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Abstract. The talk discusses planning problems where a set of items
has to be transported from location A to location B subject to certain
collision and/or resource constraints. We analyze the behavior of these
problems, discuss their history, and derive some of their combinatorial
and algorithmic properties.

The first transportation problem. Let V be a set of items/vertices, and let G =
(V,E) be a graph. We consider a scenario where the items in V have to be
transported from point A to point B. There is a transportation device with
enough capacity to carry b ≥ 1 of the items, and there is a single driver. If two
items are connected by an edge in E, they are conflicting and thus cannot be
left alone together without human supervision. A feasible schedule is a finite
sequence of triples (A1, T1, B1), (A2, T2, B2), . . . , (As, Ts, Bs) of subsets of the
item set V that satisfies the following conditions (FS1)–(FS3). The odd integer
s is called the length of the schedule.

(FS1) For every k, the sets Ak, Tk, Bk form a partition of V . The sets Ak

and Bk form stable sets in G. The set Tk contains at most b elements.
(FS2) The sequence starts with A1∪T1 = V and B1 = ∅, and the sequence

ends with As = ∅ and Ts ∪Bs = V .
(FS3) For even k ≥ 2, we have Tk ∪Bk = Tk−1 ∪Bk−1 and Ak = Ak−1.

For odd k ≥ 3, we have Ak ∪ Tk = Ak−1 ∪ Tk−1 and Bk = Bk−1.

Intuitively speaking, the kth triple encodes the kth trip: Ak contains the items
currently in point A, Tk the items that are currently transported, and Bk the
items in point B. Odd indices correspond to forward trips, and even indices
correspond to backward trips. Condition (FS1) states that the (unsupervised)
sets Ak and Bk must not contain conflicting item pairs, and that set Tk must fit
into the transportation device. Condition (FS2) concerns the first trip and the
final trip. Condition (FS3) says that whenever the man reaches point A or B,
he may arbitrarily re-divide the set of available items.

We are interested in the smallest possible capacity of a transportation device
for which a given graph G = (V,E) possesses a feasible schedule. For instance for
the path P3 on three vertices, it can be seen that a capacity b = 1 is sufficient. We
discuss a variety of combinatorial and algorithmical results on these concepts;
in particular we show that the smallest possible capacity has an NP-certificate.
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The second transportation problem. Let I be a set of items, and let w(i) be
the positive integer weight of item i ∈ I. For J ⊆ I we throughout denote
w(J) =

∑
j∈J w(j), and as usual we let w(∅) = 0. We consider a scenario where

the items have to be transported from a point A at the top of a building to a
point B at the bottom of the building. The transporation is done with the help
of a pulley with a rope around it, and a basket fastened to each end of the rope
of equal weight. One basket coming down would naturally draw the other basket
up. To keep the system stable, the weights of the item sets in the two baskets
must not differ by more than a given threshold Δ.

A state of the underlying discrete system is specified by the item set J ⊆ I
that currently is at point A, and with the remaining items in I − J located at
point B. The system can move directly from state J ⊆ I to state K ⊆ I if

|w(J ∩ (I −K))− w(K ∩ (I − J))| ≤ Δ,

where the positive integer bound Δ specifies the maximum allowed weight dif-
ference between the two exchanged subsets in the baskets. A state K is reachable
from state J , if there is a sequence of moves that transforms J into K. It is easy
to see that reachability is a symmetric relation.

We are interested in the following question: Given an item set I with weights
w(i), a positive integer bound Δ, an initial state I0, and a final state I1. Is the
goal state I1 reachable from the initial state I0? We discuss a number of results
on the algorithmic and combinatorial behavior of this motion planning problem.
In particular, we show that it is Πp

2 -complete. The special case where the item
weights are encoded in unary is (trivially) solvable in pseudo-polynomial time.
The special case where the number of moves is bounded by a number encoded
in unary is NP-complete. Some other natural (hevaily structured) special cases
turn out to be solvable in polynomial time.
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