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Abstract. In this work we completely characterize how the frequency
with which each player participates in the game dynamics affects the
possibility of reaching efficient states, i.e., states with an approximation
ratio within a constant factor from the price of anarchy, within a polyno-
mially bounded number of best responses. We focus on the well known
class of linear congestion games and we show that (i) if each player is
allowed to play at least once and at most β times in T best responses,
states with approximation ratio O(β) times the price of anarchy are
reached after T �log log n� best responses, and that (ii) such a bound is
essentially tight also after exponentially many ones. One important con-
sequence of our result is that the fairness among players is a necessary
and sufficient condition for guaranteeing a fast convergence to efficient
states. This answers the important question of the maximum order of β
needed to fast obtain efficient states, left open by [10,11] and [3], in which
fast convergence for constant β and very slow convergence for β = O(n)
have been shown, respectively. Finally, we show that the structure of the
game implicitly affects its performances. In particular, we prove that in
the symmetric setting, in which all players share the same set of strate-
gies, the game always converges to an efficient state after a polynomial
number of best responses, regardless of the frequency each player moves
with. All the results extend to weighted congestion games.

Keywords: Congestion Games, Speed of Convergence, Best Response
Dynamics.

1 Introduction

Congestion games are used for modelling non-cooperative systems in which a set
of resources are shared among a set of selfish players. In a congestion game we

� This research was partially supported by the grant NRF-RF2009-08 “Algorithmic
aspects of coalitional games”, by the PRIN 2008 research project COGENT (COm-
putational and GamE-theoretic aspects of uncoordinated NeTworks), funded by the
Italian Ministry of University and Research, and by Deutsche Forschungsgemein-
schaft (DFG) within the Collaborative Research Center SFB 876 “Providing Infor-
mation by Resource-Constrained Analysis”, project A2.

B. Rovan, V. Sassone, and P. Widmayer (Eds.): MFCS 2012, LNCS 7464, pp. 360–371, 2012.
c© Springer-Verlag Berlin Heidelberg 2012



On the Impact of Fair Best Response Dynamics 361

have a set of m resources and a set of n players. Each player’s strategy consists
of a subset of resources. The delay of a particular resource e depends on its
congestion, corresponding to the number of players choosing e, and the cost of
each player i is the sum of the delays associated with the resources selected by
i. In this work we focus on linear congestion games where the delays are linear
functions. A congestion game is called symmetric if all players share the same
strategy set. A state of the game is any combination of strategies for the players
and its social cost, defined as the sum of the players’ costs, denotes its quality
from a global perspective. The social optimum denotes the minimum possible
social cost among all the states of the game.

Related Work. Rosenthal [14] has shown, by a potential function argument,
that the natural decentralized mechanism known as Nash dynamics consisting
in a sequence of moves in which at each one some player switches its strategy to
a better alternative, is guaranteed to converge to a pure Nash equilibrium [13].

In order to measure the degradation of social welfare due to the selfish be-
havior of the players, Koutsoupias and Papadimitriou [12] defined the price of
anarchy as the worst-case ratio between the social cost in a Nash equilibrium
and that of a social optimum. The price of anarchy for congestion games has
been investigated by Awerbuch et al. [2] and Christodoulou and Koutsoupias
[6]. They both proved that the price of anarchy for congestion games with linear
delays is 5/2.

The existence of a potential function relates the class of congestion games
to the class of polynomial local search problems (PLS) [8]. Fabrikant et al. [9]
proved that, even for symmetric congestion games, the problem of computing
Nash equilibria is PLS-complete [8]. One major consequence of the completeness
result is the existence of congestion games with initial states such that any
improvement sequence starting from these states needs an exponential number
of steps in the number of players n in order to reach a Nash equilibrium. A recent
result by Ackermann et al. [1] shows that the previous negative result holds even
in the restricted case of congestion games with linear delay functions.

The negative results on computing equilibria in congestion games have lead
to the development of the concept of ε-Nash equilibrium, in which no player
can decrease its cost by a factor of more than ε. Unfortunately, as shown by
Skopalik and Vöcking [15], also the problem of finding an ε-Nash equilibrium in
congestion games is PLS-complete for any ε, though, under some restrictions on
the delay functions, Chien and Sinclair [5] proved that in symmetric congestion
games the convergence to ε-Nash equilibrium is polynomial in the description
of the game and the minimal number of steps within which each player has a
chance to move.

Since negative results tend to dominate the issues relative to the complex-
ity of computing equilibria, another natural arising question is whether efficient
states (with a social cost comparable to the one of any Nash equilibrium) can be
reached by best response moves in a reasonable amount of time (e.g., [3,7,10,11]).
We measure the efficiency of a state by the ratio among its cost and the optimal
one, and we refer to it as the approximation ratio of the state. We generally say
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that a state is efficient when its approximation ratio is within a constant factor
from the price of anarchy. Since the price of anarchy of linear congestion games
is known to be constant [2,6], efficient states approximate the social optimum
by a constant factor. While Bilò et al. [4] considered such a problem restricted
to the case in which the dynamics start from an empty state, proving that in
such a setting an efficient state can be reached by allowing each player to move
exactly once, we focus on the more general setting in which the dynamics start
from a generic state. It is worth noticing that in the worst case, a generic Nash
dynamics starting from an arbitrary state could never reach a state with an ap-
proximation ratio lower than the price of anarchy. Furthermore, by a potential
function argument it is easy to show that in a linear congestion game, once a
state S with a social cost C(S) is reached, even if such a state is not a Nash
equilibrium, we are guaranteed that for any subsequent state S′ of the dynamics,
C(S′) = O(C(S)).
Awerbuch et al. [3] have proved that for linear congestion games, sequences of
moves reducing the cost of each player by at least a factor of ε, converge to
efficient states in a number of moves polynomial in 1/ε and the number of play-
ers, under the minimal liveness condition that every player moves at least once
every polynomial number of moves. Under the same liveness condition, they also
proved that exact best response dynamics can guarantee the convergence to effi-
cient states only after an exponential number of best responses [3]. Nevertheless,
Fanelli et al. [10] have shown that, under more restrictive condition that each
player plays exactly once every n best responses, any best response dynamics
converges to an efficient state after Θ(n log logn) best responses. Subsequently,
Fanelli and Moscardelli [11] extended the previous results to the more general
case in which each player plays a constant number of times every O(n) best
responses.

Our Contribution. In this work we completely characterize how the fre-
quency with which each player participates in the game dynamics affects the
possibility of reaching efficient states. In particular, we close the most impor-
tant open problem left open by [3] and [10,11] for linear congestion games. On
the one hand, in [3] it is shown that, even after an exponential number of best

responses, states with a very high approximation ratio, namely Ω
( √

n
logn

)
, can

be reached. On the other hand, in [10,11] it is shown that, under the minimal
liveness condition in which every player moves at least once every T steps, if
players perform best responses such that each player is allowed to play at most
β = O(1) times any T steps (notice that β = O(1) implies T = O(n)), after
T �log logn� best responses a state with a constant factor approximation ratio is
reached.

The more β increases, the less the dynamics is fair with respect to the chance
every player has of performing a best response: β measures the degree of unfair-
ness of the dynamics. The important left open question was that of determining
the maximum order of β needed to obtain fast convergence to efficient states:
We answer this question by proving that, after T �log logn� best responses, the
dynamics reaches states with an approximation ratio of O(β). Such a result is
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essentially tight since we are also able to show that, for any ε > 0, there exist
congestion games for which, even for an exponential number of best responses,
states with an approximation ratio of Ω(β1−ε) are obtained. Therefore, β con-
stant as assumed in [10,11] is not only sufficient, but also necessary in order to
reach efficient states after a polynomial number of best responses.

Finally, in the special case of symmetric congestion games, we show that
the unfairness in best response dynamics does not affect the fast convergence to
efficient states; namely, we prove that, for any β, after T �log logn� best responses
efficient states are always reached.

The paper is organized as follows: In the next section we provide the basic
notation and definitions. Section 3 is devoted to the study of generic linear
congestion games, while Section 4 analyzes the symmetric case. Finally, Section
5 provides some extensions of the results and gives some conclusive remarks.

2 Model and Definitions

A congestion game G = (N,E, (Σi)i∈N , (fe)e∈E , (ci)i∈N ) is a non-cooperative
strategic game characterized by the existence of a set E of resources to be shared
by n players in N = {1, . . . , n}.

Any strategy si ∈ Σi of player i ∈ N is a subset of resources, i.e., Σi ⊆ 2E . A
congestion game is called symmetric if all players share the same set of strategies,
i.e., Σ = Σi for every i ∈ N . Given a state or strategy profile S = (s1, . . . , sn)
and a resource e, the number of players using e in S, called the congestion on e, is
denoted by ne(S) = |{i ∈ N | e ∈ si}|. A delay function fe : N �→ Q

+ associates
to resource e a delay depending on the congestion on e, so that the cost of player
i for the pure strategy si is given by the sum of the delays associated with the
resources in si, i.e., ci(S) =

∑
e∈si

fe(ne(S)).
In this paper we will focus on linear congestion games, that is having linear

delay functions with nonnegative coefficients. More precisely, for every resource
e ∈ E, fe(x) = aex+ be for every resource e ∈ E, with ae, be ∈ Q

+.
Given the strategy profile S = (s1, . . . , sn), the social cost C(S) of a given

state S is defined as the sum of all the players’ costs, i.e., C(S) =
∑

i∈N ci(S).
An optimal strategy profile S∗ = (s∗1, . . . , s

∗
n) is one having minimum social

cost; we denote C(S∗) by Opt. The approximation ratio of state S is given

by the ratio between the social cost of S and the social optimum, i.e., C(S)
Opt .

Moreover, given the strategy profile S = (s1, s2, . . . , sn) and a strategy s′i ∈ Σi,
let (S−i, s

′
i) = (s1, s2, . . . , si−1, s

′
i, si+1, . . . , sn), i.e., the strategy profile obtained

from S if player i changes its strategy from si to s′i.
The potential function is defined as Φ(S) =

∑
e∈E

∑ne(S)
j=1 fe(j). It is an exact

potential function since it satisfies the property that for each player i and each
strategy s′i ∈ Σi of i in S, it holds that ci(S−i, s

′
i) − ci(S) = Φ(S−i, s

′
i) − Φ(S).

It is worth noticing that in linear congestion games, for any state S, it holds
Φ(S) ≤ C(S) ≤ 2Φ(S).

Each player acts selfishly and aims at choosing the strategy decreasing its cost,
given the strategy choices of other players. A best response of player i in S is a
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strategy sbi ∈ Σi yielding the minimum possible cost, given the strategy choices
of the other players, i.e., ci(S−i, s

b
i) ≤ ci(S−i, s

′
i) for any other strategy s′i ∈ Σi.

Moreover, if no s′i ∈ Σi is such that ci(S−i, s
′
i) < ci(S), the best response of i in

S is si. We call a best response dynamics any sequence of best responses.
Given a best response dynamics starting from an arbitrary state, we are inter-

ested in the social cost of its final state. To this aim, we must consider dynamics
in which each player performs a best response at least once in a given number T
of best responses, otherwise one or more players could be “locked out” for arbi-
trarily long and we could not expect to bound the social cost of the state reached
at the end of the dynamics. Therefore, we define a T -covering as a dynamics of
T consecutive best responses in which each player moves at least once. More
precisely, a T -covering R =

(
S0
R, . . . , S

T
R

)
is composed of T best responses; S0

R

is said to be the initial state of R and ST
R is its final state. For every 1 ≤ t ≤ T ,

let πR(t) be the player performing the t-th best response of R; πR is such that
every player performs at least a best response in R. In particular, for every

1 ≤ t ≤ T , St
R =

(
(St−1

R )−πR(t), s
′
πR(t)

)
and s′πR(t) is a best response of player

πR(t) to St−1
R . For any i = 1, . . . , n, the last best response performed by player

i in R is the lastR(i)-th best response of R, leading from state SlastR(i)−1 to
state SlastR(i). When clear from the context, we will drop the index R from the
notation, writing Si, π and last(i) instead of Si

R, πR and lastR(i), respectively.

Definition 1 (T -Minimum Liveness Condition). Given any T ≥ n, a best
response dynamics satisfies the T -Minimum Liveness Condition if it can be de-
composed into a sequence of consecutive T -coverings.

In Section 3.2 we show that (for the general asymmetric case) under such a
condition the quality of the reached state can be very bad even considering
T = O(n) (see Corollary 1): It is worth noticing that in the considered congestion
game, only 4

√
n players perform a lot of best responses (

√
n best responses)

in each covering, while the remaining n − 4
√
n players perform only one best

response every T -covering. The idea here is that there is a sort of unfairness in
the dynamics, given by the fact that the players do not have the same chances
of performing best responses.

In order to quantify the impact of fairness on best response dynamics, we need
an additional parameter β and we define a β-bounded T -covering as a T -covering
in which every player performs at most β best responses.

Definition 2 ((T, β)-Fairness Condition). Given any positive integers β and
T such that n ≤ T ≤ β · n, a dynamics satisfies the (T, β)-Fairness Condition if
it can be decomposed into a sequence of consecutive β-bounded T -coverings.

Notice that β is a sort of (un)fairness index: If β is constant, it means that every
player plays at most a constant number of times in each T -covering and therefore
the dynamics can be considered fair.

In order to prove our upper bound results, we will focus our attention on
particular congestion games to which any linear congestion game is best-response
reducible. The following definition formally states such a notion of reduction.



On the Impact of Fair Best Response Dynamics 365

Definition 3 (Best-Response Reduction). A congestion game G is Best-
Response reducible to a congestion game G′ with the same set of players if there
exists an injective function g mapping any strategy profile S of G to a strategy
profile g(S) of G′ such that

(i) for any i = 1, . . . , n the cost of player i in S is equal to the one of player i
in g(S)

(ii) for any i = 1, . . . , n, there exists, in the game G, a best response of player
i in S leading to state S′ if and only if there exists, in the game G′, a best
response of player i in g(S) leading to state g(S′).

3 Asymmetric Congestion Games

In this section we first (in Subsection 3.1) provide an upper bound to the ap-
proximation ratio of the states reached after a dynamics satisfying the (T, β)-
Minimum Liveness Condition, starting from an arbitrary state and composed
by a number of best responses polynomial in n. Finally (in Subsection 3.2), we
provide an almost matching lower bound holding for dynamics satisfying the
same conditions.

3.1 Upper Bound

All the results hold for linear congestion games having delay functions fe(x) =
aex+be with ae, be ≥ 0 for every e ∈ E. Since our bounds are given as a function
of the number of players, as shown in [10], the following proposition allows us
to focus on congestion games with identical delay functions f(x) = x.

Proposition 1 ([10]). Any linear congestion game is best-response reducible to
a congestion game having the same set of players and identical delay functions
f(x) = x.

Since the dynamics satisfies the (T, β)-Fairness Condition, we can decompose it
into k β-bounded T -coverings R1, . . . , Rk.

Consider a generic β-bounded T -covering R =
(
S0, . . . , ST

)
. In the following

we will often consider the immediate costs (or delays) of players during R, that
is the cost cπ(t)(S

t) right after the best response of player π(t), for t = 1, . . . , T .
Given an optimal strategy profile S∗, since the t-th player π(t) performing a

best response, before doing it, can always select the strategy she would use in S∗,
her immediate cost can be suitably upper bounded as

∑
e∈s∗

π(t)

(
ne(S

t−1) + 1
)
.

By extending and strengthening the technique of [10,11], we are able to prove
that the best response dynamics satisfying the (T, β)-Fairness Condition fast
converges to states approximating the social optimum by a factor O(β). It is
worth noticing that, by exploiting the technique of [10,11], only a much worse
bound of O(β2) could be proved. In order to obtain an O(β) bound, we need to
develop a different and more involved technique, in which also the functions ρ
and H , introduced in [10,11], have to be redefined: roughly speaking, they now
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must take into account only the last move in R of each player, whereas in [10,11]
they were accounting for all the moves in R.

We now introduce functions ρ and H , defined over the set of all the possible
β-bounded T -coverings:

– Let ρ(R) =
∑n

i=1

∑
e∈s∗i

(
ne(S

lastR(i)−1) + 1
)
;

– let H(R) =
∑n

i=1

∑
e∈s∗i

ne(S
0).

Notice that ρ(R) is an upper bound to the sum over all the players of the cost
that she would experience on her optimal strategy s∗i just before her last move
in R, whereas H(R) represents the sum over all the players of the delay on the
moving player’s optimal strategy s∗i in the initial state S0 of R. Moreover, since
players perform best responses,

∑n
i=1 ci(S

lastR(i)) ≤ ρ(R), i.e. ρ(R) is an upper
bound to the sum of the immediate costs over the last moves of every players.

The upper bound proof is structured as follows. Lemma 1 relates the social
cost of the final state ST of a β-bounded T -covering R with ρ(R), by showing
that C(ST ) ≤ 2ρ(R). Let R and R be two consecutive β-bounded T -coverings;
by exploiting Lemmata 2 and 3, providing an upper (lower, respectively) bound
to H(R) in terms of ρ(R) (ρ(R), respectively), Lemma 4 proves that ρ

Opt rapidly

decreases between R and R, showing that ρ(R)
Opt = O

(√
ρ(R)
Opt

)
. In the proof of

Theorem 1, after deriving a trivial upper bound equal to O(n) for ρ(R1), Lemma
4 is applied to all the k− 1 couples of consecutive β-bounded T -coverings of the
considered dynamics satisfying the (T, β)-Fairness Condition.

The following lemmata show that the social cost at the end of any β-bounded

T -covering R is at most 2ρ(R), and that ρ(·)
Opt fast decreases between two consec-

utive β-bounded T -coverings. They can be proved by adapting some proofs in
[10,11] so that they still hold with the new definition of ρ.

Lemma 1. For any β ≥ 1, given a β-bounded T -covering R, C(ST ) ≤ 2ρ(R).

Lemma 2. For any β ≥ 1, given a β-bounded T -covering R ending in ST ,
∑

e∈E ne(S
T )ne(S

∗)
Opt ≤

√
2 ρ(R)

Opt .

In Lemma 3 we are able to relate ρ(R) and H(R) by much strengthening the
technique exploited in [10,11].

Lemma 3. For any β ≥ 1, given a β-bounded T -covering R, ρ(R)
Opt ≤ 2H(R)

Opt +
4β + 1.

Proof. Let N̄ be the set of players changing their strategies by performing best
responses in R. First of all, notice that if the players in N̄ never select strategies
used by some player in S∗, i.e. if they select only resources e such that ne(S

∗) = 0,
then, by recalling the definitions of ρ(R) and H(R), ρ(R) ≤ H(R) + Opt and
the claim would easily follow for any β ≥ 1.

In the following our aim is that of dealing with the generic case in which play-
ers moving in R can increase the congestions on resources e such that ne(S

∗) > 0.
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For every resource e ∈ E, we focus on the congestion on such a resource above
a “virtual” congestion frontier ge = 2βne(S

∗).
We assume that at the beginning of covering R each resource e ∈ E has a

congestion equal to δ0,e = max{ne(S
0), ge}, and we call δ0,e the congestion of

level 0 on resource e; moreover, Δ0 =
∑

e∈E δ0,e · ne(S
∗) is an upper bound to

H(R). We refer to Δ0 as the total congestion of level 0.
The idea is that the total congestion of level 0 can induce on the resources

a congestion (over the frontier ge) being the total congestion of level 1, such a
congestion a total congestion of level 2, and so on. More formally, for any p ≥ 1
and any e ∈ E, we define δp,e as the congestion of level p on resource e above
the frontier ge; we say that a congestion δp,e of level p on resource e is induced
by an amount xp,e of congestion of level p − 1 if some players (say, players in
Np,e) moving on e can cause such a congestion of level p on e because they
are experimenting a delay on the resources of their optimal strategies due to an
amount xp,e of congestion of level p. Notice that, for each move of the players in
Np,e, such an amount xp,e of congestion of level p− 1 can be used only once, i.e.
it cannot be used in order to induce a congestion of level p for other resources
in E \ {e}. In other words, xp,e is the overall congestion of level p − 1 on the
resources in the optimal strategies of players in Np,e used in order to induce the
congestion δp,e of level p on resource e.

For any p, the total congestion of level p is defined asΔp =
∑

e∈E δp,e · ne(S
∗).

Moreover, for any p ≥ 1, we have that
∑

e∈E xp,e ≤ βΔp−1 because each player
can move at most β times in R and therefore the total congestion of level p− 1
can be used at most β times in order to induce the total congestion of level p.

It is worth noticing that ρ(R) ≤ ∑∞
p=0 Δp + Opt, because

∑∞
p=0 δp,e is an

upper bound on the congestion of resource e during the whole covering R:

ρ(R) =

n∑
i=1

∑
e∈s∗i

(
ne(S

last(i)−1) + 1
)

≤
n∑

i=1

∑
e∈s∗i

( ∞∑
p=0

δp,e + 1

)
=

∑
e∈E

(
ne(S

∗)

( ∞∑
p=0

δp,e + 1

))

=
∑
e∈E

∞∑
p=0

δp,ene(S
∗) +

∑
e∈E

ne(S
∗) =

∞∑
p=0

Δp +Opt

In the following, we bound
∑∞

p=0 Δp from above.

Δp =
∑
e∈E

δp,e · ne(S
∗) ≤

∑
e∈E

xp,e

ge
· ne(S

∗) ≤
∑
e∈E

xp,e

2βne(S∗)
· ne(S

∗) ≤ Δp−1

2
,

where the first inequality holds because δp,e is the portion of congestion on
resource e above the frontier ge due to some moving players having on the
resources of their optimal strategy a delay equal to xp,e, and the last inequality
holds because each player can move at most β times in R and therefore the total
congestion of level p−1 can be used at most β times in order to induce the total
congestion of level p.
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We thus obtain that, for any p ≥ 0, Δp ≤ Δ0

2p and
∑∞

p=0 Δp ≤ 2Δ0.

Since Δ0 =
∑

e∈E max{ne(S
0), 2βne(S

∗)} · ne(S
∗) ≤ H(R) + 2βOpt and

ρ(R) ≤ ∑∞
p=0 Δp +Opt ≤ 2Δ0 +Opt, we finally obtain the claim. ��

By combining Lemmata 2 and 3, it is possible to prove the following lemma

showing that ρ(R)
Opt fast decreases between two consecutive coverings.

Lemma 4. For any β ≥ 1, given two consecutive β-bounded T -coverings R and

R, ρ(R)
Opt ≤ 2

√
2 ρ(R)

Opt + 4β + 1.

By applying Lemma 4 to all the couples of consecutive β-bounded T -coverings,
we are now able to prove the following theorem.

Theorem 1. Given a linear congestion game, any best response dynamics sat-
isfying the (T, β)-Fairness Condition converges from any initial state to a state

S such that C(S)
Opt = O(β) in at most T �log logn� best responses.

3.2 Lower Bound

Theorem 2. For any ε > 0, there exist a linear congestion game G and an

initial state S0 such that, for any β = O(n− 1
log2 ε ), there exists a best response

dynamics starting from S0 and satisfying the (T, β)-Fairness Condition such that
for a number of best responses exponential in n the cost of the reached states is
always Ω(β1−ε ·Opt).

By choosing β =
√
n and considering a simplified version of the proof giving the

above lower bound, it is possible to prove the following corollary. In particular,
it shows that even in the case of best response dynamics verifying an O(n)-
Minimum Liveness Condition, the speed of convergence to efficient states is
very slow; such a fact implies that the T -Minimum Liveness condition cannot
precisely characterize the speed of convergence to efficient states because it does
not capture the notion of fairness in best response dynamics.

Corollary 1. There exist a linear congestion game G, an initial state S0 and
a best response dynamics starting from S0 and satisfying the O(n)-Minimum
Liveness Condition such that for a number of best responses exponential in n the

cost of the reached states is always Ω
(

4
√
n

logn ·Opt
)
.

4 Symmetric Congestion Games

In this section we show that in the symmetric case the unfairness in best re-
sponse dynamics does not affect the speed of convergence to efficient states. In
particular, we are able to show that, for any β, after T �log log n� best responses
an efficient state is always reached. To this aim, in the following we consider best
response dynamics satisfying only the T -Minimum Liveness Condition, i.e. best
response dynamics decomposable into k T -coverings R1, . . . , Rk.
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All the results hold for linear congestion games having delay functions fe(x) =
aex + be with ae, be ≥ 0 for every e ∈ E. Analogously to the asymmetric case,
since our bounds are given as a function of the number of players, the following
proposition allows us to focus on congestion games with identical delay functions
f(x) = x.

Proposition 2. Any symmetric linear congestion game is best-response re-
ducible to a symmetric congestion game having the same set of players and
identical delay functions f(x) = x.

Consider a generic T -covering R =
(
S0, . . . , ST

)
. Given an optimal strategy pro-

file S∗, since player i, before performing her last best response, can always select
any strategy s∗j , for j = 1 . . . n, of S∗, her immediate cost ci(S

last(i)) can be upper

bounded as 1
n

∑n
j=1

∑
e∈s∗j

(ne(S
last(i)−1)+1) = 1

n

∑
e∈E ne(S

∗)(ne(S
last(i)−1)+

1). In order to prove our upper bound result, we introduce the following function:

– Γ (R) = 1
n

∑n
i=1

∑
e∈E ne(S

∗)(ne(S
last(i)−1) + 1).

Notice that Γ (R) is an upper bound to the sum of the immediate cost over
the last moves of every players, i.e., Γ (R) ≥ ∑n

i=1 ci(S
lastR(i)). Therefore, by

exploiting the same arguments used in the proof of Lemma 1, it is possible to
prove the following lemma relating the social cost C(ST ) at the end of R with
Γ (R).

Lemma 5. Given any T -covering R, C(ST ) ≤ 2Γ (R).

Moreover, given any T -covering R, we can relate the social cost C(ST ) of the
final state of R with the cost C(S0) of its initial state.

Lemma 6. Given any T -covering R, C(ST )
Opt ≤ (2 + 2

√
2)
√

C(S0)
Opt .

Proof.

C(ST )

Opt
≤ 2Γ (R)

Opt
(1)

=
2

nOpt

n∑
i=1

∑
e∈E

ne(S
∗)(ne(S

last(i)−1) + 1)

=
2

nOpt

(
n∑

i=1

∑
e∈E

ne(S
∗)ne(S

last(i)−1) +

n∑
i=1

∑
e∈E

ne(S
∗)

)

≤ 2 +
2

nOpt

n∑
i=1

∑
e∈E

ne(S
∗)ne(S

last(i)−1)

≤ 2 +
2

nOpt

n∑
i=1

√∑
e∈E

n2
e(S

∗)
√∑

e∈E

n2
e(S

last(i)−1) (2)

= 2 +
2

nOpt

n∑
i=1

√
Opt

√
C(Slast(i)−1)
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≤ 2 +
2

n
√
Opt

n∑
i=1

√
2Φ(Slast(i)−1) (3)

≤ 2 +
2

n
√
Opt

n∑
i=1

√
2Φ(S0) (4)

≤ 2 + 2
√
2

√
C(S0)

Opt
(5)

≤ (2 + 2
√
2)

√
C(S0)

Opt
,

where inequality (1) follows from Lemma 5, inequality (2) is due to the
application of the Cauchy-Schwarz inequality, inequality (3) holds because
C(Slast(i)−1) ≤ 2Φ(Slast(i)−1), inequality (4) holds because the potential func-
tion can only decrease at each best response and inequality (5) holds because
Φ(S0) ≤ C(S0). ��
By applying Lemma 6 to all the pairs of consecutive T -coverings, we are now
able to prove the following theorem.

Theorem 3. Given a linear symmetric congestion game, any best response dy-
namics satisfying the T -Minimum Liveness Condition converges from any initial

state to a state S such that C(S)
Opt = O(1) in at most T �log logn� best responses.

5 Extensions and Final Remarks

All the results extend to the setting of weighted congestion games, in which any
player i ∈ N is associated a weight wi ≥ 1; notice that it is possible to assume
without loss of generality that wi ≥ 1 for any i ∈ N because it is always possible
to suitably scale all the weights (and accordingly the coefficients of the latency
functions) in order to obtain such a condition. Let W =

∑n
i=1 wi. We denote

by le(S) the congestion on resource e in a state S, i.e. le(S) =
∑

i|e∈Si
wi. The

cost of player i in state S is ci(S) = wi

∑
e∈Si

fe(le(S)). The social cost is given
by the sum of the players costs: C(S) =

∑
i∈N ci(S) =

∑
e∈E lefe(le(S)). The

following theorems hold.

Theorem 4. Given a linear weighted congestion game, any best response dy-
namics satisfying the (T, β)-Fairness Condition converges from any initial state

to a state S such that C(S)
Opt = O(β) in at most T �log logW � best responses.

Theorem 5. Given a linear weighted symmetric congestion game, any best re-
sponse dynamics satisfying the T -Minimum Liveness Condition converges from

any initial state to a state S such that C(S)
Opt = O(1) in at most T �log logW � best

responses.

As a final remark, it is worth to note that our techniques provide a much faster
convergence to efficient states with respect to the previous result in the literature.
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In particular, in the symmetric setting, Theorem 3 shows that best response
dynamics leads to efficient states much faster than how ε-Nash dynamics (i.e.,
sequences of moves reducing the cost of a player by at least a factor of ε) leads to
ε-Nash equilibria [5]. Furthermore, also in the more general asymmetric setting,
Theorem 1 shows that the same holds for fair best response dynamics with
respect to ε-Nash ones [3].
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