if the last node of p, i.e. vn, can in f luence α , that is, the time difference between
tvn and tα is within the time threshold τ . We denote the extension as p → α = < v1 →
v2 → ··· → vn → α >.

Let p′ = p → α be an extension of p. we say p is a pre f ix of p′ and α is a su f f ix
of p′. For example, in our sample observation database D as shown in Table 1, < a →
d → g > is a prefix of path < a → d → g → i > and < i > is its suffix.

Let Sp be the set of observations that support influential path p. Suppose each o ∈ Sp

is of the form < (u1, t1), (u2, t2), · · · , (ua, ta), (ua+1, ta+1), · · · , (ub, tb) >. Then we
define the p-pro jected database as Dp = { < (ua+1, ta+1), · · · , (ub, tb) > } if the last
node vn ∈ p corresponds to ua ∈ o and the time difference ta+1 − ta is less than τ .



374 E. Xu et al.

Table 1. A Sample Observation Database D

ID Observation

o0 <(a,1) (d,5) (g,10) (i,16)>
o1 <(c,8) (e,15) (f,20)>
o2 <(c,4) (d,10) (g,16) (i,20)>
o3 <(c,3) (e,12) (i,36)>
o4 <(c,5) (e,9) (h,20) (i,24)>

Table 2. Frequent nodes in D

Node Support

c 4
i 4
e 3
d 2
g 2
a 1
f 1
h 1

Consider the sample observation database in Table 1. Let time threshold τ = 20. The
projected database for path < c → e > is D<c→e> = {< ( f ,20)>, < (h,20),(i,24)>}.
Note that for observation o3, the time stamp of e is 12, while the next time stamp is 36.
Since the time difference is 24 which is more than τ , node e cannot influence node i,
and hence < (i,36)> is not included in the projected database.

Algorithm 1. TIPMiner(D, k, τ)
Require: observation database D, an integer k, and time threshold τ
Ensure: Top-k maximal influential path set PathSet
1: V ← nodes in D
2: Initialize min sup = 1
3: Initialize PathSet = /0
4: for each node v ∈ V do
5: PathSet = TIP(v, D<v>, k, min sup, τ)
6: end for
7: return PathSet

Having defined the concept of path-projected databases, we next describe the frame-
work TIPMiner for mining the top-k maximal influential paths from a given observation
database D. Algorithm 1 gives the details. It first finds all the nodes in D and sorts them
in decreasing order of their support values. A global variable PathSet is used to keep
track of the set of top-k maximal influential paths. This global variable is updated by
calling Algorithm TIP (see Algorithm 2) for each node.

Algorithm TIP finds the top-k maximal influential paths by constructing the prefix
search tree in a depth-first manner. Inputs to TIP algorithm are an influential path p,
the p-projected database Dp, the number of maximal influential paths k, minimum sup-
port threshold min sup, and time threshold τ . The output is the set of top-k maximal
influential paths PathSet.

Given an influential path p, TIP algorithm attempts to extend p by first obtaining the
p-projected database Dp. Initially, the path consists of only one node. Given a path p,
we first check if this path is promising (lines 1-3). Line 4 checks whether there exists
an influential path p′ ∈ PathSet such that p is a sub-path or super-path of p′. If p′ exists,
we perform maximal influential path verification (lines 6-16). If p′ is a sub-path of p,



Top-k Maximal Influential Paths in Network Data 375

Algorithm 2. TIP(p, Dp, k, min sup, τ)
Require: a path p, Dp, an integer k, minimum support threshold min sup, and time threshold τ
Ensure: Top-k maximal influential path set PathSet
1: if support(p) < min sup then
2: return
3: end if
4: check whether a discovered influential path p′ exists, s.t. either p ! p′ or p′ ! p, and

support(p) = support(p′)
5: if such super-path or sub-path exists then
6: if ∃ node α ∈ Dp, such that support(p → α) = support(p) then
7: return
8: end if
9: for each p′ ∈ PathSet such that support(p′) = support(p) do

10: if p ! p′ then
11: return
12: end if
13: if p′ ! p then
14: replace p′ with p
15: end if
16: end for
17: else
18: if |PathSet| < k then
19: PathSet = PathSet ∪ {p}
20: else
21: let path q ∈ PathSet such that � q′ ∈ PathSet, total score(q′) < total score(q)
22: if total score(p) > total score(q) then
23: replace q with p
24: end if
25: end if
26: end if
27: if |PathSet| = k then
28: let path q ∈ PathSet such that � q′ ∈ PathSet, total score(q′) < total score(q)
29: min sup = support(q)
30: end if
31: Q ← empty priority queue
32: scan Dp once, find every frequent node α such that p can be extended to p → α
33: Q.insert(α)
34: if no valid α available then
35: return
36: end if
37: while !Q.isEmpty() do
38: α = Q.pop()
39: Call TIP(p → α , Dp→α , k, min sup, τ)
40: end while
41: return



376 E. Xu et al.

then we replace p′ by p in the PathSet since p is now the maximal influential path (lines
13-15). However, if p′ is a super-path of p, then p is not a maximal influential path and
can be discarded (lines 10-12).

If p′ does not exist and PathSet contains less than k maximal influential paths, then
we add p to the PathSet (lines 18-19). Otherwise, if PathSet already contains k maximal
influential paths, we compute the total score of p. If the total score of p is larger than
any of the k maximal influential paths in PathSet, we replace the path with the smallest
total score by p (lines 20-25). By Theorem 1, we raise min sup to the support of the
path whose total score is the minimum in PathSet (lines 27-30). This allows us to prune
off unpromising paths.

Next, the algorithm attempts to extend p by finding all the frequent nodes α ∈ Dp such
that we can extend p to p → α (lines 31-40). We scan the p-projected database Dp to
find every frequent node α , such that path p can be extended to p → α , and insert α into
a priority queue Q (lines 32-33). If no α can be found, then we stop extending this path
(lines 34-36). Otherwise, we recursively call TIP algorithm to extend another path using
the next frequent node in Q (lines 37-40). The algorithm terminates when Q is empty.

Table 3. < c >-projected database D<c>

ID Observation

o1 <(e,15) (f,20)>
o2 <(d,10) (g,16) (i,20)>
o3 <(e,12) (i,36)>
o4 <(e,9) (h,20) (i,24)>

Table 4. Frequent nodes in D<c>

Node Support

e 3
i 2
d 1
f 1
g 1
h 1

Let us now use the example in Table 1 to illustrate the TIP algorithm. The entity with
the highest support value is c (see Table 2). We obtain the projected database D<c> as
shown in Table 3. The frequent nodes with their support values are shown in Table 4.
We insert these nodes into the priority queue Q and recursively call TIP to extend< c>.
Since node e has support 3 in Q, we extend < c > to < c → e >.

Figure 3 shows the prefix search tree constructed. Each node in the tree corresponds
to an influential path starting from the root to the node and its support is shown next to
the node. The number along each edge denotes the total score of the path from the root
to the end node of the edge. We assume that the time threshold τ = 20 and ε = e−64.
We observe that < c → e > are supported by three observations o1,o3 and o4 in Table 1.
The scores with respect to these observations are as follows:

score(p,o1) = log(in f luence(c,S)∗ weight(c,e))− logε

= loge− 15−8
1.0 − loge−64

= 57

Similarly, we have score(p,o3) = 55 and score(p,o4) = 60. Thus the total score of the
influential path p =< c → e> is total score(p)= 57 + 55+ 60 = 172. In the same manner,
we build < c → e >-projected database and extend < c → e > to < c → e → f >.



Top-k Maximal Influential Paths in Network Data 377

<>

fde

c de a

g i

g i

i

f h i

i

d

g i

g i

if h

i i

h

ii

g

i

i

f h

i

g

i

i

i

55

60 4955

4952 4952 48

48

93172 58 495252 117

49 45

45

48 45 10749

10759 53 49 118 60

:4 :3 :1 :1:4 :2:2

:1:1

:1

:3

:1

:1

:1

:1 :1 :1 :1

:1

:2 :1 :2 :2

:1 :1

:1

:1 :1:1

:1

:1

:1 :1 :2

:1

:1 :2 :1:1

pruned

pruned

pruned

49

Fig. 3. Prefix search tree for sample database

Suppose we wish to find the top-2 maximal influential paths. After obtaining the
paths < c → e > and < c → i >, the min sup is raised to 2. This implies that all the
branches rooted at node a are pruned as their support values are less than 2. Similarly,
branches rooted at node e are also pruned as they have already been traversed previously
from node c. The bold lines in Figure 3 show the explored paths.

To further improve the efficiency of TIP algorithm, we propose two optimization
strategies.

Early Termination by Equivalence. Early termination by equivalence is a search
space reduction technique developed in CloSpan [14]. Let N(D) represent the total
number of nodes in D. The property of early termination by equivalence shows if two
influential paths p ! p′ and N(Dp) = N(Dp′), then ∀ γ , support(p → γ) = support(p′

→ γ). It means the descendants of p in the prefix search tree cannot be maximal. Fur-
thermore, the descendants of p and p′ are exactly the same. We can utilize this property
to quickly prune the search space of p.

Pseudo Projection. As with traditional projection-based mining method, the major
cost of TIP is the construction of projected databases. To reduce the cost of projection,
we apply the pseudo-projection technique [13]. Instead of constructing a physical pro-
jection by collecting all the postfixes, we use pointers referring to the observations in the
database as a pseudo projection. Every projection consists of two pieces of information:
pointer to the observation in database and o f f set of the postfix in the observation. This
allows us to avoid physically copying postfixes: only pointers to the projected point are
saved for each observation. Thus, it is efficient in terms of both running time and space.

4 Experimental Evaluation

In this section, we conduct experiments to evaluate the effectiveness and efficiency of
our TIP algorithm. We compare the TIP algorithm with the Naı̈ve algorithm that finds



378 E. Xu et al.

the top-k influential paths without any optimization techniques. We also analyze the
effectiveness of the two optimization strategies by implementing two versions of TIP,
TIPearly and TIPpp, where TIPearly utilizes only the early termination strategy without
pseudo projection whereas TIPpp utilizes only the pseudo projection technique without
early termination. All algorithms are implemented in Java language. The experiments
are performed using an Intel Core 2 Quad CPU 2.83 GHz system with 3GB of main
memory and running Windows XP operating system.

We use the OutbreakSim [20] simulation model to generate the synthetic dataset used
in our experiments. The OutbreakSim simulation model mimics the real world disease
outbreak data in Western Australia. Our synthetic dataset consists of 48,507 outbreak
cases for the South-west region of Western Australia over 100 days resulting in more
than 100,000 observations.

Besides the synthetic dataset, we also utilize a real-world dataset, the MemeTracker
data [12]. This MemeTracker dataset contains the quotes, phrases, and hyperlinks of
the articles/blogposts that appear over prominent online news sites from August 2008
to April 2009. Each post contains a URL, time stamp, and all of the URLs of the posts it
cites. Nodes are mostly news portals or news blogs and the time stamps in the data cap-
ture the time that a quote/phase was used in a post. Finally, there are directed hyperlinks
among the posts. We use these hyperlinks to trace the flow of information. A site pub-
lishes a piece of information and uses hyperlinks to refer to the same or closely related
pieces of information published by other sites. An observation is thus a collection of
time-stamped hyperlinks among different sites that refer to the same or closely related
pieces of information. We record one observation per piece – or closely related pieces –
of information. We extract the most active media sites and blogs with the largest number
of posts, and generate 46,352 observations.

Table 5 shows the characteristics of the synthetic and real world datasets used in
the experiments including the the number of input observations, average observation
length, maximum and minimum observation lengths.

Table 5. Datasets Characteristics

Datasets Cardinality Avg Len Max Len Min Len

Synthetic 100,000 8.00 20 6
MemeTracker 46,352 13.72 42 3

4.1 Efficiency Experiments

In this set of experiments, we evaluate the efficiency of TIP algorithm on both synthetic
and real world datasets. First, we vary the synthetic database size from 10k to 90k. We
set k to 10, time threshold τ = 100, and radius of influence α = 1.0. Figure 4 shows the
results. We observe that TIP algorithm remains efficient as the database size increases.
In particular, the early termination optimization strategy is more effective in reducing
the runtime compared to the pseudo projection.

Similarly, for the real world MemeTracker dataset, we generate the top-10 (i.e. k =
10) maximal influential paths by setting time threshold τ to 1000 and radius of influence
α to 1.0. We randomly sample the dataset to vary the database size from 10k to 40k. As



Top-k Maximal Influential Paths in Network Data 379

 0

 500

 1000

 1500

 2000

 2500

 3000

10k 30k 50k 70k 90k

R
un

ni
ng

 ti
m

e 
(s

)

Database size

Naive
TIPearly

TIPpp

TIP

Fig. 4. Performance of varying database size on
synthetic dataset

 0

 200

 400

 600

 800

 1000

 1200

10k 20k 30k 40k

R
un

ni
ng

 ti
m

e 
(s

)

Database size

Naive
TIPearly

TIPpp

TIP

Fig. 5. Performance of varying database size on
MemeTracker dataset

can be seen from Figure 5, TIP algorithm outperforms the Naı̈ve algorithm with early
termination playing a greater role in reducing the runtime of TIP.

4.2 Sensitivity Experiments

Effect of k. Next, we investigate the effect of the number of maximal influential paths,
k, on the performance of the four algorithms. We set the database size to 20k and vary k
from 5 to 25. Figure 6 shows the experimental results for the synthetic dataset. As can be
seen, the runtime for both TIP and Naı̈ve algorithm increases as k increases. However,
the runtime of TIP algorithm is half that of the Naı̈ve algorithm demonstrating that TIP
remains efficient even when k increases.

Effect of τ . Here, we examine the effect of varying the time threshold τ on the perfor-
mance of TIP algorithm. Note that increasing τ is equivalent to increasing the search
space, i.e. the number of potential influential paths. We set the number of maximal in-
fluential paths k to 5, database size |D| to 20k and vary the time threshold τ from 10
to 50. Figure 7 shows that the runtime for both algorithms increases as τ increases.
Similar trend is observed here with the TIP algorithm showing a significant reduction
in runtime as compared to the Naı̈ve algorithm.

 0

 200

 400

 600

 800

 1000

5 10 15 20 25

R
un

ni
ng

 ti
m

e 
(s

)

Number of maximal influential paths (k)

Naive
TIPearly

TIPpp

TIP

Fig. 6. Performance of varying k

 0

 50

 100

 150

 200

 250

 300

10 20 30 40 50

R
un

ni
ng

 ti
m

e 
(s

)

Time threshold (τ)

Naive
TIPearly

TIPpp

TIP

Fig. 7. Performance of varying τ



380 E. Xu et al.

4.3 Effectiveness Experiments

In the final set of experiments, we demonstrate the effectiveness of using maximal in-
fluential paths for prediction. We partition the MemeTracker dataset such that 75% of
the total observations is used for training and the remaining 25% is used for testing.
We run the TIP algorithm on the training data to generate the top-k maximal influential
paths. For each influential path p = < v1 → v2 → ··· → vn−1 → vn > generated, we
obtain the corresponding rule < v1 → v2 → ··· → vn−1 > ⇒ < vn > with con f idence
= support(p)

support(p′) where p′ = < v1 → v2 → ··· → vn−1 >.
For each rule < v1 → v2 → ··· → vn−1 > ⇒ < vn >, we determine the number of

observations in the testing data that support p′ = < v1 → v2 → ··· → vn−1 >. If there
is at least one support observation in the testing data, we assign the probability of node
vn being influenced to the confidence of the rule, i.e. support(p)

support(p′) . If we have more than
one rule predicting that node vn will be influenced, we assign the maximum confidence
of the rules as the probability of node vn being influenced.

The set of predicted nodes are sorted in decreasing order of the probability of getting
influenced. We consider a node to be the next influenced node if it is among the top-n
nodes. Here top-n nodes are the first n non-duplicate nodes with highest probability of
being influenced.

Let X be the set of nodes influenced in test data, and Y be the set of nodes predicted
to be influenced in test data, then precision and recall are defined by the following
equations:

precision =
|X ∩Y |

|Y | (6)

recall =
|X ∩Y |

|X | (7)

We compare the prediction accuracy of TIP algorithm with NetInf algorithm [6], which
can only infer influential edge between two nodes. Similarly, we run NetInf algorithm

 0

 0.2

 0.4

 0.6

 0.8

 1

5 10 15 20 25

P
re

ci
si

on

Number of predicted nodes

Netinf
TIP

(a) Precision

 0

 0.01

 0.02

 0.03

 0.04

5 10 15 20 25

R
ec

al
l

Number of predicted nodes

Netinf
TIP

(b) Recall

Fig. 8. Precision and recall on MemeTracker dataset



Top-k Maximal Influential Paths in Network Data 381

on the training data to generate a set of influential edges, say < i → j >. We assign the
probability of node j being influenced as support(<i→ j>)

support(<i>) .
We perform cross validation for evaluating the prediction performance of both al-

gorithms. Figure 8 shows the precision and recall results by varying the number of
predicted nodes, n, from 5 to 25. We observe that TIP algorithm significantly outper-
forms NetInf algorithm for different values of n. This is because influential paths are
more informative than influential edges and hence in predicting which node will be
influenced next, the TIP algorithm tends to be more accurate than NetInf algorithm.

5 Related Work

Research on information diffusion has focused on validating the existence of influence
[5,2], studying the maximization of influence spread in the whole network [9,11,4,3],
modeling direct influence in homogeneous networks [19], and mining topic-level influ-
ence on heterogeneous networks [15].

The works in [5,18] first study the influence maximization problem as an algorith-
mic problem. Kempe et al. [9] examine the influence maximization problem for a family
of influence models. The authors design approximation algorithms for the independent
cascade model. However, a drawback of their work is the efficiency issue of their greedy
algorithm. Several recent studies try to address the efficiency issue by using new heuris-
tics [11,10,4,3,17].

Gomez et al. [6] study the diffusion of information among blogs and online news
sources. They assume that connections between nodes cannot be observed and use the
observed cascades to infer a sparse, “hidden” network of information diffusion. They
propose an iterative algorithm called NetInf which is based on submodular function
optimization. NetInf first reconstructs the most likely structure of each cascade. Then
it selects the most likely edge of the network in each iteration. The algorithm assumes
that the weights of all edges have the same values.

Mathioudakis et al. [16] investigate the problem of sparsifying influence networks.
Given a social graph and a list of actions propagating through it, they design the SPINE
algorithm to find the “backbone” of the network through the use of the independent-
cascade model [9]. SPINE has two phases: the first phase selects a set of arcs that yields
a finite log-likelihood, while the second phase greedily seeks a solution of maximum
log-likelihood. The effectiveness of SPINE came from its ability to reduce computation
speed significantly.

In the field of sequence mining, Giannotti et al. [21] introduce a novel form of se-
quential pattern, called Temporally-Annotated Sequence (TAS), representing typical
transition times between the events in a frequent sequence. They formalize the novel
mining problem of discovering representative frequent TAS’s as a combination of fre-
quent sequential pattern mining and density-based clustering.

Information diffusion has also been considered from the view of the blogosphere,
since it provides a unique resource for studying information flow. The works in [1,7]
model and study the dynamics of diffusion of information in the blogosphere, while
[8,2] design algorithms to identify influential blog posts and influential bloggers in a
blogosphere.



382 E. Xu et al.

6 Conclusion

In this paper, we develop a method for inferring top-k maximal influential paths which
can truly capture the dynamics of information diffusion. Given a log of propagation
observations of some information over a hidden network, our goal is to infer the top-
k maximal influential paths that best explain these observations. We define a genera-
tive influence propagation model based on the Independent Cascade Model and Lin-
ear Threshold Model, which mathematically model the spread of certain information
through a network. We design an algorithm called TIP to infer the top-k maximal influ-
ential paths. TIP utilizes the properties of top-k maximal influential paths to dynami-
cally increase the support and prune the projected databases. We evaluate the proposed
algorithms on both synthetic and real world data sets. The experimental results demon-
strate the effectiveness and efficiency of our method.

References

1. Adar, E., Adamic, L.A.: Tracking Information Epidemics in Blogspace. In: Web Intelligence,
pp. 207–214 (2005)

2. Agarwal, N., Liu, H., Tang, L., Yu, P.S.: Identifying the Influential Bloggers in a Community.
In: WSDM 2008, pp. 207–218 (2008)

3. Chen, W., Wang, C., Wang, Y.: Scalable Influence Maximization for Prevalent Viral Market-
ing in Large-Scale Social Networks. In: KDD 2010, pp. 1029–1038 (2010)

4. Chen, W., Wang, Y., Yang, S.: Efficient Influence Maximization in Social Networks. In: KDD
2009, pp. 199–208 (2009)

5. Domingos, P., Richardson, M.: Mining the Network Value of Customers. In: KDD 2001, pp.
57–66 (2001)

6. Gomez-Rodriguez, M., Leskovec, J., Krause, A.: Inferring Networks of Diffusion and Influ-
ence. In: KDD 2010, pp. 1019–1028 (2010)

7. Gruhl, D., Guha, R., Liben-nowell, D., Tomkins, A.: Information Diffusion through
Blogspace. In: WWW 2004, pp. 491–501 (2004)

8. Java, A., Kolari, P., Finin, T., Oates, T.: Modeling the Spread of Influence on the Blogosphere.
In: World Wide Web Conference Series (2006)

9. Kempe, D., Kleinberg, J., Tardos, É.: Maximizing the Spread of Influence through a Social
Network. In: KDD 2003, pp. 137–146 (2003)

10. Kimura, M., Saito, K.: Tractable Models for Information Diffusion in Social Networks. In:
Fürnkranz, J., Scheffer, T., Spiliopoulou, M. (eds.) PKDD 2006. LNCS (LNAI), vol. 4213,
pp. 259–271. Springer, Heidelberg (2006)

11. Leskovec, J., Krause, A., Guestrin, C., Faloutsos, C., VanBriesen, J., Glance, N.: Cost-
effective Outbreak Detection in Networks. In: KDD 2007, pp. 420–429 (2007)

12. Leskovec, J., Backstrom, L., Kleinberg, J.: Meme-tracking and the Dynamics of the News
Cycle. In: KDD 2009, pp. 497–506 (2009)

13. Pei, J., Han, J., Mortazavi-Asl, B., Pinto, H., Chen, Q., Dayal, U., Hsu, M.-C.: Prefixspan:
Mining Sequential Patterns Efficiently by Prefix-projected Pattern Growth. In: ICDE 2001,
pp. 215–224 (2001)

14. Yan, X., Han, J., Afshar, R.: Clospan: Mining Closed Sequential Patterns in Large Datasets.
In: SDM 2003, pp. 166–177 (2003)

15. Liu, L., Tang, J., Han, J., Jiang, M., Yang, S.: Mining Topic-level Influence in Heterogeneous
Networks. In: CIKM 2010, pp. 199–208 (2010)



Top-k Maximal Influential Paths in Network Data 383

16. Mathioudakis, M., Bonchi, F., Castillo, C., Gionis, A., Ukkonen, A.: Sparsification of Influ-
ence Networks. In: KDD 2011, pp. 529–537 (2011)

17. Narayanam, R., Narahari, Y.: A Shapley Value-Based Approach to Discover Influential
Nodes in Social Networks. IEEE T. Automation Science and Engineering 8(1), 130–147
(2011)

18. Richardson, M., Domingos, P.: Mining Knowledge-Sharing Sites for Viral Marketing. In:
KDD 2002, pp. 61–70 (2002)

19. Tang, J., Sun, J., Wang, C., Yang, Z.: Social Influence Analysis in Large-scale Networks. In:
KDD 2009, pp. 807–816 (2009)

20. Watkins, R., Eagleson, S., Beckett, S., Garner, G., Veenendaal, B., Wright, G., Plant, A.:
Using GIS to Create Synthetic Disease Outbreaks. BMC Medical Informatics and Decision
Making 7(1), 4 (2007)

21. Giannotti, F., Nanni, M., Pedreschi, D., Pinelli, F.: Mining Sequences with Temporal Anno-
tations. In: SAC 2006, pp. 593–597 (2006)



Learning to Rank

from Concept-Drifting Network Data Streams

Lucrezia Macchia, Michelangelo Ceci, and Donato Malerba

Dipartimento di Informatica, Università degli Studi di Bari “Aldo Moro”,
via Orabona, 4 - 70126 Bari, Italy

lucrezia.macchia@uniba.it, {ceci,malerba}@di.uniba.it

Abstract. Networked data are, nowadays, collected in various
application domains such as social networks, biological networks, sen-
sor networks, spatial networks, peer-to-peer networks etc. Recently, the
application of data stream mining to networked data, in order to study
their evolution over time, is receiving increasing attention in the research
community. Following this main stream of research, we propose an algo-
rithm for mining ranking models from networked data which may evolve
over time. In order to properly deal with the concept drift problem, the
algorithm exploits an ensemble learning approach which allows us to
weight the importance of learned ranking models from past data when
ranking new data. Learned models are able to take the network auto-
correlation into account, that is, the statistical dependency between the
values of the same attribute on related nodes. Empirical results prove
the effectiveness of the proposed algorithm and show that it performs
better than other approaches proposed in the literature.

1 Introduction

The coming of new technologies has determined the generation, at a rapid rate,
of massive structured and complex data that in most of cases can be represented
as data networks. The networks have become ubiquitous in several social, eco-
nomical and scientific fields ranging from the Internet to social sciences, biology,
epidemiology, geography, finance and many others. Indeed, researchers in these
fields have proven that systems of different nature can be represented as networks
[19]. For instance, the Web can be considered as a network of webpages, which
may be connected with each other by edges representing various explicit rela-
tions, such as hyperlinks. Sensor networks are networks where nodes represent
sensors and edges represent the (spatial) distance between two sensors.

In the real world, network data may evolve over time. This evolution can be
both in the structure of the network (nodes can be added or removed, edges can
be added or removed) and in the distribution of the attribute values associated
with the nodes. As an example, consider a sensor network whose nodes collect
temperature, humidity, etc. at single positions in a specific environment. In this
case, new sensors can be either added to the network or removed from it as well
as the underlying data distribution of some variables may change. Moreover, as

S.W. Liddle et al. (Eds.): DEXA 2012, Part I, LNCS 7446, pp. 384–396, 2012.
c© Springer-Verlag Berlin Heidelberg 2012



Learning to Rank from Concept-Drifting Network Data Streams 385

observed by Swanson [24], in this situation, data can be affected by temporal
autocorrelation according to which two values of the some variable are cross
correlated over a certain time lag.

Another important aspect that we have to consider when mining networked
data is that they are characterized by a particular form of autocorrelation [12]
according to which a value observed at a node depends on the values observed at
neighboring nodes in the network [22]. The major difficulty due to the autocor-
relation is that the independence assumption (i.i.d.), which typically underlies
machine learning and data mining methods, is no longer valid. The violation of
the instance independence has been identified as the main responsible of poor
performance of traditional machine learning methods [18]. To remedy the nega-
tive effects of the violation of independence assumptions, autocorrelation has to
be explicitly accommodated in the learned models.

By taking into account these two aspects, in this paper we face the prob-
lem of mining ranking functions. Although in the recent years learning ranking
functions has received increasing attention due to its potential application to
problems raised in information retrieval, machine learning, data mining and rec-
ommendation systems [10], at the best of our knowledge, very few works in the
literature face the problem of learning to rank from network data which may
evolve over time.

At this aim, we propose an ensemble learning approach in order to weight the
importance of ranking models which are learned from past data. This weighting
schema is then used for ranking new data. In this way, individual models can be
learned from different time windows and can work as a team to enhance a final
model. By appropriately defining the weighting schema, it is possible to give more
importance to models learned from recent time windows than to models learned
from distant time windows. As in [11][3][13] the ranking problem is boiled down
into a regression problem. Individual models are tree-structured and allow us to
consider network autocorrelation in the data. This is performed by considering a
locally weighted regression function to be associated with the nodes of the tree,
where the local weighting explicitly considers the network proximity of single
elements of the network.

The paper is organized as follows. The next section and Section 3 report
relevant related work. Section 4 describes the proposed algorithm. Section 5
describes the datasets, experimental setup and reports relevant results. Finally,
in Section 6, some conclusions are drawn and some future work are outlined.

2 Related Works

In the following, we report some related works which i) mine ranking models
able to work on network data and ii) exploit ensemble learning techniques for
data stream mining.



386 L. Macchia, M. Ceci, and D. Malerba

2.1 Mining Ranking Models Able to Work on Network Data

The task considered in this work is that of learning to rank. This task has received
increasing attention due to its potential application to problems in information
retrieval and recommendation systems [1,5,10]. The aim of the methods developed
in this field is to learn a ranking model which returns the output predictions in the
form of a ranking of the examples given in input. According to [4], it is possible
distinguish three types of ranking problems. The first type is Label ranking, where
the goal is to learn a “label ranker” in the form of an X → SY mapping, where
the output space SY is given by the set of all total orders (permutations) of the
set of labels Y . The second type is Instance ranking, where an instance x ∈ X
belongs to one among a finite set of classes Y = y1, y2, . . . , yk for which a natural
order y1 < y2 < . . . < yk is defined. The third type is Object ranking. In this case,
the goal is to learn a ranking function f(·) which, given a subset of an underlying
referential set of objects as an input, produces a ranking of these objects.

By focusing on object ranking, studies reported in the literature solve this prob-
lem by resorting to two alternative approaches. The first approach, determines a
regression function that assigns a numerical value to each element of a set, then
the same is used to sort the items. The second approach aims at learning prefer-
ence functions, which are able to perform pairwise comparisons in order to define
a relative order between two objects. The first approach is generally more efficient
but it is applicable only when a single total order between objects is acceptable.
While, when not all the objects have to necessarily be included in the ranking, the
second approach is preferable. Since in this work we do not consider the problem
of defining partial orders, we consider the first approach.

According to this approach, Herbrich et al. [11] propose to learn a function
which, given an object description, returns an item belonging to an ordered
set. The function is determined so that a loss function is minimized. A similar
approach was proposed by Crammer et al. [3], in which the learned functions
are modelled by perceptrons. Tesauro [25] proposed a symmetric neural network
architecture that can be trained with representations of two states and a training
signal that indicates which of the two states is preferable. In the framework of
constraint classification, some works [8,9] exploit linear utility functions to find
a way to express a constraint in the form fi(x)−fj(x) > 0, in order to transform
the original ranking problem into a single binary classification problem.

By keeping in mind that we intend to learn ranking functions from network
data, we propose to use regression trees which are proved to be easily adapted
to work with this kind of data [22]. Regression trees [2] are supposed to be more
comprehensible then classical regression models. They are built top-down by
recursively partitioning the sample space. An attribute may be of varying im-
portance for different regions of the sample space. A constant is associated with
each leaf of a regression tree, so that the prediction performed by a regression
tree is the same for all sample data falling in the same leaf. A generalisation of
regression trees is represented by model trees, which associate multiple linear
models with each leaf. Hence, different values can be predicted for sample data



Learning to Rank from Concept-Drifting Network Data Streams 387

falling in the same leaf. Some of the model tree induction systems are RETIS
[14], M5’ [29], HTL [26], TSIR [15] and SMOTI [17].

One of the main peculiarities that led us to consider model trees is that their
tree structure allows us to deal with the so-called “ecological fallacy” problem
[21] according to which individual sub-regions do not have the same data distri-
bution of the entire region. This is coherent with the research reported in [28],
where the authors argue that the concept drift is not uniform over the feature
space. Moreover, the tree structure allows us to capture different effects of the
autocorrelation either at a global (higher levels of the tree) or at a local (lower
levels of the tree) granularity level.

In this work we consider the system SMOTI, which is characterized by a
tree structure with two types of nodes: regression nodes, which perform only
straight-line regression, and splitting nodes, which partition the feature space.
The multiple linear model associated with each leaf is then the composition of
the straight-line regressions reported along the path from the root to the leaf. A
brief description of SMOTI is reported in Section 3.

2.2 Ensemble Learning for Data Streams

The idea of ensemble learning is to employ multiple learners and combine their
predictions. As observed in several works found in the literature, (see, for ex-
ample [20]), the resulting ensemble is generally more accurate than any of the
individual classifiers that contribute to the ensemble.

In this work we intend to exploit the idea of the ensemble to deal with data
whose underlying distribution may evolve over time. Indeed, this idea is not
novel and several papers in the literature exploit ensemble learning techniques
in order to work with streaming data. For instance, in [23], the authors pro-
pose an ensemble learning of individual decision trees learned at different time
windows. Decision trees are built through the classical Quinlan’s C4.5 learning
algorithm and ensemble aims at preserving only the k most accurate trees for
future data. New classifies are added to the ensemble if the ensemble size does
not exceed k, otherwise, new classifiers are added only if they improve the en-
semble performance. Obviously, this leads to sacrifice exiting classifiers. Wang
et al. [27] propose weighted classifier ensembles to mine streaming data affected
by the concept drift phenomenon. They train an ensemble of classifiers from se-
quential data chunks in the stream. Subsequently, they associate each classifier
with a weight which represents the expected prediction accuracy of the classifier
on the current test examples. In [28] the authors propose to capture the non-
deterministic nature of concept drifts in a region of the feature space and model
the concept drift process as a continuous time Markov chain. In particular, they
propose to train k classifiers from data in recent time windows (they use a decay
factor) and assume that each classifier partitions the feature space into a set of
non-overlapping regions (as decision trees do). When a new example arrives, on
the basis of the region it belongs to, a score that represents the drift is computed
(on the basis of the continuous time Markov chain). This score is then used to
compute the probability that the example belongs to a class.



388 L. Macchia, M. Ceci, and D. Malerba

Although all cited works are proved to be effective in their capability to use
models learned in the past for new data, none of them consider the problem of
mining ranking models from networked data, which is the main objective of the
present work. The only work that, at the best of our knowledge, faces the same
problem we consider in this works, is reported in [16], where the authors modify
the SVMRank algorithm in order to emphasize the importance of models learned
in time periods during which data follow a data distribution that is similar to
that observed in the time period for which prediction has to be made. However,
their approach (called SVMRankT) does not consider the “ecological fallacy”
problem (see section 2.1).

3 Background: Model Tree Induction in SMOTI

SMOTI (Stepwise Model Tree Induction) performs the top-down induction of
model trees by considering not only a partitioning procedure, but also by some
intermediate prediction functions [17]. This means that there are two types of
nodes in the tree: regression nodes and splitting nodes. The former compute
straight-line regressions, while the latter partition the sample space. They pass
down training data to their children in two different ways. For a splitting node
t, only a subgroup of the N(t) training data in t is passed to each child, with
no change on training cases. For a regression node t, all the data are passed
down to its only child, but the values of both the dependent and independent
numeric variables not included in the multiple linear model associated with t
are transformed in order to remove the linear effect of those variables already
included. Thus, descendants of a regression node will operate on a modified
training set. Indeed, according to the statistical theory of linear regression [6],
the incremental construction of a multiple linear model is made by removing
the linear effect of introduced variables each time a new independent variable
is added to the model. For instance, let us consider the problem of building a
multiple regression model with two independent variables through a sequence of
straight-line regressions:

Ŷ = a+ bX1 + cX2 (1)

We start regressing Y on X1, so that the model Ŷ = a1 + b1X1 is built. This
fitted equation does not predict Y exactly. By adding the new variable X2, the
prediction might improve. Instead of starting from scratch and building a model
with both X1 and X2, we can build a linear model for X2 given

X1 : X̂2 = a2 + b2X1 (2)

Then we compute the residuals on X2 : X ′2 = X2 − (a2 + b2X1) and on Y : Y ′ =
Y − (a1 + b1X1). Finally, we regress Y ′ on X ′2 alone:

Ŷ ′ = a3 + b3X
′
2 (3)

By substituting the equations of X ′2 and Y ′ in the last equation we have:

̂(
Y − (a1 + b1X1)

)
= a3 + b3(X2 − (a2 + b2X1)) (4)



Learning to Rank from Concept-Drifting Network Data Streams 389

Since ̂Y − (a1 + b1X1) = Ŷ − (a1 + b1X1), we have:

Ŷ = (a3 + a1a2b3) + (b1 − b2b3)X1 + b3X2 (5)

It can be proven that this last model coincides with (1), that is, a = a3 +
a1a2b3, b = b1 − b2b3 and c = b3. Therefore, when the first regression line of
Y on X1 is built we pass down both the residuals of Y and the residuals of
the regression of X2 on X1. This means that we remove the linear effect of the
variables already included in the model (X1) from both the response variable
(Y ) and those variables to be selected for the next regression step (X2).

4 Considering Network Autocorrelation in Model Tree
Induction and Ranking Models’ Ensemble

The original SMOTI algorithm uses the least squares method in order to identify
the parameters to be used in all the linear regression functions such as (2) and
(3). The least squares method works as follows: Let Ŷ = α+βXj (j = 1, . . . ,m)
be a generic regression function to be built between variables Xj and Y ,⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩
β = (XT

j Xj)
−1XT

j Y =

∑
i=1,..,n

(xji − xj)(yi − y)

∑
i=1,..,n

(xji − xj)
2

α = y − βxj

(6)

where Xj = [xj1, xj2, . . . , xjn] and Y = [y1, y2, . . . , yn] are vectors of values of
Xj and Y , respectively, and y and xj are the averages of values in Xj and Y,
respectively.

However, although standard, this method neglects possible autocorrelation
in the network data. In other words, the least squares method would lead to
regression models (and so, in our case, piecewise ranking functions) which do
not consider the network. In fact, in networks, data are organized according to
a graph structure G = (V,E), where V = {v1, v2, . . . , vn} is a set of vertices
vi = (xi, yi), i = 1, . . . , n, E = {〈vi, vh, wi,v〉|i �= h} is a set of edges and wi,h

represents the strength of the connection among the nodes. As stated before,
neglecting the network structure (i.e. autocorrelation), may result in inaccurate
prediction models [18].

To better explain how networks can be exploited in order to extract a rank-
ing model that takes autocorrelation into account (i.e. models able to generate
ranking labels which are more coherent in the network), we report a simple
example.

Example 1. Let Figure 1(a) be a network structure, let Xj = [1, 5, 4, 8] and
Y = [2, 3, 4, 6] be the values for the nodes d, b, a, c and let e be the example
for which a ranking label has to be identified (query point). According to the
standard least squares method, the (ranking) regression line is the regression



390 L. Macchia, M. Ceci, and D. Malerba

(a) Network (b) Linear regression (c) Network aware regression

Fig. 1. A simple network (a) and two (ranking) regression functions. In (c), the regres-
sion line gives more importance to vertices a and b since the query point is e.

line reported in Figure 1(b). However, by taking into account the network, the
regression line should change (see Figure 1(c)) by giving more importance to the
effect of the nodes a and b, which are strongly correlated with e.

To take autocorrelation into account, the alternative solution we intend to exploit
in this work is that of locally weighted regression method (LWR). The basic idea
in LWR, is that a local model should fit to nearby data, according to a proximity
measure defined on the feature space X1, . . . , Xm. Differently, in this work we
exploit the network in order to account the degree of correlation between pairs
of vertices.

Formally, let ai ∈ V be a vertex, it is possible to build a diagonal matrix

Wi =

⎛
⎜⎝

wi1 0 . . .
0 wi2 . . .
...

... win

⎞
⎟⎠

where each non-zero element wiv, v = 1, . . . , n represents the strength of the
connection between vertices ai and av and n represents the number of examples
falling in the node of the tree. Then, it is possible to build a regression function
between Y and Xj associated with each example falling in the node.

Y = αi + βiXj (7)

in this case, βi = ((WiXj)
T (WiXj))

−1(WiXj)
T (WiY). This means that⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩
βi =

∑
t=1,..,n

(witxjt − r)(wityt − s)

∑
t=1,..,n

(witxjt − r)2

αi = s − βir

(8)

where r = 1
n

∑
t witxjt and s = 1

n

∑
t wityt.

In the regression step, in order to uniformly modify all the examples that
are passed down in the model tree construction, we use the averages of the



Learning to Rank from Concept-Drifting Network Data Streams 391

parameters’ values. More, formally, suppose we are introducing a regression node
on X1, then residuals are computed as follows: X ′2 = X2 − (α2 + β2X1) and
Y ′ = Y − (α1 + β1X1) where α = 1

n

∑
i αi and β = 1

n

∑
i βi for each regression

problem (on X1 and on Y ).
It is noteworthy that this approximation does not compromise the correct

consideration of the autocorrelation since residuals will be explained at lower
levels of the model tree. Moreover, autocorrelation is mainly considered during
the prediction phase. In fact, during prediction, once the example to be classi-
fied reaches the leaf, the system uses the αi and βi parameters associated with
the training example for which the connection is the strongest (according to the
network structure). In case more than one training example satisfies this prop-
erty, the average of the parameters’ values is considered. This approach allows
the system to predict values for network nodes that are not available during the
learning phase.

It is worth to notice that this approach also solves problems coming from
the collinearity phenomenon, that is, when some of the independent variables
are related to each other. Indeed, as recognized in [7], when some variables are
(approximately) collinear, several problems may occur, such as indeterminacy of
regression coefficients, unreliability of the estimates of the regression coefficients,
and impossibility of evaluating the relative importance of the independent vari-
ables. In our approach, this problem is solved by introducing one variable at a
time in the model tree.

By introducing the temporal dimension in the analysis, we resort to a temporal
sliding window framework. Let 〈G1, . . . Gt−1〉 be a sequence of time windows
associated with t − 1 time points, and τ : T × V → R be a ranking labeling
function which maps a model tree Tq ∈ T and a vertex v ∈ V in the space
of ranking labels (R), then it is possible to define a general framework able
to classify a generic vertex v at time t according to all the ranking models
T1, T2, . . . , Tt−1 learned from 〈G1, . . . Gt−1〉:

τ ′(T1, T2, . . . , Tt−1, v) =
1

t ∗ (t − 1)/2

∑
q=1,...,t−1

q

t
∗ τ(Tq, v) (9)

where the first factor is only used for normalization purposes and q
t is a decay

factor which gives more importance to models learned in recent time windows
than to models learned in distant time windows.

It is noteworthy that the method well adapts to cases in which the network
structure changes over time. In fact, it is not strictly necessary that the vertex v
belongs to the network in the time windows {G1, . . .Gt−1}. Moreover, our choice
to ignore network properties in the splitting nodes of the model tree allows us
to use the ranking model in different (but related) networks.

5 Experiments

In order to evaluate the effectiveness of the proposed solution, we performed
experiments on three real world datasets, that is, Intel Lab database, Portuguese



392 L. Macchia, M. Ceci, and D. Malerba

rivers database and California Truck database. The proposed approach has been
compared with results obtained with SVMRankT [16].

As a measure to evaluate the learned ranking models, we use the Spearman’s

rank correlation coefficient. Let V (t) = {v(t)1 , v
(t)
2 , . . . , v

(t)
n } be the real dataset at

time t, ŷ
(t)
i = τ ′(T1, T2, . . . , Tt−1, vi) be the estimated ranking for the example

vi and y
(t)
i be the real ranking of vi at time t, the Spearman’s rank correlation

coefficient is defined as:

ρ =

∑
i=1,...,nt

(
y
(t)
i − y(t)

)(
ŷ
(t)
i − ŷ(t)

)
√ ∑

i=1,...,nt

(
y
(t)
i − y(t)

)2 (
ŷ
(t)
i − ŷ(t)

)2 (10)

where y(t) and ŷ(t) are the average true and estimated rankings, respectively. ρ
ranges in the interval [-1,1], where -1 means negative correlation in the ranking
and 1 means perfect ranking.

The first dataset considered in the experiments is the Intel Lab Database which
contains real information collected from 54 sensors deployed in the Intel Berkeley
Research lab between February 28th and and March 21st, 2004. The dataset is
taken from http://db.csail.mit.edu/labdata/labdata.html. The sensors which we
consider in this experiment have collected timestamped temperature, humidity
and luminosity values once every 31 seconds. Networks are built by considering
the spatial distance between sensors and the target attribute is represented by the
temperature (we removed temperature and we used the temperature ranking as
y value). In the experiments, we only considered working days and we used 1-day
time-intervals, this means that we built 15 networks in all.

In Table 1, results of the Spearman’s rank correlation coefficient are reported.
In this dataset, the proposed approach is not able to show the same performances
as those shown by SVMRankT. This is mainly due to the small number of
attributes that prevents the model trees learning approach to learn accurate
models. This is different from what happens in the case of SVMRankT that is
based on SVMs that are able to create oblique partitions of the feature space.
Moreover, in this dataset, autocorrelation phenomenon is quite uniform across
the space (ecological fallacy does not hold).

The Portuguese rivers dataset holds water’s information of the rivers Douro
and Paiva. The dataset may be incomplete because the controls are manually
done and are not done systematically. The original dataset is composed of a
fact table and six additional relational tables: The fact table (ANALYSIS) con-
tains information on the measures under control (pH, % Coliformi Bacteria,
conductivity, turbidity, % Escherichia Coli Bacteria) and the gathering method.
Additional tables are directly (or indirectly) connected to ANALYSIS according
to a snowflake logic schema. They are: PARAMETERS (that are considered in
the analysis), INSTITUTIONS (that collected data), DAY, CONTROL POINTS
and PATH (that specifies the position of a control point according to the course
of the rivers). From the table PATH we got the course of the river and the



Learning to Rank from Concept-Drifting Network Data Streams 393

Table 1. Intel lab Dataset: Spearman’s rank coefficient

Train Test SVMRankT Our approach

1 2 3 0.9021739 0.8312905

1 2 3 4 0.9529370 0.9062211

1 2 3 4 5 0.9364014 0.8566142

1 2 3 4 5 6 0.9240286 0.8507169

1 2 3 4 5 6 7 0.9084181 0.8576550

1 2 3 4 5 6 7 8 0.5514569 0.5795560

1 2 3 4 5 6 7 8 9 0.8632053 0.8554579

1 2 3 4 5 6 7 8 9 10 0.8931544 0.8331406

1 2 3 4 5 6 7 8 9 10 11 0.8375346 0.8252775

1 2 3 4 5 6 7 8 9 10 11 12 0.8341813 0.5730804

1 2 3 4 5 6 7 8 9 10 11 12 13 0.7514743 0.7318166

1 2 3 4 5 6 7 8 9 10 11 12 13 14 0.8169229 0.4641246

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 0.9021739 0.5225197

Avg. 0.8518510 0.7451901

Table 2. Portuguese rivers dataset: Spearman’s rank coefficient

Train Test SVMRankT Our approach

2004-2005 2006 0.4024926686 0.6146444282

2004-2005-2006 2007 0.4761730205 0.6251832845

2004-2005-2006-2007 2008 0.4769061584 0.6917155425

2004-2005-2006-2007-2008 2009 0.4226539589 0.6462609971

Avg. 0.44455645161 0.64445106305

position of the control points in order to build the network structure. The weights
on the edges represent the navigation distance between the control points (in all
we have 115 control points). We considered data aggregated by year and for each
node, we represented institution, gathering method, pH, % Coliformi Bacteria,
conductivity, turbidity, % Escherichia Coli Bacteria. Aggregation is performed
by considering mode (average) for discrete (continuous) values. In all, we consid-
ered 6 years (from 2004 to 2009). The experiments are performed using the pH
feature as target since it is recognized to be a good indicator of river pollution.

Results of the Spearman’s rank correlation coefficient are reported in Table 2.
Differently from conclusions drawn in the case of Intel lab dataset, in this case
our approach outperforms SVMRankT approach of a great margin. This confirms
our intuitions since in this dataset, autocorrelation phenomenon is not uniform
across the space.

The California traffic dataset concerns the traffic on the highways of Califor-
nia. The dataset is taken from http://traffic-counts.dot.ca.gov/index.htm. The
experiments are carried out using the following independent attributes observed
by sensors on highways: the percentage of trucks, the percentage of 2-axle ve-
hicles, the percentage of 3-axle vehicles, the percentage of 4-axle vehicles, the
percentage of 5-axle vehicles. The goal is to rank sensors’ positions on the basis
of the sum of the volumes of traffic on a road in both directions. Each sensor



394 L. Macchia, M. Ceci, and D. Malerba

Table 3. California traffic dataset: Spearman’s rank coefficient

Train Test SVMRankT Our approach

2001-2002 2003 0.7484557 0.8064138

2001-2002-2003 2004 0.7417657 0.8064138

2001-2002-2003-2004 2005 0.7402272 0.7970344

2001-2002-2003-2004-2005 2006 0.7468870 0.8122890

2001-2002-2003-2004-2005-2006 2007 0.7447633 0.8125018

2001-2002-2003-2004-2005-2006-2007 2008 0.7500496 0.8247747

2001-2002-2003-2004-2005-2006-2007-2008 2009 0.7375568 0.7725733

Avg. 0.7443340 0.8045715

represents a node in the network (in all, we have 969 sensors), while weights
on the edges represent the driving distance between two sensors. However, the
network is not fully connected and only nodes whose driving distance is less than
25 miles are connected (in all, there are 34093 edges). The dataset refers to the
period 2001-2009 and for each year, a network is created.

Results of the Spearman’s rank correlation coefficient confirm results obtained
on the Portuguese rivers dataset (see Table 3). This result is quite interesting
since, in this case, the network edges are quite sparse. This means that the LWR
model is able to concentrate the attention only on truly interesting vertices.

6 Conclusions

In this paper we have faced the problem of mining ranking models from net-
worked data whose data distribution may change over time. The first contribu-
tion of this paper is to provide a way to learn ranking models based on model
trees which are able to consider (different effects of) the autocorrelation phe-
nomenon. This is obtained by resorting to a modified version of the locally
weighted regression method. The second contribution of this paper is to pro-
vide a time windows framework able to combine models learned in the past for
prediction in future time windows.

We evaluate our approach on several real world problems of learning to rank
from network data, coming from the area of sensor networks. An empirical com-
parison with an SVM-based approach shows the superiority of our approach
when working with datasets where the effect of the autocorrelation phenomenon
is not uniform in the network and with not fully connected networks.

For future works, we intend compare our approach with additional existing
regressions/ranking approaches (after adaptation). Moreover, we intend to mod-
ify our approach in order to allow it to distinguish between smooth and abrupt
changes. Finally, we intend to apply our approach in the context of biological
(literature) data analysis for gene prioritization, that is, identification of the
most relevant genes that are “connected” to a given disease (e.g. regulate the
disease).



Learning to Rank from Concept-Drifting Network Data Streams 395

References

1. Aiolli, F.: A preference model for structured supervised learning tasks. In: ICDM,
pp. 557–560. IEEE Computer Society (2005)

2. Breiman, L., Friedman, J.H., Olshen, R.A., Stone, C.J.: Classification and Regres-
sion Trees. Statistics/Probability Series. Wadsworth Publishing Company, Belmont
(1984)

3. Crammer, K., Singer, Y.: Pranking with ranking. In: NIPS, pp. 641–647. MIT Press
(2001)

4. Dembczyski, K., Kotlowski, W., Slowiski, R., Szelag, M.: Learning of rule ensembles
for multiple attribute ranking problems. In: Fürnkranz, J., Hüllermeier, E. (eds.)
Preference Learning, pp. 217–247. Springer (2010)

5. Doyle, J.: Prospects for preferences. Computational Intelligence 20(2), 111–136
(2004)

6. Draper, N.R., Smith, H.: Applied regression analysis. Wiley series in probability
and mathematical statistics. Wiley, New York (1996)

7. Draper, N.R., Smith, H.: Applied regression analysis. John Wiley & Sons (1982)

8. Har-Peled, S., Roth, D., Zimak, D.: Constraint Classification: A New Approach
to Multiclass Classification. In: Cesa-Bianchi, N., Numao, M., Reischuk, R. (eds.)
ALT 2002. LNCS (LNAI), vol. 2533, pp. 365–379. Springer, Heidelberg (2002)

9. Har-Peled, S., Roth, D., Zimak, D.: Constraint classification for multiclass classi-
fication and ranking. In: Becker, S., Thrun, S., Obermayer, K. (eds.) Advances in
Neural Information Processing Systems 15 (NIPS 2002), pp. 785–792 (2003)

10. Herbrich, R., Graepel, T., Bollmann-sdorra, P., Obermayer, K.: Learning prefer-
ence relations for information retrieval (1998)

11. Herbrich, R., Graepel, T., Obermayer, K.: Large margin rank boundaries for ordinal
regression. MIT Press (2000)

12. Jensen, D., Neville, J.: Linkage and autocorrelation cause feature selection bias in
relational learning. In: Proc. 9th Intl. Conf. on Machine Learning, pp. 259–266.
Morgan Kaufmann (2002)

13. Joachims, T.: Optimizing search engines using clickthrough data. In: Proceedings
of the Eighth ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining, KDD 2002, pp. 133–142. ACM, New York (2002)

14. Karalic, A.: Linear regression in regression tree leaves. In: Proceedings of ECAI
1992, pp. 440–441. John Wiley & Sons (1992)

15. Lubinsky, D.: Tree structured interpretable regression. In: Fisher, D., Lenz, H.J.
(eds.) Learning from Data. Lecture Notes in Statistics. Springer (1994)

16. Macchia, L., Ceci, M., Malerba, D.: Mining Ranking Models from Dynamic Net-
work Data. In: Perner, P. (ed.) MLDM 2012. LNCS, vol. 7376, pp. 566–577.
Springer, Heidelberg (2012)

17. Malerba, D., Esposito, F., Ceci, M., Appice, A.: Top-down induction of model trees
with regression and splitting nodes. IEEE Trans. Pattern Anal. Mach. Intell. 26(5),
612–625 (2004)

18. Neville, J., Simsek, O., Jensen, D.: Autocorrelation and relational learning: Chal-
lenges and opportunities. In: Wshp. Statistical Relational Learning (2004)

19. Newman, M.E.J., Watts, D.J.: The structure and dynamics of networks. Princeton
University Press (2006)

20. Opitz, D., Maclin, R.: Popular ensemble methods: An empirical study. Journal of
Artificial Intelligence Research 11, 169–198 (1999)



396 L. Macchia, M. Ceci, and D. Malerba

21. Robinson, W.S.: Ecological Correlations and the Behavior of Individuals. American
Sociological Review 15(3), 351–357 (1950)

22. Stojanova, D., Ceci, M., Appice, A., Džeroski, S.: Network Regression with Predic-
tive Clustering Trees. In: Gunopulos, D., Hofmann, T., Malerba, D., Vazirgiannis,
M. (eds.) ECML PKDD 2011, Part III. LNCS, vol. 6913, pp. 333–348. Springer,
Heidelberg (2011)

23. Street, W.N., Kim, Y.: A streaming ensemble algorithm (sea) for large-scale clas-
sification. In: Proceedings of the Seventh ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining, KDD 2001, pp. 377–382. ACM, New
York (2001)

24. Swanson, B.J.: Autocorrelated rates of change in animal populations and their
relationship to precipitation. Conservation Biology 12(4), 801–808 (1998)

25. Tesauro, G.: Connectionist learning of expert preferences by comparison training.
In: Advances in Neural Information Processing Systems 1, pp. 99–106. Morgan
Kaufmann Publishers Inc., San Francisco (1989)

26. Torgo, L.: Functional models for regression tree leaves. In: Fisher, D.H. (ed.) ICML,
pp. 385–393. Morgan Kaufmann (1997)

27. Wang, H., Fan, W., Yu, P.S., Han, J.: Mining concept-drifting data streams using
ensemble classifiers. In: Proceedings of the Ninth ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, KDD 2003, pp. 226–235.
ACM, New York (2003)

28. Wang, H., Yin, J., Pei, J., Yu, P.S., Yu, J.X.: Suppressing model overfitting in
mining concept-drifting data streams. In: Proceedings of the 12th ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining, KDD 2006,
pp. 736–741. ACM, New York (2006)

29. Wang, Y., Witten, I.H.: Induction of model trees for predicting continuous classes.
In: Poster papers of the 9th European Conference on Machine Learning. Springer
(1997)



Top-k Context-Aware Queries on Streams

Loïc Petit1,3, Sandra de Amo2, Claudia Roncancio3, and Cyril Labbé3

1 Orange Labs, France
name.surname@orange.com

2 Federal University of Uberlândia, Brazil
deamo@ufu.br

3 Grenoble University, France
Name.Surname@imag.fr

Abstract. Preference queries have been largely studied for relational
systems but few proposals exist for stream data systems. Most of the ex-
isting proposals concern the skyline, top-k or top-k dominating queries,
coupled with the sliding-window operator. However, user preferences
queries on data streams may be more sophisticated than simple sky-
line or top-k and may involve more expressive operations on streams.
This paper improves the existing work on data stream query-answering
personalization by proposing a solution to express and handle contextual
preferences together with a large variety of queries including one-shot
and continuous queries. It adopts a more expressive preference model
supporting context-based preferences, allowing to capture a wide range
of situations. We propose algorithms to implement the new preference
operators on stream data and validate their performance on a real-world
dataset of stock market streams.

1 Introduction

Query-answering personalization has been attracting much attention in the data-
base community in recent years [3,7]. Such works have been motivated by the
need to select the data items that better fit user preferences. This is useful
in situations when the number of potential answers is either too high or too
small. When it is too high, user preferences are used to restrict the answer set
by identifying the subset of the most preferred data items. On the other hand,
some queries may involve hard conditions which imply a very small (or even a
disappointing empty) answer-set. In this case, user preferences could be used to
enhance the set of retrieved data by including answers which could be of user
interest even if they do not verify the hard constraints specified in the query.

Numerous application domains such as financial, monitoring and sensor-
based applications require now data stream management. Supporting preference
queries on evolving data is more challenging than their evaluation on persistent
data. Contextual preference queries are particularly helpful to users dealing with
data streams. For instance, in a stock market scenario, buyers may want to know
the most interesting deals so far before making their trading decisions. Some sta-
tistical data such as the volatility rate of the stock options in the last three days

S.W. Liddle et al. (Eds.): DEXA 2012, Part I, LNCS 7446, pp. 397–411, 2012.
c© Springer-Verlag Berlin Heidelberg 2012



398 L. Petit et al.

or the economic situation of the stock options country can influence their deci-
sion. So, it is possible to support queries as “What are the most interesting deals
you propose given that for stock options coming from countries in bad economic
situation in the last year I prefer those presenting a lower volatility rate in the
last three days” may be issued. The existing proposals on contextual preferences
query processing [11,4] are designed for conventional DBMS and are not tai-
lored to handle stream data. Besides, few proposals in the literature support
preference queries on data streams [12,13,9]. Most of them concern the skyline,
top-k and top-k dominating queries, coupled with the sliding-window operator.
To the best of our knowledge there are no proposal in the literature dealing with
contextual preference query processing on data streams.

This work goes a step beyond by proposing contextual preference queries
on both conventional and stream databases. We consider the stream algebra
Astral introduced in a previous paper [16] as the core stream query language.
We extend Astral by the introduction of two preference operators Best and
KBest. These operators are adapted from the preference operators of the query
language CPrefSQL originally designed for querying static data [4].

Main Contributions. The main contributions of this paper can be summarized
as follows: (1) The introduction of the top-k contextual preference queries in a
data stream context; (2) The introduction of two new operators in the Astral al-
gebra designed to query relations and data streams; (3) The design and imple-
mentation of incremental algorithms for evaluating continuous and instantaneous
queries over streams and relations; (4) The implementation of the preference op-
erators in the original prototype of Astral and their performance evaluation.

This paper is organized as follows: In Section 2, we motivate our proposal by
presenting a real-world scenario where user preferences are naturally influenced
by the user context. Section 3 introduces the main theoretical concepts underly-
ing the preference model and the stream algebra Astral. In Section 4, we present
the Preference Astral algebra incorporating two new preference operators Best
and KBest. In Section 5, we present the incremental algorithms for continuously
evaluating the preference operators Best and KBest. In Section 6 we present and
discuss some experimental results. Related work are resented in section 7. Finally,
in Section 8 we conclude the article and present some research perspectives.

2 A Motivating Example

Tom is a very cautious investor who likes to get as much information as possible
before making his decisions about buying and selling stocks shares. He has free
access to a web site that provides information about real-time quotations and
volatility rates as well as real-time transactions. These data involve the following
data streams and static data stored in a relational DBMS:

• Relation StockOption(StOpName, Category, Country): stores the stock name,
its category (Commodities (c), Info-Tech (it)), and the country where the com-
pany headquarters are located.



Top-k Context-Aware Queries on Streams 399

• Stream Transactions(OrderID, TTime, StOpName, Volume, Price): a data
stream providing real-time information about stock options transactions. It in-
cludes the transaction time (TT ime), the quantity of shares (V olume) and the
price (Price) of the stock option share.
• Stream Volatility(StOpName, ETime, Rate, Method): a data stream providing
real-time information about the estimated volatility (rate) of stock options. It in-
cludes the time of the estimation (ETime) and the estimation method (Method).

Based on his past experience and the information he reads in the papers, Tom
has some preferences he wants to be taken into account in order to facilitate and
speed up his decisions. His preferences are described by the following statements:

[P1] Concerning commodities stocks, at each moment Tom prefers those with a
volatility-rate less than 0.25. On the other hand, concerning IT stocks, Tom is
more aggressive and prefers those with a volatility-rate greater than 0.35.
[P2] For stock options with volatility-rate greater than 0.35 at present (calcu-
lated according to some method) Tom prefers those from Brazil than those from
Venezuela.
[P3] For stock options with volatility-rate greater than 0.35 at present, Tom is
interested in transactions carried out during the last 3 days concerning these
stock options, preferring those transactions with quantity exceeding 1000 shares
than those with a lower amount of shares.

Notice that Tom’s preferences are expressed by means of rules of form IF some
context is verified THEN Tom prefers something to something else. Contexts are
conditions involving the values of some data attributes. For instance, in state-
ment [P1] the context is StockOption.Category = ‘Commodities′ and Tom’s
preference is V olatility.Rate ≤ 0.25 better than V olatility.Rate > 0.25. Prefer-
ence rules may involve streams or relational data on both the context side and
the preference side of the rule.

As well as his preferences, Tom’s queries may concern relational and stream
data and be “one-shot” or continuous queries. Here are some of Tom’s:

[Q1] Considering the last 100 transactions with a volume greater than 1000
shares, list my top 10 most preferred ones.
[Q2] Give me the list of quotations during the last 2 days, concerning the stock
options which most fulfill my preferences.
[Q3] Give me the list of quotations during the last 2 days, concerning only IT
stock options which most fulfill my preferences.
[Q4] Every 30 minutes, give me a complete description of my 10 preferred stock
options: country, category, the last transaction concerning the stock option (vol-
ume and quotation), the volatility rate with its corresponding estimating method.

It is important to emphasize that, differently from the hard constraint expressed
by statements like “IT stock options”, preferences should be viewed as soft con-
straints: If no database entry fulfills the hard constraints (for instance, there
is no IT stock options in the database), the result answer-set is empty. On the
other hand, if there are not K tuples in the database which are considered



400 L. Petit et al.

perfect according to the preferences, a list of K tuples respecting the preference
hierarchy is returned instead.

3 Preliminaires
To achieve our work we build-on two existing proposals (1) the Astral algebra
proposing operators to query data stream and relational data together and (2)
theoretical foundations on contextual preferences rules. This Section introduces
such proposals. Section 4 and the following, present our proposal to integrate
preferences in Astral queries.

3.1 The Astral Stream Algebra

We use the Astral algebra [16] which provides a formal definition of operators
involved in streams querying. Such a formalism facilitates the expression and un-
derstanding of queries. Putting aside preferences and the top-k operator, queries
presented in section 2 can be expressed in Astral. This section provides the
very few definitions necessary to introduce Astral queries. Our examples refer to
queries Q1, Q2, Q3 and Q4 of section 2. We’ll use Q1’, Q2’, Q3’ and Q4’
which are their counterpart without preferences.

In Astral, streams and relations (denoted by S and R respectively in the
following) are two different concepts [1]. A stream S is a possibly infinite set of
tuples s with a common schema containing two special attributes: a timestamp t
and, the position in the stream, p1. A temporal relation R is a step function that
maps a time identifier t to a set of tuples R(t) having a common schema. Classical
relational operators, as selection σ, projection π and join �, are extended to
temporal relations. The extension of π and σ for streams is simple whereas joins
are very complex. For example, σV olume>10000(Transactions) is the stream of
transactions having V olume > 10000, whereas σCategory=it(StockOption) is a
temporal relation containing only tuples for which Category is it .

A temporal relation can be extracted from a stream using windows operators.
Astral provides an extended model for windows operators including positional,
temporal and non standard cross domain windows (e.g. slide n tuples every δ
seconds). The following expressions represent some very useful windows: (a) S[L]
contains the last tuple of a stream;
(b) S[A/L] is the partitioned window containing the last tuple of each sub-stream
identified with the attribute A. For example Transaction[StOpName/L] con-
tains the last known transaction for each stock option.
(c) S[N slide Δ] is a sliding window of size N sliding Δ every Δ. N and
Δ are either a time duration or a number of tuples. For instance, Q1’ is
written as (σV olume>10000(Transactions))[100 slide 1]. The window is 100 tu-
ples large and slides of 1 tuple whenever one new tuple arrives. Q2’ is
πPrice(Transactions[2 days slide 1]). The window is 2 days large and slides
of 1 tuple whenever one new tuple appears.
1 These definitions can be extended using the notion of batch [16].



Top-k Context-Aware Queries on Streams 401

StOpName Cat Country ET ime Rate Method

t1 MS it USA T1 0.30 M1
t2 AP it India T2 0.55 M1
t3 USSteel c USA T1 0.20 M2
t4 Petr4 c Brazil T2 0.40 M2
t5 Bel5 m Venezuela T3 0.55 M2

(a)

t

t

t

t

t
1

23

4

5

(b)

Fig. 1. Instance of StockOption � Volatility and Better-than Graph associated to Γ

A stream can be generated from a temporal relation using a streamer operator.
Among them, IS(R) produces the stream of tuples inserted in R. Streamers and
windows may be composed in order to join two streams or a stream and a
relation. Given a window description W , a streamer Sc and a join condition
c, the join operator (stream×relation)→stream can be defined as: S �c R =
Sc(S[W ] �c R). In the following we will use: S �c R = IS(S[L] �c R). The
stream S �c R contains tuples generated by updates in R. Other types of join
operators can be defined. For instance, tuples can be added to the output stream
only for new tuples in S and not when R is updated: the semi-sensitive-join
operator (stream×relation)→stream produces a stream resulting from a join
between the last tuple of the stream and the relation at the time of the last
tuple of the stream: S c R = IS(S[L] �c R(τS(S[L]))). Here τS denotes the
function that gives the timestamp of a tuple in the stream S. (see [16] for more
details). For instance, query Q3’ is written as

πPrice((Transactions (σCategory=IT (StockOption)))[2 days slide 1]).

The expression for query Q4’ provides a stream built from the join between the
Transaction stream, the last known values of the V olatility and the StockOption
relation. The required windows expression is [W ] = [30 min slide 30 min].

3.2 The Preference Model

In this section we present the main concepts concerning the logical formalism
for specifying and reasoning with preferences. Details can be found in [4,5].

Let R be a relational schema with attributes Attr(R) = {A1, A2, ..., An}. R
can be a non-temporal or temporal relational schema. If R is temporal then one
of its attributes is T (time). For each attribute A ∈ Attr(R), let dom(A) be
the set of values of A (the domain of A). The set Tup(Attr(R)) = dom(A1) ×
dom(A2) × ... × dom(An) is the set of all possible tuples over Attr(R).

Definition 1 (Contextual Preference Rules). A conditional preference rule
(or cp-rule for short) over the relational schema R is a statement ϕ of the form:
ϕ: u → Q1(X) � Q2(X) [W ] where:
• X is a non-temporal attribute of R, W ⊆ Attr(R), X �∈ W ,
• Qi(X) (for i = 1, 2) is a statement of the form Xθa where θ ∈ {=, �=,≤,≥, <
, <} and a ∈ dom(X).



402 L. Petit et al.

• There is no x ∈ dom(X) satisfying both Q1(X) and Q2(X) simultaneously.
For instance, X > 1 and X ≤ 3 cannot be considered as statements Q1(X) and
Q2(X) in the right side of a cp-rule, since X > 1 ∩ X ≤ 3 = (1, 3] �= ∅.
• u is a conjunction of simple statements of the form: A1θ1a1 ∧ ... ∧ Akθkak,
where θi ∈ {=,≤,≥, <, <} for i = 1, ..., k. We assume X and the attributes in
W do not appear among the attributes of u.

The formula u in the left side is called the context of the rule ϕ. The statement
Q1(X) � Q2(X) in the right side is called the preference statement and the
attributes in W are called the ceteris paribus attributes. This will be clearer
in the sequel. A tuple t ∈ Tup(Attr(R)) is said to be compatible with a cp-
rule ϕ if t satisfies its context. For instance, the tuples t1 = (1, 2, 4, 1) and
t2 = (0, 2, 5, 6) over the relation schema R(A, B, C, D) are compatible with the
cp-rule (A < 2 ∧ B = 2 ∧ C > 3) → (D ≤ 2 � D > 4). The context of this
cp-rule is the formula (A < 2 ∧ B = 2 ∧ C > 3) and its preference statement
is (D ≤ 2 � D > 4). Intuitively, this cp-rule means that between two tuples
compatible with the context (A < 2 ∧ B = 2 ∧ C > 3) I prefer the one with
D ≤ 2 than the one with D > 4. So, between the tuples t1 and t2, I prefer t1.

A contextual preference theory (cp-theory for short) over R is a finite set of
cp-rules Γ over R. We denote by Attr(Γ ) the set of attributes appearing in the
cp-rules of Γ . Notice that Attr(Γ ) ⊆ Attr(R).

Example 1: Let us consider the two preference statements P1 and P2 of our
motivating example. They can be expressed by the following cp-theory over the
schema T (StOpName, Cat, Country, ET ime, Rate, Method):
• ϕ1: Cat = c → (Rate < 0.25 � Rate ≥ 0.25), [M ]
• ϕ2: Cat = it → (Rate ≥ 0.35 � Rate < 0.35), [M ]
• ϕ3: Rate > 0.35 → (Country = Brazil � Country = V enezuela)

The attributes between brackets mean that in order to compare two tuples by
means of a cp-rule, these tuples must coincide on these attributes. For the other
attributes there is no restriction. For instance, in the scenario of Example 1, let
t1 and t2 as described in Figure 1(a). Then t1 and t2 can be compared by using
the rule ϕ2, since they have the same context (Cat = it), the Rate (volatility
rate) of t2 is greater than 0.35 and the Rate of t1 is lower than 0.35, and the
method used to measure Rate is the same for both tuples.

It is clear by now that a cp-rule ϕ over R induces a binary relation (denoted by
�ϕ on the set Tup(R): the set of pairs (t, t′) such that t is better than t′ according
to ϕ. Of course, this binary relation is not necessarily an order relation, since
it is not always transitive. In the following we define the notion of Preference
Relation induced by a cp-theory Γ .

Definition 2 (Preference Relation). Let Γ be a contextual preference theory
over a relational schema R (temporal or non-temporal). The Preference Relation
associated to Γ (denoted by �Γ ) is defined as: �Γ = (

⋃
ϕ∈Γ �ϕ)∗, where ∗

denotes transitive closure.

Example 2: Let us consider the cp-theory Γ of Example 1. Let us consider
instances I and J of relation schemas StockOption and V olatility respectively,



Top-k Context-Aware Queries on Streams 403

such that the result of StockOption � V olatility(I, J) is given in Figure 1(a).
It is clear that t3 �ϕ1 t4 and t4 �ϕ3 t5. Then, by transitivity, we conclude that
t3 �Γ t5. Notice that t3 and t5 cannot be compared using only one rule in Γ .
However, they can be compared by transitivity using different rules in Γ .

Discussion. We say that a cp-theory Γ is consistent if and only if the induced
order >Γ is irreflexive and consequently, a strict partial order over Tup(R). In
[17], a sufficient condition for ensuring consistency of a cp-theory is given. This
condition involves testing the acyclicity of the dependency graph associated to
the cp-theory and its local consistency. For lack of space we omit the details.
In this paper, we will suppose our cp-theories are consistent, that is the asso-
ciated Preference Relation �Γ is a strict partial order. For more details on the
theoretical foundations and consistency test see [5].

4 Introducing Preference Operators into ASTRAL

Let us focus on the integration of contextual preferences in the ASTRAL algebra.
This Section presents the syntax and semantics of the preference operators inte-
grated to ASTRAL whereas Section 5 presents the algorithms for implementing
them.

4.1 Global Approach

The objective of our proposal is to provide an integrated solution where the full
expressivity of both, queries and preferences are available. We propose to capture
the semantics of the preference evaluation as algebraic operators that extend the
ASTRAL algebra. Such preference operators can be part of instantaneous and
continuous queries performing on streams and relations, and using any of the
existing operators. Particularly, queries involving data streams can use the wide
variety of temporal, positional and hybrid windows[15]. The preference operators
calculate user preferred answers according to the available cp-theory. Each user
provides the system with his/her preferences (a cp-theory Γ ) which become
some kind of user profile. During querying, these preferences are used for answer
customization if the user asks for. Concretely, we will allow powerful contextual
most preferred and top-k queries by the introduction of two operators:

(1) The BestΓ operator selects a subset of optimal tuples according to user
preferences Γ .
(2) The KBestΓ operator selects the K most preferred tuples respecting the
preference hierarchy specified by Γ . For the sake of simplifying the presentation
we omit the subscript Γ whenever it is implied by the context.

4.2 Best and KBest Operators

The Best operator selects from a given temporal or non-temporal relation those
tuples which are not dominated by other tuples according to the preference order
inferred from Γ (see Definition 2).



404 L. Petit et al.

Definition 3 (Best). Let R be a relational schema and Γ be a cp-theory over
R. Let r(t) be an instance over R at time t Best(r(t)) = {u ∈ r(t) |� ∃v ∈ r(t)
such that v �Γ u }

The operator KBest selects the top-k tuples according to the preference hier-
archy dictated by Γ . Intuitively, KBest(I, k) returns the set of k tuples of I
having the minimum number of tuples dominating them in the preference hier-
archy. In order to define its semantics, we need first to introduce the notion of
level of a tuple u (denoted by l(u)) according to a cp-theory Γ . The level of a
tuple reflects “how far” is the tuple from the most preferred ones (those which
best fit the user preferences).

Definition 4 (Level). Let R be a relational schema and Γ be a cp-theory over
R. Let r(t) be a tuple-set or instance of R at time t, and let tuple u ∈ r(t). The
level of u, l(u), according to Γ is inductively defined as follows:

– If there is no u′ ∈ r(t) such that u′ �Γ u, then l(u) = 0.
– Otherwise l(u) = 1 + max{l(u′) | u′ �Γ u}

It is easy to show that if u � u′ then l(u) < l(u′). The reverse implication does
not hold. The semantics of the KBest operator is defined as follows.

Definition 5 (KBest). Let R be a temporal (or non-temporal) relation and
Γ be a cp-theory over R. Let r(t) be a tuple-set or instance of R at time t.
KBest(r(t), k) is the set of the k tuples ∈ r(t) with the lowest levels. The posi-
tional order is used to sort tuples at the same level.

The following examples illustrates the semantics of both operators.
Example 3: Let us consider the cp-theory Γ = {ϕ1, ϕ2, ϕ3} of Example 1 and
the temporal relation I of Figure 1(a). Figure 1(b) shows the Better-Than Graph
G (BTG )associated to cp-theory Γ over I. The nodes are the tuples of I. An
edge (ti, tj) expresses that ti is preferred to tj according to a rule of Γ . A dotted
edge (ti, tj) means that ti is preferred to tj by transitivity. We have that Best(I)
= {t1, t3}, since these are the tuples which are not dominated by others. Note
that level(t1) = level(t3) = 0, level(t2) = level(t4) = 1 and level(t5) = 2. So,
KBest(I, 3) = {t1, t3, t2}. As t2 and t4 have the same level in the preference
hierarchy the positional order is used to decide between them.

As an example of a query in the extended ASTRAL algebra, let us consider the
query Q2 of Section 2. It is expressed in the extended algebra by:
πPriceBest(Transactions[2days slide 1])

5 Best and KBest Algorithms
This section presents the algorithms we propose to evaluate the Best and KBest
operators (see section 5.2). As such operators require the preference hierarchy
of tuples which is represented by a BTG, the algorithms to create the BTG are
first introduced in section 5.1. Section 5.3 presents an incremental alternative to
manage the BTG.



Top-k Context-Aware Queries on Streams 405

Algorithm 1. Compare(t1, t2, ϕ)
Data: ϕ : u→ Q1(X) > Q2(X) [W ]
Result: {1,−1, ∅},

resp. {t1 >ϕ t2, t1 <ϕ t2, inc.}
if t1 �|= u || t2 �|= u then return ∅
foreach V ∈W do

if t1(V ) �= t2(V ) then return ∅
if t1 |= Q1(X) & t2 |= Q2(X) then

return 1

if t2 |= Q1(X) & t1 |= Q2(X) then
return −1

return ∅

Algorithm 2. CompT(t1, t2, Γ )
(without transitive closure)

Data: Γ = {ϕ1, ..., ϕk} a
cp-theory

Result: {1,−1, ∅},
resp. {t1 >Γ t2, t1 <Γ t2, inc.}

foreach ϕk ∈ Γ do
r ← Compare(t1, t2, ϕk)
if r �= ∅ then return r

return ∅

5.1 The Preference Hierarchy and the Better-Than Graph

First and foremost, we introduce the algorithm to establish the preference or-
der between two tuples t1 and t2 according to a rule ϕ. The straight forward
Algorithm 1 returns ∅ if t1 and t2 are incomparable, 1 if t1 is more preferred
than t2 and -1 otherwise. Algorithm 2 extends the comparison to a cp-theory
Γ . It relies on the set of rules (ϕn) to identify the preference order. However,
it does not compute the transitive closure as stated in the cp-theory definition.
The transitivity will be computed in the preference algorithms.

Better-Than Graph: The Best and KBest preference operators are applied on
a tuple-set TS and require the BTG of TS. For its implementation we adopt the
Graph(Next, Prec, Src) defined as follows: Next associates to each tuple the
list of its direct dominated tuples. Prec associates to each tuple the list of tuples
that directly dominate it. Src, the no-dominated tuples, that is the sources of
the graph. From a formal point of view:

Next = s ∈ TS �→ {s′ ∈ TS, ∃ϕn ∈ Γ, s >ϕn s′}
Prec = s ∈ TS �→ {s′ ∈ TS, ∃ϕn ∈ Γ, s <ϕn s′}
Src = {s ∈ TS, Prec(s) = ∅}

To provide good performance, the implementation of the graph uses hash-sets
and hash-maps. The Next and Prec functions also have a keys() method defined
by: s ∈ F.keys() ⇔ F (s) �= ∅.

The construction and maintenance of the graph require Insert and Delete
methods. To insert a tuple, Algorithm 3 iterates over the graph to update Next,
Prec and the Src set. As the cost of insertion and deletion in a hash structure
can be considered as O(1), the global cost of the insertion of a tuple in the graph
is O(|G|). The deletion of a tuple s, presented in Algorithm 4, is an iteration
over the nodes connected to the one we delete2. The cost is O(degree(s)).

2 As a recall, in graph theory, the number of edges connected to a node is called the
degree of a node.



406 L. Petit et al.

Algorithm 3. G.Insert ;
Insert a tuple in the BTG

Input: A tuple s, Γ and the
BTG structure

L← Prec.keys()∪Src
Src.add(s)
foreach s′ ∈ L do

r ← CompT(s, s′, Γ )
if r > 0 then

Src.remove(s′)
Prec.put(s′, s)
Next.put(s, s′)

else if r < 0 then
Src.remove(s)
Prec.put(s, s′)
Next.put(s′, s)

Algorithm 4. Graph.Delete ; Removes a
tuple from the BTG

Input: A tuple s and the BTG structure
Src.remove(s) ; P ← Prec.remove(s) ;
Dom← Next.remove(s)
foreach s′ ∈ P do

Anc← Next.get(s′)
if Anc.size() = 1 then Next.remove(s′)
else if r < 0 then Anc.remove(s)

foreach s′ ∈ Dom do
Anc← Prec.get(s′)
if Anc.size() = 1 then

Src.add(s′)
Prec.remove(s′)

else if r < 0 then Anc.remove(s)

Given a known cp-theory Γ and a tuple-set, the construction of the entire
BTG relies on the insert method (see Algorithm 6).

5.2 Evaluation of Best and KBest

By definition, the Graph includes Src which corresponds to the most preferred
tuples. Src is the answer of the Best operator. However, Algorithm 3 can be
optimized by avoiding the entire construction of the BTG. The Prec.put and
Next.put sequences can be suppressed from it. This variant will be named Src in
section 6. It’s complexity is so reduced to O(|Src|). The complexity of Best(R)(t)
becomes O(NS) where N = |R(t)| and S = |Best(R)(t)|.

The main algorithm used to compute KBest from the BTG is a Kahn-
topological sort limited to k results. See Algorithm 5.

Its complexity is majored by the complexity of the Kahn algorithm which is
O(N + |Next|). The limitation to k introduces a global factor k

N . Leading to
O(k + kD)), where D is the average degree of each node (majored by O(N)).
The complexity of KBest is therefore O(N2). Moreover, as k is usually small
compared to N , and D is more likely to be very small compared to N (many
tuples are not comparable) then the major complexity factor comes from the
construction of the BTG.

5.3 Incremental Evaluation of BTG

This section introduces the obtention of BTG in an incremental way. This is
motivated by queries over data streams where preferences are evaluated on se-
quences of windows. The BTG is required for the tuple-set contained in the
current window. As two successive windows may overlap, then the new BTG
can be constructed by incremental updates of the current one. The implementa-
tion of Astral’s window sequences makes available two delta sets wrt the current
window and the next one: δ−R are the tuples that "exit" from the window and,



Top-k Context-Aware Queries on Streams 407

Algorithm 5. Calculate KBest(R)(t)
Data: The BTG structure, k the number of required tuples
Res ← new TreeSet() /* Ordered set */

if k < |Src| then /* Src contains more than k best items */
N ← |Src| − k /* The positional order in Src is used */
foreach s ∈ Src do /* to keep the k more "recent" items */

if N = 0 then Res.add(s)
else N ← N − 1

return Res
NextLvl ← Src; id← 0; PrecCount ← new HashMap()
while id < k and id < |Src|+ |Prec.keys()| do

if Buffer = ∅ then /* Buffer contains tuples with the same level */
foreach t ∈NextLvl do

Buffer.push(t)

NextLvl.clear()

t← Buffer.pop()
foreach s ∈ Next.get(t) do /* For each node dominated by t */

n←PrecCount.get(s)
if n =null then n =Prec.get(s).size()
if n = 1 then NextLvl.add(s) /* s is part of the next level */
else PrecCount.put(s, n− 1) /* There are more nodes to browse */

Res.add(t.copy(id++)) /* Update the positional order */

return Res

δ+
R are the ones arriving for the new window. There is no intersection between

these sets. These delta sets are used to obtain the BTG of the new window based
on the preceding one as shown in Algorithm 7.

The complexity of updating the BTG is O(
∣∣δ−R ∣∣ .D +

∣∣δ+
R

∣∣ .N), where D is the
average degree of a node in the graph. If we consider that the size of the δR are
similar and that D is ruled by O(N) then the complexity becomes O(|δR| .N).

Table. 1 hereafter summarizes the complexity of the preference operators for
the two BTG construction approaches. It is worth noting that the incremental
approach is really interesting if the delta sets are small compared to the total
number of nodes. A large portion of the current BTG can be reused for the new
one. If it is not the case the BTG creation "from scratch" performs better.

Learning Inferred Preferences
The proposed implementation applies the mathematical definition of the pref-
erence order and does not keep trace of inferred preferences. For instance, for
tuples s1, s2, s3, if s1 <Γ s2 and s2 <Γ s3 then by transitivity s1 <Γ s3. Now,
if s2 is no more in the current scope, we would say s1 �<Γ s3. However, at some
point in time it was known that s1 <Γ s3 and this knowledge could be reused. A
small change in the Graph.Remove function allows us to provide that semantics



408 L. Petit et al.

Algorithm 6. Create BTG
Input: A tuple-set TS
Data: The BTG structure
foreach s ∈ TS do Graph.Insert(s)

Table 1. Best/KBest complexity

BTG Incremental BTG
Best O(N.S) O(Δ.N)

KBest O(N2) O((Δ + k)N)

Algorithm 7. Incremental BTG
Input: δ−R and δ+

R

Data: The BTG structure
foreach s ∈ δ−R do

Graph.Remove(s)

foreach s ∈ δ+
R do

Graph.Insert(s)

(a) Varying Δ on KBest (for N = 500) (b) Varying N on KBest (for Δ = N)

Fig. 2. Computing time of Incremental BTG, Create BTG and Src maintenance

if desired. When removing a node, the preceding nodes will be linked to the
following nodes. The global complexity doesn’t change.

6 Experimental Results
The algorithms presented in this paper have been implemented as extensions of
the Astral DSMS Prototype3. These extensions have been facilitated by its SOA
architecture. We performed experiences to study the behaviour of both the Best
and the KBest operators.

Experimentation Setup: A quad-core Intel Xeon 2.6GHz computer with 6GB
of RAM is used along with the Sun/Oracle 1.6 JVM, an Apache Felix OSGi
platform with Astral. 30, 000 tuples have been gathered from real-world quotes4.
We used the preferences presented in Section 2 and the queries of the running
example. Let us focus here on the experiments with queries in the style of Q3
and Q4 of Section 2. These are top-k queries over stream.

S = Transaction (V olatility[StOpName/L] � StockOption)
3 Available at http://astral.googlecode.com under Apache 2 Licence.
4 Dump provided by Dukascopy’s Data Export service Available at
http://www.dukascopy.com/swiss/english/data_feed/csv_data_export

http://astral.googlecode.com
http://www.dukascopy.com/swiss/english/data_feed/csv_data_export


Top-k Context-Aware Queries on Streams 409

The query with the KBest operator uses sliding windows as follows:
KBest(S[N slide Δ], k)

Results: Experiments show that the evaluation time of KBest is dominated
by the construction/update of the BTG. We also observed the evolution of the
structure of the BTG from one window to the next one: the maximum level
varies from 2 to 6 and the number of non-dominated tuples varies from 1 to N .
Big changes in the structure of the graph are bad cases for the incremental BTG
algorithm (Algorithm 7) of the KBest operator.

Figure 2(a) shows the computing time of the two algorithms of BTG: create
(Algorithm 6) and incremental (Algorithm 7). It also shows the time for the al-
gorithm reduced to the Src maintenance. This can be used for the Best operator.
In the experiments we used several window sizes (N) and rates (Δ). We noticed
that changes in the rate do not impact the time for create BTG, whereas the
incremental algorithm performs 6 times better for a N/Δ ratio = 10. Surpris-
ingly, the two BTG algorithms behave similarly when Δ ∼ N which correspond
to few or no intersection between successive windows. This means that in the
incremental version, the deletions in the BTG do not take long time compared
to insertions. This may be not true when the BTG is a strongly connected graph
with nodes with high level (though very unlikely in practice).

The variation of the size of the window (figure 2(b) with Δ = N) shows that
the behavior is not impacted by the number of tuples involved. As expected,
the evolution is N quadratic and the incremental algorithm strictly follows the
performance of the create algorithm.

7 Related Work

The problem of enhancing well-known query languages with preference features
has been tackled in several recent and important work in the area. For a compre-
hensive survey on preference modeling, languages and algorithms see [10]. In this
section we present some related work concerning contextual preference support
in traditional databases and preference support in stream data.

Contextual Preference Support. In the database field, several proposals for
incorporating context in query languages exist in the literature. In [11] prefer-
ences are expressed in a quantitative format, that is, by means of scores associ-
ated to attribute-value clauses. A contextual query is a standard query enhanced
with a user context. The main problem tackled in these papers is identifying
the preferences that are most relevant to a contextual query and presenting an
algorithm to locate them. The approach we adopt in this paper follows a qual-
itative model to express preferences: preferences are expressed by a (small) set
of rules from which is inferred a strict partial order on tuples. Moreover, we as-
sume that the contextual preferences are given and incorporated into the query
language syntax. Qualitative approaches has many advantages when compared
to quantitative ones due to their conciseness and deduction capability.

Top-k Preference Queries. In [6] the top-k queries have been introduced in a
quantitative preference model setting, that is, where preference between tuples



410 L. Petit et al.

is expressed by a score function defined over the dataset. The top-k dominating
queries have been introduced in [14] as an extension of the skyline queries of
[3] which were originally designed to return the most preferred tuples, without
any user control on the size of the result. A top-k dominating query returns
the k tuples which dominated the maximum amount of tuples in the database.
This concept is orthogonal to the skyline and pareto queries, as well as to the
approach CPrefSQL we adopt in this paper.

Preference Support on Stream Data. Most work on preference queries in
data streams [12,13,9] concern methods for the continuous evaluation of skyline
queries, top-k queries and top-k dominating queries under the sliding window
model. In these proposals, a preference operator is coupled with two forms of
the sliding window operator over data streams: the count-based and the time-
based ones. In the count-based sliding window the last N tuples of a stream
are returned and for each arriving tuple, the oldest one expires. In the time-
based sliding window, the active tuples are those arrived during the last T time
instants. The preference operators are applied to the set of tuples returned after
a sliding window execution over the stream. To the best of our knowledge no
previous work exists that proposes a stream algebra incorporating both stream
and preference operators. A comprehensive survey on continuous processing of
skyline, top-k and top-k dominating queries can be found in [8].

Contextual Preferences on Data Streams. A recent work treating contex-
tual preferences in data streams (coming from sensors) is [2]. The authors propose
a preliminary and informal methodology described through a real-world exam-
ple that tries to combine the research topics of context-awareness, data mining
and preferences. The paper does not tackles the problem of incorporating the
discovered preferences into a query language on sensor data.

8 Conclusion and Future Work

This paper proposes an integrated solution to support user personalized queries
in rich data environments involving real time data streams and persistent data
and providing powerful querying capabilities. Instantaneous and continuous pref-
erence queries are supported. They can benefit of the whole expressivity of Astral
and particularly of the large variety of window support (positional, temporal and
cross-domain windows) to manage data streams. The contributions of this work
include the definition and implementation of preference operators as an exten-
sion of Astral. Our experiments allowed to identify patterns of queries (based on
the window characteristics) that can be used to decide the best strategy to op-
timize the query evaluation. Our future research will focus on new optimization
approaches and on the distributed evaluation of the preference queries.

Acknowledgment. This work is partially supported by CAPES, the STIC-
AmSud ALAP project, CNPq and FAPEMIG and the project BQR Arteco of
the Grenoble Institute of Technology. We also would like to thank the Sigma
team and M. Echenim of the LIG laboratory for their support.



Top-k Context-Aware Queries on Streams 411

References
1. Arasu, A., Babcock, B., Babu, S., Cieslewicz, J., Datar, M.: STREAM: The Stan-

ford Data Stream Management System. In: Data Stream Management: Processing
High-Speed Data Streams (January 2004)

2. Beretta, D., Quintarelli, E., Rabosio, E.: Mining context-aware preferences on re-
lational and sensor data. In: 6th International Workshop on Flexible Database and
Information System Technology (FlexDBIST 2011)in Conjonction with the 22nd
International Conference on Database and Expert Systems Applications (DEXA),
pp. 116–120 (2011)

3. Borzsonyi, S., Kossmann, D., Stocker, K.: The skyline operator. In: Proc. 17th In-
ternational Conference on Data Engineering (ICDE 2001), Germany, pp. 412–430
(2001)

4. de Amo, S., Pereira, F.: Evaluation of conditional preference queries. In: Proceed-
ings of the 25th Brazilian Symposium on Databases, Belo Horizonte, Brazil (October
2010); Journal of Information and Data Management (JIDM) 1(3), 521–536 (2010)

5. de Amo, S., Pereira, F.: A context-aware preference query language: Theory and
implementation. Technical report, Universidade Federal de Uberlândia, School of
Computing (2011)

6. Hristidis, V., Koudas, N., Papakonstantinou, Y.: Prefer: A system for the efficient
execution of multi-parametric ranked queries. In: Proceedings of ACM SIGMOD
International Conference on Management of Data, Santa Barbara, CA, USA, pp.
259–270 (2001)

7. Kießling, W., Köstler, G.: Preference sql - design, implementation, experiences. In:
Proceedings of the Int. Conf. on Very Large Databases, pp. 990–1001 (2002)

8. Kontaki, M., Papadopoulos, A.N., Manolopoulos, Y.: Continuous Processing of
Preference Queries in Data Streams. In: van Leeuwen, J., Muscholl, A., Peleg,
D., Pokorný, J., Rumpe, B. (eds.) SOFSEM 2010. LNCS, vol. 5901, pp. 47–60.
Springer, Heidelberg (2010)

9. Kontaki, M., Papadopoulos, A.N., Manopoulos, Y.: Continuous top k-dominating
queries. Technical report, Aristotle University of Thessaloniki (2009)

10. Koutrika, G., Pitoura, E., Stefanidis, K.: Representation, composition and applica-
tion of preferences in databases. In: International Conference on Data Engineering
(ICDE), pp. 1214–1215 (2010)

11. Stefanidis, K., Pitoura, E.: Fast contextual preference scoring of database tuples.
In: Proceedings of the International Conference on Extending Database Technology
(EDBT), pp. 344–355 (2008)

12. Morse, M., Patel, J.M., Grosky, W.: Efficient continuous skyline computation. In-
formation Sciences 177, 3411–3437 (2007)

13. Mouratidis, K., Bakiras, S., Papadias, D.: Continuous monitoring of top-k queries
over sliding windows. In: Proceedings of SIGMOD, pp. 635–646 (2006)

14. Papadias, D., Tao, Y., Fu, G., Seeger, B.: Progressive skyline computation in
database systems. ACM Transactions on Database Systems 30, 41–82 (2005)

15. Petit, L., Labbé, C., Roncancio, C.L.: An Algebric Window Model for Data Stream
Management. In: Proceedings of the 9th International ACM Workshop on Data
Engineering for Wireless and Mobile Access, pp. 17–24. ACM (2010)

16. Petit, L., Labbé, C., Roncancio, C.L.: Revisiting Formal Ordering in Data Stream
Querying. In: Proceedings of the 2012 ACM Symposium on Applied Computing.
ACM, New York (2012)

17. Wilson, N.: Extending cp-nets with stronger conditional preference statements. In:
AAAI, pp. 735–741 (2004)



S.W. Liddle et al. (Eds.): DEXA 2012, Part I, LNCS 7446, pp. 412–421, 2012. 
© Springer-Verlag Berlin Heidelberg 2012 

Fast Block-Compressed Inverted Lists 

Giovanni M. Sacco 

Università di Torino, Dipartimento di Informatica, Corso Svizzera 185, 
10149 Torino, Italy 

giovanni.sacco@unito.it 

Abstract. New techniques for compressing and storing inverted lists are pre-
sented. Differently from previous research, these techniques are especially  
designed for volatile inverted lists and combine different types of compression 
(including prefix compression) with block segmentation to allow easy inser-
tion/deletion of pointers and, most importantly, to significantly reduce execu-
tion times while keeping storage requirements close to a baseline monolithic  
inverted list implementation based on Elias’s δ codes. Inverted lists for infor-
mation retrieval are addressed and experiments are reported. The best method 
uses an optimized block-oriented evaluation that is able to efficiently skip irre-
levant pointers and that has an observed average execution time which is less 
than 65% of the baseline implementation. 

1 Introduction 

An inverted list <Kj, { p0, …, pi, …, pN-1 }> is a data structure that stores a mapping 
from a key Kj (such as, for instance, a database key or a query term) to a list of one or 
more pointers pi to objects in a structured, semi-structured or unstructured database. 
Inverted lists are used in many information technology applications. In addition to 
structured databases, an important application area is information retrieval [1]. In this 
context, the key represents a term (or, usually, a unique term identifier assigned 
through a lexicon) and the list enumerates all the documents which contain that term. 
An important, emerging area is represented by dynamic taxonomies [9, 10], where the 
deep extension of concepts (i.e. the set of objects classified under a concept or one of 
its descendants) can be represented by inverted lists.  

The key in an inverted list may be of variable size. The list is usually kept ordered 
because this allows to perform list operations such as intersection, union, subtraction, 
etc. by merging, in linear time. Inverted lists are accessed through inverted indices 
that allow quick access to the inverted list corresponding to a search key. Inverted 
indices are usually stored in secondary storage, and are often organized as B-trees or 
variations [4]. Indices are usually organized into fixed-size pages, a page being the 
minimum access unit.  

Usually, the inverted list itself is stored in a different secondary-storage area, ma-
naged as a heap. This requires an additional access for accessing the inverted list from 
the index, and is not efficient for volatile environments where the inverted list can 
grow or shrink. In this present paper, we assume that the inverted lists are stored in 



 Fast Block-Compressed Inverted Lists 413 

the inverted index, i.e., the records inserted in the index are the inverted lists them-
selves, and the index keys are the inverted list keys. In this context, several problems 
arise. First, for large information bases or information bases with a non-uniform dis-
tribution of keys, many inverted lists may contain a very large number of pointers, 
and, in general, span several pages. It is quite difficult and expensive to perform inser-
tions and deletions in these cases, if the pointers in the inverted list are to be  
maintained ordered so that list operations can be performed in a linear time. A main 
memory space equal to the size of the list is usually required, and lists that cannot be 
entirely stored in a single page require complex allocation strategies.  

Even if list operations on sorted lists can be performed in linear time, they can be 
too expensive in very large applications, so that more efficient strategies are desirable. 
At the same time, these strategies must use effective compression techniques because, 
in naïve implementations, the overhead of inverted lists and indices can be so large as 
to be impractical.  

The present paper introduces a number of different strategies for the representation 
of inverted lists. Its main contributions are:  

• better execution times for inverted list operations. The focus is on the optimi-
zation of intersections, because they are the most frequent operations in prac-
tice. The block-oriented evaluation that we propose is generally sublinear with 
respect to the number of pointers in the lists; 

• easy support for insertions/deletions on volatile index files, while exhibiting an 
acceptable overhead over standard methods.  

The first strategy we introduce is the normalized strategy, in which each inverted list for 
a key K is “exploded” into its constituent pairs <K, pi>, where pi is the i-th pointer in the 
list and each pair is a record in the index file. This architecture is the simplest one to 
implement, because insertions and deletions are performed through the inverted index 
insertion and deletion primitives. In order to reduce the storage overhead that is implied 
by the replication of the key for each pointer, a prefix compression is used [12], in 
which the prefix in common with the previous record is not stored, but represented by 
its length. Prefix compression, also called front compression and explained in more 
detail in the following, is one of the important parts of our overall strategy. 

The normalized strategy can be improved by the interval normalized strategy 
which represents an interval L of contiguous values by a single record containing the 
first pointer in L and the coded length of L minus 1. This strategy is especially effec-
tive for longer and consequently “denser” inverted lists. The interval normalized 
strategy represents a block of values through a single record, and, as we will show, 
exploits blocking to optimize evaluation.  

Blocking is carried over to non-contiguous intervals, and block-compressed strate-
gies are presented for sparse intervals. These strategies represent a sparse interval of 
the inverted list by a single record, which contains a triple <K, p, s>, where K is the 
key of the inverted list, p is the first pointer in the sparse interval, and s is the sparse 
interval coded by Elias’s δ codes [6]. Block-oriented evaluation can be extended to 
sparse interval in order to improve evaluation. Two variants of this strategy are  
discussed. Finally, a hybrid strategy, which combines interval normalized and  



414 G.M. Sacco 

block-compressed strategies is presented.  These strategies can easily manage inser-
tions and deletions by a B-tree like implementation, discussed in the following. 

These strategies are compared to an efficient baseline simple δ implementation 
which consists of monolithic inverted lists, where pointers in the list are represented 
by their gaps and these gaps are coded by Elias’s δ codes. This method is discussed in 
the following. 

2 Previous Research 

Although inverted lists were proposed several decades ago, there has recently been a 
renewed research interest on their effective implementation. Storage schemes are 
investigated in [13, 15]. The baseline method we will use for comparison is one of the 
best global compression methods proposed in [13]. The method stores, for each key, a 
monolithic inverted list, where pointers in the list are represented by their gaps and 
these gaps are coded by Elias’s δ codes. As an example, consider the list { 1, 13, 27 }. 
This list is represented by the difference (gap) between pointer pi and the previous one 
pi-1. For p0, this difference is the value of the pointer itself (i.e.  p-1=0). Thus the list 
becomes { 1, 12, 14 } and is coded by Elias’s δ codes: variable-length universal codes 
which use a number of bits Lx to code the integer x, where Lx = 1+2 log log 2x + 
log x.  The compression obtained by this method is shown to be quite good and 
close to the best known performance for global models, with a reasonable time 
required for compression and decompression. Global compression models can be 
outperformed by local models [13], that take into account the observed frequencies in 
each inverted list. These methods are not considered here, because they are difficult to 
apply to volatile environments. 

Efficient execution schemes that use auxiliary indices are discussed in [2]. Hybrid 
storage strategies, that use different storage representations for inverted lists in the 
same index, are discussed in [13] and in [5]. Compression improvements can be 
obtained by document reordering [11, 14] or by using pointers to blocks of text [8]. 

All these proposals are based on monolithic architectures that represent the 
inverted list as an atomic record. Consequently, they suffer from the problems we 
have discussed before regarding the management of long inverted lists, and, in 
general, of volatile indices. Also, and most importantly, the execution of operations 
on lists, e. g. intersections, require that all the pointers in the lists be processed, and 
this can require high processing times. 

3 Inverted List Representation 

3.1 Normalized Inverted Lists 

A normalized inverted list structure represents the inverted list <Kj, { p0, …, pi, …, 
pN-1 }> through N records containing the constituent pairs of the inverted list, i.e., 
<Kj, pk>, 0≤k≤N-1. This type of representation is called normalized by analogy with 
the First Normal Form in relational databases. A normalized representation makes 



 Fast Block-Compressed Inverted Lists 415 

insertions and deletions in an ordered inverted list trivial, because such operations are 
performed by the normal record insertion/deletion operations on the inverted index 
with no additional implementation required. In addition, very large inverted lists can 
be managed effortlessly through standard index operations. As we noted before,  
inverted lists are difficult to implement in the standard single-record architecture  
because they usually require a main memory space equal to the size of the list, and 
complex allocation strategies if the list cannot be entirely stored into a single page. 

The single but quite significant disadvantage of this architecture is that the key of 
the inverted list is replicated for each pointer, leading to a potentially large waste of 
storage space. In order to avoid this overhead, a prefix compression can be used. In 
prefix compression, the records in each page are stored sequentially according to the 
key logical order, and the prefix of a record which is the same as the prefix of the 
previous record is not explicitly stored but factored out. Since prefix compression 
usually requires a larger computational effort to search for a specific key, efficient 
methods for locating the required key within a page were devised, but are not de-
scribed here. 

In order to access the entire normalized inverted list, a prefix scan is implemented. 
The prefix scan for a search key K’ uses the index to access the first record <Kj, p0>, 
with Kj =K’ (K’ is the prefix of the record to be found). Subsequently, it performs a 
sequential scan fetching all the subsequent records with Kj =K’, until a record with Kl 
>K’ or the end of file is encountered. In order to simplify prefix scans and to improve 
compression, normalized list data (including the list key) are usually stored in such a 
way as to maintain lexicographic order in byte-by-byte comparisons. In particular, 
numeric data and pointers are usually stored in big-endian order, i.e., the most signifi-
cant byte is stored first.  

By compressing the common prefix of consecutive records, the overhead of the 
key in each pair is eliminated at the slight expense of storing the encoded common 
prefix. In addition, the prefix compression will usually compress a significant part of 
the pointer, which is stored in big-endian byte order. Finally, prefix compression will 
also compress the common prefix of two different consecutive keys. 

Table 1. Intersection by merging 

void MergeIntersect(Result& r)
{ 
 int i, j; 
 int cA, cB; 
 cA=m_cursors[0]->NextPtr(); cB=m_cursors[1]->NextPtr(); 
 while(cA>=0 && cB>=0) 
 { 
  if(cA==cB)  
  { 
    r.Add(cA);  
    cA=m_cursors[0]->NextPtr(); cB=m_cursors[1]->NextPtr(); 
  } 
  else  
  if(cA<cB) cA=m_cursors[0]->NextPtr(); 
  else cB=m_cursors[1]->NextPtr(); 
 } 
} 



416 G.M. Sacco 

The implementation of list operations is by merging (see Table 1 for intersection) 
and it is analogous to normal inverted list operations. Only two inverted lists are con-
sidered, for simplicity; the extension to n-ary operations is straightforward.  

The algorithm for intersection is written in terms of cursors. A cursor is an object 
used to sequentially scan a (normalized) inverted list. The cursor maintains the current 
position cp in the list (initially, the cursor is positioned before the first pointer, i.e. 
cp=-1), and implements two operations: the Next operation and the MoveTo opera-
tion. The Next operation advances the current position and returns the corresponding 
pointer ptr[cp] or an end-of-scan condition. The MoveTo(X) operation advances the 
current position until the corresponding pointer is equal to or larger than X (or an end-
of-scan occurs). If X is equal to or smaller than ptr[cp], the current position is not 
changed. 

3.2 Interval Normalized Inverted Lists 

In some cases, such as higher-level concepts in dynamic taxonomies and inverted lists 
for very frequent terms, inverted lists are very dense and consequently there is a high 
probability of sequences of contiguous pointers. Although contiguous pointers are effi-
ciently compressed by prefix compression, a different representation can achieve a bet-
ter compression and, at the same time, a more efficient evaluation of list operations.  

We focus on the representation of intervals of contiguous values. An interval nor-
malized record is no longer a pair <Kj, pi> but a triple <Kj, pi, deltai>, where delta is 
the length of a run of contiguous pointers and consequently deltai=0 if the next pointer 
pi+1 is not contiguous to pi. Since non-uniform key distributions make one-element 
lists frequent, their space requirements should be minimized. By using a variable-
length record and discarding the null most significant bytes in delta, we minimize the 
overhead of delta. The actual value of delta can be trivially reconstructed, and delta=0 
requires no storage, so that normalized inverted list records are just a special case of 
interval list records. 

In addition to a more efficient data compression, interval representation allows list 
operations that potentially have a sublinear complexity in the number of pointers in the 
list. Although the same merge implementation used for normalized lists could be used, 
we can derive a more efficient algorithm by exploiting the organization by intervals.  

First, we extend cursors to account for intervals. Each list i has a current cursor Ci 
whose component Ci.pos identifies the current position in the ordered list of records, 
and whose component Ci.cont represents a range of contiguous pointers in the form 
<ps, pe>, where ps identifies the first pointer in the range and pe the last pointer in the 
range. Ci.cont is set when the current record (identified by Ci.pos) is read and it is 
derived from the current record <K, p, delta>, where p is the first pointer in the range, 
and delta is the length of the interval of contiguous pointers, by setting ps=p and 
pe=ps+delta.  

The Next operation can be easily supported, but it is not required by the algorithm. 
Instead, we focus on the MoveTo(x) operation. When the cursor is to be advanced to a 
value x, the following cases occur. If x≤Ci.cont.pe, the cursor is not advanced, and 
Ci.cont.ps is set to x if Ci.cont.ps≤x (Ci.cont.ps is not changed otherwise).  



 Fast Block-Compressed Inverted Lists 417 

If x>Ci.cont.pe, the cursor is advanced to the next record until Ci.cont.ps≤x≤Ci.cont.pe 
(if Ci.cont.ps<x, then Ci.cont.ps is set to x). If such record does not exist, an end-of-
scan condition is raised and the processing for the list is terminated.   

Now, we can process intersection by focusing on contiguous pointer intervals ra-
ther than on pointer values. Consider two lists i and j and compute maxp as max(psi, 
psj) and minp as min(pei, pej). 

If maxp>minp, the two intervals are disjoint. Both cursors are moved to maxp (the 
cursor k whose psk=maxp is not moved by definition). No pointer value smaller than 
maxp needs to be considered. 

If maxp ≤ minp, the intersection of the two lists is given by [maxp, minp]; all the 
values in the interval or (more efficiently) the interval itself can be output. The cur-
sors are advanced to minp+1, i.e. to the value immediately larger than the end of in-
tersection interval. 

Table 2. Block-oriented intersection 

void BlockIntersect(Result& r) 
{ 
 int i, j; int minp, maxp; 
 Cursor *c0=m_cursors[0], *c1=m_cursors[1];  
 while(!c0->isEof() && !c1->isEof()) 
 { 
  int end0=c0->getEnd(), start0=c0->getStart(); 
  int end1=c1->getEnd(), start1=c1->getStart(); 
  maxp=max(start0, start1); 
  if(end0<end1) { minp=end0; j=0; }  
  else { minp=end1; j=1; } 
  if(minp>=maxp) 
  { 

      MergeIntersectRecords(r, maxp, minp); 
    c0->MoveTo(minp+1); c1->MoveTo(minp+1); 
  } 
  else m_cursors[j]->MoveTo(maxp); 
} 

 
void MergeIntersectRecords(Result& r, int start, int end) 
 { for(int i=start; i<=end; i++) r.Add(i); }

 
Table 2 shows the code for the block-oriented intersection of two interval lists. 

With respect to the algorithm for normalized lists, the complexity of the algorithm is 
proportional to the number of intervals (i.e. records) rather than to the number of 
pointers. Thus, in the worst case, the algorithm reported is as expensive as the normal 
merging algorithm. The worst case occurs when all intervals consist of a single value. 
As the number of different intervals decreases (or, equivalently, the size of each inter-
val increases), the cost of the new algorithm improves because less irrelevant infor-
mation is processed. On the one side, disjoint intervals are quickly identified in the 
main loop of the algorithm. On the other side, the MoveTo operation can quickly skip 
records that do not contain candidates for intersection. The best case occurs when 
each list consists of a single record (i.e., a single contiguous interval) and the intersec-
tion can be computed by processing two records, regardless of the number of pointers 
involved.  



418 G.M. Sacco 

As regards volatile inverted lists, the interval normalized representation requires a 
very simple implementation. On insertion of a new pointer in a list, if the new pointer 
is contiguous to the previous record or to the next record, the appropriate record is 
updated. Otherwise, a normalized record is inserted. On deletion of a pointer, if the 
pointer belongs to an interval record, the interval record is updated. Unless the pointer 
is the first value or the last value in the interval, the interval record is split into two 
disjoint interval records.  

3.3 Block-Compressed Inverted Lists 

Interval normalized lists compress an interval of contiguous pointers into a single 
record, providing both storage savings and improvements in execution time. Howev-
er, their effectiveness depends on the density of the inverted list they represent and 
can be expected to be not quite significant in text retrieval applications, as the vast 
majority of pointers will very likely be non-contiguous and hence represented by 
single-value intervals. 

However, the same idea of a block representation can be used to represent an inter-
val of non-contiguous (i.e., sparse) pointers, which is the general case for intervals. 
The first strategy we present, called BWO, represents a set of ordered non-contiguous 
pointers by encoding the gaps between them through Elias’s δ codes (other codes 
such as Golomb codes [7] can also be used). Basically, we use here the same strategy 
as the baseline simple δ strategy, applying it to a single interval instead of applying it 
to the entire inverted list.   

The use of sparse blocks requires minor changes in the algorithm reported in Table 
2. When an intersection interval [maxp, minp] is found, the interval does not represent 
the actual result but just a candidate interval on which the intersection on actual val-
ues is to be subsequently computed. If i and j are two cursors, then 

• if both cursors represent a contiguous interval, then [maxp, minp] is the result 
• if one of the two cursors, say j, represents a sparse interval, then the result is 

given by the pointers of j in the interval [maxp, minp] 
• if both cursors represent a sparse interval, then the result is given by their in-

tersection in the interval [maxp, minp]. Such intersection can be computed by 
intersection by merge on the lists on the interval. 

A critical problem is the determination of the highest value in the interval for records 
representing a sparse interval. If the interval is compressed by codes such as Elias’s δ 
codes, in order to find the highest value in the interval one has to decompress all the 
pointers in the record. This is precisely what we want to avoid, because we are using a 
block evaluation to quickly skip over irrelevant blocks without decompressing their 
pointers. If indeed we do decompress them, we will have no performance improvement.  

One strategy, called BW, stores the last pointer in the interval immediately after 
the initial pointer in the interval. This last pointer can be encoded by an Elias’s δ 
code, but it has, by definition, a larger gap and consequently BW is slightly more 
expensive from the storage point of view than BWO (BWO stands for Blocked With-
Out the highest pointer, BW for Blocked With the highest pointer).  



 Fast Block-Compressed Inverted Lists 419 

In order to avoid this storage overhead without having to decompress the entire 
block of pointers, BWO estimates the highest pointer in the block by accessing the 
next record in the scan. If this record exists, then the highest pointer value is estimated 
as the initial pointer in the next record minus 1. Otherwise, the highest pointer value is 
taken to be the maximum integer value. Because of estimation errors in the intersec-
tion interval, we expect a less effective filtering of useless data and consequently, a 
potentially slower evaluation.  

Volatile inverted lists can be easily managed by using a Btree-like strategy. We de-
fine a maximum blocksize for records storing sparse intervals. If the insertion of a 
pointer in a block causes an overflow, the record is split into two records, each with 
roughly half of the pointers, and the pointer is inserted into the appropriate record. On 
pointer deletion, if the resulting record is less than half of the maximum size, the 
record is either recombined or rebalanced with the next (or the previous) record, if 
they exist. If they do not exists, the entire list is smaller than the minimum blocksize, 
and no action is taken: the use of a variable record avoids wasting storage space.   

3.4 Hybrid Inverted Lists 

Interval and block representations can be used together.  When inserting or updating 
an inverted list, a block representation will generally be used if it is more efficient, 
storage-wise, than a normalized or an interval normalized representation. It is easy to 
compare the storage requirements of these two representations with respect to block 
representation, and choose the best representation among the three. Performance of 
list operations may also be taken into account in the selection of the representation, 
thereby biasing the choice towards interval representations.  

In this paper we use a rather simplistic hybrid representation (HYBR) that switches 
from a BW representation to an interval representation whenever an interval of conti-
guous values larger than θ is found.  

4 Experiments 

The strategies introduced above have obvious advantages over conventional ap-
proaches as far as volatility and the management of large lists are concerned. In order 
to characterize space and time behavior with respect to the baseline simple δ imple-
mentation, we conducted preliminary experiments on TEXTSET, a set of inverted 
lists that represents text postings for news texts in Italian. Texts are in lowercase with 
no stopword removal and no stemming/normalization. TEXTSET has 519,347 unique 
terms contained in 193,259 documents for a total of 50,115,616 postings and an aver-
age 96.5 postings per term. This is a worst case for text retrieval since Italian is a 
heavily inflected language, and the types of compression proposed are more effective 
for denser inverted lists. This set also approximates the behavior of a large secondary 
index in database applications.  

The index files are prefix-compressed prefix B+-trees [3], organized in 2KB pages 
managed by a buffer manager with LRU replacement. All the experiments were run 



420 G.M. Sacco 

on an Intel Q9550 with 4 Gb RAM, running Microsoft XP. As in [5], the experiments 
were run with files resident in memory, so the comparison does not include any I/O 
and studies the behavior independently of available memory. The experiments are 
strongly biased in favor of the baseline simple δ, because it implements a direct 
access to the appropriate inverted list and completely bypasses the buffer manager, 
which contributes with a significant overhead to the other methods. 

The experiments compared space and time requirements for normalized lists, inter-
val lists, BWO, BW and HYBR. For the last three methods, a maximum blocksize of 
22 was used, and, for HYBR, an interval representation was used for all those inter-
vals whose delta was equal to or larger than 24. Results are reported in Table 3. 

Table 3. Stats for TEXTSET 

 Bpp (bits per post-
ing) 

Bpp over simple δ 
bpp 

Number of 
records 

Time over simple 
δ 

Normalized 18.582 2.250 50,115,616 13.926 

Interval 15.771 1.910 39,374,581 3.783 

BWO 9.204 1.115 2,626,364 0.924 

BW 9.532 1.154 2,700,444 0.674 

HYBR 9.525 1.154 2,741,231 0.648 

Simple δ 8.256 1.000 519,347 1.000 

 
Our experiments show that normalized lists and interval lists are inefficient with 

respect to space and time, with a ratio over the baseline simple δ of 2.25 and 1.91 
respectively (for space) and of 13.93 and 3.78 (for time). 

The results are much more interesting for BW and HYBR. The time ratio over the 
baseline simple δ ranges from .65 (HYBR) to .67 (BW), showing a significant spee-
dup over the baseline. Both methods show roughly the same storage 15.4% overhead 
over the baseline method, which seems to be acceptable considering the significant 
speedup, and the other advantages over the baseline. BWO shows the lowest storage 
overhead with respect to the baseline (11.5%). Although its execution time is lower 
than the baseline, its improvements are very limited when compared to HYBR, whose 
speedup is substantial.  

5 Conclusions 

We have proposed a number of strategies that solve the problems arising in the man-
agement of inverted lists, especially for volatile indices and for very large lists. The 
experiments conducted show that the best solutions are the HYBR and BW strategies. 
BW segments the inverted list into blocks whose maximum size is fixed, and relative-
ly small (30-byte records were used in the experiments). Each block consists of the 
inverted list key, the first pointer in the block in big-endian, and a sequence of  



 Fast Block-Compressed Inverted Lists 421 

pointers whose gaps are coded by Elias’s δ codes. The first pointer in the sequence is 
the last pointer in the interval represented by the block. Relatively small blocks make 
the management of even extremely large lists quite simple and independent of the 
available main memory. The storage requirements of this representation are consider-
ably reduced by prefix compression, so that the overhead with respect to the baseline 
monolithic simple δ implementation is acceptable. At the same time, the exact know-
ledge of the smallest and highest pointer values in the interval, allows to optimize 
execution and to quickly skip over useless records and pointers within, and conse-
quently provides a significant performance improvement over the baseline strategy. 
HYBR, the best strategy, refines BW by switching to an interval list representation 
when long chunks of contiguous values are detected. 

These strategies appear to be robust, efficient and universal strategies for the man-
agement of volatile and static inverted indices. Although they were derived for vola-
tile files, their significant performance improvements make them the strategies of 
choice for static files as well.   

References 

1. Baeza-Yates, R.A., Ribeiro-Neto, B.: Modern Information Retrieval. Addison-Wesley 
Longman Publishing Co., Inc., Boston (1999) 

2. Baeza-Yates, R.A.: A Fast Set Intersection Algorithm for Sorted Sequences. In: Sahinalp, 
S.C., Muthukrishnan, S.M., Dogrusoz, U. (eds.) CPM 2004. LNCS, vol. 3109, pp. 400–408. 
Springer, Heidelberg (2004) 

3. Bayer, R., Unterauer, K.: Prefix B-trees. ACM Trans. Database Syst. 2(1), 11–26 (1977) 
4. Comer, D.: The Ubiquitous B-Tree. ACM Comput. Surv. 11(2), 121–137 (1979) 
5. Culpepper, J.S., Moffat, A.: Efficient set intersection for inverted indexing. ACM Trans. 

Inf. 29(1) (2010) 
6. Elias, P.: Universal codeword sets and representations of the integers. IEEE Trans. on In-

formation Theory IT-21(2), 194–203 (1975) 
7. Golomb, S.W.: Run-length encodings. IEEE Trans. Info Theory 12(3), 399–401 (1966) 
8. Navarro, G., de Moura, S.E., Neubert, M., Ziviani, N., Baeza-Yates, R.: Adding Compres-

sion to Block Addressing Inverted Indexes. Information Retrieval 3(1), 49–77 (2000) 
9. Sacco, G.M.: Dynamic Taxonomies: A Model for Large Information Bases. IEEE Trans. 

on Knowl. and Data Eng. 12(3), 468–479 (2000) 
10. Sacco, G.M., Tzitzikas, Y. (eds.): Dynamic Taxonomies and Faceted Search: Theory, 

Practice, and Experience. The Information Retrieval Series, vol. 25. Springer (2009) 
11. Scholer, F., Williams, H.E., Yiannis, J., Zobel, J.: Compression of inverted indexes for fast 

query evaluation. In: Proc. ACM SIGIR Conf. (SIGIR 2002), pp. 222–229 (2002) 
12. Wagner, R.: Indexing design considerations. IBM Syst. J., 351-367 (1973) 
13. Witten, I.H., Moffat, A., Bell, T.C.: Managing Gigabytes: Compressing and Indexing 

Documents and Images. Morgan Kaufmann Publishers Inc., San Francisco (1999) 
14. Yan, H., Ding, S., Suel, T.: Inverted index compression and query processing with optimized 

document ordering. In: Proc. Conf. on World Wide Web (WWW 2009), pp. 401–410 (2009) 
15. Zobel, J., Moffat, A.: Inverted files for text search engines. ACM Comp. Surv. 38(2) 

(2006) 



Positional Data Organization

and Compression in Web Inverted Indexes

Leonidas Akritidis and Panayiotis Bozanis

Department of Computer & Communication Engineering,
University of Thessaly, Volos, Greece

Abstract. To sustain the tremendous workloads they suffer on a daily
basis, Web search engines employ highly compressed data structures
known as inverted indexes. Previous works demonstrated that organiz-
ing the inverted lists of the index in individual blocks of postings leads
to significant efficiency improvements. Moreover, the recent literature
has shown that the current state-of-the-art compression strategies such
as PForDelta and VSEncoding perform well when used to encode the
lists docIDs. In this paper we examine their performance when used to
compress the positional values. We expose their drawbacks and we in-
troduce PFBC, a simple yet efficient encoding scheme, which encodes
the positional data of an inverted list block by using a fixed number of
bits. PFBC allows direct access to the required data by avoiding costly
look-ups and unnecessary information decoding, achieving several times
faster positions decompression than the state-of-the-art approaches.

1 Introduction

Due to the critical importance of the inverted index organization in the over-
all efficiency of a search engine, a significant part of IR research is conducted
towards the determination of an effective index setup strategy. In particular,
several works proposed methodologies for storing the index data in a special
manner which allows us to skip large portions of the lists during query process-
ing. These approaches suggest partitioning the inverted lists of the index in a
number of adjacent blocks which can be individually accessed and decompressed.
Undoubtedly, the omission of the unnecessary information stored within the in-
dex significantly accelerates the evaluation of a query, since the lists traversal is
faster and we also decompress less data.

The benefits of these methods are magnified in the case where we store posi-
tional data within the index. This is due to the fact that the size of the positions
is several times larger than that of docIDs and frequencies and the indexes con-
taining positional values are about 3 to 5 times larger than the non-positional
ones. Therefore, it is extremely important to devise an effective mechanism to
organize and compress the positional data, since a naive solution could lead to
prohibitively large indexes and reduced query throughput.

In this work we demonstrate that although the current block compression
methods are both effective and efficient when applied at docIDs and frequencies,
they do not perform equally well when they operate upon the positional data of

S.W. Liddle et al. (Eds.): DEXA 2012, Part I, LNCS 7446, pp. 422–429, 2012.
c© Springer-Verlag Berlin Heidelberg 2012



Positional Data Organization and Compression in Web Inverted Indexes 423

an inverted list. We introduce PFBC, a scheme which encodes the positions of
an inverted list block by using a fixed number of bits allowing us to a) access
the required data almost instantly and b) decode only the data actually needed,
without touching any unnecessary information. We demonstrate that with a
small cost in space, PFBC outperforms all the adversary compression methods
in terms of speed, when applied on the positional data of the index.

2 Background and Related Work

In this Section we provide some elementary information about the inverted index
organization and compression and we present the most significant related work.

Due to the huge volumes of text and the great length of the inverted lists, Web
search engines store their inverted indexes in highly compressed forms either in
main memory or disk. There is a multitudinous family of compression algorithms
which can be used to encode the index data. The interested reader can refer to
[2], [9] and [11] for overviews and performance benchmarks. Some of the re-
cently proposed state-of-the-art schemes such as PForDelta [7] and VSEncoding
[9] are capable of encoding entire bundles of integers achieving both satisfying
compression effectiveness and very high decompression speeds.

One of the most important goals when designing query processing algorithms
is to skip any unnecessary information stored within the inverted lists. For this
reason, [8] introduced the block-based index organization, which suggests parti-
tioning each list in blocks of fixed or variable sizes. Within each block, the data is
organized in chunks which respectively accommodate the docIDs, the frequency
values, and the positional data. Other optimized block-based organizations were
introduced in [1], [3], [5].

Although the issue of inverted list partitioning is well-studied, the matter of
the organization of the positional data is still open. The research that has been
conducted towards this problem resulted into two basic approaches: (a) interleav-
ing, i.e. the positional data belonging to a particular block is stored sequentially
after the docIDs and the frequency values, and (b) creating a completely sepa-
rate structure for positions with its own lookup mechanism. For instance, [12]
describe a tree-like look-up structure which operates on interleaved positional
data. On the other hand, [10] organize the positions by employing a separate
structure, namely indexed list. The problems of these methods are (a) they re-
quire increased storage, (b) they decelerate query processing due to the look-up
operations and (c) they decode redundant information.

3 The Positions Fixed-Bit Compression (PFBC)

In this Section we describe PFBC, a simple, yet efficient approach for encoding
and organizing the positional data of an inverted list.

Our analysis begins by considering the block-based list organization of Figure
1. Suppose that the inverted list It of a term t is partitioned into BIt blocks
and each block Bi ∈ BIt is comprised of SBi postings. In the sequel, we identify



424 L. Akritidis and P. Bozanis

B1
Pointer R

B1
COcc. Bits

2BPointer R

B1
Postings S

B
1

Block 

2BCOcc. Bits

Postings S B2

Block B
2

BT
Pointer R

BT
COcc. Bits

Postings S BT

Block B
T

77,64,83,119,....,250,1,1

1,1,2,1,3,1,    ...  3,1,4,1 3,3,1,10,1,3,...,3,14,1,1

1,1,7,1,1,59,...,1,323,1 1,1,605,3

1,3,3,1

Freq Ptr

DocID Ptr

Freq Ptr

DocID Ptr

Freq Ptr

DocID Ptr

21,10,15,144,155,117,17,36,10,25,...,14,87,96,55,69,72,88,134,313,73,7..,15,25,53,111,64,410,557,29

DocumentIDs

Frequencies

Positions

Sk
ip

 T
ab

le

Fig. 1. Organizing an inverted list into blocks according to PFBC

the highest positional value |pBi |max for each block Bi of the inverted list and
we allocate a number of CBi = "log2(|pBi |max − 1)# bits to produce a binary
representation of each occurrence in that block. A pseudocode demonstrating
how PFBC encodes a bundle of K positional values is presented in Algorithm 1.

The fixed bit compression methodology of PFBC is expected to introduce
some compression loss in comparison to PForDelta. Actually, the latter encodes
the largest integers of a list as exceptions and the rest of them by using a fixed-
bit scheme, similar to the one we described. This operation is proved to be very
effective in the case of docIDs, because in the docIDs blocks the number of large
integers is small. However, when P4D is applied at blocks of positional data,
the benefits are diminished because in such blocks the number of large integers
cannot be predicted. Indeed, as we demonstrate by our experiments, PFBC is
outperformed by P4D in terms of compressed sizes by only a small margin.

3.1 Accessing and Decompressing the Positional Data with PFBC

To achieve direct access to the compressed positional data, it is required that we
store two values for each block Bi of the list: (a) the aforementioned CBi value
which denotes the number of bits we used to encode the positions of the block
Bi, and (b) a pointer RBi pointing at the beginning of the positional data of
Bi. Exploiting this limited amount of information, we are able to calculate the
location of the positional data for any posting belonging to Bi. The following
equation provides the exact bit Sj where the positions of a posting j start from:

Sj = RBi + CBi

j−1∑
x=0

fx,Bi (1)

where fx,Bi is the xth frequency value stored within Bi. Consequently, to locate
the positional data for an arbitrary posting j we first need to dereference the
corresponding RBi pointer value. Then, we need to sum up all the frequency
values of the previous postings of the block; this sum reveals the number of the
positional values stored between the beginning of the block and the location
of the desired data. Since the compressed positions are stored by using a fixed



Positional Data Organization and Compression in Web Inverted Indexes 425

Algorithm 1. Encoding a bundle of K positional values with PFBC. After the
identification of the highest positional value (steps 3-8), we calculate C, which
is the number of bits required to encode all K integers (step 9). The function
write() in step 13 is used to store each pi value into a storage P by using C bits.

byte PFBC − Encode(K, p[K])

1. int i ← 0, pmax ← 0, C ← 0
2. byte P
3. while (i < K) {
4. if (pi > Pmax) {
5. pmax = pi
6. }
7. i++
8. }
9. C ← �log2(pmax − 1)�
10. P ← allocate �KC/8� bytes
11. i ← 0
12. while (i < K) {
13. write(pi,P , C)
14. i++
15. }
16. return P

number of bits, we just need to multiply the sum by CBi to locate the first
compressed position of the posting. The operation ends by decoding the next
fj,BiCBi bits and the positions are retrieved.

PFBC exhibits a wide range of advantages over the adversary approaches:

– It facilitates direct access to the positional data by using equation 1. No
expensive look-ups for positions in tree-like structures are required. Conse-
quently, query processing is accelerated;

– It saves the space cost of maintaining a separate look-up structure [12], since
the involved pointers can be stored within the skip table;

– It uses fewer pointers than the indexed lists of Transier and Sanders [10];
– It enables decoding of the information actually needed, without the need to

decompress entire blocks or sub-blocks of integers.

The RBi and CBi values are stored within the the skip structure (upper part
of Figure 1); for each entry of the skip table, we also record these two values.
This strategy is both effective and efficient; no extra space is required, but only
the room occupied by the values themselves. Furthermore, in case the query
processor decides that a posting belonging to a particular block should be ex-
haustively evaluated by decoding its corresponding positional data, we are able
to immediately access RBi and CBi .

Algorithm 2 includes a pseudocode which demonstrates how PFBC is used
to decompress the positional data for a specific posting. To access and decode
the positions for the jth posting of the block Bi, we initially accumulate all the



426 L. Akritidis and P. Bozanis

Algorithm 2. Decoding the positional data of the jth posting of the block Bi.

int PFBC −Decode(j, Bi,P)

1. int x ← 0, s ← 0
2. while (x < j) {
3. s ← s+ fx,Bi

4. x++
5. }
6. int start ← RBi + sCBi

7. x ← 0
8. while (x < fj,Bi) {
9. p[x] ← read(P , CBi , start)
10. start ← start+ CBi

11. x++
12. }
13. return p

frequency values of the previous j − 1 postings of the block (steps 2–5). In the
sequel, we read the RBi and CBi values from the skip table and we locate the
required data as indicated by Equation 1. If fj,Bi is the associated frequency
value of the jth posting, we sequentially read fj,Bi groups of CBi bits from the
compressed sequence; each group represents a positional value of this posting.

4 Experiments

In this Section we compare PFBC against the state-of-the-art compression meth-
ods. More specifically, we created three inverted indexes having their docIDs and
frequencies organized in the same manner. Each inverted list was split into blocks
of 128 postings and P4D was used to encode the DocIDs and the frequencies.
In the first index we applied the strategy proposed by [12], i.e. the positions are
compressed with OptP4D and accessed by using a separate look-up structure.
In the second case, the positions are encoded according to VSEncoding [9] and
accessed in a way identical to the one we apply at the OptP4D case (that is, we
set pointers every 128 compressed positions).

The sample document collection we employed in our experiments is the
Clueweb09-T09B data set, which consists of about 50 million pages. To sim-
ulate a real-world search engine environment, the document collection was split
up into ten separate segments (called shards) consisting of about 5 million doc-
uments and each segment was indexed separately [6].

4.1 Compressed Index Sizes

Now let us evaluate the performance of PFBC against the adversary state-of-
the-art approaches in terms of compression effectiveness. Apart from the size of
the inverted file, we also measure the space occupied by the accompanying data
structures (i.e. skip table, pointers to positions, and position look-up structure).



Positional Data Organization and Compression in Web Inverted Indexes 427

Table 1. Overall space requirements (in GB) of our experimental index setups

Data Structure OptP4D VSEncoding PFBC

Inverted Index 90.8 90.2 92.0
Skip Table 1.7 1.7 1.7
Pointers to positions - - 2.1
Positions look-up 4.1 4.1 -
Total 96.6 96.0 95.8

In Table 1 we record the overall space requirements of each index setup that
we examine. Notice that each organization approach does not make use of all
data structures. For instance, our PFBC approach does not require the existence
of a positions look-up structure, whereas all strategies employ a skip table. The
absence of a data structure is denoted by using a dash symbol.

Among our examined encoding algorithms, VSEncoding achieved the best
compression performance; the ten inverted files of all shards occupy in total
roughly 90.2 GB. On the other hand, OptP4D performed imperceptibly worse
resulting in an inverted file which occupied less than 1% more space. As we
anticipated, the usage of PFBC introduced some slight losses; Compared to
VSEncoding, the inverted files of PFBC occupied in total about 2% more space.

In Table 1 we report the sizes of the auxiliary data structures. The skip ta-
ble which includes the positional pointers (recall the upper part of Figure 1) is
much more economic than the look-up structures themselves. As a matter of fact
this data structure occupies approximately 65% of the space occupied by the data
structures of the OptP4D and VSEncoding approaches (skip table plus the posi-
tions look-up structure, 5.8 GB). In the last row of Table 3 we present the overall
index sizes (inverted file plus auxiliary data structures) for each of the examined
schemes. In conclusion, we notice that the superiority of OptP4D and VSEncod-
ing over PFBC in terms of compressed sizes is compensated by the significantly
smaller data structures that accompany our proposed index scheme. As a result,
PFBC presents marginal savings of 0.02-0.08%.

4.2 Query Throughput

In this Subsection we examine the performance of PFBC against the adversary
approaches in terms of speed during query processing. To perform this experi-
ment, we submitted a set of 50 conjunctive queries drawn from the Web Adhoc
Task of the TREC-2009 Web Track. For each query we measure several statistics
such as the decompression times and the size of the accessed data.

The submitted queries were answered by employing a two-stage processing
method: During the first phase we traverse the inverted lists of the query terms by
employing DAAT, and we quickly identify the most relevant results by accessing
docIDs and frequency values only. In the second phase we apply more complex
ranking schemes such as BM25TP [4] to the K best results determined in the
previous stage by retrieving the positional values. We experimented with two
values of K; the first one is K = 200 and was selected because in [12] the



428 L. Akritidis and P. Bozanis

Table 2. Access and decode times per query and per posting for different values of K

K OptP4D VSEncoding PFBC

K = 200

Decompressed positions 2,756,128 2,756,128 374,251
Decompressed positions/query 55,123 55,123 7,485
Total access time (msec) 0.11 0.11 0
Total decompression time (msec) 5.56 5.14 1.01
Average time per query (msec) 0.11 0.10 0.02

K = 1000

Decompressed positions 11,192,608 11,192,608 1,044,234
Decompressed positions/query 223,852 223,852 20,885
Total access time (msec) 0.31 0.31 0
Total decompression time (msec) 23.94 21.10 4.02
Average time per query (msec) 0.48 0.42 0.08

authors prove that higher values do not lead to any further precision gains.
Furthermore, since the major Web search engines return at most 1000 results,
we also choose to set K = 1000. Since the inverted indexes we constructed
were comprised of ten shards, we repeated our experiments ten times; each time
the query processor was assigned a different index shard. The results of our
experiments are illustrated in Table 2.

Table 2 is divided in two parts; the upper part contains the results we recorded
for K = 200, whereas the lower one includes the results for K = 1000. The first
line represents the total number of positional values accessed by each method
for all the ten index shards, whereas the second line shows the number of the
decompressed positions per query. PFBC outperforms the adversary approaches
by a significant margin, since the fixed-bit compression scheme allows us to locate
exactly the data we need to access and we do not have to decode entire blocks of
integers. In total, the organization method with the look-up structure employed
by OptP4D and VSEncoding touched 7.4 times more data than the one applied
by PFBC for K = 200. In case we set K = 1000, PFBC is even more efficient,
since the other methods decode about 10.7 times more data.

The next line reveals the average position look-up times consumed by each
method per query. The algorithm of Table 2 allows PFBC to calculate the lo-
cation of the positional data without searching for it, consequently, the latency
is nullified in this case. Regarding the other two approaches which employ the
aforementioned look-up structure, they introduce a latency of about 0.11 msec
per query for K = 200 and 0.31 msec for K = 1000.

Now let us examine the decompression rates achieved by each method. The
lines 3 and 7 of Table 2 include the total amount of time required to decode the
positional values for all the 50 queries of our experiment. Furthermore, lines 4
and 8 reveal the average decompression time per query. On average, VSEncoding
outperformed the OptP4D approach by a margin ranging between 1% and 2%
for different values of K. PFBC was the fastest among the evaluated schemes,
since it achieved about 5 times faster decompression compared to VSEncoding
for both settings of K.



Positional Data Organization and Compression in Web Inverted Indexes 429

5 Conclusion

In this paper we introduced PFBC, a method especially designed for organizing
and compressing the positional data in Web inverted indexes. PFBC operates
by employing a fixed number of bits to encode the positions of each inverted list
block, and stores a limited number of pointers which enable the direct retrieval
of the positional data of a particular posting. Compared to the current state-of-
the-art compression techniques, PFBC offers improved efficiency allowing direct
access without look-ups, and very fast decompression. The experiments we have
performed on a 50 million document collection demonstrated that in contrast to
OptP4D and VSEncoding, the proposed approach touches much fewer data and
allows about 5 times faster positions decompression.

References

1. Anh, V.N., Moffat, A.: Structured Index Organizations for High-Throughput Text
Querying. In: Crestani, F., Ferragina, P., Sanderson, M. (eds.) SPIRE 2006. LNCS,
vol. 4209, pp. 304–315. Springer, Heidelberg (2006)

2. Anh, V., Moffat, A.: Index compression using 64-bit words. Software: Practice and
Experience 40(2), 131–147 (2010)

3. Boldi, P., Vigna, S.: Compressed Perfect Embedded Skip Lists for Quick Inverted-
Index Lookups. In: Consens, M.P., Navarro, G. (eds.) SPIRE 2005. LNCS,
vol. 3772, pp. 25–28. Springer, Heidelberg (2005)

4. Buttcher, S., Clarke, C., Lushman, B.: Term proximity scoring for ad-hoc retrieval
on very large text collections. In: Proceedings of the 29th Annual International
ACM SIGIR Conference on Research and Development in Information Retrieval,
pp. 621–622 (2006)

5. Chierichetti, F., Kumar, R., Raghavan, P.: Compressed web indexes. In: Proceed-
ings of the 18th International Conference on World Wide Web, pp. 451–460 (2009)

6. Dean, J.: Challenges in building large-scale information retrieval systems: invited
talk. In: Proceedings of the Second ACM International Conference on Web Search
and Data Mining, p. 1 (2009)

7. Heman, S.: Super-Scalar Database Compression between RAM and CPU Cache.
Master’s Thesis. University of Amsterdam. Amsterdam, The Netherlands (2005)

8. Moffat, A., Zobel, J.: Self-indexing inverted files for fast text retrieval. ACM Trans-
actions on Information Systems (TOIS) 14(4), 349–379 (1996)

9. Silvestri, F., Venturini, R.: Vsencoding: efficient coding and fast decoding of integer
lists via dynamic programming. In: Proceedings of the 19th ACM International
Conference on Information and Knowledge Management, pp. 1219–1228 (2010)

10. Transier, F., Sanders, P.: Engineering basic algorithms of an in-memory text search
engine. ACM Transactions on Information Systems (TOIS) 29(1), 2 (2010)

11. Witten, I., Moffat, A., Bell, T.: Managing Gigabytes: Compressing and Indexing
Documents and Images (1999)

12. Yan, H., Ding, S., Suel, T.: Compressing term positions in web indexes. In: Pro-
ceedings of the 32nd International ACM SIGIR Conference on Research and De-
velopment in Information Retrieval, pp. 147–154 (2009)



 

S.W. Liddle et al. (Eds.): DEXA 2012, Part I, LNCS 7446, pp. 430–437, 2012. 
© Springer-Verlag Berlin Heidelberg 2012 

Decreasing Memory Footprints  
for Better Enterprise Java Application Performance 

Stoyan Garbatov and João Cachopo 

INESC-id, 
Rua Alves Redol, 9, 

1000-029 Lisboa, 
Portugal 

stoyangarbatov@gmail.com, joao.cachopo@ist.utl.pt 

Abstract. In this paper, we present a work for reducing the memory footprint of 
enterprise Java applications. The work relies on the predictions provided by 
stochastic models of the applications’ data-access patterns. The models, built 
during the execution of the application, are used both at compile-time, to con-
trol the in-memory representation of data, and, at runtime, to decide which por-
tions of the data to load. The combined effect of these two approaches allows 
for an effective reduction in the memory used by the application, leading to a 
significant performance improvement. We evaluate the newly developed ap-
proaches on the TPC-W benchmark, with different database sizes, and show 
that our solution increases the benchmark throughput by 10.78% on average, 
with a maximum of 35.43% when operating over larger databases. 

Keywords: heap management, in-memory object representation, persistence. 

1 Introduction 

The memory footprint of an application may exert significant influence over its  
performance. This is particularly true for above-than-average sized footprints  
(e.g., enterprise applications), where performance can suffer severely due to the extra 
overhead caused by memory management.  

In execution environments with automatic garbage collection, such as the Java 
VM, the garbage collection (GC) mechanism is responsible for identifying data that is 
no longer accessible and for de-allocating the associated memory resources. Modern 
generational collectors do this very efficiently for objects that become garbage soon 
after they are created. On the other hand, objects that survive repeated GC cycles are 
moved into the tenured region, where they remain for potentially long periods of time.  

This GC behaviour is well known by enterprise application and framework  
programmers, who rely on mechanisms such as SoftReferences to influence the be-
haviour of the GC to their advantage. The key idea is that objects representing the 
application’s domain data should be kept around, for as long as possible, to avoid the 
costly operation of loading them. Therefore, these objects should be tenured, whereas 
other transient objects should be GCed as soon as possible.  



 Decreasing Memory Footprints for Better Enterprise Java Application Performance 431 

 

A common approach for doing this is to keep domain objects within softly-
referenced caches. This approach often leads to a very large tenured region that, when 
full, needs to be GCed, introducing significant overhead into the application. In part, 
this is due to the need to scan large volumes of data to identify reachable objects. 
When an application's frequently used objects do not fit in memory, this can become a 
problem, since the tenured region has to be GCed frequently. In that case, the applica-
tion is forced to be constantly rotating objects in and out of memory, spending time 
not only in memory management, but also in the loading of previously GCed objects. 

To avoid, or at least minimize this problem, we propose to reduce the memory 
footprint of an enterprise application's domain objects, so that more instances may fit 
in the available space. We present two complementary approaches for doing this.  

The first approach consists in identifying the most compact and efficient in-
memory representation of domain objects. The second approach consists in delaying 
the loading of data that is not likely to be accessed by the application soon. Both ap-
proaches make informed decisions based on stochastic models of the applications' 
data access patterns that are built during the execution of the application. 

To the best of our knowledge, for the purpose of improving an application's per-
formance by keeping its heap smaller and by avoiding and delaying situations de-
manding intense GC activity, the work we present here is unique. The novelty is both 
on how we identify the sub-sets of domain objects that have the highest influence on a 
given application's execution, and on how we use that information to achieve the 
memory footprint reduction. There are other research publications with similar aims, 
but their techniques are distinct from those presented in this paper. The contribution 
of our work consists in the development and evaluation of these two new approaches. 

The proper management of an application’s memory is essential if any sort of ac-
ceptable performance is to be expected. Some research concentrates on analysing the 
conditions under which data is allocated and manipulated in the heap. The goal is to 
devise ways for improving the memory management of the data. 

Jones and Ryder [8] study the lifetime of Java objects. They demonstrate that the 
lifetimes of allocated objects belong to a relatively low number of small ranges along 
with the fact that allocation sites can be strongly grouped according to the length of 
the lifetime of their allocated objects. Objects associated with identically grouped 
allocation sites tend to live only in particular phases of an application’s operation. The 
authors conclude that to predict with precision an object lifetime’s distribution, one 
additional stack level should be considered, apart from the allocation site itself. 

Chis et al. [2] present a solution for identifying problems leading to unreasonably 
sized heaps in large applications. They use an innovative ContainerOrContained rela-
tion to identify patterns within the heap caused by problems with high impact on 
memory consumption. Chis et al. establish a relatively small set of patterns that need 
to be examined to achieve significant memory consumption improvements. 

Bhattacharya et al. [1] introduce a new approach for minimizing the performance loss 
due to memory bloat caused by excessive generation of temporary objects within a loop. 
The authors identify objects that can be reused and apply a source-code transformation 
for making the necessary modifications to reuse the objects in a more efficient manner. 
The practical results of this approach indicate it is possible to decrease an application's 
memory footprint along with improving its performance. 



432 S. Garbatov and J. Cachopo 

 

Based on the present analysis, a few relevant points need to be emphasised. Overly 
large heaps are capable of causing serious application performance issues. Two main 
approach styles for dealing with this issue have been identified. One of these consists 
in attempting to keep the memory footprints small by preventing the loading of un-
necessary data or by delaying its loading to the moment when it is effectively needed. 
The second style includes techniques for keeping the heap trimmed and compact by 
de-allocating no-longer-necessary data and recycling its memory. Several aspects, 
essential for the efficient operation of both styles, include performing automatic 
analysis of target behaviour and its precise prediction to allow the dynamic and adap-
tive identification of the most appropriate approached to be employed. 

2 System Description 

In this paper, we present two approaches for reducing the memory footprint of a Java 
application’s domain data, while, at the same time, improving performance when the 
application is placed under sub-optimal memory availability conditions. 

The first technique uses a carefully selected in-memory layout for instances of do-
main classes. This is done to achieve a compact representation with minimal memory 
overhead. The second approach consists in delaying the loading of domain data until 
the moment when it is effectively needed, as opposed to eager loading. This strategy 
seeks to decrease the upper limit of the effectively used heap, by avoiding the loading 
of domain data that is never to be accessed during the lifetime of the application. 

Both techniques make informed decisions regarding the actions that are to be 
taken. These decisions are based on predictions made by stochastic models of the 
application’s data access patterns. A comprehensive description and discussion of 
these models, which have been developed previously, can be found in [7, 5, 4, 6]. To 
make the article self-contained, the key ideas of these works shall be presented next. 

The access pattern analysis approaches were developed for providing high preci-
sion answers to questions along the lines of "What (domain) data is accessed in exe-
cution context X and Y?", "What is the likelihood of accessing data A in context Z?" 
and "What is the access probability for all domain data types in the application?". The 
concept of "execution context" designates the scope within which data accesses occur 
(for instance during the execution of a method or a service). 

To collect a representative volume of statistical data of a target application's access 
patterns, a short training period is necessary. During it, the application runs with addi-
tional code that has been injected automatically. This code is responsible for gathering 
the data necessary for the access pattern analysis. The overhead incurred by the exe-
cution of the injected code has been demonstrated to be sufficiently low to allow the 
measurements to be performed while the target system is operating normally.  

The stochastic models employed for the behaviour analysis are Bayesian Updating, 
Markov Chains and Importance Analysis [7, 5, 4, 6]. Their implementations have 
been evaluated and demonstrated to generate correct and highly precise predictions 
about the effectively accessed domain data throughout the execution contexts of a 
target application. In the context of the work presented here, these methods are re-
sponsible for supplying the access probabilities of all domain classes and their fields. 



 Decreasing Memory Footprints for Better Enterprise Java Application Performance 433 

 

The work was performed in the context of the Fénix Framework [3]. The Fénix 
Framework allows the development of Java applications with a transactional and per-
sistent domain model. Programmers using the framework describe the application's 
domain model structure by using a new domain-specific language, the Domain Mod-
elling Language (DML). After this, they can develop the rest of the application in 
plain Java, without any further considerations. The transactional and persistence fea-
tures provided by the framework are orthogonal. For the current work, the transac-
tional functionality shall be disregarded, since it is not relevant to the goals at hand. 

A source-to-source compiler is responsible for transforming the DML specification 
into the domain classes' Java definitions. This compiler selects the particular layout 
that domain objects have at runtime.  

Before describing the new domain object layout, the two previously existing sche-
mas will be considered. The new approach is referred to as DynamicL, while the two 
previous layouts are labelled as OneBoxPerSlotL and OneBoxPerObjectL. 

An important concept when discussing object layouts is that of a "Box". A Box is 
responsible, among other things, for holding the persistent state of domain objects, as 
well as for loading it from persistence, whenever it is needed. 

A sample of a domain class with the OneBoxPerSlotL can be seen in Listing 1 
(left). Every object attribute is contained by a single Box. At runtime, when a domain 
object is referenced for the first time, it is initialized as a thin wrapper containing the 
ObjectId (a unique system-wide identification of that instance). The first time that any 
of an object's attributes are accessed, all Boxes are initialized, followed by a loading 
of the associated state, performed in a single round-trip to the persistence layer. 

   

Listing 1: Domain class with OneBoxPerSlotL (left), OneBoxPerObjectL (right) 

This leads to the following properties. The application has a large memory foot-
print, due to the memory overhead caused by the existence of one Box per object 
attribute. The eager loading of objects from persistence shortens the warm-up phase 
of the application because, most, if not all, of the existing domain data ends up in 
memory after a relatively small portion of it has been accessed. This leads to situa-
tions where large volumes of data are unnecessarily loaded and kept in memory. 

A sample of a domain object with the OneBoxPerObjectL layout can be seen in 
Listing 1 (right). All of the persistent state of any domain object is contained by a 
single Box. The behaviour when referencing an object or accessing any of its attrib-
utes for the first time is identical to that of the OneBoxPerSlotL. The short warm-up 

public class domainObject { 
 private ObjState objState; 
 protected static class ObjState  
  extends Box{ 
   FieldType1 field1; 
   … 
   FieldTypeN fieldN; } 
 public FieldType1 getField1(){ 
  return objState.field1; } 
 public void setField1(FieldType1 val){ 
  objState.field1=val; } 
 … 
} 

public class domainObject{ 
 private box<FieldType1> field1; 
 … 
 private box<FieldTypeN> fieldN; 
 public FieldType1 getField1(){ 
  return field1.get(); } 
 public void setField1(FieldType1 val){ 
  field1.set(val); } 
 … 
 public FieldType1 getFieldN(){ 
  return fieldN.get(); } 
 public void setFieldN(FieldTypeN val){ 
  fieldN.set(val); }} 



434 S. Garbatov and J. Cachopo 

 

phases that load most of the existing domain data are present as well. However, even 
though unnecessary data ends up being kept in memory, the memory footprints of 
applications employing this layout are significantly smaller due to the lack of memory 
overhead caused by multiple Boxes per object instance. In terms of the compactness 
of fully loaded domain objects, this approach corresponds to the optimal solution. 

By analysing these two object layout styles, a few pertinent points may be identi-
fied. One such aspect is that if a compact object memory representation is to be 
achieved, then each domain class should have the lowest possible number of Boxes to 
minimize the induced memory overhead. Another issue is that both approaches load 
significant volumes of persistent domain data into memory, even though most of it 
might not end up being necessary for the proper operation of the application. 

It is with these considerations that the new DynamicL layout was created. The ap-
proach is adaptive inasmuch as decisions about the actual layout configuration of 
domain objects are made at compile time, when taking into account the data access 
pattern information provided by the stochastic analysis modules. As such, it is possi-
ble that domain classes have different layouts, from one deployment of the application 
to another, due to changes in the access patterns performed at runtime. 

The code generation with the DynamicL layout proceeds as follows. For every 
domain class, its attributes are split among two sets, based on their access probabili-
ties. High access probability fields are placed in one set (HighP), while low access 
probability fields are placed in the second set (LowP). Once this has been accom-
plished, the code generator outputs different code, depending on the set to which a 
given object field belongs to. HighP attributes are given an individual Box to wrap 
them and to take care of their persistent loading. On the other hand, all LowP attrib-
utes, of a given domain class, are placed in a single Box. 

Even though HighP fields are assigned individual Boxes, the overall memory over-
head caused by these boxes, when compared against the OneBoxPerObjectL approach 
is negligible. This is because, in most applications, only a small fraction of data is 
responsible for the great majority of accesses performed. It is rare to have a domain 
class with more than a couple of HighP attributes, making this approach close to the 
optimal solution, with regards to the number of Boxes per instance.  

For the DynamicL approach, when a domain class instance is referenced for the 
first time, the procedure is identical to the other approaches. The difference is when 
persistent fields whose values have not been loaded yet are accessed. Whenever this 
occurs, the associated Box is initialized, followed by a roundtrip to the persistence 
layer to fetch the data needed to load the proper values of the wrapped attributes. 
Only the attribute(s) contained by the Box that has been accessed are loaded from 
persistence, regardless of the state in which the remainder of instance Boxes might be. 
This particular measure was taken to guarantee that only data that is effectively 
needed by the application is loaded into memory, as opposed to loading a piece of 
unnecessary data simply because it belongs to an object being accessed. 

The delaying of persistent data loading leads to a smaller memory footprint, be-
cause most of the data that is never accessed at runtime does not end up in memory. It 
is still possible for unnecessary data to be loaded, but this is rather unlikely to happen. 



 Decreasing Memory Footprints for Better Enterprise Java Application Performance 435 

 

It should be noted that a lazy version of the OneBoxPerSlotL is not a viable solu-
tion. The overhead of a single box per field cannot be offset by delaying/avoiding the 
loading of low access probability data. The resulting footprint would be between that 
of the eager OneBoxPerSlotL and OneBoxPerObjectL. 

3 Results 

The TPC-W benchmark [9] was used for the validation of the work presented here. It 
specifies an e-commerce workload that simulates the activities of a retail store web-
site, where emulated users can browse and order products from the website.  

The main evaluation metric is the WIPS – web interactions per second that can be 
sustained by the system under test. The benchmark execution is characterised by a 
series of input parameters. The first of these indicates the type of workload, which 
varies the percentage of read and write operations, that is to be simulated by the emu-
lated browser (EB) clients. Three types of workload are considered here, namely - 
Read-Only (Mix0) - 100% read operations; Browsing (Mix1) - 95% read and 5% 
write operations and Shopping (Mix2) - 80% read and 20% write operations. 

The training of the system was performed with the benchmark executing in Mix2 
mode. The same profiling results (from Mix2) were employed for all 3 workload con-
figurations (Mix0, Mix1, Mix2) in the performance testing phase. 

The remaining input parameters are as follows: number of EBs - 10; ramp-up time 
- 300 sec; measurement - 1200 sec; ramp-down time - 120 sec; number of book items 
in the database - 1k, 10k and 100k; think time - 0, ensuring that the EBs do not wait 
before making a new request. All results were obtained as the average of 4 independ-
ent executions of the benchmark, with the same configurations. The EBs and the 
benchmark server were always run on the same physical machine. 

Table 1. Performance (throughput) comparison, Alpha 

  512MB 640MB 768MB 896MB 1024MB 2048MB Average
mix0_1k 1.28% 0.63% 1.27% 1.74% 1.09% 1.24% 1.21%
mix0_10k -4.22% -3.50% -5.27% -5.78% -5.63% -5.47% -4.98%
mix0_100k 34.52% 32.90% 31.92% 33.62% 35.12% 32.93% 33.50%
mix1_1k 6.86% 7.55% 0.39% 5.59% 0.70% 5.33% 4.40%
mix1_10k -7.98% -16.15% -11.09% -15.32% -15.88% -15.42% -13.64%
mix1_100k 24.06% 18.55% 19.91% 25.73% 24.84% 33.55% 24.44%
mix2_1k 21.81% 19.46% 17.13% 8.41% 14.87% 4.42% 14.35%
mix2_10k 4.34% 16.32% 9.44% 9.34% 11.62% 4.05% 9.19%
mix2_100k 29.35% 26.53% 19.07% 30.88% 29.55% 30.32% 27.62%
Average 12.23% 11.36% 9.20% 10.47% 10.70% 10.11% 10.68%  

Performance measurements were made with the benchmark running on two differ-
ent machines. The first machine (Alpha) is equipped with 2x Intel Xeon E5520 (a 
total of 8 physical cores with hyper-threading running at 2.26 GHz) and 24 GB of 
RAM. Alpha's operating system is Ubuntu 10.04.3, while the JVM is Java(TM) SE 
Runtime Environment (build 1.6.0 22-b04), Java HotSpot(TM) 64-Bit ServerVM 
(build 17.1-b03, mixed mode). The second machine (Beta) has 4x AMD Opteron 
6168 (a total of 48 physical cores running at 1900 MHz) and 128 GB of RAM. Beta's 



436 S. Garbatov and J. Cachopo 

 

operating system is Red Hat Enterprise Linux 6.2, while the JVM is Java(TM) SE 
Runtime Environment (build 1.6.0 24-b07), Java HotSpot(TM) 64-Bit ServerVM 
(build 19.1-b02, mixed mode). On both machines, the benchmark server was run on 
top of Apache Tomcat 6.0.24, with the options "-Xshare:off -Xms64m -
Xmx${heapSize}m -server -XX:+UseConcMarkSweepGC -XX:+AggressiveOpts". 

Table 2. Performance (throughput) comparison, Beta 

  512MB 640MB 768MB 896MB 1024MB 2048MB Average
mix0_1k -0.26% -0.50% 0.72% 1.66% 0.97% 0.32% 0.49%
mix0_10k 3.69% 2.09% 2.87% 3.36% 4.02% 4.41% 3.41%
mix0_100k 31.43% 32.79% 33.45% 32.49% 32.68% 33.19% 32.67%
mix1_1k 0.76% 1.61% 3.48% 2.24% 1.69% 0.97% 1.79%
mix1_10k -4.39% -2.24% -2.69% -2.03% -4.23% -3.46% -3.18%
mix1_100k 29.76% 25.74% 24.17% 24.74% 28.90% 35.43% 28.12%
mix2_1k -3.43% -3.72% 14.42% 33.75% 0.22% 7.60% 8.14%
mix2_10k -7.58% 4.68% 9.40% 11.12% 3.06% 7.79% 4.74%
mix2_100k 24.51% 24.30% 9.46% 22.94% 25.34% 23.22% 21.63%
Average 8.28% 9.42% 10.59% 14.47% 10.29% 12.16% 10.87%  

The performance of DynamicL and OneBoxPerObjectL is compared for six differ-
ent configurations of the JVM maximum heap size (Xmx) - 512MB, 640MB, 768MB, 
896MB, 1024MB and 2048MB. OneBoxPerSlotL results are omitted because they are 
worse than the ones provided by any of the other two alternatives. Tables 1 and 2 
contain the throughput comparison of DynamicL against OneBoxPerObjectL. 

0

1000

2000

3000

4000

5000

6000

mix0_b1k mix1_b1k mix2_b1k mix0_b10k mix1_b10k mix2_b10k mix0_b100k mix1_b100k mix2_b100k

H
ea

p 
S

iz
e 

(M
B

)

DynamicL

OneBoxPerObjectL

OneBoxPerSlotL

 

Fig. 1. Effectively used heap sizes, Alpha, with max heap of 16 GB 

There are two main reasons for DynamicL displaying consistently better perform-
ance metrics than OneBoxPerObjectL. The first relates to situations when Java appli-
cations have effectively used heaps that are close to the maximum heap size. Such 
"low memory availability" conditions force the garbage collection mechanism to be 
operating without interruption in an attempt to release enough memory so that the 
effective heap size is no longer close to the upper limit. Garbage collection is well 
known to be computationally intensive, in particular when it is hard to identify data to 
be released from memory. As such, DynamicL alleviates these issues by allowing the 
application to operate with a smaller memory footprint (see Fig. 1), delaying the mo-
ment when GC is needed and by keeping the heap smaller for longer periods of time, 
after it has been GCed. Furthermore, applications with smaller memory footprints 
allow for improved data locality, leading to better overall system performance. 



 Decreasing Memory Footprints for Better Enterprise Java Application Performance 437 

 

4 Conclusions 

We presented two new approaches for reducing the memory footprint of enterprise 
Java applications, leading to significantly improved performance. The first uses an 
adaptive memory representation of domain objects, chosen at compile time. The sec-
ond one performs, at runtime, a selective loading of domain data necessary for the 
operation of the application. Both approaches make decisions based on data access 
pattern stochastic analysis, which provides the access probabilities of domain data 
through all application execution contexts. The work was evaluated on the TPC-W 
benchmark against existing solutions. The results demonstrated significant perform-
ance improvements. Throughput is increased by 10.78%, on average, and up to a 
maximum of 35.43%, for larger databases. 
 
Acknowledgments. This work was partially supported by FCT (INESC-ID multian-
nual funding) through the PIDDAC Program funds and by the Specific Targeted  
Research Project (STReP) Cloud-TM, which is co-financed by the European Com-
mission through the contract no. 257784. The first author has been funded by the 
Portuguese FCT under contract SFRH/BD/64379/2009. 

References 

1. Bhattacharya, S., Nanda, M.G., Gopinath, K., Gupta, M.: Reuse, Recycle to De-bloat  
Software. In: Mezini, M. (ed.) ECOOP 2011. LNCS, vol. 6813, pp. 408–432. Springer, 
Heidelberg (2011) 

2. Chis, A.E., Mitchell, N., Schonberg, E., Sevitsky, G., O’Sullivan, P., Parsons, T., Murphy, 
J.: Patterns of Memory Inefficiency. In: Mezini, M. (ed.) ECOOP 2011. LNCS, vol. 6813, 
pp. 383–407. Springer, Heidelberg (2011) 

3. Fernandes, S., Cachopo, J.: Strict serializability is harmless: a new architecture for enter-
prise applications. In: Proceedings of the ACM International Conference on Object-
Oriented Programming Systems, Languages and Applications, pp. 257–276. ACM (2011) 

4. Garbatov, S., Cachopo, J.: Importance Analysis for Predicting Data Access Behaviour in 
Object-Oriented Applications. Journal of Computer Science and Technologies 14(1), 37–43 
(2010) 

5. Garbatov, S., Cachopo, J.: Predicting Data Access Patterns in Object-Oriented Applications 
Based on Markov Chains. In: Proceedings of the Fifth International Conference on Software 
Engineering Advances (ICSEA 2010), Nice, France, pp. 465–470 (2010) 

6. Garbatov, S., Cachopo, J.: Data Access Pattern Analysis and Prediction for Object-Oriented 
Applications. INFOCOMP Journal of Computer Science 10(4), 1–14 (2011) 

7. Garbatov, S., Cachopo, J., Pereira, J.: Data Access Pattern Analysis based on Bayesian  
Updating. In: Proceedings of INForum, Lisbon, Paper 23 (2009) 

8. Jones, R.E., Ryder, C.: A study of Java object demographics. In: Proceedings of the 7th  
International Symposium on Memory Management, Tucson, AZ, pp. 121–130. ACM 
(2008) 

9. Smith, W.: TPC-W: Benchmarking An Ecommerce Solution. Intel Corporation (2000) 



Knowledge-Driven Syntactic Structuring:

The Case of Multidimensional Space
of Music Information

Wladyslaw Homenda1 and Mariusz Rybnik2

1 Faculty of Mathematics and Information Science, Warsaw University of Technology,
Plac Politechniki 1, 00-660 Warsaw, Poland

2 Faculty of Mathematics and Computer Science, University of Bialystok,
ul. Sosnowa 64, 15-887 Bialystok, Poland

Abstract. In this paper we study syntactic data structuring as a tool
of automatic knowledge discovery. The discussion is focused on domain-
nested syntactic processing where paginated music notation is the case
of domain. Paginated music notation is a language describing multi di-
mensional concepts of domain knowledge. Syntactic structuring is based
on context-free methods. We propose constructions of context-free gram-
mars driven by concepts of multidimensional knowledge space. Furnish-
ing grammars with attributes allows for information flow between
separated knowledge concepts. The study reveals potential and strength
of context-free methods in automatic knowledge discovery.

1 Introduction

In this paper we study syntactic data structuring as a tool of automatic knowl-
edge discovery. The discussion is focused on domain-nested syntactic processing
with paginated music notation as the case of domain. Paginated music notation
is a language describing multi dimensional concepts of domain knowledge. Syn-
tactic structuring is based on context-free methods. We propose constructions of
context-free grammars driven by concepts of multidimensional knowledge space.
Furnishing grammarswith attributes allow for informationflowbetween separated
knowledge concepts. The discussion reveals potential of context-free methods in
automatic knowledge discovery. The paper is structured as follows. Section 2 out-
lines multidimensional character of music information and deliberate employment
of context-free grammars as a tool for describing such an information. In section 3
different aspects of syntactic structuring are examined. In section 4 an expansion
of context-free grammars to attribute grammars is proposed to communicate be-
tween different structures of the multidimensional space of music information. Fi-
nally, conclusions and directions for future studies are delineated.

2 Grammars as Tools of Syntactical Structuring

As it was shown in several studies, syntactical structuring can be based on
context-free grammars covering the language under discussion. The term ’cover-
ing the language’ means generating all valid and invalid language constructions.

S.W. Liddle et al. (Eds.): DEXA 2012, Part I, LNCS 7446, pp. 438–452, 2012.
c© Springer-Verlag Berlin Heidelberg 2012



Knowledge-Driven Syntactic Structuring 439

This rough approach to syntax makes possible grammar construction for such
languages as natural languages or music notation, which are languages of nat-
ural communication. Then, integration of syntactical structuring and semantic
analysis allows for identification of information structures. These structures can
be used for purposes as knowledge discovery or automatic data understanding
in man-machine communication, c.f. [3,8,9].

The paginated music notation, the subject of discussion in former studies, is
studied in this paper also. In this study we deliberate utilization of grammars
in rough description of paginated music notation. Grammars used in syntactic
structuring are intended to cover paginated music notation in the sense of para-
graph above. Such attempt to syntactic structuring of paginated music notation
is endorsed in practice. The grammar will be applied in structuring construc-
tions, which are assumed to be well grounded pieces of paginated music notation.
Therefore, incorrect applications of the grammar is not admitted. Of course,
such a grammar can neither be applied in checking correctness of constructions
of paginated music notation, nor in generation of such constructions, c.f. [4].

The former studies did not discussed details with regard to multi-dimensional
nature of paginated music notation. The duration-pitch-voice structuring, the
natural awareness in human’s perception of the score, have to be solved for
automatic processing of paginated music notation. It is especially important in
context of automatic understanding of music information.

In Figure 1 we can see an excerpt of a piece of music and its logical split
to three dimensions: duration/time, pitch/frequency and voice/instrument. Due
to intrinsic properties of music all dimensions are discrete and finite. The du-
ration/time dimension can be measured by the smallest item in terms of notes,
rests and rhythmic dots. It is expressed as a part of whole note split to 2n equal
sections. The pitch/frequency is split according to halftones of the music scale.
Discreteness allows for representation of music description in two dimensional
paginated music notation, where voices are depicted in the form of staves, as
shown in upper part of Figure 1. The voices can be interpreted as cross sections
of three dimensional space presented in the lower part of this Figure.

2.1 Grammar Driven Structuring

In this section we discuss the grammar previously presented in [4]. The be-
ginning productions of the grammar create the topmost levels of a hierarchy
defining score parts of the subjected piece of music and split parts to fit frames
of pages. Score parts of the piece of music (which are also called movements)
are arranged in time, hence they can also be placed in duration/time dimension.
On the same hand, pages are units created by the necessity to fit printing geo-
metrical constraints. This necessity forces splitting the duration/time axis into
intervals of length determined by pages width. Consequently, this geometrical
structure may be interpreted in terms of another dimension or rather as a se-
quence of consecutive time intervals of the duration/time dimension. The latter
interpretation, assumed in this paper, defines systems as consecutive fragments
of duration/time zones of the Duration-Pitch-Voice space:



440 W. Homenda and M. Rybnik

Fig. 1. Dimensionality of paginated music notation: and excerpt of four parts music
(for two pianos) and its decomposition in three dimensional space Duration-Pitch-Voice

<score> → <score part> <score>
→ <score part>

<score part> → <page> <score part>
→ <page>

<page> → <system> <page> | <system>

The following part of the grammar corresponds to the Voice dimension. This
part of the grammar generates consecutive staves, which correspond to voices of
the generated score. Generated staves are included in a system, which is a zone
of the Duration-Pitch-Voice space, as explained above.



Knowledge-Driven Syntactic Structuring 441

<system> → <part name><stave> <system>
→ <part name><stave>
→ <stave> <system> | <stave>

<part name> → Flute | Piano | etc.

The next part of the grammar generates events of the Duration/Time dimen-
sion. These events are ordered according to their beginning time and they may
create sequences (as, for instance, signatures) and hierarchies (e.g. measures and
vertical events).

<stave> → beg-barline <bl stave>
→ <bl stave>

<bl stave> → <clef> <cl stave>
→ <cl stave>

<cl stave> → <key signature> <ks stave>
→ <ks stave>

<ks stave> → <time signature> <ts stave>
→ <ts stave>

<ts stave> → <measure> barline <ts stave>
→ <measure> barline
→ <measure>

<measure> → <change of k sign.> <ks measure>
→ <ks measure>

<ks measure> → <change of t sign.> <ts measure>
→ <ts measure>

<ts measure> → <vertical event> <ts measure>
→ <vertical event>

The last part of the grammar corresponds to the Pitch/Frequency dimension. For
a given pitch/time event, which is called vertical event, the following productions
generate notes of different pitch value. These notes are either gathered in chords
as having the same duration, or create separated chords of different duration.
The general rule is that notes of the same duration are joined to the same stem
and create a chord unless they are not separated by other notes of different
duration. Of course, this rule has obvious exceptions, i.e. often notes of the same
duration belong to different chords. Such exceptions have deep roots in theory
of music, which is not a subject of this discussion. Here, for the sake of clarity
of presentation, we assume this simple rule of chords’ creation.

<vertical event> → <stem> <vertical event>
→ <stem>

<stem> → <beams> <note stem>
→ <flags> <note stem>
→ <note stem>

<beams> → left-beam <beams> | right-beam <beams>
<beams> → left-beam | right-beam | two-ways



442 W. Homenda and M. Rybnik

Fig. 2. The subject of discussion: the excerpt of Weber’s The music of the night, the
song from the musical The phantom of the opera

<flags> → flag <flags> | flag
<note stem> → note-head <note stem> | note-head

And finally some productions closing the grammar:

<clef> → treble-clef | bass-clef | · · ·
<key signature> → | # | b | ## | bb | · · ·
<time signature> → C| | C | 2

2 | 4
4 | 3

4 | · · ·

2.2 Derivation Trees and the Lexicon

Syntactic structuring is best identified with derivation trees of language construc-
tions in given grammar. Therefore, we will consider derivation trees of paginated
music notation excerpts. The discussion is focused on the excerpt shown in the
top part of Figure 2, that comes from Weber’s The music of the night, the song
from the musical The phantom of the opera.

Figure 3 presents a part of a derivation tree of the excerpt from Figure 2.
The derivation tree covers the second stave. The derivation is developed to the
level of single note heads, flags and beams. Derivation of signatures, barlines
and symbols of the second measure of this stave is outlined in details. In the
derivation tree elements of these groups are included in bounding boxes. On
the bottom stave these elements of notation are solid black. Derivations of the
first and the third measures are reduced to points of ellipsis. The corresponding
elements are greyed out on the bottom stave.

The discussion in next sections is firmly based on the concept of lexicon.
The concept of lexicon was introduced in [2] and then developed in [4]. Let
us recall that - roughly speaking - lexicon elements includes phrases generated
in a grammar; note that a score (a full piece of music) is the phrase as well.
Phrases with parts of derivation tree build on them create the entire elements of
lexicon. In Figure 3 we can identify many lexicon’s elements. For instance, notes



Knowledge-Driven Syntactic Structuring 443

Fig. 3. The second stave of the excerpt from Figure 2: a part of the derivation tree in
the grammar shown in section 2.1.

of the stave included in dotted box and corresponding part of the derivation tree,
which are in bold, i.e. the subtree with the root<ts measure>, create a lexicon’s
element. The entire second measure and the left bottom part of the tree, i.e. the
subtree with the root in the <stave> node, create a lexicon’s element. Also, the
whole derivation tree together with the whole stave create a lexicon’s element.

3 Time versus Pitch Driven Syntax in Measures

Processing information requires accomplishing structural operations. We under-
stand structural operations in terms of selecting, searching, copying, pasting,
replacing, transposing, converting etc. Structural operations performed on the
space of music information require identification of corresponding areas of the
space of information. On the other hand, identification of structures in the space
of information is an element of automatic data understanding. Identification of
structures of information can be realized based on integrated syntactical struc-
turing and semantical analysis, c.f. [3].

We focus our attention on selection, which is a mother structural operation
in spaces of music information. Other operation either are based on selected



444 W. Homenda and M. Rybnik

fragments of the entire score, or use such structures of information, which can
be subjected to selection.

It occurs that suitability of syntactic structuring depends on grammar con-
struction. This phenomenon is a consequence of multi dimensional nature of
music notation, in this case this is two dimensional nature of cross section for
the given voice (the right hand of piano part). Therefore, for the sake of better
understanding and easier automatic processing of information structures, it is
desirable to apply the most suitable type of grammar. Please notice, that dif-
ferent grammars of various type are similar and differ only in fragments. This
feature facilitates automatic processing.

3.1 Time-Prior-to-Pitch-Driven Syntax in Measures

The grammar presented in section 2 is time-driven at measure level. It means
that lexicon’s elements respective to horizontal fragments of a measure are just
subtrees or simple parts of subtrees. In Figure 3 the fragment of the stave is
derived from the <ts measure> node. Note that this fragment of notation, i.e.
the second half measure, is included in the dotted box in this Figure. Node,
edges and leaves of this subtree are distinguished in bold.

Remaining notes of the second measure precede the dotted box. They create
the first half measure. These notes are four beamed eight notes in the upper voice
line and the chord of two half notes in the bottom voice line. Corresponding leaves
of the derivation fragment are included in not-bolded bounding boxes. It is easily
seen that lexicon element respective to the first half measure includes the subtree
with the root surrounded by the ellipse. Of course, the bolded part of this subtree,
i.e. the subtree respective to the second part of this measure, is cut off.

3.2 Pitch-Prior-to-Time-Driven Syntax in Measures

Let us consider time-driven structures in the second measure. Let us analyze
voice lines, which are the most representative time structures. In Figure 4 the
second stave of Weber’s piece from Figure 3 is analyzed. There are two voice
lines in this stave. Notes of the lower voice line in the second measure are dis-
tinguished, all other elements of the stave are greyed out. In the upper part of
Figure 4 the derivation subtree of the second measure is shown. This subtree
is the part of the tree presented in Figure 3. In this subtree elements corre-
sponding to lower voice line in the second measure are bolded. Notice that these
elements do not create a compact structure in frames of the derivation tree.
This split makes obvious problems in automatic processing of structured infor-
mation. Therefore, it would be desirable to find such a structuring, that will keep
compactness of lexicon elements for naturally structured pieces of information.
We do not intend to develop discussion on compactness and natural structuring
terms, we leave it as intuitive notions.

This inconvenience is a result of contradictory nature of the grammar and of
the selected construction of music notation. Let us recall that at the measure
level the grammar is pitch oriented while the construction is time oriented. In



Knowledge-Driven Syntactic Structuring 445

Fig. 4. Selection of the bottom voice line in the second measure and its corresponding
derivation tree fragments in pitch-driven grammar

Fig. 5. Selection of the bottom voice line in the second measure and its corresponding
fragments of derivation trees in time-driven grammar



446 W. Homenda and M. Rybnik

other words, in this two dimensional space natures of cross section grammar and
time-driven construction are ’perpendicularly’ oriented.

Reconstruction of the grammar allows for compact representation of time
oriented constructions in derivation trees. The following group of <measure>
productions:

<ts measure> → <vertical event> <ts measure>
→ <vertical event>

<vertical event> → <stem> <vertical event>
→ <stem>

generate consecutive time events, which are represented by <vertical event> in
the grammar. However, every such time event is a collection of pitch-driven ele-
ments: chords and notes. Therefore, single elements of time events are separated
by other elements of the same time events.

Replacing this group of production by another one changes grammar’s char-
acter at the level of measures. Instead of generating time events first, and then
pitch-like elements (chords, notes), a sequence of pitch-like oriented construction
is generated first, and then - in every such pitch-like construction - sequences of
single time elements are generated. This new pitch-like constructions are repre-
sented by <voice line> group of production:

<ts measure> → <voice line> <ts measure>
→ <voice line>

<voice line> → <stem> <voice line>
→ <stem>

The grammar with new production create derivation tree’s structure at the mea-
sure level, which are pitch-prior-to-time oriented. It means that pitch-like struc-
tures (voice lines) are generated prior to time-like ones (chords and notes).

3.3 Over-Measure Time-Driven Syntax

Grammars with pitch-prior-to-time orientation at the level of measure still suffer
from dispersion of time-oriented structures in derivation trees. Let us considering
derivation of the first and the third measures, which are indicated by ellipsis in
Figure 4. The subtrees rooted in both <measure> nodes have structure similar
to the derivation subtree of the second measure. In this derivation subtree the
bolded part respective to the bottom voice is compactly placed in the right end
of the subtree. It is easily imaginable, that the stave long bottom voice line will
assemble three separated constructions far away from each other.

The solution of this inconvenience is taken from MIDI format of type 1, where
- roughly speaking - we have an empty track number 0 for representation of
signatures while notes are stored in the next track(s).

The following fragment of the initial grammar is responsible for time-prior-
to-pitch orientation:



Knowledge-Driven Syntactic Structuring 447

<stave> → beginning-barline <bl stave>
→ <bl stave>

<bl stave> → treble-clef <cl stave>
→ bass-clef <cl stave>
→ <cl stave>

<cl stave> → <key signature> <ks stave>
→ <ks stave>

<ks stave> → <time signature> <ts stave>
→ <ts stave>

<ts stave> → <measure> <barline> <ts stave>
→ <measure> <barline>

<ts measure> → <vertical event> <ts measure>
→ <vertical event>

<vertical event> → <stem> <vertical event>
→ <stem>

The following grammar realizes pitch-prior-to-time orientation of the grammar
at the level of stave:

<stave> → <sign stave> <vl stave>

<sign stave> → beginning-barline <bl stave>
→ <bl stave>

<bl stave> → <clef> <cl stave>
→ <cl stave>

<cl stave> → <key signature> <ks stave>
→ <ks stave>

<ks stave> → <time signature> <ts stave>
→ <ts stave>

<ts stave> → dummy-measure barline <ts stave>
→ dummy-measure barline
→ dummy-measure

<vl stave> → <voice line> <vl stave>
→ <voice line>

<voice line> → <stem> <voice line>
→ <stem>

The main point of pitch-prior-to-time orientation of the grammar is explained in
Figure 6. Signatures and barlines of the score are derivable from the nonterminal
symbol <sign stave>. These symbols are displayed in the upper stave. For the
sake of clarity all other symbols are removed from this stave. The top voice line,
derivable from the first nonterminal symbol <voice line>, is displayed in the
middle stave. Derivation of this voice line is shrunken to ellipsis. And, finally,
the bottom voice line is presented in the bottom stave. Derivation of this voice
line is developed in details.



448 W. Homenda and M. Rybnik

Fig. 6. Selection of the bottom voice line in the second measure and its corresponding
fragment of derivation tree in pitch-driven grammar

4 Synchronization

Having pitch-prior-to-time grammar orientation could result in losing of impor-
tant time-like data. For instance, in the middle and bottom staves key signature
and time signature are unknown. However, signatures are essential for correct
reading of notes information. Therefore, we have to provide such data in the
grammar or - more precisely - in the derivation tree. To transfer needed data we
can use attribute tools in the grammar, i.e. we use attribute grammars. Such a
grammar is obtained by furnishing productions with inherited and synthesized
attributes. This kind of grammars was introduced by D. Knuth, c.f. [6].

4.1 Attribute Grammars

Let us recall that we deliberate context-free grammars, which are defined as
systems G = (V, T, P, S), where V is a finite set of nonterminal symbols, T is
a finite set of terminal symbols, P is a finite set of productions and S ∈ V is the
initial symbol of the grammar. Productions are of the form X0 → X1X2 · · ·Xn,
where X0 ∈ V , X1X2 · · ·Xn ∈ V ∪ T , c.f. [4,5].

Nonterminal symbols of a production X0 → X1X2 · · ·Xn, where X0 ∈ V ,
X1, X2, · · · , Xn ∈ V ∪ T have attached sets of attributes in attribute gram-
mars, i.e. the symbol XI has attached the set A(Xi) of attributes. Attributes
are divided into two groups: inherited attributes and synthesized attributes, i.e.
A(Xi) = I(Xi) ∪ S(Xi), where I(Xi) ∩ S(Xi) = ∅.



Knowledge-Driven Syntactic Structuring 449

Fig. 7. Synthesized attributes (upper part of the Figure) and inherited attributes (lower
part of the Figure)



450 W. Homenda and M. Rybnik

Fig. 8. Information flow in a derivation tree of an attribute grammar



Knowledge-Driven Syntactic Structuring 451

4.2 Information Flow in Attribute Grammars for Music Notation

Attributes are attached to the grammars considered in this paper. They are
responsible for transferring important data between items of the information
space. We do not attempt to expand formally the grammars with attributes and
rules of their evaluation. Instead we outline the idea of using attributes.

The idea of synthesized attributes is shown in the upper part of the Figure 7
comes up by the example of transferring signatures from leaves (terminals) of the
derivation tree towards its root. Attributes of given nonterminal and their values
are listed below nonterminal’s name. Arrows with attributes names show direc-
tion of flow of values of attributes. For instance, the nonterminal <cl stave>
has two attributes: key siganture and time signature. These attributes get val-
ues from attributes of <key signature> and <ks stave>, which in turn get
values directly from generated elements of music notation: AbMajor/fMinor
and 4/4.

Bottom part of Figure 7 illustrates inherited attributes. For instance, the
nonterminal <cl stave> has attributes clef and key signature. Values trebleclef
and AbMajor/fMinor of these attributes are inherited from the parent in
the derivation tree. On the other hand, the attribute beginning time of the
nonterminal <ks stave> in the lowest node inherits its value from its par-
ent and sibling. The formula shown in this Figure outlines time relative to
measure.

In Figure 8 attributes’ data flow is presented for bigger part of derivation tree.
Some obvious attributes synthesized from terminals are skipped for the sake of
simplification of the schema.

5 Conclusion

In this paper we study syntactic data structuring driven by information struc-
tures. The study is immersed in spaces of music information. Paginated music
notation, employed as a language describing music information, subjected to
context-free processing, is a powerful tool in the process of automation of infor-
mation processing. Concepts and ideas studied in the paper stem from practical
applications of music processing methods, c.f. [1,7]. We suggest two directions
of development of concepts presented in this study (among many possibilities).
The first is constructions of grammars generating multidimensional languages
and studying properties of such grammars is a general theoretical topic inde-
pendent on application domain. The second is research in the domain of music
information focused on attributed grammars as an inner vehicle of information
is a practically oriented direction.

Acknowledgment. The research is supported by The National Centre for Re-
search and Development, grant No N R02 0019 06/2009.



452 W. Homenda and M. Rybnik

References

1. BrailleScore, grant of The National Centre for Research and Development (2009-
2012)

2. Bargiela, A., Homenda, W.: Information structuring in natural language communi-
cation: Syntactical approach. Journal of Intelligent & Fuzzy Systems 17(6), 575–581
(2006)

3. Homenda, W.: Integrated syntactic and semantic data structuring as an abstraction
of intelligent man-machine communication. In: ICAART - International Conference
on Agents and Artificial Intelligence, Porto, Portugal, pp. 324–330 (2009)

4. Homenda, W., Rybnik, M.: Querying in Spaces of Music Information. In: Tang, Y.,
Huynh, V.-N., Lawry, J. (eds.) IUKM 2011. LNCS (LNAI), vol. 7027, pp. 243–255.
Springer, Heidelberg (2011)

5. Hopcroft, J.E., Ullman, J.D.: Introduction to Automata Theory, Languages and
Computation. Addison-Wesley Publishing Company (1979, 2001)

6. Knuth, D.E.: The Genesis of Attribute Grammars. In: Deransart, P., Jourdan,
M. (eds.) Attribute Grammars and their Applications. LNCS, vol. 461, pp. 1–12.
Springer, Heidelberg (1990)

7. SmartScore (2007), http://www.musitek.com
8. Tadeusiewicz, R., Ogiela, M.R.: Automatic Image Understanding - A New Paradigm

for Intelligent Medical Image Analysis. Bioalgorithms and Med-Ssystems 2(3), 5–11
(2006)

9. Tadeusiewicz, R., Ogiela, M.R.: Why Automatic Understanding? In: Beliczynski, B.,
Dzielinski, A., Iwanowski, M., Ribeiro, B. (eds.) ICANNGA 2007. LNCS, vol. 4432,
pp. 477–491. Springer, Heidelberg (2007)

http://www.musitek.com


Mining Frequent Itemsets

Using Node-Sets of a Prefix-Tree

Jun-Feng Qu1 and Mengchi Liu2

1 State Key Lab. of Software Engineering, School of Computer, Wuhan University,
Wuhan 430072, China
cocoqjf@gmail.com

2 School of Computer Science, Carleton University, Ottawa K1S 5B6, Canada
mengchi@scs.carleton.ca

Abstract. Frequent itemsets are important information about
databases, and efficiently mining frequent itemsets is a core problem
in data mining area. The divide-and-conquer strategy is very applica-
ble to the problem. Most algorithms adopting the strategy construct a
very large number of conditional databases when mining frequent item-
sets. Representations of conditional databases and methods of construct-
ing them greatly influence the performance of such algorithms. In this
study, we propose a node-set structure for representing a conditional
database, and develop a novel node-set-based algorithm, NS, for mining
frequent itemsets. During a mining process, all the node-sets derive from
a prefix-tree storing the complete frequent itemset information about
the mined database. Compared with previous conditional database rep-
resentations, node-sets are compact and contiguous on which NS can be
performed fast. Constructing conditional databases involves counting for
items. In NS, the counting procedure and the construction procedure are
blended, which saves the time for scanning conditional databases, and
further, the major operations of constructing conditional databases are
very simple comparisons. Experimental data show that NS outperforms
several famous algorithms including FPgrowth* and LCM, ones of the
fastest algorithms, for various databases.

Keywords: Data mining, frequent itemset, node-set.

1 Introduction

Frequent itemsets mined from databases not only are used in many data min-
ing tasks such as association rule mining [4], classification [6], and clustering
[20] but also play an important role in real-life applications, e.g., face detection
[17]. Therefore, efficient mining of frequent itemsets has received considerable
attention since the introduction of the problem by Agrawal et al. [1].

1.1 Problem Definition

Let I={i1, i2, i3,. . . , in} be a set of items and DB be a transaction database
in which each transaction is a subset of I and has a unique identifier (TID).

S.W. Liddle et al. (Eds.): DEXA 2012, Part I, LNCS 7446, pp. 453–467, 2012.
c© Springer-Verlag Berlin Heidelberg 2012



454 J.-F. Qu and M. Liu

Each subset of I is an itemset, and an itemset composed of k items is called a
k -itemset. A transaction satisfies an itemset if it includes all the items of the
itemset. The support of an itemset is the number of transactions in DB satisfying
the itemset. The support of an itemset can also be defined as the percentage of
transactions satisfying the itemset. An itemset is frequent if its support exceeds
a user-specified minimum support threshold. Given a database and a minimum
support, the frequent itemset mining problem is to find out all the frequent
itemsets with their supports. For a database with n items, there are 2n itemsets
that have to be checked, and hence the problem is intractable.

1.2 Previous Solutions

An important property of frequent itemsets is that all the supersets of an in-
frequent itemset are infrequent and all the subsets of a frequent itemset are
frequent. The property was first proposed and used in the Apriori algorithm [2]
for frequent itemset mining. Apriori first scans a database to find out all the fre-
quent 1-itemsets from which it generates the candidate 2-itemsets. Afterwards,
Apriori scans iteratively the database to find out all the frequent k-itemsets
(k >= 2) from which it generates the candidate (k + 1)-itemsets until there is
neither any frequent itemset found out nor any candidate itemset generated. The
qualification as a candidate (k+1)-itemset is that all of its subsets containing k
items, namely k+1 k-itemsets, are frequent. Apriori and its variants are called
candidate generation-and-test approaches.

More efficient approaches to the frequent itemset mining problem employ the
divide-and-conquer strategy, such as the FP-Growth algorithm [11] and the Eclat
algorithm [22]. Given a database DB and a minimum support, the approaches
first scan DB to find out all the frequent items, namely the frequent 1-itemsets.
Subsequently, the frequent items are sorted in some order such as in frequency-
descending order, and suppose they are: fi1 < fi2 < fi3 < · · · < fin. After
eliminating the infrequent items in all transactions, the approaches divide DB
into n disjoint sub-databases: DB1, DB2, DB3, . . . , DBn. DBk (1 ≤ k ≤ n) is
composed of all the transactions containing fik and the frequent items before
fik but no any frequent item after fik, or in the reversed way. DBk is called
the conditional database of fik. When each frequent item in DBk is appended
to fik, a frequent 2-itemset is generated. In this way, the approaches recursively
process DBk to mine frequent itemsets.

FP-Growth employs prefix-trees to represent (conditional) databases. After
identifying all the frequent items in a (conditional) database, FP-Growth con-
structs a (conditional) prefix-tree by processing each transaction as follows: (1)
pick out the frequent items from the transaction; (2) sort the items in frequency-
descending order to generate a branch; (3) merge the branch into the prefix-tree.
Fig. 1 shows a transaction database and Fig. 2(a) depicts a corresponding prefix-
tree. Each node in a prefix-tree contains an item and a counter. For each item
of a prefix-tree, FP-Growth will construct a conditional prefix-tree representing
its conditional database. For example, by traversing the sub-trees rooted at the
nodes numbered 2 and 8 at their upper left corners in Fig. 2(a), FP-Growth



Mining Frequent Itemsets Using Node-Sets of a Prefix-Tree 455

��� ������	
���

 �� �� 	� �

� �� �� �

� �� 	

� �� �

� �� �� 	

� �� �� 	

� �� �� �

� �� �

� �� �

� �� 	

 �� �

� �� 	� �

Fig. 1. Database

����

���

��	 
�� ���


�

���

���

��

���

���


��

��� ������� ���

�



	

�

�

�

�

�

�

� ��

��


��

���

���

����

��� �!"�� �!"�# $������ ���
!� � �% &

� � 
 �
�
 ��

�
� ����#�' '
��� �!"�� �!"�# ����#�' '

!� � �% &

���
��

���
�

�

� �%�
!(" ��

�
	
�
�
�
�
�
��

�
�

�
�
�
��

�

�
�
��
��

�
�
�
��
��

�
�� �


�
�
��

�
�
�

Fig. 2. Representations of (conditional) database
(minimum support=2)

counts for the items in the conditional database of item b, and their supports
are {c: 5, d: 3, e: 1}. Because the minimum support is 2, infrequent item e is
no longer considered when FP-Growth constructs the conditional prefix-tree of
item b. The conditional prefix-tree of item b depicted in Fig. 2(b) is constructed
when FP-Growth traverses the sub-trees again. (This is a modification version
of FP-Growth in which some details are different from those in the original
FP-Growth. They do not matter in this paper.) Eclat uses a vertical database
layout and represents (conditional) databases by TID-lists. In Eclat, each item-
set holds a TID-list in which the corresponding transactions satisfy the itemset.
The length of the TID-list is the support of the itemset. Eclat intersects the
TID-lists of two frequent itemsets and thereby obtains the resultant TID-list of
a new itemset composed of the two frequent itemsets. Fig. 2(c) and (d) respec-
tively show the TID-lists representing the database in Fig. 1 and the conditional
TID-lists representing the conditional database of item b.

There are a number of other algorithms for frequent itemset mining. The FP-
growth* algorithm [10] is an efficient variant of FP-Growth, and it reduces half
the traversal cost of FP-Growth. The dEclat algorithm [21] incorporating the
“diffset” technique significantly improves Eclat’s performance. Tiling [9] makes
the best of CPU cache to speed previous algorithms up; CFP-growth [15] con-
sumes less memory than other algorithms; LCM [19] and AFOPT [12] adopt
multiple optimization strategies and achieve good performance; BISC [5] and
FIUT [18] employ new ideas to mine frequent itemsets.

1.3 Motivation and Contribution

For many mining tasks, most divide-and-conquer mining algorithms have to con-
struct a very large number of conditional databases during their mining processes
[13]. Therefore, the key factors relevant to the performance of these algorithms are



456 J.-F. Qu and M. Liu

representations of conditional databases and methods of constructing conditional
databases. The advantage of FP-Growth is that prefix-trees representing condi-
tional databases are highly compact and thus database scans, namely prefix-tree
traversals, can be efficiently performed. However, a prefix-tree is a pointer-based
structure, both prefix-tree construction and prefix-tree traversal inevitably incur
costly pointer dereferences. The advantage of Eclat is that conditional databases
represented by TID-lists can be constructed fast by simple intersections. However,
the sizes of TID-lists will become very large for dense databases.

In this paper, a novel solution to the frequent itemset mining problem is intro-
duced. Firstly, we use a data structure called node-set to represent a conditional
database. The structure is a node mapping of the prefix-tree constructed from
a mined database. The structure is inspired by some XML encoding schemes
[3], [14], but it is first used to mine frequent itemsets to the best of our knowl-
edge. Secondly, we propose a novel node-set-based algorithm called NS. NS is
a divide-and-conquer approach, in which the major operations are very simple
comparisons for constructing conditional databases. The NS algorithm holds not
only the advantage of FP-Growth, namely a compact representation of condi-
tional databases, but also that of Eclat, namely a fast method of constructing
conditional databases. Thirdly, extensive experimental data show that NS out-
performs several significant algorithms including FPgrowth* and LCM, ones of
the fastest algorithms, for various databases. The remainder of this paper is or-
ganized according to the three aforementioned points that are in Section 2, 3,
and 4. The paper ends in the conclusion of Section 5.

2 Preliminaries

This section will introduce the key concepts and fundamental principles of the
NS algorithm and illustrate the node-set structure. In the following, we suppose
that (1) all the items of an itemset are ordered; (2) P is a prefix itemset (can
be empty); (3) x and y are items and x is before y; (4) Px, Py, and Pxy are the
itemsets composed of P, x, and y.

2.1 Conditional Node

Given a prefix-tree representing a database, the support of an itemset relates
only to a number of nodes rather than all nodes.

Definition 1 (Conditional node). In a prefix-tree, a conditional node of an
itemset is such a node that it contains the last item of the itemset and that all
the items of the itemset are in the path from the node to the root.

In Fig. 2(a), the conditional nodes of itemset bc are the nodes numbered 3 and
9 at their upper left corners respectively. The path from a conditional node of
an itemset to the root includes all the items of the itemset and corresponds to
the transactions in the database satisfying the itemset, and hence the counter
of the conditional node registers the partial support of the itemset.



Mining Frequent Itemsets Using Node-Sets of a Prefix-Tree 457

Lemma 1. In a prefix-tree, the sum of the counters of all the conditional nodes
of an itemset is the support of the itemset.

Proof. In the process of constructing a prefix-tree, for any transaction satisfying
an itemset, the construction algorithm is bound to either take it through or
create a conditional node of the itemset when it is merged into the prefix-tree.�

For example, the support of itemset bc is 5, namely the sum of the counters of
its conditional nodes (numbered 3 and 9 respectively in Fig. 2(a)). The sum of
the counters of itemset ac’s conditional nodes (numbered 3 and 6 respectively)
is its support 4.

Lemma 2. In a prefix-tree, a conditional node of itemset Py is a conditional
node of itemset Pxy, as long as x is in the path from the node to the root.

Proof. If x is in the path from a Py’s conditional node to the root, the Py’s
conditional node meets the two requirements of being a Pxy’s conditional node
according to Definition 1. �

The nodes numbered 4, 5, and 7 respectively in Fig. 2(a) are the conditional
nodes of itemset ad, and the nodes numbered 4 and 7 respectively are also the
conditional nodes of itemset acd because the paths from them to the root include
item c.

Lemma 3. In a prefix-tree, the set of Pxy’s conditional nodes is a subset of the
set of Py’s conditional nodes.

Proof. Any node in the set of Pxy’s conditional nodes meets the two require-
ments of being a Py’s conditional node. �

2.2 Topology Number

If the set of Py’s conditional nodes is available, based on Lemma 3, the set of
Pxy’s conditional nodes can be evaluated by picking out the eligible nodes from
Py’s conditional nodes according to Lemma 2. A number of Py’s conditional
nodes are Pxy’s conditional nodes and the other nodes are not.

Definition 2 (Candidate node). All of Py’s conditional nodes are called the
candidate nodes for Pxy’s conditional nodes.

In Fig. 2(a), the conditional nodes of itemset ad are the nodes numbered 4,
5, and 7 respectively, and they are also the candidate nodes for itemset abd
when abd ’s conditional nodes are evaluated. After they are checked, the nodes
numbered 4 and 5 respectively are proved to be abd ’s conditional nodes. To
evaluate the conditional nodes of Pxy, namely to judge whether or not x exists
in the paths from Py’s conditional nodes to the root, a primitive method is to
traverse these paths. However, the longer the distance between x and y is, the
more the traversal cost is. For example, the search for item a from the nodes
containing item c may go through the nodes containing only item b in Fig. 2(a),



458 J.-F. Qu and M. Liu

but the same search from the nodes containing item d may go through the
nodes containing either item b or item c. Further, traversals incur costly pointer
dereferences.

Can one directly pick out Pxy’s conditional nodes from Py’s conditional nodes
without traversals for related paths?

Definition 3 (Topology number). In a prefix-tree, the topology number of a
node is i if it is the ith node to be visited in depth-first order.

The topology number of each node in the prefix-tree in Fig. 2(a) is at the node’s
upper left corner. By such a numbering way, the topology numbers of all the
descendant nodes of a node constitute an integer-consecutive region that can be
defined by a pair of boundaries. For example, the topology numbers of all the
descendant nodes of the node numbered 1 are in [2, 7].

Definition 4 (Descendant-node-topology-number region). The integer-
consecutive region composed of the topology numbers of all the descendant nodes
of a node is the descendant-node-topology-number (abbr. dntn) region of the node.

Lemma 4. If the topology number of a Py’s conditional node is in the dntn
region of a Px’s conditional node, the Py’s conditional node is a Pxy’s conditional
node.

Proof. The topology number of a Py’s conditional node is in the dntn region of
a Px ’s conditional node, which means that the former node is a descendant node
of the latter and that x must be in the path from the Py’s conditional node to
the root, and thereby it can be deduced from Lemma 2 that the Py’s conditional
node is also a Pxy’s conditional node. �

For a depth-first mining algorithm, Px ’s conditional nodes and Py’s have been
available when Pxy’s conditional nodes are evaluated. Therefore, Lemma 4 gives
a solution to the aforementioned problem provided the information about both
topology number and dntn region is available. For example, for the prefix-tree
in Fig. 2(a), after the conditional node (numbered 2) of itemset ab and those
(numbered 4, 5, and 7 respectively) of itemset ad have been evaluated, the con-
ditional nodes of itemset abd, namely the nodes numbered 4 and 5 respectively,
can be picked out from the conditional nodes of itemset ad because they are in
the dntn region of the node numbered 2, namely [3, 5].

2.3 Node-Set Structure

In the NS algorithm, a (conditional) database is represented by a set of nodes
in a prefix-tree constructed from a mined database, and the set with related
information is stored in a node-set structure.

A node-set contains two tables: one called mapping and the other called item-
list. The mapping table registers three pieces of information about each node
in a (conditional) database, and they are a node’s topology number denoted as
tn, the upbound of the node’s dntn region denoted as upbound, and the node’s



Mining Frequent Itemsets Using Node-Sets of a Prefix-Tree 459

��� � � � � 	 
 � �  � �� �� �� ��
�� � � �  � � � 	 
 � �� �� �� ��
������� �� � 
 �� 	 � � 	 
 � �� �� �� ��
������� �  	 � � � � � � � � � � �

�������� � � � � �
����  � � 
 �
�������� � � 	 � ��

��� ��������

������� ��� �

���� ��� ��� �

��� � � � 	 

�� � � 	 
 ��
������� 	 � 	 
 ��
������� � � � � �

�������� � �
���� 
 �
�������� � �

��� !��������� �������� �" ���� #

Fig. 3. Core data structure

counter denoted as partsup. The dntn region of a node can be defined by (tn,
upbound]. All the nodes containing an item are mapped onto a contiguous part
of the mapping table in topology number ascending order. The itemlist table
registers the information about all the items in a (conditional) database. For
each item, its name denoted as itemname, its support denoted as supp, and the
position of the first node containing the item in the mapping table denoted as
startpos are stored in the itemlist table.

The node-set constructed from the prefix-tree in Fig. 2(a) is shown in Fig. 3(a).
Fig. 3(b) depicts the conditional node-set representing the conditional database
of item b.

3 NS Algorithm

Given a transaction database and a minimum support, the NS algorithm first
constructs a prefix-tree representing the database. After mapping all the nodes
of the tree onto a initial node-set, NS mines frequent itemsets by recursively con-
structing conditional node-sets from the initial node-set. Prefix-tree construction
has been discussed in previous literature [11], and the mapping and mining pro-
cedures of NS will be introduced in this section.

3.1 Mapping All the Nodes of a Prefix-Tree

In the process of constructing a prefix-tree from a database, the following in-
formation can be gathered: the names of the items, the supports of the items,
and the numbers of nodes containing an item. The itemlist table of the initial
node-set is built based on the information. Except that the first two vectors of
the itemlist table are directly available, the startpos vector can be deduced from
the third piece of information. For example, for the prefix-tree in Fig. 2(a), the
numbers of nodes containing items a, b, c, d, and e are respectively 1, 2, 3, 5,
and 2. The evaluation of the startpos vector is demonstrated in Fig. 4.

After the itemlist table of the initial node-set is built, all the nodes of the
prefix-tree rooted at root can be mapped onto the mapping table of the node-set
by calling Mapping(root, mapping, startpos, 0). Algorithm 1 is its pseudo-code,
in which the startpos vector is indexed by the names of the items.



460 J.-F. Qu and M. Liu

���� � � � 	 �


 � �  �
� � � �

 � � � 
�

��� ������ �� ��	��
���������� ��� ����� �����

���������

Fig. 4. Deducing startpos vector

For node N, startpos [N.item] indicates its position in mapping. Firstly, pa-
rameter curTN as N ’s topology number is assigned to the tn field (line 1). Sub-
sequently, N ’s counter is mapped onto the partsup field (line 2). Before mapping
the next node, the algorithm provides the node with its topology number stored
in nextTN (line 3). After all the child nodes of N have been recursively pro-
cessed (lines 4-6), please note that nextTN is updated and stores the topology
number of the node that will be processed immediately after the sub-tree rooted
at N is processed. If nextTN remains unchanged, which means that N has no
child node, the upbound of N ’s dntn region is assigned as curTN (line 8), and
otherwise the upbound of N ’s dntn region is nextTN -1 (line 10).

Once N is mapped, startpos [N.item] is increased by 1 and indicates the po-
sition of the next node containing N.item in mapping (line 12). In the mining
phase, the prefix-tree is no longer used and hence N is deleted immediately after
being mapped (line 13). At last, the topology number for the next node that will
be mapped is returned (line 14).

Algorithm 1. Mapping algorithm

Input: N is a node in the prefix-tree representing a database;
mapping is the mapping table of a node-set;
startpos is the startpos vector of the itemlist table of the node-set;
curTN is the current topology number.

Output: the initial node-set representing the database.
mapping [startpos[N.item]].tn = curTN ;1

mapping [startpos[N.item]].partsup = N.counter ;2

nextTN = curTN + 1;3

foreach child c of N do4

nextTN = Mapping(c, mapping, startpos, nextTN );5

end6

if nextTN==(curTN+1) then7

mapping [startpos[N.item]].upbound = curTN ;8

else9

mapping [startpos[N.item]].upbound = nextTN - 1;10

end11

startpos[N.item] = startpos[N.item] + 1;12

delete N ;13

return nextTN ;14



Mining Frequent Itemsets Using Node-Sets of a Prefix-Tree 461

3.2 Mining the Frequent Itemsets from a Node-Set

After the initial node-set is constructed from a prefix-tree, all the frequent item-
sets can be identified by calling NS’s mining procedure, which is showed in
Algorithm 2.

All the items in node-set S (the second parameter) are processed successively.
For item x in S.itemlist, the combination of prefix itemset P (the first param-
eter) and x, denoted as Px, is the prefix itemset of the next level of recursion
(line 2). After Px with its support is outputted (line 3), the main task of the
algorithm is to identify all the frequent items in the conditional database of Px
and to construct the conditional node-set of Px denoted as subS (line 4). Each
item y after x will be checked (lines 6-17). Whether y is a frequent extension of
Px or not, namely whether Pxy is frequent or not, depends on the support of
Pxy. From another perspective, S.mapping stores the conditional nodes of both
Px and Py, and then Pxy’s conditional nodes can be picked out from Py’s condi-
tional nodes (candidate nodes) according to Lemma 4. When all the conditional
nodes of Pxy are found out, the support of Pxy can be figured out according to
Lemma 1.

Algorithm 2. Mining algorithm

Input: P is a prefix itemset, initially empty;
S is the conditional node-set of P ;
minsup is the minimum support threshold.

Output: all the frequent itemsets with P as prefix.
foreach item x in S.itemlist do1

Px = P ∪ x ;2

output Px with the support of x in S.itemlist ;3

subS = NULL;4

foreach item y after x in S.itemlist do5

support = 0;6

foreach candidate node n containing y in S.mapping do7

if ∃m∈S.mapping and m contains x and n.tn∈(m.tn, m.upbound]8

then
append <n.tn, n.partsup, n.upbound> to subS.mapping ;9

support = support + n.partsup;10

end11

end12

if support ≥ minsup then13

append <y, support, y’s starting position in subS.mapping> to14

subS.itemlist ;
else15

delete all the nodes containing y from subS.mapping ;16

end17

end18

Mining(Px, subS, minsup);19

end20



462 J.-F. Qu and M. Liu

Item y is checked as follows. Firstly, variable support storing the support of
Pxy is initialized (line 6). Secondly, for each candidate node n, namely for each
conditional node of Py, as long as there is nodem containing item x in S.mapping
and the topology number of n is in the dntn region ofm (line 8), it can be deduced
from Lemma 4 that n is a conditional node of Pxy. All the conditional nodes of
Pxy belong to the conditional database of Px and are appended to subS.mapping,
and their partsups are added to support (lines 9-10). If the support of Pxy exceeds
minsup, y is a frequent extension of Px. In this case, <item y, its support, and
the position of the first node containing y in subS.mapping> is appended to
subS.itemlist (line 14). Otherwise, all the nodes containing y are deleted from
subS.mapping (line 16).

After constructing the conditional node-set of Px, the algorithm recursively
processes Px with its conditional node-set (line 19).

3.3 An Example of Mining Algorithm

The following will illustrate how Algorithm 2 constructs the conditional node-
set of item b in Fig. 3(b) from the initial node-set in Fig. 3(a). P is empty and
minsup is 2 now.

Px with its support, namely itemset b with 7, is first outputted. Subsequently,
the algorithm starts to construct the conditional node-set of item b. There are the
two conditional nodes of b whose dntn regions are (2, 5] and (8, 11] respectively.
The items after b are checked one by one:

– Item c has the two conditional nodes whose tns are 3∈(2, 5] and 9∈(8, 11]
respectively. The accumulated support is 5 larger than 2. Therefore, c is a
frequent extension of b.

– Item d has the three conditional nodes whose tns are 4∈(2, 5], 5∈(2, 5],
and 10∈(8, 11] respectively. The accumulated support is 3 larger than 2.
Therefore, d is a frequent extension of b.

– Item e has the only conditional node whose tn is 11∈(8, 11]. The accumulated
support is 1 smaller than 2. Therefore, e is not a frequent extension of b and
the node containing e in the mapping table of the conditional node-set of
item b is deleted.

3.4 Atom Operation

There are the three steps in the NS algorithm: constructing a prefix-tree, map-
ping nodes, and mining frequent itemsets. In general, the time complexities of
the first two steps are linear, namely O(t) and O(n) respectively (t is the num-
ber of transactions in a mined database and n is the number of nodes in the
corresponding prefix-tree), but that of the last step is O(2i) (i is the number
of frequent items). Therefore, the mining time dominates NS’s running time in
most cases.

The main task of the mining algorithm is to construct conditional node-sets,
and the atom operation is to judge whether a Py’s conditional node is a Pxy’s



Mining Frequent Itemsets Using Node-Sets of a Prefix-Tree 463

��� �� ��� ���

� � � �	 ��

� � �	


�� ���� �� ������� ��� ���������� �����


�� ��� �� ������� ��� ���������� �����


�� ��� �� ������� ���� ���������� �����

Fig. 5. Evaluation of conditional node

conditional node or not (line 8 in Algorithm 2). Suppose the number of Px ’s con-
ditional nodes is m and that of Py’s conditional nodes is n. For each Py’s con-
ditional node, the judgment of line 8 in Algorithm 2 will use 2 × m comparisons
in the worst case. Therefore, it is possible to perform 2 × m × n comparisons for
judging whether Pxy is frequent or not.

However, in the mapping table of a node-set, the nodes containing an item
are mapped onto a contiguous part in topology number ascending order and are
processed in the same order, and hence the nodes in the mapping table of any
conditional node-set keep the same order. Then, 2×m+n comparisons at most
are enough for the evaluation of Pxy’s conditional nodes from Py’s. For example,
the conditional nodes of itemset b are the nodes whose dntn regions are (2, 5]
and (8, 11] respectively, and those of itemset d are the nodes whose tns are 4, 5,
7, 10, and 12 respectively in Fig. 3(a). The process of evaluating the conditional
nodes of itemset bd is demonstrated in Fig. 5. We can observe that this process
is actually a 2-way comparison between the dntn regions’ boundaries of itemset
b’s conditional nodes and the topology numbers of itemset d ’s conditional nodes.
In this way, the atom operation of the NS algorithm can be performed fast.

4 Experiments

To test the performance of the NS algorithm, we have done extensive experiments
that are reported in the section.

4.1 Experimental Setup

We have implemented the NS algorithm, and it was compared with the FP-
Growth algorithm [11], the FPgrowth* algorithm [10], the AFOPT algorithm
[12], the dEclat algorithm [21], and the LCM algorithm [19]. These algorithms
have been proven to be superior to the Apriori algorithm, and thus Apriori
was no longer tested. To avoid implementation bias, the implementation of
FP-Growth was downloaded from [8], and the implementations of FPgrowth*,
AFOPT, dEclat, and LCM were downloaded from [7]. FPgrowth* is the fastest
algorithm in IEEE ICDM Workshop on frequent itemset mining implementa-
tions (FIMI’03), and LCM is the fastest algorithm in IEEE ICDM Workshop on
FIMI’04. Except for FP-Growth (coded by Bart Goethals) and dEclat (coded
by Lars Schmidt-Thieme [16], the fastest dEclat implementation that we have



464 J.-F. Qu and M. Liu

�������� �	)�
�*���� ����� ������ ���������� ����������
���	����� �������� � �!��  "� �� �!
�#��� � ��� �!�" $� �$ �$
�%����� ������� "$��$ !��  �  �
&%����& ����� "$ ������  !�$� � � ��
'(��� !""��$"!  �� " �!!� $ $ 
)���%�� ! �!���!$" !"����� ��"$"�" !$$ $! $�

Fig. 6. Statistical information about experimental databases

tested), the other algorithms were coded by their authors respectively. All of the
codes were written in C/C++, used the same libraries, and were compiled using
gcc (version 4.3.2).

The six dense/sparse databases from [7] were used. The statistical information
about the databases is showed in Fig. 6, including the size (bytes), the number of
transactions, the number of distinct items, the average transaction length, and
the maximal transaction length. The experiments were performed on a 2.83GHz
PC machine (Intel Core2 Q9500) with 4 × 109 bytes memory, running on a
Debian (Linux 2.6.26) operating system. Running time was recorded by “time”
command, and it contains input time, CPU time, and output time. Output was
directed to “/dev/null”.

4.2 Experimental Results

The experimental results are depicted in Fig. 7. The running time of NS includes
the times of constructing a prefix-tree, mapping nodes, and mining frequent item-
sets. Note that we did not plot when an implementation terminated abnormally
due to either segmentation faults or memory allocation failures.

For almost all the databases and minimum supports, NS performs the
best. For example, in Fig. 7(a), the running times of these algorithms are
respectively: NS(17.553 seconds), FPgrowth*(91.959s), FP-Growth(449.568s),
AFOPT(126.469s), dEclat(212.283s), and LCM(67.498s) when the minimum
support is 6% for dense database accidents. NS is over an order of magnitude
faster than FP-Growth and dEclat, and it is several times faster than FPgrowth*,
AFOPT, and LCM. For sparse database kosarak in Fig. 7(d), their running times
are respectively: NS(5.099 seconds), FPgrowth*(20.672s), FP-Growth(117.257s),
AFOPT(17.228s), dEclat(terminated abnormally), and LCM(9.179s) when the
minimum support is 0.085%. NS is still the fastest.

4.3 Discussion

The NS algorithm distinctly outperforms the previous algorithms for the reasons
below.

There are a very large number of conditional databases constructed by divide-
and-conquermining algorithms inmost cases [13], and thereby the representations



Mining Frequent Itemsets Using Node-Sets of a Prefix-Tree 465

3 6 9 12 15 18
100

101

102

103

104

Minimum Support (%)
(a) Running time on accidents

R
un

ni
ng

 ti
m

e 
(s

ec
.)

20 25 30 35 40 45
10−1

100

101

102

103

104

Minimum Support (%)
(b) Running time on chess

R
un

ni
ng

 ti
m

e 
(s

ec
.)

30 40 50 60 70 80
10−1

100

101

102

103

104

Minimum Support (%)
(c) Running time on connect

R
un

ni
ng

 ti
m

e 
(s

ec
.)

50 55 60 65 70 75
10−1

100

101

102

103

104

Minimum Support (%)
(e) Running time on pumsb

R
un

ni
ng

 ti
m

e 
(s

ec
.)

0.07 0.075 0.08 0.085 0.09 0.095
100

101

102

103

104

105

Minimum Support (%)
(d) Running time on kosarak

R
un

ni
ng

 ti
m

e 
(s

ec
.)

8 10 12 14 16 18
101

102

103

Minimum Support (%)
(f) Running time on webdocs

R
un

ni
ng

 ti
m

e 
(s

ec
.)

NSAFOPTFP−Growth FPgrowth* dEclat Lcmv2

Fig. 7. Performance comparison

of conditional databases have an important impact on the performance of such al-
gorithms. NS uses a node-set structure to represent a conditional database. For
a mining task, all the node-sets derive from a prefix-tree representing the mined
database. A prefix-tree is a high compact structure [11], and thus a node-set is a
compact conditional database representation. For example, when all the transac-
tions in the database in Fig. 1 are replicated 100 times, the size of the prefix-tree
in Fig. 2(a) and the size of the node-set in Fig. 3(a) remain unchanged while the
size of TID-lists in Fig. 2(c) increases by 100 times.

Please note that except for the initial node-set, for a conditional database, the
number of nodes in the mapping table of the conditional node-set is generally



466 J.-F. Qu and M. Liu

larger than the number of nodes in the conditional prefix-tree. For example,
there are 5 nodes in Fig. 3(b) and 4 nodes in Fig. 2(b). FP-Growth compresses
all conditional databases into prefix-trees during a mining process while NS does
not. However, several advantages of NS are: (1) the size of a node in node-sets
(exactly 3 fields) is smaller than the size of a node in prefix-trees (4 fields at
least including item, counter, child, and sibling if a prefix-tree is stored in the
simplest left-child-right-sibling structure); (2) there is no compression cost for
NS; (3) each node-set is contiguous in memory and therefore NS not only avoids
costly pointer dereferences but also holds good data locality [9].

The method of constructing conditional databases is another key factor influ-
encing the performance of the algorithms. FP-Growth constructs a prefix-tree
representing a conditional database only when all the candidate items in the
conditional database have been counted, in which the counting procedure and
the construction procedure are separated from each other. That leads to extra
prefix-tree traversals, namely database scans. FPgrowth* merges the two pro-
cedures and thereby improves significantly the performance of FP-Growth, and
AFOPT and Eclat do so. The NS algorithm constructs a conditional database
(node-set) in the process of counting for the items in the database, and more-
over, the major operations of constructing conditional node-sets are very simple
comparisons.

5 Conclusion

Frequent itemsets play an important role in many real-world applications, which
encourages the demand for high-performance algorithms. In this study, we pro-
posed the NS algorithm for frequent itemset mining. In NS, a conditional database
is represented by a compact and contiguous node-set structure, and the method
of constructing conditional databases is very efficient. Experimental data show
that the NS algorithm significantly outperforms several famous algorithms in-
cluding FPgrowth* and LCM, ones of the fastest algorithms, for various
databases.

References

1. Agrawal, R., Imieliński, T., Swami, A.: Mining Association Rules between Sets of
Items in Large Databases. In: Proc. ACM SIGMOD, pp. 207–216 (1993)

2. Agrawal, R., Srikant, R.: Fast Algorithms for Mining Association Rules in Large
Databases. In: Proc. VLDB, pp. 487–499 (1994)

3. Bruno, N., Koudas, N., Srivastava, D.: Holistic Twig Joins: Optimal XML Pattern
Matching. In: Proc. ACM SIGMOD, pp. 310–321 (2002)

4. Ceglar, A., Roddick, J.F.: Association Mining. ACM Comput. Surv. 38(2), 1–42
(2006)

5. Chen, J., Xiao, K.: Bisc: A Bitmap Itemset Support Counting Approach for Ef-
ficient Frequent Itemset Mining. ACM Trans. Knowl. Disc. Data 4(3), 12:1–12:37
(2010)



Mining Frequent Itemsets Using Node-Sets of a Prefix-Tree 467

6. Cheng, H., Yan, X., Han, J., Yu, P.S.: Direct Discriminative Pattern Mining for
Effective Classification. In: Proc. ICDE, pp. 169–178 (2008)

7. Frequent Itemset Mining Implementations Repository, http://fimi.ua.ac.be/
8. Frequent Pattern Mining Implementations,

http://adrem.ua.ac.be/~goethals/software/

9. Ghoting, A., Buehrer, G., Parthasarathy, S., Kim, D., Nguyen, A., Chen, Y.K.,
Dubey, P.: Cache-Conscious Frequent Pattern Mining on Modern and Emerging
Processors. The VLDB Journal 16(1), 77–96 (2007)

10. Grahne, G., Zhu, J.: Fast Algorithms for Frequent Itemset Mining Using FP-Trees.
IEEE Trans. Knowl. Data Eng. 17(10), 1347–1362 (2005)

11. Han, J., Pei, J., Yin, Y., Mao, R.: Mining Frequent Patterns without Candidate
Generation: A Frequent-Pattern Tree Approach*. Data Min. Knowl. Disc. 8(1),
53–87 (2004)

12. Liu, G., Lu, H., Lou, W., Xu, Y., Yu, J.X.: Efficient Mining of Frequent Patterns
Using Ascending Frequency Ordered Prefix-Tree. Data Min. Knowl. Disc. 9(3),
249–274 (2004)

13. Liu, G., Lu, H., Yu, J.X., Wang, W., Xiao, X.: Afopt: An Efficient Implementation
of Pattern Growth Approach. In: Proc. IEEE ICDM Workshop FIMI (2003)

14. Lu, J., Ling, T.W., Chan, C.Y., Chen, T.: From Region Encoding to Extended
Dewey: on Efficient Processing of XML Twig Pattern Matching. In: Proc. VLDB,
pp. 193–204 (2005)

15. Schlegel, B., Gemulla, R., Lehner, W.: Memory-Efficient Frequent-Itemset Mining.
In: Proc. EDBT, pp. 461–472 (2011)

16. Schmidt-thieme, L.: Algorithmic Features of Eclat. In: Proc. IEEE ICDM Work-
shop FIMI (2004)

17. Tsao, W.K., Lee, A.J., Liu, Y.H., Chang, T.W., Lin, H.H.: A Data Mining Ap-
proach to Face Detection. Pattern Recogn. 43(3), 1039–1049 (2010)

18. Tsay, Y.J., Hsu, T.J., Yu, J.R.: FIUT: A New Method for Mining Frequent Item-
sets. Inf. Sci. 179(11), 1724–1737 (2009)

19. Uno, T., Kiyomi, M., Arimura, H.: Lcm ver. 2: Efficient Mining Algorithms for
Frequent/Closed/Maximal Itemsets. In: Proc. IEEE ICDM Workshop FIMI (2004)

20. Wang, H., Wang, W., Yang, J., Yu, P.S.: Clustering by Pattern Similarity in Large
Data Sets. In: Proc. ACM SIGMOD, pp. 394–405 (2002)

21. Zaki, M.J., Gouda, K.: Fast Vertical Mining Using Diffsets. In: Proc. ACM
SIGKDD, pp. 326–335 (2003)

22. Zaki, M.J.: Scalable Algorithms for Association Mining. IEEE Trans. Knowl. Data
Eng. 12(3), 372–390 (2000)

http://fimi.ua.ac.be/
http://adrem.ua.ac.be/~goethals/software/


MAX-FLMin : An Approach for Mining

Maximal Frequent Links and Generating
Semantical Structures from Social Networks

Erick Stattner and Martine Collard

LAMIA Laboratory
University of the French West Indies and Guiana, France

{estattne,mcollard}@univ-ag.fr

Abstract. The paper proposes a new knowledge discovery method
called MAX-FLMin for extracting frequent patterns in social networks.
Unlike traditional approaches that mainly focus on the network topo-
logical structure, the originality of our solution is its ability to exploit
information both on the network structure and the attributes of nodes
in order to elicit specific regularities that we call “Frequent Links”. This
kind of patterns provides relevant knowledge about the groups of nodes
most connected within the network. First, we detail the method proposed
to extract maximal frequent links from social networks. Second, we show
how the extracted patterns are used to generate aggregated networks
that represent the initial social network with more semantics. Qualita-
tive and quantitative studies are conducted to evaluate the performances
of our algorithm in various configurations.

1 Introduction

In last decade, social network analysis has become an active research area called
“network science” [1], an emerging discipline that focuses on relationships main-
tained between entities. While traditional network analysis methods, popular-
ized with numerous studies in sociology [2], have mainly exploited the works
conducted in the domain of graph theory, the current tendency, known as “so-
cial network mining” or more simply “link mining”, have attempted to apply
the concepts of data mining on networks [3].

One of the classical task of social network mining consists into searching for
patterns in social networks. Many existing pattern extraction methods mainly
focus on the network topological structure for extracting patterns such as com-
munities or subgraphs, but ignore the node attributes, which does not allow to
take full advantage of the whole network information. Indeed, in many real sit-
uations both network structure and node features may be relevant. Especially
now with the explosion of social networks, in which nodes are often represented
with a set of heterogeneous attributes.

In this paper, we address the problem of the search for frequent patterns in
social networks, by proposing a new and original approach that combines both

S.W. Liddle et al. (Eds.): DEXA 2012, Part I, LNCS 7446, pp. 468–483, 2012.
c© Springer-Verlag Berlin Heidelberg 2012



MAX-FLMin: An Approach for Mining Maximal Frequent Links 469

network structure and node features. One of the first issues of our work was to
propose a definition of “a pattern” that combines these two aspects. Thus in our
context, we search for regularities among links that connect groups of nodes.
Here, a group is a set of nodes that share common characteristics. We call such
patterns “frequent links”.

Thus, this article presents MAX-FLMin (Maximal Frequent Link Mining), a
new knowledge discovery algorithm for extracting maximal frequent links from
social networks. The algorithm works without any a priori knowledge on the
social network and performs a bottom-up research by reducing the search space
at each iteration. The patterns extracted are then synthesized by generating a
semantic network that summarizes the whole knowledge elicited. To demonstrate
the efficiency of our solution, we conduct several experiments for understanding
how our algorithm behaves according to various parameters and we compare the
results to those obtained by a naive approach.

This papers is organized as follows. Section 2 reviews the traditional pattern
extracting methods in social networks. Section 3 formally defines the concepts of
frequent links and aggregated networks. In Section 4 we detail MAX-FLMin and
discuss its complexity. Section 5 is devoted to the aggregated networks and their
generation. Section 6 demonstrates the efficiency of our solution through experi-
mental results. Finally, Section 7 concludes and presents our future directions.

2 Related Work

Recent social network analysis methods, known as being link mining or social
network mining areas, refers to “data mining techniques that explicitly consider
links when building predictive or descriptive models of linked data” [3]. As for
traditional data mining area, social network mining includes several categories of
methods that address classical tasks such as node classification, group detection,
link prediction, node clustering and the search for subgraphs.

The search for subgraphs is certainly the family of methods that is the most
similar to a task of searching for frequent patterns in social networks. Indeed,
as explained in [3,4], the most natural and widely used definition of a pattern in
the context of social networks is that of “connected subgraph”.

Thus in the context of social networks, the problem of frequent pattern dis-
covery consists on searching for subnetworks found in a collection of networks [5]
or a single large network [6] according to a minimum support threshold. The tra-
ditional approach is to use labels associated with nodes and links. Afterwards,
by using such a network representation, the problem consist on searching for
sets of connected labels occurring frequently enough. A classical example is the
collection of networks obtained from baskets of items. Nodes correspond to items
and all items in a same basket are connected. Once such a network is created
for each basket, subgraphs occurring frequently form frequent patterns in the
traditional sense.

The main frequent subgraph discovery algorithms can be classified according
to two basic approaches [7]: (1) the Apriori-based approach and (2) the pattern-
growth approach.



470 E. Stattner and M. Collard

(1) Apriori-based frequent subgraph discovery algorithms refer to techniques
that exploit the properties of the Apriori algorithm [8] for finding sub-
structures through a mining process that performs two main phases. (i) A
candidate generation stage for generating candidate subgraphs and (ii) an
evaluation phase that evaluates how much frequent the candidates are, by us-
ing the properties of graph isomorphism. Typical Apriori-based approaches
are for instance AGM, proposed by Inokuchi et al. [5] for minimizing both
storage and computation, or FSG by Kuramochi and Karypis [9] that is
fitted to large network databases.

(2) Pattern-growth techniques are approaches that extend a frequent structure
by adding a new edge in every possible directions [10]. The main problem
of this approach is that the same structure can be generated at several iter-
ations. For instance, gSpan [4] attempts to avoid the discovery of duplicate
structures.

3 “Frequent Links” and “Aggregated Network” Concepts

Unlike traditional methods that only focus on structural regularities, we propose
in this paper a new vision of the frequent pattern discovery in social networks
by redefining the notion of “pattern”. Indeed, rather than defining a pattern
as a subgraph, we propose a definition that combines structure and attributes
by defining a pattern as a “set of links between two groups of nodes, where
nodes in each group share common characteristics”. When these patterns are
found frequently enough in the overall network, they are frequent patterns in
the traditional meaning and we call them “frequent links”.

More formally, let G = (V,E) be a network, where V is the set of nodes
(vertexes) and E the set of links (edges) with E ⊆ V × V .

V is defined as a relation R(A1, ..., Ap) where each Ai is an attribute. Thus,
each vertex v ∈ V is defined by a tuple (a1, ..., ap) where ∀k ∈ [1..p], v[Ak] = ak,
the value of the attribute Ak in v.

An item is a logical expression A = x where A is an attribute and x a value.
The empty item is denoted ∅. An itemset is a conjunction of items for instance
A1 = x and A2 = y and A3 = z. An itemset which is a conjunction of p items is
called a p-itemsets.

Let us note m1 and m2 two itemsets and Vm1 , Vm2 , respectively the sets of
nodes in V that satisfy m1 and m2.

We denote Em1 the set of links that start from nodes satisfying m1, namely
nodes in Vm1 : Em1 = {e ∈ E ; e = (a, b) a ∈ Vm1}

Similarly, we note Em2 the set of links that arrive to nodes in Vm2 :
Em2 = {e ∈ E ; e = (a, b) b ∈ Vm2}
Thus, we define E(m1,m2) the set of links connecting nodes in Vm1 to nodes in

Vm2 :

E(m1,m2) = Em1 ∩ Em2

= {e ∈ E ; e = (a, b) a ∈ Vm1 and b ∈ Vm2}



MAX-FLMin: An Approach for Mining Maximal Frequent Links 471

Definition 1. We call support of E(m1,m2), the proportion of links in E that
belong to E(m1,m2), i.e.

supp(E(m1,m2)) =
|E(m1,m2)|

|E|
Definition 2: We say there is a frequent link between m1 and m2, and we
note (m1,m2), if the support of E(m1,m2) is greater than a minimum support
threshold β,

supp(E(m1,m2)) > β

Notation. Let I be the set of all itemsets built with V , we denote FL the set
of frequent links among these itemsets in I.

FL =
⋃

m1∈I,m2∈I
{ (m1,m2) ∈ I2 ;

|E(m1,m2)|
|E| > β }

Property 1: Thus, according to definition 2, if link (m1,m2) is frequent then
the sets Em1 and Em2 satisfy the following condition:

|Em1 | > β × |E| and |Em2 | > β × |E| (1)

Proof. Indeed, we have stated that a link (m1,m2) is frequent if
|E(m1,m2)|

|E| > β

⇒ |Em1 ∩ Em2 |
|E| > β

⇒ |Em1 ∩ Em2 | > β × |E|
⇒ |Em1 | > β × |E| and |Em2 | > β × |E|

As for the traditional research of frequent patterns in the data mining area,
the extraction of all frequent patterns is marred by the extraction of the sub-
patterns that are also frequent. We thus define the “maximal frequent links”.
For this purpose, let us first introduce the notion of “sub-link”.

Property 2. If sm1 (resp. sm2) is a sub-itemset of m1 (resp. m2), (for instance
m1 = xyz and sm1 = xy) then |E(m1,m2)| ≤ |E(sm1,m2)| and |E(m1,m2)| ≤
|E(m1,sm2)|.
Proof. Let sm1 and sm2 be respectively sub-itemsets of m1 and m2. We have
Vm1 ⊆ Vsm1 and therefore ∀m2 ∈ I, E(m1,m2) ⊆ E(sm1,m2). Similarly, Vm2 ⊆
Vsm2 and ∀m1 ∈ I, E(m1,m2) ⊆ E(m1,sm2)

So |E(m1,m2)| ≤ |E(sm1,m2)| and |E(m1,m2)| ≤ |E(m1,sm2)|
Definition 3. Let sm1 and sm2 be respectively sub-itemsets of m1 and m2.
We call each link (sm1, sm2) sub-links of (m1,m2). Similarly, (m1,m2) is called
super-link of (sm1, sm2).

Notation. If (sm1, sm2) is a sub-link of (m1,m2) we note (sm1, sm2) ⊆ (m1,m2)

Property 3. Let sm1 and sm2 be two itemsets. If (sm1, sm2) is not frequent,
then any super-link (m1,m2) of (sm1, sm2) is not frequent.



472 E. Stattner and M. Collard

Similarly, if (m1,m2) is frequent, then any sub-link (sm1, sm2) of (m1,m2) is
frequent.

Definition 4. Let β be a minimum support threshold, we call maximal frequent
link, any frequent link (sm1, sm2) such as, there exists no super-link (m1,m2)
of (sm1, sm2) that is also frequent.
More formally, �(m1,m2) ∈ FL such as (sm1, sm2) ⊂ (m1,m2).

Notation. We denote FLmax the set of maximal frequent links in FL

FLmax =
⋃

m1∈I,m2∈I
{ (m1,m2) ∈ FL ; (m1,m2) maximal }

The usefulness of such an approach is quite obvious since the extracted pat-
terns provide relevant knowledge about groups of nodes the most connected into
the network. This knowledge can be synthesized by generating a reduced net-
work that summarizes all these connections. We call this network an “aggregate
network”.

Definition 5. Let G = (V,E) be a social network, I the set of itemsets in V
and β the minimum support threshold.

We call aggregate β-network of G, the network AggGβ = (Vβ , Eβ) defined as
follows.

Vβ is the set of meta-nodes x such that x = Vm if ∃m′ ∈ I such as (m,m′) ∈
FLmax or (m′,m) ∈ FLmax.

Eβ is the set of links (x, y) ∈ Vβ × Vβ such that x = Vm1 , y = Vm2 and
(m1,m2) ∈ FLmax.

Thus a node in V may belongs to several meta-nodes in Vβ . A link in Eβ

represents a semantic relationship between two groups of V -nodes that are each
described by a set of features. A link (x, y) of Eβ means that there is a maximal
frequent link between nodes in x and nodes in y. But some nodes in x or in y
may not participate in this frequent links.

4 Maximal Frequent Link Mining

Searching all maximal frequent links into a given network may be time consum-
ing if the search space is wide. In this work, we propose a bottom-up research
that gradually reduces the search space. Section 4.1 details our approach for
the classical cases of unimodal and oriented networks and Section 4.2 discusses
flexibility, optimizations and complexity of our solution.

4.1 MAX-FLMin Algorithm

Designing an algorithm that searches for maximal frequent links is particularly
challenging and computationally intensive since, in the network analysis area, it
is admitted that the number of links play a key role throughout the computation
phases in networks. A naive approach would be to generate all possible itemsets
from attributes of nodes and then evaluate the frequency of each itemset pair.



MAX-FLMin: An Approach for Mining Maximal Frequent Links 473

The algorithm we propose performs a bottom-up research and exploits proper-
ties 1 and 3 for gradually reducing the search space to super-itemsets potentially
involved in frequent links. Without loss of generality, the search for frequent
links involving t-itemsets, can be reduced to super-link involving (t-1)-itemsets.
MAX-FLMin is detailed in algorithm 1.

Algorithm 1. MAX-FLMin Algorithm

Require: G = (V,E): Network, and β ∈ [0..1]: Minimum support threshold
1. FLmax: Set of all maximal frequent links ← ∅
2. Cm1 : Stack of m1 candidates itemsets ← ∅
3. Cm2 : Stack of m2 candidates itemsets ← ∅
4. L: Lists of frequent links ← ∅
5. t: Iteration ← 1

{Generation of all frequent links between 1-itemsets}
6. Il ← Generate all 1-itemsets m1 from V such as |Em1 | > β × |E|
7. Ir ← Generate all 1-itemsets m2 from V such as |Em2 | > β × |E|
8. for all itemset m1 ∈ Il do
9. for all itemset m2 ∈ Ir do
10. if |E(m1,m2)| > β × |E| then
11. add m1 to Cm1

12. add m2 to Cm2

13. add (m1,m2) to L
14. add (m1,m2) to FLmax

15. end if
16. end for
17. end for

{Generation of the other frequent links}
18. t ← t+ 1
19. while L �= ∅ and allCombinations() = false do
20. Cm1 ← {joint of all distinct (t-1)-itemsets m1 of L sharing (t-2) items, such as

|Em1 | > β × |E| } ⋃
Cm1

21. Cm2 ← {joint of all distinct (t-1)-itemsets m2 of L sharing (t-2) items, such as
|Em2 | > β × |E| } ⋃

Cm2

22. L ← ∅
23. for all itemset m1 ∈ Cm1 do
24. for all itemset m2 ∈ Cm2 do

25. if ((|m1| = t or |m2| = t) and �l ∈ L such as (m1,m2) ⊂ l and
|E(m1,m2)|
|E| >

β) then
26. add (m1,m2) to L
27. remove all q ∈ FLmax such as q ⊂ (m1,m2)
28. add (m1,m2) to FLmax

29. end if
30. end for
31. end for
32. t ← t+ 1
33. end while
34. return FLmax



474 E. Stattner and M. Collard

More precisely, at iteration t = 1, MAX-FLMin starts by constructing the
sets Il and Ir that are respectively the set of m1 and m2 1-itemsets that verify
property 1 (see lines 6-7 algorithm 1). Then, frequent links are searched among
these itemsets and stored in a temporary list L, that will store at each iteration
t all frequent links involving t-itemsets. During this process, m1 and m2 itemsets
involved in frequent links are also stored in separate stacks for further genera-
tions. At this level, all frequent links are considered as maximal ones and stored
in FLmax (see lines 8-17).

At iteration t+1,m1 (resp.m2) candidate itemsets are generated and stored in
Cm1 (resp. Cm2) (see lines 20-21). These candidates are the union of (i) the super-
itemsets generated from the t-itemsets of L, i.e. the (t+1)-itemsets potentially
involved in frequent links according to properties 1 and 3, and (ii) the previous
m1 (or m2) itemsets already involved in frequent links since maximal frequent
links do not necessarily imply maximal itemsets. Note that sets Cm1 and Cm2

are sorted from the largest ones to smallest ones (in terms of number of items).
Once candidates are generated, the list L is cleared and frequent links can be

extracted (see lines 22-31). The comparison is performed only if at least one of
the candidate itemsets has a size t+1 (in order to not compare sub-links already
processed) and if a frequent link is not already in L. Indeed, as Cm1 and Cm2 are
sorted, the first (m1,m2) frequent links identified are necessarily the maximal
ones regarding iteration t+1. The comparison is thus done to check if a super-
link has not already been added to L, i.e. if (m1,m2) is maximal. If (m1,m2)
is a maximal frequent link regarding iteration t+1, it is added to L and FLmax

and all its sub-links are removed from FLmax.
These operations are repeated until no more maximal frequent links is de-

tected or all the combinations are performed (lines 19-33).

4.2 Discussion

Real-world networks have various features: directed, undirected, unipartite or
multipartite. Thus, a valuable characteristic of any algorithm that aims to ana-
lyze networks is the ability to adapt to all kinds of networks. This is the case of
MAX-FLMin.

Since it is common to represent undirected networks as directed ones, in which
links are stored in both directions, MAX-FLMin can be directly applied. How-
ever, an interesting property of the frequent link definition (see definition 2), in
the case of undirected networks, is that if the link (m1,m2) is frequent, the link
(m2,m1) is frequent too. Thus, as shown in algorithm 2, only one set can be
used for storing the 1-itemsets and symmetrical comparisons can be avoided.

Regarding multipartite networks, the algorithm can also be directly applied,
but performs unnecessary comparisons since the initial 1-itemsets are calculated
on the overall set of nodes (see lines 6-7 of algorithm 1). Thus, if we have a
knowledge on the nodes involved on both sides of the links, the generation of
the sets Il and Ir in algorithm 1 can be performed as follows:

• Il ← Generate all 1-itemsets m1 from v ∈ V involved to the left of the links
such as Em1 > β × |E|



MAX-FLMin: An Approach for Mining Maximal Frequent Links 475

Algorithm 2. Adaptation of lines 6-17 of algorithm 1 for undirected networks

Require: G = (V,E): Network, and β ∈ [0..1]: Minimum support threshold
1. i, j: integer
2. I ← Generate all 1-itemsets from V such as |Em1 | > β × |E|
3. for all i from 0 to I.size do
4. for all j from i to I.size do
5. {Lines 10-15 of algorithm 1 remain unchanged}
6. end for
7. end for

• Ir ← Generate all 1-itemsets m2 from v ∈ V involved to the right of the
links such as Em2 > β × |E|

Regarding complexity, the key computation step is the generation of the sets
Em1 , Em2 and E(m1,m2) at each iteration. A straightforward and efficient way
to implement this task and speed up the process is to use a node structure that
stores its input and output neighbors. Thus, rather than iterate over all the
network links, the search is reduced to nodes as detailed on algorithm 3.

Algorithm 3. Optimization of the generation of the E sets

Require: G = (V,E): Network, m1: itemset, m2: itemset
1. Em1 : set of links ← ∅
2. Em1 : set of links ← ∅
3. E(m1,m2): set of links ← ∅
4. for all node v ∈ V do
5. if v matches with m1 then
6. add all output links of v to Em1

7. end if
8. if v matches with m2 then
9. add all input links of v to Em2

10. end if
11. end for
12. E(m1,m2) ← Em1 ∩Em2

More formally, two parameters are involved in the amount of computations:
(i) the number of attributes |R| and (ii) the size of the network (|V | and |E|).
As explained previously, in a naive approach, 2|R|× 2|R|× |E| computations are
required to extract maximal frequent links.

For studying the complexity ofMAX-FLMin, let us first consider the empirical
case of a complete network (configuration 1). In such a configuration, all links are
frequent and therefore the entire itemsets lattice has to be explored for extracting

the maximal frequent links. Our solution performs |R|×|R|+
|R|∑
k=1

Ck
|R|×Ck

|R|×|V |

computations.



476 E. Stattner and M. Collard

Let us now consider the other extreme case in which no link is frequent (con-
figuration 2). When searching for the 1−frequent links (see lines 8-17 of al-
gorithm 1), we detect that no link is frequent. In this configuration |R| × |R|
computations are required.

For more clarity, consider a complete network G = (V,E) with |V | = 10000
and |E| = |V |× (|V |−1). Figure 1 shows, according to the number of attributes,
(a) the estimation of the number of computations (log), and (b) the gain with
respect to a naive approach.

y = 3215,e1,327x

y = x2

y = 1E+08e1,386x

1,00E+00
1,00E+02
1,00E+04
1,00E+06
1,00E+08
1,00E+10
1,00E+12
1,00E+14

1 2 3 4 5 6 7 8 9 10

N
um

be
r o

f c
om

pu
ta

ti
on

s

Number of attributes

Configuration 1
Configuration 2
Naive approach

(a)

y = 1E-06x + 1

y = 3E-10x + 1

0,999965
0,99997

0,999975
0,99998

0,999985
0,99999

0,999995
1

1 2 3 4 5 6 7 8 9 10
G

ai
n 

on
 th

e 
nu

m
be

r o
f 

co
m

pu
ta

ti
on

s

Number of attributes

Configuration 1
Configuration 2

(b)

Fig. 1. Estimation of (a) the number of computations (log) and (b) the gain compared
to a naive approach for configurations 1 and 2

As shown on Figure 1(a), the number of computations in configuration 1
increases exponentially since it can be approximated by y = 3215.1e1.3275×|R|.
However, for configurations 1 and 2, we can observe the good performances of
MAX-FLMin since the gain on the number of computation is systematically
above 99% (see Figure 1(b)).

5 Aggregate Network Generation

Once the maximal frequent links have been extracted, the aggregate network can
be generated. It is important to understand that, for a given threshold β, the
overall set of maximal frequent links allows obtaining the β maximal aggregate
network. The generation process performs in two steps:

1. The maximal frequent links are extracted from G
2. Then, the aggregate network is generated from FLmax

In the aggregated network, nodes correspond to itemsets while links represent
maximal frequent links. Note that the aggregated network conserves the same
properties. IfG is directed (resp. undirected), AggNet is also directed (resp. undi-
rected). Similarly, if G is a multipartite network, AggNet is multipartite too. The
algorithm for generating the maximal aggregated network, called AggNet-MFL
(aggregated network based on maximal frequent links), is detailed in algorithm 4.

Let us specify that aggregated network is not a direct or lighter representation
of the initial network. Indeed, there is no simple mapping between the aggregate



MAX-FLMin: An Approach for Mining Maximal Frequent Links 477

Algorithm 4. AggNet-MFL: Aggregated Network Generation

Require: F lmax: Set of maximal frequent links
1. Vβ ← ∅: Set of meta-nodes
2. Eβ ← ∅: Set of couple of meta-nodes (links)
3. AggGβ ← (Vβ, Eβ): Aggregated network
4. for all maximal frequent link l=(m1,m2) ∈ FLmax do
5. if m1 �∈ Vβ then
6. add m1 to Vβ

7. end if
8. if m2 �∈ Vβ then
9. add m2 to Vβ

10. end if
11. add (m1,m2) to Eβ

12. end for
13. return AggGβ

and the initial network since nodes in the initial network may be represented by
several nodes in the aggregate one and inversely, nodes in the aggregate network
correspond to groups of nodes in the initial network. Thus, the resulting structure
is a much more semantic network, since it may be viewed as a form of knowledge
representation acquired on the connections between groups of nodes in the initial
network.

6 Experimental Results

Various sets of experiments have been conducted to evaluate the performances
of MAX-FLMin. First, we describe in Section 6.1 the dataset used and the test
environment. Afterwards we study in Section 6.2 how evolve maximal frequent
links according to qualitative and quantitative point of views. Finally, Section 6.3
focus on the associated aggregated networks and their evolution.

6.1 Testbed

The dataset used is a geographical proximity contact network obtained with
Episims [11], a simulation tool that reproduces the daily movements of individ-
uals in the city of Portland. In the network, two individuals are connected when
they were geographically close during the simulation. The main features of the
network are described in Figure 2.

Data have been processed so that each node is identified by (1) age class, i.e.
$age

10 % (2) gender (1-male, 2-female), (3) worker (1-has a job, 2-has no job), (4) re-
lationship to the head of household (1-spouse, partner, or head of household, 2-
child, 3-adult relative, 4-other) and (5) contact class, i.e. $degree

2 % (6) sociability
(i.e. 1-cc > 0.5, 2-else).

The application of our approach on this network makes sense since our belief
is that underlying patterns can be highlighted between attributes of individuals
and proximity contacts they maintain.



478 E. Stattner and M. Collard

G
en
er
al

Origine Portland

Type Undirected

#nodes 3000

#links 4683

Density 0.00110413

#comp 1
cc avg 0.63627

D
eg
re
e

avg 3.087

max 15

Distribution

0

0,1

0,2

0,3

1 3 5 7 9 11 13 15

Fig. 2. Main features of the contact network used (#comp is the number of components
and cc is the clustering coefficient)

MAX-FLMin has been developed in JAVA and included into the graphical tool
GT-FLMin [12]. All experiments have been averaged on 100 runs and conducted
on a Intel Core 2 Duo P8600, 2.4Ghz, 3Go Ram, Linux Ubuntu 10.10 with
Java JDK 1.6. In experiments, the size of the network is varied by extracting
subgraphs into the overall network, which allows us to make varying both nodes
and links. Combinations of network size used are (|V |, |E|) = {(500 , 806),
(1000,1750), (1500,2685), (2000 , 3304), (2500,3988), (3000,4683)}. For simplicity
in the rest of this paper, we will discuss the size of the network by simply referring
to |V |. Similarly, the number of attributes |R| evolves by removing, starting with
the last, attributes from node information.

6.2 MAX-FLMin: Qualitative and Quantitative Results

In a first approach, we focus on the quality of the extracted patterns. As shown
in Figure 3, which shows the maximal frequent links obtained with configuration
|V | = 3000, |R| = 4 and β = 0.10, the patterns extracted are relevant since they
provide a direct knowledge about the connected groups of nodes in the network
(‘∗’ means that the attribute can take any value). For example, the first row
indicates that 10.7% of the links of the network connect 40 years old individuals
who have a job to individuals who do not have a job.

In a quantitative point of view, we compare the incidence of different support
thresholds ((a) β = 0.11, (b) β = 0.15 and (c) β = 0.2) on (1) the number of
maximal frequent links, (2) the runtime (sec) and (3) the gain on the runtime
compared to a naive approach. Figure 4 describes these results for different |R|
values and according to the network size.

Several observations can be made regarding the evolution of the number of
extracted patterns (see Figures 4(1)).

Max. Frequent Link Support

((4;∗;1;∗),(∗;∗;2;∗)) 0.107
((2;∗;∗;2),(∗;∗;2;2)) 0.105
((∗;1;1;∗),(∗;∗;1;∗)) 0.113
((1;∗;2;2),(∗;1;∗;∗)) 0.102
((∗;1;1;1),(∗;2;∗;∗)) 0.133

Fig. 3. A sample of maximal frequent links obtained with configuration |V | = 3000,
|R| = 4 and β = 0.10



MAX-FLMin: An Approach for Mining Maximal Frequent Links 479

0

50

100

150

500 1000 1500 2000 2500 3000

N
u

m
b

e
r

o
f 

m
a

x
. F

L

Number of nodes
(1)

2 Attributes
3 Attributes
4 Attributes
5 Attributes
6 Attributes y = 0,0117x + 0,0025

y = 0,1219x + 0,0381

y = 0,6231x + 0,2841

0

1

2

3

4

5

500 1000 1500 2000 2500 3000

R
u

n
ti

m
e

 (
se

c)

Number of nodes
(2)

2 Attributes
3 Attributes
4 Attributes
5 Attributes
6 Attributes 0,75

0,8
0,85
0,9

0,95
1

1,05

500 1000 1500 2000 2500 3000

G
a

in
 o

n
 t

h
e

 r
u

n
ti

m
e

Number of nodes
(3)

2 Attributes
3 Attributes
4 Attributes
5 Attributes
6 Attributes

(a)

0

20

40

60

80

500 1000 1500 2000 2500 3000

N
u

m
b

e
r 

o
f 

m
a

x
. F

L

Number of nodes
(1)

2 Attributes
3 Attributes
4 Attributes
5 Attributes
6 Attributes y = 0,0061x + 0,0057

y = 0,0434x + 0,0365

y = 0,1213x + 0,2221

0
0,2
0,4
0,6
0,8

1
1,2

500 1000 1500 2000 2500 3000

R
u

n
ti

m
e

 (
se

c)

Number of nodes
(2)

2 Attributes
3 Attributes
4 Attributes
5 Attributes
6 Attributes 0,9

0,92
0,94
0,96
0,98

1
1,02

500 1000 1500 2000 2500 3000

G
a

in
 o

n
 t

h
e

 r
u

n
ti

m
e

Number of nodes
(3)

2 Attributes
3 Attributes
4 Attributes
5 Attributes
6 Attributes

(b)

0

5

10

15

20

25

500 1000 1500 2000 2500 3000

N
u

m
b

e
r

o
f 

m
a

x
. F

L

Number of nodes
(1)

2 Attributes
3 Attributes
4 Attributes
5 Attributes
6 Attributes

y = 0,0077x - 0,0034

y = 0,0266x - 0,0122

y = 0,0772x - 0,0492

0

0,1

0,2

0,3

0,4

0,5

500 1000 1500 2000 2500 3000

R
u

n
ti

m
e

 (
se

c)

Number of nodes
(2)

2 Attributes
3 Attributes
4 Attributes
5 Attributes
6 Attributes 0,96

0,97

0,98

0,99

1

500 1000 1500 2000 2500 3000
G

a
in

 o
n

 t
h

e
 r

u
n

ti
m

e

Number of nodes
(3)

2 Attributes
3 Attributes
4 Attributes
5 Attributes
6 Attributes

(c)

Fig. 4. Effects of different support thresholds ((a) β = 0.11, (b) β = 0.15 and (c) β =
0.2) on (1) the number of maximal frequent links, (2) the runtime (sec) and (3) the
gain on the runtime compared to a naive approach

First of all, we observe that the number of maximal frequent links is more
important when the number of attributes is high as expected. For example, for
β = 0.11 and |V | = 3000, the number of extracted patterns is approximately
125 when |R| = 6, while it is about 75 when |R| = 5 (see Figure 4(a)(1)). This
can be explained by the fact that when the |R| value is increased, the amount
of itemsets potentially involved in frequent links is statistically increased too.

However, we were surprised to observe that, whatever the β threshold is, the
number of patterns remain relatively stable when the network size increases.
This is a very interesting result that we explain by two factors. (i) The nature
of the attributes. Indeed many attributes are binary and therefore when you
focus on a subset of the dataset (a subgraph in our context), the probability of
generating the same itemsets as for the overall dataset is strong. (ii) The human
behaviors in general, since the underlying factors that generate or influence the
behaviors can often be found at smaller scales. In other words, if we focus on a
subset relevant enough, the data distribution is such that it is likely to extract
a large majority of patterns.

Finally as expected,whencomparing the results obtained for thedifferent thresh-
olds, we observe that the number of extracted patterns decreases when the β in-
creases. For example, for |R| = 6 and |V | = 3000, the number of patterns is about



480 E. Stattner and M. Collard

175 when β = 0.11 and 23 when β = 0.2. This is a well-known property in the data
mining area, which is due to the reduction of the space of acceptable solutions.

Regarding the runtime, two interesting observations can be made (see Fig-
ures 4(2)).

As expected, the time required by our algorithm for extracting the maximal
frequent links is more important when the number of attributes increases. For
example, when β = 0.2 and |V | = 3000 the runtime is about 0.4sec. for |R| = 6
while it is about 0.15sec. for |R| = 5 (see Figure 4(c)(2)). However more generally,
for a given number of attributes, this figure increases linearly with the size of the
network (associated equations have been plotted). For example when β = 0.2,
the runtime can be approximated by y = 0.00772 × |V | + 0.0492 for |R| = 6.
We believe that this is a consequence on the one hand to the nature of the
dataset (already mentioned in previous paragraph) and on the other hand to
the optimization presented in algorithm 3.

When comparing the results for the different thresholds, we can observe that
the runtime decreases when the support threshold increases. For example when
|R| = 6 and |V = 3000|, runtime is about 4.5sec. for β = 0.11, 1sec. for β = 0.15
and 0.4sec. for β = 0.2. This is due to the MAX-FLMin algorithm, that is able
of gradually limiting the search space during the extraction phase.

Finally, as an indicator of the efficiency of our solution, let us focus on the
gain on the runtime compared to a naive approach (see Figures 4(3)).

First, for a given support threshold, we globally observe that the gain is more
important for low |R| values. For example when |V | = 3000 and β = 0.11, gain
is about 90% for |R| = 5 while it is about 99% for |R| = 4 (see Figure 4(a)(3)).

Moreover, we observe that the gain increases with the β threshold. For exam-
ple for |V | = 3000 and |R| = 5, the gain is about 96% for β = 0.15 while 98%
for β = 0.2.

Thus, these results confirm the study conducted on the complexity in Section 4
and demonstrate both good performances and efficiency of MAX-FLMin for
extracting maximum frequent links. Indeed whatever is the β threshold used,
the gain on the runtime is always greater than 80%.

As we have observed that the runtime increases more or less linearly with the
size of the network (see Figures 4(2)), we have studied how evolves the slope of
these curves according to the number of attributes. Figure 5 shows the logarithm
of the slope for different β value. As a reference, the result is also plotted for a
naive approach.

0,001

0,01

0,1

1

10

2 3 4 5 6

S
lo

p
e 

of
 t

h
e 

ru
n

ti
m

e 
cu

rv
e 

(l
og

)

Number of attributes

supp. = 0,1

supp = 0.15

supp. = 0,2

Naive

Fig. 5. Log of the slope of the runtime curve according to |R|



MAX-FLMin: An Approach for Mining Maximal Frequent Links 481

We can observe that the curves are more or less straight, which suggests
that this slope is growing exponentially with the number of attributes; a result
that the study conducted on complexity implied. However, we also note that,
compared to the naive approach, the difference of the evolution of this slope is
significant. This confirms the good performances of our algorithm.

6.3 Aggregated Networks: Examples and Evolution

To conclude this section on experiments, we focus on the aggregated networks
by studying how they evolve according to the minimum support threshold β.

As a first approach, Figure 6 shows some examples of aggregated networks.
(a) is the initial network presented in Figure 2 with |V | = 3000 and |R| = 6,
and (b), (c), (d) and (e) are respectively the aggregated networks obtained with
β = 0.05, β = 0.1, β = 0.15 and β = 0.2.

As you can see, our approach significantly reduces the network size. However,
it is important to keep in mind that the resulting network is a much more
semantic network that aims to represent the groups of nodes the most connected
in the initial network. We insist on the fact that it must not be seen as a direct
or lighter representation of the initial network (see Section 5).

In Figure 7, we describe how evolve the main features of the aggregated net-
work according to the support threshold: (a) presents the evolution of the num-
ber of nodes and links, (b) describes the evolution of the network clustering
coefficient and (c) details the degree distribution for some β values (β = 0.11,
β = 0.15 and β = 0.2).

(a)

0

1

2

3

4

5

6

7

8
9

1011

12

13

14 15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40
41

42

43

44
45

46

47

(b)

0

1

2

3

4

5
6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

(c)

2

3

4

5

6

1

0

7

8

9

10

11

12

(d)

0

1

2

3

4

5

6

(e)

Fig. 6. Aggregated networks obtained from network (a) (see also Figure 2) with β =
0.05 (b), β = 0.10 (c), β = 0.15 (d) and β = 0.2 (e)



482 E. Stattner and M. Collard

0
10
20
30
40
50

0,
11

0,
12

0,
13

0,
14

0,
15

0,
16

0,
17

0,
18

0,
19 0,

2

Support

Nb. Nodes
Nb. Links

(a)

0
0,2
0,4
0,6
0,8
1

0,
11

0,
12

0,
13

0,
14

0,
15

0,
16

0,
17

0,
18

0,
19 0,
2C
lu

st
er

in
g 

co
ef

fi
ci

en
t

Support

(b)

0

0,1

0,2

0,3

0,4

0,5

1 2 3 4 5 6 7 8

Pe
rc

en
ta

ge
 o

f n
od

es

Degree

0,11
0,15
0,2

(c)

Fig. 7. Evolution of some features of the aggregated networks: (a) network size, (b)
clustering coefficient and (c) degree distribution

As expected, the size of the aggregated network (number of nodes and links)
decreases when the support increases (see Figure 7(a)). Indeed, increasing the sup-
port threshold leads to a reduction of the acceptability space of solutions. Thus,
fewer frequent links are extracted, which explains the observed phenomenon.

It is difficult to explain the general shape of the curve obtained for the cluster-
ing coefficient (see Figure 7(b)). Our belief is that when the support is increased,
only groups of nodes that have very strong connections between them are pre-
served. This may explain the growth of the network clustering coefficient.

Regarding the network degree distribution (see Figure 7(c)), we globally ob-
serve that the aggregated networks have a structure often observed, in which
a high proportion of nodes have a very low number of connections, while the
highly connected nodes are rare.

7 Conclusion and Future Works

In this paper, we have addressed the problem of the search for frequent pat-
terns in social networks. Unlike traditional works that focus solely on structural
regularities, we have tackled this problem through the search for frequent links,
a new and original approach that combines both network structure and node
attributes in the search for patterns. Our contributions can be summarized as
follows. (i) We have formally defined the concept of frequent links, a new ap-
proach that enhances the notion of pattern in social networks. By reviewing
the main methods that focus on pattern discovery, we have shown how our ap-
proach differs from traditional techniques. (ii) We have presented the algorithm
MAX-FLMin, our first attempt for extracting maximal frequent links from so-
cial networks. A formal study have been conducted to investigate the complexity
of our algorithm and compare it to a naive approach. (iii) We have shown how
the maximal frequent links can then be used for generating reduced semantical
structures that summarize the knowledge acquired by representing the connec-
tions between the groups of nodes in the network. (iv) Extensive experiments
have been carried out for demonstrating the efficiency of our solution in various
configurations. These experiments have highlighted interesting features of hu-
man behaviors, that have allowed to observe that the number of attributes is a



MAX-FLMin: An Approach for Mining Maximal Frequent Links 483

parameter more involved in the number of patterns extracted than the network
size. (v) Our solution has been implemented into the graphical tool GT-FLMin.

As perspectives in a short term, we want to improve the performances of our
algorithm by reducing the combinations phases. As a first attempt, some tracks
have already been presented in the article.
In a long term, the proposed approach and especially the aggregate network,
raises a variety of new interesting research issues that we plan to address. One
first issue is the definition commonly attributed to a community. Indeed in some
extent, our approach highlights different communities and the link they main-
tain. Nevertheless, these communities are far from the traditionally accepted
definition, namely a set of nodes densely connected, since in our approach nodes
in the same community are not necessarily connected. Thus this work raises a
fundamental question on the notion of community in social networks.
Similarly, another interesting track would be to use the aggregated network as a
predictive model for addressing the link prediction problem. Indeed, our belief is
that the patterns extracted by MAX-FLMin could be used to predict with great
accuracy, the occurrence of new links in social networks. Thus, it would be very
interesting to compare such a solution to traditional methods.

References

1. Barabasi, A., Crandall, R.: Linked: The new science of networks. American Journal
of Physics 71, 409 (2003)

2. Milgram, S.: The small world problem. Psychology Today 1, 61–67 (1967)
3. Getoor, L., Diehl, C.P.: Link mining: a survey. SIGKDD Explor. 7, 3–12 (2005)
4. Yan, X., Han, J.: gspan: Graph-based substructure pattern mining. In: Proceedings

of the 2002 IEEE International Conference on Data Mining (2002)
5. Inokuchi, A., Washio, T., Motoda, H.: An Apriori-Based Algorithm for Mining Fre-

quent Substructures from Graph Data. In: Zighed, D.A., Komorowski, J., Żytkow,
J.M. (eds.) PKDD 2000. LNCS (LNAI), vol. 1910, pp. 13–23. Springer, Heidelberg
(2000)

6. Kuramochi, M., Karypis, G.: Finding frequent patterns in a large sparse graph.
Data Min. Knowl. Discov. 11, 243–271 (2005)

7. Cheng, H., Yan, X., Han, J.: Mining graph patterns. In: Managing and Mining
Graph Data, pp. 365–392 (2010)

8. Agrawal, R., Srikant, R.: Fast algorithms for mining association rules in large
databases. In: Proceedings of the 20th International Conference on Very Large
Data Bases, pp. 487–499 (1994)

9. Kuramochi, M., Karypis, G.: Frequent subgraph discovery. In: Proceedings of the
2001 IEEE International Conference on Data Mining, pp. 313–320 (2001)

10. Nijssen, S., Kok, J.N.: The gaston tool for frequent subgraph mining. Electr. Notes
Theor. Comput. Sci. 127(1), 77–87 (2005)

11. Barrett, C.L., Bisset, K.R., Eubank, S.G., Feng, X., Marathe, M.V.: Episimdemics:
an efficient algorithm for simulating the spread of infectious disease over large
realistic social networks. In: Conference on Supercomputing, pp. 1–12 (2008)

12. Stattner, E., Collard, M.: Gt-flmin: Un outil graphique pour lextraction de liens
frquents dans les rseaux sociaux. In: 12e Conference Internationale Francophone
sur l’Extraction et la Gestion de Connaissance, EGC (2012)



Sequenced Route Query

in Road Network Distance
Based on Incremental Euclidean Restriction

Yutaka Ohsawa1, Htoo Htoo1, Noboru Sonehara2, and Masao Sakauchi2

1 Graduate School of Science and Engineering, Saitama University
2 National Institute of Informatics

Abstract. This paper proposes a fast trip planning query method in
the road network distance. The current position, the final destination,
and some number of point of interest (POI) categories visited during
the trip are specified in advance. Then, the query searches the shortest
route from the current position with stops at one of each specified POI
category from the visiting sequence before reaching the final destination.
Several such types of trip planning methods have been proposed. Among
them, this paper deals with the optimal sequenced route (OSR) which is
the simplest query because it has a strongest restriction on the visiting
order. This paper proposes a fast incremental algorithm to find OSR
candidates in the Euclidean space. Furthermore, it provides an efficient
verification method for the road network distance.

1 Introduction

In recent years, several types of trip planning query methods have been pro-
posed for location based services (LBS). In the typical trip planning, some point
of interest (POI) categories are given as stopovers before arriving at a final des-
tination. Li et al.[1] proposed a trip planning query (TPQ) that does not specify
a visiting order for the POI categories. For example, a restaurant, a department
store, and a movie theater may be visited before reaching the final destination;
however, the visiting order is not specified. Sharifzadeh et al. [2] proposed an
optimal sequenced route (OSR) in which a unique visiting order is given. For
example, the department store should be visited first, next the restaurant, and
finally the movie theater. Multi-rule partial sequenced route (MRPSR) query by
Chen et al.[3] was a generalization approach from TPQ and OSR.

The framework employed in this paper is based on an incremental Euclidean
restriction (IER)[4] approach, which searches candidates in the Euclidean dis-
tance first, and then verifies the results of the road network distance. This ap-
proach is versatile and has been applied to several types of queries based on
the road network distance. However, few attempts have been made to apply the
approach to trip planning queries.

For the Euclidean distance search, several efficient incremental search algo-
rithms for range queries, k-NN queries, and ANN queries, that use the minimum

S.W. Liddle et al. (Eds.): DEXA 2012, Part I, LNCS 7446, pp. 484–491, 2012.
c© Springer-Verlag Berlin Heidelberg 2012



Sequenced Route Query in Road Network Distance 485

bounding rectangle (MBR) in the R-tree index have already been presented. An
incremental search reports the results one at a time, starting with the best. This
characteristic is essential for the IER framework because all possible routes in
the Euclidean distance that are shorter than the shortest route in the road net-
work should be searched. However, the road network distance cannot be known
before verification. This paper proposes efficient algorithms for both steps of the
IER framework.

The main contributions of this paper are as follows:

– to present a novel incremental OSR search algorithm in the Euclidean dis-
tance. This algorithm determines the OSR by a best-first search in R-trees;

– to present an efficient algorithm for verifying the road network distance that
reduces the number of pair-wise distance calculations.

2 Incremental Queries in the Euclidean Distance

2.1 OSR Queries in the IER Framework

We define the OSR query as:

Definition 1 (OSR query). Given a current point s, a final trip destination
d, and a visiting order of POI category sets Ci(1 ≤ i ≤ m), the OSR query finds
the minimum distance route starting from s, selecting one POI from each Ci

according to the visiting sequence, and finally arriving at d.

The IER framework generates candidates for OSRs in the Euclidean space, and
then verifies those candidates in the road network distance. Let the shortest OSR
given by searches in Euclidean space be Sr and its verified length in the road
network be LN(Sr). The shortest OSR in the Euclidean space is not always the
shortest OSR in the road network distance. Therefore, all OSRs whose length
are less than LN(Sr) also have the potential to be the shortest route in the
road network. Therefore, all OSRs less than LN(Sr) must be searched in the
Euclidean space, and then the results must be verified in the road network.
Finally, the shortest OSR in the road network is returned as the result. These
are the essential steps of an OSR query based on the IER framework.

In this paper, when two points a and b are given, dE(a, b) denotes the Eu-
clidean distance between a and b, and dN (a, b) denotes the road network distance
between a and b. IER depends on the relationship dE(a, b) ≤ dN (a, b). Therefore,
if an OSR with the length LN (Sr) is obtained, the OSR candidates in Euclidean
distance longer than LN (Sr) can be safely discarded.

All OSRs whose lengths are less than LN (Sr) can be determined by an incre-
mental search. In an incremental search, OSR candidates are searched from the
shortest up to k OSRs. Therefore, all OSRs shorter than LN(Sr) can be deter-
mined by repeating the incremental search while the length of the determined
OSR is shorter than LN(Sr).



486 Y. Ohsawa et al.

2.2 Simple Trip Route Query in Euclidean Distance

Before describing general OSR queries in which multiple POI categories to be
visited are specified, we discuss the simplest trip planning query case, a simple
trip route (STR) query. An STR query finds the shortest route from a starting
point (s) to a destination (d) via a POI belonging to a specified category.

This section presents an incremental search algorithm for an STR query in the
Euclidean distance. In general, the number of the POIs belonging to the specified
category is large, therefore, we assume that the POIs are indexed by an R-tree
[5]. The basic strategy to find an STR is a best-first search by calculating the
lower bound route length (LBRL) to the MBRs in the R-tree.

Fig. 1 shows typical examples of positional relationships among s, d, and three
MBRs (mbr1,mbr2,mbr3) in an R-tree. The dotted lines show the lower bound
routes for each MBR. All possible arrangements for two points and an MBR can
be categorized into these three cases to evaluate the LBRL.

s

d

A

1mbr

2mbr

3mbr

(a) Possible routes via MBR (b) Case 2 (c) Case 3

Fig. 1. Lower bound route of STR

The LBRL calculation method can be summarized below. Let the line segment
whose end points are s and d be �s,d, the objective MBR to calculate the LBRL
be mbr, and the four vertices of the MBR be v1 – v4.

Case1: Where �s,d intersects mbr, the LBRL is the length of �s,d, i.e., |�s,d|.
This case corresponds to mbr1 in Fig. 1(a).

Case2: Where �s,d intersects both extended lines of the horizontal and vertical
sides of mbr, the LBRL is the minimum length through a vertex of mbr (Fig.
1(b)), i.e., min(|�s,vi | + |�vi,d|) : {i = 1, . . . , 4}.

Case3: �s,d is located on one side of an edge (b) of mbr (Fig. 1(c)). In this
case, the point d′ which is symmetrical with respect to d across an edge of
the MBR b, is obtained. Then the intersection point A of b and |�s,d′ | is
calculated. When point A is located in the extent of the edge b, the LBRL
is |�s,d′|(=|�s,A| + |�A,d|). Otherwise, the LBRL is calculated by the same
method as that of Case 2.

Hereafter, the LBRL obtained from the method described above is denoted as
Ls,d
E (e), where e is either an MBR in the R-tree or a POI. When e is an MBR,



Sequenced Route Query in Road Network Distance 487

the value of Ls,d
E (e) shows the LBRL against the MBR. when e is a POI, the

value shows the trip route length in the Euclidean distance via the POI. The
R-tree is traversed by a best-first search using a PQ. Here, the PQ manages the
following records.

< Ls,d
E (e), e > (1)

Fig. 2 illustrates the process of finding the trip route on the R-tree. Fig.2(a)
shows an R-tree; Fig.2(b) and (c) show the arrangement of the MBRs (rect-
angles) and the POIs (black dots). In Fig.2(b) and (c), the dashed rectangles
show the MBR of the root node, the dotted lines illustrate trip routes, and the
accompanying numbers show the length of the trip routes.

M1

M2

M3

45 42

25

A
B

C

D E

F

G

s
d

M1 M3

M2

C

D E
s

d

M1 M2 M3

A B C D E F G

root

(a)

(b) (c)

32
38

41

Fig. 2. Example of R-tree

Initially, the LBRL is calculated for each MBR in the root node, the record
of Eq.(1) is composed and it is enqueued into the PQ. At this point, the content
of the PQ is as follows.

< 25,M2 >,< 42,M3 >,< 45,M1 >

By dequeuing, < 25,M2 > is obtained from the PQ; hence, the child node of
M2 is descended one level and reaches the leaf node that contains POIs C, D,
and E. The LBRL is calculated for each POI, and the corresponding records are
enqueued. At this point, the PQ contains the following records.

< 32, C >,< 38, D >,< 41, E >,< 42,M3 >,< 45,M1 >

Dequeuing the PQ again, we obtain record < 32, C >, and e of the record is a
POI. Thus, the shortest trip route via C is determined. If we continue the search



488 Y. Ohsawa et al.

until we get the shortest trip routes for k number, we can find k shortest routes
in the ascending order of length. Algorithm 1 shows a pseudo-code for the STR
search based on the Euclidean distance.

Algorithm 1. Euclidean distance simple trip route query (ESTR)

Input: s,d,root,k
Output: kSTR
1: n ← 0, R ← ∅
2: PQ.enqueue(< dE(s, d), root >)
3: while PQ.size() > 0 and n < k do
4: r ← PQ.dequeue()
5: if r.e instance of POI then
6: R ← R ∪ r.e, n ← n+ 1
7: else
8: for all ch ∈ r.e.c do
9: PQ.enqueue(< Ls,d

E (ch), ch >)
10: end for
11: end if
12: end while
13: return R

2.3 Application to Multiple POI Categories

OSR queries can be achieved by applying the Euclidean distance simple trip
route (ESTR) query repeatedly and changing the objective POI category. As-
sume that m types of POI (Ci : 1 ≤ i ≤ m) are visited sequentially during
the trip from s to d. First, a simple trip route visiting a POI in category C1

is searched by applying ESTR. We assume that p1 is obtained as the result as
shown in Fig. 3. Next, a POI in category C2, which gives the minimum distance
during the trip from p1 to d, is searched by applying the ESTR again. Repeating
this search, we can obtain a route by visiting a number of m POIs sequentially
during the trip from s to d.

s

d

p1

mbr

Fig. 3. OSR query using ESTR



Sequenced Route Query in Road Network Distance 489

The entire search is controlled by a PQ. The records in the PQ are ordered
by the distance of the route from s to d by visiting already determined POIs
and an MBR, which is searched next. For example, in Fig. 3, the cost value is

dE(s, p
1) + Lp1,d

E (m). The PQ contains records whose categories of targets are
different. The PQ record has the following format.

< Cost, prev, dfs, tgt, e, PSR > (2)

Here, prev is the POI that belongs to the category preceding the current target
tgt category, and its initial value is s. Furthermore, dfs is the partial route length
from s to prev. tgt is the target POI category number next to be searched, e
is a node in the R-tree managing the POIs in the category Ctgt. and PSR is
a sequenced POI set determined up to this point. The PQ returns records in
the ascending order of the Cost value. For example, in Fig. 3, prev is p1, dfs is
dE(s, p

1), tgt is 2, e is mbr, and PSR is {s, p1}.
Let the record dequeued from the PQ be r. When e of r (r.e) is an MBR,

new records are composed for all child nodes of r.e, and then the records are
enqueued into the PQ. Otherwise, when r.e is a POI, it is the POI to be visited
next. Therefore, the POI category is advanced by one, and then the next target
category is changed to Ce.tgt+1. When the category Ce.tgt+1 is the final desti-
nation d, a complete route is found, and it is the shortest OSR. Therefore, the
result route is returned.

This algorithm can generate OSRs incrementally from the shortest to the next
shortest if the function retains the contents of the PQ after the shortest OSR
is found. The verification on road network distance requires all OSR candidates
whose route lengths are less than Lmin. This search can be achieved by iterating
the algorithm while the route length is less than Lmin. Algorithm 2 shows the
pseudo-code of the OSR search in the Euclidean distance.

The verification on road network distance can be achieved several ways in-
cluding pair-wise A* algorithm and several materializing methods of shortest
path distance on road network.

3 Experimental Result

We implemented the algorithms described in the previous section in Java and
conducted experimental evaluations. The hardware used in the experiments was
an Intel Core i7 CPU (3.2GHz) with 9 GB memory. The road map data used
in the experiments covers a 200-km2 area including urban and suburban areas,
and consists of 25,586 road segments. The POIs locations were generated by
a pseudo-random sequence generator with a specified probability (Prob). For
example, Prob = 10−3 indicates a POI on one thousand road segments.

Fig. 4 compares the referred R-tree node numbers of PNE [2] and the EOSR
in OSR queries in the Euclidean distance. In the experiments, the number of
visiting POI categories (m) is set at 3. The horizontal axis shows POI density
and the vertical axis shows the number of referred nodes in R-trees. The size of
the R-tree nodes was set to 64 slots (size of a node was 2KB).



490 Y. Ohsawa et al.

Algorithm 2. Euclidean Optimal Sequenced Route (EOSR)

Input: s,d,m,T (i : i ≤ i ≤ m)
Output: Euclidean OSR
1: PQ.enqueue(< dE(s, d), s, 0, 1, T (1).root, {s} >)
2: while PQ.size() > 0 do
3: r ← PQ.dequeue()
4: if r.tgt > m then
5: return r.PSR
6: end if
7: if r.e instance of POI then
8: i ← r.i+ 1
9: d ← r.dfs+ dE(r.prev, r.e)
10: PQ.enqueue(< d+ dE(r.e, d), r.e, d, i, T (i).root, r.PSR ∪ r.e >)
11: else
12: for all ch ∈ r.e.c do
13: PQ.enqueue(< r.dfs+ Lr.prev,d

E (ch.e), r.prev, r.dfs, r.tgt, ch, r.PSR >)
14: end for
15: end if
16: end while

In Fig.4, PNE-1st and EOSR-1st show the number of visited R-tree nodes
when the first (the shortest) result was obtained. PNE-10th and EOSR10-th
show the number of visited R-tree nodes when the tenth shortest result was
obtained. As shown in this figure, the referred node number in PNE increases
rapidly according to the POI density. In contrast, the increase is lower in the
EOSR. For example, the ratio of the visited R-tree node number between two
methods reaches 100 times when the POI density is 0.02.

100

101

102

103

104

 0.002  0.005  0.01  0.02

V
is

ite
d 

R
-t

re
e 

no
de

 n
um

be
r

POI density

PNE-10th
PNE-1st

EOSR-10th
EOSR-1st

Fig. 4. POI density and visiting node
number

100

101

102

103

104

105

 0  1  2  3  4  5

V
is

ite
d 

R
-t

re
e 

no
de

 n
um

be
r

m

PNE-10th
PNE-1st

EOSR-10th
EOSR-1st

Fig. 5. Relationship between m and vis-
iting node number



Sequenced Route Query in Road Network Distance 491

Fig. 5 shows the relationship between the referred R-tree node number and
the number of the POI categories to be visited (m) during the trip. In this
experiment, the POI density was set to 0.01 for all POI categories. The number
of nodes increases in accordance with the increase in m in PNE. The ratio of
PNE and the EOSR reaches more than 300 times when m = 5.

4 Conclusion

This paper proposed an efficient trip planning method for the road network
distance based on IER framework. First, an incremental search algorithm, the
EOSR, for the Euclidean distance is presented. Compared with PNE, which is
the only existing incremental algorithm applicable to the OSR in the Euclidean
distance, experimental results demonstrate that the EOSR query significantly
outperforms PNE, particularly when POIs are densely distributed or the number
of POI categories to be visited during the trip is large.

This paper proposed an algorithm to determine only one shortest route; how-
ever, the top k shortest routes are sometimes required to facilitate users’ choices.
The algorithm proposed in this paper can be easily adopted for this requirement
because the EOSR generates candidates incrementally and the algorithm for
verifying the road network distance can be easily applied to k OSR queries. Fur-
thermore, the algorithm and the methodology in this paper can also be directly
adapted to the TPQ and the MRPSR.

Acknowledgments. The present study was partially supported by the Japanese
Ministry of Education, Science, Sports and Culture (Grant-in-Aid Scientific Re-
search (C) 21500093 and (B) 2300337).

References

1. Li, F., Cheng, D., Hadjieleftheriou, M., Kollios, G., Teng, S.H.: On Trip Planning
Queries in Spatial Databases. In: Medeiros, C.B., Egenhofer, M., Bertino, E. (eds.)
SSTD 2005. LNCS, vol. 3633, pp. 273–290. Springer, Heidelberg (2005)

2. Sharifzadeh, M., Kolahdouzan, M., Shahabi, C.: The optimal sequenced route query.
The VLDB Journal 17, 765–787 (2008)

3. Chen, H., Ku, W.S., Sun, M.T., Zimmermann, R.: The multi-rule partial sequenced
route query. In: ACM GIS 2008, pp. 65–74 (2008)

4. Papadias, D., Zhang, J., Mamoulis, N., Tao, Y.: Query processing in spatial network
databases. In: Proc. 29th VLDB, pp. 790–801 (2003)

5. Guttman, A.: R-Trees: a dynamic index structure for spatial searching. In: Proc.
ACM SIGMOD Conference on Management of Data, pp. 47–57 (1984)



 

S.W. Liddle et al. (Eds.): DEXA 2012, Part I, LNCS 7446, pp. 492–501, 2012. 
© Springer-Verlag Berlin Heidelberg 2012 

Path-Based Constrained Nearest Neighbor Search  
in a Road Network 

Yingyuan Xiao, Yan Shen, Tao Jiang, and Heng Wang 

Tianjin Key Laboratory of Intelligence Computing and Novel Software Technology, 
Tianjin University of Technology, 300384, Tianjin, China 

{yingyuanxiao,tjutshenyan,jiangtaoxyy,hengwang}@gmail.com 

Abstract. Nearest Neighbor (NN) queries are frequently used for location-
dependent information services. In this paper, we study a new NN query called 
Path-based Constrained Nearest Neighbor (PCNN) query, which involves the 
additional constraints on non-spatial attribute values of data objects on 
processing a continuous NN search along a path. For PCNN query processing, 
we propose an efficient PCNN query method based on transformation idea. The 
proposed method transforms a continuous NN search into static NN queries at 
discrete intersection nodes. We further leverage peer-to-peer sharing to improve 
the proposed method. Extensive experiments are conducted, and the results 
demonstrate the effectiveness of our methods. 

Keywords: Location-based services, path-based constrained nearest neighbor 
query, peer-to-peer sharing. 

1 Introduction  

Location-Based Services (LBS) [1] enable mobile clients to search for facilities such 
as restaurants, shops, and car-parks close to their route. In general, mobile clients send 
location-dependent queries to an LBS server from where the corresponding location-
related information are returned as query results. However, conventional location-
dependent queries (e.g., range query and NN query) purely focus on the proximity of 
objects while neglect the additional constraints on non-spatial attribute values of data 
objects. This paper addresses a new kind of NN query called Path-based Constrained 
Nearest Neighbor (PCNN) query, which involves the specified constraints on non-
spatial attribute values of data objects on processing a continuous NN search along a 
path. Specifically, a PCNN query is defined between a query path P and a set of inter-
est objects S, and retrieves the set of the nearest interest object of every point on P 
and meanwhile satisfies the specified constraints on non-spatial attribute values of 
data objects. The following is a typical example about the PCNN query. 

Example: A car is approaching a path and the driver intends to find a hotel nearby the 
path. Then, he uses the on-board computer to issue the query “let me know the set of 
the nearest hotel of every point in the path, whose average price is ranged from $40  
to $60.” 



 Path-Based Constrained Nearest Neighbor Search in a Road Network 493 

 

In this paper, we explore the problem of efficient PCNN query processing in a road 
network and present the proposed processing methods. The remainder of this paper is 
organized as follows. We review the related work in Section 2. In Section 3, we for-
mally define the PCNN query and describe the reference infrastructure for supporting 
PCNN queries. In Section 4, we first establish the theoretical foundation for efficiently 
answering PCNN queries, and then present the proposed processing approaches. We 
evaluate the proposed approaches through comprehensive experiments in Section 5. 
Finally, Section 6 concludes this paper. 

2 Related Work 

Location-dependent queries in spatial networks have been investigated in recent 
years. Papadias et al. [2] firstly address the problem of location-dependent query 
processing in spatial networks, and develop a Euclidean restriction and a network 
expansion framework to answer the popular spatial queries (e.g., NN query, range 
query, etc.). Different from our work, [2] neither considers continuous spatial queries 
nor involves the additional constraints on non-spatial attribute values of data objects. 

Continuous Nearest Neighbor (CNN) query, as an extension of NN query, has been 
studied in the Euclidean space [3-8]. A CNN query retrieves the nearest neighbor of 
every point in the specified line segment. In particular, the result, which is different 
from the PCNN query, contains a set of <R, T> tuples, where R is an interest object, 
and T is the interval during which R is the nearest neighbor of each point on T. Due to 
many real-life objects moving on pre-defined spatial networks, several CNN algo-
rithms have been developed for spatial networks. In [9], Feng et al. adopt heuristics to 
generate computation points and the search region for accelerating the CNN search 
process. Kolahdouzan et al. [10] present a solution called UBA based on VN3 for 
CNN queries in spatial network databases. In [11], Cho et al. present UNICONS 
which incorporates the use of precomputed NN lists into Dijkstra’s algorithm for 
CNN queries. All the algorithms mentioned above need to find split points to gain the 
set of <R, T> tuples while PCNN queries only retrieve the set of the nearest neighbor 
of every point on the path. In addition, CNN query does not involve the additional 
constraints on non-spatial attribute values. In [12], Jun et al. explore the problem of 
generalized spatial query processing in the wireless data broadcasting system. The 
generalized spatial queries are constructed by adding the additional constraints on 
non-spatial attribute values in conventional location-dependent queries. Ku et al. [13] 
present a novel approach for reducing location-dependent query access latency by 
leveraging results from nearby peers in wireless data broadcasting environments. 
Different from our work, [12, 13] aim at the wireless data broadcasting setting and 
only consider static spatial queries in the Euclidean space. 

3 Preliminary 

In this section, we first formally define the PCNN query and related concepts, and 
then describe the reference infrastructure for supporting PCNN queries. 



494 Y. Xiao et al. 

 

3.1 Notations and Definitions 

A road network can be modeled as a graph G = (E, V), where V is a set of nodes cor-
responding to road junctions and E is a set of edges between two nodes in V corres-
ponding to road segments. A path is a sequence of successively neighboring edges. 
Usually, we use the sequence of successively neighboring nodes on a path to denote 
the path. The start and end nodes of a path are called terminating nodes of the path, 
and all nodes except terminating nodes on a path are called intermediate nodes of the 
path. A subpath of a given path P is a part of P between any two nodes of P. Table 1 
summarizes the symbolic notations used throughout this paper.  

Table 1. Symbolic notations 

Symbol Meaning 
S A set of interest objects 
P A given path in a road network 
nk A node corresponding to a road junction 
ns The start node of a given path P 
ne The end node of a given path P 
o An interest object in S 

N(nk) The nearest interest object of nk 
Rpath(P) The set of the nearest interest object of every point on the query path P 
Opath(P) The set of interest objects on the query path P 

MC A mobile client issuing a location-dependent query 
BS A mobile support base station 

peeri A single-hop mobile client of the MC 

q<P, C> 
a PCNN query where P denotes the query path and C is the constraints on 
non-spatial attribute values of data objects  

Consider a road network with a set of interest objects S. We formally define an in-
tersection node, an intersection node sequence and a PCNN query. 

Definition 1. Intersection node: A node where three or more edges meet is called an 
intersection node. Otherwise, it is called a non-intersection node. 

Definition 2. Intersection node sequence: For a given path P, the intersection node 
sequence of P is defined as the node sequence that is constructed by all intersection 
nodes from the start node ns to the end node ne of P except ns and ne. 

Definition 3. PCNN query: Let C be the specified constraints on non-spatial attribute 
values of interest objects. For a given path P and a set of interest objects S, a PCNN 
query retrieves the set R = {o∈S|∃t∈P (o=N(t))∧(o s.t. C)}, where o=N(t) represents 
o is the nearest interest object of t, and (o s.t. C) denotes o satisfies the constraints C.  

3.2 Reference Infrastructure 

Fig. 1 depicts the reference infrastructure for supporting PCNN queries in a road net-
work, which is a LBS system based on Personal Communication Systems (PCS) or 



 Path-Based Constrained Nearest Neighbor Search in a Road Network 495 

 

Global System for Mobile Communications (GSM). A set of general purpose com-
puters is interconnected through a high-speed wired network, which are categorized 
into Fixed Host (e.g., LBS) and mobile support Base Stations (BSs). One or more BSs 
are connected with a BS Controller (BSC), which coordinates the operations of BSs 
using its own software program when commanded by the Mobile Switching Center 
(MSC). Unrestricted mobility in PCS and GSM is supported by wireless link between 
BS and mobile clients. Mobile clients refer to mobile intelligent terminals such as 
PDA, on-board computer, etc., which equip with GPSs and can communicate with 
BSs using wireless channels. The power of a BS defines its communication region, 
which we refer to as a cell. A mobile client (MC) can freely move from one cell to 
another and transparently accesses the spatial database residing at the fixed network.  

 

Fig. 1. A reference infrastructure 

Due to the increasing deployment of new peer-to-peer (P2P) wireless communica-
tion technologies, mobile clients are now being equipped with wireless P2P capabili-
ties. This enables mobile clients to become parts of self-organizing, wireless mobile 
ad hoc networks (MANETs) that allow mobile clients to communicate with neighbor-
ing peers in an ad hoc manner for data sharing. 

4 PCNN Query Processing Approaches 

We start with a baseline approach and two basic theorems in subsection 4.1, and then 
an efficient PCNN query algorithm is proposed in subsection 4.2. Finally, we improve 
the proposed algorithm by utilizing peer-to-peer sharing in subsection 4.3. 

4.1 Basic Ideas 

Lemma 2 presented in [11] provides an insight into how to compute the set of the k 
nearest interest objects of every point on a given query path. We consider the case of 
k=1 and rephrase Lemma 2 in terms of our notations in the following Lemma 1. 



496 Y. Xiao et al. 

 

Lemma 1. For any path P = {n1, n2, …, nk}, Rpath(P) = Opath(P) ∪ {N(n1)} ∪  
{N(n2)}… ∪ {N(nk)}. 
On the basis of Lemma1, a straightforward algorithm to compute PCNN query con-
sists of four steps: 1) compute the nearest interest object for every node on the given 
query path P using an existing NN algorithm, and use S1 to denote the set of these 
nearest interest objects; 2) search all interest objects along P, and use S2 to denote the 
set of these interest objects; 3) union S1 and S2 into S3 and 4) filter out from S3 those 
objects that do not qualify the specified constraints on non-spatial attribute values and 
return the final result. 

We refer to this algorithm as ABA (a baseline approach). Although ABA is correct, 
as can be proved easily by Lemma 1, it generates a great deal of processing overhead 
on computing the nearest interest object for every node on the query path. To effi-
ciently compute PCNN queries, we propose the following two theorems. 

Theorem 1. For any path P = {n1, n2, …, nk}, if all nodes along P are non-intersection 
nodes except n1 and nk, then Rpath(P) = Opath(P) ∪ {N(n1)} ∪ {N(nk)}.                

Theorem 2. Let <n1 , n2, …, ni> be the intersection node sequence of a given path P 
and ns and ne denote start and end nodes of P, respectively. Then,  

Rpath(P)= Opath(P) ∪ {N(ns)} ∪ {N(n1)} ∪ {N(n2)} ∪ … ∪ {N(ni)} ∪ {N(ne)} 
Compared with Lemma 1, Theorem 1 removes the computation overhead running 
static queries at those intermediate nodes which are non-intersection nodes. Theorem 
2 proves that to perform a continuous NN search along a path, it is sufficient to re-
trieve objects on the path and to run static queries at its intersection node sequence 
and two terminating nodes. The proofs of Theorems 1 and 2 are omitted due to space 
limitations. 

4.2 Intersection Node-Based Method 

In this subsection, we propose an efficient PCNN query method, called INBM (inter-
section node-based method), which leverages Theorem 2 to erase the processing 
overhead of running NN queries at all non-intersection nodes of the query path. 

 
Algorithm 1: INBM (P, C) 

Input: P is a query path and C denotes the specified constraints on non-spatial attribute values 
Output: Result, i.e., the result of the PCNN query 

1:  Result := ∅; Sequence := ∅; ObjectSet := ∅; 
2:  Sequence := GetINS(P, adjacency-list); 
3:  ObjectSet := GetObject(P); 
4:  for ∀ t ∈ Sequence ∪{ns, ne} do       
5:    Result := Result ∪{N(t)}; 
6:  Result := Result ∪ ObjectSet; 
7:  for ∀ o ∈ Result  do 
8:    if o does not qualify the specified constraints C 
9:      Result := Result

－

{o}; 

10:  return Result; 
 



 Path-Based Constrained Nearest Neighbor Search in a Road Network 497 

 

When a BS receives a PCNN query request issued by a mobile client located at its 
cell, it transmits the request to the LBS server. The LBS server is responsible for em-
ploying INBM to process the request and returns the query result to the mobile client. 
Specifically, INBM contains four steps: 1) compute the nearest interest object for 
every intersection node on P using an existing NN algorithm, and use S1 to denote the 
set of these nearest interest objects; 2) search all interest objects along P, and use S2 to 
denote the set of these interest objects; 3) union S1 and S2 into S3 and 4) filter out from 
S3 those objects that do not qualify the specified constraints and return the final result. 
We formalize INBM method in the following Algorithm 1. 

In Algorithm 1, N(t) is computed by means of the existing NN processing algo-
rithm, like IER or INE [2], adjacency-list represents the adjacency list of the road 
network, the operation GetINS(P, adjacency-list) is responsible for gaining the inter-
section node sequence of P, and the operation GetObject(P) returns the set of interest 
objects located at P. The formalized descriptions of GetINS(P, adjacency-list) and 
GetObject(P) are omitted due to space limitations. As the nearest interest object of a 
node is fixed unless the updates to the interest object set S happen, we can pre-
compute N(t) for each intersection node t to improve the performance of Algorithm 1. 

4.3 Sharing-Based Method  

MANETs enable mobile clients to leverage query results cached in their neighboring 
peers. Based on peer-to-peer sharing, we propose SBM (sharing-based method) to 
improve the performance of INBM. SBM needs each mobile client to cache its last 
query path and the NN set of the query path for sharing. When a PCNN query request 
is issued by a mobile client MC, MC first broadcasts the PCNN query request to all its 
single-hop mobile clients (peers) for data sharing instead of fetching data solely from 
the remote LBS server. Only when these data cached in single-hop peers do not match 
the PCNN query, is the PCNN query request transmitted to the LBS server through 
the neighboring BS. 

Let q<P, C> denote a PCNN query issued by a mobile client MC, peeri (1≤i≤k) 
denote a single-hop mobile client of MC, and Pi denote the last query path cached by 
peeri. The processing strategy of SBM is described as follows: MC first broadcasts the 
request q<P, C> to all its single-hop mobile clients peeri for i=1, 2, …, k. For each 
peeri (1≤i≤k), once receiving the request q<P, C> from MC, it checks whether P and 
Pi are the same path. If P and Pi are the same path, peeri sends the message “Yes” to 
MC and selects from the cached objects those object that qualify the specified con-
straint C; otherwise it sends the message “No” to MC. If MC receives “Yes” from a 
peeri within the specified deadline T, it sends the message “Acknowledgement” to the 
peeri and waits the result from the peeri. The specified deadline T is calculated by the 

formula: T = tissue+2×tdelay×slack, where tissue is the time at which the request q<P, C> 
is broadcast by MC, tdelay denotes the largest network delay between two neighboring 
mobile clients based on MANETs, and slack represents the slack factor which is a 
random variable uniformly chosen from a slack range. Once receiving “Acknowled-
gement” from MC, the peeri sends those qualified objects to MC. If all peeri send 
“No” or MC does not receive any “Yes” within the specified deadline, MC transmits 



498 Y. Xiao et al. 

 

the query path P to its BS and the BS is responsible for forwarding P to the LBS 
Server. The LBS Server retrieves the set H of the nearest interest object of every point 
in P and sends H to MC. MC caches H and returns from H those object qualifying the 
specified constraint C. 

Based on the above processing strategy, we formalize SBM in the following Algo-
rithm 2-4. Algorithm 2 is executed at mobile clients, Algorithm 3 is executed at these 
single-hop peeri and Algorithm 4 is executed at the LBS Server. 

 
Algorithm 2: SBM -MC (P, C) 

Input: P is a query path and C denotes the specified constraints on non-spatial attribute values 
Output: the result of the PCNN query 

1:  Result := ∅;  
2:  Broadcast the request q<P, C> to all its single-hop mobile clients peeri for i=1, 2, …, k 

and wait response messages from them;  
3:  if receiving the message “Yes” from a peeri within the specified deadline  then 
4:    Send the message “Acknowledgement” to the peeri and wait the result from the peeri; 
5:    Receive the result from the peeri; 
6:    return the result; 
7:  else  

/ * all peeri send “No” or MC does not receive any “Yes” within the specified deadline */ 
8:    Transmit the query path P to the LBS server through its BS and wait the result H from 

the LBS server; 
9:    Cache H which is received from the LBS server;  

10:    for ∀ o ∈ H do 
11:      if o qualify the specified constraint C  then 
12:        Result := Result ∪{ o }; 
13:    return Result; 

 
 

Algorithm 3: SBM -Peer (P, C) 

Input: P and C, which are sent by MC 
Output: the result of the PCNN query or message “No” 

1:  Result := ∅;  
2:  if P = Pi; 

/* Pi denote the last query path cached by peeri */ 
3:   Send “Yes” to MC; 
4:  else 
5:   Send “No” to MC and return; 
6:  for ∀ o ∈ CacheData  do  

/*CacheData is the set of the nearest interest object of every point in Pi, cached in peeri */ 
7:    if o qualifies the specified constraints C  then 
8:      Result := Result ∪{ o }; 
9:  if receiving the message “Acknowledgement” from MC  then 

10:    Send Result to MC; 
 



 Path-Based Constrained Nearest Neighbor Search in a Road Network 499 

 

 
Algorithm 4: SBM -LBS (P) 

Input: a query path P 
Output: H, i.e., the set of the nearest interest object of every point in P 
1:  H := ∅; Sequence := ∅; ObjectSet := ∅; 
2:  Sequence := GetINS(P, adjacency-list); 
3:  ObjectSet := GetObject(P); 
4:  for ∀ t ∈ Sequence ∪{ns, ne} do      
5:    H := H ∪{N(t)}; 
6:  H := H ∪ ObjectSet; 
7:  return H; 

 
5 Experimental Evaluation 

This section experimentally assesses the performance of the proposed INBM and 
SBM. We mainly compare the proposed methods with ABA in terms of I/O cost (page 
accesses), network delay and execution time by simulation experiments. In our simu-
lation experiments, the LBS server runs MS Windows XP with a 2.4GHz CPU and 
1GB main memory. Mobile clients include lap-tops and smart PDAs running Win-
dows CE with 500MHz CPU and 128M main memory. All algorithms of Section 4 
are developed in C++. Our evaluations are based on a real road network. The road 
network data description is as follows: |V|=21047 and |E|=21692, where V is the set of 
nodes and E is the set of edges. In order to control the density of the interest objects, 
we use synthetic spatial objects as interest objects which are uniformly generated on 
the network edges. Each interest object has a spatial attribute denoted by its 2D coor-
dinates, together with eight non-spatial attributes. In order to reduce the randomness 
effect we average the results of the algorithms over 20 PCNN queries. The key simu-
lation parameters contain Nn, the number of nodes in a given query path, and Pr, the 
probability of MC receiving “Yes” from a peeri within the specified deadline.  

Fig. 2 shows the performance of the three methods in terms of I/O cost, as a func-
tion of Nn. As shown in Fig. 2, SBM gets a distinct advantage over INBM and ABA in 
term of I/O cost. This is because SBM enables the great majority of PCNN queries to 
be computed by utilizing peer-to-peer sharing and thus avoids a large number of disk 
I/O accesses which are required by INBM and ABA. Moreover, we can also see from 
Fig. 2 that INBM consistently outperforms ABA. The reason is that INBM leverages 
Theorem 2 to erase the processing overhead of running NN queries at non-
intersection nodes. Fig. 3 depicts the network delay of the three methods. The net-
work delay refers to the time required to complete all the network transmission for 
computing a PCNN query. We can learn from Fig. 3 that SBM has a slightly advan-
tage over INBM and ABA. This is not surprising because SBM answers PCNN queries 
by directly fetching data cached in the neighboring peers in most case. This enables 
SBM to generate less routing and forwarding messages than that of INBM and ABA. 
Fig. 4 demonstrates the performance of the three methods in terms of execution time, 
as a function of Nn. As shown in Fig. 4, SBM evidently outperforms INBM and ABA. 



500 Y. Xiao et al. 

 

The reason mainly includes the two aspects: firstly, SBM decreases heavily disk I/O 
accesses by means of peer-to-peer sharing; secondly, SBM reduces the network delay 
compared with INBM and ABA. We can also see from Fig. 4 that INBM has a distinct 
advantage over ABA. The main reason is INBM erases the processing overhead of 
running NN queries at non-intersection nodes, required by ABA. Figs. 5, 6 and 7 show 
how Pr influences I/O cost, network delay and execution time. Fig. 5 plots page ac-
cesses as a function of Pr for various values of Pr. As shown in Fig. 5, the page ac-
cesses of SBM decrease as Pr increases. Moreover, SBM gets a distinct advantage 
over INBM and ABA in terms of I/O cost. The reason is increasing Pr enables SBM to 
compute the more PCNN queries by utilizing these data cached in the neighboring 
mobile clients. Fig. 6 illustrates network delay as a function of Pr for various values 
of Pr. We can learn from Fig. 6 that the network delay of SBM decreases as Pr in-
creases and became smaller than that of other two methods when Pr is greater than a 
fixed value. This is because increasing Pr enables SBM to answer the more PCNN 
queries by directly fetching data cached in the neighboring mobile clients instead of 
requesting data solely from the remote LBS server. Fig. 7 shows execution time as a 
function of Pr for various values of Pr. We can see from Fig. 7 that the execution 
time of SBM decreases as Pr increases and meanwhile SBM gets a distinct advantage 
over INBM and ABA. This is not surprising because for SBM, the larger Pr results in 
the less I/O cost and network delay. 
 

       

Fig. 2. I/O cost vs. Nn        Fig. 3. Network delay vs. Nn   Fig. 4. Execution time vs. Nn 

 

      

Fig. 5. I/O cost vs. Pr     Fig. 6. Network delay vs. Pr    Fig. 7. Execution time vs. Pr 

6 Conclusion 

In this paper, we address a new kind of NN query called Path-based Constrained Near-
est Neighbor (PCNN) query, which involves the additional constraints on non-spatial 



 Path-Based Constrained Nearest Neighbor Search in a Road Network 501 

 

attribute values of data objects on answering a continuous NN search along a path. We 
propose two important prepositions (i.e., theorems 1 and 2) to decrease computation 
overhead for PCNN query processing. On the basis of them, we propose an efficient 
PCNN query method. The proposed method transforms a continuous NN search into 
static NN queries at discrete intersection nodes. Further, we leverage peer-to-peer shar-
ing to improve the proposed method. Extensive experiments are conducted, and the 
results demonstrate the effectiveness of our methods. 

References 

1. Lee, D.L., Lee, W.C., Xu, J., Zhang, B.: Data management in location-dependent informa-
tion services. IEEE Pervasive Computing 1(3), 65–72 (2002) 

2. Papadias, D., Zhang, J., Mamoulis, N., Tao, Y.: Query processing in spatial network data-
bases. In: Proc. of VLDB, pp. 802–813. ACM Press, Berlin (2003) 

3. Tao, Y., Papadias, D., Shen, Q.: Continuous Nearest Neighbor Search. In: Proc. of VLDB, 
pp. 287–298. ACM Press, Hang Kong (2002) 

4. Mokbel, M.F., Xiong, X., Aref, W.G.: SINA: Scalable Incremental Processing of Conti-
nuous Queries in Spatio-temporal Databases. In: Proc. of ACM SIGMOD, pp. 623–634. 
ACM Press, Paris (2004) 

5. Mouratidis, K., Hadjieleftheriou, M., Papadias, D.: Conceptual Partitioning: An Efficient 
Method for Continuous Nearest Neighbor Monitoring. In: Proc. of ACM SIGMOD,  
pp. 634–645. ACM Press, Maryland (2005) 

6. Iwerks, G.S., Samet, H., Smith, K.: Continuous K-Nearest Neighbor Queries for Conti-
nuously Moving Points with Updates. In: Proc. of VLDB, pp. 287–298. ACM Press, Berlin 
(2003) 

7. Xiong, X., Mokbel, M.F., Aref, W.G.: SEA-CNN: Scalable processing of continuous K-
nearest neighbor queries in spatio-temporal databases. In: Proc. of ICDE, pp. 643–654. 
IEEE Press, Tokyo (2005) 

8. Xiao, Y.Y., Wang, H.Y.: An Efficient Algorithm for Continuous Nearest Neighbor Que-
ries Based on the VDTPR-tree. Journal of Computational Information Systems 4(2),  
527–534 (2007) 

9. Feng, J., Watanabe, T.: Search of Continuous Nearest Target Objects along Route on 
Large Hierarchical Road Network. In: Proc. of Control and Applications, New York, USA, 
pp. 33–41 (2004) 

10. Kolahdouzan, M., Shahabi, C.: Continuous K-Nearest Neighbor Queries in Spatial Net-
work Databases. In: Proc. of STDBM, Citeseer,Toronto, Canada, pp. 33–40 (2004) 

11. Cho, H.J., Chung, C.W.: An Efficient and Scalable Approach to CNN Queries in a Road 
Network. In: Proc. of VLDB, pp. 865–876. ACM Press, Trondheim (2005) 

12. Jun, H., Choi, H., Chung, Y.D.: Generalized Spatial Queries in the Wireless Data Broad-
casting System. In: Proc. of MDM, Taipei, Taiwan, pp. 279–284 (2009) 

13. Ku, W.S., Zimmermann, R., Wang, H.: Location-Based Spatial Query Processing in Wire-
less Broadcast Environments. IEEE Transactions on Mobile Computing 7(6), 778–790 
(2008) 



Efficient Fuzzy Ranking

for Keyword Search on Graphs

Nidhi R. Arora1, Wookey Lee2, Carson Kai-Sang Leung3,
Jinho Kim4, and Harshit Kumar1

1 University of Suwon, Hwaseong, South Korea
2 Inha University, Incheon, South Korea

3 University of Manitoba, Winnipeg, MB, Canada
4 Kangwon National University, Kangwon, South Korea

trinity@inha.ac.kr, kleung@cs.umanitoba.ca, jhkim@kangwon.ac.kr

Abstract. When compared with the traditional single-node results re-
turned by search engines, keyword search over graphs is a new answering
paradigm that brings new challenges to ranking. In this paper, we pro-
pose an efficient fuzzy-set theory based ranking measure called FRank.
This measure captures the presence and relevance of query keywords and
their query-dependent edge weights. It evaluates the query answer based
on the distribution of keywords in the query and the structural con-
nectivity between these keywords. Experimental results show that our
proposed FRank measure led to superior performance when compared
with traditional ranking measures.

Keywords: Fuzzy sets, graph rank, information retrieval (IR), key-
word search.

1 Introduction and Related Work

Graph data are available in numerous application domains (e.g., relational data-
bases, Web, semantic Web). To access information from structured data, users
usually need to (i) learn complex query languages (e.g., SQL, XPath) and (ii) ac-
quire knowledge about the data schema and organization. Hence, wealth of infor-
mation that is present in these data may not be easily accessible by non-technical
users. This calls for efficient query processing of keyword search (which is a conve-
nient and user-friendly mechanism used by many search engines for information
retrieval (IR) [1,10,11]) over graph data. A keyword search over graph structured
data usually returns an answer as tree structures [4,7,9] or sub-graphs [12,15] due
to the linkage of information across multiple database relations or web pages.

As the number of answers (i.e., structures that match query keywords) can be
large and not all the answers are equally relevant to the query, it is critical for
efficient keyword search to rank and return top-k structures. Existing ranking
functions are usually based on (i) a content-relevance based score (e.g., tf-idf),
(ii) some structural properties (e.g., PageRank or its variants, path length or
reciprocal path length), or (iii) the aggregation of the above two. However, there

S.W. Liddle et al. (Eds.): DEXA 2012, Part I, LNCS 7446, pp. 502–510, 2012.
c© Springer-Verlag Berlin Heidelberg 2012



Efficient Fuzzy Ranking for Keyword Search on Graphs 503

are limitations associated with these ranking functions. For instance, the IR-
style ranking [13] computes the content-relevance score of the result structure
by assigning a tf-idf based relevance score to each node and then combining
these scores using an aggregate function such as SUM. However, scores are as-
signed irrespective of the keyword distribution or the structure. Same scores are
assigned to graphs having the same structures or structures having the same
number of nodes and edges. BLINKS [5] and BANKS-II [7], on the other hand,
used a distance-based score in terms of path length (or reciprocal path length)
from the root node to each of the leaf nodes that contain query keywords. How-
ever, this score only works for tree structures (having a single root node) but
not subgraphs (having multiple root nodes). In contrast, the graph ranking score
(GRS) [9] ranks the answer structures based on the proximity of nodes containing
query keywords by evaluating the eigenvalues of a matrix. However, the creation
of a matrix at each stage of the graph exploration process can be computationally
expensive.

To overcome the shortcomings of the above approaches, we propose a novel
fuzzy-set based ranking function, called FRank, for efficient and effective top-k
keyword search. Although fuzzy-set theory has been used in (i) modelling uncer-
tain and imprecise data in fuzzy IR [2] or fuzzy XML [14] and (ii) constructing
web ontology [18], this is the first attempt—to the best of our knowledge—to
consolidate fuzzy sets for efficient and effective ranking of keyword search results.
Our key contributions of this paper are as follows:

1. We use fuzzy sets to capture the presence and relevance of each individual
query keyword discretely and measure the query-specific node-relevance.

2. We propose a new aggregate operator to compute query-dependent content-
relevance based edge weights (cf. distance-based edge-weights).

3. The FRank measure aggregates the edge weights capturing their relevance to
the keyword query. It automatically favours answers with higher information
content than those with only partial information.

This paper is organized as follows. In next section, we propose our relevance
scoring function, which helps in processing query and generating top-k results
for keyword searches over graphs. Experimental results are reported in Section 3,
and conclusions are given in Section 4.

2 Our Proposed Relevance Score

Consider an undirected graph G=(V ,E), where V is a set of nodes (e.g., web
pages, database tuples, XML documents) and E is a set of edges connecting the
nodes (e.g., hyperlinks between web pages, primary key-foreign key relationships
between database tuples, parent-child relationships among XML elements). A
keyword query Q consists of a set of M keywords—i.e., Q = {t1, t2, . . . , tM},
where each t is a general query keyword term. We use Vt to denote a set of
nodes containing the query keyword term t; we use VQ =

⋃
t∈Q Vt to denote the

union of all keyword nodes for a particular query Q. In this section, we propose
a ranking function to effectively rank the answer structures.



504 N.R. Arora et al.

2.1 Fuzzy Node Sets

To independently and discretely accumulate IR-style content-relevance based
score for each of the query keywords, we use fuzzy sets which provide natural
means to model gradual relevance by means of its membership function. For
each u ∈ VQ (i.e., for each keyword node for a query Q), we create a fuzzy set fu
such that each element in the set corresponds to a query keyword term t and
its membership degree μu,t measuring the content relevance of t towards the
node u:

fu = {(t, μu,t) | t ∈ Q}. (1)

We define μu,t as a product of (i) the normalized inverse document frequency
(idf) nidft and (ii) the normalized term frequency (tf) ntfu,t. In other words,

μu,t = nidft × ntfu,t, where nidft =
ln(dt)

ln(N)
and ntfu,t =

tfu,t
dlu

. (2)

Here, (i) dt is the number of nodes containing t (i.e., document frequency), (ii) N
is the total number of nodes in the graph G, (iii) tfu,t is the term frequency of t
in u, and (iv) dlu is the document length (i.e., the number of terms) in Node u.

Example 1. Consider (i) a graph G with keyword distribution as shown in Fig. 1
and (ii) query Q={graph, semantic, web}. Then, as the keyword term “graph”
appears in Nodes 2, 4 and 5 (out of N=10 nodes), its document frequency

dgraph=3. Thus, the normalized idf nidfgraph=
ln(3)
ln(10)=0.4771. As the term “graph”

appears once in Node 2 (i.e., tf2,graph=2) and three additional terms—namely,
“pattern”, “recognition”, “data”—are associated with Node 2 (i.e., the docu-
ment length dl2=4), the normalized tf ntf2,graph=

1
4=0.25. Hence, the result-

ing fuzzy set f2 = {(graph, 0.4771×0.25 = 0.1193), (semantic, 0), (web, 0)}.
Similarly, f6={(graph, 0), (semantic, 0.2007), (web, 0.2007)} because (i) 4 out
of N=10 nodes contain “semantic” and 4 out of N=10 nodes contain “web”
(i.e., nidfsemantic=nidfweb=

ln(4)
ln(10)=0.6021) and (ii) “semantic” and “web” are 2

of dl6=3 terms in Node 6 (i.e., ntf6,semantic=ntf6,web=
1
3 ). See Table 1. ��

As μu,t can be pre-computed for every node u and keyword term t in G, it can be
stored offline during the creation of inverted index. Hence, fuzzy sets for keyword
nodes can be generated efficiently at runtime. For any latent Steiner node u′ (i.e.,
node that appears in the shortest path between two keyword nodes), it does not
contain any query keyword. We assign μu′,t=1.

Node Keywords
2 pattern recognition graph data
3 effective top-k search semantic web
4 top-k search algorithm for relational DB graph
5 effective keyword search XML graph
6 understanding semantic web
7 combining fuzzy info for semantic search
8 top-k Steiner trees for web search
9 compressed indices for semantic web

Fig. 1. A data graph G and text associated with nodes based on a publication DB



Efficient Fuzzy Ranking for Keyword Search on Graphs 505

Table 1. Tf-idf for Q={graph, semantic, web}

N=10 keyword terms
t dt nidft

graph 3 (in Nodes 2, 4 & 5) 0.4771
semantic 4 (in Nodes 3, 6, 7 & 9) 0.6021

web 4 (in Nodes 3, 6, 8 & 9) 0.6021

u t tfu,t dlu ntfu,t μu,t

2 graph 1 4 0.25 0.1193
3 semantic 1 5 0.2 0.1204

web 1 5 0.2 0.1204
4 graph 1 6 0.1667 0.0795
5 graph 1 5 0.2 0.0954
6 semantic 1 3 0.3333 0.2007

web 1 3 0.3333 0.2007
7 semantic 1 5 0.2 0.1204
8 web 1 5 0.2 0.1204
9 semantic 1 4 0.25 0.1505

web 1 4 0.25 0.1505

2.2 Content-Based Edge Score

Next, we devise an aggregate operator to compute edge weights based on the
query-specific information contained in the two nodes connecting the edge. To
avoid the problem associated with conventional fuzzy union (which may pro-
duce abundant results) or fuzzy intersection (which may be too restrictive), we
combine μu,t and μv,t for the edge connecting u & v. Specifically, to weigh com-
plementary information of an edge heavier than extensions of the same keywords,
we define a new aggregate operator called the complemented weighted average
(CWA). Let Δv represent the total amount of information available in a node v.
It is the sum of query-specific content-relevance scores of query keywords con-
tained in v. LetΔv/t represent the sum of query-specific scores of query keywords
(except t) contained in v. Then,

CWA(eu,v) =
1

M(M − 1)

⎡
⎣∑
t∈Q

(
μu,t × Δv/t

)⎤⎦ , (3)

where M is the total number of query keywords and μu,t defines the membership
degree as content relevance of a keyword t towards node u. CWA enumerates
the total amount of information available in the incident nodes of an edge and
computes the content relevance of an edge.

Example 2. Reconsider Example 1, in which edge e2,6 contains complete query-
specific information but edge e3,6 contains only partial information. Recall that
f2={(graph, 0.1193), (semantic, 0), (web, 0)} & f6={(graph, 0), (semantic,
0.2007), (web, 0.2007)}. For e2,6, as Node 2 contains only one keyword ”graph”
(out of M=3 keywords), Δ6/graph=0.2007+0.2007=0.4014. Then, CWA(e2,6) =

1
3(3−1)

[∑
t∈Q
(
μ2,t × Δ6/t

)]
= 1

6 [(0.1193 × 0.4014) + 0 + 0]=0.0080.

Similarly, CWA(e3,6) =
1
6 [0 + (0.1204 × 0.2007) + (0.1204 × 0.2007)] = 0.0081

because e3,6 containsme3,6=2 out ofM=3 query keywords. Thus, CWA together
with weighing function assigns heavier weight to the complete information and
lighter weight to edges containing less relevant or partial information. ��



506 N.R. Arora et al.

2.3 Ranking of Answer Structures

Given the answer structure A, the relevance score of an answer can be computed
by aggregating the edge weights of all the edges in the structure. In contrast
to existing approaches (where all the edges are of equal importance), each edge
weighs differently in ours. Each edge weight is computed according to the amount
of query specific information contained by it (Section 2.2). The final rank (or
overall score) of A is computed as follows:

rank(A) =
me

M
CWA(ek) +

(
1 − c

n

)
, (4)

where (i)me is the total number of query keywords present in the incident nodes,
(ii) ek is an edge incident on one or both keyword nodes, (iii) c is the total number
of edges incident on both latent Steiner nodes, and (iv) n is the total number
of edges in the answer structure. The term (1 − c

n ) enforces a higher rank for
the result structures containing fewer number of latent Steiner nodes. Note that
c enumerates the total number of edges incident on latent Steiner nodes out of
the total number of edges present in the result structure. Thus, if the result
structure contains many edges incident on latent Steiner nodes, then (1 − c

n )
will be smaller or closer to 0. Conversely, if the result structure contains fewer
latent Steiner nodes, then (1 − c

n ) will be larger. Hence, for two or more result
structures having the same number of edges, (1 − c

n ) helps to enforce higher
ranking of structures with keyword nodes.

3 Experimental Evaluation

To evaluate the effectiveness and search quality of our proposed ranking measure
(implemented in Java), experiments were performed on an Intel Core 2 Duo
PC with 2.13GHz processor and 2GB of RAM on Windows XP platform. The
experiments are designed to check the performance of creating and processing
fuzzy sets as an inherent part of the search process. We also evaluated the quality
of FRank by comparing it with the state-of-the-art ranking measures.

We first used two popular real-world datasets from the literature for ex-
periments: (i) DBLP dataset was downloaded from dblp.uni-trier.de/xml

with the resulting graph consists of N=2M nodes (authors), n=3.7M edges, and
M=328K keywords; (ii) Stanford dataset was formed by crawling web pages on
www.cs.stanford.eduwith the resulting graph consists ofN=8K nodes, n=27K
edges, and M=70.8K keywords. We picked many queries with length ranging
from 2 to 5 keywords.

In the experiments, we compared with BANKS-II [7] (denoted as BANKS)
and BLINKS [5] (denoted as IRDB). BANKS-II generated top-k answer trees us-
ing graph exploration heuristics. The final rank of an answer tree was computed
as ES×NP 0.2, where (i) ES is the tree edge score (computed by aggregating
the edge scores for all edges on the path from the root to the leaf node contain-
ing keyword t) and (ii) NP is tree node prestige (computed by summing the



Efficient Fuzzy Ranking for Keyword Search on Graphs 507

node weights—a function of the in-degree—of leaf nodes and the answer root).
BLINKS returned only node pairs (instead of tree/graph structure) as answers.
Since it did not return a proper tree structure, we instead used the IR-style
ranking to rank the answer trees in relational databases. The relevance score of
an answer tree was computed by aggregating node relevance scores with the size
of the answer tree. Relevance score of a node u is calculated as the sum of μu,t.

3.1 Fuzzy Set Performance

Fig. 2 shows the processing time required to create fuzzy sets for
top-10 and top-20 results from a batch of the first 50 keyword nodes for each of
the query keywords. The difference in the processing time of fuzzy sets depends
on the distribution of query keywords in the data graph. For example, consider
Q4={mobile, web, search} and Q4′={personalize, web, search} on the DBLP
dataset. The query keywords “web” and “search” are simultaneously present in
1,229 nodes, but the numbers of common nodes containing all query keywords
in Q4 and Q4′ are 0 and 3 respectively. Similar comments apply to the Stanford
dataset. For some queries, the fuzzy set processing time was as low as 15ms. As
shown in Fig. 2, the time for creating fuzzy sets gradually increased when the
value of k (for top-k results) increased. Note that the elapsed time depends on
the distribution of keywords in the query and the connectivity among keyword
nodes.

Fig. 2. Fuzzy set performance: time to process DBLP and Stanford data

3.2 Quality of FRank

We evaluated the effectiveness of FRank in terms of the quality of ranked answer
trees based on their position in the top-k result. To measure the quality of each
ranking mechanism, we used the discounted cumulative gain (DCG) [6] measure,
which is one of the standard measures used in many IR systems [3,17]. As DCG



508 N.R. Arora et al.

Fig. 3. Quality of FRank: search accuracy for query with 2 to 5 keywords

is defined as DCG(p) = rel1 +
∑p

i=2
reli
log(i) where p is the position of the answer

tree in the result set and reli is the relevance level of the i-th answer tree in
the result set, DCG identifies different levels of ranking and favours the ranking
that follows the actual relevance order. The results for each query were then
given to five researchers, who were asked to indicate the relevance level (e.g.,
“highly relevant”, “somewhat relevant”, “undecidable”, “somewhat irrelevant”,
or “highly irrelevant”).

Fig. 3 presents the top-10 results. For 2-keyword queries, the ranking produced
by IRDB and FRank was similar because a majority of the answer trees having
two nodes connected by a single edge. However, when the number of query
keywords increased, the topology of the answer tree changed. The difference
between these two measures became significant. BANKS performed poorly due
to its use of static node/edge weights based on the structural properties of the
data graph. After examining the node weights for both datasets, we found that
65% of the nodes in the DBLP dataset and 75% of the nodes in the Stanford
dataset had marginal difference in the node weights.

Fig. 4. Quality of FRank: results with different keyword distribution



Efficient Fuzzy Ranking for Keyword Search on Graphs 509

The reason for effective and improved ranking of FRank over IRDB is be-
cause of the calculation of proximity between actual query keywords (instead of
keyword nodes). For example, when we experimented with the third dataset (a
subset of IMDB data downloaded from www.imdb.com/interfaces for a IMDB
graph capturing n=1M movie links), keywords “star” and “wars” appear to-
gether in 161 nodes (out of N=285K nodes) in the resulting graph for Q={star,
wars, murder}. Being a popular series, many other series refer to old episodes
of Star Wars. Thus, we get the answer tree topology as shown in Fig. 4, along
with the previous answer tree. Eight different answer trees can be obtained by
replacing “star wars: the empire strikes back” in Fig. 4(b). Unlike BANKS and
BLINKS, our FRank does not prune out these results. Instead, the results are
presented to the user in the order of their relevance. Although the structural
compactness score is the same for both Figs. 4(b) & (c), the content-relevance
based node weights for Fig. 4(b) are heavier than those for Fig. 4(c). Because
IRDB accumulates the total content-relevance scores as node weights, the rank-
ing provided by IRDB was 〈(b), (a), (c)〉. In contrast, the ranking provided by
FRank was 〈(a), (c), (b)〉. BANKS and BLINKS do not return Fig. 4(b) as an
answer tree. Our FRank, on the other hand, ranks Fig. 4(b) lower in the result
set (instead of pruning it out), and thus leads to a much better ranking.

4 Conclusions

In this paper, we proposed a new ranking measure based on fuzzy-set theory,
called FRank, for effective processing of keyword queries over graph data. FRank
helps to acknowledge the presence of multiple query keywords, and computes
content-relevance based query specific edge weights. It is effective as it au-
tomatically favours results with complete information than those with partial
information.

Acknowledgement. This project is partially supported by (i) MKE under
ITRC support program supervised by NIPA (S. Korea), (ii) NSERC (Canada),
and (iii) University of Manitoba.

References

1. Agrawal, S., Chaudhuri, S., Das, G.: DBXplorer: a system for keyword-based search
over relational databases. In: IEEE ICDE 2002, pp. 5–16 (2002)

2. Bruno, N., Wang, W.H.: The threshold algorithm: from middleware systems to the
relational engine. IEEE TKDE 19(4), 523–537 (2007)

3. Clarke, C.L.A., et al.: Novelty and diversity in information retrieval evaluation. In:
ACM SIGIR 2008, pp. 659–666 (2008)

4. Dalvi, B.B., Kshirsagar, M., Sudarshan, S.: Keyword search on external memory
data graphs. In: VLDB 2008, pp. 1189–1204 (2008)

5. He, H., et al.: BLINKS: ranked keyword searches on graphs. In: ACM SIGMOD
2007, pp. 305–316 (2007)



510 N.R. Arora et al.

6. Järvelin, K., Kekäläinen, J.: Cumulated gain-based evaluation of IR techniques.
ACM TOIS 20(4), 422–446 (2002)

7. Kacholia, V., et al.: Bidirectional expansion for keyword search on graph databases.
In: VLDB 2005, pp. 505–516 (2005)

8. Kargar, M., An, A.: Keyword search in graphs: finding r-cliques. In: VLDB 2011,
pp. 681–692 (2011)

9. Kim, S., et al.: Retrieving keyworded subgraphs with graph ranking score.
ESWA 39(5), 4647–4656 (2012)

10. Lee, W., Leung, C.K.-S.: Structural top-k web navigation with inclusive query. In:
IEEE ICIT 2009 (2009), doi:10.1109/ICIT.2009.4939712

11. Lee, W., Leung, C.K.-S., Lee, J.J.H.: Mobile web navigation in digital ecosystems
using rooted directed trees. IEEE TIE 58(6), 2154–2162 (2011)

12. Li, G., et al.: EASE: an effective 3-in-1 keyword search method for unstructured,
semi-structured and structured data. In: ACM SIGMOD 2008, pp. 903–914 (2008)

13. Liu, F., et al.: Effective keyword search in relational databases. In: ACM SIGMOD
2006, pp. 563–574 (2006)

14. Liu, J., Ma, Z.M., Yan, L.: Efficient processing of twig pattern matching in fuzzy
XML. In: CIKM 2009, pp. 117–126 (2009)

15. Qin, L., et al.: Querying communities in relational databases. In: IEEE ICDE 2009,
pp. 724–735 (2009)

16. Talukdar, P.P., et al.: Learning to create data-integrating queries. In: VLDB 2008,
pp. 785–796 (2008)

17. White, R.W., Bailey, P., Chen, L.: Predicting user interests from contextual infor-
mation. In: ACM SIGIR 2009, pp. 363–370 (2009)

18. Zhang, F., et al.: Fuzzy semantic web ontology learning from fuzzy UML model.
In: CIKM 2009, pp. 1007–1016 (2009)



Author Index

Abad-Mota, Soraya II-416
Abdulahhad, Karam I-206
Abul-Basher, Zahid II-424
Ait-Ameur, Yamine I-9
Ait-Sadoune, Idir I-9
Akbarinia, Reza II-183
Akritidis, Leonidas I-422
Alhadad, Nagham II-497
Al-Haj, Saeed II-514
Al-Kateb, Mohammed II-375
Al-Shaer, Ehab II-514
Amagasa, Toshiyuki II-450
Anane, Rachid II-297
Anyanwu, Kemafor II-384
Apers, Peter M.G. I-296
Appice, Annalisa II-248
Arias, Enrique II-442
Arkatkar, Isha II-16
Arora, Nidhi R. I-502
Atapattu, Thushari I-161
Awano, Yuki II-88

Bahmani, Amir II-111
Bellahsene, Zohra II-281
Ben Ahmed, Eya II-121
Berrut, Catherine I-206
Bhagurkar, Salil II-514
Bhushan, Alka I-71
Biazzini, Marco II-497
Bouadi, Tassadit I-219
Bouchou, Béatrice II-305
Bouzeghoub, Amel I-191
Bozanis, Panayiotis I-422
Bressan, Stéphane I-10, I-281, II-71
Bringas, Pablo G. II-56
Bruhathi, H.S. I-131
Bruno, Giorgio II-481
Busnel, Yann II-497

Cachopo, João I-430
Cazorla, Diego II-442
Ceci, Michelangelo I-384
Chang, Choong-Seock II-16
Chatvichienchai, Somchai I-147

Che, Dunren I-342
Chen, Gang II-392
Chen, HuaHui I-311
Chen, Jacqueline H. II-16
Chen, Lu II-392
Chen, Qiming II-266
Chen, Yefang I-311
Cheng, Reynold II-71
Chevallet, Jean-Pierre I-206
Chin, Eun Jung II-345
Ciampi, Anna II-248
Coletta, Remi II-281
Collard, Martine I-468
Cordier, Marie-Odile I-219
Correndo, Gianluca II-215
Costa, Evandro I-176
Coulondre, Stéphane II-506
Crolotte, Alain II-375

Deagustini, Cristhian A.D. II-1
de Amo, Sandra I-397
Ding, Dabin I-342
Dong, Yihong I-311
Dou, Deming II-506
Dray, Gérard II-489
Duthil, Benjamin II-489

Ethier, Stephane II-16

Falappa, Marcelo A. II-1
Falkner, Katrina I-161
Falkner, Nickolas I-161
Felea, Victor II-408
Felea, Violeta II-408
Feng, Shaorong I-41, I-357
Feng, Yi II-424
Ferrarotti, Flavio I-101
Ferreira, Rafael I-176
Frasincar, Flavius II-156
Freitas, Fred I-176
Fukui, Kazuhiro II-450
Fulladoza Dalibón, Santiago E. II-1
Furche, Tim I-1
Furtado, Pedro II-207



512 Author Index

Gao, Yunjun II-392
Garbatov, Stoyan I-430
Gargouri, Fäıez II-121
Ghazal, Ahmad II-375
Gibbins, Nicholas II-215
Godfrey, Parke II-424
Gomes, João I-176
Goncalves, Marlene II-416
Gottifredi, Sebastián II-1
Gottlob, Georg I-1

Härder, Theo I-55
Haritsa, Jayant R. I-131
Hartmann, Sven I-101
Hasegawa, Keisuke II-141
He, Xianmang I-311
Hipp, Markus II-466
Homenda, Wladyslaw I-438
Hong, Seokyong II-384
Hou, Wen-Chi I-342
Hsu, Meichun II-266
Hsu, Wynne I-369
Htoo, Htoo I-484
Huo, Wenyu I-265, II-360
Huq, Mohammad Rezwanul I-296
Hurson, Ali II-111

Ienco, Dino II-48
Ikeda, Kosetsu I-116

James, Anne II-297
Jang, Min-Hee II-129
Jedrzejczak, Jacek II-199
Jenkins, John II-16
Jeong, Byeong-Soo II-129
Jia, Dawen II-314
Jiang, Tao I-492
Jin, Guang I-311

Kamie, Mariko II-450
Kandil, Mokhtar II-424
Kang, Kyu-Hwang II-129
Khéfifi, Rania II-103
Kim, Jinho I-502
Kim, Sang-Wook II-129
Kitagawa, Hiroyuki II-450
Kitsuregawa, Masaru I-234
Kiyoki, Yasushi II-168
Klasky, Scott II-16
Kojima, Isao II-231

Kolla, Hemanth II-16
Komamizu, Takahiro II-450
Koszlajda, Tomasz II-199
Kouahla, Zineddine II-458
Kriegel, Hans-Peter II-329
Kumar, Harshit I-502
Kurabayashi, Shuichi II-168
Kurasawa, Hisashi II-432

Labbé, Cyril I-397
Lakshminarasimhan, Sriram II-16
Lamarre, Philippe II-497
Lee, Mong Li I-369
Lee, Wookey I-502
Leung, Carson Kai-Sang I-502
Li, Meijing II-31
Li, Qing II-392
Li, Xiaoou II-191
Li, Zhihao II-314
Lim, Seung-Hwan II-129
Lima, Rinaldo I-176
Lin, Chunbin I-326
Ling, Tok Wang I-10, I-326
Link, Sebastian I-101
Liroz-Gistau, Miguel II-183
Liu, Mengchi I-453
Lo, Moussa II-305
Loglisci, Corrado II-48
Lu, Jiaheng I-326
Lu, Xuesong I-281

Ma, Qiang II-88, II-141
Macchia, Lucrezia I-384
Malerba, Donato I-384, II-48, II-248
Mami, Imene II-281
Marin, Mauricio I-101
Martinez, José II-458
Matono, Akiyoshi II-231
Matsumura, Hajime II-432
Montmain, Jacky II-489
Muñoz, Emir I-101
Muñoz-Alférez, M. José II-39
Mutschler, Bela II-466

Nabli, Ahlem II-121
Nakamura, Motonori II-432
Navarro-Galindo, José Luis II-39
Niang, Cheikh II-305
Nie, Wenhui II-314
Nieves, Javier II-56



Author Index 513

Nørv̊ag, Kjetil II-329
Novak, David II-256
Ntoutsi, Irene II-329

O’Connor, Martin F. I-26
Ohsawa, Yutaka I-484
Olivé, Antoni I-249
Oliveira, Hilário I-176
Ou, Yi I-55

Pacitti, Esther II-183
Paik, Incheon II-31
Pannu, Mandeep II-297
Patel, Dhaval I-369
Peng, Zhiyong II-314
Penta, Antonio II-215
Petit, Löıc I-397
Poizat, Pascal II-103
Poncelet, Pascal II-489
Porto, Fabio II-183

Qu, Jun-Feng I-453
Quiniou, René I-219

Reddy, P.V. Rami I-71
Regalado, Alfredo II-416
Reichert, Manfred II-466
Roantree, Mark I-26
Roche, Mathieu II-48
Rodŕıguez, Lisbeth II-191
Roncancio, Claudia I-397
Ross, Robert II-16
Rybnik, Mariusz I-438
Ryu, Keun Ho II-31

Sacco, Giovanni M. I-412
Säıs, Fatiha II-103
Sakauchi, Masao I-484
Sam, Yacine II-305
Samatova, Nagiza F. II-16
Samos, José II-39
Sánchez, José L. II-442
Sancho, Maria-Ribera I-249
Santos, Igor II-56
Sarda, Nandlal L. I-71
Sassi, Imen Ben I-191
Sato, Hiroshi II-432
Schallhart, Christian I-1
Schendel, Eric R. II-16

Sedigh, Sahra II-111
Serrano-Alvarado, Patricia II-497
Shadbolt, Nigel II-215
Shah, Neil II-16
Shan, Jerry II-266
Shehab, Mohamed II-514
Shen, Yan I-492
Sibertin-Blanc, Christophe II-497
Simari, Guillermo R. II-1
Sonehara, Noboru I-484
Song, Yi I-281
Stattner, Erick I-468
Stefanidis, Kostas II-329
Su, Zhan I-86
Suzuki, Nobutaka I-116

Tan, Kian-Lee I-86
Tang, Ruiming I-10, II-71
Teisseire, Maguelonne II-48
Tort, Albert I-249
Trabelsi, Chiraz I-191
Trousset, François II-489
Tsotras, Vassilis J. I-265, II-360

Uday Kiran, R. I-234
Uribe-Paredes, Roberto II-442

Valduriez, Patrick II-183
Valero-Lara, Pedro II-442
Vamsikrishna, Meduri Venkata I-86
Vandic, Damir II-156
Vermaas, Raymond II-156
Volny, Petr II-256

Wang, Heng I-492
Wang, Wei I-311
Wang, Yafei II-392
Wombacher, Andreas I-296
Wrembel, Robert II-199
Wu, Huayu I-10, I-326, II-71
Wu, Ren II-266

Xiao, Yingyuan I-492
Xie, Qing II-345
Xu, Enliang I-369
Xu, Jianliang I-55

Yahia, Sadok Ben I-191
Yoshikawa, Masatoshi II-88, II-141



514 Author Index

Yu, Xiaohui II-424
Yu, Xiuming II-31

Zeng, Cheng II-314
Zeng, Yong I-10

Zezula, Pavel II-256
Zhu, Jia II-345
Zhuang, Canwei I-41, I-357
Zilio, Danny II-424
Zuzarte, Calisto II-424


	Title
	Preface
	Organization
	Table of Contents
	Keynote Talks
	DIADEM: Domains to Databases
	Introduction
	diadem Knowledge
	diadem Engine
	diadem Results
	References

	Stepwise Development of Formal Models for Web Services Compositions: Modelling and Property Verification

	XML Queries and Labeling I
	A Hybrid Approach for General XML Query Processing
	Introduction
	Related Work
	General XML Query Processing
	Linked Twig Pattern
	Algebraic Expression
	LTP Query Processing

	Query Optimization
	Query with Inner Join Only
	Handling Outer Value-Based Join

	Experiments
	Effectiveness of Join Order Selection
	Comparison with Other Approaches

	Conclusion
	References

	SCOOTER: A Compact and Scalable Dynamic Labeling Scheme for XML Updates
	Introduction
	Motivation
	Contribution

	Related Research
	The SCOOTER Labeling Scheme
	Assigning Labels

	Compact Adaptive Growth Mechanism
	Insertion between Two Consecutive Non-empty Node Labels

	Experiments
	Conclusions
	References

	Reuse the Deleted Labels for Vector Order-Based Dynamic XML Labeling Schemes
	Introduction
	Preliminary and Motivation
	Labeling Tree-Structured Data
	Vector Order and Updates Processing
	Motivation

	Reuse the Deleted Labels for Vector-Order Based Schemes
	Designing the MVWSGS's Algorithm
	Optimization

	Experiment and Results
	Conclusion
	References


	Computational Efficiency
	Towards an Efficient Flash-Based Mid-Tier Cache
	Introduction
	Flash Memory and FTL
	Problem
	Solution
	Contribution
	Organization

	Related Work
	Our Approaches
	LPD
	NFA
	Discussion

	Experiments
	Overall Performance
	Detailed Analysis
	Wear Leveling

	Conclusion
	References

	Evacuation Planning of Large Buildings Using Ladders
	Introduction
	Modeling of A Building with Ladders
	Problem Statement
	Complexity
	Integer Linear Programming Formulation
	A Heuristic for Evacuation Planning Using Ladders
	An Algorithm for Selecting Dynamic Exit Points
	DCCRP: Modified Capacity Constrained Route Planner
	Computational Complexity

	Experimental Results
	Experiment 1: Varying the Number of Ladders
	Experiment 2: Varying Distribution of Evacuees
	Experiment 3: Varying Number of Nodes

	Conclusions
	References

	A Write Efficient PCM-Aware Sort
	Introduction
	PCM-Aware Sorting Algorithm
	A Naive Approach
	Refining the Naive Sorting Scheme
	Algorithm 1: Basic PCM-Aware Sorting
	Algorithm 2: Advanced PCM-Aware Sorting

	Performance Study
	Uniform Distribution
	Non-uniform Distribution
	Varying the Extent of Sampling
	Varying DRAM Size

	Conclusion
	References


	XML Queries
	Performance Analysis of Algorithms to Reason about XML Keys
	Introduction
	Keys for XML
	Deciding XML Key Implication
	An Efficient Implementation
	Applying XML Key Reasoning to Document Validation
	Experimental Results
	Conclusion
	References

	Finding Top-K Correct XPath Queries of User’s Incorrect XPath Query
	Introduction
	Preliminaries
	Edit Operations to XPath Query
	Xd-Graph Representing Queries Conforming to DTD
	Xd-Graph Examples
	Formal Definition of Xd-Graph

	Algorithm for Finding Top-K Queries
	Method for Simple Query
	Algorithm for General Query

	Experimental Results
	Running Time of the Algorithm
	Quality of the Output of the Algorithm

	Conclusion
	References

	Analyzing Plan Diagrams of XQuery Optimizers
	Introduction
	Background on Plan Diagrams
	Generation of XML Plan Diagrams
	Varying XML Selectivity
	XQuery Template Construction

	Experimental Results
	Experimental Setup
	Plan Diagrams with XBench
	Plan Diagrams with TPoX
	Plan Diagrams with TPCH_X
	General Observations

	Related Work
	Conclusions and Future Work
	References


	Data Extraction
	Spreadsheet Metadata Extraction: A Layout-Based Approach
	Introduction
	Basic Concept
	Spreadsheet Data Model
	Metadata
	XML

	Locating Metadata of a Spreadsheet by Schema Binding
	K-Metadata Schemas
	Schema Binding

	Issues on Metadata Extraction of Spreadsheets
	How to Handle the Difference of Presenting Format of the Same DataType
	How to Handle Synonyms
	How to Identify the Spreadsheets Whose Metadata Can Be Extracted According to a Given K-Metadata Schema

	Metadata Extraction Algorithm
	Implementation of the Proposed Algorithm
	Related Work
	Conclusion and Future Work
	References

	Automated Extraction of Semantic Concepts from Semi-structured Data: Supporting Computer-Based Education through the Analysis of Lecture Notes
	Introduction
	Background
	Our Model
	Concept Extraction
	Pre-processing
	Natural Language Processing Tagging
	Post-processing
	Weighting Model

	Concept Hierarchy Extraction
	Evaluation
	Data Set
	Evaluation Matrices
	Analysis
	Discussion

	Conclusion
	References

	A Confidence–Weighted Metric for Unsupervised Ontology Population from Web Texts
	Introduction
	Related Work
	The Chop System
	Corpus Retrieval
	Extraction and Filtering of Candidate Instances
	Classification of Candidates Instances
	Ontology Population

	Experimental Evaluation
	Experimental Setup
	Discussion

	Conclusion and Future Work
	References


	Personalization, Preferences, and Ranking
	Situation-Aware User’s Interests Prediction for Query Enrichment
	Introduction
	Background and Related Work
	Key Concepts
	Scrutiny of the Related Work

	SA-IRI: Situation Aware Information Retrieval Based Interests
	Step1: User's Semantic Situation Construction
	Step 2: User's Interests Discovering
	Step 3: User's Query Enrichment

	Experimental Results
	Evaluation Framework
	Results and Discussion

	Conclusion and Future Work
	References

	The Effective Relevance Link between a Document and a Query
	Introduction
	A Tentative Formal-Logical Definition of d q
	d q in IR Models
	d q and Weighting
	Revisiting the VSM with d q
	Experiments
	Experiments Setup
	Results and Discussion

	Conclusion
	References

	Incremental Computation of Skyline Queries with Dynamic Preferences
	Introduction
	Basic Concepts
	EC2Sky: An Incremental Skyline Computation
	EC2Sky Implementation
	Skyline Associated with Static Dimensions
	Skyline Associated with Dynamic Dimensions
	EC2Sky Structure
	Query Evaluation

	Experiments
	Conclusion
	References


	Databases and Schemas
	Efficient Discovery of Correlated Patterns in Transactional Databases Using Items’ Support Intervals
	Introduction
	Related Work
	Working of CoMine
	Proposed Algorithm
	Items’ Support Intervals
	Performance Problems in CoMine
	Basic Idea: Pruning Technique
	CoMine++ Algorithm

	Experimental Results
	Memory Tests on CoMine and CoMine++ Algorithms
	Runtime Tests on CoMine and CoMine++ Algorithms
	Scalability Test on CoMine and CoMine++ Algorithms

	Conclusion
	References

	On Checking Executable Conceptual Schema Validity by Testing
	Introduction
	Basic Concepts and Notation
	Conceptual Schema under Test
	The CSTL Language

	Test Adequacy Criteria
	Base Type Coverage
	Derived Type Coverage
	Valid Type Configuration Coverage
	Domain Event Type Coverage
	Coverage Criteria Satisfaction and Schema Validity

	Implementation
	The Coverage Processor
	Case Studies

	Conclusions
	References

	Querying Transaction–Time Databases under Branched Schema Evolution
	Introduction
	Preliminaries
	A Linear Evolution Example
	XML Representation of a Linear Schema Evolution

	Branched Schema Evolution
	BMV-Document and BC-Tables
	BMV-Document
	BC-Tables

	Query Processing
	Queries within a Single Branch
	Data Queries Over Multiple Branches

	Merging of Branches
	Merging in BMV-Documents
	Merging in BC-Tables
	Query Processing

	Experimental Evaluation
	BMV-Documents
	BC-Tables
	Branched Schema Evolution with Merging

	Conclusion
	References


	Privacy and Provenance
	Fast Identity Anonymization on Graphs
	Introduction
	The K-Degree Anonymization Algorithm
	Our Contributions

	Related Work
	The Algorithm
	The greedy examination Algorithm
	The edge creation Algorithm
	The relaxed edge creation Algorithm
	The Fast K-degree Anonymization Algorithm

	Performance Evaluation
	Experimental Setup
	Datasets
	Effectiveness Evaluation
	Efficiency Evaluation

	Conclusion
	References

	Probabilistic Inference of Fine-Grained Data Provenance
	Introduction
	Motivating Scenario
	Basic Provenance Inference
	Document Coarse-Grained Provenance
	Reconstruct Processing Window
	Provenance Inference
	Discussion

	Inaccuracy in Time-Based Windows
	Probabilistic Provenance Inference
	Overview of the Algorithm
	Required Parameters
	Building Tuple-State Graph to Calculate α Distribution
	Steady-State Distribution Vector
	Calculating β Distribution
	Accuracy Estimation and Shifting of the Window

	Evaluation
	Evaluating Criteria, Test Cases and Datasets
	Accuracy
	Storage Requirement

	Related Work
	Conclusion and Future Work
	References

	Enhancing Utility and Privacy-Safety via Semi-homogenous Generalization
	Introduction
	Homogeneous and Non-homogeneous Generalization
	Semi-homogeneous Generalization

	Preliminaries
	Basic Notations
	Problem Definition
	Complexity

	The Cardinality of Assignments
	Generalization Algorithm
	Related Work
	Empirical Evaluation
	Privacy Level K
	QI-Attributes Dimensionality d
	Cardinality of Data Set n 
	Efficiency

	Conclusion
	References


	XML Queries and Labeling II
	Processing XML Twig Pattern Query with Wildcards
	Introduction
	Related Works
	Path Rewriting
	Algorithm Path*
	AD-dis Edge as Prefix
	AD-dis Edge as Postfix

	Algorithm Twig*
	[Step 1]: All-* Subtwig Optimization
	[Step 2]: Twig Pattern Query Decomposition and Path Rewriting
	[Step 3]: Matching Rewritten Paths and Merging Results
	Discussion

	Experiments
	Experimental Results

	Conclusion
	References

	A Direct Approach to Holistic Boolean-Twig Pattern Evaluation
	Introduction
	Related Work
	Preliminaries
	Direct B-Twig Evaluation
	Status Mechanism
	DBTwigMerge Algorithm Design
	Cost Analysis

	Experiments
	Experimental Setup
	Experiment Results

	Summary
	References

	Full Tree-Based Encoding Technique for Dynamic XML Labeling Schemes
	Introduction
	Preliminary
	BFT Encoding Technique
	Binary Full Tree(BFT)
	Labeling Initial XML without Encoding Table

	QFT Encoding Technique
	Quaternary Full Tree(QFT)
	Labeling Initial XML without Encoding Table

	Experiment and Results
	Conclusion
	References


	Data Streams
	Top-k Maximal Influential Paths in Network Data
	Introduction
	Influence Propagation Model
	The TIP Algorithm
	Experimental Evaluation
	Efficiency Experiments
	Sensitivity Experiments
	Effectiveness Experiments

	Related Work
	Conclusion
	References

	Learning to Rank from Concept-Drifting Network Data Streams
	Introduction
	Related Works
	Mining Ranking Models Able to Work on Network Data
	Ensemble Learning for Data Streams

	Background: Model Tree Induction in SMOTI
	Considering Network Autocorrelation in Model Tree Induction and Ranking Models' Ensemble
	Experiments
	Conclusions
	References

	Top-k Context-Aware Queries on Streams
	Introduction
	A Motivating Example
	Preliminaires
	The Astral Stream Algebra
	The Preference Model

	Introducing Preference Operators into ASTRAL
	Global Approach
	Best and KBest Operators

	Best and KBest Algorithms
	The Preference Hierarchy and the Better-Than Graph
	Evaluation of Best and KBest
	Incremental Evaluation of BTG

	Experimental Results
	Related Work
	Conclusion and Future Work
	References


	Structuring, Compression and Optimization�
	Fast Block-Compressed Inverted Lists
	Introduction
	Previous Research
	Inverted List Representation
	Normalized Inverted Lists
	Interval Normalized Inverted Lists
	Block-Compressed Inverted Lists
	Hybrid Inverted Lists

	Experiments
	Conclusions
	References

	Positional Data Organization and Compression in Web Inverted Indexes
	Introduction
	Background and Related Work
	The Positions Fixed-Bit Compression (PFBC)
	Accessing and Decompressing the Positional Data with PFBC

	Experiments
	Compressed Index Sizes
	Query Throughput

	Conclusion
	References

	Decreasing Memory Footprints for Better Enterprise Java Application Performance
	Introduction
	System Description
	Results
	Conclusions
	References

	Knowledge-Driven Syntactic Structuring: The Case of Multidimensional Space of Music Information
	Introduction
	Grammars as Tools of Syntactical Structuring
	Grammar Driven Structuring
	Derivation Trees and the Lexicon

	Time versus Pitch Driven Syntax in Measures
	Time-Prior-to-Pitch-Driven Syntax in Measures
	Pitch-Prior-to-Time-Driven Syntax in Measures
	Over-Measure Time-Driven Syntax

	Synchronization
	Attribute Grammars
	Information Flow in Attribute Grammars for Music Notation

	Conclusion
	References


	Data Mining I
	Mining Frequent Itemsets Using Node-Sets of a Prefix-Tree
	Introduction
	Problem Definition
	Previous Solutions
	Motivation and Contribution

	Preliminaries
	Conditional Node
	Topology Number
	Node-Set Structure

	NS Algorithm
	Mapping All the Nodes of a Prefix-Tree
	Mining the Frequent Itemsets from a Node-Set
	An Example of Mining Algorithm
	Atom Operation

	Experiments
	Experimental Setup
	Experimental Results
	Discussion

	Conclusion
	References

	MAX-FLMin: An Approach for Mining Maximal Frequent Links and Generating Semantical Structures from Social Networks
	Introduction
	Related Work
	``Frequent Links'' and ``Aggregated Network'' Concepts
	Maximal Frequent Link Mining
	MAX-FLMin Algorithm
	Discussion

	Aggregate Network Generation
	Experimental Results
	Testbed
	MAX-FLMin: Qualitative and Quantitative Results
	Aggregated Networks: Examples and Evolution

	Conclusion and Future Works
	References


	Road Networks and Graph Search
	Sequenced Route Query in Road Network Distance Based on Incremental Euclidean Restriction
	Introduction
	Incremental Queries in the Euclidean Distance
	OSR Queries in the IER Framework
	Simple Trip Route Query in Euclidean Distance 
	Application to Multiple POI Categories

	Experimental Result
	Conclusion
	References

	Path-Based Constrained Nearest Neighbor Search in a Road Network
	Introduction
	Related Work
	Preliminary
	Notations and Definitions
	Reference Infrastructure

	PCNN Query Processing Approaches
	Basic Ideas
	Intersection Node-Based Method
	Sharing-Based Method

	Experimental Evaluation
	Conclusion
	References

	Efficient Fuzzy Ranking for Keyword Search on Graphs
	Introduction and Related Work
	Our Proposed Relevance Score
	Fuzzy Node Sets
	Content-Based Edge Score
	Ranking of Answer Structures

	Experimental Evaluation
	Fuzzy Set Performance
	Quality of FRank

	Conclusions
	References


	Author Index



