
New Advances in Reoptimizing the Minimum

Steiner Tree Problem

Davide Bilò1 and Anna Zych2

1 Dip.to di Teorie e Ricerche dei Sistemi Culturali, University of Sassari, Italy
2 Uniwersytet Warszawski
davide.bilo@uniss.it

Abstract. In this paper we improve the results in the literature concern-
ing the problem of computing the minimum Steiner tree given the mini-
mum Steiner tree for a similar problem instance. Using a σ-approximation
algorithm computing the minimum Steiner tree from scratch, we provide

a
(

3σ−1
2σ−1

+ ε
)
and a

(
2σ−1

σ
+ ε

)
-approximation algorithm for altering the

instance by removing a vertex from the terminal set and by increasing
the cost of an edge, respectively. If we use the best up to date σ = ln 4+ε,
our ratios equal 1.218 and 1.279 respectively.

1 Introduction

The concept of reoptimization adds an interesting twist to hard optimization
problems. It is motivated by the fact, that when confronted with a hard problem
in reality, one often has some additional information about an instance at hand.
Imagine for example a train station where the train traffic is regulated via a
certain time schedule. The schedule is computed when the station is ready to
operate and, provided that an unexpected event does not occur, there is no
need to compute it again. Unfortunately an unexpected event, such as a delayed
train, is in a long run inevitable. Reoptimization addresses this scenario, asking
whether knowing a solution for a certain problem instance is beneficial when
computing a solution for a similar instance. When dealing with relatively stable
environments, i. e., where changing conditions alter the environment only for a
short period of time, it seems reasonable to spend even a tremendous amount
of time on computing a good solution for the undisturbed instance, and profit
from it when confronted with a temporal change.

The term reoptimization was mentioned for the first time in [20] and applied
to the problem of scheduling with forbidden sets for the scenarios of adding or
removing a forbidden set. Since then, the concept of reoptimization has been
successfully applied to various problems like the Traveling Salesman problem
[3,1,8,11], the Steiner Tree problem [22,5,9,13,16], the Knapsack problem [2],
the Weighted Minimum Set Cover problem [17], various covering problems [7],
and the Shortest Common Superstring problem [6]. A survey of reoptimization
problems can be found in [10,15].

The Minimum Steiner Tree (SMT) problem is a very prominent optimization
problem with many practical applications, especially in network design. It is

B. Rovan, V. Sassone, and P. Widmayer (Eds.): MFCS 2012, LNCS 7464, pp. 184–197, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

New Advances in Reoptimizing the Minimum Steiner Tree Problem 185

APX-complete [4]. The best up to date approximation ratio is due to a ran-
domized ln 4+ ε-approximation algorithm [12]. The best deterministic algorithm
achieves an approximation ratio of 1.55 [19]. The problem of reoptimizing SMT
where the modification of an instance consists of adding or removing one vertex
to/from the input graph was considered in [14]. The modifications of adding or
removing a vertex to/from the terminal set and increasing or decreasing the cost
of an edge was addressed in [9,5]. All these reoptimization problems are strongly
NP-hard [9].

We improve in this paper the best up to date results for SMT under removing
a terminal from the terminal set and for SMT under increasing the cost of an
edge, complementing the new results in [22] for SMT under adding a terminal
to the terminal set. We achieve a 1.218 approximation ratio for the scenario
of removing a terminal and 1.279 for the scenario of edge cost increase. For
the terminal addition and edge cost decrease the best ratios remain 1.218 [22]
and 1.246 [5] respectively.1 It is worth to remark that, contrary to [5], for the
modification of decreasing the cost of an edge we do not assume that the modified
graph remains metric.

For both reoptimization scenarios considered in this paper we employ the
technique developed in [22]. Nevertheless, for both scenarios, the technique can-
not be applied directly as for the scenario of adding a terminal to the terminal
set. The heart of the paper is Lemma 3, which settles an important property
that allows successfully applying the technique.

2 Preliminaries

Let us begin with a formal definition of the Minimum Steiner Tree Problem
(SMT). We call a complete graph G = (V,E, cost) with the cost function
cost : E → Q+ metric if the edge weights satisfy the triangle inequality, i.e,
cost({u, v}) ≤ cost({u,w}) + cost({w, v}) for all u, v, w ∈ V .

Definition 1. Minimum Steiner Tree Problem (SMT)

Instance: a metric graph G = (V,E, cost) and a terminal set S ⊆ V ;
Solution: a Steiner tree, i.e., a subtree of G containing S;
Objective: minimize the sum of the costs of the edges in the solution.

We view an algorithm as a function from the instance space to the solution space.
Some of our results use an approximation algorithm for SMT as a subroutine
and refer to it as ApprSMT. Any of the approximation algorithms for SMT can
be used as ApprSMT.

1. The Minimum Steiner Tree Terminal Removal problem
Instance: a metric graph G = (V,E, cost), a terminal set S, an optimal
solution Opt to (G,S), and a modified terminal set S′ = S \ {t} for some
t ∈ S;
Solution: a Steiner tree for (G,S′).

1 In [5] the authors provide a 5σ−3
3σ−1

-approximation algorithm, where σ is the approxi-
mation ratio of an algorithm for the Steiner tree problem.

186 D. Bilò and A. Zych

2. The minimum Steiner Tree Edge Cost Increase problem
Instance: a metric graph G = (V,E, cost), a terminal set S ⊆ V , an optimal
solution Opt to (G,S), and a modified graph G′ = (V,E, cost′), where cost′

coincides with cost on all edges but one edge e∗ and cost(e∗) < cost′(e∗);
Solution: a Steiner tree for (G′, S).

We introduce the notation used in the paper. Given a simple graph G, we denote
the set of its vertices by V (G) and the set of its edges by E(G). We denote an
(undirected) edge e ∈ E(G) by {u, v}, where u, v ∈ V (G) are the endpoints of
e. If H is a subgraph of G, we write H ⊆ G. An edge {u, v} ∈ E(G) can be
identified with a subgraph H ⊆ G with V (H) = {u, v} and E(H) = {{u, v}}.
The neighborhood ΓG(v) of a vertex v ∈ V (G) in a graph G is the set of vertices
adjacent to v in E(G). The degree of a vertex v ∈ V (G) is defined as the
size of its neighborhood: degG(v) = |ΓG(v)|. For two subgraphs G1, G2 ⊆ G
we denote by G1 ∪ G2 a graph G′ such that V (G′) = V (G1) ∪ V (G2) and
E(G′) = E(G1) ∪E(G2). For two subgraphs G1, G2 ⊆ G we denote by G1 −G2

a graph G′ such that E(G′) = E(G1) \ E(G2) and V (G′) is V (G1) without
isolated vertices. To analyze our algorithms, we often refer to costs of graphs
rather than edges. The cost of graph G1 ⊆ G is denoted by cost(G1) and is the
sum of the costs of all edges in E(G1).

A path P = (V (P), E(P)) is a connected graph in which two vertices have
degree one (called the endpoints of the path) and the remaining ones have degree
two. The length of a path is its number of edges. In a shortest path, the length
of the path is minimized whereas in a cheapest path its cost is minimized. A
forest is a graph that consists of a union of disjoint trees: F = T1 ∪ · · · ∪ Tm.
We denote the number of trees in F as |F |T .

For a graph G = (V,E, cost) with an arbitrary edge weight function cost :
E → Q+, we denote by G = (V, {{u, v} | u, v ∈ V, u �= v}, cost) the metric
closure of G, i.e., the complete graph on V (G) where cost({u, v}) is defined as
the cost of the cheapest path in G from u to v. Observe that G is metric. The
optimal Steiner tree for an arbitrarily edge weighted graph G and for its metric
closure G coincide due to Lemma 1, whose proof can be found in [18].

Lemma 1. Let G = (V,E, cost) be an edge-weighted graph and S ⊆ V be a set
of terminals. If a tree T is a minimum Steiner tree for (G,S) then it is also a
minimum Steiner tree for (G,S). Moreover, any Steiner tree T ′ for (G,S) can
be easily transformed to a Steiner tree for (G,S) of cost less than or equal to the
cost of T ′.

The lemma above implies that for both SMT problem and SMT under removing
a vertex from the terminal set the restriction on the input graph to be metric
and complete does not cause any loss of generality. A similar restriction for the
scenario of edge cost increase is discussed in Section 4.

Observation 1. Due to the metricity and completeness of the graph we may
assume without loss of generality that degOpt(v) ≥ 3 for an optimal solution
Opt to any SMT problem instance (G,S) and any v ∈ V (Opt) \ S.

New Advances in Reoptimizing the Minimum Steiner Tree Problem 187

3 The SMT Terminal Removal Problem

Before we move on to the SMT Terminal Removal problem, we introduce a few
techniques and observations that will be used later. We start with the technique
introduced in [21], which relies on executing an approximation algorithm for
SMT on a reduced instance and expanding the obtained solution. The technique
is based on the procedure SApprSMT presented in Algorithm 1. This procedure,
for a given instance (G,S) of SMT and a forest F of trees contained in G, con-
tracts the edges of F . Routine Δ, given an SMT instance and an edge, computes
another, reduced instance of SMT, where the edge is contracted to a single node
which becomes a terminal in the reduced instance. Additionally, if the contrac-
tion creates multiple edges, the cheapest one is chosen for each pair of vertices (in
other words, the metric closure is computed). Then a σ-approximation algorithm
ApprSMT for SMT is applied on the obtained reduced instance. After adding
the contracted edges to the resulting solution, the modified solution becomes
feasible for the original instance.

Algorithm 1. SApprSMT

Input: A metric graph G, a terminal set S ⊆ V (G), a forest F = T1 ∪ · · · ∪ Tk

1: (G0, S0) := (G,S)
2: for all edges e in E(F) do
3: (Gj , Sj) := Δ((Gj−1, Sj−1), ej)
4: end for
5: T := ApprSMT(Gk, Sk)
Output: T ∪ F

Lemma 2. If F ⊆ Opt(G,S) then the algorithm SApprSMT((G,S), F) returns a
solution of cost at most σOpt(G,S)−(σ−1)cost(F) where σ is the approximation
ratio of ApprSMT. Proof to be found in [5,21].

The next remark states that it is enough to consider the case when the removed
terminal t has at least two neighbors in Opt.

Remark 1. Let Opt be the optimal solution to (G,S) given in the input of the
SMT under removing a vertex from the terminal set. Let t ∈ S be the terminal
removed from S, i.e., S′ = S \ {t}. We may assume that degOpt(t) ≥ 2.

Proof. If there is only one edge e = {t, v} adjacent to t in Opt, then Opt− e is
an optimal solution to (G,S \ {t} ∪ {v}). If v ∈ S′ then Opt − e is optimal to
(G,S′). Otherwise we build a new instance for the SMT under removing a vertex
from the terminal set. We let the non-modified instance to be (G,S \ {t} ∪ {v})
with the optimal solution Opt−e. Then we let the terminal to be removed be v,
so the modified set of terminals is S \ {t} which is equal to S′. For the instance
we have it holds that degOpt−e(v) ≥ 2. 	

188 D. Bilò and A. Zych

Below we introduce a lemma that settles an important property of Opt′. The
lemma holds for any optimal Steiner tree, but we formulate it using Opt′, be-
cause we want to apply it to Opt′. We define a binary tree as a tree where
there is just one vertex of degree 2 called root, and every other vertex has either
degree 1 (a leaf) or 3 (an inner vertex). The set of leaves of a tree T is denoted
by Leaf(T) and the set of inner vertices by Inner(T).

Definition 2. Let Opt′ be a minimum Steiner tree for an SMT problem in-
stance (G, S ′). A binary subtree B ⊆ Opt′ of Opt′ is A-appropriate for a set
A ⊆ S ′ if and only if Leaf(B) ⊆ A and Inner(B) ∩ S ′ = ∅.
In Figure 1 we illustrate Definition 2 with an example of an optimal tree Opt′

for an SMT instance (G, S ′), containing an A-appropriate subtree B for some
A ⊆ S ′. The next lemma shows that for any instance (G, S ′) of the SMT problem
and any partition of the terminal set S ′ into S ′ = S1 ∪S2 (i. e., S2 = S ′ \ S1), an
optimal solution Opt′ (satisfying Observation 1) contains a subtree P (3) ∪B1 ∪
B2. The subtree P (3) ∪B1 ∪B2 we prove to exist consists of two binary trees B1

and B2, that are S1 and S2-appropriate respectively, and a path P (3) of at most
three edges connecting these two trees. Figure 2 shows the desired subtree.

Lemma 3. Let Opt′ be a minimum Steiner tree for (G, S ′) satisfying Observa-
tion 1. Let S ′ = S1 ∪ S2, where S2 = S ′ \ S1, be any partition of a terminal set
into two disjoint subsets. Then Opt′ contains a subtree P (3) ∪B1 ∪B2 such that

– |P (3)| ≤ 3,
– B1 is S1-appropriate tree rooted at r1, where r1 ∈ Leaf(P (3)),
– B2 is S2-appropriate tree rooted at r2, where r2 �= r1, r2 ∈ Leaf(P (3)).

Proof. Let (S1, S2) be minimum size cut in Opt′ between S1 and S2, i.e., a
partition of vertices V (Opt′) = S1∪S2 into two disjoint subsets S1∩S2 = ∅ such
that S1 ⊆ S1 and S2 ⊆ S2 and the number of edges of Opt′ having one endpoint
in S1 and the other in S2 is minimum. Let C be a bipartite graph consisting of
edges crossing the cut and their endpoints. Hence, C ⊆ Opt′ is a (not necessarily

A ⊆ S ′

OPT′

B

Fig. 1. An A-appropriate subtree B ⊆ Opt′, marked with solid line

New Advances in Reoptimizing the Minimum Steiner Tree Problem 189

OPT′

B1

B2

S1

S2

P (3)

Fig. 2. A subtree P (3) ∪ B1 ∪ B2 ⊆ Opt′ proven to exist in Lemma 3

induced) subgraph of Opt′. Let W1 = V (C) ∩ S1 and W2 = V (C) ∩ S2 be the
partition of vertices in C into two sets independent in C. Note that W1 and W2,
although independent in C, do not have to be independent in Opt′. For each
vertex v ∈ Wj , j ∈ {1, 2}, let D(v) be the set of edges in Opt′ between v and the
vertices of Sj. Let D(Wj) =

⋃
v∈Wj

D(v), j ∈ {1, 2}. We illustrate the situation

in Figure 3. We say that an edge e ∈ D(Wj), j ∈ {1, 2} is binary, if its endpoint
not in Wj is a root of an Sj-appropriate subtree. For the sake of convenience, if
v ∈ Wj is a terminal, we let it have an imaginary binary edge in D(v) incident
only to v. We aim to prove that there are two binary edges, f1 ∈ D(W1) and
f2 ∈ D(W2), both adjacent to the same edge fc ∈ C.

D(W1) D(W2)
C

W1 W2

S1

S2

Fig. 3. Illustration to Lemma 3: Opt′ with its corresponding structures

Observe, that for each non-terminal vertex v ∈ Wj , j ∈ {1, 2}, it holds that
|D(v)| ≥ 2: if v is an endpoint of one edge in C, then it must have two adjacent
edges in D(v) as degOpt′(v) ≥ 3; otherwise, due to the minimality of the cut C,
vertex v must have at least as many adjacent edges outside the cut as inside the
cut.

We now define an equivalence relation ≈j , j ∈ {1, 2} on the vertices of Wj . We
say that v ≈j w for v, w ∈ Wj if there is a path from v to w in Opt′ that contains

190 D. Bilò and A. Zych

only vertices in Sj. We call such a path an Sj-path. Hence, the vertices in Wj are
partitioned into equivalence classes [·]≈j with respect to relation ≈j. As a first
step, we prove that for each class R ∈ [·]≈j , the set of edges D(R) =

⋃
v∈R D(v)

contains at least one binary edge.
First observe that, if R contains a terminal vertex, than we are done because

of the imaginary binary edges. So assume that R ∩ S ′ = ∅. Let us start with
vertex v1 ∈ R and consider an edge e1 ∈ D(v1). If e1 is a binary edge, we are
done. Otherwise, there is an Sj-path starting with e1 from v1 to another vertex
v2 in R . We follow this path to v2 and consider all the vertices visited. We enter
vertex v2 with edge f2 ∈ D(v2). Now, since |D(v2)| ≥ 2, there is another edge
e2 ∈ D(v2). If e2 is binary, we are done again. Otherwise, there is an Sj-path
starting with e2 from v2 to some v3 ∈ R. We continue following the paths until
either we found a binary edge, or we hit a vertex that we already visited. Since
we always leave a vertex via a different edge as we entered, the latter implies a
cycle in Opt′ and hence a contradiction.

Now let [·]≈1 = {ζ1, . . . ζl} and [·]≈2 = {ξ1 . . . ξm} be the equivalence classes
on W1 and W2 respectively. Note that there can be at most one edge in C
between ζi and ξj , as otherwise Opt′ contains a cycle. Recall that any vertex
in W1 is connected with an edge in C to a vertex in W2 and vice-versa. We call
a vertex binary if it is adjacent to a binary edge. We proved that every ζi and
every ξj contains at least one binary vertex. Let v ∈ ζ1 be a binary vertex in ζ1.
It is adjacent via an edge e ∈ C to some vertex w ∈ ξj . If w is binary, we let
fc = e and the proof is completed. Otherwise, there is another vertex in ξj that
is binary, call it w′. Vertex w′ is connected to v′ in ζi, i �= 1. If v′ is not binary,
there must be another connection going from a binary vertex in ζi to another
yet unvisited ξj . We can continue traversing the equivalence classes in this way
until either we hit a binary vertex, or a class that was already visited. The latter
is a contradiction, as it implies that there is a cycle in Opt′. 	

Once we have the above lemma at our disposal, we propose the approxima-
tion algorithm for The Minimum Steiner Tree Terminal Removal problem. We
start with an intuitive description of the proposed algorithm. The algorithm is
parametrized with parameters Z and Y . Let Opt be rooted at terminal t that
we want to remove. Due to Remark 1, we may assume that t has at least two
sons t1 and t2 in Opt. Each of these two sons determines a subtree of Opt, i. e.
the subtree containing ti, i ∈ {1, 2}, obtained by removing the edge between t
and ti from Opt. We let S ′

i ⊆ S ′, i ∈ {1, 2}, be the set of terminals contained
in the subtree of ti. Clearly, S

′
1 ∩ S ′

2 = ∅. Let Pt be the cheapest path from t to

S ′
1 in Opt and let Rt be the cheapest path from t to S ′

2 in Opt. Let P
(Y)
t ⊆ Pt,

respectively R
(Y)
t ⊆ Rt be the path composed of the first Y edges on Pt, respec-

tively Rt, starting from t. Let P ′
t and R′

t be the remaining parts of Pt and Rt, i. e.,

Pt = P
(Y)
t ∪P ′

t and Rt = R
(Y)
t ∪R′

t. If Pt (respectively Rt) is shorter than Y , we

let P
(Y)
t = Pt (respectively R

(Y)
t = Rt) and P ′

t (respectively R′
t) be empty. The

reoptimization algorithm removes paths P
(Y)
t and R

(Y)
t from Opt, creating a

forest F of at most 2Y +1 trees. Note that every tree in F contains at least one

New Advances in Reoptimizing the Minimum Steiner Tree Problem 191

terminal vertex. The algorithm then applies the procedure Connect, described
further in more detail (see Algorithm 2), to connect the obtained forest. The
procedure Connect on the one hand guesses how Opt′ connects the trees in F ,
on the other hand it uses SApprSMT to self-reduce the instance using the guessed
edges of Opt′. At the end Connect returns the best solution among those it
computes. The reoptimization algorithm then returns a better solution among
Opt and the output of Connect.

We now describe the procedure Connect in more detail. It takes as an input
an SMT instance (G, S ′), a forest F = T1 ∪ · · · ∪ Tm and a parameter Z . The
precondition for Connect is that each tree in F has to contain a terminal vertex
from S ′. Procedure Connect computes a number of Steiner trees for (G, S ′)
and returns the best among the computed trees. It connects the trees in F in a
recursive manner. At each recursive call it decreases the number of trees in F by
connecting the last tree Tm, i.e., the tree with the highest index among the trees
in F , to some other tree Ti, i < m. This is done with the help of Lemma 3. Since
every tree Ti contains a terminal, we can partition the terminal set S ′ into two
non-empty sets of terminals: the terminals in the last tree Tm and the terminals
in the remaining trees of F . To be more precise, we set S1 = S ′ ∩ V (Tm) and
S2 = S ′ ∩ V (F − Tm) to be the partition of S ′. Then Opt′ contains a subtree

B1∪P (3)∪B2 as in Lemma 3. Procedure Connect guesses B
(Z)
1 ∪P (3)∪B (Z)

2 by

iterating through all trees of appropriately bounded size. There B
(Z)
j , j ∈ {1, 2},

is the subtree of the first Z floors of the tree Bj . If the height of Bj is smaller

than Z , we let B
(Z)
j = B

(h)
j , where h < Z is the height of Bj . In other words,

if there is a terminal within the first Z floors of Bj , we only guess as far as

to reach that terminal. The number of edges in the tree B
(Z)
1 ∪ P (3) ∪ B

(Z)
2 to

be guessed is bounded by |E(B
(Z)
1 ∪ P (3) ∪ B

(Z)
2)| ≤ 2Z+1 + 3. Hence, we let

Tm run trough all trees of size bounded by 2Z+1 +3. For each Tm we compute
the cheapest edges em and fm connecting Tm with S1 and S2 respectively, and
use Tm ∪ em ∪ fm to connect Tm to some other tree Ti, i < m. We proceed
recursively with a forest of a smaller size. Once F becomes a single connected
tree T1 (at the bottom of recursion), two solutions are computed: Solj = T1 and
Sol′j = SApprSMT((G, S ′),

⋃
T i∈Q T i). There, j is incremented whenever a new

pair of solutions is computed and Q is a stack that stores the trees from higher
level recursive calls. We present the pseudo-code in Algorithm 2. We allow two
operations on the stack Q: ← T puts a tree T on the top of the stack, whereas
→ pops a tree from the top of the stack.

In the following lemma we give the bounds on the costs of solutions computed
by Connect.

Lemma 4. Let (G, S ′) be an instance of the SMT problem where G is metric
and Opt′ be an optimal solution to it satisfying Observation 1. Let a forest
F = T1 ∪ · · · ∪ Tm be such that for every tree Ti, i ∈ {1, . . . ,m}, we have
V (Ti)∩S ′ �= ∅. Let Z be a positive integer. Let Sol and Sol′ be the best solution
among Solj and Sol′j, respectively. Then there exists a forest F ⊆ Opt′ of Opt′

such that:

192 D. Bilò and A. Zych

Algorithm 2. Recursive procedure Connect

Input: An SMT instance (G,S ′), F =
⋃m

i=1 Ti, parameter Z
1: if m := |F |T > 1 then
2: S1 := S ′ ∩ V (Tm)
3: S2 := S ′ ∩ V (

⋃m−1
i=1 Ti)

4: Gm := all subtrees of G of at most 2Z+1 + 3 edges
5: for each tree Tm ∈ Gm do
6: Q← Tm

7: em := the cheapest edge between Tm and S1

8: fm := the cheapest edge between Tm and S2

9: Let i be the index of Ti ∈ F which contains an endpoint of fm
10: Ti := Ti ∪ Tm ∪ em ∪ fm ∪ Tm

11: Connect((G,S ′),F −Tm,Z)
12: Q→
13: end for
14: else
15: j := j + 1; Solj := T1;
16: Sol′j := SApprSMT((G,S ′),

⋃
Ti∈Q T i);

17: end if
Output: the best among the computed solutions Solj and Sol′j

cost(Sol) ≤ cost(F) + cost(F) + |F |T cost(Opt′)
2Z

,

cost(Sol′) ≤ σcost(Opt′)− (σ − 1)cost(F).

Moreover, the running time of Connect is polynomial if Z and the number of
trees in F are constant.

Proof. At each recursive call the respective T i runs through all trees of size at
most 2Z+1+3. Due to Lemma 3, for the partition S ′ = S1∪S2 computed in that

recursive call, there exist a tree B1∪P (3)∪B2 ⊆ Opt′. Since B (Z)
1 ∪P (3)∪B (Z)

2 ⊆
B1 ∪P (3) ∪B2 ⊆ Opt′ is a subtree of size at most 2Z+1 +3, at some point T i is

set to B
(Z)
1 ∪ P (3) ∪ B

(Z)
2 . Hence, at some point at the bottom of the recursion

we end up with every T i ∈ Q set to its respective B
(Z)
1 ∪ P (3) ∪ B

(Z)
2 . In what

follows, we analyze the solutions computed exactly at that point. Let j be such

that Solj and Sol′j were computed at that point and let F =
⋃|F |T

i=1 T i be
the forest composed of the corresponding selection of trees on Q. The following
bound holds:

cost(Solj) ≤ cost(F) + cost(F) +

|Q|∑

i=1

(cost(ei) + cost(fi)).

Note that if there is a terminal leaf in B
(Z)
1 ⊆ T i then cost(ei) = 0. If there is

a terminal leaf in B
(Z)
2 ⊆ T i then cost(fi) = 0. If in B

(Z)
i , i ∈ {1, 2}, there is

New Advances in Reoptimizing the Minimum Steiner Tree Problem 193

no terminal, due to Lemma 3 there are two paths branching from each of 2Z

non-terminal leaves of B
(Z)
i . So cost(ei) ≤ cost(Opt′)

2Z+1 (and analogously cost(fi) ≤
cost(Opt′)

2Z+1). In any case max{cost(ei), cost(fi)} ≤ cost(Opt′)
2Z+1 . Since |Q| ≤ |F |T and

cost(Sol) ≤ cost(Solj), the upper bound on cost(Sol) as claimed in the lemma
follows. The second inequality claimed in the lemma is a consequence of Lemma
2 and the fact that F ⊆ Opt′.

Finally, let us analyze the running time of the procedure Connect. At each
recursive call Connect runs through at most |E(G)|(2Z+1+3) trees and makes
a recursive call for each of these trees. The depth of the recursion is bounded
by the number of trees in the input forest minus one, i. e., |F |T − 1. Hence, we

obtain a running time of O(|I|(2Z+1+3)(|F |T−1) · Poly(|I|)) for some polynomial
function Poly where |I| is the size of the instance. If Z and |F |T are constant,
then the running time is polynomial. 	

The next lemma states the main result of this section.

Lemma 5. For any constant ε > 0, there is a polynomial-time (3σ−2
2σ−1 + ε)-

approximation algorithm for SMT under removing a terminal.

Proof. The final output of the reoptimization algorithm for the modification of

removing a terminal is the best solution amongConnect((G, S ′),Opt−(P (Y)
t ∪

R
(Y)
t),Z) and Opt.
Due to Lemma 4 and because |F |T ≤ 2Y + 1, the bounds on the computed

solutions are as follows:

cost(Sol) ≤ cost(Opt− (P
(Y)
t ∪ R

(Y)
t)) + cost(F) +

(2Y + 1)cost(Opt′)
2Z

,

cost(Sol′) ≤ σcost(Opt′)− (σ − 1)cost(F),

cost(Opt) ≤ cost(Opt′) + min{cost(Pt), cost(Rt)}.
Taking into account the bound cost(Opt) ≤ cost(Opt′)+ cost(Rt) it holds that

cost(Opt− (P
(Y)
t ∪R

(Y)
t))

≤ cost(Opt)− cost(P
(Y)
t)− cost(R

(Y)
t)

≤ cost(Opt′) + cost(Rt)− cost(R
(Y)
t) + cost(Pt)− cost(P

(Y)
t)− cost(Pt)

= cost(Opt′) + cost(R′
t) + cost(P ′

t)− cost(Pt).

Since w.l.o.g. cost(R′
t) ≤ cost(P ′

t), we can rewrite

cost(Sol) ≤ (1 +
2Y + 1

2Z
)cost(Opt′)− cost(Pt) + 2cost(P ′

t) + cost(F),

where cost(P ′
t) ≤ cost(Opt)

Y ≤ cost(Opt′)
Y + cost(Pt)

Y (due to Observation 1 and
the fact that Pt was the cheapest, there have to be Y − 1 paths in Opt more
expensive than P ′

t and disjoint with it) and the bound on the cost of Opt given
by cost(Opt) ≤ cost(Opt′) + cost(Pt).

194 D. Bilò and A. Zych

As a result of these calculations, we obtain the following bounds on the con-
sidered solutions:

cost(Sol) ≤ (1 +
2

Y
+

2Y + 1

2Z
)cost(Opt′)− (1 − 2

Y
)cost(Pt) + cost(F),

cost(Sol′) ≤ σcost(Opt′)− (σ − 1)cost(F),

cost(Opt) ≤ cost(Opt′) + cost(Pt).

Hence the cost of the overall solution is bounded by minimum among these three
bounds. Observe that the first two bounds are functions of cost(F), increasing
and decreasing with cost(F) respectively. Setting them equal allows comput-
ing the maximum value of the minimum among the first two bounds and the
value of cost(F) where the maximum is reached as a function of cost(Opt′) and
cost(Pt). Similarly we eliminate cost(Pt) using the second and the third bound.
The approximation ratio we obtain is

3σ − 2 + (σ − 1)2Y+1
2Z

2σ − 1− (σ − 1) 2
Y

.

This expression converges to 3σ−2
2σ−1 as Z and Y grow to infinity. It is clear that

with the right choice of constant parameters Z and Y we will obtain a value
within 3σ−2

2σ−1 + ε for any ε > 0. Polynomial running time follows from the fact,
that Connect runs in a polynomial time. 	

4 Edge Cost Increase

In this section we consider the reoptimization scenario of increasing the cost of
one edge. We provide a polynomial-time 1.281-approximation algorithm for this
reoptimization variant.

Recall that the SMT Edge Cost Increase problem takes as input two SMT
instances (G, S) and (G′, S) together with an optimal solution Opt for (G, S),
where G = (V,E, cost), G′ = (V,E, cost′) and cost coincides with cost′ on all the
edges but one edge e∗, where cost(e∗) < cost′(e∗). We will show that without
loss of generality G and G′ may be assumed to be metric. For a graph G, we call
an edge f ∈ E(G) implied, if its cost in the metric closure G is the cost of some
path between its endpoints, and this path is not just a single edge f .

Remark 2. Without loss of generality we may assume that the input instance
to SMT under edge cost increase consists of two SMT problem instances (G, S)
and (G′, S) and a solution Opt for (G, S), where G = (V,E, cost) and G′ =
(V,E, cost′) are metric and complete, Opt satisfies Observation 1 and for every
f ∈ Opt− e∗ it holds that cost(f) = cost′(f) whereas cost(e∗) < cost′(e∗).

Proof. Assume G and G′ are not metric and complete. Observe that Opt does
not contain implied edges. Since cost and cost′ coincide on all the edges but
e∗, for every f ⊆ Opt − e∗ it holds that cost(f) = cost′(f) whereas cost(e∗) <

New Advances in Reoptimizing the Minimum Steiner Tree Problem 195

cost′(e∗). We solve the reoptimization problem for the instance (G, S), (G′, S)
and an optimal solution Opt for (G, S). This instance satisfies Remark 2. Note
that when transforming Opt to its counterpart satisfying Observation 1 we
preserve the invariant that at most one edge in Opt increases its cost in G′. The
approximate solution for (G′, S) can easily be transformed to the solution for
(G′, S) with the same cost. 	

Lemma 6. For any constant ε > 0, there is a polynomial-time

(
2σ−1

σ + ε
)
-

approximation algorithm for the SMT Edge Cost Increase.

Proof. Let Z be a parameter. Let S = S1 ∪ S2 be a partition of the terminals
depending on to which tree in Opt − e∗ they belong. Let Opt′ be an optimal
solution to (G′, S). Consider P (3) ∪ B1 ∪ B2 ⊆ Opt′ as in Lemma 3 for S1

and S2. Let B
(Z)
i , i ∈ {1, 2}, be the first Z levels of Bi starting from the root

and let T (Z) = P (3) ∪ B
(Z)
1 ∪ B

(Z)
2 . For a tree T , let f1(T) be the cheapest

edge connecting it with S1 and f2(T) be the cheapest edge connecting it with
S2. The reoptimization algorithm guesses T (Z), and returns a better solution
among Opt− e∗ ∪ T (Z) ∪ f1(T

(Z)) ∪ f2(T
(Z)) and SApprSMT((G

′, S),T (Z)). By
“guesses” we mean that it iterates over all trees T of size bounded by 2Z+1 +3.
For each T , it computes Opt− e∗∪T ∪ f1(T)∪ f2(T) and SApprSMT((G

′, S),T).
It returns the best of the computed solutions.

Note that cost′(Opt− e∗) ≤ cost′(Opt′) because

cost′(Opt− e∗) = cost(Opt − e∗) ≤ cost(Opt) ≤ cost(Opt′) ≤ cost′(Opt′).

Due to Lemma 3,

cost′(f1(T (Z))), cost′(f2(T (Z))) ≤ cost′(Opt′)
2Z+1

.

Therefore,

cost′(Sol) ≤ cost′(Opt− e∗ ∪ T (Z) ∪ f1(T
(Z)) ∪ f2(T

(Z)))

≤ (1 +
1

2Z
)cost′(Opt′) + cost′(T (Z)).

On the other hand, by the power of Lemma 3,

cost′(SApprSMT((G
′, S),T (Z))) ≤ σcost′(Opt′)− (σ − 1)cost′(T (Z)),

where σ is the approximation ratio of an algorithm ApprSMT for SMT. Again,
we view these two bounds on the overall solution as functions of cost′(T (Z)),
increasing and decreasing respectively. We compute the maximum value of the
minimum of these two bounds by setting them equal. The resulting approxima-
tion ratio is

2σ − 1 + σ−1
2Z

σ
.

This ratio can be arbitrarily close to 2σ−1
σ with the right choice of constant

parameter Z . 	

196 D. Bilò and A. Zych

5 Concluding Remarks

To conclude the paper, we present the state of the art on the SMT reoptimization
in Table 1. An open question concerning the reoptimization variants of SMT
studied here is the existence of a PTAS for them. In [16], the authors proved
that there cannot be a PTAS for the modification of adding a vertex to the
graph. They also provided a PTAS for all the modifications studied here if the
input graph is β-metric for some constant β < 1. A PTAS for the metric case
remains an interesting open problem.

Table 1. Different types of SMT modifications with the corresponding best up to date
approximation ratios

The SMT problem under:

Terminal Edge cost

addition removal decrease increase

1.218 [22] 1.218 here 1.246 [5] 1.279 here

References

1. Archetti, C., Bertazzi, L., Speranza, M.G.: Reoptimizing the traveling salesman
problem. Networks 42(3), 154–159 (2003)

2. Archetti, C., Luca, B., Speranza, M.G.: Reoptimizing the 0-1 knapsack problem.
Technical Report 267, University of Brescia (2006)

3. Ausiello, G., Escoffier, B., Monnot, J., Paschos, V.T.: Reoptimization of Minimum
and Maximum Traveling Salesman’s Tours. In: Arge, L., Freivalds, R. (eds.) SWAT
2006. LNCS, vol. 4059, pp. 196–207. Springer, Heidelberg (2006)

4. Bern, M.W., Plassmann, P.E.: The Steiner problem with edge lengths 1 and 2. Inf.
Process. Lett. 32(4), 171–176 (1989)

5. Bilò, D., Böckenhauer, H.-J., Hromkovič, J., Královič, R., Mömke, T., Widmayer,
P., Zych, A.: Reoptimization of Steiner Trees. In: Gudmundsson, J. (ed.) SWAT
2008. LNCS, vol. 5124, pp. 258–269. Springer, Heidelberg (2008)

6. Bilò, D., Böckenhauer, H.-J., Komm, D., Králović, R., Mömke, T., Seibert, S.,
Zych, A.: Reoptimization of the shortest common superstring problem. Algorith-
mica 61(2), 227–251 (2011)

7. Bilò, D., Widmayer, P., Zych, A.: Reoptimization of Weighted Graph and Covering
Problems. In: Bampis, E., Skutella, M. (eds.) WAOA 2008. LNCS, vol. 5426, pp.
201–213. Springer, Heidelberg (2009)

8. Böckenhauer, H.-J., Forlizzi, L., Hromkovič, J., Kneis, J., Kupke, J., Proietti, G.,
Widmayer, P.: Reusing Optimal TSP Solutions for Locally Modified Input In-
stances (Extended Abstract). In: Navarro, G., Bertossi, L., Kohayakawa, Y. (eds.)
TCS 2006. IFIP, vol. 209, pp. 251–270. Springer, Boston (2006)

9. Böckenhauer, H.-J., Hromković, J., Králović, R., Mömke, T., Rossmanith, P.: Re-
optimization of Steiner trees: Changing the terminal set, vol. 410, pp. 3428–3435.
Elsevier Science Publishers Ltd. (August 2009)

New Advances in Reoptimizing the Minimum Steiner Tree Problem 197

10. Böckenhauer, H.-J., Hromkovič, J., Mömke, T., Widmayer, P.: On the Hardness of
Reoptimization. In: Geffert, V., Karhumäki, J., Bertoni, A., Preneel, B., Návrat,
P., Bieliková, M. (eds.) SOFSEM 2008. LNCS, vol. 4910, pp. 50–65. Springer,
Heidelberg (2008)

11. Böckenhauer, H.-J., Komm, D.: Reoptimization of the Metric Deadline TSP. In:
Ochmański, E., Tyszkiewicz, J. (eds.) MFCS 2008. LNCS, vol. 5162, pp. 156–167.
Springer, Heidelberg (2008)

12. Byrka, J., Grandoni, F., Rothvoß, T., Sanità, L.: An Improved LP-based Approx-
imation for Steiner Tree. In: STOC 2010, Best Paper Award (2010)

13. Escoffier, B., Milanic, M., Paschos, V.T.: Simple and fast reoptimizations for the
Steiner tree problem. Technical Report 2007-01, DIMACS (2007)

14. Escoffier, B., Milanič, M., Paschos, V.T.: Simple and fast reoptimizations for the
Steiner tree problem 4(2), 86–94 (2009)

15. Escoffier, B., Ausiello, G., Bonifaci, V.: Complexity and Approximation in Reopti-
mization. In: Computability in Context: Computation and Logic in the Real World.
Imperial College Press (2011)

16. Böckenhauer, H.-J., Freiermuth, K., Hromkovič, J., Mömke, T., Sprock, A., Steffen,
B.: The Steiner Tree Reoptimization Problem with Sharpened Triangle Inequality.
In: Calamoneri, T., Diaz, J. (eds.) CIAC 2010. LNCS, vol. 6078, pp. 180–191.
Springer, Heidelberg (2010)

17. Mikhailyuk, V.A.: Reoptimization of set covering problems. Cybernetics and Sys.
Anal. 46, 879–883 (2010)

18. Prömel, H.J., Steger, A.: The Steiner Tree Problem. Advanced Lectures in Math-
ematics. Friedr. Vieweg & Sohn, Braunschweig (2002)

19. Robins, G., Zelikovsky, A.: Improved Steiner tree approximation in graphs. In:
ACM-SIAM Symposium on Discrete Algorithms, pp. 770–779. ACM (2000)

20. Schäffter, M.W.: Scheduling with forbidden sets. Discrete Applied Mathemat-
ics 72(1-2), 155–166 (1997)

21. Zych, A.: Reoptimization of NP-hard problems. Ph.D. thesis, ETH Zürich
22. Zych, A., Bilò, D.: New reoptimization techniques applied to Steiner tree problem.

Electronic Notes in Discrete Mathematics 37, 387–392 (2011); LAGOS 2011 - VI
Latin-American Algorithms, Graphs and Optimization Symposium

	New Advances in Reoptimizing the Minimum Steiner Tree Problem
	Introduction
	Preliminaries
	The SMT Terminal Removal Problem
	Edge Cost Increase
	Concluding Remarks
	References

