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Abstract. We present a monadic second-order logic which is extended
by an expected value operator and show that this logic is expressively
equivalent to probabilistic automata for both finite and infinite words. We
give possible syntax extensions and an embedding of our probabilistic
logic into weighted MSO logic. We further derive decidability results
which are based on corresponding results for probabilistic automata.

1 Introduction

Probabilistic automata, introduced already by Rabin [19], form a flourishing field.
Their applications range from speech recognition [20] over prediction of climate
parameters [17] to randomized distributed systems [11]. For surveys of theoretical
results see the books [18,5]. Recently, the concept of probabilistic automata has
been transfered to infinite words by Baier and Grösser [1]. This concept led to
further research [2,7,8,9,10,22].

Though probabilistic automata admit a natural quantitative behavior, namely
the acceptance probability of each word, the main research interest has been to-
wards qualitative properties (for instance the language of all words with positive
acceptance probability). We consider the behavior of a probabilistic automaton
as function mapping finite or infinite words to a probability value. In spite of
the paramount success of Büchi’s [4] and Elgot’s [14] characterizations of rec-
ognizable languages by MSO logic, no logic characterization of the behavior of
probabilistic automata has been found yet.

We solve this problem by defining a probabilistic extension of MSO logic.
Our probabilistic MSO (PMSO) logic is obtained from classical MSO logic by
adding a second-order expected value operator�pX . In the scope of this operator,
formulas x ∈ X are considered to be true with probability p. The semantics of
the expected value operator is then defined as the expected value over all sets. We
illustrate our logic by an example of a communication device with probabilistic
behavior, which can be modeled in PMSO.

In our main result, we establish the desired coincidence of behaviors of proba-
bilistic automata and semantics of probabilistic MSO sentences. Our proof also
yields a characterization of probabilistically recognizable word functions in terms
of classical recognizable languages and Bernoulli measures. We show that every
PMSO formula admits a prenex normal form, which is similar to existential MSO.
Furthermore we give possible syntax extensions which do not alter the expressive-
ness of PMSO. Weighted MSO is another quantitative extension of MSO logic.
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As shown in [12], a restricted form of weighted MSO is expressively equivalent
to weighted automata for finite and infinite words. For finite words, probabilis-
tic automata can be viewed as special case of weighted automata. We give a
direct embedding of PMSO into the restricted fragment of weighted MSO, thus
obtaining PMSO as a special case of weighted MSO.

There are many decidability results already known for probabilistic automata
on finite [15] and infinite words [2,9,10]. By the expressive equivalence of proba-
bilistic automata and PMSO, we obtain these results also for PMSO. For instance,
it is decidable for a given formula whether there is a finite word with positive
or almost sure semantics. On the downside, it is undecidable for a given formula
whether there is a finite word with semantics greater than some non-trivial cut
point, or if there is an infinite word with semantics equal to one.

2 Bernoulli Measures and Probabilistic Automata
For the rest of this work let Σ be a finite alphabet. We let Σ+ be the set of all
finite, non-empty words over Σ, and Σω the set of all infinite words over Σ. If
w ∈ Σ+ is a finite word we write |w| for its length. If w ∈ Σω we let |w| = ω. For
convenience we write Σ∞ if either Σ+ or Σω can be used. For a word w ∈ Σ∞

let dom(w) be � if w ∈ Σω and {1, . . . , |w|} otherwise.
For two words u = (ui)i∈dom(u) ∈ Σ∞

1 and v = (vi)i∈dom(v) ∈ Σ∞
2 with

dom(u) = dom(v) we define the word (u, v) as ((ui, vi))i∈dom(u) ∈ (Σ1 × Σ2)∞.
Given a set X and a subset Y ⊆ X let �Y : X → {0, 1} be the characteristic

function of Y , i.e. �Y (x) = 1 if x ∈ Y and �Y (x) = 0 otherwise. In the case
X = �, �Y is also interpreted as ω-word over {0, 1}. Also for f : X → � let
supp(f) = {x ∈ X | f(x) �= 0}.

A σ-field over a set Ω is a system A of subsets of Ω which includes the empty
set and is closed under complement and countable union. The pair (Ω, A) is
called a measurable space. A measure on A is a mapping μ : A → [0, ∞] such
that μ(∅) = 0 and μ(

⋃
i≥1 Mi) =

∑
i≥1 μ(Mi) for pairwise disjoint Mi ∈ A. If

μ(Ω) = 1, μ is called a probability measure.
Let (Ω′, A′) be another measurable space. A function f : Ω → Ω′ is A-A′-

measurable if f−1(M ′) ∈ A for every M ′ ∈ A′. Now let f be A-A′-measurable
and μ a measure on A. The image measure of μ under f is the measure μ ◦ f−1

on A′ defined by (μ ◦ f−1)(M ′) = μ(f−1(M ′)) for all M ′ ∈ A′.
A measurable function s : Ω → � of the form s =

∑n
i=1 ri�Mi for ri ≥ 0 and

Mi ∈ A is called simple. The integral of s is defined by
∫

s dμ =
∑n

i=1 ri · μMi.
For an arbitrary A-Borel(�)-measurable function f : Ω → [0, ∞] the integral is
then given by

∫

f dμ =
∫

Ω

f(x) μ(dx) = sup
{∫

s dμ

∣
∣
∣
∣ 0 ≤ s ≤ f, s simple

}

.

2.1 Bernoulli Measures

Let X be a finite set. We denote the product σ-field
⊗∞

i=1 P(X) on the base set
Xω by AX . Then AX is the σ-field generated by all cones xXω for x ∈ X∗. As
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the system of all cones is closed under intersection, any two measures that agree
on all cones are equal by standard measure theory.

For a probability distribution p = (px)x∈X on X let �X
p be the corresponding

probability measure on P(X), i.e. �X
p ({x}) = px for all x ∈ X . If X = {0, 1}

and p ∈ [0, 1], we simply write �p for �{0,1}
(1−p,p), i.e. �p({1}) = p.

The Bernoulli measure BXω

p is defined as the product measure
⊗∞

i=1�
X
p . It is

explicitly given by BXω

p (x1 · · · xkXω) =
∏k

i=1 pxi , for all cones x1 · · · xkXω ∈ AX .
Hence BXω

p is a probability measure on AX . In the case X = {0, 1} and for
p ∈ [0, 1] we write Bω

p for B{0,1}ω

(1−p,p). For more background information on Bernoulli-
and product measures see for example [16, Theorem 1.64].

A binary sequence m = (mi)i∈dom(m) ∈ {0, 1}∞ corresponds bijectively to
the set supp(m) = {i ∈ dom(m) | mi = 1}. We define Aω as the σ-field on P(�)
generated by supp, i.e. Aω = supp(A{0,1}). Note that Aω is actually a σ-field,
as supp is bijective. The Bernoulli measure Bω

p is also transfered to Aω by supp,
i.e. Bω

p ◦ supp−1 is a measure on Aω. We will denote this measure also by Bω
p .

Let n ∈ �. It is also possible to define a Bernoulli measure on the finite σ-
field P(Xn). The measure BXn

p is defined as the finite product
⊗n

i=1�
X
p . The

measure Bn
p on {0, 1}n resp. P({1, . . . , n}) is defined analogously to the infinite

case: Bn
p = B{0,1}n

(1−p,p) resp. Bn
p = B{0,1}n

(1−p,p) ◦ supp−1.

2.2 Probabilistic Automata

A probabilistic automaton A is given by a quadruple (Q, δ, μ, F ), where

– Q is a finite set of states
– δ : Q × Σ × Q → [0, 1] is the transition probability function such that∑

q∈Q δ(r, a, q) = 1 for every r ∈ Q and a ∈ Σ
– μ : Q → [0, 1] is the initial distribution such that

∑
q∈Q μ(q) = 1

– F ⊆ Q is the set of final states.

For a word w = w1 . . . wk ∈ Σ+ we define the behavior ‖A‖ : Σ+ → [0, 1] of A by

‖A‖(w) :=
∑

q0,...,qk−1∈Q
qk∈F

μ(q0)
k∏

i=1
δ(qi−1, wi, qi),

for each w ∈ Σ+. It follows that ‖A‖(w) ∈ [0, 1] for every w ∈ Σ+.
We call a function S : Σ+ → [0, 1] probabilistically recognizable if there is a

probabilistic automaton A such that S = ‖A‖.

2.3 Probabilistic ω-Automata

Probabilistic ω-automata are a generalization of deterministic ω-automata. A
probabilistic Muller-automaton A over an alphabet Σ is a quadruple (Q, δ, μ, F),
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where Q, δ, μ are defined as in the finite case and F ⊆ P(Q) is a Muller accep-
tance condition (cf. [1]).

For an infinite run ρ ∈ Qω let inf(ρ) denote the set of states which occur
infinitely often in ρ. We say the run ρ is successful, if inf(ρ) ∈ F . For each word
w = w1w2 . . . ∈ Σω we define a probability measure �w

A on the σ-field AQ by

�
w
A(q0 . . . qkQω) := μ(q0) ·

k∏

i=1
δ(qi−1, wi, qi).

By standard measure theory, there is exactly one such probability measure �w
A.

The behavior ‖A‖ : Σω → [0, 1] of A is then given by

‖A‖(w) :=�w
A

(
ρ ∈ Qω ; inf(ρ) ∈ F)

,

i.e. ‖A‖(w) is the measure of the set of all successful runs.
We call a function S : Σω → [0, 1] probabilistically ω-recognizable if there is a

probabilistic Muller-automaton A such that S = ‖A‖.

3 Syntax and Semantics of PMSO

This section first introduces assignments and encodings. Using these definitions
we will define the syntax and semantics of probabilistic MSO (PMSO) logic.
Afterwards, we will give first semantic equivalences and consider possible syntax
extensions.

3.1 Assignments and Encodings

For a uniform treatment of semantics we introduce assignments and their encod-
ings. Let V1 be a finite set of first order variable symbols and V2 a disjoint finite
set of second order variable symbols. We write V for V1 ∪̇ V2. Let w ∈ Σ∞ be
a word. A mapping α : V → dom(w) ∪ P(dom(w)) is called a (V , w)-assignment
if α(V1) ⊆ dom(w) and α(V2) ⊆ P(dom(w)). For i ∈ dom(w) and x ∈ V1 the
assignment α[x → i] denotes the (V ∪ {x}, w)-assignment which assigns x to i
and agrees with α on all other variables. Likewise for M ⊆ dom(w) and X ∈ V2
the (V ∪ {X}, w)-assignment α[X → M ] assigns X to M and agrees with α
everywhere else. We write α[L1 
→ R1, . . . , Ln 
→ Rn] for the chained assignment
α[L1 
→ R1] · · · [Ln 
→ Rn].

We encode assignments as words as usual. The extended alphabet ΣV is de-
fined as Σ ×{0, 1}V. Let w = ((wi, αi))i∈dom(w) ∈ Σω

V and w = (wi)i∈dom(w). We
say w encodes an (V , w)-assignment α if for every x ∈ V1 there is exactly one po-
sition j such that αj(x) = 1. In this case α(x) is then the unique position i with
αi(x) = 1 and, for X ∈ V2, α(X) is the set of all positions j′ with αj′ (X) = 1.
We denote the set of all valid encodings by NV ⊆ Σ∞

V .
Likewise every pair of a word w ∈ Σ∞ and a (V , w)-assignment α can be

encoded as a word in NV in the obvious way. We will use (w, α) to describe both
the pair and its encoding as word depending on the context.
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Table 1. PMSO semantics

[[Pa(x)]](w, α) =

⎧
⎨

⎩

1, if wα(x) = a

0, otherwise
[[x ≤ y]](w, α) =

⎧
⎨

⎩

1, if α(x) ≤ α(y)

0, otherwise

[[x ∈ X]](w, α) =

⎧
⎨

⎩

1, if α(x) ∈ α(X)

0, otherwise

[[¬ϕ]](w, α) = 1 − [[ϕ]](w, α)
[[ϕ1 ∧ ϕ2]](w, α) = [[ϕ1]](w, α) · [[ϕ2]](w, α)

[[∀x.ϕ]](w, α) =

⎧
⎨

⎩

1, if [[ϕ]](w, α[x → i]) = 1 for all i ∈ dom(w)

0, otherwise

[[∀X.ϕ]](w, α) =

⎧
⎨

⎩

1, if [[ϕ]](w, α[X → M ]) = 1 for all M ⊆ dom(w)

0, otherwise

[[�pX.ϕ]](w, α) =
∫

P(dom(w))
[[ϕ]](w, α[X �→ M ]) B|w|

p (dM)

3.2 Boolean PMSO

Following an idea from [3], we define the syntax of Boolean PMSO (bPMSO) by

ψ ::= Pa(x) | x ∈ X | x ≤ y | ψ ∧ ψ | ¬ψ | ∀x.ψ | ∀X.ψ,

for x, y ∈ V1, X ∈ V2 and a ∈ Σ.
The set Free(ψ) of free variables in ψ is defined as usual.
The semantics [[ψ]] of a Boolean PMSO formula ψ maps a pair (w, α) of a

word w ∈ Σ∞ and a (V , w)-assignment α with Free(ψ) ⊆ V to a value in [0, 1].
The inductive definition of the semantics is given in the upper part of Table 1.
It easily follows by structural induction that [[ψ]](w, α) ∈ [0, 1].

Boolean PMSO corresponds essentially to the classical MSO. Disjunction and
existential quantification can be obtained from the defined operators as usual.

3.3 Full PMSO

We will now extend Boolean PMSO to full PMSO. The syntax of a PMSO
formula ϕ is given in BNF by

ϕ ::= ψ | ϕ ∧ ϕ | ¬ϕ | �pX.ϕ,

where ψ is a Boolean PMSO formula, X ∈ V2, and p ∈ [0, 1] is a real number. In
other words, we have added an “expected value” operator �p to Boolean PMSO
and permit conjunction, negation and expected value as logical operations. The
set of free variables of the expected value operator is

Free(�pX.ϕ) := Free(ϕ) \ {X} .

The semantics of a PMSO formula is given in the full Table 1.
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In order for [[�pX.ϕ]] to be well-defined, one must and can show, that the
function M 
→ [[ϕ]](w, α[X 
→ M ]) is Aω-measurable and integrable for all (w, α).
This is a consequence of the measurability of all ω-recognizable sets (cf. [3,23])
and of Fubini’s theorem.

In case of finite words, the semantics of �pX.ϕ can be rewritten to

[[�pX.ϕ]](w, α) =
∑

M⊆dom(w)

[[ϕ]](w, α[X 
→ M ]) · p|M|(1 − p)|w|−|M|.

Next we give an intuitive argument for the semantics of �pX.ϕ. The classical
existential quantifier states the existence of a set which satisfies the quantified
formula. Here, for the expected value operator sets are chosen using a stochastic
process: For every position k we make a probabilistic choice whether k should
be included in the set or not, where the probability of inclusion is p. This choice
is independent from the other positions. Such a process can be considered as
tossing an unfair coin for every position k to decide whether k ∈ X holds. The
semantics of the expected value operator is then the expected value of [[ϕ]] under
this distribution. If ϕ is Boolean, this value can be considered as the probability
that (w, α[X 
→ M ]) satisfies ϕ for an arbitrary set M .

The semantics of a PMSO formula ϕ transfers to the extended alphabet ΣV
with Free(ϕ) ⊆ V as follows. We define [[ϕ]]V : Σ∞

V → � by

[[ϕ]]V(w) :=

{
[[ϕ]](w, α), if w ∈ NV and w = (w, α)
0, otherwise.

We will use some common abbreviations:

(ϕ ∨ ψ) := ¬(¬ϕ ∧ ¬ψ), (ϕ → ψ) := ¬(ϕ ∧ ¬ψ),
(∃x.η) := ¬∀x.¬η, (∃X.η) := ¬∀X.¬η,

for formulas ϕ, ψ ∈ PMSO and η ∈ bPMSO. Note that if ϕ and ψ are Boolean
PMSO formulas, then the abbreviated formulas are again Boolean.

From the definition the semantics of ϕ∨ψ is [[ϕ ∨ ψ]] = [[ϕ]]+[[ψ]]−[[ϕ]][[ψ]]. This
is analogous to the fact that that the probability of the union of two independent
events A and B is �(A ∪ B) = �(A) +�(B) −�(A)�(B).

The following example demonstrates the use of PMSO logic using a model of
a communication device.

Example 1. We consider a communication device for sending messages. At every
point of time either a new input message becomes available or the device is
waiting for a new message. When a new message is available the device tries to
send this message. Sending a message may fail with probability 1/3. In this case
the message is stored in an internal buffer. The next time the device is waiting for
a message, sending the stored message is retried. Intuitively, as sending a buffered
message has already failed once, it seems to be harder to send this message. So
sending a buffered message is only successful with probability 1/2. The buffer can
hold one message.
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The PMSO sentence below defines for every sequence of message input (i) and
wait (w) cycles the probability that this sequence will not overflow the device’s
buffer. In this sentence the set variable I contains all positions (i.e. points of time)
where sending an input message is successful, B all positions where sending a
buffered message is successful, and F all positions where the buffer is full.

�2/3I.�1/2B.∃F.1 �∈ F ∧ ∀x.∀y.y = x + 1 →
(
(Pw(x) ∧ x �∈ B) → (x ∈ F ↔ y ∈ F )

)∧(
(Pw(x) ∧ x ∈ B) → y �∈ F

) ∧
(
(Pi(x) ∧ x ∈ I) → (x ∈ F ↔ y ∈ F )

)∧(
(Pi(x) ∧ x �∈ I) → (x �∈ F ∧ y ∈ F )

)

3.4 Basic Properties of PMSO Semantics

The following consistency lemma is a fundamental property.

Lemma 1. Let ϕ be a PMSO formula, w ∈ Σ∞, V a finite set of variables such
that Free(ϕ) ⊆ V, and α a (V , w)-assignment. Then [[ϕ]](w, α) = [[ϕ]](w, α|Free(ϕ)).

As usual we call PMSO formula ϕ a PMSO sentence if Free(ϕ) = ∅. As a con-
sequence of Lemma 1, if ϕ is a PMSO sentence, we define [[ϕ]](w) as [[ϕ]](w, α)
where α is an arbitrary (V , w)-assignment.

For two PMSO formulas ϕ and ψ we write ϕ ≡ ψ, if [[ϕ]] = [[ψ]] holds. It
follows from the semantics definition that the usual associativity, commutativity,
and distributivity laws also hold for PMSO logic. For distributivity the outer
formula has to be a Boolean one, i.e. ϕ ∧ (ψ1 ∨ ψ2) ≡ (ϕ ∧ ψ1) ∨ (ϕ ∧ ψ2) only
if ϕ ∈ bPMSO. For formulas containing the expected value operator, we obtain
new equivalences:

¬�pX.ϕ ≡ �pX.¬ϕ, �pX.(ϕ ∧ ψ) ≡ ϕ ∧�pX.ψ if X �∈ Free(ϕ),
�pX.�qY.ϕ ≡ �qY.�pX.ϕ, �pX.ϕ ≡ ϕ if X �∈ Free(ϕ).

Note that contrary to classical quantifiers, pulling negation out of the expected
value operator does not change the operator at all.

These equivalences allow us to transform PMSO formulas to a simpler form.
We say a formula ϕ is in prenex normal form if it of the form

ϕ = �p1X1. . . .�pk
Xk.ϕ0

for a bPMSO formula ϕ0, real values p1, . . . , pk ∈ [0, 1], and distinct second order
variables X1, . . . , Xk.

Lemma 2. Let ϕ be a PMSO formula, then there is an equivalent PMSO for-
mula ϕ′ in prenex normal form.

3.5 Syntax Extensions

We discuss three possible syntax extensions in this section. extensions do not
alter the expressiveness of PMSO.
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Probability Constants. For a real number p ∈ [0, 1], we add the formula “p”
to PMSO and define the semantics by [[p]](w, α) = p for all w ∈ Σ∞ and all
(V , w)-assignments α. Then p can be expressed in PMSO by �pX.1 ∈ X .

An Extended First Order Universal Quantifier. As for weighted MSO
(see Section 5), it is possible to extend the syntax and semantics of the universal
first order quantifier in PMSO to PMSO formulas ϕ by

[[∀x.ϕ]](w, α) :=
∏

i∈dom(w)

[[ϕ]](w, α[x 
→ i]).

Unfortunately it follows using a shrinkage argument that this form of the uni-
versal quantifier does not preserve recognizability. Therefore we restrict ϕ to
particular formulas, which we define next.

A step formula is a PMSO formula ϕ such that there are bPMSO formu-
las ϕ1, . . . , ϕn and real numbers p1, . . . , pn ∈ [0, 1] such that ϕ is equivalent to∧n

i=1(ϕi → pi). When this condition is satisfied ∀x.ϕ can be rewritten as

�p1 X1. . . .�pnXn.∀x.

n∧

i=1
(ϕi → x ∈ Xi),

for new second order variables X1, . . . , Xn.

A First Order Expected Value Operator. In the case of infinite words, it is
possible to define a first order expected value operator with reasonable semantics.

Let ϕ be a PMSO formula, p ∈ (0, 1), and x a first order variable. We define

�px.ϕ :=�pX.ϕ̃,

where ϕ̃ is obtained from ϕ by replacing every occurrence of x with min X . Note
that, though “min X” is not valid PMSO syntax, it is a well-known MSO property
and thus expressible in PMSO. Also {∅} is a Bω

p -null set.
To express the semantics of the just defined operator in a natural way, we intro-

duce the geometric distribution on �. For p ∈ (0, 1) let Gp

({n})
= (1 − p)n−1p.

Intuitively, Gp({n}) is the probability to get one success after n experiments in
an infinitely running Bernoulli experiment. It follows that Gp = Bω

p ◦ min−1. We
apply this equality to �px.ϕ and obtain

[[�px.ϕ]](w, α) =
∫

�

[[ϕ]](w, α[x 
→ i]) Gp(di).

4 Equivalence of PMSO and Probabilistic Automata

Our main theorem establishes the desired expressive equivalence of PMSO sen-
tences and probabilistic automata for both cases of finite and infinite words.
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Theorem 1. Let Σ be an alphabet.
1. A function S : Σ+ → [0, 1] is probabilistically recognizable iff there is a PMSO

sentence ϕ such that [[ϕ]] = S.
2. A function S : Σω → [0, 1] is probabilistically ω-recognizable iff there is a

PMSO sentence ϕ such that [[ϕ]] = S.
We will sketch the proof of Theorem 1 for infinite words in the rest of this section.
The finite case is analogous.

For the rest of the section we write simply Bp for the Bernoulli measure if the
base set is understood.

4.1 Characterization by Bernoulli Measures
We give a characterization of probabilistically recognizable functions using
Bernoulli measures. This characterization could be of independent interest.
Theorem 2. A function S : Σω → [0, 1] is probabilistically ω-recognizable iff
there is an alphabet Γ , a distribution p on Γ and an ω-recognizable language
L ⊆ (Σ × Γ )ω such that

S(w) = Bp

({u ∈ Γ ω | (w, u) ∈ L})
, (1)

for all w ∈ Σω.
Equation 1 means that S is an image measure. Indeed if θw(u) = (w, u), then
(1) can be written as S(w) = Bp ◦θ−1

w (L).
Proof. Given a probabilistic ω-automaton A = (Q, δ,�{ι}, F) we use an enumer-
ation 0 = d0 < . . . < dn = 1 of the set {∑q

i=1 δ(p, a, q) | p, q ∈ Q, a ∈ Σ}∪{0} to
define Γ :={1, . . . , n} and p by pk :=dk−dk−1 for all k ∈ Γ . We construct a Muller-
automaton B = (Q, T, ι, F) from A such that

∑
u∈Γ, (p,(a,u),q)∈T = δ(p, a, q) and

define L as the language accepted by B.
Conversely, given a Muller-automaton B = (Q, T, ι, F), we construct a prob-

abilistic Muller-automaton A which recognizes S. We define A := (Q, δ,�{ι}, F)
where δ(p, a, q) :=

∑
u∈Γ, (p,(a,u),q)∈T pu. ��

The last theorem used a Bernoulli measure on a finite, but arbitrary large, set Γ .
In PMSO only Bernoulli measures on the two element set {0, 1} are available.
Corollary 1. A function S : Σω → [0, 1] is probabilistically ω-recognizable iff
there are a natural number n ∈ �, real numbers r1, . . . , rn ∈ [0, 1] and an ω-
recognizable language L ⊆ (Σ × {0, 1}n)ω such that

S(w) =

(
n⊗

i=1
Bri

)
({

(M1, . . . , Mn) ∈ P(�)n ∣
∣ (w,�M1 , . . . ,�Mn) ∈ L

})
,

for all w ∈ Σω.
Proof. We show that a Bernoulli measure on an arbitrary finite set can be written
as an image measure under a suitable mapping h of a finite product of binary
Bernoulli measures. Next, we apply Theorem 2 and show that h−1 retains the
recognizability of L in Theorem 2. ��
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4.2 Proof of Theorem 1

Let S : Σω → [0, 1] be probabilistically ω-recognizable. By Corollary 1 there
are n ∈ �, real numbers r1, . . . , rn ∈ [0, 1] and an ω-recognizable language
L ⊆ (Σ × {0, 1}n)ω such that

S(w) =

(
n⊗

i=1
Bri

)
({

(M1, . . . , Mn) ∈ P(�)n ∣
∣ (w,�M1 , . . . ,�Mn) ∈ L

})
.

Let V = {X1, . . . , Xn}. By Büchi’s theorem there is a bPMSO formula ϕ0 over
Σ with Free(ϕ0) = V which defines L, i.e. L = supp([[ϕ0]]V). Let ϕ be the PMSO
sentence given by

ϕ = �r1 X1. . . .�rnXn.ϕ0.

It follows by Fubini’s theorem that S = [[ϕ]].
Conversely, let ϕ be a PMSO sentence with S = [[ϕ]]. By Lemma 2 we may as-

sume that ϕ is in prenex normal form, i.e. ϕ = �r1X1. . . .�rnXn.ϕ0 for a Boolean
PMSO formula ϕ0, real numbers r1, . . . , rn ∈ [0, 1], and distinct set variables
X1, . . . , Xn. Let V = {X1, . . . , Xn} and L = supp([[ϕ0]]V). Then [[ϕ0]]V = �L and
L is ω-recognizable by Büchi’s theorem as ϕ0 is Boolean. By Fubini’s theorem
we obtain

S(w) =

(
n⊗

i=1
Bri

)
({

(M1, . . . , Mn) ∈ P(�)n ∣
∣ (w,�M1 , . . . ,�Mn) ∈ L

})
.

Therefore S is probabilistically ω-recognizable by Corollary 1. ��
Remark 1. When translating a PMSO formula to a probabilistic Muller-auto-
maton the acceptance condition of the automaton can be chosen to be a Rabin,
Streett, or parity condition. This is because for all of these acceptance conditions
classical ω-automata can be determinized. The latter is not true for the Büchi,
reachability or safety acceptance conditions.

5 Relation to Weighted MSO
In [12] a weighted MSO (wMSO) logic was introduced. It was shown that a
certain fragment of weighted MSO logic is expressively equivalent to weighted
automata. This expressive equivalence holds for finite and infinite words and
also for arbitrary semirings. Whereas probabilistic automata on infinite words
represent a different model than weighted automata on infinite words, probabilis-
tic automata on finite words are a special case of weighted automata over the
semiring of the non-negative real numbers �+.

For the exact definitions of weighted automata, weighted MSO, and syntacti-
cally restricted weighted MSO (srMSO) see [12,13].

As shown in [12], a function S : Σ+ → �
+ is recognizable by a weighted

automaton iff S is definable in srMSO. Hence every PMSO formula can be
translated to a probabilistic automaton, which then can be translated to a srMSO
formula. We give a direct mapping to embed PMSO into srMSO using a syntactic
transformation.
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Theorem 3. Let ϕ be a PMSO formula. Then there is a srMSO formula ϕ′ over
the semiring of the non-negative real numbers such that [[ϕ]] = [[ϕ′]]. Moreover ϕ′

can be obtained from ϕ by a effective syntactic transformation.

Intuitively, ϕ′ is obtained from ϕ by replacing every occurrence of �pX.ϕ0 with
∃X.ϕ0 ∧ ∀x.

(
(r ∧ x ∈ X) ∨ ((1 − r) ∧ x �∈ X)

)
where x is a new variable.

6 Conclusion and Future Work

We introduced a probabilistic extension of classical MSO logic by the addition
of an expected value operator. We could show that, similarly to the fundamental
Büchi-Elgot-Theorem, this probabilistic MSO logic is expressively equivalent to
probabilistic automata on finite and infinite words. We also gave several syntax
extensions and an effective embedding into weighted MSO logic.

As our transformations between PMSO sentences and probabilistic automata
are effective, all decidability results for probabilistic automata also apply to
PMSO sentences. For example, it is decidable for a PMSO sentence ϕ if there
is a finite word w ∈ Σ+ such that [[ϕ]](w) > 0 (= 1) [18], or if two given PMSO
formulas are equivalent on finite words [21]. On the other hand, interesting prob-
lems are undecidable. For instance, for a given formula ϕ it is undecidable if
there is an infinite word w such that [[ϕ]](w) > 0 (= 1) [2]. Another undecidable
problem is to decide for a formula ϕ and some λ ∈ (0, 1) if there is a finite or
infinite word w such that [[ϕ]](w) > λ [18]. This problem remains undecidable
even for λ = 1/2 and ϕ = �1/2X.ϕ0 where ϕ0 is Boolean [15].

Many concepts of probabilistic ω-automata like safety, reachability or Büchi ac-
ceptance conditions, hierarchical probabilistic automata [6], #-acyclic automata
[15], or probabilistic automata which induce a simple process [10] have better
decidability properties. It is an open problem to derive any of these concepts for
PMSO logic.

In current work, we wish to find similar probabilistic extensions for temporal
logics. For example a suitable probabilistic LTL should be expressively equivalent
to the first order fragment of probabilistic MSO logic. We also hope to obtain
better decidability properties using this approach.
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