
Simple Models for Recursive Schemes

Igor Walukiewicz�

LaBRI, CNRS/Universit Bordeaux, France

Abstract. Higher-order recursive schemes are abstract forms of pro-
grams where the meaning of built-in constructs is not specified. The
semantics of a scheme is an infinite tree labeled with built-in constructs.
The research on recursive schemes spans over more than forty years. Still,
central problems like the equality problem, and more recently, the model
checking problem for schemes remain very intriguing. Even though re-
cursive schemes were originally though of as a syntactic simplification
of a fragment of the lambda calculus, we propose to go back to lambda
calculus to study schemes. In particular, for the model checking problem
we propose to use standard finitary models for the simply-typed lambda
calculus.

1 Introduction

A recursive scheme is a set of equations over a fixed functional signature. On
the left of an equation we have a function symbol and on the right a term that
is its intended meaning. Consider the following examples borrowed from [10]:

F(x) ≡ if x = 0 then 1 else F(x− 1) · x,
F(x) ≡ C

(
(Zx), A, M(F(P (x)), x)

)
.

The first is the usual recursive definition of factorial. The second is the same
definition in an abstract form where abstract function names have been used
instead of the ones with a well established meaning. Observe that the reverse
function

Rev(x) ≡ if x = nil then nil else append(Rev(tl(x)), hd (x))

has the same abstract form as factorial: the pattern of function calls is the same
in the two cases.

The above schemes are of order 1 as functions they define work on elements
of a basic type. An order 2 scheme allows to express for example map function
that applies a given function f to every element of the list l:

map(f, x) ≡ if l = nil then nil else cons(f(head(l)),map(f, tail(l)))

This is a scheme of order 2 because its argument f is a function on elements of a
base type. Higher-order recursive schemes are schemes of arbitrary finite order.

� Supported by ANR 2010 BLAN 0202 01 FREC.

B. Rovan, V. Sassone, and P. Widmayer (Eds.): MFCS 2012, LNCS 7464, pp. 49–60, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

50 I. Walukiewicz

Recursive schemes are about abstract forms of programs where the meaning
of constants is not specified. In consequence, the meaning of a scheme is a po-
tentially infinite tree labelled with constants obtained from the unfolding of the
recursive definition. Let us immediately note that we impose a typing disciple on
terms. In this form recursive schemes are essentially a different presentation of
simply typed lambda calculus with fixpoint operators. Indeed, recursive defini-
tions as in the examples above can be reformulated using the fix point operator
explicitly.

Recursion schemes were originally proposed by Ianov as a canonical program-
ming calculus for studying program transformation and control structures [18].
The study of recursion on higher types as a control structure for programming
languages was started by Milner [30] and Plotkin [34]. Program schemes for
higher-order recursion were introduced by Indermark [19]. Higher-order features
allow for compact high-level programs. They have been present since the begin-
ning of programing, and appear in modern programming languages like C++,
Haskell, Javascript, Python, or Scala. Higher-order features allow to write code
that is closer to specification, and in consequence to obtain a more reliable code.
This is particularly useful in the context when high assurance should come to-
gether with very complex functionality. Telephone switches, simulators, transla-
tors, statistical programs operating on terabytes of data, have been successfully
implemented using functional languages1.

Research on higher-order schemes has spanned many decades. Recursive
schemes appear as an intermediate step in semantics of programming languages.
Indeed to compute the semantics of a program one can first compute the infi-
nite tree of behaviors it generates, and then apply an interpretation operation
giving the meaning of constants [38,31]. This view brought to the scene the
equality problem for schemes [27,11,9,39], whose decidability in the higher-order
case is still open. It has then been discovered that schemes have many links
with language theory, in particular with context-free and context-sensitive lan-
guages [16,9,13]. More recently, it has been understood that recursive schemes
give important classes of trees with decidable MSOL theory which makes them
interesting from the point of view of automatic verification [21,32].

Let us see an example illustrating why recursive schemes are valuable ab-
stractions of programs. Simple while loops with the usual arithmetic operations
are Turing complete. This of course does not make all other programming con-
structs obsolete. Yet, in the light of this universality result we need to look for
some other convincing framework where we could show that concepts like re-
cursive procedures or higher-order types bring something new. The idea is to
abstract from the meaning of build-in operations, or in other words to consider
them as uninterpreted function symbols. This way a program is stripped to its
control structure: it becomes a program scheme. Coming back to our example
with while programs, once influence of the arithmetic is stripped away, one can

1 For some examples see “Functional programming in the real world”
http://homepages. inf.ed.ac.uk/wadler/realworld/

Simple Models for Recursive Schemes 51

formally show that recursive procedures are indeed more powerful than a simple
while loop.

The above example shows that recursive schemes are an insightful intermedi-
ate step in giving a denotational semantics of a program. This makes the study of
equality or verification problems for schemes interesting. Especially in view that
these problems may be decidable for schemes while they are not for interpreted
programs.

Equality Problem. Given two schemes decide if they generate the same tree.
Model-Checking Problem. Given a schema and a formula of monadic second-

order logic decide if the formula holds in the tree generated by the scheme.

Equality of two schemes gives a provably correct program transformation rule.
Equality of first-order schemes is equivalent to equality of deterministic push-
down automata [9]. Hence it is decidable by the result of Sénizergues [39]. Some
properties of a program can be expressed in terms of the tree generated by the
associated scheme. For example, resource usage patterns can be formulated in
fragments of monadic second-order logic and verified over such trees [23]. This
is possible thanks to the fact that MSOL model checking is decidable for trees
generated by higher-order recursive schemes [32].

The meaning of a recursive scheme is an infinite ranked tree. A natural ques-
tion is then what are these trees. Are there other characterizations of these
objects, and what are their properties? First answers came from language the-
ory. Damm [13] has shown that considered as word generating devices, a class
of schemes called safe is equi-expressive with higher-order indexed languages in-
troduced by Aho and Maslov [3,28]. Those languages in turn have been know
to be equivalent to higher-order pushdown automata of Maslov [29]. Later it
has been shown that trees generated by higher-order safe schemes are the same
as those generated by higher-order pushdown automata [21]. This gave rise to
so called Caucal hierarchy [8] and its numerous characterizations [7]. The safety
restriction has been tackled much more recently. First, because it has been some-
how implicit in a work of Damm [13], and only brought on the front stage by
Knapik, Niwiński, and Urzyczyn [21]. Secondly, because it required new insights
in the nature of higher-order computation. Pushdown automata have been ex-
tended with so called panic operation [22,2]. This permitted to characterize trees
generated by schemes of order two. Later this operation has been extended to
all higher order stacks, and called collapse. Higher-order stack automata with
collapse characterise recursive schemes at all levels [17]. The fundamental ques-
tion whether collapse operation adds expressive power has been answered affir-
matively only very recently by Parys: there is a tree generated by an order 2
scheme that cannot be generated by a higher-order stack automaton without
collapse [33].

In this paper we will concentrate on the model checking problem. There has
been a steady progress on this problem, to the point that there are now tools
implementing verification algorithms for higher-order programs [24]. In contrast,
the most classical problem, namely the equivalence problem, remains as a great
challenge. The fundamental result of Sénizergues [39] and subsequent revisits of

52 I. Walukiewicz

the proof by Stirling [41], Sénizergues [40], and Jancar [20] give an algorithm
to test equivalence of schemes of order 1. Yet this algorithm is not only non-
elementary but also gives a strong impression that its average performance would
be close to non-elementary too. In contrast, while also non-elementary in the
worst case, the algorithms for model checking are capable of solving nontrivial
verification problems. Let us also recall that we know that the complexity of the
model checking problem is non-elementary [15,6,25], while no non-trivial lower
bounds are known for the equivalence problem.

The objective of this short paper is to propose an approach to the model
checking problem for schemes. The idea is to work with a richer syntax of simply
typed lambda calculus with fixpoints, and to construct suitable finitary models
that give the answer to the problem. We will carry out this program only for
a relatively small subclass of all monadic-second order properties: the same as
considered by Aehlig [1]. The next section introduces necessary notions, in par-
ticular that of a Böhm tree of a term. In the following section we show how, given
an automaton expressing the property, to construct a desired finitary model from
which we can read properties of Böhm trees of terms.

2 Simply Typed Lambda Calculus and Recursive
Schemes

Instead of introducing higher-order recursive schemes directly we prefer to start
with simply typed lambda calculus with fixpoints, λY -calculus. The two for-
malisms are essentially equivalent for the needs of this paper, but we will prefer
work with the later one. It gives us an explicit notion of reduction, and brings the
classical notion of Böhm tree [4] that can be used directly to define the meaning
of a scheme.

The set of types T is constructed from a unique basic type 0 using a bi-
nary operation →. Thus 0 is a type and if α, β are types, so is (α → β). The
order of a type is defined by: order (0) = 1, and order (α → β) = max(1 +
order (α), order (β)).

A signature, denoted Σ, is a set of typed constants, that is symbols with
associated types from T . We will assume that for every type α ∈ T there are
constants ωα and Y (α→α)→α. A constant Y (α→α)→α will stand for a fixpoint
operator, and ωα for undefined. Of special interest to us will be tree signatures
where all constants other than Y and ω have order at most 2. Observe that
types of order 2 have the form 0i → 0 for some i; the later is a short notation
for 0 → 0 → · · · → 0 → 0, where there are i+ 1 occurrences of 0.

The set of simply typed λ-terms is defined inductively as follows. A constant of
type α is a term of type α. For each type α there is a countable set of variables
xα, yα, . . . that are also terms of type α. If M is a term of type β and xα a
variable of type α then λxα.Mβ is a term of type α → β. Finally, if M is of type
α → β and N is a term of type α then MN is a term of type β.

Simple Models for Recursive Schemes 53

The usual operational semantics of the λ-calculus is given by β-reduction. To
give the meaning to fixpoint constants we use δ-reduction (→δ).

(λx.M)N →β M [N/x] YM →δ M(YM).

We write →∗
βδ for the reflexive and transitive closure of the sum of the two

relations. This relation defines an operational equality on terms. We write =βδ

for the smallest equivalence relation containing →∗
βδ. It is called βδ-equality.

Thus, the operational semantics of the λY -calculus is the βδ-reduction. It is
well-known that this semantics is confluent and enjoys subject reduction (i.e. the
type of terms is invariant under computation). So every term has at most one
normal form, but due to δ-reduction there are terms without a normal form. It
is classical in the lambda calculus to consider a kind of infinite normal form that
by itself is an infinite tree, and in consequence it is not a term of λY [4,14,5].
We define it below.

A Böhm tree is an unranked ordered, and potentially infinite tree with nodes
labelled by ωα or terms of the form λx1. . . . xn.N ; where N is a variable or a
constant, and the sequence of lambda abstractions is optional. So for example
x0, λx.w0 are labels, but λy0.x0→0. y0 is not.

Definition 1. A Böhm tree of a term M is obtained in the following way.

– If M →∗
βδ λx.N0N1 . . . Nk with N0 a variable or a constant then BT (M)

is a tree having root labelled by λx.N0 and having BT (N1), . . . , BT (Nk) as
subtrees.

– Otherwise BT (M) = ωα, where α is the type of M .

Observe that a termM has a βδ-normal form if and only if BT (M) is a finite tree
without ω constants. In this case the Böhm tree is just another representation
of the normal form. Unlike in the standard theory of the λ-calculus we will be
rather interested in terms with infinite Böhm trees.

Recall that in a tree signature all constants except of Y and ω are of order
at most 2. A closed term without λ-abstraction and Y over such a signature is
just a finite tree, where constants of type 0 are in leaves and constants of a type
0k → 0 are labels of inner nodes with k children. The same holds for Böhm trees:

Lemma 1. If M is a closed term of type 0 over a tree signature then BT (M)
is a potentially infinite tree whose leaves are labeled with constants of type 0 and
whose internal nodes with k children are labelled with constants of type 0k → 0.

Higher-order recursive schemes use somehow simpler syntax: the fixpoint oper-
ators are implicit and so is the lambda-abstraction. A recursive scheme over a
finite set of nonterminals N is a collection of equations, one for each nontermi-
nal. A nonterminal is a typed functional symbol. On the left side of an equation
we have a nonterminal, and on the right side a term that is its meaning. For
a formal definition we will need the notion of an applicative term, that is a
term constructed from variables and constants, other than Y and ω, using the
application operation. Let us fix a tree signature Σ, and a finite set of typed

54 I. Walukiewicz

nonterminals N . A higher-order recursive scheme is a function R assigning to
every nonterminal F ∈ N , a term λx.MF where: (i) MF is an applicative term,
(ii) the type of λx.MF is the same as the type of F , and (iii) the free variables
of M are among x and N . For example, the following is a scheme of the map
function:

map(0→0)→0→0 ≡ !λf0→0.λl0. if(l = nil, nil, cons(f(head(l)),map(f, tail(l))))

The translation from a recursive scheme to a lambda-term is given by a standard
variable elimination procedure, using the fixpoint operator Y . Suppose R is a
recursive scheme over a set of nonterminals N = {F1, . . . , Fn}. The term Tn

representing the meaning of the nonterminal Fn is obtained as follows:

T1 =Y (λF1.R(F1))

T2 =Y (λF2.R(F2)[T1/F1])

...

Tn =Y (λFn.(. . . ((R(Fn)[T1/F1])[T2/F2]) . . .)[Tn−1/Fn−1])

(1)

The translation (1) applied to the recursion scheme for map gives a term:

Y (λmap(0→0)→0→0.λf0→0.λl0.

if (l = nil) nil
(
cons (f(head(l))) (map f (tail(l)))

)

This time we have used λ-calculus way of parenthesising expressions.
We will not recall here a rather lengthy definition of a tree generated by a

recursive scheme referring the reader to [21,13]. For us it will be sufficient to
say that it is the Böhm tree of a term obtained from the above translation. For
completeness we state the following.

Lemma 2. Let R be a recursion scheme and let Fn be one of its nonterminals. A
term Tn obtained by the translation (1) is such that BT (Tn) is the tree generated
by the scheme from nonterminal Fn.

3 Models for Model Checking

As we have said in the introduction, in order to study the model checking problem
it is very helpful to understand better what are trees generated by recursive
schemes. The proof of Ong of decidability of the model checking [32] relies on
game semantics to understand the structure of such trees. Later proofs rely on
higher-order pushdown automata with panic [22,2], for order 2, and for collapse
for all orders [17]. Krivine machines give also a good representation of trees, and
another proof of Ong’s result [37]. In all these approaches to model checking,
one first obtains a characterisation of trees generated by recursive schemes and
then solves the model checking problem using this characterisation.

Simple Models for Recursive Schemes 55

There is another, more denotational, way of approaching the model checking
problem. One can analyse the scheme from the point of view of a given property
without constructing the generated tree first. This approach can be carried out
with a help of a rich typing discipline. For a given property one constructs a set
of types and typing rules such that the scheme is typable if and only if the tree it
generates satisfies the property. This approach has been successfully carried out
for properties expressed by automata with a trivial acceptance condition [23].
The extension to all parity automata required much more work and complicated
substantially the approach [26]. It is worth mentioning that the discovery that
model checking with respect to automata with trivial conditions is much easier
than the general case is due to Aehlig [1]. His proof uses a mixture of semantics
and typing systems. The approach used by Kobayashi [23] is based on inter-
section types refining simple types that allows to capture regular properties of
terms. This kind of technique has been probably initiated by Salvati [35].

Instead of typings we propose to use models of simply-typed lambda calculus.
For simply-typed lambda calculus without fixpoints the intersection types and
standard models are in some sense dual [36]. Our construction hints that this
can be also the case in the presence of fixpoint operators. Moreover the model
based approach has a striking simplicity in the case we present here.

Since the translation from recursive schemes to the λY -calculus is very direct,
it is straightforward to interpret a recursive scheme in a model of the λY -calculus.
Once this step is taken, it is even more natural to work directly with the lambda
calculus. So starting with a property we would like construct a model such that
the value of a term in the model determines if the Böhm tree of the term satisfies
the property. This is formalised in Theorem 1 below.

Let us consider finitary models of λY -calculus. We concentrate on those where
Y is interpreted as the greatest fixpoint.

Definition 2. A GFP-model of a signature Σ is collection of finite complete lat-
ices, one for each type, together with a valuation of constants: D = 〈{Dα}α∈T , ρ〉.
The model is required to satisfy the following conditions:

– D0 is a finite lattice;
– for every type α → β ∈ T , Dα→β is the lattice of monotone functions from

Dα to Dβ ordered coordinatewise;
– If c ∈ Σ is a constant of type α then ρ(c) is an element of Dα. For every α ∈

T it must be that case that ρ(ωα) is the greatest element of Dα. Moreover,
ρ(Y (α→α)→α) should be a function assigning to every function f ∈ Dα→α

its greatest fixpoint.

Observe that every Dα is finite, hence all the greatest fixpoints exists without
any additional assumptions on the lattice.

A variable assignment is a function υ associating to a variable of type α an
element of Dα. If d is an element of Dα and xα is a variable of type α then
υ[d/xα] denotes the valuation that assigns d to xα and that is identical to υ
otherwise.

The interpretation of a term M of type α in the model D under valuation υ
is an element of Dα denoted [[M]]

υ
D. The meaning is defined inductively:

56 I. Walukiewicz

– [[c]]υD = ρ(c)
– [[xα]]υD = υ(xα)
– [[MN]]υD = [[M]]υD[[N]]υD
– [[λxα.M]]

υ
D is a function mapping an element d ∈ Dα to [[M]]

υ[d/xα]
D .

As usual, we will omit subscripts or superscripts in the notation of the semantic
function if they are clear from the context.

Of course a GFP model is sound with respect to βδ-equality. Hence two equal
terms have the same semantics in the model. For us it is important that a
stronger property holds: if two terms have the same Böhm trees then they have
the same semantics in the model.

Lemma 3. For every GFP-model D, and closed terms M , N of λY -calculus: if
BT (M) = BT (N) then [[M]]D = [[N]]D.

Before stating the theorem we need to explain how properties of Böhm trees are
specified. We will consider tree signatures, so Böhm trees of closed terms of type
0 are just ranked, potentially infinite trees (cf. Lemma 1). To express properties
of such trees we can use monadic second-order logic, or an equivalent formalism
of finite automata on infinite trees. We will use the later since it allows for an
easy formulation of the important restriction we will make. We will consider only
automata with trivial acceptance condition. This means that every run of such
an automaton is accepting. So the trees that are not accepted are those over
which the automaton does not have a run. We define this concept below.

Let us fix a tree signature Σ. Recall that this means that apart from ω and Y
all constants have order at most 2. For simplicity of notation we will assume that
constants of order 2 have type 0 → 0 → 0. In this case, by Lemma 1, Böhm trees
are potentially infinite binary trees. Let Σ1 be the set of constants of order 1,
hence of type 0, and Σ2 the set of constants of order 2, hence of type 0 → 0 → 0.

Definition 3. A finite automaton with trivial acceptance condition over the
signature Σ = Σ1 ∪Σ2 is

A = 〈Q,Σ, q0 ∈ Q, δ1 : Q×Σ1 → {ff , tt}, δ2 : Q×Σ2 → P(Q2)〉

where Q is a finite set of states and q0 ∈ Q is the initial state.

Observe that the type of δ1 logically follows from the fact that a constant of type
0 is a “function with no arguments”, hence the range of δ1 should be P(Q0) that
is more intuitively presented as {ff , tt}.

Automata will run on Σ-labelled binary trees that are partial functions t :
{0, 1}∗ → Σ such that their domain is a binary tree, and t(u) ∈ Σ1 if u is a leaf,
and t(u) ∈ Σ2 otherwise.

A run of A on t is a partial mapping r : {0, 1}∗ → Q with the same domain
as t an such that:

– r(ε) = q0, here ε is the root of t.
– (r(u0), r(u1)) ∈ δ2(t(u), r(u)) if u is an internal node.

Simple Models for Recursive Schemes 57

A run is accepting if for every leaf u of t either δ1(r(u), t(u)) = tt , or t(u) = ω0.
The later condition means that the automaton accepts in leaves labelled by ω0

constant. A tree is accepted by A if there is an accepting run on the tree. The
language of A, denoted L(A), is the set of trees accepted by A.

Observe that our automata have acceptance conditions on leaves, expressed
with δ1, but do not have acceptance conditions on infinite paths. The clause
about always accepting in leaves labelled ω0 has some consequences. In partic-
ular, with these automata we cannot define a set of terms that do not have ω0

in their Böhm tree. This restriction appears also in the works of Aehlig [1] and
Kobayashi [23].

Theorem 1. For every automaton with trivial acceptance conditions A there is
a GFP-model DA and a set FA ⊆ D0

A such that for every closed term M of
type 0:

BT (M) ∈ L(A) iff [[M]]DA ∈ FA.

For DA we take a GFP model with the domain for the base type being the set
of subsets of the set of states of A: D0

A = P(Q). This choice determines all Dα.
It remains to define interpretation of constants other than ω or Y . A constant
c ∈ Σ of type 0 is interpreted as the set {q : δ1(q, c) = tt}. A constant a ∈ Σ of
type 0 → 0 → 0 is interpreted as the function whose value on (S0, S1) ∈ P(Q)2

is {q : δ2(q, a) ∈ S0 × S1}. Finally, we put FA = {S : q0 ∈ S}; recall that q0 is
the initial state of A. The proof of the theorem is rather easy. Lemma 3 allows
to work with Böhm trees instead of terms. Then one can use approximations of
an infinite tree by its finite prefixes.

Corollary 1. Given a closed λY -term M of type 0 and an automaton with a
trivial acceptance condition A it is decidable if BT (M) is accepted by A.

The decidability follows immediately from Theorem 1, and the fact that DA is
a finitary model, so the semantics of a term can be computed just using the
definition. The answer is positive if an only if the obtained meaning is in FA.
Of course computing the meaning of a term may be computationally difficult.
The sizes of domains grow fast with the order of the type: the size of Dα→β

A
is exponentially bigger than the size of Dα

A. It is known that the model check-
ing problem is nonelementary [15,6,25], and at closer inspection the worst case
complexity of the approach presented here is on a par with other approaches.

It is not clear how to extend this method to automata with parity condi-
tions. What is straightforward to do is to extend it to automata that are dual
to automata with trivial acceptance conditions. Automata with trivial accep-
tance conditions are in fact equivalent in expressive power to alternating parity
automata whose all states have rank 0. The dual automata are alternating au-
tomata whose all states have rank 1. Let us call them rank 1 automata. In
particular rank 1 automata accept the complements of the languages accepted
by automata with trivial conditions.

In the theorem above, we have used GFP models: we have interpreted Y
constants as the greatest fixpoint operators. To capture the power of rank 1

58 I. Walukiewicz

automata we take LFP models where Y ’s are interpreted as the least fixpoint
operators, and ω’s as the least elements in corresponding lattices. Dualizing the
argument we get the corresponding result

Theorem 2. For every rank 1 automaton A there is a LFP model EA and a set
FA ⊆ E0 such that for every closed term M of type 0:

BT (M) ∈ L(A) iff [[M]]EA ∈ FA.

4 Conclusions

We have argued that recursive schemes are a fundamental notion that has ap-
peared in a number of areas of computer science like: schematology [27], language
theory [13], and verification [21,32]. For this reason there is a number of different
approaches to view and study schemes. We have suggested yet another one in
this paper. The mixture of the lambda calculus, language theory, and semantics
makes this subject a promising playground for all three disciplines.

Let us hint yet another, more logic based, approach to understand schemes.
Instead of trying to find a new device capable of generating the same trees as
schemes do, one can look for operations on trees or graphs. In the case of safe
schemes this program has been successfully carried out resulting in what is now
called Caucal hierarchy [8]. This is the set of trees obtained from the one node
tree by operations of unfolding of a graph into a tree [12], and MSOL interpreta-
tions. Since both these operations preserve MSOL decidability, we immediately
obtain that all the trees in the Caucal hierarchy have decidable MSOL theory. It
can be then shown that these are up to simple MSOL interpretations precisely
the trees generated by recursive schemes. A number of other characterisations of
this class of trees exist: via rewriting rules, using Muchnik’s unfolding operation,
using higher order pushdown automata (without collapse) [7]. By the result of
Parys [33] we know that there are trees generated by recursive schemes that do
not belong to Caucal hierarchy. One can imagine that there exists some oper-
ation preserving decidability of MSOL theories that allows to obtain all tress
generated by higher-order recursive schemes in the same way as the unfolding
operation does for safe schemes.

References

1. Aehlig, K.: A finite semantics of simply-typed lambda terms for infinite runs of
automata. Logical Methods in Computer Science 3(1), 1–23 (2007)

2. Aehlig, K., de Miranda, J.G., Ong, C.-H.L.: The Monadic Second Order Theory of
Trees Given by Arbitrary Level-Two Recursion Schemes Is Decidable. In: Urzyczyn,
P. (ed.) TLCA 2005. LNCS, vol. 3461, pp. 39–54. Springer, Heidelberg (2005)

3. Aho, A.V.: Indexed grammars – an extension of context-free grammars. J.
ACM 15(4), 647–671 (1968)

4. Barendregt, H.: The type free lambda calculus. In: Handbook of Mathematical
Logic, ch. D.7, pp. 1091–1132. North-Holland (1977)

Simple Models for Recursive Schemes 59

5. Barendregt, H., Klop, J.W.: Applications of infinitary lambda calculus. Inf. Com-
put. 207(5), 559–582 (2009)

6. Cachat, T., Walukiewicz, I.: The Complexity of Games on Higher Order Pushdown
Automata. Internal report

7. Carayol, A., Wöhrle, S.: The Caucal Hierarchy of Infinite Graphs in Terms of
Logic and Higher-Order Pushdown Automata. In: Pandya, P.K., Radhakrishnan,
J. (eds.) FSTTCS 2003. LNCS, vol. 2914, pp. 112–123. Springer, Heidelberg (2003)

8. Caucal, D.: On Infinite Terms Having a Decidable Monadic Theory. In: Diks, K.,
Rytter, W. (eds.) MFCS 2002. LNCS, vol. 2420, pp. 165–176. Springer, Heidelberg
(2002)

9. Courcelle, B.: A representation of trees by languages I. Theor. Comput. Sci. 6,
255–279 (1978)

10. Courcelle, B.: Recursive applicative program schemes. In: Handbook of Theoreti-
cal Computer Science, Volume B: Formal Models and Sematics (B), pp. 459–492.
Elesvier (1990)

11. Courcelle, B., Nivat, M.: Algebraic families of interpretations. In: FOCS (1976)
12. Courcelle, B., Walukiewicz, I.: Monadic second-order logic, graphs and unfoldings

of transition systems. Annals of Pure and Applied Logic 92, 35–62 (1998)
13. Damm, W.: The IO– and OI–hierarchies. Theoretical Computer Science 20(2),

95–208 (1982)
14. Dezani-Ciancaglini, M., Giovannetti, E., de’ Liguoro, U.: Intersection Types,

Lambda-models and Böhm Trees. In: MSJ-Memoir “Theories of Types and Proofs”,
vol. 2, pp. 45–97. Mathematical Society of Japan (1998)

15. Engelfriet, J.: Iterated push-down automata and complexity classes. In: 15th STOC
1983, pp. 365–373 (1983)

16. Engelfriet, J., Schmidt, E.: IO and OI. Journal of Computer and System Sci-
ences 15(3), 328–353 (1977)

17. Hague, M., Murawski, A.S., Ong, C.-H.L., Serre, O.: Collapsible pushdown au-
tomata and recursion schemes. In: LICS 2008, pp. 452–461. IEEE Computer Soci-
ety (2008)

18. Ianov, Y.: The logical schemes of algorithms. In: Problems of Cybernetics I, pp.
82–140. Pergamon, Oxford (1969)

19. Indermark, K.: Schemes with Recursion on Higher Types. In: Mazurkiewicz, A.
(ed.) MFCS 1976. LNCS, vol. 45, pp. 352–358. Springer, Heidelberg (1976)

20. Jancar, P.: Decidability of DPDA language equivalence via first-order grammars.
In: LICS 2012 (2012)

21. Knapik, T., Niwiński, D., Urzyczyn, P.: Higher-Order Pushdown Trees Are Easy.
In: Nielsen, M., Engberg, U. (eds.) FOSSACS 2002. LNCS, vol. 2303, pp. 205–222.
Springer, Heidelberg (2002)

22. Knapik, T., Niwiński, D., Urzyczyn, P., Walukiewicz, I.: Unsafe Grammars and
Panic Automata. In: Caires, L., Italiano, G.F., Monteiro, L., Palamidessi, C.,
Yung, M. (eds.) ICALP 2005. LNCS, vol. 3580, pp. 1450–1461. Springer, Heidelberg
(2005)

23. Kobayashi, N.: Types and higher-order recursion schemes for verification of higher-
order programs. In: POPL 2009, pp. 416–428. ACM (2009)

24. Kobayashi, N.: Higher-order model checking: From theory to practice. In: LICS
2011, pp. 219–224 (2011)

25. Kobayashi, N., Ong, C.-H.L.: Complexity of model checking recursion schemes for
fragments of the modal mu-calculus. Logical Methods in Computer Science 7(4)
(2011)

60 I. Walukiewicz

26. Kobayashi, N., Ong, L.: A type system equivalent to modal mu-calculus model
checking of recursion schemes. In: LICS 2009, pp. 179–188 (2009)

27. Manna, Z.: Mathematical Theory of Computation. McGraw-Hill (1974)
28. Maslov, A.: The hierarchy of indexed languages of an arbitrary level. Soviet. Math.

Doklady 15, 1170–1174 (1974)
29. Maslov, A.: Multilevel stack automata. Problems of Information Transmission 12,

38–43 (1976)
30. Milner, R.: Models of LCF. Memo AIM-186. Stanford University (1973)
31. Nivat, M.: On interpretation of recursive program schemes. In: Symposia Mathe-

matica, vol. 15 (1975)
32. Ong, C.-H.L.: On model-checking trees generated by higher-order recursion

schemes. In: LICS 2006, pp. 81–90 (2006)
33. Parys, P.: On the significance of the collapse operation. In: LICS 2012 (2012)
34. Plotkin, G.D.: LCF considered as a programming language. Theor. Comput.

Sci. 5(3), 223–255 (1977)
35. Salvati, S.: Recognizability in the Simply Typed Lambda-Calculus. In: Ono, H.,

Kanazawa, M., de Queiroz, R. (eds.) WoLLIC 2009. LNCS, vol. 5514, pp. 48–60.
Springer, Heidelberg (2009)

36. Salvati, S., Manzonetto, G., Gehrke, M., Barendregt, H.: Loader and Urzyczyn Are
Logically Related. In: Czumaj, A., Mehlhorn, K., Pitts, A., Wattenhofer, R. (eds.)
ICALP 2012, Part II. LNCS, vol. 7392, pp. 364–376. Springer, Heidelberg (2012)

37. Salvati, S., Walukiewicz, I.: Krivine Machines and Higher-Order Schemes. In:
Aceto, L., Henzinger, M., Sgall, J. (eds.) ICALP 2011, Part II. LNCS, vol. 6756,
pp. 162–173. Springer, Heidelberg (2011)

38. Scott, D.: Continuous lattices. In: Proc. of Dalhousie Conference. Lecture Notes in
Mathematics, vol. 188, pp. 311–366. Springer (1972)

39. Sénizergues, G.: L(A)=L(B)? Decidability results from complete formal systems.
Theor. Comput. Sci. 251(1-2), 1–166 (2001)

40. Sénizergues, G.: L(A)=L(B)? A simplified decidability proof. Theor. Comput.
Sci. 281(1-2), 555–608 (2002)

41. Stirling, C.: Deciding DPDA Equivalence Is Primitive Recursive. In: Widmayer, P.,
Triguero, F., Morales, R., Hennessy, M., Eidenbenz, S., Conejo, R. (eds.) ICALP
2002. LNCS, vol. 2380, pp. 821–832. Springer, Heidelberg (2002)

	Simple Models for Recursive Schemes
	Introduction
	Simply Typed Lambda Calculus and Recursive Schemes
	Models for Model Checking
	Conclusions
	References

