
A Polynomial-Time Algorithm for Computing

the Maximum Common Subgraph
of Outerplanar Graphs of Bounded Degree

Tatsuya Akutsu and Takeyuki Tamura

Bioinformatics Center, Institute for Chemical Research, Kyoto University,
Gokasho, Uji, Kyoto 611-0011, Japan

{takutsu,tamura}@kuicr.kyoto-u.ac.jp

Abstract. This paper considers the maximum common subgraph prob-
lem, which is to find a connected graph with the maximum number of
edges that is isomorphic to a subgraph of each of the two input graphs.
This paper presents a dynamic programming algorithm for computing
the maximum common subgraph of two outerplanar graphs whose maxi-
mum vertex degree is bounded by a constant, where it is known that the
problem is NP-hard even for outerplanar graphs of unbounded degree.
Although the algorithm repeatedly modifies input graphs, it is shown
that the number of relevant subproblems is polynomially bounded and
thus the algorithm works in polynomial time.

Keywords: maximum common subgraph, outerplanar graph, dynamic
programming.

1 Introduction

Comparison of graph-structured data is important and fundamental in com-
puter science. Among many graph comparison problems, the maximum common
subgraph problem has applications in various areas, which include pattern recog-
nition [4,14] and chemistry [12]. Although there exist several variants, the max-
imum common subgraph problem (MCS) usually means the problem of finding
a connected graph with the maximum number of edges that is isomorphic to a
subgraph of each of the two input undirected graphs.

Due to its importance in pattern recognition and chemistry, many practi-
cal algorithms have been developed for MCS and its variants [4,12,14]. Some
exponential-time algorithms better than naive ones have also been developed
[1,9]. Kann studied the approximability of MCS and related problems [10].

It is also important for MCS to study polynomially solvable subclasses of
graphs. It is well-known that if input graphs are trees, MCS can be solved in
polynomial time using maximum weight bipartite matching [6]. Akutsu showed
that MCS can be solved in polynomial time if input graphs are almost trees of
bounded degree whereas MCS remains NP-hard for almost trees of unbounded
degree [2], where a graph is called almost tree if it is connected and the number

B. Rovan, V. Sassone, and P. Widmayer (Eds.): MFCS 2012, LNCS 7464, pp. 76–87, 2012.
c© Springer-Verlag Berlin Heidelberg 2012



A Polynomial-Time Algorithm for Computing the MCS 77

of edges in each biconnected component is bounded by the number of vertices
plus some constant. Yamaguchi et al. developed a polynomial-time algorithm
for MCS and the maximum common induced connected subgraph problem for a
degree bounded partial k-tree and a graph with a polynomially bounded number
of spanning trees, where k is a constant [16]. However, the latter condition seems
too strong. Schietgat et al. developed a polynomial-time algorithm for outerpla-
nar graphs under the block-and-bridge preserving subgraph isomorphism [13].
However, they modified the definition of MCS by this restriction. Although it
was announced that MCS can be solved in polynomial time if input graphs are
partial k-trees and MCS must be k-connected (for example, see [3]), the restric-
tion that subgraphs are k-connected is too strict from a practical viewpoint. On
the subgraph isomorphism problem, which is closely related to MCS, polynomial-
time algorithms have been developed for biconnected outerplanar graphs [11,15]
and for partial k-trees with some constraints as well as their extensions [5,7].

In this paper, we present a polynomial-time algorithm for outerplanar graphs
of bounded degree. Although this graph class is not a superset of the classes
in previous studies [2,16], it covers a wide range of chemical compounds1. Fur-
thermore, the algorithm or its analysis in this paper is not a simple extension
or variant of that for the subgraph isomorphism problem for outerplanar graphs
[11,15] or partial k-trees [5,7]. These algorithms heavily depend on the prop-
erty that each connected component in a subgraph is not decomposed. However,
to be discussed in Section 4, connected components from both input graphs
can be decomposed in MCS and considering all decompositions easily leads to
exponential-time algorithms. In order to cope with this difficulty, we introduce
the concept of blade. The blade and its analysis play a key role in this paper.

2 Preliminaries

A graph is called outerplanar if it can be drawn on a plane so that all vertices
lie on the outer face (i.e., the unbounded exterior region) without crossing of
edges. Although there exist many embeddings (i.e., drawings on a plane) of an
outerplanar graph, it is known that one embedding can be computed in linear
time. Therefore, we assume in this paper that each graph is given with its planar
embedding. A path is called simple if it does not pass the same vertex multiple
times. In this paper, a path always means a simple path that is not a cycle.

A cutvertex of a connected graph is a vertex whose removal disconnects the
graph. A graph is biconnected if it is connected and does not have a cutvertex. A
maximal biconnected subgraph is called a biconnected component. A biconnected
component is called a block if it consists of at least three vertices, otherwise it is
an edge and called a bridge. An edge in a block is called an outer edge if it lies on
the boundary of the outer face, otherwise called an inner edge. It is well-known
that any block of an outerplanar graph has a unique Hamiltonian cycle, which
consists of outer edges only.

1 It was reported that 94.4% of chemical compounds in NCI database have outerplanar
graph structures [8].



78 T. Akutsu and T. Tamura

If we fix an arbitrary vertex of a graph G as the root r, we can define the
parent-child relationship on biconnected components. For two vertices u and v, u
is called further than v if every simple path from u to r contains v. A biconnected
component C is called a parent of a biconnected component C′ if C and C′ share
a vertex v, where v is uniquely determined, and every path from any vertex in C′

to the root contains v. In such a case, C′ is called a child of C. A cutvertex v is
also called a parent of C if v is contained in both C and its parent component2.
Furthermore, the root r is a parent of C if r is contained in C.

For each cutvertex v, G(v) denotes the subgraph of G induced by v and the
vertices further than v. For a pair of a cutvertex v and a biconnected component
C containing v, G(v, C) denotes the subgraph of G induced by vertices in C
and its descendant components. For a biconnected component B with its parent
cutvertex w, a pair of vertices v and v′ in B is called a cut pair if v �= v′, v �= w,
and v′ �= w hold. For a pair (v, v′) in B such that v �= v′ holds (v or v′ can be the
parent cutvertex), V B(v, v′) denotes the set of the vertices lying on the one of
the two paths connecting v and v′ in the Hamilton cycle that does not contain
the parent cutvertex except its endpoints. B(v, v′) is the subgraph of B induced
by V B(v, v′) and is called a half block. It is to be noted that B(v, v′) contains
both v and v′. Then, G(v, v′) denotes the subgraph of G induced by V B(v, v′)
and the vertices in the biconnected components each of which is a descendant
of some vertex in V B(v, v′) − {v, v′}, and G(v, v′) denotes the subgraph of G
induced by the vertices in G(v, v′) and descendant components of v and v′.

Example. Fig. 1 shows an example of an outerplanar graph G(V,E). Blocks
and bridges are shown by gray regions and bold lines, respectively. B1, B3 and
e2 are the children of the root r. B4, B6 and B7 are the children of B3, whereas
B4 and B6 are the children of w. Both w and B3 are the parents of B4 and
B6. G(w) consists of B4, B5 and B6, whereas G(w,B4) consists of B4 and B5.
(v, v′) is a cut pair of B7, and B7(v, v

′) is a region surrounded by a dashed bold
curve. G(v, v′) consists of B7(v, v

′), B8, B9, B10, e4, e5, and e6, whereas G(v, v′)
consists of B7(v, v

′), B10, e4, and e5.

If a connected graph Gc(Vc, Ec) is isomorphic to a subgraph of G1 and a sub-
graph of G2, we call Gc a common subgraph of G1 and G2. A common subgraph
Gc is called a maximum common subgraph (MCS) of G1 and G2 if its number of
edges is the maximum among all common subgraphs3. In this paper, we consider
the following problem.

Maximum Common Subgraph of Outerplanar Graphs of Bounded De-
gree (OUTER-MCS)
Given two undirected connected outerplanar graphs G1 and G2 whose maximum
vertex degree is bounded by a constant D, find a maximum common subgraph
of G1 and G2.

2 Both of a cutvertex and a biconnected component can be parents of the same
component.

3 We use MCS to denote both the problem and the maximum common subgraph.



A Polynomial-Time Algorithm for Computing the MCS 79

r

v’
w

B1

B2

B3

B4

B5 B6

B7

B8

B7(v,v’)

B10

B9

v

e1

e2

e3

e6

e4

e5

Fig. 1. Example of an outerplanar graph

Notice that the degree bound is essential because MCS is NP-hard for outer-
planar graphs of unbounded degree even if each biconnected component consists
of at most three vertices [2]. Although we do not consider labels on vertices or
edges, our results can be extended to vertex-labeled and/or edge-labeled cases
in which label information must be preserved in isomorphic mapping. In the
following, n denotes the maximum number of vertices of two input graphs4.

In this paper, we implicitly make extensive use of the following well-known
fact [11] along with outerplanarity of input graphs.

Fact 1. Let G1 and G2 be biconnected outerplanar graphs. Let (u1, u2, . . . , um)
(resp. (v1, v2, . . . , vn)) be the vertices of G1 (resp. G2) arranged in the clockwise
order in some planar embedding of G1 (resp. G2). If there is an isomorphic
mapping {(u1, vi1), (u2, vi2), . . . , (um, vim)} from G1 to a subgraph of G2 then
vi1 , vi2 , . . . , vim appear in G2 in either clockwise or counterclockwise order.

3 Algorithm for a Restricted Case

In this section, we consider the following restricted variant of OUTER-MCS,
which is called SIMPLE-OUTER-MCS, and present a polynomial-time algorithm
for it: (i) any two vertices in different biconnected components in a maximum
common subgraph Gc must not be mapped to vertices in the same biconnected
component in G1 (resp. G2), (ii) each bridge in Gc must be mapped to a bridge
in G1 (resp. G2), (iii) the maximum degree need not be bounded.

It is to be noted from the definition of a common subgraph (regardless of the
above restrictions) that no two vertices in different biconnected components in
G1 (resp. G2) are mapped to vertices in the same biconnected component in
any common subgraph, or no bridge in G1 (resp. G2) is mapped to an edge in a
block in any common subgraph.

4 It should be noted that the number of vertices and the number of edges are in the
same order since we only consider connected outerplanar graphs.



80 T. Akutsu and T. Tamura

It seems that SIMPLE-OUTER-MCS is the same as one studied by Schietgat
et al. [13]. Although our algorithm is more complex and less efficient than theirs,
we present it here because the algorithm for a general (but bounded degree) case
is rather involved and is based on our algorithm for SIMPLE-OUTER-MCS.

Here we present a recursive algorithm to compute the size of MCS in SIMPLE-
OUTER-MCS, which can be easily transformed into a dynamic programming
algorithm to compute an MCS. The following is the main procedure of the
recursive algorithm.

Procedure SimpleOuterMCS(G1, G2)
smax ← 0;
for all pairs of vertices (u, v) ∈ V1 × V2 do
Let (u, v) be the root pair (r1, r2) of (G1, G2);
smax ← max(smax,MCSc(G1(r1), G2(r2)));

return smax.

The algorithm consists of recursive computation of the following three scores:

MCSc(G1(u), G2(v)): the size of an MCS Gc between G1(u) and G2(v), where
(u, v) is a pair of the roots or a pair of cutvertices, and Gc must contain a
vertex corresponding to both u and v.

MCSb(G1(u,C), G2(v,D)): the size of an MCS Gc between G1(u,C) and
G2(v,D), where (C,D) is either a pair of blocks or a pair of bridges, u
(resp. v) is the cutvertex belonging to both C (resp. D) and its parent, Gc

must contain a vertex corresponding to both u and v, and Gc must contain a
biconnected component (which can be empty) corresponding to a subgraph
of C and a subgraph D.

MCSp(G1(u, u
′), G2(v, v

′)): the size of an MCS Gc between G1(u, u
′) and

G2(v, v
′), where (u, u′) (resp. (v, v′)) is a cut pair, and Gc must contain

a cut pair (w,w′) corresponding to both (u, u′) and (v, v′). If there does not
exist such Gc (which must be connected), its score is −∞.

In the following, we describe how to compute these scores.

Computation of MCSc(G1(u), G2(v))
As in the dynamic programming algorithm for MCS for trees or almost trees

[2], we construct a bipartite graph and compute a maximum weight matching.
Let C1, . . . , Ch1 , e1, . . . , eh2 and D1, . . . , Dk1 , f1, . . . , fk2 be children of u and

v respectively, where Cis and Djs are blocks and eis and fjs are bridges (see
Fig. 2). We construct an edge-weighted bipartite graph BG(X,Y ;E) by

X = {C1, . . . , Ch1 , e1, . . . , eh2}, Y = {D1, . . . , Dk1 , f1, . . . , fk2},
E = {(x, y) | x ∈ X, y ∈ Y },

w(Ci, Dj) = MCSb(G1(u,Ci), G2(v,Dj)), w(Ci, fj) = 0,

w(ei, fj) = MCSb(G1(u, ei), G2(v, fj)), w(ei, Dj) = 0.

Then, we let MCSc(G1(u), G2(v)) be the weight of the maximum weight bipar-
tite matching of BG(X,Y ;E).



A Polynomial-Time Algorithm for Computing the MCS 81

G2G1
C1

C2

C3

r1
u

e1
e2

e3

D1

r2
v

f1

D2

D3

D4

f2

Fig. 2. Computation of MCSc(G1(u), G2(v))

Computation of MCSb(G1(u,C), G2(v,D))
Let (u1, u2, . . . , uh) be the sequence of vertices in G1(u,C) such that there

exists an edge {ui, u} for each ui, where u1, u2, . . . , uh are arranged in the
clockwise order. (v1, v2, . . . , vk) is defined for G2(v,D) in the same way. A pair
of subsequences ((ui1 , ui2 , . . . , uig ), (vj1 , vj2 , . . . , vjg )) is called an alignment if
i1 < i2 < · · · < ig, and j1 < j2 < · · · < jg or jg < jg−1 < · · · < j1 hold5 where
g = 0 is allowed. We compute MCSb(G1(u,C), G2(v,D)) by the following (see
Fig. 3).

Procedure SimpleOuterMCSb(G1(u,C), G2(v,D))
smax ← 0;
for all alignments ((ui1 , ui2 , . . . , uig ), (vj1 , vj2 , . . . , vjg )) do;
if C is a block and g = 1 then continue; /* blocks must be preserved */
s← 0;
for t = 1 to g do s← s+ 1 +MCSc(G1(uit), G2(vjt));
for t = 2 to g do s← s+MCSp(G1(uit−1 , uit), G2(vjt−1 , vjt));
smax ← max(s, smax);

return smax.

u

u1
u2

u3

C1

C2

C3

C4

G1(u,C) G2(v,D)

v

v1

v2

v3

v4

D1

D2
D3

D4

D5

Fig. 3. Computation of MCSb(G1(u,C), G2(v,D))

For example, consider an alignment ((u1, u2, u3), (v1, v2, v4)) in Fig. 3, where
all alignments are to be examined in the algorithm. Then, the score of this
alignment is given by 3 + MCSb(G1(u1, C1), G2(v1, D1)) + MCSp(G1(u1, u2),

5 The latter ordering is required for handling mirror images.



82 T. Akutsu and T. Tamura

G2(v1, v2)) +MCSp(G1(u2, u3), G2(v2, v4)). In this case, an edge {v, v3} is re-
moved and then v3 is treated as a vertex on the path connecting v2 and v4 in
the outer face.

Since the above procedure examines all possible alignments, it may take expo-
nential time. However, we can modify it into a dynamic programming procedure
as shown below, where we omit a subprocedure for handling mirror images. In
this procedure, u1, u2, . . . , uh and v1, v2, . . . , vk are processed from left to right.
In the first for loop, M [s, t] stores the size of MCS between G1(us) and G2(vt)
plus one (corresponding to a common edge between {u, us} and {v, vt}). The
second double for loop computes an optimal alignment. M [s, t] stores the size
of MCS between G1(u,C) and G2(v,D) up to us and vt, respectively. flag is
introduced to ensure the connectedness of a common subgraph. For example,
flag = 0 if G1(u) is a triangle but G2(v) is a rectangle.

for all (s, t) ∈ {1, . . . , h} × {1, . . . , k} do
M [s, t]← 1 +MCSc(G1(us), G2(vt));

flag← 0;
for s = 2 to h do
for t = 2 to k do
M [s, t]←M [s, t]+

maxs′<s,t′<t{M [s′, t′] +MCSp(G1(us′ , us), G2(ut′ , ut))};
if M [s, t] > −∞ then flag ← 1;

if C is a block and flag = 0 then return 0 else return maxs,t M [s, t].

Computation of MCSp(G1(u, u
′), G2(v, v

′))
Let (u1, u2, . . . , uh) be the sequence of vertices in G1(u, u

′) such that there
exists an edge {ui, u} or {ui, u

′} for each ui, where u1, u2, . . . , uh are arranged
in the clockwise order. (v1, v2, . . . , vk) is defined for G2(v, v

′) in the same way.
For a pair (ui, vj), l(ui, vj) = 1 if {ui, u} ∈ E1 and {vj , v} ∈ E2 hold, otherwise
l(ui, vj) = 0. For a pair (ui, vj), r(ui, vj) = 1 if {ui, u

′} ∈ E1 and {vj , v′} ∈ E2

hold, otherwise r(ui, vj) = 0. We compute MCSp(G1(u, u
′), G2(v, v

′)) by the
following procedure, where it does not examine alignments with jg < jg−1 <
· · · < j1.

Procedure SimpleOuterMCSp(G1(u, u
′), G2(v, v

′))
if {u, u′} ∈ E1 and {v, v′} ∈ E2 then smax ← 1 else smax ← −∞;
for all alignments ((ui1 , ui2 , . . . , uig ), (vj1 , vj2 , . . . , vjg )) do
if l(uit , vjt) = 0 and r(uit , vjt) = 0 hold for some t then continue;
if l(ui1 , vj1) = 0 and r(uig , vjg ) = 0 hold then continue;
if {u, u′} ∈ E1 and {v, v′} ∈ E2 then s← 1 else s← 0;
for t = 1 to g do s← s+ l(uit , vjt) + r(uit , vjt) +MCSc(G1(uit), G2(vjt));
for t = 2 to g do s← s+MCSp(G1(uit−1 , uit), G2(vjt−1 , vjt));
smax ← max(s, smax);

return smax.

This procedure returns −∞ if there does not exist a connected common sub-
graph between G1(u, u

′) and G2(v, v
′) that contains (w,w′) corresponding to

both (u, u′) and (v, v′).



A Polynomial-Time Algorithm for Computing the MCS 83

As an example, consider an alignment ((u1, u2, u3, u4), (v1, v2, v3, v5)) in Fig. 4.
Then, the score is given by 4+MCSp(G1(u1, u2), G2(v1, v2))+MCSp(G1(u2, u3),
G2(v2, v3))+MCSb(G1(u3, C3), G2(v3, D4))+MCSp(G1(u3, u4), G2(v3.v5)). For
another example, the score is −∞ for each of alignments ((u1, u3), (v4, v5)),
((u1, u2), (v1, v2)), and ((u3), (v3)), whereas the score of ((u2), (v3)) is 2.

As in the case of SimpleOuterMCSb(G1(u,C), G2(v,D)), SimpleOuter
MCSp (G1(u, u

′), G2(v, v
′)) can be modified into a dynamic programming

version.

u

u1 u2

u’

u3 u4

C1
C2 C3

C4

G1(u,u’) G2(v,v’)

v v’

v4

v5

v1
v2 v3

D1
D2 D3 D4 D5

D6

Fig. 4. Computation of MCSp(G1(u, u
′), G2(v, v

′))

Then, we have the following theorem, where the proof is omitted here.

Theorem 1. SIMPLE-OUTER-MCS can be solved in polynomial time.

4 Algorithm for Outerplanar Graphs of Bounded Degree

In order to extend the algorithm in Section 3 for a general (but bounded degree)
case, we need to consider decomposition of biconnected components. For exam-
ple, consider graphs G1 and G2 in Fig. 5. We can see that in order to obtain
a maximum common subgraph, biconnected components in G1 and G2 should
be decomposed as shown in Fig. 5, where there are several other ways of op-
timal decompositions. This is the crucial point because considering all possible
decompositions easily leads to exponential-time algorithms. In order to charac-
terize decomposed components, we introduce the concept of blade as below.

Suppose that vi1 , . . . , vik are the vertices of a half block arranged in this order,
and vi1 and vik are respectively connected to v and v′, where v and v′ can be

G1 G2

Fig. 5. Example of a difficult case



84 T. Akutsu and T. Tamura

the same vertex. If we cut one edge {vih , vih+1
}, we obtain two subgraphs, one

induced by vi1 , vi2 , . . . , vih and the other induced by vik , vik−1
, . . . , vih+1

, where
only one such subgraph is obtained in the case of i1 = ih or ik = ih+1, and no
such subgraph is obtained in the case of k = 2. Each of these components is a
chain of biconnected components called a blade body, and a subgraph consisting
of a blade body and its descendants is called a blade (see Fig. 6). Vertices vi1
and vik , an edge {vih , vih+1

}, and vertices vih , vih+1
are called base vertices, a tip

edge, and tip vertices, respectively. The sequence of edges in the shortest path
from vi1 to vih (resp. from vik to vih+1

) is called the backbone of a blade. If
{v, vi1} is the leftmost edge (resp. {v′, vik} is the rightmost edge) connecting to
v (resp. v′) and is removed, the resulting half block induced by vik , . . . , vi2 , vi1
(resp. (vi1 , vi2 , . . . , vik)) is also regarded as a blade body where vik (resp. vi1)
becomes the base vertex. For example, the rightmost blade in Fig. 7 is created
by removing the rightmost edge of C1.

Since a blade can be specified by a pair of base and tip vertices and an
orientation (clockwise or counterclockwise), there exist O(n2) blades in G1 and
G2. Of course, we need to consider the possibility that during the execution of
the algorithm, other subgraphs may appear from which new blades are created.
However, we will show later that blades appearing in the algorithm are restricted
to be those in G1 and G2.

base
vertices

tip edge

base vertex

tip edge

(A)

(B)

backbone

tip vertices

tip vertex

v

v’

v

v’

vi1

vik

vih

vih+1

blade

blade

Fig. 6. (A) Construction of blades where subgraphs excluding gray regions (descendant
components) are blade bodies, and (B) schematic illustration of a blade

4.1 Description of Algorithm

In this subsection, we describe the algorithm as a recursive procedure, which can
be transformed into a dynamic programming one as in Section 3.

The main procedure (OuterMCS(G1, G2)) is the same as in Section 3, and we
recursively compute three kinds of scores:MCSc(G1(u), G2(v)),MCSb(G1(u,C),
G2(v,D)), and MCSp(G1(u, u

′), G2(v, v
′)), where cutvertices, cut pairs, blocks,



A Polynomial-Time Algorithm for Computing the MCS 85

and bridges do not necessarily mean those in the original graphs but may mean
those in subgraphs generated by the algorithm.

Computation of MCSc(G1(u), G2(v))
Let C1, . . . , Ch1 and e1, . . . , eh2 be children of u, where Cis and ejs are blocks

and bridges, respectively. Let ui1 , . . . , uih be the neighboring vertices of u that
are contained in children of u. We define a configuration as a tuple of the following
(see Fig. 7).

s(uij ) ∈ {0, 1} for j = 1, . . . , k: s(uij ) = 1 means that uij is selected as a neigh-
bor of u in a common subgraph, otherwise s(uij ) = 0. uij is called a selected
vertex if s(uij ) = 1.

tip(uij , uik): e = tip(uij , uik) is an edge in B(uij , uik) where B is the block
containing uij , uik , and u. This edge is defined only for a consecutive selected
vertex pair uij and uik in the same block (i.e., B(uij , uik) does not contain
any other selected vertex). e is used as a tip edge where e can be empty which
means that we do not cut any edge in B(uij , uik). It is to be noted that at
most one edge in B(uij , uik) can be a tip edge and thus each B(uij , uik) is
divided into at most two blade bodies: further decomposition will be done
in later steps.

Each configuration defines a subgraph of G1(u) as follows.

– ei = {uij , u} (i ∈ {1, . . . , h2}) remains if s(uij ) = 1. Otherwise ei is removed
along with its descendants.

– If no vertex in Ci is selected, Ci is removed along with its descendants.
Otherwise, half blocks in Ci are broken into blade bodies (according to s(. . .)s
and tip(. . .)s) and edges {uij , u} with s(uij ) = 0 are removed.

Let C′
1, . . . , C

′
p1

and e′1, . . . , e
′
p2

be the resulting blocks and bridges containing
u, which are new ‘children’ of u, for a configuration F1. Configurations are de-
fined for G2(v) in an analogous way. Let D′

1, . . . , D
′
q1 and f ′

1, . . . , f
′
q2 be the

resulting new children of v for a configuration F2 of G2. As in Section 3, we con-
struct a bipartite graph BGF1,F2 by w(C′

i, D
′
j) = MCSb(G1(u,C

′
i), G2(v,D

′
j)),

w(C′
i, f

′
j) = 0, w(e′i, f

′
j) = MCSb(G1(u, e

′
i), G2(v, f

′
j)), w(e

′
i, D

′
j) = 0, and com-

pute the weight of the maximum weight matching for each configuration pair
(F1, F2)

6. The following is a procedure for computing MCSc(G1(u), G2(v)).

Procedure OuterMCSc(G1(u), G2(v))
smax ← 0;
for all configurations F1 for G1(u) do
for all configurations F2 for G2(v) do
s← weight of the maximum weight matching of BGF1,F2 ;
if s > smax then smax ← s;

return smax.

6 Although a bridge cannot be mapped on a block here, a bridge can be mapped to
an edge in a block by cutting the block using tip edge(s).



86 T. Akutsu and T. Tamura

u

tip edge tip edge

u

e1 e2

C1

e1’

e2’

C1’

u1 u2 u3

Fig. 7. Example of configuration and its resulting subgraph of G1(u), where black
circles, dark gray regions, thin dotted lines denote selected vertices, blades, and removed
edges, respectively. C′

1 has three blades and one block as the children, and e′1 has two
blades as the children. The role of u1, u2, and u3 corresponds to that of u1, u2, and u3

in Fig. 3.

Computation of MCSb(G1(u,C
′), G2(v,D

′))
This score can be computed as in Section 3. In this case, we can directly

examine all possible alignments because the number of neighbors of u or v is
bounded by a constant and we need to examine a constant number of alignments.

Computation of MCSp(G1(u, u
′), G2(v, v

′)).
This part is a bit more complex than the restricted case because we need to

take configurations into account, where the details are omitted here.

4.2 Analysis

It is straightforward to check the correctness of the algorithm because it implic-
itly examines all possible common subgraphs. Therefore, we focus on analysis of
the time complexity, where the proofs are omitted here. As mentioned before,
each blade is specified by base and tip vertices in G1 or G2 and an orientation.
Each half block is also specified by two vertices in a block in G1 or G2. We show
that this property is maintained throughout the execution of the algorithm and
bound the number of half blocks and blades as below.

Lemma 1. The number of different half blocks and blades appearing in
OuterMCS(G1, G2) is O(n2).

Finally, we obtain the following theorem.

Theorem 2. A maximum connected common subgraph of two outerplanar graphs
of bounded degree can be computed in polynomial time.

5 Concluding Remarks

We have presented a polynomial-time algorithm for the maximum common sub-
graph problem for outerplanar graphs of bounded degree. However, it is not



A Polynomial-Time Algorithm for Computing the MCS 87

practically efficient. Therefore, development of a much faster algorithm is left as
an open problem. Although the proposed algorithm might be modified for out-
putting all maximum common subgraphs, it would not be an output-polynomial
time algorithm. Therefore, such an algorithm should also be developed.

References

1. Abu-Khzam, F.N., Samatova, N.F., Rizk, M.A., Langston, M.A.: The maximum
common subgraph problem: faster solutions via vertex cover. In: Proc. 2007
IEEE/ACS Int. Conf. Computer Systems and Applications, pp. 367–373. IEEE
(2007)

2. Akutsu, T.: A polynomial time algorithm for finding a largest common subgraph
of almost trees of bounded degree. IEICE Trans. Fundamentals E76-A, 1488–1493
(1993)

3. Bachl, S., Brandenburg, F.-J., Gmach, D.: Computing and drawing isomorphic
subgraphs. J. Graph Algorithms and Applications 8, 215–238 (2004)

4. Conte, D., Foggia, P., Sansone, C., Vento, M.: Thirty years of graph matching
in pattern recognition. Int. J. Pattern Recognition and Artificial Intelligence 18,
265–298 (2004)

5. Dessmark, A., Lingas, A., Proskurowski, A.: Faster algorithms for subgraph iso-
morphism of k-connected partial k-trees. Algorithmica 27, 337–347 (2000)

6. Garey, M.R., Johnson, D.S.: Computers and Intractability. Freeman, New York
(1979)

7. Hajiaghayi, M., Nishimura, N.: Subgraph isomorphism, log-bounded fragmentation
and graphs of (locally) bounded treewidth. J. Comput. Syst. Sci. 73, 755–768 (2007)

8. Horváth, T., Ramon, J., Wrobel, S.: Frequent subgraph mining in outerplanar
graphs. In: Proc. 12th ACM SIGKDD Int. Conf. Knowledge Discovery and Data
Mining, pp. 197–206. ACM (2006)

9. Huang, X., Lai, J., Jennings, S.F.: Maximum common subgraph: some upper bound
and lower bound results. BMC Bioinformatics 7(suppl. 4), S-4 (2006)

10. Kann, V.: On the Approximability of the Maximum Common Subgraph Prob-
lem. In: Finkel, A., Jantzen, M. (eds.) STACS 1992. LNCS, vol. 577, pp. 377–388.
Springer, Heidelberg (1992)

11. Lingas, A.: Subgraph isomorphism for biconnected outerplanar graphs in cubic
time. Theoret. Comput. Sci. 63, 295–302 (1989)

12. Raymond, J.W., Willett, P.: Maximum common subgraph isomorphism algorithms
for the matching of chemical structures. J. Computer-Aided Molecular Design 16,
521–533 (2002)

13. Schietgat, L., Ramon, J., Bruynooghe, M.: A polynomial-time metric for outerpla-
nar graphs. In: Proc. Workshop on Mining and Learning with Graphs (2007)

14. Shearer, K., Bunke, H., Venkatesh, S.: Video indexing and similarity retrieval by
largest common subgraph detection using decision trees. Pattern Recognition 34,
1075–1091 (2001)

15. Syslo, M.M.: The subgraph isomorphism problem for outerplanar graphs. Theoret.
Comput. Sci. 17, 91–97 (1982)

16. Yamaguchi, A., Aoki, K.F., Mamitsuka, H.: Finding the maximum common sub-
graph of a partial k-tree and a graph with a polynomially bounded number of
spanning trees. Inf. Proc. Lett. 92, 57–63 (2004)


	A Polynomial-Time Algorithm for Computing the Maximum Common Subgraph of Outerplanar Graphs of Bounded Degree
	Introduction
	Preliminaries
	Algorithm for a Restricted Case
	Algorithm for Outerplanar Graphs of Bounded Degree
	Description of Algorithm
	Analysis

	Concluding Remarks
	References




