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Abstract. We study the computational complexity of determining
whether the zero matrix belongs to a finitely generated semigroup of
two dimensional integer matrices (the mortality problem). We show that
this problem is NP-hard to decide in the two-dimensional case by us-
ing a new encoding and properties of the projective special linear group.
The decidability of the mortality problem in two dimensions remains a
long standing open problem although in dimension three is known to be
undecidable as was shown by Paterson in 1970.

We also show a lower bound on the minimum length solution to the
Mortality Problem, which is exponential in the number of matrices of
the generator set and the maximal element of the matrices.

1 Introduction

In this paper we study the computational complexity of the problem of deter-
mining whether the zero matrix belongs to a matrix semigroup (the Mortality
Problem) generated by a finite set of 2 × 2 integral matrices. The Mortality
Problem of 3× 3 integer matrices was shown to be undecidable in 1970 [13] and
the question about 2× 2 matrices is currently open.

In the past there has been much interest in decidability questions for problems
concerning matrix semigroups and in particular the Mortality Problem [10,11],
which have a number of connections with linear algebra, geometry and control-
lability of switched linear systems [7,6]. The mortality problem was shown to
be decidable for a pair of rational 2 × 2 matrices in [7]. Also, it was recently
shown in [12] that the Mortality Problem is decidable for any set of 2×2 integer
matrices whose determinants assume the values 0,±1, by adapting a technique
from [9]. The main goal of this paper is to show that the Mortality Problem for
the same set of 2 × 2 integer matrices (whose determinants assume the values
0,±1) is NP-hard.

Another set of hardness results is known about bounded membership. A set of
matrices over the integers is said to be k-mortal (with k a positive integer) if the
zero matrix can be expressed as a product of length k of matrices in the set. In
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[5], it was shown that the bounded membership problem for the zero matrix (the
k-mortality problem) is NP-hard for semigroups generated by a pair of matrices
(where the dimension is variable). Also a straightforward encoding of the Subset
Sum Problem can be used to show NP-hardeness of the bounded membership
problem for 2× 2 matrices including the case of commutative matrices [8].

In this paper we prove that the unboundedmortality problem for 2×2 matrices
is NP-hard by a more sophisticated construction that requires detailed analysis
of the semigroup generator as well as the use of an extended group alphabet
and the concept of border letters. We also show a lower bound on the minimum
length solution to the Mortality Problem, which is exponential in the number of
matrices of the generator set and the maximal element of the matrices.

It is known that many computational problems for matrix semigroups and
groups are inherently difficult to solve even for low-dimensions. In contrast to
the Mortality(3 × 3), which was one of the first matrix problems, shown to
be undecidable several decades ago, the Identity Problem 1 was shown to be
undecidable for dimension 4 only a few years ago [2]. Moreover it has been
recently proven in [9] that the Identity Problem for integral matrices of dimension
2 is decidable and later in [3] that the problem for SL2(Z) is NP-hard. The NP-
hardness result of this paper about the Mortality(2 × 2) corresponds very well
with the Identity situation. Unfortunately, the same proof technique as in [3]
cannot be directly applied for the Mortality Problem and therefore we must use
new encoding and properties of the projective special linear group in this paper
to derive the result.

2 Notations and the Structure of SL2(Z)

By an alphabet we understand (usually) a finite set Γ , and call its elements
letters. Any alphabet can be furnished with algebraic structure, defining the
product by letter juxtaposition (concatenation). Assumption that there are no
nontrivial relations between the letters is another way to say that the alphabet
generates a free monoid, denoted as Γ ∗ or 〈Γ 〉. An element of the monoid Γ ∗

is called word, and the identity element is called empty word and denoted by
ε or 1. A group alphabet is an alphabet augmented with inverse elements: Σ =
{z1, z2, . . . , zk, z1, z2, . . . , zk}, where zi and zi (notation zi = z−1

i is also used) are
assumed to satisfy zizi = zizi = ε. The relation between a letter and its inverse
is the only nontrivial relation in a group alphabet. We denote Σ+ = {a1 . . . an |
ai ∈ Σ,n ≥ 1}. For a word w = w1w2 · · ·wn, we denote w = w−1 = wn · · ·w2 w1.

Let Σ be a group alphabet. Using the notation of [1], we shall also introduce
a reduction mapping which removes factors of the form zz for z ∈ Σ. To that
end, we define the relation �⊆ Σ∗ ×Σ∗ such that for all w,w′ ∈ Σ∗, w � w′ if
and only if there exists u, v ∈ Σ∗ and z ∈ Σ where w = uzzv and w′ = uv. We

1 The Identity Problem for matrix semigroups is a well-known challenging problem
which is also equivalent to another fundamental problem in Group Theory: given a
finitely generated matrix semigroup S, decide whether a subset of the generator of
S generates a nontrivial group (Group Problem).
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may then define by �∗ the reflexive and transitive closure of �. The following
Lemma is well-known, see eg. [1] for the proof.

Lemma 1. For each w ∈ Σ∗ there exists exactly one word r(w) ∈ Σ∗ such that
w �∗ r(w) does not contain any factor of the form zz, with z ∈ Σ.

The word r(w) is called the reduced representation of word w ∈ Σ∗. As an
example, we see that if w = 132211 3 1 ∈ Σ∗, then r(w) = ε.

A homomorphism h : Γ ∗
1 → Γ ∗

2 , between two monoids Γ ∗
1 and Γ ∗

2 is a mapping
satisfying h(ab) = h(a)h(b) for any a, b ∈ Γ ∗ and h(1) = 1 where 1 denotes the
identity element of the respective monoid. An injective homomorphism, h′, is
called a monomorphism and is denoted Γ ∗

1 ↪→ Γ ∗
2 .

Notation Z
2×2 stands for the set of all 2× 2 integer matrices. This set has a

natural ring structure with respect to ordinary matrix addition and multiplica-
tion. A subset of Z2×2, GL2(Z) (also denoted as GL(2,Z)) stands for the general
linear group over the ring of integers, meaning all 2× 2 integer matrices having
integer matrix inverses:

GL2(Z) = {A ∈ Z
2×2 | det(A) ∈ {−1, 1}}.

Group GL2(Z) is clearly the largest multiplicative matrix group contained in
Z
2×2, but quite often it is useful to study its subgroup SL2(Z) (also denoted as

SL(2,Z)), the special linear group defined as

SL2(Z) = {A ∈ GL2(Z) | det(A) = 1}.

Furthermore, it turns out that the quotient group

PSL2(Z) = SL2(Z)/{±I},

called the projective special linear group has a very useful representation as a
free product of two cyclic groups of order 2 and 3.

Group SL2(Z) is very important in number theory, and its structure has been
studied extensively in various textbooks (see [14], for instance), but for pointing
out the algorithmic complexity issues, we reproduce the structural properties
most relevant to our study here.

Two structurally important elements of SL2(Z) are

S =

(
0 −1
1 0

)
and T =

(
1 1
0 1

)

Evidently S2 = −I (which implies S3 = −S and S4 = I, so S has order 4),
whereas for each n ∈ Z,

T n =

(
1 n
0 1

)
,

implying that T has no finite order.
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Lemma 2. SL2(Z) = 〈S, T 〉. Furthermore, any matrix

A =

(
a b
c d

)
∈ SL2(Z)

can be represented as

A = SγT q1S3T q2S3 · . . . S3T qkS3T qk+1 , (1)

so that γ ∈ {0, 1, 2, 3}, qi ∈ Z for some k ≥ 0.

It is worth noticing that even though all matrices A ∈ SL2(Z) can be repre-
sented in terms of S and T , the representation is by no means unique. A direct
computation shows that, for example,

TST = ST−1S3.

For a more canonical representation, let

R = ST =

(
0 −1
1 1

)
.

Direct computation shows that

R2 =

(−1 −1
1 0

)
and R3 = −I,

implying that R6 = I, so R is of order 6. Since now T = S−1R = S3R, it follows
that SL2(Z) = 〈S,R〉, and that a representation of A ∈ SL2(Z) in terms of R
and S can be obtained by substituting T = S3R = −SR in (1). It is noteworthy
that when substituting T = −SR in (1), one can use R3 = −I and S2 = −I to
get a representation

A = (−1)γ
′
Rn0SRn1S · . . . · Rnl−1SRnl , (2)

where γ′ ∈ {0, 1}, ni ∈ {0, 1, 2} and ni ∈ {1, 2} for 0 < i < l. It turns out, that
representation (2) for a given matrix A ∈ SL2(Z) is unique, but it is very common
to present this result ignoring the sign. For that purpose, we let s = S{±I} and
r = R{±I} be the projections of S and R in PSL2(Z).

Lemma 3. PSL2(Z) is a free product of 〈s〉 = {1, s} and 〈r〉 = {1, r, r2}. That
is, if

rn0srn1s · . . . · rnp−1srnp = rm0srm1s · . . . · rmq−1srmq ,

where ni,mj ∈ {0, 1, 2} and ni, mj ∈ {1, 2} for 0 < i < p and 0 < j < q, then
p = q and nk = mk for each 0 ≤ k ≤ p.

For the proof of the lemma see [14]. We say that a representation in PSL2(Z) is
reduced if it satisfies the conditions of the previous lemma.

Mortality Problem: Decide whether a given finitely generated matrix semi-
group contains the zero matrix.
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3 The Mortality Problem

In this section we show that the mortality problem is NP-hard for a finite
set of matrices from Z

2×2. In order to prove this result, we shall adapt the
proof technique used in [3] by showing a monomorphism (injective homomor-
phism) between an arbitrary sized alphabet and PSL2(Z) with certain essential
properties.

Lemma 4. Given a group alphabet Σ = {z1, z2, . . . , zk, z1, z2, . . . , zk} and a bi-
nary group alphabet Σ2 = {c, d, c, d}, then mapping α : Σ → Σ∗

2 defined by

α(zi) = cidci, α(zi) = cidci

can be extended to a monomorphism α : Σ∗ ↪→ Σ∗
2 , see [4] for more details.

Lemma 5. Let Σ2 = {c, d, c, d} be a group alphabet. Then the mapping β :
Σ2 → PSL2(Z) defined by:

β(c) = (rsr)2, β(d) = (rs)2, β(c) = (r2sr2)2, β(d) = (sr2)2

can be extended to a monomorphism β : Σ∗
2 ↪→ PSL2(Z).

Proof. Recall that PSL2(Z) has monoid presentation 〈s, r|s2 = r3 = 1〉, and let
w ∈ {c, d, c, d}∗ be a reduced word (i.e., contains no subwords in {cc, cc, dd, dd}).
It suffices to show that from β(w), we can always deduce the initial symbol of
w ∈ Σ∗

2 .
This follows from a case analysis. The possible initial parts of w can be dis-

covered by computing all products β(cc) = (rsr)4 = rsr2sr2sr2sr, β(cd) =
(rsr)2(rs)2 = rsr2sr2srs, β(cd) = rsr2srsr2sr2, β(dc) = rsrsrsr2sr, β(dd) =
rsrsrsrs, β(dc) = rsrsr2srsr2, β(cd) = r2sr2s, β(cc) = r2srsrsrsr2 , β(cd) =
r2srsr2sr2sr2, β(dc) = srsr, β(dc) = sr2srsrsr2, and β(dd) = sr2sr2sr2sr2.
The claim follows now from comparing the initial parts of the sequences (no-one
is a prefix of another) and from the fact that PSL2(Z) = 〈s〉 ∗ 〈r〉. ��
Example 1. Let w ∈ {c, d, c, d} and

β(w) = r2sr2srsr2sr2sr2srsrsr2srsrsrs.

As representation in PSL2(Z) in this form is unique, we must conclude that w
begins with c (Only the image of c begins with r2). To proceed, we introduce
identity 1 = r2sr2rsr in the representation of β(w) to see that

β(w) = r2sr2(r2sr2rsr)srsr2sr2sr2srsrsr2srsrsrs

= (r2sr2r2sr2)rsrsrsr2sr2sr2srsrsr2srsrsrs

= β(c)rsrsrsr2sr2sr2srsrsr2srsrsrs.

writing w = cw1 we see that

β(w1) = rsrsrsr2sr2sr2srsrsr2srsrsrs,
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and now we must have w1 = dw2, and

β(w2) = rsr2sr2sr2srsrsr2srsrsrs

continuing in the same way we see that w2 = cw3,

β(w3) = rsr2srsrsr2srsrsrs,

w3 = cw4,
β(w4) = srsr2srsrsrs,

and now w4 must begin with d. Again introducing identity 1 = rsr2rsr2 we see
that

β(w4) = sr(rsr2rsr2)sr2srsrsrs = (srrsr2)rsr2sr2srsrsrs,

and if w4 = dw5, then
β(w5) = rsr2sr2srsrsrs,

and letting w5 = cw6

β(w6) = rsrsrsrs = β(dd)

combining all letters we see that w = cdccdcdd.

Lemma 6. For any nonempty reduced word w ∈ Σ+, β ◦ α(w) has first letter
r and last letter r in its reduced representation under PSL2(Z), where β ◦ α :
Σ∗ → PSL2(Z).

Proof. For each letter zi we have

β(α(zi)) = β(cidci) = β(c)iβ(d)β(c)i.

Now that β(c) begins with r, so does β(α(zi)), for otherwise β(α(zi)) would
have two representations, β(α(zi)) = r . . . and β(α(zi)) = s . . ., contradicting
Lemma 5. Similar conclusion can be made for the ending letter and for β(α(zi)),
as well. The result can be directly extended to words w ∈ Σ+, as the failure of
it would contradict Lemma 5 as well. ��
We see that β◦α : Σ∗ ↪→ PSL2(Z) is a monomorphism since it is the composition
of two monomorphisms. We require the following lemma concerning the size of
the matrix when β ◦ α is applied to the power of a letter from Σ.

Lemma 7. Given Σ = {z1, z2, . . . , zk, z1, z2, . . . , zk}, for any letter zi ∈ Σ:

β ◦ α(zji ) = {±I}
(−8i2j − 4ij − 1 −8i2j

8i2j + 8ij + 2j 8i2j + 4ij − 1

)

Proof. Let Σ2 = {c, d, c, d}. Since α and β are homomorphisms, we have that
α(zji ) = α(zi)

j = cidjci and

β(α(zji )) = β(c)iβ(d)jβ(c)i

= (rsr)2i(rs)2j(r2sr2)2i
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Elementary matrix multiplication of β ◦ α(zji ) reveals that

β ◦ α(zji ) = (rsr)2i(rs)2jr2(sr)2ir

= {±I}
(−8i2j − 4ij − 1 −8i2j

8i2j + 8ij + 2j 8i2j + 4ij − 1

)

We see that the size of the maximal element of the matrices β(α(zji )) is polyno-

mial in i and j and thus size(β(α(zji ))) = O(i2j). ��
We need one final technical lemma concerning mapping β ◦ α.
Lemma 8. For any nonempty reduced word w ∈ Σ+, let A = β ◦ α(w) where
we ignore the sign of the matrix. Then A11 �= 0 and A12 �= 0.

Proof. By Lemma 6, we have that β ◦ α(w) has first letter r and last letter r in
its reduced representation under PSL2(Z). Thus we see that

A = RXR =

(
0 −1
1 1

)(
a b
c d

)(
0 −1
1 1

)

=

( −d c− d
b+ d b + d− a− c

)
,

for some matrix X ∈ SL2(Z) (again we are ignoring the sign in this product).
We first prove A12 �= 0. By the above formula, A12 = 0 implies c − d = 0.

Since det(X) = 1, ad − bc = 1 implies c(a − b) = 1, thus either c = d = 1 and
b = a− 1, or else c = d = −1 and b = a+ 1. Therefore either:

A = R

(
a a− 1
1 1

)
R or A = R

(
a a+ 1
−1 −1

)
R.

It is not hard to see that matrices X of this form have factorizations (SR)xR or
(RRS)xR for some x > 0. This holds since:

(SR)kR = (−1)k
(
k k − 1
1 1

)
and (RRS)kR = (−1)k

(−k −(k + 1)
1 1

)

and under PSL2(Z) we factor out −I and can therefore ignore the sign. Thus, we
see that A = R(SR)xRR or A = R(RRS)xRR for some x > 0. However, these
are not reduced representations (since they have R3 on the left or right) and
since these reduced factorizations are unique, this contradicts Lemma 6 since
under PSL2(Z) A would start with s.

We now prove A11 �= 0. Clearly A11 = 0 implies d = 0. Since det(A) = 1, then

b = ±1 and c = ∓1. Thus A =

(
0 ±1
∓1 x

)
for some x ∈ Z. Now, such A have

reduced factorization (up to sign) of (RS)aR where a ≥ 0 or (SRR)aS where
a > 0 which is easy to check via straight forward matrix calculations. However,
Lemma 6 shows that A should end with ‘r’ in its reduced representation under
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PSL2(Z), thus it must be of the form (RS)aR. It is not hard to see however
that (rs)ar �∈ {β(w) | w ∈ Σ+

2 } for any a ≥ 0. This follows because β(w) =
(rs)ar = β(d)(rs)a−2r = . . . = β(d)a/2r which cannot be further factorized
giving a contradiction. ��

Combining this information, we now have the following four essential properties:

i) β ◦ α : Σ∗ ↪→ PSL2(Z) is a monomorphism by Lemma 4 and Lemma 5.

ii) For all nonempty reduced w ∈ Σ+, β ◦α(w) has reduced representation rw′r
over PSL2(Z) ∼= 〈s, r|s2 = r3 = 1〉 for some w′ ∈ {s, r}∗. This follows from
Lemma 6.

iii) For any zi ∈ Σ, the size of matrices in β ◦ α(zji ) in terms of the number
of bits to represent it is logarithmic in terms of i and j. This follows from
Lemma 7.

iv) For any nonempty reduced word w ∈ Σ+, the upper left and upper right
entries of matrices β ◦ α(w) are nonzero by Lemma 8.

We are now ready to prove the main result of this section.

Theorem 1. The mortality problem for matrices in Z
2×2 is NP-hard.

Proof. We adapt the proof from [3] which shows that the identity problem in
Z
2×2 is NP-hard. The proof in [3] essentially consists of two parts. First, an

encoding is shown from the subset sum problem to a problem on words - given a
finite set of words, can they be combined in such a way as to reach the identity
(or empty) word. The number of letters in these words is exponential in the
representation size of the subset sum problem instance however.

Therefore the second half of the proof shows a mapping from this set of words
into Z

2×2 such that the matrix representation of the words has size polynomial
in the subset sum problem instance. The set of matrices generate a semigroup
containing the identity matrix if and only if the subset sum problem has a
solution, thus the identity problem is NP-hard for 2× 2 matrix semigroups.

For our purposes of the mortality problem, we shall use the identical first part
of the proof to give a set of words W encoding a subset sum problem instance.
We shall then define a matrix P and use mapping β ◦α : Σ∗ ↪→ PSL2(Z) and its
properties to encode the set of words W in such a way that the zero matrix is in
the semigroup generated by a certain set of matrices if and only if there exists a
solution to the subset sum problem.

Let Σ = {1, 2, . . . , 2k + 2, 1, 2, . . . , (2k + 2), a, b, a, b} be an alphabet. The
subset sum instance is given by S = {s1, s2, . . . , sk} and value x - thus the
problem is: does there exist a subset of S whose sum is x? We now define set of
words:
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W =

{1 · as1 · 2, 1 · ε · 2,
2 · as2 · 3, 2 · ε · 3,
...

...

k · ask · (k + 1), k · ε · (k + 1),

(k + 1) · ax · (k + 2),

(k + 2) · bs1 · (k + 3), (k + 2) · ε · (k + 3),

(k + 3) · bs2 · (k + 4), (k + 3) · ε · (k + 4),
...

...

(2k + 1) · bsk · (2k + 2), (2k + 1) · ε · (2k + 2),

(2k + 2) · bx · 1} ⊆ Σ∗

It was proven in [3] that ε ∈ W+ if and only if the subset sum instance S
has a solution. We shall not repeat the details here, suffice it to say that let-
ters {1, . . . , 2k + 2, 1, . . . , 2k + 2} act as ‘border letters’ which enforce a par-
ticular ordering on any possible words reducing to give ε. In any such word
w′ = w1w2 · · ·wl ∈ W+ such that r(w′) = ε, we can assume by [3] that w1

is from the first row of W (above), w2 is from the second row etc. and that
wl = (2k + 2) · bx · 1, thus l = 2k + 2.

We now use mapping β ◦ α : Σ∗ ↪→ PSL2(Z) applied to set of words W . We
earlier defined this function on a different alphabet but the same analysis holds.

Since any element a in PSL2(Z) already is a set {A,−A} of two matrices in
SL2(Z) we set M in a way that it will actually contain 2|W | matrices. It does
not alter this construction, since it does not matter if you select A or −A in the
product. Specifically we have

M = {β ◦ α(w)|w ∈ W} ⊆ Z
2×2,

thus |M | = 2|W |. Note that each w ∈ W contains two border letters and possibly
a power of a single letter from Σ. By Lemma 7, this implies that the size of the
matrices in M (i.e. number of bits required to represent them) is polynomial in
the number of bits to represent the subset sum problem instance.

Our next steps are to introduce a new matrix P and to modify one of the
matrices in M by right multiplying by matrix S which will make it possible to
reach the zero matrix if and only if I ∈ 〈M〉.

Let P =

(
1 0
0 0

)
and define M ′ = M ∪ {P}. For any matrix X ∈ Z

2×2 we

have that (PXP )11 = X11 and (PXP )12 = (PXP )21 = (PXP )22 = 0. Since
for any reduced word w ∈ W+, we have that β ◦ α(w)11 �= 0 by Lemma 8, and
all matrices in M are unimodular, then the zero matrix is not in 〈M ′〉.

We now modify the matrix set M ′ one final time. Let Y be the matrix in M ′

corresponding to word (2k+2) · bx ·1 ∈ W . We now form set M ′′ = (M ′ \{Y })∪
{Y S}, i.e. we replace Y inM ′ by Y S. Since all other matrices inM ′ have reduced
factorizations of the form RX ′R for some X ′ ∈ {S,R}∗, the right multiplication
of Y by S in this way does not allow any additional cancelation of elements.
More formally, for any non-identity X1Y ∈ 〈M ′〉 and X2 ∈ 〈M ′〉 Lemma 6
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shows that we have reduced representations X1Y = RX ′
1R and X2 = RX ′

2R for
some X ′

1 ∈ {S,R}∗ and X ′
2 ∈ {S,R}∗. Therefore, under M ′′, since we replace

Y by Y S, then X1(Y S)X2 = RX ′
1R · S ·RX ′

2R is also a reduced representation
and no cancelation has occured by replacing Y with Y S.

P

s
a

2s
a

ks
b

2s
b

1s
b

ks
a

x
a

x
b

...

...

...

...

...

...

1 2 3 k

k+2

k+1

ε ε

εεε

ε

k+3k+42k+12k+2

P

S

1

Fig. 1. The structure of a solution to the mortality problem

By Lemma 6, all non-identity matrices in M ′ have reduced (and unique)
factorization RXR over {R,S} for some X ∈ {S,R}∗. The only matrix in M ′

with a zero upper right corner (up to sign) is the identity matrix by Lemma 8.
From the proof of NP-hardness of the identity problem in [3], any reduced word
in W+ equal to the empty word must be of the form w′((2k+2) · bx ·1) for some
w′ ∈ W+, in other words the last word from W used must be (2k + 2) · bx · 1.
This word was represented by matrix Y under M ′, which we replaced with Y S in
M ′′. Thus, let V Y ∈ 〈M ′〉 be a product equal to the identity matrix. Therefore
we see that S = V Y S ∈ 〈M ′′〉 and therefore PV Y SP = PSP is the zero matrix
as required. This follows since

(
x11 x12

x21 x22

)
S =

(
x12 −x11

x22 −x21

)
(3)

The structure of such a product PV Y SP can be seen in Figure 1. To reach the
zero matrix, we first use matrix P . We follow that by the matrix corresponding
to either word 1 · as1 · 2 or word 1 · ε · 2, meaning we move from node 1 to
node 2 and choose either as1 or else ε. This continues iteratively until we reach
node k + 1 at which point we move to k + 2 with word ax. At this point, if
the selected nonempty words are such that asj1asj2 · · · asjm · ax = ε for some
1 ≤ sj1 < sj2 < . . . < sjm ≤ k, then this corresponds to a correct solution to the
subset sum problem instance. The same procedure holds between nodes k + 2
and 2k + 2 (with a’s replaced by b’s) at which point we then use matrix S and
the final matrix P . In the diagram, nodes 1 to 2k + 1 correspond to matrix V
and nodes 2k + 2 and S correspond to matrices Y and S respectively. ��
Since an upper bound for the decidability result in [12] is unknown, we now
consider a lower bound on the minimum length solution to the Mortality
Problem. Below we derive a lower bound on the minimum length solution to



158 P.C. Bell, M. Hirvensalo, and I. Potapov

the Mortality Problem for a constructible set of instances, which is exponential
in the number of matrices of the generator set and the maximal element of
the matrices. This bound shows that the most obvious candidate for an NP
algorithm, which is to guess the shortest sequence of matrices which multiply to
give the zero matrix, does not work correctly since the certificate would have a
length which is exponential in the size of the instance.

Theorem 2. There exists a set of matrices M = {M1,M2, . . . ,Mn} ⊆ Z
2×2

where the maximum element of any matrix in M is O(n2) such that 0 ∈ 〈M〉
(where 0 here denote the zero matrix) and the minimal length product over M
equal to 0 is of length 2n, which is exponential in the number of matrices in the
generator and the maximal element of any matrix in M .

Proof. Let Σ = {1, 2, . . . , 2n − 1, 1, 2, . . . , 2n− 1} be a group alphabet. It is
proven in [3] that there exists a set of words V = {v1, v2, . . . , v2n−2} ⊆ Σ3 such
that there exists w ∈ V + where r(w) = ε and |w| = 2n − 2 and for all w′ ∈ V +

such that |w′| < 2n − 2, then r(w′) �= ε. This results from an encoding of a
deterministic finite automaton introduced in [1].

First, we encode set of words V into matrices. We apply monomorphism β◦α :
Σ∗ ↪→ PSL2(Z) to the set of words V to give

V ′ = {β ◦ α(v)|v ∈ V } ⊆ PSL2(Z)

From the encoding of the DFA used in [3], it is shown that for any w ∈ V +

where r(w) = ε, we may assume that the last letter of w is v2n−2. We proceed
in a similar manner to that of the proof of Theorem 1. We form the set

V ′′ = (V ′ \ {β ◦ α(v2n−2)}) ∪ {β ◦ α(v2n−2)S},

i.e. we right multiply the final matrix of set V ′ by matrix S. Finally, we define
matrix P ∈ Z

2×2 such that P11 = 1 and P12 = P21 = P22 and let V ′′′ = V ′′∪{P}.
For any w ∈ V + such that r(w) = ε, then β◦α(w) = ±I and thus β◦α(w)S ∈

V ′′′ with |w| ≥ 2n − 2. Clearly,

P (β ◦ α(w))SP = β ◦ α(w)12,

which equals 0 if and only if r(w) = ε by Lemma 8 and the number of matrices
used is 2n. For all X ∈ V ′′′, then X11 �= 0 by Lemma 8 and Equation (3). Thus
only matrix S ∈ V ′′′ is such that PSP = 0 where 0 is here the zero matrix.

Finally we need to consider the representation size of V ′′′. Lemma 7 shows
that for |Σ| = 4n− 2, we have that size(β ◦ α(x)) = O(n2) for any x ∈ Σ. Since
|V ′′′| = 2n − 1, then size(V ′′′) = O(n3) where size denotes the number of bits
required to represent set V ′′′. ��
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