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Abstract. Kamp’s theorem established the expressive completeness of
the temporal modalities Until and Since for the First-Order Monadic
Logic of Order (FOMLO) over Real and Natural time flows. Over Natural
time, a single future modality (Until) is sufficient to express all future
FOMLO formulas. These are formulas whose truth value at any moment
is determined by what happens from that moment on. Yet this fails to
extend to Real time domains: Here no finite basis of future modalities
can express all future FOMLO formulas. In this paper we show that
finiteness can be recovered if we slightly soften the requirement that
future formulas must be totally past-independent: We allow formulas to
depend just on the very very near-past, and maintain the requirement
that they be independent of the rest - actually - of most of the past. We
call them ‘almost future’ formulas, and show that there is a finite basis
of almost future modalities which is expressively complete over the Reals
for the almost future fragment of FOMLO.

1 Introduction

Temporal Logic (TL) introduced to Computer Science by Pnueli in [Pnu77]
is a convenient framework for reasoning about “reactive” systems. This made
temporal logics a popular subject in the Computer Science community, enjoying
extensive research in the past 30 years. In T'L we describe basic system properties
by atomic propositions that hold at some points in time, but not at others.
More complex properties are expressed by formulas built from the atoms using
Boolean connectives and Modalities (temporal connectives): A k-place modality
M transforms statements ¢ ...y possibly on ‘past’ or ‘future’ points to a
statement M (1 ...px) on the ‘present’ point tg. The rule to determine the
truth of a statement M (¢1...pk) at ¢ is called a Truth Table. The choice of
particular modalities with their truth tables yields different temporal logics. A
temporal logic with modalities M, ..., M} is denoted by TL(Mj, ..., My).

The simplest example is the one place modality FX saying: “X holds some
time in the future”. Its truth table is formalized by ¢ (to, X) = (3t > t0) X (¢).
This is a formula of the First-Order Monadic Logic of Order (FOMLO) - a funda-
mental formalism in Mathematical Logic where formulas are built using atomic
propositions P(t), atomic relations between elements t; = ta, t1 < t2, Boolean
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connectives and first-order quantifiers 3¢t and V¢. Most modalities used in the
literature are defined by such FOMLOQO truth tables, and as a result every tem-
poral formula translates directly into an equivalent FOMLQO formula. Thus, the
different temporal logics may be considered a convenient way to use fragments of
FOMLO. FOMLO can also serve as a yardstick by which to check the strength
of temporal logics: A temporal logic is expressively complete for a fragment L
of FOMLO if every formula of L with a single free variable ¢y is equivalent to a
temporal formula.

Actually, the notion of expressive completeness is with respect to the type
of the underlying model since the question whether two formulas are equivalent
depends on the domain over which they are evaluated. Any (partially) ordered
set with monadic predicates is a model for TL and FOMLO, but the main,
canonical, linear time intended models are the Naturals (N, <) for discrete time
and the Reals (R, <) for continuous time.

A major result concerning TL is Kamp’s theorem [Kam68|, [GHR94], which
states that the pair of modalities “X wuntil Y” and “X since Y” is expressively
complete for FOMLO over the above two linear time canonical models.

Many temporal formalisms studied in computer science concern only future
formulas - whose truth value at any moment is determined by what happens
from that moment on. For example the formula X until Y says that X will hold
from now (at least) until a point in the future when Y will hold. The truth value
of this formula at a point ¢y does not depend on the question whether X (¢) or
Y (t) hold at earlier points t < to.

Over the discrete model (N, <) Kamp’s theorem holds also for future formulas
of FOMLQO: The future fragment of FOMLQO has the same expressive power as
TL(Until) [GPSS80, [GHR94]. The situation is radically different for the continu-
ous time model (R, <). In [HRO3] it was shown that TL(Until) is not expressively
complete for the future fragment of FOMLQO and there is no easy way to remedy
it. In fact it was shown in [HRO3| that there is no temporal logic with a finite
set of future modalities which is expressively equivalent to the future fragment
of FOMLO over the Reals.

The proof there goes (roughly) as follows: Define a sequence of future formulas
¢i(z) such that given any set B of modalities definable in the future fragment of
FOMLO by formulas of quantifier depth at most n, the formula ¢,,41(2) is not
expressible in TL(B).

The interesting point is that these formulas are all expressible in a temporal
language based on the future modality Until plus the modality K~ of [GHR94].
The formula K~ (P) holds at a time point ¢ if given any ‘earlier’ ¢, no matter how
close, we can always come up with a ¢’ in between (¢t < ¢’ < tp) where P holds.
This is of course not a future modality - the formula K~ (P) is past-dependent.
And it turns out that not only the above mentioned sequence of future formulas -
but all future formulas - can be expressed (over Real time) in TL(Until, K—). This
is a consequence of Gabbay’s separation theorem [GHR94].

This future-past mixture of Until and K~ is somewhat better than the standard
Until - Since basis in the following sense: Although K~ is (like Since) a past
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modality, it does not depend on much of the past: The formula K~ (P) depends
just on an arbitrarily short ‘near past’, and is actually independent of most of
the past. In this sense we may say that it is an “almost” future formula (see
Section Bl for precise definitions).

In [HRO3] it was conjectured that TL(Until, K7) is expressively complete for
almost future formulas of FOMLQO. Our main result here confirms this conjecture
with respect to the Real time domain (R, <). In the full paper we extend this
result to Dedekind complete time flows.

The rest of the paper is organized as follows: In Section 2l we recall the defini-
tions of the monadic logic, the temporal logics and Kamp’s theorem. In Section
[BI we define “almost futureness”, then most of the ‘machinery’ needed for the
proof is in Sections and B.3] with the heart of the proof in Lemma
Section [3.4] then just puts it all together to complete the proof. Finally, Section
[ states further results and comments.

2 Preliminaries

We start with the basic definitions of First-Order Monadic Logic of Order
(FOMLO) and Temporal Logic (TL), and some well known results concerning
their expressive power. Fix a signature (finite or infinite) S of atoms. We use
P,Q,R,S... to denote members of S. Syntax and semantics of both logics are
defined below with respect to such a fixed signature.

2.1 First-Order Monadic Logic of Order

Syntax: In the context of FOMLO, the atoms of S are referred to (and used)
as unary predicate symbols. Formulas are built using these symbols, plus two
binary relation symbols, < and =, and a finite set of first-order variables
(denoted by z,y, z, ... ). Formulas are defined by the grammar:

atomic:= z<y | =y | P(x) (where P € S)

pu= atomic | ~p1 | 1 V2 | w1 A2 | Fzpr | Vrp;

The notation ¢(x1, . .., x,) implies that ¢ is a formula where the x;’s are the only
variables occurring free; writing ¢(x1,...,2Zn, P1,..., P;) additionally implies
that the P;’s are the only predicate symbols that occur in . We will also use the
standard abbreviated notation for bounded quantifiers, e.g.: (3z)s,(...) de-
notes Jz((z > 2)A(...)), (V&)<*(...) denotes Va((z < z) — (...)), (V&)Sj(...)
denotes Vz((I < x < u) — (...)), etc.

Semantics: Formulas are interpreted over structures. A structure over S is
a triplet M = (T, <,Z) where T is a set - the domain of the structure, < is an
irreflexive partial order relation on 7, and Z : § — P(T) is the interpretation
of the structure (where P is the powerset notation). We use the standard notation
Mty to, ...ty E @(x1,22,...2,). The semantics is defined in the standard
way. Notice that for formulas with a single free first-order variable, this
reduces to:

M, t = o().
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2.2 Propositional Temporal Logics

Syntax: In the context of TL, the atoms of S are used as atomic propositions
(also called propositional atoms). Formulas are built using these atoms, and
a set (finite or infinite) B of modality names, where a non-negative integer
arity denoted by |[M| is associated with each M € B. The syntax of TL with the
basis B over the signature S, denoted by TL(B), is defined by the grammar:

F:= P | _\F1 | Fl\/FQ I Fl/\FQ | M(Fl,FQ,...,Fn)

where P € § and M € B an n-place modality (that is, with arity [M| = n). As
usual True denotes PV —P and False denotes P \ —P.

Semantics: Formulas are interpreted at time-points (or moments) in
structures (elements of the domain). The domain 7 of M = (T, <,Z) is called
the time domain, and (T, <) - the time flow of the structure. The semantics
of each n-place modality M € B is defined by a ‘rule’ specifying how the set
of moments where M(F, ..., F,) holds (in a given structure) is determined by
the n sets of moments where each of the formulas F; holds. Such a ‘rule’ for M
is formally specified by an operator Oy on time flows, where given a time flow
F =(T,<), Om(F) is yet an operator in (P(7T))" — P(T).

The semantics of TL(B) formulas is then defined inductively: Given a struc-
ture M = (T,<,Z) and a moment t € M (read t € M ast € T), define when a
formula F' holds in M at t - notation: M, ¢ |= F' - as follows:

— M.t Piff t € Z(P), for any propositional atom P.

- M,tEFVGiff M,t = F or M,t = G; similarly (“pointwise”) for A, —.

- Mt E M(Fy,..., F,) iff t € [Ou(T,<)|(Th,...,T,) where M € B is an
n-place modality, Fi,..., F, are formulas and T; =qc5 {s € T : M, s |= F;}.

Truth tables: Practically most standard modalities studied in the literature
can be specified in FOMLO: A FOMLO formula ¢(z, P1, ..., P,) (with a single
free first-order variable x and with n predicate symbols P;) is called an n-place
first-order truth table. Such a truth table ¢ defines an n-ary modality M
(whose semantics is given by an operator Op) iff for any time flow (7, <), for
any T1,...,T,, C 7T and for any structure M = (T, <,Z) where Z(P;) = T;:

Om(T,<)T1,...,Tn) ={t €T : Mt = o(x, Pr,...,P,)}

Example 2.1. Below are truth-table definitions for the well known “Eventu-
ally”, the (binary) strict-Until and strict-Since of [Kam68] and for K~ of
|GHRY9))]:

— & (“Bventually”) defined by: ¢, (z, P) =4cf (32')>2P(a')
Until defined by : ¢, (2, P, Q) =dey (32")>2(Q(z")
— Since defined by: ¢, . (x, P, Q) =gy (F2')<*(Q(2')
— K™ defined by: ¢, _ (, P) =gey (Vm’)“‘(ﬂy)ii,P )



744 D. Pardo (Ordentlich) and A. Rabinovich

We use infix notation for the binary modalities Until and Since: P Until ) denotes
Until(P, @), meaning “there is some future moment where @ holds, and P holds
all along till then”. The non-strict version Until™® requires that P should hold
at the “present moment” as well. The formula K~ (P) holds at the “present
moment” ¢y iff given any earlier ¢ < ¢y - no matter how close - there is a moment
t' in between (¢t < t' < tg) where the formula P holds.

2.3 Kamp’s Theorem

We are interested in the relative expressive power of TL (compared to FOMLO)
over the class of linear structures. Major results in this area are with respect to
the subclass of Dedekind complete structures - where the order is Dedekind
complete, that is, where every non empty subset (of the domain) which has an
upper bound has a least upper bound.

Equivalence between temporal and monadic formulas is naturally defined:
F = p(x) iff for any M and t € M: Mt E F & Mt £ p(z). We will
occasionally use =, / =,. / =, to distinguish equivalence over linear / Dedekind
complete / any class C of structures.

Definability: A temporal modality is definable in FOMLO iff it has a FOMLO
truth table; a temporal formula F' is definable in FOMLO over a class C of struc-
tures iff there is a monadic formula (z) such that F' =, ¢(z). In this case we say
that ¢ defines F over C. Similarly, a monadic formula ¢(z) may be definable
in TL(B) over C.

Ezxpressive completeness/ equivalence: A temporal language TL(B) (as
well as the basis B) is expressively complete for (a fragment of) FOMLO over
a class C of structures iff all monadic formulas (of that fragment) ¢(z) are de-
finable over C in TL(B). Similarly, one may speak of expressive completeness
of FOMLO for some temporal language. If we have expressive completeness in
both directions between two languages - they are expressively equivalent.

As Until and Since are definable in FOMLO, it follows that FOMLO is expres-
sively complete for TL(Until, Since). The fundamental theorem of Kamp shows
that for Dedekind complete structures the opposite direction holds as well:

Theorem 2.2 ([Kam68|). TL(Until,Since) is expressively equivalent to
FOMLO over Dedekind complete structures.

This was further generalized by Stavi who introduced two new modalities Until’
and Since’ and proved that TL(Until, Since, Until’, Since’) and FOMLO have the
same expressive power over all linear time flows [GPSS80, (GHR94].

2.4 In Search of a Finite Basis for Future Formulas

We use standard interval notations and terminology for subsets of the domain of
a structure M = (T,<,Z), e.g.: (t,00) =qes {t’ € T|t' > t}; similarly we define
(t, 1), [t, 1)), (t,00), [t,0), etc., where ¢ < t’ are the endpoints of the interval.
The sub-structure of M restricted to an interval is defined naturally. In partic-
ular: M|_, -~ denotes the sub-structure of M restricted to (to, 00): Its domain is
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(to, 00) and its order relation and interpretation are those of M, restricted to this
interval. M|, - is defined similarly with respect to [to, o0). If structures M, M’
have domains 7,7, and if I is an interval of M, with endpoints ¢; < ts in M,
such that TU{t1,t2} C TNT’ and the order relations of both structures coincide
on I U{ty,t2} - we will say that I is a common interval of both structures.
This is defined similarly for intervals with co or —oc as either endpoint. Two
structures coincide on a common interval iff the interpretations coincide there.
Two structures agree on a formula at a given time-point (or along a common
interval) iff the formula has the same truth value at that point (or along that
interval) in both structures.

Definition 2.3 (Future / past formulas and modalities). A formula (tem-
poral, or monadic with a single free first-order variable) F is (semantically):

A future formula iff whenever two linear structures coincide on a common

interval [tg,00) they agree on F at to.
A pure future formula iff whenever two linear structures coincide on a com-

mon interval (to,00) they agree on F at to.
Past and pure past formulas are defined similarly.

A temporal modality is a first-order future (past) modality iff it is definable
in FOMLO by a future (past) truth table.

Note that ‘future’ can be characterized also syntactically: A formula ¢(zg) is a
future formula iff it is equivalent to a formula with all quantifiers relativized to
[0, 00), that is, all quantifiers are of the form (Va)sz,(...) or (32)>4,(.-.)-

Looking at their truth tables, it is easy to verify that Until is a future modal-
ity and Since is a past modality. This pair {Until, Since} forms an expressively
complete (finite) basis in the sense of Kamp’s theorem. Do we have a finite basis
of future modalities which is expressively complete for all future formulas? Here
are some answers:

Theorem 2.4 ([GPSS80]). TL(Until) is expressively equivalent to the future
fragment of FOMLO over discrete time flows (Naturals, Integers, finite).

Theorem 2.5 ([HRO3]). There is no temporal logic with a finite basis of fu-
ture modalities which is expressively equivalent to the future fragment of FOMLO
over Real time flows.

Theorem 2.6 ([GHR94]). TL(Until, K™) is expressively complete for the fu-
ture fragment of FOMLO over Dedekind complete time flows/!

Here we don’t have expressive equivalence, as not all TL(Until, K™) formulas
are future formulas. Theorem [0 offers a finite basis {Until, K™}, but just like
Kamp’s {Until, Since} - this is a ‘mixed’ future-past basis. [HR03|] points out that
in spite of its ‘past’ nature, K~ is “almost” a future modality because it depends
just on an arbitrarily small portion of the near past, and is independent of most
of the past. It is conjectured there that this “almost future basis” ‘generates’
only such “almost future formulas”, and that it generates all of them. In this
paper we show that this conjecture holds over the Real time domain (R, <).

! This follows [GHR94]’s work along the proof of their separation theorem (10.3.20).
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3 A Finite Basis for Almost Future Formulas over R

In Section [B1] below we define almost future formulas. In Section we refine
a result of [Hod99], then the most technical part of the proof is in Section B3
with the heart of the proof in Lemma B3T3l Section [34 finally puts it all together
to complete the proof.

3.1 Almost Future Formulas

Definition 3.1 (Almost future formulas, modalities, bases). A formula
(monadic, temporal) F is an almost future formula iff whenever two linear struc-
tures coincide on a common interval (t,00) they agree on F all along (t,00).
A temporal modality is almost future iff it has an almost future truth table in
FOMLO. A basis is almost future iff all its modalities are.

Clearly, all pure future formulas are in particular future formulas and all future
formulas are almost future. Note that we can give an alternative (equivalent)
definition for future and pure future formulas in the style of Definition B.] as
follows (compare with Definition 23): A formula F is

— Future iff whenever two linear structures coincide on a common interval
[t,00) they agree on F all along [t, 00).

— Pure future iff whenever two linear structures coincide on a common in-
terval (t,00) they agree on F' all along [t, 00).

In the sequel we will be interested in “Real structures” - these are structures
over time domains isomorphic to the Real time flow (R, <). We denote this class
of structures by R. Note that if M € R, then for every t € M, the structure
M|_, is also in R.

Remark 3.2. The next two facts and the lemma below follow immediately:

1. If an almost future formula holds at ty in a substructure M|_, of some
M € R where t < tg - then it holds there in M as well.

2. If an almost future formula holds at ty in a structure M € R then it holds
at to in all substructures M|., where t < tg.

Lemma 3.3. If a basis B is almost future then so are all of TL(B) formulas.
In particular: Until, K= and all the formulas of TL(Until, K™) are almost future.

Exzample: Consider the following property: “Any open interval (¢,%y) contains
a proper subinterval (t2,%1) such that P (an atomic property) holds at the ends
t; and to, but doesn’t hold anywhere inside (¢2,¢1)”. This is an almost future
property expressible in FOMLO. In TL(Until, K7) it is expressed by:

K= (P A (=P Until P))

Our main result states that, with respect to the class R, any almost future
property expressible in FOMLO can be translated to TL(Until, K™):
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Main Theorem 3.4. TL(Until, K™) is expressively equivalent to the almost fu-
ture fragment of FOMLO over the class of Real structures.

As Until and K™ are definable in FOMLO, the expressive completeness of almost
future FOMLO for TL(Until, K~) over all linear structures (and in particular over
Real ones) follows immediately by Lemmal[33l For the opposite direction we have
to show how almost future monadic formulas translate into TL(Until, K—). Most
of our effort will now be in finding such a translation.

In the rest of the paper we highlight the core of the proof, omitting less
significant technical details. A detailed proof can be found in the full paper.

3.2 Decomposition Formulas

Both expressive completeness proofs of [GPSS80] (for Theorem 24 above) and of
[Hod99] (for Kamp’s Theorem 22)) go through manipulating monadic formulas
to reach an equivalent formula in some standard form that can then be translated
to the target temporal language. We follow the same track:

Definition 3.5 ([Hod99] Decomposition formulas). |4 A FOMLO formula
is basic over TL(B) (where B is any temporal basis) iff it is a boolean combina-
tion of: (1) Atomic FOMLO formulas and (2) FOMLO formulas definable over
Dedekind complete structures in TL(B). A formula of the form: 3zVyx(Z,y, )
where T is a tuple of first-order variables and x is basic over TL(B) is called a
decomposition formula over TL(B).

Theorem 3.6 ([Hod99]). Fvery FOMLO formula ¢(z) is equivalent over
Dedekind complete structures to a positive boolean combination of decomposi-
tion formulas over TL(Until, K™):

o(2) =4 \//\EliVyXij(f,%z), where x;; are basic over TL(Until, K7).
iJ

Targeting at Kamp’s theorem, [Hod99] formulates this theorem and the pre-
ceding definition with respect to TL(Until, Since); yet, the proof there actually
uses Since in a restricted form: ‘X Since T'rue’, which is equivalent to =K~ (—=X).
Thus, the proof actually holds for TL(Until, K™) as well.

[GPSS80)] introduces a specific form of decomposition formulas where the basic
X(Z,y, z) is ‘split’ into TL(B)-definable formulas that ‘talk’ about a sequence
of moments (represented by the tuple Z) and about the sequence of intervals
‘marked’ by these points:

Definition 3.7 ([GPSS&0] ?V-formulas). A FOMLO formula is a
?V-formula over TL(B) iff it is of the form:

2 [Hod99)’s definitions are more general; this simplified version is sufficient for us.
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¥(2z) == 3xy, ... Jx1 320

(T < Tpo1 < - <x1 <2Tp=2) “Ordering”
n

A a;(z;) “All aj 's hold at the points x;”
j=0
n—1

A [(Vy)§£;+1ﬁj(y)] “Fach B; holds along (xj11,2;)”
=0

A (YY) <" Bn(y)] “B,, holds everywhere 'before’ x,”

where oy, B are FOMLO formulas definable over Dedekind complete structures
in TL(B).

Notation 3.8. Having a particular interest in %—farmulas over TL(Until, K—),
we shortly call them ?V-formulas. We use the notation ™ (z) to explicitly re-
flect the length of the quantifier prefix; and we use the abbreviated notation

" = ({(@0,B0) - -, {an, Bn)) for a IV-formula as above, with «;,B; definable
over Dedekind complete structures in TL(Until, K7).

The following can be derived from Theorem [3.6] by standard logical equivalences:

Proposition 3.9. Every FOMLO formula ¢(2) is equivalent over Dedekind com-
plete structures to a finite disjunction of IV-formulas.

3.3 Formulas That Hold “Regardless of Most of the Past”

A formula F' “holds in M at ty regardless of most of the past” if we can truncate
the past as close we wish to the left of ¢y, and F' persistently holds at ¢¢ in all such
truncated structures. As we will not be using here the dual notion of “holding
regardless of most of the future” - we will shortly say that F' “almost-holds in
M at ty”. Formally:

Definition 3.10 (‘Almost holds’). Given M € R and ty € M, and given a
formula (monadic, temporal) F: F almost-holds in M at tg iff for every t < to
in M there is a t' € (t,t9) such that M|_,,,to = F.

Remark 3.11.

1. If a formula F is almost future, M € R and ty € M then: F' holds in M at
to iff it almost-holds there.

2. In general, it might be the case that a formula F (which is not almost future)
almost-holds in some M at tg, yet F' does not hold in M at tg. Example: “P
always held in the past” (Vx)<*P(z)). Similarly, “P once held in the past”
((32)<*P(x)) demonstrates the converse situation.

Lemma 3.12. If a finite disjunction of FOMLO formulas ¢(z) = \/ ¥i(2) is
almost future, then for any M € R and tg € M:

M, to = p(z) iff some ;(2) almost-holds in M at to (1)
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Proof. Given an almost future ¢(z) = \/ ¢;(z) and tg € M € R as above:
Proof of <: Let t < ty. Assume that some 9;(z) almost-holds in M at to,
then there is a t’ € (¢,t0) such that M|_,,,to = ¥i(2), hence M|_,,,to = ¢(2),
and as ¢ is almost future - M, tg = ¢(z) as well (Remark ).
Proof of =: Assume that M, ¢y = ¢(z), then (by Remark B2 [2)) for every
t <tpin M: M|, ,to = ¢(2), hence for every ¢ < to:

M]_,,to = ¢i(2) for some index i (2)

Now, assume to the contrary that none of the disjuncts 1; almost-holds in M
at tg. Then for each i there is a point - denote it by ¢; - such that ¢; < tg and
for all ' € (;,t0): 1i(2) does not hold in M|_,, at ty. Let t denote the largest
(‘latest’) t; (we started off with a finite d1SJunct10n) and let ¢t € (¢,t0). Then for
each i: t; <t <t < to, and therefore for each i: v;(z) does not hold in M|_,
at to. This contradicts () above. Thus, we conclude that (at least) one of the
disjuncts v; does almost-hold in M at tg. O

The above lemma motivates us to seek a way to express in TL(Until, K7) the
fact that “a formula almost-holds in M at #”. The main technical lemma below
shows that this is possible for IV-formulas.

Main Lemma 3.13. For every ?V-formula ¥ (z) there is a TL(Until, K™) for-
mula Fy, such that for every structure M € R and every ty € M:

M, to = Fy iff ¢(2) almost-holds in M at tg (3)

Proof. Let ¥"™(z) = ({(@0,80) 5.5 (@n, Bn)) be a ?V-formula (see Notation B:g)),
and let A;, B; be TL(Until, K™) formulas defining Qi 51 (ai =,c Ai; Bi =p Bi).
Define TL(Until, K™) formulas GZ)P”7G%”7 L GY .GV ny1 and Fyn as follows:

Gw" = Ay

G;/’H = A1 A (Bj Until Gw ) -forj=0,1,...,n—1

GY., := B, Until G¥"
n+1
Fyn == Ag A=K~ (=Bp) A /\ K™(GY")

Now let ty € M, and show that Fwn satisfies the required property (B)). The
<« direction follows directly from definitions. For the = direction: Assume that
M, to = Fyn. Let t < tg. To show that 9™ (z) almost-holds in M at ¢y we must
find a ¢’ € (¢,t9) such that M|_,,,to = ¢"(2).

First, as M, tg = =K~ (—=By) we have an interval (t,tg) where By holds and
t <t < tg. Second, as M, ty = K~ (G ’n+1)7 we have a t' € (,ty) where G;’fil
holds, that is: M, ¢’ |: (B, Until G¥"). We will find points t1,...,tn,tny1 in
M such that (i)t <t <t =tpy <t, <---<t; <toand (ii) for each 0 <
i < n: B; holds in M along (t;+1,%;) and M, t; = Gw (and thus, in particular
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M, t; = A;). Then, as A;, B; are almost future (Lemma B3], the same holds in
the substructure M|_,, as well (Remark[B.21([@)). And as A; =, o ; Bi =5 i,
we conclude that M|_,,,to = ¥"(2).

It remains to show there are points t; as above. For t,,1 we simply pick ¢'.
Next, we construct ¢,: We have M, t,,41 = (B, Until G¥"), hence, G¥" holds at
some t” > t, 41 and B, holds along (t,+1,t"”). Now, if ¢’ <t denote: t,, = t".
Otherwise, as M,ty = K=(G¥"), there is a t* € (tn41,t0) where G¥" holds -
and in this case denote: t,, = t*. In any case, we have t < t<t = thy1 < tp <
to, B, holds along (t,11,t,) and M,t, = G¥". Repeat the above arguments
(induction, down-counting from ¢,, to 1) to construct the rest of the ¢;’s. Finally,
By clearly holds along (¢1,t9) and M, ty = Ay, so the points ¢; indeed satisfy (i)
and (i7) as required. O

3.4 Putting It All Together

Lemma[3. I3 renders the desired semantics-preserving translation over Real struc-
tures for almost future FOMLO formulas. Now we are ready to complete the
proof of our main result (Theorem [3.4]):

Given an almost future p(z) in FOMLO, we will construct a TL(Until, K7)
formula F, such that:

p(z) = F, (4)

1. Given an almost future ¢(z), by Proposition B0 we have: ¢(z) =,. V i (2)
where ; are ?V—formulas.

2. By Lemma [313] each disjunct ; has a ‘representative’ F, in TL(Until, K7)

that satisfies property ([B)) of the lemma, or - in other words - that asserts
that “1;(z) almost-holds in a Real structure M at ¢¢”. Define:

Fy =degs \/ Fy,

3. Notice that so far we haven’t used the fact that ¢ is almost future: Steps [l
and [2] above hold for any monadic ¢(z). Now verify that @) above indeed
holds: Let tg € M € R. By Lemma (and this is the point where the
“almost futureness” of ¢ is crucial), M, to |= ¢(2) iff there is an index i such
that 1;(z) almost-holds in M at tg, in other words - by Lemma - iff
there is an ¢ such that M, tg = Fy,, that is, iff M, ¢y |= F,,.

4 Further Results and Comments

We have shown expressive equivalence of TL(Until,K™) and almost future
FOMLO over time flows isomorphic to the Reals. The notion of past, future,
almost future formulas is defined with respect to the class of all linear struc-
tures. One may as well consider similar notions relative to specific classes of
structures. For example, a formula is a future formula over R (the class of Real
structures) if any pair of Real structures that coincide on the future of some
point ¢ agree on the formula at ¢. Clearly, every future formula over the class
of all linear structures is also a future formula over R. The converse doesn’t
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hold: “There is a first-moment and P holds there” for example, is unsatisfiable
over R, and therefore a future formula over R, but this is not a future formula
over Natural time domains. We actually proved a stronger result: Every formula
which is almost future over R has a TL(Until, K~)-equivalent over R.

It is decidable whether a formula ¢(z) is almost future over R. Indeed let

<pr>emll () be obtained from ¢ by relativization of all quantifiers to (a/,00). A

formula ¢ is almost future over R iff Va((Va')<"(p(z) < @ieTl, (z))) is valid
over R. Since the validity of a FOMLO formula over R is decidable [BGS&Y], we
conclude that it is decidable whether a formula is almost future over R.

In the full paper we prove expressive equivalence of TL(Until, K~) and almost
future FOMLO over all Dedekind complete structures. Lifting the proof from
the Reals to Dedekind complete orders requires careful handling of subtleties
that don’t appear in the Reals. In Dedekind complete structures there are three
types of points: A structure may have a least element or not - a “first moment”.
A non-first moment is a “successor” if it has a “latest earlier moment” and a
“left-limit” otherwise. The fact that in R all points are left-limits simplifies the
proof. The translation presented in Section 3.4l works fine for left-limit points in
Dedekind complete structures as well, but fails for successors and first moments.
These two types of points need different (but simpler) handling. The core of the
proof - handling left-limit points - is the same as presented in this paper.

Over linear structures in general, {Until, K~} is not expressive enough: It is
not a basis for almost future formulas. Stavi generalized Kamp’s theorem by
enhancing {Until, Since} to obtain a basis expressively equivalent to FOMLO
over linear time [GHRO94]. Unfortunately, {Until, K~} cannot be extended in a
similar manner: In the full paper we show that no finite basis of almost future
modalities is expressively equivalent to almost future FOMLO over linear time.

Acknowledgments. We are very grateful to Yoram Hirshfeld for numerous in-
sightful discussions, and to the anonymous referees for their helpful suggestions.
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