
On the Complexity of Ontological Reasoning
under Disjunctive Existential Rules

Georg Gottlob1,2,3, Marco Manna1,4, Michael Morak1, and Andreas Pieris1

1 Department of Computer Science, University of Oxford, UK
2 Oxford-Man Institute of Quantitative Finance, University of Oxford, UK

3 Institute for the Future of Computing, Oxford Martin School, UK
4 Department of Mathematics, University of Calabria, Italy

{georg.gottlob,michael.morak,andreas.pieris}@cs.ox.ac.uk,
manna@mat.unical.it

Abstract. Ontology-based data access is an emerging yet powerful technology
that allows to enhance a classical relational database with an ontology in order
to infer new intensional knowledge. Recently, Datalog+/- was introduced with
the purpose of providing tractable reasoning algorithms for expressive ontology
languages. In this framework, Datalog is extended by features such as existential
quantification in rule heads, and at the same time the rule syntax is restricted to
guarantee decidability, and also tractability, of relevant reasoning tasks. In this pa-
per, we enrich Datalog even more by allowing not only existential quantification
but also disjunction in rule heads, and we investigate the complexity of reasoning
under the obtained formalism.

1 Introduction

Ontological reasoning is a fundamental task in the Semantic Web, where the informa-
tion present in the web is annotated in order to be machine-readable. Semantic Web
ontologies are modeled using logical formalisms, such as W3Cs standard OWL 2 DL
ontology language1 which is built on Description Logics (DLs) [6]. DLs are decidable
fragments of first-order logic based on concepts (classes of objects) and roles (binary
relations between concepts). A large corpus of works in DLs has focused on the prob-
lems of consistency (whether a knowledge base is consistent or satisfiable), instance
checking (whether a certain object is an instance of a concept), and logical entailment
(whether a certain constraint is logically implied by an ontology). The last few years,
the attention has shifted on the problem of query answering. A notable example is the
DL-Lite family of DLs [18,30], which forms the OWL 2 QL profile2 of OWL 2 DL,
that offers flexible, natural and expressive languages, and at the same time keeps query
answering highly tractable and scalable to large data sets.

Recently, the DL-Lite family (together with other well-known DLs such as the DLR-
Lite family [17] and EL [4]) has been embedded into an expressive framework called
Datalog± [14]. The Datalog± family has been proposed with the purpose of providing

1 http://www.w3.org/TR/owl2-overview/
2 http://www.w3.org/TR/owl2-profiles/

B. Rovan, V. Sassone, and P. Widmayer (Eds.): MFCS 2012, LNCS 7464, pp. 1–18, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

2 G. Gottlob et al.

tractable reasoning algorithms for more general ontology languages. These languages
are based on Datalog rules3 that allow for existentially quantified variables in rule heads,
in the same fashion as Datalog with value invention [11]. Such rules are known as tuple-
generating dependencies (TGDs) in the database literature [9]. In particular, TGDs are
implications between conjunctions of atoms. They essentially say that some tuples in
an instance I imply the presence of some other tuples in I . For example, the TGD

∀E∀D emp(E) ∧mgr(E,D)→ ∃E′ emp(E′) ∧ works(E′, D) ∧ reports(E′, E)

expresses the following: “if an employee E is the manager of a department D, then
there is an employee E′ who works in D and reports to E.” The absence of value in-
vention, thoroughly discussed in [29], is the main shortcoming of Datalog in modeling
ontologies, and even conceptual data formalisms such as UML class diagrams [10] and
ER schemata [19]. The addition of value invention in the form of existential quantifi-
cation in rule heads constitutes a crucial step towards the bridging of the gap between
ontology languages and Datalog, and opens new horizons in ontological reasoning.

Unfortunately, the addition of existential quantification in Datalog easily leads to
undecidability of the most basic reasoning tasks [9,12]. Currently, an important research
direction in the general area of knowledge representation and reasoning is to identify
expressive Datalog± formalisms (or, equivalently, classes of TGDs) for which the basic
reasoning services are decidable. Moreover, to be able to work with very large data sets,
it is desirable not only that reasoning is decidable, but also tractable in data complexity
(i.e., in the size of the database). The main syntactic paradigms which guarantee the
above desirable properties are weak-acyclicity [22], guardedness [12], stickiness [15]
and shyness [27]. Several attempts have been conducted towards the identification of
even more expressive formalisms, by extending or combining the above classes (see,
e.g., [7,16,26,28]).

The aforementioned Datalog-based formalisms, in contrast to expressive DL-based
ontology languages, are not powerful enough for nondeterministic reasoning. For in-
stance, in the well-known description logic ELU , that is, EL extended with disjunc-
tion (see, e.g., [5]), it is possible to state simple and natural statements such as “the
parent of a father is a grandfather or a grandmother” using the following axiom:

∃parentOf .father � ∃grandfatherOf .� � ∃grandmotherOf .�

This axiom can be expressed by a guarded TGD extended with disjunction as follows:

∀X∀Y parentOf (X,Y) ∧ father (Y)→ ∃ZgfatherOf (X,Z) ∨ gmotherOf (X,Z)

Obviously, to represent such kind of knowledge, we need to extend the existing classes
of TGDs by allowing disjunctive statements in the head. Disjunctive Datalog, that is,
the variant of Datalog where disjunction may appear in rule heads, has been thoroughly
investigated by Eiter et al. [21]. The data complexity of reasoning under guarded-based
classes of TGDs extended with disjunction has been recently studied in [2].

Research Challenge. It is the precise aim of the current work to better understand the
problem of reasoning under disjunctive TGDs (DTGDs), that is, TGDs that allow for

3 A Datalog program is a set of universally quantified function-free Horn clauses (see, e.g., [1]).

On the Complexity of Ontological Reasoning under Disjunctive Existential Rules 3

disjunction in their heads, and to investigate the complexity of reasoning under existing
classes of TGDs extended with disjunction. In particular, we concentrate on the problem
of atom entailment defined as follows: given an extensional databaseD, an ontologyΣ
constituted by DTGDs, and a relational atom a, decide whether each model of D and
Σ, i.e., each instance that contains D and satisfies Σ, entails a, denoted D ∪ Σ |= a.
Notice that the problem of instance checking is a special case of atom entailment.

Ontological reasoning adheres to the standard logical semantics of entailment (|=),
which denotes entailment under arbitrary, not necessarily finite, models. This implies, in
general, that a database and a set of DTGDs admit infinitely many models, where each
of them can be of infinite size; in fact, this holds already for TGDs due to the existential
quantification. Interestingly, in the case of TGDs, it is always possible to construct the
so-called universal model, which can be seen as a representative of all the other mod-
els, by applying a well-known procedure called chase (see, e.g., [20,24]). Roughly, the
chase adds new atoms to the given database as dictated by the given TGDs, possibly in-
volving labeled null values as witnesses for the existentially quantified variables, until
the final result satisfies all the TGDs. Hence, for reasoning purposes, instead of consid-
ering all the models of an ontological theory constituted by TGDs, we can concentrate
on the universal model.

The situation changes dramatically if we consider DTGDs. In fact, there is no sin-
gle model that acts as a representative of all the other models. The notion of univer-
sal model has been recently extended to the disjunctive case by introducing universal
model sets [2]. It was shown that, given an extensional database D and a set Σ of DT-
GDs, by applying a procedure similar to the chase, one can build a set PD,Σ of ground
rules, called the instantiation of D and Σ. The models of PD,Σ constitute the universal
model set forD andΣ. Nevertheless, PD,Σ admits, in general, infinitely many models,
that have to be considered for ontological reasoning purposes. From the above discus-
sion, it is clear that atom entailment (and other reasoning tasks) is becoming even more
complicated and challenging if we consider DTGDs instead of TGDs. Obviously, cor-
rect and terminating algorithms require methods for reasoning over infinite structures
without explicitly building them.

Summary of Contributions. We investigate the complexity of atom entailment un-
der guarded and linear DTGDs. Recall that guarded TGDs is one of the main classes
of TGDs that guarantees decidability, and also tractability in data complexity, of rea-
soning [12]. A TGD is guarded if it has an atom in its body that contains all the

Table 1. Complexity of atom entailment under guarded and linear DTGDs

Formalism Data Complexity DTGDs of fixed size Combined Complexity

Guarded DTGDs
coNP-complete EXPTIME-complete 2EXPTIME-complete

UB: [8] LB: [2] UB: [23] LB: [12] UB: [23] LB: [12]

Linear DTGDs
in AC0 PTIME-complete EXPTIME-complete

UB: Thm. 3 UB: Thm. 2 LB: Thm. 5 UB: Thm. 2 LB: Thm. 4

4 G. Gottlob et al.

body-variables, while a TGD is linear if it has only one body atom (and thus it is
guarded). The complexity results established in this paper are presented in Table 1;
we have indicated, in each cell, where to find the corresponding results (UB and LB
stand for upper bound and lower bound, respectively). A summary of our contribution
follows:

−We show that atom entailment under guarded DTGDs is coNP-complete in data com-
plexity, EXPTIME-complete in case of DTGDs of fixed size, and 2EXPTIME-complete
in combined complexity, i.e., the complexity calculated by considering, together with
the database, also the set of DTGDs as part of the input. The upper bounds are obtained
from existing results on satisfiability of logical theories that fall in the guarded fragment
of first-order logic [8,23]. In particular, we show that atom entailment under guarded
DTGDs can be reduced to the problem of unsatisfiability of guarded first-order theories.
The lower bounds are inherited immediately from existing results on atom entailment
under guarded DTGDs. We also show that every ELU ontology [5] can be rewritten
into an equivalent set (w.r.t. atom entailment) of guarded DTGDs.
− We show that atom entailment under linear DTGDs is in AC0 in data complexity4

(improving the LOGSPACE upper bound established in [2]), PTIME-complete in the
case of DTGDs of fixed size, and EXPTIME-complete in combined complexity. These
are novel complexity results, and constitute the main contribution of this paper. The AC0

upper bound is obtained by establishing that atom entailment under linear DTGDs can
be reduced to the evaluation of a first-order query over a database [32]. The remaining
two upper bounds are obtained by giving an alternating algorithm which runs in loga-
rithmic space if the DTGDs have fixed size, and in polynomial space in general. The
lower bounds are established by simulating the behavior of an alternating logarithmic
space (resp., polynomial space) Turing machine by means of linear DTGDs.

2 The Framework

In this section, we present background material necessary for this paper. We recall some
basics on relational databases, we introduce disjunctive tuple-generating dependencies,
and we discuss the problem tackled in this work, i.e., atom entailment.

Technical Definitions. We define the following pairwise disjoint (countably infinite)
sets of symbols: a set Γ of constants (constituting the “normal” domain of a database),
a set ΓN of labeled nulls (used as placeholders for unknown values, and thus can be also
seen as globally existentially quantified variables), and a set ΓV of regular variables
(used in dependencies). Different constants represent different values (unique name
assumption), while different nulls may represent the same value. We assume a fixed
well-ordering of Γ ∪ ΓN such that every value in ΓN follows all those in Γ . We denote
by X sequences (or sets, with a slight abuse of notation) of variables X1, . . . , Xk, with
k � 0. Throughout, let [n] = {1, . . . , n}, for any integer n � 1.

A relational schema R (or simply schema) is a set of relational symbols (or pred-
icates), each with its associated arity. We write r/n to denote that the predicate r has

4 This is the complexity class of recognizing words in languages defined by constant-depth
Boolean circuits with an (unlimited fan-in) AND and OR gates.

On the Complexity of Ontological Reasoning under Disjunctive Existential Rules 5

arity n. A term t is a constant, null, or variable. An atomic formula (or simply atom) has
the form r(t1, . . . , tn), where r/n is a relation, and t1, . . . , tn are terms. For an atom
a, we denote as terms(a) and var(a) the set of its terms and the set of its variables,
respectively. These notations naturally extend to sets and conjunctions of atoms. The
arity of an atom is the arity of its predicate. An atom is called a fact if all of its terms
are constants of Γ . Conjunctions and disjunctions of atoms are often identified with the
sets of their atoms. An instance I for a schemaR is a (possibly infinite) set of atoms of
the form r(t), where r/n ∈ R and t ∈ (Γ ∪ ΓN)n. A database D is a finite instance
such that terms(D) ⊂ Γ .

A substitution from a set of symbolsS to a set of symbolsS′ is a function h : S → S′

defined as follows: ∅ is a substitution (empty substitution), and if h is a substitution,
then h ∪ {s → s′} is a substitution, where s ∈ S and s′ ∈ S′. If s → s′ ∈ h,
then we write h(s) = s′. The restriction of h to T ⊆ S, denoted h|T , is the substitution
h′ = {t→ h(t) | t ∈ T }. A homomorphism from a set of atomsA to a set of atomsA′ is
a substitution h : Γ ∪ΓN ∪ΓV → Γ ∪ΓN ∪ΓV such that: if t ∈ Γ , then h(t) = t, and if
r(t1, . . . , tn) ∈ A, then h(r(t1, . . . , tn)) = r(h(t1), . . . , h(tn)) ∈ A′. An isomorphism
between A and A′ is a bijective homomorphism h such that h(A) = A′, h−1 is a
homomorphism, and h−1(A′) = A.

Disjunctive TGDs. The set of (quantifier-free, positive) AND-OR formulas over a re-
lational schemaR is defined as the set of all (finite) formulas overR containing ∧ and
∨. It is well-known that each AND-OR formula can be converted into an equivalent
one in disjunctive normal form (DNF). Given an AND-OR formula ψ, we denote by
DNF (ψ) the set of formulas in disjunctive normal form into which ψ can be converted.
A disjunctive tuple-generating dependency (DTGD) σ over a schemaR is a first-order
formula ∀X∀Y ϕ(X,Y) → ∃Zψ(X,Z), where ϕ is an AND formula overR, ψ is an
AND-OR formula overR, and X∪Y ∪Z ⊂ ΓV . Formula ϕ is the body of σ, denoted
as body(σ), while ψ is the head of σ, denoted as head(σ). We define the size of σ as the
sum of the arities of its atoms. In the rest of the paper, for brevity, we will omit universal
quantifiers in front of DTGDs, and use a comma for conjoining atoms instead of∧. Such
σ is satisfied by an instance I , written as I |= σ, if the following holds: whenever there
exists a homomorphism h such that h(ϕ(X,Y)) ⊆ I , then there exists ψ′ ∈ DNF (ψ)
and a homomorphism h′ ⊇ {X → t | X → t ∈ h|X, where X ∈ X and t ∈ Γ ∪ ΓN}
such that h′ maps at least one disjunct of ψ′ into I . An instance I satisfies a set Σ of
DTGDs, denoted I |= Σ, if I |= σ for each σ ∈ Σ.

Atom Entailment under DTGDs. Given a database D for a schema R, and a set Σ
of DTGDs over R, a model of D and Σ is an instance I for R such that I ⊇ D and
I |= Σ; let mods(D,Σ) be the set of models ofD andΣ. An atom a overR is entailed
by D and Σ, denoted as D ∪ Σ |= a, if for each M ∈ mods(D,Σ), there exists a
homomorphism hM such that hM (a) ∈ M . The central decision problem tackled in
this work, called atom entailment, is defined as follows:

ATOM-ENTAILMENT

Instance : 〈a,D,Σ〉, where a is an atom over a schemaR, D is a database forR,
and Σ is a set of DTGDs overR.

Question : D ∪Σ |= a?

6 G. Gottlob et al.

It is well-known that the above problem is undecidable already for tuple-generating de-
pendencies (TGDs), i.e., DTGDs where the head is an AND formula. More precisely,
atom entailment is undecidable even under a fixed set of TGDs [12]. The proof of this
result hinges on the fact that, with appropriate input atoms, we can simulate the behav-
ior of a deterministic Turing machine using a fixed set of TGDs. Also, as established
recently [7], it is possible to encode any set of TGDs using a single TGD.

From the above discussion, we conclude that the recognition of expressive decidable
classes of TGDs is a challenging problem. Nowadays, an important research objec-
tive is to identify more expressive formalisms under which atom entailment (and other
reasoning tasks) is still decidable (see, e.g., [7,14,26]). Known decidable formalisms,
which are of special interest for the current work, are the classes of guarded and lin-
ear TGDs [13]. A TGD σ is guarded if in body(σ) there exists an atom a such that
var(a) = var (body(σ)), i.e., a contains all the universally quantified variables of σ.
If body(σ) contains a single atom, then σ is called linear; notice that a linear TGD
is trivially guarded since the single body-atom contains all the universally quantified
variables. Guarded and linear TGDs can be naturally extended to guarded and linear
DTGDs, respectively. In the rest of the paper, we investigate the complexity of atom en-
tailment under guarded and linear DTGDs. Following Vardi’s taxonomy [31], the data
complexity of atom entailment is the complexity calculated taking only the database as
input, while the atom and the set of dependencies are considered fixed. The combined
complexity is the complexity calculated considering as input, together with the database,
also the atom and the set of dependencies.

Normalization of DTGDs. In order to simplify the technical definitions and proofs in
the rest of the paper, a normal form of DTGDs is adopted. Given a set Σ of DTGDs,
we denote by Normalize(Σ) the set of DTGDs obtained by transformingΣ as follows.
First, we construct the set Σ′ by applying exhaustively on Σ the following rules until
each DTGD has in its head either a single atom or a disjunction of two atoms:

1. A DTGD of the form ϕ(X,Y) → ∃Zψ1(X1,Z1) ∧ ψ2(X2,Z2) is replaced by
ϕ(X,Y) → ∃Z r�(X,Z) and r�(X,Z) → ψi(Xi,Zi), for each i ∈ [2], where r�

is an |X ∪ Z|-ary auxiliary predicate not introduced so far.
2. A DTGD of the form ϕ(X,Y) → ∃Zψ1(X1,Z1) ∨ ψ2(X2,Z2) is replaced by
ϕ(X,Y)→ ∃Z ∨i∈[2] r

�
i (Xi,Zi) and r�i (Xi,Zi)→ ψi(Xi,Zi), for each i ∈ [2],

where r�i is an |Xi ∪ Zi|-ary auxiliary predicate not introduced so far.

Normalize(Σ) is obtained by transformingΣ′ in such a way that eventually each DTGD
has at most one existentially quantified variable that occurs only once. In particular, for
each σ ∈ Σ′, assuming that var(body(σ)) ∩ var (head(σ)) = X and var (head(σ)) \
var(body(σ)) = {Z1, . . . , Zn}, where n � 1, σ is replaced by

body(σ) → ∃Z1 r
�
1(X, Z1)

r�i (X, Z1, . . . , Zi) → ∃Zi+1 r
�
i+1(X, Z1, . . . , Zi+1), for each i ∈ [n− 1]

r�n(X, Z1, . . . , Zn) → head(σ),

where r�i is an (|X|+i)-ary auxiliary predicate, for each i ∈ [n]. It is easy to verify that,
during the above construction, we introduce polynomially many auxiliary predicates,
and the arity of those predicates is at most the maximum number of variables that appear

On the Complexity of Ontological Reasoning under Disjunctive Existential Rules 7

in the head of a DTGD of Σ. Thus, Normalize(Σ) can be constructed in polynomial
time. Finally, it is important to say that the normalized set is (w.r.t. atom entailment)
equivalent to the original set. In the rest of the paper, we will state explicitly when we
consider normalized sets of DTGDs.

3 Guarded Disjunctive Tuple-Generating Dependencies

The present section weaves together existing results, achieved in the areas of both logics
and database theory, to establish the complexity of atom entailment under guarded DT-
GDs. For the upper bounds, we exploit the guarded fragment of first-order logic [3,23],
while for the lower bounds we discuss relevant reductions that have already been pro-
vided for well-known subclasses of DTGDs.

Interestingly, every set Σ of guarded DTGDs can be translated in logarithmic space
into an equivalent guarded first-order theory denoted as GFO(Σ). Given an instance
〈a,D,Σ〉 of atom entailment, where Σ is a set guarded DTGDs, it is well-known that
D ∪ Σ |= a iff GFO(Σ) ∧ ψD ∧ ¬a is unsatisfiable, where ψD = ∧d∈D d. Since
the theory GFO(Σ) ∧ ψD ∧ ¬a is guarded, we can exploit existing results regarding
unsatisfiability of guarded formulas. The complexity of this problem was first inves-
tigated by Grädel [23]. In particular, it is in 2EXPTIME in the general case and in
EXPTIME in case of fixed arity. The former result was obtained by exhibiting an al-
ternating exponential space algorithm. A deterministic version of this algorithm runs
in time O(2(|R|+|ψ|)·ωω

), where R is the set of predicates in the formula ψ, and ω is
the maximum arity over all predicate symbols ofR. In the case of fixed arity, the same
algorithm clearly runs in exponential time. In case of a fixed theory combined with an
input database (data complexity) the same problem is in NP [8]. The idea behind this
result can be summarized as follows. Consider a fixed guarded first-order formula ψ
over a schema R. The algorithm first pre-computes all possible maximal conjunctions
of (pairwise non-isomorphic) literals, called types, over R that satisfy ψ. Since ψ is
fixed, also the set of types is fixed, as well as the number of steps required to com-
pute it. For example, if ψ = ∀X(r(X) → p(X)), then its types are: r(X) ∧ p(X),
¬r(X) ∧ p(X), and ¬r(X) ∧ ¬p(X). Next, given an input database ψD for R, the
algorithm guesses a suitable set B of constants appearing in ψD, constructs the set
S = {c ∈ ψD | terms(c) ⊆ B}, and checks in polynomial time whether at least one
type of ψ is consistent with S.

Let us now turn our attention to the lower bounds. In the general case, Calı̀ et al. [12]
proved that atom entailment is already 2EXPTIME-hard for guarded TGDs, by simu-
lating an alternating exponential space Turing machine. Moreover, in the same paper,
it was also proved that if we consider predicates of fixed arity, the construction can be
adapted to simulate an alternating linear space Turing machine. Regarding data com-
plexity, Alviano et al. [2] recently showed that the well-known coNP-complete problem
of deciding whether a 3-CNF formula is unsatisfiable can be reduced to atom entail-
ment under the fixed set Σ of guarded DTGDs {clause(L1, L2, L3, N1, N2, N3) →
∨i∈[3]assign(Li, Ni)} ∪ {assign(L,N), assign(N,L)→ invalid (L)}. Given a propo-
sitional formula ψ in 3-CNF, for each clause of the form l1 ∨ l2 ∨ l3 of ψ we add to the
databaseD the fact clause(l1, l2, l3, ν(l1), ν(l2), ν(l3)), where ν(l) = ¬x if l = x, and

8 G. Gottlob et al.

ν(l) = x if l = ¬x. It can be shown that ψ is unsatisfiable iff D ∪ Σ |= invalid (L).
The previous discussion is summarized in the following result.

Theorem 1. ATOM-ENTAILMENT under guarded DTGDs is 2EXPTIME-complete in
combined complexity, EXPTIME-complete if the size of the DTGDs is fixed, and coNP-
complete in data complexity.

It is interesting to see that every set of ELU axioms [5] can be easily reduced to an
equivalent set (w.r.t. atom entailment) of guarded DTGDs. A set of ELU axioms can
be normalized in such a way that only assertions of the form given in Table 2 can
appear (see, e.g., [4]). In the same table we give the translation τ of such axioms to
guarded DTGDs. Using τ it is not difficult to show that instance checking under ELU
knowledge bases can be reduced in logarithmic space to atom entailment under guarded
DTGDs, while preserving the data complexity. It is well-known that instance checking
under ELU ontologies is coNP-complete [25]. Guarded DTGDs are expressive enough
to capture also the DL obtained by allowing in ELU role hierarchies and inverse roles.

4 Linear Disjunctive Tuple-Generating Dependencies

In this section, we study the complexity of atom entailment under linear DTGDs. We
show that it is EXPTIME-complete in combined complexity, PTIME-complete if the
DTGDs have fixed size, and in AC0 in data complexity. The first two upper bounds
are obtained by giving an alternating algorithm which runs in polynomial space, and
in logarithmic space if the DTGDs have fixed size. The AC0 upper bound is obtained
by reducing atom entailment under linear DTGDs into first-order query evaluation. The
lower bounds are established by simulating the behavior of an alternating polynomial
space (resp., logarithmic space) Turing machine by means of linear DTGDs. It is im-
portant to say that the normalization algorithm defined in Section 2 preserves linearity.

4.1 Upper Bounds

Let us first concentrate on the upper bounds. We reduce an instance 〈a,D,Σ〉 of atom
entailment to the problem of checking the existence of a proof-tree of an atom d ∈ D

Table 2. Translation of ELU to guarded DTGDs; A, B, C are concept names, R is a role name

ELU Axiom Guarded DTGD

A � B pA(X) → pB(X)

A �B � C pA(X), pB(X) → pC(X)

A � ∃R.B pA(X) → ∃Y pR(X,Y), pB(Y)

∃R.A � B pR(X,Y), pA(Y) → pB(X)

A � B � C pA(X) → pB(X) ∨ pC(X)

On the Complexity of Ontological Reasoning under Disjunctive Existential Rules 9

Fig. 1. Possible proof-trees of r(a, b) and Σ

and Σ which is valid w.r.t. a. Intuitively, such a tree encodes the part of each model of
D ∪Σ due to which a is entailed; the formal definition follows. Consider a fact d, and
a normalized set Σ of linear DTGDs. Let T be a binary tree 〈N,E, λ1, λ2〉, where the
nodes of N are labeled by λ1 with atoms that can be formed using predicates occurring
in Σ and terms of terms(d) ∪ ΓN , and the edges of E are labeled by λ2 : E → Σ. We
say that T is a proof-tree of d and Σ if:

– The root is labeled by d.
– For each v ∈ N , there exists σ ∈ Σ such that each edge of the form (u, v) ∈ E is

labeled by σ, and the out-degree of v is |head(σ)|.
– For each v ∈ N , if v has a single outgoing edge (v, u), which is labeled by
p(X,Y)→ ∃Z r(X, Z), then there is a homomorphismh such that h(p(X,Y)) =
λ1(v), and there exists h′ = h|X ∪ {Z → t | t ∈ ΓN , t �∈ terms(h(p(X,Y)))}
such that λ1(u) = h′(r(X, Z)).

– For each v ∈ N , assuming that the outgoing edges of v are labeled by some σ
without an existentially quantified variable, there is a homomorphism h such that
h(body(σ)) = λ1(v), and {h(b) | b ∈ head(σ)} = {λ1(u) | (v, u) ∈ E}.

A proof-tree T of d and Σ is valid w.r.t. to an atom a with terms(a) ⊂ Γ ∪ ΓV if, for
each leaf u of T , there exists a homomorphism h such that u is labeled by h(a).

Example 1. Consider the set Σ of linear DTGDs

σ1 : p(X,Y)→ r(Y,X) σ2 : r(X,Y)→ p(X,Y) ∨ t(X,X)
σ3 : t(X,Y)→ p(X,Y) σ4 : r(X,Y)→ ∃Z s(Y, Z).

Possible proof-trees of r(a, b) and Σ are shown in Figure 1. In particular, tree (a) is
valid w.r.t. s(a,X) or s(X,Y), while tree (b) is valid w.r.t. s(b,X) or s(X,Y).

The following lemma, established in [2], shows that for atom entailment purposes under
linear DTGDs, we are allowed to concentrate on a single database atom.

10 G. Gottlob et al.

Lemma 1. Given a database D, a normalized set Σ of linear DTGDs, and an atom a
with terms(a) ⊂ Γ ∪ ΓV , D ∪Σ |= a iff there exists d ∈ D such that {d} ∪Σ |= a.

Although we can focus on a single database atom, in general we have to consider in-
finitely many models. The key idea underlying our approach is to use “representatives”
of all these models in order to be able to encode them in a single structure, namely, the
proof-tree defined above. This can be achieved by considering the skolemized version
of the given set of DTGDs. Given a normalized set Σ of linear DTGDs, we define F
as the set of skolem functions {fσ | σ ∈ Σ}, where the arity of each fσ is the num-
ber of universally quantified variables of σ. Let Σf denote the set of rules obtained
from Σ by replacing each TGD σ of the form p(X,Y) → ∃Z r(X, Z) with the rule
p(X,Y) → r(X, fσ(X,Y)). From well-known results on skolemization the follow-
ing holds: given a database D, a normalized set Σ of linear DTGDs, and an atom a
with terms(a) ⊂ Γ ∪ ΓV , D ∪ Σ |= a iff D ∪ Σf |= a. The set of skolem terms
ΓΣ is recursively defined as follows: each term of Γ belongs to ΓΣ , and if fσ ∈ F
has arity n > 0 and t1, . . . , tn are terms of ΓΣ , then fσ(t1, . . . , tn) ∈ ΓΣ . The notion
of homomorphism naturally extends to atoms that contain functional terms of the form
f(t1, . . . , tn), where each ti is a variable of ΓV or a skolem term; in particular, given a
homomorphism h, h(f(t1, . . . , tn)) = f(h(t1), . . . , h(tn)).

Consider a normalized set Σ of linear DTGDs, an atom c with terms(c) ⊂ ΓΣ ,
and an instance M of mods({c}, Σf). The tree of M is inductively defined as follows:
tree(M) is a rooted tree 〈N,E, λ1, λ2〉, where N is the set of nodes, E is the edge
set, λ1 : N → M is a node-labeling function, and λ2 : E → Σf is an edge-labeling
function. The root of tree(M) is labeled by c. Consider a node v ∈ N , and a rule ρ of
the form b→ b1 ∨ b2 or b→ b1 such that there is a homomorphism h that maps b into
λ1(v).

Fig. 2. Possible trees of trees(d, Σf)

On the Complexity of Ontological Reasoning under Disjunctive Existential Rules 11

For each i ∈ {1, 2}, if h(bi) ∈M , then there is a u ∈ N labeled by h(bi), e = (v, u)
belongs to E, and λ2(e) = ρ. Notice that, by construction, {λ1(v)}v∈N ⊆M . The
ρ-tree of M , denoted as ρ-tree(M), is obtained from tree(M) by keeping the root
node v, each edge e = (v, u) which is labeled by ρ, and the subtree rooted at u. Let
(ρ-)trees(c,Σf) = {(ρ-)tree(M) | M ∈ mods({c}, Σf)}. Notice that, by abuse of
notation, given a (ρ-)tree T and an atom a, we write T |= a if {λ1(v)}v∈N |= a. It is
not hard to see that {c} ∪Σf |= a iff T |= a, for each T ∈ trees(c,Σf).

Example 2. Consider the set Σf of rules

ρ1 : p(X,Y)→ r(Y,X) ρ2 : r(X,Y)→ p(X,Y) ∨ t(X,X)
ρ3 : t(X,Y)→ p(X,Y) ρ4 : r(X,Y)→ s(Y, f(X,Y)).

Possible models of {r(a, b)} ∪Σf are:

M1 = {r(a, b), s(b, f(a, b)), t(a, a), p(a, a), r(a, a), s(a, f(a, a))},
M2={r(a, b), s(b, f(a, b)), p(a, b), r(b, a), t(b, b), p(b, b), r(b, b), s(a, f(b, a)), s(b, f(b, b))},
M3 = {r(a, b), s(b, f(a, b)), p(a, b), r(b, a), p(b, a), s(a, f(b, a))}.

Notice that, for each other modelM of {r(a, b)}∪Σf , it holds thatMi ⊆M , for at least
one i ∈ [3]; the tree Ti of Mi is depicted in Figure 2. Observe that each Ti has exactly
one ρ2-tree and one ρ4-tree. Moreover, the shaded paths form (modulo null renaming)
the proof-tree of r(a, b) and Σf shown in Figure 1(a), which is valid w.r.t. s(a,X).

Observe that the first edge of each shaded path in Figure 2 is labeled by the same rule.
As shown in the next technical lemma, this is a general property that holds whenever
the given database and set of DTGDs entail the given atom.

Lemma 2. Consider a normalized set Σ of linear DTGDs, an atom c with terms(c) ⊂
ΓΣ , and an atom a with terms(a) ⊂ Γ ∪ΓV . It holds that {c}∪Σf |= a iff there exists
ρ ∈ Σf such that T |= a, for each T ∈ ρ-trees(c,Σf).

Proof (sketch). By definition of the tree of a model, trees(c,Σf) is isomorphic to the
set T =

{
�i∈[|Σ|]Ti | 〈T1, . . . , T|Σ|〉 ∈ ×ρ∈Σf

ρ-trees(c,Σf)
}

, where �i∈[|Σ|]Ti is
the rooted tree obtained from the disjoint union of T1, . . . , T|Σ| after merging the root
nodes (see Figure 3). We are now ready to show our lemma. (⇒) Assume that for
each ρ ∈ Σf there exists T ∈ ρ-trees(c,Σf) such that T �|= a. Therefore, there exists
T ′ ∈ T such that T ′ �|= a. Clearly, there is T ′′ ∈ trees(c,Σf) isomorphic to T ′. Assum-
ing that T ′′ = tree(M), for some M ∈ mods({c}, Σf), M �|= a; thus, {c} ∪Σf �|= a.
(⇐) This direction follows immediately.

Given a fact d, a set Σ of linear DTGDs, and an atom a, by applying recursively the
property provided by Lemma 2, one can build a proof-tree of d and Σ which is valid
w.r.t. a. This is exactly the key idea underlying the proof of the next result.

Lemma 3. Consider a databaseD, a normalized set Σ of linear DTGDs, and an atom
a with terms(a) ⊂ Γ ∪ ΓV . It holds that D ∪ Σ |= a iff there exists a proof-tree of d
and Σ, for some d ∈ D, which is valid w.r.t. a.

12 G. Gottlob et al.

Fig. 3. Rooted tree obtained from the disjoint union of T1, . . . , Tn after merging the root nodes

Proof (sketch). (⇒) The claim is shown by giving a proof-tree of some d ∈ D and Σ
which is valid w.r.t. a. By Lemmas 1 and 2, there are d ∈ D and ρ ∈ Σf such that
in every T ∈ ρ-trees(d,Σf) there is a path πT from the root to a node u which is
labeled by h(a), where h is a homomorphism, and the first edge eT of πT is labeled
by a rule ρ of the form b → b1 ∨ b2 or b → b1. Let us now construct a rooted binary
tree T ′ = 〈N,E, λ1, λ2〉; initially, N = {v}, E = ∅, λ1 = {v → d}, and λ2 = ∅.
Clearly, ρ-trees(d,Σf) can be partitioned into S1 and S2 such that, for each T ∈ S1, if
eT = (u,w) and h maps b into d (which is the label of u), then w is labeled by h(b1).
For each i ∈ {1, 2}, assume that the second node of πT , for each T ∈ Si, is labeled by
g
i
. Let N = N ∪ {w1, w2}, E = E ∪ {(v, wi)}i∈{1,2}, λ1 = λ1 ∪ {wi → g

i
}i∈{1,2},

and λ2 = λ2 ∪ {(v, wi) → ρ}i∈{1,2}. Due to the fact that {g
i
} ∪ Σf |= a, for each

i ∈ [2], Lemma 2 can be recursively applied finitely many times as described above, and
eventually T ′ is constructed. The desired proof-tree is obtained from T ′ by replacing
the skolem terms occurring in T ′ with distinct nulls of ΓN .

(⇐) By hypothesis, there exists d ∈ D and a proof-tree T of d and Σ which is valid
w.r.t. a. It is possible to construct from T a rooted binary tree T ′ such that the nodes are
labeled by atoms with skolem terms (instead of nulls), the edges are labeled by rules
of Σf , and the structural properties of T are preserved. Assume that the label of each
outgoing edge of the root of T ′ is ρ. By Lemma 1 and 2, it suffices to show that each ρ-
tree of d andΣf entails a. This follows from the fact that, for each T ′′ ∈ ρ-trees(d,Σf),
there is a path from the root to a leaf of T ′ that can be mapped into T ′′.

Interestingly, a fact d and a normalized set Σ of linear DTGDs admit a valid proof-tree
w.r.t. an atom a iff they admit a “small” valid proof-tree T w.r.t. a involving at most
ω + 1 nulls, where ω is the maximum arity over all predicates of Σ. This holds since,
by definition, T can be constructed in such a way that any pair of edges of the form
(v, u) and (v, u′) involves at most ω + 1 nulls. By combining this observation with
Lemma 3, we get that atom entailment is equivalent to the problem of deciding whether
a “small” proof-tree exists. We do this by applying the alternating algorithm SearchPT
given in Figure 4; an example of the computation of the algorithm follows.

Example 3. Consider the instance I=〈a, {r(a, b)}, Σ〉 of atom entailment, where Σ is:

σ1 : r(X,Y)→ p(X) ∨ t(Y,X) σ2 : p(X)→ r(X,X)
σ3 : t(X,Y)→ ∃Z s(Y, Z) σ4 : s(X,Y)→ ∃Z s(Y, Z).

Figure 5 shows an initial part of the alternating computation of SearchPT on I . Observe
that in the shaded edge exactly three (maximum arity plus one) nulls appear.

On the Complexity of Ontological Reasoning under Disjunctive Existential Rules 13

Algorithm SearchPT(a,D,Σ)

Input: An instance 〈a,D,Σ〉 of ATOM-ENTAILMENT

1. N := {zi ∈ ΓN}i∈[ω+1], and let ρ : var(a) → N be a one-to-one substitution;
2. Existentially choose c ∈ D;
3. Existentially choose to either execute step 4 or to skip to step 5;
4. If there exists a homomorphism h such that h(a) = c, then accept;
5. Existentially choose σ ∈ Σ and a homomorphism h such that h(body(σ)) = c; if there is

no such a pair, then reject;
6. If σ = p(X,Y) → r1(X1) ∨ r2(X2), then b1 := h(r1(X1)) and b2 := h(r2(X2));
7. If σ = p(X,Y) → r(X), then b1 := h(r(X, Z)) and b2 := ρ(a);
8. If σ = p(X,Y) → ∃Z r(X, Z), then b1 := h′(r(X, Z)), where h′ is the homomorphism

h|X ∪ {Z → t | t ∈ N, t �∈ terms(h(p(X,Y)))}, and b2 := ρ(a);
9. Universally choose c ∈ {b1, b2} and goto step 3.

Fig. 4. The alternating algorithm SearchPT

Soundness and completeness of SearchPT follow by construction.

Proposition 1. Given an instance 〈a,D,Σ〉 of ATOM-ENTAILMENT, where Σ is a set
of linear DTGDs, D ∪Σ |= a iff SearchPT(a,D,Normalize(Σ)) accepts.

Equipped with the above machinery, we are now ready to establish the desired com-
plexity upper bounds of our problem.

Theorem 2. ATOM-ENTAILMENT under linear DTGDs is in EXPTIME in combined
complexity, and in PTIME if the DTGDs have fixed size.

Proof. Consider an instance 〈a,D,Σ〉 of ATOM-ENTAILMENT, whereΣ is a set of lin-
ear DTGDs. Since SearchPT is an alternating algorithm and Σ′ = Normalize(Σ) can
be computed in polynomial time, to obtain the desired upper bounds, by Proposition 1,
it suffices to show that SearchPT(a,D,Σ′) runs in polynomial space in the general
case, and in logarithmic space in the restricted case. At each step of the computation we
need to remember at most two atoms involving ω terms, where each term can be repre-
sented using logarithmically many bits; more precisely, we need O(ω logω + ω logn)
space, where n = |terms(D)|. Notice that, if the DTGDs of Σ have fixed size, then ω
is also fixed (see Section 2), and the claim follows.

The rest of this subsection is devoted to show that atom entailment under linear DT-
GDs is in AC0 in data complexity. We do this by establishing that linear DTGDs are
first-order rewritable, i.e., atom entailment under linear DTGDs can be reduced to the
problem of evaluating a first-order query over a database. First-order rewritability was
first introduced in the context of description logics [18].

Consider a normalized set Σ of linear DTGDs over a schema R, and an atom a
over R. Let C be the constants occurring in a, and N = {z1, . . . , zω} be a set of
nulls, where ω is the maximum arity over all predicates of R. We call base(a,R) the

14 G. Gottlob et al.

∃

∃

∀

∃

∀

∃

∀

∃

∀

∃

∀

∃

Fig. 5. Computation of the algorithm SearchPT

set of all atoms that can be formed with predicates of R and terms of C ∪ N . Let
B = {b | b ∈ base(a,R), {b} ∪ Σ |= a}, and ρ be a renaming substitution that maps
each z ∈ N into a distinct variable Xz ∈ ΓV . Let Q[a,Σ] be the first-order query
∃Xz1 . . . ∃Xzω

∨
b∈B ρ(b). The size of Q[a,Σ], defined as the number of disjuncts,

is at most |R| · (2ω)ω. Since, by Theorem 2, atom entailment under linear DTGDs
is feasible in exponential time, the rewriting can be also constructed in exponential
time. Notice that a database D entails Q[a,Σ], denoted D |= Q[a,Σ], if there exists a
homomorphism h that maps ρ(b) into D, for at least one atom b ∈ B. In what follows,
we show that Q[a,Σ] is a sound and complete rewriting of a and Σ.

Lemma 4. Consider a databaseD, a normalized set Σ of linear DTGDs, and an atom
a with terms(a) ⊂ Γ ∪ ΓV . It holds that D ∪Σ |= a iff D |= Q[a,Σ].

Proof (sketch). By construction ofQ[a,Σ], it suffices to show that D∪Σ |= a iff there
exists b ∈ base(a,R) and a homomorphism h such that h(b) ∈ D and {b} ∪Σ |= a.
(⇒) By Lemma 1, there exists d ∈ D such that {d} ∪ Σ |= a; therefore, there ex-
ists a homomorphism hM that maps each M ∈ mods({d}, Σ) into a. Moreover, by
construction, there exists b ∈ base(a,R) and a bijective homomorphism μ such that
μ(b) = d; clearly, μ(b) ∈ D. Let f : terms(d) → terms(b) be the substitution
{t→ t′ | t′ → t ∈ μ|terms(d)}. By induction on the depth of the trees of the models, it
can be shown that for each M ′ ∈ mods({b}, Σ), there exists M ∈ mods({d}, Σ) such
that f(M) =M ′; thus, the homomorphism f ◦hM maps a intoM ′. (⇐) This direction
can be easily shown by providing a similar argument.

Since evaluation of first-order queries is feasible in AC0 [32], Lemma 4 implies the
following complexity result.

Theorem 3. ATOM-ENTAILMENT under linear DTGDs is in AC0 in data complexity.

On the Complexity of Ontological Reasoning under Disjunctive Existential Rules 15

4.2 Lower Bounds

We proceed now to establish the desired complexity lower bounds of atom entailment
under linear DTGDs.

Theorem 4. Consider an atom a over a schemaR, a databaseD forR, and a set Σ of
linear DTGDs overR. The problem of deciding whetherD∪Σ |= a is EXPTIME-hard
in combined complexity even if |D| = 1 and |R| = 2.

Proof (sketch). To prove our claim, it suffices to simulate the behavior of an APSPACE
Turing machineM by means of linear DTGDs. W.l.o.g., we assume that M has exactly
one accepting state sacc , it is well-behaved and never “falls off” the left end of the
tape, and also each configuration of M has at most two subsequent configurations.
Moreover, we assume that the tape alphabet of M is {0, 1,�}, where � denotes the
blank symbol. Suppose that M halts on input I = a1 . . . a|I| using n = |I|k cells,
where k > 0. Assume also that s1 < . . . < sm, where m > 0, is the order that the
states appear in the encoding of M , and that sinit is the initial state of M . We use a
(2n +m + 6)-ary predicate called config to represent a configuration of M on I . An
atom of the form config(s, c1, . . . , cn, b1, . . . , bn, 0, 1, 0, 1,�, s1, . . . , sm), where s ∈
{s1, . . . , sm}, 〈c1, . . . , cn〉 ∈ {0, 1,�}n, 〈b1, . . . , bi−1, bi+1, . . . , bn〉 = {0}n−1 and
bi = 1, represents the fact that M is in state s, the tape contains the string c1, . . . , cn,
and the cursor points at the i-th cell. The tuple 〈0, 1, 0, 1,�, s1, . . . , sm〉 (formally not
part of the represented configuration) keeps the binary values 0 and 1, which will be
used later in the simulation to move the cursor, the tape alphabet, and the states of the
machine. Let D be the database that contains the atom

config(sinit , a1, . . . , a|I|,�, . . . ,�︸ ︷︷ ︸
n−|I|

, 1, 0, . . . , 0
︸ ︷︷ ︸
n−1

, 0, 1, 0, 1,�, s1, . . . , sm)

which represents the initial configuration of M on I . We now encode the behavior of
M on all transition rules that move the cursor to the right (resp., left) in the first (resp.,
second) subsequent configuration. For notational convenience, let

B� = Z0, . . . , Z0︸ ︷︷ ︸
�−1

, Z1, Z0, . . . , Z0︸ ︷︷ ︸
n−�

and T = Z0, Z1, V0, V1, V�, S1, . . . , Sm,

where {Z0, Z1, V0, V1, V�, S1, . . . , Sm} ⊂ ΓV . For each transition rule of the form
〈si, a〉 → 〈〈sj , b,→〉, 〈sk, c,←〉〉 in the transition function of M , we add in Σ the
following linear DTGDs: for each ∈ [n − 1], a → b ∧ c if si is an ∃-state, and
a→ b ∨ c if si is a ∀-state, where

a = config(Si, X1, . . . , X�−1, Va, X�+1, . . . , Xn,B�,T),
b = config(Sj , X1, . . . , X�−1, Vb, X�+1, . . . , Xn,B�+1,T),
c = config(Sk, X1, . . . , X�−1, Vc, X�+1, . . . , Xn,B�−1,T).

Similar DTGDs are used to encode the transition rules that move the cursor to the left or
leave the cursor unmoved. Finally, assuming that sacc = si, we add in Σ the following
DTGDs: for each ∈ [n − 1], config(Si, X1, . . . , Xn,B�,T) → accept(Si). Notice

16 G. Gottlob et al.

that the above construction is feasible in polynomial time. It is not difficult to verify that,
if a = accept(A), where A ∈ ΓV , then M accepts I iff D ∪ Σ |= a. Since APSPACE
coincides with EXPTIME, the claim follows from the fact that all the DTGDs of Σ
are linear, the database D contains a single atom, and R contains only two predicates,
namely, config and accept .

It is interesting to say that in the above construction the arity of the predicate config
can be reduced to 2n+1 if we allow the use of constants in the DTGDs. If we consider
predicates of fixed arity, then the encoding given in the proof of Theorem 4 can be
adapted in order to simulate an alternating logarithmic space Turing machine.

Theorem 5. Consider an atom a over a schema R, a database D for R, and a set Σ
of linear DTGDs over R. Assuming that each DTGD of Σ has fixed size, the problem
of deciding whether D ∪ Σ |= a is PTIME-hard. The same lower bound holds even if
|D| = 1 and each predicate ofR is unary.

Proof (sketch). It is well-known that ALOGSPACE equals PTIME. Thus, to prove our
claim, it suffices to simulate the behavior of an ALOGSPACE Turing machine M on an
input I by means of linear DTGDs with predicates of fixed arity. Recall that a logarith-
mic space Turing machine is equipped with a read-only input tape and a read/write work
tape. Assume that M halts on I = a1, . . . , a|I| using n = log |I|k cells, where k > 0.
The key idea of the proof is to modify the construction given in the proof of Theorem 4
in such a way that a configuration of M on I is represented as a unary predicate. For
example, the database atom can be encoded as

config[sinit

input tape
︷ ︸︸ ︷
a1..a|I|1 0..0︸︷︷︸

|I|−1

work tape
︷ ︸︸ ︷
�..�︸︷︷︸
n

1 0..0︸︷︷︸
n−1

](c)

which represents the initial configuration ofM on I , where c is an arbitrary constant of
Γ . Since the number of configurations of M on I is polynomial, we need polynomially
many unary predicates. The rest of the construction, which is feasible in logarithmic
space, can be done by adapting the DTGDs given in the proof of Theorem 4.

Acknowledgements. This research has received funding from the European Research
Council under the European Community’s Seventh Framework Programme (FP7/2007-
2013) / ERC grant agreement DIADEM no. 246858, and from the Oxford Martin
School’s grant no. LC0910-019. Marco Manna’s work was supported by the European
Commission through the European Social Fund and by Calabria Region.

References

1. Abiteboul, S., Hull, R., Vianu, V.: Foundations of Databases. Addison-Wesley (1995)
2. Alviano, M., Faber, W., Leone, N., Manna, M.: Disjunctive Datalog with existential quanti-

fiers: Semantics, decidability, and complexity issues. In: TPLP (to appear, 2012)

On the Complexity of Ontological Reasoning under Disjunctive Existential Rules 17

3. Andréka, H., Németi, I., van Benthem, J.: Modal languages and bounded fragments of pred-
icate logic. J. Philosophical Logic 27(3), 217–274 (1998)

4. Baader, F.: Least common subsumers and most specific concepts in a description logic with
existential restrictions and terminological cycles. In: Proc. of IJCAI, pp. 319–324 (2003)

5. Baader, F., Brandt, S., Lutz, C.: Pushing the EL envelope. In: Proc. of IJCAI, pp. 364–369
(2005)

6. Baader, F., Calvanese, D., McGuinness, D.L., Nardi, D., Patel-Schneider, P.F.: The Descrip-
tion Logic Handbook: Theory, Implementation, and Applications. Cambridge University
Press (2003)

7. Baget, J.-F., Leclère, M., Mugnier, M.-L., Salvat, E.: On rules with existential variables:
Walking the decidability line. Artif. Intell. 175(9-10), 1620–1654 (2011)

8. Bárány, V., Gottlob, G., Otto, M.: Querying the guarded fragment. In: Proc. of LICS, pp.
1–10 (2010)

9. Beeri, C., Vardi, M.Y.: The Implication Problem for Data Dependencies. In: Even, S., Kariv,
O. (eds.) ICALP 1981. LNCS, vol. 115, pp. 73–85. Springer, Heidelberg (1981)

10. Berardi, D., Calvanese, D., Giacomo, G.D.: Reasoning on UML class diagrams. Artif. In-
tell. 168(1-2), 70–118 (2005)

11. Cabibbo, L.: The expressive power of stratified logic programs with value invention. Inf.
Comput. 147(1), 22–56 (1998)

12. Calı̀, A., Gottlob, G., Kifer, M.: Taming the infinite chase: Query answering under expressive
relational constraints. In: Proc. of KR, pp. 70–80 (2008)

13. Calı̀, A., Gottlob, G., Lukasiewicz, T.: A general Datalog-based framework for tractable
query answering over ontologies. In: Proc. of PODS, pp. 77–86 (2009)

14. Calı̀, A., Gottlob, G., Lukasiewicz, T., Marnette, B., Pieris, A.: Datalog±: A family of logical
knowledge representation and query languages for new applications. In: Proc. of LICS, pp.
228–242 (2010)

15. Calı̀, A., Gottlob, G., Pieris, A.: Advanced processing for ontological queries. VLDB 3(1),
554–565 (2010)

16. Calı̀, A., Gottlob, G., Pieris, A.: Query Answering under Non-guarded Rules in Datalog±. In:
Hitzler, P., Lukasiewicz, T. (eds.) RR 2010. LNCS, vol. 6333, pp. 1–17. Springer, Heidelberg
(2010)

17. Calvanese, D., Giacomo, G.D., Lembo, D., Lenzerini, M., Rosati, R.: Data complexity of
query answering in description logics. In: Proc. of KR, pp. 260–270 (2006)

18. Calvanese, D., Giacomo, G.D., Lembo, D., Lenzerini, M., Rosati, R.: Tractable reasoning
and efficient query answering in description logics: The DL-Lite family. J. Autom. Reason-
ing 39(3) (2007)

19. Chen, P.P.: The Entity-Relationship model - Toward a unified view of data. ACM Trans.
Database Syst. 1(1), 9–36 (1976)

20. Deutsch, A., Nash, A., Remmel, J.B.: The chase revisited. In: Proc. of PODS, pp. 149–158
(2008)

21. Eiter, T., Gottlob, G., Mannila, H.: Disjunctive Datalog. ACM Trans. Database Syst. 22(3),
364–418 (1997)

22. Fagin, R., Kolaitis, P.G., Miller, R.J., Popa, L.: Data exchange: Semantics and query answer-
ing. Theor. Comput. Sci. 336(1), 89–124 (2005)

23. Grädel, E.: On the restraining power of guards. J. Symb. Log. 64(4), 1719–1742 (1999)
24. Johnson, D.S., Klug, A.C.: Testing containment of conjunctive queries under functional and

inclusion dependencies. J. Comput. Syst. Sci. 28(1), 167–189 (1984)
25. Krisnadhi, A., Lutz, C.: Data complexity in the EL family of DLs. In: Proc. of DL (2007)
26. Krötzsch, M., Rudolph, S.: Extending decidable existential rules by joining acyclicity and

guardedness. In: Proc. of IJCAI, pp. 963–968 (2011)

18 G. Gottlob et al.

27. Leone, N., Manna, M., Terracina, G., Veltri, P.: Efficiently computable Datalog∃ programs.
In: Proc. of KR, pp. 13–23 (2012)

28. Marnette, B.: Generalized schema-mappings: From termination to tractability. In: Proc. of
PODS, pp. 13–22 (2009)

29. Patel-Schneider, P.F., Horrocks, I.: A comparison of two modelling paradigms in the semantic
web. J. Web Sem. 5(4), 240–250 (2007)

30. Poggi, A., Lembo, D., Calvanese, D., Giacomo, G.D., Lenzerini, M., Rosati, R.: Linking data
to ontologies. J. Data Semantics 10, 133–173 (2008)

31. Vardi, M.Y.: The complexity of relational query languages (extended abstract). In: Proc. of
STOCS, pp. 137–146 (1982)

32. Vardi, M.Y.: On the complexity of bounded-variable queries. In: Proc. of PODS, pp. 266–276
(1995)

	On the Complexity of Ontological Reasoning under Disjunctive Existential Rules
	Introduction
	The Framework
	Guarded Disjunctive Tuple-Generating Dependencies
	Linear Disjunctive Tuple-Generating Dependencies
	Upper Bounds
	Lower Bounds

	References

