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Preface

The 37th International Symposium on Mathematical Foundations of Computer
Science, MFCS 2009, was held in Bratislava (Slovakia) during August 27–31,
2012. It took place 40 years after the first MFCS that was held in 1972 in
Jab�lonna, Poland. This volume contains eight invited and 63 contributed pa-
pers presented at the symposium. The contributed papers were selected by the
Program Committee out of a total of 162 submissions.

MFCS 2012 was organized by the Slovak Society for Computer Science and
the Faculty of Mathematics, Physics and Informatics of the Comenius Univer-
sity in Bratislava. It was supported by the European Association for Theoreti-
cal Computer Science. We acknowledge with gratitude the support of all these
institutions.

The series of MFCS symposia has a well-established tradition dating back
to 1972. The aim is to encourage high-quality research in all branches of theo-
retical computer science, and to bring together researchers who do not usually
meet at specialized conferences. The symposium is organized on a rotating ba-
sis in Poland, Czech Republic, and Slovakia. The previous meetings took place
in Jab�lonna 1972, Štrbské Pleso 1973, Jadwisin 1974, Mariánske Lázně 1975,
Gdańsk 1976, Tatranská Lomnica 1977, Zakopane 1978, Olomouc 1979, Rydzyna
1980, Štrbské Pleso 1981, Prague 1984, Bratislava 1986. Karlovy Vary 1988,
Pora̧bka-Kozubnik 1989, Banská Bystrica 1990, Kazimierz Dolny 1991, Prague
1992, Gdańsk 1993, Košice 1994, Prague 1995, Kraków 1996, Bratislava 1997,
Brno 1998, Szklarska Porȩba 1999, Bratislava 2000, Mariánske Lázně 2001, War-
saw 2002, Bratislava 2003, Prague 2004, Gdańsk 2005, Stará Lesná 2006, Český
Krumlov 2007, Toruń 2008, Nový Smokovec 2009, Brno 2010, Warsaw 2011.

The 2012 meeting added a new page to this history, which was possible owing
to the effort of many people.

We would like to thank the invited speakers Georg Gottlob (University of
Oxford), Rolf Niedermeier (TU Berlin), Antonino Salibra (University of Venice),
Nicole Schweikardt (Goethe University of Frankfurt), Esko Ukkonen (University
of Helsinki), Igor Walukiewicz (University of Bordeaux), Gerhard J. Woeginger
(TU Eindhoven), and Mihalis Yannakakis (Columbia University) for presenting
their work to the audience of MFCS 2012. The papers provided by the invited
speakers appear at the beginning of this volume. We thank all authors who
have submitted their papers for consideration. Many thanks go to the Program
Committee, and to all external referees, for their hard work in evaluating the
papers. The work of the Program Committee was carried out using the EasyChair
system, and we gratefully acknowledge this contribution.



VI Preface

Special thanks are due to the Organizing Committee led by Vanda Ham-
bálková and Dana Pardubská.

June 2012 Branislav Rovan
Vladimiro Sassone

Peter Widmayer
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Peng, Jing
Perelli, Giuseppe
Petri, Gustavo
Pieris, Andreas
Pilipczuk, Marcin
Pilipczuk, Michal
Pinaud, Bruno
Pirillo, Giuseppe
Polak, Libor
Potapov, Igor
Pouly, Amaury
Pribavkina, Elena
Provillard, Julien
Puzynina, Svetlana
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Filip Murlak, Micha�l Ogiński, and Marcin Przyby�lko

Reducing a Target Interval to a Few Exact Queries . . . . . . . . . . . . . . . . . . . 718
Jesper Nederlof, Erik Jan van Leeuwen, and Ruben van der Zwaan

Maximum Cliques in Graphs with Small Intersection Number and
Random Intersection Graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 728

Sotiris Nikoletseas, Christoforos Raptopoulos, and Paul G. Spirakis

A Finite Basis for ‘Almost Future’ Temporal Logic over the Reals . . . . . . 740
Dorit Pardo (Ordentlich) and Alexander Rabinovich

Constructing Premaximal Ternary Square-Free Words of Any Level . . . . 752
Elena A. Petrova and Arseny M. Shur

Regularity Problems for Weak Pushdown ω-Automata and Games . . . . . 764
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Abstract. Ontology-based data access is an emerging yet powerful technology
that allows to enhance a classical relational database with an ontology in order
to infer new intensional knowledge. Recently, Datalog+/- was introduced with
the purpose of providing tractable reasoning algorithms for expressive ontology
languages. In this framework, Datalog is extended by features such as existential
quantification in rule heads, and at the same time the rule syntax is restricted to
guarantee decidability, and also tractability, of relevant reasoning tasks. In this pa-
per, we enrich Datalog even more by allowing not only existential quantification
but also disjunction in rule heads, and we investigate the complexity of reasoning
under the obtained formalism.

1 Introduction

Ontological reasoning is a fundamental task in the Semantic Web, where the informa-
tion present in the web is annotated in order to be machine-readable. Semantic Web
ontologies are modeled using logical formalisms, such as W3Cs standard OWL 2 DL
ontology language1 which is built on Description Logics (DLs) [6]. DLs are decidable
fragments of first-order logic based on concepts (classes of objects) and roles (binary
relations between concepts). A large corpus of works in DLs has focused on the prob-
lems of consistency (whether a knowledge base is consistent or satisfiable), instance
checking (whether a certain object is an instance of a concept), and logical entailment
(whether a certain constraint is logically implied by an ontology). The last few years,
the attention has shifted on the problem of query answering. A notable example is the
DL-Lite family of DLs [18,30], which forms the OWL 2 QL profile2 of OWL 2 DL,
that offers flexible, natural and expressive languages, and at the same time keeps query
answering highly tractable and scalable to large data sets.

Recently, the DL-Lite family (together with other well-known DLs such as the DLR-
Lite family [17] and EL [4]) has been embedded into an expressive framework called
Datalog± [14]. The Datalog± family has been proposed with the purpose of providing

1 http://www.w3.org/TR/owl2-overview/
2 http://www.w3.org/TR/owl2-profiles/
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tractable reasoning algorithms for more general ontology languages. These languages
are based on Datalog rules3 that allow for existentially quantified variables in rule heads,
in the same fashion as Datalog with value invention [11]. Such rules are known as tuple-
generating dependencies (TGDs) in the database literature [9]. In particular, TGDs are
implications between conjunctions of atoms. They essentially say that some tuples in
an instance I imply the presence of some other tuples in I . For example, the TGD

∀E∀D emp(E) ∧mgr(E,D)→ ∃E′ emp(E′) ∧ works(E′, D) ∧ reports(E′, E)

expresses the following: “if an employee E is the manager of a department D, then
there is an employee E′ who works in D and reports to E.” The absence of value in-
vention, thoroughly discussed in [29], is the main shortcoming of Datalog in modeling
ontologies, and even conceptual data formalisms such as UML class diagrams [10] and
ER schemata [19]. The addition of value invention in the form of existential quantifi-
cation in rule heads constitutes a crucial step towards the bridging of the gap between
ontology languages and Datalog, and opens new horizons in ontological reasoning.

Unfortunately, the addition of existential quantification in Datalog easily leads to
undecidability of the most basic reasoning tasks [9,12]. Currently, an important research
direction in the general area of knowledge representation and reasoning is to identify
expressive Datalog± formalisms (or, equivalently, classes of TGDs) for which the basic
reasoning services are decidable. Moreover, to be able to work with very large data sets,
it is desirable not only that reasoning is decidable, but also tractable in data complexity
(i.e., in the size of the database). The main syntactic paradigms which guarantee the
above desirable properties are weak-acyclicity [22], guardedness [12], stickiness [15]
and shyness [27]. Several attempts have been conducted towards the identification of
even more expressive formalisms, by extending or combining the above classes (see,
e.g., [7,16,26,28]).

The aforementioned Datalog-based formalisms, in contrast to expressive DL-based
ontology languages, are not powerful enough for nondeterministic reasoning. For in-
stance, in the well-known description logic ELU , that is, EL extended with disjunc-
tion (see, e.g., [5]), it is possible to state simple and natural statements such as “the
parent of a father is a grandfather or a grandmother” using the following axiom:

∃parentOf .father � ∃grandfatherOf .� � ∃grandmotherOf .�

This axiom can be expressed by a guarded TGD extended with disjunction as follows:

∀X∀Y parentOf (X,Y ) ∧ father (Y )→ ∃ZgfatherOf (X,Z) ∨ gmotherOf (X,Z)

Obviously, to represent such kind of knowledge, we need to extend the existing classes
of TGDs by allowing disjunctive statements in the head. Disjunctive Datalog, that is,
the variant of Datalog where disjunction may appear in rule heads, has been thoroughly
investigated by Eiter et al. [21]. The data complexity of reasoning under guarded-based
classes of TGDs extended with disjunction has been recently studied in [2].

Research Challenge. It is the precise aim of the current work to better understand the
problem of reasoning under disjunctive TGDs (DTGDs), that is, TGDs that allow for

3 A Datalog program is a set of universally quantified function-free Horn clauses (see, e.g., [1]).
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disjunction in their heads, and to investigate the complexity of reasoning under existing
classes of TGDs extended with disjunction. In particular, we concentrate on the problem
of atom entailment defined as follows: given an extensional database D, an ontology Σ
constituted by DTGDs, and a relational atom a, decide whether each model of D and
Σ, i.e., each instance that contains D and satisfies Σ, entails a, denoted D ∪ Σ |= a.
Notice that the problem of instance checking is a special case of atom entailment.

Ontological reasoning adheres to the standard logical semantics of entailment (|=),
which denotes entailment under arbitrary, not necessarily finite, models. This implies, in
general, that a database and a set of DTGDs admit infinitely many models, where each
of them can be of infinite size; in fact, this holds already for TGDs due to the existential
quantification. Interestingly, in the case of TGDs, it is always possible to construct the
so-called universal model, which can be seen as a representative of all the other mod-
els, by applying a well-known procedure called chase (see, e.g., [20,24]). Roughly, the
chase adds new atoms to the given database as dictated by the given TGDs, possibly in-
volving labeled null values as witnesses for the existentially quantified variables, until
the final result satisfies all the TGDs. Hence, for reasoning purposes, instead of consid-
ering all the models of an ontological theory constituted by TGDs, we can concentrate
on the universal model.

The situation changes dramatically if we consider DTGDs. In fact, there is no sin-
gle model that acts as a representative of all the other models. The notion of univer-
sal model has been recently extended to the disjunctive case by introducing universal
model sets [2]. It was shown that, given an extensional database D and a set Σ of DT-
GDs, by applying a procedure similar to the chase, one can build a set PD,Σ of ground
rules, called the instantiation of D and Σ. The models of PD,Σ constitute the universal
model set for D and Σ. Nevertheless, PD,Σ admits, in general, infinitely many models,
that have to be considered for ontological reasoning purposes. From the above discus-
sion, it is clear that atom entailment (and other reasoning tasks) is becoming even more
complicated and challenging if we consider DTGDs instead of TGDs. Obviously, cor-
rect and terminating algorithms require methods for reasoning over infinite structures
without explicitly building them.

Summary of Contributions. We investigate the complexity of atom entailment un-
der guarded and linear DTGDs. Recall that guarded TGDs is one of the main classes
of TGDs that guarantees decidability, and also tractability in data complexity, of rea-
soning [12]. A TGD is guarded if it has an atom in its body that contains all the

Table 1. Complexity of atom entailment under guarded and linear DTGDs

Formalism Data Complexity DTGDs of fixed size Combined Complexity

Guarded DTGDs
coNP-complete EXPTIME-complete 2EXPTIME-complete

UB: [8] LB: [2] UB: [23] LB: [12] UB: [23] LB: [12]

Linear DTGDs
in AC0 PTIME-complete EXPTIME-complete

UB: Thm. 3 UB: Thm. 2 LB: Thm. 5 UB: Thm. 2 LB: Thm. 4
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body-variables, while a TGD is linear if it has only one body atom (and thus it is
guarded). The complexity results established in this paper are presented in Table 1;
we have indicated, in each cell, where to find the corresponding results (UB and LB
stand for upper bound and lower bound, respectively). A summary of our contribution
follows:

−We show that atom entailment under guarded DTGDs is coNP-complete in data com-
plexity, EXPTIME-complete in case of DTGDs of fixed size, and 2EXPTIME-complete
in combined complexity, i.e., the complexity calculated by considering, together with
the database, also the set of DTGDs as part of the input. The upper bounds are obtained
from existing results on satisfiability of logical theories that fall in the guarded fragment
of first-order logic [8,23]. In particular, we show that atom entailment under guarded
DTGDs can be reduced to the problem of unsatisfiability of guarded first-order theories.
The lower bounds are inherited immediately from existing results on atom entailment
under guarded DTGDs. We also show that every ELU ontology [5] can be rewritten
into an equivalent set (w.r.t. atom entailment) of guarded DTGDs.
− We show that atom entailment under linear DTGDs is in AC0 in data complexity4

(improving the LOGSPACE upper bound established in [2]), PTIME-complete in the
case of DTGDs of fixed size, and EXPTIME-complete in combined complexity. These
are novel complexity results, and constitute the main contribution of this paper. The AC0

upper bound is obtained by establishing that atom entailment under linear DTGDs can
be reduced to the evaluation of a first-order query over a database [32]. The remaining
two upper bounds are obtained by giving an alternating algorithm which runs in loga-
rithmic space if the DTGDs have fixed size, and in polynomial space in general. The
lower bounds are established by simulating the behavior of an alternating logarithmic
space (resp., polynomial space) Turing machine by means of linear DTGDs.

2 The Framework

In this section, we present background material necessary for this paper. We recall some
basics on relational databases, we introduce disjunctive tuple-generating dependencies,
and we discuss the problem tackled in this work, i.e., atom entailment.

Technical Definitions. We define the following pairwise disjoint (countably infinite)
sets of symbols: a set Γ of constants (constituting the “normal” domain of a database),
a set ΓN of labeled nulls (used as placeholders for unknown values, and thus can be also
seen as globally existentially quantified variables), and a set ΓV of regular variables
(used in dependencies). Different constants represent different values (unique name
assumption), while different nulls may represent the same value. We assume a fixed
well-ordering of Γ ∪ ΓN such that every value in ΓN follows all those in Γ . We denote
by X sequences (or sets, with a slight abuse of notation) of variables X1, . . . , Xk, with
k � 0. Throughout, let [n] = {1, . . . , n}, for any integer n � 1.

A relational schema R (or simply schema) is a set of relational symbols (or pred-
icates), each with its associated arity. We write r/n to denote that the predicate r has

4 This is the complexity class of recognizing words in languages defined by constant-depth
Boolean circuits with an (unlimited fan-in) AND and OR gates.
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arity n. A term t is a constant, null, or variable. An atomic formula (or simply atom) has
the form r(t1, . . . , tn), where r/n is a relation, and t1, . . . , tn are terms. For an atom
a, we denote as terms(a) and var(a) the set of its terms and the set of its variables,
respectively. These notations naturally extend to sets and conjunctions of atoms. The
arity of an atom is the arity of its predicate. An atom is called a fact if all of its terms
are constants of Γ . Conjunctions and disjunctions of atoms are often identified with the
sets of their atoms. An instance I for a schemaR is a (possibly infinite) set of atoms of
the form r(t), where r/n ∈ R and t ∈ (Γ ∪ ΓN )n. A database D is a finite instance
such that terms(D) ⊂ Γ .

A substitution from a set of symbolsS to a set of symbolsS′ is a function h : S → S′

defined as follows: ∅ is a substitution (empty substitution), and if h is a substitution,
then h ∪ {s → s′} is a substitution, where s ∈ S and s′ ∈ S′. If s → s′ ∈ h,
then we write h(s) = s′. The restriction of h to T ⊆ S, denoted h|T , is the substitution
h′ = {t→ h(t) | t ∈ T }. A homomorphism from a set of atoms A to a set of atoms A′ is
a substitution h : Γ ∪ΓN ∪ΓV → Γ ∪ΓN ∪ΓV such that: if t ∈ Γ , then h(t) = t, and if
r(t1, . . . , tn) ∈ A, then h(r(t1, . . . , tn)) = r(h(t1), . . . , h(tn)) ∈ A′. An isomorphism
between A and A′ is a bijective homomorphism h such that h(A) = A′, h−1 is a
homomorphism, and h−1(A′) = A.

Disjunctive TGDs. The set of (quantifier-free, positive) AND-OR formulas over a re-
lational schemaR is defined as the set of all (finite) formulas overR containing ∧ and
∨. It is well-known that each AND-OR formula can be converted into an equivalent
one in disjunctive normal form (DNF). Given an AND-OR formula ψ, we denote by
DNF (ψ) the set of formulas in disjunctive normal form into which ψ can be converted.
A disjunctive tuple-generating dependency (DTGD) σ over a schemaR is a first-order
formula ∀X∀Y ϕ(X,Y) → ∃Zψ(X,Z), where ϕ is an AND formula overR, ψ is an
AND-OR formula overR, and X∪Y ∪Z ⊂ ΓV . Formula ϕ is the body of σ, denoted
as body(σ), while ψ is the head of σ, denoted as head(σ). We define the size of σ as the
sum of the arities of its atoms. In the rest of the paper, for brevity, we will omit universal
quantifiers in front of DTGDs, and use a comma for conjoining atoms instead of∧. Such
σ is satisfied by an instance I , written as I |= σ, if the following holds: whenever there
exists a homomorphism h such that h(ϕ(X,Y)) ⊆ I , then there exists ψ′ ∈ DNF (ψ)
and a homomorphism h′ ⊇ {X → t | X → t ∈ h|X, where X ∈ X and t ∈ Γ ∪ ΓN}
such that h′ maps at least one disjunct of ψ′ into I . An instance I satisfies a set Σ of
DTGDs, denoted I |= Σ, if I |= σ for each σ ∈ Σ.

Atom Entailment under DTGDs. Given a database D for a schema R, and a set Σ
of DTGDs over R, a model of D and Σ is an instance I for R such that I ⊇ D and
I |= Σ; let mods(D,Σ) be the set of models of D and Σ. An atom a overR is entailed
by D and Σ, denoted as D ∪ Σ |= a, if for each M ∈ mods(D,Σ), there exists a
homomorphism hM such that hM (a) ∈ M . The central decision problem tackled in
this work, called atom entailment, is defined as follows:

ATOM-ENTAILMENT

Instance : 〈a,D,Σ〉, where a is an atom over a schemaR, D is a database forR,
and Σ is a set of DTGDs overR.

Question : D ∪Σ |= a?
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It is well-known that the above problem is undecidable already for tuple-generating de-
pendencies (TGDs), i.e., DTGDs where the head is an AND formula. More precisely,
atom entailment is undecidable even under a fixed set of TGDs [12]. The proof of this
result hinges on the fact that, with appropriate input atoms, we can simulate the behav-
ior of a deterministic Turing machine using a fixed set of TGDs. Also, as established
recently [7], it is possible to encode any set of TGDs using a single TGD.

From the above discussion, we conclude that the recognition of expressive decidable
classes of TGDs is a challenging problem. Nowadays, an important research objec-
tive is to identify more expressive formalisms under which atom entailment (and other
reasoning tasks) is still decidable (see, e.g., [7,14,26]). Known decidable formalisms,
which are of special interest for the current work, are the classes of guarded and lin-
ear TGDs [13]. A TGD σ is guarded if in body(σ) there exists an atom a such that
var(a) = var (body(σ)), i.e., a contains all the universally quantified variables of σ.
If body(σ) contains a single atom, then σ is called linear; notice that a linear TGD
is trivially guarded since the single body-atom contains all the universally quantified
variables. Guarded and linear TGDs can be naturally extended to guarded and linear
DTGDs, respectively. In the rest of the paper, we investigate the complexity of atom en-
tailment under guarded and linear DTGDs. Following Vardi’s taxonomy [31], the data
complexity of atom entailment is the complexity calculated taking only the database as
input, while the atom and the set of dependencies are considered fixed. The combined
complexity is the complexity calculated considering as input, together with the database,
also the atom and the set of dependencies.

Normalization of DTGDs. In order to simplify the technical definitions and proofs in
the rest of the paper, a normal form of DTGDs is adopted. Given a set Σ of DTGDs,
we denote by Normalize(Σ) the set of DTGDs obtained by transforming Σ as follows.
First, we construct the set Σ′ by applying exhaustively on Σ the following rules until
each DTGD has in its head either a single atom or a disjunction of two atoms:

1. A DTGD of the form ϕ(X,Y) → ∃Zψ1(X1,Z1) ∧ ψ2(X2,Z2) is replaced by
ϕ(X,Y) → ∃Z r�(X,Z) and r�(X,Z) → ψi(Xi,Zi), for each i ∈ [2], where r�

is an |X ∪ Z|-ary auxiliary predicate not introduced so far.
2. A DTGD of the form ϕ(X,Y) → ∃Zψ1(X1,Z1) ∨ ψ2(X2,Z2) is replaced by

ϕ(X,Y)→ ∃Z ∨i∈[2] r�i (Xi,Zi) and r�i (Xi,Zi)→ ψi(Xi,Zi), for each i ∈ [2],
where r�i is an |Xi ∪ Zi|-ary auxiliary predicate not introduced so far.

Normalize(Σ) is obtained by transformingΣ′ in such a way that eventually each DTGD
has at most one existentially quantified variable that occurs only once. In particular, for
each σ ∈ Σ′, assuming that var(body(σ)) ∩ var (head(σ)) = X and var (head(σ)) \
var(body(σ)) = {Z1, . . . , Zn}, where n � 1, σ is replaced by

body(σ) → ∃Z1 r
�
1(X, Z1)

r�i (X, Z1, . . . , Zi) → ∃Zi+1 r
�
i+1(X, Z1, . . . , Zi+1), for each i ∈ [n− 1]

r�n(X, Z1, . . . , Zn) → head(σ),

where r�i is an (|X|+i)-ary auxiliary predicate, for each i ∈ [n]. It is easy to verify that,
during the above construction, we introduce polynomially many auxiliary predicates,
and the arity of those predicates is at most the maximum number of variables that appear
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in the head of a DTGD of Σ. Thus, Normalize(Σ) can be constructed in polynomial
time. Finally, it is important to say that the normalized set is (w.r.t. atom entailment)
equivalent to the original set. In the rest of the paper, we will state explicitly when we
consider normalized sets of DTGDs.

3 Guarded Disjunctive Tuple-Generating Dependencies

The present section weaves together existing results, achieved in the areas of both logics
and database theory, to establish the complexity of atom entailment under guarded DT-
GDs. For the upper bounds, we exploit the guarded fragment of first-order logic [3,23],
while for the lower bounds we discuss relevant reductions that have already been pro-
vided for well-known subclasses of DTGDs.

Interestingly, every set Σ of guarded DTGDs can be translated in logarithmic space
into an equivalent guarded first-order theory denoted as GFO(Σ). Given an instance
〈a,D,Σ〉 of atom entailment, where Σ is a set guarded DTGDs, it is well-known that
D ∪ Σ |= a iff GFO(Σ) ∧ ψD ∧ ¬a is unsatisfiable, where ψD = ∧d∈D d. Since
the theory GFO(Σ) ∧ ψD ∧ ¬a is guarded, we can exploit existing results regarding
unsatisfiability of guarded formulas. The complexity of this problem was first inves-
tigated by Grädel [23]. In particular, it is in 2EXPTIME in the general case and in
EXPTIME in case of fixed arity. The former result was obtained by exhibiting an al-
ternating exponential space algorithm. A deterministic version of this algorithm runs
in time O(2(|R|+|ψ|)·ωω

), where R is the set of predicates in the formula ψ, and ω is
the maximum arity over all predicate symbols ofR. In the case of fixed arity, the same
algorithm clearly runs in exponential time. In case of a fixed theory combined with an
input database (data complexity) the same problem is in NP [8]. The idea behind this
result can be summarized as follows. Consider a fixed guarded first-order formula ψ
over a schema R. The algorithm first pre-computes all possible maximal conjunctions
of (pairwise non-isomorphic) literals, called types, over R that satisfy ψ. Since ψ is
fixed, also the set of types is fixed, as well as the number of steps required to com-
pute it. For example, if ψ = ∀X(r(X) → p(X)), then its types are: r(X) ∧ p(X),
¬r(X) ∧ p(X), and ¬r(X) ∧ ¬p(X). Next, given an input database ψD for R, the
algorithm guesses a suitable set B of constants appearing in ψD, constructs the set
S = {c ∈ ψD | terms(c) ⊆ B}, and checks in polynomial time whether at least one
type of ψ is consistent with S.

Let us now turn our attention to the lower bounds. In the general case, Calı̀ et al. [12]
proved that atom entailment is already 2EXPTIME-hard for guarded TGDs, by simu-
lating an alternating exponential space Turing machine. Moreover, in the same paper,
it was also proved that if we consider predicates of fixed arity, the construction can be
adapted to simulate an alternating linear space Turing machine. Regarding data com-
plexity, Alviano et al. [2] recently showed that the well-known coNP-complete problem
of deciding whether a 3-CNF formula is unsatisfiable can be reduced to atom entail-
ment under the fixed set Σ of guarded DTGDs {clause(L1, L2, L3, N1, N2, N3) →
∨i∈[3]assign(Li, Ni)} ∪ {assign(L,N), assign(N,L)→ invalid (L)}. Given a propo-
sitional formula ψ in 3-CNF, for each clause of the form l1 ∨ l2 ∨ l3 of ψ we add to the
database D the fact clause(l1, l2, l3, ν(l1), ν(l2), ν(l3)), where ν(l) = ¬x if l = x, and
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ν(l) = x if l = ¬x. It can be shown that ψ is unsatisfiable iff D ∪ Σ |= invalid (L).
The previous discussion is summarized in the following result.

Theorem 1. ATOM-ENTAILMENT under guarded DTGDs is 2EXPTIME-complete in
combined complexity, EXPTIME-complete if the size of the DTGDs is fixed, and coNP-
complete in data complexity.

It is interesting to see that every set of ELU axioms [5] can be easily reduced to an
equivalent set (w.r.t. atom entailment) of guarded DTGDs. A set of ELU axioms can
be normalized in such a way that only assertions of the form given in Table 2 can
appear (see, e.g., [4]). In the same table we give the translation τ of such axioms to
guarded DTGDs. Using τ it is not difficult to show that instance checking under ELU
knowledge bases can be reduced in logarithmic space to atom entailment under guarded
DTGDs, while preserving the data complexity. It is well-known that instance checking
under ELU ontologies is coNP-complete [25]. Guarded DTGDs are expressive enough
to capture also the DL obtained by allowing in ELU role hierarchies and inverse roles.

4 Linear Disjunctive Tuple-Generating Dependencies

In this section, we study the complexity of atom entailment under linear DTGDs. We
show that it is EXPTIME-complete in combined complexity, PTIME-complete if the
DTGDs have fixed size, and in AC0 in data complexity. The first two upper bounds
are obtained by giving an alternating algorithm which runs in polynomial space, and
in logarithmic space if the DTGDs have fixed size. The AC0 upper bound is obtained
by reducing atom entailment under linear DTGDs into first-order query evaluation. The
lower bounds are established by simulating the behavior of an alternating polynomial
space (resp., logarithmic space) Turing machine by means of linear DTGDs. It is im-
portant to say that the normalization algorithm defined in Section 2 preserves linearity.

4.1 Upper Bounds

Let us first concentrate on the upper bounds. We reduce an instance 〈a,D,Σ〉 of atom
entailment to the problem of checking the existence of a proof-tree of an atom d ∈ D

Table 2. Translation of ELU to guarded DTGDs; A, B, C are concept names, R is a role name

ELU Axiom Guarded DTGD

A � B pA(X)→ pB(X)

A �B � C pA(X), pB(X)→ pC(X)

A � ∃R.B pA(X)→ ∃Y pR(X,Y ), pB(Y )

∃R.A � B pR(X,Y ), pA(Y )→ pB(X)

A � B � C pA(X)→ pB(X) ∨ pC(X)
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Fig. 1. Possible proof-trees of r(a, b) and Σ

and Σ which is valid w.r.t. a. Intuitively, such a tree encodes the part of each model of
D ∪Σ due to which a is entailed; the formal definition follows. Consider a fact d, and
a normalized set Σ of linear DTGDs. Let T be a binary tree 〈N,E, λ1, λ2〉, where the
nodes of N are labeled by λ1 with atoms that can be formed using predicates occurring
in Σ and terms of terms(d) ∪ ΓN , and the edges of E are labeled by λ2 : E → Σ. We
say that T is a proof-tree of d and Σ if:

– The root is labeled by d.
– For each v ∈ N , there exists σ ∈ Σ such that each edge of the form (u, v) ∈ E is

labeled by σ, and the out-degree of v is |head(σ)|.
– For each v ∈ N , if v has a single outgoing edge (v, u), which is labeled by
p(X,Y)→ ∃Z r(X, Z), then there is a homomorphismh such that h(p(X,Y)) =
λ1(v), and there exists h′ = h|X ∪ {Z → t | t ∈ ΓN , t �∈ terms(h(p(X,Y)))}
such that λ1(u) = h′(r(X, Z)).

– For each v ∈ N , assuming that the outgoing edges of v are labeled by some σ
without an existentially quantified variable, there is a homomorphism h such that
h(body(σ)) = λ1(v), and {h(b) | b ∈ head(σ)} = {λ1(u) | (v, u) ∈ E}.

A proof-tree T of d and Σ is valid w.r.t. to an atom a with terms(a) ⊂ Γ ∪ ΓV if, for
each leaf u of T , there exists a homomorphism h such that u is labeled by h(a).

Example 1. Consider the set Σ of linear DTGDs

σ1 : p(X,Y )→ r(Y,X) σ2 : r(X,Y )→ p(X,Y ) ∨ t(X,X)
σ3 : t(X,Y )→ p(X,Y ) σ4 : r(X,Y )→ ∃Z s(Y, Z).

Possible proof-trees of r(a, b) and Σ are shown in Figure 1. In particular, tree (a) is
valid w.r.t. s(a,X) or s(X,Y ), while tree (b) is valid w.r.t. s(b,X) or s(X,Y ).

The following lemma, established in [2], shows that for atom entailment purposes under
linear DTGDs, we are allowed to concentrate on a single database atom.
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Lemma 1. Given a database D, a normalized set Σ of linear DTGDs, and an atom a
with terms(a) ⊂ Γ ∪ ΓV , D ∪Σ |= a iff there exists d ∈ D such that {d} ∪Σ |= a.

Although we can focus on a single database atom, in general we have to consider in-
finitely many models. The key idea underlying our approach is to use “representatives”
of all these models in order to be able to encode them in a single structure, namely, the
proof-tree defined above. This can be achieved by considering the skolemized version
of the given set of DTGDs. Given a normalized set Σ of linear DTGDs, we define F
as the set of skolem functions {fσ | σ ∈ Σ}, where the arity of each fσ is the num-
ber of universally quantified variables of σ. Let Σf denote the set of rules obtained
from Σ by replacing each TGD σ of the form p(X,Y) → ∃Z r(X, Z) with the rule
p(X,Y) → r(X, fσ(X,Y)). From well-known results on skolemization the follow-
ing holds: given a database D, a normalized set Σ of linear DTGDs, and an atom a
with terms(a) ⊂ Γ ∪ ΓV , D ∪ Σ |= a iff D ∪ Σf |= a. The set of skolem terms
ΓΣ is recursively defined as follows: each term of Γ belongs to ΓΣ , and if fσ ∈ F
has arity n > 0 and t1, . . . , tn are terms of ΓΣ , then fσ(t1, . . . , tn) ∈ ΓΣ . The notion
of homomorphism naturally extends to atoms that contain functional terms of the form
f(t1, . . . , tn), where each ti is a variable of ΓV or a skolem term; in particular, given a
homomorphism h, h(f(t1, . . . , tn)) = f(h(t1), . . . , h(tn)).

Consider a normalized set Σ of linear DTGDs, an atom c with terms(c) ⊂ ΓΣ ,
and an instance M of mods({c}, Σf). The tree of M is inductively defined as follows:
tree(M) is a rooted tree 〈N,E, λ1, λ2〉, where N is the set of nodes, E is the edge
set, λ1 : N → M is a node-labeling function, and λ2 : E → Σf is an edge-labeling
function. The root of tree(M) is labeled by c. Consider a node v ∈ N , and a rule ρ of
the form b→ b1 ∨ b2 or b→ b1 such that there is a homomorphism h that maps b into
λ1(v).

Fig. 2. Possible trees of trees(d, Σf )
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For each i ∈ {1, 2}, if h(bi) ∈M , then there is a u ∈ N labeled by h(bi), e = (v, u)
belongs to E, and λ2(e) = ρ. Notice that, by construction, {λ1(v)}v∈N ⊆M . The
ρ-tree of M , denoted as ρ-tree(M), is obtained from tree(M) by keeping the root
node v, each edge e = (v, u) which is labeled by ρ, and the subtree rooted at u. Let
(ρ-)trees(c,Σf ) = {(ρ-)tree(M) | M ∈ mods({c}, Σf)}. Notice that, by abuse of
notation, given a (ρ-)tree T and an atom a, we write T |= a if {λ1(v)}v∈N |= a. It is
not hard to see that {c} ∪Σf |= a iff T |= a, for each T ∈ trees(c,Σf).

Example 2. Consider the set Σf of rules

ρ1 : p(X,Y )→ r(Y,X) ρ2 : r(X,Y )→ p(X,Y ) ∨ t(X,X)
ρ3 : t(X,Y )→ p(X,Y ) ρ4 : r(X,Y )→ s(Y, f(X,Y )).

Possible models of {r(a, b)} ∪Σf are:

M1 = {r(a, b), s(b, f(a, b)), t(a, a), p(a, a), r(a, a), s(a, f(a, a))},
M2={r(a, b), s(b, f(a, b)), p(a, b), r(b, a), t(b, b), p(b, b), r(b, b), s(a, f(b, a)), s(b, f(b, b))},
M3 = {r(a, b), s(b, f(a, b)), p(a, b), r(b, a), p(b, a), s(a, f(b, a))}.

Notice that, for each other modelM of {r(a, b)}∪Σf , it holds that Mi ⊆M , for at least
one i ∈ [3]; the tree Ti of Mi is depicted in Figure 2. Observe that each Ti has exactly
one ρ2-tree and one ρ4-tree. Moreover, the shaded paths form (modulo null renaming)
the proof-tree of r(a, b) and Σf shown in Figure 1(a), which is valid w.r.t. s(a,X).

Observe that the first edge of each shaded path in Figure 2 is labeled by the same rule.
As shown in the next technical lemma, this is a general property that holds whenever
the given database and set of DTGDs entail the given atom.

Lemma 2. Consider a normalized set Σ of linear DTGDs, an atom c with terms(c) ⊂
ΓΣ , and an atom a with terms(a) ⊂ Γ ∪ΓV . It holds that {c}∪Σf |= a iff there exists
ρ ∈ Σf such that T |= a, for each T ∈ ρ-trees(c,Σf ).

Proof (sketch). By definition of the tree of a model, trees(c,Σf ) is isomorphic to the
set T =

{
�i∈[|Σ|]Ti | 〈T1, . . . , T|Σ|〉 ∈ ×ρ∈Σf

ρ-trees(c,Σf)
}

, where �i∈[|Σ|]Ti is
the rooted tree obtained from the disjoint union of T1, . . . , T|Σ| after merging the root
nodes (see Figure 3). We are now ready to show our lemma. (⇒) Assume that for
each ρ ∈ Σf there exists T ∈ ρ-trees(c,Σf) such that T �|= a. Therefore, there exists
T ′ ∈ T such that T ′ �|= a. Clearly, there is T ′′ ∈ trees(c,Σf ) isomorphic to T ′. Assum-
ing that T ′′ = tree(M), for some M ∈ mods({c}, Σf ), M �|= a; thus, {c} ∪Σf �|= a.
(⇐) This direction follows immediately.

Given a fact d, a set Σ of linear DTGDs, and an atom a, by applying recursively the
property provided by Lemma 2, one can build a proof-tree of d and Σ which is valid
w.r.t. a. This is exactly the key idea underlying the proof of the next result.

Lemma 3. Consider a database D, a normalized set Σ of linear DTGDs, and an atom
a with terms(a) ⊂ Γ ∪ ΓV . It holds that D ∪ Σ |= a iff there exists a proof-tree of d
and Σ, for some d ∈ D, which is valid w.r.t. a.
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Fig. 3. Rooted tree obtained from the disjoint union of T1, . . . , Tn after merging the root nodes

Proof (sketch). (⇒) The claim is shown by giving a proof-tree of some d ∈ D and Σ
which is valid w.r.t. a. By Lemmas 1 and 2, there are d ∈ D and ρ ∈ Σf such that
in every T ∈ ρ-trees(d,Σf) there is a path πT from the root to a node u which is
labeled by h(a), where h is a homomorphism, and the first edge eT of πT is labeled
by a rule ρ of the form b → b1 ∨ b2 or b → b1. Let us now construct a rooted binary
tree T ′ = 〈N,E, λ1, λ2〉; initially, N = {v}, E = ∅, λ1 = {v → d}, and λ2 = ∅.
Clearly, ρ-trees(d,Σf ) can be partitioned into S1 and S2 such that, for each T ∈ S1, if
eT = (u,w) and h maps b into d (which is the label of u), then w is labeled by h(b1).
For each i ∈ {1, 2}, assume that the second node of πT , for each T ∈ Si, is labeled by
g
i
. Let N = N ∪ {w1, w2}, E = E ∪ {(v, wi)}i∈{1,2}, λ1 = λ1 ∪ {wi → g

i
}i∈{1,2},

and λ2 = λ2 ∪ {(v, wi) → ρ}i∈{1,2}. Due to the fact that {g
i
} ∪ Σf |= a, for each

i ∈ [2], Lemma 2 can be recursively applied finitely many times as described above, and
eventually T ′ is constructed. The desired proof-tree is obtained from T ′ by replacing
the skolem terms occurring in T ′ with distinct nulls of ΓN .

(⇐) By hypothesis, there exists d ∈ D and a proof-tree T of d and Σ which is valid
w.r.t. a. It is possible to construct from T a rooted binary tree T ′ such that the nodes are
labeled by atoms with skolem terms (instead of nulls), the edges are labeled by rules
of Σf , and the structural properties of T are preserved. Assume that the label of each
outgoing edge of the root of T ′ is ρ. By Lemma 1 and 2, it suffices to show that each ρ-
tree of d andΣf entails a. This follows from the fact that, for each T ′′ ∈ ρ-trees(d,Σf ),
there is a path from the root to a leaf of T ′ that can be mapped into T ′′.

Interestingly, a fact d and a normalized set Σ of linear DTGDs admit a valid proof-tree
w.r.t. an atom a iff they admit a “small” valid proof-tree T w.r.t. a involving at most
ω + 1 nulls, where ω is the maximum arity over all predicates of Σ. This holds since,
by definition, T can be constructed in such a way that any pair of edges of the form
(v, u) and (v, u′) involves at most ω + 1 nulls. By combining this observation with
Lemma 3, we get that atom entailment is equivalent to the problem of deciding whether
a “small” proof-tree exists. We do this by applying the alternating algorithm SearchPT
given in Figure 4; an example of the computation of the algorithm follows.

Example 3. Consider the instance I=〈a, {r(a, b)}, Σ〉 of atom entailment, where Σ is:

σ1 : r(X,Y )→ p(X) ∨ t(Y,X) σ2 : p(X)→ r(X,X)
σ3 : t(X,Y )→ ∃Z s(Y, Z) σ4 : s(X,Y )→ ∃Z s(Y, Z).

Figure 5 shows an initial part of the alternating computation of SearchPT on I . Observe
that in the shaded edge exactly three (maximum arity plus one) nulls appear.
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Algorithm SearchPT(a,D,Σ)

Input: An instance 〈a,D,Σ〉 of ATOM-ENTAILMENT

1. N := {zi ∈ ΓN}i∈[ω+1], and let ρ : var(a)→ N be a one-to-one substitution;
2. Existentially choose c ∈ D;
3. Existentially choose to either execute step 4 or to skip to step 5;
4. If there exists a homomorphism h such that h(a) = c, then accept;
5. Existentially choose σ ∈ Σ and a homomorphism h such that h(body(σ)) = c; if there is

no such a pair, then reject;
6. If σ = p(X,Y)→ r1(X1) ∨ r2(X2), then b1 := h(r1(X1)) and b2 := h(r2(X2));
7. If σ = p(X,Y)→ r(X), then b1 := h(r(X, Z)) and b2 := ρ(a);
8. If σ = p(X,Y) → ∃Z r(X, Z), then b1 := h′(r(X, Z)), where h′ is the homomorphism
h|X ∪ {Z → t | t ∈ N, t �∈ terms(h(p(X,Y)))}, and b2 := ρ(a);

9. Universally choose c ∈ {b1, b2} and goto step 3.

Fig. 4. The alternating algorithm SearchPT

Soundness and completeness of SearchPT follow by construction.

Proposition 1. Given an instance 〈a,D,Σ〉 of ATOM-ENTAILMENT, where Σ is a set
of linear DTGDs, D ∪Σ |= a iff SearchPT(a,D,Normalize(Σ)) accepts.

Equipped with the above machinery, we are now ready to establish the desired com-
plexity upper bounds of our problem.

Theorem 2. ATOM-ENTAILMENT under linear DTGDs is in EXPTIME in combined
complexity, and in PTIME if the DTGDs have fixed size.

Proof. Consider an instance 〈a,D,Σ〉 of ATOM-ENTAILMENT, where Σ is a set of lin-
ear DTGDs. Since SearchPT is an alternating algorithm and Σ′ = Normalize(Σ) can
be computed in polynomial time, to obtain the desired upper bounds, by Proposition 1,
it suffices to show that SearchPT(a,D,Σ′) runs in polynomial space in the general
case, and in logarithmic space in the restricted case. At each step of the computation we
need to remember at most two atoms involving ω terms, where each term can be repre-
sented using logarithmically many bits; more precisely, we need O(ω logω + ω logn)
space, where n = |terms(D)|. Notice that, if the DTGDs of Σ have fixed size, then ω
is also fixed (see Section 2), and the claim follows.

The rest of this subsection is devoted to show that atom entailment under linear DT-
GDs is in AC0 in data complexity. We do this by establishing that linear DTGDs are
first-order rewritable, i.e., atom entailment under linear DTGDs can be reduced to the
problem of evaluating a first-order query over a database. First-order rewritability was
first introduced in the context of description logics [18].

Consider a normalized set Σ of linear DTGDs over a schema R, and an atom a
over R. Let C be the constants occurring in a, and N = {z1, . . . , zω} be a set of
nulls, where ω is the maximum arity over all predicates of R. We call base(a,R) the
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Fig. 5. Computation of the algorithm SearchPT

set of all atoms that can be formed with predicates of R and terms of C ∪ N . Let
B = {b | b ∈ base(a,R), {b} ∪ Σ |= a}, and ρ be a renaming substitution that maps
each z ∈ N into a distinct variable Xz ∈ ΓV . Let Q[a,Σ] be the first-order query
∃Xz1 . . . ∃Xzω

∨
b∈B ρ(b). The size of Q[a,Σ], defined as the number of disjuncts,

is at most |R| · (2ω)ω. Since, by Theorem 2, atom entailment under linear DTGDs
is feasible in exponential time, the rewriting can be also constructed in exponential
time. Notice that a database D entails Q[a,Σ], denoted D |= Q[a,Σ], if there exists a
homomorphism h that maps ρ(b) into D, for at least one atom b ∈ B. In what follows,
we show that Q[a,Σ] is a sound and complete rewriting of a and Σ.

Lemma 4. Consider a database D, a normalized set Σ of linear DTGDs, and an atom
a with terms(a) ⊂ Γ ∪ ΓV . It holds that D ∪Σ |= a iff D |= Q[a,Σ].

Proof (sketch). By construction of Q[a,Σ], it suffices to show that D∪Σ |= a iff there
exists b ∈ base(a,R) and a homomorphism h such that h(b) ∈ D and {b} ∪Σ |= a.
(⇒) By Lemma 1, there exists d ∈ D such that {d} ∪ Σ |= a; therefore, there ex-
ists a homomorphism hM that maps each M ∈ mods({d}, Σ) into a. Moreover, by
construction, there exists b ∈ base(a,R) and a bijective homomorphism μ such that
μ(b) = d; clearly, μ(b) ∈ D. Let f : terms(d) → terms(b) be the substitution
{t→ t′ | t′ → t ∈ μ|terms(d)}. By induction on the depth of the trees of the models, it
can be shown that for each M ′ ∈ mods({b}, Σ), there exists M ∈ mods({d}, Σ) such
that f(M) = M ′; thus, the homomorphism f ◦hM maps a into M ′. (⇐) This direction
can be easily shown by providing a similar argument.

Since evaluation of first-order queries is feasible in AC0 [32], Lemma 4 implies the
following complexity result.

Theorem 3. ATOM-ENTAILMENT under linear DTGDs is in AC0 in data complexity.
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4.2 Lower Bounds

We proceed now to establish the desired complexity lower bounds of atom entailment
under linear DTGDs.

Theorem 4. Consider an atom a over a schemaR, a database D forR, and a set Σ of
linear DTGDs overR. The problem of deciding whether D∪Σ |= a is EXPTIME-hard
in combined complexity even if |D| = 1 and |R| = 2.

Proof (sketch). To prove our claim, it suffices to simulate the behavior of an APSPACE
Turing machine M by means of linear DTGDs. W.l.o.g., we assume that M has exactly
one accepting state sacc , it is well-behaved and never “falls off” the left end of the
tape, and also each configuration of M has at most two subsequent configurations.
Moreover, we assume that the tape alphabet of M is {0, 1,�}, where � denotes the
blank symbol. Suppose that M halts on input I = a1 . . . a|I| using n = |I|k cells,
where k > 0. Assume also that s1 < . . . < sm, where m > 0, is the order that the
states appear in the encoding of M , and that sinit is the initial state of M . We use a
(2n +m + 6)-ary predicate called config to represent a configuration of M on I . An
atom of the form config(s, c1, . . . , cn, b1, . . . , bn, 0, 1, 0, 1,�, s1, . . . , sm), where s ∈
{s1, . . . , sm}, 〈c1, . . . , cn〉 ∈ {0, 1,�}n, 〈b1, . . . , bi−1, bi+1, . . . , bn〉 = {0}n−1 and
bi = 1, represents the fact that M is in state s, the tape contains the string c1, . . . , cn,
and the cursor points at the i-th cell. The tuple 〈0, 1, 0, 1,�, s1, . . . , sm〉 (formally not
part of the represented configuration) keeps the binary values 0 and 1, which will be
used later in the simulation to move the cursor, the tape alphabet, and the states of the
machine. Let D be the database that contains the atom

config(sinit , a1, . . . , a|I|,�, . . . ,�︸ ︷︷ ︸
n−|I|

, 1, 0, . . . , 0︸ ︷︷ ︸
n−1

, 0, 1, 0, 1,�, s1, . . . , sm)

which represents the initial configuration of M on I . We now encode the behavior of
M on all transition rules that move the cursor to the right (resp., left) in the first (resp.,
second) subsequent configuration. For notational convenience, let

B� = Z0, . . . , Z0︸ ︷︷ ︸
�−1

, Z1, Z0, . . . , Z0︸ ︷︷ ︸
n−�

and T = Z0, Z1, V0, V1, V�, S1, . . . , Sm,

where {Z0, Z1, V0, V1, V�, S1, . . . , Sm} ⊂ ΓV . For each transition rule of the form
〈si, a〉 → 〈〈sj , b,→〉, 〈sk, c,←〉〉 in the transition function of M , we add in Σ the
following linear DTGDs: for each  ∈ [n − 1], a → b ∧ c if si is an ∃-state, and
a→ b ∨ c if si is a ∀-state, where

a = config(Si, X1, . . . , X�−1, Va, X�+1, . . . , Xn,B�,T),
b = config(Sj , X1, . . . , X�−1, Vb, X�+1, . . . , Xn,B�+1,T),
c = config(Sk, X1, . . . , X�−1, Vc, X�+1, . . . , Xn,B�−1,T).

Similar DTGDs are used to encode the transition rules that move the cursor to the left or
leave the cursor unmoved. Finally, assuming that sacc = si, we add in Σ the following
DTGDs: for each  ∈ [n − 1], config(Si, X1, . . . , Xn,B�,T) → accept(Si). Notice
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that the above construction is feasible in polynomial time. It is not difficult to verify that,
if a = accept(A), where A ∈ ΓV , then M accepts I iff D ∪ Σ |= a. Since APSPACE
coincides with EXPTIME, the claim follows from the fact that all the DTGDs of Σ
are linear, the database D contains a single atom, and R contains only two predicates,
namely, config and accept .

It is interesting to say that in the above construction the arity of the predicate config
can be reduced to 2n+1 if we allow the use of constants in the DTGDs. If we consider
predicates of fixed arity, then the encoding given in the proof of Theorem 4 can be
adapted in order to simulate an alternating logarithmic space Turing machine.

Theorem 5. Consider an atom a over a schema R, a database D for R, and a set Σ
of linear DTGDs over R. Assuming that each DTGD of Σ has fixed size, the problem
of deciding whether D ∪ Σ |= a is PTIME-hard. The same lower bound holds even if
|D| = 1 and each predicate ofR is unary.

Proof (sketch). It is well-known that ALOGSPACE equals PTIME. Thus, to prove our
claim, it suffices to simulate the behavior of an ALOGSPACE Turing machine M on an
input I by means of linear DTGDs with predicates of fixed arity. Recall that a logarith-
mic space Turing machine is equipped with a read-only input tape and a read/write work
tape. Assume that M halts on I = a1, . . . , a|I| using n = log |I|k cells, where k > 0.
The key idea of the proof is to modify the construction given in the proof of Theorem 4
in such a way that a configuration of M on I is represented as a unary predicate. For
example, the database atom can be encoded as

config[sinit

input tape︷ ︸︸ ︷
a1..a|I|1 0..0︸︷︷︸

|I|−1

work tape︷ ︸︸ ︷
�..�︸︷︷︸
n

1 0..0︸︷︷︸
n−1

](c)

which represents the initial configuration of M on I , where c is an arbitrary constant of
Γ . Since the number of configurations of M on I is polynomial, we need polynomially
many unary predicates. The rest of the construction, which is feasible in logarithmic
space, can be done by adapting the DTGDs given in the proof of Theorem 4.
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Abstract. Once having classified an NP-hard problem fixed-parameter
tractable with respect to a certain parameter, the race for the most ef-
ficient fixed-parameter algorithm starts. Herein, the attention usually
focuses on improving the running time factor exponential in the consid-
ered parameter, and, in case of kernelization algorithms, to improve the
bound on the kernel size. Both from a practical as well as a theoreti-
cal point of view, however, there are further aspects of efficiency that
deserve attention. We discuss several of these aspects and particularly
focus on the search for “stronger parameterizations” in developing fixed-
parameter algorithms.

1 Introduction

Efficiency is the central concern of algorithmics. In parameterized algorithmics,
one tries to solve NP-hard problems in f(k) · nO(1) time, where k is a problem-
specific parameter (such as solution size), n is the size of the overall input,
and f is an arbitrary function only depending (exponentially) on the param-
eter k [16, 23, 38]. Thus, the first step in parameterized algorithm design is
to show that the considered problem is fixed-parameter tractable with respect
to the chosen parameter k. Fixed-parameter algorithms are fast in case k is
small and f grows “moderately”. Consequently, once a problem is classified as
fixed-parameter tractable, the race for the smallest function f(k) starts.1 There
are many success stories in this direction, including problems such as Vertex

Cover [13] and Undirected Feedback Vertex Set [11, 14]. Accompanied
by these are similar races for the problem kernel size of the considered problem,
for instance see the problems Cluster Editing [12] and again Undirected

Feedback Vertex Set [45]. Furthermore, there is an ongoing deep theoretical
effort for proving lower bounds (under complexity-theoretic assumptions) both
for the f(k) in the running time [24, 34] and the kernel size (polynomial vs
non-polynomial) [8, 26].

In the two main lines of efficiency research in parameterized algorithmics
described above, however, polynomial factors in the running time mostly are
ignored. This is somewhat contrary to the fact that some key fixed-parameter
tractability results have been termed “linear time for constant parameter value”,
basically meaning that the underlying problem can be solved in time f(k)·n. Two
1 See the web site on FPT races: http://fpt.wikidot.com/fpt-races
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examples in this direction are the “linear-time algorithms” for Treewidth [5]
and Crossing Number [31]. As to striving for linear-time algorithms for ef-
fective data reduction, only recently the concept of “linear-time kernelization”
gained more attention [3, 4, 29]. Altogether, these are important subjects of
study besides the established races described in the beginning.

The focus of this article, however, is on another, practically and theoretically
fruitful aspect in the race for efficiency. As an example, consider the following
NP-hard problem with applications in graph drawing.

2-Layer Planarization

Input: An undirected graph G = (V,E) and a k ≥ 0.
Question: Is there an E′ ⊆ E with |E′| ≤ k such that deleting the edges
in E′ from G results in a biplanar graph.

Herein, a graph is biplanar if the vertices can be arranged on two parallel lines
such that the edges (drawn as straight lines) do not cross. The best known fixed-
parameter algorithm with respect to solution size k is due to Suderman [44] and
runs in O(3.6k+ |G|) time, improving on previous algorithms [18, 22] with expo-
nential factors 6k and 5.2k, respectively. Later Uhlmann and Weller [47] followed
a different improvement approach by considering the parameter “feedback edge
set number” f . The essential point here is that for the parameter feedback edge
set number f it holds that f ≤ k and f is expected to be significantly smaller
than k in many realistic settings. In other words, f is a “stronger parameter”
than k and thus the fixed-parameter tractability result with respect to the param-
eter f can be considered as an improvement over the fixed-parameter tractability
result with respect to the solution size parameter k. Uhlmann and Weller [47]
showed that 2-Layer Planarization can be solved in O(6f ·f2+f · |E|) time.2

If 1.7 · f ≤ k, which can be the case in real-world instances, this algorithm is
faster than the previous one.

In the spirit of the above considerations, we discuss in the following new
efficiency races in parameterized algorithmics mainly based on the concept of
stronger (and, correspondingly, weaker) parameterizations.

Let k1 and k2 be two natural numbers denoting parameters for input instances
(here, graphs) of an NP-hard problem under study. Note that often, these pa-
rameters are functions of the input graph G (such as the maximum degree of G).
We say that k1 is stronger than k2 if there is a constant c such that k1 ≤ c · k2
for all input instances of the underlying problem and furthermore there is no
constant c′ such that k2 ≤ c′ · k1 in all input instances. Correspondingly, k2 is
weaker than k1 in this case. There are several other reasonable possibilities to
define the notions of weaker and stronger parameters. Here, we choose a “linear
upper bound” for the following two reasons:

– For polynomial-size problem kernels, the main measure of effectiveness is the
degree of the polynomial function in the size bound.

2 Weller [48] recently reported on an improvement to O(3.8f · f2 + f · |E|) time.
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– In the theoretical analysis of running times of fixed-parameter algorithms,
the most important feature is usually considered to be the function class of
the exponential factor, for example 2O(k) vs. 2O(k2).

Due to the linear bounds, these results can be transferred from stronger to
weaker parameters. Note that having neither the stronger nor the weaker relation
between two parameters does not necessarily imply that they are incomparable.

In the remainder of this article we describe some findings and challenges in
the context of considering stronger and weaker parameters with respect to ques-
tions of efficiency. Herein, we deal both with structural parameters as well as
parameterizations related to solution size.3

Preliminaries. We use n to denote the input size. A problem is called fixed-
parameter tractable (FPT) if it can be solved in f(k) · poly(n) time, where f
is a computable function only depending on k. The basic class of parameterized
intractability is called W[1]. Problems that can be solved in polynomial time
for constant parameter values are contained in the class XP. Note that these
problems are not necessarily fixed-parameter tractable since the degree of the
polynomial can be a function of the parameter k. A core tool in the develop-
ment of fixed-parameter algorithms is polynomial-time preprocessing by data
reduction. Here, the goal is for a given problem instance x with parameter k to
transform it in polynomial time into a new instance x′ with parameter k′ ≤ k
such that the size of x′ is upper-bounded by some function g only depending on
k and the instance (x, k) is a yes-instance if and only if (x′, k′) is a yes-instance.
The reduced instance is called a problem kernel ; in case the function g is a
polynomial function it is called a polynomial-size problem kernel. Turing kernel-
ization is a similar approach, where the main difference is that not only one, but
polynomially many kernels can be created.

2 Structural Parameterizations or Navigating through
Parameter Space

In this section, we give three examples for algorithmic studies of NP-hard graph
problems that have been conducted in the spirit of identifying stronger or weaker
parameters yielding tractability results. Most of the parameters considered in
these studies are shown in Figure 1. The idea behind these parameters is that
they measure the distance to easy, that is, polynomial-time solvable, input in-
stances. Here, these are certain classes of graphs, for instance forests or bipartite
graphs.

Small-Diameter Subgraphs. The following NP-hard problem is motivated by
social and biological network analysis [1].

3 While all our case studies are based on graph problems, the fundamental ideas and
concepts presented here are clearly not restricted to these.
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Fig. 1. An overview of the relation between some structural parameterizations for
undirected graphs. Herein, “distance to X” is the number of vertices that have to be
deleted in order to transform the input graph into a graph from the graph class X. For
two parameters that are connected by a line, the upper parameter is weaker than the
parameter below. For example, vertex cover is weaker than “distance to vertex-disjoint
paths” since deleting a vertex cover produces an independent set, which also belongs
to the graph class of disjoint paths. Similarly, distance to disjoint paths is weaker than
“feedback vertex set number” which is weaker than “distance to bipartite”.

2-Club

Input: An undirected graph G and an integer .
Question: Is there a subgraphG′ with at least  vertices that has diameter
at most two?

By an easy polynomial-time data reduction rule it follows that 2-Club admits
a Turing kernel with O(Δ2) vertices where Δ is the maximum degree of G [42].4

This implies fixed-parameter tractability for the parameter Δ. For applications
in social network analysis, this parameterization seems not very useful, since
social networks typically contain so-called hubs, that is, vertices of high degree.
The number of hubs, however, is usually relatively small. Consequently, it is
interesting to consider parameterizations expressing that many vertices in the
graph have low degree. An established parameter in this context is the degeneracy
of a graph: A graph G has degeneracy d if for each induced subgraph of G there
is at least one vertex that has degree at most d. The concept of degeneracy was
introduced as “coloring number” by Erdős and Hajnal [20].

While degeneracy is an interesting parameter, it is sometimes too strong in
order to obtain fixed-parameter tractability results. An interesting alternative

4 These results were presented for the parameter solution size �. They also hold for
the stronger parameter maximum degree Δ.
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is therefore the h-index of a graph G. This is the maximum number h such
that G contains h vertices of degree at least h [19]. Roughly speaking, the main
difference between h-index and degeneracy is that a low h-index captures the
global property that there are few high-degree vertices, whereas degeneracy can
be one even if there are many high-degree vertices in the input graph. For ex-
ample, a 2012 version of the DBLP co-author graph,5 a typical social network,
has ≈ 750, 000 vertices, maximum degree 804, h-index 208, and degeneracy 113.
The 2-Club problem turns out to be solvable in nf(h) time but W[1]-hard with
respect to the h-index of the input graph which also implies W[1]-hardness for
the degeneracy of the input graph [30]. These two results now lead to the follow-
ing two questions:

– Is 2-Club solvable in nf(k) time when k is the degeneracy of the input graph?
– Is there a parameter k between maximum degree and h-index for which 2-

Club has the same kernelization properties as for the maximum degree, that
is, it admits an O(k2)-vertex Turing kernel?

Preprocessing for Treewidth. Computing the treewidth of a graph is a fundamen-
tal problem in graph algorithms:

Treewidth

Input: An undirected graph G, and an integer t.
Question: Does G have treewidth at most t?

Treewidth is fixed-parameter tractable with respect to the treewidth itself [5]
but is unlikely to admit a polynomial-size problem kernel [8, 17]. However, sev-
eral data reductions for the Treewidth problem are known to be effective in
practice [6, 7]. In order to explain this effectiveness, the power of these data
reduction rules was analyzed with respect to structural parameters that are
weaker than treewidth [9]. On the one hand, it was shown that Treewidth

admits an O(k3)-vertex kernel when k is the vertex cover size, and an O(k4)-
vertex kernel when k is the size of a feedback vertex set of the input graph. On
the other hand, it was shown that no polynomial-size kernels can be obtained
for the distance to cluster graphs or the distance to chordal graphs [10]. Using
the structural parameter map in Figure 1 one can now identify the parameters
that are weaker or stronger than the previously considered parameters and thus
identify the following open questions:

– Does Treewidth admit a problem kernel with O(k3) vertices when k de-
notes the “distance to disjoint paths”? As shown in Figure 1, this parameter
is stronger than the vertex cover size and weaker than the feedback vertex
set number.

– Is there a parameter between feedback vertex set size and treewidth, for
example “distance to outerplanar graphs” for which Treewidth admits a
polynomial-size problem kernel [9]?

5 The graph was parsed using the data from http://dblp.uni-trier.de/xml/

http://dblp.uni-trier.de/xml/
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Long Path and Long Cycle. In the NP-hard problems Long Path and Long

Cycle one is given an undirected graph and asks for the existence of a simple
path (or cycle, respectively) of length at least k. Both problems do not admit
polynomial problem kernels with respect to the parameter solution size [8]. Mo-
tivated by this fact, Bodlaender et al. [10] studied both problems with respect to
their kernelizability when parameterized by structural parameters. For instance,
they showed that Long Cycle

– admits an O(k2)-vertex problem kernel when parameterized by the vertex
cover size,

– admits a polynomial problem kernel when parameterized by the size of the
cluster vertex deletion set,

– does not admit a polynomial-size kernel when parameterized by the size of
a vertex set whose deletion produces an outerplanar graph.

Since all forests are outerplanar, the parameter “distance to outerplanar graphs”
is stronger than the parameter feedback vertex set number. Hence, Bodlaender
et al. [10] posed the question whether Long Cycle admits a polynomial-size ker-
nel when parameterized by feedback vertex set number. Assuming this question
were settled, this would immediately raise another open question:

– In case Long Cycle admits a polynomial-size problem kernel when param-
eterized by the feedback vertex set number: is there a parameter that is
stronger than feedback vertex set but for which Long Cycle still admits a
polynomial-size problem kernel?

– In case Long Cycle does not admit a polynomial-size problem kernel when
parameterized by the feedback vertex set number: is there a parameter
stronger than vertex cover and weaker than feedback vertex set number,
for which Long Cycle admits a polynomial kernel?

Furthermore, Bodlaender et al. [10] asked whether Long Cycle admits a
polynomial-size problem kernel when parameterized by the “distance to co-
graph”. Similar to the discussion above, the answer to this question immediately
raises a new question: either is there a parameter stronger than distance to co-
graph such that Long Cycle admits a polynomial-size problem kernel, or is
there a parameter weaker than distance to co-graph and stronger than cluster
vertex deletion for which this is the case?

To conclude, navigating through the space of structural parameters (of
which Figure 1 shows an excerpt) helps in identifying new research directions
and open questions. Many of these questions are of purely algorithmic nature
in the sense that the main question is fixed-parameter tractability (or the ex-
istence of a polynomial-size problem kernel) for a specific parameter. Some of
these questions, however, also ask for the “discovery” of hidden parameters and
are thus also closely related to general combinatorial aspects of the considered
input structure.
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3 Parameterizations Related to Solution Size

In this section, we present two examples for algorithmic studies in which param-
eterizations that are stronger than the “classical” parameterization by solution
size have been proposed.

Above-Guarantee Parameterizations. Vertex Cover is one of the best-studied
problems in parameterized algorithmics.

Vertex Cover

Input: An undirected graph G, and an integer k.
Question: Is there a vertex set S of size at most k such that deleting S
from G results in an independent set?

As mentioned in the introduction, the f(k)-race for Vertex Cover parameter-
ized by vertex cover size k has brought a significant running time improvement.
The vertex cover of a graph, however, is often relatively large. In order to ob-
tain more meaningful parameters, Mahajan and Raman [35] proposed to study
“parameterizations above guaranteed values”. For vertex cover, one such param-
eterization is “parameterization above matching lower bound”, that is, one asks
whether there is a vertex cover of size at most  + k, where  is the size of a
maximum matching in the input graph. Clearly one vertex has to be used to
cover each of the m matching edges and the parameter k measures the excess of
this bound. The fixed-parameter tractability of Vertex Cover for this param-
eter follows from a fixed-parameter tractability result for Almost 2-SAT [41].
An f(k)-race for this parameter resulted in several improvements [15, 40].

Recently, Narayanaswamy et al. [36] showed that Vertex Cover is fixed-
parameter tractable with respect to the “parameterization above linear program
(LP) lower bound”, that is, one asks whether there is a vertex cover of size at
most  + k where k is the value of an optimal solution of the LP relaxation of
an ILP formulation of Vertex Cover. Again, the excess k above the lower
bound is the parameter. Since the LP lower bound is at least as large as the
matching lower bound, the new above-guarantee parameter is smaller. The fixed-
parameter result by Narayanaswamy et al. [36] now starts a new f(k)-race for this
parameter. For all three of the above-mentioned parameters there are algorithms
that solve the problem in ck · poly(n) time where c is a small constant. One
interesting open question is thus: Is there an even stronger parameter for which
a running time of ck · poly(n) can be achieved, where c is relatively small.

Cluster Editing. Cluster Editing is a well-studied problem with applications
in graph-based data clustering [28].

Cluster Editing

Input: An undirected graph G and an integer k.
Question: Can G be transformed into a vertex-disjoint union of cliques
(a so-called cluster graph) by at most k edge modifications?
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Most investigations for Cluster Editing were concerned with the two classical
FPT-races running time and problem kernel size for the parameter solution
size k. More recently, other parameterizations for Cluster Editing have been
considered. For instance, it was shown thatCluster Editing is fixed-parameter
tractable when parameterized by the stronger parameter cluster vertex deletion
number [32, 46] but NP-hard already on graphs of bounded degree [25, 33].
Furthermore, a parameter called “local modification bound” was introduced [33].
This parameter is a stronger parameter than the solution size: The solution size
is the overall number of edge modifications; the local modification bound is the
maximum of incident edge modifications over all vertices of the graph. Cluster

Editing admits a kernel with at most O(d·t) vertices where d is an upper bound
on the number of clusters in the cluster graph and t is the local modification
bound [33] .

By means of a simple dynamic programming algorithm, the above problem
kernel result implies an algorithm with running time 2O(dt) for Cluster Edit-

ing. In contrast, for the parameter “solution size k and cluster number d”,

Cluster Editing can be solved in 2O(
√
dk) · poly(n) time [25]. On the other

hand, 2O(
√
dt) · poly(n) time is unlikely to be achievable [33]. Hence, is there a

parameter x between solution size k and local modification bound t for which

an 2O(
√
dx) · poly(n)-time algorithm can be achieved? For instance, it would be

interesting to consider the parameter number  of edge deletions performed by
a solution to Cluster Editing:

– Is Cluster Editing fixed-parameter tractable with respect to the number 
of edge deletions performed by a size-k solution?

– Does Cluster Editing admit a problem kernel that is polynomial in ?

– Can Cluster Editing be solved in 2O(�) · poly(n) or in 2O(
√
d�) · poly(n)

time?

Summarizing, a very natural way of obtaining parameterizations that are stronger
than the solution size is the approach of “parameterizing above guarantee” as
discussed in the Vertex Cover example. The identification of stronger param-
eters, however, is not limited to this approach as demonstrated by Cluster

Editing where simple combinatorial considerations have been used to identify
parameters that are stronger than the solution size parameterization.

4 Conclusion

With the advent of parameterized algorithmics from single-parameter studies
to multi-parameter studies investigating the relation between parameters be-
comes more and more important. In this line, studying the “stronger”-relation
between parameters as proposed in this paper is a natural and fruitful undertak-
ing, directly leading to numerous challenges on designing efficient and practically
relevant fixed-parameter algorithms. This is encompassed by challenging combi-
natorial questions related to the “parameter space” (cf. Figure 1) associated with
a specific problem. The study of the relationship between structural parameters
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measuring the input complexity should not be limited to graph problems. Indeed,
obtaining analogous parameter spaces for “string parameters and problems” or
“set system parameters and problems” is an open field.

The topic of alternative races in parameterized algorithmics is closely related
to multivariate algorithm design and analysis [21, 39] in at least two ways. First,
in both approaches it is essential that various parameters come into play. Second,
when combining parameters as done in the multivariate design of fixed-parameter
algorithms, then this usually happens in order to either improve the running time
of a fixed-parameter tractability result towards practical relevance (by adding
parameters one clearly further restricts the generality of the result, hopefully for
the benefit of improved efficiency) or to turn W[1]-hardness with respect to a
specific parameterization into fixed-parameter tractability by further adding one
or more parameters. In this spirit, a parameter k1 is likely to be stronger than
a combined parameter (k1, k2), whatever k2 is. So, parameter addition gives a
way to generate weaker parameters. Let us describe one specific open questions
in this context: It is open whether the NP-hard arc routing problem Rural

Postman is fixed-parameter tractable with respect to the number of weakly
connected components of the graph induced by the “required arcs” [27, 43]. As
a step towards answering this long-standing open problem, it is interesting to
identify weaker parameters making the problem fixed-parameter tractable.

To conclude, let us only briefly mention two further efficiency races in the
context of parameterized algorithmics. First, there are many further problems
that can be studied along the lines of this article. In particular, it is a challenge
to extend the presented approaches for graph-theoretic problems to more com-
plex real-world problems. For instance, the NP-hard Target Set Selection

(modeling the spread of influence) is a prominent graph problem occurring in
social networks. It is known to be W[1]-hard with respect to the parameters
treewidth and also the weaker parameter feedback vertex set size [2] while it
becomes fixed-parameter tractable for the still weaker parameter vertex cover
number [37]. Second, a standard way of starting races is instead of making the
parameter stronger is to make the underlying classes of input instances larger.
For instance, not changing the parameter, does a result holding for planar graphs
generalize to bounded-genus graphs and further to certain classes of minor-free
graphs? This is closer to our approach than it might appear at first sight since
many structural graph parameters basically also restrict the allowed graph types,
thus also defining a specific graph class.

Finally, from a more applied point of view, the most natural way of spotting
relevant parameterizations is to make measurements in the (real-world) input
data. Quantities that turn out to be small particularly qualify for parameterized
complexity studies. To this end, tools for data analysis are needed.6 After having
performed the data analysis task, one may set up the parameter navigation map
and perform algorithmic studies as sketched in this article.

6 We have implemented the Graphana tool, which can be used to compute or estimate
graph parameters as shown in Figure 1. The software is available from
http://fpt.akt.tu-berlin.de/graphana
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Abstract. In this paper we give an outline of recent algebraic results
concerning theories and models of the untyped lambda calculus.

1 Introduction

The lambda calculus was originally introduced by Church [12,13] as a foundation
for logic, where functions, instead of sets, were primitive, and it turned out to
be consistent and successful as a tool for formalising all computable functions.
The rise of computers and the development of programming languages gave a
new development to its theoretical studies. The lambda calculus is the kernel of
the functional programming paradigm, because its ordinary parameter-binding
mechanism corresponds closely to parameter binding in many functional pro-
gramming languages and to variable binding of quantifiers in logic.

Lambda calculus has been originally investigated by using mainly syntactical
methods (see Barendregt’s book [1]). At the beginning researchers have focused
their interest on a limited number of equational extensions of lambda calculus,
called λ-theories. They arise by syntactical or semantic considerations. Indeed,
a λ-theory may correspond to a possible operational semantics of lambda cal-
culus, as well as it may be induced by a model of lambda calculus through the
kernel congruence relation of the interpretation function. The set of λ-theories is
naturally equipped with a structure of complete lattice (see [1, Chapter 4]). The
bottom element of this lattice is the least λ-theory λβ, while the top element is
the inconsistent λ-theory. Although researchers have mainly focused their inter-
est on a limited number of them, the lattice of λ-theories has a very rich and
complex structure (see e.g. [1,19,21]).

The lambda calculus, although its axioms are all in the form of equations, is
not a genuine equational theory since the variable-binding properties of lambda
abstraction prevent “variables” in lambda calculus from operating as real al-
gebraic variables. There have been several attempts to reformulate the lambda
calculus as a purely algebraic theory. The earliest, and best known, algebraic
models are the combinatory algebras of Curry and Schönfinkel (see [15]). Al-
though combinatory algebras do not keep the lambda notation, they have a
simple purely equational characterisation and were used to provide an intrinsic
first-order, but not equational, characterisation of the models of lambda calcu-
lus, as a special class of combinatory algebras called λ-models [1, Def. 5.2.7].
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The connection between the syntax and the semantics of lambda calculus is es-
tablished by the completeness theorem of lambda calculus: every λ-theory is the
equational theory of some λ-model.

Semantical methods have been extensively investigated. After the first model,
found by Scott [28] in 1969 in the category of complete lattices and Scott con-
tinuous functions, a large number of mathematical models for lambda calcu-
lus have been introduced in various categories of domains and were classified
into semantics according to the nature of their representable functions, see e.g.
[1,3]. Scott continuous semantics [29] is given in the category whose objects are
complete partial orders and morphisms are Scott continuous functions. Other
semantics of lambda calculus were isolated by Berry [5] and Bucciarelli-Ehrhard
[7]: Berry’s stable semantics and Bucciarelli-Ehrhard’s strongly stable semantics
are refinements of the continuous semantics introduced to capture the notion
of “sequential” Scott continuous function. All these semantics are structurally
and equationally rich in the sense that it is possible to build up 2ℵ0 λ-models in
each of them inducing pairwise distinct λ-theories (see [17,18]). Nevertheless, the
above denotational semantics do not match all possible operational semantics of
lambda calculus. We recall that a semantics of lambda calculus is equationally
incomplete if there exists a λ-theory which is not the theory of any model in
the semantics. In the nineties the problem of the equational incompleteness was
positively solved by Honsell and Ronchi della Rocca [16] for Scott’s continuous
semantics, and by Bastonero and Gouy for Berry’s stable semantics [2]. The
proofs of the above results are syntactical and very difficult. In [26] the author
has provided an algebraic and simple proof of the equational incompleteness of
all semantics of lambda calculus that involve monotonicity with respect to some
partial order and have a bottom element (including the incompleteness of the
strongly stable semantics, which had been conjectured by Bastonero-Gouy and
by Berline [2,3]).

The need of more abstract and sophisticated mathematical techniques in
lambda calculus arises when we recognise the difficulty of the problems we han-
dle, for example in order to investigate the structure of the lattice of λ-theories
in itself and in connections with the theory of models. The author [19,25,26] has
launched at the end of the nineties a research program for exploring lambda cal-
culus and combinatory logic using techniques of universal algebra. The remark
that the lattice of λ-theories is isomorphic to the congruence lattice of the term
algebra of the least λ-theory λβ is the starting point for studying lambda cal-
culus by universal algebraic methods, through the variety (i.e., equational class)
generated by the term algebra of λβ. In [25] the author has shown that the
variety generated by the term algebra of λβ is axiomatised by the finite schema
of identities characterising λ-abstraction algebras (see [23]). The variety of λ-
abstraction algebras is an algebraic description of lambda calculus, which keeps
the lambda notation and hence all the functional intuitions. In [25] it was shown
that, for every variety of λ-abstraction algebras, there exists exactly one λ-theory
whose term algebra generates the variety. Thus, the properties of a λ-theory can
be studied by means of the variety of λ-abstraction algebras generated by its
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term algebra. By applying these methods it was shown in [19] that the lattice of
λ-theories satisfies a nontrivial implication in the language of lattices. It is open
whether the lattice of λ-theories satisfies a nontrivial lattice identity (see [21,
Section 4] for other results concerning the structure of the lattice of λ-theories).

Longstanding open problems of lambda calculus can be restated in terms of al-
gebraic properties of varieties of λ-abstraction algebras or combinatory algebras.
For example, the open problem of the order-incompleteness of lambda calculus,
raised by Selinger (see [30]), asks for the existence of a λ-theory not arising as the
equational theory of a non-trivially partially ordered model of lambda calculus. A
partial answer to the order-incompleteness problem was obtained by the author
in [26], where it is shown the existence of a λ-theory not arising as the equational
theory of a non-trivially partially ordered model with a finite number of con-
nected components. The order-incompleteness of lambda calculus is equivalent
to the existence of an n-permutable variety of combinatory algebras for some
natural number n ≥ 2 (see the remark after Thm. 3.4 in [30]). Plotkin, Selinger
and Simpson (see [30]) have shown that 2-permutability and 3-permutability
are inconsistent with lambda calculus. The problem of n-permutability remains
open for n ≥ 4.

One of the milestones of modern algebra is the Stone representation theorem
for Boolean algebras. This result was first generalised by Pierce [22] to com-
mutative rings with unit and next by Comer [14] to the class of algebras with
Boolean factor congruences. Comer’s generalisation of Stone representation the-
orem also holds for combinatory algebras (see [21]): any combinatory algebra
is isomorphic to a weak Boolean product of directly indecomposable algebras
(i.e., algebras which cannot be decomposed as the Cartesian product of two
other non-trivial algebras). The proof of the representation theorem is based
on the fact that the directly indecomposable combinatory algebras constitute a
universal class and that every combinatory algebra contains a Boolean algebra
of central elements (introduced by Vaggione [31] in universal algebra). These
elements define a direct decomposition of the algebra as the Cartesian product
of two other algebras, just like idempotent elements in rings. This approach to
central elements can be developed in the more general context of Church alge-
bras, which were introduced in [20] to equationally axiomatise the “if-then-else”
construct of programming.

The Stone representation theorem can be roughly summarised as follows: the
directly indecomposable combinatory algebras are the ‘building blocks’ of the
variety of combinatory algebras. The notion of directly indecomposable com-
binatory algebra appears to be so relevant that it is even interesting to speak
of the “indecomposable semantics” to denote the class of models of λ-calculus
which are directly indecomposable as combinatory algebras. This semantics en-
compasses the Scott continuous, stable and strongly stable semantics and was
shown incomplete in [21].

The paper is organised as follows. In Section 2 we review the basic defini-
tion of lambda calculus and universal algebra. Church algebras are presented in
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Section 3. We provide the algebraic incompleteness theorem in Section 4. The
last section is devoted to the order-incompleteness problem of λ-calculus.

2 Preliminaries

2.1 Lambda Calculus

With regard to the λ-calculus we follow the notation and terminology of [1]. Λ
and Λo are, respectively, the set of λ-terms and of closed λ-terms. Ω denotes the
looping term (λx.xx)(λx.xx).

We denote αβ-conversion by λβ and αβη-conversion by λβη. A λ-theory is a
congruence on Λ (with respect to the operators of abstraction and application)
which contains λβ. A λ-theory is consistent if it does not equate all λ-terms,
inconsistent otherwise. The set of λ-theories constitutes a complete lattice w.r.t.
intersection, whose top is the inconsistent λ-theory and whose bottom is the
theory λβ. The λ-theory generated by a set E of identities between λ-terms is
the intersection of all λ-theories containing E.

There are two descriptions of what a model of λ-calculus is: the category-
theoretical and the algebraic one. The categorical notion of model is well-suited
for constructing concrete models, while the algebraic one is rather used to under-
stand global properties of models (constructions of new models out of existing
ones, closure properties, etc.) and to obtain results about the structure of the
lattice of λ-theories. In the remaining part of this section we define the algebraic
notion of model.

Definition 1. An algebra C = (C, ·,k, s), where · is a binary operation and k, s
are constants, is a combinatory algebra if it satisfies the identities kxy = x and
sxyz = xz(yz) (as usual, the symbol “·” is omitted and association is made on
the left).

In the equational language of combinatory algebras we define i, 1 and 1n as
follows: i ≡ skk; 1 ≡ 11 ≡ s(ki) and 1n+1 ≡ s(k1)(s(k1n)). Hence, every
combinatory algebra satisfies ix = x and 1nx1 . . . xn = x1 . . . xn.

A function f : C → C is representable in a combinatory algebra C if there
exists an element c ∈ C such that cz = f(z) for all z ∈ C.

Two elements x, y ∈ C are called extensionally equal if they represent the
same function in C. For example, the elements x and 1x are extensionally equal.

An environment is a function ρ : V ar → C, where V ar is the set of variables
of λ-calculus. For every variable x and a ∈ C we denote by ρ[x := a] the
environment ρ′ which coincides with ρ, except on x, where ρ′ takes the value a.

Given a combinatory algebra C, the interpretation of a λ-term M is defined
by induction as follows, for every environment ρ:

|x|ρ = ρ(x); |MN |ρ = |M |ρ · |N |ρ; |λx.M |ρ = 1m,

where m ∈ C is any element representing the function a ∈ C �→ |M |ρ[x:=a]. The
drawback of the previous definition is that it may happen that the function a ∈
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C �→ |M |ρ[x:=a] is not representable in C. The axioms characterising λ-models
were expressly chosen to make coherent the previous definition of interpretation.

Definition 2. A combinatory algebra C is called a λ-model if it satisfies the
identities 12k = k, 13s = s and the Meyer-Scott axiom:

∀x∀y(∀z(xz = yz)⇒ 1x = 1y).

Here the combinator 1 is used as an inner choice operator. Indeed, given any
x ∈ C, the element 1x is in the same equivalence class as x w.r.t. extensional
equality; and, by Meyer-Scott axiom, 1x = 1y for every y extensionally equal
to x. Thus, the set Y of elements representing the function a ∈ C �→ |M |ρ[x:=a]
admits 1m as a canonical representative and this does not depend on the choice
of m ∈ Y .

We write C |= M = N if |M |ρ = |N |ρ for all environments ρ. A λ-model
univocally induces a λ-theory through the kernel congruence relation of the
interpretation function:

Th(C) = {(M,N) ∈ Λ× Λ : C |= M = N}.

If T is a λ-theory, the (open) term model of T is the algebra (Λ/T, ·,k, s), where
t/T · u/T = (tu)/T and k, s are respectively the equivalence classes of λxy.x
and λxyz.xz(yz) modulo T .

A partially ordered λ-model, a po-model for short, is a pair (A,≤), where A is
a λ-model and ≤ is a partial order on A which makes the application operator of
A monotone in both arguments. A po-model (A,≤) is non-trivial if the partial
order is not discrete, i.e., a < b for some a, b ∈ A (thus A is not a singleton).

2.2 Algebras

With regard to Universal Algebra we follow the notation and terminology of [9].
A type ν is a set of operation symbols of finite arity. An algebra A of type ν is
a tuple (A, σA)σ∈ν , where, for every σ ∈ ν of arity n, σA is a function from An

into A.
Given two algebras A and B of type ν, a homomorphism from A into B is

a map g : A → B such that g(σA(a1, . . . , an)) = σB(g(a1), . . . , g(an)) for each
n-ary operation σ ∈ ν and for all ai ∈ A. Two algebras A and B are isomorphic,
and we write A ∼= B, if there exists a bijective homomorphism from A into B.

Given an algebra A of type ν, a binary relation φ on A is compatible if for all
σ ∈ ν of arity n, and for all ai, bi ∈ A we have

a1φb1, . . . , anφbn → fA(a1, . . . , an)φf
A(b1, . . . , bn).

A compatible equivalence relation is called a congruence.
The kernel of a homomorphism g : A → B is the congruence ker(g) =

{(a, b) ∈ A2 : g(a) = g(b)}.
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Given two congruences φ and ψ, we can form their relative product : ψ ◦ φ =
{(a, c) : (∃b ∈ A) aφbψc}. It is easy to check that ψ ◦ φ is still a compatible
relation, but not necessarily a congruence.

We denote by Con(A) the complete lattice of the congruences of A, which
is a sublattice of the lattice of the equivalence relations on A. The meet φ ∧ ψ
of two congruences φ and ψ is their intersection, while their join is the least
equivalence relation including φ ∪ ψ:

φ ∨ ψ =
⋃
n>0

φ ◦n ψ,

where ψ ◦1 φ = ψ and ψ ◦n+1 φ = ψ ◦ (φ ◦n ψ) for n > 0. The diagonal ΔA =
{(a, a) : a ∈ A} is the bottom element of Con(A), while ∇A = A×A is the top
element.

Fν(X) is the absolutely free algebra of type ν over a set X of generators.
The elements of Fν(X) are called terms and are built up by induction: (i) every
element of X is a term; (ii) if σ ∈ ν is an operation symbol of arity n and
p1, . . . , pn are terms, then σ(p1, . . . , pn) is a term. The operations of Fν(X) are
the syntactical operations of term construction.

Hereafter, we omit the index ν because all algebras will be always of type ν.
If A is an algebra, then, for every map ρ : X → A, there exists a unique

homomorphism ρ∗ : F(X) → A extending ρ: ρ∗(x) = ρ(x) for every x ∈ X ;
ρ∗(σ(p1, . . . , pn)) = σA(ρ∗(p1), . . . , ρ

∗(pn)).
For every term p, we define pA : AX → A the map defined by pA(ρ) = ρ∗(p).

When X = {x1, . . . , xn} is a finite set of cardinality n, we define pA : An → A
in the following equivalent way:

pA(a1, . . . , an) = ρ∗(p), where ρ(xi) = ai for i = 1, . . . , n.

pA is called a term operation of A.
An algebra A satisfies an equation p = q (p, q ∈ F (X)) if pA = qA. We write

A |= p = q if A satisfies the equation p = q.
IfA is an algebra, we denote by EqX(A) (Eq(A) for short) the set of equations

p = q (p, q ∈ F (X)) satisfied by A.
If K is a class of algebras, then Eq(K) = {p = q : (∀A ∈ K) A |= p = q} is

the set of equations satisfied by every algebra of K.
A class K of algebras is (i) equational if it is axiomatised by a set of equa-

tions; (ii) a variety if it is closed under Cartesian products, subalgebras and
homomorphic images. A class of algebras is equational iff it is a variety.

2.3 The Building Blocks of Algebras

Direct Products. The Cartesian product B ×C of two algebras B and C of
the same type has B×C as universe and operations defined as follows, for every
ai ∈ B and bi ∈ C:

σB×C(〈a1, b1〉, . . . , 〈an, bn〉) = 〈σB(a1, . . . , an), σ
C(b1, . . . , bn)〉.
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Lemma 1. An algebra A is isomorphic to the Cartesian product B×C iff there
exist two congruences θ, θ ∈ Con(A) such that B ∼= A/θ, C ∼= A/θ, θ ∩ θ = ΔA

and θ ◦ θ = ∇A.

Definition 3. A pair of congruences 〈θ, θ〉 is called a pair of complementary
factor congruences if θ∩ θ = Δ, θ ◦ θ = ∇. A pair 〈θ, θ〉 is trivial if either θ = Δ
or θ = Δ.

A congruence θ is called a factor congruence if there exists θ such that (θ, θ) is
a pair of complementary factor congruences. We denote by FC(A) the set of
factor congruence of A. In general, FC(A) is not a sublattice of Con(A).

Definition 4. An algebra A is directly indecomposable if it admits only the
trivial pair of complementary factor congruences.

In other words, A is directly indecomposable if, and only if, it cannot be de-
composed as a nontrivial Cartesian product. Then the directly indecomposable
algebras are the building blocks for products.

Factors Congruences and Decomposition Operators. Let (θ, θ) be a pair
of complementary factor congruences. Define a function fθ : A × A → A as
follows:

fθ(a, b) = the unique c such that aθcθb.

Proposition 1. The function fθ satisfies the following conditions (for short, we
write f for fθ):

(D1) f(x, x) = x;
(D2) f(x, f(y, z)) = f(x, z) = f(f(x, y), z);
(D3) f is a homomorphism from A×A into A.

Definition 5. A function f : A × A → A satisfying conditions (D1)-(D3) is
called a decomposition operator.

Proposition 2. Given a decomposition operator h : A × A → A, the pair
(θh, θh), defined by aθhb ⇔ h(a, b) = a; aθhb ⇔ h(a, b) = b, is a pair
of complementary factor congruences.

In conclusion, we have:

Proposition 3. There is a bijective correspondence between decomposition op-
erators and factor congruences in such a way that

θ �→ fθ �→ θfθ = θ; h �→ θh �→ fθh = h.

There is always a battle to simplify complex objects. Decomposition operators
are more suitable to be internalized within an algebra than pairs of comple-
mentary factor congruences. We are particularly interested in algebras, whose
decomposition operators are term operations of the algebra.
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Subdirect and Boolean Products. If A and B are algebras, then we write
A ≤ B if there is an embedding (= injective homomorphism) from A into B.

Definition 6. An algebra A is a subdirect product of an indexed family (Ai)i∈I
of algebras if A ≤ Πi∈IAi and πi(A) = Ai (where πi : A→ Ai is the projection
in the i-coordinate).

A direct product is an example of subdirect product.

Lemma 2. Let θi ∈ Con(A) be a family of congruences of an algebra A. A is a
subdirect product of the family (A/θi)i∈I (through the embedding f(a) = (a/θi :
i ∈ I)) if, and only if, ∩i∈Iθi = Δ.

Definition 7. An algebra is subdirectly irreducible (s.i., for short) if, for every
representation f : A → Πi∈IAi as subdirect product, there exists j such that
πj ◦ f : A→ Ai is an isomorphism.

Proposition 4. A is s.i. iff ∩(Con(A)− {Δ}) �= Δ (in this case, ∩(Con(A)−
{Δ}) is called the monolith).

Theorem 1. (Birkhoff) Every algebra A is a subdirect product of s.i. algebras.

An algebra A is simple if Con(A) = {Δ,∇}. We have:

Simple ⊆ Subdirectly Irreducible ⊆ Directly Indecomposable.

Example 1. 1. Every two elements algebra is simple.
2. Every model of λ-calculus living in Scott continuous semantics is a simple

combinatory algebra.
3. A vector space over a field is s.i. iff it is one-dimensional.
4. A Heyting algebra is s.i. iff there is a greatest element strictly below 1.
5. Every algebra of cardinality a prime number p is directly indecomposable.
6. The Stone representation theorem for Boolean algebras is a consequence of

Theorem 1, because the algebra of truth values is the unique s.i. Boolean
algebra.

Stone’s representation theorem, perhaps the most distinctive result character-
ising Boolean algebras (or Boolean rings), can be generalised to a much larger
class of algebras. The appropriate tool to attain this goal is the technique of
Boolean products, which can be loosened to the notion of weak Boolean prod-
uct to take care of somewhat less manageable cases. Pierce [22] proved that
every commutative ring with unit is representable as a weak Boolean product
of directly indecomposable rings. The technique of Boolean products underwent
remarkable developments over the subsequent years (see e.g. [9, Ch. 4.8]), giving
rise to further generalisations of Stone’s theorem by Comer (covering the case
of algebras with Boolean factor congruences [14]) and Vaggione [31].

Definition 8. A (weak) Boolean product of a family (Ai)i∈I of algebras is a
subdirect product A ≤

∏
i∈I Ai, where I can be endowed with a Boolean space

topology such that: (i) the set {i ∈ I : ai = bi} is (open) clopen for all a, b ∈ A,
and (ii) if a, b ∈ A and N ⊆ I is clopen, then the element c, defined by ci = ai
for i ∈ N and ci = bi for i ∈ I −N , belongs to A.
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3 Church Algebras

The key observation motivating the introduction of Church algebras [20] is that
many algebras arising in completely different fields of mathematics, including
Heyting algebras, rings with unit, combinatory algebras or λ-calculus, have a
term operation q satisfying the fundamental properties of the if-then-else con-
nective: q(1, x, y) = x and q(0, x, y) = y. As simple as they may appear, these
properties are enough to yield rather strong algebraic results, which will be ap-
plied to λ-calculus in the next section.

Definition 9. We say that an algebra A is a Church algebra if it admits a
ternary term operation q(x, y, z) and two constants 0, 1 such that the following
identities are satisfied by A:

q(1, x, y) = x; q(0, x, y) = y.

A Church variety is a variety of Church algebras.

Example 2.

1. Rings with unit: q(x, y, z) = xy + (1− x)z;
2. Heyting algebras: q(x, y, z) = (x ∨ z) ∧ ((x→ 0) ∨ y);
3. Combinatory algebras: q(x, y, z) = (xy)z, 1 = k and 0 = sk;
4. Lambda calculus: q(x, y, z) = (xy)z; 1 = λxy.x and 0 = λxy.y.

We denote by θ(a, b) the least congruence generated by the pair (a, b).

Lemma 3. Let A be a Church algebra, (φ, φ) be a pair of complementary factor
congruences, and e be the unique element such that 1φeφ0. Then, we have:

(i) For every a, b ∈ A, aφq(e, a, b)φb.
(ii) φ = θ(1, e) and φ = θ(0, e).
(iii) The function fφ(a, b) = q(e, a, b) is a decomposition operator on A such

that fφ(1, 0) = e.

In this definition we exploit an idea by Vaggione [31].

Definition 10. An element e of a Church algebra A is central if θ(1, e) and
θ(0, e) constitute a pair of complementary factor congruences of A. Ce(A) de-
notes the set of central elements of the algebra A.

Proposition 5. If A is a Church algebra and e ∈ A, then the following condi-
tions are equivalent:

1. e is central;
2. For all a, b, a, b ∈ A:

D1. q(e, a, a) = a
D2. q(e, q(e, a, b), c) = q(e, a, c) = q(e, a, q(e, b, c))

D3. q(e, σ(a), σ(b)) = σ(q(e, a1, b1), . . . , q(e, an, bn))(for every operation σ)
D4. q(e, 1, 0) = e.
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The partial ordering on Ce(A), defined by:

e ≤ d if, and only if, θ(0, e) ⊆ θ(0, d)

is a Boolean ordering. The meet, join and complementation operations are in-
ternally representable, and 0, 1 are respectively the bottom and top element of
this ordering.

Theorem 2. Let A be a Church algebra.

(i) The set FC(A) of factor congruences of A constitutes a Boolean sublattice
of Con(A).

(ii) The algebra Ce(A) = (Ce(A);∨,∧,¬, 0, 1), where x ∧ y = q(x, y, 0), x ∨ y =
q(x, 1, y) and ¬x = q(x, 0, 1), is a Boolean algebra isomorphic to the Boolean
algebra of factor congruences of A.

3.1 The Stone Representation Theorem

A generic Church variety admits a weak Boolean product representation. The
following theorem is a consequence of [9, Theorem 8.12].

Theorem 3. Let A be a Church algebra, S be the Boolean space of maximal
ideals of Ce(A) and f : A→ ΠI∈SA/θI be the map defined by

f(a) = (a/θI : I ∈ S),

where θI =
⋃
e∈I θ(0, e). Then f gives a weak Boolean representation of A.

For the previous representation to be of some interest, we need to be in a posi-
tion to provide additional information on its stalks. The following theorem is a
consequence of [31, Theorem 8]. A new proof can be found in [27].

Theorem 4. Let V be a Church variety. Then, the following conditions are
equivalent:

(i) For all A ∈ V, the stalks A/θI (I ∈ S maximal ideal) are directly indecom-
posable.

(ii) The class VDI of directly indecomposable members of V is a universal class.

4 The Incompleteness Theorem of Lambda Calculus

The Stone representation theorem for combinatory algebras can be roughly sum-
marised as follows: the directly indecomposable combinatory algebras are the
“building blocks” in the variety of combinatory algebras. Then it is natural to
investigate the class of models of λ-calculus, which are directly indecomposable
as combinatory algebras (indecomposable semantics, for short).

In this section we show that the indecomposable semantics encompasses the
Scott, stable and strongly stable semantics. In spite of this richness, we show
that there exists a consistent λ-theory which is not the equational theory of an
indecomposable model. The results in this section can be found in [21].
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4.1 Scott Models are Simple Algebras

After Scott, several models of λ-calculus have been defined by order theoretic
methods and classified into “semantics” according to the nature of their repre-
sentable functions (see [3], for a survey on these semantics).

The Scott-continuous semantics corresponds to the class of λ-models having
cpo’s (complete partial orders) as underlying sets and representing all Scott
continuous functions.

The stable semantics (Berry [5]) and the strongly stable semantics (Bucciarelli-
Ehrhard [7]) are refinements of the Scott-continuous semantics which have been
introduced to capture the notion of “sequential” continuous function. The un-
derlying sets of the λ-models living in the stable (strongly stable) semantics are
particular algebraic cpo’s called dI-domains (dI-domains with coherences). These
models represent all stable (strongly stable) functions between such domains. A
function between dI-domains is stable if it is continuous and, furthermore, com-
mutes with “infs of compatible elements”. A strongly stable function between
dI-domains with coherence, is a stable function preserving coherence.

In the next proposition we show that all models living in the main semantics
are simple algebras.

Proposition 6. All λ-models living in Scott, stable and strongly stable seman-
tics are simple algebras.

Proof. Let φ be a congruence on a Scott model A and let aφb with a �= b and
a �≤ b. Since the continuous function gc, defined by gc(x) = if x �≤ b then c else ⊥,
is representable in the model (for all c), we have: c = gc(a) φ gc(b) = ⊥, hence
cφ⊥ for all c. By the arbitrariness of c we get that φ is trivial.

Suppose now that A is a (strongly) stable model. Consider two elements
a, b ∈ A such that aφb, a �= b and a �≤ b. There is a compact d such that d ≤ a
and d �≤ b. The step function fd,c, defined by : fd,c(x) = if d ≤ x then c else ⊥,
is (strongly) stable for every element c. Then c = fd,c(a)φfd,c(b) = ⊥.

4.2 Incompleteness

We now remark that the class of directly indecomposable combinatory algebras
is a universal class.

To simplify the notation, in the following we write the combinators as λ-terms.
For λ-terms t, u, we define the pair [t, u] ≡ λz.ztu and, for every sequence we
define [t1, . . . , tn] ≡ [t1, [t2, . . . , tn]]. Consider the following λ-terms:

– P ≡ λe.[λx.exx, λxyz.e(exy)z, λxyz.exz, λxyzu.e(xy)(zu), e(λxy.x)(λxy.y)];
– Q ≡ λe.[λx.x, λxyz.exz, λxyz.ex(eyz), λxyzu.exz(eyu), e].

We have that e is central in a combinatory algebra if, and only if, the equation
Pe = Qe holds.

Proposition 7. The class of all directly indecomposable combinatory algebras
is a universal class.
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Proof. The class of all directly indecomposable combinatory algebras is axioma-
tised by the following universal formula:

∀e((Pe = Qe→ e = λxy.x ∨ e = λxy.y) ∧ ¬(λxy.x = λxy.y)).

Corollary 1. Let A be a combinatory algebra. Then A is isomorphic to a weak
Boolean product of directly indecomposable combinatory algebras.

Proof. By Proposition 7 and Theorem 4.

We are now ready to provide the algebraic incompleteness theorem. We recall
that a class C of models of λ-calculus is incomplete if there exists a consistent
λ-theory T such that T �= Th(M) for every M∈ C.

Theorem 5. The indecomposable semantics is incomplete.

Proof. Ω ≡ (λx.xx)(λx.xx) can be consistently equated to every closed term.
Let T1 be the λ-theory generated by Ω = λxy.x and T2 be the λ-theory generated
by Ω = λxy.y. Then Ω is central in the term model of T1 ∩ T2.

Ω is central in a combinatory algebraA if, and only if, A |= PΩ = QΩ, where
P and Q are the closed terms defined at the beginning of this section. Let M
be a λ-model such that Th(M) = T1 ∩ T2. Then M |= PΩ = QΩ, because the
identity PΩ = QΩ belongs to T1 ∩ T2. Then Ω is a non-trivial central element
of M.

Corollary 2. Scott, stable and strongly stable semantics are incomplete.

5 The Order-Incompleteness Problem

The models of λ-calculus living in Scott, stable and strongly stable semantics are
non-trivially ordered with a bottom element. However, it is also known that there
are some models of the lambda calculus that cannot be non-trivially ordered (see
[24,26,30]). In general, we define a combinatory algebra A to be unorderable if
there does not exist a non-trivial partial order on A for which the application
operation is monotone. Of course, an unorderable model can still arise from
an order-theoretic construction, for instance as a subalgebra of some orderable
model. The most interesting result has been obtained by Selinger [30], who,
enough surprising, has shown the following result.

Theorem 6. The term models of λβ and λβη are unorderable.

It follows that, if λβ or λβη is the theory of a po-model, then the denotations of
closed terms in that model are pairwise incomparable, i.e. the term denotations
form an anti-chain.

Selinger’s result can be used to show that the theory of a certain po-model
M is not λβ (or λβη). It is sufficient to find out two closed λ-terms, whose
denotations in the model M are related by the partial ordering. This technique
has been successfully applied to some classes of models living in Scott continuous
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semantics. Bucciarelli-Salibra [8] have shown that λβ cannot be the theory of
a graph model, and Carraro-Salibra [10] have shown that λβη cannot be the
theory of a reflexive Scott domain. Other results of this type can be found in
Berline et al. [4].

The problem of unorderability led Selinger [30] to study the related ques-
tion of absolute unorderability: a model is absolutely unorderable if it cannot
be embedded in an orderable one. Plotkin conjectures in [24] that an absolutely
unorderable combinatory algebra exists, but the question is still open whether
this is so. Selinger has given in [30] a syntactic characterisation of the abso-
lutely unorderable algebras in any variety of algebras in terms of the existence
of a family of Mal’cev operators. Plotkin’s conjecture is thus reduced to the
question whether Mal’cev operators are consistent with the lambda calculus or
combinatory logic.

Hereafter, we review Selinger’s characterisation of absolutely unorderability.
Let A be an algebra of some variety V . A preorder ≤ on A is compatible if

it is monotone in each coordinate of every function symbol of V . Then we have:
(i) A is unorderable if it admits only equality as a compatible partial order; (ii)
A is absolutely unorderable if, for every algebra B ∈ V and every embedding
f : A→ B, the algebra B is unorderable.

Let V be a variety, A ∈ V and X be a set of indeterminates. We denote by
A[X ] the free extension of A in the variety V . The algebra A[X ] is defined up to
isomorphism by the following universal mapping properties: (1) A ∪X ⊆ A[X ];
(2) A[X ] ∈ V ; (3) for every B ∈ V , homomorphism h : A → B and every
function f : X → B, there exists a unique homomorphism f : A[X ] → B
extending h and f . When X = {x1, . . . , xn} is finite, we write A[x1, . . . , xn] for
A[X ].

The following result by Selinger [30] characterises those algebras which are
absolutely unorderable.

Theorem 7. Let V be a variety. An algebra A ∈ V is absolutely unorderable if,
and only if, there exist a natural number n ≥ 1 and ternary terms p1, . . . , pn in
the type of V such that the algebra A[x, y] satisfies the following identities, called
(generalised) Mal’cev axioms:

x = p1(x, y, y);
pi(x, x, y) = pi+1(x, y, y) (i = 1, . . . , n− 1);
pn(x, x, y) = y.

The following result was obtained by Plotkin-Simpson for n = 1 and by Plotkin-
Selinger for n = 2 (see [30]).

Theorem 8. For n = 1 and n = 2, the Mal’cev axioms are inconsistent with
the lambda calculus.

Proof. We prove the theorem for n = 1. Assume that x = Fxyy and Fxxy = y
for a λ-term F . Let Y ≡ λf.(λx.f(xx))(λx.f(xx)) be the Curry fixpoint combi-
nator. Then, for any λ-term M , define μx.M ≡ Y (λx.M). We write μx1 . . . xn.M
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for μx1.(μx2.(· · · (μxn.M) · · · )). Now let A ≡ μyx.Fxyz. Then we have A =
FAAz = z and A = μx.FxAz = μx.Fxzz = μx.x = Ω, therefore Ω = z.

The question of absolute unorderability can also be formulated in terms of the-
ories, rather than models. In this form, Selinger [30] refers to it as the order-
incompleteness question.

Definition 11. A λ-theory is order-incomplete if it does not arise as the theory
of a non-trivial po-model.

The problem of order-incompleteness can be also characterised in terms of con-
nected components of a partial ordering (minimal subsets which are both upward
and downward closed): a λ-theory T is order-incomplete if, and only if, every
po-model, having T as equational theory, is partitioned in an infinite number of
connected components, each one containing exactly one element. In other words,
the partial order is the equality.

Toward an answer to the order-incompleteness problem, the author has shown
the following result in [26].

Theorem 9. Every po-model M of the λ-theory T axiomatised by the equation
Ωxx = Ω is partitioned in an infinite number of connected components, each
one containing at most the denotation of one λ-term (modulo T ).

The previous result has been improved in the forthcoming paper [11].

Corollary 3. The semantics of λ-calculus given in terms of po-models with a
finite number of connected components is incomplete.
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Zero-one laws, Ehrenfeucht-Fräıssé games, locality results, and logical reductions
belong to the, by now, standard methods of Finite Model Theory, used for show-
ing non-expressibility in certain logics (cf., e.g., the textbooks [1,2] or the entries
in the Encyclopedia of Database Systems [3]).

More recently, the close connections between logic and circuits, along with
strong lower bound results obtained in circuit complexity, have led to new lower
bounds on the expressiveness of logics (cf., e.g., [4,5,6,7]). In particular, [4] solved
a long standing open question of Finite Finite Model Theory, asking about the
strictness of the bounded variable hierarchy of first-order logic on finite ordered
graphs.

To characterise the precise expressive power of logics on particularly well-
behaved classes of finite structures, the following “algebraic” approach has re-
cently been very successful (cf., e.g., [8,9,10]): The first step is to identify a
number of closure properties that the classes of structures defined by sentences
of the logic exhibit. The second step is to identify another logic that is charac-
terised by these closure properties. An example of this methodology is a result of
[8], stating that on successor-based strings, plain first-order logic (FO, for short)
is as expressive as order-invariant FO. The proof of [8] proceeds by showing
that languages definable in order-invariant FO are aperiodic and closed under
swaps. Then, Beauquier and Pin’s characterisation [11] of FO by aperiodicity
and closure under swaps immediately leads to the desired result.

The aim of this talk is to give an overview of the above mentioned methods
for proving limitations of the expressive power of logics.
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Abstract. Since its early formulations (e.g., [1]), the genome assembly
problem has attracted lots of interest from algorithm theoretic as well
as from algorithm engineering point of view. In this problem, which is
an inversion problem by nature, one is asked to reconstruct the entire
DNA sequence from the short, randomly picked sequence fragments that
a DNA sequencing instrument is able to read [2]. With the invent of
current high-throughput sequencers producing such fragment reads in
massive amounts, there is in molecular biology research a pronounced
call for an accurate and fast reconstruction procedure.

It is customary to structure a reconstruction procedure into the fol-
lowing major steps: (1) Error correction of the fragments; (2) Finding
pairwise overlaps between the fragments and representing the overlaps
as a graph; (3) Constructing approximate superstrings, called contigs,
for the fragments; (4) Constructing a linear order, called a scaffold, of
the contigs. All steps are algorithmically challenging. Noisy data and in-
tricate repetition structure of the target genome cause added difficulties.

The talk attempts to give an overall picture of the genome assembly
process and its algorithmic aspects emphasizing some recent develop-
ments in error correction [3], contig assembly, and scaffolding [4]. We also
try to convey experiences from a major undertaking of de novo sequenc-
ing of a higher organism, Glanville fritillary butterfly Melitea cinxia. (A
collaboration with I. Hanski, www.helsinki.fi/science/metapop/index.htm).
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Abstract. Higher-order recursive schemes are abstract forms of pro-
grams where the meaning of built-in constructs is not specified. The
semantics of a scheme is an infinite tree labeled with built-in constructs.
The research on recursive schemes spans over more than forty years. Still,
central problems like the equality problem, and more recently, the model
checking problem for schemes remain very intriguing. Even though re-
cursive schemes were originally though of as a syntactic simplification
of a fragment of the lambda calculus, we propose to go back to lambda
calculus to study schemes. In particular, for the model checking problem
we propose to use standard finitary models for the simply-typed lambda
calculus.

1 Introduction

A recursive scheme is a set of equations over a fixed functional signature. On
the left of an equation we have a function symbol and on the right a term that
is its intended meaning. Consider the following examples borrowed from [10]:

F(x) ≡ if x = 0 then 1 else F(x− 1) · x,
F(x) ≡ C

(
(Zx), A, M(F(P (x)), x)

)
.

The first is the usual recursive definition of factorial. The second is the same
definition in an abstract form where abstract function names have been used
instead of the ones with a well established meaning. Observe that the reverse
function

Rev(x) ≡ if x = nil then nil else append(Rev(tl(x)), hd (x))

has the same abstract form as factorial: the pattern of function calls is the same
in the two cases.

The above schemes are of order 1 as functions they define work on elements
of a basic type. An order 2 scheme allows to express for example map function
that applies a given function f to every element of the list l:

map(f, x) ≡ if l = nil then nil else cons(f(head(l)),map(f, tail(l)))

This is a scheme of order 2 because its argument f is a function on elements of a
base type. Higher-order recursive schemes are schemes of arbitrary finite order.
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Recursive schemes are about abstract forms of programs where the meaning
of constants is not specified. In consequence, the meaning of a scheme is a po-
tentially infinite tree labelled with constants obtained from the unfolding of the
recursive definition. Let us immediately note that we impose a typing disciple on
terms. In this form recursive schemes are essentially a different presentation of
simply typed lambda calculus with fixpoint operators. Indeed, recursive defini-
tions as in the examples above can be reformulated using the fix point operator
explicitly.

Recursion schemes were originally proposed by Ianov as a canonical program-
ming calculus for studying program transformation and control structures [18].
The study of recursion on higher types as a control structure for programming
languages was started by Milner [30] and Plotkin [34]. Program schemes for
higher-order recursion were introduced by Indermark [19]. Higher-order features
allow for compact high-level programs. They have been present since the begin-
ning of programing, and appear in modern programming languages like C++,
Haskell, Javascript, Python, or Scala. Higher-order features allow to write code
that is closer to specification, and in consequence to obtain a more reliable code.
This is particularly useful in the context when high assurance should come to-
gether with very complex functionality. Telephone switches, simulators, transla-
tors, statistical programs operating on terabytes of data, have been successfully
implemented using functional languages1.

Research on higher-order schemes has spanned many decades. Recursive
schemes appear as an intermediate step in semantics of programming languages.
Indeed to compute the semantics of a program one can first compute the infi-
nite tree of behaviors it generates, and then apply an interpretation operation
giving the meaning of constants [38,31]. This view brought to the scene the
equality problem for schemes [27,11,9,39], whose decidability in the higher-order
case is still open. It has then been discovered that schemes have many links
with language theory, in particular with context-free and context-sensitive lan-
guages [16,9,13]. More recently, it has been understood that recursive schemes
give important classes of trees with decidable MSOL theory which makes them
interesting from the point of view of automatic verification [21,32].

Let us see an example illustrating why recursive schemes are valuable ab-
stractions of programs. Simple while loops with the usual arithmetic operations
are Turing complete. This of course does not make all other programming con-
structs obsolete. Yet, in the light of this universality result we need to look for
some other convincing framework where we could show that concepts like re-
cursive procedures or higher-order types bring something new. The idea is to
abstract from the meaning of build-in operations, or in other words to consider
them as uninterpreted function symbols. This way a program is stripped to its
control structure: it becomes a program scheme. Coming back to our example
with while programs, once influence of the arithmetic is stripped away, one can

1 For some examples see “Functional programming in the real world”
http://homepages. inf.ed.ac.uk/wadler/realworld/
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formally show that recursive procedures are indeed more powerful than a simple
while loop.

The above example shows that recursive schemes are an insightful intermedi-
ate step in giving a denotational semantics of a program. This makes the study of
equality or verification problems for schemes interesting. Especially in view that
these problems may be decidable for schemes while they are not for interpreted
programs.

Equality Problem. Given two schemes decide if they generate the same tree.
Model-Checking Problem. Given a schema and a formula of monadic second-

order logic decide if the formula holds in the tree generated by the scheme.

Equality of two schemes gives a provably correct program transformation rule.
Equality of first-order schemes is equivalent to equality of deterministic push-
down automata [9]. Hence it is decidable by the result of Sénizergues [39]. Some
properties of a program can be expressed in terms of the tree generated by the
associated scheme. For example, resource usage patterns can be formulated in
fragments of monadic second-order logic and verified over such trees [23]. This
is possible thanks to the fact that MSOL model checking is decidable for trees
generated by higher-order recursive schemes [32].

The meaning of a recursive scheme is an infinite ranked tree. A natural ques-
tion is then what are these trees. Are there other characterizations of these
objects, and what are their properties? First answers came from language the-
ory. Damm [13] has shown that considered as word generating devices, a class
of schemes called safe is equi-expressive with higher-order indexed languages in-
troduced by Aho and Maslov [3,28]. Those languages in turn have been know
to be equivalent to higher-order pushdown automata of Maslov [29]. Later it
has been shown that trees generated by higher-order safe schemes are the same
as those generated by higher-order pushdown automata [21]. This gave rise to
so called Caucal hierarchy [8] and its numerous characterizations [7]. The safety
restriction has been tackled much more recently. First, because it has been some-
how implicit in a work of Damm [13], and only brought on the front stage by
Knapik, Niwiński, and Urzyczyn [21]. Secondly, because it required new insights
in the nature of higher-order computation. Pushdown automata have been ex-
tended with so called panic operation [22,2]. This permitted to characterize trees
generated by schemes of order two. Later this operation has been extended to
all higher order stacks, and called collapse. Higher-order stack automata with
collapse characterise recursive schemes at all levels [17]. The fundamental ques-
tion whether collapse operation adds expressive power has been answered affir-
matively only very recently by Parys: there is a tree generated by an order 2
scheme that cannot be generated by a higher-order stack automaton without
collapse [33].

In this paper we will concentrate on the model checking problem. There has
been a steady progress on this problem, to the point that there are now tools
implementing verification algorithms for higher-order programs [24]. In contrast,
the most classical problem, namely the equivalence problem, remains as a great
challenge. The fundamental result of Sénizergues [39] and subsequent revisits of
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the proof by Stirling [41], Sénizergues [40], and Jancar [20] give an algorithm
to test equivalence of schemes of order 1. Yet this algorithm is not only non-
elementary but also gives a strong impression that its average performance would
be close to non-elementary too. In contrast, while also non-elementary in the
worst case, the algorithms for model checking are capable of solving nontrivial
verification problems. Let us also recall that we know that the complexity of the
model checking problem is non-elementary [15,6,25], while no non-trivial lower
bounds are known for the equivalence problem.

The objective of this short paper is to propose an approach to the model
checking problem for schemes. The idea is to work with a richer syntax of simply
typed lambda calculus with fixpoints, and to construct suitable finitary models
that give the answer to the problem. We will carry out this program only for
a relatively small subclass of all monadic-second order properties: the same as
considered by Aehlig [1]. The next section introduces necessary notions, in par-
ticular that of a Böhm tree of a term. In the following section we show how, given
an automaton expressing the property, to construct a desired finitary model from
which we can read properties of Böhm trees of terms.

2 Simply Typed Lambda Calculus and Recursive
Schemes

Instead of introducing higher-order recursive schemes directly we prefer to start
with simply typed lambda calculus with fixpoints, λY -calculus. The two for-
malisms are essentially equivalent for the needs of this paper, but we will prefer
work with the later one. It gives us an explicit notion of reduction, and brings the
classical notion of Böhm tree [4] that can be used directly to define the meaning
of a scheme.

The set of types T is constructed from a unique basic type 0 using a bi-
nary operation →. Thus 0 is a type and if α, β are types, so is (α → β). The
order of a type is defined by: order (0) = 1, and order (α → β) = max(1 +
order (α), order (β)).

A signature, denoted Σ, is a set of typed constants, that is symbols with
associated types from T . We will assume that for every type α ∈ T there are
constants ωα and Y (α→α)→α. A constant Y (α→α)→α will stand for a fixpoint
operator, and ωα for undefined. Of special interest to us will be tree signatures
where all constants other than Y and ω have order at most 2. Observe that
types of order 2 have the form 0i → 0 for some i; the later is a short notation
for 0→ 0→ · · · → 0→ 0, where there are i+ 1 occurrences of 0.

The set of simply typed λ-terms is defined inductively as follows. A constant of
type α is a term of type α. For each type α there is a countable set of variables
xα, yα, . . . that are also terms of type α. If M is a term of type β and xα a
variable of type α then λxα.Mβ is a term of type α→ β. Finally, if M is of type
α→ β and N is a term of type α then MN is a term of type β.
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The usual operational semantics of the λ-calculus is given by β-reduction. To
give the meaning to fixpoint constants we use δ-reduction (→δ).

(λx.M)N →β M [N/x] YM →δ M(YM).

We write →∗βδ for the reflexive and transitive closure of the sum of the two
relations. This relation defines an operational equality on terms. We write =βδ
for the smallest equivalence relation containing →∗βδ. It is called βδ-equality.

Thus, the operational semantics of the λY -calculus is the βδ-reduction. It is
well-known that this semantics is confluent and enjoys subject reduction (i.e. the
type of terms is invariant under computation). So every term has at most one
normal form, but due to δ-reduction there are terms without a normal form. It
is classical in the lambda calculus to consider a kind of infinite normal form that
by itself is an infinite tree, and in consequence it is not a term of λY [4,14,5].
We define it below.

A Böhm tree is an unranked ordered, and potentially infinite tree with nodes
labelled by ωα or terms of the form λx1. . . . xn.N ; where N is a variable or a
constant, and the sequence of lambda abstractions is optional. So for example
x0, λx.w0 are labels, but λy0.x0→0. y0 is not.

Definition 1. A Böhm tree of a term M is obtained in the following way.

– If M →∗βδ λx.N0N1 . . . Nk with N0 a variable or a constant then BT (M)
is a tree having root labelled by λx.N0 and having BT (N1), . . . , BT (Nk) as
subtrees.

– Otherwise BT (M) = ωα, where α is the type of M .

Observe that a termM has a βδ-normal form if and only if BT (M) is a finite tree
without ω constants. In this case the Böhm tree is just another representation
of the normal form. Unlike in the standard theory of the λ-calculus we will be
rather interested in terms with infinite Böhm trees.

Recall that in a tree signature all constants except of Y and ω are of order
at most 2. A closed term without λ-abstraction and Y over such a signature is
just a finite tree, where constants of type 0 are in leaves and constants of a type
0k → 0 are labels of inner nodes with k children. The same holds for Böhm trees:

Lemma 1. If M is a closed term of type 0 over a tree signature then BT (M)
is a potentially infinite tree whose leaves are labeled with constants of type 0 and
whose internal nodes with k children are labelled with constants of type 0k → 0.

Higher-order recursive schemes use somehow simpler syntax: the fixpoint oper-
ators are implicit and so is the lambda-abstraction. A recursive scheme over a
finite set of nonterminals N is a collection of equations, one for each nontermi-
nal. A nonterminal is a typed functional symbol. On the left side of an equation
we have a nonterminal, and on the right side a term that is its meaning. For
a formal definition we will need the notion of an applicative term, that is a
term constructed from variables and constants, other than Y and ω, using the
application operation. Let us fix a tree signature Σ, and a finite set of typed
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nonterminals N . A higher-order recursive scheme is a function R assigning to
every nonterminal F ∈ N , a term λx.MF where: (i) MF is an applicative term,
(ii) the type of λx.MF is the same as the type of F , and (iii) the free variables
of M are among x and N . For example, the following is a scheme of the map
function:

map(0→0)→0→0 ≡ !λf0→0.λl0. if(l = nil, nil, cons(f(head(l)),map(f, tail(l))))

The translation from a recursive scheme to a lambda-term is given by a standard
variable elimination procedure, using the fixpoint operator Y . Suppose R is a
recursive scheme over a set of nonterminals N = {F1, . . . , Fn}. The term Tn
representing the meaning of the nonterminal Fn is obtained as follows:

T1 =Y (λF1.R(F1))

T2 =Y (λF2.R(F2)[T1/F1])

...

Tn =Y (λFn.(. . . ((R(Fn)[T1/F1])[T2/F2]) . . . )[Tn−1/Fn−1])

(1)

The translation (1) applied to the recursion scheme for map gives a term:

Y (λmap(0→0)→0→0.λf0→0.λl0.

if (l = nil) nil
(
cons (f(head(l))) (map f (tail(l)))

)
This time we have used λ-calculus way of parenthesising expressions.

We will not recall here a rather lengthy definition of a tree generated by a
recursive scheme referring the reader to [21,13]. For us it will be sufficient to
say that it is the Böhm tree of a term obtained from the above translation. For
completeness we state the following.

Lemma 2. Let R be a recursion scheme and let Fn be one of its nonterminals. A
term Tn obtained by the translation (1) is such that BT (Tn) is the tree generated
by the scheme from nonterminal Fn.

3 Models for Model Checking

As we have said in the introduction, in order to study the model checking problem
it is very helpful to understand better what are trees generated by recursive
schemes. The proof of Ong of decidability of the model checking [32] relies on
game semantics to understand the structure of such trees. Later proofs rely on
higher-order pushdown automata with panic [22,2], for order 2, and for collapse
for all orders [17]. Krivine machines give also a good representation of trees, and
another proof of Ong’s result [37]. In all these approaches to model checking,
one first obtains a characterisation of trees generated by recursive schemes and
then solves the model checking problem using this characterisation.
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There is another, more denotational, way of approaching the model checking
problem. One can analyse the scheme from the point of view of a given property
without constructing the generated tree first. This approach can be carried out
with a help of a rich typing discipline. For a given property one constructs a set
of types and typing rules such that the scheme is typable if and only if the tree it
generates satisfies the property. This approach has been successfully carried out
for properties expressed by automata with a trivial acceptance condition [23].
The extension to all parity automata required much more work and complicated
substantially the approach [26]. It is worth mentioning that the discovery that
model checking with respect to automata with trivial conditions is much easier
than the general case is due to Aehlig [1]. His proof uses a mixture of semantics
and typing systems. The approach used by Kobayashi [23] is based on inter-
section types refining simple types that allows to capture regular properties of
terms. This kind of technique has been probably initiated by Salvati [35].

Instead of typings we propose to use models of simply-typed lambda calculus.
For simply-typed lambda calculus without fixpoints the intersection types and
standard models are in some sense dual [36]. Our construction hints that this
can be also the case in the presence of fixpoint operators. Moreover the model
based approach has a striking simplicity in the case we present here.

Since the translation from recursive schemes to the λY -calculus is very direct,
it is straightforward to interpret a recursive scheme in a model of the λY -calculus.
Once this step is taken, it is even more natural to work directly with the lambda
calculus. So starting with a property we would like construct a model such that
the value of a term in the model determines if the Böhm tree of the term satisfies
the property. This is formalised in Theorem 1 below.

Let us consider finitary models of λY -calculus. We concentrate on those where
Y is interpreted as the greatest fixpoint.

Definition 2. A GFP-model of a signature Σ is collection of finite complete lat-
ices, one for each type, together with a valuation of constants: D = 〈{Dα}α∈T , ρ〉.
The model is required to satisfy the following conditions:

– D0 is a finite lattice;
– for every type α → β ∈ T , Dα→β is the lattice of monotone functions from

Dα to Dβ ordered coordinatewise;
– If c ∈ Σ is a constant of type α then ρ(c) is an element of Dα. For every α ∈
T it must be that case that ρ(ωα) is the greatest element of Dα. Moreover,
ρ(Y (α→α)→α) should be a function assigning to every function f ∈ Dα→α

its greatest fixpoint.

Observe that every Dα is finite, hence all the greatest fixpoints exists without
any additional assumptions on the lattice.

A variable assignment is a function υ associating to a variable of type α an
element of Dα. If d is an element of Dα and xα is a variable of type α then
υ[d/xα] denotes the valuation that assigns d to xα and that is identical to υ
otherwise.

The interpretation of a term M of type α in the model D under valuation υ
is an element of Dα denoted [[M ]]

υ
D. The meaning is defined inductively:
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– [[c]]υD = ρ(c)
– [[xα]]υD = υ(xα)
– [[MN ]]υD = [[M ]]υD[[N ]]υD
– [[λxα.M ]]

υ
D is a function mapping an element d ∈ Dα to [[M ]]

υ[d/xα]
D .

As usual, we will omit subscripts or superscripts in the notation of the semantic
function if they are clear from the context.

Of course a GFP model is sound with respect to βδ-equality. Hence two equal
terms have the same semantics in the model. For us it is important that a
stronger property holds: if two terms have the same Böhm trees then they have
the same semantics in the model.

Lemma 3. For every GFP-model D, and closed terms M , N of λY -calculus: if
BT (M) = BT (N) then [[M ]]D = [[N ]]D.

Before stating the theorem we need to explain how properties of Böhm trees are
specified. We will consider tree signatures, so Böhm trees of closed terms of type
0 are just ranked, potentially infinite trees (cf. Lemma 1). To express properties
of such trees we can use monadic second-order logic, or an equivalent formalism
of finite automata on infinite trees. We will use the later since it allows for an
easy formulation of the important restriction we will make. We will consider only
automata with trivial acceptance condition. This means that every run of such
an automaton is accepting. So the trees that are not accepted are those over
which the automaton does not have a run. We define this concept below.

Let us fix a tree signature Σ. Recall that this means that apart from ω and Y
all constants have order at most 2. For simplicity of notation we will assume that
constants of order 2 have type 0→ 0→ 0. In this case, by Lemma 1, Böhm trees
are potentially infinite binary trees. Let Σ1 be the set of constants of order 1,
hence of type 0, and Σ2 the set of constants of order 2, hence of type 0→ 0→ 0.

Definition 3. A finite automaton with trivial acceptance condition over the
signature Σ = Σ1 ∪Σ2 is

A = 〈Q,Σ, q0 ∈ Q, δ1 : Q×Σ1 → {ff , tt}, δ2 : Q×Σ2 → P(Q2)〉

where Q is a finite set of states and q0 ∈ Q is the initial state.

Observe that the type of δ1 logically follows from the fact that a constant of type
0 is a “function with no arguments”, hence the range of δ1 should be P(Q0) that
is more intuitively presented as {ff , tt}.

Automata will run on Σ-labelled binary trees that are partial functions t :
{0, 1}∗ → Σ such that their domain is a binary tree, and t(u) ∈ Σ1 if u is a leaf,
and t(u) ∈ Σ2 otherwise.

A run of A on t is a partial mapping r : {0, 1}∗ → Q with the same domain
as t an such that:

– r(ε) = q0, here ε is the root of t.
– (r(u0), r(u1)) ∈ δ2(t(u), r(u)) if u is an internal node.
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A run is accepting if for every leaf u of t either δ1(r(u), t(u)) = tt , or t(u) = ω0.
The later condition means that the automaton accepts in leaves labelled by ω0

constant. A tree is accepted by A if there is an accepting run on the tree. The
language of A, denoted L(A), is the set of trees accepted by A.

Observe that our automata have acceptance conditions on leaves, expressed
with δ1, but do not have acceptance conditions on infinite paths. The clause
about always accepting in leaves labelled ω0 has some consequences. In partic-
ular, with these automata we cannot define a set of terms that do not have ω0

in their Böhm tree. This restriction appears also in the works of Aehlig [1] and
Kobayashi [23].

Theorem 1. For every automaton with trivial acceptance conditions A there is
a GFP-model DA and a set FA ⊆ D0

A such that for every closed term M of
type 0:

BT (M) ∈ L(A) iff [[M ]]DA
∈ FA.

For DA we take a GFP model with the domain for the base type being the set
of subsets of the set of states of A: D0

A = P(Q). This choice determines all Dα.
It remains to define interpretation of constants other than ω or Y . A constant
c ∈ Σ of type 0 is interpreted as the set {q : δ1(q, c) = tt}. A constant a ∈ Σ of
type 0→ 0→ 0 is interpreted as the function whose value on (S0, S1) ∈ P(Q)2

is {q : δ2(q, a) ∈ S0 × S1}. Finally, we put FA = {S : q0 ∈ S}; recall that q0 is
the initial state of A. The proof of the theorem is rather easy. Lemma 3 allows
to work with Böhm trees instead of terms. Then one can use approximations of
an infinite tree by its finite prefixes.

Corollary 1. Given a closed λY -term M of type 0 and an automaton with a
trivial acceptance condition A it is decidable if BT (M) is accepted by A.

The decidability follows immediately from Theorem 1, and the fact that DA is
a finitary model, so the semantics of a term can be computed just using the
definition. The answer is positive if an only if the obtained meaning is in FA.
Of course computing the meaning of a term may be computationally difficult.
The sizes of domains grow fast with the order of the type: the size of Dα→β

A
is exponentially bigger than the size of Dα

A. It is known that the model check-
ing problem is nonelementary [15,6,25], and at closer inspection the worst case
complexity of the approach presented here is on a par with other approaches.

It is not clear how to extend this method to automata with parity condi-
tions. What is straightforward to do is to extend it to automata that are dual
to automata with trivial acceptance conditions. Automata with trivial accep-
tance conditions are in fact equivalent in expressive power to alternating parity
automata whose all states have rank 0. The dual automata are alternating au-
tomata whose all states have rank 1. Let us call them rank 1 automata. In
particular rank 1 automata accept the complements of the languages accepted
by automata with trivial conditions.

In the theorem above, we have used GFP models: we have interpreted Y
constants as the greatest fixpoint operators. To capture the power of rank 1
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automata we take LFP models where Y ’s are interpreted as the least fixpoint
operators, and ω’s as the least elements in corresponding lattices. Dualizing the
argument we get the corresponding result

Theorem 2. For every rank 1 automaton A there is a LFP model EA and a set
FA ⊆ E0 such that for every closed term M of type 0:

BT (M) ∈ L(A) iff [[M ]]EA ∈ FA.

4 Conclusions

We have argued that recursive schemes are a fundamental notion that has ap-
peared in a number of areas of computer science like: schematology [27], language
theory [13], and verification [21,32]. For this reason there is a number of different
approaches to view and study schemes. We have suggested yet another one in
this paper. The mixture of the lambda calculus, language theory, and semantics
makes this subject a promising playground for all three disciplines.

Let us hint yet another, more logic based, approach to understand schemes.
Instead of trying to find a new device capable of generating the same trees as
schemes do, one can look for operations on trees or graphs. In the case of safe
schemes this program has been successfully carried out resulting in what is now
called Caucal hierarchy [8]. This is the set of trees obtained from the one node
tree by operations of unfolding of a graph into a tree [12], and MSOL interpreta-
tions. Since both these operations preserve MSOL decidability, we immediately
obtain that all the trees in the Caucal hierarchy have decidable MSOL theory. It
can be then shown that these are up to simple MSOL interpretations precisely
the trees generated by recursive schemes. A number of other characterisations of
this class of trees exist: via rewriting rules, using Muchnik’s unfolding operation,
using higher order pushdown automata (without collapse) [7]. By the result of
Parys [33] we know that there are trees generated by recursive schemes that do
not belong to Caucal hierarchy. One can imagine that there exists some oper-
ation preserving decidability of MSOL theories that allows to obtain all tress
generated by higher-order recursive schemes in the same way as the unfolding
operation does for safe schemes.
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Abstract. The talk discusses planning problems where a set of items
has to be transported from location A to location B subject to certain
collision and/or resource constraints. We analyze the behavior of these
problems, discuss their history, and derive some of their combinatorial
and algorithmic properties.

The first transportation problem. Let V be a set of items/vertices, and let G =
(V,E) be a graph. We consider a scenario where the items in V have to be
transported from point A to point B. There is a transportation device with
enough capacity to carry b ≥ 1 of the items, and there is a single driver. If two
items are connected by an edge in E, they are conflicting and thus cannot be
left alone together without human supervision. A feasible schedule is a finite
sequence of triples (A1, T1, B1), (A2, T2, B2), . . . , (As, Ts, Bs) of subsets of the
item set V that satisfies the following conditions (FS1)–(FS3). The odd integer
s is called the length of the schedule.

(FS1) For every k, the sets Ak, Tk, Bk form a partition of V . The sets Ak
and Bk form stable sets in G. The set Tk contains at most b elements.

(FS2) The sequence starts with A1∪T1 = V and B1 = ∅, and the sequence
ends with As = ∅ and Ts ∪Bs = V .

(FS3) For even k ≥ 2, we have Tk ∪Bk = Tk−1 ∪Bk−1 and Ak = Ak−1.
For odd k ≥ 3, we have Ak ∪ Tk = Ak−1 ∪ Tk−1 and Bk = Bk−1.

Intuitively speaking, the kth triple encodes the kth trip: Ak contains the items
currently in point A, Tk the items that are currently transported, and Bk the
items in point B. Odd indices correspond to forward trips, and even indices
correspond to backward trips. Condition (FS1) states that the (unsupervised)
sets Ak and Bk must not contain conflicting item pairs, and that set Tk must fit
into the transportation device. Condition (FS2) concerns the first trip and the
final trip. Condition (FS3) says that whenever the man reaches point A or B,
he may arbitrarily re-divide the set of available items.

We are interested in the smallest possible capacity of a transportation device
for which a given graph G = (V,E) possesses a feasible schedule. For instance for
the path P3 on three vertices, it can be seen that a capacity b = 1 is sufficient. We
discuss a variety of combinatorial and algorithmical results on these concepts;
in particular we show that the smallest possible capacity has an NP-certificate.
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The second transportation problem. Let I be a set of items, and let w(i) be
the positive integer weight of item i ∈ I. For J ⊆ I we throughout denote
w(J) =

∑
j∈J w(j), and as usual we let w(∅) = 0. We consider a scenario where

the items have to be transported from a point A at the top of a building to a
point B at the bottom of the building. The transporation is done with the help
of a pulley with a rope around it, and a basket fastened to each end of the rope
of equal weight. One basket coming down would naturally draw the other basket
up. To keep the system stable, the weights of the item sets in the two baskets
must not differ by more than a given threshold Δ.

A state of the underlying discrete system is specified by the item set J ⊆ I
that currently is at point A, and with the remaining items in I − J located at
point B. The system can move directly from state J ⊆ I to state K ⊆ I if

|w(J ∩ (I −K))− w(K ∩ (I − J))| ≤ Δ,

where the positive integer bound Δ specifies the maximum allowed weight dif-
ference between the two exchanged subsets in the baskets. A state K is reachable
from state J , if there is a sequence of moves that transforms J into K. It is easy
to see that reachability is a symmetric relation.

We are interested in the following question: Given an item set I with weights
w(i), a positive integer bound Δ, an initial state I0, and a final state I1. Is the
goal state I1 reachable from the initial state I0? We discuss a number of results
on the algorithmic and combinatorial behavior of this motion planning problem.
In particular, we show that it is Πp

2 -complete. The special case where the item
weights are encoded in unary is (trivially) solvable in pseudo-polynomial time.
The special case where the number of moves is bounded by a number encoded
in unary is NP-complete. Some other natural (hevaily structured) special cases
turn out to be solvable in polynomial time.
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Many problems from different areas can be formulated as problems of computing
a fixed point of a suitable function. Classical examples include the computation
of equilibria for games, price equilibria for markets, and many others. There
has been significant progress in understanding better the computational nature
of such problems and characterizing their complexity in terms of classes like
FIXP, which captures the complexity of the computation of fixed points for gen-
eral (nonlinear) algebraic functions, with the 3-player Nash equilibrium problem
as a prototypical example, and PPAD for the computation of fixed points for
piecewise linear functions, with the 2-player Nash equilibrium problem as a pro-
totypical example.

For many problems, the function in the fixed point formulation is monotone,
and the objects we want to compute are given by a specific fixed point, namely
the least fixed point of the function. Many models and problems from a broad
variety of areas can be thus expressed as least fixed point computation problems,
including in particular the analysis of various probabilistic models, problems in
stochastic optimization, and games. Examples include the analysis of multitype
branching processes; stochastic context-free grammars; recursive Markov chains;
quasi-birth-death processes; (recursive) Markov decision processes; stochastic
games, whether turn-based or concurrent, flat finite-state or recursive. The ob-
jects of interest in all these problems can be computed by a natural iterative
algorithm based on the least fixed point formulation, however, the algorithm
takes in all these cases exponential time to converge. The question is whether
the desired objects can be computed in polynomial time by alternative methods.
In recent years there has been significant progress in answering this question for
several of these problems. It turns out that for some classes of functions we
can compute the least fixed point in polynomial time and thus we can analyze
efficiently several of these models, while for others there are strong indications
that they cannot be solved in polynomial time, and for yet others the question
remains open. In this talk we will discuss progress in this area. The talk is based
on a series of works with Kousha Etessami and Alistair Stewart.
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Abstract. We consider two-player constraint satisfaction games on systems of
Boolean constraints, in which the players take turns in selecting one of the avail-
able variables and setting it to true or false, with the goal of maximising (for
Player I) or minimising (for Player II) the number of satisfied constraints. Unlike
in standard QBF-type variable assignment games, we impose no order in which
the variables are to be played. This makes the game setup more natural, but also
more challenging to control. We provide polynomial-time, constant-factor ap-
proximation strategies for Player I when the constraints are parity functions or
threshold functions with a threshold that is small compared to the arity of the
constraints. Also, we prove that the problem of determining if Player I can satisfy
all constraints is PSPACE-complete even in this unordered setting, and when the
constraints are disjunctions of at most 6 literals (an unordered-game analogue of
6-QBF).

1 Introduction

An instance of a constraint satisfaction problem (CSP) comprises a set of m non-
constant Boolean functions C = {c1, . . . ,cm} over a common set of n variables X =
{x1, . . . ,xn}. In this work we only consider Boolean CSP’s, so that each constraint c∈C
is a mapping c : {0,1}n → {0,1}. (The truth values false, true are identified with the
integers 0,1 as usual.) A constraint c is satisfied by a truth assignment x ∈ {0,1}n if
c(x) = 1. The most commonly studied versions of CSPs ask whether all of the given
constraints can be satisfied simultaneously (typically an NP-complete problem), or if
not, then what is the fraction of constraints that can be satisfied by a polynomial-time
approximation algorithm.

Another perspective is to consider the combinatorial games [12,18] defined by CSP
instances. Here two players, I and II, take turns in setting values of the variables in
X , with Player I’s goal being to eventually satisfy as many of the constraints in C as
possible, and Player II’s goal being the opposite. In this framework one can again ask
if Player I has a (comprehensive) winning strategy, i.e. whether she can satisfy all the
constraints, no matter what Player II does. Or if a winning strategy does not exist or is
hard to compute, then what is the fraction of constraints that Player I can satisfy by a
polynomial-time computable approximate strategy against Player II.

Such constraint satisfaction games have applications in e.g. formal methods [1,17]
and adversarial planning [2,3], but are of course also intrinsically interesting. A paradig-
matic example is QBF, which can be viewed as a two-player version of Satisfiability,
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where the players take turns in assigning values to the variables in a prespecified or-
der [18]. As is well-known, QBF is PSPACE-complete [19], similarly to many other
terminating two-player games [10]. Recently there have also been major developments
in developing a taxonomy of such quantified constraint satisfaction games, relating their
complexity to the structure of the constraints involved [6,7,16]. This work follows the
example of the quite comprehensive taxonomy on the approximability of CSPs accord-
ing to the structure of their defining constraints, as achieved in [15].

Existing results on the complexity of constraint satisfaction games assume players
assign values to the variables in a predefined (quantification) order. This is a some-
what unnatural restriction if one views CSPs in the general framework of combinatorial
games. An unordered setting arises naturally e.g. in the colouring construction game
introduced in [5]. In this game the players take turns in colouring the vertices of a
graph, with Player I trying to achieve a proper colouring of the full graph and Player II
attempting to foil her. In the case of two colours, this is a Boolean CSP, and the com-
plexity of this game (i.e. determining the existence of a comprehensive winning strategy
for Player I) is indicated in [5] as an interesting open problem.

The assumption of a fixed variable order also leads to an overly pessimistic view on
the approximability of games of this type. For instance, the two published studies [9,13]
addressing the approximability of (ordered) constraint satisfaction games in the sense
of maximising the number of constraints won by Player I both present only negative re-
sults on the existence of approximate strategies. In particular, both of these papers show
that for some ε > 0, MAX-QBF is PSPACE-hard to approximate within 1− ε times
optimum. Articles [4,8] consider the somewhat different task of optimising a supple-
mentary objective function across the comprehensive winning strategies for Player I.

A symptom of the unnaturality of variable-ordered games is that they effectively
allow one of the players to make many consecutive moves, by forcing the other player
to play dummy variables that do not affect the final outcome. In the extreme case, one
can e.g. have all the even-indexed variables be dummies, so that the outcome is totally
indifferent to the moves of Player II. By allowing a free choice of variables neither
player can be discriminated in this way, and for this reason the unordered game has
a more interesting structure than standard QBF, both as a game and in the sense of
approximability.

In this paper we wish to initiate the study of such unordered constraint satisfac-
tion games and their approximate strategies. We first define the model in Section 2.
In the subsequent Sections we establish our positive results on the approximability of
unordered constraint satisfaction games. In Section 3 we show that in a game where
the constraints are parity functions (linear equations mod 2) with bounded variable co-
occurrences, Player I can always win close to 1

2 of the constraints. In Section 4 we show

that if the constraints are threshold functions of arity k and the threshold is µ=O
(

k
logk

)
,

then Player I can win a fraction of the clauses which approaches 1 exponentially as k
increases. A weaker result holds when µ satisfies merely µ ≤ k

2 . Note that the strong
version of the result applies in particular to games on disjunctive constraints, since dis-
junctions are threshold functions with µ = 0.

In Section 5 we establish our fundamental negative result showing that also the un-
ordered game analogue of the QBF problem, the Game on Boolean Formulas (GBF),
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is PSPACE-complete, even when the constraints are disjunctions of at most 6 literals.
We conclude in Section 6 with a summary and suggestions for some further research
directions.

2 The Game on Boolean Formulas

Our generic example of an unordered constraint satisfaction game is the Game on
Boolean Formulas (GBF). An instance of this game is given by a set of m non-constant
Boolean formulas C = {c1, . . . ,cm} over a common set of n variables X = {x1, . . . ,xn}.
We refer to the formulas in C as clauses even though we do not in general require them
to be disjunctions. If all the clauses are disjunctions of width ≤ k, i.e. with at most k
literals per clause, then we refer to the game as k-GBF.

A game on C proceeds so that on each turn the player to move selects one of the
previously nonselected variables and assigns a truth value to it. Player I starts, and
the game ends when all variables have been assigned a value. In the decision version
of GBF, the question is whether Player I has a comprehensive winning strategy, by
which she can make all clauses satisfied no matter what Player II does. In the positive
case we say that the instance is GBF-satisfiable. In the maximisation version MAX-
GBF, the objective of Player I is to maximise the number of satisfied clauses mt :=
|{c ∈ C | c(x1,x2, . . .xn) = 1}|, and the objective of Player II is to maximise the number
m f := m−mt of unsatisfied clauses, making this a zero-sum game.

Recall that a Boolean formula P(x1,x2, . . .xn) is QBF-satisfiable if Player I can en-
sure that P becomes satisfied when the players alternate selecting values to x1,x2, . . .xn

in the given order. The standard (MAX-)QBF problem can be viewed as a version of
(MAX-)GBF, with the additional requirement that the variables must be played in the
predetermined order x1,x2, . . . ,xn.

3 An Approximate Strategy for Even-Odd Games

In an even-odd game the GBF clauses c∈C are of the form ∑i∈Jc xi ≡ dc(mod 2), where
for each c ∈C, Jc ⊆ {1, . . . ,n} and dc = 0 or dc = 1. Without loss of generality one can
assume that there are no negative literals.

Theorem 1. In an even-odd game on n variables and m clauses, Player I has a
polynomial-time strategy that secures her at least a fraction of 1

2 −
nδ
4m of all clauses,

where δ = maxi�=i′ |{c | xi ∈ c,xi′ ∈ c}|.

Proof. For 1≤ i≤ n
2 , denote the number of clauses completing as true (resp. false) due

to Player I’s ith move as αi (ᾱi) and completing as true (false) due to Player II’s ith
move as βi (β̄i). A clause completes when its last variable is set to a value. The strategy
for Player I is simply to always make a move maximising the difference αi− ᾱi.

When Player I is selecting the variable for her ith move, the variable y selected by
Player II on his ith move is also available. Player I’s ith move creates at most δ new
opportunities for II to complete clauses with y, so by the strategy of I it must be the case
that

αi− ᾱi ≥ β̄i−βi− δ,
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which can be rearranged as
ᾱi + β̄i ≤ αi +βi+ δ.

Now the total number of clauses has the upper bound

m = ∑
i
(αi +βi+ ᾱi + β̄i)≤ 2∑

i
(αi +βi)+

n
2

δ = 2mt +
n
2

δ.

Hence the fraction of satisfied clauses is at least mt
m ≥

1
2 −

nδ
4m .

Corollary 1. In an even-odd game where δ n
m ≤ γ for a constant γ < 2, Player I can

secure a constant fraction of all clauses.

4 Approximate Strategies for Threshold Games

In a µ-threshold game, the clauses c are subsets of literals from {x1, . . . ,xn,x1, . . . ,xn},
and a clause c ∈C is satisfied if and only if it contains at least µ+ 1 true literals l ∈ c.
We assume that each clause has at least k literals, that no literal occurs multiple times in
the same clause, and that no literal co-occurs with its negation in the same clause. The
case µ = 0 corresponds to disjunctive clauses. When all clauses are exactly of length k
and µ+ 1 = k, the clauses correspond to conjunctions.

In the following, we present an efficient approximate strategy for Player I in the
case of small values of µ. The potential function approach used to drive the strategy is
inspired by the MAX-SAT approximation algorithm presented in [14], even though the
details are very different.

Theorem 2. Let µ∈N. In a µ-threshold game on clauses of size at least k, Player I has
a polynomial-time strategy that secures her at least a fraction 1−O( kµ

2k/2 ) of all clauses.

To describe the strategy indicated in Theorem 2 we need some more notation. Given a
clause c, denote the number of unset literals present in c by f (c), and the number of
literals already set to true by t(c). Define q as the positive root of q2 + q/k− 2 = 0,
which gives

√
2

1

1+ 1/(k
√

2)
< q <

√
2. (1)

The weight of a clause is defined as

u(c) :=

{
q− f (c)k−t(c), if t(c)≤ µ

0, else.

Also, the weight of a literal l is u(l) := ∑l∈c u(c), and the potential of a partially played
game is U := ∑c∈C u(c).

Proof (Theorem 2).
Player I’s strategy is to always find a literal l of maximum weight u(l) and set l to

true. We shall prove that this strategy ensures that U is nonincreasing over each pair of
moves by the two players.
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Note first that if Player I sets literal x to true and Player II sets literal y to true then
u(x)≥max{u(y),u(x),u(y)}.

Over one move the potential changes by ΔxU ≤ (q− 1)u(x)+ (q/k− 1)u(x). After
this move the weights change to u′(c), but the new weights still satisfy u′(c) ≤ qu(c)
clause-wise, implying

ΔyU ≤ (q− 1)qu(y)+ (q/k− 1)u′(y)≤ (q2− q)u(x).

Hence

Δx +Δy ≤ (q− 1+ q/k− 1+q2− q)u(x) = (q2 + q/k− 2)u(x) = 0.

This and Δx ≤ 0 imply that U is nonincreasing over the whole game.

From Eq. (1) one obtains qk ≥
√

2
k
e−1/

√
2 and further

kµ

qk
≤ kµ

2k/2
e1/

√
2.

Now
kµm f ≤Uend ≤Ubegin ≤ mq−k,

implying the final claim since

m f

m
≤ kµ

qk ≤
kµ

2k/2
e1/

√
2.

Corollary 2. In a µ-threshold game where k
logk

log2
2 − 1√

2logk
− µ ≥ γ for a constant

γ > 0, Player I can secure a constant fraction of all clauses.

Theorem 2 gives a positive bound up to µ ≤ µ∗ for some µ∗ = θ
(

k
logk

)
. For large

threshold values µ = Ω
(

k
logk

)
one can apply an elementary algorithm to improve the

bound.

Theorem 3. Let µ∈N. In a µ-threshold game on clauses of size at least k, Player I has
a polynomial-time strategy that secures her at least a fraction of k−2µ

2k−2µ of all clauses.

Proof. Any literal l occurs in v(l) = |{c ∈C | l ∈ c}| clauses, and we define the weight
of a literal as the difference u(l) := v(l)− v(l̄). The strategy is to always find a literal l
of maximum weight u(l) and set l to true.

Consider the numbers of true and false literal occurrences

T = |{(c, l) | c ∈C, l ∈ c, l true}|,
F = |{(c, l) | c ∈C, l ∈ c, l false}|.

The strategy used by Player I always targets a literal with maximum weight. As the
moves never alter the weights of the other literals, the sum of weights of the literals set to
true is always nonnegative. Especially this holds at end of the game. Hence T ≥ F , and
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T ≥ m
2 k. As each unsatisfied clause contains at most µ true literals, T can be bounded

as
mt +m f

2
k ≤ T ≤ µm f + kmt .

Rearranging yields mt
mf
≥ k−2µ

k and finally

mt

m
≥ k− 2µ

2k− 2µ
=

1
2
− µ

2(k− µ)
.

The result of Theorem 3 yields a positive lower bound on the number of clauses won
by Player I up to a threshold of µ < k

2 . Actually no strategy can guarantee a positive
fraction of the clauses to her if µ ≥ k

2 . To verify this, consider an instance that has
different variables in each clause, and Player II always responds by playing a literal
false in the same clause where Player I just played. Independent of Player I’s strategy,
all clauses end up false. Naturally, this observation does not preclude approximation
bounds with respect to the value of an optimal solution, or positive results under more
structural assumptions on the instance.

5 PSPACE-Completeness of the GBF Problem

We now prove that the decision problem version of GBF is PSPACE-complete. We
present two versions of this result. Theorem 4 is proved by a direct but nontrivial reduc-
tion from QBF. However since this reduction yields a GBF instance with only a single
constraint formula, we present also a second version, Theorem 5, which has a more
complex proof but yields a constraint system consisting of disjunctions of width ≤ 6.

Theorem 4. The problem of deciding GBF-satisfiability of a Boolean formula is
PSPACE-complete.

Proof. The existence of a winning strategy for Player I can clearly be determined in
polynomial space by a systematic depth-first min-max search of all the play sequences.

To show PSPACE-hardness we design a reduction from QBF satisfiability. Fix a QBF
instance, which consists of a Boolean formula P(x1,x2 . . .xn). We construct a Boolean
formula P̃ where Player I has a GBF winning strategy if and only if P is QBF-satisfiable.
The instance P̃ is going to be essentially P embedded with gadgets that force the players
to respect the predefined order of variables.

We present explicitly a gadget that requires Player I to start from playing xi. Given a
Boolean formula R(x1, . . .xn), consider a GBF with the formula

Ri(ai,bi,ci,di,ei,x1, . . .xi−1,xi+1, . . .xn) :=
[R(x1, . . .xi−1,ai,xi+1, . . .xn)∧ ei∧ (ai∨ ci)∧ (bi∨di)]∨ (ai∧di)∨ (ci∧bi).

(2)

For sake of presentation we omit the subscript i from the variables Si = {ai,bi,ci,di,ei}.
The idea behind the construction is to have two copies of the variable xi that end

up with equal values, a = b. Also the negation xi is represented by two variables, c =
d �= b. e is a dummy variable that switches turn. The structure of the gadget guarantees
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that after Player I fixes a value to xi, the players continue filling the remaining gadget
variables Si = {a,b,c,d,e} accordingly. A deviation from this guideline leads to a quick
loss for the deviating player. Also, Player I cannot postpone the decision on the value
of variable xi to a later point without losing the game.

Let us define a generalised version of GBF imposing some restrictions on the order
of variables. In a GBF under queue q = (xi1 ,xi2 , . . .xir), 0 ≤ r ≤ n, the jth move must
be done on the queue variable xi j as long as j≤ r. For j > r the variables can be chosen
freely among the unset variables as in standard GBF. Also, define a concatenation of
queues as q ◦ q′ = (xi1 , . . .xir ,x

′
i1
, . . .x′i′r).

Lemma 1. Player I has a GBF winning strategy on Ri if and only if Player I has a GBF
winning strategy on R under queue (xi).

Proof. The proof needs some tedious case-by-case analysis. To prune out obvious infe-
rior moves on Ri, note that the gadget has no negated variables. We observe that Player
I is always better off by playing a value true than a value false in the gadget variables
Si. The opposite holds for Player II. Further, let us encode game positions by concate-
nating the variables selected by the players, with # denoting any variable outside Si. For
example, the game that started with moves a = 1; x2 = 0; e = 1; d = 0 in this order
would be compressed as a#̄ed. We also use ∗ as a wild character with no set restrictions.

Consider all possible first player moves.

Case a: If Player I starts with a, the threat of a ∗ d forces Player II to continue as
ad. Now, the threat of ad ∗ b forces Player I to continue as adb. The threat adb ∗
c enforces adbc and Player I is forced to continue to adbce. Variables in S get
fixed and the game continues with Player II’s turn on the truncated game Ri,1 =
R(x1, . . .xi−1,1,xi+1, . . .xn).

Case b: As Case a with swapping variables as a↔ b, c↔ d. Variables in Si get fixed
and the game continues with Player II’s turn on Ri,1.

Case c: As Case a with swapping variables as a↔ c, b↔ d. Variables in Si get fixed
and the game continues with Player II’s turn on Ri,0 = R(x1, . . .xi−1,0,xi+1, . . .xn).

Case d: As Case a with swapping variables as a↔ d, b↔ c. Variables in Si get fixed
and the game continues with Player II’s turn on Ri,0.

Case e: Player II can continue to ea. ea ∗ c would be a loss for Player I, hence the
third move must lead to eac. Player II can reply by eacb, which enforces eacbd.
Variables in Si are fixed and the game continues with Player II’s turn on Ri,0. For
ec,eb and ed the analysis is similar with variable swaps, leading to fixed Si and
Player II’s turn on Ri,0. Effectively, Player II decides value for xi on game R and
keeps turn - this is no better for Player I than Case a.

Case #: As Case e, with the exception of sixth move being ē, yielding a loss for
Player I.

Collecting the case-by-case results, we conclude that Player I has a winning strategy on
R′ if and only if Player I wins either of the subgames Ri,0, Ri,1 with Player II to move
first. This condition is equivalent to Player I having a winning strategy on R that first
assigns a value to xi, and the proof is finished.



Unordered Constraint Satisfaction Games 71

The lemma easily yields the following corollaries.

Corollary 3. Let i �= j. Given a Boolean formula R(x1, . . .xn), Player I has a winning
strategy on (¬(¬R) j)i if and only if Player I has a GBF winning strategy on R under
queue (xi,x j).

Proof. By a simple role reversal observation Player I has a winning strategy in a game
Q if and only if I has no winning strategy in the game ¬Q that is started by Player II.
By Lemma 1 and role reversal I has a winning strategy on (¬(¬R) j)i if and only if I
has no winning strategy on at least one of the subgames (¬Ri,0)

j, (¬Ri,1)
j. Applying

the lemma and role reversal again, the previous is equivalent to Player I winning either
both Ri,0; j,0 and Ri,0; j,1, or both Ri,1; j,0 and Ri,1; j,1. But this is just the condition that
Player I has a GBF winning strategy on R with requirements of Player I playing first xi

and Player II playing x j immediately thereafter.

Corollary 4. Let i �= j, xi,x j /∈ q, |q| even. Given a Boolean formula R(x1, . . .xn), Player
I has a winning strategy on (¬(¬R) j)i under q if and only if Player I has a GBF winning
strategy on R under queue q◦ (xi,x j).

Proof. Assume there is a winning strategy for either of the cases. This is easily con-
verted to a winning strategy in the other: simply play q as the winning strategy suggests.
Consider each of the subgames after q has been played. One of them is known to have a
winning strategy, whence by Corollary 3 there must be a winning strategy for the other
as well.

Corollary 5. Given a Boolean formula P(x1 . . .xn), there exists a polynomial-time com-
putable Boolean formula P̃(y1 . . .y5n) such that P is QBF-satisfiable if and only if P̃ is
GBF-satisfiable.

Proof. Consider
P̃ = (¬(¬ . . . (¬(¬P)n′)n′−1 . . .)2)1,

where n′ = 2' n
2(. Using Corollary 4 one can transform two outermost gadgets into a

queue with winning strategies staying equivalent. Repeated use n′
2 times implies that

existence of a winning strategy in P̃ is equivalent to existence of a winning strategy in
P under queue q = (x1,x2, . . . ,xn′). But this is the same game as QBF play on P with
order x1,x2, . . .xn.

PSPACE-hardness of the GBF-satisfiability for Boolean formulas follows now directly
from Corollary 5.

Let us then consider the more restricted GBF instances where the constraint system is
in k-conjunctive normal form.

Theorem 5. Deciding GBF-satisfiability of a system of disjunctions of width ≤ 6 is
PSPACE-complete.

Proof. As in Theorem 4, it is straightforward to see that the problem is in PSPACE.
To establish the PSPACE-hardness of the problem we outline a reduction from the

PSPACE-complete Shannon switching game on vertices (SSG) [11]. As we shall see, in
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fact any PSPACE-complete game with an unordered set of binary game variables and a
polynomial-time winning predicate would do as a basis for the reduction, but let us for
concreteness focus here on the SSG.

An SSG instance is given by an undirected graph G = (V,E) with two distinguished
vertices s, t ∈ V . The players take turns in selecting vertices in the graph, excluding s
and t, and Player I wins if she manages to establish an s− t path in G through vertices
owned by her. Player II wins if he can keep this from happening until all the vertices
have been played. As proved in [11], it is PSPACE-complete to determine if in a given
graph (G,s, t) Player I has a winning strategy.

We now show how to effectively construct from an SSG instance (G,s, t) a GBF
instance (X ,C), where all the clauses in C are disjunctions with at most 6 literals per
clause, and Player I has a winning strategy on (G,s, t) if and only if she has a winning
strategy on (X ,C).

The construction is completely general, and only depends on the high-level charac-
teristics of the SSG game, as indicated earlier. Let the graph G have n vertices, excluding
s and t, and let x1, . . . ,xn be binary variables indicating whether each vertex i is selected
by Player I (xi = 1) or by Player II (xi = 0). Let W (x1, . . . ,xn) be a polynomial-time
computable predicate indicating whether the resulting configuration is a win for Player
I (W (x) = 1) or for Player II (W (x) = 0).

For a given SSG instance (G,s, t), the predicate W (x) can be effectively expanded
into a polynomial-size circuit with, say, p gates. Since NAND(x,y) = x∧ y = x̄∨ ȳ is
a universal basis operation for Boolean circuits, we for simplicity and w.l.o.g. assume
that all the gates are NAND gates. Let the gates of the W circuit be topologically sorted
into a sequence (g1,g2, . . . ,gp), so that each gate gk computes an intermediate result
zk ← yi ∨ y j, where yi (resp. y j) is either zi for i < k (resp. z j for j < k) or one of the
input variables x1, . . . ,xn, and zp = 1 iff W (x) = 1.

Let now the variables of the corresponding GBF instance (X ,C) be the original input
variables x1, . . . ,xn, together with 2p auxiliary variables z1, . . . ,zp, a1, . . . ,ap. For each
gate gk of the form zk ← zi∨ z j in the W circuit, we introduce a clause

ck = ((zk ≡ zi∨ z j)∨ (zk ≡ ak)∨ (zi ≡ ai)∨ (z j ≡ a j)).

For gates where one or both of the argument literals are input variables, the clauses are
similar except that the disjuncts of the form “x≡ a” are omitted for an input variable x.

We observe first that because each clause ck refers to at most 6 variables, when
it is expanded into conjunctive normal form, it expands into some bounded number
d ≤ 36 of disjunctions (“miniclauses”) ck1, . . . ,ckd with at most 6 literals per miniclause,
satisfying ck ≡

∧d
l=1 ckl .1 Altogether these miniclauses thus satisfy

p∧
k=1

ck ≡
p∧

k=1

d∧
l=1

ckl ,

and we take as the set of clauses C in our (6-)GBF instance C := {ckl | k = 1, . . . , p, l =
1, . . . ,d}.

1 A more careful analysis shows that in fact ck ≡ (zi∨ z j∨ zk∨ āi∨ ā j∨ āk)∧ (z̄i∨ z j∨ zk∨ai∨
ā j ∨ āk)∧ (zi∨ z̄ j ∨ zk ∨ āi ∨a j ∨ āk)∧ (z̄i ∨ z̄ j ∨ z̄k ∨ai∨a j ∨ak), i.e. d = 4.
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We now claim that Player I has a winning strategy in the SSG instance (G,s, t) if and
only if she has a winning strategy in the corresponding GBF instance (X ,C). Note that
because Player I wins all the clauses ck if and only if she wins all the miniclauses ckl ,
we can argue at the level of the clauses ck. Note also that Player I wins a clause ck if
and only if she can satisfy any one of the disjuncts (zk ≡ zi ∨ z j), (zk ≡ ak), (zi ≡ ai),
(z j ≡ a j). Let us call the first one the “gate term” and the others the “escape terms”,
with correspondingly the zk the “gate variables” and the ak the “escape variables”.

Suppose first that Player I has a winning strategy on the SSG instance (G,s, t). She
will follow this strategy first on the input variables x1, . . . ,xn, and will then assign to
the gate variables zk the values that they would have in the correct evaluation of the
W circuit on the given input vector x. It is not necessary to assign these values in the
topological order of the gates (g1, . . . ,gp), but it is of course natural to do so unless the
actions of Player II require otherwise.

Since Player I has a winning strategy on the SSG instance, she will also win on the
GBF instance unless Player II can make some of the gate variables have different values
than what they would have in a correct evaluation of W (x). Let us consider the first
time in the play where Player II does something else than sets one of the input variables
x1, . . . ,xn or assigns a gate variable zk to its correct value. There are two similar cases
to consider:

Case a: Player II “cheats” by assigning a gate variable zk to a value which is either
wrong or not yet determined (because the input sequence x has not yet been com-
pletely played out). Then Player I sets the corresponding escape variable ak to the
same value, and hence wins all the clauses c where variable zk appears by default.
Player I repeats this response as many times as Player II cheats. Eventually Player
II must return to “fair” play (or all the remaining clauses become satisfied by Player
I’s escape responses), and then also Player I can return to her basic strategy.

Case b: Player II assigns one of the escape variables ak to some value. Player I sets the
corresponding gate variable zk to the same value, and wins all the clauses c where
variable zk appears by default. Play continues as in Case a.

Suppose then that Player I does not have a winning strategy in the SSG instance (G,s, t).
How could she nevertheless try to win all the clauses c? Let us again consider the first
time in the play where Player I does something else than sets one of the input variables
x1, . . . ,xn or assigns a gate variable zk to its correct value on a completed input sequence
x. There are again two cases to consider:

Case a: Player I cheats by assigning a gate variable zk to a value which is either wrong
or not yet determined (because the input sequence x has not yet been completely
played out). Then Player II sets the corresponding escape variable ak to the oppo-
site value. This eliminates the escape terms zk ≡ ak from all clauses where variable
zk appears, without changing the satisfiability of those clauses otherwise. Hence
eventually any inconsistency in the gate terms introduced by Player I will be dis-
covered.

Case b: Player I assigns one of the escape variables ak to some value. If the corre-
sponding gate variable zk is already assigned, then Player II does nothing, i.e. con-
tinues assigning values to the other gate variables in a consistent way. If zk is still
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unassigned, then Player II assigns it to the opposite of ak. Now if āk is the correct
value for zk, then Player I has gained no advantage in the gate variables. If not, then
the present Case b reduces to Case a: again the escape terms zk ≡ ak have been
eliminated from all clauses where variable zk appears, without changing their satis-
fiability otherwise, and the newly introduced inconsistency will eventually lead to
a gate term which Player I cannot satisfy.

Since the reduction from the given SSG instance to the corresponding GBF instance
can be computed in polynomial time, and winning strategies for Player I are preserved,
we thus conclude that the problem of deciding GBF-satisfiability is PSPACE-hard.

6 Conclusion and Further Work

We have presented what is to our knowledge the first study of constraint satisfaction
games where the order of playing the variables is not restricted. We have established
a number of positive results concerning the existence of polynomial-time approximate
strategies for unordered constraint satisfaction games for specific constraint types. Also
we have proved that GBF – the unordered analogue of QBF – is PSPACE-complete.
Some of the pertinent open questions include:

1. Can one improve the given performance bounds on the strategies for even-odd
games (Theorem 1) or threshold games (Theorems 2 and 3)? Or can the approxi-
mate strategies for threshold games be extended to e.g. bigger monotone constraint
families?

2. Can one prove inapproximability results for unordered games, similar to those
achieved in [9,13] for quantifier-ordered games?

3. What is the smallest value of k such that k-GBF satisfiability is PSPACE-complete?
In particular, is 3-GBF satisfiability PSPACE-complete?

4. For which bases is (the analogue of) k-GBF PSPACE-complete? In particular, the
even-odd game of Section 3 (2-XOR-GBF) corresponds to the colouring construc-
tion game of [5] on two colours.

5. More generally, can one achieve complexity or approximability taxonomies for un-
ordered constraint satisfaction games based on the characteristics of the constraints
involved, along the lines of the taxonomies presented in [15] for CSPs or those
in [6,7,16] for quantifier-ordered games?
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Abstract. This paper considers the maximum common subgraph prob-
lem, which is to find a connected graph with the maximum number of
edges that is isomorphic to a subgraph of each of the two input graphs.
This paper presents a dynamic programming algorithm for computing
the maximum common subgraph of two outerplanar graphs whose maxi-
mum vertex degree is bounded by a constant, where it is known that the
problem is NP-hard even for outerplanar graphs of unbounded degree.
Although the algorithm repeatedly modifies input graphs, it is shown
that the number of relevant subproblems is polynomially bounded and
thus the algorithm works in polynomial time.

Keywords: maximum common subgraph, outerplanar graph, dynamic
programming.

1 Introduction

Comparison of graph-structured data is important and fundamental in com-
puter science. Among many graph comparison problems, the maximum common
subgraph problem has applications in various areas, which include pattern recog-
nition [4,14] and chemistry [12]. Although there exist several variants, the max-
imum common subgraph problem (MCS) usually means the problem of finding
a connected graph with the maximum number of edges that is isomorphic to a
subgraph of each of the two input undirected graphs.

Due to its importance in pattern recognition and chemistry, many practi-
cal algorithms have been developed for MCS and its variants [4,12,14]. Some
exponential-time algorithms better than naive ones have also been developed
[1,9]. Kann studied the approximability of MCS and related problems [10].

It is also important for MCS to study polynomially solvable subclasses of
graphs. It is well-known that if input graphs are trees, MCS can be solved in
polynomial time using maximum weight bipartite matching [6]. Akutsu showed
that MCS can be solved in polynomial time if input graphs are almost trees of
bounded degree whereas MCS remains NP-hard for almost trees of unbounded
degree [2], where a graph is called almost tree if it is connected and the number
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of edges in each biconnected component is bounded by the number of vertices
plus some constant. Yamaguchi et al. developed a polynomial-time algorithm
for MCS and the maximum common induced connected subgraph problem for a
degree bounded partial k-tree and a graph with a polynomially bounded number
of spanning trees, where k is a constant [16]. However, the latter condition seems
too strong. Schietgat et al. developed a polynomial-time algorithm for outerpla-
nar graphs under the block-and-bridge preserving subgraph isomorphism [13].
However, they modified the definition of MCS by this restriction. Although it
was announced that MCS can be solved in polynomial time if input graphs are
partial k-trees and MCS must be k-connected (for example, see [3]), the restric-
tion that subgraphs are k-connected is too strict from a practical viewpoint. On
the subgraph isomorphism problem, which is closely related to MCS, polynomial-
time algorithms have been developed for biconnected outerplanar graphs [11,15]
and for partial k-trees with some constraints as well as their extensions [5,7].

In this paper, we present a polynomial-time algorithm for outerplanar graphs
of bounded degree. Although this graph class is not a superset of the classes
in previous studies [2,16], it covers a wide range of chemical compounds1. Fur-
thermore, the algorithm or its analysis in this paper is not a simple extension
or variant of that for the subgraph isomorphism problem for outerplanar graphs
[11,15] or partial k-trees [5,7]. These algorithms heavily depend on the prop-
erty that each connected component in a subgraph is not decomposed. However,
to be discussed in Section 4, connected components from both input graphs
can be decomposed in MCS and considering all decompositions easily leads to
exponential-time algorithms. In order to cope with this difficulty, we introduce
the concept of blade. The blade and its analysis play a key role in this paper.

2 Preliminaries

A graph is called outerplanar if it can be drawn on a plane so that all vertices
lie on the outer face (i.e., the unbounded exterior region) without crossing of
edges. Although there exist many embeddings (i.e., drawings on a plane) of an
outerplanar graph, it is known that one embedding can be computed in linear
time. Therefore, we assume in this paper that each graph is given with its planar
embedding. A path is called simple if it does not pass the same vertex multiple
times. In this paper, a path always means a simple path that is not a cycle.

A cutvertex of a connected graph is a vertex whose removal disconnects the
graph. A graph is biconnected if it is connected and does not have a cutvertex. A
maximal biconnected subgraph is called a biconnected component. A biconnected
component is called a block if it consists of at least three vertices, otherwise it is
an edge and called a bridge. An edge in a block is called an outer edge if it lies on
the boundary of the outer face, otherwise called an inner edge. It is well-known
that any block of an outerplanar graph has a unique Hamiltonian cycle, which
consists of outer edges only.

1 It was reported that 94.4% of chemical compounds in NCI database have outerplanar
graph structures [8].
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If we fix an arbitrary vertex of a graph G as the root r, we can define the
parent-child relationship on biconnected components. For two vertices u and v, u
is called further than v if every simple path from u to r contains v. A biconnected
component C is called a parent of a biconnected component C′ if C and C′ share
a vertex v, where v is uniquely determined, and every path from any vertex in C′

to the root contains v. In such a case, C′ is called a child of C. A cutvertex v is
also called a parent of C if v is contained in both C and its parent component2.
Furthermore, the root r is a parent of C if r is contained in C.

For each cutvertex v, G(v) denotes the subgraph of G induced by v and the
vertices further than v. For a pair of a cutvertex v and a biconnected component
C containing v, G(v, C) denotes the subgraph of G induced by vertices in C
and its descendant components. For a biconnected component B with its parent
cutvertex w, a pair of vertices v and v′ in B is called a cut pair if v �= v′, v �= w,
and v′ �= w hold. For a pair (v, v′) in B such that v �= v′ holds (v or v′ can be the
parent cutvertex), V B(v, v′) denotes the set of the vertices lying on the one of
the two paths connecting v and v′ in the Hamilton cycle that does not contain
the parent cutvertex except its endpoints. B(v, v′) is the subgraph of B induced
by V B(v, v′) and is called a half block. It is to be noted that B(v, v′) contains
both v and v′. Then, G(v, v′) denotes the subgraph of G induced by V B(v, v′)
and the vertices in the biconnected components each of which is a descendant
of some vertex in V B(v, v′) − {v, v′}, and G(v, v′) denotes the subgraph of G
induced by the vertices in G(v, v′) and descendant components of v and v′.

Example. Fig. 1 shows an example of an outerplanar graph G(V,E). Blocks
and bridges are shown by gray regions and bold lines, respectively. B1, B3 and
e2 are the children of the root r. B4, B6 and B7 are the children of B3, whereas
B4 and B6 are the children of w. Both w and B3 are the parents of B4 and
B6. G(w) consists of B4, B5 and B6, whereas G(w,B4) consists of B4 and B5.
(v, v′) is a cut pair of B7, and B7(v, v

′) is a region surrounded by a dashed bold
curve. G(v, v′) consists of B7(v, v

′), B8, B9, B10, e4, e5, and e6, whereas G(v, v′)
consists of B7(v, v

′), B10, e4, and e5.

If a connected graph Gc(Vc, Ec) is isomorphic to a subgraph of G1 and a sub-
graph of G2, we call Gc a common subgraph of G1 and G2. A common subgraph
Gc is called a maximum common subgraph (MCS) of G1 and G2 if its number of
edges is the maximum among all common subgraphs3. In this paper, we consider
the following problem.

Maximum Common Subgraph of Outerplanar Graphs of Bounded De-
gree (OUTER-MCS)
Given two undirected connected outerplanar graphs G1 and G2 whose maximum
vertex degree is bounded by a constant D, find a maximum common subgraph
of G1 and G2.

2 Both of a cutvertex and a biconnected component can be parents of the same
component.

3 We use MCS to denote both the problem and the maximum common subgraph.
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Fig. 1. Example of an outerplanar graph

Notice that the degree bound is essential because MCS is NP-hard for outer-
planar graphs of unbounded degree even if each biconnected component consists
of at most three vertices [2]. Although we do not consider labels on vertices or
edges, our results can be extended to vertex-labeled and/or edge-labeled cases
in which label information must be preserved in isomorphic mapping. In the
following, n denotes the maximum number of vertices of two input graphs4.

In this paper, we implicitly make extensive use of the following well-known
fact [11] along with outerplanarity of input graphs.

Fact 1. Let G1 and G2 be biconnected outerplanar graphs. Let (u1, u2, . . . , um)
(resp. (v1, v2, . . . , vn)) be the vertices of G1 (resp. G2) arranged in the clockwise
order in some planar embedding of G1 (resp. G2). If there is an isomorphic
mapping {(u1, vi1), (u2, vi2), . . . , (um, vim)} from G1 to a subgraph of G2 then
vi1 , vi2 , . . . , vim appear in G2 in either clockwise or counterclockwise order.

3 Algorithm for a Restricted Case

In this section, we consider the following restricted variant of OUTER-MCS,
which is called SIMPLE-OUTER-MCS, and present a polynomial-time algorithm
for it: (i) any two vertices in different biconnected components in a maximum
common subgraph Gc must not be mapped to vertices in the same biconnected
component in G1 (resp. G2), (ii) each bridge in Gc must be mapped to a bridge
in G1 (resp. G2), (iii) the maximum degree need not be bounded.

It is to be noted from the definition of a common subgraph (regardless of the
above restrictions) that no two vertices in different biconnected components in
G1 (resp. G2) are mapped to vertices in the same biconnected component in
any common subgraph, or no bridge in G1 (resp. G2) is mapped to an edge in a
block in any common subgraph.

4 It should be noted that the number of vertices and the number of edges are in the
same order since we only consider connected outerplanar graphs.
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It seems that SIMPLE-OUTER-MCS is the same as one studied by Schietgat
et al. [13]. Although our algorithm is more complex and less efficient than theirs,
we present it here because the algorithm for a general (but bounded degree) case
is rather involved and is based on our algorithm for SIMPLE-OUTER-MCS.

Here we present a recursive algorithm to compute the size of MCS in SIMPLE-
OUTER-MCS, which can be easily transformed into a dynamic programming
algorithm to compute an MCS. The following is the main procedure of the
recursive algorithm.

Procedure SimpleOuterMCS(G1, G2)
smax ← 0;
for all pairs of vertices (u, v) ∈ V1 × V2 do
Let (u, v) be the root pair (r1, r2) of (G1, G2);
smax ← max(smax,MCSc(G1(r1), G2(r2)));

return smax.

The algorithm consists of recursive computation of the following three scores:

MCSc(G1(u), G2(v)): the size of an MCS Gc between G1(u) and G2(v), where
(u, v) is a pair of the roots or a pair of cutvertices, and Gc must contain a
vertex corresponding to both u and v.

MCSb(G1(u,C), G2(v,D)): the size of an MCS Gc between G1(u,C) and
G2(v,D), where (C,D) is either a pair of blocks or a pair of bridges, u
(resp. v) is the cutvertex belonging to both C (resp. D) and its parent, Gc
must contain a vertex corresponding to both u and v, and Gc must contain a
biconnected component (which can be empty) corresponding to a subgraph
of C and a subgraph D.

MCSp(G1(u, u
′), G2(v, v

′)): the size of an MCS Gc between G1(u, u
′) and

G2(v, v
′), where (u, u′) (resp. (v, v′)) is a cut pair, and Gc must contain

a cut pair (w,w′) corresponding to both (u, u′) and (v, v′). If there does not
exist such Gc (which must be connected), its score is −∞.

In the following, we describe how to compute these scores.

Computation of MCSc(G1(u), G2(v))
As in the dynamic programming algorithm for MCS for trees or almost trees

[2], we construct a bipartite graph and compute a maximum weight matching.
Let C1, . . . , Ch1 , e1, . . . , eh2 and D1, . . . , Dk1 , f1, . . . , fk2 be children of u and

v respectively, where Cis and Djs are blocks and eis and fjs are bridges (see
Fig. 2). We construct an edge-weighted bipartite graph BG(X,Y ;E) by

X = {C1, . . . , Ch1 , e1, . . . , eh2}, Y = {D1, . . . , Dk1 , f1, . . . , fk2},
E = {(x, y) | x ∈ X, y ∈ Y },

w(Ci, Dj) = MCSb(G1(u,Ci), G2(v,Dj)), w(Ci, fj) = 0,

w(ei, fj) = MCSb(G1(u, ei), G2(v, fj)), w(ei, Dj) = 0.

Then, we let MCSc(G1(u), G2(v)) be the weight of the maximum weight bipar-
tite matching of BG(X,Y ;E).
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Fig. 2. Computation of MCSc(G1(u), G2(v))

Computation of MCSb(G1(u,C), G2(v,D))
Let (u1, u2, . . . , uh) be the sequence of vertices in G1(u,C) such that there

exists an edge {ui, u} for each ui, where u1, u2, . . . , uh are arranged in the
clockwise order. (v1, v2, . . . , vk) is defined for G2(v,D) in the same way. A pair
of subsequences ((ui1 , ui2 , . . . , uig ), (vj1 , vj2 , . . . , vjg )) is called an alignment if
i1 < i2 < · · · < ig, and j1 < j2 < · · · < jg or jg < jg−1 < · · · < j1 hold5 where
g = 0 is allowed. We compute MCSb(G1(u,C), G2(v,D)) by the following (see
Fig. 3).

Procedure SimpleOuterMCSb(G1(u,C), G2(v,D))
smax ← 0;
for all alignments ((ui1 , ui2 , . . . , uig ), (vj1 , vj2 , . . . , vjg )) do;
if C is a block and g = 1 then continue; /* blocks must be preserved */
s← 0;
for t = 1 to g do s← s+ 1 +MCSc(G1(uit), G2(vjt));
for t = 2 to g do s← s+MCSp(G1(uit−1 , uit), G2(vjt−1 , vjt));
smax ← max(s, smax);

return smax.

u

u1
u2

u3

C1

C2

C3

C4

G1(u,C) G2(v,D)

v

v1

v2

v3

v4

D1

D2
D3

D4

D5

Fig. 3. Computation of MCSb(G1(u,C), G2(v,D))

For example, consider an alignment ((u1, u2, u3), (v1, v2, v4)) in Fig. 3, where
all alignments are to be examined in the algorithm. Then, the score of this
alignment is given by 3 + MCSb(G1(u1, C1), G2(v1, D1)) + MCSp(G1(u1, u2),

5 The latter ordering is required for handling mirror images.
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G2(v1, v2)) +MCSp(G1(u2, u3), G2(v2, v4)). In this case, an edge {v, v3} is re-
moved and then v3 is treated as a vertex on the path connecting v2 and v4 in
the outer face.

Since the above procedure examines all possible alignments, it may take expo-
nential time. However, we can modify it into a dynamic programming procedure
as shown below, where we omit a subprocedure for handling mirror images. In
this procedure, u1, u2, . . . , uh and v1, v2, . . . , vk are processed from left to right.
In the first for loop, M [s, t] stores the size of MCS between G1(us) and G2(vt)
plus one (corresponding to a common edge between {u, us} and {v, vt}). The
second double for loop computes an optimal alignment. M [s, t] stores the size
of MCS between G1(u,C) and G2(v,D) up to us and vt, respectively. flag is
introduced to ensure the connectedness of a common subgraph. For example,
flag = 0 if G1(u) is a triangle but G2(v) is a rectangle.

for all (s, t) ∈ {1, . . . , h} × {1, . . . , k} do
M [s, t]← 1 +MCSc(G1(us), G2(vt));

flag← 0;
for s = 2 to h do
for t = 2 to k do
M [s, t]←M [s, t]+

maxs′<s,t′<t{M [s′, t′] +MCSp(G1(us′ , us), G2(ut′ , ut))};
if M [s, t] > −∞ then flag ← 1;

if C is a block and flag = 0 then return 0 else return maxs,tM [s, t].

Computation of MCSp(G1(u, u
′), G2(v, v

′))
Let (u1, u2, . . . , uh) be the sequence of vertices in G1(u, u

′) such that there
exists an edge {ui, u} or {ui, u′} for each ui, where u1, u2, . . . , uh are arranged
in the clockwise order. (v1, v2, . . . , vk) is defined for G2(v, v

′) in the same way.
For a pair (ui, vj), l(ui, vj) = 1 if {ui, u} ∈ E1 and {vj , v} ∈ E2 hold, otherwise
l(ui, vj) = 0. For a pair (ui, vj), r(ui, vj) = 1 if {ui, u′} ∈ E1 and {vj , v′} ∈ E2

hold, otherwise r(ui, vj) = 0. We compute MCSp(G1(u, u
′), G2(v, v

′)) by the
following procedure, where it does not examine alignments with jg < jg−1 <
· · · < j1.

Procedure SimpleOuterMCSp(G1(u, u
′), G2(v, v

′))
if {u, u′} ∈ E1 and {v, v′} ∈ E2 then smax ← 1 else smax ← −∞;
for all alignments ((ui1 , ui2 , . . . , uig ), (vj1 , vj2 , . . . , vjg )) do
if l(uit , vjt) = 0 and r(uit , vjt) = 0 hold for some t then continue;
if l(ui1 , vj1) = 0 and r(uig , vjg ) = 0 hold then continue;
if {u, u′} ∈ E1 and {v, v′} ∈ E2 then s← 1 else s← 0;
for t = 1 to g do s← s+ l(uit , vjt) + r(uit , vjt) +MCSc(G1(uit), G2(vjt));
for t = 2 to g do s← s+MCSp(G1(uit−1 , uit), G2(vjt−1 , vjt));
smax ← max(s, smax);

return smax.

This procedure returns −∞ if there does not exist a connected common sub-
graph between G1(u, u

′) and G2(v, v
′) that contains (w,w′) corresponding to

both (u, u′) and (v, v′).
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As an example, consider an alignment ((u1, u2, u3, u4), (v1, v2, v3, v5)) in Fig. 4.
Then, the score is given by 4+MCSp(G1(u1, u2), G2(v1, v2))+MCSp(G1(u2, u3),
G2(v2, v3))+MCSb(G1(u3, C3), G2(v3, D4))+MCSp(G1(u3, u4), G2(v3.v5)). For
another example, the score is −∞ for each of alignments ((u1, u3), (v4, v5)),
((u1, u2), (v1, v2)), and ((u3), (v3)), whereas the score of ((u2), (v3)) is 2.

As in the case of SimpleOuterMCSb(G1(u,C), G2(v,D)), SimpleOuter
MCSp (G1(u, u

′), G2(v, v
′)) can be modified into a dynamic programming

version.

u

u1 u2

u’

u3 u4

C1
C2 C3

C4

G1(u,u’) G2(v,v’)

v v’

v4

v5

v1
v2 v3

D1
D2 D3 D4 D5

D6

Fig. 4. Computation of MCSp(G1(u, u
′), G2(v, v

′))

Then, we have the following theorem, where the proof is omitted here.

Theorem 1. SIMPLE-OUTER-MCS can be solved in polynomial time.

4 Algorithm for Outerplanar Graphs of Bounded Degree

In order to extend the algorithm in Section 3 for a general (but bounded degree)
case, we need to consider decomposition of biconnected components. For exam-
ple, consider graphs G1 and G2 in Fig. 5. We can see that in order to obtain
a maximum common subgraph, biconnected components in G1 and G2 should
be decomposed as shown in Fig. 5, where there are several other ways of op-
timal decompositions. This is the crucial point because considering all possible
decompositions easily leads to exponential-time algorithms. In order to charac-
terize decomposed components, we introduce the concept of blade as below.

Suppose that vi1 , . . . , vik are the vertices of a half block arranged in this order,
and vi1 and vik are respectively connected to v and v′, where v and v′ can be

G1 G2

Fig. 5. Example of a difficult case
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the same vertex. If we cut one edge {vih , vih+1
}, we obtain two subgraphs, one

induced by vi1 , vi2 , . . . , vih and the other induced by vik , vik−1
, . . . , vih+1

, where
only one such subgraph is obtained in the case of i1 = ih or ik = ih+1, and no
such subgraph is obtained in the case of k = 2. Each of these components is a
chain of biconnected components called a blade body, and a subgraph consisting
of a blade body and its descendants is called a blade (see Fig. 6). Vertices vi1
and vik , an edge {vih , vih+1

}, and vertices vih , vih+1
are called base vertices, a tip

edge, and tip vertices, respectively. The sequence of edges in the shortest path
from vi1 to vih (resp. from vik to vih+1

) is called the backbone of a blade. If
{v, vi1} is the leftmost edge (resp. {v′, vik} is the rightmost edge) connecting to
v (resp. v′) and is removed, the resulting half block induced by vik , . . . , vi2 , vi1
(resp. (vi1 , vi2 , . . . , vik)) is also regarded as a blade body where vik (resp. vi1)
becomes the base vertex. For example, the rightmost blade in Fig. 7 is created
by removing the rightmost edge of C1.

Since a blade can be specified by a pair of base and tip vertices and an
orientation (clockwise or counterclockwise), there exist O(n2) blades in G1 and
G2. Of course, we need to consider the possibility that during the execution of
the algorithm, other subgraphs may appear from which new blades are created.
However, we will show later that blades appearing in the algorithm are restricted
to be those in G1 and G2.

base
vertices

tip edge

base vertex

tip edge

(A)

(B)

backbone

tip vertices

tip vertex

v

v’

v

v’

vi1

vik

vih

vih+1

blade

blade

Fig. 6. (A) Construction of blades where subgraphs excluding gray regions (descendant
components) are blade bodies, and (B) schematic illustration of a blade

4.1 Description of Algorithm

In this subsection, we describe the algorithm as a recursive procedure, which can
be transformed into a dynamic programming one as in Section 3.

The main procedure (OuterMCS(G1, G2)) is the same as in Section 3, and we
recursively compute three kinds of scores:MCSc(G1(u), G2(v)),MCSb(G1(u,C),
G2(v,D)), and MCSp(G1(u, u

′), G2(v, v
′)), where cutvertices, cut pairs, blocks,
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and bridges do not necessarily mean those in the original graphs but may mean
those in subgraphs generated by the algorithm.

Computation of MCSc(G1(u), G2(v))
Let C1, . . . , Ch1 and e1, . . . , eh2 be children of u, where Cis and ejs are blocks

and bridges, respectively. Let ui1 , . . . , uih be the neighboring vertices of u that
are contained in children of u. We define a configuration as a tuple of the following
(see Fig. 7).

s(uij ) ∈ {0, 1} for j = 1, . . . , k: s(uij ) = 1 means that uij is selected as a neigh-
bor of u in a common subgraph, otherwise s(uij ) = 0. uij is called a selected
vertex if s(uij ) = 1.

tip(uij , uik): e = tip(uij , uik) is an edge in B(uij , uik) where B is the block
containing uij , uik , and u. This edge is defined only for a consecutive selected
vertex pair uij and uik in the same block (i.e., B(uij , uik) does not contain
any other selected vertex). e is used as a tip edge where e can be empty which
means that we do not cut any edge in B(uij , uik). It is to be noted that at
most one edge in B(uij , uik) can be a tip edge and thus each B(uij , uik) is
divided into at most two blade bodies: further decomposition will be done
in later steps.

Each configuration defines a subgraph of G1(u) as follows.

– ei = {uij , u} (i ∈ {1, . . . , h2}) remains if s(uij ) = 1. Otherwise ei is removed
along with its descendants.

– If no vertex in Ci is selected, Ci is removed along with its descendants.
Otherwise, half blocks in Ci are broken into blade bodies (according to s(. . .)s
and tip(. . .)s) and edges {uij , u} with s(uij ) = 0 are removed.

Let C′1, . . . , C
′
p1 and e′1, . . . , e

′
p2 be the resulting blocks and bridges containing

u, which are new ‘children’ of u, for a configuration F1. Configurations are de-
fined for G2(v) in an analogous way. Let D′1, . . . , D

′
q1 and f ′1, . . . , f

′
q2 be the

resulting new children of v for a configuration F2 of G2. As in Section 3, we con-
struct a bipartite graph BGF1,F2 by w(C′i, D

′
j) = MCSb(G1(u,C

′
i), G2(v,D

′
j)),

w(C′i, f
′
j) = 0, w(e′i, f

′
j) = MCSb(G1(u, e

′
i), G2(v, f

′
j)), w(e

′
i, D

′
j) = 0, and com-

pute the weight of the maximum weight matching for each configuration pair
(F1, F2)

6. The following is a procedure for computing MCSc(G1(u), G2(v)).

Procedure OuterMCSc(G1(u), G2(v))
smax ← 0;
for all configurations F1 for G1(u) do
for all configurations F2 for G2(v) do
s← weight of the maximum weight matching of BGF1,F2 ;
if s > smax then smax ← s;

return smax.

6 Although a bridge cannot be mapped on a block here, a bridge can be mapped to
an edge in a block by cutting the block using tip edge(s).
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u

tip edge tip edge

u

e1 e2

C1

e1’

e2’

C1’

u1 u2 u3

Fig. 7. Example of configuration and its resulting subgraph of G1(u), where black
circles, dark gray regions, thin dotted lines denote selected vertices, blades, and removed
edges, respectively. C′

1 has three blades and one block as the children, and e′1 has two
blades as the children. The role of u1, u2, and u3 corresponds to that of u1, u2, and u3

in Fig. 3.

Computation of MCSb(G1(u,C
′), G2(v,D

′))
This score can be computed as in Section 3. In this case, we can directly

examine all possible alignments because the number of neighbors of u or v is
bounded by a constant and we need to examine a constant number of alignments.

Computation of MCSp(G1(u, u
′), G2(v, v

′)).
This part is a bit more complex than the restricted case because we need to

take configurations into account, where the details are omitted here.

4.2 Analysis

It is straightforward to check the correctness of the algorithm because it implic-
itly examines all possible common subgraphs. Therefore, we focus on analysis of
the time complexity, where the proofs are omitted here. As mentioned before,
each blade is specified by base and tip vertices in G1 or G2 and an orientation.
Each half block is also specified by two vertices in a block in G1 or G2. We show
that this property is maintained throughout the execution of the algorithm and
bound the number of half blocks and blades as below.

Lemma 1. The number of different half blocks and blades appearing in
OuterMCS(G1, G2) is O(n2).

Finally, we obtain the following theorem.

Theorem 2. A maximum connected common subgraph of two outerplanar graphs
of bounded degree can be computed in polynomial time.

5 Concluding Remarks

We have presented a polynomial-time algorithm for the maximum common sub-
graph problem for outerplanar graphs of bounded degree. However, it is not
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practically efficient. Therefore, development of a much faster algorithm is left as
an open problem. Although the proposed algorithm might be modified for out-
putting all maximum common subgraphs, it would not be an output-polynomial
time algorithm. Therefore, such an algorithm should also be developed.
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Abstract. This paper is motivated by a conjecture [1,5] that BPP can be charac-
terized in terms of polynomial-time nonadaptive reductions to the set of
Kolmogorov-random strings. In this paper we show that an approach laid out in
[5] to settle this conjecture cannot succeed without significant alteration, but that
it does bear fruit if we consider time-bounded Kolmogorov complexity instead.

We show that if a set A is reducible in polynomial time to the set of time-t-
bounded Kolmogorov-random strings (for all large enough time bounds t), then
A is in P/poly, and that if in addition such a reduction exists for any universal
Turing machine one uses in the definition of Kolmogorov complexity, then A is
in PSPACE.

1 Introduction

The roots of this investigation stretch back to the discovery that PSPACE ⊆ PR and
NEXP ⊆ NPR, where R is the set of Kolmogorov-random strings [4,3]. Later, it was
shown that BPP ⊆ PRtt [8], where PAtt denotes the class of problems reducible to A via
polynomial-time nonadaptive (or truth-table) reductions.

There is evidence indicating that some of these inclusions are in some sense optimal.
The inclusions mentioned in the preceding paragraph hold for the two most-common
versions of Kolmogorov complexity (the plain complexity C and the prefix-free com-
plexityK), and they also hold no matter which universal Turing machine one uses when
defining the measures K and C.

Let RKU denote the set of random strings according to the prefix-free measure K
given by the universal machine U : RKU = {x : KU (x) ≥ |x|}. Last year, it was
shown that the class of decidable sets that are polynomial-time truth-table reducible

to RKU for every U is contained in PSPACE [6]. That is, although P
RKU
tt contains

arbitrarily complex decidable sets, an extremely complex set can only be there because
of characteristics of RKU that are fragile with respect to the choice of U .

This motivates the following definition: DTTR is the class of all decidable problems
that are polynomial-time truth-table reducible to RKU for every choice of universal
prefix-free Turing machine U . Thus it was proven that BPP ⊆ DTTR ⊆ PSPACE ⊆
PRK , which leads naturally to the following:

Research question: Does DTTR sit closer to BPP, or closer to PSPACE?

B. Rovan, V. Sassone, and P. Widmayer (Eds.): MFCS 2012, LNCS 7464, pp. 88–99, 2012.
c© Springer-Verlag Berlin Heidelberg 2012
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A conjecture by various authors [5,1] is that DTTR actually characterizes BPP ex-
actly. Part of the intuition is that a non-adaptive reduction cannot make use of queries to
RK larger than O(log n) to solve a decidable problem. If indeed true we could use the
strings of length at most O(log n) as advice and answer the larger queries with NO, to
show that these sets are in P/poly. The rest of the intuition is that the smaller strings can
only be used as a source for pseudo-randomness. If we are able to prove this conjecture,
then we can make use of the tools of Kolmogorov complexity to study various ques-
tions about the class BPP. Because of the inclusions listed above, this now amounts to
understanding the relative power of Turing reductions vs. truth-table reductions to RK .

In an attempt to tackle this question, it was conjectured in [5,1] that the DTTR ⊆
PSPACE upper bound can be improved to PSPACE∩P/poly, and an approach was sug-
gested, based on the above mentioned intuition in connection with formal systems of
arithmetic. In this paper, we show that this approach must fail, or at least requires signif-
icant changes. Interestingly, we can also prove that this intuition — that the large queries
can be answered with NO — can be used in the resource-bounded setting to show an
analogue of the P/poly inclusion. While demonstrating this discrepancy we show sev-
eral other ways in which reductions to RK and RKt are actually very different; in
particular, we construct a counter-intuitive example of a polynomial-time non-adaptive
reduction that distinguishes RK from RKt , for any sufficiently large time-bound t.

To investigate the resource-bounded setting we define a class TTRT as a time-
bounded analog of DTTR; informally, TTRT is the class of problems that are
polynomial-time truth-table reducible to RKt for every sufficiently fast-growing time-
bound t, and every “time-efficient” universal Turing machine used to define Kt. We
prove that, for all monotone nondecreasing computable functions α(n) = ω(1),

BPP ⊆ TTRT ⊆ PSPACE/α(n) ∩ P/poly.

Here, PSPACE/α(n) is a “slightly non-uniform” version of PSPACE. We believe that
this indicates that TTRT is “closer” to BPP than it is to PSPACE.

It would be more appealing to avoid the advice function, and we are able to do
so, although this depends on a fine point in the definition of time-efficient prefix-free
Kolmogorov complexity. This point involves a subtle technical distinction, and will be
left for the appropriate section. To summarize:

– In Section 3 we prove that TTRT ⊆ P/poly, by using the same basic idea of [5,1].
We further show, however, that this approach will not work to prove DTTR ⊆
P/poly, and by reversing the logic connection of [5,1], this will give us an indepen-
dence result in certain extensions of Peano arithmetic.

– Then in section 4 we prove that TTRT ⊆ PSPACE/α(n), which is a non-trivial
adaptation of the techniques from [6]. In section 5 we show how to get the result
without the super-constant advice term.

In the final section we discuss prospects for future work.

2 Preliminaries

We assume the reader is familiar with basic complexity theory [7] and Kolmogorov
complexity [12]. We use ≤pT and PA when referring to polynomial-time Turing
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reductions, and ≤ptt and PAtt for polynomial-time truth-table (or non-adaptive) reduc-
tions. For example, M : A ≤pT B means that M is a Turing reduction from A to B. For
a set A of strings, A≤n denotes the set of all strings of length at most n in A.

We let KU denote Kolmogorov complexity with respect to prefix machine U , i.e.,
KU (x) = min{|p| : U(p) = x}. We use RKU to denote the set of KU -random strings
{x|KU (x) ≥ |x|}. In this paper, a function t : N → N is called a “time-bound” if it
is non-decreasing and time-constructible. We use the following time-bounded version
of Kolmogorov complexity: for a prefix machine U and a time-bound t, Kt

U (x) is the
length of the smallest string p such that U(p) outputs x and halts in fewer than t(|x|)
time steps. Then RKt

U
is the set of Kt

U -random strings {x|Kt
U (x) ≥ |x|}. Let us define

what it means for a machine to be “universal” in the time-bounded setting:

Definition 2.1. A prefix machine U is a time-efficient universal prefix machine if there
exist constants c and cM for each prefix machine M , such that

1. ∀x, KU (x) ≤ KM (x) + cM
2. ∀x, Kt

U (x) ≤ Kt′

M (x) + cM for all t > t′
c

We will sometimes omit U in the notation KU , RKU ,K
t
U , RKt

U
, in which case we mean

U = U0, for some arbitrary choice of a time-efficient universal prefix machineU0. Now
we can formally define the time-bounded analogue of DTTR:

Definition 2.2. TTRT is the class of languages L such that there exists a time bound
t0 (depending on L) such that for all time-efficient universal prefix machines U and
t ≥ t0, L ≤ptt RKt

U
.

Corollary 12 from [8] says that, if t ≥ t0 = 22
2n

, then BPP ≤ptt RKt
U

, for any time-
efficient universal U . This implies:

Theorem 2.3 ([8]). BPP ⊆ TTRT.

Proposition 2.4. For any machine M and t′(|x|) > 2|x|t(|x|), the query x ∈ RKt
M
?

can be computed in time t′.

Due to page limits, we refer the reader to [2] for this proof and several other proofs that
are omitted here.

Proposition 2.5. Let L ≤ptt RKt
U

for some time-bound t. Then there exists a constant

k such that the language L can be computed in tL(n) = 2n
k

t(nk) time.

It is the ability to compute RKt for short strings that makes the time-bounded case
different from the ordinary case. This will be seen in proofs throughout the paper.

3 How and Why to Distinguish RK from RKt

At first glance, it seems reasonable to guess that a polynomial-time reduction would
have difficulty telling the difference between an oracle for RK and an oracle for RKt ,
for large enough t. Indeed RK ⊆ RKt and in the limit for t→∞ they coincide.

One might even suspect that a polynomial-time reduction must behave the same way
with RKt and RK as oracle, already for modest time bounds t. However, this intuition
is wrong. Here is an example for adaptive polynomial-time reductions.
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Observation 3.1. There is a polynomial-time algorithm which, given oracle access to
RK and input 1n, outputs a K-random string of length n. However, for any time-bound
t such that t(n + 1) * 2nt(n), there is no polynomial-time algorithm which, given
oracle access to RKt and input 1n, outputs a Kt-random string of length n.

For the algorithm, see [9]; roughly, we start with a small random string and then use
[9, Theorem 15] (described later) to get a successively larger random string. But in the
time-bounded case in [10] it is shown that on input 1n, no polynomial-time machine
M can query (or output) any Kt-random string of length n: in fact, M(1n) is the same
for both oracles RKt and R′ = R≤n−1

Kt . This is proven as follows: since R′ can be
computed in time t(n) (by Proposition 2.4), then any query of length ≥ n made by
MR′

(1n) is described by a pointer of length O(log n) in time t(n), and hence is not in
RKt .

3.1 Small Circuits for Sets Reducible to RKt

We now prove that TTRT is a subset of P/poly. Actually, we will prove that this holds
even for Turing reductions to RKt

U
for a single universal Turing machine U (for large

enough t):

Theorem 3.2. Suppose A ∈ DTIME(t1) and M : A ≤pT RKt , for some time-bounds
t, t1 with t(n+1) ≥ 2nt(n) + 22

n

t1(2
n).1 Then A ∈ P/poly; in fact, if M runs in time

nc, and R′ = R
≤�(c+1) logn�
Kt , then ∀x ∈ {0, 1}n MR′

(x) = A(x).

Proof. Let (n) = +(c + 1) logn,, R′(n) = R
≤�(n)
Kt , and suppose that MR′(n)(x) �=

A(x) for some x of length n. Then we may find the first such x in time 2�(n)t((n)) +
2n+1(t1(n) + O(nc)) (cf. Proposition 2.4), and each query made by MR′(n)(x) can
be output by a program of length c logn + O(1), running in the same time bound.
But since A(x) �= MR′(n)(x), it must be that, with R′(n) as oracle, M makes some
query q of size m ≥ (n) + 1 which is random for t-bounded Kolmogorov complexity
(because both small and non-random queries are answered correctly when using R′

instead of RKt ). Hence we have both that q is supposed to be random, and that q can be
output by a program of length < (n) in time 2�(n)t((n)) + 2n+1(t1(n) + O(nc))-
2�(n)t((n)) + 22

�(n)

t1(2
�(n)) ≤ t((n) + 1) ≤ t(m), which is a contradiction. .�

Corollary 3.3. TTRT ⊆ P/poly

PSPACE ≤pT RK [4], but Theorem 3.2 implies that PSPACE �≤pT RKt for sufficiently-
large t, unless PSPACE ⊆ P/poly. This highlights the difference between the time-
bounded and ordinary Kolmogorov complexity, and how this comes to the surface when
working with reductions to the corresponding sets of random strings.

1 For example, if A ∈ EXP, then t can be doubly-exponential. If A is elementary-time com-
putable, then t can be an exponential tower.
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3.2 A Reduction Distinguishing RK from RKt , and an Incorrect Conjecture

Theorem 3.2 shows that a polynomial-time truth-table reduction to RKt for sufficiently-
large t will work just as well if only the logarithmically-short queries are answered
correctly, and all of the other queries are simply answered “no”.

The authors of [5] conjectured that a similar situation would hold if the oracle were
RK instead of RKt . More precisely, they proposed a proof-theoretic approach towards
proving that DTTR is in P/poly: Let PA0 denote Peano Arithmetic, and for k > 0 let
PAk denote PAk−1 augmented with the axiom “PAk−1 is consistent”. In [5] it is shown
that, for any polynomial-time truth-table reductionM reducing a decidable set A to RK ,
one can construct a true statement of the form ∀n∀j∀kΨ(n, j, k) (which is provable in
a theory such as Zermelo-Frankel), with the property that if, for each fixed (n,j,k) there
is some k′ such that PAk′ proves ψ(n,j, k), then DTTR ⊆ P/poly. Furthermore, if these
statements were provable in the given extensions of PA, it would follow that, for each
input length n, there is a finite subset R′ ⊆ RK consisting of strings having length at
most O(log n), such that MR′

(x) = A(x) for all strings x of length n.
Thus the authors of [5] implicitly conjectured that, for any polynomial-time truth-

table reduction of a decidable set to RK , and for any n, there would be some setting of
the short queries so that the reduction would still work on inputs of length n, when all
of the long queries are answered “no”. While we have just seen that this is precisely the
case for the time-bounded situation, the next theorem shows that this does not hold for
RK , even if “short” is interpreted as meaning “of length < n”. (It follows that infinitely
many of the statements ψ(n,j, k) of [5] are independent of every PAk′ .)

Theorem 3.4. There is a truth-table reduction M : {0, 1}∗ ≤ptt RK , such that, for all
large enough n:

∀R′ ⊆ {0, 1}≤n−1∃x ∈ {0, 1}n MR′
(x) �= 1.

Proof. Theorem 15 of [9] presents a polynomial-time procedure which, given a string
z of even length n− 2, will output a list of constantly-many strings z1, . . . , zc of length
n, such that at least one of them will be K-random if z is. We use this to define our
reduction M as follows: on input x = 00 . . . 0z of length n having even |z|, we query
each of z, z1, . . . , zc, and every string of length at most logn. If there are no strings of
length at most logn in the oracle, we reject. Else, if z is in the oracle but none of the zi
are, we reject. On all other cases we accept.

By [9, Theorem 15], and since RK has strings at every length, it is clear that M
accepts every string with oracle RK , and rejects every string if R′ = ∅. However, for
any non-empty set R′ ⊆ {0, 1}≤n−1, let  ≤ n−1 be the highest even length for which
R′

=� �= ∅, and pick z ∈ R′
=�. Then we will have z ∈ R′

=� but every zi �∈ R=�+2,
hence MR′

(00 . . . 0z) rejects. .�
In fact, if we let R′ = R≤n−1

Kt , for evenn, then for the first x = 00z such that MR′
(x) =

0, we will have z ∈ R′ ⊆ RKt , but each zi can be given by a small pointer in time
O(2n−1t(n − 1)) (again we use Proposition 2.4), and hence zi �∈ RKt for suitably
fast-growing t. Thus MRKt (x) = 0 �= MRK (x), and we conclude:

Observation 3.5. If t(n + 1) * 2nt(n), then the non-adaptive reduction M above
behaves differently on the oracles RK and RKt .
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4 Polynomial Space with Advice

Our single goal for this section is proving the following:

Theorem 4.1. For any computable unbounded function α(n) = ω(1),

TTRT ⊆ PSPACE/α(n).

The proof of this theorem is patterned closely on related arguments in [6], although a
number of complications arise in the time-bounded case. Because of space limitations,
the presentation here will not be self-contained; readers will often be referred to [6].

Proposition 4.2 (Analogue to Coding Theorem). Let f be a function such that

1.
∑

x∈{0,1}∗ 2
−f(x) ≤ 1

2. There is a machine M computing f(x) in time t(|x|)

Let t′(|x|) > 22|x|t(|x|). Then for some M ′, Kt′

M ′(x) = f(x) + 2.

Proposition 4.3 (Analogue to Proposition 6 from [6]). Let U be a time-efficient uni-
versal prefix Turing machine and M be any prefix Turing machine. Suppose that t, t′,
and t′′ are time bounds and f, g are two time-constructible increasing functions, such
that f is upper bounded by a polynomial, and t′′(|x|) = f(t(|x|)) = g(t′(|x|)).

Then there is a time-efficient universal prefix machine U ′ such that

Kt′′

U ′(x) = min(Kt
U (x),K

t′

M (x)) + 1

.Proposition 4.4 (Analogue of Proposition 7 from [6]). Given any time-efficient uni-
versal prefix machine U , time bound t, and constant c ≥ 0, there is a time-efficient
universal prefix machine U ′ such that Kt

U ′(x) = Kt
U (x) + c.

Proof (of Theorem 4.1). Fix α, and suppose for contradiction that L ∈ TTRT −
PSPACE/α(n). Let t0 be the time bound given in the definition of TTRT, and let U0

be some arbitrary time-efficient universal prefix machine. By the definition of TTRT,
L ≤ptt RKt0

U0

. Therefore, by Proposition 2.5, L is decidable in time tL(n) = 2n
k

t0(n
k)

for some constant k.
Let t∗(n) be an extremely fast-growing function, so that for any constant d, we have

t∗(log(α(n))) > 2n
d

tL(n) for all large n. To get our contradiction, we will show that
there exists a time-efficient universal prefix machine U such that L �≤ptt RKt∗3

U
. Note

that because t∗ > t0, this is a contradiction to the fact that L ∈ TTRT.
For any function f : {0, 1}∗ → N, define Rf = {x : f(x) ≥ |x|}. We will construct

a function F : {0, 1}∗ → N and use it to form a function H : {0, 1}∗ → N such that:

1. F is a total function and F (x) is computable in time t∗2(|x|) by a machine M .
2. H(x) = min(Kt∗

U0
(x) + 5, F (x) + 3).

3.
∑

x∈{0,1}∗ 2
−H(x) ≤ 1/8

4. L �≤ptt RH
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Claim (Analogue of Claim 1 from [6]). Given the above properties H = Kt∗3

U for some
efficient universal prefix machine U .

By Property 4 this ensures that the theorem holds.

Proof. By Property 3 we have that
∑
x∈{0,1}∗ 2

−(F (x)+3) ≤ 1/8. Hence
∑

x∈{0,1}∗

2F (x) ≤ 1. Using this along with Property 1, we then have by Proposition 4.2 that
Kt∗3

M ′ = F + 2 for some prefix machine M ′. By Proposition 4.4 we have that Kt∗

U ′ =
Kt∗

U0
+ 4 for some efficient universal prefix machine U ′. Therefore, by Proposition 4.3,

with f(n) = n3, g(n) = n, we find that H(x) = min(Kt∗

U0
(x) + 5, F (x) + 3) =

min(Kt∗

U ′(x),Kt∗3

M ′ ) + 1 is Kt∗3

U for some efficient universal prefix machine U . .�

We now need to show that, for our given language L, we can always construct functions
H and F with the desired properties. As part of this construction we will set up and play
a number of games. Our moves in the game will define the function F . Potentially dur-
ing one of these games, we will play a move forcing a string z to be in the complement
of RH . To do this we will set F (z) = |z| − 4. Therefore, a machine M can compute
F (z) by running our construction, looking for the first time during the construction that
F (z) is set to |z| − 4, and outputting |z| − 4. If a certain amount of time elapses during
the construction without F (z) ever being set to |z|−4, then the machine M outputs the
default value 2|z|.

As in [6], to ensure that L �≤ptt RH , we need to satisfy an infinite list of requirements
of the form

Re : γe is not a polynomial-time truth-table reduction of L to RH .
In contrast to the situation in [6], we do not need to worry about playing different

games simultaneously or dealing with requirements in an unpredictable order; we will
first satisfy R1, then R2, etc. To satisfy Re we will set up a game Ge,x for an appropriate
string x of our choice, and then play out the game in its entirety. We will choose x so
that we can win the game Ge,x, which will ensure that Re is satisfied. If the K player
cheats on game Ge,x, then we play Ge,x′ for some x′. For the same reasons as in [6] the
K player cannot cheat infinitely often on games for a particular e, so eventually Re will
be satisfied.

A game Ge,x will be played as follows:
First we calculate the circuit γe,x, which represents the reduction γe on input x. Let

F ∗ be the function F as it is at this point of the construction when the game Ge,x is
about to be played. For any query zi that is an input of this circuit such that |zi| ≤
log(α(|x|)) − 1, we calculate ri = min(Kt∗

U0
(zi) + 5, F ∗(zi) + 3). If ri < |zi| we

substitute FALSE in for the query, and simplify the circuit accordingly, otherwise we
substitute TRUE in for the query, and simplify the circuit accordingly. (We will refer to
this as the “pregame preprocessing phase”.)

The remaining queries zi are then ordered by increasing length. There are two play-
ers, the F player (whose moves will be played by us during the construction), and the K
player (whose moves will be determined by KU0). As in [6], in each game the F player
will either be playing on the YES side (trying to make the final value of the circuit equal
TRUE), or the NO side (trying to make the final value of the circuit equal FALSE).
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Let S1 be the set of queries from γe,x of smallest length, let S2 be the set of queries
that have the second smallest length, etc. So we can think of the queries being grouped
into an ordered set S = (S1, S2, . . . , Sr) for some r.

The scoring for the game is similar to that in [6]; originally each player has a score of
0 and a player loses if his score exceeds some threshold ε. When playing a game Ge,x,
we set ε = 2−e−6.

In round one of the game, the K player makes some (potentially empty) subset Z1 of
the queries from S1 nonrandom. For any Z1 ⊆ S1 that he chooses to make nonrandom,∑

z∈Z1
2−(|z|−6) − 2−2|z| is added to his score. As in [6], a player can only legally

make a move if doing so will not cause his score to exceed ε.
Let us provide some explanation of how to interpret this score. Originally the func-

tion H is set so that for all z, H(z) = 2|z|. Because H = min(Kt∗

U0
+ 5, F + 3), if

Kt∗

U0
(z) ≤ |z| − 6 then this ensures that z will be non-random according to H . It would

be sub-optimal for the K player to set Kt∗

U0
(z) to a value lower than |z| − 6, because

this would add more to his score without any additional benefit. Therefore we assume
without loss of generality that when the K player makes a move he does so in exactly
this way. Thus the amount that is added to the score of player K corresponds to the
amount by which K is changing the probability assigned to each string z (viewing K
as a probability function). As in [6], for the case of analyzing the games and determin-
ing who has a winning strategy, we assume that the K player is an adversary playing
optimally, even though in reality his moves will be based on an enumeration that knows
nothing of these games.

After the K player makes his move in round 1, the F player responds, by making
some subset Y1 of the queries from S1 − Z1 nonrandom. After the F player moves,∑

z∈Y1
2−(|z|−4) − 2−2|z| is added to his score.

This is the end of round one. Then we continue on to round two, played in the same
way. The K player goes first and makes some subset of the queries from S2 nonrandom
(which makes his score go up accordingly), and then the F player responds by making
some subset of the remaining queries from S2 nonrandom. Note that if a query from Si
is not made nonrandom by either the K player or the F player in round i, it cannot be
made nonrandom by either player for the remainder of the game.

After r rounds are finished the game is done and we see who wins, by evaluating the
circuit γe,x using the answers to the queries that have been established by the play of
the game. If the circuit evaluates to TRUE (FALSE) and the F player is playing as the
YES (NO) player, then the F player wins, otherwise the K player wins.

Note that the game is asymmetric between the F player and the K player; the F
player has an advantage due to the fact that he plays second in each round and can make
an identical move for fewer points than the K player. Because the game is asymmetric,
it is possible that F can have a winning strategy playing on both the YES and NO sides.
Thus we define a set val(Ge,x′) ⊆ {0, 1} as follows: 0 ∈ val(Ge,x′) if the F player has
a winning strategy playing on the NO side in Ge,x′ , and 1 ∈ val(Ge,x′) if the F player
has a winning strategy playing on the YES side in Ge,x′ .

Now we describe the construction. Suppose s time steps have elapsed during the
construction up to this point, and we are getting ready to construct a new game in order
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to satisfy requirementRe. (Either because we just finished satisfying requirementRe−1,
or because K cheated on some game Ge,x, so we have to start a new game Ge,x′ ).

Starting with the string 0t
∗4(s) (i.e. the string of t∗4(s) zeros), we search strings in

lexicographical order (as we do in [6]) until we find an x′ such that (1 − L(x′)) ∈
val(Ge,x′). (Here, L denotes the characteristic function of the set L.)

Once we find such a string x′ (which we will prove we always can), then we play out
the game Ge,x′ with the F player (us) playing on the YES side if L(x′) = 0 and the NO
side if L(x′) = 1. To determine the K player’s move in the ith round, we let Zi ⊆ Si
be those queries z ∈ Si for which Kt∗

U0
(z) + 5 < |z|. Our moves are determined by our

winning strategy, and are played as in [6]. (These determine the function F ; as in [6]
initially F (x) = 2|x| for all x). If the game is completed without the K player cheating,
then we will have won the game, and Re will be satisfied and will stay satisfied for the
rest of the construction.

Note that when a game Ge,x is played, x is always chosen large enough so that any
query that is not fixed during the pregame preprocessing has not appeared in any game
that was played previously, so the games will never conflict with each other.

The analysis for why Properties 3 and 4 hold is basically identical to [6].
To wrap up the proof of the theorem, we need to prove a couple of claims.

Claim (Analogue of Claim 4 from [6]). During the construction, for any requirement
Re, we can always find a witness x with the needed properties to construct Ge,x.

Proof. Suppose for some requirement Re, our lexicographical search goes on forever
without finding an x such that (1 − L(x′)) ∈ val(Ge,x′). Then L ∈ PSPACE/α(n),
which is a contradiction.

Here is the PSPACE algorithm to decide L. Hardcode all the answers for the initial
sequence of strings up to the point where we got stuck in the construction. Let F ∗ be
the function F up to that point in the construction. On a general input x, construct γe,x.
The advice function α(n) will give the truth-table of min(Kt∗

U0
(z) + 5, F ∗(z) + 3)

for all queries z such that |z| ≤ log(α(|x|)) − 1. For any query z of γe,x such that
|z| ≤ log(α(|x|)) − 1, fix the answer to the query according to the advice.

If the F player had a winning strategy for both the YES and NO player on game
Ge,x, then we wouldn’t have gotten stuck on Re. Also the F player must have a winning
strategy for either the YES or the NO player, since he always has an advantage over the
K player when playing the game. Therefore, because we got stuck, it must be that the
F player has a winning strategy for the YES player if and only if L(x) = 1. Once
the small queries have been fixed, finding which side (YES or NO) the F player has a
winning strategy for on Ge,x, and hence whether L(x) = 1 or L(x) = 0, can be done
in PSPACE.2 .�

Claim. F (z) is computable in time t∗2(|z|)

Proof. The function F is determined by the moves we play in games during the con-
struction. In order to prove the claim, we must show that if during the construction we

2 This follows from [6], as these games are a restricted case of the games from that paper. The
point is that we can write the predicate “The F player has a winning strategy as the YES player
on Ge,x” as a simple quantified boolean formula.
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as the F player make a move that involves setting a string z to be non-random, then
fewer than t∗2(|z|) time steps have elapsed during the construction up to that point. The
machine M that computes F will on input z run the construction for t∗2(|z|) steps. If at
some point before this during the construction we as the F player make z non-random,
then M outputs |z| − 4. Otherwise M outputs 2|z|.

Suppose during the construction that we as the F player make a move that sets a
query z to be non-random during a game Ge,x. Note that |z| ≥ log(α(|x|)), otherwise
z would have been fixed during the preprocessing stage of the game.

There are at most 2|x|+1 strings x′ that we could have considered during our lexico-
graphic search to find a game for which we had a winning strategy before finally finding
x. Let s be the number of time steps that have elapsed during the construction before
this search began.

Let us first bound the amount of time it takes to reject each of these strings x′. To
compute the circuit γe,x′ takes at most |x′|k time for some constant k. For each query
y such that |y| ≤ log(α(|x′|)) − 1 we compute min(Kt∗

U0
(y) + 5, F ∗(y) + 3). To

calculate F ∗(y) it suffices to rerun the construction up to this point and check whether
a move had been previously made on the string y. To do this takes s time steps, and
by construction we have that t∗(|z|) ≥ t∗(logα(|x|)) > |x′| ≥ t∗4(s), so s < |z|.
By Proposition 2.4, to compute Kt∗

U0
(y) takes at most 2|y|t∗(|y|) ≤ 2|z|t∗(|z|) times

steps. Therefore, since there can be at most |x′|k such queries, altogether computing
min(Kt∗

U0
(y) + 5, F ∗(y) + 3) for all these y will take fewer than |x′|k2|z|t∗(|z|) time

steps.
Then we must compute L(x′), and check whether (1 − L(x′)) ∈ val(Ge,x′). Com-

puting L(x′) takes tL(|x′|) time. By Claim 4, once the small queries have been fixed
appropriately, computing val(Ge,x′) can be done in PSPACE, so it takes at most 2|x

′|d

time for some constant d.
Compiling all this information, and using the fact that for each of these x′ we have

that |x′| ≤ |x|, we get that the total number of timesteps needed to reject all of these x′

is less than 2|x|
d′
2|z|tL(|x|)t∗(|z|) for some constant d′.

During the actual game Ge,x, before z is made non-random the construction might
have to compute Kt∗

U0
(y) + 5 for all queries of γe,x for which |y| ≤ |z|. By Proposition

2.4 this takes at most |x|k2|z|t∗(|z|) time.
Therefore, overall, for some constant d′′ the total amount of time steps elapsed before

z is made non random in the construction is at most

T = 2|x|
d′′

2|z|tL(|x|)t∗(|z|) + s < t∗2(|z|).

Here the inequality follows from the fact that t∗(log(α(|x|))) > 2|x|
d

tL(|x|) for any
constant d, and that |z| ≥ log(α(|x|)) . .�

5 Removing the Advice

With the plain Kolmogorov complexity function C, it is fairly clear what is meant by
a “time-efficient” universal Turing machine. Namely, U is a time-efficient universal
Turing machine if, for every Turing machine M , there is a constant c so that, for every
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x, if there is a description d for which M(d) = x in t steps, then there is a description
d′ of length ≤ |d| + c for which U(d′) = x in at most ct log t steps. However, with
prefix-free Kolmogorov complexity, the situation is more complicated. The easiest way
to define universal Turing machines for the prefix-free Kolmogorov complexity function
K is in terms of self-delimiting Turing machines. These are machines that have one-way
access to their input tape; x is a valid input for such a machine if the machine halts while
scanning the last symbol of x. For such machines, the notion of time-efficiency carries
over essentially unchanged. However, there are several other ways of characterizing K
(such as in terms of partial-recursive functions whose domains form a prefix code, or
in terms of prefix-free entropy functions). The running times of the machines that give
short descriptions of x using some of these other conventions can be substantially less
than the running times of the corresponding self-delimiting Turing machines. This issue
has been explored in detail by Juedes and Lutz [11], in connection with the P versus NP
problem. Given that there is some uncertainty about how best to define the notion of
time-efficient universal Turing machine for Kt-complexity, one possible response is
simply to allow much more leeway in the time-efficiency requirement.

If we do this, we are able to get rid of the small amount of non-uniformity in our
PSPACE upper bound.

Definition 5.1. A prefix machine U is an f -efficient universal prefix machine if there
exist constants cM for each prefix machine M , such that

1. ∀x, KU (x) ≤ KM (x) + cM
2. ∀x, Kt

U (x) ≤ Kt′

M (x) + cM for all t(n) > f(t′(n))

In Definition 2.1 we defined a time-efficient universal prefix machine to be any poly(n)-
efficient universal prefix machine.

Definition 5.2. Define TTRT′ to be the class of languages L such that for all com-
putable f there exists t0 such that for all f -efficient universal prefix machines U and
t ≥ t0, L ≤ptt RKt

U
.

Theorem 5.3. BPP ⊆ TTRT′ ⊆ PSPACE ∩ P/poly.

Note that TTRT′ ⊆ TTRT, so from Theorem 3.2 we get TTRT′ ⊆ P/poly. Also, the
proofs in [8] can be adapted to show that BPP ⊆ TTRT′. We refer the reader to [2] for
the PSPACE inclusion.

6 Conclusion

We have made some progress towards settling our research question in the case of time-
bounded Kolmogorov complexity, but we have also discovered that this situation is
substantially different from the ordinary Kolmogorov complexity. Solving this latter
case will likely prove to be much harder.

We would like to prove an exact characterization, such as BPP = DTTR (or the
time-bounded analogue thereof), but there seems to be no naive way of doing this. It has
been shown in [8] that the initial segment R≤logn

K , a string of length n, requires circuits
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of size n/c, for some c > 1 and all large n; it is this fact that is used to simulate BPP.
However, much stronger circuit lower bounds for the initial segment do not seem to hold
(cf. Theorems 4–9 of [8]), suggesting that RK has some structure. This structure can
actually be detected — the reduction M of Theorem 3.4 can be adapted to distinguish
RK from a random oracle w.h.p. — but we still don’t know of any way of using RK
non-adaptively, other than as a pseudo-random string. A new idea will be needed in
order to either prove or disprove the BPP = DTTR conjecture.

Acknowledgments. The first and third authors acknowledge NSF Grants CCF-0832787
and CCF-1064785.
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Abstract. We study optimization versions of Graph Isomorphism.
Given two graphs G1, G2, we are interested in finding a bijection π
from V (G1) to V (G2) that maximizes the number of matches (edges
mapped to edges or non-edges mapped to non-edges). We give an
nO(logn) time approximation scheme that for any constant factor
α < 1, computes an α-approximation. We prove this by combining
the nO(log n) time additive error approximation algorithm of Arora
et al. [Math. Program., 92, 2002] with a simple averaging algorithm. We
also consider the corresponding minimization problem (of mismatches)
and prove that it is NP-hard to α-approximate for any constant factor α.
Further, we show that it is also NP-hard to approximate the maximum
number of edges mapped to edges beyond a factor of 0.94.

We also explore these optimization problems for bounded color class
graphs which is a well studied tractable special case of Graph Isomor-
phism. Surprisingly, the bounded color class case turns out to be harder
than the uncolored case in the approximate setting.

1 Introduction

The graph isomorphism problem (GI for short) is a well-studied computational
problem: Formally, given two graphs G1 and G2 on n vertices, decide if there
exists a bijection π : V (G1)→ V (G2) such that (u, v) ∈ E1 iff (π(u), π(v)) ∈ E2.
It remains one of the few problems that are unlikely to be NP-complete and for
which no polynomial time algorithm is known.

Though the fastest known graph isomorphism algorithm for general graphs has
running time 2O(

√
n logn) [6], polynomial-time algorithms are known for many in-

teresting subclasses, e.g. bounded degree graphs [19], bounded genus graphs [21],
and bounded eigenvalue multiplicity graphs [5].

Motivation and Related Work. In this paper we study a natural optimiza-
tion problem corresponding to the graph isomorphism problem where the ob-
jective is to compute a bijection that maximizes the number of edges getting

� This work was supported by Alexander von Humboldt Foundation in its research
group linkage program. The third author was supported by DFG grant KO 1053/7-1.

B. Rovan, V. Sassone, and P. Widmayer (Eds.): MFCS 2012, LNCS 7464, pp. 100–111, 2012.
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mapped to edges and non-edges getting mapped to non-edges. The main moti-
vation for this study is to explore if approximate isomorphisms can be computed
efficiently, given that the best known algorithm for computing exact isomor-
phisms has running time 2O(

√
n log n). The starting point of our investigation is a

well-known article of Arora, Frieze and Kaplan [2] in which they study approx-
imation algorithms for a quadratic assignment problem based on randomized
rounding. Among the various problems they study, they also observe that ap-
proximate graph isomorphisms between n vertex graphs can be computed up
to additive error εn2 in time nO(logn/ε2). We show that this algorithm can be
modified to obtain a multiplicative error approximation scheme for the problem.
However, when we consider other variants of approximate graph isomorphism,
they turn out to be much harder algorithmically.

To the best of our knowledge, the only previous theoretical study of approxi-
mate graph isomorphism is this work of Arora, Frieze and Kaplan [2]. However,
the problem of approximate isomorphism and more general notions of graph
similarity and graph matching has been studied for several years by the pattern
matching community; see e.g. the survey article [8]. That line of research is not
really theoretical. It is based on heuristics that are experimentally studied with-
out rigorous proofs of approximation guarantees. Similarly, the general problem
of graph edit distance [10] also encompasses approximate graph isomorphism.
Both graph matchings and graph edit distance give rise to a variety of natural
computational problems that are well studied.

Optimization Versions of Graph Isomorphism. Let G1 = (V1, E1) and
G2 = (V2, E2) be two input graphs on the same number n of vertices. We consider
the following optimization problems:

– Max-EGI: Given G1, G2, find a bijection π : V1 → V2 that maximizes the
number of matched edges, i.e., me(π) = ‖{(u, v) ∈ E1 | (π(u), π(v)) ∈ E2}‖.

– Max-PGI: Given G1, G2, find a bijection π : V1 → V2 that maximizes matched
vertex pairs, i.e., mp(π) = me(π) + ‖{(u, v) /∈ E1 | (π(u), π(v)) /∈ E2}‖.

– Min-EGI: Given G1, G2, find a bijection π : V1 → V2 that minimizes mis-
matched edges, i.e., me(π) = ‖{(u, v) ∈ E1 | (π(u), π(v)) /∈ E2}‖.

– Min-PGI: Given G1, G2, find a bijection π : V1 → V2 that minimizes mis-
matched pairs, i.e., mp(π) = me(π) + ‖{(u, v) /∈ E1 | (π(u), π(v)) ∈ E2}‖.

As mentioned above, Max-PGI was studied before in [2]. Max-EGI can also be
viewed as an optimization variant of subgraph isomorphism.

Clearly, mp(π) +mp(π) =
(
n
2

)
and me(π) +me(π) = ‖E1‖. Thus solving one

of the maximization problems with additive error is equivalent to solving the
corresponding minimization problem with the same additive error. However, the
minimization problems behave differently for multiplicative factor approxima-
tions, so we study them separately.

Bounded Color Class Graph Isomorphism. A natural restriction of GI is
to vertex-colored graphs (G1, G2) where V (G1) = C1 ·∪ C2 ·∪ . . . ·∪ Cm and
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V (G2) = C′1 ·∪ C′2 ·∪ . . . ·∪ C′m, and Ci, C
′
i contain the vertices of G1 and G2,

respectively, that are colored i. The problem is to compute a color-preserving iso-
morphism π between G1 and G2, i.e., an isomorphism π such that for any vertex
u, u and π(u) have the same color. The bounded color-class version GIk of GI con-
sists of instances such that ‖Ci‖ = ‖C′i‖ ≤ k for all i. For GIk, randomized [4] and
deterministic [9] polynomial time algorithms are known.

It is, therefore, natural to study the optimization problems defined above in
the setting of vertex-colored graphs where the objective function is optimized
over all color-preserving bijections π : V1 → V2. We denote these problems as
Max-PGIk, Max-EGIk, Min-PGIk and Min-EGIk, where k is a bound on the number
of vertices having the same color.

Overview of the Results. We first recall the notion of an α-approximation
algorithm for an optimization problem. We call an algorithm A for a maximiza-
tion problem an α-approximation algorithm, where α < 1, if given an instance I
of the problem with an optimum OPT(I), A outputs a solution with value A(I)
such that A(I) ≥ αOPT(I). Similarly, for a minimization problem, we say B
is a β-approximation algorithm for β > 1, if for any instance I of the prob-
lem with an optimum OPT(I), B outputs a solution with value B(I) such that
B(I) ≤ βOPT(I).

Theorem 1. For any constant α < 1, there is an α-approximation algorithm
for Max-PGI running in time nO(logn/(1−α)4).

We obtain the α-approximation algorithm forMax-PGI by combining the nO(logn)

time additive error algorithm of [2] with a simple averaging algorithm.
Next we consider the Max-EGI problem. Langberg et al. [17] proved that

there is no polynomial-time (1/2 + ε)-approximation algorithm for the Maxi-
mum Graph Homomorphism problem for any constant ε > 0 assuming that a
certain refutation problem has average-case hardness (for the definition and de-
tails of this assumption we refer the reader to [17]). We give a factor-preserving
reduction from the Maximum Graph Homomorphism problem to Max-EGI thus
obtaining the following result.

Theorem 2. There is no (12 + ε)-approximation algorithm for Max-EGI for any
constant ε > 0 under the same average-case hardness assumption of [17].

We observe that unlike in the case of GIk, where polynomial time algorithms are
known [4,9,20], in the optimization setting, these problems are computationally
harder. We prove the following theorem by giving a factor-preserving reduction
from Max-2Lin-2 (e.g. see [16]) to Max-PGIk and Max-EGIk.

Theorem 3. For any k ≥ 2, Max-PGIk and Max-EGIk are NP-hard to approxi-
mate beyond a factor of 0.94.

Since, assuming the Unique Games Conjecture (UGC for short) of Khot [15], it
is NP-hard to approximate Max-2Lin-2 beyond a factor of 0.878 [16], the same
bound holds under UGC forMax-PGIk andMax-EGIk by the same reduction. Since
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Max-PGIk and Max-EGIk are easily seen to be instances of generalized 2CSP, they
have constant factor approximation algorithms, for a constant factor depending
on k. In fact, it turns out that Max-EGI2 and Max-PGI2 are tightly classified by
Max-2Lin-2 with almost matching upper and lower bounds (details are given in
Section 2). However, we do not know of similar gap-preserving reductions from
general unique games (with alphabet size more than 2) to Max-PGIk orMax-EGIk
for larger values of k.

The following results show that the complexity of Min-PGI and Min-EGI is
significantly different from Max-PGI and Max-EGI.

Theorem 4. There is no polynomial time approximation algorithm for Min-PGI
with any multiplicative approximation guarantee unless GI ∈ P.

Theorem 5. Min-PGI does not have a PTAS unless P = NP.

Theorem 6. There is no polynomial time approximation algorithm for Min-EGI
with any multiplicative approximation guarantee unless P = NP.

Finally, we turn our attention to the minimization problems Min-PGIk and Min-
EGIk on bounded color-class graphs. We prove that Min-PGIk is as hard as the
minimization version of Max-2Lin-2, known in literature as the Min-Uncut prob-
lem, and that Min-EGI4 is inapproximable for any constant factor unless P = NP
by reducing the Nearest Codeword Problem (NCP) to it.

Outline of the Paper. Our results on maximization problems are in Section 2,
while Section 3 contains our results on the corresponding minimization problems.
Section 4 concludes with some open problems.

2 Maximizing the Number of Matches

We first observe that computing optimal solutions to Max-PGI is NP-hard via a
reduction from Clique.

Lemma 7. Computing optimal solutions to Max-PGI instances is NP-hard.

Proof. Let (G, k) be an instance of the Clique problem. Define the graphsG1 = G
and G2 = Kk ∪ Kn−k, i.e., a k-clique and n − k isolated vertices. Let πopt be
a bijection that achieves the optimum value for this Max-PGI instance. Then G
has a k-clique if and only if mp(πopt) =

(
n
2

)
− ‖EG‖+

(
k
2

)
. .�

Next we give a general method for combining an additive error approximation al-
gorithm for Max-PGI with a simple averaging approximation algorithm to design
an α-approximation algorithm for Max-PGI for any constant α < 1.

Lemma 8. Suppose A is an algorithm such that for any ε > 0, given a Max-PGI
instance in form of two n-vertex graphs G1 = (V1, E1) and G2 = (V2, E2),
computes a bijection π : V1 → V2 such that mp(π) ≥ OPT− εn2 in time T (n, ε).
Then there is an algorithm that computes for each α < 1 an α-approximate
solution for any Max-PGI instance (G1, G2) in time O(T (n, (1− α)2/9) + n3).
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Proof. Without loss of generality we can assume V1 = V2 = [n]. We denote the
number of edges in Gi by ti and the number of non-edges by ti. Notice that the
optimum for Max-PGI satisfies OPT ≤ t1+ t2. Let π : [n]→ [n] be a permutation
chosen uniformly at random. Then, an easy calculation shows that the expected
number s of matched pairs is

s =
t1t2 + t1t2(

n
2

) =

(
n
2

)
− t2(
n
2

) t1 +
t2(
n
2

) ((n
2

)
− t1

)
= t1 + t2 −

2t1t2(
n
2

) .

It is not hard to see that one can deterministically compute a permutation σ
such that mp(σ) ≥ s; we defer this detail to the end of the proof. We now
show how this algorithm can be combined with the additive error approximation
algorithm A for Max-PGI to obtain an α-approximation algorithm for Max-PGI.
The combined algorithm distinguishes two cases based on the number of edges
and non-edges in G1 and G2, respectively.

Case 1. (min{t1, t2} ≤ (1−α)
(
n
2

)
/2): In this case we compute a permutation σ

with mp(σ) ≥ s. Since

t1t2 = max{t1, t2}min{t1, t2} ≤
(
t1 + t2

)
(1− α)

(
n

2

)
/2,

it follows that

s = t1 + t2 − 2t1t2/

(
n

2

)
≥ α
(
t1 + t2

)
≥ αOPT.

Case 2. (min{t1, t2} > (1 − α)
(
n
2

)
/2): In this case we use algorithm A with

ε = (1 − α)2/9 to obtain a permutation π with mp(π) ≥ OPT − εn2. Since
t1 + t2 + t̄1 + t2 = 2

(
n
2

)
, either t1 + t2 ≤

(
n
2

)
or t̄1 + t2 ≤

(
n
2

)
. Without loss of

generality assume t1+ t2 ≤
(
n
2

)
(otherwise we interchange G1 and G2), implying

that either t1 ≤
(
n
2

)
/2 or t2 ≤

(
n
2

)
/2. Further, since the expected value of mp(π)

when π is picked at random is t1 + t2 − 2t1t2/
(
n
2

)
, it follows that for sufficiently

large n,

OPT ≥ t1 − t1t2/

(
n

2

)
+ t2 − t1t2/

(
n

2

)
≥ min{t1, t2}

2
>

1− α

4

(
n

2

)
≥ εn2

1− α
.

Hence, mp(π) ≥ OPT− εn2 ≥ αOPT.
It remains to show how a permutation which achieves at least the expected

number s of matched pairs can be computed deterministically. Suppose that
σ : [i]→ [n] is a partial permutation. Let π : [n]→ [n] be a random permutation
that extends σ, i.e., π(j) = σ(j) for j ∈ [i]. Let s(σ) denote the expected number
of matched pairs over random permutations π that extend σ. It is easy to see
that we can compute s(σ) in polynomial time. We do this by counting the pairs
in three parts: (a) pairs with both end points in [i], (b) pairs with both end
points in [n] \ [i], and (c) pairs with one end point in [i] and the other in [n] \ [i].
Matched pairs of type (a) depend only on σ and can be counted straightaway.
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The expected number of matched pairs of type (b) is computed exactly as s above
(since π restricted on [n]\ [i] is random). The expected number of matched pairs

of type (c) is given by
∑

j∈[i]
njnσ(j)+(n−i−nj)(n−i−nσ(j))

n−i , where nj is the number

of neighbors of j in the graph G1 contained in [n] \ [i] and nσ(j) is the number
of neighbors of σ(j) in the graph G2 contained in [n] \ {σ(l) | l ∈ [i]}. The entire
computation of s(σ) takes O(n2) time.

Now, for k ∈ [n] \ {σ(l) | l ∈ [i]}, let σk : [i + 1] → [n] denote the extension
of σ by setting σ(i + 1) = k. Since a random extension π of σ can map i + 1
uniformly to any k ∈ [n] \ {σ(l) | l ∈ [i]} it follows that

s(σ) =
1

n− i

∑
k

s(σk),

where the summation is over all k ∈ [n] \ {σ(l) | l ∈ [i]}.
Furthermore, each s(σk) is efficiently computable, as explained above. Reusing

partial computations, we can find k such that s(σk) ≥ s(σ) in time O(n2).
Continuing thus, when we fix the permutation on all of [n] we obtain a σ
with mp(σ) ≥ s in O(n3) time. .�

Note that any polynomial time additive ε-error algorithm for Max-PGI, i.e., an
algorithm running in time npoly(1/ε) with an additive error≤ εn2, gives a polyno-
mial time α-approximation algorithm forMax-PGI running in time npoly(1/(1−α)).

To complete the proof of Theorem 1, we formulateMax-PGI as an instance of a
quadratic optimization problem called the Quadratic Assignment Problem (QAP
for short) as was done in [2] and use an additive error approximation algorithm
for the Quadratic Assignment Problem due to Arora, Frieze and Kaplan [2].

Given {cijkl}1≤i,j,k,l≤n, the Quadratic Assignment Problem is to find an n×n
permutation matrix x = (xij) that maximizes val(x) =

∑
i,j,k,l cijklxijxkl. An

instance of Max-PGI consisting of graphs G1 = ([n], E1) and G2 = ([n], E2) can
be naturally expressed as a QAP instance by setting

cijkl =

{
1 if (i, k) ∈ E1 and (j, l) ∈ E2 or (i, k) /∈ E1 and (j, l) /∈ E2

0 otherwise.

This ensures that val(x) = mp(πx) for all permutation matrices x with corre-
sponding permutation πx; in particular, the optimum solutions of the Max-PGI
and QAP instances achieve the same value.

There is no polynomial time α-approximation algorithm for QAP for any
α < 1 unless P = NP [2]. Arora, Frieze and Kaplan in [2] give a general quasi-
polynomial time algorithm for QAP with an additive error. Formally, they prove
the following theorem.

Theorem 9 ([2]). There is an algorithm that, given an instance of QAP where
each of the cijkl is bounded in absolute value by a constant c and given an ε, finds
an assignment to xij such that val(x) ≥ val(x∗)−εn2 where x∗ is the assignment

which attains the optimum. The algorithm runs in time nO(c2 log n/ε2).
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Thus for the Max-PGI problem, using Theorem 9 we can find a permutation
π such that mp(π) ≥ OPT − εn2 in time nO(logn/ε2). Combining this with
Lemma 8, we get an α-approximation algorithm for Max-PGI running in time
nO(logn/(1−α)4) and this completes the proof of Theorem 1.

In contrast to the quasi-polynomial time approximation scheme for Max-PGI,
we now show that Max-EGI is likely to be (12 + ε)-hard to approximate. To this
end, define the Maximum Graph Homomorphism problem (MGH) first studied
in [17]. Given two graphs G1 = (V1, E1) and G2 = (V2, E2), MGH asks for a
mapping φ : V1 → V2 such that ‖{(u, v) ∈ E1 | (φ(u), φ(v)) ∈ E2}‖ is maximized.
Langberg et al. [17] proved that MGH is hard to approximate beyond a factor
of 1/2+ε under a certain average case assumption. To prove Theorem 2, we give
a factor-preserving reduction from MGH to Max-EGI.

Lemma 10. There is a polynomial time algorithm that for a given MGH in-
stance I, constructs a Max-EGI instance I ′ with OPT(I) = OPT(I ′).
Proof. Given an MGH instance I = (G1, G2), we construct the Max-EGI instance
I ′ = (G′1, G

′
2) as follows. The graphs G′1 and G′2 both have vertex set V1 × V2.

For each edge (u1, v1) in the graph G1, we put a single edge between the vertices
(u1, w2) and (v1, w2) in E′1, where w2 is an arbitrary but fixed vertex in V2, and
for each edge (u2, v2) in the graph G2, we put all ‖V1‖2 edges between V1×{u2}
and V1 × {v2} in E′2. It suffices to prove the following claim.

Claim. There is a mapping φ : V1 → V2 such that
∥∥{(u, v) ∈ E1 | (φ(u), φ(v)) ∈

E2

}∥∥ = k if and only if there is a permutation π : V1 × V2 → V1 × V2 such that
‖{(u, v) ∈ E′1 | (π(u), π(v)) ∈ E′2}‖ = k.

Given the mapping φ, we construct the permutation π as follows: For each
u1 ∈ V1, π maps the vertex (u1, w2) of G′1 to the vertex (u1, φ(u1)) in G′2.
The remaining ‖V1‖ · ‖V2‖ − ‖V1‖ vertices of G′1 are mapped arbitrarily.

Then each edge (u1, v1) ∈ E1 is satisfied by φ if and only if the corresponding
edge between (u1, w2) and (v1, w2) in E′1 is satisfied by π. This follows from the
fact that (φ(u1), φ(v1)) ∈ E2 if and only there is an edge between (u1, φ(u1))
and (v1, φ(v1)) in E′2.

Similarly, given a permutation π betweenG′1 andG′2, we can obtain a mapping
φ : V1 → V2 achieving the same number of matched edges by letting φ(u1) = v2,
where v2 is the second component of the vertex π(u1, w2). .�
Unlike in the case of Max-PGI, we observe that there cannot be constant factor
approximation algorithms for Max-PGIk for all constants. This is in interesting
contrast to the fact that GI for graphs with bounded color-class size is in P. We
now prove the hardness of approximatingMax-PGIk and Max-EGIk for any k ≥ 2.

We prove the hardness by exhibiting a factor-preserving reduction from
Max-2Lin-2, which is hard to approximate above a guarantee of 0.94 unless
P = NP [13]. Given a set E ⊆

{
xi + xj = b | i, j ∈ [n], b ∈ {0, 1}

}
of m equa-

tions over F2, the problem Max-2Lin-2 is to find an assignment to the variables
x1, . . . , xn that maximizes the number of equations satisfied.

The following lemma proves the factor-preserving reduction from Max-2Lin-2
to Max-PGIk. The proof for Max-EGIk is similar.
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Lemma 11. For any k ≥ 2, there is a polynomial time algorithm that for
a given Max-2Lin-2 instance I constructs a Max-PGI2k instance I ′ such that
OPT(I ′) = (2k)2OPT(I).
Proof sketch. Let E ⊆

{
xi+xj = b | i, j ∈ [n], b ∈ {0, 1}

}
be the equations of I.

As a first step, if there is a pair of equations xi + xj = 1 and xi + xj = 0 in E,
remove both these equations and add a new equation yi + yj = 1 on two new
variables yi and yj. Let E′ be the new set of equations obtained. Notice that
OPT(E) = OPT(E′). We now describe the construction of the instance I ′ of
Max-PGI2k. For each variable xi, put two sets of vertices V 0

i and V 1
i with k ver-

tices each of color i. Let xl+xm = b be an equation in E′. In the graph G1, add
a complete bipartite graph between V 0

l and V 0
m and another complete bipartite

graph between V 1
l and V 1

m. Similarly, add the complete bipartite graph between
V 0
l and V b

m and between V 1
l and V 1⊕b

m in G2. If there is no equation in E′ con-
necting the variables xl and xm, add a complete bipartite graph between the
color classes l and m in G1 and the empty graph between l and m in G2. Simi-
larly, make all color classes cliques in G1 and independent sets in G2. The idea is
that assigning xi �→ 0 corresponds to mapping V 0

i and V 1
i to themselves, respec-

tively, while assigning xi �→ 1 corresponds to mapping V 0
i to V 1

i and vice versa.
Because of space constraints, we omit the proof that this construction works; it
can be found in [3]. .�
This construction still works if we replace mp(π) with me(π), as for all equations
xi + xj = b in E, exactly half of the possible edges between color classes i and j
are present. It follows that there is a factor-preserving reduction fromMax-2Lin-2
to Max-EGI2k.

Lemma 12. For any k ≥ 2, there is a polynomial time algorithm that for
a given Max-2Lin-2 instance I constructs a Max-EGI2k instance I ′ such that
OPT(I ′) = 2k2OPT(I).
Since there is no α-approximation algorithm for Max-2Lin-2 for α > 0.94 unless
P = NP [13], Lemmas 11 and 12 complete the proof of Theorem 3 that there is
no α-approximation algorithm for Max-PGIk and Max-EGIk for α > 0.94 unless
P = NP.

It is easy to see that for each constant k > 0, both Max-PGIk and Max-EGIk
are subproblems of the generalized Max-2CSP(q), where q depends on k. Thus,
both Max-PGIk and Max-EGIk have constant factor approximation algorithms
by virtue of the semidefinite programming based approximation algorithm for
Max-2CSP(q) [12]. The following lemma shows the reduction of Max-EGI2 to
Max-2CSP(2). The reduction from Max-PGIk and Max-EGIk to Max-2CSP(q) is
similar.

Lemma 13. There is a polynomial time algorithm that for two given vertex-
colored graphs G1 and G2 where each color class has size at most 2, outputs a
Max-2CSP(2) instance F = {f1, . . . , fm} where m = ‖E(G1)‖ and fi : {0, 1}2 →
{0, 1} such that there is a color-preserving bijection π : V (G1) → V (G2) with
me(π) = k, if and only if there is an assignment which satisfies k constraints
in F .
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Proof. For each color class Ci, we assign a variable xi. For an edge e from Ci to Cj
in G1, construct the function fe : {0, 1}2 → {0, 1} over the variables xi and xj
as follows. Any Boolean assignment to the variables can be looked upon as a
permutation: If xi �→ 0, then we have the identity permutation on Ci, otherwise
the permutation swaps the vertices of Ci. The value fe on that particular as-
signment is 1 if the permutation that it corresponds to sends the edge e to an
edge in G2. Hence there is an assignment that satisfies k constraints if and only
if there is a permutation π with me(π) = k. .�

As the problem of Max-2CSP(2) has an approximation algorithm with a guar-
antee of 0.874 [18], this implies an approximation algorithm for Max-EGI2 with
the same guarantee and since Max-2Lin-2 is hard to approximate beyond 0.878
under UGC [16], we have almost matching upper and lower bounds for Max-EGI2
under UGC.

3 Minimizing the Number of Mismatches

We first consider the problems Min-PGI and Min-EGI, where the objective is to
minimize the number of mismatched pairs and edges, respectively.

Theorem 4. There is no polynomial time approximation algorithm for Min-PGI
with any multiplicative approximation guarantee unless GI ∈ P.

Proof. Assume that there is a polynomial time α-approximation algorithm A
for Min-PGI. If the two input graphs G1 and G2 are isomorphic, then there
is a bijection π : V1 → V2 such that mp(π) = 0, and if G1 and G2 are not
isomorphic, then mp(π) > 0 for all π. Thus, it immediately follows that G1 and
G2 are isomorphic, if and only if A outputs a bijection σ : V (G1)→ V (G2) with
mp(σ) = 0 (i.e., an isomorphism). .�

In order to show that it is unlikely that Min-PGI has a polynomial time approx-
imation scheme, we give a gap-preserving reduction from the Vertex-disjoint
Triangle Packing problem (VTP) defined as follows: Given a graph G find the
maximum number of vertex-disjoint triangles that can be packed into G. We
look at the corresponding gap version of the VTP problem.

Gap-VTPα,β: Given a graph G and α > β,

1. Answer YES, if at least αn/3 triangles can be packed into G.
2. Answer NO, if at most βn/3 triangles can be packed into G.

It is known that VTP does not have an algorithm which when given a graph
and parameter α as input, computes a vertex-disjoint triangle packing of size at
least αOPT in time O(npoly(1/(1−α))) unless P = NP [7]. It is also known that
for a fixed value of β < 1, Gap-VTP1,β is NP-hard on graphs where each vertex
is either degree 4 or 6 [11,22], and a small gadget shows that this also holds for
6-uniform graphs.
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Lemma 14. Given a Gap-VTPα,β instance I (a 6-uniform graph on n vertices),
in polynomial time we can find a Min-PGI instance I ′ such that

OPT(I) ≥ αn

3
⇒ OPT(I ′) ≤ 2n(2− α)

OPT(I) ≤ βn

3
⇒ OPT(I ′) ≥ 2n

3
(4− β)

The proof of this lemma is omitted here because of space constraints; it can be
found in [3]. This reduction together with the hardness of VTP proves Theorem 5.
Next we prove Theorem 6.

Theorem 6. There is no polynomial time approximation algorithm for Min-EGI
with any multiplicative approximation guarantee unless P = NP.

Proof. The theorem follows from the following reduction from the Clique prob-
lem. Given an instance (G, k) of Clique, we construct the instance of Min-EGI as
follows. G1 consists of a k-clique and n− k independent vertices, and G2 := G.
(G, k) ∈ Clique if and only if there exists a π such that in the Min-EGI problem
me(π) = 0. Hence any polynomial time approximation algorithm with a multi-
plicative guarantee for Min-EGI gives a polynomial time algorithm for Clique. .�

The input for the Min-Uncut problem is a set E ⊆
{
xi + xj = 1 | i, j ∈ [n]

}
of m equations. The objective is to minimize the number of equations that
must be removed from the set E so that there is an assignment to the variables
that satisfy all the equations. This problem is known to be MaxSNP-hard [14],
and assuming the Unique Games Conjecture, hard to approximate within any
constant factor [15]. The following lemma shows that Min-PGIk is as hard as the
Min-Uncut problem.

Lemma 15. Let I be an instance of Min-Uncut and let k be a positive integer.
There is a polynomial time algorithm that constructs an instance I ′ of Min-PGI2k
such that OPT(I ′) = (2k)2OPT(I).

The proof of this lemma is similar to the proof of Lemma 11. Given a set E ⊆{
xi + xj = 1 | i, j ∈ [n]

}
of equations over F2, we construct an instance I ′

of Min-PGI2k exactly as described in the proof of Lemma 11. If the minimum
number of equations that have to be deleted from E to make the rest satisfiable
is at most t, then there is an assignment such that at most t equations in E are
not satisfied. This implies that there is a permutation π such that the only edges
that are mapped to non-edges and vice-versa are from at most t pairs of color
classes.

Finally we show that Min-EGI4 is hard to approximate.

Theorem 16. For any constant α > 1, there is no α-approximation algorithm
for Min-EGI4 unless P = NP.

An instance of NCP consists of a subspace S of Fn2 given as a set of basis vectors
B = {s1, . . . , sk} and a vector v ∈ Fn2 . The objective is to find a vector u ∈ S
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which minimizes the hamming weight wt(u + v), i.e., the number of bits where
u and v differ. It is NP-hard to approximate NCP within any constant factor [1].
The following lemma gives a reduction that transfers this hardness to Min-EGI4.

Lemma 17. There is a polynomial time algorithm that for a given NCP in-
stance I, constructs a Min-EGI4 instance I ′ with OPT(I ′) = OPT(I).

The idea of the proof is to construct two graphs G1 and G2 such that any vector
from the given subspace S that is equal to v in all but k positions, can be
converted into a color-preserving bijection from V (G1) to V (G2) that maps all
but k edges to edges, and vice versa. A detailed proof is given in [3].

4 Conclusion

Although GI expressed as an optimization problem was mentioned in [2], as far
as we know this is the first time that the complexity of the other three variants
of this optimization problem has been studied. Considering the upper and lower
complexity bounds that we have proved in this paper, the following questions
seem particularly interesting.

In Theorem 1 we describe an α-approximation algorithm for Max-PGI that
runs in quasi-polynomial time. Does Max-PGI also have a polynomial time ap-
proximation scheme? Theorem 2 shows that it is unlikely that Max-EGI has an
(12 + ε)-approximation algorithm. Does Max-EGI have a constant factor approx-
imation algorithm? We can use the Quadratic Assignment Problem to get an
additive error algorithm for it which runs in quasi-polynomial time but we do
not know whether this algorithm can be used to get a constant factor approx-
imation algorithm for Max-EGI (as was possible for Max-PGI). In the case of
vertex-colored graphs, even though we can rule out the existence of a PTAS
for Max-PGIk and Max-EGIk, it remains open whether these problems have effi-
cient approximation algorithms providing a good constant factor approximation
guarantee.

Acknowledgement. We thank the anonymous referees for their suggestions to
improve the article.
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Abstract. Let G = 〈S〉 be a solvable subgroup of the symmetric group
Sn given as input by the generator set S. We give a deterministic
polynomial-time algorithm that computes an expanding generator set
of size Õ(n2) for G. As a byproduct of our proof, we obtain a new ex-

plicit construction of ε-bias spaces of size Õ(npoly(log d))( 1
ε
)O(1) for the

groups Zn
d .

1 Introduction

Expander graphs are of great interest and importance in theoretical computer
science, especially in the study of randomness in computation; the monograph
by Hoory, Linial, and Wigderson [10] is an excellent reference. A central problem
is the explicit construction of expander graph families [10,12]. By explicit it is
meant that the family of graphs has efficient deterministic constructions, where
the notion of efficiency depends upon the application, e.g. [14]. Explicit con-
structions with the best known, near optimal expansion and degree parameters
(the so-called Ramanujan graphs) are Cayley expander families [12].

Alon and Roichman,in [4], show for any finite group G and λ > 0, that with
high probability a multiset S of size O( 1

λ2 log |G|) picked uniformly at random
from G is a λ-spectral expander: I.e. the second largest eigenvalue in absolute
value, of the normalized adjacency matrix of the Cayley graph is bounded by λ. If
G is given by its multiplication table then there is a simple Las Vegas algorithm
for computing S: pick a random multiset S of size O( 1

λ2 log |G|) fromG and check

in deterministic time |G|O(1) that Cay(G, T ) is a λ-spectral expander. Wigderson
and Xiao give a deterministic polynomial-time algorithm for computing S by
derandomizing this algorithm [17] (see [5] for a combinatorial proof).

This Paper

Suppose G, a subgroup of Sn, is given as input by a generator set S, and not
a multiplication table. Can we compute an O(log |G|) size expanding generator
set for G in deterministic time polynomial in n and |S|? Now, it is possible to

B. Rovan, V. Sassone, and P. Widmayer (Eds.): MFCS 2012, LNCS 7464, pp. 112–123, 2012.
� Springer-Verlag Berlin Heidelberg 2012
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sample nearly uniformly in polynomial time from G given by a generator set
(e.g. see [8]). Therefore, by the Alon-Roichman theorem we have a randomized
polynomial-time algorithm for the problem (although it is not Las Vegas since
we do not know how to certify an expanding generator set in polynomial time).

This problem can be seen as a generalization of the construction of small bias
spaces in Fn2 [3]. It is easily proved (see [10]) using properties of finite abelian
groups, that ε-bias spaces are precisely the expanding generator sets for any
finite abelian group. Interestingly, the best known explicit construction of ε-bias
spaces is of size either O(n2/ε2) [3] or O(n/ε3) [2], whereas the Alon-Roichman
theorem guarantees the existence of ε-bias spaces of size O(n/ε2).

Subsequently, Azar, Motwani and Naor [7] gave a construction of ε-bias spaces
for finite abelian groups of the form Znd using Linnik’s theorem and Weil’s char-
acter sum bounds. The size of the ε-bias space they give is O((d + n2/ε2)C)
where the current best known bound for C is 11/2.

Let G be a finite group, and let S = {g1, g2, . . . , gk} be a generating set for G.
The undirected Cayley graph Cay(G,S ∪ S−1) is an undirected multigraph with
vertex set G and edges of the form {x, xgi} for each x ∈ G and gi ∈ S. Since S
is a generator set for G, Cay(G,S ∪ S−1) is a connected regular multigraph.

In this paper we prove a more general result. Given any solvable subgroup G
of Sn (where G is given by a generator set) and λ > 0, we construct an expanding

generator set T for G of size Õ(n2)( 1λ )
O(1) such that Cay(G, T ) is a λ-spectral

expander. The exact constant factor in the upper bound is given in Section 4.
We also note that, for a general permutation group G ≤ Sn given by a gen-

erator set, we can compute (in deterministic polynomial time) an O(nc)( 1λ)
O(1)

size generator set T such that Cay(G, T ) is a λ-spectral expander, where c is a
large constant.

Now we explain the main ingredients of our expanding generator set construc-
tion for solvable groups.

1. Let G be a finite group and N be a normal subgroup of G. Given expand-
ing generator sets S1 and S2 for N and G/N respectively such that the
corresponding Cayley graphs are λ-spectral expanders, we give a simple
polynomial-time algorithm to construct an expanding generator set S for
G such that Cay(G,S) is also λ-spectral expander. Moreover, |S| is bounded
by a constant factor of |S1|+ |S2|. The analysis in this section is similar to
the work of [15,16].

2. We compute the derived series for the given solvable group G ≤ Sn in poly-
nomial time using a standard algorithm [13]. This series is of O(log n) length
due to Dixon’s theorem. Let the derived series for G be G = G0�G1� · · ·�
Gk = {1}. Assuming that we already have an expanding generator set for

each quotient group Gi/Gi+1 (which is abelian) of size Õ(n2), we apply the
previous step repeatedly to obtain an expanding generator set for G of size
Õ(n2). We can do this because the derived series is a normal series.

3. Finally, we consider the abelian quotient groups Gi/Gi+1 and give a poly-

nomial time algorithm to construct expanding generator sets of size Õ(n2)
for them. This construction applies a series decomposition of abelian groups
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as well as makes use of the Ajtai et al construction of expanding generator
sets for Zt [1]. This construction is motivated by work of Alon et al. [3].

We describe the steps 1, 2 and 3 outlined above in Sections 2, 3 and 4, re-
spectively. As a simple application of our main result, we give a new explicit
construction of ε-bias spaces for the groups Znd which we explain in Section 5.
The size of our ε-bias spaces are O(n poly(log n, log d))(1ε )

O(1). The known con-

struction of ε-bias space for Znd is of size O((d + n/ε2))11/2 [7]. The size bound
of our construction improves on the Azar-Motwani-Naor construction in the pa-
rameters d and n.

It is interesting to ask, for a finite group G given by generator sets, whether
we can obtain expanding generator sets of O(log |G|) size in deterministic poly-
nomial time. By the Alon-Roichman theorem we know that such expanding
generator sets for G exist.

In this connection, we note a negative result that Lubotzky and Weiss [11]
have shown about solvable groups: Let {Gi} be any infinite family of finite
solvable groups {Gi} where each Gi has derived series length bounded by some
constant . Suppose Σi is any generator set for Gi of size |Σi| ≤ k for each i and
some constant k. Then the Cayley graphs Cay(Gi, Σi) do not form an expander
family. In contrast, they also exhibit an infinite family of solvable groups in [11]
that give rise to constant-degree Cayley expanders.

2 Combining Generator Sets for Normal Subgroup
and Quotient Group

Let G be any finite group and N be a normal subgroup of G, denoted G � N .
I.e. g−1Ng = N for all elements g ∈ G. Let A ⊂ N be an expanding generator
set for N and Cay(N,A) be a λ-spectral expander. Similarly, let B ⊂ G such

that B̂ = {Nx | x ∈ B} is an expanding generator set for the quotient group

G/N and Cay(G/N, B̂) is λ-spectral. We first show that Cay(G,A ∪ B) is a
1+λ
2 -spectral expander.
In order to analyze the spectral expansion of the Cayley graph Cay(G,A ∪

B) it is useful to view vectors in C|G| as elements of the group algebra C[G].
The group algebra C[G] consists of linear combinations

∑
g∈G αgg for αg ∈ C.

Addition in C[G] is component-wise, and clearly C[G] is a |G|-dimensional vector
space over C. The product of

∑
g∈G αgg and

∑
h∈G βhh is defined naturally as:∑

g,h∈G αgβhgh.
Let S ⊂ G be any symmetric subset (i.e. S is closed under inverse) and let

MS denote the normalized adjacency matrix of the undirected Cayley graph
Cay(G,S). Now, each element a ∈ G defines the linear map Ma : C[G] → C[G]
by Ma(

∑
g αgg) =

∑
g αgga. Clearly, MS = 1

|S|
∑

a∈SMa and MS(
∑

g αgg) =
1
|S|
∑

a∈S
∑

g αgga.

Let X = {x1, x2, . . . , xk} denote a set of distinct coset representatives for
the normal subgroup N in G. In order to analyze the spectral expansion of
Cay(G,A ∪B) we consider the basis {xn | x ∈ X,n ∈ N} of C[G]. The element
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uN = 1
|N |
∑

n∈N n of C[G] corresponds to the uniform distribution supported on

N . It has the following important properties:

1. For all a ∈ N Ma(uN ) = uN because Na = N for each a ∈ N .
2. For any b ∈ G consider the linear map σb : C[G] → C[G] defined by con-

jugation: σb(
∑

g αgg) =
∑

g αgb
−1gb. Since N � G the linear map σb is an

automorphism of N . It follows that for all b ∈ G σb(uN ) = uN .

Now, consider the subspaces U and W of C[G] defined as follows:

U =

{(∑
x∈X

αxx

)
uN

}
, W =

{∑
x∈X

x

(∑
n∈N

βn,xn

) ∣∣∣ ∑
n

βn,x = 0, ∀x ∈ X

}

It is easy to see that U and W are indeed subspaces of C[G]. Furthermore, we
note that every vector in U is orthogonal to every vector in W with respect to
the usual dot product, i.e. U ⊥ W . This follows easily from the fact that xuN
is orthogonal to x

∑
n∈N βn,xn whenever

∑
n∈N βn,xn is orthogonal to uN . Note

that
∑
n∈N βn,xn is indeed orthogonal to uN when

∑
n∈N βn,x = 0. We claim

that C[G] is a direct sum of its subspaces U and W .

Proposition 1. The group algebra C[G] has a direct sum decomposition
C[G] = U +W .

We now prove the main result of this section. For a vector v, ‖v‖ will denote its
standard 2-norm.

Lemma 1. Let G be any finite group and N be a normal subgroup of G and
λ < 1/2 be any constant. Suppose A is an expanding generator set for N so
that Cay(N,A) is a λ-spectral expander. Furthermore, suppose B ⊆ G such that

B̂ = {Nx | x ∈ B} is an expanding generator for the quotient group G/N and

Cay(G/N, B̂) is also a λ-spectral expander. Then A∪B is an expanding generator

set for G such that Cay(G,A ∪B) is a (1+λ)(max{|A|,|B|})
|A|+|B| -spectral expander. 1

Proof. We give the proof for the case when |A| = |B| (the general case is identi-
cal). Let v ∈ C[G] be any vector such that v ⊥ 1 and M denote the normalized
adjacency matrix of the Cayley graph Cay(G,A ∪B). Our goal is to show that
‖Mv‖ ≤ (1 + λ)‖v‖/2. Notice that the adjacency matrix M can be written as
(MA +MB) /2 where MA =

∑
a∈AMa/|A| and MB =

∑
b∈BMb/|B|.2

Claim 1. For any two vectors u ∈ U and w ∈ W , we have MAu ∈ U , MAw ∈W ,
MBu ∈ U , MBw ∈ W , i.e. U and W are invariant under the transformations
MA and MB.

1 Since A and B are multisets, we can ensure |A| and |B| are within a factor of 2 of
each other by scaling up the smaller multiset. We can even ensure that A and B are
of the same cardinality which is a power of 2.

2 In the case when |A| �= |B|, the adjacency matrixM will be |A|
|A|+|B|MA+ |B|

|A|+|B|MB.
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Proof. Consider vectors of the form u = xuN ∈ U and w = x
∑

n∈N βn,xn ∈ W ,
where x ∈ X is arbitrary. By linearity, it suffices to prove for each a ∈ A
and b ∈ B that Mau ∈ U , Mbu ∈ U , Maw ∈ W , and Mbw ∈ W . Notice
that Mau = xuNa = xuN = u since uNa = uN . Furthermore, we can write
Maw = x

∑
n∈N βn,xna = x

∑
n′∈N γn′,xn

′, where γn′,x = βn,x and n′ = na.
Since

∑
n′∈N γn′,x =

∑
n∈N βn,x = 0 it follows that Maw ∈ W . Now, consider

Mbu = ub. For x ∈ X and b ∈ B the element xb can be uniquely written as
xbnx,b, where xb ∈ X and nx,b ∈ N . Hence, Mbu = xuNb = xb(b−1uNb) =
xbnx,bσb(uN ) = xbnx,buN = xbuN ∈ U . Finally, Mbw = x(

∑
n∈N βn,xn)b =

xb(
∑

n∈N βn,xb
−1nb) = xbnx,b

∑
n∈N βbnb−1,xn = xb

∑
n∈N γn,xn ∈ W . Here,

we note that γn,x = βn′,x and n′ = b(n−1
x,bn)b

−1. Hence
∑
n∈N γn,x = 0, which

puts Mbw in the subspace W as claimed. .�

Claim 2. Let u ∈ U such that u ⊥ 1 and w ∈W . Then ‖MAu‖ ≤ ‖u‖, ‖MBw‖ ≤
‖w‖, ‖MBu‖ ≤ λ‖u‖, and ‖MAw‖ ≤ λ‖w‖.

Proof. The first two inequalities follow from the fact that MA and MB are the
normalized adjacency matrices of the Cayley graphs Cay(G,A) and Cay(G,B)
respectively.

Now we prove the third inequality. Let u = (
∑

x αxx)uN be any vector in U
such that u ⊥ 1. Then

∑
x∈X αx = 0. Now consider the vector û =

∑
x∈X αxNx

in the group algebra C[G/N ]. Notice that û ⊥ 1. Let MB̂ denote the normalized

adjacency matrix of Cay(G/N, B̂). Since it is a λ-spectral expander it follows that
‖MB̂û‖ ≤ λ‖û‖. Writing out MB̂û we get MB̂û = 1

|B|
∑
b∈B
∑

x∈X αxNxb =
1
|B|
∑

b∈B
∑
x∈X αxNxb, because xb = xbnx,b and Nxb = Nxb (as N is a normal

subgroup). Hence the norm of the vector 1
|B|
∑
b∈B
∑

x∈X αxNxb is bounded by

λ‖û‖. Equivalently, the norm of the vector 1
|B|
∑

b∈B
∑
x∈X αxxb is bounded by

λ‖û‖. On the other hand, we have

MBu =
1

|B|
∑
b

(∑
x

αxx

)
uNb =

1

|B|
∑
b

(∑
x

αxxb

)
b−1uNb

=
1

|B|

(∑
b

∑
x

αxxbnx,b

)
uN =

1

|B|

(∑
b

∑
x

αxxb

)
uN .

For any vector (
∑

x∈X γxx)uN ∈ U it is easy to see that its norm can be written
as ‖

∑
x∈X γxx‖‖uN‖. Since ‖1/|B|

∑
b

∑
x αxxb‖ ≤ λ‖

∑
x∈X αxx‖, we have

‖MBu‖ ≤ λ‖u‖.
We now show the fourth inequality. For each x ∈ X it is useful to consider the

following subspaces of C[G]: C[xN ] = {x
∑

n∈N θnn | θn ∈ C}. For any distinct
x �= x′ ∈ X , since xN ∩ x′N = ∅, vectors in C[xN ] have support disjoint from
vectors in C[x′N ]. Hence C[xN ] ⊥ C[x′N ] which implies that the subspaces
C[xN ], x ∈ X are pairwise mutually orthogonal. Furthermore, the matrix MA

maps C[xN ] to C[xN ] for each x ∈ X .
Now, consider any vector w =

∑
x∈X x (

∑
n βn,xn) in W . Letting wx =

x
(∑

n∈N βn,xn
)
∈ C[xN ] for each x ∈ X we note that MAwx ∈ C[xN ] for
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each x ∈ X . Hence, by Pythogoras theorem we have ‖w‖2 =
∑

x∈X ‖wx‖2 and

‖MAw‖2 =
∑

x∈X ‖MAwx‖2. Since MAwx = xMA

(∑
n∈N βn,xn

)
, it follows

that ‖MAwx‖ = ‖MA

(∑
n∈N βn,xn

)
‖ ≤ λ‖

∑
n∈N βn,xn‖ = λ‖wx‖. Putting it

together, it follows that ‖MAw‖2 ≤ λ2
(∑

x∈X ‖wx‖2
)
= λ2‖w‖2. .�

We now complete the proof of the lemma. Consider any vector v ∈ C[G] such
that v ⊥ 1. Let v = u + w where u ∈ U and w ∈ W . Let 〈, 〉 denote the inner
product in C[G]. Since M = (MA +MB)/2, we have ‖Mv‖2 = 1

4 〈MAv,MAv〉+
1
4 〈MBv,MBv〉+ 1

2 〈MAv,MBv〉. We consider each of the three summands in the
above expression.

Firstly, since v = u + w, we can write 〈MAv,MAv〉 = 〈MAu,MAu〉 +
〈MAw,MAw〉 + 2〈MAu,MAw〉. By Claim 1 and the fact that U ⊥ W , we get
〈MAu,MAw〉 = 0. Thus, 〈MAv,MAv〉 ≤ ‖u‖2 + λ2‖w‖2. By an identical ar-
gument, Claim 1 and Claim 2 imply 〈MBv,MBv〉 ≤ λ2‖u‖2 + ‖w‖2. Finally,
〈MAv,MBv〉 = 〈MAu,MBu〉 + 〈MAw,MBw〉. Now, using the Cauchy-Schwarz
inequality and Claim 2, we get 〈MAv,MBv〉 ≤ λ(‖u‖2 + ‖w‖2). Combining all

the inequalities, we get ‖Mv‖2 ≤ 1
4

(
1 + 2λ+ λ2

) (
‖u‖2 + ‖w‖2

)
= (1+λ)2

4 ‖v‖2.
Hence, it follows that ‖Mv‖ ≤ 1+λ

2 ‖v‖. .�

The graph Cay(G,A∪B) is 1+λ
2 -spectral. Using derandomized squaring [16], we

can compute from A∪B an expanding generator set S for G of size O(|A∪B|),
such that Cay(G,S) is λ-spectral. Details are given in the full version [6]. As a
consequence, we obtain the following lemma which we will apply repeatedly. For
ease of subsequent exposition, we fix λ = 1/4 in the following lemma.

Lemma 2. Let G be a finite group and N be a normal subgroup of G such that
N = 〈A〉 and Cay(N,A) is a 1/4-spectral expander. Further, let B ⊆ G and

B̂ = {Nx | x ∈ B} such that G/N = 〈B̂〉 and Cay(G/N, B̂) is a 1/4-spectral
expander. Then in time polynomial in |A|+ |B|, we can construct an expanding
generator set S for G, such that |S| = O(|A| + |B|) and Cay(G,S) is a 1/4-
spectral expander.3

3 Normal Series and Solvable Permutation Groups

In section 2, we saw how to construct an expanding generator set for a group G
from expanding generator sets for some normal subgroup N and the associated
quotient group G/N . We apply it to the entire normal series for a solvable group
G. More precisely, let G ≤ Sn such that G = G0 �G1 � · · ·�Gr = {1} is a normal
series for G. That means Gi is a normal subgroup of G for each i, and hence Gi
is also a normal subgroup of Gj for each j < i. Given expanding generator sets
for each of the quotient groups Gi/Gi+1, we give an efficient construction of an
expanding generator set for G.

3 The lemma holds for any finite group G with the caveat that group operations in G
are polynomial-time computable. However, we require the lemma only for quotient
groups H/N where H,N ≤ Sn, and group operations for such H/N are polynomial-
time computable.
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Lemma 3. Let G ≤ Sn with normal series {Gi}ri=0 be as above. Further, for
each i let Bi be a generator set for Gi/Gi+1 such that Cay(Gi/Gi+1, Bi) is a 1/4-
spectral expander. Let s = maxi{|Bi|}. Then in deterministic time polynomial
in n and s we can compute a generator set B for G such that Cay(G,B) is a
1/4-spectral expander and |B| = clog rs for some constant c > 0.

A detailed proof of this lemma is in the full version [6].
Now we apply the above lemma to solvable permutation groups. Let G be any

finite solvable group. The derived series for G is the following chain of subgroups
of G: G = G0 � G1 � · · · � Gk = {1} where, for each i, Gi+1 is the commutator
subgroup of Gi. That is Gi+1 is the normal subgroup of Gi generated by all
elements of the form xyx−1y−1 for x, y ∈ Gi. It turns out that Gi+1 is the
minimal normal subgroup of Gi such that Gi/Gi+1 is abelian. Furthermore, the
derived series is also a normal series. It implies that Gi is a normal subgroup of
Gj for each j < i.

Our algorithm will crucially exploit a property of the derived series of solvable
groups G ≤ Sn: By a theorem of Dixon [9], the length k of the derived series
of a solvable subgroup of Sn is bounded by 5 log3 n. Thus, we get the following
result as a direct application of Lemma 3:

Lemma 4. Suppose G ≤ Sn is a solvable group with derived series G = G0 �
G1�· · ·�Gk = {1} such that for each i we have an expanding generator set Bi for
the abelian quotient group Gi/Gi+1 such that Cay(Gi/Gi+1, Bi) is a 1/4-spectral
expander. Let s = maxi{|Bi|}. Then in deterministic time polynomial in n and
s we can compute a generator set B for G such that Cay(G,B) is a 1/4-spectral
expander and |B| = 2O(log k)s = (logn)O(1)s.

Given a solvable permutation group G ≤ Sn by a generator set the polynomial-
time algorithm for computing an expanding generator set will proceed as follows:
in deterministic polynomial time, we first compute generator sets for each sub-
group {Gi}1≤i≤k in the derived series for G [13]. In order to apply the above
lemma it suffices to compute an expanding generator set Bi for Gi/Gi+1 such
that Cay(Gi/Gi+1, Bi) is 1/4-spectral. We deal with this problem in the next
section.

4 Abelian Quotient Groups

In Section 3, we have seen how to construct an expanding generator set for a
solvable groupG, from expanding generator sets for the quotient groupsGi/Gi+1

in the normal series for G. We are now left with the problem of computing
expanding generator sets for the abelian quotient groups Gi/Gi+1. We state
a couple of easy lemmas that will allow us to further simplify the problem.
For proofs of these lemmas, we refer the reader to an extended version of this
paper [6].

Lemma 5. Let H and N be subgroups of Sn such that N is a normal subgroup
of H and H/N is abelian. Let p1 < p2 < . . . < pk be the set of all primes bounded
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by n and e = +logn,. Then, there is an onto homomorphism φ from the product
group Znpe1 × Znpe2 × · · · × Znpek to the abelian quotient group H/N .

From the proof of Lemma 5, it is obvious that φ is computable in poly(n) time.
Suppose H1 and H2 are two finite groups such that φ : H1 → H2 is an onto
homomorphism. In the next lemma we show that the φ-image of an expanding
generator set for H1, is an expanding generator set for H2.

Lemma 6. Suppose H1 and H2 are two finite groups such that φ : H1 → H2

is an onto homomorphism. Furthermore, suppose Cay(H1, S) is a λ-spectral ex-
pander. Then Cay(H2, φ(S)) is also a λ-spectral expander.

Now, suppose H,N ≤ Sn are groups given by their generator sets, where N �H
and H/N is abelian. By Lemmas 5 and 6, it suffices to describe a polynomial (in

n) time algorithm for computing an expanding generator set of size Õ(n2) for
the product group Znpe1 ×Znpe2 × · · · ×Znpek such that the second largest eigenvalue

of the corresponding Cayley graph is bounded by 1/4. In the following section,
we solve this problem.

4.1 Expanding Generator Set for the Product Group

In this section, we give a deterministic polynomial (in n) time construction of an

Õ(n2) size expanding generator set for the product group Znpe1 × . . . × Znpe
k
such

that the corresponding Cayley graph is a 1/4-spectral expander.
Consider the following normal series for this product group given by the

subgroups Ki = Zn
pe−i
1

× . . .× Zn
pe−i
k

for 0 ≤ i ≤ e. Clearly, K0 � K1 � · · · � Ke =

{1}. This is obviously a normal series since K0 = Znpe1 × . . . × Znpek is abelian.

Furthermore, Ki/Ki+1 = Znp1 × . . . × Znpk . Since the length of this series is
e = +logn, we can apply Lemma 3 to construct an expanding generator set of size

Õ(n2) for K0 in polynomial time assuming that we can compute an expanding

generator set of size Õ(n2) for Znp1 × . . .×Znpk in deterministic polynomial time.

Thus, it suffices to efficiently compute an Õ(n2)-size expanding generator set for
the product group Znp1 × . . .× Znpk .

In [1], Ajtai et al, using some number theory, gave a deterministic polynomial
time expanding generator set construction for the cyclic group Zt, where t is
given in binary.

Theorem 1 ([1]). Let t be a positive integer given in binary as an input. Then
there is a deterministic polynomial-time (i.e. in poly(log t) time) algorithm that
computes an expanding generator set T for Zt of size O(log∗ t log t), where log∗ t
is the least positive integer k such that a tower of k 2’s bounds t from above.
Furthermore, Cay(Zt, T ) is λ-spectral for any constant λ.

Now, consider the group Zp1p2...pk . Since p1p2 . . . pk can be represented by
O(n log n) bits in binary, we apply the above theorem (with λ = 1/4) to com-

pute an expanding generator set of size Õ(n) for Zp1p2...pk in poly(n) time.
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Let m = O(log n) be a positive integer to be fixed in the analysis later. Con-
sider the product group M0 = Zmp1 × Zmp2 × . . .Zmpk and for 1 ≤ i ≤ m let

Mi = Zm−ip1 × Zm−ip2 × . . . × Zm−ipk . Clearly, the groups Mi form a normal series
for M0: M0 �M1 � · · · �Mm = {1}, and the quotient groups are Mi/Mi+1 =
Zp1 × Zp2 × . . . × Zpk = Zp1p2...pk (recall that pi’s are all distinct). Now we

compute (in poly(n) time) an expanding generator set for Zp1p2···pk of size Õ(n)
using Theorem 1. Then, we apply Lemma 3 to the above normal series and
compute an expanding generator set of size Õ(n) for the product group M0

in polynomial time. The corresponding Cayley graph will be a 1/4-spectral ex-
pander. Now we are ready to describe the expanding generator set construction
for Znp1 × Znp2 × . . .× Znpk .

The Final Construction. The construction is based on the technique devel-
oped in [3]. For 1 ≤ i ≤ k let mi be the least positive integer such that pmi

i > cn
(where c is a suitably large constant). Thus, pmi

i ≤ cn2 for each i. For each
i, Fpmi

i
be the finite field of pmi

i elements which can be deterministically con-

structed in polynomial time since it is polynomial sized. Let m = max{mi}ki=1

which is still of O(log n). Clearly, there is an onto homomorphism ψ from the
group Zmp1 × Zmp2 × . . .× Zmpk to the additive group of Fpm1

1
× Fpm2

2
× . . .× Fpmk

k
.

Thus, if S is the expanding generator set of size Õ(n) constructed above for
Zmp1 ×Zmp2 × . . .×Zmpk , it follows from Lemma 6 that ψ(S) is an expanding gener-

ator multiset of size Õ(n) for the additive group Fpm1
1
×Fpm2

2
× . . .×Fpmk

k
. Define

T ⊂ Fpm1
1
×Fpm2

2
× . . .×Fpmk

k
to be any (say, the lexicographically first) set of cn

many k-tuples such that any two tuples (x1, x2, . . . , xk) and (x′1, x
′
2, . . . , x

′
k) in

T are distinct in all coordinates. Thus xj �= x′j for all j ∈ [k]. It is obvious that
we can construct T by picking the first cn such tuples in lexicographic order.

We now define the expanding generator set R. Let x = (x1, x2, . . . , xk) ∈
T and y = (y1, y2, . . . , yk) ∈ ψ(S). Define vi = (〈1, yi〉, 〈xi, yi〉, . . . , 〈xn−1

i , yi〉)
where xji ∈ Fpmi

i
and 〈xji , yi〉 is the dot product modulo pi of the elements xji

and yi seen as pi-tuples in Zmi
pi . Hence, vi is an n-tuple and vi ∈ Znpi . Now define

R = {(v1, v2, . . . , vk) | x ∈ T, y ∈ ψ(S)}. Notice that |R| = Õ(n2). Using ideas
from [3] we can prove thatR is an expanding generator set for Znp1×Znp2×. . .×Znpk .

Claim. R is an expanding generator set for the product group Znp1 × . . .× Znpk .

Proof. Let (χ1, χ2, . . . , χk) be a nontrivial character of the product group Znp1 ×
Znp2 × . . . × Znpk , i.e. there is at least one j such that χj is nontrivial. Let ωi
be a primitive pthi root of unity. Recall that, since χi is a character there is

a corresponding vector βi ∈ Znpi , i.e. χi : Znpi → C and χi(u) = ω
〈βi,u〉
i for

u ∈ Znpi and the inner product in the exponent is a modulo pi inner product.
The character χi is nontrivial if and only if βi is a nonzero element of Znpi .

It is well-known that the characters (χ1, χ2, . . . , χk) of the abelian group
Znp1 × Znp2 × . . . × Znpk are also the eigenvectors for the adjacency matrix of
the Cayley graph of the group with any generator set (see Proposition 11.7
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of [10]). Thus, in order to prove that R is an expanding generator set for
Znp1 ×Znp2 × . . .×Znpk , it is enough to bound the following estimate for the non-
trivial characters (χ1, χ2, . . . , χk) since that directly bounds the second largest
eigenvalue in absolute value.∣∣Ex∈T,y∈ψ(S)[χ1(v1)χ2(v2) . . . χk(v)]

∣∣ = ∣∣∣Ex∈T,y∈ψ(S)[ω〈β1,v1〉
1 . . . ω

〈βk,vk〉
k ]

∣∣∣
=
∣∣∣Ex,y[ω〈q1(x1),y1〉

1 . . . ω
〈qk(xk),yk〉
k ]

∣∣∣
≤ Ex

∣∣∣Ey[ω〈q1(x1),y1〉
1 . . . ω

〈qk(xk),yk〉
k ]

∣∣∣ ,
where qi(x) =

∑n−1
�=0 βi,�x

� ∈ Fpi [x] for βi = (βi,0, βi,1, . . . , βi,n−1). Since the
character is nontrivial, suppose βj �= 0, then qj is a nonzero polynomial of de-
gree at most n − 1. Hence the probability that qj(xj) = 0, when x is picked
from T is bounded by n

cn . On the other hand, when qj(xj) �= 0 the tuple
(q1(x1), . . . , qk(xk)) defines a nontrivial character of the group Zmp1 × . . . × Zmpk .
Since S is an expanding generator set for the abelian group Zmp1 × . . .×Zmpk , the
character defined by (q1(x1), . . . , qk(xk)) is also an eigenvector for Zmp1×. . .×Zmpk ,

in particular w.r.t. generator set S. Hence, |Ey∈S [ω〈q1(x1),y1〉
1 . . . ω

〈qk(xk),yk〉
k ]| ≤ ε,

where the parameter ε can be fixed to an arbitrary small constant by Theorem
1. Hence the above estimate is bounded by n

cn + ε = 1
c + ε which can be made

≤ 1/4 by choosing c and ε suitably. .�
To summarize, Claim 4.1 along with Lemmas 5 and 6 directly yields the following
theorem.

Theorem 2. In deterministic polynomial (in n) time we can construct an ex-

panding generator set of size Õ(n2) for the product group Znp1 × · · ·×Znpk (where
for each i, pi is a prime number ≤ n) that makes it a 1/4-spectral expander.
Consequently, if H and N are subgroups of Sn given by generator sets and H/N
is abelian then in deterministic polynomial time we can compute an expanding
generator set of size Õ(n2) for H/N that makes it a 1/4-spectral expander.

Finally, we state the main theorem which follows directly from the above theorem
and Lemma 4.

Theorem 3. Let G ≤ Sn be a solvable permutation group given by a generating
set. Then in deterministic polynomial time we can compute an expanding gener-
ator set S of size Õ(n2) such that the Cayley graph Cay(G,S) is a 1/4-spectral
expander.

On a related note, in the case of general permutation groups we have the fol-
lowing theorem about computing expanding generator sets. The proof, omitted
here, can be found in the full version [6].

Theorem 4. Given G ≤ Sn by a generator set S′ and λ > 0, we can determin-
istically compute (in time poly(n, |S′|)) an expanding generator set T for G such

that Cay(G, T ) is a λ-spectral expander and |T | = O(n16q+10
(
1
λ

)32q
) (where q is

a large constant).
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5 Small Bias Spaces for Zn
d

We note that the expanding generator set construction for abelian groups in the
previous section also gives a new construction of ε-bias spaces for Znd , which we
now describe.

In [7] Azar, Motwani, and Naor first considered the construction of ε-bias
spaces for abelian groups, specifically for the group Znd . For arbitrary d and
any ε > 0 they construct ε-bias spaces of size O((d + n2/ε2)C), where C is
the constant in Linnik’s Theorem. The construction involves finding a suitable
prime (or prime power) promised by Linnik’s theorem which can take time up to
O((d+n2)C). The current best known bound for C is ≤ 11/2 (and assuming ERH
it is 2). Their construction yields a polynomial-size ε-bias space for d = nO(1).

It is interesting to compare this result of [7] with our results. Let d be any
positive integer with prime factorization pe11 pe22 · · · p

ek
k . So each pi is O(log d) bit

sized and each ei is bounded by O(log d). Given d as input in unary, we can
efficiently find the prime factorization of d. Using the result of Wigderson and
Xiao [17], we compute an O(log d) size expanding generator set for Zp1p2...pk in
deterministic time polynomial in d. Then we construct an expanding generator
set of size O(poly(logn) log d) for Zmp1 × . . . × Zmpk for m = O(log n) using the
method described in Section 4.1. It then follows from Section 4.1 that we can
construct an O(n poly(logn) log d) size expanding generator set for Znp1×. . .×Znpk
in deterministic polynomial time. Finally, from Section 4.1, it follows that we can
construct an O(n poly(logn, log d)) size expanding generator set for Znd (which
is isomorphic to Zn

p
e1
1

× . . .Zn
p
ek
k

) since each ei is bounded by log d. Now for any

arbitrary ε > 0, the explicit dependence of ε in the size of the generator set is
(1/ε)32q. We summarize the discussion in the following theorem.

Theorem 5. Let d, n be any positive integers (in unary) and ε > 0. Then, in de-
terministic poly(n, d, 1

ε ) time, we can construct an O(n poly(logn, log d))(1/ε)32q

size ε-bias space for Znd .

6 Final Remarks

The Alon-Roichman theorem guarantees the existence of O(n log n) size expand-
ing generator sets for permutation groups G ≤ Sn. In this paper, we construct
Õ(n2) size expanding generator sets for solvable groups. But for non-solvable
permutation groups our construction is far from optimal. On the other hand,
our construction of ε-bias space for Znd is very different from the construction of
[7] and improves upon it in terms of d and n, although it is worse in terms of
the parameter ε. Finding efficient constructions that improve these bounds is an
interesting open problem.
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set with small Fourier coeffciients. Bull. London Math. Soc. 22, 583–590 (1990)

2. Alon, N., Bruck, J., Naor, J., Naor, M., Roth, R.M.: Construction of asymptoti-
cally good low-rate error-correcting codes through pseudo-random graphs. IEEE
Transactions on Information Theory 38(2), 509–516 (1992)

3. Alon, N., Goldreich, O., H̊astad, J., Peralta, R.: Simple construction of almost
k-wise independent random variables. Random Struct. Algorithms 3(3), 289–304
(1992)

4. Alon, N., Roichman, Y.: Random Cayley Graphs and Expanders. Random Struct.
Algorithms 5(2), 271–285 (1994)

5. Arvind, V., Mukhopadhyay, P., Nimbhorkar, P.: Erdös-Rényi Sequences and De-
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Abstract. In order to study precisely the growth of timed languages,
we associate to such a language a generating function. These functions
(tightly related to volume and entropy of timed languages) satisfy com-
positionality properties and, for deterministic timed regular languages,
can be characterized by integral equations. We provide procedures for
closed-form computation of generating functions for some classes of timed
automata and regular expressions.

1 Introduction

Since the introduction of timed automata in [1], these automata and their lan-
guages are extensively studied both in theoretical perspective and in applications
to verification of real-time systems. However, the natural question of measuring
the size of timed languages was addressed only recently in [4,3] and a couple of
subsequent works. In these articles we explored the asymptotic behavior of the
volume of a timed language when the number of events tends to ∞. We showed
that for most deterministic timed automata this volume grows (or decreases)
exponentially, defined entropy as its growth rate, characterized this entropy as
a logarithm of the spectral radius of an integral operator Ψ and showed how to
compute the entropy symbolically or numerically.

We believe that size analysis can be useful in several aspects: entropy is a
measure of information content in timed words [4] and a key to a timed code
theory (work in progress). Whenever the entropy is not too small, timed au-
tomata have nice robustness properties [5]. As a practical perspective, we are
exploring applications of size analysis to random generation and compression of
timed words. We also find the study of the size of timed languages a natural and
mathematically appealing generalization of classical results on regular languages
and formal series.

In this article, we make amuchmore precise size analysis of timed languages ac-
cepted by deterministic timed automata.We associate to such a languageL the se-
quence of its volumes Vol(Ln), and the generating function f(z) =

∑
nVol(Ln)z

n.
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p q

〈a, x ≤ 1, {x}〉

〈b, y ≤ 1, {y}〉

〈a, x ≤ 1, {y}〉〈b, y ≤ 1, {x}〉

p q

〈a, x ≤ 1, {y}〉

〈b, y ≤ 1, {x}〉

〈a, x ≤ 1, {y}〉 〈b, y ≤ 1, {x}〉

p

q

r

〈a, x ≤ 1, {x}〉

〈c, y ≤ 1, ∅〉

〈b, y ≤ 1, {y}〉

Fig. 1. Timed automata. First line: A1, A2; second line: A3, A4.

Thus the function f(z) contains a complete information on the “size profile” of
Vol(Ln) as a function of n. To relate it to the previous work, we show that f(z)
can be expressed in terms of the resolvent of the operator Ψ , and that the entropy
of a timed language depends only on the convergence radius of f(z).

Throughout the paper we use examples in Fig. 1, to illustrate the notions of
volume, generating function and techniques for computing the latter. Thus, the
timed language recognized by automaton A1 is L = {t1, a, t2, b, t3, a, . . . |∀i (ti+
ti+1 ≤ 1)}. For any number of events n we have a polytope in IRn: Ln =
{t1, t2, t3, . . . , tn|∀i (ti+ti+1 ≤ 1)}, the sequence of volumes Vn of these polytopes
is 1; 1; 12 ;

1
3 ;

5
24 ;

2
15 ;

61
720 ;

17
315 ;

277
8064 . . . , and it was shown in [3] that this sequence

behaves asymptotically like (2/π)n. The methods developed in this paper yield a
closed-form expression for the generating function of volumes: tan z+sec z. The
convergence radius of the series, π/2, is the inverse of the growth rate of the se-
quence Vn. This series describes precisely the sequence of volumes, and a closed-
form formula for Vn can be deduced: V2n−1 = B2n(−4)n(1− 4n)/(2n)! ; V2n =
(−1)nE2n/(2n)! , where Bs stand for Bernoulli numbers and Es for Euler
numbers.

Generating functions behave in a natural way with respect to simple op-
erations on timed languages (disjoint union, unambiguous concatenation, and
unambiguous star). However in order to obtain an exact characterization and
eventually closed-form expressions for generating function of timed regular lan-
guages a more involved analysis is needed. Such an analysis constitutes the main
contribution of the article.

Related Work. Our generating functions generalize those of regular lan-
guages, thoroughly studied and applied, [6,8,9]. We are not aware of any work
on generating functions of timed languages. Techniques and ideas used in this
article build on our previous works on volumes and entropy of timed languages;
especially on [3] (however the current article is self-contained). As for automata
and languages under study, we investigate timed regular languages of [1], clock
languages and expressions as in [7], and subclasses of timed automata: regenerat-
ing automata from [10] and 1 3

4 -clocks automata, that extend both regenerating
automata and 1 1

2 -clocks automata from [3].
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Whenever the alphabet of a timed automaton contains only one letter, its lan-
guage can be seen as a sequence of polytopes Pn ⊆ IRn. Some of such sequences,
known as Fibonacci polytopes, have been studied (independently of timed au-
tomata) in combinatorics (see [11] and references therein). In particular, [11]
provides a full analysis of the sequence of polytopes produced by automaton A1

on Fig. 1. Thus our work points at a connection between timed automata and
enumerative combinatorics.

Article Structure. In Sect. 2 we introduce a formalism (inspired by [7]) for
timed and clock languages, introduce volume functions of such languages, and
investigate the properties of these functions. In Sect. 3 we introduce generating
functions of timed languages and investigate their general properties. In Sect. 4
we explain how to compute generating functions for several subclasses of timed
automata. We summarize the contributions and discuss the directions of future
work in Sect. 5.

A longer version [2] of this article with additional proof details and examples
is available on-line.

2 Preliminaries

2.1 Clock Languages and Timed Languages

In this paper, we study timed languages (mostly regular) using an approach
based on clock languages introduced in [7]. We present this approach in a slightly
different form along with a multi-stage semantics. The general idea is as follows:
we are interested in timed languages. Timed languages are obtained as projec-
tions of clock languages. Clock languages are homomorphic images of discrete
“triplet languages”. Triplet languages, in turn, can be generated by automata
or regular expressions. Below we define formally all these notions and illustrate
them on a running example.

An alphabet of timed events is the product IR+ × Σ where Σ is a finite
alphabet. The meaning of a timed event (t, a) is that t is the time delay before
the event a. A timed word is a sequence of timed events and a timed language is
just a set of timed words.

Inspired by [7], we enrich timed words and languages with d-dimensional clock
vectors. A clock is a variable which takes values in IR+. In our setting, values of
clocks will be bounded by a positive integer M . A clock word is a timed word
together with an initial and a final clock vector, i.e. an element of IRd × (IR+ ×
Σ)∗× IRd. Two clock words [x‖w‖y] and [x′‖w′‖y′] are said to be compatible if
y = x′, in this case we define their product by [x‖w‖y]·[y‖w′‖y′] = [x‖ww′‖y′].
A clock language is a set of clock words. The product of two clock languages L
and L′ is

L · L′ = {c · c′ | c ∈ L, c′ ∈ L′, c and c′ compatible}. (1)

The neutral element E is {[x‖ε‖x] | x ∈ IRd} and the Kleene star of a language
L is as usual L∗ =

⋃
k Lk with L0 = E .
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A clock language L is said to be deterministic whenever for each clock word
the final clock vector is uniquely determined by the initial clock vector and the
timed word, in other words there exists a function σL : IRd × (IR+ ×Σ)∗ → IRd

such that for any clock word [x‖w‖y] of L, we have that y = σL(x,w). In the
following, we work with deterministic clock languages1.

To a clock language we associate its timed projections. Given L, we define
L(x,x′) as the timed language leading from x to an element lower than x′:
L(x,x′) = {w | ∃y [x‖w‖y] ∈ L ∧ y ≤ x′}. We also define the timed language
L(x) = {w | ∃y [x‖w‖y] ∈ L} as the language starting from x. Note that
L(x) = L(x,M ) where M = (M, . . . ,M) is the greatest clock vector possible.

2.2 From Timed Automata to Triplet, Clock and Timed Languages

In this section, following [7], we give a convenient representation of timed au-
tomata (such as those on Fig. 1) and their languages.

Triplets and Timed Automata. We define timed automata as finite au-
tomata over the finite alphabet T of triplets. These triplets are tuples 〈a, g, r〉
with: a a letter in Σ; g a conjunction of constraints, xi �� c (i ∈ {1..d},
c ∈ {0..M}, ��∈ {<,>,≤,≥}), called guard, and r ⊆ {1..d} a set of indices
of clocks to be reset. We suppose moreover that guards are such that all the
clocks remain bounded by M.

Clock Semantics of Triplets. Informally, a triplet 〈a, g, r〉 corresponds to
the following behaviors: starting from some initial clock vector x let some time
t elapse (all the clocks advance by t), check that g is satisfied, emit a and
update the clocks according to r. Formally, the clock language of this triplet
is L(〈a, g, r〉) = {[x‖(t, a)‖r(x + t)] | x + t |= g}. Here, for a clock vector
x = (x1, . . . , xd), we denote by x + t the vector (x1 + t, . . . , xd + t). Clock
vectors are updated as follows: r(y1, . . . , yd) = (y′1, . . . , y

′
d) with y′i = 0 if i ∈ r

and y′i = yi otherwise.
This definition can be extended to all triplet words by: L(ε) = E and

L(π1 . . . πn) = L(π1) . . .L(πn) (using the product of clock languages as defined
in (1)). Finally for a language L ⊆ T ∗, we define L(L) = {L(π) | π ∈ L}. In fact,
L is a morphism between the two Kleene algebras of triplet and clock languages.

Timed Automata and Their Languages. Given a timed automaton A,
its discrete semantics L is the language of triplet words accepted by A seen
as a finite automaton over T ; its clock semantics is LA = L(L) and its timed
semantics is LA(0). The timed automata considered in this article are assumed
to be deterministic in the sense of [1], i.e. outgoing transitions from the same state
with the same letter must have pairwise incompatible guards. Clock languages
of deterministic automata are also deterministic.

A timed regular expression is defined as expression over the finite alphabet
T . Its discrete, clock and timed semantics are defined similarly to the automata.

1 Such are clock languages associated to deterministic timed automata. However, a
product of two deterministic clock languages can be non-deterministic, and we will
explicitly rule out this situation.
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This multi-stage timed semantics is equivalent to the usual semantics of timed
automata and timed regular expressions.

Example 1 (Our running example). Automata A2 and A3 on Fig. 1 have the
same discrete semantics2 which is captured by a regular expression: (〈a, x ≤
1, {y}〉 + 〈b, y ≤ 1, {x}〉)∗. An example of a clock word recognized by the au-
tomaton is [(0.5, 0.8)‖(0.3, a)(0.1, a)(0.9, b)‖(0, 0.9)]. The timed language rec-
ognized is: {(t1, a) · · · (tn1 , a)(tn1+1, b) · · · (tn2 , b)(tn2+1, a) · · · (tn3 , a) · · · | ∀j ≥
0,
∑nj+1

i=nj+1 ti ≤ 1}, with n0 = 0 and possibly n1 = 0.

Matrix Notation. A convenient way to see automata is the matrix form. A
timed automaton A over a set of control states Q and an alphabet of transitions
T is uniquely described by three ingredients:

– a Q×Q-matrix � whose element �qq′ is the set of triplets labelling transi-
tions from q to q′;

– a row vector I describing initial states: for each control state p, its element
Ip = {ε} iff p is initial, and ∅ otherwise;

– a column vector F describing final states: for each control state q, its element
Fq = {ε} iff q is final, and ∅ otherwise.

The coefficient (�n)p,q of �n contains the language of all the triplet words of
length n from p to q. The pth coordinates of the column vector �nF contains
the language recognized from state p and I�nF contains the language of triplet
words of length n recognized by A. For instance the matrices for A3 are:

I =
(
{ε} ∅

)
; � =

(
{〈a, x ≤ 1, {y}〉} {〈b, y ≤ 1, {x}〉}
{〈a, x ≤ 1, {y}〉} {〈b, y ≤ 1, {x}〉}

)
; F =

(
{ε}
{ε}

)
.

2.3 Volume(s) of Timed and Clock Languages

Measurable Timed Languages and Clock Languages. A timed language L
is measurable if, for any word w ∈ Σ∗, the projection Lw = {t ∈ IR|w| | (t, w) ∈
L}3 is a Lebesgue-measurable subset of IR|w|. A clock language L is measurable
if it is deterministic and for every w ∈ Σ∗, σL(·, (·, w)) is a Lebesgue-measurable

function of IRd×IR|w| → IRd. We remark that timed languages and deterministic
clock languages obtained from triplet languages are measurable because their
timed projections are polytopes.

Volumes of a Timed Language [3]. The sequence of volumes (Vn(L))n∈IN
associated to a measurable timed language is Vn(L) =

∑
w∈Σn Vol(Lw), where

Vol is the hyper-volume (i.e. Lebesgue measure) in IRn. For dimension 0 we
define V0(L) = 1 if ε ∈ L, and V0(L) = 0 otherwise.

Now, for a clock language L and a word w ∈ Σ∗ of length n ≥ 0, we define
the clock language L(w) = {[x‖(t, v)‖x′] | v = w}.
2 The difference will appear in section 4.1 since A3 is 1 3

4
-clocks and A2 is not.

3 by a slight abuse of notation, since (IR×Σ)n is isomorphic to IRn ×Σn.
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Volumes Constrained by Initial and Final Clock Vectors. Timed reg-
ular languages considered below come from clock languages (which themselves
come from triplet languages). The information about clock vectors is crucial to
compute the volume of timed languages in a compositional manner.

Thus we define parametric volumes depending on initial and final clock vectors
as follows V 2

n (x,x
′) = Vn(L(x,x′)). We call this function the cumulative volume

function (CVF)4 of L. We also allow the following notations: for a clock language
L and a discrete events word w, V 2

L(w)(x,x
′) = V 2

|w|(L(w)(x,x′)); and for a

triplets word π, V 2
π (x,x

′) = V|π|(L(π)(x,x′)). The notion of parametric volumes
can be also applied to the clock language constrained only by initial clock vector
L(x): V 1

n (x) = Vn(L(x)). Clearly V 1
n (x) = V 2

n (x,∞) = V 2
n (x,M).

CVFs for a Triplet Word. According to the following result, a CVF is easy
to compute for a triplet word, and hence for a finite triplet language.

Proposition 1. For a triplet word π the CVF V 2
π is piecewise polynomial with

rational coefficients of degree ≤ |π|. The pieces are polytopes, and an expression
of this function is computable.

Composing CVFs. In order to define a composition for CVF corresponding
to the concatenation of triplet words and languages, we proceed as follows. We
define composition of two functions of IRd × IRd → IR as: V 2

1  V 2
2 (x,x

′) =∫
y V

2
2 (y,x

′)V 2
1 (x, dy), where the integral is the Lebesgue-Stieltjes integral5. We

also define V 2
1  v(x) =

∫
y
v(y)V 2

1 (x, dy), when v is defined on IRd. Then we can

state the key lemma (to transpose concatenation of words to the CVFs world):

Proposition 2. For any measurable clock languages L1 and L2 and discrete
words w1 and w2, V

2
L1(w1)

 V 2
L2(w2)

is well defined and satisfies: V 2
L1(w1)

 V 2
L2(w2)

=

V 2
L1(w1)·L2(w2)

.

Volume Functions in Timed Automata. As we did for languages, we
introduce a Q-vector Vn(x) of volumes of clock languages and a Q×Q-matrix
�(x,x′) of cumulative volume functions of elements of the transition matrix
�: formally Vn,q(x) = Vn(Lq(x)) and �qq′ (x,x

′) = V1(L(�qq′ )(x,x′)), with
Lq = L((�nF)q). It follows from the proposition above that the matrix element
(��n)pq (of the matrix power wrt  ) contains the CVF of L ((�n)pq), that is of
the language of all the clock words of length n leading from p to q. Finally, we
get the formula for volumes:

Vn = �
�n  VF , (2)

with VF a column vector with VF,p = 1 if p is final, and VF,p = 0 otherwise.
The following not so obvious property of volume functions will be used in the

sequel.

Proposition 3. In a timed automaton A, for n ≥ 1, the volume functions
Vn(x) and ��n(x,x′) are continuous wrt the initial clock vector x.

4 similarly to cumulative distribution functions in probability theory.
5 By definition, the Lebesgue-Stieltjes integral

∫
f(x)g(dx) is the Lebesgue integral of

f wrt the measure μ having cumulative distribution function g.
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3 Generating Functions

3.1 Definitions

To study volume sequences associated to timed and clock languages we define
their generating functions. As usual for generating functions, they allow recover-
ing the sequence, its growth rate, momenta etc; and they have nice compositional
properties. Given a timed language L its generating function is defined as fol-
lows: fL(z) =

∑
k z

kVk(L). Given a clock language L, we define a (parametric)
generating function with a given initial clock vector f1

L(z,x) =
∑
k z

kVk(L(x)) =
fL(z), with L = L(x). For a clock language L we also define another cumulative
generating function with a given initial clock vector and a bound on the final
clock vector: f2(z,x,x′) =

∑
k z

kV 2
k (x,x

′) = fL(z), with L = L(x,x′). To sum-
marize, we are interested in computing f(z), but this computation will be based
on f1(z,x), and sometimes on f2(z,x,x′).

Given a timed automaton, timed and clock languages, and thus generat-
ing functions are naturally associated to its states, for example f1

q (z,x) =∑
k z

kVk(Lq(x)) = fL(z), with L = Lq(x). Taken for all states, functions fq
and f1

q form |Q|-dimensional vector functions f(z,x), f1(z,x), while functions
f2
q,q′ form a Q×Q-matrix function �2(z,x,x′).

3.2 Analytic Characterization

Elementary Properties. First, let us state the relations between the three
kinds of generating functions:

Proposition 4. The functions f, f1, f2 are related as follows: f(z) = f1(z,0);
f1(z,x) = f2(z,x,M).

By definition, f2, f1 and f are analytic functions of z. Since we consider timed
automata with guards bounded by some constant M , all the volumes Vk (with
any initial or final conditions) can be upper bounded by (M |Σ|)k. This implies
that convergence radius of series for f2, f1 and f is at least (M |Σ|)−1 > 0. More
precisely, the radius of convergence of f is 1/ lim supk→∞(Vk(L))

1/k = 2−H(L),
where H(L) is called the volumetric entropy of L (see [3]).

For generating functions associated to timed automata, the following result is
a straightforward corollary of Prop. 3:

Proposition 5. Within its convergence radius, the generating function f1(z,x)
associated to a timed automaton A is continuous wrt the initial clock vector x.

Integral Equation for Generating Functions. Consider a timed automaton.
Using formula (2), its generating function can be computed as follows: f1(z,x) =∑

k z
kVk(x) =

∑
k z

k��k  VF , which implies our first main result.

Theorem 1 (Integral equation). In the interior of its convergence circle, the
generating function f1 is the unique solution of the integral equation

f1 − z�  f1 = VF . (3)
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Example (1, continued). For the automaton A3 (using the notation x −̇ y for
max(x − y, 0)):

� =

(
min(x′, 1) −̇x1ly′≥0 min(y′, 1) −̇ y1lx′≥0

min(x′, 1) −̇x1ly′≥0 min(y′, 1) −̇ y1lx′≥0

)
; VF =

(
1
1

)
.

Equation (3) gives: f1
p (z, x, y) = f1

q (z, x, y) = 1 + z
∫ 1
x f1

p (z, x
′, 0)dx′

+z
∫ 1
y f

1
q (z, 0, y

′)dy′. In Section 4.1 below we develop a technique for solving

such equations (for a subclass of automata including this one), and compute the
generating function for this language.

3.3 Volumes, Generating Functions and Functional Analysis

In this section (which can be skipped by a reader not interested in functional
analysis), similarly to [3], we rephrase previous results in terms of the spectral
theory of linear operators.

Given a timed automaton, consider the Banach space F of Q-vectors of con-
tinuous functions on clock valuations. Thus an element of F is a vector v whose
components are continuous vq : [0;M ]d → IR, and F = C([0;M ]d)Q. The matrix
� corresponds to an operator Ψ : F → F defined by Ψ(v) = �  v (a variant
of this operator plays the central role in [3]). In terms of this operator, Prop. 3
and equation (2) can be rephrased as follows:

Proposition 6 ([3]). Ψ is a bounded linear operator on F (represented by a
matrix of integral operators). The volume vector can be obtained by iteration of
this operator: Vn = Ψn(VF ).

Recall that, by definition, the resolvent of an operatorA is R(λ,A) = (A−λI)−1;
it is well defined when λ does not belong to the spectrum of A, in particular for
|λ| > ρ(A), where ρ denotes the spectral radius. We obtain as a consequence of
Thm. 1 another characterization of the generating function:

Proposition 7 (Generating function and resolvent). The generating func-
tion f1 satisfies the formula: f1 = −z−1R(z−1, Ψ)VF , which holds in the interior
of the circle |z| < ρ(Ψ)−1.

3.4 Inductive Characterization of Generating Functions

The form of generating functions of finite triplet languages follows from Prop. 1:

Proposition 8. For a finite triplet language L with maximal word length ,
the generating functions f2, f1 are piecewise polynomial in z,x,x′ (pieces are
polytopes in x,x′) of degree ≤  wrt z and wrt x and x′.

More complex languages can be obtained from finite ones using Kleene algebra
operations. As usual in the context of generating functions, we suppose that the
operations are unambiguous. A language operation is ambiguous if a word of the
resulting language can be obtained in several ways by composing different words
from the operands. We consider first the simple case of timed languages.
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Proposition 9. Generating functions behave well for unambiguous operations
on measurable timed languages: fL1∪L2 = fL1 + fL2 ; fL1·L2 = fL1fL2; fL∗ =
1 + fLfL∗ provided ε �∈ L.

However, in order to obtain general timed regular languages we need operations
on clock languages, which are more involved.

Proposition 10. Generating functions f2 behave well for unambiguous opera-
tions on deterministic measurable clock languages (whenever the resulting lan-
guage is also deterministic): f2

L1∪L2
= f2

L1
+ f2

L2
; f2
L1·L2

= f2
L1

 f2
L2
; f2
L∗ =

1lx≤x′ + f2
L  f2

L∗ provided E ∩ L = ∅.

Corollary 1. Generating function f1 for unambiguous compositions of clock
languages (under the same hypotheses) can be computed as follows: f1

L1+L2
=

f1
L1

+ f1
L2
; f1
L1·L2

= f2
L1

 f1
L2
; f1
L∗ = 1 + f2

L  f1
L∗ provided E ∩ L = ∅.

4 Computing Generating Functions

The generating function of a timed language represented by an automaton is
characterized by a system of integral equations (3). The generating function of
a timed language represented by a regular expression can be found recursively
from piecewise polynomial functions using operations +,  and solving fixpoint
integral equations of Prop. 10 and Cor. 1. Unfortunately, both procedures involve
computation of integrals, and solution of integral equations, for this reason, the
result cannot be always presented by an explicit formula. Below we consider
several subclasses of timed automata, for which generating functions can be
obtained in closed form, or at least admit a simpler characterization.

4.1 Generating Functions for Particular Classes of Automata

System of Equations. Our closed-form solutions for subclasses of timed au-
tomata will be obtained using a variant of language equations.

p q

r

〈b, x < 7, {x}〉

〈a, 2 < x < 3, ∅〉 〈b, x < 5, {x}〉

〈b, x < 8, {x}〉

Fig. 2. A regenerating automaton

Let Q = G∪B be a disjoint partition of
the states of a timed automatonA into good
and bad. We want to describe the vector
L of triplet languages Lq recognized from
good states q ∈ G only. This vector satisfies
the equation:

L = � · L+ F, (4)

where � is a G × G-matrix and F is a G-
vector of triplet languages. Their elements
are defined as follows: T pq consists of all words leading from p to q via bad states
only; F p consists of all words leading from p to a final state via bad states only6.

6 If this final state is good the word should be ε.
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Automata with Regeneration. Following [10], we call an automaton re-
generating if there exists a partition Q = G ∪ B having two properties: (a)
every cycle in the automaton contains a state in G (good); (b) all the transitions
coming into a good state reset all clocks.

W.l.o.g. we suppose that the initial state is good (this can be achieved by
adding a new initial state). Condition (a) implies that no cycle is possible within
bad states, and thus all the elements of � and F are finite triplet languages
(with maximal word length ≤ |B| + 1). Condition (b) means that (4) can be
rewritten in timed languages (instead of clock languages), since when entering
in a good state all clocks are reset. This gives

Ltimed = �timed · Ltimed + Ftimed. (5)

Applying simple compositionality conditions for generating functions for timed
languages (Prop. 9) we obtain that f = � f+fF .Due to Prop. 8 all the coefficients
(elements of matrix � and vector fF ) are polynomials of z. Solving this linear
|G|-dimensional system we express f as a vector of rational functions of z: f =(
I − �

)−1
fF . The generating function f of the timed language accepted by the

automaton is just one element of this vector f . We conclude.

Theorem 2. For a regenerating automaton the generating function f(z) is a
rational function.

Example 2. Consider a regenerating automaton on Fig. 2. We choose good and
bad states as follows: G = {p, q};B = {r}. The system of equations on timed
languages of good states takes the form(

Lp
Lq

)
=

(
∅ Tpq
Tqp ∅

)
·
(
Lp
Lq

)
+

(
Fp
∅

)
with (6)

Tpq ={(t1, a)(t2, b)|2 < t1 < 3 ∧ t1 + t2 < 5} ∪ {(t, b)|t < 8};
Tqp ={(t, b)|t < 7};
Fp ={(t, a)|2 < t < 3}.

For generating functions this yields:

(
fp
fq

)
=

(
0 2.5z2 + 8z
7z 0

)
·
(
fp
fq

)
+

(
z
0

)
.

Solving this linear system we find the required fp(z) = 2z
/(

2− 35z3 − 112z2
)
.

It converges for |z| < 0.1309, its Taylor coefficients (i.e. volumes Vn for n = 0..11)
are 0; 1; 0; 56; 17 1

2 ; 3136; 1960; 175922
1
4 ; 164640; 9885946; 12298479

3
8 ; 556494176.

1 3
4 -Clocks Automata. We call an automaton 1 3

4 -clocks if there exists a
partition of Q = G ∪ B into good and bad states having three properties:(a)
every cycle in the automaton contains a good state; (b) the initial state is a
good one; (c) for each good state p there is at most one clock xi(p) not reset by
incoming transitions.

Similarly to regenerating automata, we apply equations (4), and observe that
all the coefficients are finite triplet languages. Unfortunately, since some clocks
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are not reset, we cannot write an equation on timed languages similar to (5).
Instead, we pass to clock languages and their generating functions, as in the
general case. This gives:

f1 = �2  f1 + f1F , (7)

an integral equation with piecewise polynomial coefficients. We notice that func-
tions in the last equation depend on the clock vector x ∈ IRd (or on two clock
vectors x,x′), but in fact for any good state p ∈ G only one clock xi(p) mat-
ters. This allows extracting simpler integral equations from (7), involving only
functions of scalar argument.

We proceed as follows: given a G-vector v whose elements vp are functions on

IRd, we define reduced functions on IR: ṽp(x) = vp(0, . . . , 0, x, 0, . . . , 0), with the
argument x at position i(p). Reduced G-vector ṽ consists of reduced elements
ṽp. Reduced versions of matrices are defined similarly.

The following identity is based on the requirement of clock resets:

Lemma 1. For a 1 3
4 -clocks automaton the following holds: �̃2  f1 = �̃2  f̃1.

Equation (7), reduced to f̃1 = �̃2  f̃1 + f̃1F , implies that the reduced vector of
generating functions is a solution of equations of the form:

f(z, x) = (�  f)(z, x) + b(z, x), (8)

where all the coefficients are piecewise polynomial functions of z and a scalar
argument x.

Lemma 2. An integral equation of the form (8) can be transformed into a sys-
tem of linear ordinary differential equation with piecewise polynomial coefficients
(depending on x and z).

Theorem 3. For a 1 3
4 -clocks automaton the generating function f can be ob-

tained by solving a system of linear ordinary differential equations with piecewise
polynomial coefficients.

We notice that the theorem gives a rather explicit characterization of f , but not
always a closed-form expression.

Example (1, completed). A3 is 1 3
4 -clocks

7 with good states G = {p, q} and no
bad state B = ∅. The matrix � and the vector b are

� =

(
z(min(x′, 1) −̇x) zmin(x′, 1)

zmin(x′, 1) z(min(x′, 1) −̇x)

)
; b =

(
1
1

)
.

We use equation (8) and remark that by symmetry of �, the two generating

functions f̃1
p and f̃1

q are equal to a unique function f1 which satisfies f1(z, x) =

z
∫ 1
x
f1(z, x′) dx′ + z

∫ 1
0
f1(z, x′) dx′ + 1. Differentiating it one time w.r.t x we

obtain: ∂f
1

∂x (z, x) = −zf1(z, x). The solution has the form f1(z, x) = A(z)e−zx.

Remark that f1(z, 0) − 1 = 2z
∫ 1
0 f1(z, x′) dx′ = 2(f1(z, 1) − 1). We are done

since f(z) = f1(z, 0) = A(z) = 1/(2e−z − 1) .

7 A3 can be seen as A2 whose state is split to make it a 1 3
4
-clock automaton.
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Example 3. Automata A1 and A4 are also 1 3
4 -clocks, and their generating func-

tions are tan z+sec z and 4
/(

π
(
Bi′(0)Ai(−z)−Ai′(0)Bi(−z)

))
, where Ai and

Bi stand for Airy functions.

5 Conclusions
In this article, we have introduced generating functions of timed languages, ex-
plored their properties and characterized them by integral equations. For sub-
classes of timed regular languages we have presented closed-form expressions or
simpler characterization of generating functions. Generating functions describe
with a high precision the quantitative behavior of timed languages.

At the current stage of research, the computation of generating functions is a
semi-manual task and restrictions are imposed to the automata. We are planning
to explore theoretical and practical algorithmics of timed generating functions,
and to implement the algorithm. On the other hand, we want to see whether
closed form solutions are possible beyond the class of 1 3

4 -clocks languages.
We hope that this approach will lead to new combinatorial results for timed

regular languages and sequences of polytopes, better quantitative characteriza-
tion of such languages with applications to information theory and verification
of real-time systems. Also, the approach can be extended to timed formal series,
non-regular timed languages, or to richer models such as hybrid automata.
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Abstract. In this paper, we introduce the k-Robust Set problem:
given a graph G = (V,E), a threshold function t : V → N and an
integer k, find a subset of vertices V ′ ⊆ V of size at least k such that
every vertex v in G has less than t(v) neighbors in V ′. This problem oc-
curs in the context of the spread of undesirable agents through a network
(virus, ideas, fire, . . .). Informally speaking, the problem asks to find the
largest subset of vertices with the property that if anything bad hap-
pens in it then this will have no consequences on the remaining graph.
The threshold t(v) of a vertex v represents its reliability regarding its
neighborhood; that is, how many neighbors can be infected before v gets
himself infected.

We study in this paper the parameterized complexity of k-Robust

Set and the approximation of the associated maximization problem.
When the parameter is k, we show that this problem is W[2]-complete
in general and W[1]-complete if all thresholds are constant bounded.
Moreover, we prove that, if P �= NP , the maximization version is not
n1−ε- approximable for any ε > 0 even when all thresholds are at most
two. When each threshold is equal to the degree of the vertex, we show
that k-Robust Set is fixed-parameter tractable for parameter k and
the maximization version is APX-complete. We give a polynomial-time
algorithm for graphs of bounded treewidth and a PTAS for planar graphs.
Finally, we show that the parametric dual problem (n− k)-Robust Set

is fixed-parameter tractable for a large family of threshold functions.

1 Introduction

The subject of optimization problems that involve a diffusion process through
a network is a large and well-studied topic [15,8,1,12,3]. Such problems share
a common idea of selecting an initial subset of vertices to activate in a graph
such that, according to a propagation rule, all vertices are activated once the
propagation process stops. One such representative problem is the Target Set

Selection problem first introduced in [8]: given a graph G = (V,E) and a
threshold function t : V → N , the problem asks to find the minimum num-
ber of vertices to activate such that all vertices are activated at the end of the
propagation process. A vertex v is activated if and only if the number of its
activated neighbors is above the threshold t(v). This problem has been proved

B. Rovan, V. Sassone, and P. Widmayer (Eds.): MFCS 2012, LNCS 7464, pp. 136–147, 2012.
c© Springer-Verlag Berlin Heidelberg 2012
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NP-complete even when all thresholds are at most two [8]. Moreover, the prob-

lem was surprisingly shown to be hard to approximate within a ratio O(2log
1−ε n)

for any ε > 0 even when all thresholds are at most two [8]. The same inapprox-

imability result holds with majority thresholds i.e, for each v ∈ V, t(v) = +d(v)2 ,
[8]. From a parameterized perspective, Target Set Selection is W[2]-hard
with respect to the solution size for majority thresholds and for thresholds at
most two [17]. Furthermore, the problem is proved to be in XP and W[1]-hard
with respect to the parameter treewidth [3]. These negative results emphasize
the strong intractability nature of the problem.

With regards to the motivation for this study, it is an interesting question to
ask the complexity of the converse problem: find the largest subset of vertices
such that if a set of vertices gets infected in it then there will be no consequence
for all the other vertices. In this context, there is no propagation process involved
like in the previous problem; here we want to prevent such phenomenon. This
idea of “controlling” the diffusion of dangerous ideas or epidemics is also well-
studied [16,13,7]. More formally, we introduce the k-Robust Set problem: given
a graph G = (V,E), a threshold function t : V → N and an integer k, find a
subset of vertices V ′ ⊆ V of size at least k such that every vertex v in G has
less than t(v) neighbors in V ′. The set V ′ is said to be robust. Indeed, if one
infects any subset S ⊆ V ′ then there will be no propogation at all since every
vertex has a number of infected neighbors below its threshold. Finally, it is worth
pointing out that our problem can also be related to a recent paper about the
(σ, ρ)-Dominating Set problem [14].

In this paper, we study the parameterized complexity of k-Robust Set and
the approximation of the associated maximization problem Max Robust Set.
The paper is organized as follows. In Section 2 we give the definitions, termi-
nology and preliminaries. In Section 3 we establish parameterized intractability
results for k-Robust Set with various threshold functions. We show that the
parametric dual problem (n−k)-Robust Set is fixed-parameter tractable for a
large family of threshold functions. In Section 4 we give a polynomial-time algo-
rithm to solve k-Robust Set for graphs of bounded treewidth. In Section 5 we
establish that Max Robust Set is not n1−ε-approximable for any ε > 0 even
when all thresholds are at most two. If each threshold is equal to the degree of
the vertex, we show that Max Robust Set is APX-complete. Conclusion and
open problems are given in Section 6. Due to the space limit, some proofs are
omitted.

2 Preliminaries

In this section, we give the notation used throughout this paper as well as the
statement of the problems. We will conclude this section by providing the basic
backgrounds on parameterized complexity and approximation.

Graph Terminology. Let G = (V,E) be an undirected graph. The open neigh-
borhood of a node v ∈ V , denoted by N(v), is the set of all neighbors of v. The
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closed neighborhood of a node v, denoted N [v], is the set N(v)∪{v}. The degree
of a node v is denoted by dG(v) or simply d(v) if the graph is clear from context.
Let X ⊆ V , we denote by G[X ] the subgraph of G induced by X .

Problem Definitions. Let G = (V,E) be an undirected graph, and t : V → N
a threshold function. A subset V ′ ⊆ V is called robust if ∀v ∈ V, dV ′(v) < t(v).
We call a vertex bounded if t(v) = O(1); otherwise, it is said unbounded. We
define in the following the problems we study in this paper.

k-Robust Set

Input: A graph G = (V,E), a threshold function t : V → N where
1 ≤ t(v) ≤ d(v) for every v ∈ V , and an integer k
Parameter: k
Question: Is there a robust set V ′ ⊆ V of size at least k?

We considered also the parametric dual problem (n− k)-Robust Set which
asks for the existence of a robust set of size at least n− k.

The optimization version of k-Robust Set is defined as follows.

Max Robust Set

Input: A graph G = (V,E) and a threshold function t : V → N where
1 ≤ t(v) ≤ d(v) for every v ∈ V
Output: A robust set V ′ ⊆ V such that |V ′| is maximized.

If the threshold function is defined by t(v) = d(v), ∀v ∈ V then we add
the suffix With Unanimity to the problem name. The majority threshold is

t(v) = +d(v)2 ,, ∀v ∈ V .

Parameterized Complexity. Here we only give the basics notions on param-
eterized complexity, for more background the reader is referred to [11,18]. A
decision problem parameterized by k is said to be fixed-parameter tractable if
there exists an algorithm that solves every instance (I, k) in fpt-time i.e., in
f(k).|I|O(1)-time for some function f depending solely on k.

The basic class of parameterized intractability is W[1] and there is a good
reason to believe that W[1]-hard problems are unlikely to be fixed-parameter
tractable. In fact, there is a all hierarchies of classes W[i] with the following
inclusions FPT ⊆ W[1] ⊆ W[2] . . . . Informally speaking, a problem in W[i]
is considered “harder” than those in W[i − 1] where i > 1. These classes are
defined via the satisfiability problem of boolean circuits. More specifically, a pa-
rameterized problem belongs to W[i] if every instance (I, k) can be transformed
in fpt-time to a boolean circuit C of constant depth and weft at most i, such
that (I, k) is a yes instance if and only if there is a satisfying truth assignment
for C of weight exactly k. The weft of a circuit is the maximum number of large
gates i.e., gates with a number of inputs not bounded by any constant, on a path
from an input to the output. The depth is the maximum number of all gates on
a path from an input to the output.

In this paper, the kernel size is expressed in terms of the number of vertices.



The Robust Set Problem: Parameterized Complexity and Approximation 139

Approximation. Given an optimization problem A and an instance I of this
problem, we denote by |I| the size of I, by optA(I) the optimum value of I and
by val(I, S) the value of a feasible solution S of I. In this paper, we will make
use of the following approximation preserving reduction.

Definition 1 (L-reduction [19]). Let A and B be two optimization problems.
Then A is said to be L-reducible to B if there are two constants α, β > 0 and
two polynomial time computable functions f , g such that

1. f maps an instance I of A into an instance I ′ of B such that optB(I
′) ≤

α · optA(I),
2. g maps solutions each solution S′ of I ′ into a solution S of I such that
|val(I, S)− optA(I)| ≤ β · |val(I ′, S′)− optB(I

′)|.

For us the important property of this reduction is that if A is APX-hard then
B is also APX-hard.

3 Parameterized Complexity

In this section, we consider the parameterized complexity of k-Robust Set. In
some reductions we make use of the following gadget: a forbidden edge denotes
an edge uv where both vertices have threshold one. Attaching a forbidden edge
to a vertex w means to create a forbidden edge uv and make w adjacent to u.
Notice that none of the three vertices u, v or w can be part of a robust set.

First, we show that k-Robust Set belongs to W[2] using the Turing way, that
is, we reduce k-Robust Set to the Short Multi-tape Nondeterministic

Turing Machine problem that is proved to belong to W[2] in [6] and defined
as follows: given a multi-tape nondeterministic Turing machine M , a word x on
the input alphabet of M , and an integer k, determine if there is a computation
of M on input x that reaches a final accepting state in at most k steps. The
parameter is k.

Theorem 1. k-Robust Set is in W[2].

Proof. We construct an fpt-reduction from k-Robust Set to Short Multi-

tape Nondeterministic Turing Machine as follows. Let (G, t, k) be an in-
stance of k-Robust Set with G = (V,E) and V = {v1, . . . , vn}. We construct
the following Turing machine M from (G, t, k). We create n+1 tapes denoted by
T0, Tv1 . . . , Tvn . The tapes alphabet is V ∪{×, 1, . . . , n} plus the blank symbol 0.
Initially, every tape is filled with 0. The transition function is defined hereafter.
The machine M starts by writing symbol × on tape T0 and move T0’s head
one step to the right. During the first phase, M non-deterministically chooses k
vertices and write them on tape T0, that is, if M picks up a vertex v ∈ V then
it writes symbol v on T0 and move T0’s head one step to the right. The previous
procedure is done in k + 1 steps. During the second phase, M verifies that the
selected set is a robust set as follows. First, the machine move T0’s head one step
to the left. Assume that T0’s head reads symbol v and, for every u ∈ N(v), Tu’s
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head reads symbol su. If su = t(u)−1 then M goes in rejecting state. Otherwise,
M writes symbol su + 1 on tape Tu and moves the T0’s head one step to the
left. We repeat the previous procedure until T0’s head reads symbol ×. Clearly,
this checking phase is performed in at most k+ 1 steps. Finally, the input word
x is empty and k′ = 2k + 2. It is not hard to see that (G, t, k) is a Yes-instance
if and only if M accepts in at most k′ steps. �

Now in order to prove the W[2]-hardness of k-Robust Set, we construct a
simple fpt-reduction from the problem Red/Blue Dominating Set proved
W[2]-hard in [11] and defined as follows: given a bipartite graph G = (R∪B,E)
and a positive integer k, determine if there exists a set R′ ⊆ R of cardinality k
such that every vertex in B has at least one neighbor in R′. The parameter is k.

Theorem 2. k-Robust Set is W[2]-complete even for bipartite graphs.

Proof. Membership follows from Theorem 1. Now, let us show the W[2]-hardness.
Given (G, k) an instance of Red/Blue Dominating Set, we construct an in-
stance (G′ = (V ′, E′), t, k) of k-Robust Set as follows. We consider the com-
plement Ḡ of the graph G, that is two vertices u ∈ R and v ∈ B are adjacent
in Ḡ if and only if they are not adjacent in G. Moreover, the sets R and B re-
main independent sets. Graph G′ is obtained from this last graph by attaching
max{k − dḠ(v), 1} forbidden edges to each vertex v ∈ B. Finally, set t(v) = k
for every vertex v ∈ B and t(v) = 1 for every vertex v ∈ R. Adding several for-
bidden edges to the vertices of B make sure that the threshold of these vertices
is less than or equal to their degree as required.

Assume that (G, k) has a solution R′ ⊆ R of size k. One can see that R′ is
also a solution for (G′, t, k) since every vertex in B is not adjacent to at least
one vertex in R′. Conversely, suppose that there is a robust set S ⊆ V ′ of size
k in G′. Since S is robust, S cannot contain any vertex from B because of the
forbidden edges, and thus S is entirely contained in R. Moreover, every vertex
v in B is adjacent in G′ to at most t(v)− 1 = k − 1 vertices in S. Hence, every
vertex in B is adjacent in G to at least one vertex in S. Therefore, S is a solution
of size k for (G, k). �

In the next two theorems, we show that k-Robust Set goes one level down in
the W-hierarchy when all thresholds are bounded by a constant.

Theorem 3. k-Robust Set is in W[1] if all thresholds are constant bounded.

Proof. Let (G, t, k) be an instance of k-Robust Set where t(v) ≤ c, ∀v ∈ V
for some constant c > 0. We construct in O(nc)-time, where n is the number of
vertices of G, a boolean circuit C of depth 3 and weft 1 as follows. We identify
the inputs of the circuit with the vertices of G. Connect a ¬-gate to every input.
For all v ∈ V and all subsets S′ ⊆ N(v) of size t(v), add a ∨-gate connected to
¬-gate of inputs in S′. Finally, add a large ∧-gate connected to every ∨-gate. It
is not hard to see that G admits a robust set of size k if and only if there is a
weight-k assignment that satisfies C. �
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We establish the W[1]-hardness of k-Robust Set by an fpt-reduction from the
problem Red/Blue NonBlocker [10] defined as follows: given a bipartite
graph G = (R∪B,E) and a positive integer k, determine if there is a set R′ ⊆ R
of cardinality k such that every vertex in B has at least one neighbor that does
not belong to R′. The parameter is k. This problem remains W[1]-hard even
when every vertex in B has degree two and every vertex of R has degree at least
two [10].

Theorem 4. k-Robust Set is W[1]-complete even

1. For bipartite graphs and constant majority threshold.
2. For split graphs and constant threshold t(v) = 2, ∀v ∈ V .

Proof. Membership follows from Theorem 3. We now prove the W[1]-hardness.
(1): Let (G, k) be an instance of Red/Blue NonBlocker where vertices in

B have degree two, we construct the graph G′ = (V ′, E′) from G as follows. For
each vertex v ∈ B, attach a forbidden edge to v. Set t(v) = +dG′(v)/2, for all
v ∈ V ′.

Assume that (G, k) has a solution R′ ⊆ R of size k. It is not hard to see that
R′ is also a solution for (G′, t, k). Conversely, suppose that there is a robust set
S ⊆ V ′ of size k in G′. Because of the forbidden edges, the set S is entirely
contained in R. Since R is a robust set, every vertex in B is adjacent to at least
one vertex in R \ S. Therefore, S is a solution of size k for (G, k).

(2): Let (G, k) be an instance of Red/Blue NonBlocker where vertices in
B have degree two and every vertex of R has degree at least 2, we construct
the graph G′ = (V ′, E′) from G as follows. Add edges to make B a clique. Set
t(v) = 2 for all v ∈ V and k′ = k. Without loss of generality we may assume
that k ≥ 2.

Assume that (G, k) has a solution R′ ⊆ R of size k. One can easily verify
that R′ is a robust set of size k′ for (G′, k′). Conversely, suppose that there is
a robust set S ⊆ V ′ of size k′ in G′. Notice that S ∩ B = ∅ since otherwise we
would not have been able to take more than one vertex in G. Indeed, if there are
two vertices u, v ∈ S with v ∈ B then there is always a vertex w ∈ B − {u, v}
adjacent to both v and u. Thus, S is entirely contained in R. From now, it is
not hard to see that R is also a solution for (G, k). �

It is interesting to note that the ratio between the number of unbounded vertices
and the number of bounded vertices of the graph in the proof of Theorem 2 can
be made arbitrarily small (add many forbidden edges). This implies a sharp di-
chotomy between the W[2]- and W[1]-completeness of k-Robust Set regarding
the thresholds.

Unanimity Threshold. We consider now the k-Robust Set With Una-

nimity problem. First, we start with the following easy observation. In the case
of unanimous threshold, any robust set is the complement of a total dominating
set. Recall that a total dominating set S is a set of vertices such that every
vertex has at least one neighbor in S. Moreover, we have the following theorem.
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Theorem 5. [9] If G is a connected graph of order at least 3 then there is a
total dominating set of size at most 2n/3.

This implies that Max Robust Set With Unanimity always has a solution
of size at least n/3 when n ≥ 3. The consequence of this result is that we directly
get a linear kernel of size 3k. Indeed, let (G, t, k) be an instance of k-Robust

Set With Unanimity, if k ≤ n/3 then the answer is Yes. If k > n/3 then
the instance (G, t, k) is a kernel of size at most 3k. However, the parameter k is
“large” in this last case. This suggests to look for other parameterizations.

Parametric Dual. Now, we show that (n − k)-Robust Set is FPT with
respect to the parameter k for a large family of threshold functions.

Reduction rule 1. Let (G, t, k) be an instance of (n−k)-Robust Set. If there
is a vertex v such that d(v) ≥ k + t(v) − 1 then remove v and decrease by one
the threshold of every vertex in N(v) to get a new equivalent instance (G′, t′, k).

Lemma 1. Reduction rule 1 is sound.

Proof. Let S ⊆ V be a robust set of size at least n − k. If there is a vertex v
with d(v) ≥ k+ t(v)− 1 then v must be in S since otherwise v has at most k− 1
neighbors in V \ S and then at least t(v) neighbors in S. �
Theorem 6. (n−k)-Robust Set admits a kernel of size O(k2) if for all v ∈ V
t(v) = +αvd(v)βv + γv, for any constants αv, βv ∈ [0, 1], αvβv �= 1, and γv ∈ Q.

Proof. Let (G, t, k) be an instance of (n− k)-Robust Set. Exhaustively apply
reduction rule 1 to get (G′, t′, k). Assume that there exists a solution S ⊆ V of
size at least n− k. Because of reduction rule 1, we have that

d(v) < k + t(v) − 1 = k + +αvd(v)βv + γv, − 1 ≤ k + αvd(v)
βv + γv

We claim that d(v) ≤ θv(k) for all v ∈ V ′ where θv(k) =
k+γv
1−αv

+ (1/βv)
1

1−βv if

αv �= 1, k+γv1−βv
+ (1/βv)

1
1−βv otherwise. Consider the following cases.

Case 1. If βv = 0 then obviously d(v) ≤ θv(k)
Case 2. If βv = 1 then d(v) < k+γv

1−αv
< θv(k) (since αv < 1)

Case 3. Suppose now that βv ∈ (0, 1). First, it is not hard to show that the

following holds: nβv ≤ βvn if and only if n ≥ (1/βv)
1

1−βv for any n ≥ 1 and

βv ∈ (0, 1). Hence, If d(v) ≥ (1/βv)
1

1−βv then we have d(v) ≤ k + αvβvd(v) + γv
and thus d(v) ≤ k+γv

1−αvβv
≤ θv(k). Otherwise d(v) < (1/βv)

1
1−βv ≤ θv(k).

Since every vertex from S has at least one neighbor in V ′ − S then |S| has at
most |V ′ − S|dmax ≤ kθmax(k) vertices where θmax(k) = maxv∈V ′θv(k) and
dmax is the maximum degree of vertices in V ′ − S.

The kernelization procedure is then defined as follows. From an instance
(G, t, k) of (n − k)-Robust Set, exhaustively apply reduction rule 1 to get
an instance (G′, t′, k). If |V ′| > kθmax(k) + k then return a trivial No-instance.
Otherwise, return the instance (G′, t′, k). �
Notice that if αv = βv = 1 and γv = 0, ∀v ∈ V then the (n − k)-Robust Set

problem is exactly the Total Dominating Set problem which is known to be
W[2]-hard [14].
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4 Algorithm for Tree-Like Graphs

In this section we establish a O(T 2ωn)-time algorithm for Max Robust Set

and a O((k+1)2ωn)-time algorithm for k-Robust Set where T is the maximum
threshold and ω the treewidth of the input graph.

Using a nice tree decomposition together with a dynamic programming algo-
rithm we can prove the following.

Theorem 7. Max Robust Set is solvable in time O(T 2ωn) where T is the
maximum threshold and ω is the treewidth of the input graph.

Now we show that k-Robust Set is solvable in O((k + 1)2ωn) time. For that
purpose, we introduce the following reduction rule.

Reduction rule 2. Let (G, t, k) be an instance of k-Robust Set. If there is a
vertex v such that t(v) > k + 1 then set the threshold t(v) to k + 1 to get a new
equivalent instance (G, t′, k).

Lemma 2. Reduction rule 2 is sound.

Proof. Let (G = (V,E), k, t) be an instance of k-Robust Set. Exhaustively
apply Reduction Rule 2 on (G, t, k) to get a new instance (G, t, k′). It is not
hard to see that if S ⊆ V is a robust set of size at least k for (G, t, k), then any
subset of size k of S is a robust set for (G, t, k′). The converse is clear. �

We are now ready to prove the following.

Theorem 8. k-Robust Set is solvable in time O((k + 1)2ωn) where ω is the
treewidth of the input graph.

Proof. Let (G, t, k) be an instance of k-Robust Set. Exhaustively apply Re-
duction Rule 2 on (G, t, k) to get a new instance (G, t, k′). Apply the algorithm
from Theorem 7 on (G, t′) to get the optimal solution of value opt. If opt ≥ k
return Yes; otherwise return No. Since every threshold is at most k + 1, the
running time is O((k + 1)2ωn). �

Notice that if all thresholds are constant bounded then k-Robust Set is in
FPT with respect to the parameter treewidth.

5 Approximability

In this section, we show that Max Robust Set is inapproximable even for small
constant thresholds. In order to prove this result, we consider the Max Clique

problem: given a graph G = (V,E), find a clique C ⊆ V of maximum size.

Theorem 9. If NP �= ZPP , Max Robust Set is not approximable within nε

for any ε > 0 even for thresholds at most two.
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We now prove the APX-completeness of Max Robust Set With Unanimity.

Lemma 3. Max Robust Set With Unanimity is 3-approximable in polyno-
mial time.

Proof. The algorithm consists of the following two steps:

1. Compute a spanning tree T of G.
2. Compute an optimal solution S of T .

Using Theorem 7, the algorithm runs in polynomial-time. Clearly, any feasible
solution for T is also a solution for G. Moreover, using Theorem 5, we have
|S| ≥ n/3 ≥ opt(G)/3. �

Theorem 10. Max Robust Set With Unanimity is APX-complete.

Proof. Membership follows from Lemma 3. In order to prove the APX-hardness
we provide an L-reduction (see Definition 1) from Max E2Sat-3 proved APX-
hard in [4] and defined as follows: given a CNF formula φ with n variables and
m clauses, in which every clause contains exactly two literals and every vari-
able appears in exactly three clauses, determine an assignment to the variables
satisfying a maximum number of clauses. Notice that m = 3n/2.

Given a formula φ of Max E2Sat-3, we construct an instance I = (G =
(V,E), t, k) of Max Robust Set With Unanimity as follows (see Figure 1).
For every variable xi, we construct the complete bipartite graph K3,3(xi) =
(V −(xi), V

+(xi)) in which every edge uv is replaced by an edge-vertex euv and
two edges ueuv and euvv. We denote by E(xi) this set of edge-vertices. The
vertices in V +(xi) (resp. V

−(xi)) represents the positive (resp. negative) literals
of xi. We denote by A the set of all vertices added so far. For every clause cj in
φ add two adjacent clause-vertices c̄j and c̄′j . For every variable xi, if xi appears
positively (resp. negatively) in a clause cj then add an edge between c̄′j and a
vertex of V −(xi) (resp. V

+(xi)). Thus, vertex c̄j represents the complement of
the clause cj in φ. Finally, add two adjacent vertices c and c′. For every vertex
v ∈ V −(xi) ∪ V +(xi), if v is not adjacent to a clause-vertex then add the edge
vc′.

The optimal value in I is bounded by the number of vertices of G and thus,
opt(I) ≤ 15n + 2m + 2 ≤ 16opt(φ) + 2 ≤ 18opt(φ) since opt(φ) ≥ 3/4m and
opt(φ) ≥ 1.

Moreover, let x∗ ⊆ V be an optimal assignment for φ and let

S = ∪x∗
i =1V

+(xi)∪∪x∗
i =0V

−(xi)∪∪ni=1E(xi)∪{c̄j : cj is satisfied by x∗}∪{c}.

We can easily verify that S is a robust set and |S∩(V −(xi)∪V +(xi)∪E(xi)| =
12 and thus |S ∩ A| = 8m and then opt(I) ≥ |S| = 8m+ opt(φ) + 1.

Let S be a robust set for I. We show in the following how to construct an
assignment aS for φ from the solution S such that val(φ, aS) = |S| − 8m − 1.
For each variable xi, S cannot contain vertices from both V −(xi) and V +(xi)
since otherwise an edge-vertex has both neighbors inside S. Notice also that S
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cannot contain any vertex c̄′j , since c̄′j is adjacent to the degree one vertex c̄j .
Similarly c′ /∈ S.

If S contains for every i = 1, . . . , n the set E(xi) and one of the sets V −(xi)
or V +(xi) then |S ∩ A| = 8m and we can defined the following assignment aS :
xi = 1⇔ |S ∩V +(xi)| �= 0. In this case, a clause-vertex is in S if and only if the
corresponding clause is satisfied by aS . Thus, the number of clauses satisfied by
aS is exactly val(φ, aS) = |S| − 8m− 1.

Assume now that |S ∩ A| < 8m. We show that there exists an other solution
S′ with |S′| ≥ |S| such that |S′ ∩ A| = 8m. If a vertex v ∈ E(xi) \ S for some
i ∈ {1, . . . , n}, we can add v in S since v cannot have both neighbors in S.
Similarly, if c is not in S, then we add c in S.

Since |S ∩ A| < 8m, there is at least one vertex either in V +(xi) \ S or in
V −(xi) \ S for some i ∈ {1, . . . , n}. Without loss of generality, we only consider
vertices in V +(xi) \ S. A vertex v ∈ V +(xi) \ S is either adjacent to c′ or
to a clause-vertex c̄′j. In the first case we add v in S. In the second case, we
denote N(c̄′j) = {v, v′, c̄j}. If v′ ∈ S and c̄j ∈ S then remove c̄j from S and
add v instead, otherwise, add v in S. Thus, we obtain a new solution S′ such
that |S′| ≥ |S| and |S′ ∩ A| = 8m and in this case as below, we can obtain an
assignment aS′ such that |S′| − val(φ, aS′) = 8m + 1. In particular, if S′ is an
optimal solution, then opt(φ) ≥ val(φ, aS′) = opt(I)− 8m− 1 and thus, we have
opt(I)− opt(φ) = 8m+ 1 and then opt(φ) − val(φ, aS′) = opt(I)− |S′|. �

. . .

. . .

c̄′1

c̄1

c̄′m

c̄m

c̄′

c̄

x1 xn

Fig. 1. The construction of G

In the following we propose a PTAS on the class of planar graphs, using the
polynomial time algorithm for graphs of bounded treewidth.

Theorem 11. Max Robust Set on planar graphs admits a PTAS.

Proof. Given a planar embedding of an input graph, we consider the set of the
vertices which are on the exterior face, they will be called level 1 vertices. By



146 C. Bazgan and M. Chopin

induction we define level k as the vertices which are on the exterior face when
we have removed the vertices of levels smaller than k [2]. A planar embedding
is k-level if it has no nodes of level greater than k. If a planar graph is k-level,
it has a k-outerplanar embedding.

If we want to achieve an approximation within 1 + ε, let us consider k =
2(1 +

⌈
1
ε

⌉
). Let Xt be the set of vertices of level t and let Hi, 0 ≤ i ≤ k − 1,

be the graph obtained from G by considering the subgraphs formed by the set
of vertices

⋃
t+1≤j≤t+k Xj, for t ≡ i (mod (k − 2)). The subgraph containing

exactly
⋃
t+1≤j≤t+kXj is k-outerplanar, and so is Hi, too.

Since Hi is k-outerplanar, it has treewidth at most 3k − 1 [5]. We construct
graph H ′i from Hi by attaching a forbidden edge to each vertex on the boundary
(that means vertices in Xt+1, Xt+2, Xt+k−1Xt+k with t ≡ i(mod (k−2))). Thus,
in each subgraph of H ′i the vertices in Xt+1, Xt+2, Xt+k−1Xt+k cannot take part
from any robust set.

On applying Theorem 7, we can efficiently determine an optimal robust set
in each subgraph of H ′i. Denote by Si the union of these robust sets. Clearly Si
is a robust set on Hi.

Among S0, . . . , Sk−1 we choose the best solution that we denote S and we are
going to prove that S is an (1+ ε)-approximation of the optimal value on G. We
can easily show that there is at least one r, 0 ≤ r ≤ k− 1 such that at most 2

k of
vertices in an optimal solution Sopt of G are on levels Xt+1, Xt+2, Xt+k−1Xt+k

with t ≡ r (mod (k− 2))). This means that the solution Sr obtained by deleting
the vertices from levels Xt+1, Xt+2, Xt+k−1Xt+k from Sopt will have at least
|Sopt|(1− 2

k ) =
k−2
k opt vertices. According to our algorithm, |S| ≥ |Sr| ≥ opt

1+ε .
The overall running time of the algorithm is k times what we need for graphs

of treewidth at most k, that is O(kT 6k−2n) = nO(1/ε) where T = maxv∈V
t(v). �

6 Conclusion

In this paper, we introduced the k-Robust Set problem.We established positive
and negative results concerning its parameterized tractability and approxima-
bility. However, several questions remain open. For instance, we do not know
if the problem is fixed-parameter tractable for parameter treewidth. Another
interesting open question is whether k-Robust Set With Unanimity is fixed-
parameter tractable for parameter k when we ask to determine the existence of
a robust set of size at least +n3 ,+ k. Finally, there is room enough for improving
the approximability of Max Robust Set With Unanimity.
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Abstract. We study the computational complexity of determining
whether the zero matrix belongs to a finitely generated semigroup of
two dimensional integer matrices (the mortality problem). We show that
this problem is NP-hard to decide in the two-dimensional case by us-
ing a new encoding and properties of the projective special linear group.
The decidability of the mortality problem in two dimensions remains a
long standing open problem although in dimension three is known to be
undecidable as was shown by Paterson in 1970.

We also show a lower bound on the minimum length solution to the
Mortality Problem, which is exponential in the number of matrices of
the generator set and the maximal element of the matrices.

1 Introduction

In this paper we study the computational complexity of the problem of deter-
mining whether the zero matrix belongs to a matrix semigroup (the Mortality
Problem) generated by a finite set of 2 × 2 integral matrices. The Mortality
Problem of 3× 3 integer matrices was shown to be undecidable in 1970 [13] and
the question about 2× 2 matrices is currently open.

In the past there has been much interest in decidability questions for problems
concerning matrix semigroups and in particular the Mortality Problem [10,11],
which have a number of connections with linear algebra, geometry and control-
lability of switched linear systems [7,6]. The mortality problem was shown to
be decidable for a pair of rational 2 × 2 matrices in [7]. Also, it was recently
shown in [12] that the Mortality Problem is decidable for any set of 2×2 integer
matrices whose determinants assume the values 0,±1, by adapting a technique
from [9]. The main goal of this paper is to show that the Mortality Problem for
the same set of 2 × 2 integer matrices (whose determinants assume the values
0,±1) is NP-hard.

Another set of hardness results is known about bounded membership. A set of
matrices over the integers is said to be k-mortal (with k a positive integer) if the
zero matrix can be expressed as a product of length k of matrices in the set. In

B. Rovan, V. Sassone, and P. Widmayer (Eds.): MFCS 2012, LNCS 7464, pp. 148–159, 2012.
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[5], it was shown that the bounded membership problem for the zero matrix (the
k-mortality problem) is NP-hard for semigroups generated by a pair of matrices
(where the dimension is variable). Also a straightforward encoding of the Subset
Sum Problem can be used to show NP-hardeness of the bounded membership
problem for 2× 2 matrices including the case of commutative matrices [8].

In this paper we prove that the unboundedmortality problem for 2×2 matrices
is NP-hard by a more sophisticated construction that requires detailed analysis
of the semigroup generator as well as the use of an extended group alphabet
and the concept of border letters. We also show a lower bound on the minimum
length solution to the Mortality Problem, which is exponential in the number of
matrices of the generator set and the maximal element of the matrices.

It is known that many computational problems for matrix semigroups and
groups are inherently difficult to solve even for low-dimensions. In contrast to
the Mortality(3 × 3), which was one of the first matrix problems, shown to
be undecidable several decades ago, the Identity Problem 1 was shown to be
undecidable for dimension 4 only a few years ago [2]. Moreover it has been
recently proven in [9] that the Identity Problem for integral matrices of dimension
2 is decidable and later in [3] that the problem for SL2(Z) is NP-hard. The NP-
hardness result of this paper about the Mortality(2 × 2) corresponds very well
with the Identity situation. Unfortunately, the same proof technique as in [3]
cannot be directly applied for the Mortality Problem and therefore we must use
new encoding and properties of the projective special linear group in this paper
to derive the result.

2 Notations and the Structure of SL2(Z)

By an alphabet we understand (usually) a finite set Γ , and call its elements
letters. Any alphabet can be furnished with algebraic structure, defining the
product by letter juxtaposition (concatenation). Assumption that there are no
nontrivial relations between the letters is another way to say that the alphabet
generates a free monoid, denoted as Γ ∗ or 〈Γ 〉. An element of the monoid Γ ∗

is called word, and the identity element is called empty word and denoted by
ε or 1. A group alphabet is an alphabet augmented with inverse elements: Σ =
{z1, z2, . . . , zk, z1, z2, . . . , zk}, where zi and zi (notation zi = z−1

i is also used) are
assumed to satisfy zizi = zizi = ε. The relation between a letter and its inverse
is the only nontrivial relation in a group alphabet. We denote Σ+ = {a1 . . . an |
ai ∈ Σ,n ≥ 1}. For a word w = w1w2 · · ·wn, we denote w = w−1 = wn · · ·w2 w1.

Let Σ be a group alphabet. Using the notation of [1], we shall also introduce
a reduction mapping which removes factors of the form zz for z ∈ Σ. To that
end, we define the relation 0⊆ Σ∗ ×Σ∗ such that for all w,w′ ∈ Σ∗, w 0 w′ if
and only if there exists u, v ∈ Σ∗ and z ∈ Σ where w = uzzv and w′ = uv. We

1 The Identity Problem for matrix semigroups is a well-known challenging problem
which is also equivalent to another fundamental problem in Group Theory: given a
finitely generated matrix semigroup S, decide whether a subset of the generator of
S generates a nontrivial group (Group Problem).
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may then define by 0∗ the reflexive and transitive closure of 0. The following
Lemma is well-known, see eg. [1] for the proof.

Lemma 1. For each w ∈ Σ∗ there exists exactly one word r(w) ∈ Σ∗ such that
w 0∗ r(w) does not contain any factor of the form zz, with z ∈ Σ.

The word r(w) is called the reduced representation of word w ∈ Σ∗. As an
example, we see that if w = 132211 3 1 ∈ Σ∗, then r(w) = ε.

A homomorphism h : Γ ∗1 → Γ ∗2 , between two monoids Γ ∗1 and Γ ∗2 is a mapping
satisfying h(ab) = h(a)h(b) for any a, b ∈ Γ ∗ and h(1) = 1 where 1 denotes the
identity element of the respective monoid. An injective homomorphism, h′, is
called a monomorphism and is denoted Γ ∗1 ↪→ Γ ∗2 .

Notation Z2×2 stands for the set of all 2× 2 integer matrices. This set has a
natural ring structure with respect to ordinary matrix addition and multiplica-
tion. A subset of Z2×2, GL2(Z) (also denoted as GL(2,Z)) stands for the general
linear group over the ring of integers, meaning all 2× 2 integer matrices having
integer matrix inverses:

GL2(Z) = {A ∈ Z2×2 | det(A) ∈ {−1, 1}}.

Group GL2(Z) is clearly the largest multiplicative matrix group contained in
Z2×2, but quite often it is useful to study its subgroup SL2(Z) (also denoted as
SL(2,Z)), the special linear group defined as

SL2(Z) = {A ∈ GL2(Z) | det(A) = 1}.

Furthermore, it turns out that the quotient group

PSL2(Z) = SL2(Z)/{±I},

called the projective special linear group has a very useful representation as a
free product of two cyclic groups of order 2 and 3.

Group SL2(Z) is very important in number theory, and its structure has been
studied extensively in various textbooks (see [14], for instance), but for pointing
out the algorithmic complexity issues, we reproduce the structural properties
most relevant to our study here.

Two structurally important elements of SL2(Z) are

S =

(
0 −1
1 0

)
and T =

(
1 1
0 1

)
Evidently S2 = −I (which implies S3 = −S and S4 = I, so S has order 4),
whereas for each n ∈ Z,

T n =

(
1 n
0 1

)
,

implying that T has no finite order.
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Lemma 2. SL2(Z) = 〈S, T 〉. Furthermore, any matrix

A =

(
a b
c d

)
∈ SL2(Z)

can be represented as

A = SγT q1S3T q2S3 · . . . S3T qkS3T qk+1 , (1)

so that γ ∈ {0, 1, 2, 3}, qi ∈ Z for some k ≥ 0.

It is worth noticing that even though all matrices A ∈ SL2(Z) can be repre-
sented in terms of S and T , the representation is by no means unique. A direct
computation shows that, for example,

TST = ST−1S3.

For a more canonical representation, let

R = ST =

(
0 −1
1 1

)
.

Direct computation shows that

R2 =

(
−1 −1
1 0

)
and R3 = −I,

implying that R6 = I, so R is of order 6. Since now T = S−1R = S3R, it follows
that SL2(Z) = 〈S,R〉, and that a representation of A ∈ SL2(Z) in terms of R
and S can be obtained by substituting T = S3R = −SR in (1). It is noteworthy
that when substituting T = −SR in (1), one can use R3 = −I and S2 = −I to
get a representation

A = (−1)γ′
Rn0SRn1S · . . . · Rnl−1SRnl , (2)

where γ′ ∈ {0, 1}, ni ∈ {0, 1, 2} and ni ∈ {1, 2} for 0 < i < l. It turns out, that
representation (2) for a given matrix A ∈ SL2(Z) is unique, but it is very common
to present this result ignoring the sign. For that purpose, we let s = S{±I} and
r = R{±I} be the projections of S and R in PSL2(Z).

Lemma 3. PSL2(Z) is a free product of 〈s〉 = {1, s} and 〈r〉 = {1, r, r2}. That
is, if

rn0srn1s · . . . · rnp−1srnp = rm0srm1s · . . . · rmq−1srmq ,

where ni,mj ∈ {0, 1, 2} and ni, mj ∈ {1, 2} for 0 < i < p and 0 < j < q, then
p = q and nk = mk for each 0 ≤ k ≤ p.

For the proof of the lemma see [14]. We say that a representation in PSL2(Z) is
reduced if it satisfies the conditions of the previous lemma.

Mortality Problem: Decide whether a given finitely generated matrix semi-
group contains the zero matrix.
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3 The Mortality Problem

In this section we show that the mortality problem is NP-hard for a finite
set of matrices from Z2×2. In order to prove this result, we shall adapt the
proof technique used in [3] by showing a monomorphism (injective homomor-
phism) between an arbitrary sized alphabet and PSL2(Z) with certain essential
properties.

Lemma 4. Given a group alphabet Σ = {z1, z2, . . . , zk, z1, z2, . . . , zk} and a bi-
nary group alphabet Σ2 = {c, d, c, d}, then mapping α : Σ → Σ∗2 defined by

α(zi) = cidci, α(zi) = cidci

can be extended to a monomorphism α : Σ∗ ↪→ Σ∗2 , see [4] for more details.

Lemma 5. Let Σ2 = {c, d, c, d} be a group alphabet. Then the mapping β :
Σ2 → PSL2(Z) defined by:

β(c) = (rsr)2, β(d) = (rs)2, β(c) = (r2sr2)2, β(d) = (sr2)2

can be extended to a monomorphism β : Σ∗2 ↪→ PSL2(Z).

Proof. Recall that PSL2(Z) has monoid presentation 〈s, r|s2 = r3 = 1〉, and let
w ∈ {c, d, c, d}∗ be a reduced word (i.e., contains no subwords in {cc, cc, dd, dd}).
It suffices to show that from β(w), we can always deduce the initial symbol of
w ∈ Σ∗2 .

This follows from a case analysis. The possible initial parts of w can be dis-
covered by computing all products β(cc) = (rsr)4 = rsr2sr2sr2sr, β(cd) =
(rsr)2(rs)2 = rsr2sr2srs, β(cd) = rsr2srsr2sr2, β(dc) = rsrsrsr2sr, β(dd) =
rsrsrsrs, β(dc) = rsrsr2srsr2, β(cd) = r2sr2s, β(cc) = r2srsrsrsr2 , β(cd) =
r2srsr2sr2sr2, β(dc) = srsr, β(dc) = sr2srsrsr2, and β(dd) = sr2sr2sr2sr2.
The claim follows now from comparing the initial parts of the sequences (no-one
is a prefix of another) and from the fact that PSL2(Z) = 〈s〉 ∗ 〈r〉. .�

Example 1. Let w ∈ {c, d, c, d} and

β(w) = r2sr2srsr2sr2sr2srsrsr2srsrsrs.

As representation in PSL2(Z) in this form is unique, we must conclude that w
begins with c (Only the image of c begins with r2). To proceed, we introduce
identity 1 = r2sr2rsr in the representation of β(w) to see that

β(w) = r2sr2(r2sr2rsr)srsr2sr2sr2srsrsr2srsrsrs

= (r2sr2r2sr2)rsrsrsr2sr2sr2srsrsr2srsrsrs

= β(c)rsrsrsr2sr2sr2srsrsr2srsrsrs.

writing w = cw1 we see that

β(w1) = rsrsrsr2sr2sr2srsrsr2srsrsrs,
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and now we must have w1 = dw2, and

β(w2) = rsr2sr2sr2srsrsr2srsrsrs

continuing in the same way we see that w2 = cw3,

β(w3) = rsr2srsrsr2srsrsrs,

w3 = cw4,
β(w4) = srsr2srsrsrs,

and now w4 must begin with d. Again introducing identity 1 = rsr2rsr2 we see
that

β(w4) = sr(rsr2rsr2)sr2srsrsrs = (srrsr2)rsr2sr2srsrsrs,

and if w4 = dw5, then
β(w5) = rsr2sr2srsrsrs,

and letting w5 = cw6

β(w6) = rsrsrsrs = β(dd)

combining all letters we see that w = cdccdcdd.

Lemma 6. For any nonempty reduced word w ∈ Σ+, β ◦ α(w) has first letter
r and last letter r in its reduced representation under PSL2(Z), where β ◦ α :
Σ∗ → PSL2(Z).

Proof. For each letter zi we have

β(α(zi)) = β(cidci) = β(c)iβ(d)β(c)i.

Now that β(c) begins with r, so does β(α(zi)), for otherwise β(α(zi)) would
have two representations, β(α(zi)) = r . . . and β(α(zi)) = s . . ., contradicting
Lemma 5. Similar conclusion can be made for the ending letter and for β(α(zi)),
as well. The result can be directly extended to words w ∈ Σ+, as the failure of
it would contradict Lemma 5 as well. .�

We see that β◦α : Σ∗ ↪→ PSL2(Z) is a monomorphism since it is the composition
of two monomorphisms. We require the following lemma concerning the size of
the matrix when β ◦ α is applied to the power of a letter from Σ.

Lemma 7. Given Σ = {z1, z2, . . . , zk, z1, z2, . . . , zk}, for any letter zi ∈ Σ:

β ◦ α(zji ) = {±I}
(
−8i2j − 4ij − 1 −8i2j
8i2j + 8ij + 2j 8i2j + 4ij − 1

)
Proof. Let Σ2 = {c, d, c, d}. Since α and β are homomorphisms, we have that
α(zji ) = α(zi)

j = cidjci and

β(α(zji )) = β(c)iβ(d)jβ(c)i

= (rsr)2i(rs)2j(r2sr2)2i
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Elementary matrix multiplication of β ◦ α(zji ) reveals that

β ◦ α(zji ) = (rsr)2i(rs)2jr2(sr)2ir

= {±I}
(
−8i2j − 4ij − 1 −8i2j
8i2j + 8ij + 2j 8i2j + 4ij − 1

)
We see that the size of the maximal element of the matrices β(α(zji )) is polyno-

mial in i and j and thus size(β(α(zji ))) = O(i2j). .�

We need one final technical lemma concerning mapping β ◦ α.

Lemma 8. For any nonempty reduced word w ∈ Σ+, let A = β ◦ α(w) where
we ignore the sign of the matrix. Then A11 �= 0 and A12 �= 0.

Proof. By Lemma 6, we have that β ◦ α(w) has first letter r and last letter r in
its reduced representation under PSL2(Z). Thus we see that

A = RXR =

(
0 −1
1 1

)(
a b
c d

)(
0 −1
1 1

)
=

(
−d c− d
b+ d b + d− a− c

)
,

for some matrix X ∈ SL2(Z) (again we are ignoring the sign in this product).
We first prove A12 �= 0. By the above formula, A12 = 0 implies c − d = 0.

Since det(X) = 1, ad − bc = 1 implies c(a − b) = 1, thus either c = d = 1 and
b = a− 1, or else c = d = −1 and b = a+ 1. Therefore either:

A = R

(
a a− 1
1 1

)
R or A = R

(
a a+ 1
−1 −1

)
R.

It is not hard to see that matrices X of this form have factorizations (SR)xR or
(RRS)xR for some x > 0. This holds since:

(SR)kR = (−1)k
(
k k − 1
1 1

)
and (RRS)kR = (−1)k

(
−k −(k + 1)
1 1

)
and under PSL2(Z) we factor out −I and can therefore ignore the sign. Thus, we
see that A = R(SR)xRR or A = R(RRS)xRR for some x > 0. However, these
are not reduced representations (since they have R3 on the left or right) and
since these reduced factorizations are unique, this contradicts Lemma 6 since
under PSL2(Z) A would start with s.

We now prove A11 �= 0. Clearly A11 = 0 implies d = 0. Since det(A) = 1, then

b = ±1 and c = ∓1. Thus A =

(
0 ±1
∓1 x

)
for some x ∈ Z. Now, such A have

reduced factorization (up to sign) of (RS)aR where a ≥ 0 or (SRR)aS where
a > 0 which is easy to check via straight forward matrix calculations. However,
Lemma 6 shows that A should end with ‘r’ in its reduced representation under
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PSL2(Z), thus it must be of the form (RS)aR. It is not hard to see however
that (rs)ar �∈ {β(w) | w ∈ Σ+

2 } for any a ≥ 0. This follows because β(w) =
(rs)ar = β(d)(rs)a−2r = . . . = β(d)a/2r which cannot be further factorized
giving a contradiction. .�

Combining this information, we now have the following four essential properties:

i) β ◦ α : Σ∗ ↪→ PSL2(Z) is a monomorphism by Lemma 4 and Lemma 5.

ii) For all nonempty reduced w ∈ Σ+, β ◦α(w) has reduced representation rw′r
over PSL2(Z) ∼= 〈s, r|s2 = r3 = 1〉 for some w′ ∈ {s, r}∗. This follows from
Lemma 6.

iii) For any zi ∈ Σ, the size of matrices in β ◦ α(zji ) in terms of the number
of bits to represent it is logarithmic in terms of i and j. This follows from
Lemma 7.

iv) For any nonempty reduced word w ∈ Σ+, the upper left and upper right
entries of matrices β ◦ α(w) are nonzero by Lemma 8.

We are now ready to prove the main result of this section.

Theorem 1. The mortality problem for matrices in Z2×2 is NP-hard.

Proof. We adapt the proof from [3] which shows that the identity problem in
Z2×2 is NP-hard. The proof in [3] essentially consists of two parts. First, an
encoding is shown from the subset sum problem to a problem on words - given a
finite set of words, can they be combined in such a way as to reach the identity
(or empty) word. The number of letters in these words is exponential in the
representation size of the subset sum problem instance however.

Therefore the second half of the proof shows a mapping from this set of words
into Z2×2 such that the matrix representation of the words has size polynomial
in the subset sum problem instance. The set of matrices generate a semigroup
containing the identity matrix if and only if the subset sum problem has a
solution, thus the identity problem is NP-hard for 2× 2 matrix semigroups.

For our purposes of the mortality problem, we shall use the identical first part
of the proof to give a set of words W encoding a subset sum problem instance.
We shall then define a matrix P and use mapping β ◦α : Σ∗ ↪→ PSL2(Z) and its
properties to encode the set of words W in such a way that the zero matrix is in
the semigroup generated by a certain set of matrices if and only if there exists a
solution to the subset sum problem.

Let Σ = {1, 2, . . . , 2k + 2, 1, 2, . . . , (2k + 2), a, b, a, b} be an alphabet. The
subset sum instance is given by S = {s1, s2, . . . , sk} and value x - thus the
problem is: does there exist a subset of S whose sum is x? We now define set of
words:
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W =

{1 · as1 · 2, 1 · ε · 2,
2 · as2 · 3, 2 · ε · 3,
...

...

k · ask · (k + 1), k · ε · (k + 1),

(k + 1) · ax · (k + 2),

(k + 2) · bs1 · (k + 3), (k + 2) · ε · (k + 3),

(k + 3) · bs2 · (k + 4), (k + 3) · ε · (k + 4),
...

...

(2k + 1) · bsk · (2k + 2), (2k + 1) · ε · (2k + 2),

(2k + 2) · bx · 1} ⊆ Σ∗

It was proven in [3] that ε ∈ W+ if and only if the subset sum instance S
has a solution. We shall not repeat the details here, suffice it to say that let-
ters {1, . . . , 2k + 2, 1, . . . , 2k + 2} act as ‘border letters’ which enforce a par-
ticular ordering on any possible words reducing to give ε. In any such word
w′ = w1w2 · · ·wl ∈ W+ such that r(w′) = ε, we can assume by [3] that w1

is from the first row of W (above), w2 is from the second row etc. and that
wl = (2k + 2) · bx · 1, thus l = 2k + 2.

We now use mapping β ◦ α : Σ∗ ↪→ PSL2(Z) applied to set of words W . We
earlier defined this function on a different alphabet but the same analysis holds.

Since any element a in PSL2(Z) already is a set {A,−A} of two matrices in
SL2(Z) we set M in a way that it will actually contain 2|W | matrices. It does
not alter this construction, since it does not matter if you select A or −A in the
product. Specifically we have

M = {β ◦ α(w)|w ∈W} ⊆ Z2×2,

thus |M | = 2|W |. Note that each w ∈ W contains two border letters and possibly
a power of a single letter from Σ. By Lemma 7, this implies that the size of the
matrices in M (i.e. number of bits required to represent them) is polynomial in
the number of bits to represent the subset sum problem instance.

Our next steps are to introduce a new matrix P and to modify one of the
matrices in M by right multiplying by matrix S which will make it possible to
reach the zero matrix if and only if I ∈ 〈M〉.

Let P =

(
1 0
0 0

)
and define M ′ = M ∪ {P}. For any matrix X ∈ Z2×2 we

have that (PXP )11 = X11 and (PXP )12 = (PXP )21 = (PXP )22 = 0. Since
for any reduced word w ∈ W+, we have that β ◦ α(w)11 �= 0 by Lemma 8, and
all matrices in M are unimodular, then the zero matrix is not in 〈M ′〉.

We now modify the matrix set M ′ one final time. Let Y be the matrix in M ′

corresponding to word (2k+2) · bx ·1 ∈ W . We now form set M ′′ = (M ′ \{Y })∪
{Y S}, i.e. we replace Y inM ′ by Y S. Since all other matrices inM ′ have reduced
factorizations of the form RX ′R for some X ′ ∈ {S,R}∗, the right multiplication
of Y by S in this way does not allow any additional cancelation of elements.
More formally, for any non-identity X1Y ∈ 〈M ′〉 and X2 ∈ 〈M ′〉 Lemma 6
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shows that we have reduced representations X1Y = RX ′1R and X2 = RX ′2R for
some X ′1 ∈ {S,R}∗ and X ′2 ∈ {S,R}∗. Therefore, under M ′′, since we replace
Y by Y S, then X1(Y S)X2 = RX ′1R · S ·RX ′2R is also a reduced representation
and no cancelation has occured by replacing Y with Y S.

P
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Fig. 1. The structure of a solution to the mortality problem

By Lemma 6, all non-identity matrices in M ′ have reduced (and unique)
factorization RXR over {R,S} for some X ∈ {S,R}∗. The only matrix in M ′

with a zero upper right corner (up to sign) is the identity matrix by Lemma 8.
From the proof of NP-hardness of the identity problem in [3], any reduced word
in W+ equal to the empty word must be of the form w′((2k+2) · bx ·1) for some
w′ ∈ W+, in other words the last word from W used must be (2k + 2) · bx · 1.
This word was represented by matrix Y under M ′, which we replaced with Y S in
M ′′. Thus, let V Y ∈ 〈M ′〉 be a product equal to the identity matrix. Therefore
we see that S = V Y S ∈ 〈M ′′〉 and therefore PV Y SP = PSP is the zero matrix
as required. This follows since(

x11 x12

x21 x22

)
S =

(
x12 −x11

x22 −x21

)
(3)

The structure of such a product PV Y SP can be seen in Figure 1. To reach the
zero matrix, we first use matrix P . We follow that by the matrix corresponding
to either word 1 · as1 · 2 or word 1 · ε · 2, meaning we move from node 1 to
node 2 and choose either as1 or else ε. This continues iteratively until we reach
node k + 1 at which point we move to k + 2 with word ax. At this point, if
the selected nonempty words are such that asj1asj2 · · · asjm · ax = ε for some
1 ≤ sj1 < sj2 < . . . < sjm ≤ k, then this corresponds to a correct solution to the
subset sum problem instance. The same procedure holds between nodes k + 2
and 2k + 2 (with a’s replaced by b’s) at which point we then use matrix S and
the final matrix P . In the diagram, nodes 1 to 2k + 1 correspond to matrix V
and nodes 2k + 2 and S correspond to matrices Y and S respectively. .�

Since an upper bound for the decidability result in [12] is unknown, we now
consider a lower bound on the minimum length solution to the Mortality

Problem. Below we derive a lower bound on the minimum length solution to



158 P.C. Bell, M. Hirvensalo, and I. Potapov

the Mortality Problem for a constructible set of instances, which is exponential
in the number of matrices of the generator set and the maximal element of
the matrices. This bound shows that the most obvious candidate for an NP
algorithm, which is to guess the shortest sequence of matrices which multiply to
give the zero matrix, does not work correctly since the certificate would have a
length which is exponential in the size of the instance.

Theorem 2. There exists a set of matrices M = {M1,M2, . . . ,Mn} ⊆ Z2×2

where the maximum element of any matrix in M is O(n2) such that 0 ∈ 〈M〉
(where 0 here denote the zero matrix) and the minimal length product over M
equal to 0 is of length 2n, which is exponential in the number of matrices in the
generator and the maximal element of any matrix in M .

Proof. Let Σ = {1, 2, . . . , 2n − 1, 1, 2, . . . , 2n− 1} be a group alphabet. It is
proven in [3] that there exists a set of words V = {v1, v2, . . . , v2n−2} ⊆ Σ3 such
that there exists w ∈ V + where r(w) = ε and |w| = 2n − 2 and for all w′ ∈ V +

such that |w′| < 2n − 2, then r(w′) �= ε. This results from an encoding of a
deterministic finite automaton introduced in [1].

First, we encode set of words V into matrices. We apply monomorphism β◦α :
Σ∗ ↪→ PSL2(Z) to the set of words V to give

V ′ = {β ◦ α(v)|v ∈ V } ⊆ PSL2(Z)

From the encoding of the DFA used in [3], it is shown that for any w ∈ V +

where r(w) = ε, we may assume that the last letter of w is v2n−2. We proceed
in a similar manner to that of the proof of Theorem 1. We form the set

V ′′ = (V ′ \ {β ◦ α(v2n−2)}) ∪ {β ◦ α(v2n−2)S},

i.e. we right multiply the final matrix of set V ′ by matrix S. Finally, we define
matrix P ∈ Z2×2 such that P11 = 1 and P12 = P21 = P22 and let V ′′′ = V ′′∪{P}.

For any w ∈ V + such that r(w) = ε, then β◦α(w) = ±I and thus β◦α(w)S ∈
V ′′′ with |w| ≥ 2n − 2. Clearly,

P (β ◦ α(w))SP = β ◦ α(w)12,

which equals 0 if and only if r(w) = ε by Lemma 8 and the number of matrices
used is 2n. For all X ∈ V ′′′, then X11 �= 0 by Lemma 8 and Equation (3). Thus
only matrix S ∈ V ′′′ is such that PSP = 0 where 0 is here the zero matrix.

Finally we need to consider the representation size of V ′′′. Lemma 7 shows
that for |Σ| = 4n− 2, we have that size(β ◦ α(x)) = O(n2) for any x ∈ Σ. Since
|V ′′′| = 2n − 1, then size(V ′′′) = O(n3) where size denotes the number of bits
required to represent set V ′′′. .�
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Abstract. We study a class of parity games equipped with counters
that evolve according to arbitrary non-negative affine functions. These
games capture several cost models for dynamic systems from the litera-
ture. We present an elementary algorithm for computing the exact value
of a counter parity game, which both generalizes previous results and
improves their complexity. To this end, we introduce a class of ω-regular
games with imperfect information and imperfect recall, solve them using
automata-based techniques, and prove a correspondence between finite-
memory strategies in such games and strategies in counter parity games.

1 Introduction

Games with ω-regular winning conditions, and especially parity games, are a
fundamental model for program verification and synthesis [12]. Such winning
conditions allow to express reachability, safety, and liveness properties. However,
when specifying, for instance, that for each request Qi there will be finally a
response Ri, one is often interested not only in the existence of a response Ri – a
qualitative property, but also that the response will occur in at most k seconds
after the request – a quantitative constraint.

Quantitative questions about reactive systems have been approached in sev-
eral ways. One possibility is to extend a temporal logic with new, quantitative
operators as, for instance, the “prompt” operator for LTL proposed in [11]. While
the existence of a response Ri is formulated in LTL by FRi, the Prompt-LTL

formula FpRi expresses that the waiting time is bounded. Realizability for this
logic was solved in [11] and optimal bounds on the waiting time for Prompt-
LTL formulas were established in [14]. Another possibility is to consider formulas
which evaluate to numbers rather than truth values. The quantitative version of
CTL with discounts studied in [6], and the quantitative μ-calculus investigated
in [7] follow this direction.

Both model-checking and realizability problems for most of these logics are
reduced to solving games with additional quantitative features. Several classes
of such games have therefore been investigated [3,4,5,9], to provide better al-
gorithms for existing logics and to suggest new formalisms with good algorith-
mic properties. One relevant example is the synthesis of optimal strategies in
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request-response games [9]. Here, the problem of minimizing the waiting time
for a response is investigated, considering different ways to accumulate waiting
costs. In one model, the penalty for waiting k many steps is k2, to discourage
long waiting times. This illustrates that cost functions that depend only linearly
on the time may not be sufficient for certain applications.

In this work, we introduce a model of counter parity games in which counters
are updated by arbitrary non-negative affine transformations along the moves
of a play. When a play ends, the counters are used to determine the payoff,
whereas on infinite plays, a parity condition is applied. For example, the time
since the last request Qi can be stored in the counter ci, which will be reset
every time the response Ri arrives. The maximum value reached by ci is then the
maximal waiting time for Ri. Similarly, one can express arbitrary Prompt-LTL

conditions. It is also possible to have another counter, di, which will increase
by ci every time the request Qi is active, and will also be reset on Ri. Note
that this is an affine update and that ci + 2di stores the waiting time squared,
and thus allows to simulate the cost model from [9]. Affine functions also allow
to swap counters and multiply them by constants, which can be used, e.g., to
model process migration and pricing. This could be used to extend the scope
of formal analysis of online algorithms [1]. Moreover, counter parity games are
a strict generalization of counter-reset games used in [8] to approximate the
quantitative μ-calculus over a class of hybrid systems. For model-checking this
logic, only a non-elementary algorithm was known so far [8] – our results both
allow for a more general class of games and provide better complexity bounds.
In [10], counter parity games are used for proving decidability of the counting
μ-calculus, an extension of the quantitative μ-calculus to structured transition
systems, such as graphs generated by regular tree grammars or by pushdown
automata.

2 Counter Parity Games

To define counter parity games, let us fix a natural number k of counters and
let Fk be the set of k-dimensional affine functions f over non-negative integers:

f : Nk → Nk, f(c) = A · c+B

for some matrix A ∈ Nk×k and some vector B ∈ Nk. Note that we only consider
functions Nk → Nk, thus the coefficients are also assumed to be non-negative.

A counter parity game G = (V, Vmax, Vmin, E,Ω, λ) with k counters is played
by two players, Maximizer and Minimizer, on a directed graph (V,E). The vertex
set is partitioned into vertices Vmax of Maximizer and vertices Vmin of Minimizer.
Vertices are colored by the priority function Ω : V → {0, . . . , d − 1}, edges
are labeled by affine functions, i.e., E ⊆ V × Fk × V , and terminal vertices
T = {v | vE = ∅} are labeled by λ : T → {+,−}× {0, . . . , k − 1}.

The k counters are represented by a vector c ∈ Nk of k natural numbers. We
write ci for the i-th component of c, i.e., the i-th counter. At the beginning of
a play, all counters are 0, thus c = 0k. Throughout a play, counters are updated
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according to the labels of the edges: if the current value of the counter vector is
c and an edge (u, f, v) is taken, then the new value is f(c). Maximizer moves at
positions Vmax, while Minimizer moves at Vmin.

A play π = v0f0v1f1v2 . . . is a sequence of vertices and edge labels such
that, for each i ≥ 0, (vi, fi, vi+1) ∈ E. For infinite plays π, the payoff p(π) is
determined by the parity condition given by Ω: it is −∞ if the minimal priority
seen infinitely often in Ω(v0)Ω(v1) . . . is odd, and ∞ if it is even. Finite plays
π end at a terminal vertex t and p(π) is determined by λ(t) and the current
counters: it is s ci if λ(t) = (s, i) and the current vector is c. The objective of
Maximizer is to maximize the payoff, whereas Minimizer seeks to minimize it.

A strategy of Maximizer is a function f : (V Fk)∗Vmax → Fk × V , such that,
for each prefix π of a play, if f(πv) = (f, w) then (v, f, w) ∈ E; analogously,
we define strategies of Minimizer f : (V Fk)∗Vmin → Fk × V . We say that f
uses memory M if there exists a m0 ∈ M , a function update : M × Fk × V →
M , and a function fM : M × V → Fk × V such that f(v0f0v1 . . . fn−1vn) =
fM (update∗(v0f0v1 . . . fn−1vn,m0), vn), where update

∗ is defined inductively by
update∗(ε,m) = m and

update∗(v0f0v1 . . . fkvk+1,m) = update(update∗(v0f0v1 . . . vk,m), fk, vk+1).

The size of the memory is |M | and a finite-memory strategy is one that uses a
finite memory M .

Strategies can be identified with labelings of the infinite tree T (G, v0) obtained
by unfolding the arena of G from v0. This allows to speak about regular sets
of strategies, i.e., sets which are recognized by non-deterministic parity tree
automata over T (G, v0). We assume that the reader is familiar with this standard
way of identifying strategies with labelings of the infinite tree. We will also use
algorithms for alternating automata on infinite trees, which are more precisely
recalled in the technical report [2].

A counter parity game G is determined if the supremum of the payoffs that
Maximizer can achieve coincides with the infimum of the payoffs that the Mini-
mizer cannot avoid, that is, if

sup
f∈Σmax

inf
g∈Σmin

p(αf,g(v)) = inf
g∈Σmin

sup
f∈Σmax

p(αf,g(v)) =: valG(v),

where Σmax and Σmin are the sets of all strategies of Maximizer and Minimizer,
and αf,g(v) is the unique play consistent with both f and g.

As counter parity games are a special case of quantitative parity games on
infinite arenas (we can encode counter values in the vertices and adjust the
edges accordingly), and it was shown in [7] that quantitative parity games are
determined on arenas of arbitrary size, we obtain the following corollary.

Proposition 1 ([7]). Every counter parity game G is determined: for each ver-
tex v the value valG(v) exists.

However, these results do not imply that the value of a counter parity game
can actually be computed, nor do they give any insight into the structure of
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strategies in the game. Our main technical result, stated below, identifies good
regular over-approximations for the strategies of Minimizer. Let us denote by

2EXP(f) the family of functions 22
O(f)

and, for a counter parity game G and
a strategy g of Minimizer, let us write valg G(v) = supf∈Σmax

p(αf,g(v)) for the
supremum of all payoffs Maximizer can get when playing against g.

Theorem 2. Let G = (V, Vmax, Vmin, E,Ω, λ) be a counter parity game with
k counters, and let v0 ∈ V . One can compute a constant m = 2EXP(k) and a
regular set Σ of strategies of Minimizer, recognized by a non-deterministic parity
tree automaton of size 2EXP((|V |+km)3) and with polynomial index, such that:

– for every strategy g �∈ Σ, valg G(v0) =∞, and
– for every memory M strategy g ∈ Σ, valg G(v0) < 2EXP(|M |2 · (|V | · 2k)4).

Note that the set Σ is only an over-approximation of the strategies of the Mini-
mizer which guarantee a bounded payoff – only finite-memory strategies from Σ
have this property. The following example illustrates why this is a crucial con-
straint. It also shows that the exact set of strategies which guarantee a bounded
payoff is not regular, which is why we compute an over-approximation.

λ = cv0 v1

c+ 1

c = 0

Fig. 1. Counter Parity Game with Value 0

Example 3. Let G be the 1-counter parity game depicted in Figure 1. Minimizer’s
vertices are drawn as squares and Maximizer’s as circles. The game proceeds as
follows: Minimizer can either increment the single counter c or reset it, and then
Maximizer can decide to continue or to exit and take the current value of c. The
priorities in the game are all odd, thus Maximizer must exit at some point.

Clearly, Minimizer can reset c at each step and thus valG(v0) = 0. But which
strategies g of Minimizer guarantee valg G(v0) <∞? Of course, these are exactly
the strategies that do not allow c to grow beyond some bound B, i.e., alternate
the two possible moves (c = 0) and (c+ 1) according to the pattern

(c+ 1)n1(c = 0)+(c+ 1)n2(c = 0)+(c+ 1)n3(c = 0)+ · · · ,

such that, for some B ∈ N, ni < B for all i. But this set, i.e., the set of all
strategies g which guarantee that valg G(v0) <∞, is not regular.

To over-approximate the strategies which guarantee a bounded payoff, we will
put in Σ all strategies that take the reset move (c = 0) infinitely often. Note that
this disregards the restriction on the number of (c+1)-moves between resets. All
finite-memory strategies from Σ indeed guarantee a bounded value, because the
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number of increments between resets cannot exceed the memory size. However,
consider the infinite memory strategy g∗ which plays according to the pattern
above with ni = i. This strategy is in Σ, but valg∗ G(v0) =∞.

We prove Theorem 2 in the following sections. Let us first state that it can be
used to decide boundedness and compute the value of counter parity games.

Corollary 4. Given a finite counter parity game G with initial vertex v, one
can decide whether valG(v) = ∞ in 2EXPTIME, if the number of counters is
fixed, and in 4EXPTIME otherwise. The value valG(v) can be computed exactly
in 4EXPTIME if the number of counters is fixed and in 6EXPTIME otherwise.

3 Marks for Counter Updates

In this section, we make the first step towards proving Theorem 2 and intro-
duce marks for counter update functions. Marks are an abstraction and allow to
determine whether a counter increased with respect to other counters or not.

Notation. When referring to a sequence s, we write s[i] for the i-th element of
s. We always count from 0, i.e., s[0] is the first element of s. For a set I ⊆ N
of indices, we write s|I to denote the sub-sequence of s consisting only of the
elements with indices in I. We refer to a sequence of fixed finite length as a vector.
For a vector s, we write s>0 to denote the vector t with t[i] := 1 if s[i] > 0 and
t[i] := 0 otherwise. Finally, we write [n] to denote the set {0, . . . , n− 1}.

Let k be the dimension of the counter vector c ∈ Nk. We consider all counter
update functions f : Nk → Nk that admit marking in the following sense.

A mark is a mapping m : {0, 1}k × [k] → {⊥} ·∪ [k] ·∪ P([k]). A function
f : Nk → Nk has mark m if the following hold for all c ∈ Nk, i ∈ [k].

(i) If m(c>0, i) = ⊥ then f(c)[i] = 0.
(ii) If m(c>0, i) = j ∈ [k] then f(c)[i] = cj .
(iii) If m(c>0, i) = D ∈ P([k]) and D �= ∅ then f(c)[i] > maxj∈D cj .
(iv) If m(c>0, i) = ∅ then f(d)[i] = C > 0 is constant for all d with d>0 = c>0.
(v) f(c)[i] depends only on the counters from m(c>0, i) = D,

i.e., there exists a function f ′i such that f(c)[i] = f ′i(c|D).

Note that (iv) could be seen as special case of (v), but we distinguish whether
the constant is 0, as in (i), or not. Intuitively, a mark determines, depending on
which counters are 0 and which are not, whether the result will be 0, always stay
equal to another counter, or increase over other counters.

In particular, if m(d, i) = D then, after applying the counter update function,
the (value of) counter i will be strictly greater than each of the counters from
D. We write m≥(d, i) for the set D of counters such that the value of ci after
the update will be greater or equal to the values of the counters in D, i.e.,
m≥(d, i) := ∅ if m(d, i) = ⊥, m≥(d, i) := {l} if m(d, i) = l, and m≥(d, i) := D
if m(d, i) = D ∈ P([k]). Additionally, we write m>0(c>0) for the vector d>0 if d
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results from the application of a function f with markm to the vector c. Observe
that f(c)[i] = 0 if, and only if, m(c>0, i) = ⊥ or m(c>0, i) = l and cl = 0, and
thus m>0(c>0) = f(c)>0 is computable from c>0 and m.

Example 5. Consider two counters c0, c1 and the update function f assigning
c0+c1 to c0 and 2 ·c0 to c1. This function has the following mark m: m(0, 0, i) =
⊥, m(0, 1, 0) = 1 as c0 + c1 = c1 if c0 = 0, and m(1, 0, 0) = 0 analogously;
m(0, 1, 1) = ⊥ as 2 · 0 = 0, but m(1, 0, 1) = m(1, 1, 1) = {0} as 2 · c0 > c0 for
c0 > 0. Finally, m(1, 1, 0) = {0, 1} as c0 exceeds both counters in this case.

Not only affine functions can be marked. For example, the function which up-
dates ci to max(cj , cl)+1 also has a mark, and thus our results also hold for such
functions (in fact, a mark D expresses a lower bound of maxD + 1). Note also
that not all functions admit a marking. For example, if we updated c1 to c0 · c1
above, we would not be able to assign a mark. In particular, m(1, 1, i) is not
definable, because whether the counter increases or stays unchanged depends
on whether ci > 1 and not just on whether ci > 0. The methods we present
generalize to more involved markings, but we do not introduce them here as we
are interested in one class of functions, for which the above marks suffice.

Lemma 6. Let f : Nk → Nk be affine. There exists a mark mf for f .

Another important property of marks (see [2] for the proofs) is that, when func-
tions are composed, their marks can be composed as well.

Lemma 7. Let f1 and f2 be counter update functions with marks m1 and m2.
A mark m = m1 ◦m2 for f(c) = f2(f1(c)) can be computed from m1 and m2.

Let us denote byM the set of all marks, which is finite, by definition. For a fixed

number k of counters, |M| ≤
(
2k + k + 1

)2k+log k

= 2EXP(k). Moreover, by the
above lemma, the composition ◦ induces a computable finite semigroup structure
onM. It follows that languages of sequences of marks with definable properties
are regular. For example, the language of all sequences m0m1 . . .mn ∈M∗ such
that m = m1 ◦ · · · ◦mn satisfies, for a fixed C, i and d, that C ⊆ m≥(d, i), is
regular. This means that, for a fixed set of counters C and starting information
about which counter is 0, we can determine in a regular way whether ci will be
at least as large as some counter from C.

To access marks, we extend counter parity games by the appropriate marking.
Let G be a counter parity game with k counters. The marked counter parity game
Gm = (Vm, V ′max, V

′
min, Em, Ωm, λm) is a game with k counters defined as follows.

– Vm := V × {0, 1}k (storing which counters are greater than 0).
– V ′max = {(v, x) ∈ Vm | v ∈ Vmax}, V ′min = Vm \ V ′max.
– Em ⊆ Vm × (Fk ×M)× Vm stores the marks and updates the c>0-vectors:

Em := {((u, x), (f,mf ), (v,m
>0
f (x))) | (u, f, v) ∈ E, x ∈ {0, 1}k}.

– Ωm(v, x) = Ω(v) and λm(v, x) = λ(v).
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4 Second-Life Games

In this section, we introduce the class of second-life games with imperfect in-
formation and a specific kind of imperfect recall, which are essential for the
construction in the next section. The construction of a second-life game starts
with a game graph G with perfect information for two players, Player 0 and
Player 1. The second-life game arena consists of several copies of this graph.
Plays begin in the main instance of G, which we call first life, and proceed as
usual by moving a token along the edges of the graph. However, when Player 1
is in turn to move, he may switch to a copy of G, a second life, without informing
Player 0. If a terminal position is reached in the first life, the play simply ends.
In contrast, if this happens in a second life, the play returns to the first life, and
Player 0 forgets the part of the history spent in the second life. This part of the
history is nevertheless relevant for the winning condition.

Let G = (V, V0, V1, E) be a game arena with E ⊆ V × A × V for a set A of
actions, and let T = {t ∈ V : tE = ∅} denote the set of terminal vertices in G.
The second-life game S(G,W ) is a game with the set of actions

A‖ := A ∪ {Return} ∪ {Call(a) | a ∈ A}

and over the arena (V ′, V ′0 , V
′
1 , E

′), with

V ′ := V ∪ (V × V );

V ′0 := V0 ∪ {(u, v) | u ∈ V0} ∪ {(t, v) | t ∈ T, v ∈ V }, and V ′1 := V ′ \ V ′0 ;
E′ := E ∪ {((u, v), a, (u′, v)) | (u, a, u′) ∈ E}

∪ {(u,Call(a), (v, v)) | u ∈ V1, (u, a, v) ∈ E} (CALL)

∪ {((t, v),Return, v) | t ∈ T } (RETURN)

Winning conditions for second-life games have the form W ⊆ Aω‖ .
A play α is a – possibly infinite – alternating sequence of vertices and actions,

α = v0a0v1a1v2 · · · , such that (vi, ai, vi+1) ∈ E′, for any index i. A finite play is
one that ends at a terminal vertex. Every finite play is winning for Player 0; an
infinite play is winning for Player 0 if, and only if, its action trace belongs to W .

Notice that all the moves of the arena G are available in the second-life game,
regardless of whether the play is in the first or in a second-life copy. Additionally,
when Player 1 moves at a vertex of the first-life copy G, he can choose to switch
to a second-life copy via a Call(·) action.

The intended information structure of second-life games is captured by a
constraint on strategies of Player 0. We postulate that Player 0 is not informed
about whether the current vertex is in the main copy or in some other component.
Furthermore, after any Call-Return sequence, Player 0 forgets the part of the play
between Call and Return.

Here, and in the following, a Call-Return sequence is a sequence of the form

u · Call(a) · (v, v) · a1 · (v1, v) · · · (t, v) · Return · v.
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For any finite path π starting at a vertex v in the main copy, we define the path
π̂ obtained by replacing every Call-Return sequence u · Call(a) · · ·Return · v by
u · a · v, then replacing the remaining last Call(a) by a (if such a last Call exists),
and finally projecting every occurring (u, v) to u.

Now, strategies of Player 0 are functions f : (V ′A‖)
∗V ′0 → A × V such

that, for every π ending in a vertex of Player 0 we have f(π) = f(π̂). Thus,
Player 0’s strategies respect the information constraint described above. Strate-
gies of Player 1 are not restricted in any way.

Notice that, for every play α, the sequence α̂ corresponds to a play in the main
copy. However, W is given over A‖. Nonetheless, Player 0 has no information
about whether he is moving in one of the second-life components or in the main
copy, and immediately after noticing that the play continues after a terminal
(which means it must have been in a second-life component), he forgets this and
all that happened in the component. Accordingly, any strategy of Player 0 can
be viewed as a strategy over the vertex set V with actions A, i.e., as a strategy
of Player 0 for the arena G.

Our main result on second-life games, proved using automata techniques (c.f.
[2]), states that the set of winning strategies of Player 0 is regular and an au-
tomaton recognizing it can be constructed effectively.

Theorem 8. Let G be an arena with positions V and W a regular winning
condition recognized by a deterministic parity automaton A. The set of winning
strategies of Player 0 in the second-life game S(G,W ) can be recognized by a

non-deterministic parity tree automaton of size at most 2O(|A|9+|V |3).

5 The Unboundedness Game

In the next step, we consider a marked counter parity game and check whether
its value is unbounded, i.e., ∞, or not. To do this, we transform the marked
game into a second-life game, where Minimizer takes the role of Player 0.

From the definition of the value of a counter parity game, there are two ways
for the value to be ∞: Maximizer may have a winning strategy with respect
to the parity condition, or a sequence f0, f1, · · · of strategies which ensure ar-
bitrarily high payoffs. Via the reduction to second-life games, we combine the
sequence of strategies for the latter situation into a single strategy. Intuitively,
Maximizer will get the option to decide to try to reach a terminal position to
“save” a payoff, and then continue increasing the counters. If in such a game
Maximizer has a strategy to save higher and higher payoffs, or to win via the
parity condition, this corresponds to a value of ∞. We exploit that marks form
a finite semigroup to show that this can be formulated as a regular objective.
Intuitively, the reason why we rely on second-life games with imperfect infor-
mation and recall for Minimizer is that we need to avoid that Minimizer learns
about whether Maximizer attempts to win by parity or by reaching arbitrarily
high payoffs. If Minimizer had this information, he could adapt his strategy and
neglect the other way of ensuring payoff ∞.
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Let Gm be a marked counter parity game with arena G and terminal vertices T .
The unboundedness game Gu is the second-life game S(Gm,W ) using V0 := Vmin

and V1 := Vmax and with the winning condition W described below.
Recall that, if we remove all Call-Return sequences from a path in Gu, we obtain

a path in Gm that we call the main part. For better readability, we describe the
winning condition in terms of both edge- and vertex-labels (functions/marks and
priorities, respectively). Technically, this can be avoided by adding the color of
the source vertex to the action label.

We describe the winning condition for Maximizer, i.e., Player 1, which is
sufficient since regular languages are closed under complementation. Maximizer
wins a play α if, and only if, the main copy is visited infinitely often, no terminal
vertex inside the main copy is seen, and

– the main part satisfies the parity condition of Gm, or
– there exists a counter d such that, from some point onwards, counter d is

increased in the main part, then a Call is taken and a Return from a terminal
where a payoff greater than d would be obtained in the original counter
game, and after the Return this is repeated, ad infinitum.

d↗

d ∈ m≥(ci), λ = ci

d↗

d ∈ m≥(cj), λ = cj

By properties of marks, finite sequences of marks after which a counter d has
been increased form a regular language d↗. Also, finite sequences starting with
a Call and ending with a Return from a vertex with λ = c such that, for the
sequence of marks in between, counter c is, at the end, greater than d at the
beginning, form a regular language c>d. Thus, the later part of W is the union
of the main part satisfying the parity condition and the play being of the form
A∗‖ · (d↗ ·c>d)ω. This is ω-regular.

Let us calculate the size of the automaton for the above condition. To check
the language d↗, |M| states suffice for a deterministic finite word automaton
(using composition on the marks), and the same holds for c>d. Checking d↗ ·c>d
can thus be done with O(|M|) many states by a non-deterministic automaton.
By considering Büchi acceptance with the same accepting states, we get a Büchi
automaton for the language (d↗ ·c>d)ω with O(|M|) states. If we add a new
initial state and take a copy of the automaton for (d↗ ·c>d)ω for every d < k,
we build a nondeterministic Büchi automaton of size O(k · |M|) which accepts
a play if it is won via some counter. (It waits in the initial state until the
actual d is correctly guessed and then moves to the respective copy.) For the
parity part, we need an automaton of size |Ω(V )| < |V |. Taking the union of
the two, we get a non-deterministic parity automaton of size O(|V |+ k|M |) and
index |V |. After determinization, the deterministic parity automaton for W has

size 2O(|V |(|V |+k|M|) log(|V |+k|M|)) = 2O((|V |+k|M|)3).



Solving Counter Parity Games 169

Combining this with Theorem 8, we can conclude that the set of winning
strategies of Minimizer in the unboundedness game can be recognized by a non-
deterministic parity tree automaton of size

2
O
((

2O((|V |+k|M|)3)
)9

+|V |3
)
= 2EXP

(
(|V |+ k|M|)3

)
. (1)

What remains to be shown is the connection between the value of G and the
existence of a winning strategy of Minimizer in Gu, i.e., that the set of winning
strategies of Minimizer in Gu satisfies the conditions from Theorem 2. We will
use Ramsey’s theorem for a finite path π in Gu or G played consistently with
a strategy using memory of size K0. We write π as a sequence of vertices and
memory states with edges labeled with the corresponding marks:

π = (v0, q0)
m0−→ (v1, q1)

m1−→ (v2, q2) · · ·
mn−2−→ (vn−1, qn−1),

where each vi is a vertex and each qi is a memory state (and qi+1 = update(qi, vi)
according to the strategy). The path π induces a complete edge-colored undi-
rected graph over [n], in which an edge i, j is colored by (m, vi, qi, vj , qj), where
m is the composition of the marks mi ◦mi+1 ◦ · · · ◦mj−1. Let l be the number
of such colors for Gu and memory size K0:

l = |M| · |Vu|2 ·K2
0 = |M| ·K2

0 · (|Vm| · |Vm|)2 = |M| ·K2
0 · (|V | · 2k)4.

We write R = R(3, 3, · · · , 3︸ ︷︷ ︸
l times

) for the Ramsey-number for 3-cliques with l colors.

As R ≤ 3l! [13], we get that R = 2O(l).
Recall that a mark m is idempotent if m = m ◦m. The following lemma (see

[2]) is used in the next proof. To simplify notation, we write i ∈= m(c>0, j) if

i ∈ m(c>0, j) or i = m(c>0, j).

Lemma 9. Let m be an idempotent mark. Then, for all initial values c, and all

i < k: if i �∈= m(c>0, i), then i will not appear in any m(c>0, j).

In the following, we show that, if g is a winning strategy of Minimizer in Gu with
memory M , then valg G(v) is bounded.

Proposition 10. Let g be a strategy of Minimizer winning in Gu from v and
using memory M .Then, supf∈Σmax

p(αf,g(v)) < 2EXP(M2 · (|V | · 2k)4).

Proof. Let g be such an M -memory winning strategy. Consider the set of paths
of length at most R. We fix K as the maximal counter value plus 1 occurring
anywhere on these paths when starting with initial counter values c = (a, · · · , a),
where a is the maximal number occurring in any update function’s matrices A
or B. A rough upper bound can be computed as follows: after one application
of any of the update functions, the maximal value is at most a · a · k (the sum of
all counters initialized with a, each weighted with a). After two steps, we get at
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most k ·a ·k ·a ·a = k2a2+1. After R steps, we thus get K ≤ kRaR+1+1 = 2O(R),
and by the approximation of R above, K ≤ 2EXP(M2 · (|V | · 2k)4).

Note that, because of imperfect information and imperfect recall, g can also
be viewed as a strategy for G. Consider thus, towards a contradiction, a play α
in G that is consistent with g and that has a payoff ≥ K. Let further β be the
corresponding play in Gu in which Maximizer never takes a Call, i.e., β consists
only of a main part. We distinguish two cases: if α is infinite, then so is β.
Because g is a winning strategy for Minimizer in Gu, β – and thus α – violates
the parity condition. But then the payoff for α is −∞, a contradiction. If α is
finite but has a payoff ≥ K, we first observe the following (proved in [2]).

Claim. Every play consistent with g and with payoff ≥ K has a suffix (∗):

(v, q) (v, q)
λ = cxmid me

with mid idempotent, such that for some j with j ∈= mid ◦me(cx): j ∈ mid(j).

By the above claim, it follows that α contains a cycle that can be repeated
arbitrarily many times by Maximizer. As repeating the cycle increases the payoff,
repeating the cycle, taking a Call towards the Return, then repeating the cycle
and taking the Call again, and so on, is a witness for a win of Maximizer in Gu.
Because of imperfect information and imperfect recall, this witness is consistent
with g, contradicting the assumption that g is winning for Minimizer. .�

To prove the other item in Theorem 2, we show that Maximizer can achieve
arbitrarily high payoffs against non-winning strategies of Minimizer in Gu.

Proposition 11. For every strategy g of Minimizer in Gu that is not winning
from v, valg G(v) =∞.

Proof. Let g be an arbitrary strategy of Minimizer that is not winning from v in
Gu. This means that there exists a consistent play α(g) won by Maximizer. Note
that Gu is not necessarily determined, but G is determined (cf. Corollary 1).
Thus, it suffices to show that, for every natural number N ∈ N, Maximizer
has a strategy to ensure a payoff > N against g in G. Recall that strategies
of Minimizer in G correspond to strategies in Gu. Let thus g and N be given.
Maximizer can play as follows: play as in α(g) until the first Call occurs. Skip the
Call-Return sequence. If α(g) is won via the parity condition, do this infinitely
often. Otherwise, wait until the winning counter d has reached a value > N and
a Call occurs. Take the Call and realize the payoff as required. .�

We can now prove Theorem 2. Indeed, let Σ be the set of strategies winning for
Minimizer in Gu. By Equation 1 it is recognized by an automaton of the claimed
size (with m = |M|). Then, by Proposition 11, the first item of Theorem 2,
holds, and by Proposition 10 the second item is true.
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6 Outlook

The presented algorithm allows to solve a general class of counter parity games,
which capture several cost models for dynamic systems. These cost models are
also used in many online algorithms, thus it may be beneficial to apply affine
counter parity games in this domain, in the spirit of [1]. A crucial part in our
proof is played by games with imperfect information and imperfect recall – a
class which has been studied in classical game theory, but so far received little
attention in computer science. This motivates a future more systematic study of
ω-regular games with imperfect recall.
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Abstract. In this paper, we study the problem of drawing a given planar
graph such that vertices are at pre-specified points and the entire drawing
is inside a given polygon. We give a method that shows that for an n-
vertex graph and a k-sided polygon, Θ(kn2) bends are always sufficient.
We also give an example of a graph where Θ(kn2) bends are necessary
for such a drawing.

Keywords: Graph drawing, Specified point set, Bounding polygon.

1 Introduction

Drawing, or embedding, a planar graph in the plane is a well studied problem,
and proofs that we can draw planar graphs with straight lines have been around
longer than computers [12,5]. One of the first algorithmic results was that all pla-
nar graphs have such a drawing using polynomially bounded integer coordinates
[6,11]. Many other graph drawing results and models of straight-line drawings
have been developed since.

If we introduce the possibility to draw the edges as sequences of straight line
segments, i.e., as poly-lines with bends, then we may be able to incorporate other
constraints on the drawing. The typical measure of quality is then the number of
bends used while satisfying such constraints. For example, in some applications
such as geographic visualization, vertices (which may represent cities) should be
placed at or near a given location. Hence the following point-embedding problem
is of interest: Given a planar graph G, a set of points S and an injective mapping
V → S, can we drawG without crossing such that the vertices are at the specified
locations?

It is quite clear that not all graphs have such drawings with straight lines,
and it can always be done if we allow sufficiently many bends. Pach and Wenger
[10] studied this point-embedding problem and gave bounds on how many bends
may be needed. They showed that it can always be done with O(n2) bends, and
Ω(n2) bends are required, even for a matching, for some mappings of vertices
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to points. Since then, some variants of the point-embedding problem have been
studied, for example when the mapping of the vertices to points can be arbitrary
[8], or when it is only partially restricted [2,4].

Here we explore the point-embedding problem with the additional restriction
that the drawing must be within a given polygon. Thus, we are given a planar
graph G, a point set S, a polygon P that contains all points of S in its interior,
and an injective mapping from the vertices to S. We would like to create a planar
graph drawing of G that lies entirely inside P and that has the vertices at the
specified locations. Since we require the points of S to be in the strict interior of
P , it is clear that such a drawing always exists if we allow bends, but how many
bends are needed?

We came across this problem when studying maps, and give two motivating
examples. Consider Figure 1(left), which shows a hand-drawn (1910) cartogram
of the United States, with states skewed so that the area reflects population.
The adjacencies in this map are hilariously wrong (especially for Pennsylvania),
but nevertheless, the reader has no difficulty in recognizing the United States,
simply because the boundary is correct. We are currently doing research on how
to create cartograms that use given boundaries and other identifying features
such as rivers, and encounted the problem studied in the current paper as a
sub-problem. A second example is in Figure 1(right), which shows a flight map
of some intra-Canadian flights. Does the flight from Toronto to Sault Ste. Marie
enter US airspace? How about the one from North Bay to Thunder Bay?1 This
flight map is drawn with straight lines, while flights paths are often zig-zag
lines depending on location of control towers. So this map cannot be trusted
to answer the question, and a map that distinguish clearly between flights that
remain entirely inside Canada and those that do not may be useful.

Fig. 1. (left) A cartogram of the United States. (right) A flight map of parts of Canada.

The topic of drawing at fixed locations inside a polygon is also related to the
local routing problem in VLSI design (see for example [9].) Here the modules
of a chip have been placed already, and the routes of connections between the

1 If yes, then due to the recently passed Bill C-42, data about the passengers may
be forwarded to the US government, and passengers on the US no-fly list may be
denied boarding. So the question may be of interest to some people.
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pins of the modules must be placed in the remaining free space. However, the
research on local routing is quite different from our research for two reasons:
(1) Pins are located on the modules, and hence at the boundary of the drawing
region. This makes planar drawings impossible in almost all cases. In contrast,
we demand that points are strictly inside P , precisely so that a planar drawing
is always feasible. (2) The VLSI community focuses on minimizing area as main
objective. In contrast, we focused on minimizing the number of bends. (Area
considerations of the resulting drawings are an interesting problem, but this
remains for future studies.)

We give in this paper upper and lower bounds on the number of bends needed
for a planar drawing on a given set of points inside a polygon. Our results
resemble the ones by Pach and Wenger [10], but (as is to be expected) also
include the size of the bounding polygon. Presume we are given an n-vertex
planar graph G and a k-sided polygon P with points S inside P , and a mapping
from V to S. A drawing with O(nk) bends per edge would be quite easy to
achieve: Take the drawing with O(n) bends per edge from [10] that ignores P ,
and then re-route each segment of an edge to be a polyline inside P with at most
k bends. We show here that we can use far fewer bends than that: there always
exists a planar drawing of G inside P with vertices at pre-specified points of S
that has O(k + n) bends per edge. We also show that this is tight: Ω(n) edges
need Ω(k + n) bends for some choice of G, S and P .

Our lower bound builds directly on the lower bound of Pach and Wenger,
endowed with a suitable polygon; see Section 2. Our upper bound is also some-
what similar to the upper-bound method used in [10] where all edges are routed
in parallel channels around the drawing. However, instead of “channels” we use
cyclic levels, similarly as was done by Bachmeier et al. [1]. We then map the
cyclic levels to line segments inside the polygon that contain the points of S and
satisfy some other conditions to make such a mapping possible.

To minimize the number of bends, we need to minimize the number of times an
edge needs to do a “turn”, i.e., a change of direction from clockwise to counter-
clockwise or vice versa in a cyclic level drawing. We show that any edge needs
at most two turns. This is also of interest for so-called upward drawings (where
directed graphs are drawn such that edges go monotonically from smaller to
a larger y-coordinate). Not every planar directed acyclic digraph (dag) has an
upward drawing with straight lines, and testing whether it does is NP-hard
[7]. Our results imply that any planar dag has a planar drawing where the y-
coordinate of each tail is smaller than the y-coordinate of the head, and every
edge consists of at most 3 y-monotone pieces.

2 Lower Bound

In this section, we argue our lower bounds: for some n-vertex graph graph G,
point set S inside a k-sided polygon P and mapping V → S, Ω(n) edges have
Ω(n+ k) bends each.

Our lower bound builds directly on the lower bound given by Pach andWenger
for the point-embedding problem [10]. They showed that for any planar graph
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that has a matching of size m, and any random assignment of the vertices to
points in convex position, almost surely there are at least m

20 matching-edges
that have at that have at least m/(40)2 bends each.

For our lower bound, let G be the graph that is a matching of size m := n/2.
As bounding polygon P , we use a k-sided polygon that has two regions R1 and
R2 with Ω(k) link-distance, i.e., any path from a point in R1 to a point in R2

that stays inside P has k/2− 1 bends. See Figure 2. We choose the points in S
such that there are n/2 points in each of these two regions, and the points in S
are in convex position.

Now choose a random assignment from the vertices of G to the points of S. By
Pach and Wenger’s result, almost surely at least m

20 edges have at least m/(40)2

bends. Let E′ be those edges, and let E′′ ⊆ E′ be all those edges in E′ that
connect a point in R1 with R2. By construction, any edge in E′′ has Ω(k) bends
because of the link-distance, and Ω(m) = Ω(n) bends because it is in E′, and
hence Ω(n+k) bends total. So all that remains to do is to bound the size of E′′.

We know |E′| ≥ m
20 almost surely. Any edge connects the two different regions

with probability ≈ 1/2. The expected number of edges in E′′ is hence ≥ 1
2
m
20 .

Since the variance of whether an edge connects two difference regions is ≈ 1
4 , so

the variance of |E′′| is ≈ 1
4
m
2 . Hence by Chebyshev’s inequality the probability

that |E′′| < 1
2
m
20−
√
m/80

√
1
4
m
20 is at most 80/m. So the probability that |E′′| <

m/80 = n/160 goes to 0 as n goes to infinity. In conclusion, almost surely at
least n/160 edges have at least n/40 + (k − 6)/2 bends each, which proves:

Theorem 1. Let G = (V,E) be a plane graph that contains a perfect matching
and P be the bounding polygon with points in it as in Figure 2. Then any random
mapping of vertices to points requires Ω(n) edges to bend Ω(n+ k) times almost
surely.

3 Upper Bound

To obtain an upper bound of O(n+k) bends per edge, we need some intermediate
results. We first give an overview of the algorithm here, and then explain the
individual steps below.

So presume we are given a graph G, a point set S, a bounding polygon P , and
an injective mapping of V to S. We first create an ordered set of disjoint line
segments LS (which we call skewed levels) inside P that contain all points of S
(with at most one point per segment) and have some other useful properties. The
injective mapping V → S then naturally gives an injective mapping V → LS .

Next, we consider what we call cyclic levels, which is a set LC of disjoint line
segments on rays from the origin. We have |LC | = |LS |, and a natural 1-to-1
correspondance LS ↔ LC , which gives an injective mapping V → LC . We want
a cyclic level drawing of G (previously studied in [1]) where each vertex is placed
somewhere on the cyclic level that it maps to. Our objective is to minimize the
number of turns done by each edge. We show that every graph has a cyclic level
drawing such that every edge has at most two turns.
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R2
R1

Fig. 2. The bounding polygon used in Theorem 1; it has k/2 − 1 reflex vertices, and
any path from R1 to R2 must detour around all of them

With this drawing in hand, we then easily obtain a drawing of G on S inside
P by mapping the cyclic levels back to the skewed levels. Since every edge
has at most two turns, it crosses every level at most 3 times, and hence has
O(|LS |) = O(k + n) bends.

3.1 Cyclic Level Drawings and Turns

We first start by explaining the cyclic level drawings. A cyclic level set LC =
{l1, . . . , lM} is a set of disjoint line segments such that li lies on the ray from the
origin with angle 2iπ/M . See Figure 3. Let bi be the endpoint of li closer to the
origin, and ti be the other endpoint. Note that {b1, . . . , bM} and {t1, . . . , tM}
form a polygon (with one hole), which has a natural quadrangulation defined
by the segments. For ease of description, we will assume that all cyclic levels
have the same length and distance from the origin, so the quadrangles formed
by them are trapezoids.

In the following section, we are given a set of cyclic levels, a planar graph
G, and an injective mapping of vertices to cyclic levels. We want a poly-line
drawing of G such that each vertex is placed on its cyclic level (but it does not
matter where along that level.) Furthermore, the drawing of G should be entirely
within the polygon defined by the endpoints of the levels. Cyclic level drawings
of planar graphs were first studied by Bachmeier et al. [1] with the objective
of testing whether a planar graph has such a drawing such that directed edges
make no turns at all. In our work, we create such drawings where every edge
makes at most 2 turns. Here, a turn is a change of direction of the edge with
respect to the cyclic levels. More precisely, we say that an edge makes a turn
whenever it crosses the same cyclic level twice without crossing any other cyclic
level inbetween.

Theorem 2. Given a planar graph G = (V,E), a set of cyclic levels LC and an
injective mapping l : V → LC . Then G can be drawn inside the polygon formed
by the cyclic levels such that any vertex v is drawn somewhere on l(v), and any
edge has O(|LC |) bends and at most 2 turns.

The proof of this theorem proceeds in two steps. We first prove a weaker result,
where we assume that G has a Hamiltonian cycle C = {v1, v2 . . . vn}. In this
case we use a technique similar to the one used by Kaufmann and Wiese [8],
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who studied how to draw a planar graph on a point set but without specifying
which vertex goes to which point.

Our drawing is illustrated in Figure 3. To draw C, we imagine the interior
of each level li to be subdivided with with n points, say pli1 , . . . , p

li
n at equal

distance, in order towards the origin. Draw v1 on the outermost point p
l(v1)
1 of

its level, v2 on the second point p
l(v2)
2 on its level, and so on. To route the edge

(v1, v2), assume first that l(v1) > l(v2). Then route the edge by adding a bend
on every level i with l(v1) > i > l(v2), placing the bend somewhere between pi1
and pi2 on level i. Thus we form a counter-clockwise arc from v1. If l(v2) > l(v1)
then we route similarly but in clockwise direction from v1, adding bends on every
level i with l(v2) > i > l(v1). All other edges of the Hamiltonian cycle are routed
similar: go either counter-clockwise or clockwise along the level, in such a way
that none of the added edge-segments pass through the trapezoid between the
last and first level.

Finally, to close up the Hamiltonian cycle, we need to route edge (v1, vn); we
do so by routing counter-clockwise from l(v1) (outside all points) and clockwise
from l(vn) (inside all points) until both parts reach the trapezoid between the
last and first level. There the parts can be connected with a segment, without
introducing a crossing, since this trapezoid is empty.

Now we need to draw all remaining edges, each of which is inside or outside
of the Hamiltonian cycle. Let (vi, vj) be an inside edge, i < j. Route it by going
clockwise from vi, always staying near the ith point on each level, until we are
past the smallest level  used by vi+1, . . . , vj−1. Similarly route clockwise from
vj . Finally add one bend at a point just beyond  and connect the two routes;
edge (vi, vj) makes a turn at this bend. Route the outside edges similar, except
go counterclockwise. All edges can be routed in this fashion with at most one
turn per edge. So we have:

Lemma 1. A planar Hamiltonian graph has a cyclic level drawing where edges
of the Hamiltonian cycle have no turn and all other edges have at most one turn.

Now we turn to graphs that are not Hamiltonian. It is well known that a planar
triangulated graph is Hamiltonian if it does not contain a separating triangle,
i.e., a triangle that has vertices both inside and outside. Moreover, a Hamiltonian
cycle can be found in linear time [3]. Both Pach and Wenger [10] and Kaufmann
and Wiese [8] describe methods to augment G to make it Hamiltonian in linear
time. We use the method in [8], which removes a separating triangle by sub-
dividing an edge in it, and then connects the subdivision vertex to the third
vertex on the two adjacent faces. Doing this to all separating triangles results in
a Hamiltonian graph that has O(n) vertices and every edge has been subdivided
at most once.

Thus presume we have made graph G into a Hamiltonian graph G′. Add extra
cyclic levels and assign the subdivision vertices to them in an arbitrary manner.
Draw G′ on these cyclic levels as explained above. Then remove the added edges
and restore the original edges by replacing subdivision vertices by bends. All
desired properties of the resulting drawing of G are easily verified, except for
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l(v1)

l(v2)

l(v3)

l(v5)

l(v6)

l(v4)

l(v1)

l(v2)

l(v3)

l(v5)

l(v6)

l(v4)

Fig. 3. (Left) The drawing of the Hamiltonian cycle. Only (vn, v1) is allowed to use
the trapezoid between the last and first level. (Right) Adding inner and outer edges
(thick dashed, green) with one turn.

the number of turns. A naive argument would say that an edge e of G has at
most 3 turns, since e may have consisted of two edges e1 and e2 in G′, each of
those could have acquired one turn in G′, and removing the subdivision vertex
v′ that was common to e1 and e2 might add another turn. However, in fact e
has at most two turns:

– If e1 belonged to C, then it had no turn in G′, hence we have at most 2 turns
total in e. Similarly we have at most 2 turns if e2 belonged to C.

– Not both e1 and e2 can be outside edges. For the subdivision vertex v′

has degree 4 and e1 and e2 are not consecutive at v′, so if both e1 and e2
are outside edges, then there is only one edge at v′ that could be on or
inside the Hamiltonian cycle, but there must be at least two (the two on the
Hamiltonian cycle.)
Similarly not both e1 and e2 can be inside edges.

– So the only remaining case is if e1 is an inside edge and e2 an outside edge, or
vice versa. Since we route inside edges clockwise and outside edges counter-
clockwise, then e does not acquire a turn when removing the subdivision
vertex v′.

We have thus proved Theorem 2: every planar graph has a drawing on cyclic
levels such that every edge turns at most twice.

3.2 Skewed Levels Inside P

We now show how to create skewed levels inside P that contain the given points
S on distinct level. The ultimate goal is to be able to map the cyclic level drawing
obtained above onto these levels, which will require the following conditions:

Definition 1. Let P be a polygon. A set LS of line segments is called a skewed
level set inside P if there exists polygons P ′′ ⊂ P ′ ⊆ P and a triangulation T of
P ′ − P ′′ such that:
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1. the dual of triangulation T is a cycle,
2. every segment in LS lies on an interior edge of T ,
3. for every interior edge of T , there is exactly one edge of LS that lies on it.

Put differently, the segments in LS are all disjoint, and connecting their end-
points up in order gives a polygon with exactly one hole and for which the
segments define a convex quadrangulation. See also Figure 4.

Note that the dual of the triangulation defines a cylic order of the skewed
levels. They could hence be viewed as a set of cyclic levels, except that they
have been deformed as to fit inside P ; we will exploit this corresponence later.

P

P ′′
P ′

Fig. 4. A polygon P with skewed levels (thick dotted, green) that are on the inner
edges of a triangulation (dashed) of the polygon P ′ − P ′′

Lemma 2. Let P be a polygon and S a set of points in the interior of P . Then
there exists a skewed level set of size O(|P |+ |S|) inside P such that each point
in S is on one of the levels, and no level contains two points of S.

Proof. To prove this, it will be helpful to assume that no three points of S ∪ P
lie on a line, unless they all belong to S. This is not a restriction: We can change
P by moving points of P inward. Recall that S is strictly inside P , so with a
sufficiently small movement we still have all of S inside the new polygon, and a
skewed level set inside the new polygon is also one inside P . We will also assume
that P is simple (has no holes); if there is a hole then we can remove it by
removing a thin channel from P that connects from the outside to the hole and
does not contain a point in S. We can do this for all holes without affecting the
asymptotic size of the bounding polygon.

Now triangulate P ; none of the triangulation edges contains a point of S by
the above. On each triangulation edge, place another subdivision point. Inside
each face of the triangulation place a face-point and connect it to all polygon-
corners and subdivision points of the face. We choose the positions of face-points
in such a way that none of the lines incident to a face-point contains a point in
S, and such that no line through two points of S contains a face-point.

The connections from face-points to the subdivision points form a tree T
(which is a subdivision of the dual tree of the triangulation.) Observe that
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x

x x
x

x

Fig. 5. A polygon (solid, black) with its triangulation (dashed, blue), the subdivision
and face points (black dots), the tree between them (bold, black), and edges from the
face points to the corners (dotted, red). (Right) A close-up shows how to add one
skewed segment per point in S (marked by an x.)

P − T is a polygon with a (degenerate) hole, and it has O(k) corners. Also, the
triangulation edges of P and the edges from the face points form a triangulation
of the polygon P − T , and it is easy to see that the dual of this triangulation is
a cycle (effectively, we are “walking around tree T ”.) See Figure 5.

For each point in s ∈ S, we now construct one line segment l(s). By construc-
tion s is inside P − T , so it belongs to one of the triangles F in the constructed
triangulation of P − T . One side of F belongs to either P or T ; let c be the
corner of F that is not on that edge. Let l(s) be the maximal open line segment
that goes through s and c and stays within F .

Point c is either a corner of P or a face point. By our assumptions on P and
construction of face points, the line segment l(s) therefore contains only one
point from S. Our set of skewed levels now consists of these O(n) line segments
l(s) for s ∈ S, as well as the O(k) line segments in the triangulation of P − T
that belong to neither P nor T . One easily verifies that this is a skewed level
set.2

3.3 Mapping the Levels

We are now ready for the main result, where we show that we can create a
mapping from a drawing on cyclic levels onto the skewed levels obtained when
triangulating the polygon.

Theorem 3. Any planar graph G can be drawn with vertices at prespecified
points S inside a given polygon P such that any edge has at most O(|V |+ |P |)
bends.

Proof. Start by creating a skewed level set LS inside P for the point set S
according to Lemma 2. Next create a set of cyclic levels LC of cardinality |LS |.
Map the (cyclically ordered) set LS to LC , and with it, obtain a mapping from
V to LC . Create a drawing of G on LC that has at most two turns per edge and
respects this mapping (Theorem 2.)

2 This uses a degenerate polygon for P ′′, which is allowed. One could make it non-
degenerate by thickening T into T ′ and then re-triangulating P − T ′.
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Now we explain how to map this drawing back onto the skewed levels. Assume
vertex v is drawn on cyclic level lc at the point that is a λ-proportion away from
the inner endpoint (i.e., if lc = [b, t] with b closer to the origin, then v is drawn
at λb + (1− λ)t). Let ls be the level that corresponds to lc, i.e., ls contains the
point s on which we are supposed to draw v. Retract the ends of ls in such a
way that point s is a λ-proportion away from the endpoint closer to the “inner
polygon” P ′′. Call the resulting line segment l′s. See Figure 6.

Let l1c and l2c be two consecutive cyclic levels; the area Rc between them is a
trapezoid. Let l1s and l2s be the corresponding skewed levels, and (l1s)

′ and (l2s)
′

be their retractions as explained above (we only retract those levels that contain
a vertex.) The area Rs between (l1s)

′ and (l2s)
′ is a convex quadrilateral since l1s

and l2s were on sides of a triangle by definition of a skewed level set. We now map
from Rc to Rs in the obvious way, by mapping the four corners of the trapezoid
to the corresponding corners in the convex quadrilateral, and mapping all other
points by interpolation. See Figure 6.

s

1− λl1s

(l2s)
′

l2s

λ

(l1s)
′

λ 1− λ

v l1c

l2c

Fig. 6. Mapping the cyclic levels to skewed levels that have been retracted such that
each vertex v lands on its corresponding point s

This maps each vertex to its desired point in S by construction. Let p be any
point on l1c where an edge e crossed l1c . This point maps to some point p′ on (l1s)

′,
which will (usually) become a bend in the resulting drawing of e. Any bend that
e had inside Rc (e.g., because e made a turn inside Rc) will be mapped into a
bend in Rs as well. We complete the drawings of edges by putting in straight-line
segments between these created bends and endpoints.

Since the drawing inside Rs is a linear mapping of the drawing in Rc, we
do not create any crossing inside Rs. Since each quadrilateral of consecutive
skewed levels was inside a face of a triangulation of P ′ − P ′′, no crossings can
occur between two segments in two different quadrilaterals. Therefore we obtain
a planar drawing.

In the cyclic level drawing, edges had O(|LC |) = O(n + k) bends. Mapping
to the skewed levels does not introduce new bends (all edges already had bends
where they crossed levels.) So every edge had O(n+ k) bends, which proves the
theorem.
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3.4 Counting the Bends

In the previous section, we were only concerned with asymptotic bounds on
the number of bends. However, it is possible to give more precise bounds for
the actual construction (if we do not consider the additional corners/vertices
resulting from making polygon P simple or making graph G Hamiltonian.) The
main observation is that bends only happen at turns or when an edge crosses a
level, and we can bound these events.

Lemma 3. For any set S of n points inside a simple k-sided polygon P , there
exists a set of n+ 5k − 12 skewed levels.

Proof. Every point in S gives rise to one skewed level. In addition, we added
skewed levels from the triangulation of P , and we count their number now.

The triangulation of P had k − 3 edges. Each of those obtains a subdivision
point and hence gives rise to 2(k − 3) skewed levels. The triangulation also
had k − 2 interior faces. Each of those obtains a face point which is connected
to three corners, hence adding 3(k − 2) skewed levels. In total we hence have
2(k − 3) + 3(k − 2) = 5k − 12 skewed levels.

Since every edge makes at most 2 turns, it can traverse each level at most 3
times. For each traversal, the edge may only bend n+5k− 12 times, for a total
of at most 3n + 15k − 36 bends plus one bend at each turn, which gives the
precise bounds for Hamiltonian graphs.

Theorem 4. Any Hamiltonian planar graph G can be drawn with vertices at
prespecified points S inside a given simple polygon P such that any edge has at
most 3|V |+ 15|P | − 34 bends.

In this paper, we studied the problem of drawing a planar graph with ver-
tices at specified locations inside a given polygon. We provide lower bounds for
the number of bends, and give a construction that matches these lower bounds
asymptotically.

Our construction was done with the theoretical objective of matching the
lower bounds; we make no claims as to it being esthetically pleasing or useful
in practice. In particular our method of dealing with holes in the polygon by
simply forbidding some region to be used at all would be unsatisfactory in a
practical setting. One should also apply post-processing heuristics to remove
many unnecessary bends.

We leave some open questions:

– Our lower bound uses a polygon that is unlikely to occur in practice. Can
better bounds be shown for special polygons? For example, if a polygon
can be split into K convex pieces (not necessarily triangles), can we create
planar drawings at specified points inside the polygon with O(n+K) bends
per edge?

– What are area considerations? In particular, what area is required for our
drawings, presuming all corners of P and points in S are at integer coordi-
nates (say of size O(n))?
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Abstract. In this paper we improve the results in the literature concern-
ing the problem of computing the minimum Steiner tree given the mini-
mum Steiner tree for a similar problem instance. Using a σ-approximation
algorithm computing the minimum Steiner tree from scratch, we provide

a
(

3σ−1
2σ−1

+ ε
)
and a

(
2σ−1

σ
+ ε

)
-approximation algorithm for altering the

instance by removing a vertex from the terminal set and by increasing
the cost of an edge, respectively. If we use the best up to date σ = ln 4+ε,
our ratios equal 1.218 and 1.279 respectively.

1 Introduction

The concept of reoptimization adds an interesting twist to hard optimization
problems. It is motivated by the fact, that when confronted with a hard problem
in reality, one often has some additional information about an instance at hand.
Imagine for example a train station where the train traffic is regulated via a
certain time schedule. The schedule is computed when the station is ready to
operate and, provided that an unexpected event does not occur, there is no
need to compute it again. Unfortunately an unexpected event, such as a delayed
train, is in a long run inevitable. Reoptimization addresses this scenario, asking
whether knowing a solution for a certain problem instance is beneficial when
computing a solution for a similar instance. When dealing with relatively stable
environments, i. e., where changing conditions alter the environment only for a
short period of time, it seems reasonable to spend even a tremendous amount
of time on computing a good solution for the undisturbed instance, and profit
from it when confronted with a temporal change.

The term reoptimization was mentioned for the first time in [20] and applied
to the problem of scheduling with forbidden sets for the scenarios of adding or
removing a forbidden set. Since then, the concept of reoptimization has been
successfully applied to various problems like the Traveling Salesman problem
[3,1,8,11], the Steiner Tree problem [22,5,9,13,16], the Knapsack problem [2],
the Weighted Minimum Set Cover problem [17], various covering problems [7],
and the Shortest Common Superstring problem [6]. A survey of reoptimization
problems can be found in [10,15].

The Minimum Steiner Tree (SMT) problem is a very prominent optimization
problem with many practical applications, especially in network design. It is

B. Rovan, V. Sassone, and P. Widmayer (Eds.): MFCS 2012, LNCS 7464, pp. 184–197, 2012.
c© Springer-Verlag Berlin Heidelberg 2012



New Advances in Reoptimizing the Minimum Steiner Tree Problem 185

APX-complete [4]. The best up to date approximation ratio is due to a ran-
domized ln 4+ ε-approximation algorithm [12]. The best deterministic algorithm
achieves an approximation ratio of 1.55 [19]. The problem of reoptimizing SMT
where the modification of an instance consists of adding or removing one vertex
to/from the input graph was considered in [14]. The modifications of adding or
removing a vertex to/from the terminal set and increasing or decreasing the cost
of an edge was addressed in [9,5]. All these reoptimization problems are strongly
NP-hard [9].

We improve in this paper the best up to date results for SMT under removing
a terminal from the terminal set and for SMT under increasing the cost of an
edge, complementing the new results in [22] for SMT under adding a terminal
to the terminal set. We achieve a 1.218 approximation ratio for the scenario
of removing a terminal and 1.279 for the scenario of edge cost increase. For
the terminal addition and edge cost decrease the best ratios remain 1.218 [22]
and 1.246 [5] respectively.1 It is worth to remark that, contrary to [5], for the
modification of decreasing the cost of an edge we do not assume that the modified
graph remains metric.

For both reoptimization scenarios considered in this paper we employ the
technique developed in [22]. Nevertheless, for both scenarios, the technique can-
not be applied directly as for the scenario of adding a terminal to the terminal
set. The heart of the paper is Lemma 3, which settles an important property
that allows successfully applying the technique.

2 Preliminaries

Let us begin with a formal definition of the Minimum Steiner Tree Problem
(SMT). We call a complete graph G = (V,E, cost) with the cost function
cost : E → Q+ metric if the edge weights satisfy the triangle inequality, i.e,
cost({u, v}) ≤ cost({u,w}) + cost({w, v}) for all u, v, w ∈ V .

Definition 1. Minimum Steiner Tree Problem (SMT)

Instance: a metric graph G = (V,E, cost) and a terminal set S ⊆ V ;
Solution: a Steiner tree, i.e., a subtree of G containing S;
Objective: minimize the sum of the costs of the edges in the solution.

We view an algorithm as a function from the instance space to the solution space.
Some of our results use an approximation algorithm for SMT as a subroutine
and refer to it as ApprSMT. Any of the approximation algorithms for SMT can
be used as ApprSMT.

1. The Minimum Steiner Tree Terminal Removal problem
Instance: a metric graph G = (V,E, cost), a terminal set S, an optimal
solution Opt to (G,S), and a modified terminal set S′ = S \ {t} for some
t ∈ S;
Solution: a Steiner tree for (G,S′).

1 In [5] the authors provide a 5σ−3
3σ−1

-approximation algorithm, where σ is the approxi-
mation ratio of an algorithm for the Steiner tree problem.
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2. The minimum Steiner Tree Edge Cost Increase problem
Instance: a metric graph G = (V,E, cost), a terminal set S ⊆ V , an optimal
solution Opt to (G,S), and a modified graph G′ = (V,E, cost′), where cost′

coincides with cost on all edges but one edge e∗ and cost(e∗) < cost′(e∗);
Solution: a Steiner tree for (G′, S).

We introduce the notation used in the paper. Given a simple graph G, we denote
the set of its vertices by V (G) and the set of its edges by E(G). We denote an
(undirected) edge e ∈ E(G) by {u, v}, where u, v ∈ V (G) are the endpoints of
e. If H is a subgraph of G, we write H ⊆ G. An edge {u, v} ∈ E(G) can be
identified with a subgraph H ⊆ G with V (H) = {u, v} and E(H) = {{u, v}}.
The neighborhood ΓG(v) of a vertex v ∈ V (G) in a graph G is the set of vertices
adjacent to v in E(G). The degree of a vertex v ∈ V (G) is defined as the
size of its neighborhood: degG(v) = |ΓG(v)|. For two subgraphs G1, G2 ⊆ G
we denote by G1 ∪ G2 a graph G′ such that V (G′) = V (G1) ∪ V (G2) and
E(G′) = E(G1) ∪E(G2). For two subgraphs G1, G2 ⊆ G we denote by G1 −G2

a graph G′ such that E(G′) = E(G1) \ E(G2) and V (G′) is V (G1) without
isolated vertices. To analyze our algorithms, we often refer to costs of graphs
rather than edges. The cost of graph G1 ⊆ G is denoted by cost(G1) and is the
sum of the costs of all edges in E(G1).

A path P = (V (P ), E(P )) is a connected graph in which two vertices have
degree one (called the endpoints of the path) and the remaining ones have degree
two. The length of a path is its number of edges. In a shortest path, the length
of the path is minimized whereas in a cheapest path its cost is minimized. A
forest is a graph that consists of a union of disjoint trees: F = T1 ∪ · · · ∪ Tm.
We denote the number of trees in F as |F |T .

For a graph G = (V,E, cost) with an arbitrary edge weight function cost :
E → Q+, we denote by G = (V, {{u, v} | u, v ∈ V, u �= v}, cost) the metric
closure of G, i.e., the complete graph on V (G) where cost({u, v}) is defined as
the cost of the cheapest path in G from u to v. Observe that G is metric. The
optimal Steiner tree for an arbitrarily edge weighted graph G and for its metric
closure G coincide due to Lemma 1, whose proof can be found in [18].

Lemma 1. Let G = (V,E, cost) be an edge-weighted graph and S ⊆ V be a set
of terminals. If a tree T is a minimum Steiner tree for (G,S) then it is also a
minimum Steiner tree for (G,S). Moreover, any Steiner tree T ′ for (G,S) can
be easily transformed to a Steiner tree for (G,S) of cost less than or equal to the
cost of T ′.

The lemma above implies that for both SMT problem and SMT under removing
a vertex from the terminal set the restriction on the input graph to be metric
and complete does not cause any loss of generality. A similar restriction for the
scenario of edge cost increase is discussed in Section 4.

Observation 1. Due to the metricity and completeness of the graph we may
assume without loss of generality that deg

Opt
(v) ≥ 3 for an optimal solution

Opt to any SMT problem instance (G,S) and any v ∈ V (Opt) \ S.



New Advances in Reoptimizing the Minimum Steiner Tree Problem 187

3 The SMT Terminal Removal Problem

Before we move on to the SMT Terminal Removal problem, we introduce a few
techniques and observations that will be used later. We start with the technique
introduced in [21], which relies on executing an approximation algorithm for
SMT on a reduced instance and expanding the obtained solution. The technique
is based on the procedure SApprSMT presented in Algorithm 1. This procedure,
for a given instance (G,S) of SMT and a forest F of trees contained in G, con-
tracts the edges of F . Routine Δ, given an SMT instance and an edge, computes
another, reduced instance of SMT, where the edge is contracted to a single node
which becomes a terminal in the reduced instance. Additionally, if the contrac-
tion creates multiple edges, the cheapest one is chosen for each pair of vertices (in
other words, the metric closure is computed). Then a σ-approximation algorithm
ApprSMT for SMT is applied on the obtained reduced instance. After adding
the contracted edges to the resulting solution, the modified solution becomes
feasible for the original instance.

Algorithm 1. SApprSMT

Input: A metric graph G, a terminal set S ⊆ V (G), a forest F = T1 ∪ · · · ∪ Tk

1: (G0, S0) := (G,S)
2: for all edges e in E(F ) do
3: (Gj , Sj) := Δ((Gj−1, Sj−1), ej)
4: end for
5: T := ApprSMT(Gk, Sk)
Output: T ∪ F

Lemma 2. If F ⊆ Opt(G,S) then the algorithm SApprSMT((G,S), F ) returns a
solution of cost at most σOpt(G,S)−(σ−1)cost(F ) where σ is the approximation
ratio of ApprSMT. Proof to be found in [5,21].

The next remark states that it is enough to consider the case when the removed
terminal t has at least two neighbors in Opt.

Remark 1. Let Opt be the optimal solution to (G,S) given in the input of the
SMT under removing a vertex from the terminal set. Let t ∈ S be the terminal
removed from S, i.e., S′ = S \ {t}. We may assume that deg

Opt
(t) ≥ 2.

Proof. If there is only one edge e = {t, v} adjacent to t in Opt, then Opt− e is
an optimal solution to (G,S \ {t} ∪ {v}). If v ∈ S′ then Opt − e is optimal to
(G,S′). Otherwise we build a new instance for the SMT under removing a vertex
from the terminal set. We let the non-modified instance to be (G,S \ {t} ∪ {v})
with the optimal solution Opt−e. Then we let the terminal to be removed be v,
so the modified set of terminals is S \ {t} which is equal to S′. For the instance
we have it holds that deg

Opt−e(v) ≥ 2. .�
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Below we introduce a lemma that settles an important property of Opt
′. The

lemma holds for any optimal Steiner tree, but we formulate it using Opt
′, be-

cause we want to apply it to Opt
′. We define a binary tree as a tree where

there is just one vertex of degree 2 called root, and every other vertex has either
degree 1 (a leaf) or 3 (an inner vertex). The set of leaves of a tree T is denoted
by Leaf(T ) and the set of inner vertices by Inner(T ).

Definition 2. Let Opt
′ be a minimum Steiner tree for an SMT problem in-

stance (G, S ′). A binary subtree B ⊆ Opt
′ of Opt

′ is A-appropriate for a set
A ⊆ S ′ if and only if Leaf(B) ⊆ A and Inner(B) ∩ S ′ = ∅.

In Figure 1 we illustrate Definition 2 with an example of an optimal tree Opt
′

for an SMT instance (G, S ′), containing an A-appropriate subtree B for some
A ⊆ S ′. The next lemma shows that for any instance (G, S ′) of the SMT problem
and any partition of the terminal set S ′ into S ′ = S1 ∪S2 (i. e., S2 = S ′ \ S1), an
optimal solution Opt

′ (satisfying Observation 1) contains a subtree P (3) ∪B1 ∪
B2. The subtree P (3) ∪B1 ∪B2 we prove to exist consists of two binary trees B1

and B2, that are S1 and S2-appropriate respectively, and a path P (3) of at most
three edges connecting these two trees. Figure 2 shows the desired subtree.

Lemma 3. Let Opt
′ be a minimum Steiner tree for (G, S ′) satisfying Observa-

tion 1. Let S ′ = S1 ∪ S2, where S2 = S ′ \ S1, be any partition of a terminal set
into two disjoint subsets. Then Opt

′ contains a subtree P (3) ∪B1 ∪B2 such that

– |P (3)| ≤ 3,
– B1 is S1-appropriate tree rooted at r1, where r1 ∈ Leaf(P (3)),
– B2 is S2-appropriate tree rooted at r2, where r2 �= r1, r2 ∈ Leaf(P (3)).

Proof. Let (S1, S2) be minimum size cut in Opt
′ between S1 and S2, i.e., a

partition of vertices V (Opt
′) = S1∪S2 into two disjoint subsets S1∩S2 = ∅ such

that S1 ⊆ S1 and S2 ⊆ S2 and the number of edges of Opt
′ having one endpoint

in S1 and the other in S2 is minimum. Let C be a bipartite graph consisting of
edges crossing the cut and their endpoints. Hence, C ⊆ Opt

′ is a (not necessarily

A ⊆ S ′

OPT
′

B

Fig. 1. An A-appropriate subtree B ⊆ Opt
′, marked with solid line
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OPT
′

B1

B2

S1

S2

P (3)

Fig. 2. A subtree P (3) ∪ B1 ∪ B2 ⊆ Opt
′ proven to exist in Lemma 3

induced) subgraph of Opt
′. Let W1 = V (C) ∩ S1 and W2 = V (C) ∩ S2 be the

partition of vertices in C into two sets independent in C. Note that W1 and W2,
although independent in C, do not have to be independent in Opt

′. For each
vertex v ∈ Wj , j ∈ {1, 2}, let D(v) be the set of edges in Opt

′ between v and the
vertices of Sj. Let D(Wj) =

⋃
v∈Wj

D(v), j ∈ {1, 2}. We illustrate the situation

in Figure 3. We say that an edge e ∈ D(Wj), j ∈ {1, 2} is binary, if its endpoint
not in Wj is a root of an Sj-appropriate subtree. For the sake of convenience, if
v ∈ Wj is a terminal, we let it have an imaginary binary edge in D(v) incident
only to v. We aim to prove that there are two binary edges, f1 ∈ D(W1) and
f2 ∈ D(W2), both adjacent to the same edge fc ∈ C.

D(W1) D(W2)
C

W1 W2

S1

S2

Fig. 3. Illustration to Lemma 3: Opt
′ with its corresponding structures

Observe, that for each non-terminal vertex v ∈ Wj , j ∈ {1, 2}, it holds that
|D(v)| ≥ 2: if v is an endpoint of one edge in C, then it must have two adjacent
edges in D(v) as deg

Opt
′(v) ≥ 3; otherwise, due to the minimality of the cut C,

vertex v must have at least as many adjacent edges outside the cut as inside the
cut.

We now define an equivalence relation ≈j , j ∈ {1, 2} on the vertices of Wj . We
say that v ≈j w for v, w ∈ Wj if there is a path from v to w in Opt

′ that contains
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only vertices in Sj. We call such a path an Sj-path. Hence, the vertices in Wj are
partitioned into equivalence classes [·]≈j with respect to relation ≈j. As a first
step, we prove that for each class R ∈ [·]≈j , the set of edges D(R) =

⋃
v∈RD(v)

contains at least one binary edge.
First observe that, if R contains a terminal vertex, than we are done because

of the imaginary binary edges. So assume that R ∩ S ′ = ∅. Let us start with
vertex v1 ∈ R and consider an edge e1 ∈ D(v1). If e1 is a binary edge, we are
done. Otherwise, there is an Sj-path starting with e1 from v1 to another vertex
v2 in R . We follow this path to v2 and consider all the vertices visited. We enter
vertex v2 with edge f2 ∈ D(v2). Now, since |D(v2)| ≥ 2, there is another edge
e2 ∈ D(v2). If e2 is binary, we are done again. Otherwise, there is an Sj-path
starting with e2 from v2 to some v3 ∈ R. We continue following the paths until
either we found a binary edge, or we hit a vertex that we already visited. Since
we always leave a vertex via a different edge as we entered, the latter implies a
cycle in Opt

′ and hence a contradiction.
Now let [·]≈1 = {ζ1, . . . ζl} and [·]≈2 = {ξ1 . . . ξm} be the equivalence classes

on W1 and W2 respectively. Note that there can be at most one edge in C
between ζi and ξj , as otherwise Opt

′ contains a cycle. Recall that any vertex
in W1 is connected with an edge in C to a vertex in W2 and vice-versa. We call
a vertex binary if it is adjacent to a binary edge. We proved that every ζi and
every ξj contains at least one binary vertex. Let v ∈ ζ1 be a binary vertex in ζ1.
It is adjacent via an edge e ∈ C to some vertex w ∈ ξj . If w is binary, we let
fc = e and the proof is completed. Otherwise, there is another vertex in ξj that
is binary, call it w′. Vertex w′ is connected to v′ in ζi, i �= 1. If v′ is not binary,
there must be another connection going from a binary vertex in ζi to another
yet unvisited ξj . We can continue traversing the equivalence classes in this way
until either we hit a binary vertex, or a class that was already visited. The latter
is a contradiction, as it implies that there is a cycle in Opt

′. .�

Once we have the above lemma at our disposal, we propose the approxima-
tion algorithm for The Minimum Steiner Tree Terminal Removal problem. We
start with an intuitive description of the proposed algorithm. The algorithm is
parametrized with parameters Z and Y . Let Opt be rooted at terminal t that
we want to remove. Due to Remark 1, we may assume that t has at least two
sons t1 and t2 in Opt. Each of these two sons determines a subtree of Opt, i. e.
the subtree containing ti, i ∈ {1, 2}, obtained by removing the edge between t
and ti from Opt. We let S ′i ⊆ S ′, i ∈ {1, 2}, be the set of terminals contained
in the subtree of ti. Clearly, S

′
1 ∩ S ′2 = ∅. Let Pt be the cheapest path from t to

S ′1 in Opt and let Rt be the cheapest path from t to S ′2 in Opt. Let P
(Y )
t ⊆ Pt,

respectively R
(Y )
t ⊆ Rt be the path composed of the first Y edges on Pt, respec-

tively Rt, starting from t. Let P ′t and R′t be the remaining parts of Pt and Rt, i. e.,

Pt = P
(Y )
t ∪P ′t and Rt = R

(Y )
t ∪R′t. If Pt (respectively Rt) is shorter than Y , we

let P
(Y )
t = Pt (respectively R

(Y )
t = Rt) and P ′t (respectively R′t) be empty. The

reoptimization algorithm removes paths P
(Y )
t and R

(Y )
t from Opt, creating a

forest F of at most 2Y +1 trees. Note that every tree in F contains at least one
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terminal vertex. The algorithm then applies the procedure Connect, described
further in more detail (see Algorithm 2), to connect the obtained forest. The
procedure Connect on the one hand guesses how Opt

′ connects the trees in F ,
on the other hand it uses SApprSMT to self-reduce the instance using the guessed
edges of Opt

′. At the end Connect returns the best solution among those it
computes. The reoptimization algorithm then returns a better solution among
Opt and the output of Connect.

We now describe the procedure Connect in more detail. It takes as an input
an SMT instance (G, S ′), a forest F = T1 ∪ · · · ∪ Tm and a parameter Z . The
precondition for Connect is that each tree in F has to contain a terminal vertex
from S ′. Procedure Connect computes a number of Steiner trees for (G, S ′)
and returns the best among the computed trees. It connects the trees in F in a
recursive manner. At each recursive call it decreases the number of trees in F by
connecting the last tree Tm, i.e., the tree with the highest index among the trees
in F , to some other tree Ti, i < m. This is done with the help of Lemma 3. Since
every tree Ti contains a terminal, we can partition the terminal set S ′ into two
non-empty sets of terminals: the terminals in the last tree Tm and the terminals
in the remaining trees of F . To be more precise, we set S1 = S ′ ∩ V (Tm) and
S2 = S ′ ∩ V (F − Tm) to be the partition of S ′. Then Opt

′ contains a subtree

B1∪P (3)∪B2 as in Lemma 3. Procedure Connect guesses B
(Z )
1 ∪P (3)∪B (Z )

2 by

iterating through all trees of appropriately bounded size. There B
(Z )
j , j ∈ {1, 2},

is the subtree of the first Z floors of the tree Bj . If the height of Bj is smaller

than Z , we let B
(Z )
j = B

(h)
j , where h < Z is the height of Bj . In other words,

if there is a terminal within the first Z floors of Bj , we only guess as far as

to reach that terminal. The number of edges in the tree B
(Z )
1 ∪ P (3) ∪ B

(Z )
2 to

be guessed is bounded by |E(B
(Z )
1 ∪ P (3) ∪ B

(Z )
2 )| ≤ 2Z+1 + 3. Hence, we let

Tm run trough all trees of size bounded by 2Z+1 +3. For each Tm we compute
the cheapest edges em and fm connecting Tm with S1 and S2 respectively, and
use Tm ∪ em ∪ fm to connect Tm to some other tree Ti, i < m. We proceed
recursively with a forest of a smaller size. Once F becomes a single connected
tree T1 (at the bottom of recursion), two solutions are computed: Solj = T1 and
Sol

′
j = SApprSMT((G, S ′),

⋃
T i∈QT i). There, j is incremented whenever a new

pair of solutions is computed and Q is a stack that stores the trees from higher
level recursive calls. We present the pseudo-code in Algorithm 2. We allow two
operations on the stack Q: ← T puts a tree T on the top of the stack, whereas
→ pops a tree from the top of the stack.

In the following lemma we give the bounds on the costs of solutions computed
by Connect.

Lemma 4. Let (G, S ′) be an instance of the SMT problem where G is metric
and Opt

′ be an optimal solution to it satisfying Observation 1. Let a forest
F = T1 ∪ · · · ∪ Tm be such that for every tree Ti, i ∈ {1, . . . ,m}, we have
V (Ti)∩S ′ �= ∅. Let Z be a positive integer. Let Sol and Sol

′ be the best solution
among Solj and Sol

′
j, respectively. Then there exists a forest F ⊆ Opt

′ of Opt
′

such that:
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Algorithm 2. Recursive procedure Connect

Input: An SMT instance (G,S ′), F =
⋃m

i=1 Ti, parameter Z
1: if m := |F |T > 1 then
2: S1 := S ′ ∩ V (Tm)
3: S2 := S ′ ∩ V (

⋃m−1
i=1 Ti)

4: Gm := all subtrees of G of at most 2Z+1 + 3 edges
5: for each tree Tm ∈ Gm do
6: Q← Tm

7: em := the cheapest edge between Tm and S1

8: fm := the cheapest edge between Tm and S2

9: Let i be the index of Ti ∈ F which contains an endpoint of fm
10: Ti := Ti ∪ Tm ∪ em ∪ fm ∪ Tm

11: Connect((G,S ′),F −Tm,Z )
12: Q→
13: end for
14: else
15: j := j + 1; Solj := T1;
16: Sol

′
j := SApprSMT((G,S

′),
⋃

Ti∈Q T i);
17: end if
Output: the best among the computed solutions Solj and Sol

′
j

cost(Sol) ≤ cost(F ) + cost(F ) + |F |T
cost(Opt

′)

2Z
,

cost(Sol′) ≤ σcost(Opt
′)− (σ − 1)cost(F ).

Moreover, the running time of Connect is polynomial if Z and the number of
trees in F are constant.

Proof. At each recursive call the respective T i runs through all trees of size at
most 2Z+1+3. Due to Lemma 3, for the partition S ′ = S1∪S2 computed in that

recursive call, there exist a tree B1∪P (3)∪B2 ⊆ Opt
′. Since B

(Z )
1 ∪P (3)∪B (Z )

2 ⊆
B1 ∪P (3) ∪B2 ⊆ Opt

′ is a subtree of size at most 2Z+1 +3, at some point T i is

set to B
(Z )
1 ∪ P (3) ∪ B

(Z )
2 . Hence, at some point at the bottom of the recursion

we end up with every T i ∈ Q set to its respective B
(Z )
1 ∪ P (3) ∪ B

(Z )
2 . In what

follows, we analyze the solutions computed exactly at that point. Let j be such

that Solj and Sol
′
j were computed at that point and let F =

⋃|F |T
i=1 T i be

the forest composed of the corresponding selection of trees on Q. The following
bound holds:

cost(Solj) ≤ cost(F ) + cost(F ) +

|Q|∑
i=1

(cost(ei) + cost(fi)).

Note that if there is a terminal leaf in B
(Z )
1 ⊆ T i then cost(ei) = 0. If there is

a terminal leaf in B
(Z )
2 ⊆ T i then cost(fi) = 0. If in B

(Z )
i , i ∈ {1, 2}, there is



New Advances in Reoptimizing the Minimum Steiner Tree Problem 193

no terminal, due to Lemma 3 there are two paths branching from each of 2Z

non-terminal leaves of B
(Z )
i . So cost(ei) ≤ cost(Opt

′)
2Z+1 (and analogously cost(fi) ≤

cost(Opt
′)

2Z+1 ). In any case max{cost(ei), cost(fi)} ≤ cost(Opt
′)

2Z+1 . Since |Q| ≤ |F |T and
cost(Sol) ≤ cost(Solj), the upper bound on cost(Sol) as claimed in the lemma
follows. The second inequality claimed in the lemma is a consequence of Lemma
2 and the fact that F ⊆ Opt

′.
Finally, let us analyze the running time of the procedure Connect. At each

recursive call Connect runs through at most |E(G)|(2Z+1+3) trees and makes
a recursive call for each of these trees. The depth of the recursion is bounded
by the number of trees in the input forest minus one, i. e., |F |T − 1. Hence, we

obtain a running time of O(|I|(2Z+1+3)(|F |T−1) · Poly(|I|)) for some polynomial
function Poly where |I| is the size of the instance. If Z and |F |T are constant,
then the running time is polynomial. .�

The next lemma states the main result of this section.

Lemma 5. For any constant ε > 0, there is a polynomial-time (3σ−2
2σ−1 + ε)-

approximation algorithm for SMT under removing a terminal.

Proof. The final output of the reoptimization algorithm for the modification of

removing a terminal is the best solution amongConnect((G, S ′),Opt−(P
(Y )
t ∪

R
(Y )
t ),Z ) and Opt.
Due to Lemma 4 and because |F |T ≤ 2Y + 1, the bounds on the computed

solutions are as follows:

cost(Sol) ≤ cost(Opt− (P
(Y )
t ∪ R

(Y )
t )) + cost(F ) +

(2Y + 1)cost(Opt
′)

2Z
,

cost(Sol′) ≤ σcost(Opt
′)− (σ − 1)cost(F ),

cost(Opt) ≤ cost(Opt
′) + min{cost(Pt), cost(Rt)}.

Taking into account the bound cost(Opt) ≤ cost(Opt
′)+ cost(Rt) it holds that

cost(Opt− (P
(Y )
t ∪R

(Y )
t ))

≤ cost(Opt)− cost(P
(Y )
t )− cost(R

(Y )
t )

≤ cost(Opt
′) + cost(Rt)− cost(R

(Y )
t ) + cost(Pt)− cost(P

(Y )
t )− cost(Pt)

= cost(Opt
′) + cost(R′t) + cost(P ′t)− cost(Pt).

Since w.l.o.g. cost(R′t) ≤ cost(P ′t), we can rewrite

cost(Sol) ≤ (1 +
2Y + 1

2Z
)cost(Opt

′)− cost(Pt) + 2cost(P ′t) + cost(F ),

where cost(P ′t) ≤
cost(Opt)

Y ≤ cost(Opt
′)

Y + cost(Pt)
Y (due to Observation 1 and

the fact that Pt was the cheapest, there have to be Y − 1 paths in Opt more
expensive than P ′t and disjoint with it) and the bound on the cost of Opt given
by cost(Opt) ≤ cost(Opt

′) + cost(Pt).
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As a result of these calculations, we obtain the following bounds on the con-
sidered solutions:

cost(Sol) ≤ (1 +
2

Y
+

2Y + 1

2Z
)cost(Opt

′)− (1 − 2

Y
)cost(Pt) + cost(F ),

cost(Sol′) ≤ σcost(Opt
′)− (σ − 1)cost(F ),

cost(Opt) ≤ cost(Opt
′) + cost(Pt).

Hence the cost of the overall solution is bounded by minimum among these three
bounds. Observe that the first two bounds are functions of cost(F ), increasing
and decreasing with cost(F ) respectively. Setting them equal allows comput-
ing the maximum value of the minimum among the first two bounds and the
value of cost(F ) where the maximum is reached as a function of cost(Opt

′) and
cost(Pt). Similarly we eliminate cost(Pt) using the second and the third bound.
The approximation ratio we obtain is

3σ − 2 + (σ − 1)2Y+1
2Z

2σ − 1− (σ − 1) 2
Y

.

This expression converges to 3σ−2
2σ−1 as Z and Y grow to infinity. It is clear that

with the right choice of constant parameters Z and Y we will obtain a value
within 3σ−2

2σ−1 + ε for any ε > 0. Polynomial running time follows from the fact,
that Connect runs in a polynomial time. .�

4 Edge Cost Increase

In this section we consider the reoptimization scenario of increasing the cost of
one edge. We provide a polynomial-time 1.281-approximation algorithm for this
reoptimization variant.

Recall that the SMT Edge Cost Increase problem takes as input two SMT
instances (G, S ) and (G′, S ) together with an optimal solution Opt for (G, S ),
where G = (V,E, cost), G′ = (V,E, cost′) and cost coincides with cost′ on all the
edges but one edge e∗, where cost(e∗) < cost′(e∗). We will show that without
loss of generality G and G′ may be assumed to be metric. For a graph G, we call
an edge f ∈ E(G) implied, if its cost in the metric closure G is the cost of some
path between its endpoints, and this path is not just a single edge f .

Remark 2. Without loss of generality we may assume that the input instance
to SMT under edge cost increase consists of two SMT problem instances (G, S )
and (G′, S ) and a solution Opt for (G, S ), where G = (V,E, cost) and G′ =
(V,E, cost′) are metric and complete, Opt satisfies Observation 1 and for every
f ∈ Opt− e∗ it holds that cost(f ) = cost′(f ) whereas cost(e∗) < cost′(e∗).

Proof. Assume G and G′ are not metric and complete. Observe that Opt does
not contain implied edges. Since cost and cost′ coincide on all the edges but
e∗, for every f ⊆ Opt − e∗ it holds that cost(f ) = cost′(f ) whereas cost(e∗) <
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cost′(e∗). We solve the reoptimization problem for the instance (G, S ), (G′, S )
and an optimal solution Opt for (G, S ). This instance satisfies Remark 2. Note
that when transforming Opt to its counterpart satisfying Observation 1 we
preserve the invariant that at most one edge in Opt increases its cost in G′. The
approximate solution for (G′, S ) can easily be transformed to the solution for
(G′, S ) with the same cost. .�

Lemma 6. For any constant ε > 0, there is a polynomial-time
(
2σ−1
σ + ε

)
-

approximation algorithm for the SMT Edge Cost Increase.

Proof. Let Z be a parameter. Let S = S1 ∪ S2 be a partition of the terminals
depending on to which tree in Opt − e∗ they belong. Let Opt

′ be an optimal
solution to (G′, S). Consider P (3) ∪ B1 ∪ B2 ⊆ Opt

′ as in Lemma 3 for S1

and S2. Let B
(Z )
i , i ∈ {1, 2}, be the first Z levels of Bi starting from the root

and let T (Z ) = P (3) ∪ B
(Z )
1 ∪ B

(Z )
2 . For a tree T , let f1(T ) be the cheapest

edge connecting it with S1 and f2(T ) be the cheapest edge connecting it with
S2. The reoptimization algorithm guesses T (Z ), and returns a better solution
among Opt− e∗ ∪ T (Z ) ∪ f1(T

(Z )) ∪ f2(T
(Z )) and SApprSMT((G

′, S),T (Z )). By
“guesses” we mean that it iterates over all trees T of size bounded by 2Z+1 +3.
For each T , it computes Opt− e∗∪T ∪ f1(T )∪ f2(T ) and SApprSMT((G

′, S),T ).
It returns the best of the computed solutions.

Note that cost′(Opt− e∗) ≤ cost′(Opt
′) because

cost′(Opt− e∗) = cost(Opt − e∗) ≤ cost(Opt) ≤ cost(Opt
′) ≤ cost′(Opt

′).

Due to Lemma 3,

cost′(f1(T
(Z ))), cost′(f2(T

(Z ))) ≤ cost′(Opt
′)

2Z+1
.

Therefore,

cost′(Sol) ≤ cost′(Opt− e∗ ∪ T (Z ) ∪ f1(T
(Z )) ∪ f2(T

(Z )))

≤ (1 +
1

2Z
)cost′(Opt

′) + cost′(T (Z )).

On the other hand, by the power of Lemma 3,

cost′(SApprSMT((G
′, S),T (Z ))) ≤ σcost′(Opt

′)− (σ − 1)cost′(T (Z )),

where σ is the approximation ratio of an algorithm ApprSMT for SMT. Again,
we view these two bounds on the overall solution as functions of cost′(T (Z )),
increasing and decreasing respectively. We compute the maximum value of the
minimum of these two bounds by setting them equal. The resulting approxima-
tion ratio is

2σ − 1 + σ−1
2Z

σ
.

This ratio can be arbitrarily close to 2σ−1
σ with the right choice of constant

parameter Z . .�
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5 Concluding Remarks

To conclude the paper, we present the state of the art on the SMT reoptimization
in Table 1. An open question concerning the reoptimization variants of SMT
studied here is the existence of a PTAS for them. In [16], the authors proved
that there cannot be a PTAS for the modification of adding a vertex to the
graph. They also provided a PTAS for all the modifications studied here if the
input graph is β-metric for some constant β < 1. A PTAS for the metric case
remains an interesting open problem.

Table 1. Different types of SMT modifications with the corresponding best up to date
approximation ratios

The SMT problem under:

Terminal Edge cost

addition removal decrease increase

1.218 [22] 1.218 here 1.246 [5] 1.279 here
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10. Böckenhauer, H.-J., Hromkovič, J., Mömke, T., Widmayer, P.: On the Hardness of
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Abstract. Smoothed analysis is a new way of analyzing algorithms
introduced by Spielman and Teng (J. ACM, 2004). Classical methods
like worst-case or average-case analysis have accompanying complexity
classes, like P and Avg-P, respectively. While worst-case or average-case
analysis give us a means to talk about the running time of a particu-
lar algorithm, complexity classes allows us to talk about the inherent
difficulty of problems.

Smoothed analysis is a hybrid of worst-case and average-case anal-
ysis and compensates some of their drawbacks. Despite its success for
the analysis of single algorithms and problems, there is no embedding of
smoothed analysis into computational complexity theory, which is nec-
essary to classify problems according to their intrinsic difficulty.

We propose a framework for smoothed complexity theory, define the
relevant classes, and prove some first results.

1 Introduction

The goal of computational complexity theory is to classify computational prob-
lems according to their intrinsic difficulty. While the analysis of algorithms is
concerned with analyzing, say, the running time of a particular algorithm, com-
plexity theory rather analyses the amount of resources that all algorithms need
at least to solve a given problem.

Classical complexity classes, like P, reflect worst-case analysis of algorithms.
Worst-case analysis has been a success story: The bounds obtained are valid for
every input of a given size, and, thus, we do not have to think about typical
instances of our problem. If an algorithm has a good worst-case upper bound,
then this is a very strong statement: The algorithm will perform well in practice.

However, some algorithms work well in practice despite having a provably
high worst-case running time. The reason for this is that the worst-case running
time can be dominated by a few pathological instances that rarely or never occur
in practice. An alternative to worst-case analysis is average-case analysis. Many
of the algorithms with poor worst-case but good practical performance have a
good average running time. This means that the expected running time with
instances drawn according to some fixed probability distribution is low.
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In complexity-theoretic terms, P is the class of all problems that can be solved
with polynomial worst-case running time. In the same way, the class Avg-P
is the class of all problems that have polynomial average-case running time.
Average-case complexity theory studies the structural properties of average-case
running time. Bogdanov and Trevisan give a comprehensive survey of average-
case complexity [7].

While worst-case complexity has the drawback of being often pessimistic,
the drawback of average-case analysis is that random instances have often very
special properties with high probability. These properties of random instances
distinguish them from typical instances. Since a random and a typical instance
is not the same, a good average-case running time does not necessarily explain
a good performance in practice. In order to get a more realistic performance
measure, (and, in particular, to explain the speed of the simplex method), Spiel-
man and Teng have proposed a new way to analyze algorithms called smoothed
analysis [27]. In smoothed analysis, an adversary chooses an instance, and then
this instance is subjected to a slight random perturbation. We can think of this
perturbation as modeling measurement errors or random noise or the random-
ness introduced by taking, say, a random poll. The perturbation is controlled by
some parameter φ, called the perturbation parameter. Spielman and Teng have
proved that the simplex method has a running time that is polynomial in the size
of the instance and the perturbation parameter [27]. Since then, the framework
of smoothed analysis has been applied successfully to a variety of algorithms
that have a good behavior in practice (and are therefore widely used) but whose
worst-case running time indicates poor performance [1, 2, 5, 12, 13, 16, 23, 26, 29].
We refer to two recent surveys for a broader picture of smoothed analysis [22,28].
However, with only few exceptions [3, 25], smoothed analysis has only been ap-
plied yet to single algorithms or single problems. Up to our knowledge, there is
currently no attempt to formulate a smoothed complexity theory and, thus, to
embed smoothed analysis into computational complexity.

This paper is an attempt to define a smoothed complexity theory, includ-
ing notions of intractability, reducibility, and completeness. We define the class
Smoothed-P (Section 2), which corresponds to problems that can be solved
smoothed efficiently, we provide a notion of reducibility (Section 3), and define
the class Dist-NPpara, which is a smoothed analogue of NP, and prove that it con-
tains complete problems (Section 4). We continue with some basic observations
(Section 5). We also add examples of problems in Smoothed-P (Sections 6 and 7)
and discuss the relationship of smoothed complexity to semi-random models
(Section 8). Finally, we conclude with a discussion of extension, shortcomings,
and difficulties of our definitions (Section 9).

2 Smoothed Polynomial Time and Smoothed-P

2.1 Basic Definitions

In the first application of smoothed analysis to the simplex method [27], the
strength of the perturbation has been controlled in terms of the standard
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deviation σ of the Gaussian perturbation. While this makes sense for numerical
problems, this model cannot be used for general (discrete problems). A more gen-
eral form of perturbation models has been introduced by Beier and Vöcking [2]:
Instead of specifying an instance that is afterwards perturbed (which can also
be viewed as the adversary specifying the mean of the probability distribution
according to which the instances are drawn), the adversary specifies the whole
probability distribution. Now the role of the standard deviation σ is taken over
by the parameter φ, which is an upper bound for the maximum density of the
probability distributions. For Gaussian perturbation, we have σ = Θ(1/φ). Be-
cause we do not want to restrict our theory to numerical problems, we have
decided to use the latter model.

Let us now define our model formally. Our perturbation models are families
of distributions D = (Dn,x,φ). The length of x is n (so we could omit the index
n but we keep it for clarity). Note that length does not necessarily mean bit
length, but depends on the problem. For instance, it can be the number of
vertices of the graph encoded by x. For every n, x, and φ, the support of the
distribution Dn,x,φ should be contained in the set {0, 1}≤poly(n). Let Sn,x =

{
y |

Dn,x,φ(y) > 0 for some φ
}
, and let Nn,x = |Sn,x|.

For all n, x, φ, and y, we demand Dn,x,φ(y) ≤ φ. This controls the strength of
the perturbation and restricts the adversary. We allow φ ∈ [1/Nn,x, 1]. Further-
more, the values of φ are discretized, so that they can be described by at most
poly(n) bits. The case φ = 1 corresponds to the worst-case complexity; we can
put all the mass on one string. The case φ = 1/Nn,x models the average case;
here we usually have to put probability on an exponentially large set of strings.
In general, the larger φ, the more powerful the adversary. We call such families
(Dn,x,φ)n,x,φ of probability distributions parameterized families of distributions.

Now we can specify what it means that an algorithm has smoothed polynomial
running-time. The following definition can also be viewed as a discretized version
of Beier and Vöcking’s definition [3]. Note that we do not speak about expected
running-time, but about expected running-time to some power ε. This is because
the notion of expected running-time is not robust with respect to, e.g., quadratic
slowdown. The corresponding definition for average-case complexity is due to
Levin [20]. We refer to Bogdanov and Trevisan [7] for a thorough discussion of
this issue.

Definition 2.1. An algorithm A has smoothed polynomial running time with
respect to the family D if there exists an ε > 0 such that, for all n, x, and φ, we
have Ey∼Dn,x,φ

(
tA(y;n, φ)

ε
)
= O
(
n ·Nn,x · φ

)
.

This definition implies that (average-)polynomial time is only required if we have
φ = O(poly(n)/Nn,x). This seems to be quite generous at first glance, but it is in
accordance with, e.g., Spielman and Teng’s analysis of the simplex method [27]
or Beier and Vöcking’s analysis of integer programs [3]; they achieve polynomial
time running time only if they perturb all but at most O(log n) digits: If we
perturb a number with, say, a Gaussian of standard deviation σ = 1/ poly(n),
then we expect that the O(log n) most significant bits remain untouched, but
the less significant bits are random.



Smoothed Complexity Theory 201

In average-case complexity, one considers not decision problems alone, but
decision problems together with a probability distribution. The smoothed ana-
logue of this is that we consider tuples (L,D), where L ⊆ {0, 1}∗ is a decision
problem and D is a parameterized family of distributions. We call such prob-
lems parameterized distributional problems. The notion of smoothed polynomial
running-time (Definition 2.1) allows us to define what it means for a parameter-
ized distributional problem to have polynomial smoothed complexity.

Definition 2.2. Smoothed-P is the class of all (L,D) such that there is a de-
terministic algorithm A with smoothed polynomial running time that decides L.

We start with an alternative characterization of smoothed polynomial time as it
is known for the average case: an algorithm has smoothed polynomial running-
time if and only if its running-time has polynomially decreasing tail bounds.

Theorem 2.3. An algorithm A has smoothed polynomial running time if and
only if there is an ε > 0 and a polynomial p such that for all n, x, φ, and t,

Pry∼Dn,x,φ
[tA(y;n, φ) ≥ t] ≤ p(n)

tε ·Nn,x · φ.

2.2 Heuristic Schemes

A different way to think about efficiency in the smoothed setting is via so-called
heuristic schemes. This notion comes from average-case complexity [7], but can
be adapted to our smoothed setting. The notion of a heuristic scheme comes from
the observation that, in practice, we might only be able to run our algorithm
for a polynomial number of steps. If the algorithms does not succeed within this
time bound, then it “fails”, i.e., it does not solve the given instance. The failure
probability decreases polynomially with the running time that we allow. The
following definition captures this.

Definition 2.4. Let (L,D) be a smoothed distributional problem. An algorithm
A is an errorless heuristic scheme for (L,D) if there is a polynomial q such that

1. For every n, every x, every φ, every δ > 0, and every y ∈ suppDn,x,φ, we
have A(y;n, φ, δ) outputs either L(y) or ⊥.

2. For every n, every x, every φ, every δ > 0, and every y ∈ suppDn,x,φ, we
have tA(y;n, δ) ≤ q(n,Nn,xφ, 1/δ).

3. For every n, x, φ, δ > 0, and y ∈ suppDn,x,φ, Pry∼Dn,x,φ
[A(y;n, φ, δ) =

⊥] ≤ δ.

Theorem 2.5. (L,D) ∈ Smoothed-P if and only if (L,D) has an errorless
heuristic scheme.

2.3 Alternative Definition: Bounded Moments

At first glance, one might be tempted to use “expected running time” for the
definition of Avg-P and Smoothed-P. However, as mentioned above, simply using
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the expected running time does not yield a robust measure. This is the reason
why the expected value of the running time raised to some (small) constant
power is used. Röglin and Teng [24, Theorem 6.2] have shown that for integer
programming (more precisely, for binary integer programs with a linear objec-
tive function), the expected value indeed provides a robust measure. They have
proved that a binary optimization problem can be solved in expected polynomial
time if and only if it can be solved in worst-case pseudo-polynomial time. The
reason for this is that all finite moments of the Pareto curve are polynomially
bounded. Thus, a polynomial slowdown does not cause the expected running
time to jump from polynomial to exponential.

As far as we are aware, this phenomenon, i.e., the case that all finite moments
have to be bounded by a polynomial, has not been studied yet in average-case
complexity. Thus, for completeness, we define the corresponding average-case
and smoothed complexity classes as an alternative to Avg-P and Smoothed-P.

Definition 2.6. 1. An algorithm has robust smoothed polynomial running
time with respect to D if, for all fixed ε > 0 and for every n, x, and φ, we
have Ey∼Dn,x,φ

(
tA(y;n, φ)

ε
)
= O
(
n · Nn,x · φ

)
. Smoothed-PBM is the class

of all (L,D) for which there exists a deterministic algorithm with robust
smoothed polynomial running time. (The “PBM” stands for “polynomially
bounded moments”.)

2. An algorithm A has robust average polynomial running time with respect
to D if, for all fixed ε > 0 and for all n, we have Ey∼Dn

(
tA(y)

ε
)
= O(n).

Avg-PBM contains all (L,D) for which there exists a deterministic algorithm
with robust smoothed polynomial running time.

From the definition, we immediately get Smoothed-PBM ⊆ Smoothed-P and
Avg-PBM ⊆ Avg-P. Moreover, if L ∈ P, then L together with any family
of distributions is also in Smoothed-P and Avg-P and also in Smoothed-PBM
and Avg-PBM. From Röglin and Teng’s result [24], one might suspect Avg-P =
Avg-PBM and Smoothed-P = Smoothed-PBM, but this does not hold.

Theorem 2.7. Avg-PBM � Avg-P and Smoothed-PBM � Smoothed-P.

3 Disjoint Supports and Reducibility

The same given input y can appear with very high and with very low probability
at the same time. What sounds like a contradiction has an easy explanation:
Dn,x,φ(y) can be large whereas Dn,x′,φ(y) for some x′ �= x is small. But if we
only see y, we do not know whether x or x′ was perturbed. This causes some
problems when one wants to develop a notion of reduction and completeness.

For a parameterized distributional problem (L,D), let

Lds = {〈x, y〉 | y ∈ L and |y| ≤ poly(|x|)}.

The length of |y| is bounded by the same polynomial that bounds the length of
the strings in any suppDn,x,φ. We will interpret a pair 〈x, y〉 as “y was drawn
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according to Dn,x,φ”. With the notion of Lds, we can now define a reducibility
between parameterized distributional problems. We stress that, although the
definition below involves Lds and L′ds, the reduction is defined for pairs L and L′

and neither of the two is required to be a disjoint-support language. This means
that, for (L,D), the supports of Dn,x,φ for different x may intersect. And the
same is allowed for (L′,D′).

Definition 3.1. Let (L,D) and (L′,D) be two parameterized distributional prob-
lems. (L,D) reduces to (L′,D′) (denoted by “(L,D) ≤smoothed (L′,D′)”) if there
is a polynomial time computable function f such that for every n, every x, every
φ and every y ∈ suppDn,x,φ the following holds:

1. 〈x, y〉 ∈ Lds if and only if f(〈x, y〉;n, φ) ∈ L′ds.
2. There exist polynomials p and m such that, for every n, x, and φ and every

y′ ∈ suppD′m(n),f1(〈x,y〉;n,φ),φ, we have∑
y:f2(〈x,y〉;n,φ)=y′ Dn,x,φ(y) ≤ p(n)Dm(n),f1(〈x,y〉;n,φ),φ(y

′),

where f(〈x, y〉;n, φ) = 〈f1(〈x, y〉;n, φ), f2(〈x, y〉;n, φ)〉.

Remark 3.2. We could also allow that φ on the right-hand side is polynomially
transformed. However, we currently do not see how to benefit from this.

It is easy to see that ≤smoothed is transitive. Ideally, Smoothed-P should be closed
under this type of reductions. However, we can only show this for the related
class of problems with disjoint support.

Definition 3.3. Smoothed-Pds is the set of all distributional problems with dis-
joint supports such that there is an algorithm A for Lds with smoothed polynomial
running time. (Here, the running time on 〈x, y〉 is defined in the same way as
in Definition 2.1. Since |y| ≤ poly(|x|) for a pair 〈x, y〉 ∈ Lds, we can as well
measure the running time in |x|.)

Theorem 3.4. If (L,D) ≤smoothed (L′,D′) and (L′ds,D′) ∈ Smoothed-Pds, then
(Lds,D) ∈ Smoothed-Pds.

With the definition of disjoint support problems, a begging question is how the
complexity of L and Lds are related. It is obvious that (L,D) ∈ Smoothed-P
implies (Lds,D) ∈ Smoothed-Pds. However, the converse is not so obvious. The
difference between L and Lds is that for Lds, we get the x from which the input
y was drawn. While this extra information does not seem to be helpful at a first
glance, we can potentially use it to extract randomness from it. So this question
is closely related to the problem of derandomization.

But there is an important subclass of problems in Smoothed-Pds whose coun-
terparts are in Smoothed-P, namely those which have an oblivious algorithm with
smoothed polynomial running time. We call an algorithm (or heuristic scheme)
for some problem with disjoint supports oblivious if the running time on 〈x, y〉
does not depend on x (up to constant factors). Let Smoothed-Pobl

ds be the result-
ing subset of problems in Smoothed-Pds that have such an oblivious algorithm
with smoothed polynomial running time.
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Theorem 3.5. For any parameterized problem (L,D), (L,D) ∈ Smoothed-P if
and only if (Lds,D) ∈ Smoothed-Pobl

ds .

Note that almost all algorithms, for which a smoothed analysis has been carried
out, do not know the x from which y was drawn; in particular, there is an
oblivious algorithm for them. Thus, a begging questions is if there is a problem
(L,D) /∈ Smoothed-P but (Lds,D) ∈ Smoothed-Pds.

Note that in Lds, each y is paired with every x, so there is no possibility
to encode information by omitting some pairs. This prohibits attempts for con-
structing such a problem like considering pairs 〈x, f(x)〉 where f is some one-way
function. However, a pair 〈x, y〉 contains randomness that one could extract. On
the other hand, for the classes Smoothed-BPP or Smoothed-P/poly, which can
be defined in the obvious way, it seems plausible that knowing x does not seem
to help.

4 Parameterized Distributional NP

In this section, we define the smoothed analogue of the worst-case class NP
and the average-case class DistNP [18, 20]. First, we have to restrict ourself to
“natural” distributions. This rules out, for instance, probability distributions
based on Kolmogorov complexity that (the universal distribution), under which
worst-case complexity equals average-case complexity for all problems [21]. We
transfer the notion of computable ensembles to smoothed complexity, which
allows us to define the smoothed analogue of NP and DistNP.

Definition 4.1. A parameterized family of distributions is in PComppara if the
cumulative probability FDn,x,φ

=
∑

z≤xDn,x,φ can be computed in polynomial
time (given n, x and φ in binary).

Definition 4.2. Dist-NPpara = {(L,D) | L ∈ NP and D ∈ PComppara}.
Bounded halting – given a Turing machine, an input, and a running-time bound,
does the Turing machine halt on this input within the given time bound – is com-
plete for Dist-NPpara. Bounded halting is the canonical NP-complete language,
and it has been the first problem that has been shown to be Avg-P-complete [20].
Formally, let

BH = {〈g, x, 1t〉 | NTM with Gödel number g accepts x within t steps}.

For a specific parameterized family U BH of distributions, we can prove the fol-
lowing theorem.

Theorem 4.3. (BH, U BH) is Dist-NPpara-complete for some U BH ∈ PComppara.

The original DistNP-complete problem by Levin [20] was Tiling: An instance
of the problem consists of a finite set T of square tiles, a positive integer t, and
a sequence s = (s1, . . . , sn) for some n ≤ t such that si matches si+1 (the right
side of si equals the left side of si+1). The question is whether S can be extended
to tile an n×n square using tiles from T . Again, we need a special family U Tiling

of distributions.
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Theorem 4.4. (Tiling, U Tiling) is Dist-NPpara-complete for some U Tiling ∈
PComppara under polynomial-time smoothed reductions.

5 Basic Relations to Worst-Case Complexity

In this section, we collect some simple facts about Smoothed-P and Dist-NPpara

and their relationship to their worst-case and average-case counterparts.

Theorem 5.1. If L ∈ P, then (L,D) ∈ Smoothed-P for any D. If (L,D) ∈
Smoothed-P with D = (Dn,x,φ)n,x,φ, then (L, (Dn,xn,φ)n) ∈ Avg-P for φ =
O(poly(n)/Nn,x) and every sequence (xn)n of strings with |xn| ≤ poly(n).

It is known that DistNP ⊆ Avg-P implies NE = E [4]. This can be transferred to
smoothed complexity.

Theorem 5.2. If Dist-NPpara ⊆ Smoothed-P, then NE = E.

6 Tractability 1: Integer Programming

Now we deal with tractable – in the sense of smoothed complexity – optimiza-
tion problems: We show that if a binary integer linear program can be solved
in pseudo-polynomial time, then the corresponding decision problem belongs to
Smoothed-P. This result is similar to Beier and Vöckings characterization [3]:
Binary optimization problems have smoothed polynomial complexity (with re-
spect to continuous distributions) if and only if they can be solved in randomized
pseudo-polynomial time.

A binary optimization problem is an optimization problem of the form “max-
imize cTx subject to wTi x ≤ ti for i ∈ [k] and x ∈ S ⊆ {0, 1}n. The set S should
be viewed as containing the “structure” of the problem. The simplest case is
k = 1 and S = {0, 1}n; then the binary program above represents the knapsack
problem. We assume that S is adversarial (i.e., non-random). Since we deal with
decision problems in this paper rather than with optimization problems, we use
the standard approach and introduce a threshold for the objective function. This
means that the optimization problem becomes the question whether there is an
x ∈ S that fulfills cTx ≥ b as well as wTi x ≤ ti for all i ∈ {1, . . . , k}. In the fol-
lowing, we treat the budget constraint cTx ≥ b as an additional linear constraint
for simplicity. We call this type of problems binary decision problems.

Let us now describe the perturbation model. For ease of presentation, we
assume that we have just one linear constraint (whose coefficients will be per-
turbed) and everything else is encoded in the set S. The coefficients of the
left-hand sides of the constraints are n-bit binary numbers. We do not make any
assumption about the probability distribution of any single coefficient. Instead,
our result holds for any family of probability distribution that fulfills the fol-
lowing properties: w1, . . . , wn are drawn according to independent distributions.
The set S and the threshold t are part of the input and not subject to ran-
domness. Thus, Nn,(S,w,t) = 2n

2

for any instance (S,w, t) of size n. We assume
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that S can be encoded by a polynomially long string. Since Nn,(S,w) = 2n
2

, the

perturbation parameter φ can vary between 2−n
2

(for the average case) and 1
(for the worst case).

Theorem 6.1. If a binary decision problem can be solved in pseudo-polynomial
time, then it is in Smoothed-P.

Beier and Vöcking [3] have proved that (randomized) pseudo-polynomiality and
smoothed polynomiality are equivalent. The reason why we do not get a similar
result is as follows: Our “joint density” for all coefficients is bounded by φ,
and the density of a single coefficient is bounded by φ1/n. In contrast, in the
continuous version, the joint density is bounded by φn while a single coefficient
has a density bounded by φ. However, our goal is to devise a general theory for
arbitrary decision problems. This theory should include integer optimization,
but it should not be restricted to integer optimization. The problem is that
generalizing the concept of one distribution bounded by φ for each coefficient to
arbitrary problems involves knowledge about the instances and the structure of
the specific problems. This knowledge, however, is not available if we want to
speak about classes of decision problems as in classical complexity theory.

7 Tractability 2: Graphs and Formulas

7.1 Graph Coloring and Smoothed Extension of Gn,p

The perturbation model that we choose is the smoothed extension of Gn,p [28]:
Given an adversarial graph G = (V,E) and an ε ∈ (0, 1/2], we obtain a new
graph G′ = (V,E′) on the same set of vertices by “flipping” each (non-)edge of
G independently with a probability of ε. This means the following: If e = {u, v} ∈
E, then e is contained in E′ with a probability of 1− ε. If e = {u, v} /∈ E, then
Pr(e ∈ E′) = ε. Transferred to our framework, this means the following: We
represent a graph G on n vertices as a binary string of length

(
n
2

)
, and we have

Nn,G = 2(
n
2). The flip probability ε depends on φ: We choose ε ≤ 1/2 such that

(1 − ε)(
n
2) = φ. (For φ = 2−(

n
2) = 1/Nn,G, we have a fully random graph with

edge probabilities of 1/2. For φ = 1, we have ε = 0, thus the worst case.)
k-Coloring is the decision problem whether the vertices of a graph can be

colored with k colors such that no pair of adjacent vertices get the same color.
k-Coloring is NP-complete for any k ≥ 3 [17, GT 4].

Theorem 7.1. For any k ∈ N, k-Coloring ∈ Smoothed-P.

Remark 7.2. Bohman et al. [8] and Krivelevich et al. [19] consider a slightly dif-
ferent model for perturbing graphs: Given an adversarial graph, we add random
edges to the graph to obtain our actual instance. No edges are removed.

They analyze the probability that the random graph thus obtained is guaran-
teed to contain a given subgraphH . By choosingH to be a clique of size k+1 and
using a proof similar to Theorem 7.1’s, we obtain that k-Coloring ∈ Smoothed-P
also with respect to this perturbation model.
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7.2 Unsatisfiability and Smoothed-RP

Feige [14] and Coja-Oghlan et al. [11] have considered the following model: We
are given a (relatively dense) adversarial Boolean k-CNF formula. Then we ob-
tain our instance by negating each literal with a small probability. It is proved
that such smoothed formulas are likely to be unsatisfiable, and that their unsatis-
fiability can be proved efficiently. However, their algorithms are randomized, thus
we do not get a result that kUNSAT (this means that unsatisfiability problem for
k-CNF formulas) for dense instances belongs to Smoothed-P. However, it shows
that kUNSAT for dense instance belongs to Smoothed-RP, where Smoothed-RP
is the smoothed analogue of RP: A pair (L,D) is in Smoothed-RP if there is a
randomized polynomial algorithm A with the following properties:

1. For all x /∈ L, A outputs “no”. (This property is independent of the
perturbation.)

2. For all x ∈ L, A outputs “yes” with a probability of at least 1/2. (This
property is also independent of the perturbation.)

3. A has smoothed polynomial running time with respect to D. (This property
is independent of the internal randomness of A.)

Now, let kUNSATβ be kUNSAT restricted to instances with at least βn clauses,
where n denotes the number of variables. Let ε be the probability that a particu-
lar literal is negated. Feige [14] has presented a polynomial-time algorithm with
the following property: If β = Ω(

√
n log log n/ε2) and the perturbed instance of

kUNSATβ is unsatisfiable, which it is with high probability, then his algorithm
proves that the formula is unsatisfiable with a probability of at least 1− 2Ω(−n).
The following result is a straightforward consequence.

Theorem 7.3. kUNSATβ ∈ Smoothed-RP for β = Ω(
√
n log logn).

8 Smoothed Analysis vs. Semi-random Models

Semi-random models for graphs and formulas exist even longer than smoothed
analysis and can be considered as precursors to smoothed analysis. The basic
concept is as follows: Some instance is created randomly that possesses a partic-
ular property. This property can, for instance, be that the graph is k-colorable.
After that, the adversary is allowed to modify the instance without destroying
the property. For instance, the adversary can be allowed to add arbitrary edges
between the different color classes. Problems that have been considered in this
model or variants thereof are independent set [15], graph coloring [6, 9, 15], or
finding sparse induced subgraphs [10]. However, we remark that these results
do not easily fit into a theory of smoothed analysis. The reason is that in these
semi-random models, we first have the random instance, which is then altered
by the adversary. This is in contrast to smoothed analysis in general and our
smoothed complexity theory in particular, where we the adversarial decisions
come before the randomness is applied.
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9 Discussion

Our framework has many of the characteristics that one would expect. We have
reductions and complete problems and they work in the way one expects them
to work. To define reductions, we have to use the concept of disjoint supports.
It seems to be essential that we know the original instance x that the actual
instance y was drawn from to obtain proper domination. Although this is some-
what unconventional, we believe that this is the right way to define reductions in
the smoothed setting. The reason is that otherwise, we do not know the probabil-
ities of the instances, which we need in order to apply the compression function.
The compression function, in turn, seems to be crucial to prove hardness results.
Still, an open question is whether a notion of reducibility can be defined that cir-
cumvents these problems. Moreover, many of the positive results from smoothed
analysis can be cast in our framework, like it is done in Sections 6 and 7.

Many positive results in the literature state their bounds in the number of
“entities” (like number of nodes, number of coefficients) of the instance. However,
in complexity theory, we measure bounds in the length (number of symbols) of
the input in order to get a theory for arbitrary problems, not only for problems of
a specific type. To state bounds in terms of bit length makes things less tight, for
instance the reverse direction of integer programming does not work. But still,
we think it is more important and useful to use the usual notion of input length
such that smoothed complexity fits with average-case and worst-case complexity.

We hope that the present work will stimulate further research in smoothed
complexity theory in order to get a deeper understanding of the theory behind
smoothed analysis.

References
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Abstract. Pattern avoidance is an important topic in combinatorics on
words which dates back to the beginning of the twentieth century when
Thue constructed an infinite word over a ternary alphabet that avoids
squares, i.e., a word with no two adjacent identical factors. This result
finds applications in various algebraic contexts where more general pat-
terns than squares are considered. On the other hand, Erdős raised the
question as to whether there exists an infinite word that avoids abelian
squares, i.e., a word with no two adjacent factors being permutations
of one another. Although this question was answered affirmately years
later, knowledge of abelian pattern avoidance is rather limited. Recently,
(abelian) pattern avoidance was initiated in the more general framework
of partial words, which allow for undefined positions called holes. Here,
we investigate conditions for a pattern to be abelian avoidable by a par-
tial word with finitely or infinitely many holes.

1 Introduction

Combinatorics on (full) words, or sequences of letters over a finite alphabet, goes
back to the work of the mathematician, Thue, at the beginning of the twentieth
century [14]. The interest in this topic has been increasing since it finds appli-
cations in various research areas of mathematics, computer science, biology, and
physics where the data can be easily represented as words over some alphabet.
Motivated by molecular biology of nucleic acids, partial words, or sequences that
may have some “do not know symbols”, also called “holes”, were introduced by
Berstel and Boasson in [1], and have been extensively studied since (see [2] for
instance). For example, cca3ctcg3ccctc is a partial word with two holes, repre-
sented by the two 3’s, over the DNA alphabet {a, c, g, t} (the 3’s are compatible
with, or match, every letter of the alphabet). Partial words are interesting from a
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theoretical point of view as they approximate full words, but also from a practi-
cal point of view. Such pratical uses occur for instance in bio-inspired computing
where they have been considered for identifying good encodings for DNA compu-
tations [12]. More specifically, a basic issue in DNA computing is to find strands,
which are used as codewords, that should not form so-called secondary structures
(a sequence has such a structure if there is some kind of repetition in it). The
combinatorial concept of repetition-freeness, or repetition avoidance, has been
proposed to exclude such formation. Requiring a big Hamming distance between
the strands has also been proposed. So partial words can be used as codewords,
the latter requirement being provided through the compatibility relation. They
offer a more powerful and realistic model than full words due to the errors caused
by the evolutionary processes of deletion, insertion, and mutation in biological
sequences. A deeper understanding of avoidance of patterns such as repetitions
in the framework of partial words can thus be exploited.

In the context of full words, Thue showed that arbitrarily long non-repetitive
words, or those that avoid repetitions, can be constructed with only three letters.
The importance of this result has been seen through several rediscoveries that
come from applications in ergodic theory, formal language theory, group theory,
universal algebra, etc. In a recent paper, Currie [8] reviews results on pattern
avoidance, and discusses a number of open problems on words avoiding squares
and more general patterns which are words over an alphabet of variables, denoted
by α, β, γ, . . .. Squares, for instance, are represented by the unary pattern α2 =
αα, which is a power of a single variable α.

Erdős in 1961 initiated abelian pattern avoidance by raising the question
whether abelian squares can be avoided [10]. A word contains an abelian square
if it has a factor uv, where u is a permutation of v or u is a rearrangement of the
letters of v. For example, w = babcacb contains the abelian square abcacb even
though w is square-free. More generally, if p = α0 · · ·αn−1, where the αi’s are
variables, a word w meets p in the abelian sense if w contains a factor u0 · · ·un−1

where ui is a permutation of uj , whenever αi = αj ; otherwise, w avoids p in
the abelian sense. In 1979, Dekking showed that abelian cubes can be avoided
over three letters, and two letters are enough to avoid abelian 4th powers [9].
Thirteen years later, Keränen proved that abelian squares are avoidable over
four letters, settling the problem of classifying all the unary patterns in the
abelian sense [11]: α is abelian unavoidable, αα is abelian 4-avoidable but not
abelian 3-avoidable, ααα is abelian 3-avoidable but not abelian 2-avoidable, and
αn, n ≥ 4, is abelian 2-avoidable (where a pattern p is k-avoidable if there is
an infinite abelian p-free word, i.e., not containing any occurrence of p, over a
k-letter alphabet). For more results on abelian pattern avoidance, see [5–7].

In [3], the investigation of abelian avoidability in partial words was initiated.
A partial word is abelian square-free if it does not contain any factor that results
in an abelian square after filling in the holes. For example, abc3cb is an abelian
square because we can replace the 3 by letter a and get abcacb. Blanchet-Sadri
et al. constructed a partial word with infinitely many holes over five letters that
is abelian square-free (except for trivial squares of the form a3 or 3a, where a is
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a letter), and proved that none exists over four letters. In [4], Blanchet-Sadri et
al. looked at the abelian avoidance of the patterns αn in infinite partial words,
where n > 2. They investigated, for a given n, the smallest alphabet size needed
to construct an infinite partial word with finitely or infinitely many holes that
avoids αn in the abelian sense. They constructed in particular a binary partial
word with infinitely many holes that avoids αn, n ≥ 6 in the abelian sense.
Then, they proved that one cannot avoid αn in the abelian sense under arbitrary
insertion of holes in an infinite full word.

In this paper, we provide a more general study of abelian pattern avoidance
in the context of partial words. We construct, given k-abelian avoidable patterns
p in full words satisfying some conditions, abelian avoiding partial words with
infinitely many holes over alphabet sizes that depend on k, as well as abelian
avoiding infinite partial words with h holes over alphabet sizes that depend on
k and h, for every integer h > 0. We construct, given infinite full words avoiding
pattern p in the abelian sense, infinite abelian avoiding full words with the
property that any of their positions can be changed to a hole while still avoiding
p in the abelian sense. We also show that a pattern p with n > 3 distinct
variables such that |p| ≥ 2n is abelian avoidable by a partial word with infinitely
many holes. The bound on |p| turns out to be tight. We end up completing
the classification of the binary and ternary patterns with respect to non-trivial
abelian avoidability, in which no variable can be substituted by only one hole.
We have put some sample proofs within the 12 page size limit to illustrate the
different techniques we use. However the proofs of all our corollaries have been
omitted due to the page constraint as well as our first proposition.

2 Preliminaries on Partial Words and Patterns

First, we recall some basic concepts of combinatorics on partial words; for more
information, see [2]. A partial word over a finite alphabet A is a sequence
of symbols from A� = A ∪ {3}, the alphabet A being augmented with the hole
symbol 3; a full word is a partial word without holes. We denote by u(i) the
symbol at position i of a partial word u (labelling starts at 0). The length of u,
denoted by |u|, represents the number of symbols in u. The empty word is the
sequence of length zero and is denoted by ε. The set of all full words over A is
denoted by A∗. Also, An denotes the set of all words over A of length n. A partial
word u is a factor of a partial word v if there exist x, y such that v = xuy. We
denote by v[i..j] (resp., v[i..j)) the factor v(i) · · · v(j) (resp., v(i) · · · v(j − 1)).
The powers of u are defined by u0 = ε and for n ≥ 1, un = uun−1. If u, v are
partial words of equal length, then u is compatible with v, denoted u ↑ v, if
u(i) = v(i) for all i such that u(i), v(i) ∈ A.

Now, let us take a look at some concepts regarding patterns. Let E be a
pattern alphabet and let p = α0 · · ·αn−1, where αi ∈ E. Define an abelian
occurrence of p in a partial word w as a factor u0 · · ·un−1 of w such that there
exists a full word v0 · · · vn−1, where for all i, ui �= ε and ui ↑ vi, and where for
all i, j, if αi = αj , then vi is a permutation of vj .
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The partial word w meets the pattern p in the abelian sense, or p occurs in
w in the abelian sense, if for some factorization w = xuy, we have that u is
an abelian occurrence of p in w; otherwise, w avoids p in the abelian sense (or
w is abelian p-free). For instance, ab3ba3baa meets αββα in the abelian sense
(take ab3b a 3 baa). An abelian occurrence of p is trivial if ui = 3 for some i;
otherwise, it is non-trivial. We call w non-trivially abelian p-free if it contains no
non-trivial abelian occurrences of p. These definitions also apply to full words
over A as well as infinite partial words over A which are functions from N to A�.

A pattern p is k-abelian avoidable in partial words if there is a word with
infinitely many holes over an alphabet of size k that avoids p in the abelian
sense; otherwise, p is k-abelian unavoidable. A pattern which is k-abelian avoid-
able (resp., k-abelian unavoidable) for some k (resp., every k) is called abelian
avoidable (resp., abelian unavoidable). The abelian avoidability index of p is the
smallest integer k such that p is k-abelian avoidable, or is ∞ if p is abelian un-
avoidable. Note that k-abelian avoidability implies (k + 1)-abelian avoidability.

Proposition 1. Let p be an abelian unavoidable pattern in full words. Then
every word with infinitely many holes non-trivially meets p in the abelian sense.

3 Avoiding Partial Words with Infinitely Many Holes

Our next goal is to find a bound so that if a pattern has length at least this
bound, then it is abelian avoidable in partial words. We begin by considering
one such bound. We will later improve upon it, but we need it in order to prove
our tight bound, so we include it here.

Theorem 1. Let p be a pattern with n distinct variables. If |p| ≥ 3×2n−1, then
there exists a partial word with infinitely many holes that is abelian p-free.

Proof. We proceed by induction on n. If n = 1, then p = αm for some α ∈ E,m ≥
3. Assume the claim holds up to n−1 distinct variables. If there is some variable
that occurs in p exactly once, p has a factor q with at most n−1 distinct variables
with |q| ≥ 3× 2n−2, so by the inductive hypothesis a word with infinitely many
holes exists that avoids q, and thus p, in the abelian sense. Therefore assume that
every variable occurs at least twice. Then, by [5, Lemma 7], p can be avoided in
the abelian sense by an infinite full word w over some alphabet A. There exist
a0, a1, a2, a3, a4 ∈ A so that a0a1a2a3a4 occurs infinitely often as a factor of w.
Define 5 < k0 < k1 < · · · so that w[ki−2..ki+2] = a0a1a2a3a4 and |p|ki < ki+1,
for all i. Consider b0, . . . , b4 /∈ A, and set B = A ∪ {b0, . . . , b4}. Define w′ as
follows:

w′(j) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

3, if j = ki for some i, i ≡ 0 mod 4|p|;
b0, if j = ki − 2 for some i, i ≡ 0 mod 4|p|;
b1, if j = ki − 1 for some i, i ≡ 0 mod 4|p|;
b3, if j = ki + 1 for some i, i ≡ 0 mod 4|p|;
b4, if j = ki + 2 for some i, i ≡ 0 mod 4|p|;
b2, if j = ki for some i, i �≡ 0 mod 4|p|;
w(j), otherwise.
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We claim that w′ avoids p in the abelian sense. To see this, let m = |p| and write
p = α0 · · ·αm−1, where αi ∈ E. Assume that w′ meets p in the abelian sense.
Let u0 · · ·um−1 be an occurrence, where uj = w′[ij ..ij+1). Each ui contains at
most one b2. To see this, assume there exists uj′ containing two b2’s. So there
is some s such that ij′ ≤ ks < ks+1 < ij′+1. Let uj be chosen so that j �= j′

and αj = αj′ (we can do this since each variable that occurs in p occurs at least
twice). Then for each b2 that uj′ contains, uj contains either 3 or b2. So there is
some t satisfying ij ≤ kt < kt+1 < ij+1. Assume that j′ < j, the other case being
similar. We have |uj′ | ≤ ij′+1 ≤ ij ≤ kt < kt+1 − kt < ij+1 − ij = |uj| = |uj′ |,
which is a contradiction, proving the claim.

Note that u0 · · ·um−1 contains a hole, since otherwise we can replace each bi
with an ai to get u′0 · · ·u′m−1, which is still an abelian occurrence of p and a
factor of w, yielding a contradiction. Therefore uj contains a hole, for some j.
Also, there exists j0 so that uj0 contains one of the letters b0, b1, b3, b4, and so
that there is some j1 distinct from both j0 and j satisfying αj0 = αj1 (where j
is as above). To see this, since each 3 occurs in a factor of the form b0b13b3b4,
the claim follows trivially if uj �= 3 (by letting j0 = j, each variable occurring
more than once in p). Therefore suppose that uj = 3. Let j > 1, the cases j = 1
and j = 0 being similar. We have j − 2 ≥ 0, so uj−1 and uj−2 are well defined.
Note that uj−1 contains b1. If αj−1 �= αj , since each variable occurs in p at least
twice, there is some j1 distinct from both j − 1 and j so that αj1 = αj−1, and
set j0 = j− 1. If αj−1 = αj then |uj−1| = |uj | = 1, so uj−1 = b1. Note that uj−2

contains b0, and that αj−2 �= αj−1 = αj . Since each variable in p occurs at least
twice, there exists j1 distinct from j − 2 so that αj−2 = αj1 , and set j0 = j − 2.

Since uj0 contains bi, for some i ∈ {0, 1, 3, 4}, uj1 contains bi or 3. So there
exist s0 and s1 such that s0 ≡ s1 ≡ 0 mod 4|p|, ij0 ≤ ks0 + i − 2 < ij0+1, and
ij1 ≤ ks1 +i−2 < ij1+1 or ij1 ≤ ks1 < ij1+1. However, since s0 ≡ s1 ≡ 0 mod 4m
and s0 �= s1, there are at least 4m− 1 integers between s0 and s1. For each such
integer s, we have w′(ks) = b2. This implies that u0 · · ·um−1 contains at least
4m− 1 b2’s. Then by the pigeonhole principle, there is at least one ul containing
three b2’s. However, this is impossible. .�
By considering the pattern p = αα, we can see that the bound in Theorem 1
is tight over a unary alphabet of variables. Moreover, it is tight over a binary
alphabet of variables as implied by the following.

Corollary 1. Let p be an avoidable pattern in full words over the alphabet
{α, β}. Then p is avoided by a partial word with infinitely many holes in the
abelian sense if and only if p is not a subpattern of either ααβαα or ββαββ.

Our next step is to strengthen Theorem 1 for pattern alphabets of at least three
variables. For this, we need the following proposition.

Proposition 2. Let p be a pattern over an alphabet E such that p �= αα, for
any α ∈ E. If each variable in p occurs at least twice, then p can be avoided in
the abelian sense by a partial word with infinitely many holes. In particular, if p
is abelian k-avoidable, then there exists a partial word with infinitely many holes
over an alphabet of size k + 4 that is abelian p-free.
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Proof. Since each variable in p = α0 · · ·αm−1 occurs at least twice, by [5], p can
be avoided in the abelian sense by an infinite full word w over some alphabet A
of size k. Let B = A ∪ {a, b, c, d} where a, b, c, d �∈ A. Since there is some factor
v, |v| = 5, that occurs infinitely often in w, consider a sequence 5 < k0 < k1 <
k2 < · · · so that w[ki− 2..ki+2] = v and 2ki < ki+1, for all i. Then define w′ by

w′(j) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

a, if j = ki − 2 for some i, i ≡ 0 mod 4|p|;
b, if j = ki − 1 for some i, i ≡ 0 mod 4|p|;
3, if j = ki for some i, i ≡ 0 mod 4|p|;
c, if j = ki + 1 for some i, i ≡ 0 mod 4|p|;
a, if j = ki + 2 for some i, i ≡ 0 mod 4|p|;
d, if j = ki for some i, i �≡ 0 mod 4|p|;
w(j), otherwise.

For the sake of contradiction, suppose that w′ contains u = u0u1 · · ·um−1 as
an abelian occurrence of p and write uj = w′[ij..ij+1). Note that u0u1 · · ·um−1

contains a hole since otherwise w would have a factor that is an abelian occur-
rence of p. Moreover, u contains at least 4|p|− 1 d’s. To see this, assume that uj
contains a hole. Then there are two cases to consider. If uj �= 3, then uj contains
b or c, since every 3 in w′ occurs in a factor of the form ab3ca. Without loss of
generality, assume uj has b3 as a factor. Since every variable in p occurs at least
twice, there is some j′, distinct from j, so that uj′ is compatible with a permuta-
tion of uj . Thus uj′ contains either b or 3. Suppose j′ > j, the case j′ < j being
similar. Then there exists some s such that ij ≤ ks < ij+1, and some t such
that ij′ < kt ≤ ij′+1 or ij′ ≤ kt < ij′+1, where s < t, s ≡ t ≡ 0 mod 4|p|. Thus
i0 ≤ ks < ks+4|p| ≤ kt ≤ im. So there are 4|p| − 1 l’s so that ks < kl < ks+4|p|.
Since for each l �≡ 0 mod 4|p|, w′(kl) = d, there are 4|p| − 1 d’s in u. If uj = 3,
then a similar reasoning works.

Since u contains at least 4|p| − 1 = 4m− 1 d’s, it follows from the pigeonhole
principle that some uj contains at least two d’s. So there is an s such that
ij ≤ ks < ks+1 < ij+1. Since there is a j′ such that uj′ is compatible with a
permutation of uj, let j

′ > j (the other case is similar). Here, uj′ contains either
a d or a 3 for each d in uj . This implies there is some t such that ij′ ≤ kt <
kt+1 < ij′+1, where t > s. Then

|uj| ≤ ij+1 ≤ ij′ ≤ kt < kt+1 − kt < ij′+1 − ij′ = |uj′ | = |uj |.

This is a contradiction, proving the claim. .�

Theorem 2. Let p be a pattern over an alphabet E. Then there exists a partial
word with infinitely many holes that is abelian p-free if one of the following holds:
(1) ‖E‖ = 3 and |p| ≥ 9; (2) ‖E‖ > 3 and |p| ≥ 2‖E‖.

Proof. The proof of Statement 2 is omitted due to the 12 page constraint.
For Statement 1, let p = α0 · · ·αm−1 ∈ Em be a pattern over the alphabet
E = {α, β, γ}. It is sufficient to consider the case where |p| = 9. For the sake of
a contradiction, suppose that there is no partial word with infinitely many holes
that avoids p in the abelian sense. At least one variable in p occurs exactly once
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(the case when each variable in p occurs at least twice follows from Proposi-
tion 2). Without loss of generality, we can assume that this variable is γ. There-
fore we can write q0γq1 = p, where q0 and q1 are patterns over {α, β}. There ex-
ists no partial word with infinitely many holes that avoids q0 or q1 in the abelian
sense, because that word should also avoid p in the abelian sense. By Theorem 1,
|qi| < 6 for both i. Since |q0|+ |q1| = 9− 1 = 8, (|q0|, |q1|) ∈ {(5, 3), (3, 5), (4, 4)}.

There exists an infinite word w over an alphabet A that avoids abelian squares.
Assume that a0a1a2 ∈ A3 occurs infinitely often in w, then consider any sequence
4 < k0 < k1 < · · · where ki+1 > 3ki and w[ki − 1..ki + 1] = a0a1a2, for
all i. Moreover, consider a, b, c /∈ A, where a, b and c are distinct letters. Let
B = A ∪ {a, b, c}. We can then define a partial word w′ over B as follows:

w′(j) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
a, if j = ki − 1 for some i, i ≡ 0 mod 3;
3, if j = ki for some i, i ≡ 0 mod 3;
b, if j = ki + 1 for some i, i ≡ 0 mod 3;
c, if j = ki for some i, i �≡ 0 mod 3;
w(j), otherwise.

The partial word w′ avoids non-trivial abelian squares, following the same ar-
gument as in the proof of Theorem 2 in [3]. We want to show that w′ avoids p
in the abelian sense. For the sake of a contradiction, suppose that u0 · · ·u8 is an
abelian occurrence of p. Set uj = w′[ij..ij+1) for each j.

First, consider the case |q0| = 3, |q1| = 5. Since |q1| > 4 we know that q1 is
avoidable in full words. By Corollary 1, q1 = ααβαα or q1 = ββαββ. Without
loss of generality we assume that q1 = ααβαα. Then u4u5u6u7u8 is an abelian
occurrence of q1. Since u4u5 and u7u8 are both abelian squares and w′ avoids
non-trivial abelian squares, we get that u4u5 and u7u8 both contain a hole. Thus
there is some s such that i4 ≤ ks < ks+1 < i9. Moreover, β occurs in q0, since
otherwise q0 = ααα. If ui corresponds to some β in q0, we get that

|ui| = |u6| = |u6|+ 4− 4 = |u4u5u6u7u8| − 4 ≥ ks+1 − ks − 4 > ks > |ui|.

This, however, is a contradiction.
Next, consider the case where |q0| ≥ 4. This implies that q0 is a subpattern of

ααβαα or ββαββ. Without loss of generality we can assume it is a subpattern of
ααβαα. Moreover, since |q0| ≥ 4, q0 contains αα and αβα. Therefore there exists
some j so that αj = αj+1 = α. Thus ujuj+1 is an abelian square. Since w′ avoids
non-trivial abelian squares, ujuj+1 must be trivial. Thus ujuj+1 is a factor of
a3b of length two. Therefore we either have that uj = a and uj+1 = 3 or uj = 3
and uj+1 = b. Consider the first case, the other being similar. There is l, l < 4,
so that αlαl+1αl+2 = αβα. Since ul, ul+2 ∈ {a, 3}, there exist s0 and s1 so that
either il = ks0 − 1 or il = ks0 , and either il+2 = ks1 − 1 or il+2 = ks1 , because
il = il+1−1, il+2 = il+3−1 due to the fact that |ul| = |ul+2| = 1. However, note
that if s0 = s1 we get that ks0 − 1 ≤ il < il+1 ≤ il+2 − 1 ≤ ks1 − 1 = ks0 − 1,
which is a contradiction. Thus we get that il ≤ ks0 < ks1 ≤ il+2. As above this
leads to a contradiction. .�
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The bounds in Theorem 2 are tight. For (1), ααβααγαα cannot be avoided by
any partial word with infinitely many holes (since there must be some a ∈ A�
such that a3 occurs infinitely often). For (2), the nth Zimin pattern, Zn, is abelian
unavoidable and is of length 2n − 1 (see Chapter 3 of [13]). More specifically,
if E = {α0, . . . , αn−1}, then Zm = α0 if m = 1, and Zm = Zm−1αm−1Zm−1 if
1 < m ≤ n. Meanwhile, we can consider the case of non-trivial avoidance.

Theorem 3. Let p be a pattern with each of its variables occurring at least twice
that is abelian k-avoidable in full words. Then a partial word with infinitely many
holes over an alphabet of size k + 2 exists that is non-trivially abelian p-free.

Proof. Suppose w is a word over an alphabet A of size k that avoids p in the
abelian sense. Then we define a sequence of ki’s, where ki+1 > 5ki. Let B =
A∪{c, d}, where c, d �∈ A. Then a partial word w′ is defined as follows: w′(i) = 3
if i = kj for some j, j ≡ 0 mod 6|p|, w′(i) = c if i = kj − 1 or i = kj + 1 for
some j, j ≡ 0 mod 6|p|, and w′(i) = d if i = kj for some j, j �≡ 0 mod 6|p|,
and w′(i) = w(i) otherwise. Then w′ contains infinitely many holes. Set p =
α0 · · ·αn−1 ∈ En, and assume that u = u0 · · ·un−1 = w′[j0..j1] is a non-trivial
abelian occurrence of p in w′, i.e., if αi = αj then ui is compatible with a
permutation of uj, and ui �= 3, for 0 ≤ i < n.

Let αi and αi′ be two occurrences of any variable α in p, where i < i′, and
suppose ui and ui′ are the corresponding partial words. Then there exist s, t such
that i ≤ s < s+ l < t < t+ l ≤ i′, where ui = w′[s..s+ l] and ui′ = w′[t..t + l].
Let J1 = {j | s ≤ kj ≤ s + l} and J2 = {j | t ≤ kj ≤ t + l}. Then ‖J1‖ < 3
and ‖J2‖ < 2. To see this, if ‖J2‖ ≥ 2 then there exist j, j + 1 ∈ J2, and
l = t + l − t ≥ kj+1 − kj > kj > s + l ≥ l is a contradiction. If ‖J1‖ ≥ 3 then
there are at least 2 d’s in ui, which means that ui′ has to contain at least 2 d’s or
3’s. Then J2 contains at least 2 j’s, which is a contradiction. Therefore ‖J1‖ < 3
and ‖J2‖ < 2. Since for each α in p, ‖J1 ∪J2‖ ≤ 3, there are at most 3|p| integer
j’s such that j0 ≤ kj ≤ j1.

Now we show that no ui contains a hole. Suppose some ui contains one. Then
c must also occur in ui since |ui| > 1. Then either 3c or c3 occurs in ui′ , which
is compatible with a permutation of ui. Suppose 3c occurs in ui′ , the other case
is similar. Then between the occurrence of 3 in ui and 3 in ui′ there are at least
6|p| − 2 kj ’s. This contradicts the fact that there are at most 3|p| kj ’s from
position j0 to position j1. Therefore u contains no holes. Then we can replace
all the occurrences of c by a1 and d by a2, for some a1, a2 ∈ A, and we get
an abelian occurrence of p. However, this contradicts the fact that p can be
avoided in the abelian sense by infinite full words over k letters. Therefore w′

non-trivially avoids p in the abelian sense. .�

Corollary 2. Let p be a pattern with n distinct variables. If |p| ≥ 2n, then there
exists a finite alphabet A and a partial word with infinitely many holes over A
that is non-trivially abelian p-free.

Corollary 3. If p is an abelian avoidable binary pattern in full words, then a
partial word with infinitely many holes exists that is non-trivially abelian p-free.
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We also give the following bounds.

Proposition 3. Let p be a binary pattern. If |p| ≥ 360 (resp., |p| ≥ 118), then
a partial word over a binary (resp., ternary) alphabet with infinitely many holes
exists that is abelian p-free.

Proof. Let p = α0 · · ·αn−1 be a pattern over E = {α, β} such that |p| ≥ 360.
Without loss of generality we can assume that α0 = α. Note that αi = β for
some i < 6, since otherwise p contains α6 as a subpattern, which can be abelian
avoided by a binary partial word with infinitely many holes [4]. Then write
p = qq0q1q2 where |qi| = 118 for each i, and |q| ≥ 6. We can do this since
|p| ≥ 360 = 3 × 118 + 6. From [7, Lemma 3.2], there exist infinite binary words
w2 and w3 so that every binary pattern of length at least 118 is avoided in
the abelian sense by either w2 or w3. By the pigeonhole principle there exist
l < l′, where ql and ql′ are either both avoided in the abelian sense by w2 or
both avoided in the abelian sense by w3. Assume that l = 0 and l′ = 1, the
other cases being similar. Let w be the infinite binary word that avoids q0 and
q1 in the abelian sense. Define a sequence 3 < k0 < k1 < k2 < · · · so that
ki+1 > (|p|+ 1)ki for all i. We can then define the partial word w′ by w′(j) = 3
if j = ki for some i, and w′(j) = w(j) otherwise.

For the sake of a contradiction, suppose that u = u0 · · ·un−1 is an abelian
occurrence of p in w′, and let v = u6 · · ·un−1. Set uj = [ij ..ij+1) for each j.
Then there is at most one hole in v. To see this, assume there are two, and
write v = w′[i6..in). Then there is an s so that i6 ≤ ks < ks+1 < in. Since
u0 · · ·u5 occurs in w′[0..i6) this implies that |uj| ≤ i6 for all j. Thus i6 + |u| =
i6 + |u0| + · · · + |un−1| ≤ (n + 1)i6 ≤ (n + 1)ks < ks+1 < in = i6 + in − i6 =
i6+ |v| ≤ i6+ |u|, yielding a contradiction, so v contains at most one hole. Then
q0 = α|q| · · ·α|q|+117 and q1 = α|q|+118 · · ·α|q|+235. Note that u|q| · · ·u|q|+117 and
u|q|+118 · · ·u|q|+235 are both factors of v, then at most one of them contains a
hole. Without loss of generality we assume that u|q| · · ·u|q|+117 does not contain
any holes. However, u|q| · · ·u|q|+117 is an abelian occurrence of q0 in w′ that is
a full word, so it must be a factor of w. This contradicts the fact that w avoids
q0 in the abelian sense.

Now, let p = α0 · · ·αn−1 be a pattern over E = {α, β} such that |p| ≥ 118.
As above, we can assume that α0 = α. Note that αi = β for some i < 6, since
otherwise p contains α6 as a subpattern, which can be avoided by a binary partial
word with infinitely many holes in the abelian sense. From [7, Lemma 3.2], there
exists an infinite word w over A = {a, b} that avoids abelian occurrences of
p. Moreover, bab occurs infinitely often as a factor of w (this can be seen by
considering the words w2 and w3 in [7]). Define a sequence 3 < k0 < k1 < k2 <
· · · so that (|p|+1)ki < ki+1 and w[ki−1..ki+1] = bab, for all i. Consider c /∈ A.
We can then define a partial word w′ as follows: w′(j) = 3 if j = ki for some i,
w′(j) = c if j = ki − 1 or j = ki + 1 for some i, and w′(j) = w(j) otherwise.

For the sake of a contradiction, suppose that u0 · · ·un−1 is an abelian occur-
rence of p in w′. Since w avoids abelian occurrences of p, some uj must contain a
hole. However, since each 3 in w′ occurs in a factor of the form c3c, some ui must
contain c. Assume that αi = β, the other case being similar. Using an argument
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similar to that above, we can argue that there is at most one j so that j ≥ 6
and so that uj contains a hole. Then one variable in α7 · · ·α13 must be β. Let
αl be this variable. Then ul contains either a c or a 3. Since each c occurs next
to a 3, ul−1ulul+1 contains a hole, where l − 1 ≥ 6 and l + 1 ≤ 14. Similarly,
there exists an l′ so that 23 ≥ l′ ≥ 17, and where ul′−1ul′ul′+1 contains a hole.
However, this contradicts the fact that there exists at most one j, j ≥ 6, such
that uj contains a hole. Thus w′ avoids p in the abelian sense. .�

4 Avoiding Partial Words with Finitely Many Holes

Now, we give constructions for avoiding words with finitely many holes.

Theorem 4. If p is an abelian k-avoidable pattern, then for every integer h ≥ 0
there exists an infinite word with h holes over an alphabet of size k + 2h that is
non-trivially abelian p-free.

Proof. Since p is abelian avoidable, |p| ≥ 2 and we write p = αβq, where q is
a word and α, β are variables. If α = β, p contains a square, and from [3], a
word with infinitely many holes over a five-letter alphabet can be constructed
that avoids abelian squares. If we only put h holes instead of infinitely many in
that construction, p should still be abelian avoidable. Therefore we only need to
consider when α �= β.

First consider the case where α and β are both contained in q. Since p is
abelian k-avoidable, there exists an infinite word w over a k-letter alphabet A
such that w avoids p in the abelian sense. Let C = {a0, . . . , ah−1}∪{b0, . . . , bh−1},
where A∩C = ∅. Define A′ = A∪C, so ‖A′‖ = k+2h. Then an infinite partial
word w′ over A′ is defined as follows:

w′(i) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
aj, if i = 4j for some j, 0 ≤ j < h;
3 if i = 4j + 1 for some j, 0 ≤ j < h;
bj, if i = 4j + 2 for some j, 0 ≤ j < h;
aj, if i = 4j + 3 for some j, 0 ≤ j < h;
w(i), otherwise.

Then w′ is of the form a03b0a0a13b1a1 · · ·ah−13bh−1ah−1w(4h)w(4h + 1) · · · .
Let p = α0 · · ·αm−1, αi ∈ E. Note that w′ has h holes and each aj and bj only
appears once. Suppose there exists u = u0u1 · · ·um−1 that is a non-trivial abelian
occurrence of p in w′. Then at least u0 contains a hole. Since u is a non-trivial
occurrence, |u0| ≥ 2. Then there exists l > 1 such that ul is compatible with a
permutation of u0. If |u0| ≥ 3, then u0 = ai3bi and ul = aiai+13, which means u0

and ul are consecutive; however, this implies ul = u1, but u1 is not compatible
with a permutation of u0. Thus ul contains a hole and u0 must be of the form
a3 or 3b to be compatible with ul in the abelian sense, where a ∈ {a0, . . . , ah−1}
and b ∈ {b0, . . . , bh−1}. Moreover, since l > 1, u1 ∈ C∗� as well. Since β appears
again in q, using the same logic as above, u1 must also be of the form a3 or 3b
for some a, b. However, such u0u1 cannot be a factor of w′.
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We prove the rest of the claim by induction on the length of p. The case of
|p| = 1 is trivial. When α is not contained in q, if αβq is abelian k-avoidable, so
is βq. Since |βq| < |αβq|, there exists an infinite partial word with h holes over
a (k+2h)-letter alphabet that non-trivially avoids βq in the abelian sense, thus
non-trivially avoiding αβq in the abelian sense. Similarly, if β does not occur in
q, then q is non-trivially abelian avoidable over an alphabet of size k + 2h, and
so are βq and αβq, which is p. .�

Corollary 4. Let p be an abelian k-avoidable pattern in full words with each of
its variables occurring at least twice. Then for every integer h ≥ 0 there exists an
infinite word with h holes over an alphabet of size k + 2h that is abelian p-free.

The following result is concerned with an arbitrary insertion of a hole in an
infinite word that avoids a pattern in the abelian sense.

Theorem 5. If p is an abelian avoidable pattern, then there exists an infinite
abelian avoiding full word so that we can insert a hole into any position and get
a partial word that is non-trivially abelian p-free.

Proof. Assume p = α0 · · ·αn−1 is abelian avoided by an infinite word w over
alphabet A. Let A′ = A2 × {0, 1}, and define an infinite word v as follows. Let
j ∈ {0, 1}. For integer i ≥ 0, if i ≡ j mod 2, let v(i) = (w(i − j)w(i − j +
1), j) ∈ A′. Suppose towards a contradiction that v is not abelian p-free. Thus,
there exist i1 and i2 such that αi1 = αi2 , w[i1..i1 + l] and w[i2..i2 + l] are not
permutations of each other, while v[i1..i1 + l] and v[i2..i2 + l] are. This means
w(i1 − j)w(i1 − j + 1) · · ·w(i1 + l − j)w(i1 + l − j + 1) is a permutation of
w(i2 − j)w(i2 − j + 1) · · ·w(i2 + l − j)w(i2 + l − j + 1). Since j = 0 or 1, this
contradicts the fact that w avoids p in the abelian sense.

Assume we replace one letter in v with a 3 to get v′, and u = u0u1 · · ·un−1

is a non-trivial abelian occurrence of p in v′. Note that u must contain the
hole. Suppose us contains the hole and us is compatible with a permutation
of ut, for some s, t. Then since |us| > 1, either (w(i1 − j1)w(i1 − j1 + 1), j1)3
or 3(w(i1 − j1)w(i1 − j1 + 1), j1) is a factor of us, for some integers i1, j1.
This means ut contains a letter (w(i2 − j2)w(i2 − j2 + 1), j2) where j2 = j1,
w(i2−j2) = w(i1−j1), and w(i2−j2+1) = w(i1−j1+1). Since j1, j2 is either 0
or 1, w(i1) = w(i2) for either case. This contradicts w avoiding p in the abelian
sense. Thus v is abelian p-free even after an arbitrary insertion of a hole. .�

5 Concluding Remarks

By Corollary 2, the ternary patterns of length ≥ 8 are non-trivially abelian avoid-
able by partial words with infinitely many holes. Moreover, a word with infinitely
many holes over five letters exists that avoids non-trivial abelian squares [3].
Therefore, patterns containing abelian squares are non-trivially abelian avoid-
able as well, and we only need to examine patterns of length at most 7 without
any abelian squares. Currie et al. in [5] characterize these remaining six pat-
terns: αβαγαβα, αβγαβα and αβγαγ are abelian unavoidable, while αβαγβαβ,
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αβαγβγ and αβγβαβγ are abelian avoidable. By Proposition 1, there is no
word with arbitrarily many holes that non-trivially avoids αβαγαβα, αβγαβα
or αβγαγ in the abelian sense. By Theorem 3, since each variable occurs at least
twice in αβαγβγ and αβγβαβγ, partial words with infinitely many holes exist
that non-trivially avoid them in the abelian sense. The last pattern, αβαγβαβ,
can be shown to be abelian avoidable by a word with infinitely many holes with
a proof similar to that of Lemma 8 in [5]. Therefore, the non-trivial abelian
avoidability of the ternary patterns in the context of partial words is complete.

By Corollary 3, if a binary pattern is abelian avoidable by a full word, then
it is also non-trivially abelian avoidable by a partial word with infinitely many
holes. Combining this with Proposition 1, the non-trivial abelian avoidability of
binary patterns in partial words is the same as in full words.
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Abstract. The Shortest Path Reconfiguration problem has as input a
graph G (with unit edge lengths) with vertices s and t, and two shortest
st-paths P and Q. The question is whether there exists a sequence of
shortest st-paths that starts with P and ends with Q, such that subse-
quent paths differ in only one vertex. This is called a rerouting sequence.

This problem is shown to be PSPACE-complete. For claw-free graphs
and chordal graphs, it is shown that the problem can be solved in polyno-
mial time, and that shortest rerouting sequences have linear length. For
these classes, it is also shown that deciding whether a rerouting sequence
exists between all pairs of shortest st-paths can be done in polynomial
time.

1 Introduction

In this paper, we study the Shortest Path Reconfiguration (SPR) Problem, intro-
duced by Kamiński et al [15, 16]. The input consists of a graph G, with vertices
s and t, and two shortest st-paths P and Q. The question is whether P can be
modified to Q by changing one vertex at a time, and maintaining a shortest st-
path throughout. Edges have unit lengths, so all shortest st-paths have the same
number of vertices. We define the following solution graph SP(G, s, t): its vertex
set is the set of all shortest st-paths in G. Two paths P and Q are adjacent if
they differ in one vertex. SPR can now be reformulated as: does there exist a
walk from P to Q in SP(G, s, t)? Such a walk is also called a rerouting sequence.

Shortest paths form a central concept in graph theory, optimization, algo-
rithms and networking. Questions related to rerouting (shortest) paths are often
studied in networking applications. Although we are not aware of an application
where this reachability question is studied, it is a very natural question, which
may provide insight to practical rerouting problems. Nevertheless, the main mo-
tivation for this study is of a more theoretical nature. Similar reconfiguration
problems can be defined based on many different combinatorial problems: Con-
sider all solutions to a problem (or all solutions of at least/at most given weight,
in the case of optimization problems), and define a (symmetric) adjacency re-
lation on them. Such problems have been studied often in recent literature.
Examples include reconfiguration problems based on satisfiability problems [10],
independent sets [11, 13, 17], vertex colorings [1, 3–6], matchings [13], list edge-
colorings [14], matroid bases [13], subsets of a (multi)set of numbers [9]. To
obtain a reconfiguration problem, one needs to define an adjacency relation be-
tween solutions. Usually, the most natural adjacency relation is considered, e.g.

B. Rovan, V. Sassone, and P. Widmayer (Eds.): MFCS 2012, LNCS 7464, pp. 222–233, 2012.
c© Springer-Verlag Berlin Heidelberg 2012
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two independent sets I and J are considered adjacent in [13] if J can be ob-
tained from I by removing one vertex and adding another; boolean assignments
are considered adjacent in [10] if exactly one variable differs, etc. We remark
that in the context of local search, similar problems have been studied earlier,
with the important distinction that the neighborhood is not symmetric, and the
objective is to reach a local optimum, instead of a given target solution, see
e.g. [18].

An initial motivation of these questions was to explore the solution space of
NP-hard problems, to study e.g. the performance of heuristics [10] and random
sampling methods [4]. This has revealed interesting, often recurring patterns in
the complexity behavior of these problems. This is perhaps best exemplified by
the known results on the reconfiguration of vertex colorings using k colors: in the
problem k-Color Path, two k-colorings of a graph are given, and the question
is whether one can be modified to the other by changing one vertex color at
a time, and maintaining a k-coloring throughout. This problem is polynomial
time solvable for k ≤ 3 [6], and PSPACE-complete for k ≥ 4 [3]. Note that the
corresponding decision problem of deciding whether a graph admits a k-coloring
is polynomial time solvable for k ≤ 2, and NP-complete for k ≥ 3. This gives an
example of the following common pattern: for instance classes for which deciding
whether a solution exists is in P, the reconfiguration problem is often in P as
well. See [10, 12, 13] for more extensive examples. This motivated Ito et al [12] to
ask for examples of reconfiguration problems that break this pattern. Secondly,
it has been observed that there is a strong correlation between the complexity
of reconfiguration problems and the diameter of the components of the solution
graph: for all known ‘natural’ reconfiguration problems in P, the diameter is
polynomially bounded (see e.g. [1, 6, 10, 13, 17]), and for all PSPACE-complete
reconfiguration problems, the diameter may be superpolynomial or exponential
(see e.g. [3, 10]). The latter is unsurprising, since polynomial diameter would im-
ply NP=PSPACE (assuming that the property of being a solution and adjacency
of solutions can be tested in polynomial time, which holds for all aforementioned
problems). One can easily construct artificial instance classes of reconfiguration
problems such that the problem is in P, but has exponential diameter [3], but
to our knowledge no natural examples are known. (That is, not constructed
specifically to prove something about the reconfiguration problem at hand.)

With the goal of breaking one of these patterns, Kamiński et al [15, 16] in-
troduced the SPR problem. Finding a shortest path can be done in polynomial
time. Nevertheless, in [15, 16] examples were constructed where the solution
graph has exponential diameter. This shows that regardless of whether SPR is
in P or PSPACE-complete, one of the patterns is broken. The main open question
from [16] was therefore that of determining the complexity of SPR.

In this paper, we answer that question by showing that SPR is PSPACE-
complete. Therefore, this also answers the question posed in [12], by giving a
rare example of a PSPACE-complete reconfiguration problem based on a decision
problem in P. We remark that it is not the first example: in [3] it is shown that
4-Color Path is also PSPACE-hard for bipartite graphs. Since every bipartite
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graph is 2-colorable, the corresponding decision problem is trivial. Our PSPACE-
completeness result is presented in Section 3. We remark that our PSPACE-
completeness result, after it appeared in a preprint [2], has already proved its
usefulness for showing PSPACE-completeness of other problems: in [17], the
result has been applied to show that Independent Set Reconfiguration remains
PSPACE-hard even when restricted to perfect graphs.

We give the following positive results on SPR. We show that when G is chordal
or claw-free, SPR can be decided in polynomial time. A graph is chordal if it
contains no induced cycles of length more than 3. This is a well-studied class
of perfect graphs, which includes for instance k-trees and interval graphs [8]. A
graph is claw-free if it contains no induced K1,3 subgraph. This is again a well-
studied graph class, see e.g. [7]. We also show that for these graph classes, the
diameter of components of SP(G, s, t) is always linearly bounded. For chordal
graphs, we can actually construct a shortest rerouting sequence in polynomial
time. In contrast, in [15], it was shown that for general graphs, finding a shortest
rerouting sequence is NP-hard, even for graph classes where there always exists
one of polynomial length.

In the context of reconfiguration problems, other types of questions are com-
monly studied as well. Above, we considered the reachability question: can one
given solution be reached from another given solution? The related connectivity
question has also been well-studied [10, 4, 5, 9]: is the solution graph connected?
For chordal graphs G, we show that SP(G, s, t) is always connected. If G is claw-
free, we show that it can be decided in polynomial time whether SP(G, s, t) is
connected. Our results on chordal graphs are presented in Section 4, and the re-
sults on claw-free graphs in Section 5. Because of space constraints, some (details
of) proofs have been omitted.

2 Preliminaries

For graph theoretical notions not defined here, we refer to [8]. We will consider
undirected and simple graphs throughout. A walk of length k from v0 to vk in
a graph G is a vertex sequence v0, . . . , vk, such that for all i ∈ {0, . . . , k − 1},
vivi+1 ∈ E(G). It is a path if all vertices are distinct. It is a cycle if k ≥ 3,
v0 = vk, and v0, . . . , vk−1 is a path. With a path or cycle W = v0, . . . , vk we
associate a subgraph of G as well, with vertex set V (W ) = {v0, . . . , vk} and edge
set E(W ) = {vivi+1 | i ∈ {0, . . . , k − 1}}. A path from s to t is also called an
st-path. The distance from s to t is the length of a shortest st-path. The diameter
of a graph is the maximum distance from s to t over all vertex pairs s, t.

A hypergraphH = (V,E) consists of a vertex set V , and a set E of hyperedges,
which are subsets of V . A walk inH of length k is a sequence of vertices v0, . . . , vk
such that for every i, there exists a hyperedge e ∈ E with {vi, vi+1} ⊆ e. Using
this notion of walks, connectivity and components of hypergraphs are defined
the same as for graphs.

Throughout this paper, we will consider a graph G with vertices s, t ∈ V (G).
We will only be interested in shortest st-paths in G, and use d to denote their
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length. For i ∈ {0, . . . , d}, we define Li ⊆ V (G) to be the set of vertices that lie
on a shortest st-path, at distance i from s. So L0 = {s}, and Ld = {t} (even if
there may be more vertices at distance d of s). A set Li is also called a layer.
With respect to a given layer Li, the previous layer is Li−1, and the next layer
is Li+1. Clearly, if there is an edge xy ∈ E(G) with x ∈ Li and y ∈ Lj, then
|j−i| ≤ 1. Note that a shortest st-path P contains exactly one vertex from every
layer. For i ∈ {0, . . . , d}, this vertex will be called the Li-vertex of P .

The graph G will be undirected, so we use the notation N(v) to denote the set
of neighbors of a vertex v ∈ V (G). However, if v ∈ Li, then we will use N−(v)
to denote N(v)∩Li−1, and call these neighbors the in-neighbors of v. Similarly,
N+(v) denotes N(v) ∩ Li+1, and these are called the out-neighbors of v.

Recall that a rerouting sequence from P to Q is a sequence Q0, . . . , Qk of
shortest st-paths with Q0 = P , Qk = Q, such that for every j ∈ {0, . . . , k − 1},
Qj and Qj+1 differ in at exactly one vertex. Let Li be the layer in which they
differ, and u = Li ∩ V (Qj) and v = Li ∩ V (Qj+1). Then we also say that Qj+1

is obtained from Qj with a rerouting step u→ v in layer Li.

3 PSPACE-Completeness

In this section we prove that the SPR problem is PSPACE-complete. A k-color
assignment α for a graph G is a function α : V (G)→ {1, . . . , k}. A k-coloring α
for a graph G is a color assignment such that for all uv ∈ E(G), α(u) �= α(v).
For a given graph G, the k-color graph Ck(G) has vertex set consisting of all k-
colorings of G, where two colorings are adjacent if they differ only in one vertex.
A walk in Ck(G) from α to β will also be called a recoloring sequence from α to
β. The problem k-Color Path has as input a graph G, with two k-colorings α
and β. The question is whether there exists a walk from α to β in Ck(G). k-Color
Path has been shown to be PSPACE-complete in [3].

Let G, α, β be an instance of 4-Color Path, with V (G) = {v1, . . . , vn}. We will
now describe how to construct an equivalent SPR instance G′ with two shortest
st-paths Pα and Pβ . Every shortest st-path in G′ will correspond to a 4-color
assignment for G (though not necessarily a 4-coloring!). To indicate this corre-
spondence, some vertices of G′ will be colored with the four colors {1, 2, 3, 4}.
The other vertices will be colored with a fifth color, namely black. Note that this
5-color assignment for G′ will not be a coloring of G′. G′ will consist of one main
strand, which contains the paths Pα and Pβ , and 6n recoloring strands: one for
every combination of a vertex vi ∈ V (G) and two colors {c1, c2} ⊂ {1, 2, 3, 4}.

r t∗i

(b)

s∗i t∗i

(a)

si

s∗i/ t∗i/

ti

: color 1

: color 2

: color 3

: color 4
: black vertex

s∗i l

(c)

Fig. 1. Different variants of the gadgets Hi and H
∗
i used in the construction
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The construction of G′ starts by introducing the vertices s and t. The main
strand is constructed as follows. For each vi ∈ V (G), introduce a vertex gadget
Hi as shown in Figure 1 (a). The leftmost vertex of Hi is labeled si, and the
rightmost vertex ti. These vertices are colored black. Hi consists of four disjoint
siti-paths of length 4, one for each color. All internal vertices of the paths are
colored in the color assigned to the path. The four vertices of Hi that are neither
adjacent to si nor to ti are called middle vertices of Hi. These gadgets Hi are
connected as follows: add edges ss1 and tnt, and for every i ∈ {1, . . . , n − 1},
add an edge tisi+1. At this point the graph is connected, and every vertex lies
on a shortest st-path. Observe that the distance from s to si (ti) is 5i− 4 (resp.
5i), and the distance from s to t is 5n + 1. Hence this defines for every vertex
which layer Li it is part of, with i ∈ {0, . . . , 5n+ 1}.

We now define the recoloring strands. For each vi ∈ V (G) and each color pair
{c1, c2} ⊂ {1, 2, 3, 4}, we introduce a recoloring strand called the vi, {c1, c2}-
strand, defined as follows. Let {c3, c4} = {1, 2, 3, 4}\{c1, c2}. First we introduce
gadgets H∗j for every j ∈ {1, . . . , n}. (Whenever we mention gadgets H∗j or
vertices s∗j , t

∗
j , l and r below, this refers to the gadgets and vertices for the given

vi, {c1, c2}-strand.)
– If j �= i and vivj �∈ E(G), then define H∗j to be isomorphic to Hj (see

Figure 1 (a)), with the same 5-color assignment. The leftmost and rightmost
(black) vertices are now labeled s∗j and t∗j respectively.

– If j �= i and vivj ∈ E(G), then define H∗j to be as shown in Figure 1 (b).
The leftmost and rightmost (black) vertices are labeled s∗j and t∗j again. Now
there are only two disjoint paths from s∗j to t∗j , which are colored with the
colors c3 and c4.

– H∗i is the gadget shown in Figure 1 (c). Here s∗i has one neighbor labeled l,
and t∗i has one neighbor labeled r.

Complete the strand by adding edges ss∗1, t
∗
nt and t∗js

∗
j+1 for every j ∈ {1, . . . ,

n− 1}. Note that if we add edges from l and r to a main strand vertex in layer
L5i−2, which we will do below, then all vertices of the new strand lie on st-paths
of length 5n+1 as well, and no shorter st-paths have been created. This defines
for every vertex in the new strand which distance layer it is part of. We will refer
to these layers in the next step, where we show how to connect the vertices of
this recoloring strand to the main strand; see Figure 2. For all j < i, add the
following edges: Add edges between s∗j and every main-strand vertex in the next
layer that has a color that is also used in H∗j . Next, for every non-black vertex v
of H∗j , add an edge between v and the main-strand vertex in the next layer that
has the same color as v, or is black. Finally, add an edge t∗jsj+1. For all j > i,
edges between H∗j and the main strand are added similarly, except that vertices
of H∗j are connected to vertices in the previous layer. (See H∗4 in Figure 2 for an
example.) For H∗i we add edges as follows: Connect s∗i (t∗i ) to the main strand
vertices in the next (resp. previous) layer with colors c1 and c2. Finally, connect
both remaining vertices l and r of H∗i to both middle vertices of Hi that have
colors c1 and c2. Introducing such a vi, {c1, c2}-strand for every vi ∈ V (G) and
{c1, c2} ⊂ {1, 2, 3, 4} completes the construction of G′.
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Fig. 2. A k-Color Path instance G, α, β, and two strands of the resulting graph G′

We now show how to construct a path Pγ for any given 4-coloring γ of G;
see Figure 2. The path Pγ contains only main strand vertices. Since it should
be a shortest st-path, it contains exactly one vertex of every layer. Every layer
contains vertices of a unique gadget Hi of the main strand. In the case that the
layer contains a single black vertex from Hi, this is the vertex that is included
in Pγ . In the case that the layer contains vertices of colors 1, . . . , 4 of Hi, use
the vertex of color γ(vi) for Pγ . This way, we define the paths Pα and Pβ , using
the given colorings α and β, respectively.

The purpose of the recoloring strands is as follows: Consider two adjacent
colorings α and β. Suppose they differ only in vertex vi, where their respective
colors are c1 = α(vi) and c2 = β(vi). Then all neighbors of vi are colored with
colors in {1, 2, 3, 4}\{c1, c2}. Therefore, Pα can be rerouted to a shortest st-
path P ′ that lies entirely in the vi, {c1, c2}-strand, except for the vertex in layer
L5i−2. This rerouting is done by making rerouting steps in layers L1, . . . , L5i−1 in
increasing order, and subsequently in layers L5n, . . . , L5i−3 in decreasing order.
Note that the path P ′ must use vertices that have the same color as the Pα-
vertex of the same layer. Then, with a single rerouting step, the color of the
vertex in layer L5i−2 can be changed from c1 to c2. Rerouting the path back to
the main strand, in reversed layer order, then gives Pβ . This can be done for
every pair of adjacent colorings, so a recoloring sequence from α to β gives a
rerouting sequence from Pα to Pβ . This yields:

Lemma 1. If there is a recoloring sequence for G from α to β, then there is a
rerouting sequence from Pα to Pβ for G′.

With any shortest st-path P ′ in G′, we associate a color assignment where vi ∈
V (G) receives the same color as the (middle) vertex in L5i−2 ∩ V (P ′). The
converse of Lemma 1 can then be proved as follows: a rerouting step can only
change the L5i−2-vertex of a shortest st-path P ′ from a vertex of color c1 to
a vertex of color c2 if the vertices of P ′ in the previous and next layer are
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part of the vi, {c1, c2}-strand. In that case, all vertices of P ′ except the L5i−2-
vertex must be part of this strand, which shows that P ′ corresponds to a 4-
color assignment in which the neighbors of vi are not colored with c1 or c2.
Hence if P ′ corresponds to a 4-coloring, then the shortest st-path resulting from
the rerouting step corresponds again to a 4-coloring. Therefore, any rerouting
sequence from Pα to Pβ can be mapped to a recoloring sequence from α to β.

Lemma 2. If there is a rerouting sequence from Pα to Pβ for G′, then there is
a recoloring sequence in G from α to β.

Theorem 3. SPR is PSPACE-complete.

Proof: 4-Color Path is PSPACE-complete [3]. Our transformation from G to G′

is polynomial. By Lemma 1 and 2, G, α, β is a YES-instance for 4-Color Path if
and only if G′, Pα, Pβ is a YES-instance for SPR. This proves PSPACE-hardness.
Membership in PSPACE follows from Savitch’s Theorem [19] which states that
PSPACE = NPSPACE; the problem is easily seen to be in NPSPACE. �

4 Chordal Graphs

We will show in this section that for chordal graphs G, the SPR problem can be
decided in polynomial time. In fact, we prove that if G is chordal, then SP(G, s, t)
is connected and has diameter at most d− 1, where d is the distance from s to t.

Theorem 4. Let G be a chordal graph, and let P and Q be two shortest st-paths
in G, of length d. Then a rerouting sequence from P to Q exists, of length at
most |V (P )\V (Q)| ≤ d− 1.

Proof sketch: We prove the statement by induction over c = |V (P )\V (Q)|. The
case c = 0 is obvious, so now assume that c ≥ 1. Let P = u0, u1, . . . , ud, and
Q = v0, v1, . . . , vd. Let i be the lowest index such that ui �= vi. Let j be the
lowest index with j > i such that uj = vj . If j = i+ 1, then both ui and vi are
adjacent to both ui−1 and ui+1, so to P we can apply the rerouting step ui → vi,
to obtain a new shortest st-path P ′ in G that has one more vertex in common
with Q. So by induction, the distance from P ′ to Q in SP(G, s, t) is at most
c− 1. Then the distance from P to Q is at most c. This proves the statement in
the case j = i+ 1, so now assume that j ≥ i+ 2.

Note that then C = ui−1, ui, . . . , uj−1, uj, vj−1, . . . , vi, vi−1 is a cycle in G, of
length at least 6. Using C and using that G is chordal, it can be shown that G
contains an edge e with e = uivi+1 or e = ui+1vi. If e = ui+1vi, then both ui
and vi are adjacent to both ui−1 and ui+1, so to P we may apply the rerouting
step ui → vi, to obtain a new shortest st-path P ′ that has at least one more
vertex in common with Q. Then the proof can be concluded the same as before.
The remaining case where e = uivi+1 is symmetric; a rerouting step vi → ui can
be applied to Q. �
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The above proof gives a polynomial time algorithm for constructing the rerout-
ing sequence. Obviously a rerouting sequence from P to Q requires at least
|V (P )\V (Q)| rerouting steps, so we may conclude:

Corollary 5. Let G be a chordal graph with shortest st-paths P and Q. In poly-
nomial time, a shortest rerouting sequence from P to Q can be constructed.

5 Claw-Free Graphs

In this section we show that deciding SPR, and deciding whether SP(G, s, t) is
connected can both be done in polynomial time in the case where G is claw-
free. A claw is a K1,3 graph. A graph G is claw-free if it contains no claws as
induced subgraphs. In other words, G is not claw-free if and only if it contains
a subgraph H that consists of one vertex c of degree 3, and three leaves l1, l2, l3,
such that the leaves are pairwise nonadjacent in G. Such an induced subgraph
will be called a c-claw with leaves l1, l2, l3 for short.

Let u ∈ Li. We say that u has maximal in-neighborhood if there is no v ∈
Li with N−(u) ⊂ N−(v). (Note that we distinguish between subset ⊆ and
strict subset ⊂.) In that case, N−(u) is a maximal in-neighborhood in Li−1.
These notions are defined analogously for out-neighborhoods. With a layer Li,
we associate the following hypergraph Hi: Hi has vertex set Li, and the edges
correspond to the maximal in-neighborhoods in Li. So for every e ∈ E(Hi), there
exists a vertex a ∈ Li+1 with N−(a) = e.

The main result of this section is proved as follows. We first give some simple
reduction rules. These are based on the fact that it is safe to delete a vertex
v, if we know that it is not part of any shortest st-path that can be reached
from the given shortest st-path P . We give two ways to identify such vertices.
For reduced, claw-free SPR instances G′, P,Q that do not have such vertices,
we actually show that SP(G′, s, t) is connected. Proposition 6 follows from this
observation: whenever a rerouting step x → y in layer Li is made, there is a
vertex z ∈ Li+1 with x, y ∈ N−(z), so x and y are in the same component of Hi.

Proposition 6. Let P be a shortest st-path in a graph G. For every shortest
st-path Q that is reachable from P in SP(G, s, t) and every i, the Li-vertex is
part of the same component of Hi as the Li-vertex of P .

Proposition 7. Let P be a shortest st-path of length d in a claw-free graph G,
in which every vertex lies on a shortest st-path. For every shortest st-path Q that
is reachable from P in SP(G, s, t) and every i ∈ {2, . . . , d− 2}, the Li-vertex of
Q is adjacent to the Li-vertex of P .

Proof: Consider a rerouting sequence Q0, . . . , Qk from Q0 = P to Qk = Q, and
let xj be the Li-vertex of Qj , for every j ∈ {0, . . . , k}. Assume that the claim is
not true, so then we may choose  to be the lowest index such that x0x� �∈ E(G).

If x0 and x� have a common neighbor z in either Li−1 or Li+1, then a z-claw
with leaves x0, x� and y exists, for some vertex y ∈ Li−2 or y ∈ Li+2, respectively.
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(z has such a neighbor y since it lies on a shortest st-path.) So since G is claw-
free, we may conclude that N−(x0) ∩N−(x�) = ∅, and N+(x0) ∩N+(x�) = ∅.
If x�−1 has a neighbor y ∈ Li−1\N−(x0) and a neighbor z ∈ Li+1\N+(x0),
then an x�−1-claw with leaves x0, y, z exists. So w.l.o.g. we may assume that
N−(x�−1) ⊆ N−(x0). But then N−(x�−1)∩N−(x�) = ∅, which contradicts that
a rerouting step x�−1 → x� is possible. �

Definition 8. Let G be a claw-free graph with vertices s and t at distance d
from each other. Then G is called st-reduced if

– all vertices lie on a shortest st-path,
– for every i ∈ {1, . . . , d− 1}, Hi is connected, and
– for every i ∈ {2, . . . , d− 2}, Li is a clique.

Propositions 6 and 7 can be used to identify in polynomial time vertices that are
not part of any shortest st-path that is reachable from a given path P . Delet-
ing these, together with vertices not on shortest st-paths, gives an st-reduced
instance.

Lemma 9. Let G be a claw-free graph, with shortest st-path P . In polynomial
time, we can construct an induced claw-free subgraph G′ such that (i) G′ is st-
reduced, and (ii) a shortest st-path Q of G is reachable from P in SP(G, s, t) if
and only if V (Q) ⊆ V (G′), and Q is reachable from P in SP(G′, s, t).

The last property from Definition 8 shows that every pair of vertices in one layer
is adjacent; this makes it much easier in our proofs to obtain a contradiction by
exhibiting an induced claw. We use this to prove Lemmas 10 and 11.

Lemma 10. Let P be a shortest st-path of length d in a claw-free st-reduced
graph G. In polynomial time, a rerouting sequence of length at most d− 1 can be
constructed, from P to a shortest st-path P ′ in which every vertex has maximal
out-neighborhood. The same holds for the case of maximal in-neighborhoods.

Proof: Let P = u0, u1, . . . , ud−1, ud. Define v0 := u0(= s). For i = 1, . . . , d − 1,
in increasing order, we change the Li-vertex ui of P as follows. If the out-
neighborhood of ui is not maximal, then choose vi ∈ Li with N+(ui) ⊂ N+(vi),
and N+(vi) maximal. If possible, choose vi such that vi ∈ N+(vi−1). Then,
apply the rerouting step ui → vi. If ui already has maximal out-neighborhood
then simply define vi = ui.

It remains to show that ui → vi is in fact a rerouting step. By definition,
ui+1 ∈ N+(vi), so the Li+1-vertex of the current path v0, . . . , vi−1, ui, ui+1, . . . , ud
poses no problem. It might however be that vi is not adjacent to vi−1. In that
case, i ≥ 2. Choose a vertex x ∈ N−(vi). Since vi ∈ N+(x)\N+(vi−1), but
N+(vi−1) is maximal, there exists at least one y ∈ N+(vi−1)\N+(x). By choice
of vi, there exists at least one z ∈ N+(vi)\N+(y), otherwise y has maximal
out-neighborhood as well, and we would have chosen vi = y (since we gave pref-
erence to out-neighbors of vi−1). This however gives a vi-claw with leaves x, y, z,
a contradiction. The in-neighborhood case is analog. �
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Maximal in- and out-neighborhoods are required to apply the next lemma, which
is concerned with rerouting a single layer Li.

Lemma 11. Let G be a claw-free, st-reduced graph, with distance d between s
and t. Let P = u0, . . . , ud be a shortest st-path. Let i ∈ {1, . . . , d − 1} such
that ui−1 has maximal out-neighborhood and ui+1 has maximal in-neighborhood.
Then for every w ∈ N+(ui−1), using at most 2|Li| rerouting steps, P can be
modified to a shortest st-path P ′ = v0, . . . , vd with vi = w, and vj = uj for all
j ∈ {0, . . . , d}\{i, i+ 1}.

Proof sketch: We assume 1 ≤ i ≤ d − 2, since the case i = d − 1 is trivial.
Consider a shortest path x0, . . . , xk in Hi from ui to w, so x0 = ui and xk = w.
(This exists since G is st-reduced.) For j ∈ {1, . . . , k}, let aj ∈ Li+1 be a vertex
with maximal in-neighborhood such that {xj−1, xj} ∈ N−(aj). (Such a vertex
exists by the definition of the hypergraph Hi.) Choose a1 = ui+1 if ui+1 satisfies
this condition. In addition, let a0 = ui+1. The rerouting sequence from P to P ′

uses the following rerouting steps: If a0 �= a1, then first replace a0 = ui+1 by
a1. Next, replace x0 = ui by x1. Next, replace a1 by a2, and x1 by x2. Continue
making rerouting steps alternatingly in layer Li+1 and Li until xk−1 can be
replaced by xk = w, to obtain the desired path P ′. Note that by definition of the
xj and aj vertices, at every point the Li- and Li+1-vertex are adjacent. It may
however be that at some point, a vertex xj is not adjacent to ui−1. In this case,
the aforementioned rerouting sequence is preceded by replacing ui−1 by a vertex
y ∈ N−(xj) with maximal out-neighborhood, and succeeded by replacing y by
ui−1 again. Using the fact that G is claw-free and st-reduced, it can be shown
that this way, a shortest st-path is maintained throughout. �
Combining Lemmas 10 and 11 gives the main combinatorial result, for st-reduced
claw-free graphs. The main algorithmic results, Theorem 13 and 14, follow easily.
Their proofs are similar. We leave the second proof as an exercise.

Theorem 12. Let G be an st-reduced claw-free graph on n vertices, with dis-
tance d from s to t. Between any two shortest st-paths P and Q in G, a rerouting
sequence of length at most 2n+ 2d− 6 exists.

Proof: First apply at most d−1 rerouting steps to P to obtain a shortest st-path
P ′ in which every vertex has a maximal in-neighborhood (Lemma 10). Similarly,
apply at most d−1 rerouting steps to Q to obtain a shortest st-path Q′ in which
every vertex has a maximal out-neighborhood (Lemma 10).

Now P ′ can be modified to Q′ in d − 1 stages i, with i ∈ {1, . . . , d − 1}.
Denote P0 = P ′ = u0, . . . , ud, and Q′ = v0, . . . , vd. At the start of the ith stage,
we have a shortest st-path Pi−1 = v0, . . . , vi−1, a, ui+1, . . . , ud for some a ∈ Li
(note that for i = 1, P0 is of this form). Using at most 2|Li| rerouting steps,
Pi−1 can be modified into a shortest st-path Pi = v0, . . . , vi, a

′, ui+2, . . . , ud for
some a′ ∈ Li+1. This follows from Lemma 11.

After d − 1 stages, this procedure terminates with a path v0, . . . , vd−1, ud,
which equals Q′. The total number of rerouting steps for these stages is at most∑

i∈{1,...,d−1} 2|Li| = 2(n − 2). In total, this shows that P and Q can both be
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rerouted to a common shortest st-path Q′, in at most 2(n − 2) + (d − 1) and
d− 1 steps, respectively. Combining these rerouting sequences gives a rerouting
sequence from P to Q of length at most 2n+ 2d− 6. �

Theorem 13. Let G be a claw-free graph on n vertices, and let P and Q be two
shortest st-paths in G, of length d. In polynomial time it can be decided whether
Q is reachable from P in SP(G, s, t), and if so, a rerouting sequence of length at
most 2n+ 2d− 6 exists.

Proof: By Lemma 9, in polynomial time we can construct an st-reduced induced
subgraph G′ of G such that any shortest st-path Q′ is reachable from P in G if
and only if it is reachable from P in G′. So if Q is not a shortest st-path of G′

(at least one of its vertices was deleted), we may conclude it is not reachable.
Otherwise, Theorem 12 shows that Q is reachable from P , with a rerouting
sequence of length at most 2|V (G′)|+ 2d− 6 ≤ 2n+ 2d− 6. �

Theorem 14. Let G be a claw-free graph on n vertices. In polynomial time it
can be decided whether SP(G, s, t) is connected.

6 Discussion

We showed that SPR is PSPACE-complete, which is somewhat surprising since
the problem of finding shortest paths is easy. Nevertheless, our results otherwise
confirm the typical behavior of reconfiguration problems: for instances where we
can decide SPR in polynomial time (chordal and claw-free graphs), the diameter
is polynomially bounded – in this case, even linearly bounded. In addition, for
these graph classes it can be decided efficiently whether SP(G, s, t) is connected.
The main question that is left open here is: What is the complexity of deciding
whether SP(G, s, t) is connected, for general graphs G?

We note that for the SPR instances G′, Pα, Pβ constructed in Section 3,
the proof of Lemma 2 shows that SP(G′, s, t) is always disconnected (unless the
4-Color Path instance G has no edges).

We showed that for chordal graphs G, one can even find shortest rerouting
sequences in polynomial time. Is this possible for claw-free graphs as well? To
be precise, for two shortest st-paths P and Q in a claw-free graph G and k ∈ N,
can it be decided in polynomial time whether a rerouting sequence from P to
Q of length at most k exists, or is this problem NP-complete? Recall that for
general graphs, the NP-hardness of finding a shortest rerouting sequence was
proved in [15]. By our linear diameter result, this (decision) problem lies in NP
for claw-free graphs. Finally, it is interesting to search for other graph classes
for which SPR can be solved in polynomial time. Graphs of bounded treewidth
form a prime candidate.
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Abstract. We define a general model capturing the behavior of a pop-
ulation of anonymous agents that interact in pairs. This model captures
some of the main features of opportunistic networks, in which nodes
(such as the ones of a mobile ad hoc networks) meet sporadically. For its
reminiscence to Population Protocol, we call our model Large-Population
Protocol, or LPP. We are interested in the design of LPPs enforcing, for
every ν ∈ [0, 1], a proportion ν of the agents to be in a specific subset
of marked states, when the size of the population grows to infinity; In
which case, we say that the protocol computes ν. We prove that, for
every ν ∈ [0, 1], ν is computable by a LPP if and only if ν is algebraic.
Our positive result is constructive. That is, we show how to construct,
for every algebraic number ν ∈ [0, 1], a protocol which computes ν.

1 Introduction

1.1 Motivation

So-called opportunistic networks (see, e.g., [32]) are characterized by connec-
tions between users that appear sporadically, which are as many opportunities
for exchanging data or forwarding messages. As such, they form a subclass of
the so-called delay-tolerant networks (DTNs). A typical and probably promi-
nent example of opportunistic networks is sparse mobile ad hoc networks, as
analyzed in, e.g., the Zebra project [29], as well as in several other projects aim-
ing at understanding the potential of opportunistic networks [15,27]. This paper
is interested in the computing power of such networks.

More specifically, we are focussing on the slicing problem [28], which refers
to the ability of creating a virtualized network running over multiple physical
nodes, where the nodes are partitioned in multiple slices. Many metrics may be
used to sort the nodes for assigning them to different slices. Typical metrics are
available resources, such as memory, bandwidth, or computing power. However,
as underlined in [28], slicing the network by focusing only on the size of the slices,
also deserves to be investigated, for applications to systems involving devices
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with similar resource capabilities. Independently from the context, we stress
that the slice sizes are usually expressed as a percentage of the network size.
Slicing algorithms in the literature are usually designed for peer-to-peer systems
in which powerful peers are capable of generating random numbers [28], or taking
advantage of a storage capacity proportional to the population size [23] or to the
size of the neighborhood [22]. In this paper, we show how to slice the nodes of
opportunistic networks composed of tiny and simple devices, deterministically,
using only the basic resources of finite state agents, by taking benefits of the
randomized interactions between these agents.

To illustrate our objective, consider a population of nodes (e.g., sensors) mov-
ing in a somewhat restricted environment. Assume moreover, for the sake of
simplifying the presentation and the analysis, that nodes meet uniformly at ran-
dom over time. Let us say one wants to slice these nodes into two slices of equal
size. The following trivial 2-state protocol achieves this. Nodes are either in state
positive or negative, and whenever two nodes meet, one of them becomes pos-
itive while the other becomes negative. Nodes then tend over time to partition
themselves into two slices of equal size, when the size of the population grows
to infinity. As a more sophisticated example, assume that one wants to slice the
nodes in order to construct a slice such that the probability that two nodes in
this slice meet is 1/2. That is, one wants to slice the nodes into two slices, with
one slice amounting to a ratio 1/

√
2 of the total number of nodes. This is en-

sured by the following 2-state protocol. Whenever two nodes meet, their actions
depend on their current states + or −: if the nodes are in different states then
both become positive; otherwise, one of them becomes positive while the other
becomes negative. This dynamic can be summarized by the four transition rules:

+− → ++ ++ → +−
−+ → ++ −− → +− (1)

This protocol has been extensively analyzed in [14], where it is proved that the
proportion of positive nodes does converge to the desired ratio 1/

√
2 over time,

when the size of the population grows to infinity.
In some sense, the former protocol computes 1/2, while the latter protocol

computes 1/
√
2. One may of course be interested in computing other values. To

start with, beside 1/2, is it possible to compute every rational in [0, 1]? And
beside rationals, is the protocol for 1/

√
2 extendable to ratios of the form x−1/k

for every x ≥ 1 and k ≥ 2? More generally, what is the limit of such protocols
in term of their computing power? For instance, is it possible to compute solu-
tions of trigonometric equations? E.g., can we design a protocol insuring that,
asymptotically, a ratio π

4 of the nodes are in some prescribed state?

1.2 Framework

In order to determine the computing power of a collection of nodes such as
the ones involved in an opportunistic network, we abstract our model from the
specific technological constraints to be faced when one is dealing with networks
(security, forwarding mechanism, mobility, etc.). In fact, a network applying a
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protocol such as the one in Eq. 1 can be considered as a population protocol,
in the spirit of the model introduced in [3]. Essentially, in population protocols,
nodes (or agents) are anonymous, their interactions are supposed to be scheduled
so as to satisfy some natural fairness property, and their individual actions are
independent from the size of the population.

Classical population protocols are however designed to compute predicates
over their input configuration whereas the protocol in Eq. 1 computes a (real)
value (i.e., the proportion of agents in positive state), independently from the
initial configuration. Another difference with classical population protocols is
that the result of our computation is asymptotic, when the size of the population
grows to infinity. These differences can be tackled by considering a setting that we
call Large-Population Protocols (LPPs), which is essentially population protocols
whose behaviors are analyzed when the population grows to infinity. In this
context, for any given number ν ∈ [0, 1], a LPP is said to compute ν if the
proportion of agents in some specific states, say the marked states, converges
over time to ν when the population grows to infinity.

We can now reformulate the question raised in the previous section slightly
more formally by: what can be computed by a LPP? More precisely, we ad-
dress the problem of determining which numbers can be computed by Large-
Population Protocols. That is, we are aiming at identifying the set of real
numbers ν ∈ [0, 1] for which there exists a LPP computing ν.

1.3 Our Results

We first define formally our model for Large-Population Protocols (LPP). The
model is quite general in the sense that it encompasses all the models involv-
ing a “population” of agents, whenever they are dealing with anonymous agents
that interact in pairs. We then prove that the execution of any LPP is well
characterized by the behavior of a differential system. This characterization can
be considered similar to what is usually done in mean field theory. However,
we go beyond the simple application of mean field analysis by completely for-
malizing the connection between the execution of a LPP and the behavior of
the corresponding differential system. Specifically, fix any protocol P , and de-
fine X = X(n, t) as the random variables equal to the proportion of agents in
marked state at time t in a population of size n, during the execution of P .
We characterize the exact behavior of X when the size of population grows to
infinity. Essentially, we prove that, whenever the initial state is close enough to
a stable equilibrium, we have

X(n, t) ≈ f(t) +
1√
n
N (0, χ) (2)

where f is the solution of the differential system corresponding to P , N (0, χ) is
a centered gaussian with covariance matrix χ depending on P , and ≈ denotes a
convergence in law after an appropriate rescaling.

Using the correspondence between LPPs and differential systems, we char-
acterize the real numbers that are computable by LPPs as being all algebraic
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numbers in [0, 1]. The fact that transcendental numbers cannot be computed by
LPPs is a consequence of arguments from model theory (mainly Tarski’s effec-
tive procedure for quantifier elimination over real closed fields). Our main result
is a proof that all algebraic numbers can be computed by LPPs. Our proof is
constructive, that is, for every algebraic number ν ∈ [0, 1] described by some
polynomial P , with rational coefficients, and satisfying P (ν) = 0, we show how
to construct a LPP computing ν in the sense of Eq. 2. That is, X(n, t) satisfies
the relation of Eq. 2, with limt→∞ f(t) = ν.

The algorithmic construction proceeds in four stages. The first stage consists
in constructing, for every rational ν, a LPP computing ν. The second stage of
the construction consists in a form of derandomization for LPP. More precisely,
we show that every protocol involving probabilistic transition rules where each
probability is rational can be transformed into a protocol involving solely deter-
ministic transition rules. Hence, the remaining two stages involve protocols using
probabilistic transition rules. The third stage is heavily based on our characteri-
zation of LPP using differential systems. We construct a differential system corre-
sponding to a LPP, and admitting ν as an equilibrium. This system is obtained by
identifying a multivariate polynomial P̃ such that P̃ (x1, . . . , xk) = P (x1) when-
ever xi = xi−1x1, where k is the degree of P . Interestingly, P̃ is not P in which
xi would be replaced by xi. Instead, P̃ is specifically designed so that to yield a
differential system which admits ν as an equilibrium, that can be in turn trans-
formed into a protocol with rational probabilistic transitions. The fourth and
last stage of the construction involves stability. We show how to modify the con-
struction of the third stage to enforce that ν becomes a stable equilibrium. This
is achieved by carefully modifying the polynomial P̃ so that the Routh-Hurwitz
stability criterion can be applied, while preserving the ability to translate the
differential system into a LPP.

1.4 Related Work

The model that we consider in this paper captures the behavior of any large pop-
ulation of indistinguishable agents interacting in pairs in a Markovian manner.
This framework includes many models from nature, physics, and biology (see,
e.g., [31]). Several papers have already demonstrated the benefit of using an al-
gorithmic approach for understanding such models (see, e.g., the recent papers
[12,18,20]). Conversely, models from nature, physics, and biology can be viewed
as alternative paradigms of computation (see, e.g., [1,11]).

Classical models for capturing the dynamics of populations include Lotka-
Volterra dynamics for predator-prey models, replicator dynamics, and, more
generally, all kinds of models from evolutionary game theory. In particular, it is
known that a subclass of protocols designed in the context of evolutionary game
theory correspond to Lotka Volterra dynamics [17], which are in turn known to
be equivalent to replicator dynamics [26]. The connections between the dynamics
of games and population protocols has been studied in [13,17].
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Population protocols have been introduced in [3]. The model was designed
to decide logic predicates, and predicates computable by classical population
protocols have been characterized [3,4] as being precisely the semi-linear predi-
cates, that is, those predicates on counts of input agents definable in first-order
Presburger arithmetic. Variants of the original model considered so far include
restrictions on communications [2,5], random interactions [3,8,7], and mediated
interactions [30]. Various kinds of fault tolerance have also been considered for
population protocols [6,21]. We refer to [9] for a comprehensive introduction to
population protocols, and to [16,19] for the description of formal methods for
verifying such protocols.

A few papers addressed the asymptotic behavior of population protocols, when
the population size grows to infinity. In [24], a framework for translating certain
subclasses of differential equation systems into practical protocols for distributed
systems, assuming a large population, is described. In [17], the authors study
the dynamics and the stability of (probabilistic) population protocols via or-
dinary differential equations. [14] proves that there exists a close relationship
between, on the one hand, classical finite population protocols, and, on the
other hand, models obtained by ordinary differential equations. The protocol
computing 1/

√
2 described in Eq. 1 has been thoroughly studied in [14] where

convergence is proved using weak-convergence methods for stochastic processes.
In [10], the authors address the issue of convergence speed. It is proved that it
is possible to compute 1/

√
2 with arbitrary precision ε > 0 in a time polynomial

in 1/ε, using a number of agents polynomial in 1/ε.

2 Large-Population Protocols

In this section, we define Large-Population Protocols (LPP), and state formally
what is meant by computing with LPPs. The general idea of the model has been
introduced in [10] and [14]. The following subsection recalls the main features
of the model. Our first contribution is a formal specification of the asymptotic
behavior of a LPP.

2.1 The Model

We consider a population of n anonymous agents, each of which can be in finitely
many possible states, from a finite set Q. This population evolves with time. We
assume a synchronous discrete-time system, and, at each round, two agents a
and b are selected among the n agents. The selection is performed uniformly at
random, independently from the past. Note that the original population protocol
model [3] just assumes a specific fairness hypothesis for the interactions between
the agents, which are under the control of an adversary with restricted power.
Nevertheless, when the size of the population goes to infinity, uniform sampling
of agents appears to be a natural way to extend the fairness hypothesis used in
classical population protocols. Moreover, uniform sampling is consistent with the
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interpretation of agents as autonomous entities moving at random. (See also [9]
for a discussion on the random adversary in finite state systems.)

The two agents a, b that are selected, can interact and change their states
according to a set Δ of transition rules of the form qi qj → qk ql where (qk, ql) =
Δ(qi, qj).

Note that the transition is not necessarily symmetric, i.e., the selected pair
(a, b) may cause a transition different from the one caused by the pair (b, a). In
other words, we do not necessarily assume Δ(qi, qj) = Δ(qj , qi). Let us identify
a specific subset Q+ of states of Q, say {q1, q2, · · · , qm}, to be the marked state,
and denote Q = {q1, q2, · · · , q|Q|}. The pair (Q,Δ) entirely defines a protocol
P . Such a protocol is called large-population protocol because, informally, we
will say that P computes some given number ν if P enforces the proportion of
agents in states q ∈ Q+ to converge to ν along with time, when the size n of the
population grows to infinity.

To get some intuition of how to formally define computation, assume first that
n is fixed, and assume m = 1. The evolution (with time) of the population can
be modeled by a discrete-time homogeneous Markov chain whose states are all
the possible configurations of the system. For the sake of simplifying the discus-
sion, assume first that the Markov chain is irreductible. (Whether it is the case
or not depends on the protocol P .) Let Yi(t) be the random variables equal to
the numbers of agents in state qi at time t, and let Y (t) = (Y1(t), . . . , Y|Q|(t)).

Let us now consider the Markov chain defined by Y (t) = 1
n (Y1(t), · · · , Y|Q|(t)).

A consequence of the Ergodic Theorem (this is where we use the irreducibility
assumption) is that the chain Y (t) admits a unique stationary distribution, say
μ = (μ1, μ2, . . . , μ|Q|). Hence, for any initial state of the population, the distribu-

tion of Y (t) converges to μ when t goes to infinity. In particular, the distribution
of Y 1(t), the proportion of agents in the marked state q1 at time t, converges to
the distribution μ1 when t goes to infinity. As a consequence, the expected value
of Y 1(t) converges to the expected value Eμ1 of μ1. Intuitively, we are interested
in the limit of Eμ1 when n grows to infinity. The difficulty comes from the fact
that a protocol is dealing with Y 1(t), which depends on both t and n. The study
of this double limit must be treated with care in the general case, which is the
purpose of the remainder of this section.

Notice that the limit of Eμ1 can be a non-rational real number, whereas, when
n is fixed, the expected value of μ1 is necessarily a rational number since, for
every i, we have Y i(t) ∈

{
1
n , . . . ,

n
n

}
. So Y i(t) is a Markov chain over this latter

set. As a consequence, the distribution μi is a distribution over this latter set.
Since the stationary distribution μ is the solution of a set of linear equations
with rational coefficients, μ is necessarily weighting the elements of

{
1
n , . . . ,

n
n

}
with rational quantities. In particular, the expected value of μ1 satisfies Eμ1 =∑n

i=1 μ1(
i
n ) ·

i
n , and thus is a rational number.

To handle the growth of the population, one must perform a time rescaling.
Let us redefine the notations so that to capture explicitely the size n of the

population. Let Y
(n)
i (t) be the random variable equal to the numbers of agents
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in state qi at time t in a population of size n, and let Y
(n)

i (t) = 1
n · Y

(n)
i (t). Let

Y
(n)

(t) = (Y
(n)

1 (t), . . . , Y
(n)

|Q|(t)). Then let

X(n)(t) = Y
(n)

('nt() + (nt− 'nt() · (Y (n)
('nt+ 1()− Y

(n)
('nt()).

By definition, X(n)(t) is a continuous-time Markov chain obtained by linear

interpolation of Y
(n)

with a time-acceleration of factor n. After rescaling, the
number of interactions occurring in one time-unit is proportional to the number
of agents in the population. To capture the asymptotic behavior of X(n)(t),
we use a balance equation. Let (eq)q∈Q be the canonical base of R|Q|, and let
b : R|Q| → R|Q| be the function defined by:

b(x) =
∑

(q1,q2)∈Q2

(
xq1xq2

(
− eq1 − eq2 +

∑
(q3,q4)∈Q2

δq1,q2,q3,q4(eq3 + eq4)
))

(3)

where δq1,q2,q3,q4 = 1 if Δ(q1, q2) = (q3, q4), and 0 otherwise. The function b
acts as a balance equation. That is, assuming that the proportion of agents in
state q is xq ∈ R for every q ∈ Q, then one expects each rule qi qj → qk ql to
happen with probability xqixqj . Accounting for this balance for all rules, and
considering that all produced states must be consumed by some rule, yield that
if the proportion of states converges to some equilibrium x, then this equilibrium
must satisfy b(x) = 0. The following has been proved in [14].

Lemma 1 (Theorem 4 of [14]). For every initial condition Y (n)(0) with
Y (n)(0) → x when n→∞, the sequence of random processes X(n) converges
in law to the solution of the stochastic differential equation (with degenerated
brownian motion): dX(t) = b(X(t))dt, with X(0) = x.

2.2 Computing with LPPs

In view of Lemma 1, we get that the behavior of a protocol can be well ap-
proached by an ordinary differential equation, when the size of the population
becomes large. In particular, if x∗ is some stable equilibrium of the differential

equation, then one expects Y
(n)

(t) to converge to x∗ whenever it starts close
enough to x∗. Unfortunately, the notion of convergence involved in Lemma 1
(i.e., convergence in law) is too weak to derive this conclusion directly. On the
other hand, it is actually possible to go further in the analysis of population pro-
tocol, in order to provide a deeper understanding of the convergence. By doing

so, we are able to provide an asymptotic development for Y
(n)

(t), as stated in
the following result.

Theorem 1. Assume that the ordinary differential in Lemma 1 has a stable
equilibrium b(x∗) = 0. Then there exists a neighborhood of x∗ such that, whenever

Y
(n)

(0) belongs to this neighborhood, we have Y
(n)

(t) ≈ x∗ + 1√
n
N (0, χ) when

t → ∞, where N (0, χ) is the centered gaussian distribution with covariance
matrix χ, for some χ, and ≈ denotes convergence in law of the rescaling of

Y
(n)

(t) when t→∞.



Computing with Large Populations Using Interactions 241

By an adaptation of the arguments in [10], one can also show that if the ordinary
differential equation in Lemma 1 has a stable equilibrium b(x∗) = 0, then, for
every ε > 0, and for every 0 < p < 1, there is a neighborhood U of x∗ and some
integers n and t, both polynomial in 1/ε, which guarantee that, with probability

at least p, we have ‖Y (n)
(t)−x∗‖ ≤ ε whenever the initial configuration belongs

to U .
We have now all ingredients to formally define computing with LPPs.
Let P = (Q,Δ) be a LPP. A vector of real numbers x∗ = (x1, . . . , x|Q|) ∈

[0, 1]|Q| is said to be an equilibrium of a P if and only if b(x∗) = 0, that is to
say the constant solution f(t) = (x1, . . . , x|Q|) is a fix-point solution of the dif-
ferential equation in Lemma 1. An equilibrium x∗ of P is said to be stable if it
is the (exponentially) stable equilibrium of the associated ordinary differential
equation. In other words, there is a neighborhood U of the equilibrium x∗ such
that any trajectory starting from U converges exponentially fast to the equilib-
rium. This is equivalent to saying that the Eigenvalues of the Jacobian matrix
of b in x∗ has negative real parts [25].

Definition 1. A real number ν is said to be computable by LPP if there exists
a vector x∗ = (x1, x2, ..., xk) ∈ [0, 1]k such that

∑k
i=1 xi = 1, and a LPP P,

admitting finitely many equilibria, such that (x1, x2, ..., xk) is a stable equilibrium
of P and

∑
qi∈Q+ xi = ν where Q+ is the set of marked states for P .

Notice that the above definition requires the system to have finitely many equi-
libria. This assumption is mainly to avoid pathological cases, in particular the
case of idle systems q q′ → q q′ for all q, q′. Indeed, in idle systems, all ini-
tial states are equilibria, and such a system would compute any real of [0, 1],
depending on the initial configuration.

3 The Computational Power of LPPs

In this section, we establish our main result:

Theorem 2. Every ν ∈ [0, 1] is computable by a LPP if and only if it is
algebraic.

We first prove that there is an intrinsic limitation to the power of LPPs, namely
not a single transcendental number can be computed by LPPs. Indeed, a direct
consequence of arguments from model theory (mainly Tarski’s effective proce-
dure for quantifier elimination over real closed fields) allows us to prove the
following lemma:

Lemma 2. For every ν ∈ [0, 1], if ν is computable by a LPP then ν is algebraic.

The remaining part of the section is entirely dedicated to proving that every
algebraic number is indeed computable by a LPP. The proof is constructive,
meaning that we describe how to construct a LPP computing ν, for any given
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algebraic number ν ∈ [0, 1]. The construction of the protocol is made in four
stages, corresponding to the following four subsections. The first stage consists
in the design of LPPs computing rational numbers. The second stage consists
in using the computation of rational numbers as a subroutine for the emulation
of probabilistic transition rules. This stage will allow us to consider LPPs with
transition rules of the form

qi qj → αi,j,k,l qk ql

to be understood as: the interaction between two agents in respective states
qi and qj results in the two agents moving to respective states qk and ql with
probability αi,j,k,l. Then, the third stage of our proof is the construction of a
(probabilistic) protocol P admitting ν as an equilibrium. We assume we are
given a degree-δ polynomial P ∈ Q[X ] with root ν. The protocol P is based
on one specific choice for another degree-δ polynomial P ′ ∈ Q[X ], and, essen-
tially, satisfies that (x1, . . . , xδ) ∈ [0, 1]δ is an equilibrium of P if and only if (1)

P ′(x1) = 0, (2) xi = xi1 for every 1 ≤ i < δ, and (3) xδ = 1 −
∑δ

i=1 xi. Finally,
the fourth stage of the construction consists in proving that we can actually
enforce this protocol P to be stable near the equilibrium.

3.1 Computing Rationals

Lemma 3. Let ν ∈ [0, 1] be a rational number. There exists a LPP computing ν.

Proof. We first show that, for every integer k ∈ N, there exists a protocol that,
given any initial configuration, converges to the unique equilibrium ( 1k , . . . ,

1
k ).

For this purpose, consider the protocolM over states Qk = {1, . . . , k} given by
the following transition rules: i j → (i+1) (j+1) where, for q ∈ Qk, q+1 stands
for (q mod k) + 1. The dynamic system describing this protocol is

dxi
dt

= 2(xi−1 − xi).

If f : R → [0, 1]k is a solution of this differential system, then, considering
g(t) = ‖f(t)− ( 1k , . . . ,

1
k )‖2, where ‖x‖ is the euclidian norm of vector x, we get

dg(t)

dt
= 4

k∑
i=1

xi(xi−1 − xi).

A simple induction on k ∈ N enables to show that dg(t)
dt ≤ 0 for every vector

x ∈ [0, 1]k, and dg(t)
dt = 0 if and only if x1 = x2 = . . . = xk, thereby proving

that f converges to ( 1k , · · · ,
1
k ) when t→∞. This, in particular, guarantees that

( 1k , . . . ,
1
k ) is the only stable equilibrium of M.

Now, let ν = p/q ∈ Q. Computing ν is achieved by using M as above, with
k = q, and setting marked states as the first p states of Q. .�
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3.2 Derandomization

We now prove that considering LPPs with probabilistic transition rules where
the probabilities are rational does not change the computing power of LPPs.
Note that this result has its own independent interest. It essentially says that
the random choice of the agents involved in the transition provides enough ran-
domness, and that there are no further benefits from using randomization in
the transition rules. Nevertheless, using probabilistic LPPs, or PLPPs for short,
considerably simplifies the construction of LPPs computing algebraic numbers.

We focus on PLPPs, where the transition rules are defined by

qi qj → αi,j,k,l qk ql

where all αi,j,k,l are rational numbers1. Recall that such probabilistic transition
rules mean that an interacting pair of agents in respective states qi and qj will
move to respective states qk and ql, with probability αi,j,k,l. Of course, for such
rules to be well-defined, we assume that for every pair (qi, qj) ∈ Q2, we have

– for every (qk, ql) ∈ Q2, αi,j,k,l ≥ 0, and
–
∑

(qk,ql)∈Q2 αi,j,k,l = 1.

Notice that all previous definitions and statements can be easily extended to
PLPPs. In particular, Lemma 1 and Theorem 1 still hold, by replacing function
b in Eq. 3 by

b(x) =
∑

(q1,q2)∈Q2

xq1xq2

(
− eq1 − eq2 +

∑
(q3,q4)∈Q2

αq1,q2,q3,q4(eq3 + eq4)
)
.

Lemma 4. Let ν ∈ [0, 1], and assume that there exists a probabilistic LPP com-
puting ν, with rational probabilities. Then there exists a (deterministic) LPP
computing ν.

3.3 Constructing Equilibria

In view of the previous two subsections, one can freely use probabilistic LPPs,
whenever the probabilities are rational, in order to compute any algebraic num-
ber ν ∈ [0, 1]. In this section, we will not yet produce a probabilistic LPPs
computing an algebraic number ν, as we will ignore stability which is only dis-
cussed in the next section, and solely focus on constructing a protocol with ν as
an equilibrium.

Lemma 5. For every algebraic number ν ∈ [0, 1], there exist δ ∈ N, λ ∈ Q,

and a protocol P such that (ν, λν2, λ2ν3, . . . , λδ−2νδ−1, 1 −
∑δ−1
i=1 λi−1νi) is an

equilibrium of P.
1 In fact, our derandomization technique could be extended to the case in which the
αi,j,k,l are computable by a LPP. This would however overload the presentation, and
the stronger assumption that αi,j,k,l ∈ Q is anyway sufficient for our purpose.
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Proof. Let ν ∈ (0, 1] be an algebraic number, and let P (X) =
∑δ
i=0 aiX

i, P ∈
Q[X ], be a polynomial such that P (ν) = 0, and P (0) > 0. We claim that there ex-
ist a rational number ε �= 0, and a protocol Pε with equilibrium (ν, λν2, λ2ν3, . . .

. . . , λδ−2νδ−1, 1−
∑δ−1
i=1 λi−1νi) described by the following differential equations:⎧⎨⎩dx1 = ε(a0 + a1x1 +

∑δ−1
i=2

ai+1

λi−1 xi−1x1)
dxi = λx1xi−1 − xi for every i = 2, . . . , δ − 1

dxδ = −
∑δ−1
i=1 dxi.

(4)

where λ is a rational number such that λ > 0, and
∑δ−1
i=1 λi−1νi ≤ 1. To establish

that claim, we explicitly construct a protocol Pε over set of states Q = {1, . . . , δ}
with 1 serving as our marked state. Fix λ ∈ Q, λ > 0 small enough, so that∑δ−1

i=1 λi−1νi ≤ 1. Then let

M = max
(
{| ai+1

λi−1
+ 2a0 + a1|, i ∈ {2, ..., δ − 1}} ∪ {|a2 + a0 + a1|, |2a0 + a1|, a0}

)
and fix ε ∈ Q, 0 < ε < 1

M (1 − λ
2 ). We define the family (αi,j,k,l)1≤i,j,k,l≤δ, that

yields the transition rules for the protocol Pε as follows:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

i = 1, j = 1 =⇒ α1,1,1,1 = ε a2+a1+a0
2

+ 1
2
and α1,1,2,2 = λ

2

i = 1, 1 < j < δ − 1 =⇒ α1,j,1,1 = ε
aj+1

λj−1 +2a0+a1

4
+ 1

2
and α1,j,j+1,j+1 = λ

4

i = 1, j = δ − 1 =⇒ α1,j,1,1 = ε
2aδ

kδ−2 +2a0+a1

4
+ 1

2

i = 1, j = δ =⇒ α1,j,1,1 = ε 2a0+a1
4

+ 1
2

1 < i < δ − 1, j = 1 =⇒ αi,1,1,1 = ε
ai+1

λi−1 +2a0+a1

4
+ 1

2
and αi,1,i+1,i+1 = λ

4

i = δ − 1, j = 1 =⇒ αi,1,1,1 = ε
2aδ

kδ−2 +2a0+a1

4
+ 1

2

i = δ, j = 1 =⇒ αi,1,1,1 = ε 2a0+a1
4

+ 1
2

i > 1, j > 1 =⇒ αi,j,1,1 = ε a0
2

And, for all (k, l) �= (δ, δ) not considered above, we set αi,j,k,l = 0. Finally, if
(k, l) = (δ, δ), then αi,j,δ,δ = 1−

∑
(k,l) �=(δ,δ) αi,j,k,l.

By definition of M and ε, it follows that, for any pair (i, j), if (k, l) �= (δ, δ),
then 0 ≤ αi,j,k,l ≤ 1. Moreover, we have 0 ≤

∑
(k,l) �=(δ,δ) αi,j,k,l ≤ 1. Thus, for

every (i, j), 0 ≤ αi,j,δ,δ ≤ 1. Therefore, the family (αi,j,k,l) properly defines a
protocol Pε. We now show that this protocol satisfies our needs. By construction,
the dynamic of Pε is captured by the following system :

∀k ∈ {1, . . . , δ}, dxk =

δ∑
l=1

∑
i,j

(αi,j,k,l + αi,j,l,k)xixj − xk

which precisely yields Eq. 4. .�

3.4 Enforcing Stability

Perhaps surprisingly, stability does not come for free, and the construction of
the previous section is not sufficient to conclude. One needs to enforce stability.
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For that purpose, the protocol of the previous section is modified in order to
satisfy the stability criteria from the theory of dynamic systems. The following
result completes the proof of Theorem 2.

Lemma 6. For every algebraic number ν ∈ [0, 1], there exist δ ∈ N, λ ∈ Q, and

a protocol P such that (ν, λν2, λ2ν3, . . . , λδ−2νδ−1, 1−
∑δ−1

i=1 λi−1νi) is a stable
equilibrium of P.
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Abstract. Pancake Flipping is the problem of sorting a stack of pancakes of
different sizes (that is, a permutation), when the only allowed operation is to
insert a spatula anywhere in the stack and to flip the pancakes above it (that is,
to perform a prefix reversal). In the burnt variant, one side of each pancake is
marked as burnt, and it is required to finish with all pancakes having the burnt side
down. Computing the optimal scenario for any stack of pancakes and determining
the worst-case stack for any stack size have been challenges over more than three
decades. Beyond being an intriguing combinatorial problem in itself, it also yields
applications, e.g. in parallel computing and computational biology.

In this paper, we show that the Pancake Flipping problem, in its original (un-
burnt) variant, is NP-hard, thus answering the long-standing question of its com-
putational complexity.

Keywords: Pancake problem, Computational complexity, Permutations, Prefix
reversals.

1 Introduction

The pancake problem was stated in [7] as follows:

The chef in our place is sloppy, and when he prepares a stack of pancakes they come out
all different sizes. Therefore, when I deliver them to a customer, on the way to the table I
rearrange them (so that the smallest winds up on top, and so on, down to the largest at the
bottom) by grabbing several from the top and flipping them over, repeating this (varying the
number I flip) as many times as necessary. If there are n pancakes, what is the maximum
number of flips (as a function of n) that I will ever have to use to rearrange them?

Stacks of pancakes are represented by permutations, and a flip consists in reversing a
prefix of any length. The previous puzzle yields two entangled problems:

– Designing an algorithm that sorts any permutation with a minimum number of flips
(this optimization problem is called MIN-SBPR, for Sorting By Prefix Reversals).

– Computing f(n), the maximum number of flips required to sort a permutation of
size n (the diameter of the so-called pancake network).

Gates and Papadimitriou [9] introduced the burnt variant of the problem: the pancakes
are two-sided, and an additional constraint requires the pancakes to end with the unburnt
side up. The diameter of the corresponding burnt pancake network is denoted g(n). A
number of studies [4–6, 9, 11–13] have aimed at determining more precisely the values
of f(n) and g(n), with the following results:

B. Rovan, V. Sassone, and P. Widmayer (Eds.): MFCS 2012, LNCS 7464, pp. 247–258, 2012.
c© Springer-Verlag Berlin Heidelberg 2012
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– f(n) and g(n) are known exactly for n ≤ 19 and n ≤ 17, respectively [5].
– 15n/14 ≤ f(n) ≤ 18n/11 +O(1) [12, 4].
– '(3n+ 3)/2( ≤ g(n) ≤ 2n− 6 [5] (upper bound for n ≥ 16).

Considering MIN-SBPR, 2-approximation algorithms have been designed, both for the
burnt and unburnt variants [6, 8]. Moreover, Labarre and Cibulka [13] have character-
ized a subclass of signed permutations, called simple permutations, that can be sorted
in polynomial time.

The pancake problems have various applications. For instance, the pancake network,
having both a small degree and diameter, is of interest in parallel computing. The al-
gorithmic aspect, i.e. the sorting problem, has applications in comparative genomics,
since prefix reversals are possible elementary modifications that can affect a genome
during evolution. A related problem is Sorting By Reversals [1] where any subsequence
can be flipped at any step, not only prefixes. This problem is now well-known, with a
polynomial-time exact algorithm [10] for the signed case, and a 1.375-approximation[2]
for the APX-hard unsigned case [3].

In this paper, we prove that the MIN-SBPR problem is NP-hard (in its unburnt vari-
ant), thus answering a question which has remained open for several decades. We in fact
prove a stronger result: it is known that the number of breakpoints of a permutation (that
is, the number of pairs of consecutive elements that are not consecutive in the identity
permutation) is a lower bound on the number of flips necessary to sort a permutation.
We show that deciding whether this bound is tight is already NP-hard.

2 Notations

We denote by �a ; b� the interval {a, a+1, . . . , b} Let n be an integer. Input sequences
are permutations of �1 ; n�, hence we consider only sequences where all elements are
unsigned, and there cannot be duplicates. We use upper case for sequences, and lower
case for elements.

Consider a sequence S of length n, S =
〈
x1, x2, . . . , xn

〉
. Element x1 is said to

be the head element of S. Sequence S has a breakpoint at position r, 1 ≤ r < n if
xr �= xr+1 − 1 and xr �= xr+1 + 1. It has a breakpoint at position n if xn �= n.
We write db(S) the number of breakpoints of S. Note that having x1 �= 1 does not
directly count as a breakpoint, and that db(S) ≤ n for any sequence of length n. For
any p ≤ q ∈ N, we write Ipq the sequence

〈
p, p+1, p+2, . . . , q

〉
. I1n is the identity. For

a sequence of any length S =
〈
x1, x2, . . . , xk

〉
, we write �S the sequence obtained

by reversing S: �S =
〈
xk, xk−1, . . . , x1

〉
. Given an integer p, we write p + S =〈

p+ x1, p+ x2, . . . , p+ xk
〉
.

The flip of length r is the operation that consists in reversing the r first elements of
the sequence. It transforms

S =
〈
x1, x2, . . . , xr, xr+1, . . . , xn

〉
into S′ =

〈
xr , xr−1, . . . , x1, xr+1, . . . , xn

〉
.

Property 1. Given a sequence S′ obtained from a sequence S by performing one flip,
we have db(S′)− db(S) ∈ {−1, 0, 1}.
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〈
5, 2, 3, 1, 4

〉↗ 〈
1, 3, 2, 5, 4

〉
→ ⊥

→
〈
4, 1, 3, 2, 5

〉
→

〈
2, 3, 1, 4, 5

〉
→

〈
3, 2, 1, 4, 5

〉
→

〈
1, 2, 3, 4, 5

〉
↘ 〈

1, 4, 3, 2, 5
〉
→ ⊥〈

5, 2, 3, 4, 1
〉
→

〈
1, 4, 3, 2, 5

〉
→ ⊥

Fig. 1. Examples of efficient flips. Sequence
〈
5, 2, 3, 1, 4

〉
is efficiently sortable (in four flips),

but
〈
5, 2, 3, 4, 1

〉
is not.

A flip from S to S′ is said to be efficient if db(S′) = db(S) − 1, and we reserve the
notation S → S′ for such flips. A sequence of size n, different from the identity, is a
deadlock if it yields no efficient flip, and we write S → ⊥. By convention, we underline
in a sequence the positions corresponding to possible efficient flips: there are at most
two of them, and at least one if the sequence is neither a deadlock nor the identity.

A path is a series of flips, it is efficient if each flip is efficient in the series. A sequence
S is efficiently sortable if there exists an efficient path fromS to the identity permutation
(equivalently, if it can be sorted in db(S) flips). See for example Figure 1.

Let S be a sequence different from the identity, and T be a set of sequences. We write
S =⇒ T if both following conditions are satisfied:

1. for each T ∈ T, there exists an efficient path from S to T .
2. for each efficient path from S to the identity, there exists a sequence T ∈ T such

that the path goes through T .

If T consists of a single element (T = {T }), we may write S =⇒ T instead of S =⇒
{T }. Note that condition 1. is trivial if T = ∅, and condition 2. is trivial if there is no
efficient path from S to I1n. Given a sequence S, there can be several different sets T
such that S =⇒ T. The following properties are easily deduced from the definition of
=⇒.

Property 2. Given any sequence S �= I1n,

S =⇒ I1n ⇔ S is efficiently sortable.

S =⇒ ∅ ⇔ S is not efficiently sortable.

Property 3. If S =⇒ {S1, S2}, S1 =⇒ T1 and S2 =⇒ T2, then S =⇒ T1 ∪ T2.

3 Reduction from 3-SAT

The reduction uses a number of gadget sequences in order to simulate boolean variables
and clauses with subsequences. They are organized in two levels (where level-1 gadgets
are directly defined by sequences of integers, and level-2 gadgets are defined using a
pattern of level-1 gadgets). For each gadget we define, we derive a property character-
izing the efficient paths that can be followed if some part of the gadget appears at the
head of a sequence. The proofs for all these properties follow the same pattern, with no
obstacle appart from the increasing complexity of the sequences, and only the one for
the Dock gadget is given in this extended abstract.
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3.1 Level-1 Gadgets

Dock. The dock gadget is the simplest we define. Its only goal is to store sequences of
the kind �Ip+1

q (with p < q) out of the head of the sequence, without “disturbing” any
other part.

Definition 1. Given two integers p and q with p < q, the dock for �Ip+1
q is the sequence

Dock(p, q) = D, where

D =
〈
p− 1, p, q + 1, q + 2

〉
.

It has the following property:

Property 4. Let p and q be any integers with p < q, D = Dock(p, q), and X and Y be
any sequences. We have〈�Ip+1

q , X, D, Y
〉
=⇒
〈
X, Ip−1

q+2 , Y
〉

Proof. An efficient path from
〈�Ip+1

q , X, D, Y
〉

to
〈
X, Ip−1

q+2 , Y
〉

is given by:〈�Ip+1
q , X, D, Y

〉
=
〈
q, q − 1, . . . , p+ 2, p+ 1, X, p− 1, p, q + 1, q + 2, Y

〉
→
〈
p, p− 1, �X, p+ 1, p+ 2, . . . , q − 1, q, q + 1, q + 2, Y

〉
→
〈
X, p− 1, p, p+ 1, p+ 2, . . . , q − 1, q, q + 1, q + 2, Y

〉
=
〈
X, Ip−1

q+2 , Y
〉

For each sequence in the path, we apply the only possible efficient flip, hence every
efficient path between

〈�Ip+1
q , X, D, Y

〉
and I1n (if such a path exists) begins with

these two flips, and goes through
〈
X, Ip−1

q+2 , Y
〉
.

Lock. A lock gadget contains three parts: a sequence which is the lock itself, a key
element that “opens” the lock, and a test element that checks whether the lock is open.

Definition 2. For any integer p, Lock(p) is defined by Lock(p) = (key, test, L), where

key = p+ 10 test = p+ 7
L = p+

〈
1, 2, 9, 8, 5, 6, 4, 3, 11, 12

〉
Given a lock (key, test, L) = Lock(p), we write

Lo = p+
〈
1, 2, 3, 4, 6, 5, 8, 9, 10, 11, 12

〉
.

Sequences L and Lo represent the lock when it is closed and open, respectively. If a
sequence containing a closed lock has key for head element, then efficient flips put the
lock in open position. If it has test for head element, then it is a deadlock if and only if
the lock is closed.
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Property 5. Let p be any integer, (key, test, L) = Lock(p), and X and Y be any se-
quences. We have

a.
〈
key, X, L, Y

〉
=⇒
〈
X, Lo, Y

〉
b.

〈
test, X, Lo, Y

〉
=⇒
〈
X, Ip+1

p+12, Y
〉

c.
〈
test, X, L, Y

〉
→ ⊥

We use locks to emulate literals of a boolean formula: variables “hold the keys”, and
in a first time open the locks corresponding to true literals. Each clause holds three test
elements, corresponding to its three literals, and the clause is true if the lock is open for
at least one of the test elements.

Hook. A hook gadget contains four parts: two sequences used as delimiters, a take
element that takes the interval between the delimiters and places it in head, and a put
element that does the reverse operation. Thus, the sequence between the delimiters can
be stored anywhere until it is called by take, and then can be stored back using put.

Definition 3. For any integer p, Hook(p) is defined by Hook(p) = (take, put, G,H),
where

take = p+ 10 put = p+ 7

G = p+
〈
3, 4
〉

H = p+
〈
12, 11, 6, 5, 9, 8, 2, 1

〉
.

Given a hook (take, put, G,H) = Hook(p), we write

G′ = p+
〈
12, 11, 6, 5, 4, 3

〉
H ′ = p+

〈
10, 9, 8, 2, 1

〉
G′′ = p+

〈
3, 4, 5, 6, 7

〉
H ′′ = p+

〈
12, 11, 10, 9, 8, 2, 1

〉
.

Property 6. Let p be an integer, (take, put, G,H) = Hook(p), and X , Y and Z be any
sequences. We have

a.
〈
take, X, G, Y, H, Z

〉
=⇒
〈
Y, G′, �X, H ′, Z

〉
b.

〈
put, X, G′, �Y, H ′, Z

〉
=⇒
〈
Y, G′′, X, H ′′, Z

〉
c.
〈
G′′, X, H ′′, Y

〉
=⇒
〈
X, �Ip+1

p+12, Y
〉

Fork. A fork gadget implements choices. It contains two parts delimiting a sequence
X . Any efficient path encountering a fork gadget follows one of two tracks, where
either X or �X appears at the head of the sequence at some point. Sequence X would
typically contain a series of triggers for various gadgets (key, take, etc.), so that X and
�X differ in the order in which the gadgets are triggered.

Definition 4. For any integer p, Fork(p) is defined by Fork(p) = (E,F ), where

E = p+
〈
11, 8, 7, 3

〉
F = p+

〈
10, 9, 6, 12, 13, 4, 5, 15, 14, 2, 1

〉
.

Given a fork (E,F ) = Fork(p), we write

F 1 = p+
〈
10, 9, 6, 7, 8, 11, 12, 13, 14, 15, 5, 4, 3, 2, 1

〉
F 2 = p+

〈
3, 7, 8, 11, 10, 9, 6, 12, 13, 4, 5, 15, 14, 2, 1

〉
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Property 7. Let p be an integer, (E,F ) = Fork(p), and X , Y be any sequences. We
have

a.
〈
E, X, F, Y

〉
=⇒
{〈

X, F 1, Y
〉
,
〈�X, F 2, Y

〉}
b.

〈
F 1, Y

〉
=⇒
〈�Ip+1

p+15, Y
〉

c.
〈
F 2, Y

〉
=⇒
〈�Ip+1

p+15, Y
〉

3.2 Level-2 Gadgets

Literals. The following gadget is used only once in the reduction. It contains the locks
corresponding to all literals of the formula.

Definition 5. Let p and m be two integers, Literals(p,m) is defined by

Literals(p,m) = (key1, . . . , keym, test1, . . . , testm, Λ)

where ∀i ∈ �1 ; m� , (keyi, testi, Li) = Lock(p+ 12(i− 1))

Λ =
〈
L1, L2, . . . , Lm

〉
Let O and I be two disjoint subsets of �1 ; m�. We use ΛOI for the sequence obtained
from Λ by replacing Li by Loi for all i ∈ O and by Ip+12i−11

p+12i for all i ∈ I .

Elements of O correspond to open locks in ΛOI , while elements of I correspond to open
locks which have moreover been tested. Note that Λ∅∅ = Λ, and that Λ∅�1 ;m� = I

p+1
p+12m.

Property 8. Let p and m be two integers, O and I be two disjoint subsets of �1 ; m�,
(key1, . . . , keym, test1, . . . , testm, Λ) = Literals(p,m), and X be any sequence. We
have

a. ∀i ∈ �1 ; m�−O − I,
〈
keyi, X, ΛOI

〉
=⇒
〈
X, Λ

O∪{i}
I

〉
b. ∀i ∈ O,

〈
testi, X, ΛOI

〉
=⇒
〈
X, Λ

O−{i}
I∪{i}

〉
c. ∀i ∈ �1 ; m�−O,

〈
testi, X, ΛOI

〉
→ ⊥

Variable. In the rest of this section, we assume that pΛ and m are two fixed inte-
gers, and we define the gadget (key1, . . . , keym, test1, . . . , testm, Λ) = Literals(pΛ,m).
Thus, we can use elements keyi and testi for i ∈ �1 ; m�, and sequences ΛOI for any
disjoint subsets O and I of �1 ; m�.

We now define a gadget simulating a boolean variable xi. It holds two series of key
elements: the ones with indices in P (resp. N ) open the locks corresponding to literals
of the form xi (resp. ¬xi). When the triggering element, ν, is brought to the head, a
choice has to be made between P and N , and the locks associated with the chosen set
(and only them) are opened.
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Definition 6. Let P,N be two disjoint subsets of �1 ; m� (P = {p1, p2, . . . , pq},
N = {n1, n2, . . . , nq′}) and p be an integer, Variable(P,N, p) is defined by

Variable(P,N, p) = (ν, V,D)

where (take, put, G,H) = Hook(p+ 2), (E,F ) = Fork(p+ 14),

in ν = take
V =

〈
G, E, keyp1 , . . . , keypq , put, keyn1

, . . . , keynq′
, F, H

〉
D = Dock(p+ 2, p+ 29)

Given a variable gadget (ν, V,D) = Variable(P,N, p), we write

V 1 =
〈
G′′, keyn1

, . . . , keynq′
, F 1, H ′′

〉
V 2 =

〈
G′′, keypq , . . . , keyp1 , F

2, H ′′
〉

where G′′, H ′′, F 1, F 2, come from the definitions of Hook (Definition 3) and Fork
(Definition 4).

The following property determines the possible behavior of a variable gadget.

Property 9. Let P , N be two disjoint subsets of �1 ; m�, p be an integer, X and
Y be two sequences, O, I be two disjoint subsets of �1 ; m�, and (ν, V,D) =
Variable(P,N, p). For sub-property (a.) we require that (P ∪N)∩ (O∪I) = ∅, for (b.)
that N ∩ (O ∪ I) = ∅, and for (c.) that P ∩ (O ∪ I) = ∅ (these conditions are in fact
necessarily satisfied by construction since all sequences considered are permutations).
We have

a.
〈
ν, X, V, Y, ΛOI

〉
=⇒

{〈
X, V 1, Y, ΛO∪PI

〉
,〈

X, V 2, Y, ΛO∪NI

〉 }
b.

〈
V 1, X, D, Y, ΛOI

〉
=⇒
〈
X, Ip+1

p+31, Y, Λ
O∪N
I

〉
c.
〈
V 2, X, D, Y, ΛOI

〉
=⇒
〈
X, Ip+1

p+31, Y, Λ
O∪P
I

〉
Clause. The following gadget simulates a 3-clause in a boolean formula. It holds the
test elements for three locks, corresponding to three literals. When the triggering ele-
ment, γ, is at the head of a sequence, three distinct efficient paths may be followed. In
each such path, one of the three locks is tested: in other words, any efficient path leading
to the identity requires one of the locks to be open.

Definition 7. Let a, b, c ∈ �1 ; m� be pairwise distinct integers and p be an integer,
Clause(a, b, c, p) is defined by

Clause(a, b, c, p) = (γ, Γ,Δ)

where (E1, F1) = Fork(p+ 2), (take1, put1, G1, H1) = Hook(p+ 21),
(E2, F2) = Fork(p+ 45), (take2, put2, G2, H2) = Hook(p+ 33),

in γ = take1
Γ =

〈
G1, E1, take2, put1, testc, F1, G2, E2, testa, put2, testb, F2, H2, H1

〉
Δ =

〈
Dock(p+ 2, p+ 17), Dock(p+ 21, p+ 60)

〉
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Given a clause gadget (γ, Γ,Δ) = Clause(a, b, c, p), we write

Γ 1 =
〈
G′′1 , testc, F

1
1 , G

′′
2 , testb, F

1
2 , H

′′
2 , H

′′
1

〉
Γ 2 =

〈
G′′1 , testc, F

1
1 , G

′′
2 , testa, F

2
2 , H

′′
2 , H

′′
1

〉
Γ 3 =

〈
G′′1 , take2, F

2
1 , G2, E2, testa, put2, testb, F2, H2, H

′′
1

〉
The following two properties determine the possible behavior of a clause gadget. The
main point is that, starting from a sequence

〈
γ, X, Γ, Y, ΛOI

〉
, there is one efficient

path for each true literal in the clause (ie. each literal with index in O).

Property 10. Let X and Y be any sequences, and O, I be two disjoint subsets of
�1 ; m�. We have 〈

γ, X, Γ, Y, ΛOI
〉
=⇒ T,

where T contains from 0 to 3 sequences, and is defined by:〈
X, Γ 1, Y, Λ

O−{a}
I∪{a}

〉
∈ T iff a ∈ O〈

X, Γ 2, Y, Λ
O−{b}
I∪{b}

〉
∈ T iff b ∈ O〈

X, Γ 3, Y, Λ
O−{c}
I∪{c}

〉
∈ T iff c ∈ O

Property 11. Let Y and Z be any sequences, and O, I be two disjoint subsets of
�1 ; m�. We have

a. If b, c ∈ O, then
〈
Γ 1, Y, Δ, Z, ΛOI

〉
=⇒
〈
Y, Ip+1

p+62, Z, Λ
O−{b,c}
I∪{b,c}

〉
b. If a, c ∈ O, then

〈
Γ 2, Y, Δ, Z, ΛOI

〉
=⇒
〈
Y, Ip+1

p+62, Z, Λ
O−{a,c}
I∪{a,c}

〉
c. If a, b ∈ O, then

〈
Γ 3, Y, Δ, Z, ΛOI

〉
=⇒
〈
Y, Ip+1

p+62, Z, Λ
O−{a,b}
I∪{a,b}

〉
3.3 Reduction

Let φ be a boolean formula over l variables in conjunctive normal form, such that each
clause contains exactly three literals. We write k the number of clauses, m = 3k the
total number of literals, and {λ1, . . . , λm} the set of literals. Let n = 31l+62k+12m.

Definition 8. We define the sequence Sφ as the permutation of �1 ; n� obtained by:

(key1, . . . , keym, test1, . . . , testm, Λ) = Literals(31l+ 62k,m)

∀i ∈ �1 ; l� , Pi = {j ∈ �1 ; m� | λj = xi}
Ni = {j ∈ �1 ; m� | λj = ¬xi}
(νi, Vi, Di) = Variable(Pi, Ni, 31(i− 1)),

∀i ∈ �1 ; k� , (ai, bi, ci) = indices such that the i-th clause of φ is λai ∨ λbi ∨ λci
(γi, Γi, Δi) = Clause(ai, bi, ci, 31l+ 62(i− 1))

Sφ =
〈
ν1, . . . , νl, γ1, . . . , γk, V1, . . . , Vl, Γ1, . . . , Γk, D1, . . . , Dl, Δ1, . . . , Δk, Λ

∅
∅
〉
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Two things should be noted in this definition. First, elements keyi and testi are used in
the clause and variable gadgets, although they are not explicitly stated in the parameters
(cf. Definitions 6 and 7). Second, one could assume that literals are sorted in the formula
(φ = (λ1 ∨ λ2 ∨ λ3) ∧ . . . ), so that ai = 3i− 2, bi = 3i − 1 and ci = 3i, but it is not
necessary since these values are not used in the following.

We now aim at proving Theorem 1 (p. 257), which states that Sφ is efficiently
sortable if and only if the formula φ is satisfiable. Several preliminary lemmas are nec-
essary, and the overall process is illustrated in Figure 2.

Variable Assignment.

Definition 9. A full assignment is a partition P = (T, F ) of �1 ; l�. Using notations
from Definition 8, we define the sequence Sφ[P ] by:

For all i ∈ �1 ; l� , V ′i =

{
V 1
i if i ∈ T

V 2
i if i ∈ F

O =
⋃
i∈T

Pi ∪
⋃
i∈F

Ni

Sφ[P ] =
〈
γ1, . . . , γk, V

′
1 , . . . , V

′
l , Γ1, . . . , Γk, D1, . . . , Dl, Δ1, . . . , Δk, Λ

O
∅
〉

With the following lemma, we ensure that any sequence of efficient flips from Sφ begins
with a full assignment of the boolean variables, and every possible assignment can be
reached using only efficient flips.

Lemma 1
Sφ =⇒ {Sφ[P ] | P full assignment}

Going through Clauses. Now that each variable is assigned a boolean value, we need
to verify with each clause that this assignment satisfies the formula φ. This is done by
selecting, for each clause, a literal which is true, and testing the corresponding lock. As
in Definition 8, for any i ∈ �1 ; k� we write (ai, bi, ci) the indices such that the i-th
clause of φ is λai ∨ λbi ∨ λci (thus, ai, bi, ci ∈ �1 ; m�).

Definition 10. Let P be a full assignment. A full selection σ is a subset of �1 ; m� such
that, for each i ∈ �1 ; k�, |{ai, bi, ci} ∩ σ| = 1 (hence |σ| = k). A full selection σ
and a full assignment P = (T, F ) are compatible, if, for every i ∈ σ, literal λi is true
according to assignment P (that is, λi = xj and j ∈ T , or λi = ¬xj and j ∈ F ).
Given a full selection σ and a full assignment P = (T, F ) which are compatible, we
define the sequence Sφ[P , σ] by:

∀i ∈ �1 ; l� , V ′i =

{
V 1
i if i ∈ T

V 2
i if i ∈ F

∀i ∈ �1 ; k� , Γ ′i =

⎧⎪⎨⎪⎩
Γ 1
i if ai ∈ σ

Γ 2
i if bi ∈ σ

Γ 3
i if ci ∈ σ

O =
⋃
i∈T

Pi ∪
⋃
i∈F

Ni − σ I = σ

Sφ[P , σ] =
〈
V ′1 , . . . , V

′
l , Γ

′
1, . . . , Γ

′
k, D1, . . . , Dl, Δ1, . . . , Δk, Λ

O
I

〉
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Sφ =
〈
ν1, . . . , νl, γ1, . . . , γk, V1, . . . , Vl, Γ1, . . . , Γk, D1, . . . , Dl,Δ1, . . . ,Δk, Λ

∅
∅
〉
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1

ν2 V ′

2

νl V ′

l

γ1 Γ
′

1
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′

2
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′
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1
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1
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1

���� ���
�
��

����	 
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���
���

���
���

���� ����	 
� Pl

Vl �→ V ′

l
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�
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����	 
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′

1
= Γ

1

1

��	� ���� b1

Γ1 �→ Γ
′

1
= Γ

2

1

��	� ���� c1

Γ1 �→ Γ
′

1
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3

1
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�
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���
���

���
���
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= Γ

1
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Fig. 2. Description of an efficient sorting of Sφ. Circular nodes correspond to head elements or
sequences especially relevant (landmarks). We start with the head element of Sφ: ν1. From each
landmark, one, two or three paths are possible before reaching the next landmark, each path
having its own effects, stated in rectangles, on the sequence. Possible effects are: transforming a
subsequence of Sφ (symbol �→), opening a lock, testing a lock (such a path requires the lock to
be open).
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With the following lemma, we ensure that after the truth assignment, every efficient
path starting from Sφ needs to select a literal in each clause, under the constraint that
the selection is compatible with the assignment.

Lemma 2. Let P be a full assignment. Then

Sφ[P ] =⇒ {Sφ[P , σ] | σ full selection compatible with P}

Beyond Clauses

Lemma 3. Let P be a full assignment and σ be a full selection, such that P and σ are
compatible (provided such a pair exists for φ). Then

Sφ[P , σ] =⇒ I1n

Theorem 1
Sφ =⇒ I1n iff φ is satisfiable.

Proof. Assume first that Sφ =⇒ I1n. By Lemma 1, there exists a full assignment
P = (T, F ) such that some path fromSφ to the identity usesSφ[P ]. Note thatSφ[P ] =⇒
I1n. Now, by Lemma 2, there exists a full selection σ, compatible withP , such that some
path from Sφ[P ] to the identity uses Sφ[P , σ]. Consider the truth assignment xi := True
⇔ i ∈ T . Then each clause of φ contains at least one literal that is true (the literal whose
index is in σ), and thus φ is satisfiable.

Assume now that φ is satisfiable: consider any truth assignment making φ true, write
T the set of indices such that xi = True, and F = �1 ; l�−T . Write also σ a set contain-
ing, for each clause of φ, the index of one literal being true under this assignment. Then
σ is a full selection, compatible with the full assignment P = (T, F ). By Lemmas 1, 2
and 3 respectively, there exist efficient paths Sφ =⇒ Sφ[P ], Sφ[P ] =⇒ Sφ[P , σ] and
Sφ[P , σ] =⇒ I1n. Thus sequence Sφ is efficiently sortable.

Using Theorem 1, we can now prove the main result of the paper.

Theorem 2. The following problems are NP-hard:

– Sorting By Prefix Reversals (MIN-SBPR)
– deciding, given a sequence S, whether S can be sorted in db(S) flips

Proof. By reduction from 3-SAT. Given any formula φ, create Sφ (see Definition 8,
the construction requires a linear time). By Theorem 1, the minimum number of flips
necessary to sort Sφ is db(Sφ) iff φ is satisfiable.

4 Conclusion

In this paper, we have shown that the Pancake Flipping problem is NP-hard, thus an-
swering a long-standing open question. We have also provided a stronger result, namely,
deciding whether a permutation can be sorted with no more than one flip per breakpoint
is also NP-hard. However, the approximability of MIN-SBPR is still open: it can be
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seen that sequence Sφ can be sorted in db(Sφ) + 2 flips, whatever the formula φ, hence
this construction does not prove the APX-hardness of the problem.

Among related important problems, the last one having an open complexity is now
the burnt variant of the Pancake Flipping problem. An interesting insight into this
problem is given in a recent work from Labarre and Cibulka [13], where the authors
characterize a subclass of permutations that can be sorted in polynomial time, using
the breakpoint graph [1]. Another development consists in trying to improve the ap-
proximation ratio of 2 for the Pancake Flipping problem, both in its burnt and unburnt
versions.
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Abstract. We show how to build a binary heap in-place in linear time
by performing ∼1.625n element comparisons, at most ∼2.125n element
moves, and ∼n/B cache misses, where n is the size of the input array, B
the capacity of the cache line, and ∼f(n) approaches f(n) as n grows.
The same bound for element comparisons was derived and conjectured
to be optimal by Gonnet and Munro; however, their procedure requires
Θ(n) pointers and does not have optimal cache behaviour. Our main idea
is to mimic the Gonnet-Munro algorithm by converting a navigation pile
into a binary heap. To construct a binary heap in-place, we use this
algorithm to build bottom heaps of size Θ(lg n) and adjust the heap
order at the upper levels using Floyd’s sift-down procedure. On another
frontier, we compare different heap-construction alternatives in practice.

1 Introduction

The binary heap, introduced by Williams [16], is a binary tree in which each
node stores one element. This tree is almost complete in the sense that all the
levels are full, except perhaps the last level where elements are stored at the
leftmost nodes. A binary heap is said to be perfect if it stores 2k − 1 elements,
for a positive integer k. The elements are maintained in (min-)heap order, i.e. for
each node the element stored at that node is not larger than the elements stored
at its (at most) two children. A binary heap can be conveniently represented in
an array where the elements are stored left-to-right in the level order of the tree.

In this paper we consider the problem of constructing a binary heap of n
elements given in an array. Our objective is to do the construction in-place,
i.e. using O(1) words of additional memory. We assume that each word stores
O(lg n) bits. The original algorithm of Williams constructs a binary heap in-
place in Θ(n lg n) time. Soon after, Floyd [6] improved the construction time to
Θ(n) with at most 2n element comparisons. These classical results are covered
by most textbooks on algorithms and data structures (see, e.g. [4, Chapter 6]).

In the literature, several performance indicators have been considered: the
number of element comparisons, the number of element moves, and the number of

B. Rovan, V. Sassone, and P. Widmayer (Eds.): MFCS 2012, LNCS 7464, pp. 259–270, 2012.
c© Springer-Verlag Berlin Heidelberg 2012



260 J. Chen et al.

Table 1. The number of element comparisons required by different heap-construction
algorithms. The input is of size n; the average-case results assume that the input is a
random permutation of n distinct elements.

Inventor Abbreviation Worst case Average case Extra space

Floyd [6] Alg. F 2n ∼1.88n Θ(1) words

Gonnet & Munro [8] Alg. GM 1.625n 1.625n Θ(n) words

McDiarmid & Reed [12] Alg. MR 2n ∼1.52n Θ(n) bits

Li & Reed [11] Lower bound ∼1.37n ∼1.37n Ω(1) words

cache misses. Even though Floyd’s heap-construction algorithm is asymptotically
optimal, for most performance indicators the exact optimal complexity bounds
are still unknown. In Table 1 we summarize the best known bounds on the
number of element comparisons when constructing a heap. By an element move
we mean any assignment of elements to variables and array locations. Hence,
a swap of two array elements is counted as three element moves and a cyclic
rotation of k array elements is counted as k + 1 element moves.

Without loss of generality, we assume that our heaps are perfect. As pointed
out for example in [3], the nodes that do not root a perfect heap are located on
the path from the last leaf to the root. This means that a heap of size n can be
partitioned into at most 'lgn( perfect subheaps. After building these subheaps,
combining them can be done bottom-up in O(lg2 n) time, and hence this does
not affect the constant of the leading term in the complexity expressions.

Our main contribution is a simple technique for making existing algorithms
for heap construction to run in-place. First, we reduce the amount of extra
space used by the algorithm to a linear number of bits. Second, we use such
an algorithm to build heaps of size Θ(lg n) at the bottom of the input tree; we
keep the needed bits in a constant number of words. Third, we combine these
bottom heaps by exploiting the sift-down procedure of Floyd’s algorithm at the
top nodes of the tree. The key observation is that the work done by all sift-down
calls is sublinear. We apply this approach for both the algorithm of Gonnet and
Munro [8] and that of McDiarmid and Reed [12]. The inventors believe that their
algorithms are optimal with respect to the number of element comparisons; the
first in the worst-case sense and the second in the average-case sense.

In our in-place variant of the GM algorithm, we also optimize the number
of element moves. For each bottom tree, we start by building a navigation pile
at the end of the element array [9]; this technique is used by Kronrod [10]. To
optimize the number of element moves when converting a navigation pile to a
binary heap, we employ the hole technique that is also used by Floyd [6].

Another consequence of our in-place construction is that both algorithms can
be modified—without affecting the number of element comparisons and element
moves—such that the cache behaviour of the algorithms is almost optimal under
reasonable assumptions. That is, without any knowledge about the size of cache
blocks (B) and the size of fast memory (M), the algorithms incur about n/B
cache misses. Here we rely on an improvement proposed by Bojesen et al. [1]
showing how Floyd’s algorithm can be made cache oblivious. For the algorithms
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involving linear extra space, this kind of optimality cannot be achieved due to
the cache misses incurred when accessing the additional memory.

2 Heap Construction with a Navigation Pile

The GM algorithm [8] builds a binary heap on 2k − 1 elements in two phases:
First a heap-ordered binomial tree [13] of size 2k is constructed, and then this
binomial tree is converted into a binary heap plus one excess element that is
discarded. Since a binomial tree is a pointer-based data structure, we considered
some related data structures that are more space-economical like a weak heap [5]
and a navigation pile [9]. We decided to use the latter as our basic building block
since it involves a fewer number of element moves for the overall construction.

2.1 Building a Navigation Pile

Consider an array of elements a0, . . . , an−1, where n = 2k for a positive integer
k. A navigation pile [9] is a compact representation of a tournament tree built
above this array. This tournament tree is a complete binary tree of size 2k − 1.
Extending this tree by the element array, we get a complete binary tree of size
2k+1 − 1. We say that the elements have height 0, all the bottommost nodes of
the tournament tree have height 1, and so on; the root has height k.

Let us number the nodes at each level starting from 0. For a node at height
h with index i at that level, its parent is at level h + 1 (if any) and has index
'i/2(, and its children are at level h− 1 (if any) and have indices 2i and 2i+ 1.
These definitions are illustrated in Fig. 1.

A node of the tournament tree is said to span the leaves of the subtree rooted
at that node. For each node we store a reference to the minimum element within
the range spanned. If a node has height h, it spans 2h elements. More precisely,
if the index of the node is i at its level, it spans the elements in the range
[i × 2h · · i × 2h + 2h − 1]. To address any of these elements, we need to know
the height of the node, its index, and an offset inside the range (these are h
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Fig. 1. A navigation pile of size 8; navigation information is visualized with pointers
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bits called the navigation bits). The navigation information for the root uses k
bits, that for the children of the root k− 1 bits, and so on. The total number of
navigation bits for all the nodes in the tournament tree is then:

2k
k∑
h=1

h/2h < 2n .

Hence, these bits can be stored in a bit-array of size at most 2n bits.
We can traverse the navigation pile starting from the root or from a leaf.

During such a traversal we recall the height of the current node, its index at its
present level, and the start position of the navigation bits of the present level
in the bit array. When this information is available, we can access the parent
or the children of the current node such that the same information is available
for the accessed node. This can be accomplished by relying on simple arithmetic
operations. For more details of implementing navigation piles and the related
primitive operations, see [9].

To initialize a navigation pile, we traverse the tree bottom-up level by level
and update the navigation information at each node by comparing the elements
referred to by its children. Such a construction requires n−1 element comparisons
and no element moves. In addition, a navigation pile supports the priority-queue
operations insert and delete easily and efficiently [9].

2.2 Converting a Navigation Pile into a Binary Heap

Later we shall need a factory that can produce binary heaps of some particular
size 2k−1, where k is a positive integer. For the time being, let us assume that the
factory already has a navigation pile on 2k elements in its input area occupying
the last locations of the element array. The task is to move the elements one by
one from the input area to an output area that will, at the end, contain a binary
heap of size 2k− 1. As another outcome of the procedure, we provide a reference
to the location of the excess element in the input area.

For a tournament-tree node in a navigation pile, the first bit of its navigation
information tells whether the minimum element among the elements it spans is
in the left or the right subtree of that node. We call the subtree in which the
minimum element is the winner subtree, and the other subtree the loser subtree.

As for the GM algorithm, our procedure is recursive. The nodes of the navi-
gation pile are visited starting from the root, which is initially the current input
node. Correspondingly, in the output area, the root of the binary heap to-be-built
is initially the current output node. If the current input node is visited for the
first time, we immediately proceed to its loser subtree and recursively convert
it into a binary heap. The right child of the current output node will root the
created binary heap. After processing the loser subtree, we move the minimum
element w among those spanned by the current input node to the current out-
put node, and then we move the excess element of the loser subtree to the old
position of w. Hereafter, we have to update the navigation information on the
path from w’s old place to the root of the winner subtree. (It is not necessary
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to update the navigation information at the current input node.) It takes one
element comparison per internal node to fix this navigation information. If the
current input node is at height k of the navigation pile, we perform k−1 element
comparisons. (This is similar to an insert operation in a navigation pile.) After
this fix, the winner subtree can be converted into a binary heap recursively. The
output is placed at the left subtree of the current output node.

As the base case, we use k = 3 (a navigation pile with 8 elements). The
minimum element w of the structure is referred to by the root of the navigation
pile and is readily known. Notice also that the loser subtree of the root forms
a heap of size 3 plus one excess element. In other words, the minimum element
among the elements of the loser subtree is readily known as well. We are only left
with determining the minimum element within the winner subtree. In addition
to w, there are three other elements in the winner subtree, and the smaller of
two of them is already known. It follows that we only need to compare the
third element with the smaller of these two elements. Hence, only one element
comparison is needed for the base case.

Let us now analyse the performance of this conversion procedure. To convert
a navigation pile of size 2k into a binary heap, we perform two recursive calls for
navigation piles of size 2k−1. In addition, we need to call insert once to refresh
the navigation information in the winner subtree. Let C(2k) be the number of
element comparisons needed to convert a navigation pile of size 2k into a binary
heap plus an excess element. The number of element comparisons performed by
insert is k − 1. The next recursive relation follows:{

C(8) = 1,
C(2k) = 2C(2k−1) + k − 1 .

For n = 2k ≥ 8, the solution of this relation is C(n) = 5/8 · n− lg n− 1. Adding
the n−1 element comparisons needed for the construction of the navigation pile,
the total number of element comparisons to build a binary heap on n elements
is bounded by 1.625n.

Let M(2k) be the number of element moves performed when converting a
navigation pile of size 2k into a binary heap. In the base case, every element
except the excess element is moved from the input area to the output area. In
the general case, after each recursive call, the minimum element is moved to the
output area and the excess element of the loser subtree is moved to the place of
the minimum element in the winner subtree. The next recursive relation follows:{

M(8) = 7,
M(2k) = 2M(2k−1) + 2 .

For n = 2k ≥ 8, the solution of this relation is M(n) = 9/8 · n − 2, i.e. the
number of element moves in this case is bounded by 1.125n.

Before proceeding, we have to consider one important detail. Since we aim
at using this conversion procedure as a subroutine in our in-place algorithm, we
must ensure that the recursion is handled only using a constant amount of extra
storage. In an iterative implementation of the procedure, we keep track of the
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current input node (plus all the normal information required when traversing a
navigation pile, including the present height), the current output node, and the
previous input node. When this information is available, we can deduce whether
the current input node is visited for the first, the second, or the third time; and
whether we are processing a loser subtree or a winner subtree. So, our iterative
implementation does not need any recursion stack.

3 Building a Binary Heap In-place

Assume that the task is to build a binary heap on n elements; here we need not
make any assumptions about n. Let m = 2�lg lgn�+1 − 1. We call all complete
binary trees of size m bottom trees. The basic idea is to use the algorithm de-
scribed in the previous section to convert all bottom trees to bottom heaps and
then ensure the heap order at the upper levels by using the sift-down procedure
of Floyd’s algorithm or any of its variants. The crucial observation is that, by
carefully choosing the sizes of the bottom trees, the work done by the sift-down
calls at the upper levels becomes sublinear. The details are explained next.

To be able to convert the bottom trees into binary heaps, we use the last
m + 1 locations of the element array as the input area for our factory. The
main distinction from our earlier construction is that we do not have an empty
output area, and hence we have to use the other bottom trees as the output area.
Observe that there is a constant number of (at most three) bottom trees that
overlap the input area. These special bottom trees will be handled differently.

In the first phase, we process all the bottom trees that are not special. Consider
one such bottom tree T . We construct a navigation pile in the input area of our
factory and convert it into a bottom heap as explained earlier. For that, the
bottom tree T is used as the output area. Each time before an element is moved
from the input area to T , the element at that particular location in T is moved
to the input area. After this process, the input area is again full of elements and
can be used for the construction of the next bottom heap.

In the second phase, we process the special bottom trees by using Floyd’s
heap-construction algorithm. Since the number of the special bottom trees is a
constant, this phase only requires O(lg n) work.

In the third phase, we ensure the heap order for the nodes at the upper levels
by using the sift-down procedure of Floyd’s algorithm; this is done level by level
starting at level 'lg lgn(+1 upwards. For each such node we compare the values
of its two children, then compare its value x with the smaller of its two children,
and move this child to the parent if the value at the child is smaller than x. If a
move took place, we start from the moved child and repeat until we either reach
a leaf or until x is not larger than both children. We finally move x to the vacant
node if any moves were performed. Other variants of the sift-down procedure
that require less element comparisons can be used, but this will not affect our
overall bounds as the work performed in the third phase is sublinear.

Note that this construction is fully in-place. Since the size of the navigation
pile is only logarithmic, the bits needed can be kept in a constant number of
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words. In addition to these bits, the first phase only requires a constant number
of other information. Since Floyd’s algorithm is in-place, the second and third
phases also require a constant number of words.

To optimize the number of element moves, we make two modifications to the
first phase. Let us call all complete binary trees of size 7 micro trees. In the base
case, we have to move the corresponding elements from the navigation pile to a
micro tree, and vice versa. An element swap would involve three element moves.
To reduce this to two element moves, we put the elements of the first micro
tree aside at the beginning of the procedure. Then we move the corresponding
elements from the input area to this empty space once those elements are pro-
cessed, and then fill these vacated positions of the input area with the elements
from the next micro tree. These actions are repeated whenever a base case is to
be processed. Higher up we can use the hole technique to reduce the number of
element moves by one per element. In a non-optimized form, for every step of the
algorithm, we should perform a cyclic rotation of three elements: the minimum
element w referred to by the current input node of the navigation pile, the excess
element of its loser subtree, and the element at the current output node; this
would mean four element moves. However, the pattern how elements are moved
to the output area is completely predictable. Therefore, we can move the parent
of the root of the first micro tree (the first output node) aside at the beginning
of the procedure. Thereafter, we can move the current minimum element w from
the navigation pile to this hole, move the excess element to the position of w,
and create a new hole by moving the element at the next output position to the
place of the excess element. Repeating these actions, a cyclic rotation of three
elements would involve three element moves. After processing all the bottom
trees (except the special ones), the elements that were put aside are taken back
to the current holes in the input area.

Let us now analyse the performance of this procedure. The number of elements
involved in all the constructions of the bottom heaps is bounded by n. It follows
that, if we use our version of the GM algorithm in the first phase, the number
of element comparisons is bounded by 1.625n+ o(n). Compared to our earlier
construction, one more element move is needed for moving each element to the
input area. Including the cost of putting elements aside, the number of element
moves is bounded by 2.125n+o(n). In the second phase the amount of work done
is O(lg n). In the third phase, the number of element comparisons and moves
performed by the sift-down routine starting from a node at height h is at most
2h. Since there are at most n/2h+1 nodes at height h, and as we process the
nodes at height 'lg lg n(+ 1 upwards, the total work (element comparisons and
moves) performed in the third phase is proportional to at most

�lgn�∑
h=�lg lgn�+1

2h · n/2h+1 = O

(
n · lg lg n

lgn

)
= o(n) .

We note that in the base case the element moves are handled more efficiently
than at the upper levels of the tree. By making the base case larger one could
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get the number of element moves even closer to 2n. With extra space for ∼lgn
elements, the bound ∼2n element moves could actually be reached.

4 Improving the Cache Behaviour

Consider the construction of a heap of size n on a computer that has a two-
level memory: a slow memory containing the elements of the input array and
a fast memory, call it a cache, where the data must be present before it can
be moved further to the register file of the computer. Assume that the size of
the cache is M and that the data is transferred in blocks of size B between
the two memory levels; both M and B are measured in elements. We assume
that the cache is ideal, so the optimal off-line algorithm is the underlying block-
replacement strategy when the cache is full. The ideal cache model is standard
in the analysis of cache-oblivious algorithms [7].

For our analysis, we assume that M * B lg(max{M,n}). Under this assump-
tion, several small heaps of size ∼lgn can simultaneously be inside the fast
memory. When a heap is inside the fast memory, among the blocks containing
the elements of the heap, there may be at most two blocks per heap level that
also contain elements from outside the heap. By the assumption, a heap of size
cM together with these 2+lg(cM), blocks, constituting cM +2B+lg(cM), elem-
ents, can simultaneously be inside the fast memory, provided that c < 1 is a
small enough positive constant.

Consider an algorithm A (either our version of the GM algorithm or the
MR algorithm) that is used to construct all bottom heaps of size ∼lgn. All the
remaining nodes are made part of the final heap by calling Floyd’s sift-down
routine. To improve the cache behaviour of the algorithm, the enhancement
proposed by Bojesen et al. [1] is to handle these nodes in reverse depth-first
order instead of reverse breadth-first order. This algorithm can be coded using
only a constant amount of extra memory by recalling the level where we are at,
the current node, and the node visited just before the current node. When n is a
power of two minus one, the procedure is pretty simple. In the iterative version
given in Fig. 2, the nodes at level 'lg lg n( are visited from right to left. After
constructing a binary heap below such a node using algorithm A, its ancestors
are visited one by one until an ancestor is met that is a right child (its index is
odd); for each of the visited ancestors the sift-down routine is called.

Here we ignored the detail that our version of algorithm A uses the last part
of the element array as its input area, but it is easy to sift down the elements of
the special bottom trees and their ancestors in a separate post-processing phase.
Namely, the nodes on the right spine going down from the root of the heap to
the rightmost leaf are easy to detect (their indices are powers of two minus one);
so, in the other phases, visiting these nodes can be avoided.

When processing a heap of size cM during the depth-first traversal, each
block is read into fast memory only once. When such a heap has been processed,
the blocks of the fast memory can be replaced arbitrarily, except that the blocks
containing elements from outside this particular part are kept inside fast memory



In-place Heap Construction with Optimized Comparisons 267

in-place-A::make-heap(a: array of n elements, less : comparison function)

1: assert n = 2�lgn� − 1
2: h← �lg lgn� // height of the bottom trees

3: j ← n/2h // index of the root of the last bottom tree
4: i← j/2 // index of the parent of the node with index j
5: while j > i
6: A::make-heap(a, j, h, less)
7: z ← j
8: while (z bitand 1) = 0
9: F::sift-down(a, z/2, n, less)
10: z ← z/2
11: j ← j − 1

Fig. 2. In-place heap construction by traversing the nodes above the bottom trees in
depth-first order. The root has index 1, and the leaves have height 0.

until their elements are processed. For the topmost ∼n/(cM) elements, we can
assume that each sift-down call incurs at most ∼lgn cache misses. Thus, the
total number of cache misses incurred is at most n/B + O(n lg n/M). By our
assumption, the first term in this formula is dominating.

5 Heap Construction in Practice

The heap-construction algorithm of Gonnet and Munro [8] is considered by many
to be a theoretical achievement that has little practical significance. Out of
curiosity, we wanted to investigate whether this belief is true or not; in particular,
whether the improvements presented in this paper affect the state of affairs.
Therefore, we implemented relaxed variants (with respect to the memory usage
and the number of element moves performed) of the proposed algorithms and
compared their performance to several existing algorithms. In this section we
report the results of our experiments. All the implemented programs had the
same interface as the C++ standard-library function make_heap.

The tests were performed on a 32-bit computer (model Intel R© CoreTM2 CPU
T5600 @ 1.83GHz) running under Ubuntu 11.10 (Linux kernel 3.0.0-13-generic)
using g++ compiler (gcc version 4.6.1) with optimization level -O3. The size of
L2 cache of this computer was about 2 MB and that of the main memory 1 GB.1

In an early stage of this study, we collected programs from public software
repositories and wrote a number of new competitors for heap construction. In
total, we looked at over 20 heap-construction methods including: Williams’ al-
gorithm of repeated insertions [16]; Floyd’s algorithm of repeated merging with

1 We also ran our experiments on two other 64-bit computers, one having an Intel
i/7 CPU 2.67 GHz processor (Ubuntu 10.10 with Linux kernel 2.6.28-11-generic
installed) and another having an AMD Phenom II X4 925 processor (4096 MB
RAM and Linux Mint 11.0 installed).
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top-down [6], bottom-up [14] and binary-search [2] sift-down policies, as well as
depth-first and layered versions of it [1]; and McDiarmid and Reed’s variant [12]
that has the best known average-case performance.

We found that sifting down with binary search and explicitly maintaining a
search path were inferior, so we excluded them from later rounds. The layered
construction [1] that iteratively finds medians to build a heap bottom-up was
fast on large inputs, but the number of element comparisons performed was high
(larger than 2n), so we also excluded it. Our implementation of Floyd’s algo-
rithm with the bottom-up sift-down policy had the same number of element
comparisons as the built-in function in the C++ standard library and its running
time was about the same, so we also excluded it. We looked at other engineered
variants that include many implementation refinements, e.g. the code-tuned re-
finements discussed in [1], but they were non-effective, so we relied on Floyd’s
original implementation. The GM versions using weak heaps instead of navi-
gation piles were consistently slower and performed more element moves, and
hence were also excluded from this report.

The preliminary study thus left us with the following noteworthy competitors:

std: The implementation of the make_heap function that came with our g++

compiler relying on the bottom-up sift-down policy [14]. Two of the un-
derlying subroutines passed elements by value. Although this may result in
unnecessary element moves, we assumed that these function calls will not
involve any element moves.

F: We converted Floyd’s original Algol program into C++. This program rotates
the elements on the sift-down path cyclically, so element swaps are not used.

BKS: This variant of Floyd’s heap-construction program traverses the nodes in
depth-first order as discussed in [1].

in-situ GM: We implemented the algorithm of Gonnet and Munro [8] using
a navigation pile as described in this paper, except that the subroutine for
converting a navigation pile into a binary heap was recursive. Instead of bit-
compaction techniques we used full indices at the nodes, and we did not use
the hole technique for optimizing the number of element moves. Also, we
had to make the height of the bottom trees 2'lg lg n( (instead of 'lg lg n()
before the performance characteristics of the GM algorithm became visible.

in-situ MR: As in the previous program, the nodes were visited in depth-first
order, but now the bottom trees were processed using the algorithm of Mc-
Diarmid and Reed [12]. All the elements on the sift-down path were moved
cyclically first after the final position of the new element was known as pro-
posed in [15]. Again, no bit-compaction was in use and full bytes were used
instead of bits. The height of the bottom trees was also set to 2'lg lgn(.

We tested the programs for random permutations of n distinct integers for dif-
ferent (small, medium, large, and very large) problem sizes n = 210− 1, 215− 1,
220−1, and 225−1. The elements were of type int. All our programs were tuned
to construct binary heaps of size 2k− 1. The obtained results are given in Fig. 3
(execution time), Fig. 4 (element comparisons), and Fig. 5 (element moves).
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Program
n std F BKS

in-situ
GM

in-situ
MR

210 − 1 22.3 14.6 17.1 21.3 26.2
215 − 1 22.2 14.6 17.4 23.0 24.4
220 − 1 29.3 21.9 17.8 22.9 23.6
225 − 1 29.8 21.7 17.5 22.9 23.6

Fig. 3. Execution time per element in nanoseconds

Program
n std F BKS

in-situ
GM

in-situ
MR

210 − 1 1.64 1.86 1.86 1.74 1.52
215 − 1 1.64 1.88 1.88 1.65 1.54
220 − 1 1.64 1.88 1.88 1.63 1.53
225 − 1 1.65 1.88 1.88 1.63 1.53

Fig. 4. Number of element comparisons performed per element

Program
n std F BKS

in-situ
GM

in-situ
MR

210 − 1 2.25 1.73 1.73 2.06 1.52
215 − 1 2.25 1.74 1.74 2.38 1.53
220 − 1 2.25 1.74 1.74 2.38 1.53
225 − 1 2.25 1.74 1.74 2.38 1.52

Fig. 5. Number of element moves performed per element

In our opinion—while not being overly tuned—our in-situ treatment for the
GM algorithm showed acceptable practical performance. As expected, the num-
ber of element comparisons and element moves for the in-situ GM algorithm
were beaten by the in-situ MR algorithm. Concerning the running time, the
in-situ GM algorithm could beat the in-situ MR algorithm, but it was beaten
by Floyd’s algorithm F and the depth-first variant BKS.

6 Concluding Remarks

In practical terms, Floyd [6] solved the heap-construction problem in 1964. For
our experiments we took his Algol program and converted it into C++ with very
few modifications. For integer data, the cache-optimized version of Floyd’s pro-
gram described by Bojesen et al. [1] was the only program that could outperform
Floyd’s original program, and this happened only for large problem instances.
The algorithms discussed in this paper can only outperform Floyd’s program
when element comparisons are expensive. In the worst case, Floyd’s algorithm
performs at most 2n element comparisons and 2n element moves. Furthermore,
as shown in [1], by a simple modification, Floyd’s algorithm can be made cache
oblivious so that its cache behaviour is almost optimal.
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In theoretical terms, the heap-construction problem remains fascinating. We
showed how the two algorithms believed to be the best possible with respect
to the number of element comparisons can be optimized with respect to the
amount of space used and the number of cache misses incurred. In the worst
case, our in-place variant of Gonnet and Munro’s algorithm [8] requires ∼1.625n
element comparisons and ∼2.125n element moves. We also showed that the same
technique can be used to make McDiarmid and Reed’s algorithm [12] in-place.
Moreover, we proved that both of these in-place algorithms can be modified to
demonstrate almost optimal cache behaviour.

The main question that is still not answered is: Can the bounds for heap
construction be improved for any of the performance indicators considered?

References

1. Bojesen, J., Katajainen, J., Spork, M.: Performance engineering case study: Heap
construction. ACM J. Exp. Algorithmics 5, Article 15 (2000)

2. Carlsson, S.: A variant of heapsort with almost optimal number of comparisons.
Inform. Process. Lett. 24(4), 247–250 (1987)

3. Chen, J.: A Framework for Constructing Heap-Like Structures in-Place. In: Ng,
K.W., Balasubramanian, N.V., Raghavan, P., Chin, F.Y.L. (eds.) ISAAC 1993.
LNCS, vol. 762, pp. 118–127. Springer, Heidelberg (1993)

4. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms,
3rd edn. The MIT Press, Cambridge (2009)

5. Dutton, R.D.: Weak-heap sort. BIT 33(3), 372–381 (1993)
6. Floyd, R.W.: Algorithm 245: Treesort 3. Commun. ACM 7(12), 701 (1964)
7. Frigo, M., Leiserson, C.E., Prokop, H., Ramachandra, S.: Cache-oblivious algo-

rithms. In: 40th Annual Symposium on Foundations of Computer Science, pp.
285–297. IEEE Computer Society, Los Alamitos (1999)

8. Gonnet, G.H., Munro, J.I.: Heaps on heaps. SIAM J. Comput. 15(4), 964–971
(1986)

9. Katajainen, J., Vitale, F.: Navigation piles with applications to sorting, priority
queues, and priority deques. Nordic J. Comput. 10(3), 238–262 (2003)

10. Kronrod, M.A.: Optimal ordering algorithm without operational field. Soviet Math.
Dokl. 10, 744–746 (1969)

11. Li, Z., Reed, B.A.: Heap Building Bounds. In: Dehne, F., López-Ortiz, A., Sack,
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Abstract. Stochastic branching processes are a classical model for de-
scribing random trees, which have applications in numerous fields includ-
ing biology, physics, and natural language processing. In particular, they
have recently been proposed to describe parallel programs with stochas-
tic process creation. In this paper, we consider the problem of model
checking stochastic branching process. Given a branching process and a
deterministic parity tree automaton, we are interested in computing the
probability that the generated random tree is accepted by the automa-
ton. We show that this probability can be compared with any rational
number in PSPACE, and with 0 and 1 in polynomial time. In a sec-
ond part, we suggest a tree extension of the logic PCTL, and develop
a PSPACE algorithm for model checking a branching process against a
formula of this logic. We also show that the qualitative fragment of this
logic can be model checked in polynomial time.

1 Introduction

Consider an interactive program featuring two types of threads: interrupt-
ible threads (type I) and blocking threads (type B) which perform a non-
interruptible computation or database transaction. An I-thread responds to user
commands which occasionally trigger the creation of a B-thread. A B-thread
may either terminate, or continue, or spawn another B-thread in an effort to
perform its tasks in parallel. Under probabilistic assumptions on the thread
behaviour, this scenario can be modelled as a stochastic branching process as
follows:

I
0.9
↪−−→ I B

0.2
↪−−→ D D

1
↪−→ D

I
0.1
↪−−→ (I, B) B

0.5
↪−−→ B (1)

B
0.3
↪−−→ (B,B)

This means, e.g., that a single step of an I-thread spawns a B-thread with prob-
ability 0.1. We have modelled the termination of a B-thread as a transformation
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I

I B

I

I B

B B

B D

(a) A prefix of a tree that the
example process might create.

ε I

1 I 2 B

11 I

111 I 112 B

21 B 22 B

211 B 221 D

(b) A finite tree over {I,B,D}.

Fig. 1. Figures for Section 1 (left) and 2 (right)

into a “dead” state D.1 A “run” of this process unravels an infinite tree whose
branches record the computation of a thread and its ancestors. For example,
Figure 1(a) shows the prefix of a tree that the example process might create.
The probability of creating this tree prefix is the product of the probabilities of
the applied rules, i.e., 0.1 · 0.9 · 0.1 · 0.3 · 0.5 · 0.2.

This example is an instance of a (stochastic multitype) branching process,
which is a classical mathematical model with applications in numerous fields in-
cluding biology, physics and natural language processing, see e.g. [12,2]. In [13]
an extension of branching processes was introduced to model parallel programs
with stochastic process creation. The broad applicability of branching processes
arises from their simplicity: each type models a class of threads (or tasks, ani-
mals, infections, molecules, grammatical structures) with the same probabilistic
behaviour.

This paper is about model checking the random trees created by branching
processes. Consider a specification that requires a linear-time property to hold
along all tree branches. In the example above, e.g., we may specify that “no
process should become forever blocking”, more formally, “on all branches of the
tree we see infinitely many I or D”. We would like to compute the probability
that all branches satisfy such a given ω-regular word property. Curiously, this
problem generalises two seemingly very different classical problems:

(i) If all rules in the branching process are of the form X
p
↪−→ Y , i.e., each node

has exactly one child, the branching process describes a finite-state Markov
chain. Computing the probability that a run of such a Markov chain satisfies
an ω-regular property is a standard problem in probabilistic verification, see
e.g. [5,16].

(ii) If for each type X in the branching process there is only one rule X
1
↪−→

α (where α is a nonempty sequence of types), then the branching process
describes a unique infinite tree. Viewing the types in α as possible successor

1 We disallow “terminating” rules like B
0.2
↪−−→ ε. This is in contrast to classical branch-

ing processes, but technically more convenient for model checking, where absence of
deadlocked states is customarily assumed.
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states of X in a finite nondeterministic transition system, the branches in the
created tree are exactly the possible runs in the finite transition systems. Of
course, checking if all runs in such a transition system satisfy an ω-regular
specification is also a well-understood problem.

One could expect that well-known Markov-chain based techniques for dealing
with problem (i) can be generalised to branching processes. This is not the case:
it follows from our results that in the example above, the probability that all
branches satisfy the mentioned property is 0;2 however, if the numbers 0.2 and
0.3 in (1) are swapped, the probability changes from 0 to 1. This is in sharp
contrast to finite-state Markov chains, where qualitative properties (satisfaction
with probability 0 resp. 1) do not depend on the exact probability of individual
transitions.

The rules of a branching process are reminiscent of the rules of probabilis-
tic pushdown automata (pPDA) or the equivalent model of recursive Markov
chains (RMCs). However, the model-checking algorithms for both linear-time
and branching-time logics proposed for RMCs and pPDAs [8,10,11] do not work
for branching processes, essentially because pPDA and RMCs specify Markov
chains, whereas branching processes specify random trees. Branching processes
cannot be transformed to pPDAs, at least not in a straightforward way. Note
that if the rules in the example above are understood as pPDA rules with I as
starting symbol, then B will never even occur as the topmost symbol.

To model check branching processes, we must leave the realm of Markov chains
and consider the probability space in terms of tree prefixes [12,2]. Consequently,
we develop algorithms that are very different from the ones dealing with the
special cases (i) and (ii) above. Nevertheless, for qualitative problems (satisfac-
tion with probability 0 resp. 1) our algorithms also run in polynomial time with
respect to the input models, even for branching processes that do not conform
to the special cases (i) and (ii) above.

Instead of requiring a linear-time property to hold on all branches, we con-
sider more general specifications in terms of deterministic parity tree automata.
In a nutshell, our model-checking algorithms work as follows: (1) compute the
“product” of the input branching process and the tree automaton; (2) reduce the
analysis of the resulting product process to the problem of computing the proba-
bility that all branches reach a “good” symbol; (3) compute the latter probability
by setting up and solving a nonlinear equation system. Step (1) can be seen as
an instance of the automata-theoretic model-checking approach. The equation
systems of step (3) are of the form x = f(x), where x is a vector of variables, and
f(x) is a vector of polynomials with nonnegative coefficients. Solutions to such
equation systems can be computed or approximated efficiently [10,7,9]. Step (2)
is, from a technical point of view, the main contribution of the paper; it requires
a delicate and nontrivial analysis of the behaviour of branching processes.

In Section 4 we also consider logic specifications. We propose a new logic,
PTTL, which relates to branching processes in the same manner as the logic
PCTL relates to Markov chains. Recall that PCTL contains formulae such as
2 Intuitively, this is because a B-thread more often clones itself than dies.
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[φUψ]≥p which specifies that the probability of runs satisfying φUψ is at least p.
For PTTL we replace the linear-time subformulae such as φUψ with tree subfor-
mulae such as φEUψ or φAUψ, so that, e.g., [φEUψ]≥p specifies that the prob-
ability of trees that have a branch satisfying φUψ is at least p, and [φAUψ]≥p
specifies that the probability of trees all whose branches satisfy φUψ is at least p.
We show that branching processes can be model checked against this logic in
PSPACE, and against its qualitative fragment in polynomial time.

Related Work. The rich literature on branching processes (see e.g. [12,2] and
the references therein) does not consider model-checking problems. Probabilistic
split-join systems [13] are branching processes with additional features for pro-
cess synchronisation and communication. The paper [13] focuses on performance
measures (such as runtime, space and work), and does not provide a functional
analysis. The models of pPDAs and RMCs also feature dynamic task creation
by means of procedure calls, however, as discussed above, the existing model-
checking algorithms [8,10,11] do not work for branching processes. Several recent
works [10,7,9] have studied the exact and approximative solution of fixed-point
equations of the above mentioned form. Our work connects these algorithms
with the model-checking problem for branching processes.

Organisation of the Paper. After some preliminaries (Section 2), we present our
results on parity specifications in Section 3. In Section 4 we propose the new logic
PTTL and develop model-checking algorithms for it. We conclude in Section 5.
Some proofs have been moved to a technical report [4].

2 Preliminaries

We let N and N0 denote the set of positive and nonnegative integers, respectively.
Given a finite set Γ , we write Γ ∗ :=

⋃
k∈N0

Γ k for the set of tuples and Γ+ :=⋃
k∈N Γ k for the set of nonempty tuples over Γ .

Definition 1 (Branching process). A branching process is a tuple Δ =
(Γ, ↪−→,Prob) where Γ is a finite set of types, ↪−→ ⊆ Γ × Γ+ is a finite set of
transition rules, Prob is a function assigning positive probabilities to transition
rules so that for every X ∈ Γ we have that

∑
X↪−→α Prob(X ↪−→ α) = 1.

We write X
p
↪−→ α if Prob(X ↪−→ α) = p. Observe that since the set of transition

rules is finite, there is a global upper bound KΔ such that |α| ≤ KΔ for all
X ↪−→ α.

A tree is a nonempty prefix-closed language V ⊆ N∗ for which there exists a
function βV : V → N0 such that for all w ∈ V and k ∈ N, wk ∈ V if and only
if k ≤ βV (w). βV (w) is called the branching degree of w in V . We denote by Bf
the set of finite trees, and by Bi the set of infinite trees without leaves (i.e. trees
such that βV (w) > 0 for all w ∈ V ). A prefix of V is a tree V ′ ⊆ V such that
for all w ∈ V ′, βV ′(w) ∈ {0, βV (w)}.
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A tree over Γ is a pair (V, ) where V is a tree, and  : V → Γ is a labelling
function on the nodes. Given a tree t = (V, ) with a node u ∈ V , we write
tu = (Vu, u) for the subtree of t rooted at u; here Vu = {w ∈ N∗ | uw ∈ V } and
u(w) = (uw) for w ∈ Vu. A tree (V ′, ′) is a prefix of (V, ) if V ′ is a prefix of
V and ′(w) = (w) for all w ∈ V ′.

A path (resp. branch) in a tree t = (V, ) is a finite (resp. infinite) sequence
u0, u1, . . . with ui ∈ V such that u0 = ε is the root of t, and ui+1 = uiki for ki ∈ N
is a child of ui. A branch label of t is a sequence (u0), (u1), . . ., where u0, u1, . . .
is a branch. The successor word of a node w ∈ V is σt(w) = (w1) . . . (wβV (w)).

Given a tree t = (V, ) over Γ and a subset W ⊆ V , we write t |= AFW
if all its branches go through W , i.e., for all v ∈ V there is a w ∈ W such
that v is a predecessor of w or vice versa. If Λ ⊆ Γ , we write t |= AFΛ for
t |= AF{w ∈ V | (w) ∈ Λ}. Similarly, we write t |= AGΛ if (w) ∈ Λ for all
w ∈ V .

Example 2. We illustrate these notions. Figure 1(b) shows a finite tree
t = (V, ) ∈ Bf over Γ with Γ = {I, B,D} and V =
{ε, 1, 11, 111, 112, 2, 21, 211, 22, 221} and, e.g., (ε) = I and (112) = B. We have
βV (ε) = 2 and βV (21) = 1 and βV (211) = 0. The node 2 is a predecessor of 211.
The tree t′ = (V ′, ′) with V ′ = {ε, 1, 2, 21, 22} and ′ being the restriction of 
on V ′ is a prefix of t. The sequence ε, 2, 21 is a path in t. We have σt(11) = IB.
The tree satisfies t |= AF{1, 21, 221} and t |= AF{I}.

A tree t = (V, ) over Γ is generated by a branching process Δ = (Γ, ↪−→,Prob) if
for every w ∈ V with βV (w) > 0 we have (w) ↪−→ σt(w). We write �Δ� and �Δ�
for the sets of trees (V, ) generated by Δ with V ∈ Bf and V ∈ Bi, respectively.
For any X ∈ Γ , �Δ�X ⊆ �Δ� and �Δ�X ⊆ �Δ� contain those trees (V, ) for
which (ε) = X .

Definition 3 (Probability space of trees, cf. [12, Chap. VI]). Let Δ =
(Γ, ↪−→,Prob) be a branching process. For any finite tree t = (V, ) ∈ �Δ�,
let the cylinder over t be CylΔ(t) := {t′ ∈ �Δ� | t is a prefix of t′}, and
define pΔ(t) :=

∏
w∈V :βV (w)>0 Prob((w), σt(w)). For each X ∈ Γ we de-

fine a probability space (�Δ�X , ΣX ,PrX), where ΣX is the σ-algebra generated
by {CylΔ(t) | t ∈ �Δ�X}, and PrX is the probability measure generated by
PrX(CylΔ(t)) = pΔ(t). Sometimes we write PrΔX to indicate Δ. We may drop the
subscript of PrX if X is understood. We often write tX to mean a tree t ∈ �Δ�X
randomly sampled according to the probability space above.

Example 4. Let Δ = (Γ, ↪−→,Prob) be the branching process with Γ = {I, B,D}
and the rules as given in (1) on page 271. The tree t from Figure 1(b) is generated
byΔ: we have t ∈ �Δ�I . We have PrI(CylΔ(t)) = pΔ(t) = 0.1·0.9·0.1·0.3·0.5·0.2;
this is probability of those trees t′ ∈ �Δ�I that have prefix t.

We say that a quantity q ∈ [0, 1] is PPS-expressible if one can compute, in
polynomial time, an integer m ∈ N and a fixed-point equation system x = f(x),
where x is a vector of m variables, f is a vector of m multivariate polynomials
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over x with nonnegative rational coefficients, f(1) ≤ 1 where 1 denotes the
vector (1, . . . , 1), and q is the first component of the least nonnegative solution
y ∈ [0,∞)m of x = f(x).

Proposition 5. Let q be PPS-expressible. We have:

(a) For τ ∈ {0, 1} one can decide in (strongly) polynomial time whether q = τ .
(b) For τ ∈ Q one can decide in polynomial space whether q �� τ , where �� ∈

{<,>,≤,≥,=, �=}.
(c) One can approximate q within additive error 2−j in time polynomial in both j

and the (binary) representation size of f .

Part (a) follows from [10,6]. Part (b) is shown in [10, section 4] by appealing to
the existential fragment of the first-order theory of the reals, which is decidable
in PSPACE, see [3,14]. Part (c) follows from a recent result [9, Corollary 4.5]. The
following proposition follows from a classical result on branching processes [12].

Proposition 6. Let Δ = (Γ, ↪−→,Prob) be a branching process. Let X ∈ Γ and
Λ ⊆ Γ . Then Pr[tX |= AFΛ] is PPS-expressible.

3 Parity Specifications

In this section we show how to compute the probability of those trees that satisfy
a given parity specification.

A (top-down) deterministic (amorphous) parity tree automaton (DPTA) is a
tuple A = (Q,Γ, q0, δ, c), where Q is the finite set of states, q0 ∈ Q is the initial
state, δ : Q × Γ × N → Q∗ is the transition function satisfying |δ(q,X, n)| = n
for all q,X, n, and c : Q → N is a colouring function. Such an automaton A
maps a tree t = (V, ) over Γ to the (unique) tree A(t) = (V, ′) over Q such
that (ε) = q0 and for all w ∈ V , σA(t)(w) = δ(′(w), (w), βV (w)).

Automaton A = (Q,Γ, q0, δ, c) accepts a tree t over Γ if for all branch la-
bels q0q1 · · · ∈ Qω of A(t) the highest colour that occurs infinitely often in
c(q0), c(q1), . . . is even.

Example 7. Recall (e.g., from [15]) that any ω-regular word property (e.g., any
LTL specification) can be translated into a deterministic parity word automaton.
Such an automaton, in turn, can be easily translated into a DPTA which specifies
that the labels of all branches satisfy the ω-regular word property. We do not
spell out the translation, but let us note that in the resulting tree automaton,
for all (q,X) ∈ Q× Γ there is q′ ∈ Q such that δ(q,X, k) = (q′, . . . , q′) for all k.

Given a colouring function c : Γ → N, a tree (V, ) over Γ is called good for c if
for each branch u0, u1, · · · the largest number that occurs infinitely often in the
sequence c((u0)), c((u1)), . . . is even. The following proposition is immediate.

Proposition 8. Let Δ = (Γ, ↪−→,Prob) be a branching process, and let A =
(Q,Γ, q0, δ, c) be a DPTA. Define the product of Δ and A as the branching

process Δ• = (Γ × Q, ↪−→•,Prob•) with (X, q)
p
↪−→• (Y1, q1) . . . (Yk, qk)) for X

p
↪−→
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Y1 . . . Yk, where (q1, . . . , qk) = δ(q,X, k). Define c• : Γ ×Q → N by c•(X, q) :=
c(q). Then for all X ∈ Γ we have

PrΔX [t is accepted by A] = PrΔ•
(X,q0)

[t is good for c•] .

In view of Proposition 8, it suffices to compute the probability
Pr[tX is good for c], where a branching process Δ = (Γ, ↪−→,Prob) with
X ∈ Γ and a colouring function c : Γ → N are fixed for the rest of the
section. We write Pr[tX is good] if c is understood. We distinguish between the
qualitative problem, i.e., computing whether Pr[tX is good] = 1 holds for a given
X ∈ Γ , and the quantitative problem, i.e., the computation of Pr[tX is good].

3.1 The Qualitative Problem

The outline of this subsection is the following: We will show that the qualitative
problem can be solved in polynomial time (Theorem 12). First we show (Proposi-
tion 9) that it suffices to compute all clean types, where “clean” is defined below.
We will show (Lemma 11) that a type X is clean if and only if Pr[tX |= AFΛ] = 1
holds for suitable set Λ ⊆ Γ . By Proposition 6 the latter condition can be checked
in polynomial time, completing the qualitative problem.

If there exists a tree (V, ) ∈ �Δ�X and a node u ∈ V with (u) = Y , then we
say that Y is reachable from X . Given X ∈ Γ and a finite word w = X0 · · ·Xm ∈
Γ+, we say that w is X-closing if m ≥ 1 and Xm = X and c(Xi) ≤ c(X) for
0 ≤ i ≤ m. A branch with label X0X1 · · · ∈ Γω is called X-branch if X0 = X
and there is a sequence 0 = m0 < m1 < m2 < · · · such that Xmi · · ·Xmi+1 is
X-closing for all i ∈ N. We say that a type Y ∈ Γ is odd (resp. even), if c(Y ) is
odd (resp. even). Observe that a tree t is good if and only if for all its vertices u
and all odd types Y the subtree tu does not have a Y -branch. A type Y ∈ Γ
is clean if Y is even or Pr[tY has a Y -branch] = 0. The following proposition
reduces the qualitative problem to the computation of all clean types.

Proposition 9. We have that Pr[tX is good] = 1 if and only if all Y reachable
from X are clean.

Proof. If there is an unclean reachable Y , then Pr[tY is good] < 1 and so
Pr[tX is good] < 1. Otherwise, for each node v in tX and for each odd Y we
have that Pr[(tX)v has a Y -branch] = 0. Since the set of nodes in a tree is
countable, it follows that almost surely no subtree of tX has a Y -branch for
odd Y ; i.e., tX is almost surely good. .�

Call a path in a tree X-closing if the corresponding label sequence is X-closing.
Given X ∈ Γ , we define

NX := {Y ∈ Γ | no tree in �Δ�Y has an X-closing path} .

Note that c(Y ) > c(X) implies Y ∈ NX and that NX is computable in poly-
nomial time. A word X0X1 · · · ∈ (Γ ∗ ∪ Γω) is called X-failing if no prefix is
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X-closing and there is i ≥ 0 with Xi ∈ NX . A branch in a tree is called X-
failing if the corresponding branch label is X-failing. Given X ∈ Γ and a tree t,
let ClosX(t) (resp. FailX(t)) denote the set of those nodes w in t such that the
path to w is X-closing (resp. X-failing) and no proper prefix of this path is
X-closing (resp. X-failing). We will need the following lemma.

Lemma 10. Define the events C := {tX | tX |= AF (ClosX(tX) ∪ FailX(tX))}
and I := {tX | ClosX(tX) is infinite}. Then C ∩ I = ∅ and Pr[C ∪ I] = 1.

The following lemma states in particular that an odd type X is clean if and only
if Pr[tX |= AFNX ] = 1. We prove something slightly stronger:

Lemma 11. Define the events F := {tX | tX |= AFNX} and H := {tX |
tX has an X-branch}. Then F ∩H = ∅ and Pr[F ∪H ] = 1.

Now we have:

Theorem 12. One can decide in polynomial time whether Pr[tX is good] = 1.

Proof. By Proposition 9 it suffices to show that cleanness can be determined
in polynomial time. By Lemma 11 an odd type X is clean if and only if
Pr[tX |= AFNX ] = 1. The latter condition is decidable in polynomial time by
Proposition 6. .�

Example 13. Consider the branching process with Γ = {1, 2, 3, 4} and the rules

1
1/3
↪−−→ 11, 1

2/3
↪−−→ 4, 2

1/2
↪−−→ 13, 2

1/2
↪−−→ 23, 3

2/3
↪−−→ 33, 3

1/3
↪−−→ 1, 4

1
↪−→ 4, and the

colouring function c with c(i) = i for i ∈ {1, 2, 3, 4}. Using a simple reachability
analysis one can compute the sets N1 = {2, 3, 4}, N2 = {1, 3, 4}, N3 = {1, 4},
N4 = ∅. Applying Proposition 6 we find Pr[t3 |= AFN3] < 1 = Pr[t1 |= AFN1].
It follows by Lemma 11 that the only unclean type is 3. Since type 3 is only
reachable from 2 and from 3, Proposition 9 implies that Pr[tX is good] = 1 holds
if and only if X ∈ {1, 4}.

3.2 The Quantitative Problem

Define G := {X ∈ Γ | all Y reachable from X are clean}. The following Propo-
sition 14 states that Pr[tX is good] = Pr[tX |= AFG]. This implies, by Proposi-
tion 6, that the probability is PPS-expressible (see Theorem 15).

Proposition 14. We have Pr[tX is good] = Pr[tX |= AFG].

This implies the following theorem.

Theorem 15. For any X ∈ Γ we have that Pr[tX is good] is PPS-expressible.

Proof. By Proposition 14 we have Pr[tX is good] = Pr[tX |= AFG]. So we can
apply Proposition 6 with Λ := G. Note that G can be computed in polynomial
time, as argued in the proof of Theorem 12. .�
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Example 16. We continue Example 13, where we have effectively computed
G = {1, 4}, and thus established that Pr[t1 is good] = Pr[t4 is good] = 1. By
Proposition 14 the probabilities Pr[t2 is good] and Pr[t3 is good] are given by
Pr[t2 |= AFG] and Pr[t3 |= AFG]. Proposition 6 assures that these probabilities
are PPS-expressible; in fact they are given by the least nonnegative solution of
the equation system [x2 = 1

2x3 +
1
2x2x3, x3 = 2

3x
2
3 +

1
3 ], which is x2 = 1

3 and
x3 = 1

2 . Hence, we have Pr[t2 is good] = 1
3 and Pr[t3 is good] = 1

2 .

A Lower Bound. We close the section with a hardness result in terms of the
PosSLP problem, which asks whether a given straight-line program or, equiv-
alently, arithmetic circuit with operations +, −, ·, and inputs 0 and 1, and a
designated output gate, outputs a positive integer or not. PosSLP is in PSPACE,
but known to be in NP. The PosSLP problem is a fundamental problem for nu-
merical computation, see [1] for more details.

For given Γ with D ∈ Γ , consider the DPTA Ahit = ({q, r}, Γ, a, δ, c) with
c(q) = 1 and c(r) = 2; δ(q,X, 1) = (q) and δ(q,X, 2) = (q, q) for X ∈ Γ \
{D}; δ(q,D, 1) = (r) and δ(q,D, 2) = (r, r); δ(r,X, 1) = (r) and δ(r,X, 2) =
(r, r) for X ∈ Γ . Automaton Ahit specifies that all branches satisfy the LTL
property FD, i.e., all branches eventually hit D. Let QUANT-HIT denote the
problem to decide whether PrΔX [t is accepted by Ahit ] > p holds for a given
branching process Δ = (Γ, ↪−→,Prob) with X ∈ Γ and a given rational p ∈ (0, 1).
By Theorem 15 and Proposition 5, QUANT-HIT is in PSPACE. We have the
following proposition:

Proposition 17 (see Theorem 5.3 of [10]). QUANT-HIT is PosSLP-hard.

4 Logic Specifications

In this section, we propose a logic akin to PCTL, called probabilistic tree tempo-
ral logic, to specify the properties of random trees generated from a branching
process. We also present model-checking algorithms for this logic.

Definition 18 (PTTL). Probabilistic Tree Temporal Logic (PTTL) formulae
over a set Σ of atomic propositions are defined by the following grammar:

φ, φ′ ::= � | a | ¬φ | φ ∧ φ′ | [ψ]��r
ψ ::= AXφ | EXφ | φAUφ′ | φEUφ′ | φARφ′ | φERφ′ ,

where a ∈ Σ, �� ∈ {<,≤,≥, >}, and r ∈ Q ∩ [0, 1]. If r ∈ {0, 1} holds for all
subformulae of a PTTL formula φ, we say that φ is in the qualitative fragment
of PTTL. We use standard abbreviations such as ⊥ for ¬�, AFφ for �AUφ,
EGφ for ⊥ERφ, etc.

For the PTTL semantics we need the notion of a labelled branching process,
which is a branching process Δ = (Γ, ↪−→,Prob) extended by a function χ : Γ →
2Σ, where χ(X) indicates which atomic propositions the type X satisfies.



280 T. Chen, K. Dräger, and S. Kiefer

Definition 19 (Semantics of PTTL). Given a labelled branching process Δ =
(Γ, ↪−→,Prob, χ), we inductively define a satisfaction relation |= as follows, where
X ∈ Γ :

X |= �
X |= a ⇔ a ∈ χ(X)
X |= ¬φ ⇔ X �|= φ
X |= φ ∧ φ′ ⇔ X |= φ and X |= φ′

X |= [ψ]��r ⇔ PrΔX [tX |= ψ] �� r

t |= AXφ ⇔ for all branches u0u1 · · · of t we have (u1) |= φ
t |= φAUφ′ ⇔ for all branches u0u1 · · · of t there exists i ∈ N with

(ui) |= φ′ and for all 0 ≤ j < i we have (uj) |= φ
t |= φARφ′ ⇔ for all branches u0u1 · · · of t and for all i ∈ N we have

(ui) |= φ′ or there exists 0 ≤ j < i with (uj) |= φ

The modalities EX, EU and ER are defined similarly, with “for all branches”
replaced by “there exists a branch”.

We now present the model checking algorithm. The algorithm shares its basic
structure with the well-known algorithm for (P)CTL and finite (probabilistic)
transition systems. Given a PTTL formula φ, the algorithm recursively evaluates
the truth values of the PTTL subformulae ψ of φ for all types. The boolean
operators can be dealt with as in the CTL algorithm. Hence, it suffices to examine
formulae of the form [ψ]��r. Observe that we have EXφ ≡ ¬AX¬φ and φERφ′ ≡
¬(¬φAU¬φ′) and φEUφ′ ≡ ¬(¬φAR¬φ′) and

X |= [¬φ]��r if and only if X |= [φ]�̄�1−r ,

where �̄� ∈ {≥, >,<,≤} is the complement operator of �� ∈ {<,≤,≥, >}. Hence,
it suffices to deal with the following three cases: (i) X |= [AXφ]��r; (ii) X |=
[φAUψ]��r; (iii) X |= [φARψ]��r. We assume in the following case distinction
that the algorithm has already computed the truth values of the subformulae
φ, ψ. One could now construct a suitable DPTA for each of the cases (i)–(iii),
and proceed according to the machinery of Section 3. Instead we present in the
following a more direct and more efficient algorithm which takes advantage of
the special shape of the linear-time operators X, U and R.

Case (i): We have Pr[tX |= AXφ] =
∑

X
p

↪−→Y1...Yk

Y1,...,Yk|=φ

p, which is easy to compute. So

one can decide in polynomial time whether X |= [AXφ]��r.
Case (ii): We reduce the check of the φAUψ modality to a check of AF. To
this end, we define a branching process Δ′ = (Γ × {0, 12 , 1}, ↪−→′,Prob

′) which
tracks the “status” of φAUψ. We define Δ′ in terms of an auxiliary function
fφ,ψ : Γ → {0, 12 , 1} with fφ,ψ(Y ) = 0 if Y |= ¬φ ∧ ¬ψ, fφ,ψ(Y ) = 1

2 if

Y |= φ ∧ ¬ψ, and fφ,ψ(Y ) = 1 if Y |= ψ. For any rule X
p
↪−→ Y1 . . . Yk in Δ,

there are three corresponding rules in Δ′, namely (X, 0)
p
↪−→ (Y1, 0) . . . (Yk, 0),
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(X, 1)
p
↪−→ (Y1, 1) . . . (Yk, 1), and (X, 1

2 )
p
↪−→ (Y1, fφ,ψ(Y1)) . . . (Yk, fφ,ψ(Yk)). By

this construction we achieve PrΔX [tX |= φAUψ] = PrΔ
′

X′ [tX′ |= AFΛ] for X ′ =
(X, fφ,ψ(X)) and Λ := Γ × {1}. Hence, using Propositions 5 and 6 we obtain
that whether X |= [φAUψ]��r holds is decidable in PSPACE; and in polynomial
time for r ∈ {0, 1}.
Case (iii): Similarly to case (ii) we reduce the check of φARψ to a check of AG.
This time we define Δ′ = (Γ × {0, 12 , 1}, ↪−→′,Prob

′) in terms of an auxiliary
function gφ,ψ : Γ → {0, 12 , 1} with gφ,ψ(Y ) = 0 if Y |= ¬ψ, gφ,ψ(Y ) = 1

2 if
Y |= ¬φ ∧ ψ, gφ,ψ(Y ) = 1 if Y |= φ ∧ ψ. The rules of Δ′ are defined
as in case (ii), except that fφ,ψ is replaced with gφ,ψ. By this construction we

achieve PrΔX [tX |= φARψ] = PrΔ
′

X′ [tX′ |= AGΛ] for X ′ = (X, gφ,ψ(X)) and Λ :=
Γ × { 12 , 1}. The following lemma allows to express this probability in terms of
AF instead of AG:

Lemma 20. Let Δ = (Γ, ↪−→,Prob) be a branching process. Let Λ ⊆ Γ such
that no type in Λ is reachable from any type in Γ \ Λ. Define G := {Y ∈
Λ | all types reachable from Y are in Λ}. Let X ∈ Γ . Then Pr[tX |= AGΛ] =
Pr[tX |= AFG].

To summarize case (iii): we have reduced AR to AG and then AG to AF. Hence,
using Propositions 5 and 6 we obtain that whether X |= [φARψ]��r holds is
decidable in PSPACE; and in polynomial time for r ∈ {0, 1}.

As the overall algorithm computes the truth values of the subformulae recur-
sively, we have proved the following theorem:

Theorem 21. Model checking branching processes against PTTL is
in PSPACE. Model checking branching processes against the qualitative
fragment of PTTL is in P.

5 Conclusions and Future Work

Branching processes are a basic formalism for modelling probabilistic parallel
programs with dynamic process creation. This paper is the first to consider
the verification of branching processes, We have shown how to model check
specifications given in terms of deterministic parity automata, a problem that
unifies and strictly generalises linear-time model-checking problems for Markov
chains and for (nonprobabilistic) nondeterministic transition systems. We have
also provided model-checking algorithms for a new logic, PTTL, suitable for
specifying probabilistic properties of random trees. To obtain these results we
have provided reductions to computing the probability of hitting “good” states
along all branches.

Future research in this area should involve:

– the complexity of the problem where the specification is an LTL formula
required to hold on all branches;

– the problem where deterministic parity automata are replaced by other tree
specification formalisms, such as CTL (or CTL∗) formulae;
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– extending the model-checking algorithms to accommodate the synchronisa-
tion and communication features of probabilistic split-join systems.

It seems that at least the latter two problems require additional techniques,
as the children of a node in the branching process can no longer be treated
independently.

Acknowledgements. We thank anonymous reviewers for their valuable
feedback.
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Abstract. In this paper we carry out a systematic study of a natural
covering problem, used for identification across several areas, in the realm
of parameterized complexity. In the Test Cover problem we are given
a set [n] = {1, . . . , n} of items together with a collection, T , of distinct
subsets of these items called tests. We assume that T is a test cover, i.e.,
for each pair of items there is a test in T containing exactly one of these
items. The objective is to find a minimum size subcollection of T , which
is still a test cover. The generic parameterized version of Test Cover

is denoted by p(k, n, |T |)-Test Cover. Here, we are given ([n], T ) and
a positive integer parameter k as input and the objective is to decide
whether there is a test cover of size at most p(k, n, |T |). We study four
parameterizations for Test Cover and obtain the following:

(a) k-Test Cover, and (n−k)-Test Cover are fixed-parameter tractable
(FPT), i.e., these problems can be solved by algorithms of runtime
f(k) · poly(n, |T |), where f(k) is a function of k only.
(b) (|T | − k)-Test Cover and (log n+ k)-Test Cover are W[1]-hard.
Thus, it is unlikely that these problems are FPT.

1 Introduction

The input to the Test Cover problem consists of a set of items, [n] :=
{1, 2, . . . , n}, and a collection of distinct sets, T = {T1, . . . , Tm}, called tests.
We say that a test Tq separates a pair i, j of items if |{i, j} ∩ Tq| = 1. Subcol-
lection T ′ ⊆ T is a test cover if each pair i, j of distinct items is separated by a
test in T ′. The objective is to find a test cover of minimum size, if one exists.
Since it is easy to decide, in polynomial time, whether the collection T itself is
a test cover, henceforth we will assume that T is a test cover.

Test Cover arises naturally in the following general setting of identification
problems: Given a set of items and a set of binary attributes that may or may
not occur in each item, the aim is to find the minimum size subset of attributes

B. Rovan, V. Sassone, and P. Widmayer (Eds.): MFCS 2012, LNCS 7464, pp. 283–295, 2012.
c© Springer-Verlag Berlin Heidelberg 2012
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(corresponding to a minimum test cover) such that each item can be uniquely
identified from the information on which of this subset of attributes it contains.
Test Cover arises in fault analysis, medical diagnostics, pattern recognition,
and biological identification (see, e.g., [11,12,16]).

The Test Cover problem has been also studied extensively from an algorith-
mic view point. The problem is NP-hard, as was shown by Garey and Johnson [7].
Moreover, Test Cover is APX-hard [11]. There is an O(log n)-approximation
algorithm for the problem [16] and there is no o(logn)-approximation algorithm
unless P=NP [11]. These approximation results are obtained using reductions
from Test Cover to the well-studied Set Cover problem, where given a col-
lection S of subsets of [n] covering [n] (i.e., ∪X∈SX = [n]) and integer t, we are
to decide whether there is a subcollection of S of size t covering [n].

In this paper we carry out a systematic study of Test Cover in the realm
of parameterized complexity1. The following will be a generic parameterization
of the problem:

p(k, n,m)-Test Cover

Instance: A set T of m tests on [n] such that T is a test cover.
Parameter: k.
Question: Does T have a test cover with at most p(k, n,m) tests?

We will consider four parameterizations of Test Cover: k-Test Cover, (m−
k)-Test Cover, (n− k)-Test Cover, and (logn+ k)-Test Cover. The first
parameterization is standard; its complexity is not hard to establish since it is
well-known that there is no test cover of size less than +logn, [11] and the bound
is tight. This bound suggests the parameterization (log n + k)-Test Cover

(above a tight lower bound). The parameterization (m − k)-Test Cover is
a natural parameterization below a tight upper bound. There is always a test
cover of size at most n− 1 [2] and T = {{1}, . . . , {n− 1}} shows that the bound
is tight. Thus, (n − k)-Test Cover is another parameterization below a tight
upper bound.

In this paper, we will use some special cases of the following generic parame-
terization of Set Cover:

p(k, n,m)-Set Cover

Instance: A collection S of m subsets of [n] covering [n].
Parameter: k.
Question: Does S contain a subcollection of size p(k, n,m) covering [n]?

Three of our parameterizations for Test Cover are below or above guaranteed
lower or upper bounds. The study of parameterized problems above a guaranteed
lower/upper bound was initiated by Mahajan and Raman [14]. They showed that
some above guarantee versions of Max Cut and Max Sat are FPT; in the case
of Max Sat the input is a CNF formula with m clauses together with an integer

1 Basic notions on parameterized complexity are given in the end of this section.
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k (the parameter) and the question is whether there exists an assignment that
satisfies at least m/2 + k clauses. Later, Mahajan et al. [15] published a paper
with several new results and open problems around parameterizations beyond
guaranteed lower and upper bounds. In a breakthrough paper Gutin et al. [9]
developed a probabilistic approach to problems parameterized above or below
tight bounds. Alon et al. [1] combined this approach with a method from Fourier
analysis to obtain an FPT algorithm for parameterized Max r-SAT beyond the
guaranteed lower bound. In the same paper a quadratic kernel was also given
for Max r-SAT. Other significant results in this direction include quadratic
kernels for ternary permutation constraint satisfaction problems parameterized
above average and results on systems of linear equations over the field of two
elements [3,4,10].

We establish parameterized complexity of all four parameterizations of Test

Cover:

(i) Since there is no test cover of size less than +logn,, k-Test Cover is
FPT: if k < logn, the answer for k-Test Cover is No and, otherwise, n ≤ 2k

and m ≤ 2n ≤ 22
k

and so we can solve k-Test Cover by brute force in time
dependent only on k.

(ii) In Section 2, we provide a polynomial-time reduction from the Indepen-

dent Set problem to (m−k)-Test Cover to show that (m−k)-Test Cover

is W[1]-hard. A reduction from (m − k)-Set Cover to (m − k)-Test Cover

and a result from [8] allows us to conclude that (m− k)-Test Cover is W[1]-
complete. Thus, (m − k)-Test Cover is not fixed-parameter tractable unless
FPT=W[1].

(iii) In Section 3, we prove the main result of this paper: (n−k)-Test Cover

is FPT. The proof is quite nontrivial and utilizes a “miniaturized” version of
(n− k)-Test Cover introduced and studied in Subsection 3.1.

(iv) Moret and Shapiro [16] obtained a polynomial-time reduction from Set

Cover to Test Cover such that the Set Cover problem has a solution of size
k if and only if its reduction to Test Cover has a solution of size k + +logn,.
Since k-Set Cover is W[2]-complete [5], we conclude that (logn + k)-Test

Cover is W[2]-hard. Thus, (log n + k)-Test Cover is not fixed-parameter
tractable provided FPT �= W[2].

Basics on Parameterized Complexity. A parameterized problem Π can be
considered as a set of pairs (I, k), where I is the problem instance and k (usually
a nonnegative integer) is the parameter. Π is called fixed-parameter tractable if
membership of (I, k) inΠ can be decided by an algorithm of runtime O(f(k)|I|c),
where |I| is the size of I, f(k) is an arbitrary function of the parameter k only,
and c is a constant independent from k and I. The class of fixed-parameter
tractable problems is denoted by FPT.

When the decision time is replaced by the much more powerful O(|I|f(k)),
we obtain the class XP, where each problem is polynomial-time solvable for any
fixed value of k. There is an infinite number of parameterized complexity classes
between FPT and XP (for each integer t ≥ 1, there is a class W[t]) and they
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form the following tower: FPT ⊆ W [1] ⊆ W [2] ⊆ · · · ⊆ W [P ] ⊆ XP. For the
definition of classes W[t], see, e.g., [5,6]. It is well-known that FPT�=XP and it
is widely believed that already FPT �=W[1]. Thus, by proving that a problem is
W[1]-hard, we essentially rule out that the problem is fixed-parameter tractable
(subject to FPT �=W[1]). For more information on parameterized complexity, see
monographs [5,6,17].

2 Complexity of (m − k)-Test Cover

In this section we give the hardness result for (m− k)-Test Cover.

Theorem 1. (m− k)-Test Cover is W[1]-complete.

Proof. We will give a reduction from the W[1]-hard k-Independent Set prob-
lem to (m− k)-Test Cover. An input to k-Independent Set consists of an
undirected graph G = (V,E) and a positive integer k (the parameter) and the
objective is to decide whether there exists an independent set of size at least k
in G. A set I ⊆ V is independent if no edge of G has both end-vertices in I.

Let G be an input graph to k-Independent Set with vertices v1, . . . , vp
and edges e1, . . . , eq. We construct an instance of (m − k)-Test Cover as
follows. The set of items is {ei, e′i : i ∈ [q]} and the collection of tests is
{Tj : j ∈ [p]} ∪ {T ′i : i ∈ [q − 1]}, where Tj = {ei : vj ∈ ei}, the set of
of edges of G incident to vj , and T ′i = {ei, e′i}.

A set U of vertices of G = (V,E) is a vertex cover if every edge of G has at
least one end-vertex in U . It is well-known and easy to see that U is a vertex
cover if and only if V \U is an independent set. Consider a minimum size vertex
cover U of G, and a test subcollection {Tj : vj ∈ U} ∪ {T ′i : i ∈ [q− 1]}. Observe
that the latter is a test cover, since a pair ei, e

′
j (i �= j) is separated by T ′min{i,j},

as are the pairs ei, ej and e′i, e
′
j, and a pair ei, e

′
i is separated by Tj for some

vj ∈ U such that vj ∈ ei. Such a vj exists since U is a vertex cover.
A test cover must use all T ′i as otherwise we cannot separate e′i, e

′
q for some

i �= q. A test cover must also use at least |U | of Tj tests. Suppose not, and
consider the corresponding set W of vertices, such that |W | < |U |. Then every
ei is separated from e′i by Tj for some vj ∈ W , and so W forms a vertex cover,
contradicting the minimality of U . Hence G has a vertex cover of size t if and
only if there is a test cover of size q − 1 + t.

The number of tests is M = q − 1 + p, and so there is a test cover of size
M − k = q − 1 + p − k if and only if G has an independent set with at least
k vertices. Since k-Independent Set is W[1]-hard, (m − k)-Test Cover is
W[1]-hard as well.

To prove that (m − k)-Test Cover is in W[1], we will use the following
reduction of Test Cover to Set Cover by Moret and Shapiro [16]. Consider
an instance of Test Cover with set [n] of items and set T = {T1, . . . , Tm} of
tests. The corresponding instance of Set Cover has ground set V = {(i, j) :
1 ≤ i < j ≤ n} and set collection {Sq : q ∈ [m]}, where Sq = {(i, j) ∈ V :
Tq separates i, j}. Observe that the instance of Test Cover has a test cover of
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size μ if and only if the corresponding instance of Set Cover has a set cover
of size μ. It is proved in [8, Theorem 4] that (m − k)-Set Cover is in W[1].
Hence, (m− k)-Test Cover is in W[1] as well. This completes the proof. .�

3 Complexity of (n − k)-Test Cover

In this section we prove that (n− k)-Test Cover is fixed-parameter tractable.
Towards this we first introduce an equivalence relation on [n].

Given a subcollection T ′ ⊆ T , and two items i, j ∈ [n], i �= j we write that
i ≡T ′ j, if i, j is not separated by any tests in T ′. Clearly, ≡T ′ is an equivalence
relation on [n]. Essentially, each equivalence class is a maximal set C ⊆ [n] such
that no pair i, j ∈ C is separated by a test in T ′; we say that C is a class induced
by T ′. Observe that T ′ is a test cover if and only if each class induced by T ′ is
a singleton, i.e., there are exactly n classes induced by T ′.

3.1 k-Mini Test Cover

To solve (n−k)-Test Cover we first introduce a “miniaturized” version of the
problem, namely, the k-Mini Test Cover problem. Here, we are given a set [n]
of items and a collection T = {T1, . . . , Tm} of tests. As with Test Cover, we
assume that T is a test cover. We say that a subcollection T ′ ⊆ T is a k-mini
test cover if |T ′| ≤ 2k and the number of classes induced by T ′ is at least |T ′|+k.
We say a test T separates a set S if there exist i, j ∈ S such that T separates
i, j. Our main goal in this subsection is to show that the (n − k)-Test Cover

problem and the k-Mini Test Cover problem are equivalent. Towards this we
first show the following lemma.

Lemma 1. Suppose that T is a test cover for [n], F ⊆ T and the number of
classes induced by F is at least |F|+ k. Then F can be extended to a test cover
of size at most n− k. Moreover, if T contains all singletons, this is possible by
adding only singletons.

Proof. Add tests from T to F one by one such that each test increases the
number of classes induced by F , until the number of classes is n. This can be
done, since if we have less than n classes, there is a class C containing at least
two items. For i, j ∈ C there exists a test T in T \F that separates i, j which may
be added to F . If we are only permitted to add singletons, then pick T = {i}.
Let F ′ be the subcollection produced from F in this way. Observe that F ′ is
a test cover. Since F induces at least |F| + k classes, we need to add at most
n− (|F|+ k) tests to produce F ′. Thus |F ′| ≤ n− k, as required. .�

We now define the notion of a C-test as follows.

Definition 1. Let C ⊆ [n]. A test S ∈ T is a C-test if C \S �= ∅ and S ∩C �= ∅
(i.e. S separates C). We also define the local portion of a C-test S as L(S) =
C ∩ S and the global portion G(S) = S \ C.
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In order to prove Theorem 2 below we need the following greedy algorithm.

Greedy-mini-test(T ):
Start with F = ∅. Add two tests Ti, Tj from T to F if this will
increase the number of classes induced by F by at least 3. Add a test
Ti from T to F if this will increase the number of classes induced by
F by at least 2. Stop the construction if we reach |F| ≥ 2k − 2.

Lemma 2. If the algorithm Greedy-mini-test produces a set F with |F| ≥ 2k−2,
then F is a k-mini test cover.

Proof. Observe that throughout Greedy-mini-test we have at least + 32 |F|, + 1
classes, and when |F| ≥ 2k − 2 then + 32 |F|, + 1 ≥ |F| + k. By construction we
note that |F| ≤ 2k − 1 < 2k, which implies that F is a k-mini test cover. .�

Theorem 2. Suppose that T is a test cover for [n]. Then T contains a test
cover of size at most n− k if and only if T contains a k-mini test cover.

Proof. First suppose that T contains a k-mini test cover F . Then by Lemma 1,
F can be extended to a test cover of size at most n− k.

Conversely, suppose T contains a test cover F ′ of size at most n − k. Now
use algorithm Greedy-mini-test on F ′. If |F| ≥ 2k − 2, where F is produced by
Greedy-mini-test, then we are done by Lemma 2, so assume that |F| < 2k − 2.
This implies that the following holds, as otherwise the algorithm wouldn’t have
terminated when it did.

1. For every test Ti ∈ F ′\F , Ti does not separate more than one class induced
by F .

2. For every class C induced by F , and for every pair Ti, Tj of C-tests in F ′\F ,
at least one of (Ti ∩ Tj) ∩ C, (Ti\Tj) ∩ C, (Tj\Ti) ∩ C and C\(Ti ∪ Tj) is
empty.

It can be seen that these properties hold even if we add one extra test from
F ′\F to F .

Therefore if we add t tests from F ′\F , one at a time, this will subdivide a class
C into at most t+1 classes. Furthermore, since each test separates at most one
class, adding t tests from F ′\F to F will increase the number of classes induced
by F by at most t. It follows that F ′ induces less than |F| + k + |F ′\F| =
|F ′|+ k ≤ n classes. But this is a contradiction as F ′ is a test cover. .�

By Theorem 2 we get the following result, which allows us to concentrate on
k-Mini Test Cover in the next subsection.

Corollary 1. The problem (n− k)-Test Cover is FPT if and only if k-Mini

Test Cover is FPT.
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3.2 Main Result

We start with the following easy observation.

Lemma 3. Let T be a test cover. Let T ∗ be the test cover formed from T by
adding every singleton not already in T . Then T ∗ has a k-mini test cover if and
only if T also has a k-mini test cover.

Proof. Assume T ∗ has a k-mini test cover F . Form F ′ from F by removing all
singletons. For each singleton removed the number of classes decreases by at
most one. Hence, F ′ induces at least |F ′|+ k classes, and |F ′| ≤ 2k. Thus, F ′ is
a k-mini test cover for T . The other direction is immediate since T ⊆ T ∗. .�

Due to Lemma 3, hereafter we assume that every singleton belongs to T .
We will apply the algorithm Greedy-mini-test to find a collection F ⊆ T of

tests. If |F| ≥ 2k − 2 then we are done by Lemma 2, so for the rest of the
arguments we assume that |F| < 2k − 2. By construction, adding any new test
to F increases the number of classes by at most 1 and adding any two new tests
to F increases the number of classes by at most 2. Let the classes created by F
be denoted by C1, C2, . . . , Cl. Note that l ≤ 3k − 2.

Lemma 4. Any test S ∈ T \ F cannot be a Ci-test and a Cj-test for i �= j.

Proof. For the sake of contradiction, assume such a test S exists. Then adding
S to F will increase the number of classes by at least 2, a contradiction to the
definition of F . .�

We may assume without loss of generality in the rest of this section that for all
Ci-tests, S, we have |S ∩ Ci| ≤ |Ci|/2. Indeed, suppose |S ∩ Ci| > |Ci|/2. Then
we may replace S in T with the test S′ = [n] \ S. Observe that two items are
separated by S′ if and only if they are separated by S, and so replacing S with
S′ produces an equivalent instance. Furthermore, since |S∩Ci| > |Ci|/2 we have
that |S′ ∩Ci| ≤ |Ci|/2. Note that Lemma 4 still holds after replacing S with S′,
since for all j �= i either S′ ∩ Cj = ∅ or Cj ⊆ S′.

Lemma 5. Any two Ci-tests S, S′ ∈ T have either L(S) ⊆ L(S′) or L(S′) ⊆
L(S) or L(S) ∩ L(S′) = ∅.

Proof. For the sake of contradiction, assume S, S′ do not satisfy this condition.
Then Ci∩(S\S′) is non-empty (otherwise, L(S) ⊆ L(S′)). Similarly, Ci∩(S′\S)
is non-empty. Since L(S)∩L(S′) �= ∅, Ci ∩ S ∩ S′ is non-empty. Finally observe
that |L(S)∪L(S′)| = |L(S)|+|L(S′)|−|L(S)∩L(S′)| ≤ |Ci|/2+|Ci|/2−1 < |Ci|.
Hence Ci \ (S ∪ S′) is non-empty. Adding S and S′ to F divides Ci into four
classes: Ci∩(S \S′), Ci∩(S′ \S), Ci∩(S∩S′) and Ci \(S∪S′). This contradicts
the maximality of F . .�

An out-tree T is an orientation of a tree which has only one vertex of in-degree
zero (called the root); a vertex of T of out-degree zero is a leaf.
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We now build an out-tree Oi as follows. The root of the tree, r ∈ V (Oi)
corresponds to the set Ci. Each vertex v ∈ V (Oi) \ r corresponds to a subset,
Sv ⊆ Ci such that there exists a Ci-test S ∈ T with L(S) = Sv. Note that for a
pair of vertices u, v ∈ V (Oi) if u �= v, then Su �= Sv. Add an arc from v to w in
Oi if Sw ⊂ Sv and there is no u in Oi with Sw ⊂ Su ⊂ Sv. By Lemma 5 we note
that Oi is indeed an out-tree.

Lemma 6. Every non-leaf in Oi has out-degree at least two.

Proof. Let v be a non-leaf in Oi, and note that |Sv| ≥ 2. Let w be any child of v
in Oi. By definition there exists an item in Sv \ Sw (as |Sv| > |Sw|), say w′. As
there is a singleton {w′} ∈ T there is a path from v to w′ in Oi and as w′ �∈ Sw
the path does not use w. Therefore v has at least one other out-neighbour. .�

We now define the signature of a set S′ ⊂ Ci as follows.

Sig(S′) = {G(S) : S ∈ T and L(S) = S′}

Lemma 7. We have |{Sig(S′) : S′ ⊂ Ci}| ≤ 22
3k−1

.

Proof. Let Si denote all sets, S, with Cj ∩S = ∅ or Cj ⊆ S for all j and further-
more Ci ∩ S = ∅. Note that |Si| ≤ 2l−1 ≤ 23k−1, since |{C1, . . . , Cl} \ {Ci}| ≤
3k − 1. Note that tests U and V with L(U) = S′ = L(V ) have G(U) �= G(V ),
as U �= V . Observe that all G(S) in Sig(S′) belong to Si implying that there is

at most 2|Si| = 22
3k−1

different choices for a signature. .�

Lemma 8. There exists a function f1(k) such that either the depth of the tree
Oi (i.e. the number of arcs in a longest path out of the root) is at most f1(k), or
in polynomial time, we can find a vertex v in Oi such that if there is a solution
to our instance of (n − k)-Test Cover then there is also a solution that does
not use any test S with L(S) = Sv.

Proof. Let f1(k) = (32k − 1)22
3k−1

. Assume that the depth of the tree Oi is
more than f1(k) and let p0p1p2 . . . pa be a longest path in Oi (so a > f1(k)). By
Lemma 7 and by the choice of f1(k), there is a sequence pj1 , pj2 , . . . , pj32k , where
1 ≤ j1 < j2 < · · · < j32k ≤ a and all sets corresponding to pj1 , pj2 , . . . , pj32k have
the same signature.

Let S∗ be the set corresponding to pj16k . We will show that if there is a
solution to our instance of (n − k)-Test Cover then there is also a solution
that does not use any test S with L(S) = S∗.

Assume that there is a solution to our instance of (n − k)-Test Cover

and assume that we pick a solution T ′ with as few tests, S, as possible with
L(S) = S∗. For the sake of contradiction assume that there is at least one test
S′ in our solution with L(S′) = S∗. By Theorem 2 there is a k-mini test cover,
F ′, taken from T ′. Initially let F ′′ = F ′. While there exists a vertex r ∈ Cq
and r′ ∈ Cp (q �= p) which are not separated by F ′′ then add any test from F
which separates r and r′ to F ′′ (recall that F is the test collection found by



Parameterized Study of the Test Cover Problem 291

Greedy-mini-test). Note that this increases the size of F ′′ by 1 but also increases
the number of classes induced by F ′′ by at least 1. We continue this process
for as long as possible. As F ′′ ⊆ F ∪ F ′ we note that |F ′′| ≤ 2k + 2k = 4k.
Furthermore, by construction, vertices in different Cj ’s are separated by tests in
F ′′. Also note that the number of classes induced by F ′′ is at least |F ′′|+ k (as
the number of classes induced by F ′ is at least |F ′|+ k).

For every test, S, in F ′′ color the vertex in Oi corresponding to L(S) blue.
For every vertex, v ∈ V (Oi), color v red if all paths from v to a leaf in Oi use
at least one blue vertex and v is not already colored blue. Finally for every ver-
tex, w ∈ V (Oi), color w orange if all siblings of w (i.e. vertices with the same
in-neighbour as w) are colored blue or red and w is not colored blue or red. We
now need the following:

Claim A: The number of colored vertices in Oi is at most 16k − 2.
Proof of Claim A: As |F ′′| ≤ 4k we note that the number of blue vertices is at
most 4k. We will now show that the number of red vertices is at most 4k − 1.
Consider the forest obtained from Oi by only keeping arcs out of red vertices.
Note that any tree in this forest has all its leaves colored blue and all its internal
vertices colored red. Furthermore, by Lemma 6 the out-degree of any internal
vertex is at least 2. This implies that the number of red vertices in such a tree is
less than the number of blue vertices. As this is true for every tree in the forest
we conclude that the number of red vertices in Oi is less than the number of
blue vertices in Oi and is therefore bounded by 4k − 1.

We will now bound the number of orange vertices. Since every orange vertex
in Oi has at least one sibling colored blue or red (by Lemma 6). and any blue
or red vertex can have at most one orange sibling we note that the number of
orange vertices cannot be more than the number of vertices colored blue or red.
This implies that the number of orange vertices is at most 8k − 1.

By Lemma 1, we note that some test, Sx, in F ′′ has L(Sx) = S∗ (as other-
wise extend F ′′ by singletons to a test cover where no test, S, in the solution
has L(S) = S∗, a contradiction to our assumption). Now create Fx as follows.
Initially let Fx be obtained from F ′′ by removing the test Sx. Let pji′ be an
uncolored vertex in {pj1 , pj2 , . . . , pj16k−1

} and let pji′′ be an uncolored vertex in
{pj16k+1

, pj16k+2
, . . . , pj32k−1

} (note that we do not pick pj32k). Let S
x
1 be a test in

T with G(Sx1 ) = G(Sx) and L(Sx1 ) corresponding to the vertex pji′ and let Sx2 be
a test in T with G(Sx2 ) = G(Sx) and L(Sx2 ) corresponding to pji′′ . These tests
exist as the signature of all sets corresponding to vertices in pj1 , pj2 , . . . , pj32k
are the same. Now add Sx1 and Sx2 to Fx. The following now holds.

Claim B: The number of classes induced by Fx is at least |Fx|+ k.
Proof of Claim B: Let u, v ∈ [n] be arbitrary. If u, v �∈ Ci and they are separated
by F ′′, then they are also separated by Fx, as if they were separated by Sx then
they will now be separated by Sx1 (and Sx2 ). Now assume that u ∈ Ci and v �∈ Ci.
If u ∈ L(Sx) and u and v were separated by Sx then they are also separated by
Sx1 . If u �∈ L(Sx) and u and v were separated by Sx then they are also separated



292 R. Crowston et al.

by Sx2 . So as u and v were separated by F ′′ we note that they are also separated
by Fx. We will now show that the number of classes completely within Ci using
Fx is at least one larger than when using F ′′.

By Lemma 5 we note that deleting Sx from F ′′ can decrease the number of
classes within Ci by at most one (it may decrease the number of classes in [n]
by more than one). We first show that adding the test Sx1 to F ′′ \ {Sx} increases
the number of classes within Ci by at least one. As pji′ is not colored there is a
path from pji′ to a leaf, say u1, without any blue vertices. Furthermore as pji′ is
not orange we note that it has a sibling, say s′, that is not colored and therefore
has a path to a leaf, say u2, without blue vertices. We now note that u1 and u2

are not separated in F ′′ (and therefore in F ′′ \ {Sx}). However adding the test
Sx1 to F ′′ \ {Sx} does separate u1 and u2 (as u1 ∈ Sx1 but u2 �∈ Sx1 ). Therefore
the classes within Ci has increased by at least one by adding Sx1 to F ′′ \ {Sx}.

Analogously we show that adding the test Sx2 to F ′′ ∪ {Sx1 } \ {Sx} increases
the number of classes within Ci by at least one. As pji′′ is not colored there is
a path from pji′′ to a leaf, say v1, without blue vertices. Furthermore as pji′′ is
not orange we note that it has a sibling, say s′′, that is not colored and therefore
has a path to a leaf, say v2, without blue vertices. We now note that v1 and v2
are not separated in F ′′ (and therefore in F ′′ ∪ {Sx1 } \ {Sx}, as pji′ lies higher
in the tree Oi and therefore the test Sx1 does not separate u and v). However
adding the test Sx2 to F ′′ ∪ {Sx1 } \ {Sx} does separate v1 and v2 (as v1 ∈ Sx2 but
v2 �∈ Sx2 ). Therefore the classes within Ci has increased by at least one by adding
Sx2 to F ′′ ∪ {Sx1 } \ {Sx}. So we conclude that the number of classes within Ci
has increased by at least one and as any vertex not in Ci is still separated from
exactly the same vertices in Fx as it was in F ′′ we have proved Claim B.

By Lemma 1 and Claim B we get a solution with fewer tests, S, with L(S) =
S∗, a contradiction. .�

Suppose the depth of Oi is greater than f1(k), and let S∗ be the set found by the
above lemma. Then we can delete all tests, S, with L(S) = S∗ from T without
changing the problem, as if there is a solution for the instance then there is one
that does not contain any test S with L(S) = S∗. Therefore we may assume
that the depth of Oi is at most f1(k).

Lemma 9. There exist functions f2(d, k) and f3(d, k), such that in polynomial
time we can reduce ([n], T , k) to an instance such that the following holds for all
vertices v ∈ Oi, where d is the length (i.e. number of arcs) of a longest path out
of v in Oi: (1) N+(v) ≤ f2(d, k) and (2) |Sv| ≤ f3(d, k).

Proof. Let v be a vertex in Oi and let d be the length of a longest path out of v
in Oi. We will prove the lemma by induction on d. If d = 0 then v is a leaf in Oi
and N+(v) = 0 and |Sv| = 1 (as all singletons exist in T ). So now assume that
d ≥ 1 and the lemma holds for all smaller values of d. We note that the way we
construct f3(d, k) below implies that it is increasing in d.

We will first prove part (1). Let N+(v) = {w1, w2, w3, . . . , wb} and note that
|Swj | ≤ f3(d− 1, k) for all j = 1, 2, . . . , b (by induction and the fact that f3(d, k)
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is increasing in d). Let Qj be the subtree of Oi that is rooted at wj for all
j = 1, 2, . . . , b. As part (1) holds for all vertices in Qj we note that there are at
most g(d, k) non-isomorphic trees in {Q1, Q2, . . . , Qb} for some function g(d, k).
Furthermore the number of vertices in each Qj is bounded by 2f3(d − 1, k)− 1
by Lemma 6 and induction (using part (2) and the fact that every leaf in Qj

corresponds to a singleton in Ci and the number of leaves are therefore bounded
by f3(d − 1, k)). By Lemma 7 the number of distinct signatures is bounded by

22
3k−1

. Let f2(d, k) be defined as follows.

f2(d, k) = 2k · g(d, k)
[
22

3k−1
]2f3(d−1,k)−1

So if b > f2(d, k) there exists at least 2k + 1 trees in {Q1, Q2, . . . , Qb} which
are strongly isomorphic, in the sense that a one-to-one mapping from one to
the other maintains arcs as well as signatures (a vertex with a given signature
is mapped into a vertex with the same signature). Without loss of generality
assume that Q1 is one of these at least 2k+1 trees. We now remove all vertices
in Q1 as well as all tests S with L(S) corresponding to a vertex in Q1. Delete all
the items in Sw1 . Let the resulting test collection be denoted by T ′, and denote
the new set of items by [n′]. We show this reduction is valid in the following claim.

Claim: This reduction is valid (i.e. ([n], T , k) and ([n′], T ′, k) are equivalent).
Proof of Claim: Observe that any k-mini test cover in T ′ is a k-mini test cover
in T , and so ([n], T , k) is a Yes-instance if ([n′], T ′, k) is a Yes-instance.

For the converse, assume T contains a k-mini test cover F ′, and for each test
S in F ′, color the vertex in Oi corresponding to L(S) blue. We first show we
may assume Q1 is uncolored. For suppose not, then since |F ′| ≤ 2k, then some
other tree Qj that is strongly isomorphic to Q1 is uncolored. In this case, we
may replace the tests S in F ′ with L(S) corresponding to a vertex in Q1, by the
equivalent tests S′ with L(S′) corresponding to a vertex in Qj .

So assume Q1 is uncolored. Then F ′ is still a subcollection in T ′. It remains
to show that F ′ still induces at least |F ′|+ k classes over [n′]. Observe that this
holds unless there is some class C induced by |F ′| that only contains items from
Sw1 . But this can only happen if some item in Sw1 is separated from Swj by a
test in F ′, for all j ∈ {2, . . . b}. But since b > |F|+1, there exists j �= 1 such that
Qj is not coloured. Then since w1, wj are siblings, no test in F ′ can separate
Sw1 from Swj . Thus F ′ induces at least |F ′| + k classes over [n′], and so F ′ is
still a k-mini test cover in the new instance. Thus, ([n′], T ′, k) is a Yes-instance
if and only if ([n], T , k) is a Yes-instance.

By the above claim we may assume that b ≤ f2(d, k), which proves part
(1). We will now prove part (2). As we have just proved that b ≤ f2(d, k)
and |Swj | ≤ f3(d − 1, k) for all j = 1, 2, . . . , b, we note that (2) holds with
f3(d, k) = f3(d− 1, k)× f2(d, k). .�

Theorem 3. The (n− k)-Test Cover problem is fixed-parameter tractable.
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Proof. Given a test cover, construct a subcollection F ⊆ T using algorithm
Greedy-mini-test. If |F| ≥ 2k, the instance is a Yes-instance since F induces at
least 3

2 |F| classes. Otherwise, |F| < 2k and F induces at most 3k classes. By
Lemma 8, we may assume that Oi has depth at most d = f1(k), and by Lemma
9 part (2) we may assume that |Ci| ≤ f3(d, k), for each class Ci induced by F .
Thus |Ci| ≤ f3(f1(k), k).

Hence there are at most 3k classes, the size of each bounded by a function of
k, so the number of items in the problem is bounded by a function of k. Thus,
the problem can be solved by an algorithm of runtime depending on k only. .�

4 Conclusion

We have considered four parameterizations of Test Cover and established
their parameterized complexity. The main result is fixed-parameter tractability
of (n−k)-Test Cover. Whilst it is a positive result, the runtime of the algorithm
that we can obtain is not practical and we hope that subsequent improvements
of our result can bring down the runtime to a practical level. Ideally, the runtime
should be ck(n+m)O(1), but it is not always possible [13].
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Abstract. Signed graphs, i.e., undirected graphs with edges labelled
with a plus or minus sign, are commonly used to model relationships
in social networks. Recently, Kermarrec and Thraves [13] initiated the
study of the problem of appropriately visualising the network: They
asked whether any signed graph can be embedded into the metric space
Rl in such a manner that every vertex is closer to all its friends (neigh-
bours via positive edges) than to all its enemies (neighbours via negative
edges). Interestingly, embeddability into R1 can be expressed as a purely
combinatorial problem. In this paper we pursue a deeper study of this
case, answering several questions posed by Kermarrec and Thraves.

First, we refine the approach of Kermarrec and Thraves for the case
of complete signed graphs by showing that the problem is closely related
to the recognition of proper interval graphs. Second, we prove that the
general case, whose polynomial-time tractability remained open, is in
fact NP -complete. Finally, we provide lower and upper bounds for the
time complexity of the general case: we prove that the existence of a
subexponential time (in the number of vertices and edges of the input
signed graph) algorithm would violate the Exponential Time Hypothesis,
whereas a simple dynamic programming approach gives a running time
single-exponential in the number of vertices.

1 Introduction

Undirected graphs with edges labelled positively (by a +) and negatively (by
a −), called signed graphs, in many applications serve as a very simple model
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of relationships between a group of people, e.g., in a social network. Sign labels
can express in a simplified way mutual relations, like staying in a relationship,
family bonds or conflicts, by classifying them either as friendship (+ edge),
hostility (− edge) or ambivalence (no edge). In particular, much effort has been
put into properly understanding and representing the structure of the network,
balancing it or naturally partitioning into clusters [1, 3, 5, 14–17, 19]. One of
the problems is to visualize the model graph properly, i.e., in such a way that
positive relations tend to make vertices be placed close to each other, while
negative relations imply large distances between vertices.

In their recent work, Kermarrec and Thraves [13] formalized this problem as
follows: Consider the metric space Rl with the Euclidean metric denoted by d.
Given a signed graph G, is it possible to embed the vertices of G in Rl so that for
any positive edge uu1 and negative edge uu2 it holds that d(u, u1) < d(u, u2)?
This question has a natural interpretation: we would like to place a group of
people so that every person is placed closer to his friends than to his enemies.

The work of Kermarrec and Thraves [13] concentrated on showing a number of
examples and counterexamples for embeddability into spaces of small dimensions
(1 and 2) and a deeper study of the 1-dimensional case. Interestingly enough,
the case of the Euclidean line has an equivalent formulation in the language of
pure combinatorics: Given a signed graph G, is it possible to order the vertices
of G so that for any positive edge uw there is no negative edge uv with v
laying between u and w? The authors made algorithmic use of this combinatorial
insight: Providing the given signed graph is complete (i.e., every pair of vertices is
adjacent via a positive or negative edge) they show a polynomial-time algorithm
that computes an embedding into a line or reports that no such embedding
exists.

Kermarrec and Thraves also posed a number of open problems in the area,
including the question of the complexity of determining the embeddability of an
arbitrary (not necessarily complete) graph into the Euclidean line.

Our Results. We focus on the problem of embedding a signed graph into a line.
The reformulation of the 1-dimensional case of Kermarrec and Thraves turns
out to be an interesting combinatorial problem, which allows classical methods
of analysis and shows interesting links with the class of proper interval graphs.

We begin with refining the result of Kermarrec and Thraves for the case of
complete graphs. We prove that a complete signed graph is embeddable into a
line if and only if the graph formed by the positive edges is a proper interval
graph. Using this theorem one can immediately transfer all the results from the
well-studied area of proper interval graphs into our setting. Most importantly,
as recognition of proper interval graphs can be performed in linear-time [4],
we obtain a simpler algorithm for determining the embeddability of a complete
graph into a line, with a linear runtime.

We next analyse the general case. We resolve the open problem posed in [13]
negatively: it is NP -complete to resolve whether a given signed graph can be
embedded into a line. This hardness result also answers other questions of Ker-
marrec and Thraves [13]. For example, we infer that it is NP -hard to decide the
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smallest dimension of a Euclidean space in which the graph can be embedded,
as such an algorithm could be used to test embeddability into a line.

Furthermore, we are able to show a lower bound on the time complexity of
resolving embeddability into a line, under a plausible complexity assumption.
We prove that obtaining an algorithm running in subexponential time (in terms
of the total number of vertices and edges of the input graph) would contradict
the Exponential Time Hypothesis [10] (see Section 2 for an exact statement). We
complete the picture of the complexity of the problem by showing a dynamic
programming algorithm that runs inO�(2n) time 1, matching the aforementioned
lower bound up to a constant in the base of the exponent (n denotes the number
of vertices of the input graph).

Organisation of the Paper. In Section 2 we recall widely known notions and
facts that are of further use, and provide the details of the combinatorial refor-
mulation of the problem by Kermarrec and Thraves [13]. Section 3 is devoted
to refinements in the analysis of the case of the complete signed graphs, while
Section 4 describes upper and lower bounds for the complexity of the general
case. Finally, in Section 5 we gather conclusions and ideas for further work.

2 Preliminaries

Basic Definitions. For a finite set V , by an ordering of V we mean a bijection
π : V → {1, 2, . . . , |V |}. We sometimes treat an ordering π as a linear order on V
and for u, v ∈ V we write u ≤π v to denote π(u) ≤ π(v). A lexicographic ordering
imposed by π on pairs of elements from V is an ordering π′ of V × V defined
as follows: (a, b) ≤π′ (c, d) if and only if a <π c, or a = c and b ≤π d. If π is
an ordering of vertices of a directed graph G, then we say that π is a topological
ordering if and only if for every (v, w) ∈ E(G) we have that v ≤π w. A directed
graph admits a topological ordering of vertices if and only if it is acyclic.

In a graph G = (V,E) the neighbourhood of a vertex v, denoted N(v), is the
set of all its neighbours, i.e., {w : vw ∈ E}. The closed neighbourhood of v is
defined as N [v] = N(v) ∪ {v}.

A signed graph is a triple G = (V,E+, E−), where E+, E− ⊆ V [2] and E+ ∩
E− = ∅. We view a signed graph as an undirected simple graph with two possible
labels on the edges: positive (+) and negative (−). We call the edges from E+

positive, while those from E− — negative. The graph G+ = (V,E+) is called
the positive part of G, and G− = (V,E−) — the negative part. A signed graph
is called complete if E+ ∪E− = V [2], i.e., every pair of vertices is adjacent via a
positive or negative edge.

Proper Interval Graphs. Let G = (V,E) be an undirected graph, I be a family
of size |V | of intervals on real line with nonempty interiors and pairwise different
endpoints and ι : V → I be any bijection. We say that I is an interval model for
G if for every v, w ∈ V , v �= w, vw ∈ E is equivalent to ι(v) ∩ ι(w) �= ∅. I is a

1 The O�() notation suppresses factors that are polynomial in the input size.
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proper interval model if, additionally, none of the intervals is entirely contained
in any other. Graphs having an interval model are called interval graphs, while
if a proper interval model exists as well, we call them proper interval graphs. We
will omit the mapping ι whenever it is clear from the context.

Exponential Time Hypothesis [10]: The Exponential Time Hypothesis (ETH for
short) asserts that there exists a constant C > 0 such that no algorithm solving
the 3-CNF-SAT problem in O(2Cn) exists, where n denotes the number of
variables in the input formula.

Combinatorial Problem Statement. In [13], Kermarrec and Thraves work with
the metric definition of the problem: Given a signed graph G = (V,E+, E−) a
feasible embedding of G in the Euclidean space Rl is such a function f : V →
Rl that for all u1, u2, u, if u1u ∈ E+ and u2u ∈ E−, then d(f(u1), f(u)) <
d(f(u2), f(u)) (recall that d stands for the Euclidean distance in Rl). However,
for the 1-dimensional case they have in essence proved the following result:

Theorem 1 (Lemmata 3 and 4 of [13], rephrased). A signed graph G =
(V,E+, E−) has a feasible embedding in a line iff there is an ordering π of V
such that for every u ∈ V :

(i) there are no u1 <π u2 <π u such that u1u ∈ E+ and u2u ∈ E−;
(ii) there are no u1 >π u2 >π u such that u1u ∈ E+ and u2u ∈ E−.

We will jointly call conditions (i) and (ii) the condition imposed on u. Somewhat
abusing the notation, the ordering π will also be called an embedding of G into
the line. Therefore, from now on we are working with the following combinatorial
problem that is equivalent to the version considered by Kermarrec and Thraves:

Line Cluster Embedding

Input: A signed graph G = (V,E+, E−).
Task: Does there exist an ordering π on V such that for every u ∈ V : (i)
there are no u1 <π u2 <π u such that u1u ∈ E+ and u2u ∈ E−; (ii) there
are no u1 >π u2 >π u such that u1u ∈ E+ and u2u ∈ E−.

3 The Complete Signed Graph Case

In their work, Kermarrec and Thraves [13] announced a polynomial-time algo-
rithm solving the Line Cluster Embedding problem in the case where the
input signed graph is complete. Their line of reasoning was essentially as fol-
lows: if a signed graph can be embedded into a line, then its positive part has
to be chordal. However, for a connected chordal graph with at least 4 vertices
that actually is embeddable into a line, every perfect elimination ordering of the
graph is a feasible solution. Therefore, having checked that the graph is chordal
and computed a perfect elimination ordering of every connected component, we
can simply verify whether the obtained ordering is a correct line embedding.
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We refine the approach of Kermarrec and Thraves by showing that a complete
graph has a line embedding if and only if its positive part is a proper inter-
val graph. Recall that proper interval graphs are a subclass of chordal graphs;
therefore, the result nicely fits into the picture of Kermarrec and Thraves. More-
over, the theory of proper interval graphs is well-studied, so many results from
that area can be immediately translated to our setting. For instance, many NP-
complete problems become solvable in polynomial time on proper interval graphs
(e.g., [2, 9, 12, 18]), and the linear-time algorithm of Corneil et al. [4] for recogniz-
ing proper interval graphs immediately solves the Line Cluster Embedding

problem in linear time in case of a complete signed graph.

Theorem 2. A complete signed graph G = (V,E+, E−) is embeddable in R1 if
and only if G+ = (V,E+) is a proper interval graph. Moreover, having a feasible
ordering π of vertices of V , a proper interval model of G+ sorted with respect to
the left ends of the intervals can be computed in linear time; conversely, having a
proper interval model of G+ sorted with respect to the left ends of the intervals,
we can compute a feasible ordering π in linear time.

Proof. First, let us assume that G+ is a proper interval graph, and let I = {Iv :
v ∈ V } be a proper interval model of G+. Notice that as no interval is contained
in another, we have a natural order on I — ordering the intervals with respect
to the left ends (or, equivalently, the right ends). We claim that π is a feasible
solution for the Line Cluster Embedding instance G = (V,E+, E−). Take
any u ∈ V . Assume that there were some u1 <π u2 <π u such that u1u ∈ E+

and u2u ∈ E−; this implies intervals Iu1 and Iu would overlap. This, in turn,
means that the right end of interval Iu1 would be on the right of the left end
of interval Iu. Therefore, the left and right ends of Iu2 are on different sides of
the left end of Iu, as u2 <π u and u1 <π u2, so Iu2 and Iu overlap. This is
a contradiction with u2u /∈ E+. A symmetrical argument for the second case
finishes the proof in this direction.

Now let us assume that G is embeddable in the line and let π, an ordering of V ,
be a solution. Moreover, let v← be the first (with respect to π) vertex in the closed
neighbourhood of v in G+, while let v→ be the last. Of course, v← ≤π v ≤π v→.

Let us define a family of intervals on R: let Iv =
[
π(v), π(v→) + π(v)

|V |+1

]
for v ∈ V

and I = {Iv : v ∈ V }. Observe that intervals Iv have nonempty interior and
pairwise different endpoints. Now, we prove that (1) no Iv is fully contained in
some other Iw and (2) for all v, w ∈ V , vw ∈ E+ if and only if Iv ∩ Iw �= ∅. This
suffices to show that I is a proper interval model for G+.

In order to establish (1), let us assume the contrary: there exists a pair of

vertices v, w such that π(v) > π(w) and π(v→) + π(v)
|V |+1 < π(w→) + π(w)

|V |+1 . Then

π(v→) < π(w→). Therefore, by definition of v→, vw→ ∈ E−. On the other hand,
ww→ ∈ E+ and w <π v <π w→, a contradiction with the assumption that π
was a proper embedding.

Now we proceed to the proof of (2). Take any two distinct vertices v, w,
without losing generality assume that v <π w. If vw ∈ E+, then π(v) < π(w)

and π(w) ≤ π(v→) < π(v→) + π(v)
|V |+1 , so Iv and Iw overlap. On the other hand
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if vw ∈ E−, then from the condition imposed on v it follows that w >π v→.

Consequently, π(w) > π(v→) and, as π(v) < |V |+1, also π(w) > π(v→)+ π(v)
|V |+1 .

Therefore, in this case Iv and Iw do not overlap. This proves I is in fact a proper
interval model for G+.

The algorithmic part of the theorem statement follows directly from the pre-
sented constructions. .�

Let us recall the result of Corneil et al. [4], which states that proper interval
graphs can be recognized in linear time and the algorithm can also output an
ordering of the vertices with respect to the left ends of intervals in some model.
We can pipeline this routine with Theorem 2 to obtain the following corollary:

Theorem 3. Assuming the input graph is complete and given as the set of pos-
itive edges, Line Cluster Embedding can be solved in O(|V | + |E+|) time
complexity. Moreover, the algorithm can produce a feasible ordering of the ver-
tices in the same time, if such an ordering exists.

4 The General Case

4.1 NP -Completeness of the General Case

In [13] Kermarrec and Thraves asked whether the Line Cluster Embedding

problem is also polynomial-time solvable in the case where the input is not
restricted to complete graphs. In this section we show that this is unlikely: in
fact, the problem becomes NP -complete.

In the proof we use an auxiliary problem, called Acyclic Partition.

Acyclic Partition

Input: A directed graph D = (V,A).
Task: Is it possible to partition V into two sets V1 and V2, so that both
D[V1] and D[V2] are directed acyclic graphs (DAGs)?

Acyclic Partition has been introduced and proven to be NP -complete by
Eppstein and Mumford [6] and, independently, by Guillemot et al. [8]. In both
these papers it was used as a pivot problem for proving NP -completeness of
other problems. For the sake of completeness we would like to revisit the NP -
hardness proof, because we need explicit bounds on the size of the directed graph
obtained in the reduction for further applications. We begin with an instance of
the Set Splitting problem, which is known to be NP -complete [7].

Set Splitting

Input: A set system (F , U), where F ⊆ 2U .
Task: Does there exist a subset X ⊆ U such that each set in F contains
both an element from X and an element from U \X?

Lemma 4. There exists a polynomial-time algorithm that given an instance
(F , U) of Set Splitting outputs an equivalent instance G = (V,A) of Acyclic

Partition, for which |V | = |U |+
∑
F∈F |F | and |A| = 3

∑
F∈F |F |.
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Proof. We construct the directed graph D = (V,A) as follows. For every set
F ∈ F and every u ∈ F we build a vertex cFu and connect all the vertices
corresponding to the same set F into a directed cycle in any order. For every
element u ∈ U we build a vertex du and for every vertex of the form cFu we
introduce two arcs: (du, c

F
u ) and (cFu , du). This concludes the construction; it is

easy to verify the claimed sizes of V and A.
Let us formally prove that the instances are equivalent. Let X be any solution

to the (F , U) instance of Set Splitting. Let V1 = {du : u ∈ X} ∪ {cFu : u ∈
U \ X} and V2 = {du : u ∈ U \ X} ∪ {cFu : u ∈ X}. As X splits every set
F ∈ F , none of the cycles formed by vertices cFu for fixed F is entirely contained
in either V1 or V2. Also, for every element u the vertex du becomes isolated in
the corresponding graph D[Vi], as all his neighbours belong to V3−i. Therefore,
both D[V1] and D[V2] are collections of isolated vertices and directed paths and
(V1, V2) is a solution to the Acyclic Partition instance.

In the other direction, let (V1, V2) be a solution to the instance of Acyclic

Partition. Let X = {u : du ∈ V1} ⊆ U ; we claim that X is a solution to the
instance of Set Splitting. Take any F ∈ F . As the cycle formed by vertices
cFu is not entirely contained in any of the graphs D[V1], D[V2], there exist some
u1 such that cFu1

∈ V1 and u2 such that cFu2
∈ V2. As the cycles formed by pairs

{du1 , c
F
u1
} and {du2 , c

F
u2
} are also not entirely contained in D[V1] nor in D[V2],

du1 ∈ V2 and du2 ∈ V1. Consequently, u1 ∈ U \X , u2 ∈ X and F is split. .�

Lemma 5. There exists a polynomial-time algorithm that given an instance
D = (V,A) of Acyclic Partition outputs an equivalent instance H =
(V ′, E+, E−) of Line Cluster Embedding, such that |V ′| = |V | + |A| + 1,
|E+| = 2|A| and |E−| = |A|+ |V |.

Proof. We construct the graph H as follows: The set of vertices, V ′, consists of:

– a special vertex s;
– for every e ∈ A, a checker vertex ce;
– for every v ∈ V , an alignment vertex av.

We construct the edges of the signed graph as follows:

– for every e ∈ A, we introduce a positive edge sce;
– for every v ∈ V , we introduce a negative edge sav;
– for every arc (v, w) ∈ A, we introduce a positive edge c(v,w)av and a negative

edge c(v,w)aw.

This concludes the construction; it is easy to verify the claimed sizes of
V ′, E+, E−.

Let us prove equivalence of the instances. Let π, an ordering of V ′, be a
solution of the Line Cluster Embedding instance (V ′, E+, E−). As the special
vertex s is adjacent via positive edges to all the checker vertices, and via negative
edges to all the other, alignment, vertices, in the ordering π the checker vertices
together with the special vertex have to form an interval, i.e., a set of consecutive
elements with respect to π. Let V1 be the set of those v ∈ V for which av is to the
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left of this interval, whereas V2 is the set of those v ∈ V for which av is to the right
of this interval. Formally, V1 = {v ∈ V : av ≤π s} and V2 = {v ∈ V : av ≥π s}.
We claim that (V1, V2) is a feasible solution of the Acyclic Partition instance
(V,A). Consider any arc (v, w) such that v, w ∈ V1. As av ≤π c(v,w), aw ≤π c(v,w),
c(v,w)av ∈ E+ and c(v,w)aw ∈ E−, then it follows that aw ≤π av. Thus, π has
to induce a reverse topological ordering on the vertices of D[V1] and, therefore,
D[V1] has to be acyclic. Symmetrically, D[V2] has to be acyclic as well, which
concludes the proof of (V1, V2) being a feasible solution.

Now take any solution (V1, V2) of Acyclic Partition instance (V,A). Let
π1 be any topological ordering of D[V1] and π2 be any topological ordering of
D[V2], by which we mean that if (u, v) is an arc of D[V1], π1(u) < π1(v), and
the same holds for π2. Let us construct an ordering π of V ′ as follows:

– first, place all the vertices av for v ∈ V1 in the reverse order induced by π1;
– then, place all the checker vertices c(v,w) for which v ∈ V1 and w ∈ V2, in

any order;
– then, place all the checker vertices c(v,w) for which v, w ∈ V1, in reverse

lexicographic order imposed by π1 on pairs (v, w);
– then, place the special vertex s;
– then, place all the checker vertices c(v,w) for which v, w ∈ V2, in lexicographic

order imposed by π2 on pairs (v, w);
– then, place all the checker vertices c(v,w) for which v ∈ V2 and w ∈ V1, in

any order;
– finally, place all the vertices av for v ∈ V2 in the order induced by π2.

We claim that such π is a feasible solution to Line Cluster Embedding in-
stance (V ′, E+, E−).

Note that the positive neighbours of the special vertex s form an interval,
therefore the condition imposed on this vertex is satisfied. Now consider a checker
vertex c(v,w). If v, w belong to different sets V1, V2, then the only negative neigh-
bour of c(v,w) is the first or the last of his closed neighbourhood with respect
to π, thus satisfying the condition imposed on c(v,w). In case when v, w ∈ V1 or
v, w ∈ V2 this is also true, due to π1, π2 being topological orderings of D[V1],
D[V2] respectively.

Now take any vertex av, by symmetry assume v ∈ V1. We need to prove that
the condition imposed on av is satisfied as well. The neighbours of v consist of:

1. positive neighbours c(v,v′), such that v′ ∈ V2;
2. positive neighbours c(v,v′), such that v′ ∈ V1;
3. negative neighbours c(v′,v), such that v′ ∈ V1;
4. negative neighbours c(v′,v), such that v′ ∈ V2.

We now verify that by the construction of π the neighbours of av lie in this very
order with respect to π. Clearly, the order in which we placed the checkers in π
ensures that the neighbours from (1) are placed before the neighbours from (2)
and that the neighbours from (3) are placed before the neighbours from (4). Thus
the only non-trivial check is whether the vertices from (2) lie before the vertices
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from (3). Assume otherwise, that there are some v′1, v
′
2 such that (v, v′1) ∈ A,

(v′2, v) ∈ A, but c(v,v′1) >π c(v′2,v). Then v′2 <π1 v as π1 is a topological ordering
of D[V1], so the pair (v′2, v) is lexicographically smaller than the pair (v, v′1).
Hence c(v,v′1) >π c(v′2,v), a contradiction with the construction of π.

We have verified that for all the vertices the conditions imposed on them are
satisfied, so the instances are equivalent. .�

The NP -completeness of the Set Splitting problem [7], together with Lem-
mata 4, 5 and a trivial observation that Line Cluster Embedding is in NP ,
gives us the following theorem.

Theorem 6. The Line Cluster Embedding problem is NP -complete.

As mentioned before, the question of finding the smallest dimension of the Eu-
clidean space, into which the given graph can be embedded, clearly generalizes
testing embeddability into a line. Therefore, we have the following corollary.

Corollary 7. It is NP -hard to decide the smallest dimension of the Euclidean
space, into which a given signed graph can be embedded.

4.2 Lower Bound on the Complexity

In this subsection we observe that the presented chain of reductions enables us
also to establish a lower bound on the complexity of solving Line Cluster

Embedding under ETH. Firstly, let us complete the chain of the reductions.

Lemma 8. There exists a polynomial-time algorithm that given an instance ϕ
of 3-CNF-SAT with n variables and m clauses, outputs an equivalent instance
(U,F) of Set Splitting with |U | = 2n+ 1 and

∑
F∈F |F | = 2n+ 4m.

Proof. We construct the instance (U,F) as follows. The universe U consists of
one special element s and two literals x,¬x for every variable x of ϕ. The family
F includes (a) for every variable x, a set Fx = {x,¬x}; (b) for every clause C,
a set FC consisting of s and all the literals in C. It is easy to check the claimed
sizes of U,F . We claim that the instance of Set Splitting (U,F) is equivalent
to the instance ϕ of 3-CNF-SAT.

Assume that ψ is a boolean evaluation of variables of ϕ that satisfies ϕ. We
construct a set X ⊆ U as follows: X consists of all the literals that are true in ψ.
Now, every set Fx is split, as exactly one of the literals is true and one is false,
whereas every set FC is split as well, as it contains a true literal, which belongs
to X , and the special element s, which does not.

Now assume that X ⊆ U is a solution to the Set Splitting instance (U,F).
As taking U \X instead of X also yields a solution, without losing generality we
can assume that s /∈ X . Every set Fx is split by X ; therefore, exactly one literal
of every variable belongs to X and exactly one does not. Let ψ be a boolean
evaluation of variables of ϕ such that it satisfies all the literals belonging to X .
Observe that ψ satisfies ϕ: for every clause C the set FC has to be split, so, as
s /∈ X , one of the literals of C belongs to X and, thus, is satisfied by ψ. .�
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Note that by pipelining Lemmata 8, 4 and 5, we obtain a reduction from 3-
CNF-SAT to Line Cluster Embedding, where the output instance has a
number of vertices and edges bounded linearly in the number of variables and
clauses of the input formula. This observation, together with the key tool used in
proving complexity lower bounds under Exponential Time Hypothesis, namely
the Sparsification Lemma [11], gives us the following theorem.

Theorem 9. Unless ETH fails, there is a constant δ > 0 such that there is
no algorithm that given a (V,E+, E−) instance of Line Cluster Embedding

problem, solves it in O(2δ(|V |+|E
+|+|E−|)) time.

Proof. Let us begin by recalling the Sparsification Lemma.

Lemma 10 (Sparsification Lemma, Corollary 1 of [11]). For all ε > 0 and
positive k, there is a constant C so that any k-SAT formula Φ with n variables
can be expressed as Φ =

∨t
i=1 Ψi, where t ≤ 2εn and each Ψi is a k-SAT formula

with at most Cn clauses. Moreover, this disjunction can be computed by an
algorithm running in time O�(2εn).

Let us assume that for all δ > 0 there exists an algorithm solving Line Cluster

Embedding in O(2δ(|V |+|E
+|+|E−|)) time complexity. We show an algorithm

solving 3-CNF-SAT in O�(2εn) time for every ε > 0, where n is the number of
variables, thus contradicting the ETH. Indeed, having fixed ε we can:

– take an instance of 3-CNF-SAT and using Sparsification Lemma inO�(2εn/2)
time express it as a disjunction of at most 2εn/2 3-CNF-SAT instances, each
containing at most Cn clauses for some constant C;

– reduce each instance in polynomial time via Set Splitting and Acyclic

Partition to Line Cluster Embedding, thus obtaining at most 2εn/2

instances of Line Cluster Embedding, each having |V |, |E+|, |E−| ≤ C′n
for some constant C′;

– in each of the instances run the assumed algorithm for Line Cluster Em-

bedding, running in O(2δ(|V |+|E
+|+|E−|)) time, for δ = ε

6C′ . .�

4.3 A Single-Exponential Algorithm for Line Cluster Embedding

Note that the trivial brute-force algorithm for Line Cluster Embedding

checks all possible orderings, working in O�(n!) time. To complete the picture
of the complexity of Line Cluster Embedding, we show that a simple dy-
namic programming approach can give single-exponential time complexity. This
matches the lower bound obtained from under Exponential Time Hypothesis (up
to a constant in the base of the exponent).

Before we proceed with the description of the algorithm, let us state a com-
binatorial observation that will be its main ingredient. Let (V,E+, E−) be the
given Line Cluster Embedding instance. For X ⊆ V and v /∈ X we will say
that v is good for the set X iff
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– no vertex w ∈ X that is adjacent to v via a negative edge is simultaneously
adjacent to some vertex from V \ (X ∪ {v}) via a positive edge;

– no vertex w ∈ V \ (X ∪ {v}) that is adjacent to v via a negative edge is
simultaneously adjacent to some vertex from X via a positive edge.

Lemma 11. An ordering π is a feasible solution of (V,E+, E−) if and only if
every vertex v ∈ V is good for the set {u : u <π v}.

Proof. One direction is obvious: if π is a feasible solution, then every vertex v
has to be good for the set {u : u <π v}. If v would not be good for {u : u <π v},
there would exist a vertex w certifying that v is not good, and the condition
imposed upon w would be not satisfied.

Now assume that every vertex v ∈ V is good for {u : u <π v} and take an
arbitrary vertex v ∈ V . If there were vertices u1 <π u2 <π v such that u1v ∈ E+

while u2v ∈ E−, then u2 would not be good for the set {u : u <π u2}, a
contradiction. Similarly, if there were vertices u1 >π u2 >π v such that u1v ∈ E+

while u2v ∈ E−, then u2 would not be good for the set {u : u <π u2}, a
contradiction as well. Therefore, the condition imposed on v is satisfied for an
arbitrary choice of v. .�

Theorem 12. Line Cluster Embedding can be solved in O�(2n) time and
space complexity. Moreover, the algorithm can also output a feasible ordering of
the vertices, if it exists.

Proof. Let (V,E+, E−) be the given Line Cluster Embedding instance. Let
W = {(v,X) : v is good for X}. Let us construct a directed graph D = (W,F ),
where ((v,X), (v′, X ′)) ∈ F if and only if X ′ = X ∪ {v}. As recognizing being
good is clearly a polynomial time operation, the graph D can be constructed in
O�(2n) time and has that many vertices and edges. Observe that by Lemma 11
there is a feasible ordering π if and only if some sink (v, V \ {v}) is reachable
from some source (u, ∅); indeed, such a path corresponds to introducing the
vertices of V one by one in such a manner that each of them is good for the
respective prefix. Reachability of any sink from any source can be, however,
tested in time linear in the size of the graph using a breadth-first search. The
search can also reconstruct the path in the same complexity, thus constructing
the feasible solution. .�

5 Conclusions

In this paper we addressed a number of problems raised by Kermarrec and
Thraves in [13] for embeddability of a signed graph into a line. We refined their
study of the case of a complete signed graph by showing relation with proper
interval graphs. Moreover, we have proven NP -hardness of the general case and
shown an almost complete picture of its complexity.

Although the general case of the problem appears to be hard, real-life social
networks have a certain structure. Is it possible to develop faster, maybe even
polynomial-time algorithms for classes of graphs reflecting this structure?
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Abstract. In the present paper we show a dichotomy theorem for the
complexity of polynomial evaluation. We associate to each graph H a
polynomial that encodes all graphs of a fixed size homomorphic to H .
We show that this family is computable by arithmetic circuits in con-
stant depth if H has a loop or no edges and that it is hard otherwise
(i.e., complete for VNP, the arithmetic class related to #P ). We also
demonstrate the hardness over Q of cut eliminator, a polynomial defined
by Bürgisser which is known to be neither VP nor VNP-complete in F2,
if VP � VNP (VP is the class of polynomials computable by arithmetic
circuits of polynomial size).

1 Introduction

Dichotomy theorems are a way to classify entire classes of problems by their
complexity. For instance, Schaefer [Sch78] has classified a subclass of CSP as
being in P or NP-complete. Whether such a theorem holds for every CSP is
a famous open question, the Dichotomy Conjecture [FV98]. More recently, di-
chotomy theorems for counting homomorphism problems have been studied by
several authors [DG00, BG04, GT11]. In Valiant’s theory of polynomial evalu-
ation, an equivalent of Schaefer’s theorem has been produced by Briquel and
Koiran [BK09], opening the way for such theorems in this theory.

In this paper, we define the class of homomorphism polynomials: if H is a
graph, the monomials of the associated homomorphism polynomial fH

n encode
the list of graphs of size n homomorphic to H . Our main result is a dichotomy
theorem for this class of polynomials, in Valiant’s theory: (fH

n ) is computable by
unbounded fan-in arithmetic circuits in constant depth (the Valiant equivalent
of AC0) if H has a loop or no edge and hard otherwise (i.e., complete for VNP,
the arithmetic class related to #P ).

Deciding the existence of or counting homomorphisms are important prob-
lems which generalize many natural questions (k-coloring, acyclicity, binary CSP,
etc [HN04]). The weighted version, which is very similar to our polynomials, has
several applications in statistical physics [Wel93].

The connection between Valiant’s theory of polynomial evaluation and count-
ing problems is well known. For instance, the permanent is complete in both
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settings [Val79a, Val79b]. Homomorphism polynomials are therefore linked to
counting homomorphism problems: the evaluation of fH

n counts the number of
graphs of size n homomorphic to H . But these polynomials also tell us some-
thing about enumeration: it is equivalent to enumerate this set of graphs and to
enumerate all the monomials of fH

n . We will use this property to demonstrate
a result on representations by first order formulas of the bipartite property for
graphs.

The hard part of our dichotomy theorem is to demonstrate the hardness
of most homomorphism polynomials. We therefore obtain many new VNP-
complete families (indeed unlike NP-complete problems, there are not a lot of
VNP-complete polynomials known). These families can be seen as generating
functions in the way introduced by Jerrum and Bürgisser [Bür00]. No general
hardness theorem has been found for these functions (but there are large re-
sults for tractable functions [CMR01]). As stated before, many problems can be
seen as homomorphism problems. Our theorem therefore implies the hardness
of many generating functions.

Moreover, Bürgisser [Bür00] gives a family of polynomials, Cut2, which is
neither VNP-complete nor VP over F2, if VNP � VP of course. He also demon-
strates the existence of such a family in every field, but does not give a specific
family for Q. He wonders (Problem 5.2 in [Bür00] ) whether Cut2 can be such a
family in Q. During the demonstration of our theorem, we will show the VNP-
completeness of Cut2 and therefore answer negatively the question.

2 Definitions and General Discussions

A polynomial enumerates a family P of graphs if each monomial of this poly-
nomial encodes a single graph G in P and each graph G ∈ P is encoded by
a single monomial. In this paper we study polynomials enumerating graphs G
homomorphic to a graph H using a simple code: the variables of the polynomial
are the set {xe, e ∈ E(Kn)}; the monomial coding G is

∏
e∈E(G) xe. These poly-

nomials are therefore multilinear (i.e., every variable has a maximal degree of 1)
and have only 0 or 1 for coefficients. More precisely

Definition 1. Let H be a graph. The polynomial enumerating all graphs G
with n vertices which are homomorphic to H is:

fH
n ((xe)e∈E(Kn)) :=

∑
ε̄∈{0,1}|E(Kn)|

ΦH
n (ε̄)

∏
e∈E(Kn)

xεe
e

Where ΦH
n (ε̄) is equal to 1 if the graph G such that V (G) = [n] and E(G) =

{e ∈ E(Kn)|εe = 1} is homomorphic to H , 0 otherwise.

We work within Valiant’s algebraic framework. Here is a brief introduction to
this complexity theory. For a more complete overview, see [Bür00].

An arithmetic circuit over a field K is a labeled directed acyclic connected
graph with vertices of indegree 0 or 2 and only one sink. The vertices with
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indegree 0 are called input gates and are labeled with variables or constants from
K. The vertices with indegree 2 are called computation gates and are labeled with
× or +. The sink of the circuit is called the output gate.

The polynomial computed by a gate of the arithmetic circuit is defined by
induction : an input gate computes its label; a computation gate computes the
product or the sum of its children’s’ values. The polynomial computed by an
arithmetic circuit is the polynomial computed by the sink of the circuit.

A p-family is a sequence (fn) of polynomials over a field K such that the
number of variables as well as the degree of fn are polynomially bounded in
n. The complexity L(f) of a polynomial f ∈ K[x1, . . . , xn] is the minimal num-
ber of computational gates of an arithmetic circuit computing f from variables
x1, . . . , xn and constants in K.

Two of the main classes in this theory are: the analog of P, VP, which contains
every p-family (fn) such that L(fn) is a function polynomially bounded in n; and
the analog of NP, VNP. A p-family (fn) is in VNP iff there exists a VP family
(gn) such that for all n, fn(x1, . . . , xn) =

∑
ε̄∈{0,1}n gn(x1, . . . , xn, ε1, . . . , εn).

Furthermore we introduce the Valiant equivalent of AC0, VAC0 as the class
of every p-family (fn) such that they can be computed by a circuit of size
polynomially bounded in n and of constant depth, but whose computational
gates have unfounded fan-in. This class has been introduced in [MRar].

As in most complexity theory we have a natural notion of reduction: a poly-
nomial f is a projection of a polynomial g, write f ≤p g, if there are values
ai ∈ K ∪ {x1, . . . , xn} such that f(x̄) = g(ā). A p-family (fn) is a p-projection
of (gn), also write (fn) ≤p (gn), if there exists a polynomially bounded function
p such that for every n, fn ≤p gp(n). As usual we say that (gn) is complete for a
class C if, for every (fn) ∈ C, (fn) ≤p (gn) and if (gn) ∈ C.

The three classes presented above are closed under projections. We will need in
this paper a second notion of reduction, the c-reduction: the oracle complexity
Lg(f) of a polynomial f with the knowledge of g is the minimum number of
computation gates and evaluations of g over previously computed values that are
sufficient to compute f from the variables x1, . . . , xn and constants from K. A
p-family (fn) c-reduces to (gn), write (fn) ≤c (gn), if there exists a polynomially
bounded function p such that Lgp(n)(fn) is a polynomially bounded function.

This reduction is more powerful than the projection: if (fn) ≤p (gn), then
(fn) ≤c (gn). With this reduction, VNP is still closed, but it is harder to demon-
strate (See [Poi08] for an idea of the proof). However this reduction does not
distinguish the lower classes. For example, 0 is VP-complete under c-reductions.

The notion of c-reductions was introduced by Bürgisser [Bür00] in his work
on p-families that are neither in VP nor VNP-complete (if VNP � VP). It has
rarely been used to demonstrate the hardness of computing polynomials, though
there is a recent example in [Bri11].

Bürgisser demonstrates the existence of such a family in every field with an
abstract embedding theorem. Furthermore he gives a specific family for some
finite fields, the cut enumerator Cutq

n:
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Cutq
n :=
∑

S

∏
i∈A,j∈B

xq−1
ij

where the sum is over all cuts S = {A, B} of the complete graph Kn on the set
of nodes {1, . . . , n}. (A cut of a graph is a partition of its set of nodes into two
nonempty subsets).

Theorem 1. (Bürgisser, 5.22) Let q be a power of the prime p. The family of
cut enumerators Cutq over a finite field Fq is neither VP nor VNP-complete
with respect to c-reductions, provided ModpNP � P/poly. The latter condition is
satisfied if the polynomial hierarchy does not collapse at the second level.

However, the cut enumerator can be rewritten in the following way:

Cutq
n(x̄) =

∑
V �[n]
V �∅

∏
i∈V

∏
j∈V c

xq−1
i,j

This polynomial will be studied in Lemma 7, for other purposes. In particular, we
will demonstrate that this family is VNP-complete in Q if q = 2, which answers
a question of Bürgisser. Furthermore, this implies that our demonstration does
not work in a field of characteristic 2 (if VP � VNP).

The main theorem of our paper is:

Theorem 2. Let H be a graph. Let fH
n be the polynomial enumerating all graphs

homomorphic to H. Then, over Q

– If H has a loop or no edges, (fH
n ) is in VAC0.

– Else (fH
n ) is VNP-complete under c-reductions.

Proofs that all our p-families are indeed p-families and are in VNP are left
to the reader. It is a simple application of Valiant’s criterion [Bür00]. We will
demonstrate our main theorem in four steps: first we will deal with the easy
cases. Secondly, using Dyer and Greenhill’s ideas, we will reduce the problem
to the case where H is as simple as possible, i.e., with only one edge and two
vertices,�. In a third step, we will note that the monomials of f� have a kind
of “hereditary” property which we will use to reduce the problem to a simpler
polynomial. Finally, we will demonstrate the VNP-completeness of this simpler
polynomial.

As an application of our theorem and to illustrate the relation with enumer-
ation, here is a sketch of the following corollary. it is more of a proof concept
than a fully demonstrated result:

Corollary 1. If VP � VNP, and if the product of two boolean matrices of size
n cannot be computed in O(n2), being bipartite cannot be expressed by an acyclic
conjunctive first order formula of polynomial size on the size of the studied graph.

We just give here an idea of the demonstration. Let φn be an acylic conjunctive
first order formula of polynomial size stating that G is bipartite or not, for every
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graph G of size n. As the set of bipartite graphs can be enumerated with a
constant delay, by the dichotomy theorem of Bagan [Bag09] (true if the product
of two boolean matrices of size n cannot be computed in O(n2)), φn is CCQ,
i.e., of star size 1. Therefore, thanks to the work of Durand and Mengel [DM11],
we know that P (φ) ∈ VP. At last, as P (φ) = f�, f� is VNP-complete and in
VP, which is impossible if VNP � VP. Therefore φn cannot exist.

3 The Easy Cases

Lemma 1. If H has a loop, then (fH
n ) is in VAC0.

Proof. Let v be a looped vertex of H . Then every graph G is homomorphic to
H : we just have to send all vertices of G to v. Therefore,

fH
n (x̄) =

∑
ε̄∈{0,1}|E(Kn)|

∏
e∈E(Kn)

xεn
e =

∏
e∈E(Kn)

(1 + xe)

This product can be computed easily by an arithmetic circuit of polynomial size,
depth 3 and unbounded fan-in for the ×-gate. �

The case where H has no edges is quite obvious, we just have to notice that if
H1 and H2 are two bihomomorphic graphs, i.e., there exists a homomorphism
from H1 to H2 and vice versa, then, for all n, fH1

n = fH2
n . Let us consider now

our graph H with no edges. It is bihomomorphic to the graph H0, composed of
a single vertex. Furthermore the only graphs homomorphic to H0 are those with
no edges. Therefore fH0

n = 1.
Let us quote a very useful technical result, already pointed out in [Bür00].

Lemma 2. Let (fn) be a p-family. Let us write HCk (fn) for the homogeneous
component of degree k of fn, i.e., the sum of every monomial of degree k.

Then for any sequence of integers (kn) there exists a c-reduction from the
homogeneous component to the polynomial itself:

(HCkn (fn)) ≤c (fn)

Proof. Let n be an integer and dn be the degree of fn. Let us recall that the
degree of fn is polynomially bounded in n. To begin with, let us notice that
for all i, fn(2ix̄) =

∑dn

k=0(2i)kHCk (fn) (x̄). If we write ck = HCk (fn) (x̄),
fi = fn(2ix̄) and wk = 2k, those equations can be written as:⎛

⎜⎜⎜⎝
f0
f1
...

fdn

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎝

1 1 · · · 1
ω0 ω1 · · · ωdn

...
...

...
...

ωdn
0 ωdn

1 · · · ωdn

dn

⎞
⎟⎟⎟⎠
⎛
⎜⎜⎜⎝

c0
c1
...

cdn

⎞
⎟⎟⎟⎠

Let us write M the square matrix of this equation. It is a Vandermonde ma-
trix with non negative integers. As the coefficients wk are distinct, this ma-
trix is invertible. Therefore there exist some rationals w∗

i,k such that ck =∑dn

i=0 w∗
i,kfn(2ix̄).
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Therefore we have, for all n and all k ≤ dn, Lfn(HCk (fn)) = O(n × dn).
Let (kn) be a sequence of integers. If kn > dn, then HCkn (fn) = 0. Thus for
all Lfn(HCkn (fn)) ≤ O(n × dn). As dn is polynomially bounded by n, we have
just constructed the c-reduction we were looking for. �

This lemma is still true if we take the homogeneous component in some variables
only. Let f(x̄, ȳ) be a polynomial and HCȳ

k (f) the homogeneous component of
degree k in variables ȳ, i.e., considering x̄ as constant. Then for any p-family
(fn) and any sequence of integers kn,

(
HCȳ

kn
(fn)
) ≤c (fn).

4 Reduction to Bipartite Graphs

One of the main ideas of Dyer and Greenhill is to reduce the problem of counting
homomorphisms from G to H to a simpler graph H . Here we have a similar result
but the graph we obtain is extremely simple.

Proposition 1. Let � be the graph with two vertices and one edge. Then for
any graph H with no loops and at least one edge:

(f�n ) ≤c

(
fH

n

)
Lemma 3. Let H = (V, E) be a graph with no loops and at least one edge. For
all i ∈ V , let us call Hi the subgraph of H induced by the neighbours of i and H̃
the disjoint union of all those neighbourhood graphs. Then(

f H̃
n

)
≤c

(
fH

n

)
Proof. let us notice that, as H has no loops, i � Hi. For any graph G, let us call
G′ the graph built from G by adding a new vertex v and joining it to every vertex
of G. Dyer and Greenhill have noticed in their paper [DG00] that the number of
homomorphisms from G′ to H is equal to the number of homomorphisms from
G to H̃ . Let us see what this means for our polynomials.

Let f̃H
n (x̄) be the polynomial built from fH

n+1 by replacing all xi,n+1 variables
by y, by taking the homogeneous component of degree n in y and by giving value
1 to y: f̃H

n (x̄) = HCy
n

(
fH

n+1(x̄, y)
)

|y=1
.

f̃H
n enumerates all graphs of size n+1 homomorphic to H and having a vertex

v linked to all others, i.e., graphs G′ homomorphic to H .

f̃H
n (x̄) =

∑
G graph of size n

ΦH
n (G′)x̄Ḡ =

∑
G graph of size n

ΦH̃
n (G)x̄Ḡ := f H̃

n (x̄)

where ΦH
n (G) = 1 if there exists a homomorphism between G and H , 0 otherwise.

Then f̃H
n = f H̃

n and consequently there is a c-reduction from (f H̃
n ) to (fH

n+1). �

Proof of the Proposition 1. Since H has no loops, the degree of H̃ is strictly
lower than that of H . Indeed, for any vertex j of H , any vertex k linked to j in
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H ′ is also linked to j in H . So the degree of H̃ cannot grow. Furthermore, if i
is a maximal degree (d) vertex of H and if j is a vertex of H , then either i is
not linked to j and so does not appear in Hj , or it is linked to j and, in Hj , it
cannot be linked to more than d − 1 vertices (|Vi ∩ Vj |, knowing that j � Vj).
The degree of the vertices of H̃ corresponding to the vertex i is therefore strictly
lower than d.

If we apply the process of Lemma 3 to H a finite number of times we obtain
a graph of maximal degree 1. This graph is bihomomorphic to�. Therefore we
have the expected reduction: (f�n ) ≤c

(
fH

n

)
�

5 The Bipartite Case

Now we have to demonstrate the following proposition.

Proposition 2. Let � be the graph with two vertices and one edge. Then f�n
is VNP-complete.

5.1 Hereditary Polynomials

f�n has a noteworthy property: if (xi)i∈I is a monomial of f�n , then for all
J ⊂ I, (xj)j∈J is also a monomial of f�n . Indeed, this polynomial enumerates
all graphs homomorphic to �, i.e., all bipartite graphs, and every subgraph of
a graph homomorphic to � is also homomorphic to �. To build on this idea,
we introduce the following definitions.

Let f be a multilinear polynomial with 0,1 coefficients only. f is hereditary if
it satisfies the following property: if (xi)i∈I is a monomial of f , so is (xj)j∈J ,
for all J ⊂ I. This relation induces an order on all the monomials of f : (xi)i∈I

is greater that (xj)j∈J if J ⊂ I. We call a monomial a generator for f if it is
maximal for this order.

A hereditary polynomial is completely defined by its generators. We can nat-
urally ask the opposite question. Let g be a multilinear polynomial with 0,1
coefficients. We write ↓ g for the son of g, i.e., the smallest hereditary polyno-
mial containing g. An homogeneous polynomial is a polynomial on which every
monomial have the same degree.

Lemma 4. Let gn be a sequence of multilinear homogeneous polynomials with
0,1 coefficients. Then

(gn) ≤c (↓ gn)

Proof. Let n be an integer and d the degree of all the monomials of gn. The
generators of ↓ gn are simply the monomials of degree d, gn = HCd (↓ gn). The
reduction is given by Lemma 2. �

The reduction (gn) ≤c (↓ gn) is probably not true in the general case: for in-
stance fn = (

∏n
i=1 xi) + per(x̄) is VNP-complete, but its son is the sum of all

monomials of size less than n, and it is therefore in VAC0. However, we can
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hope to generalize this inequality to all pure polynomials, which we define as
polynomials with no pair of comparable monomials.

In our case, we try to demonstrate that f�n is VNP-complete. This polyno-
mial is hereditary. In Lemma 6, we will demonstrate that the polynomial Fn,
which enumerates all graphs composed of some isolated vertices and a complete
bipartite connected component, is VNP-complete. Now f�n is the son of this
polynomial: ↓ Fn = f�n .

Unfortunately this polynomial Fn is not pure, some of its monomials are
comparable. In Lemma 8 we demonstrate that the polynomial (Gn), enumerating
all the complete bipartite graphs, is also VNP-complete. f�n is also the son of
Gn, but this polynomial is pure!

As we have no general proof of the reduction from a pure polynomial to its
son (yet), we will now give an ad hoc demonstration of the reduction from Gn

to f�n .
At the end, we will have demonstrated the following chain, for any graph H

with no loop and at least one edge.

(GF(Kn, clique)) ≤c (Fn) ≤p (Cut2
n) ≤c (Gn) ≤c (f�n ) ≤c (fH

n )

As the generating function of clique is VNP-complete, we will have demonstrated
Theorem 2.

Lemma 5. Let f�n be the polynomial enumerating all graphs of size n homo-
morphic to �. Let Gn be the polynomial enumerating all complete bipartite
graphs of size n. Then

(Gn) ≤ (f�n )

Proof. Gn can be written as Gn

(
(ye)e∈E(Kn)

)
= 1

2
∑

V ⊂[n]
∏

v∈V

∏
v′∈V c yv,v′ .

We express Gn in the following way:

Gn =

(
n−1∑
k=1

HCx̄
(n−k)k

(
HCy

k

(
HCz

n−k

(
HCw

1
(
f�n+2(x̄)

)))))
|w,y,z=1

Where xn+1,n+2 = w and for all i ∈ [n], xi,n+1 = y and xi,n+2 = z.
Indeed, f�n enumerates all bipartite graphs. Each operation above consisting

in taking a homogeneous component eliminates some graphs from the list. We
will demonstrate that, at the end, the polynomial will only enumerate complete
bipartite graphs.

In a first step, we add two vertices n + 1 and n + 2 and we give a weight w to
the edge between them. By taking the homogeneous component of degree 1 in
the variable w, we eliminate all graphs but those which have an edge between
n + 1 and n + 2.

Then we use variable substitutions to label the edges leaving n + 1 with the
weight y and those leaving n + 2 with z. A vertex linked to n + 1 cannot be
linked to n + 2, as our graphs are bipartite and the vertices n + 1 and n + 2
are linked. Let us write V and V ′ for the partition of vertices defined by the
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bipartite graph, with n + 2 ∈ V and therefore, as n + 1 and n + 2 are linked,
n + 1 ∈ V ′.

By taking next the homogeneous component of degree n − k in z, we force
that |V ′| ≥ n − k. Similarly, by taking the homogeneous component of degree k
in y, we force that |V | ≥ k. Therefore, as V and V ′ are disjoint sets, we force
that V c = V ′.

At the end, by taking the homogeneous component of degree (n − k)k in the
variables x̄, we only keep bipartite graphs built on V and V c, with |V | = k and
which have (n − k)k edges, i.e., complete bipartite graphs on n vertices.

The reduction is then given by Lemma 2. �

5.2 Bipartite Graphs

Let us demonstrate that Fn is VNP-complete by reducing the generating func-
tion of clique to Fn. The proof of the following lemma is omitted because of
space restrictions, but it is given in Appendix A.

Lemma 6. Consider the polynomial

Fn

(
(xe)e∈E(Kn)

)
= GF (Kn, complete bipartite) =

∑
E′

∏
e∈E′

xe,

where the summation is done over all subsets E′ ⊂ E(Kn) such that the graph
([n], E′) (i.e., the graph with n vertices and E′ as set of edges) has one complete
bipartite connected component and all other connected components reduce to a
single vertex.

This p-family is VNP-complete under c-reductions.

As we mentioned before the son of Fn is f�n (i.e., ↓ Fn = f�n ), but Fn is not pure.
We therefore had to introduce the polynomial Gn which is still a generator of f�n
but is pure. For now we introduce another polynomial, the cut enumerator. We
will use it to prove the completeness of Gn. But as mentioned in the introduction
and in Theorem 1, this family had been introduced by Bürgisser [Bür00] as a
family neither VP nor VNP-complete in F2, if of course VP � VNP.

Be aware that, contrary to the rest of this paper, this polynomial will be built
on non-symmetric variables: xi,j will, generally, not be equal to xj,i.

Lemma 7. Let Cut2
n be the following polynomial

Cut2
n

(
(xi,j)i,j∈[n]

)
=
∑

V ⊂[n]

∏
v∈V

∏
v′∈V c

xv,v′

This p-family is VNP-complete under c-reductions.

Proof. We will exhibit a p-reduction from Fn = GF(Kn, complete bipartite) to
Cut2

2n. Because GF(Kn, complete bipartite) is complete under c-reductions, as
seen in Lemma 6, this will prove the lemma.

For that, we evaluate Cut2
2n on Kn,n on which we label the edges the following

way (remember we are in an oriented graph):
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1. A edge between two vertices of the same side of Kn,n is labeled by 1,
2. Any edge from the right side to left is also labeled by 1,
3. A horizontal edge from the left side to the right side (i.e., an edge between

the i-th left vertex and the i-th right vertex) is labeled by 0,
4. And finally, the edge from the i-th left vertex to the j-th right vertex (with

i � j) is labeled by yi,j .

Let V ⊂ V (Kn,n). First, if the i-th left vertex is in V and not the i-th right
vertex then by (3) ω(V ) :=

∏
v∈V

∏
v′∈V c xv,v′ = 0. Therefore, when ω(V ) � 0,

V is of type V1 ∪ V2 with V1 in the left side, V2 in the right side and V ′
1 , the

image of V1 on the right side, (i.e., if the i-th left vertex is in V1, then the i-th
right vertex is in V ′

1) is a subset of V2. Then if we write V c
1 the complement of

V1 in the left side and V c
2 the one of V2 in the left side,

ω(V ) =
∏
v∈V

∏
v′∈V c

xv,v′

=(
∏

i∈V1

∏
v′∈V c

xi,v′)(
∏

i′∈V2

∏
v′∈V c

xi′,v′)

=(
∏

i∈V1

∏
j∈V c

1

xi,j)(
∏

i∈V1

∏
j′∈V c

2

xi,j′ )(
∏

i′∈V2

∏
v′∈V c

xi′,v′)

In the last line, the first parenthesis, (
∏

i∈V1

∏
j∈V c

1
xi,j), takes value 1 because

of (1). The second one, (
∏

i∈V1

∏
j∈V c

2
xi,j), takes value (

∏
i∈V1

∏
j∈V c

2
yi,j) by

(4).The last one, (
∏

i∈V2

∏
v′∈V c xi,v′ ), takes value 1 because of (1) and (2).

Then for every non empty subset V of V (Kn,n), ω(V ) =
∏

i∈V1

∏
j∈V c

2
yi,j .

Furthermore, there is a bijection between {V ⊂ V (Kn,n), ω(V ) � 0} and {(V, V ′),
V ⊂ [n], V ′ ⊂ [n], V ∩ V ′ = ∅}. And this bijection conserves weights. Thus, for
the values of the variables x̄ defined above,

Cut2
2n(x̄) = GF(Kn, complete bipartite)(ȳ) = Fn

�

Lemma 8. Let Gn be the polynomial enumerating all complete bipartite graphs
of size n. Then the p-family (Gn) is VNP-complete under c-reductions.

The proof is in appendix B.

Perspectives

We have left open in section 5.1 the question of whether a pure multilinear
polynomial is always reducible to its son, though we have shown the reduction for
homogeneous polynomials and in the special case of homomorphism polynomials.
This question can be seen as a generalization of the relationship between the
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permanent and the partial permanent per∗ (cf [Bür00]). Note that the partial
permanent is useful to show the completeness of other families of polynomials,
so it would be interesting to obtain a general result.

The opposite question, namely whether the son of a polynomial always reduces
to it, is also quite interesting. For instance, per is in VP in characteristic 2. The
same result for per∗ was implicitly solved in [Val01]. A reduction from ↓ f to
f in the general case would provide another proof of this result and extend our
understanding of these polynomials.

Another question raised by this paper is the relation between polynomials
which list a graph property as homomorphic polynomials or generating functions
on one hand and enumeration on the other. A brief foray into this subject has
been made with Corollary 1.

We intend to extend the study of these two questions in our future research.

Acknowledgements. I thank both of my doctoral advisors, A. Durand and G.
Malod as well as L. Lyaudet for all his corrections.
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A Appendix: Proof of Lemma 6

Lemma (Lemma 6). Consider the polynomial

Fn

(
(xe)e∈E(Kn)

)
= GF (Kn, complete bipartite) =

∑
E′

∏
e∈E′

xe

where the summation is done over all subsets E′ ⊂ E(Kn) such that the graph
([n], E′) (i.e., the graph with n vertices and E′ as set of edges) has one complete
bipartite connected component and all other connected components reduce to a
single vertex.

This p-family is VNP-complete under c-reductions.

Proof. We will reduce the clique generating function to our polynomial: gn(x̄) =
GF(Kn, clique)((xe)e∈E(Kn)) =

∑
E′
∏

e∈E′ xe, where the summation is on all
E′ ⊂ E(Kn) such that the graph ([n], E′) has a complete connected component
(a clique) and all others reduce to a single vertex. Bürgisser has demonstrated
in [Bür00] that this sequence is VNP-complete under p-reductions.

Let us rewrite our polynomial:

Fn(x̄) =
1
2
∑

V,V ′⊂[n]
V ∩V ′=∅

∏
v∈V

∏
v′∈V ′

x(v,v′)

The 1
2 comes from the fact that each complete bipartite graph can be defined by

two different couples of sets: (V, V ′) and (V ′, V ); and that each couple of vertex
sets correspond to a unique complete bipartite graph.
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We will proceed to the reduction by beginning with the sequence (Fn) and
writing a series of sequences of polynomials (fk

n)n∈N, each being reducible to the
previous one.

Hereafter, we suppose that the left vertices of Kn,n are [1, n] and the right ones
are [n + 1, 2n]. We write î for the i-th right vertex, i.e., î = i + n. Similarly, if [n]
are the left vertices of Kn,n, we write [̂n] for the right ones, i.e., [̂n] = [n + 1, 2n].

f1
n(x̄) = F2n(Kn,n) =

∑
V ⊂[n]

∑
V ′⊂ ̂[n]

∏
i∈V

∏
j∈V ′

xi,j

Let V and V ′ be two disjoint sets of vertices. If V has some of its vertices both
in the right side and the left side (let us say for instance i in the left side), then
we can suppose that V ′ has a vertex j in the left side. Hence x(i,j) = 0 appears
in the weight of V ′, V . Therefore this weight is zero.

The only complete bipartite graphs enumerated in F2n(Kn,n) are those built
on V and V ′ with V a subset of the left vertices and V ′ a subset of the right
ones. The summation on every subset V of the left vertices avoids repetitions
and thus the 1

2 coefficient is not necessary.

f2
n(x̄, y) = f1

n+1(x̄, x
n+1,̂i

= 0, xi,n̂+1 = y) =
∑

V ⊂[n+1]

∑
V ′⊂ ̂[n+1]

∏
i∈V

∏
j∈V ′

xi,j

If V and V ′ are vertex subsets, let ω(V, V ′) be their weight: ω(V, V ′) :=
∏

i∈V∏
j∈V ′ xi,j . Let V ⊂ [n + 1].

– If n + 1 ∈ V then ∀V ′ ⊂ ̂[n + 1], ω(V, V ′) = 0.
– If n̂ + 1 ∈ V ′ then ∀V ⊂ [n], ω(V, V ′) = (

∏
i∈V

∏
j∈V ′−{n̂+1} xi,j) × y|V |.

– Else, for all V ⊂ [n] degy(ω(V, V ′)) = 0.

In those polynomials, the degree of y is a witness to the size of V . We now just
have to take the homogeneous component in y of degree k to keep all the V of
size k:

f3,k
n (x̄) = HCy

k

(
f2

n

)
(x̄, y = 1) =

∑
V ⊂[n]
|V |=k

∑
V ′⊂ ̂[n]

ω(V, V ′)

Let us act similarly for V ′.

f4,k
n (x̄, y) = f3,k

n+1(x̄, x
n+1,̂i

= y, xi,n̂+1 = 0)

Here the degree of y is a witness to the size of V ′ in monomials where y is of
degree at least 1. Then

f5,k
n (x̄) = HCy

k

(
f4,k

n

)
(x̄, 1) =

∑
V ⊂[n],|V |=k

∑
V ′⊂ ̂[n],|V ′|=k

ω(V, V ′)
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Let us write now

f6,k
n (x̄, y) = f5,k

n (x̄, x
i,̂i

= y) =
∑

V ⊂[n],|V |=k

∑
V ′⊂ ̂[n],|V ′|=k

∏
i∈V

∏
j∈V ′
j�i

xi,j × y|V ∩V ′|

And at last, we find the clique generating function:

gn(x̄) =
n∑

k=1
HCy

k

(
f6,k

n

)
(x̄, 1)

Indeed, in this polynomial we sum on all subsets V ⊂ [n] of size k and the degree
of y is a witness to the size of V̂ ∩ V ′. Then if we keep only monomials for which
the degree in y is k, we only keep complete bipartite graphs built on V and V ′,
with |V | = |V ′| = |V̂ ∩ V ′|, i.e., on the same subset of vertices V , on the left and
on the right. Then:

n∑
k=1

HCy
k

(
f6,k

n

)
(x̄, 1) =

∑
V ⊂[n]

∏
i∈V

∏
j∈V

x
i,̂j

This polynomial is, by definition, gn(x̄), the clique generating function. Further-
more, as we announce it at the beginning of this demonstration, we have the
following reductions:

f2
n ≤p f1

n ≤p Fn

And, for all n, Lf2
n(f3,k

n ) = O(nk) then Lf2
n+1(f4,k

n ) = O(nk). Similarly
Lf4,k

n (f5,k
n ) = O(nk) then Lf2

n+1(f6,k
n ) = O(n2k2). At last Lf2

n+1(gn) =∑n
k=1 O(n3k3) = O(n7).
Thus we have shown a c-reduction from gn to Fn. �

B Appendix: Proof of Lemma 8

Lemma (Lemma 8). Let (Gn) be the polynomial enumerating every complete
bipartite graphs, i.e.,

Gn((xi,j)(i,j)∈E(Kn)) = 1
2
∑

V ⊂[n]

∏
v∈V

∏
v′∈V c

xv,v′

And let Cut2
n be the same polynomial but built on oriented graphs, the cut enu-

merator, i.e.,
Cut2

n((xi,j)i,j∈[n]) =
∑

V ⊂[n]

∏
v∈V

∏
v′∈V c

xv,v′

Then, (Cut2
n) ≤c (Gn).
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Proof. Here we want to compute the oriented version of Gn knowing how to
compute Gn. One of the classical technic is to double each vertex into an input
vertex and an output vertex.

First let us create a new graph with 2n vertices. In K2n, we say that the n-th
first vertices are the left ones and the n-th last vertices are the right ones. The
edge between the i-th left vertex and the j-th right is labeled with the oriented
variable xi,j . Edges between vertices of the same side are labeled with 1 and
horizontal edges, i.e., edges between the i-th left vertex and the i-th right are
labeled with 0, as we don’t want loops. Let K ′ be this graph to which we add
two new vertices, a and b. The new edges are labeled by:

– The edge between a and b is labeled by a new variable t,
– The edge between a and any left vertex by y,
– The edge between a and any right vertex by y′,
– The edge between b and any left vertex by z,
– The edge between b and any right vertex by z′,

Gn evaluated on this graph will enumerate a list of complete bipartite graphs.
By taking homogeneous components we will reduce this list until we find the cut
enumerator.

By taking the homogeneous component of degree 1 in t, we only keep in our
list the graphs which have a edge between a and b.

For a k ≤ n, we form a partition of the left side of K ′ into two sets by joining
k vertices of the left side to a and n − k left vertices to b (i.e., by taking the
homogeneous component of degree k in y and the homogeneous component of
degree n − k in z). A vertex cannot be linked to both a and b, as our graphs
must always be bipartite. We name V the set of left vertices linked to a, and
therefore V c is the set of left vertices linked to b.

Similarly, we split the right side of the graph K ′ into two sets: V ′, the set of the
k right vertices linked to a and V ′c the set of the n − k right vertices linked to b.

A vertex in V cannot be linked to a vertex in V ′ as they are both linked to
a. Similarly a vertex in V c cannot be linked to a vertex in V ′c because they are
both linked to b. Furthermore, every edge between a vertex of V and a vertex
of V c, or between a vertex of V ′ and a vertex of V ′c is labeled by 1, as they
are on the same side. Therefore, the only edges labeled with a xi,j variable that
participate in Gn are those between a vertex of V and a vertex of V ′c and those
between one of V ′ and one of V ′c.

If the i-th left vertex of K ′ is in V and the i-th right vertex of K ′ is in V ′c,
the monomial which is computed by V will have xi,i = 0 and therefore is null.
Thus if we identify both the left and the right side to [n], V ∩ V ′c = ∅ and
then V = V ′. Finally, if we evaluate G2n+2 on K ′, if we take all the previous
homogeneous components and if we evaluate the variables t, y, y′, z, and z′ to 1,
we have

1
2
∑

V ⊂[n]

⎛
⎝∏

i∈V

∏
j∈V ′c

xi,j +
∏

i∈V ′

∏
j∈V c

xi,j

⎞
⎠ = Cut2(x̄)

�
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Abstract. Modular Möbius number systems consist of Möbius trans-
formations with integer coefficients and unit determinant. We show that
in any modular Möbius number system, the computation of a Möbius
transformation with integer coefficients can be performed by a finite state
transducer and has linear time complexity. As a byproduct we show that
every modular Möbius number system has the expansion subshift of finite
type.

Keywords: exact real algorithms, expansion subshift, absorptions,
emissions.

1 Introduction

In an unpublished but influential manuscript, Gosper [1] shows that continued
fractions can be used for arithmetical algorithms, provided they are redundant.
Based on these ideas, exact real arithmetical algorithms have been devel-
oped in Vuillemin [15], Kornerup and Matula [4] or Potts [13]. These algorithms
perform a sequence of input absorptions and output emissions and update
their inner state, which may be a (2× 2)-matrix in the case of a Möbius trans-
formation or a (2 × 4)-matrix in the case of binary operations like addition or
multiplication.

Using the concepts and methods of symbolic dynamics, exact real arithmetic
has been generalized in the theory of Möbius number systems (MNS) in-
troduced in Kůrka [6] and developed in Kůrka and Kazda [10]. Möbius number
systems represent real numbers by infinite words from a one-sided expansion
subshift. The letters of the alphabet stand for real orientation-preservingMöbius
transformations and the concatenation of letters corresponds to the composition
of transformations. In Kůrka [7] we have investigated MNS in which rational
numbers have periodic or preperiodic expansions and in Kůrka [9] we have char-
acterized MNS whose expansion subshifts are of finite type or sofic.

The time complexity of the unary exact real algorithm which computes a
Möbius transformation depends on the growth of its inner state matrices during
the computation. Heckmann [2] analyzes this process in positional number sys-
tems and proves the Law of big numbers (not to be confused with the Law of
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large numbers), saying that the norm of the state matrix after n absorptions or
emissions is at least of the order rn/2 for r-ary positional systems. This implies
that the bit size of the state matrices grows at least linearly, and arithmetical
operations have quadratic time complexity. In Kůrka [8] we have shown that in a
general MNS the growth of the state matrices can be slower and we conjectured
that the state matrices can even remain bounded. In the present paper we show
that this is the case for modular MNS, i.e., MNS whose transformations have
integer coefficients and unit determinant. It follows that the unary algorithm
can be realized by a finite state transducer and has linear time complexity. This
generalizes the results of Raney [14] and complements the results of Konečný [3],
who proves (in a slightly different context), that the only differentiable functions
computable by finite state transducers are Möbius transformations.

2 Möbius Transformations

The extended real line R = R ∪ {∞} can be regarded as a projective space,
i.e., the space of one-dimensional subspaces of the two-dimensional vector space.
On R we have homogeneous coordinates x = (x0, x1) ∈ R2 \ {(0, 0)} with
equality x = y iff det(x, y) = x0y1 − x1y0 = 0. We regard x ∈ R as a column
vector, and write it usually as x = x0

x1
= x0/x1, for example ∞ = 1/0. The

stereographic projection h(z) = (iz + 1)/(z + i) maps R to the unit circle
∂D = {z ∈ C : |z| = 1} in the complex plane, and the upper half-plane
U = {z ∈ C : 5(z) > 0} conformally to the unit disc D = {z ∈ C : |z| < 1}.

A real orientation-preserving Möbius transformation (MT) is a self-
map of R of the form

M(a,b,c,d)(x) =
ax+ b

cx+ d
=

ax0 + bx1

cx0 + dx1
,

where a, b, c, d ∈ R and det(M(a,b,c,d)) = ad − bc > 0. Möbius transformations
form a group and act also on the upper half-plane U: If z ∈ U then M(z) ∈ U
as well. On D := D ∪ ∂D we get disc Möbius transformations defined by
M̂(a,b,c,d)(z) = h ◦M(a,b,c,d) ◦ h−1(z) = (αz + β)/(βz + α), where α = (a+ d) +

(b−c)i, β = (b+c)+(a−d)i. The circle derivation of M = M(a,b,c,d) at x ∈ R
is defined by

M•(x) = |M̂ ′(h(x))| = (ad− bc) · (x2
0 + x2

1)

(ax0 + bx1)2 + (cx0 + dx1)2
=

det(M) · ||x||2
||M(x)||2 .

The expansion interval of an MT is V(M) = {x ∈ R : (M−1)•(x) > 1}. If
M = Rα = M(cos α

2 ,sin
α
2 ,− sin α

2 ,cos
α
2 ) is a rotation, then M•(x) = 1 and V(M) is

empty. Otherwise V(M) is a proper set interval.

3 Intervals

A set interval is an open connected subset of R. A proper set interval is a
nonempty set interval properly included in R. We represent proper set intervals
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by (2× 2)-matrices whose columns are their left and right endpoints. The stere-
ographic projection applied to x = r sinα

r cosα ∈ R gives h(x) = sin 2α − i cos 2α =

ei(2α−
π
2 ), so it doubles the angles. Matrices with columns x = r sinα

r cosα , y = s sin β
s cosβ

where 0 ≤ α < 2π, α < β < α+ π therefore represent all proper intervals. Since
det(x, y) = rs sin(α−β) < 0, we define matrix intervals as (2× 2)-matrices with
negative determinant and write them as pairs I = (x0

x1
, y0y1 ) of their left and right

endpoints l(I) = x0

x1
, r(I) = y0

y1
. The set of matrix intervals is therefore

I(R) = {(x0

x1
, y0y1 ) ∈ GL(R, 2) : x0y1 − x1y0 < 0}.

We define the size and the length of an interval (x, y) by

sz(x, y) =
x0y0 + x1y1
x0y1 − x1y0

=
x · y

det(x, y)
,

|(x, y)| = 1

2
+

1

π
arctan sz(x, y).

For x = r sinα
r cosα , y = s sin β

s cosβ we get sz(x, y) = − cot(β − α) = tan(β − α − π
2 ),

so |(x, y)| = (β − α)/π, provided 0 < β − α < π. The length |I| ∈ (0, 1) of I
is an increasing function of the size sz(I) ∈ (−∞,+∞) of I. A matrix interval
I = (x, y) defines an open set interval by z ∈ I ⇔ det(x, z) ·det(z, y) > 0, and a
closed set interval z ∈ I ⇔ det(x, z) · det(z, y) ≥ 0. If I = ( r sinαr cosα ,

s sin β
s cosβ ), then

z = t sin γ
t cos γ ∈ I iff either α < γ < β or α + π < γ < β + π. If I, J are intervals,

then I ⊆ J iff l(I) ∈ J and r(I) ∈ J . In this case sz(I) ≤ sz(J). When we
transform intervals, we work with the matrix representations of MT rather than
with the transformations themselves. Möbius transformations are represented by
matrices

M(R) = {M(a,b,c,d) ∈ GL(R, 2) : ad− bc > 0}
which act on vectors x ∈ R2 by x �→Mx. Two matrices represent the same MT if
one is a nonzero multiple of the other and the matrix multiplication corresponds
to the composition of MT. If M ∈ M(R) and I ∈ I(R), then MI is the interval
which represents the M -image of the set interval of I.

4 Rational Intervals

Denote by Z the set of integers and by Q = {x ∈ Z2 \ { 00} : gcd(x) = 1} the
set of (homogeneous coordinates of) rational numbers which we understand as a
subset of R. Here gcd(x) is the greatest common divisor of x0 and x1. The norm
of a vector x ∈ Q is ||x|| =

√
x2
0 + x2

1. Denote by

M(Z) = {M ∈ GL(Z, 2) : gcd(M) = 1, det(M) > 0},
I(Z) = {I ∈ GL(Z, 2) : gcd(I) = 1, det(I) < 0}.

The norm of a matrix M(a,b,c,d) ∈ GL(Z, 2) is ||M || =
√
a2 + b2 + c2 + d2. We

have ||MN || ≤ ||M || · ||N || for M,N ∈M(Z).
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Lemma 1. If I ∈ I(Z) is an interval, then√
2 · | det(I) · sz(I)| ≤ ||I|| ≤ 2 · | det(I)| ·max{|sz(I)|, 1}.

Proof. Let I = (ac ,
b
d ). Then 2 · | det(I) · sz(I)| = 2|ab + cd| ≤ ||I||2, and we

get the first inequality. To prove the second inequality, we show that in all
cases max{|a|, |b|, |c|, |d|} ≤ | det(I)| · max{|sz(I)|, 1}. If a = 0 or d = 0 then
0 �= |bc| = | det(I)| and | det(I) · sz(I)| is either |cd| or |ab| and the claim is
satisfied. If b = 0 or c = 0 then 0 �= |ad| = | det(I)| and | det(I) · sz(I)| is either
|cd| or |ab| and the claim is satisfied. If sgn(ab) · sgn(cd) > 0 then

|a| · |b|+ |c| · |d| = |ab+ cd| = |sz(I) · det(I)|,

and the claim is satisfied. If sgn(ab) · sgn(cd) < 0 then sgn(ad) · sgn(bc) =
sgn(abcd) = sgn(ab) · sgn(cd) < 0 and |a| · |d|+ |b| · |c| = |ad− bc| = | det(I)|, so
the claim is satisfied. .�

Lemma 2. If I ∈ I(Z), sz(I) < 0 and x ∈ I ∩Q, then ||I|| ≤
√
5 · ||x|| · | det(I)|

and |sz(I)| ≤ 5
2 ||x||2 · | det(I)|.

Proof. Let x = p
q ∈ I = (ac ,

b
d), and set α = − det(ac ,

p
q ) = pc − aq, β =

− det(pq ,
b
d) = qb− pd, so sgn(α · β) > 0. Replacing x by −p−q if necessary, we can

assume that α > 0 and β > 0. Since sz(I) < 0 and sz(01 ,
1
0 ) = 0, either 0 �∈ I

or ∞ �∈ I. Assume first ∞ �∈ I, so cd = − det(ac ,
1
0 ) · det(

1
0 ,

b
d ) ≥ 0. Since q �= 0,

a = (pc−α)/q, b = (pd+β)/q, and − det(I) = (αd+βc)/q = (α|d|+β|c|)/|q|, so
α, β, |d|, |c| are bounded by |q| · | det(I)|. It follows that |a| and |b| are bounded
by (|p|+1) · | det(I)|, so ||I||2 ≤ 2(q2 + p2 +2|p|+1) · det(I)2. Similarly if 0 �∈ I,
then ab = − det(ac ,

0
1 ) ·det(

0
1 ,

b
d ) ≥ 0. Since p �= 0, c = (aq+α)/p, d = (qb−β)/p,

and − det(I) = (αb + βa)/p = (α|b| + β|a|)/|p|, so α, β, |a|, |b| are bounded by
|p| · | det(I)|. It follows that |c| and |d| are bounded by (|q| + 1) · | det(I)|, so
||I||2 ≤ 2(p2 + q2 + 2|q| + 1) · det(I)2. In both cases ||I||2 ≤ 5 · ||x||2 · det(I)2.
Similarly we show that |sz(I)| ≤ 5

2 ||x||2 · | det(I)|. .�

5 Subshifts

For a finite alphabet A denote by A∗ :=
⋃
m≥0A

m the set of finite words. Denote

λ the empty word : A0 = {λ}. The length of a word u = u0 . . . um−1 ∈ Am is
|u| = m. We denote by AN the Cantor space of infinite words with the metric
d(u, v) = 2−k, where k = min{i ≥ 0 : ui �= vi}. We say that v ∈ A∗ is a
subword of u ∈ A∗ ∪ AN and write v � u, if v = u[i,j) = ui . . . uj−1 for some

0 ≤ i ≤ j ≤ |u|. The cylinder of u ∈ An is the set [u] = {v ∈ AN : v[0,n) = u}.
The shift map σ : AN → AN is defined by σ(u)i = ui+1. A subshift is a
nonempty set Σ ⊆ AN which is closed and σ-invariant, i.e., σ(Σ) ⊆ Σ. If D ⊆ A∗

then ΣD = {x ∈ AN : ∀u � x, u �∈ D} is the subshift (provided it is nonempty)
with forbidden words D. Any subshift can be obtained in this way. A subshift
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is uniquely determined by its language L(Σ) = {u ∈ A∗ : ∃x ∈ Σ, u � x}.
Denote by Ln(Σ) = L(Σ) ∩ An.

A labelled graph over an alphabet A is a structure G = (V,E, s, t, ), where
V = |G| is the set of vertices, E is the set of edges, s, t : E → V are the source
and target maps, and  : E → A is a labeling function. The subshift of G consists
of all labels of all paths of G. A subshift is sofic, if it is the subshift of a finite
labelled graph. A subshift Σ is of finite type (SFT) of order p, if its forbidden
words have length at most p, i.e., if Σ = ΣD for some set D ⊂ Ap. In this case
u ∈ AN belongs to Σ iff all subwords of u of length p belong to L(Σ) (see Lind
and Marcus [11] or Kůrka [5]).

A finite state transducer is a finite state automaton with a read only input
tape in an alphabet A and a write only output tape in an alphabet B. It is

given by a finite labelled graph G with edges q
a/b−→ r, where a ∈ A ∪ {λ} is an

input letter and b ∈ B ∪ {λ} is an output letter. We say that the transducer is
deterministic on a subshift Σ ⊆ AN if for each q ∈ V and u ∈ Σ there exists a
unique v = FG(u) ∈ BN such that u/v is the label of an infinite path with source
q. Such a transducer determines a continuous mapping FG : Σ → BN. For any
finite state transducer, the computation of FG has linear time complexity.

6 Möbius Number Systems

A Möbius iterative system over an alphabet A is a map F : A∗ × R → R
or a family of orientation-preserving Möbius transformations (Fu : R→ R)u∈A∗

satisfying Fuv = Fu ◦ Fv and Fλ = Id. An open almost-cover is a system
of open intervals W = {Wa : a ∈ A} indexed by the alphabet A, such that⋃
a∈A Wa = R. If Wa ∩ Wb = ∅ for a �= b, then we say that W is an open

partition. We denote by E(W) = {l(Wa), r(Wa) : a ∈ A} the set of endpoints
of W .

Definition 1. A Möbius number system over an alphabet A is a pair (F,W)
where F : A∗×R→ R is a Möbius iterative system and W = {Wa : a ∈ A} is an
almost-cover, such that Wa ⊆ V(Fa) for each a ∈ A. The interval cylinder of
u ∈ An+1 is Wu = Wu0∩Fu0Wu1∩· · ·∩Fu[0,n)

Wun . The expansion subshift SW
is defined by SW = {u ∈ AN : ∀k > 0,Wu[0,k)

�= ∅}. We denote by LW = L(SW)
the language of SW and by LnW = Ln(SW).

For uv ∈ LW we have Wuv = Wu ∩ FuWv. Given a MNS (F,W), we construct
nondeterministically the expansion u ∈ SW of x = x0 ∈ R as follows: Choose
u0 with x ∈ Wu0 , choose u1 with x1 = F−1

u0
(x0) ∈ Wu1 , choose u2 with x2 =

F−1
u1

(x1) ∈ Wu2 , etc. Then x ∈ Wu[0,n)
for each n, so Wu is the set of points

which have expansion u.

Theorem 2 (Kůrka and Kazda [10]). If (F,W) is a MNS over A, then there
exists a continuous map Φ : SW → R such that for each u ∈ SW and v ∈ LW ,

lim
n→∞

Fu[0,n)
(i) = Φ(u), {Φ(u)} =

⋂
n≥0

Wu[0,n)
, Φ([v] ∩ SW) = Wv.
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Here i is the imaginary unit. In fact we have Φ(u) = limn→∞ Fu[0,n)
(z) for each

z ∈ U, and h(Φ(u)) = limn→∞ F̂u[0,n)
(z) for each z ∈ D. If (F,W) is an MNS

then limn→∞max{|Wu| : u ∈ LnW} = 0. This is an immediate consequence of
the uniform continuity of Φ : SW → R.

Definition 3. We say that a MNS (F,W) over A is an integer MNS if its
transformations have integer entries and its intervals have rational endpoints,
i.e., if Fa ∈ M(Z) and Wa ∈ I(Z) for each a ∈ A. We say that an integer MNS
is modular, if all its transformations have unit determinant det(Fa) = 1.

7 Sofic Möbius Number Systems

Definition 4. Let (F,W) be an MNS over an alphabet A. An open partition
V = {Vp : p ∈ B} is an SFT refinement of W, if the following two conditions
are satisfied for each a ∈ A, p, q ∈ B:

1. If Vp ∩Wa �= ∅ then Vp ⊆Wa,
2. If Vp ⊆Wa and Vq ∩ F−1

a Vp �= ∅ then Vq ⊆ F−1
a Vp.

In this case we say that (F,W ,V) is a sofic Möbius number system. The
base graph G(W,V) of (F,W ,V) is an A-labelled graph whose set of vertices are
letters of B and whose labelled edges are p a→ q if FaVq ⊆ Vp ⊆ Wa. Denote by
C = {(p, a) ∈ B × A : Vp ⊆ Wa} and S(W,V) ⊆ CN the SFT of order two with
transitions (p, a)→ (q, b) iff p a→ q.

Theorem 5 (Kůrka [9]). If (F,W) is an MNS, then SW is a sofic subshift
iff there exists an SFT refinement V of W. In this case SW is the subshift of
the base graph G(W,V) and we have a factor map π : S(W,V) → SW given by
π(p, a) = a.

Theorem 6 (Kůrka [9], Theorem 16). Each modular MNS has a sofic ex-
pansion subshift.

An example of a modular MNS has been studied by Raney [14], Niqui [12] and
Kůrka [9]. Its alphabet is A = {0, 1, 2, 3}, the transformations are

F0(x) =
x

1 + x
, F1(x) = x+ 1, F2(x) = x− 1, F3(x) =

x

1− x
.

and the intervals are W0 = (0, 1), W1 = (1,∞), W2 = (∞,−1), W3 = (−1, 0).
Since Fa(0,∞) = Wa for a = 0, 1 and Fa(∞, 0) = Wa for a = 2, 3, the expansion
subshift is a union of two full subshifts which code respectively nonnegative and
nonpositive real numbers: SW = {0, 1}N ∪ {2, 3}N. The system is closely related
to continued fractions. Each u ∈ {0, 1}N can be written as u = 1a00a11a2 . . .,
where a0 ≥ 0 and an > 0 for n > 0. Then u is the expansion of the continued
fraction [a0, a1, a2, . . .], i.e.,

Φ(u) = [a0, a1, a2, . . .] = a0 + 1/(a1 + 1/(a2 + · · · .
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Fig. 1. A modular MNS

If an = ∞ for some n > 0, then Φ(u) = [a0, . . . , an−1] is a finite continued
fraction.

In Figure 1 we show a variant of this system with larger cylinder intervals
Wa = V(Fa). Figure 1 bottom left shows the graphs of the circle derivations
(F−1
a )•(x) together with the cylinder intervals Wa. In Figure 1 right we can

see the values F̂u(0) of the disc MT F̂u at zero. The curves between F̂u(0) are
constructed as follows. For each MT M there exists a family (M r)r∈R of MT

such that M0 = Id, M1 = M , and M r+s = M rM s. Each value F̂u(0) is joined

to F̂ua(0) by the curve (F̂uF̂
r
a (0))0≤r≤1. The labels u ∈ A∗ at F̂u(0) are written

in the direction of the tangent vectors F̂ ′u(0). The SFT partition of the system
has 8 intervals shown in Figure 2 left. The base graph can be seen in Figure 2
right. The expansion subshift SW is a SFT of order 4. with 20 forbidden words
03, 12, 21, 30, 020, 131, 202, 313, 0220, 0232, 0233, 1322, 1323, 1331, 2002, 2010,
2011, 3100, 3101, 3113.

Theorem 7. If (F,W ,V) is a modular system, then π : S(W,V) → SW is an
isomorphism, so SW is an SFT.

Proof. We show that if (p, u) ∈ S(W,V), then p ∈ BN is determined by u ∈ AN.
For 0 ≤ n < m we have Vpn ⊆Wun and FunVpn+1 ⊆ Vpn , so

Fu[n,m)
Vpm ⊆ Fu[n,m−1)

Vpm−1 ⊆ · · · ⊆ FunVpn+1 ⊆ Vpn ,

Fu[n,m)
Vpm ⊆ Fu[n,m−1)

Wum−1 ∩ · · · ∩ FunWun+1 ∩Wun ⊆Wu[n,m)
.

It follows that ∅ �= Fu[n,m)
Vpm ⊆ Vpn ∩Wu[n,m)

is nonempty. Denote by xn =

Φ(σn(u)), so {xn} =
⋂
m>nWu[n,m)

. If xn is irrational, then there exists m > n
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Fig. 2. The SFT partition and the base graph of a modular system from Figure 1

such that Wu[n,m)
∩ E(V) = ∅, so there exists exactly one pn ∈ B with Vpn ∩

Wu[n,m)
�= ∅. Assume that xn is rational. For each m > n we have

xm = Φ(σm(u)) = F−1
u[n,m)

(xn) ∈ Wum ⊆ V(Fum ),

and ||xm||2/||xm+1||2 = ||xm||2/||F−1
um

(xm)||2 = (F−1
um

)•(xm) ≥ 1, so ||xm+1|| ≤
||xm||. Moreover, if xm ∈ Wum , then ||xm+1|| < ||xm||. Since ||xm||2 ∈ N, the
set {m ≥ n : xm ∈ Wum} is finite and there exists m > n such that either xk =
l(Wuk

) for all k ≥ m, or xk = r(Wuk
) for all k ≥ m. Since xn = Fu[n,k)

(xk) ∈
Wu[n,k)

⊆ Fu[n,k)
Wuk

, we get xn = l(Wu[n,k)
) for all k ≥ m in the former case and

xn = r(Wu[n,k)
) for all k ≥ m in the latter case. It follows that there exists k > m

such that Wu[n,k)
∩E(V) = ∅, so there exists a unique pn with Vpn ∩Wu[n,k)

�= ∅.
This means that pn is uniquely determined by u. Since Fun−1Vpn ⊆ Vpn−1 , the
letter pn−1 is uniquely determined by pn and the prefix p[0,n) of p is uniquely
determined by pn. .�

Theorem 8. Assume that (F,W ,V) is a modular MNS and for u ∈ LW denote
by P(u) ⊆ B∗ the set of paths with label u.

1. There exists r > 0 such that the set {p[0,n−r] : p ∈ P(u)} is a singleton for
each n > r and each finite word u ∈ LnW .
2. There exists s > 0 such that P(u) has at most s elements for each u ∈ LW .
3. The map π−1 : SW → S(W,V) can be computed by a finite state transducer.

Proof. The existence of constants r, s follows from Theorem 7 by a compactness
argument. We define a finite state transducer for π−1 as follows. Its vertices are
sets X ⊆ Bn, where 0 < n ≤ r. The labelled edges are

X a/λ
−→ {p ∈ Bn+1 : p[0,n−1] ∈ X, pn−1

a→ pn} if X ⊆ Bn, n < r,

X a/b
−→ {p ∈ Br : bp[0,r−2] ∈ X, pr−2

a→ pr−1} if X ⊆ Br.
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Then u/p is the label of a path with the source B iff p is a prefix of a path whose
label is u. .�

In Table 2 left we show the computation of π−1(u) on input word u = 00133.
For each n > 0 we give the set P(u[0,n)) of all paths p ∈ Bn+1 with label u[0,n).

8 Arithmetical Algorithms

Definition 9. The unary graph for an integer sofic MNS (F,W ,V) is a la-
belled graph whose vertices are (X, p), where X ∈ M(Z) and p ∈ B. Its labelled
edges are

absorption: (X, p) a/λ−→ (XFa, q) if FaVq ⊆ Vp ⊆Wa,

emission: (X, p) λ/b−→ (F−1
b X, p) if XVp ⊆Wb.

The labels of paths are concatenations of the labels of their edges. They have
the form u/v where u ∈ LW is an input word and v ∈ LW is an output word.

Proposition 10. If (X, p) u/v−→ (Y, q) is a path in the unary graph, then

Y = F−1
v XFu, FuVq ⊆ Vp ∩Wu, XFuVq ⊆Wv.

Proof. Since Wλ = R and Fλ = Id, the statement holds for the absorption and
emission edges. Assume by induction that the statement holds for a path with

label u/v. If (X, p) u/v−→ (Y, q) a/λ−→ (Z, r) then Z = Y Fa = F−1
v XFua, FaVr ⊆ Vq ⊆

Wa, so FuaVr ⊆ FuVq ⊆ Vp ∩Wu ∩FuWa = Vp ∩Wua, and XFuaVr ⊆ XFuVq ⊆
Wv, so the statement holds for (X, p) ua/v−→ (Z, r). If (X, p) u/v−→ (Y, q) λ/b

−→ (Z, q)
then Z = F−1

b Y = F−1
vb XFu. From F−1

v XFuVq = Y Vq ⊆ Wb we get XFuVq ⊆
FvWb, and therefore XFuVq ⊆ Wv ∩ FvWb = Wvb. Moreover, FuVq ⊆ Vp ∩Wu,

so the statement holds for (X, p) u/vb−→ (Z, q). .�

Table 1. The unary algorithm

procedure unary;
input: M ∈M(Z), (p, u) ∈ S(W,V) ∪ L(W,V);
output: v ∈ SW ∪ LW ;
variables X ∈M(Z) (state), n,m ∈ N (input and output pointers);
begin
X := M ; n := 0; m := 0;
while n < |u| repeat
if ∀a ∈ A, XVpn �⊆Wa then begin
X := XFun ; n := n+ 1; end;

else begin
vm := a, where XVpn ⊆Wa and XVpn �⊆Wb for all b < a;
X := F−1

a X; m := m+ 1; end;
end;
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Table 2. The computation of a path p = 0017 = π−1(001333) = π−1(u) (left) and the
computation of v = 010222 = ΘM (p, u) on the input matrix M(x) = (2x+ 1)/(x+ 2)

and the input path 0
0→ 0

0→ 1
1→ 7

3→ 7 by the unary algorithm (right). The third
column gives the values vm on emission steps and the empty word on absorption steps.
The last column gives the vertex pn on emission steps and the edge pn un−→ pn+1 on
absorption steps.

n P(001333[0,n))

1 00, 01, 12, 13, 24,
2 000, 001, 012, 013, 124,
3 0017, 0120, 0121,
0132, 0133,

4 00176, 00177,
5 001764, 001765,
001776, 001777,

6 0017653, 0017764,
0017765, 0017776,
0017777,

n m out X XVpn input

0 0 0 [2, 1, 1, 2] ( 1
2
, 4
5
) 0

0 1 1 [2, 1,−1, 1] ( 1
1
, 4
1
) 0

0 2 [3, 0,−1, 1] ( 0
1
, 3
1
) 0 0→ 0

1 2 0 [3, 0, 0, 1] ( 0
1
, 3
2
) 0

1 3 [3, 0,−3, 1] ( 0
1
, 3
−1

) 0 0→ 1

2 3 2 [3, 0,−2, 1] ( 3
0
, 3
−1

) 1

2 4 2 [1, 1,−2, 1] ( 3
0
, 2
−1

) 1

2 5 2 [−1, 2,−2, 1] ( 3
0
, 1
−1

) 1

2 6 [−3, 3,−2, 1] ( 3
0
, 0
−1

) 1 1→ 7

3 6 [−3, 0,−2,−1] ( 3
0
, 0
−1

) 7 3→ 7

We consider a deterministic unary algorithm given in Table 1, which computes
a path in the unary graph. Its input is a matrixM ∈ M(Z) and either a finite path
(p, u) ∈ L(W,V) or an infinite path (p, u) ∈ S(W,V). We assume that the alphabet
A is linearly ordered. At each step, the algorithm performs the first possible
emission if there is one, and an absorption if there is no emission applicable. For
an infinite input path, the algorithm computes an output word v ∈ SW such that
u/v is the label of a path in the unary graph with source (M,p0). An example of
the computation of the unary algorithm is given in Table 2 right. We are going
to prove that for a modular system (F,W ,V), the norm of the state matrix X
remains bounded during the computation of the unary algorithm. To do so, we
define some constants and prove several lemmas. Set

B0 = max{
√
5 · ||x|| : x ∈ E(W)}, B1 = max{1, |sz(F−1

b Wb)| : b ∈ A}
D0 = min{| det(Vp)| : p ∈ B}, D1 = max{| det(Vp)| : p ∈ B},
G = max{1, ||V −1

p FaVq|| : p
a→ q}, H = max{

√
D0, ||Vp|| : p ∈ B},

B = max{B0, 2B1}, C0 = max{B2D2
1G

2/2D0, B1}

Lemma 3. 1. If (X, p) a/λ−→ (XFa, q), then sz(XFaVq) < sz(XVp).

2. If (X, p) λ/b−→ (F−1
b X, p), then 0 > sz(XVp) < sz(F−1

b XVp) < B1.

Proof. The first claim follows from XFaVq ⊆ XVp. To prove the second claim,
note that for each M ∈M(Z) we have sz(V(M)) < 0, so sz(Wb) < 0 for each b ∈
A. If (X, p) λ/b−→ (F−1

b X, p) is an emission edge, then XVp ⊆Wb, so sz(XVp) < 0.
Since F−1

b XVp ⊆ F−1
b Wb, we get sz(F−1

b XVp) < B1. Since F−1
b is an expansion

on Wb, we get sz(XVp) < sz(F−1
b XVp). .�
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Lemma 4. If (X, p) a/λ−→ (XFa, q) is an absorption performed by the unary al-
gorithm and sz(XVp) < B1, then ||XVp|| < BD1 det(X), |sz(XVp)| < C0 det(X)
and |sz(XFaVq)| < C0 det(X).

Proof. We distinguish two cases. If 0 ≤ sz(XVp) < B1, then by Lemma 1 we have
||XVp|| < 2| det(XVp)| · max{1, |sz(XVp)|} ≤ 2B1D1 det(X). If sz(XVp) < 0,
then we use the fact that XVp is not contained in any Wa, so it must contain a
point from E(W). By Lemma 2, ||XVp|| ≤ B0 · | det(XVp)| ≤ B0D1 det(X). Thus
in both cases we have ||XVp|| ≤ BD1 det(X). It follows ||XFaVq|| ≤ ||XVp|| ·
||V −1

p FaVq|| ≤ BD1G · det(X). By Lemma 1 we get

|sz(XVp)| ≤ ||XVp||2/2| det(XVp)| ≤ B2D2
1

2D0
det(X) ≤ C0 det(X), and similarly

|sz(XFaVq)| ≤ B2D2
1G

2

2D0
det(X) ≤ C0 det(X). .�

Lemma 5. Every infinite path computed by the unary algorithm contains an
infinite number of emissions.

Proof. Assume by contradiction that there exists an infinite path of absorptions
with vertices (Xn, pn) and label u/λ, where u ∈ SW . Since Fu[0,n)

Vpn ⊆ Wu[0,n)

and limn→∞ |Wu[0,n)
| = 0, we get limn→∞ |X0Fu[0,n)

Vpn | = 0 by the continuity
of X0, and therefore limn→∞ sz(X0Fu[0,n)

Vpn) = −∞. This is in a contradiction
with Lemma 4. .�

Theorem 11. For a modular MNS (F,W ,V) there exists a constant C > 0
such that for every input matrix M ∈ M(Z), the unary algorithm computes a
continuous function ΘM : S(W,V) → SW with ΦΘM (p, u) = MΦ(u), and the state
matrix X satisfies ||X || < C ·max{||M ||2, det(M)2} during the computation.

Proof. Let (Xn, pn) be the vertices of the infinite path with source (X0, p0) =
(M,p0). If sz(XnVpn) > C0 det(M), then (Xn, pn) is an absorption vertex by
Lemma 3 and sz(Xn+1Vpn+1) < sz(XnVpn). If sz(XnVpn) < −C0 det(M), then
(Xn, pn) is an emission vertex by Lemma 4, and sz(Xn+1Vpn+1) > sz(XnVpn).
Thus there exists m, such that for all n ≥ m we have |sz(XnVpn)| < C0 det(M)

while for n < m we have |sz(XnVpn)| ≤ |sz(MVp0 )| ≤
H2·||M||2
2D0 det(M) . By Lemma 1

we get either ||XnVpn || ≤ 2D1C0 det(M)2 in the former case and ||XnVpn || ≤
H2D1

D0
||M ||2 in the latter case. Taking C = max{2HD1C0, H

3D1/D0} we get

||Xn|| ≤ ||XnVpn || · ||V −1
pn || ≤ C ·max{||M ||2, det(M)2}

for all n, so the algorithm can be realized by a finite state transducer. By
Lemma 5, for each (p, u) ∈ S(W,V) there exists a unique v = ΘM (p, u) such
that u/v is the label of an infinite path with source (M,p0). For each m there
exists n such that u[0,n)/v[0,m) is the label of a finite path with source (M,p0),
∅ �= Fu[0,n)

Vpn ⊆ Wu[0,n)
, and ∅ �= MFu[0,n)

Vpn ⊆ Wv[0,m)
. The intersection⋂

n Fu[0,n)
Vpn ⊆

⋂
nWu[0,n)

is nonempty by compactness and has zero diame-

ter, so it contains the unique point Φ(u). The intersection
⋂
nMFu[0,n)

Vpn ⊆⋂
mWv[0,m)

is a nonempty singleton which contains both M(Φ(u)) and Φ(v), so
M(Φ(u)) = Φ(v). .�
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Corollary 12. If (F,W ,V) is a modular MNS, then for each M ∈ M(Z) there
exists a finite state transducer which computes a continuous function ΨM : SW →
SW which satisfies ΦΨM = MΦ.

Proof. Using Theorems 8 and 11 we get ΨM = ΘM ◦ π−1.

A disadvantage of modular systems is that they are not redundant. As shown
in Kůrka [7], the cylinder intervals of a modular system contain neither 0 nor
∞, so they cannot form a cover but only an almost-cover. In Kůrka [8] we
argue that in some redundant MNS, the unary algorithm has asymtotically linear
time complexity. The norm of the state matrix remains small most of the time,
although fluctuations to larger values occur sporadically.
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Abstract. Under the existence of commitment schemes with homomorphic prop-
erties, we construct a constant-round zero-knowledge proof system for an NP-
complete language that requires a number of commitments that is sublinear in the
size of the (best known) witness verification predicate. The overall communica-
tion complexity improves upon best known results for the specificNP-complete
language [1,2] and results that could be obtained using zero-knowledge proof
systems for the entire NP class (most notably, [3,2,4]). Perhaps of independent
interest, our techniques build a proof system after reducing the theorem to be
proved to statements among low-degree polynomials over large fields and using
Schwartz-Zippel lemma to prove polynomial identities among committed values.

1 Introduction

The fascinating notion of zero-knowledge proofs has been introduced in the semi-
nal paper [5]. A zero-knowledge proof is a method allowing a prover to convince a
polynomial time bounded verifier that a certain statement x ∈ L is true without re-
vealing any additional information (such as all or any part of the witness, when L is
in NP). The wide applicability of this notion was realized thanks to another sem-
inal paper [1], where it was proved that the NP-complete language of 3-colorable
graphs, and thus all languages inNP , have a zero-knowledge proof, under the existence
of commitment schemes, which, in turn, exist under certain reasonable complexity-
theoretic assumptions. This result opened the door to a general and powerful method-
ology for protecting cryptographic protocols against malicious adversaries, by using
zero-knowledge proofs for NP statements related to the specific protocol. Since then,
cryptographic applications have demanded the design of improved zero-knowledge pro-
tocols in terms of one or more of a number of metrics; most notably, round complexity
(starting with, e.g., [6,7]), time complexity (starting with, e.g., [8]), and communication
complexity (starting with, e.g., [3,2]). In this paper we consider the problem of ob-
taining communication-efficient zero-knowledge proof systems for languages in NP ,
while keeping both round and time complexity reasonably efficient. In this area, [3] first
produced a proof system that requires a number of commitments that is subquadratic in
the circuit size m, [2] produced a proof system that requires a number of commitments
only slightly super-linear in m, and [4] achieved a number of commitments linear in
m, which might seem the best possible performance, given that each circuit gate has to
contribute to the protocol and contributing through a constant number of commitments

B. Rovan, V. Sassone, and P. Widmayer (Eds.): MFCS 2012, LNCS 7464, pp. 335–347, 2012.
c© Springer-Verlag Berlin Heidelberg 2012
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per gate seems the minimum required from any zero-knowledge guarantee. However,
perhaps surprisingly, [9] recently improved the overall communication complexity of
[4] to O(m+poly()polylog(k)), where  is the security parameter, k is the soundness
parameter, and ‘poly’ denotes a potentially large polynomial. In general, m is a poly-
nomial in the witness size n, and so is also , as one needs the probability that the
zero-knowledge property does not hold to be negligible in n. Thus, the result in [9], as
also mentioned by the authors, only improves the result from [4] whenever m is a large
polynomial in n. This is unfortunate as for many natural problems in NP , the circuit
size m is a relatively small polynomial in n (e.g., for 3SAT m is linear in n, and for
many graph-based NP-complete problems m is only quadratic in n, as scanning the
graph adjacency matrix suffices to verify the instance’s witness). The natural question
left open from [4,9] remains whether there exists a natural problem in NP which has
a zero-knowledge proof requiring a number of commitments that is sublinear in the
circuit size m. In this paper, we solve this problem for the NP-complete language of
q-colorability.

Our Contribution and Related Work. Assuming the existence of commitment
schemes with certain homomorphic properties, we design a constant-round zero-
knowledge proof system for the NP-complete language of q-colorable graphs with
communication complexity about O((+ k)(nq+N)) (see Theorem 1 for exact quan-
tities), where n and N are the number of nodes and edges of the input graph,  is the
length of each commitment, and k is such that the soundness holds with probability
≤ 2−k. The number of required commitments is equal to O(nq+N), which is smaller,
for all 3 ≤ q ≤ N/n, than the size of the smallest circuit for verifying a q-coloring of
the input graph, which is, to the best of our knowledge, O(N log q). For instance, when
q = N δ, for some 0 < δ < 1, our scheme needs O(N) commitments while the circuit
size is O(N logN).

Our protocol improves the communication complexity of two protocols that can be
obtained by extending previous proof systems for the related 3-colorability language.
Specifically, it improves over the natural extension of the two previous 3-colorability
protocols [1,2] by a factor of O(kn) and O(k log q), respectively. (See also top part of
Figure 1 for a more detailed comparison.) It also improves over the natural extension
of results from previous papers [3,2,4,9] that construct a proof system for an arbitrary
language L in NP by working directly on the circuit that verifies the witness for the
input statement. (See bottom part of Figure 1 for more detailed comparisons.) Here, our
protocol improves the performance in [4] by a factor of log q, for all values of m, and
thus even when [9] does not improve over [4]. Moreover, our protocol improves the
performance in [9] for the case of q-colorability, as the large polynomial in the poly()
factor in the communication complexity of the protocol in [9] is asymptotically larger
than m and is thus larger than our protocol’s performance. (On the other hand, for large
values of m, we do not improve the performance of this protocol which remains the
best known.) Finally, we remark that, through reducibility, our protocol directly applies
to all languages with reduce to q-colorability, via a suitably economical reduction.

The honest-verifier zero-knowledge property of our protocol holds under the ex-
istence of commitment schemes with certain properties, that holds, for instance, un-
der intractability of the Decisional Diffie-Hellman problem; and the zero-knowledge
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Paper: [1] [2] This paper
Communication

complexity: O(nNk�) O((n+Nk)�(log q)) O(�(nq +N))

Paper [4] [9] This paper
Communication

complexity O(m�) O(m+ poly(�)polylog(k)) O(�(m/ log q))

Fig. 1. The top table compares our result for the language of q-colorable graphs with natural ex-
tensions of previous proof systems for the language of 3-colorable graphs. Here, n is the number
of nodes, N the number of edges of the input graph, k is the parameter such that soundness holds
with probability≤ 2−k and � is the length of commitments. The bottom table compares our result
for the language of q-colorable graphs with natural extensions of previous proof systems for an
arbitrary language inNP . Here, m is the size of the best circuit for q-col, which is, to the best of
our knowledge, O(N log q).

property can be obtained under the same assumption using techniques from [7]. Our
proof system is based on a non-trivial combination of 3 techniques, as we now explain.

The first technique is the reduction of the graph q-colorability statement to a state-
ment among certain low-degree polynomials over large fields. Reducing a language
membership statement to a statement about a single low-degree polynomial over large
fields has been a successful technique in the area of interactive proof systems (that
are not necessarily zero-knowledge): there, two famous results showed that all lan-
guages in the polynomial hierarchy [10] and all languages in PSPACE [11] have an
interactive proof system. We could not use the same technique as it does not preserve
zero-knowledge. Among the substantial differences, here we employ two different poly-
nomials: one for the prover and one for the verifier, precisely to preserve zero-knowledge
properties. A related technique was first designed in [12,13] to provide arguments (i.e.,
proofs only sound against polynomial-time algorithms) for the languages of graph iso-
morphism and hamiltonian graphs. In this paper we design a variant of this technique to
provide a proof for the language of graph q-colorability, and first specialize it to show
that this technique can provide savings in communication complexity.

The second technique is the use of commitment schemes with certain hiding, bind-
ing, homomorphic and provability properties. It turns out that the commitment schemes
from [14] suffice for our purposes even though we have to uncover and use certain
additional homomorphic and provability properties. Related commitment schemes, re-
quiring some of the same homomorphic and provability properties, but dual hiding and
binding properties, were used in [15]. Other related and earlier protocols, also using
homomorphic properties of discrete logarithms, include [8,16,17].

The third technique in our protocol is the use of Schwartz-Zippel lemma [18] to
analyze the proofs of polynomial identities among committed values over large fields,
and is essentially yet another variation over the numerous previous applications of the
Schwartz-Zippel lemma in cryptographic or computer science research papers.
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2 Definitions and Preliminaries

In this section we recall known definitions and results that are of interest for the descrip-
tion of our main result. After giving some basic definitions, we recall the definitions of
zero-knowledge proof systems and commitment schemes.

Graph Colorability. Let Γ be a graph, and let V(Γ ) and E(Γ ) denote the (ordered) set
of vertices and the (ordered) set of edges of graph Γ , with size n and N , respectively.
For any q (possibly a function of n), we say that a function φ : V(Γ ) → {1, . . . , q} is
a q-coloring of graph Γ if for each (u, v) ∈ E(Γ ), it holds that φ(u) �= φ(v). Deciding
whether an input graph has a q-coloring, for q ≥ 3, is a known family ofNP-complete
problems. Computing the chromatic number (i.e., the smallest q such that the graph has
a q-coloring) is also known to be NP-complete. A language L is a subset of {0, 1}∗.
We denote by q-COL the languages of graphs Γ that have a q-coloring.

Computational Indistinguishability. We say that a function f is negligible in n if for
any constant c there exists a constant n0 such that f(n) ≤ n−c, for all positive in-
tegers n ≥ n0. We say that two (families of) distributions D0 = {D0,n}n∈N, D1 =
{D1,n}n∈N are computationally indistinguishable if for all efficient non-uniform (dis-
tinguishing) algorithms A, the difference below is negligible:∣∣∣Prob [ z ← D0,n : A(z) = 1 ]− Prob [ z ← D1,n : A(z) = 1 ]

∣∣∣.
Zero-Knowledge Proofs. We use the notions of interactive Turing machine and inter-
active protocol given in [5]. If A and B are two interactive probabilistic Turing ma-
chines, by pair (A,B) we denote an interactive protocol. Let x be an input common to
A and B. Informally, an interactive proof system [5] for a language L is an interactive
protocol in which a prover convinces a polynomial-time bounded verifier that a com-
mon input string x belongs to L. An interactive proof system has to satisfy the two
requirements of completeness and soundness. Completeness says that if x ∈ L then
the verifier returns ACCEPT at the end of the protocol with high probability (i.e., at
least 1 − εc, for some small completeness error εc). Soundness says that if x �∈ L then
for any (computationally unlimited) prover strategy, the verifier returns ACCEPT at the
end of the protocol with small probability (i.e., at most εs, for some small soundness
error εs). Given an interactive proof system with constant completeness and soundness
errors (e.g., εc = 1/3 and εs = 1/2), one can apply O(k) independent sequential or
parallel repetitions, and majority calculations, to transform it into another proof system
with exponentially small errors εc = εs = 2−k.

A zero-knowledge proof system [5] for a language L is an interactive proof system
for L in which, informally speaking, no polynomial-time verifier obtains any additional
information other than the fact that x ∈ L. This is formalized in the zero-knowledge
requirement, which says that for all input x ∈ L, and any polynomial-time verifier, this
verifier’s view during the protocol can be simulated by a polynomial-time algorithm,
called the simulator. Specifically, the distribution consisting of the output of the sim-
ulator on input x is computationally indistinguishable from the distribution consisting
of this verifier’s random coins and the messages exchanged by the prover and this ver-
ifier using common input x. That is, the probability that an efficient adversary can tell
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apart these two distributions is negligible in the security parameter , which is linear
(or polynomial) in the input length. Zero-knowledge proof systems are called honest-
verifier zero-knowledge, if the zero-knowledge property holds only with respect to the
honest verifier V, as opposed to all polynomial-time verifiers V′. Interactive proof sys-
tems are called public-coin if the verifier’s program only consists of sending his random
coins.

The public-coin, honest-verifier, zero-knowledge proof system for 3-COL from [1]
achieves communication complexity O((n + Nk)), and can be naturally extended to
language q-COL with communication complexity O((n+Nk)(log q)).

Commitment Schemes. Informally speaking, a bit commitment scheme (A,B) is a two-
phase interactive protocol between two probabilistic polynomial time parties A and B,
called the committer and the receiver, respectively, such that the following is true. In
the first phase (the commitment phase), A commits to a string s by computing a pair of
keys (com, dec) and sending com (the commitment key) to B. In the second phase (the
decommitment phase) A reveals the string s and the key dec (the decommitment key)
to B. Now B checks whether the decommitment key is valid; if not, B outputs a special
string⊥, meaning that he rejects the decommitment from A; otherwise, B can efficiently
compute the string s revealed by A. (A,B) has to satisfy three requirements: correctness,
saying that A can successfully decommit the committed value, (computational) hiding,
saying that B’s views of the commitment phase run on two different committed strings
are computationally indistinguishable, and statistical binding, saying that no algorithm
A can decommit to two different values in the decommitment phase, unless with neg-
ligible probability. Many variants of this definition of commitment schemes have been
studied in the cryptography literature; here, we consider a variant where the generation
of the commitment and decommitment keys may be done in two messages (one from
the receiver, then one from the committer) and the revealing of the decommitment key
is done in a single message from the committer to the receiver.

3 Main Techniques

We describe the main ingredients in our construction for q-COL: a commitment scheme
with special homomorphic and provability properties, using low-degree polynomials to
prove and verify the 3-colorability statement about the input graph, and using Schwartz-
Zippel lemma to prove/verify that a polynomial evaluates to zero.

3.1 A Commitment Scheme

We use a computationally-hiding and perfectly-binding commitment scheme that
further satisfies certain homomorphic and provability properties. Specifically, we will
additionally require that the committed value belongs to a field ZQ, and that atomic
commitments can be homomorphically composed into commitments to low-degree poly-
nomials over values in ZQ, which is formally expressed as follows:

0) given degree d, value z ∈ ZQ, and commitments to coefficients a0, . . . , ad ∈ ZQ,
it is possible to efficiently compute a commitment to

∑d
i=0 aiz

i ∈ ZQ.
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We note that a commitment scheme enjoys the above property if it enjoys the following
two homomorphism properties:

1) given a commitment to a value a ∈ ZQ and a commitment to a value b ∈ ZQ, it is
possible to efficiently compute a commitment to value a+ b mod Q;

2) given a commitment to a value a ∈ ZQ and a value c ∈ ZQ, it is possible to
efficiently compute a commitment to value a · c mod Q.

Furthermore, we need the commitment scheme to enjoy various provability properties
with respect to the type of statement to be proved and the type of protocol used to prove
this statement. With respect to the type of statement, we would need to prove that a
commitment com can be opened as a given value a ∈ ZQ or to prove certain polynomial
equations about committed values in ZQ. With respect to the type of protocol used, we
would need a communication-efficient, 3-message, public-coin, honest-verifier zero-
knowledge proof system, with a structure similar to the protocol in [8].

Commitment Construction. We use the commitment construction from [14], based
on discrete logarithms, and, more specifically on a variant of El-Gamal encryption and
Pedersen’s commitment [17]. This scheme can be described as follows.

On input a (unary) security parameter , algorithm A uniformly chooses -bit primes
P,Q such that P = 2Q+1, and generators g, h of the Q-order subgroup of ZP . Then, to
commit to a value v ∈ {0, . . . , Q− 1}, A uniformly chooses r ∈ {0, . . . , Q− 1}, com-
putes ĝ = gr mod P and ĥ = hr+v mod P , and outputs: com = (P,Q, g, h, ĝ, ĥ)
and dec = (r, v). When many commitments are computed, algorithm A can continue
using the same 4-tuple (P,Q, g, h) and generate a new pair (ĝ, ĥ) for each value to be
committed. (In the rest of the paper, we always consider groups ZP , ZQ for commitment
and committed values and thus omit the mod P and mod Q suffixes, respectively.)

Now we show that this commitment scheme satisfies the above homomorphic prop-
erties (1) and (2). Let (P,Q, g, h) be the 4-tuple shared in all commitments. First, given
a commitment coma = (ĝa, ĥa) to a value a ∈ ZQ and a commitment comb = (ĝb, ĥb)
to a value b ∈ ZQ, it is possible to efficiently compute a commitment coma+b =

(ĝa+b, ĥa+b) to value a + b, by setting ĝa+b = ĝaĝb and ĥa+b = ĥaĥb. Second, given
a commitment coma = (ĝa, ĥa) to a value a ∈ ZQ and a value c ∈ ZQ, it is possi-
ble to efficiently compute a commitment comac = (ĝac, ĥac) to value a · c, by setting
ĝac = ĝca and ĥac = ĥca.

We will also need a honest-verifier zero-knowledge proof to prove that a commitment
key can be decommitted as a certain value. Specifically, to open a commitment (ĝ, ĥ)
as value v, the prover uses r as an auxiliary input in the following 3-round protocol
(essentially identical to a protocol in [14]):

1. The prover uniformly chooses s ∈ ZQ, computes (ḡ, h̄) = (gs, hs) and sends (ḡ, h̄)
to the verifier.

2. The verifier uniformly chooses a challenge q ∈ ZQ and sends it to the prover.
3. The prover responds by sending a = qr + s.
4. The verifier accepts if ĝqḡ = ga and ĥqh̄ = hahqv .
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In [14], two facts are shown about this protocol: (1) it has optimal soundness, in that if
a commitment key cannot be opened as v, then a dishonest prover can make the verifier
accept with probability at most 1/|ZQ|; (2) it is honest-verifier zero-knowledge, in that
an efficient simulator who knows the verifier’s coins can generate a triple distributed
identically to the triple ((ḡ, h̄), q, a) in the protocol. Moreover, we need a proof sys-
tem with responses consisting of linear polynomials in the challenge, to prove/verify
statements about committed colours. We consider the following protocol:

1. Prover uniformly chooses α, β ∈ ZQ and computes first message (ḡ, h̄) = (gβ ,
hβ+α). Prover sends (ḡ, h̄) to Verifier.

2. Verifier chooses and sends a challenge q ∈ ZQ.
3. Prover produces and sends responses b = qr + β, a = qv + α.
4. Verifier accepts if ĝq ḡ = gb and ĥqh̄ = hb+a.

Lemma 1. The prover’s response value a is a polynomial that is linear in the challenge
q, the top coefficient being the committed value v.

Proof. As the group is cyclic, one can always write ĝ = ge, ḡ = gf , ĥ = hc, h̄ = hd

for some c, d, e, f . It follows that b − (eq + f) = 0 and (b + a) − (cq + d) = 0. Then
we obtain that a = q(c− e) + (d− f). Thus, the lemma follows. .�

3.2 Graph Chromatic Polynomials

Let cv be a colour assigned to a vertex v ∈ V(Γ ) and let αv be an initial random value
of the proof system. We consider colours and initial random values to be elements of
a finite field. We assign a linear univariate polynomial over the field that depends on
colours of vertices connected to each edge a = (Ha, Ta) of the graph. We then assign
a product of such polynomials to the whole graph.

Definition 1. For any graph Γ , colours cv and initial random values αv assigned to
vertices v of the graph, we define the graph chromatic polynomial of Γ as

fC(z, Γ ) =
∏

(Ha,Ta)∈E(Γ )

((zcHa + αHa)− (zcTa + αTa))

It is clear that the degree of the graph chromatic polynomial is at most number of edges
in graph Γ .

Lemma 2. For any graph Γ , and for any colours and initial random values assigned to
vertices in V(Γ ), the degree of the graph chromatic polynomial is equal to the number
N = |E(Γ )| if and only if the assigned colours constitute a proper graph coloring.

Proof. It is straightforward to check that top coefficient of the graph chromatic poly-
nomial is

∏
(Ha,Ta)∈E(Γ )(cHa − cTa). This coefficient is zero if and only if there is an

edge in the graph with the same colours assigned to adjacent vertices. .�

For any graph having a proper coloring, let u be the inverse of the top coefficient of the
graph chromatic polynomial and let ψ be the related initial random value.
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Definition 2. For any graph Γ , colours cv and initial random values αv assigned to
vertices v of the graph, inverse u and related initial random value ψ, we define the
graph chromatic verification polynomial of Γ as

fV (z, Γ ) = (zu+ ψ)
∏

(Ha,Ta)∈E(Γ )

((zcHa + αHa)− (zcTa + αTa))

It is clear that for any graph with proper coloring, (1) the degree of graph chromatic ver-
ification polynomial is exactly N +1, and (2) the top coefficient of the graph chromatic
verification polynomial is exactly 1.

Lemma 3. For any non properly colored graph Γ , any u, any ψ and any {mj}j=0...N ,
it holds that

fV (z, Γ ) �≡ zN+1 +

N∑
j=0

mjz
j (1)

We re-state our initial problem of deciding graph q-colorability as an equivalent prob-
lem of deciding whether the degree of the graph chromatic polynomial equals the num-
ber of its edges. We do that by testing graph chromatic verification polynomial degree
to be N + 1 and top coefficient to be 1. We observe that the prover’s responses avail-
able to the verifier while running a protocol for the commitment scheme in Section 3.1
are polynomials that are linear in the verifier’s challenge (i.e., Cv(z) = zcv + αv for
any v ∈ V(Γ )). A key point here is that the verifier can evaluate the graph chromatic
verification polynomial only using prover’s responses, without access to prover’s wit-
ness (i.e., the coloring). To decide this problem, the verifier would evaluate chromatic
verification polynomial at some point chosen by him as a challenge z = z0.

Let B = {b1, . . . , bq} be a set of pre-defined colours that are a part of proper coloring
of a graph. To each vertex in Γ , we assign a polynomial that depends on its color.

Definition 3. Let Γ be a graph. For any vertex v ∈ V(Γ ), we define the vertex chro-
matic polynomial of vertex v of graph Γ as

fB(z, v, Γ ) =
∏
bl∈B

((zcv + αv)− zbl).

Lemma 4. For any initial value αv, the degree of the vertex chromatic polynomial is at
most |B| − 1 (that is, q− 1) if and only if the colour assigned to the vertex is one of the
pre-defined colours.

Proof. It is straightforward to check that the top coefficient of vertex chromatic poly-
nomial is

∏
bl∈B(cv − bl). This coefficient is zero if and only if the colour of the vertex

is one of the proper colours: cv ∈ B. .�

We re-state our initial problem of testing whether a colour of a vertex is one of proper
colours with an equivalent problem testing whether we have zero coefficient at zq. We
let the prover submit arbitrary commitments to the rest of coefficients, for example, in
case of 3-colorability, to “square”, “linear” and constant coefficients of vertex chromatic
polynomials. Now the verifier can evaluate all such polynomials at a point chosen as a
challenge z = z0 to test whether the colour of each vertex is one of the proper colours.
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3.3 Low-Degree Polynomial Identity Testing

We test whether a univariate polynomial is identically zero by evaluating it at a random
point chosen as a challenge. It is well known that for any non-zero polynomial over
a finite field, the degree of the polynomial is an upper bound on the number of roots.
It follows, using Schwartz-Zippel lemma [18], that the probability that a uniformly
chosen value is a root is at most the polynomial’s degree divided by cardinality of
the set that challenges are chosen from. In our case, the set chosen is ZQ for a large
prime Q (exponential in the security parameter), and the polynomial’s degree is small
(polynomial in the security parameter). Thus, the probability that a uniformly chosen
value is a root is negligible in the security parameter. Then we replace deciding original
problem of q-colorability with deciding whether a polynomial is identically zero, where
different polynomials are used, based on the techniques in Section 3.2. Here, operations
over these polynomials are performed in the exponents of the commitment keys, using
the homomorphic properties of the commitment scheme from Section 3.1.

4 A Proof System for q-Colorable Graphs

In this section we present our protocol for q-COL, based on the techniques discussed in
Section 3. We obtain the following

Theorem 1. Assuming the hardness of the Decisional Diffie-Hellman problem modulo
-length primes, there exists (constructively) a zero-knowledge proof system for q-COL
with soundness error 2−k and communication complexity O(max(k + logn, ) · (nq +
N)), where n = |V(Γ )|, N = |E(Γ )|, and Γ is the common input graph.

Considering that according to natural setting of parameters k, , we have that k+logn =
O(), and comparing with the natural extension of the protocol in [2], this protocol
improves the communication complexity by a factor of O(k log q), for any 3 ≤ q ≤
N/n. We further note that the intractability assumption in Theorem 1 can be generalized
to the existence of commitment schemes with homomorphic and provability properties,
as described in Section 2.

To prove Theorem 1, we focus our description on a 3-message, public-coin, honest-
verifier zero-knowledge proof system for the same language. This is because such a
protocol can be made zero-knowledge with respect to any verifier without increase in
the asymptotic communication complexity by applying the technique from [7]. Specif-
ically, the verifier commits to its random coins at the start of the protocol and opens the
appropriate commitments whenever the verifier in the honest-verifier protocol would
directly send the coins. We first give an informal discussion, then continue with the for-
mal description of our proof system, and then give a discussion of its communication
complexity, completeness, soundness and honest-verifier zero-knowledge properties.

An Informal Discussion. Our honest-verifier zero-knowledge proof system can be de-
scribed as composed of the following three subprotocols. First, the prover commits to
all vertices’ colours using the commitment scheme from Section 3.1, and proves that
he can open the commitment keys using the associated proofs described in Section 3.1.
Moreover, the prover shows that the committed colour assigned to each vertex is one
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of the pre-defined q colours. This is proved using Lemma 4, and thus proving that the
degree of vertex chromatic polynomial induced by the committed colours is at most
q − 1 (for example, for 3-colorability, quadratic in the challenge). Finally, the prover
shows that the committed colours assigned to all vertices define a valid q-coloring of
the graph. This is proved using Lemma 2, and thus proving that the top coefficient
of the graph chromatic polynomial is non-zero, which can be checked by the verifier
using the graph chromatic verification polynomial. A critical part of our approach is
being able to show that all edges have different colors by showing a single (and much
shorter) proof that the top coefficient of the graph chromatic polynomial is non-zero;
instead, a generic circuit incurs a multiplicative factor of log q to test this difference
for all edges. We also note that our polynomial representation approach does not im-
ply a smaller circuit for verifying that a graph is q-colorable: the underlying circuit is,
in fact, larger as it consists of computing a chromatic polynomial (which takes time
O(N(log q)2)) and testing that the top coefficient is nonzero (which takes O(log q)),
for a total of O(N(log q)2).

Formal Description. The input common to prover and verifier is a graph Γ . The
prover’s auxiliary input is a q-coloring φ of Γ .

1. The prover defines a permutation η from {1, . . . , q} to a set B = {b1, . . . , bq} ⊂
ZQ of colours and generates the commitment scheme parameters (P,Q, g, h) as in
Section 3.1. For each vertex v ∈ V(Γ ), the prover defines cv = η(φ(v)), uniformly
chooses rv, αv, βv ∈ ZQ and commits to colour cv and value αv by computing

(ĝv, ĥv) = (grv , hrv+cv ), (g̃v, h̃v) = (gβv , hβv+αv). (2)

The prover computes coefficients {wvk}v∈V(Γ ),k=0...q−1 of vertex chromatic
polynomials:

∏
bl∈B

((zcv + αv)− zbl) =

q−1∑
k=0

zkwvk (3)

The prover uniformly chooses {δvk}v∈V(Γ ),k=0...q−1, and computes commitments
{(ζvk, γvk)}:

ζvk = gδvk , γvk = hδvk+wvk . (4)

The prover computes the inverse of the top coefficient of the graph chromatic
polynomial:

u =

⎛⎝ ∏
(Ha,Ta)∈E(Γ )

(cHa − cTa)

⎞⎠−1

(5)

The prover uniformly chooses ν, ψ, μ ∈ ZQ and commits to the inverse of the top
coefficient:

(λ̂, σ̂) = (gν , hν+u), (λ̃, σ̃) = (gμ, hμ+ψ). (6)



Zero-Knowledge Proofs via Polynomial Representations 345

The prover computes coefficients {mj}i=j...N of the graph chromatic verification
polynomial as follows:

(zu+ ψ)
∏

(Ha,Ta)∈E(Γ )

((zcHa + αHa)− (zcTa + αTa))

= zN+1 +
N∑
j=0

zjmj (7)

For j = 0, . . . , N , the prover uniformly chooses ρj ∈ ZQ and commits to the
coefficient mj :

ξj = gρj , πj = hρj+mj . (8)

The prover sends {(ĝv, ĥv, g̃v, h̃v)}, {(ζvk, γvk)}, (λ̂, σ̂, λ̃, σ̃), {(ξj , πj)} to the
verifier.

2. The verifier uniformly chooses a challenge z0 ∈ ZQ and sends it to the prover.
3. The prover computes and sends responses Cv, Rv, Uv for each v ∈ V(Γ ), and

T, V,W , as below:

Cv = z0cv + αv, Rv = z0rv + βv, Uv =

q−1∑
k=0

zk0δvk, (9)

T =
N∑
j=0

zj0ρj , V = z0ν + μ, W = z0u+ ψ. (10)

4. The verifier computes Fv for each v ∈ V(Γ ), and S, as below:

Fv =
∏
bl∈B

(Cv − z0bl), S = W
∏

(Ha,Ta)∈E(Γ )

(CHa − CTa). (11)

The verifier accepts if for each v ∈ V(Γ ), it holds that

ĝz0v g̃v = gRv , ĥz0 h̃v = hRv+Cv (12)

gUv

q−1∏
k=0

ζ
−zk0
vk = 1, hUv+Fv

q−1∏
k=0

γ
−zk0
vk = 1 (13)

λ̂z0 λ̃ = gV , σ̂z0 σ̃ = hV+W (14)

gT
N∏
j=0

ξ
−zj0
j = 1, hT+S−zN+1

0

N∏
j=0

π
−zj0
j = 1 (15)

We note that under the natural parameter setting k + logn = O(), the communication
complexity of the above protocol is O() in the verifier’s message, O((N+nq)) in the
first prover’s message, and O(n) in the last prover’s message. Overall, the number of
commitments can be anywhere between O(nq) and O(n2), depending on the number
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of edges N , and is always smaller than the size O(N log q) of the best known verifying
circuit by a log q factor.

In our proof of the soundness property, we count the number of verifier’s challenges
to which any prover can answer, and use this number to derive an upper bound for the
soundness error. First, we note that for any vertex v and for any (ĝv, ĥv, g̃v, h̃v), the ac-
ceptable responseCv is always a polynomial that is linear in challenge z0, as was shown
in Lemma 1. For any top coefficient of this polynomial, that is not the colour commit-
ted, there is exactly one possible challenge that admits a responseCv acceptable at (12).
For n equations at (12), we have at least Q − n ‘interesting’ challenges such that all
responses acceptable at (12) are ‘good’, that is, are polynomials linear in challenge with
top coefficients being the colours committed. Considering a good response acceptable
at (13) for a non properly colored vertex, we further reduce interesting challenges set
cardinality by at most qn; passing (14) and (15) would reduce by at most N + 2. This
gives soundness error ((q + 1)n+N + 2)/Q.

In our proof of the honest-verifier zero-knowledge property, we construct a honest-
verifier simulator by producing simulated commitments to ‘constant’ coefficients of
chromatic and verification polynomials from the possible value of polynomials pro-
duced with simulated responses. To prove indistiguishability, we apply a standard ‘hy-
brid’ argument by producing a sequence of algorithms, replacing computation of
responses by computation of commitments to constant coefficients, one at a time.
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4. Cramer, R., Damgård, I.: Linear zero-knowledge - a note on efficient zero-knowledge proofs
and arguments. In: Proceedings of ACM STOC 1997, pp. 436–445 (1997)

5. Goldwasser, S., Micali, S., Rackoff, C.: The knowledge complexity of interactive proof-
systems. SIAM Journal on Computing 18(1) (1989)

6. Goldreich, O., Krawczyk, H.: On the composition of zero-knowledge proof systems. SIAM
Journal on Computing 22(6), 1163–1175 (1993)

7. Goldreich, O., Kahan, A.: How to construct constant-round zero-knowledge proof systems
for NP. Journal of Cryptology 9(2), 167–189 (1996)

8. Schnorr, C.-P.: Efficient Identification and Signatures for Smart Cards. In: Brassard, G. (ed.)
CRYPTO 1989. LNCS, vol. 435, pp. 239–252. Springer, Heidelberg (1990)

9. Ishai, Y., Kushilevitz, E., Ostrovsky, R., Sahai, A.: Zero-knowledge proofs from secure mul-
tiparty computation. SIAM J. Comput. 39(3), 1121–1152 (2009)

10. Lund, C., Fortnow, L., Karloff, H., Nisan, N.: Algebraic methods for interactive proof sys-
tems. J. ACM 39(4), 859–868 (1992)

11. Shamir, A.: IP=PSPACE. J. ACM 39(4), 869–877 (1992)
12. Fedyukovych, V.: An argument for Hamiltonicity. In: Conference on Mathematics and Inf.

Tech. Security (MaBIT-2008), also Cryptology ePrint Archive, Report 2008/363 (2008)
13. Fedyukovych, V.: Protocols for graph isomorphism and hamiltonicity. In: Central European

Conference on Cryptography (2009)



Zero-Knowledge Proofs via Polynomial Representations 347

14. Micciancio, D., Petrank, E.: Simulatable Commitments and Efficient Concurrent Zero-
Knowledge. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656, pp. 140–159.
Springer, Heidelberg (2003)
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Abstract. The cluster vertex deletion number of a graph is the min-
imum number of its vertices whose deletion results in a disjoint union
of complete graphs. This generalizes the vertex cover number, provides
an upper bound to the clique-width and is related to the previously
studied notion of the twin cover of the graph under consideration. We
study the fixed parameter tractability of basic graph theoretic problems
related to coloring and Hamiltonicity parameterized by cluster vertex
deletion number. Our results show that most of these problems remain
fixed parameter tractable as well, and thus we push the borderline be-
tween tractability and intractability towards the clique-width parameter.

1 Introduction

1.1 Parameterized Complexity

The theory of parameterized complexity, first introduced by Abrahamson et
al. [1] and developed by Downey and Fellows in a series of research papers and
summarized in their famous textbook [12], has become in recent years a widely
used approach to understand subtle aspects of the complexity of computationally
hard problems. If an instance of a problem comes naturally structured into two
parts, one of size n with expected unlimited growth and the other one size k which
becomes interesting from the practical point of view even for not too big values of
k, the goal is to find an algorithm running in time O(f(k)nO(1)) for any function
f . If such an algorithm exists, the problem is called Fixed Parameter Tractable,
FPT for short. Many problems allow more or less straightforward algorithms
of running time O(ng(k)) (maximum independent set in a graph being one of
the most fundamental examples) and in such a case the goal is “to remove the
dependency on k from the exponent”. Downey and Fellows have developed a
theory of fixed parameter tractability and intractability as a counterpart of the
NP-completeness of Cook and Karp, the role of “hard” problems is played by a
tower of W [t] classes. For definitions and details the reader is referred to [12].
For the purpose of this paper we note that Clique and Independent Set are
problems complete for W [1], the first level of the hierarchy.
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1.2 Parameterization by Width Parameters

The tree-width of a graph was introduced by Robertson and Seymour in their
extensive work on graph minors as a graph invariant that measures how close
is a given graph to a tree structure. However, in 1978 Arnborg et al. [4] had
already defined the notion of partial k-trees as subgraphs of graphs that can
be constructed from a k-clique by sequential addition of simplicial vertices of
degree k (the so-called k-trees). It turns out that the tree-width of a graph
G, denoted by tw(G), is the minimum k such that G is a partial k-tree. The
importance of partial k-trees from the computational point of view is that most
polynomial time algorithms for trees can be extended to them. This has been
noted already in [4] and expressed in the most elegant way by Courcelle [10]
who proved that every graph property expressible in the Monadic Second Order
Logic (MSOL) can be tested in linear time on partial k-trees (for every fixed k).
From the parameterized complexity point of view this means that every MSOL
expressible graph property is FPT when parameterized by the tree-width of the
input graph. Determining the tree-width of a graph is NP-hard, but for any fixed
k, graphs of tree-width at most k form a minor closed class of graphs, and hence
are recognizable in polynomial time by the Robertson-Seymour graph minor
machinery; an explicit linear time algorithm is due to Bodlaender [6]. The latter
means that the problem of determining tree-width is FPT when parameterized
by the tree-width of the input graph itself.

Courcelle and Olariu [11] have introduced another width parameter for graphs,
the so-called clique-width which captures the complexity of constructing a given
graph by certain operations that then allow algorithms to recurse along the lines
of this construction. This notion generalizes tree-width in the sense that every
graph of bounded tree-width has bounded clique-width as well [9], and thus the
existence of polynomial time algorithms for graphs of bounded clique-width for
various problems supersedes the results on tree-width. The computational as-
pects of clique-width itself are less understood than those of tree-width. Only
recently it has been shown that determining clique-width is NP-hard [15], but the
parameterized complexity of recognizing graphs of bounded clique-width is still
open. Though many natural problems are polynomial time solvable for graphs
of bounded clique-width, the exponents of the polynomial function describing
the running times of best known algorithms depend on the width. It has been
shown recently that at least for Hamiltonicity and coloring problems this can-
not be avoided (unless FTP = W[1]), as these problems are W[1]-hard when
parameterized by clique-width [19].

Fellows et al. [13] show that some variants of graphs coloring, namely Pre-

coloring extension and Equitable coloring, are W[1]-hard when param-
eterized by tree-width. In another paper [14] a similar set of authors suggest
the consideration of other parameters with respect to which hard problems may
become fixed parameter tractable. A particularly suitable parameter seems to
be the vertex cover number of a graph. A vertex cover is the complement of an
independent set, i.e., a set of vertices that meets every edge of the graph (in at
least one vertex). The vertex cover number of a graph G, denoted by vc(G), is
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the smallest size of a vertex cover in G. It is easily seen that tw(G) ≤ vc(G)
holds for every graph G, and thus every problem is at least as hard when param-
eterized by tree-width as it is when parameterized by vertex cover number. It is
shown by Fiala et al. [16] that indeed Precoloring extension, Equitable
coloring and other coloring related problems are FPT when parameterized by
vertex cover number. The aim of this paper is to show that some of those results
hold for a more general parameter.

1.3 Cluster Vertex Deletion

In this paper we initiate the study of parameterization by the cluster vertex
deletion number of a graph. A cluster vertex deletion of a graph is a set of
vertices whose deletion results in a disjoint union of complete graphs. The size
of a smallest cluster vertex deletion of a graph G is denoted by ucvd(G). If all
the cliques have sizes at most c, where c is a positive integer, we call the deletion
a c-bounded cluster vertex deletion of G. The smallest size of a c-bounded cluster
vertex deletion of G is denoted by bcvdc(G). Obviously ucvd(G) ≤ bcvdc(G) ≤
vc(G) for every graph and c ≥ 1. As we show later, the clique-width of a graph
is bounded by a function of its cluster vertex deletion number and tree-width
is bounded by a function of c-bounded cluster vertex deletion number. Thus
studying the parameterized complexity of problems parameterized by the cluster
vertex deletion number refines the study of the boundary between tractable and
intractable parameterizations. Our findings about problems related to graph
coloring and Hamiltonicity are listed in Table 1 below. The problems we have
considered are rather common and therefore we postpone their formal definition
to the particular sections dealing with their study.

It should be mentioned that our invariants are related to the twin cover in-
troduced by Ganian in [20] as a subset of the vertex set of a graph under consid-
eration such that every two adjacent vertices lying outside this subset are true
twins, i.e., they have the same closed neighborhoods in the graph. It immediately
follows that the vertices lying outside a twin cover must induce a disjoint union
of complete graphs, and hence ucvd(G) ≤ tc(G) holds for any graph G, where
tc(G) denotes the size of a smallest twin cover in G.

Let us also note at this point that though the results mostly say that FPT
algorithms for parameterization by vertex cover number can be extended to
parameterization by cluster vertex deletion number, the proofs (namely in the
case of Equitable Coloring) are novel compared to [16]. The new idea of
using matchings (developed in parallel with Ganian’s network flow technique for
parameterization by twin cover) enabled the design of an FPT algorithm for the
much more general problem Number Coloring.

1.4 Notations and Organization of the Paper

We consider finite simple undirected graphs, i.e., graphs without loops or mul-
tiple edges. Edges are viewed as two-element subsets of the vertex set, but for
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Table 1. Parameterized complexity of the problems considered with respect to pa-
rameterizations by vertex cover number (VC), bounded cluster vertex deletion number
(BCVD), twin cover number (TC), unbounded cluster vertex deletion number (UCVD),
tree-width (TW), and clique-width (CW). Results proved in this paper are marked by
asterisk *. Results not explicitly stated but straightforwardly following from statements
proved in a reference [x] are marked by ←[x].

Problem VC BCVD TC UCVD TW CW

Precoloring
Extension

FPT[16] FPT* FPT[20] W[1]-hard* W[1]-hard[13] W[1]-hard←[13]

Number Col-
oring

FPT←* FPT* ? ? W[1]-hard←[13] W[1]-hard←[13]

Equitable
Coloring

FPT[16] FPT* FPT[20] FPT* W[1]-hard[13] W[1]-hard←[13]

Chromatic
Number

FPT←[3]FPT←[3]FPT[20] FPT* FPT[3] W[1]-hard[18]

Hamiltonian
Path

FPT←[3]FPT←[3]FPT←* FPT* FPT[3] W[1]-hard[18]

Hamiltonian
Cycle

FPT←[3]FPT←[3]FPT←* FPT* FPT[3] W[1]-hard[18]

simplicity we write uv for the edge joining vertices u and v. Thus a graph is a
pair G = (V,E) where V = V (G) is the vertex set of G and E = E(G) ⊆

(
V
2

)
is its edge set. We reserve n for the number of vertices and m for the number
of edges of the graph under consideration (which usually will be G). Adjacent
vertices are called neighbors and the set of neighbors of a vertex u is denoted by
N(u), and it is called the open neighborhood of u. The closed neighborhood of u
is N [u] = N(u) ∪ {u}. If W ⊆ V is a subset of the vertex set of G, then G[W ]
denotes the subgraph of G induced by W . A set A of vertices is independent if
G[A] is edgeless, and it is a clique if G[A] is a complete graph. A subset A of
vertices is called a vertex cover if V \A is an independent set. A coloring of G is
any mapping from the vertex set to a set (usually referred to as the set of colors).
A coloring is proper if adjacent vertices are mapped onto different colors, i.e., if
the preimage of every color is an independent set.

We assume that the reader is familiar with the notions of tree-width and clique-
width. For the definition of the perhaps less well known notion of twin cover we
refer to [20].

In Section 2 we recollect the definition of cluster vertex deletion and the re-
lationships to other width parameters. Sections 3–6 are devoted to the study of
the parameterized complexity of the problems Precoloring Extension, Eq-
uitable Coloring, Number Coloring, Chromatic Number, and Hamil-

tonian Cycle and Path. In Section 7 we list open problems that we find of
particular interest.
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2 Properties of Cluster Vertex Deletion

In this section we restate the definitions of bounded and unbounded cluster
vertex deletion in a formal way, comment on their computational complexities
and study their relationships to other parameters relevant for this paper.

Definition 1 (Unbounded and c-Bounded Cluster Vertex Deletion).
An (unbounded) cluster vertex deletion in a graph G is a set W ⊆ V (G) of
vertices such that G \W is a disjoint union of cliques. The minimum size of
such a W is denoted by ucvd(G).
A cluster vertex deletion W of G is called a c-bounded cluster vertex deletion
if each connected component of G \W has size at most c. The minimum size of
such a W is denoted by bcvdc(G). For the sake of brevity we call a c-bounded
cluster vertex deletion of size at most k a (k, c)-deletion of G.

The cluster vertex deletion problem has been studied in [22] and [17] in rela-
tionship to cluster editing, a problem whose motivation is coming from compu-
tational biology or relational structures. As noted in these papers, the cluster
vertex deletion problem is NP-complete, since disjoint unions of cliques are char-
acterized by forbidden P3, i.e. the path of length two, as an induced subgraph. A
classical result of Lewis and Yannakakis [24] says that minimum vertex deletion
problems to hit a hereditary class of graphs are all NP-complete. It immediately
follows that also deciding bcvdc(G) ≤ k is NP-complete for every c, since the class
of disjoint unions of cliques of size at most c is characterized by two forbidden
induced subgraphs – P3 and Kc+1, the complete graph on c+ 1 vertices.

We are introducing the bounded version of cluster vertex deletion with the
argument that in the biological sampling application, typical examples will have
equivalence classes of the samples of bounded size. It is therefore interesting
to study the complexity of standard optimization problems with respect to the
bounded case as well.

The first task is of course to explore the parameterized complexity of these
problems themselves. Hüffner et al. [22] show that the cluster vertex deletion
of a graph can be found in time O(2kk6 log k + nm), and hence the problem is
in FPT when parameterized by the cluster vertex deletion number. We have a
similar result for the bounded version.

Theorem 1. If a graph G has a (k, c)-deletion, then it can be found in time
O(n+m+(k+k(k+c)c)k+2). Hence c-Bounded Cluster Vertex Deletion

is FPT when parameterized by both c and the size of the deletion.

Proof. Suppose G has a (k, c)-deletion W . Then the vertices outside W have
degrees less than k+c. This suggests the first reduction rule – remove all vertices
of degree k + c or higher from G, put them into the deletion and reduce k to k′

by subtracting the number of the removed vertices. The second reduction rule is
to remove vertices which belong to clique components of order at most c (they
can be left outside of W for no penalty).
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The remaining graph G′ has maximum degree less than k+ c and every com-
ponent of G′ \W is adjacent to at least one vertex of W . Thus G′ has at most
k + k(k + c)c vertices. We then find a (k′, c)-deletion of G′ using brute force in
time O((k+(k+c)c)k+2) by processing all of its k-element subsets as candidates
for W ∩ V (G′) and checking if their deletion leaves a disjoint union of small
cliques. .�

Our aim is to compare the strengths of parameterizations by different parame-
ters. Towards this end we need to compare when boundedness of one parameter
implies the same of the other. It is well known [9] that bounded tree-width implies
bounded clique-width. The following observation follows straightforwardly from
the definitions of vertex cover and twin cover numbers of a graph G (denoted by
vc(G) and tc(G), respectively).

Observation 2. For every graph G and every positive integer c, it holds that
ucvd(G) ≤ tc(G) ≤ vc(G) and ucvd(G) ≤ bcvdc(G) ≤ vc(G).

The relationships of bounded and unbounded cluster vertex deletion numbers to
tree-width and clique-width are described by the following theorem.

Theorem 3. For every graph G and every positive integer c, the following hold
i) tw(G) ≤ bcvdc(G) + c− 1 and
ii) cwd(G) ≤ ucvd(G) + 3.

Proof. i) Let W be the deletion in G, |W | ≤ k, and let C1,. . . ,Ct be the cliques
of G \W . A suitable tree-decomposition is a path of length t − 1 with vertices
assigned to bags Ci ∪W .

ii) Let W be the deletion in G, |W | ≤ k. We begin the construction of G
by creating vertices of W , each with its own unique label, and connecting them
with edges as needed. We have used at most k labels.

We use three more labels: label k+1 for finished components of G \W , label
k + 2 for components under construction and label k + 3 for an active vertex.
Then we build the components of G \W one by one: If there are no vertices
left in the current component under construction, we relabel k + 2 to k + 1 and
move on to the next component. If there are vertices left, we choose one as the
active vertex, create a new vertex for it with label k+3 and add it to the already
constructed part of G. Then we connect the new vertex (the only vertex with
label k + 3) to vertices with label k + 2 and relevant vertices in W . Finally,
we relabel k + 3 to k + 2 and continue with the next vertex or component as
described above. .�

The relationships between the parameters are illustrated in a Hasse-like diagram
in Figure 2. Its meaning should be understood as follows. If an invariant A is
above an invariant B and a problem P is FPT when parameterized by B, then P
is also FPT when parameterized by A (and vice versa for W[1]-hardness). With
this picture in mind we move to the parameterized complexity investigation of
concrete problems in the next sections.
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Fig. 1. The Hasse-like diagram of graph parameterization relationships

3 Precoloring Extension

In this section we consider the first variant of graph coloring. Note that the
second problem, List Coloring, is only presented as an auxiliary problem
for use in proofs. We do not list it in Table 1 since it is W[1]-hard already
when parameterized by vertex cover number [14]. Also note that Precoloring
Extension is the only one of the problems considered where we know that
the tractability differs when parameterized by bounded and unbounded cluster
vertex deletion numbers.

Precoloring Extension

Input: A graph G, the number of colors r ∈ N, a setX ⊆ V (G), and a precoloring
p : X → {1, . . . , r}.
Question: Does there exist a proper coloring q : V (G) → {1, . . . , r} of G such
that q(u) = p(u) for every u ∈ X?

List Coloring

Input: A graph G, the number of colors r ∈ N, and an assignment L : V (G) →
2{1,...,r} of color lists to the vertices of G.
Question: Does there exist a proper coloring q : V (G) → {1, . . . , r} of G such
that q(u) ∈ L(u) for every u ∈ V (G)?

3.1 Parameterization by Bounded Cluster Vertex Deletion Number

Theorem 4. Precoloring Extension can be solved in time O((k+c)k+2cnr) =
O((k + c)k+2cn2) on graphs with a (k, c)-deletion.

Proof. Let W be a (k, c)-deletion in G. We begin by assigning lists of colors to all
unprecolored vertices as permitted by the precoloring of their neighbors. Then
we remove the precolored vertices, thus transforming G into an instance G′, L
of List coloring. This takes O(n(k + r + c)) time.
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If r ≥ k+c, each proper coloring of W can be extended to the rest of G′ using
a greedy algorithm. Similarly, if some vertex u ∈ W has at least |W | colors in its
list, any proper coloring of W \ {u} can be extended to a proper coloring of W .
We use this observation to build a sequence of subsets of W . Let W0 = W be
the first set in the sequence. Set Wi = Wi−1 \ {vi} if there is a vertex vi ∈ Wi−1

with at least |Wi−1| colors in its list. Let W ′ be the last set in the sequence.
Obviously, each vertex in W ′ has less than |W ′| ≤ k colors in its list. We can
therefore try all possible colorings of W ′ (at most kk possible combinations) and
if we find a proper coloring, we can extend it to the rest of G′ following the lines
explained above. All of these can be performed in time O(nrkk).

If r < k + c, we can (and must) try all possible colorings of W (at most
(k + c)k combinations). Then we try to extend each proper coloring of W to
the rest of G′ by finding a matching in a bipartite auxiliary graph H . Before we
construct this graph, we first update the color lists according to the coloring of
W . The auxiliary graphH will consist of connected components representing the
connected components of G′ \W . Given a component C of G′ \W , one part of H
will consist of vertices representing the colors in the union of all color lists in C.
The other part will represent individual vertices of C. Each vertex in the second
part will be connected to the vertices representing colors in the color list of its
corresponding vertex in G′. Obviously, a proper coloring of W can be extended
to the rest of G′ if and only if there is a matching fully satisfying the second part
of H . Since each component of the auxiliary graph has at most c + r vertices
and at most cr edges, deciding the existence of a suitable matching takes time
O(ncr

√
c+ r) = O(nc(k+c)3/2). Updating the lists for each coloring of W takes

O(n(k + c)) time. .�

3.2 Parameterization by Unbounded Cluster Vertex Deletion
Number

Theorem 5. Precoloring extension parameterized by the unbounded clus-
ter vertex deletion number of the input graph is W[1]-hard.

Proof. We prove the W[1]-hardness by reducing from List Coloring parame-
terized by vertex cover number of G which is known to be W[1]-hard [13],[14].
Given an instance of List coloring where G has a vertex cover of size k, let
C = {1, . . . , r} be the set of all colors.

We construct the instance of Precoloring extension G′, p as follows: For
each vertex v ∈ V (G), we adjoin to v a new complete graph on |C \L(v)| vertices
precolored by all colors in C \L(v). Thus G′ has a cluster vertex deletion of size
k (the same vertices as in the vertex cover of G) with the precolored vertices
serving as equivalent replacement for color lists. .�

4 Equitable and Number Colorings

In this section we prove two of the main results of the paper. First we prove that
Equitable Coloring is FPT even when parameterized by unbounded cluster
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vertex deletion number. But on the way actually prove another strengthening of
previously known results – the fixed parameter tractability (when parameterized
by bounded cluster vertex deletion number) for a more general problem Num-

ber Coloring which prescribes the sizes of color sets arbitrarily. The main
technical tool is Lemma 1 which is then used in several situations. First we list
the problems under consideration.

Equitable Coloring

Input: A graph G and the number of colors r ∈ N.
Question: Does G allow a proper coloring q : V (G) → {1, . . . , r} such that
||q−1(i)| − |q−1(j)|| ≤ 1 holds for all i, j ∈ {1, . . . , r}?
Number Coloring

Input: A graphG, the number of colors r ∈ N and positive integers n1, . . . , nr ∈ N
such that

∑r
i=1 ni = |V (G)|.

Question: Does G allow a proper coloring q : V (G) → {1, . . . , r} such that
|q−1(i)| = ni for all i ∈ {1, . . . , r}?
Number List Coloring

Input: A graph G, the number of colors r ∈ N, positive integers n1, . . . , nr ∈ N
such that

∑r
i=1 ni = |V (G)|, and an assignment of lists L : V (G)→ 2{1,...,r}.

Question: Does G allow a proper coloring q : V (G) → {1, . . . , r} such that
|q−1(i)| = ni for all i ∈ {1, . . . , r} and q(u) ∈ L(u) for all u ∈ V (G)?

Lemma 1. Given an instance of Number List Coloring on a graph G such
that G[i] (the subgraphs of G induced by the vertices containing color i in their
lists) is a disjoint union of cliques for each i ∈ {1, . . . , r}, the problem can be

solved in time O(n
5
2 r

3
2 ).

For space limitations the proof will appear in the full version only.

4.1 Parameterization by Unbounded Cluster Vertex Deletion
Number

Theorem 6. Given an instance of Number Coloring on a graph G such that
ucvd(G) ≤ k and such that the colors can be sorted into s groups, each group
containing colors with the same value of ni, the problem can be solved in time
O((ks)kn

5
2 r

3
2 ).

Proof. Let W be cluster vertex deletion in G of size at most k. We choose k
representatives from each group (or the entire group if it has less than k colors)
and try all (ks)k possible colorings of W using only the representative colors.
We thus try all possible colorings up to renaming of colors in the same group.

For each of these colorings we check whether they can be extended into a
correct solution. Given a proper coloring of W that does not exceed any ni, we
assign color lists to vertices of G \W according to their neighborhoods in W .
We also adjust the values ni by the numbers of vertices in W colored by each
color. In this way we construct an instance of Number List Coloring which
we solve using Lemma 1, since indeed every color induces a disjoint union of
cliques. .�
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Corollary 1. Equitable Coloring is FPT when parameterized by unbounded
cluster vertex deletion number (and hence also when parameterized by both c and
bcvdc(G)).

Proof. Equitable Coloring is a special case of Number Coloring with two
groups of colors with the same values ni within the groups (namely 'nr ( and
+nr ,). .�

4.2 Parameterization by Bounded Cluster Vertex Deletion Number

Theorem 7. Number coloring can be solved on graphs with a (k, c)-deletion

in time O((2k2 + k + c)kn
5
2 r

3
2 ).

For space limitations the proof will appear in the full version only.

5 Chromatic Number

In this section we deal with the most standard variant of a coloring problem.
Since it is well known to be FPT when parameterized by tree-width, we only
deal with parameterization by unbounded cluster vertex deletion number. Due
to space limitations the proof will appear in the full version only.

Chromatic Number

Input: A graph G and an integer r.
Question: Does G allow a proper coloring p : V (G)→ {1, . . . , r}?

Theorem 8. Chromatic Number can be solved in time O(( 0.792k
ln(k+1) )

k(kn)
3
2 )

for a graph G with ucvd(G) ≤ k.

6 Hamiltonian Path and Cycle

In this section we consider problems that are of different nature than the variants
of graph coloring that we have delt with so far. Still Hamiltonicity question
belong to the basic graph problems and we could not resist including them in our
report. Again we show FPT for parameterization by unbounded cluster vertex
deletion number and thus do not have to deal with the bounded case (where
FPT also follows from parameterization by tree-width). For space limitations
the proof will appear in the full version only.

Hamiltonian Path

Input: A graph G.
Question: Does there exist a permutation π of the vertices of G such that for
each 1 ≤ i ≤ n− 1 it holds that vπ(i)vπ(i+1) ∈ E(G)?

Hamiltonian Cycle

Input: A graph G.
Question: Does there exist an permutation π which defines a Hamiltonian path
and such that vπ(1)vπ(n) ∈ E(G)?
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Theorem 9. Hamiltonian Path can be solved in time O(k!(k + 1)!
(� k+1

2 �
2

k+1

)(
4k2

2k

)
n) on graphs G such that ucvd(G) ≤ k.

Theorem 10. Hamiltonian Cycle can be solved in time O((k − 1)!k!
(� k

2 �
2

k

)(
4k2

2k

)
n) on graphs G such that ucvd(G) ≤ k.

Proof. We prove the theorem using a slightly modified algorithm for Hamilto-

nian Path. Let W be a cluster vertex deletion of G of size at most k and let
u ∈ W be any vertex. We remove u from G (u will be the first and also the last
vertex of the cycle cut into a path) and call the algorithm for Hamiltonian

Path which will do one extra test in the final step to see if there are suitable
edges between u and the first and last component of the path. .�

7 Conclusion

We have initiated the study of the fixed parameter tractability or intractability
of several coloring and Hamiltonicity problems when parameterized by two graph
invariants generalizing the vertex cover number. In one case we found an FPT
algorithm for a rather strong question Number Coloring. We believe that the
complexity of this problem deserves further attention:

Problem. What is the parameterized complexity of Number Coloring pa-
rameterized by (unbounded) cluster vertex deletion number and by twin cover
number?

Our second open question is actually a question of Henning Fernau that has
inspired our research. Henning suggested in a 2009 personal communication to
study parameterization by “Bounded Component Vertex Cover”, i.e. by the min-
imum size of a set of vertices whose removal leaves all components of the graph
under consideration of bounded size. Even size 3 (allowing components isomor-
phic to K1,2) seems quite hard for Equitable Coloring and similar ques-
tions. We would like to use this opportunity to thank Henning for a stimulating
question.
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Abstract. In this work we completely characterize how the frequency
with which each player participates in the game dynamics affects the
possibility of reaching efficient states, i.e., states with an approximation
ratio within a constant factor from the price of anarchy, within a polyno-
mially bounded number of best responses. We focus on the well known
class of linear congestion games and we show that (i) if each player is
allowed to play at least once and at most β times in T best responses,
states with approximation ratio O(β) times the price of anarchy are
reached after T �log log n� best responses, and that (ii) such a bound is
essentially tight also after exponentially many ones. One important con-
sequence of our result is that the fairness among players is a necessary
and sufficient condition for guaranteeing a fast convergence to efficient
states. This answers the important question of the maximum order of β
needed to fast obtain efficient states, left open by [10,11] and [3], in which
fast convergence for constant β and very slow convergence for β = O(n)
have been shown, respectively. Finally, we show that the structure of the
game implicitly affects its performances. In particular, we prove that in
the symmetric setting, in which all players share the same set of strate-
gies, the game always converges to an efficient state after a polynomial
number of best responses, regardless of the frequency each player moves
with. All the results extend to weighted congestion games.

Keywords: Congestion Games, Speed of Convergence, Best Response
Dynamics.

1 Introduction

Congestion games are used for modelling non-cooperative systems in which a set
of resources are shared among a set of selfish players. In a congestion game we
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have a set of m resources and a set of n players. Each player’s strategy consists
of a subset of resources. The delay of a particular resource e depends on its
congestion, corresponding to the number of players choosing e, and the cost of
each player i is the sum of the delays associated with the resources selected by
i. In this work we focus on linear congestion games where the delays are linear
functions. A congestion game is called symmetric if all players share the same
strategy set. A state of the game is any combination of strategies for the players
and its social cost, defined as the sum of the players’ costs, denotes its quality
from a global perspective. The social optimum denotes the minimum possible
social cost among all the states of the game.

Related Work. Rosenthal [14] has shown, by a potential function argument,
that the natural decentralized mechanism known as Nash dynamics consisting
in a sequence of moves in which at each one some player switches its strategy to
a better alternative, is guaranteed to converge to a pure Nash equilibrium [13].

In order to measure the degradation of social welfare due to the selfish be-
havior of the players, Koutsoupias and Papadimitriou [12] defined the price of
anarchy as the worst-case ratio between the social cost in a Nash equilibrium
and that of a social optimum. The price of anarchy for congestion games has
been investigated by Awerbuch et al. [2] and Christodoulou and Koutsoupias
[6]. They both proved that the price of anarchy for congestion games with linear
delays is 5/2.

The existence of a potential function relates the class of congestion games
to the class of polynomial local search problems (PLS) [8]. Fabrikant et al. [9]
proved that, even for symmetric congestion games, the problem of computing
Nash equilibria is PLS-complete [8]. One major consequence of the completeness
result is the existence of congestion games with initial states such that any
improvement sequence starting from these states needs an exponential number
of steps in the number of players n in order to reach a Nash equilibrium. A recent
result by Ackermann et al. [1] shows that the previous negative result holds even
in the restricted case of congestion games with linear delay functions.

The negative results on computing equilibria in congestion games have lead
to the development of the concept of ε-Nash equilibrium, in which no player
can decrease its cost by a factor of more than ε. Unfortunately, as shown by
Skopalik and Vöcking [15], also the problem of finding an ε-Nash equilibrium in
congestion games is PLS-complete for any ε, though, under some restrictions on
the delay functions, Chien and Sinclair [5] proved that in symmetric congestion
games the convergence to ε-Nash equilibrium is polynomial in the description
of the game and the minimal number of steps within which each player has a
chance to move.

Since negative results tend to dominate the issues relative to the complex-
ity of computing equilibria, another natural arising question is whether efficient
states (with a social cost comparable to the one of any Nash equilibrium) can be
reached by best response moves in a reasonable amount of time (e.g., [3,7,10,11]).
We measure the efficiency of a state by the ratio among its cost and the optimal
one, and we refer to it as the approximation ratio of the state. We generally say
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that a state is efficient when its approximation ratio is within a constant factor
from the price of anarchy. Since the price of anarchy of linear congestion games
is known to be constant [2,6], efficient states approximate the social optimum
by a constant factor. While Bilò et al. [4] considered such a problem restricted
to the case in which the dynamics start from an empty state, proving that in
such a setting an efficient state can be reached by allowing each player to move
exactly once, we focus on the more general setting in which the dynamics start
from a generic state. It is worth noticing that in the worst case, a generic Nash
dynamics starting from an arbitrary state could never reach a state with an ap-
proximation ratio lower than the price of anarchy. Furthermore, by a potential
function argument it is easy to show that in a linear congestion game, once a
state S with a social cost C(S) is reached, even if such a state is not a Nash
equilibrium, we are guaranteed that for any subsequent state S′ of the dynamics,
C(S′) = O(C(S)).
Awerbuch et al. [3] have proved that for linear congestion games, sequences of
moves reducing the cost of each player by at least a factor of ε, converge to
efficient states in a number of moves polynomial in 1/ε and the number of play-
ers, under the minimal liveness condition that every player moves at least once
every polynomial number of moves. Under the same liveness condition, they also
proved that exact best response dynamics can guarantee the convergence to effi-
cient states only after an exponential number of best responses [3]. Nevertheless,
Fanelli et al. [10] have shown that, under more restrictive condition that each
player plays exactly once every n best responses, any best response dynamics
converges to an efficient state after Θ(n log logn) best responses. Subsequently,
Fanelli and Moscardelli [11] extended the previous results to the more general
case in which each player plays a constant number of times every O(n) best
responses.

Our Contribution. In this work we completely characterize how the fre-
quency with which each player participates in the game dynamics affects the
possibility of reaching efficient states. In particular, we close the most impor-
tant open problem left open by [3] and [10,11] for linear congestion games. On
the one hand, in [3] it is shown that, even after an exponential number of best

responses, states with a very high approximation ratio, namely Ω
( √

n
logn

)
, can

be reached. On the other hand, in [10,11] it is shown that, under the minimal
liveness condition in which every player moves at least once every T steps, if
players perform best responses such that each player is allowed to play at most
β = O(1) times any T steps (notice that β = O(1) implies T = O(n)), after
T +log logn, best responses a state with a constant factor approximation ratio is
reached.

The more β increases, the less the dynamics is fair with respect to the chance
every player has of performing a best response: β measures the degree of unfair-
ness of the dynamics. The important left open question was that of determining
the maximum order of β needed to obtain fast convergence to efficient states:
We answer this question by proving that, after T +log logn, best responses, the
dynamics reaches states with an approximation ratio of O(β). Such a result is
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essentially tight since we are also able to show that, for any ε > 0, there exist
congestion games for which, even for an exponential number of best responses,
states with an approximation ratio of Ω(β1−ε) are obtained. Therefore, β con-
stant as assumed in [10,11] is not only sufficient, but also necessary in order to
reach efficient states after a polynomial number of best responses.

Finally, in the special case of symmetric congestion games, we show that
the unfairness in best response dynamics does not affect the fast convergence to
efficient states; namely, we prove that, for any β, after T +log logn, best responses
efficient states are always reached.

The paper is organized as follows: In the next section we provide the basic
notation and definitions. Section 3 is devoted to the study of generic linear
congestion games, while Section 4 analyzes the symmetric case. Finally, Section
5 provides some extensions of the results and gives some conclusive remarks.

2 Model and Definitions

A congestion game G = (N,E, (Σi)i∈N , (fe)e∈E , (ci)i∈N ) is a non-cooperative
strategic game characterized by the existence of a set E of resources to be shared
by n players in N = {1, . . . , n}.

Any strategy si ∈ Σi of player i ∈ N is a subset of resources, i.e., Σi ⊆ 2E . A
congestion game is called symmetric if all players share the same set of strategies,
i.e., Σ = Σi for every i ∈ N . Given a state or strategy profile S = (s1, . . . , sn)
and a resource e, the number of players using e in S, called the congestion on e, is
denoted by ne(S) = |{i ∈ N | e ∈ si}|. A delay function fe : N �→ Q+ associates
to resource e a delay depending on the congestion on e, so that the cost of player
i for the pure strategy si is given by the sum of the delays associated with the
resources in si, i.e., ci(S) =

∑
e∈si fe(ne(S)).

In this paper we will focus on linear congestion games, that is having linear
delay functions with nonnegative coefficients. More precisely, for every resource
e ∈ E, fe(x) = aex+ be for every resource e ∈ E, with ae, be ∈ Q+.

Given the strategy profile S = (s1, . . . , sn), the social cost C(S) of a given
state S is defined as the sum of all the players’ costs, i.e., C(S) =

∑
i∈N ci(S).

An optimal strategy profile S∗ = (s∗1, . . . , s
∗
n) is one having minimum social

cost; we denote C(S∗) by Opt. The approximation ratio of state S is given

by the ratio between the social cost of S and the social optimum, i.e., C(S)
Opt

.
Moreover, given the strategy profile S = (s1, s2, . . . , sn) and a strategy s′i ∈ Σi,
let (S−i, s

′
i) = (s1, s2, . . . , si−1, s

′
i, si+1, . . . , sn), i.e., the strategy profile obtained

from S if player i changes its strategy from si to s′i.

The potential function is defined as Φ(S) =
∑
e∈E
∑ne(S)
j=1 fe(j). It is an exact

potential function since it satisfies the property that for each player i and each
strategy s′i ∈ Σi of i in S, it holds that ci(S−i, s

′
i) − ci(S) = Φ(S−i, s

′
i) − Φ(S).

It is worth noticing that in linear congestion games, for any state S, it holds
Φ(S) ≤ C(S) ≤ 2Φ(S).

Each player acts selfishly and aims at choosing the strategy decreasing its cost,
given the strategy choices of other players. A best response of player i in S is a
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strategy sbi ∈ Σi yielding the minimum possible cost, given the strategy choices
of the other players, i.e., ci(S−i, s

b
i) ≤ ci(S−i, s

′
i) for any other strategy s′i ∈ Σi.

Moreover, if no s′i ∈ Σi is such that ci(S−i, s
′
i) < ci(S), the best response of i in

S is si. We call a best response dynamics any sequence of best responses.
Given a best response dynamics starting from an arbitrary state, we are inter-

ested in the social cost of its final state. To this aim, we must consider dynamics
in which each player performs a best response at least once in a given number T
of best responses, otherwise one or more players could be “locked out” for arbi-
trarily long and we could not expect to bound the social cost of the state reached
at the end of the dynamics. Therefore, we define a T -covering as a dynamics of
T consecutive best responses in which each player moves at least once. More
precisely, a T -covering R =

(
S0
R, . . . , S

T
R

)
is composed of T best responses; S0

R

is said to be the initial state of R and STR is its final state. For every 1 ≤ t ≤ T ,
let πR(t) be the player performing the t-th best response of R; πR is such that
every player performs at least a best response in R. In particular, for every

1 ≤ t ≤ T , StR =
(
(St−1
R )−πR(t), s

′
πR(t)

)
and s′πR(t) is a best response of player

πR(t) to St−1
R . For any i = 1, . . . , n, the last best response performed by player

i in R is the lastR(i)-th best response of R, leading from state SlastR(i)−1 to
state SlastR(i). When clear from the context, we will drop the index R from the
notation, writing Si, π and last(i) instead of SiR, πR and lastR(i), respectively.

Definition 1 (T -Minimum Liveness Condition). Given any T ≥ n, a best
response dynamics satisfies the T -Minimum Liveness Condition if it can be de-
composed into a sequence of consecutive T -coverings.

In Section 3.2 we show that (for the general asymmetric case) under such a
condition the quality of the reached state can be very bad even considering
T = O(n) (see Corollary 1): It is worth noticing that in the considered congestion
game, only 4

√
n players perform a lot of best responses (

√
n best responses)

in each covering, while the remaining n − 4
√
n players perform only one best

response every T -covering. The idea here is that there is a sort of unfairness in
the dynamics, given by the fact that the players do not have the same chances
of performing best responses.

In order to quantify the impact of fairness on best response dynamics, we need
an additional parameter β and we define a β-bounded T -covering as a T -covering
in which every player performs at most β best responses.

Definition 2 ((T, β)-Fairness Condition). Given any positive integers β and
T such that n ≤ T ≤ β · n, a dynamics satisfies the (T, β)-Fairness Condition if
it can be decomposed into a sequence of consecutive β-bounded T -coverings.

Notice that β is a sort of (un)fairness index: If β is constant, it means that every
player plays at most a constant number of times in each T -covering and therefore
the dynamics can be considered fair.

In order to prove our upper bound results, we will focus our attention on
particular congestion games to which any linear congestion game is best-response
reducible. The following definition formally states such a notion of reduction.
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Definition 3 (Best-Response Reduction). A congestion game G is Best-
Response reducible to a congestion game G′ with the same set of players if there
exists an injective function g mapping any strategy profile S of G to a strategy
profile g(S) of G′ such that

(i) for any i = 1, . . . , n the cost of player i in S is equal to the one of player i
in g(S)

(ii) for any i = 1, . . . , n, there exists, in the game G, a best response of player
i in S leading to state S′ if and only if there exists, in the game G′, a best
response of player i in g(S) leading to state g(S′).

3 Asymmetric Congestion Games

In this section we first (in Subsection 3.1) provide an upper bound to the ap-
proximation ratio of the states reached after a dynamics satisfying the (T, β)-
Minimum Liveness Condition, starting from an arbitrary state and composed
by a number of best responses polynomial in n. Finally (in Subsection 3.2), we
provide an almost matching lower bound holding for dynamics satisfying the
same conditions.

3.1 Upper Bound

All the results hold for linear congestion games having delay functions fe(x) =
aex+be with ae, be ≥ 0 for every e ∈ E. Since our bounds are given as a function
of the number of players, as shown in [10], the following proposition allows us
to focus on congestion games with identical delay functions f(x) = x.

Proposition 1 ([10]). Any linear congestion game is best-response reducible to
a congestion game having the same set of players and identical delay functions
f(x) = x.

Since the dynamics satisfies the (T, β)-Fairness Condition, we can decompose it
into k β-bounded T -coverings R1, . . . , Rk.

Consider a generic β-bounded T -covering R =
(
S0, . . . , ST

)
. In the following

we will often consider the immediate costs (or delays) of players during R, that
is the cost cπ(t)(S

t) right after the best response of player π(t), for t = 1, . . . , T .
Given an optimal strategy profile S∗, since the t-th player π(t) performing a

best response, before doing it, can always select the strategy she would use in S∗,
her immediate cost can be suitably upper bounded as

∑
e∈s∗

π(t)

(
ne(S

t−1) + 1
)
.

By extending and strengthening the technique of [10,11], we are able to prove
that the best response dynamics satisfying the (T, β)-Fairness Condition fast
converges to states approximating the social optimum by a factor O(β). It is
worth noticing that, by exploiting the technique of [10,11], only a much worse
bound of O(β2) could be proved. In order to obtain an O(β) bound, we need to
develop a different and more involved technique, in which also the functions ρ
and H , introduced in [10,11], have to be redefined: roughly speaking, they now
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must take into account only the last move in R of each player, whereas in [10,11]
they were accounting for all the moves in R.

We now introduce functions ρ and H , defined over the set of all the possible
β-bounded T -coverings:

– Let ρ(R) =
∑n
i=1

∑
e∈s∗i

(
ne(S

lastR(i)−1) + 1
)
;

– let H(R) =
∑n
i=1

∑
e∈s∗i

ne(S
0).

Notice that ρ(R) is an upper bound to the sum over all the players of the cost
that she would experience on her optimal strategy s∗i just before her last move
in R, whereas H(R) represents the sum over all the players of the delay on the
moving player’s optimal strategy s∗i in the initial state S0 of R. Moreover, since
players perform best responses,

∑n
i=1 ci(S

lastR(i)) ≤ ρ(R), i.e. ρ(R) is an upper
bound to the sum of the immediate costs over the last moves of every players.

The upper bound proof is structured as follows. Lemma 1 relates the social
cost of the final state ST of a β-bounded T -covering R with ρ(R), by showing
that C(ST ) ≤ 2ρ(R). Let R and R be two consecutive β-bounded T -coverings;
by exploiting Lemmata 2 and 3, providing an upper (lower, respectively) bound
to H(R) in terms of ρ(R) (ρ(R), respectively), Lemma 4 proves that ρ

Opt
rapidly

decreases between R and R, showing that ρ(R)
Opt

= O

(√
ρ(R)
Opt

)
. In the proof of

Theorem 1, after deriving a trivial upper bound equal to O(n) for ρ(R1), Lemma
4 is applied to all the k− 1 couples of consecutive β-bounded T -coverings of the
considered dynamics satisfying the (T, β)-Fairness Condition.

The following lemmata show that the social cost at the end of any β-bounded

T -covering R is at most 2ρ(R), and that ρ(·)
Opt

fast decreases between two consec-
utive β-bounded T -coverings. They can be proved by adapting some proofs in
[10,11] so that they still hold with the new definition of ρ.

Lemma 1. For any β ≥ 1, given a β-bounded T -covering R, C(ST ) ≤ 2ρ(R).

Lemma 2. For any β ≥ 1, given a β-bounded T -covering R ending in ST ,∑
e∈E ne(S

T )ne(S
∗)

Opt
≤
√
2 ρ(R)

Opt
.

In Lemma 3 we are able to relate ρ(R) and H(R) by much strengthening the
technique exploited in [10,11].

Lemma 3. For any β ≥ 1, given a β-bounded T -covering R, ρ(R)
Opt

≤ 2H(R)
Opt

+
4β + 1.

Proof. Let N̄ be the set of players changing their strategies by performing best
responses in R. First of all, notice that if the players in N̄ never select strategies
used by some player in S∗, i.e. if they select only resources e such that ne(S

∗) = 0,
then, by recalling the definitions of ρ(R) and H(R), ρ(R) ≤ H(R) + Opt and
the claim would easily follow for any β ≥ 1.

In the following our aim is that of dealing with the generic case in which play-
ers moving in R can increase the congestions on resources e such that ne(S

∗) > 0.
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For every resource e ∈ E, we focus on the congestion on such a resource above
a “virtual” congestion frontier ge = 2βne(S

∗).
We assume that at the beginning of covering R each resource e ∈ E has a

congestion equal to δ0,e = max{ne(S0), ge}, and we call δ0,e the congestion of
level 0 on resource e; moreover, Δ0 =

∑
e∈E δ0,e · ne(S∗) is an upper bound to

H(R). We refer to Δ0 as the total congestion of level 0.
The idea is that the total congestion of level 0 can induce on the resources

a congestion (over the frontier ge) being the total congestion of level 1, such a
congestion a total congestion of level 2, and so on. More formally, for any p ≥ 1
and any e ∈ E, we define δp,e as the congestion of level p on resource e above
the frontier ge; we say that a congestion δp,e of level p on resource e is induced
by an amount xp,e of congestion of level p − 1 if some players (say, players in
Np,e) moving on e can cause such a congestion of level p on e because they
are experimenting a delay on the resources of their optimal strategies due to an
amount xp,e of congestion of level p. Notice that, for each move of the players in
Np,e, such an amount xp,e of congestion of level p− 1 can be used only once, i.e.
it cannot be used in order to induce a congestion of level p for other resources
in E \ {e}. In other words, xp,e is the overall congestion of level p − 1 on the
resources in the optimal strategies of players in Np,e used in order to induce the
congestion δp,e of level p on resource e.

For any p, the total congestion of level p is defined asΔp =
∑
e∈E δp,e · ne(S∗).

Moreover, for any p ≥ 1, we have that
∑

e∈E xp,e ≤ βΔp−1 because each player
can move at most β times in R and therefore the total congestion of level p− 1
can be used at most β times in order to induce the total congestion of level p.

It is worth noticing that ρ(R) ≤
∑∞

p=0 Δp + Opt, because
∑∞

p=0 δp,e is an
upper bound on the congestion of resource e during the whole covering R:

ρ(R) =

n∑
i=1

∑
e∈s∗i

(
ne(S

last(i)−1) + 1
)

≤
n∑
i=1

∑
e∈s∗i

( ∞∑
p=0

δp,e + 1

)
=
∑
e∈E

(
ne(S

∗)

( ∞∑
p=0

δp,e + 1

))

=
∑
e∈E

∞∑
p=0

δp,ene(S
∗) +

∑
e∈E

ne(S
∗) =

∞∑
p=0

Δp +Opt

In the following, we bound
∑∞

p=0 Δp from above.

Δp =
∑
e∈E

δp,e · ne(S∗) ≤
∑
e∈E

xp,e
ge

· ne(S∗) ≤
∑
e∈E

xp,e
2βne(S∗)

· ne(S∗) ≤
Δp−1

2
,

where the first inequality holds because δp,e is the portion of congestion on
resource e above the frontier ge due to some moving players having on the
resources of their optimal strategy a delay equal to xp,e, and the last inequality
holds because each player can move at most β times in R and therefore the total
congestion of level p−1 can be used at most β times in order to induce the total
congestion of level p.
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We thus obtain that, for any p ≥ 0, Δp ≤ Δ0

2p and
∑∞

p=0 Δp ≤ 2Δ0.

Since Δ0 =
∑

e∈E max{ne(S0), 2βne(S
∗)} · ne(S∗) ≤ H(R) + 2βOpt and

ρ(R) ≤
∑∞
p=0 Δp +Opt ≤ 2Δ0 +Opt, we finally obtain the claim. .�

By combining Lemmata 2 and 3, it is possible to prove the following lemma

showing that ρ(R)
Opt

fast decreases between two consecutive coverings.

Lemma 4. For any β ≥ 1, given two consecutive β-bounded T -coverings R and

R, ρ(R)
Opt

≤ 2

√
2 ρ(R)

Opt
+ 4β + 1.

By applying Lemma 4 to all the couples of consecutive β-bounded T -coverings,
we are now able to prove the following theorem.

Theorem 1. Given a linear congestion game, any best response dynamics sat-
isfying the (T, β)-Fairness Condition converges from any initial state to a state

S such that C(S)
Opt

= O(β) in at most T +log logn, best responses.

3.2 Lower Bound

Theorem 2. For any ε > 0, there exist a linear congestion game G and an

initial state S0 such that, for any β = O(n−
1

log2 ε ), there exists a best response
dynamics starting from S0 and satisfying the (T, β)-Fairness Condition such that
for a number of best responses exponential in n the cost of the reached states is
always Ω(β1−ε ·Opt).

By choosing β =
√
n and considering a simplified version of the proof giving the

above lower bound, it is possible to prove the following corollary. In particular,
it shows that even in the case of best response dynamics verifying an O(n)-
Minimum Liveness Condition, the speed of convergence to efficient states is
very slow; such a fact implies that the T -Minimum Liveness condition cannot
precisely characterize the speed of convergence to efficient states because it does
not capture the notion of fairness in best response dynamics.

Corollary 1. There exist a linear congestion game G, an initial state S0 and
a best response dynamics starting from S0 and satisfying the O(n)-Minimum
Liveness Condition such that for a number of best responses exponential in n the

cost of the reached states is always Ω
(

4
√
n

logn ·Opt

)
.

4 Symmetric Congestion Games

In this section we show that in the symmetric case the unfairness in best re-
sponse dynamics does not affect the speed of convergence to efficient states. In
particular, we are able to show that, for any β, after T +log log n, best responses
an efficient state is always reached. To this aim, in the following we consider best
response dynamics satisfying only the T -Minimum Liveness Condition, i.e. best
response dynamics decomposable into k T -coverings R1, . . . , Rk.



On the Impact of Fair Best Response Dynamics 369

All the results hold for linear congestion games having delay functions fe(x) =
aex + be with ae, be ≥ 0 for every e ∈ E. Analogously to the asymmetric case,
since our bounds are given as a function of the number of players, the following
proposition allows us to focus on congestion games with identical delay functions
f(x) = x.

Proposition 2. Any symmetric linear congestion game is best-response re-
ducible to a symmetric congestion game having the same set of players and
identical delay functions f(x) = x.

Consider a generic T -covering R =
(
S0, . . . , ST

)
. Given an optimal strategy pro-

file S∗, since player i, before performing her last best response, can always select
any strategy s∗j , for j = 1 . . . n, of S∗, her immediate cost ci(S

last(i)) can be upper

bounded as 1
n

∑n
j=1

∑
e∈s∗j

(ne(S
last(i)−1)+1) = 1

n

∑
e∈E ne(S

∗)(ne(S
last(i)−1)+

1). In order to prove our upper bound result, we introduce the following function:

– Γ (R) = 1
n

∑n
i=1

∑
e∈E ne(S

∗)(ne(S
last(i)−1) + 1).

Notice that Γ (R) is an upper bound to the sum of the immediate cost over
the last moves of every players, i.e., Γ (R) ≥

∑n
i=1 ci(S

lastR(i)). Therefore, by
exploiting the same arguments used in the proof of Lemma 1, it is possible to
prove the following lemma relating the social cost C(ST ) at the end of R with
Γ (R).

Lemma 5. Given any T -covering R, C(ST ) ≤ 2Γ (R).

Moreover, given any T -covering R, we can relate the social cost C(ST ) of the
final state of R with the cost C(S0) of its initial state.

Lemma 6. Given any T -covering R, C(ST )
Opt

≤ (2 + 2
√
2)
√

C(S0)
Opt

.

Proof.

C(ST )

Opt

≤ 2Γ (R)

Opt

(1)

=
2

nOpt

n∑
i=1

∑
e∈E

ne(S
∗)(ne(S

last(i)−1) + 1)

=
2

nOpt

(
n∑
i=1

∑
e∈E

ne(S
∗)ne(S

last(i)−1) +

n∑
i=1

∑
e∈E

ne(S
∗)

)

≤ 2 +
2

nOpt

n∑
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≤ 2 +
2

n
√
Opt

n∑
i=1

√
2Φ(Slast(i)−1) (3)

≤ 2 +
2

n
√
Opt

n∑
i=1

√
2Φ(S0) (4)

≤ 2 + 2
√
2

√
C(S0)

Opt

(5)

≤ (2 + 2
√
2)

√
C(S0)

Opt

,

where inequality (1) follows from Lemma 5, inequality (2) is due to the
application of the Cauchy-Schwarz inequality, inequality (3) holds because
C(Slast(i)−1) ≤ 2Φ(Slast(i)−1), inequality (4) holds because the potential func-
tion can only decrease at each best response and inequality (5) holds because
Φ(S0) ≤ C(S0). .�

By applying Lemma 6 to all the pairs of consecutive T -coverings, we are now
able to prove the following theorem.

Theorem 3. Given a linear symmetric congestion game, any best response dy-
namics satisfying the T -Minimum Liveness Condition converges from any initial

state to a state S such that C(S)
Opt

= O(1) in at most T +log logn, best responses.

5 Extensions and Final Remarks

All the results extend to the setting of weighted congestion games, in which any
player i ∈ N is associated a weight wi ≥ 1; notice that it is possible to assume
without loss of generality that wi ≥ 1 for any i ∈ N because it is always possible
to suitably scale all the weights (and accordingly the coefficients of the latency
functions) in order to obtain such a condition. Let W =

∑n
i=1 wi. We denote

by le(S) the congestion on resource e in a state S, i.e. le(S) =
∑

i|e∈Si
wi. The

cost of player i in state S is ci(S) = wi
∑
e∈Si

fe(le(S)). The social cost is given
by the sum of the players costs: C(S) =

∑
i∈N ci(S) =

∑
e∈E lefe(le(S)). The

following theorems hold.

Theorem 4. Given a linear weighted congestion game, any best response dy-
namics satisfying the (T, β)-Fairness Condition converges from any initial state

to a state S such that C(S)
Opt

= O(β) in at most T +log logW , best responses.

Theorem 5. Given a linear weighted symmetric congestion game, any best re-
sponse dynamics satisfying the T -Minimum Liveness Condition converges from

any initial state to a state S such that C(S)
Opt

= O(1) in at most T +log logW , best
responses.

As a final remark, it is worth to note that our techniques provide a much faster
convergence to efficient states with respect to the previous result in the literature.
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In particular, in the symmetric setting, Theorem 3 shows that best response
dynamics leads to efficient states much faster than how ε-Nash dynamics (i.e.,
sequences of moves reducing the cost of a player by at least a factor of ε) leads to
ε-Nash equilibria [5]. Furthermore, also in the more general asymmetric setting,
Theorem 1 shows that the same holds for fair best response dynamics with
respect to ε-Nash ones [3].
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Abstract. Two kinds of approximation algorithms exist for the k-BAL-
ANCED PARTITIONING problem: those that are fast but compute unsat-
isfactory approximation ratios, and those that guarantee high quality
ratios but are slow. In this paper we prove that this tradeoff between
runtime and solution quality is unavoidable. For the problem a minimum
number of edges in a graph need to be found that, when cut, partition
the vertices into k equal-sized sets. We develop a general reduction which
identifies some sufficient conditions on the considered graph class in order
to prove the hardness of the problem. We focus on two combinatorially
simple but very different classes, namely trees and solid grid graphs. The
latter are finite connected subgraphs of the infinite two-dimensional grid
without holes. We apply the reduction to show that for solid grid graphs
it is NP-hard to approximate the optimum number of cut edges within
any satisfactory ratio. We also consider solutions in which the sets may
deviate from being equal-sized. Our reduction is applied to grids and
trees to prove that no fully polynomial time algorithm exists that com-
putes solutions in which the sets are arbitrarily close to equal-sized. This
is true even if the number of edges cut is allowed to increase when the
limit on the set sizes decreases. These are the first bicriteria inapproxim-
ability results for the k-BALANCED PARTITIONING problem.

1 Model and Setting

We consider the k-BALANCED PARTITIONING problem in which the n vertices
of a graph need to be partitioned into k sets of size at most +n/k, each. At
the same time the cut size, which is the number of edges connecting vertices
from different sets, needs to be minimised. This problem has many applications
including VLSI circuit design [4], image processing [29], route planning [6], and
divide-and-conquer algorithms [23]. In our case the motivation (cf. [2, Section 4])
stems from parallel computations for finite element models (FEMs). In these a
continuous domain of a physical model is discretised into a mesh of sub-domains
(the elements). The mesh induces a graph in which the vertices are the elements
and each edge connects neighbouring sub-domains. A vertex then corresponds
to a computational task in the physical simulation, during which tasks that
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are adjacent in the graph need to exchange data. Since the model is usually
very large, the computation is done in parallel. Hence the tasks need to be
scheduled on to k machines (which corresponds to a partition of the vertices)
so that the loads of the machines (the sizes of the sets in the partition) are
balanced. At the same time the interprocessor communication (the cut size)
needs to be minimised since this constitutes a bottleneck in parallel computing.
In this paper we focus on 2D FEMs. For these the corresponding graph is a
planar graph, typically given by a triangulation or a quadrilateral tiling of the
plane [10]. We concentrate on the latter and consider so called solid grid graphs
which correspond to tessellations into squares. A grid graph is a finite subgraph
of the infinite 2D grid. An interior face of a grid graph is called a hole if more
than four edges surround it. If a grid graph is connected and does not have any
holes, it is called solid.

In general it is NP-hard to approximate the cut size of k-BALANCED PAR-

TITIONING within any finite factor [1]. However the corresponding reduction
relies on the fact that a general graph may not be connected and thus the
optimal cut size can be zero. Since a 2D FEM always induces a connected planar
graph, this strong hardness result may not apply. Yet even for trees [14] it is
NP-hard to approximate the cut size within nc, for any constant c < 1. The
latter result however relies on the fact that the maximum degree of a tree can
be arbitrarily large. Typically though, a 2D FEM induces a graph of constant
degrees, as for instance in grid graphs. In fact, even though approximating the
cut size in constant degree trees is APX-hard [14], there exists an O(log(n/k))
approximation algorithm [24] for these. This again raises the question of whether
efficient approximation algorithms can be found for graphs induced by 2D FEMs.
In this paper we give a negative answer to this question. We prove that it is
NP-hard to approximate the cut size within nc for any constant c < 1/2 for
solid grid graphs. We also show that this is asymptotically tight by providing a
corresponding approximation algorithm.

Hence when each set size is required to be at most +n/k, (the perfectly bal-
anced case), the achievable approximation factors are not satisfactory. To circum-
vent this issue, both in theory and practice it has proven beneficial to consider
bicriteria approximations. Here additionally the sets may deviate from being per-
fectly balanced. The computed cut size is compared with the optimal perfectly
balanced solution. Throughout this paper we denote the approximation ratio on
the cut size by α.

For planar graphs the famous Klein-Plotkin-Rao Theorem [20] can be com-
bined with spreading metric techniques [11] in order to compute a solution for

which α ∈ O(1) and each set has size at most 2+n/k,. This needs Õ(n3) time or

Õ(n2) expected time. For the same guarantee on the set sizes, a faster algorithm

exists for solid grid graphs [12]. It runs in Õ(n1.5) time but approximates the cut
size within α ∈ O(log k). However it is not hard to see how set sizes that deviate
by a factor of 2 from being perfectly balanced may be undesirable for practical ap-
plications. For instance in parallel computing this means a significant slowdown.
This is why graph partitioning heuristics such as Metis [18] or Scotch [5] allow to
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compute near-balanced partitions. Here each set has size at most (1 + ε)+n/k,,
for arbitrary ε > 0. The heuristics used in practice however do not give any
guarantees on the cut size. For general graphs the best algorithm [14] known
that gives such a guarantee, will compute a near-balanced solution for which
α ∈ O(log n). However the runtime of this algorithm increases exponentially
when ε decreases. Therefore this algorithm is too slow for practical purposes. Do
algorithms exist that are both fast and compute near-balanced solutions, and for
which rigorous guarantees can be given on the computed cut size? Note that the
factor α of the above algorithm does not depend on ε. It therefore suggests itself
to devise an algorithm that will compensate the cost of being able to compute
near-balanced solutions not in the runtime but in the cut size (as long as it does
not increase too much). In this paper however, we show that no such algorithm
exists that is reasonable for practical applications. More precisely, we consider
fully polynomial time algorithms for which the runtime is polynomial in n/ε. We
show that, unless P=NP, for solid grid graphs there is no such algorithm for
which the computed solution is near-balanced and α = nc/εd, for any constants
c and d where c < 1/2.

Our main contribution is a general reduction with which hardness results such
as the two described above can be generated. For it we identify some sufficient
conditions on the considered graphs which make the problem hard. Intuitively
these conditions entail that cutting vertices from a graph must be expensive in
terms of the number of edges used. We also apply the proposed reduction to
general graphs and trees, in order to complement the known results. For general
(disconnected) graphs we can show that, unless P=NP, there is no finite value for
α allowing a fully polynomial time algorithm that computes near-balanced par-
titions. For trees we can prove that this is true for any α = nc/εd, for arbitrary
constants c and d where c < 1. These results demonstrate that the identified suf-
ficient conditions capture a fundamental trait of the k-BALANCED PARTITIONING

problem. In particular since we prove the hardness for two combinatorially simple
graph classes which however are very dissimilar (as for instance documented by
the high tree-width of solid grids [8]). For solid grid graphs we harness their
isoperimetric properties in order to satisfy the conditions, while for trees we use
their ability to have high vertex degrees instead. These are the first bicriteria
inapproximability results for the problem. We also show that all of them are
asymptotically tight by giving corresponding approximation algorithms.

Related Work. Apart from the results mentioned above, Simon and Teng [28]
gave a framework with which bicriteria approximations to k-BALANCED PARTI-

TIONING can be computed. It is a recursive procedure that repeatedly uses a
given algorithm for sparsest cuts. If a sparsest cut can be approximated within
a factor of β then their algorithm yields ratios ε = 1 and α ∈ O(β log k). The
best factor β for general graphs [3] is O(

√
logn). For planar graphs Park and

Phillips [26] show how to yield β ∈ O(t) in Õ(n1.5+1/t) time, for arbitrary t. On
solid grid graphs constant approximations to sparsest cuts can be computed in
linear time [13]. For general graphs the best ratio α is achieved by Krauthgamer
et al. [21]. For ε = 1 they give an algorithm for which α ∈ O(

√
logn log k).
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Near-balanced partitions were considered by Andreev and Räcke [1] who
showed that a ratio of α ∈ O(log1.5(n)/ε2) is possible. This was later im-
proved [14] to α ∈ O(log n), making α independent of ε. In the latter paper
also a PTAS is given for trees. For perfectly balanced solutions, there is an ap-
proximation algorithm achieving α ∈ O(Δ logΔ(n/k)) for trees [24], where Δ is
the maximum degree.

The special case when k = 2 (the BISECTION problem) has been thoroughly
studied. The problem is NP-hard in general [17] and can be approximated within
O(log n) [27]. Assuming the Unique Games Conjecture, no constant approxim-
ations are possible in polynomial time [19]. Leighton and Rao [22] show how
near-balanced solutions for which α ∈ O(β/ε3) can be computed, where β is
as above. In contrast to the case of arbitrary k, the BISECTION problem can be
computed optimally in O(n4) time for solid grid graphs [15], and in O(n2) time
for trees [24]. For planar graphs the complexity of BISECTION is unknown, but
a PTAS exists [7].

2 A General Reduction

To derive the hardness results we give a reduction from the 3-PARTITION problem
defined below. It is known that 3-PARTITION is strongly NP-hard [16] which
means that it remains so even if all integers are polynomially bounded in the
size of the input.

Definition 1 (3-PARTITION). Given 3k integers a1, . . . , a3k and a threshold s

such that s/4 < ai < s/2 for each i ∈ {1, . . .3k}, and
∑3k

i=1 ai = ks, find a
partition of the integers into k triples such that each triple sums up to exactly s.

We will set up a general reduction from 3-PARTITION to different graph classes.
This will be achieved by identifying some structural properties that a graph con-
structed from a 3-PARTITION instance has to fulfil, in order to show the hardness
of the k-BALANCED PARTITIONING problem. We will state a lemma which asserts
that if the constructed graph has these properties then an algorithm computing
near-balanced partitions and approximating the cut size within some α is able
to decide the 3-PARTITION problem. We will see that carefully choosing the
involved parameters for each of the given graph classes yields the desired re-
ductions. While describing the structural properties we will exemplify them for
general (disconnected) graphs which constitute an easily understandable case.
For these graphs it is NP-hard to approximate the cut size within any finite
factor [1]. We will show that, unless P=NP, no fully polynomial time algorithm
exists for any α when near-balanced solutions are desired.

For any 3-PARTITION instance we construct 3k graphs, which we will call
gadgets, with a number of vertices proportional to the integers a1 to a3k. In par-
ticular, for general graphs each gadget Gi, where i ∈ {1, . . . 3k}, is a connected
graph on 2ai vertices. This assures that the gadgets can be constructed in poly-
nomial time since 3-PARTITION is strongly NP-hard. In general we will assume
that we can construct 3k gadgets for the given graph class such that each gadget
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has pai vertices for some p specific for the graph class. These gadgets will then be
connected using some number m of edges. The parameters p and m may depend
on the values of the given 3-PARTITION instance. For the case of general graphs
we chose p = 2 and we let m = 0, i.e. the gadgets are disconnected. In order
to show that the given gadgets can be used in a reduction, we require that an
upper bound can be given on the number of vertices that can be cut out using
a limited number of edges. More precisely, given any colouring of the vertices
of all gadgets into k colours, by a minority vertex in a gadget Gi we mean a
vertex that has the same colour as less than half of Gi’s vertices. Any partition
of the vertices of all gadgets into k sets induces a colouring of the vertices into k
colours. For approximation ratios α and ε, the property we need is that cutting
the graph containing n vertices into k sets using at most αm edges, produces
less than p−εn minority vertices in total. Clearly ε needs to be sufficiently small
so that the graph exists. When considering fully polynomial time algorithms, ε
should however also not be too small since otherwise the runtime may not be
polynomial. For general graphs we achieve this by choosing ε = (2ks)−1. This

means that p− εn = 1 since n =
∑3k
i=1 pai = 2ks. Simultaneously the runtime of

a corresponding algorithm is polynomial in the size of the 3-PARTITION instance
since 3-PARTITION is strongly NP-hard. Additionally the desired condition is
met for this graph class since no gadget can be cut using αm = 0 edges. The
following definition formalises the needed properties.

Definition 2. For each instance I of 3-PARTITION with integers a1 to a3k and
threshold s, a reduction set for k-BALANCED PARTITIONING contains a graph
determined by some given parameters m ≥ 0, p ≥ 1, ε ≥ 0, and α ≥ 1 which
may depend on I. Such a graph constitutes 3k gadgets connected through m
edges. Each gadget Gi, where i ∈ {1, . . . , 3k}, has pai vertices. Additionally, if a
partition of the n vertices of the graph into k sets has a cut size of at most αm,
then in total there are less than p−εn minority vertices in the induced colouring.

Obviously the involved parameters have to be set to appropriate values in order
for the reduction set to exist. For instance p must be an integer and ε must
be sufficiently small compared to p and n. Since however the values will vary
with the considered graph class we fix them only later. In the following lemma
we will assume that the reduction set exists and therefore all parameters were
chosen appropriately. It assures that given a reduction set, an approximation
algorithm for k-BALANCED PARTITIONING can decide the 3-PARTITION problem.
For general graphs we have seen above that a reduction set exists for any finite α
and ε = (2ks)−1. This means that a fully polynomial time algorithm for k-BAL-
ANCED PARTITIONING computing near-balanced partitions and approximating
the cut size within α, can decide the 3-PARTITION problem in polynomial time.
Such an algorithm can however not exist, unless P=NP.

Lemma 3. Let an algorithm A be given that for any graph in a reduction set for
k-BALANCED PARTITIONING computes a partition of the n vertices into k sets of
size at most (1 + ε)+n/k, each. If the cut size of the computed solution deviates
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by at most α from the optimal cut size of a perfectly balanced solution, then the
algorithm can decide the 3-PARTITION problem.

Proof. Let k be the value given by a 3-PARTITION instance I, and let G be the
graph corresponding to I in the reduction set. Assume that I has a solution.
Then obviously cutting the m edges connecting the gadgets of G gives a per-
fectly balanced solution to I. Hence in this case the optimal solution has cut
size at most m. Accordingly algorithm A will cut at most αm edges since it
approximates the cut size by a factor of α. We will show that in the other case
when I does not have a solution, the algorithm cuts more than αm edges. Hence
A can decide the 3-PARTITION problem and thus the lemma follows.

For the sake of deriving a contradiction, assume that algorithmA cuts at most
αm edges in case the 3-PARTITION instance I does not permit a solution. Since
the corresponding graph G is from a reduction set for k-BALANCED PARTITION-

ING, by Definition 2 this means that from its n vertices, in total less than p− εn
are minority vertices in the colouring induced by the computed solution of A.
Each gadget Gi, where i ∈ {1, . . . 3k}, of G has a majority colour, i.e. a colour
that more than half the vertices in Gi share. This is because the size of Gi is
pai and we can safely assume that ai ≥ 2 (otherwise the instance I is trivial due
to s/4 < ai < s/2). The majority colours of the gadgets induce a partition P of
the integers ai of I into k sets. That is, we introduce a set in P for each colour
and put an integer ai in a set if the majority colour of Gi equals the colour of
the set.

Since we assume that I does not admit a solution, if every set in P contains
exactly three integers there must be some set for which the contained integers
do not sum up to exactly the threshold s. On the other hand the bounds on the
integers, assuring that s/4 < ai < s/2 for each i ∈ {1, . . . , 3k}, mean that in case
not every set in P contains exactly three elements, there must also exist a set for
which the contained numbers do not sum up to s. By the pigeonhole principle
and the fact that the sum over all ai equals ks, there must thus be some set T
among the k in P for which the sum of the integers is strictly less than s. Since
the involved numbers are integers we can conclude that the sum of the integers
in T is in fact at most s − 1. Therefore the number of vertices in the gadgets
corresponding to the integers in T is at most p(s− 1). Let w.l.o.g. the colour of
T be 1. Apart from the vertices in these gadgets having majority colour 1, all
vertices in G that also have colour 1 must be minority vertices. Hence there must
be less than p(s− 1) + p− εn many vertices with colour 1. Since

∑3k
i=1 ai = ks

and thus ps = n/k, these are less than n/k − εn.
At the same time the algorithm computes a solution inducing a colouring in

which each colour has at most (1 + ε)n/k vertices, since n = pks is divisible by
k. This means we can give a lower bound of n− (k−1)(1+ε)n/k on the number
of vertices of a colour by assuming that all other colours have the maximum
number of vertices. Since this lower bound equals (1 + ε)n/k− εn, for any ε ≥ 0
we get a contradiction on the upper bound derived above for colour 1. Thus the
assumption that the algorithm cuts less than αm edges if I does not have a
solution is wrong. .�
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3 Consequences for Grids and Trees

We will now consider solid grid graphs and trees to show the hardness of the
k-BALANCED PARTITIONING problem when restricted to these. For grids we es-
tablish our results by considering a set of rectangular grid graphs which are
connected in a row (Figure 1). By a rectangular grid graph we mean a solid grid
graph with the following property. In its natural planar embedding for which the
vertices are coordinates in N2 and the edges have unit length, the straight line
edges touching the exterior face form an orthogonal rectangle. The width of a
rectangular grid graph is the number of vertices sharing the same y-coordinate
in this embedding. Accordingly the height is the number sharing the same x-
coordinate. We first prove that such topologies can be used for reduction sets.
We satisfy the conditions by observing that a grid graph resembles a discretised
polygon and hence shares their isoperimetric properties. This fact was already
used in [25] and we harness these results in the following lemma.

Lemma 4. Let ε ≥ 0 and α ≥ 1. For any 3-PARTITION instance, let a solid
grid graph G be given that consists of 3k rectangular grids which are connected
in a row using their lower left and lower right vertices by m = 3k − 1 edges.
Moreover let the height and width of a rectangular grid Gi, where i ∈ {1, . . .3k},
be
⌈√

(3kα)2 + εn
⌉
and
⌈√

(3kα)2 + εn
⌉
ai, respectively. If ε and α are values

for which these grids exist, they form a reduction set for k-BALANCED PARTI-

TIONING.

Proof. Consider one of the described graphsG for a 3-PARTITION instance. Since
both the height and the width of each rectangular grid Gi is greater than αm,
using at most αm edges it is not possible to cut across a gadget Gi, neither in
horizontal nor in vertical direction. Due to [25, Lemma 2] it follows that with
this limited amount of edges, the maximum number of vertices can be cut out
from the gadgets by using a square shaped cut in one corner of a single gadget.
Such a cut will cut out at most (αm/2)2 vertices. Hence if the vertices of the grid
graph G are cut into k sets using at most αm edges, then the induced colouring
contains at most (αm/2)2 minority vertices in total. Since the size of each gadget
is its height times its width, the parameter p is greater than (αm)2 + εn. Hence
the number of minority vertices is less than p− εn. .�

Fig. 1. The solid grid constructed for the reduction from 3-PARTITION. The gadgets
which are rectangular grids are connected through the bottom left and right vertices.
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The above topology is first used in the following theorem to show that no satis-
fying fully polynomial time algorithm exists.

Theorem 5. Unless P=NP, there is no fully polynomial time algorithm for the
k-BALANCED PARTITIONING problem on solid grid graphs that for any ε > 0
computes a solution in which each set has size at most (1 + ε)+n/k, and where
α = nc/εd, for any constants c and d where c < 1/2.

Proof. In order to prove the claim we need to show that a reduction set as
suggested by Lemma 4 exists and can be constructed in polynomial time. We
first prove the existence by showing that the number of vertices of a grid graph as
suggested by Lemma 4 is finite and hence its construction is feasible. Since α ≥ 1
we obtain

⌈√
(3kα)2 + εn

⌉
≤ 2
√
(3kα)2 + εn. Thus the parameter p, which is

determined by the width and height of the gadgets, is at most 4(3kα)2 + 4εn.
Since the algorithm can compute a near-balanced partition for any ε > 0 we
set ε = (8ks)−1. The number of vertices in a solid grid graph as suggested by
Lemma 4 is

n =

3k∑
i=1

pai ≤ (4(3knc/εd)2 + 4εn)ks = 36k3s(8ks)2dn2c + n/2.

Solving this inequality for n gives n ≤ (72k3s(8ks)2d)
1

1−2c which is finite since
c < 1/2. Additionally if c and d are constants, any grid graph in the reduction
set can be constructed in polynomial time since 3-PARTITION is strongly NP-
hard. For ε = (8ks)−1 a fully polynomial time algorithm has a runtime that is
polynomial in the 3-PARTITION instance when executed on the corresponding
grid. However, unless P=NP, this algorithm cannot exist since it decides the
3-PARTITION problem due to Lemma 3. .�

Next we consider computing perfectly balanced partitions. The proof of the
following theorem is deferred to the full version of the paper.

Theorem 6. There is no polynomial time algorithm for the k-BALANCED PAR-

TITIONING problem on solid grid graphs that approximates the cut size within
α = nc for any constant c < 1/2, unless P=NP.

Lemma 4 shows that for solid grid graphs the hardness derives from their iso-
perimetric properties. Trees do not experience such qualities. However they may
have high vertex degrees, which grids cannot. The following theorem shows that
this property also leads to a similar hardness as for solid grid graphs. The proof
is again deferred to the full version.

Theorem 7. Unless P=NP, there is no fully polynomial time algorithm for the
k-BALANCED PARTITIONING problem on trees that for any ε > 0 computes a
solution in which each set has size at most (1 + ε)+n/k, and where α = nc/εd,
for any constants c and d where c < 1.
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4 Conclusions

Are there algorithms for the k-BALANCED PARTITIONING problem that are both
fast and compute near-balanced solutions, even when allowing the cut size to in-
crease when ε decreases? We gave a negative answer to this question. This means
that the tradeoff between fast runtime and good solution quality, as provided by
the algorithms mentioned in the introduction, is unavoidable. In particular the
runtime to compute near-balanced solutions [14] has to increase exponentially
with ε. Also our results draw a frontier of the hardness of the problem by show-
ing how the cut size needs to increase with decreasing ε for fully polynomial
time algorithms. This gave the first bicriteria inapproximability results for the
k-BALANCED PARTITIONING problem.

To show the tightness of the achieved results, for grid graphs we harness
results by Diks et al. [9]. They provide a polynomial time algorithm to cut out
any number of vertices using at most O(

√
Δn) edges from a planar graph with

maximum degree Δ. Since Δ = 4 in a grid graph, it is possible to repeatedly
cut out +n/k, vertices from the grid using O(k

√
n) edges in total. A perfectly

balanced partition needs at least k − 1 edges in a connected graph. Hence we
obtain an α ∈ O(

√
n) approximation algorithm for grids. This shows that both

the hardness results we gave for these graphs are asymptotically tight, since
the algorithm runs in (fully) polynomial time. For trees a trivial approximation
algorithm can cut all edges in the graph and thereby yield α = n. This shows
that also the achieved result for trees is asymptotically tight.

We were able to show that both trees and grids experience similar hardness.
This is remarkable since these graphs have entirely different combinatorial prop-
erties. On the other hand, it emphasizes the ability of the given reduction frame-
work to capture a fundamental trait of the k-BALANCED PARTITIONING problem.
It remains to be seen what other structural properties can be harnessed for our
framework, in order to prove the hardness for entirely different graph classes.
Another interesting approach would be to take the opposite view and identify
properties of graphs that in fact lead to good approximation algorithms.

Note that the respective ratios α of the bicriteria inapproximability results
can in each case be amplified arbitrarily due to the unrestricted constant d. Also,
grids model the graphs resulting from 2D FEMs. For these reasons our results im-
ply that completely different methods (possibly randomness or fixed parameter
tractability) must be employed in order to find fast practical algorithms with
rigorously bounded approximation guarantees.
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1. Andreev, K., Räcke, H.: Balanced graph partitioning. Theory of Computing Sys-
tems 39(6), 929–939 (2006)

2. Arbenz, P., van Lenthe, G., Mennel, U., Müller, R., Sala, M.: Multi-level μ-finite ele-
ment analysis for human bone structures. In: Proceedings of the 8th Workshop on
State-of-the-art in Scientific and Parallel Computing (PARA), pp. 240–250 (2007)



Fast Balanced Partitioning Is Hard Even on Grids and Trees 381

3. Arora, S., Rao, S., Vazirani, U.: Expander flows, geometric embeddings and graph
partitioning. In: Proceedings of the 26th Annual ACM Symposium on Theory of
Computing (STOC), pp. 222–231 (2004)

4. Bhatt, S., Leighton, F.T.: A framework for solving VLSI graph layout problems.
Journal of Computer and System Sciences 28(2), 300–343 (1984)

5. Chevalier, C., Pellegrini, F.: PT-Scotch: A tool for efficient parallel graph ordering.
Parallel Computing 34(68), 318–331 (2008)

6. Delling, D., Goldberg, A., Pajor, T., Werneck, R.: Customizable route planning.
Experimental Algorithms, 376–387 (2011)

7. Dı́az, J., Serna, M.J., Torán, J.: Parallel approximation schemes for problems on
planar graphs. Acta Informatica 33(4), 387–408 (1996)

8. Diestel, R., Jensen, T.R., Gorbunov, K.Y., Thomassen, C.: Highly connected sets
and the excluded grid theorem. Journal of Combinatorial Theory, Series B 75(1),
61–73 (1999)

9. Diks, K., Djidjev, H.N., Sykora, O., Vrto, I.: Edge separators of planar and outer-
planar graphs with applications. Journal of Algorithms 14(2), 258–279 (1993)

10. Elman, H., Silvester, D., Wathen, A.: Finite Elements and Fast Iterative Solvers:
with Applications in Incompressible Fluid Dynamics. Oxford University Press, USA
(2005)

11. Even, G., Naor, J., Rao, S., Schieber, B.: Fast approximate graph partitioning
algorithms. SIAM Journal on Computing 28(6), 2187–2214 (1999)

12. Feldmann, A.E.: Balanced Partitioning of Grids and Related Graphs: A Theoretical
Study of Data Distribution in Parallel Finite Element Model Simulations. PhD
thesis, ETH Zurich, Diss.-Nr. ETH: 20371 (April 2012)

13. Feldmann, A.E., Das, S., Widmayer, P.: Restricted cuts for bisections in solid
grids: A proof via polygons. In: Proceedings of the 37th International Workshop
on Graph-Theoretic Concepts in Computer Science (WG), pp. 143–154 (2011)

14. Feldmann, A.E., Foschini, L.: Balanced partitions of trees and applications. In: 29th
International Symposium on Theoretical Aspects of Computer Science (STACS),
pp. 100–111 (2012)

15. Feldmann, A.E., Widmayer, P.: An O(n4) time algorithm to compute the bisec-
tion width of solid grid graphs. In: Proceedings of the 19th Annual European
Symposium on Algorithms (ESA), pp. 143–154 (2011)

16. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory
of NP-Completeness. W.H. Freeman and Co. (1979)

17. Garey, M.R., Johnson, D.S., Stockmeyer, L.: Some simplified NP-complete graph
problems. Theoretical Computer Science 1(3), 237–267 (1976)

18. Karypis, G., Kumar, V.: METIS-unstructured graph partitioning and sparse matrix
ordering system, version 2.0. Technical report, University of Minnesota (1995)

19. Khot, S.A., Vishnoi, N.K.: The Unique Games Conjecture, integrality gap for cut
problems and embeddability of negative type metrics into �1. In: Proceedings of
the 46th Annual IEEE Symposium on Foundations of Computer Science (FOCS),
pp. 53–62 (2005)

20. Klein, P., Plotkin, S., Rao, S.: Excluded minors, network decomposition, and mul-
ticommodity flow. In: Proceedings of the 25th Annual ACM Symposium on Theory
of Computing (STOC), pp. 682–690 (1993)

21. Krauthgamer, R., Naor, J., Schwartz, R.: Partitioning graphs into balanced com-
ponents. In: Proceedings of the 20th Annual ACM-SIAM Symposium on Discrete
Algorithms (SODA), pp. 942–949 (2009)

22. Leighton, T., Rao, S.: Multicommodity max-flow min-cut theorems and their use
in designing approximation algorithms. Journal of the ACM 46(6), 787–832 (1999)



382 A.E. Feldmann

23. Lipton, R., Tarjan, R.: Applications of a planar separator theorem. SIAM Journal
on Computing 9, 615–627 (1980)

24. MacGregor, R.M.: On Partitioning a Graph: a Theoretical and Empirical Study.
PhD thesis, University of California, Berkeley (1978)

25. Papadimitriou, C., Sideri, M.: The bisection width of grid graphs. Theory of Com-
puting Systems 29, 97–110 (1996)

26. Park, J.K., Phillips, C.A.: Finding minimum-quotient cuts in planar graphs. In:
Proceedings of the 25th Annual ACM Symposium on Theory of Computing
(STOC), pp. 766–775 (1993)
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Abstract. A finite Sturmian word w over the alphabet {a, b} is left
special (resp. right special) if aw and bw (resp. wa and wb) are both
Sturmian words. A bispecial Sturmian word is a Sturmian word that
is both left and right special. We show as a main result that bispecial
Sturmian words are exactly the maximal internal factors of Christoffel
words, that are words coding the digital approximations of segments in
the Euclidean plane. This result is an extension of the known relation
between central words and primitive Christoffel words. Our characteri-
zation allows us to give an enumerative formula for bispecial Sturmian
words. We also investigate the minimal forbidden words for the set of
Sturmian words.

Keywords: Sturmian words, Christoffel words, special factors, minimal
forbidden words, enumerative formula.

1 Introduction

Sturmian words are non-periodic infinite words of minimal factor complexity.
They are characterized by the property of having exactly n+1 distinct factors of
length n for every n ≥ 0 (and therefore are binary words) [16]. As an immediate
consequence of this property, one has that in any Sturmian word there is a unique
factor for each length n that can be extended to the right with both letters into
a factor of length n+ 1. These factors are called right special factors. Moreover,
since any Sturmian word is recurrent (every factor appears infinitely often) there
is a unique factor for each length n that is left special, i.e., can be extended to
the left with both letters into a factor of length n+ 1.

The set St of finite factors of Sturmian words coincides with the set of binary
balanced words, i.e., binary words having the property that any two factors of
the same length have the same number of occurrences of each letter up to one.
These words are also called (finite) Sturmian words and have been extensively
studied because of their relevant role in several fields of theoretical computer
science.

If one considers extendibility within the set St, one can define left special
Sturmian words (resp. right special Sturmian words) [9] as those words w over
the alphabet Σ = {a, b} such that aw and bw (resp. wa and wb) are both
Sturmian words. For example, the word aab is left special since aaab and baab
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are both Sturmian words, but is not right special since aabb is not a Sturmian
word.

Left special Sturmian words are precisely the binary words having suffix au-
tomaton1 with minimal state complexity (cf. [11, 17]). From combinatorial con-
siderations one has that right special Sturmian words are the reversals of left
special Sturmian words.

The Sturmian words that are both left special and right special are called bis-
pecial Sturmian words. They are of two kinds: strictly bispecial Sturmian words,
that are the words w such that awa, awb, bwa and bwb are all Sturmian words,
or non-strictly bispecial Sturmian words otherwise. Strictly bispecial Sturmian
words have been deeply studied (see for example [5,9]) because they play a cen-
tral role in the theory of Sturmian words. They are also called central words.
Non-strictly bispecial Sturmian words, instead, received less attention.

One important field in which Sturmian words arise naturally is discrete geom-
etry. Indeed, Sturmian words can be viewed as digital approximations of straight
lines in the Euclidean plane. It is known that given a point (p, q) in the discrete
plane Z × Z, with p, q > 0, there exists a unique path that approximates from
below (resp. from above) the segment joining the origin (0, 0) to the point (p, q).
This path, represented as a concatenation of horizontal and vertical unitary seg-
ments, is called the lower (resp. upper) Christoffel word associated to the pair
(p, q). If one encodes horizontal and vertical unitary segments with the letters
a and b respectively, a lower (resp. upper) Christoffel word is always a word of
the form awb (resp. bwa), for some w ∈ Σ∗. If (and only if) p and q are co-
prime, the associated Christoffel word is primitive (that is, it is not the power
of a shorter word). It is known that a word w is a strictly bispecial Sturmian
word if and only if awb is a primitive lower Christoffel word (or, equivalently,
if and only if bwa is a primitive upper Christoffel word). As a main result of
this paper, we show that this correspondence holds in general between bispecial
Sturmian words and Christoffel words. That is, we prove (in Theorem 2) that w
is a bispecial Sturmian word if and only if there exist letters x, y in {a, b} such
that xwy is a Christoffel word.

This characterization allows us to prove an enumerative formula for bispecial
Sturmian words (Corollary 1): there are exactly 2n + 2 − φ(n + 2) bispecial
Sturmian words of length n, where φ is the Euler totient function, i.e., φ(n) is
the number of positive integers smaller than or equal to n and coprime with
n. It is worth noticing that enumerative formulae for left special, right special
and strictly bispecial Sturmian words were known [9], but to the best of our
knowledge we exhibit the first proof of an enumerative formula for non-strictly
bispecial (and therefore for bispecial) Sturmian words.

We then investigate minimal forbidden words for the set St of finite Sturmian
words. The set of minimal forbidden words of a factorial language L is the set of
words of minimal length that do not belong to L [15]. Minimal forbidden words
represent a powerful tool to investigate the structure of a factorial language

1 The suffix automaton of a finite word w is the minimal deterministic finite state
automaton accepting the language of the suffixes of w.
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(see [1]). We give a characterization of minimal forbidden words for the set of
Sturmian words in Theorem 3. We show that they are the words of the form ywx
such that xwy is a non-primitive Christoffel word, where {x, y} = {a, b}. This
characterization allows us to give an enumerative formula for the set of minimal
forbidden words (Corollary 2): there are exactly 2(n−1−φ(n)) minimal forbidden
words of length n for every n > 1.

The paper is organized as follows. In Sec. 2 we recall standard definitions
on words and factors. In Sec. 3 we deal with Sturmian words and Christoffel
words, and present our main result. In Sec. 4 we give an enumerative formula for
bispecial Sturmian words. Finally, in Sec. 5, we investigate minimal forbidden
words for the language of finite Sturmian words.

2 Words and Special Factors

Let Σ be a finite alphabet, whose elements are called letters. A word over Σ is
a finite sequence of letters from Σ. A right-infinite word over Σ is a non-ending
sequence of letters from Σ. The set of all words over Σ is denoted by Σ∗. The
set of all words over Σ having length n is denoted by Σn. The empty word has
length zero and is denoted by ε. For a subset X of Σ∗, we note X(n) = |X∩Σn|.
Given a non-empty word w, we let w[i] denote its i-th letter. The reversal of
the word w = w[1]w[2] · · ·w[n], with w[i] ∈ Σ for 1 ≤ i ≤ n, is the word
w̃ = w[n]w[n − 1] · · ·w[1]. We set ε̃ = ε. A palindrome is a word w such that
w̃ = w. A word is called a power if it is the concatenation of copies of another
word; otherwise it is called primitive. For a letter a ∈ Σ, |w|a is the number of
a’s appearing in w. A word w has period p, with 0 < p ≤ |w|, if w[i] = w[i + p]
for every i = 1, . . . , |w| − p. Since |w| is always a period of w, every non-empty
word has at least one period.

A word z is a factor of a word w if w = uzv for some u, v ∈ Σ∗. In the
special case u = ε (resp. v = ε), we call z a prefix (resp. a suffix) of w. We let
Pref(w), Suff(w) and Fact(w) denote, respectively, the set of prefixes, suffixes
and factors of the word w. The factor complexity of a word w is the integer
function fw(n) = |Fact(w) ∩Σn|, n ≥ 0.

A factor u of a word w is left special (resp. right special) in w if there exist
a, b ∈ Σ, a �= b, such that au, bu ∈ Fact(w) (resp. ua, ub ∈ Fact(w)). A factor u of
w is bispecial in w if it is both left and right special. In the case when Σ = {a, b},
a bispecial factor u of w is said to be strictly bispecial in w if aua, aub, bua, bub
are all factors of w; otherwise u is said to be non-strictly bispecial in w. For
example, let w = aababba. The left special factors of w are ε, a, ab, b and ba.
The right special factors of w are ε, a, ab and b. Therefore, the bispecial factors
of w are ε, a, ab and b. Among these, only ε is strictly bispecial.

In the rest of the paper we fix the alphabet Σ = {a, b}.

3 Sturmian Words and Christoffel Words

A right-infinite word w is called a Sturmian word if fw(n) = n+1 for every n ≥ 0,
that is, if w contains exactly n+ 1 distinct factors of length n for every n ≥ 0.
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Sturmian words are non-periodic infinite words of minimal factor complexity [6].
A famous example of infinite Sturmian word is the Fibonacci word

F = abaababaabaababaababaabaababaabaab · · ·

obtained as the limit of the substitution a �→ ab, b �→ a.
A finite word is called Sturmian if it is a factor of an infinite Sturmian word.

Finite Sturmian words are characterized by the following balance property [10]:
a finite word w over Σ = {a, b} is Sturmian if and only if for any u, v ∈ Fact(w)
such that |u| = |v| one has ||u|a − |v|a| ≤ 1 (or, equivalently, ||u|b − |v|b| ≤ 1).
We let St denote the set of finite Sturmian words. The language St is factorial
(if w = uv ∈ St, then u, v ∈ St) and extendible (for every w ∈ St there exist
letters x, y ∈ Σ such that xwy ∈ St).

Let w be a finite Sturmian word. The following definitions are in [9].

Definition 1. A word w ∈ Σ∗ is a left special (resp. right special) Sturmian
word if aw, bw ∈ St (resp. if wa,wb ∈ St). A bispecial Sturmian word is a
Sturmian word that is both left special and right special. Moreover, a bispecial
Sturmian word is strictly bispecial if awa, awb, bwa and bwb are all Sturmian
word; otherwise it is non-strictly bispecial.

We let LS, RS, BS, SBS and NBS denote, respectively, the sets of left spe-
cial, right special, bispecial, strictly bispecial and non-strictly bispecial Sturmian
words. Hence, BS = LS ∩ RS = SBS ∪ NBS.

The following lemma is a reformulation of a result of de Luca [8].

Lemma 1. Let w be a word over Σ. Then w ∈ LS (resp. w ∈ RS) if and only
if w is a prefix (resp. a suffix) of a word in SBS.

Given a bispecial Sturmian word, the simplest criterion to determine if it is
strictly or non-strictly bispecial is provided by the following nice characterization
[9]:

Proposition 1. A bispecial Sturmian word is strictly bispecial if and only if it
is a palindrome.

Using the results in [9], one can derive the following classification of Sturmian
words with respect to their extendibility.

Proposition 2. Let w be a Sturmian word. Then:

– |ΣwΣ ∩ St| = 4 if and only if w is strictly bispecial;
– |ΣwΣ ∩ St| = 3 if and only if w is non-strictly bispecial;
– |ΣwΣ∩St| = 2 if and only if w is left special or right special but not bispecial;
– |ΣwΣ ∩ St| = 1 if and only if w is neither left special nor right special.

Example 1. The word w = aba is a strictly bispecial Sturmian word, since awa,
awb, bwa and bwb are all Sturmian words, so that |ΣwΣ∩St| = 4. The word w =
abab is a bispecial Sturmian word since wa, wb, aw and bw are Sturmian words.
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Nevertheless, awb is not Sturmian, since it contains aa and bb as factors. So w
is a non-strictly bispecial Sturmian word, and |ΣwΣ ∩ St| = 3. The Sturmian
word w = aab is left special but not right special, and |ΣwΣ ∩ St| = 2. Finally,
the Sturmian word w = baab is neither left special nor right special, the only
word in ΣwΣ ∩ St being awa.

We now recall the definition of central word [9].

Definition 2. A word over Σ is central if it has two coprime periods p and q
and length equal to p+ q − 2.

A combinatorial characterization of central words is the following (see [8]):

Proposition 3. A word w over Σ is central if and only if w is the power of
a single letter or there exist palindromes P,Q such that w = PxyQ = QyxP ,
for different letters x, y ∈ Σ. Moreover, if |P | < |Q|, then Q is the longest
palindromic suffix of w.

Actually, in the statement of Proposition 3, the requirement that the words P
and Q are palindromes is not even necessary [5].

We have the following remarkable result [9]:

Proposition 4. A word over Σ is a strictly bispecial Sturmian word if and only
if it is a central word.

Another class of finite words, strictly related to the previous ones, is that of
Christoffel words.

Definition 3. Let n > 1 and p, q > 0 be integers such that p+ q = n. The lower
Christoffel word wp,q is the word defined for 1 ≤ i ≤ n by

wp,q[i] =

⎧⎨⎩a if iq mod(n) > (i − 1)q mod(n),

b if iq mod(n) < (i − 1)q mod(n).

Example 2. Let p = 6 and q = 4. We have {i4 mod(10) | i = 0, 1, . . . , 10} =
{0, 4, 8, 2, 6, 0, 4, 8, 2, 6, 0}. Hence, w6,4 = aababaabab.

Notice that for every n > 1, there are exactly n− 1 lower Christoffel words wp,q,
corresponding to the n− 1 pairs (p, q) such that p, q > 0 and p+ q = n.

Remark 1. In the literature, Christoffel words are often defined with the ad-
ditional requirement that gcd(p, q) = 1 (cf. [3]). We call such Christoffel words
primitive, since a Christoffel word is a primitive word if and only if gcd(p, q) = 1.

If one draws a word in the discrete grid Z×Z by encoding each a with a horizontal
unitary segment and each b with a vertical unitary segment, the lower Christoffel
wordwp,q is in fact the best grid approximation from below of the segment joining
(0, 0) to (p, q), and has slope q/p, that is, |w|a = p and |w|b = q (see Fig. 1).
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Fig. 1. The lower Christoffel word w6,4 = aababaabab (left) and the upper Christoffel
word w′

6,4 = babaababaa (right)

Analogously, one can define the upper Christoffel word w′p,q by

w′p,q[i] =

⎧⎨⎩a if ip mod(n) < (i− 1)p mod(n),

b if ip mod(n) > (i− 1)p mod(n).

Of course, the upper Christoffel word w′p,q is the best grid approximation from
above of the segment joining (0, 0) to (p, q) (see Fig. 1).

Example 3. Let p = 6 and q = 4. We have {i6 mod(10) | i = 0, 1, . . . , 10} =
{0, 6, 2, 8, 4, 0, 6, 2, 8, 4, 0}. Hence, w′6,4 = babaababaa.

The next result follows from elementary geometrical considerations.

Lemma 2. For every pair (p, q) the word w′p,q is the reversal of the word wp,q.

If (and only if) p and q are coprime, the Christoffel word wp,q intersects the
segment joining (0, 0) to (p, q) only at the end points, and is a primitive word.
Moreover, one can prove that wp,q = aub and w′p,q = bua for a palindrome
u. Since u is a bispecial Sturmian word and it is a palindrome, u is a strictly
bispecial Sturmian word (by Proposition 1). Conversely, given a strictly bispecial
Sturmian word u, u is a central word (by Proposition 4), and therefore has two
coprime periods p, q and length equal to p+ q− 2. Indeed, it can be proved that
aub = wp,q and bua = w′p,q. The previous properties can be summarized in the
following theorem (cf. [2]):

Theorem 1. SBS = {w | xwy is a primitive Christoffel word, x, y ∈ Σ}.

If instead p and q are not coprime, then there exist coprime integers p′, q′ such
that p = rp′, q = rq′, for an integer r > 1. In this case, we have wp,q = (wp′,q′)

r,
that is, wp,q is a power of a primitive Christoffel word. Hence, there exists a
central Sturmian word u such that wp,q = (aub)r and w′p,q = (bua)r. So, we
have:
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Lemma 3. The word xwy, x �= y ∈ Σ, is a Christoffel word if and only if
w = (uyx)nu, for an integer n ≥ 0 and a central word u. Moreover, xwy is a
primitive Christoffel word if and only if n = 0.

Recall from [8] that the right (resp. left) palindromic closure of a word w is the
(unique) shortest palindrome w(+) (resp. w(−)) such that w is a prefix of w(+)

(resp. a suffix of w(−)). If w = uv and v is the longest palindromic suffix of w
(resp. u is the longest palindromic prefix of w), then w(+) = wũ (resp. w(−) =
ṽw).

Lemma 4. Let xwy be a Christoffel word, x, y ∈ Σ. Then w(+) and w(−) are
central words.

Proof. Let xwy be a Christoffel word, x, y ∈ Σ. By Lemma 3, w = (uyx)nu,
for an integer n ≥ 0 and a central word u. We prove the claim for the right
palindromic closure, the claim for the left palindromic closure will follow by
symmetry. If n = 0, then w = u, so w is a palindrome and then w(+) = w is a
central word. So suppose n > 0. We first consider the case when u is the power
of a single letter (including the case u = ε). We have that either w = (yk+1x)nyk

or w = (xkyx)nxk for some k ≥ 0. In the first case, w(+) = wy = (yk+1x)nyk+1,
whereas in the second case w(+) = wyxk = (xkyx)nxkyxk. In both cases one
has that w(+) is a strictly bispecial Sturmian word, and thus, by Proposition 4,
a central word.

Let now u be not the power of a single letter. Hence, by Proposition 3, there
exist palindromes P,Q such that u = PxyQ = QyxP . Now, observe that

w = (uyx)nu = Pxy(QyxPxy)nQ

We claim that the longest palindromic suffix of w is (QyxPxy)nQ. Indeed, the
longest palindromic suffix of w cannot be w itself since w is not a palindrome, so
since any palindromic suffix of w longer than (QyxPxy)nQ must start in u, in
order to prove the claim it is enough to show that the first non-prefix occurrence
of u in w is that appearing as a prefix of (QyxPxy)nQ. Now, since the prefix
v = PxyQyxP of w can be written as v = uyxP = Pxyu, one has by Proposition
3 that v is a central word. It is easy to prove (see, for example, [4]) that the
longest palindromic suffix of a central word does not have internal occurrences,
that is, appears in the central word only as a prefix and as a suffix. Therefore,
since |u| > |P |, u is the longest palindromic suffix of v (by Proposition 3), and
so appears in v only as a prefix and as a suffix. This shows that (QyxPxy)nQ is
the longest palindromic suffix of w.

Thus, we have w(+) = wyxP , and we can write:

w(+) = Pxy(QyxPxy)nQyxP

= PxyQ · yx · P (xyQyxP )n

= (PxyQyx)nP · xy ·QyxP

so that w(+) = uyxz = zxyu for the palindrome z = P (xyQyxP )n =
(PxyQyx)nP . By Proposition 3, w(+) is a central word. .�



390 G. Fici

We are now ready to state our main result.

Theorem 2. BS = {w | xwy is a Christoffel word, x, y ∈ Σ}.

Proof. Let xwy be a Christoffel word, x, y ∈ Σ. Then, by Lemma 3, w is of the
form w = (uyx)nu, n ≥ 0, for a central word u. By Lemma 4, w is a prefix of
the central word w(+) and a suffix of the central word w(−), and therefore, by
Proposition 4 and Lemma 1, w is a bispecial Sturmian word.

Conversely, let w be a bispecial Sturmian word, that is, suppose that the words
xw, yw, wx and wy are all Sturmian. If w is strictly bispecial, then w is a central
word by Proposition 4, and xwy is a (primitive) Christoffel word by Theorem 1.
So suppose w ∈ NBS. By Lemma 3, it is enough to prove that w is of the form
w = (uyx)nu, n ≥ 1, for a central word u and letters x �= y. Since w is not a
strictly bispecial Sturmian word, it is not a palindrome (by Proposition 1). Let
u be the longest palindromic border of w (that is, the longest palindromic prefix
of w that is also a suffix of w), so that w = uyzxu, x �= y ∈ Σ, z ∈ Σ∗. If z = ε,
w = uyxu and we are done. Otherwise, it must be z = xz′y for some z′ ∈ Σ∗,
since otherwise either the word yw would contain yuy and xxu as factors (a
contradiction with the hypothesis that yw is a Sturmian word) or the word wx
would contain uyy and xux as factors (a contradiction with the hypothesis that
wx is a Sturmian word).

So w = uyxz′yxu. If u = ε, then it must be z = (yx)k for some k ≥ 0, since
otherwise either xx would appear as a factor in w, and therefore the word yw
would contain xx and yy as factors, being not a Sturmian word, or yy would
appear as a factor in w, and therefore the word wx would contain xx and yy
as factors, being not a Sturmian word. Hence, if u = ε we are done, and so we
suppose |u| > 0.

By contradiction, suppose that w is not of the form w = (uyx)nu. That is, let
w = (uyx)ku′av, with k ≥ 1, v ∈ Σ∗, u′b ∈ Pref(uyx), for different letters a and
b. If |u′| ≥ |u|, then either |u′| = |u| or |u′| = |u| + 1. In the first case, u′ = u
and w = (uyx)kuxv′, for some v′ ∈ Σ∗, and then the word yw would contain
yuy and xux as factors, being not a Sturmian word. In the second case, u′ = uy
and w = (uyx)kuyyv′′, for some v′′ ∈ Σ∗; since xu is a suffix of w, and therefore
w = (uyx)kv′′′xu for some v′′′ ∈ Σ∗, we would have that the word wx contains
both uyy and xux as factors, being not a Sturmian word. Thus, we can suppose
u′b ∈ Pref(u). Now, if a = x and b = y, then the word yw would contain the
factors yu′y and xu′x, being not a Sturmian word; if instead a = y and b = x,
let u = u′xu′′, so that we can write w = (uyx)ku′yv = (uyx)k−1u′xu′′yxu′yv.
The word wx would therefore contain the factors u′′yxu′y and xux = xu′xu′′x
(since xu is a suffix of w), being not a Sturmian word (see Fig. 2). In all the
cases we obtain a contradiction and the proof is thus complete. .�

So, bispecial Sturmian words are the maximal internal factors of Christoffel
words. Every bispecial Sturmian word is therefore of the form w = (uyx)nu,
n ≥ 0, for different letters x, y and a central word u. The word w is strictly
bispecial if and only if n = 0. If n = 1, w is a semicentral word [4], that is, a
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Fig. 2. The proof of Theorem 2

word in which the longest repeated prefix, the longest repeated suffix, the longest
left special factor and the longest right special factor all coincide.

4 Enumeration of Bispecial Sturmian Words

In this section we give an enumerative formula for bispecial Sturmian words. It
is known that the number of Sturmian words of length n is given by

St(n) = 1 +

n∑
i=1

(n− i+ 1)φ(i)

where φ is the Euler totient function, i.e., φ(n) is the number of positive integers
smaller than or equal to n and coprime with n (cf. [13, 14]).

Let w be a Sturmian word of length n. If w is left special, then aw and bw
are Sturmian words of length n + 1. If instead w if not left special, then only
one between aw and bw is a Sturmian word of length n+ 1. Therefore, we have
LS(n) = St(n+ 1)− St(n) and hence

LS(n) =
n+1∑
i=1

φ(i)

Using a symmetric argument, one has that also

RS(n) =

n+1∑
i=1

φ(i)

Since [9] SBS(n) = LS(n+ 1)− LS(n) = RS(n+ 1)− RS(n), we have

SBS(n) = φ(n+ 2)

Therefore, in order to find an enumerative formula for bispecial Sturmian words,
we only have to enumerate the non-strictly bispecial Sturmian words. We do this
in the next proposition.
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Proposition 5. For every n > 1, one has

NBS(n) = 2 (n+ 1− φ(n+ 2))

Proof. Let

Wn = {w | awb is a lower Christoffel word of length n+ 2}

and
W ′
n = {w′ | bw′a is an upper Christoffel word of length n+ 2}

By Theorem 2, the bispecial Sturmian words of length n are the words in Wn ∪
W ′
n.
Among the n+ 1 words in Wn, there are φ(n+ 2) strictly bispecial Sturmian

words, that are precisely the palindromes inWn. The n+1−φ(n+2) words inWn

that are not palindromes are non-strictly bispecial Sturmian words. The other
non-strictly bispecial Sturmian words of length n are the n+1−φ(n+2) words
in W ′

n that are not palindromes. Since the words in W ′
n are the reversals of the

words in Wn, and since no non-strictly bispecial Sturmian word is a palindrome
by Proposition 1, there are a total of 2(n+ 1 − φ(n + 2)) non-strictly bispecial
Sturmian words of length n. .�

Corollary 1. For every n ≥ 0, there are 2(n+1)−φ(n+2) bispecial Sturmian
words of length n.

Example 4. The Christoffel words of length 12 and their maximal internal fac-
tors, the bispecial Sturmian words of length 10, are reported in Table 1.

5 Minimal Forbidden Words

Given a factorial language L (that is, a language containing all the factors of its
words) over the alphabet Σ, a word v ∈ Σ∗ is a minimal forbidden word for L if v
does not belong to L but every proper factor of v does (see [7] for further details).
Minimal forbidden words represent a powerful tool to investigate the structure
of a factorial language (cf. [1]). In the next theorem, we give a characterization
of the set MFSt of minimal forbidden words for the language St.

Theorem 3. MFSt = {ywx | xwy is a non-primitive Christoffel word, x, y ∈ Σ}.

Proof. If xwy is a non-primitive Christoffel word, then by Theorems 1 and 2, w is
a non-strictly bispecial Sturmian word. This implies that ywx is not a Sturmian
word, since a word w such that xwy and ywx are both Sturmian is a central
word [9], and therefore a strictly bispecial Sturmian word (Proposition 4). Since
yw and wx are Sturmian words, we have ywx ∈ MFSt.

Conversely, let ywx ∈ MFSt. By definition, yw is Sturmian, and therefore ywy
must be a Sturmian word since St is an extendible language. Analogously, since
wx is Sturmian, the word xwx must be a Sturmian word. Thus, w is a bispecial
Sturmian word, and since ywx /∈ St, w is a non-strictly bispecial Sturmian word.
By Theorems 1 and 2, xwy is a non-primitive Christoffel word. .�
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Table 1. The Christoffel words of length 12. Their maximal internal factors are
the bispecial Sturmian words of length 10. There are 4 = φ(12) strictly bispe-
cial Sturmian words, that are the palindromes aaaaaaaaaa, ababaababa, bababbabab
and bbbbbbbbbb (underlined), and 14 = 2(11 − 4) non-strictly bispecial Sturmian
words: aaaaabaaaa, aaaabaaaaa, aaabaaabaa, aabaaabaaa, aabaabaaba, abaabaabaa,
ababababab, bababababa, babbabbabb, bbabbabbab, bbabbbabbb, bbbabbbabb, bbbbabbbbb and
bbbbbabbbb.

pair (p, q) lower Christoffel word wp,q upper Christoffel word w′
p,q

(11, 1) aaaaaaaaaaab baaaaaaaaaaa

(10, 2) aaaaabaaaaab baaaaabaaaaa

(9, 3) aaabaaabaaab baaabaaabaaa

(8, 4) aabaabaabaab baabaabaabaa

(7, 5) aababaababab bababaababaa

(6, 6) abababababab babababababa

(5, 7) abababbababb bbababbababa

(4, 8) abbabbabbabb bbabbabbabba

(3, 9) abbbabbbabbb bbbabbbabbba

(2, 10) abbbbbabbbbb bbbbbabbbbba

(1, 11) abbbbbbbbbbb bbbbbbbbbbba

Corollary 2. For every n > 1, one has

MFSt(n) = 2(n− 1− φ(n))

It is known from [14] that St(n) = O(n3), as a consequence of the estimation
(see [12], p. 268)

n∑
i=1

φ(i) =
3n2

π2
+O(n log n) (1)

From (1) and from the formula of Corollary 2, we have that

n∑
i=1

MFSt(n) = O(n2)
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Abstract. In Online Sum-Radii Clustering, n demand points arrive online and
must be irrevocably assigned to a cluster upon arrival. The cost of each cluster
is the sum of a fixed opening cost and its radius, and the objective is to min-
imize the total cost of the clusters opened by the algorithm. We show that the
deterministic competitive ratio of Online Sum-Radii Clustering for general met-
ric spaces is Θ(log n), where the upper bound follows from a primal-dual online
algorithm, and the lower bound is valid for ternary Hierarchically Well-Separated
Trees (HSTs) and for the Euclidean plane. Combined with the results of (Csirik
et al., MFCS 2010), this result demonstrates that the deterministic competitive
ratio of Online Sum-Radii Clustering changes abruptly, from constant to loga-
rithmic, when we move from the line to the plane. We also show that Online
Sum-Radii Clustering in HSTs is closely related to the Parking Permit problem
introduced by (Meyerson, FOCS 2005). Exploiting the relation to Parking Permit,
we obtain a lower bound of Ω(log log n) on the randomized competitive ratio
of Online Sum-Radii Clustering in tree metrics. Moreover, we present a simple
randomized O(log n)-competitive algorithm, and a deterministic O(log log n)-
competitive algorithm for the fractional version of the problem.

1 Introduction

In clustering problems, we seek a partitioning of n demand points into k groups, or
clusters, so that a given objective function, that depends on the distance between points
in the same cluster, is minimized. Typical examples are the k-Center problem, where
we minimize the maximum cluster diameter, the Sum-k-Radii problem, where we min-
imize the sum of cluster radii, and the k-Median problem, where we minimize the to-
tal distance of points to the nearest cluster center. These are fundamental problems in
Computer Science, with many important applications, and have been extensively stud-
ied from an algorithmic viewpoint (see e.g., [18] and the references therein).

In this work, we study an online clustering problem closely related to Sum-k-Radii.
In the online setting, the demand points arrive one-by-one and must be irrevocably as-
signed to a cluster upon arrival. We require that once formed, clusters cannot be merged,
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split, or have their center or radius changed. The goal is to open a few clusters with a
small sum of radii. However, instead of requiring that at most k clusters open, which
would lead to an unbounded competitive ratio, we follow [6,7] and consider a Facility-
Location-like relaxation of Sum-k-Radii, called Sum-Radii Clustering. In Sum-Radii
Clustering, the cost of each cluster is the sum of a fixed opening cost and its radius, and
we seek to minimize the total cost of the clusters opened by the algorithm.

In addition to clustering and data analysis, Sum-Radii Clustering has applications to
location problems of wireless base stations, such as sensors [7,8] or antennas [3,15].
In such problems, we place some wireless base stations and setup their communication
range so that some communication demands are satisfied and the total setup and opera-
tional cost is minimized. A standard assumption is that the setup cost is proportional to
the number of stations installed, and the operational cost for each station is proportional
to its range (or a low-degree polynomial of it).

Related Work. In the offline setting, Sum-k-Radii and the closely related problem
of Sum-k-Diameters1 have been thoroughly studied. Sum-k-Radii is NP-hard even
in metric spaces of constant doubling dimension [14]. Gibson et al. [13] proved that
Sum-k-Radii in Euclidean spaces of constant dimension is polynomially solvable, and
presented an O(nlogΔ logn)-time algorithm for Sum-k-Radii in general metric spaces,
where Δ is the diameter [14]. As for approximation algorithms, Doddi et al. [9] proved
that it is NP-hard to approximate Sum-k-Diameters in general metric spaces within
a factor less than 2, and gave a bicriteria algorithm that achieves a logarithmic ap-
proximation using O(k) clusters. Subsequently, Charikar and Panigraphy [6] presented
a primal-dual (3.504 + ε)-approximation algorithm for Sum-k-Radii in general met-
ric spaces, which uses as a building block a primal-dual 3-approximation algorithm for
Sum-Radii Clustering. Biló et al. [3] considered a generalization of Sum-k-Radii, where
the cost is the sum of the α-th power of the clusters radii, for α ≥ 1, and presented a
polynomial-time approximation scheme for Euclidean spaces of constant dimension.

Charikar and Panigraphy [6] also considered the incremental version of Sum-k-
Radii, Similarly to the online setting, an incremental algorithm processes the demands
one-by-one and assigns them to a cluster upon arrival. However, an incremental algo-
rithm can also merge any of its clusters at any time. They presented an O(1)-competitive
incremental algorithm for Sum-k-Radii that uses O(k) clusters.

In the online setting, where cluster reconfiguration is not allowed, the Unit Cov-
ering and the Unit Clustering problems have received considerable attention. In both
problems, the demand points arrive one-by-one and must be irrevocably assigned to
unit-radius balls upon arrival, so that the number of balls used is minimized. The differ-
ence is that in Unit Covering, the center of each ball is fixed when the ball is first used,
while in Unit Clustering, there is no fixed center and a ball may shift and cover more
demands. Charikar et al. [5] proved an upper bound of O(2dd log d) and a lower bound
of Ω(log d/ log log log d) on the deterministic competitive ratio of Unit Covering in d
dimensions. The results of [5] imply a competitive ratio of 2 and 4 for Unit Covering
on the line and the plane, respectively. The Unit Clustering problem was introduced by
Chan and Zarrabi-Zadeh [4]. The deterministic competitive ratio of Unit Clustering on

1 These problems are closely related in the sense that a c-competitive algorithm for Sum-k-Radii
implies a 2c-competitive algorithm for Sum-k-Diameters, and vice versa.
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the line is at most 5/3 [10] and no less than 8/5 [11]. Unit Clustering has also been
studied in d-dimensions with respect to the L∞ norm, where the competitive ratio is at
most 5

62
d, for any d, and no less than 13/6, for d ≥ 2 [10].

Departing from this line of work, Csirik at el. [7] studied online clustering to mini-
mize the sum of the setup costs and the diameters of the clusters (CSDF). Motivated by
the difference between Unit Covering and Unit Clustering, they considered three mod-
els, the strict, the intermediate, and the flexible one, depending on whether the center
and the radius of a new cluster are fixed at its opening time. Csirik at el. only stud-
ied CSDF on the line and proved that its deterministic competitive ratio is 1 +

√
2 for

the strict and the intermediate model and (1 +
√
5)/2 for the flexible model. Recently,

Divéki and Imreh [8] studied online clustering in two dimensions to minimize the sum
of the setup costs and the area of the clusters. They proved that the competitive ratio of
this problem lies in (2.22, 9] for the strict model and in (1.56, 7] for the flexible model.

Contribution. Following [7], it is natural and interesting to study the online clustering
problem of CSDF in metric spaces more general than the line. In this work, we con-
sider the closely related problem of Online Sum-Radii Clustering (OnlSumRad), and
give upper and lower bounds on its deterministic and randomized competitive ratio for
general metric spaces and for the Euclidean plane. We restrict our attention to the strict
model of [7], where the center and the radius of each new cluster are fixed at opening
time. To justify our choice, we show that a c-competitive algorithm for the strict model
implies an O(c)-competitive algorithm for the intermediate and the flexible model.

We show that the deterministic competitive ratio of OnlSumRad for general metric
spaces is Θ(log n), where the upper bound follows from a primal-dual algorithm, and
the lower bound is valid for ternary Hierarchically Well-Separated Trees (HSTs) and
for the Euclidean plane. This result is particularly interesting because it demonstrates
that the deterministic competitive ratio of OnlSumRad (and of CSDF) changes abruptly,
from constant to logarithmic, when we move from the line to the plane. Interestingly,
this does not happen when the cost of each cluster is proportional to its area [8].

Another interesting finding is that OnlSumRad in metric spaces induced by HTSs is
closely related to the Parking Permit problem introduced by Meyerson [17]. In Parking
Permit, we cover a set of driving days by choosing among K permit types, each with
a given cost and duration. The permit costs are concave, in the sense that the cost per
day decreases with the duration. The algorithm is informed of the driving days in an
online fashion, and irrevocably decides on the permits to purchase, so that all driving
days are covered by a permit and the total cost is minimized. Meyerson [17] proved that
the competitive ratio of Parking Permit is Θ(K) for deterministic and Θ(logK) for
randomized algorithms. We prove that OnlSumRad in HSTs is a generalization of Park-
ing Permit. Combined with the randomized lower bound of [17], this implies a lower
bound of Ω(log logn) on the randomized competitive ratio of OnlSumRad. Moreover,
we show that, under some assumptions, a c-competitive algorithm for Parking Permit
with K types implies a c-competitive algorithm for OnlSumRad in HSTs with K levels.

We conclude with a simple and memoryless randomized O(log n)-competitive al-
gorithm, and a deterministic O(log log n)-competitive algorithm for the fractional ver-
sion of OnlSumRad. Both algorithms work for general metric spaces. The fractional
algorithm is based on the primal-dual approach of [2,1], and generalizes the fractional
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algorithm of [17] for Parking Permit. We leave as an open problem the existence of
a randomized rounding procedure that converts the fractional solution to an (integral)
clustering of cost within a constant factor of the original cost. This would imply a ran-
domized O(log logn)-competitive algorithm for OnlSumRad in general metrics.

Other Related Work. OnlSumRad is a special case of Online Set Cover [2] with sets of
different weight. In [2], it is presented a nearly optimal deterministic O(logm logN)-
competitive algorithm, where N is the number of elements and m is the number of sets.
Moreover, if all sets have the same weight and each element belongs to at most d sets,
the competitive ratio can be improved to O(log d logN). If we cast OnlSumRad as a
special case of Online Set Cover, N is the number of points in the metric space, which
can be much larger than the number of demands n, m = Ω(n), and d = O(log n).
Hence, a direct application of the algorithm of [2] to OnlSumRad does not lead to an
optimal deterministic competitive ratio. This holds even if one could possibly extend
the improved ratio of O(log d logN) to the weighted set structure of OnlSumRad.

At the conceptual level, OnlSumRad is related to the problem of Online Facility
Location [16,12]. However, the two problems exhibit a different behavior w.r.t. their
competitive ratio, since the competitive ratio of Online Facility Location is Θ( logn

log log n ),
even on the line, for both deterministic and randomized algorithms [12].

2 Notation, Problem Definition, and Preliminaries

We consider a metric space (M,d), where M is the set of points and d : M ×M �→ N
is the distance function, which is non-negative, symmetric and satisfies the triangle
inequality. For a set of points M ′ ⊆ M , we let diam(M ′) ≡ maxu,v∈M ′{d(u, v)}
be the diameter and rad(M ′) ≡ minu∈M ′ maxv∈M ′{d(u, v)} be the radius of M ′.
In a tree metric, the points correspond to the nodes of an edge-weighted tree and the
distances are given by the tree’s shortest path metric. For some α > 1, a Hierarchically
α-Well-Separated Tree (α-HST) is a complete rooted tree with lengths on its edges such
that: (i) the distance of each leaf to its parent is 1, and (ii) on every path from a leaf to
the root, the edge length increases by a factor of α on every level. Thus, the distance of
any node vk at level k to its children is αk−1 and the distance of vk to the nearest leaf
is (αk − 1)/(α− 1). We usually identify a tree with the metric space induced by it.

A cluster C(p, r) ≡ {v : d(p, v) ≤ r} is determined by its center p and its radius r,
and consists of all points within a distance at most r to p. The cost of a cluster C(p, r)
is the sum of its opening cost f and its radius r.

Sum-Radii Clustering. In the offline version of Sum-Radii Clustering, we are given a
metric space (M,d), a cluster opening cost f , and a set D = {u1, . . . , un} of demand
points in M . The goal is to find a collection of clusters C(p1, r1), . . . , C(pk, rk) that
cover all demand points in D and minimize the total cost, which is

∑k
i=1(f + ri).

Online Sum-Radii Clustering. In the online setting, the demand points arrive one-by-
one, in an online fashion, and must be irrevocably assigned to an open cluster upon
arrival. Formally, the input to Online Sum-Radii Clustering (OnlSumRad) consists of
the cluster opening cost f and a sequence u1, . . . , un of (not necessarily distinct) de-
mand points in an underlying metric space (M,d). The goal is to maintain a set of
clusters of minimum total cost that cover all demand points revealed so far.
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In this work, we focus on the so-called Fixed-Cluster version of OnlSumRad, where
the center and the radius of each new cluster are irrevocably fixed when the cluster
opens. Thus, the online algorithm maintains a collection of clusters, which is initially
empty. Upon arrival of a new demand uj , if uj is not covered by an open cluster, the al-
gorithm opens a new cluster C(p, r) that includes uj , and assigns uj to it. The algorithm
incurs an irrevocable cost of f + r for the new cluster C(p, r).

Competitive Ratio. We evaluate the performance of online algorithms using competi-
tive analysis. A (randomized) algorithm is c-competitive if for any sequence of demand
points, its (expected) cost is at most c times the cost of the optimal solution for the
corresponding offline Sum-Radii instance. The (expected) cost of the algorithm is com-
pared against the cost of an optimal offline algorithm that is aware of the entire demand
sequence in advance and has no computational restrictions whatsoever.

Simplified Optimal. The following proposition simplifies the structure of the optimal
solution in the competitive analysis.

Proposition 1. Let S be a feasible solution of an instance I of OnlSumRad. Then, there
is a feasible solution S′ of I with a cost of at most twice the cost of S, where each cluster
has a radius of 2kf , for some integer k ≥ 0.

Other Versions of OnlSumRad. For completeness, we discuss two seemingly less
restricted versions of OnlSumRad, corresponding to the intermediate and the flexible
model in [7]. In both versions, the demands are irrevocably assigned to a cluster upon
arrival. In the Fixed-Radius version, only the radius of a new cluster is fixed when the
cluster opens. The algorithms incurs an irrevocable cost of f + r for each new cluster C
of radius r. Then, new demands can be assigned to C, provided that rad(C) ≤ r. In the
Flexible-Cluster version, a cluster C is a set of demands with neither a fixed center nor a
fixed radius. The algorithm’s cost for each cluster C is f +rad(C), where rad(C) may
increase as new demands are added to C. The Fixed-Cluster version is a restriction of
the Fixed-Radius version, which, in turn, is a restriction of the Flexible-Cluster version.
The following proposition shows that from the viewpoint of competitive analysis, the
three versions are essentially equivalent.

Proposition 2. If there exists a c-competitive algorithm for the Fixed-Radius (resp. the
Flexible-Cluster) version, then there exists a 2c-competitive (resp. 10c-competitive) al-
gorithm for the Fixed-Cluster version.

Parking Permit. In Parking Permit (ParkPermit), we are given a schedule of days,
some of which are marked as driving days, and K types of permits, where a permit of
each type k, k = 1, . . . ,K , has cost ck and duration dk. The goal is to purchase a set
of permits of minimum total cost that cover all driving days. In the online setting, the
driving days are presented one-by-one, and the algorithm irrevocably decides on the
permits to purchase based on the driving days revealed so far.

Meyerson [17] observed that by losing a constant factor in the competitive ratio,
we can focus on the interval version of ParkPermit, where each permit is available
over specific time intervals (e.g. a weakly permit is valid from Monday to Sunday).
Moreover, every day is covered by a single permit of each type k, and each permit
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Fig. 1. An example of the reduction of Theorem 1. On the left, there is an instance of the interval
version of ParkPermit. A feasible solution consists of the permits in grey. On the right, we depict
the instance of OnlSumRad constructed in the proof of Theorem 1.

of type k ≥ 2 has dk/dk−1 permits of type k − 1 embedded in it (see also Fig. 1).
An interesting feature of the deterministic algorithm in [17] is that it is time-sequence-
independent, in the sense that it applies, with the same competitive ratio of O(K), even
if the order in which the driving days are revealed may not be their time order (e.g. the
adversary may mark Aug. 6 as a driving day, before marking May 25 as a driving day).

3 Online Sum-Radii Clustering and Parking Permit

In this section, we show that OnlSumRad in tree metrics and the interval version of
ParkPermit are essentially equivalent problems. Our results either are directly based
on this correspondence or exploit this correspondence so that they draw ideas from
ParkPermit. We start with the following theorem, which shows that OnlSumRad in tree
metrics is a generalization of the interval version of ParkPermit.

Theorem 1. A c-competitive algorithm for Online Sum-Radii Clustering in HSTs with
K+1 levels implies a c-competitive algorithm for the interval version of Parking Permit
with K permit types.

Proof. Given an instance I of the interval version of ParkPermit with K permit types,
we construct an instance I ′ of OnlSumRad in an HST with K + 1 levels such that any
feasible solution of I is mapped, in an online fashion, to a feasible solution of I ′ of
equal cost, and vice versa. Let I be an instance of the interval version of ParkPermit
with K types of costs c1, . . . , cK and durations d1, . . . , dK . Wlog., we assume that
c1 = 1 and that all days are covered by the permit of type K . Given the costs and the
durations of the permits, we construct a tree T with appropriate edge lengths, which
gives the metric space for I ′. The construction exploits the tree-like structure of the
interval version (see also Fig. 1). Specifically, the tree T has K + 1 levels, where the
leaves correspond to the days of I’s schedule, and each node at level k, 1 ≤ k ≤ K ,
corresponds to a permit of type k.

Formally, the tree T has a leaf, at level 0, for each day in the schedule of I. For each
interval D1 of d1 days covered by a permit of type 1, there is a level-1 node v1 in T
whose children are the d1 leaves corresponding to the days in D1. The distance of each
level-1 node to its children is c1− 1 = 0. Hence, opening a cluster C(v1, c1− 1) covers
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all leaves corresponding to the days in D1. Similarly, for each interval Dk of dk days
covered by a permit of type k, 2 ≤ k ≤ K , there is a node vk at level k in T whose
children are the dk/dk−1 nodes at level k−1 corresponding to the permits of type k−1
embedded within the particular permit of type k. The distance of each level-k node to
its children is ck − ck−1. Therefore, opening a cluster C(vk, ck − 1) covers all leaves
corresponding to the days in Dk. The cluster opening cost is f = 1. For each driving
day t in I, there is, in I ′, a demand located at the leaf of T corresponding to t.

Based on the correspondence between a type-k permit and a cluster C(vk, ck − 1)
rooted at a level-k node vk, we can show that any solution of I is mapped, in an online
fashion, to a solution of I ′ of equal cost, and vice versa. .�

In the proof of Theorem 1, if the ParkPermit instance has d1 = 1 and ck = 2k, for
each type k, the tree T is essentially a 2-HST with K levels where all nodes at the
same level k have dk/dk−1 children. Thus, combined with Theorem 1, the following
lemma shows that OnlSumRad in such tree metrics is similar to the interval version of
ParkPermit. The proof of Lemma 1 applies the reverse reduction of Theorem 1.

Lemma 1. A c-competitive time-sequence-independent algorithm for the interval ver-
sion of ParkPermit with K permits implies a c-competitive algorithm for OnlSumRad in
HSTs with K levels, where all nodes at the same level have the same number of children
and all demands are located at the leaves.

4 Lower Bounds on the Competitive Ratio

By Theorem 1, OnlSumRad in trees with K+1 levels is a generalization of ParkPermit
with K permit types. Therefore, the results of [17] imply a lower bound of Ω(K) (resp.
Ω(logK)) on the deterministic (resp. randomized) competitive ratio of OnlSumRad in
trees with K levels. However, a lower bound on the competitive ratio of OnlSumRad
would rather be expressed in terms of the number of demands n, because there is no
simple and natural way of defining the number of “levels” of a general metric space,
and because for online clustering problems, the competitive ratio, if not constant, is
typically stated as a function of n.

Going through the proofs of Theorem 1 and of [17, Theorems 3.2 and 4.6], we can
translate the lower bounds on the competitive ratio of ParkPermit, expressed as a func-
tion of K , into equivalent lower lower bounds for OnlSumRad, expressed as a function
of n. In fact, the proofs of [17, Theorems 3.2 and 4.6] require that the ratio dk/dk−1

of the number of days covered by permits of type k and k − 1 is 2K . Thus, in the
proof of Theorem 1, the tree T has (2K)K leaves, and the number of demands n is at
most (2K)K . Combining this with the lower bound of Ω(logK) on the randomized
competitive ratio of ParkPermit [17, Theorem 4.6], we obtain the following corollary:

Corollary 1. The competitive ratio of any randomized algorithm for Online Sum-Radii
Clustering in tree metrics is Ω(log logn), where n is the number of demands.

A Stronger Lower Bound on the Deterministic Competitive Ratio. This approach
gives a lower bound of Ω( log n

log logn ) on the deterministic competitive ratio of Online
Sum-Radii Clustering. Using a ternary HST, we next obtain a stronger lower bound.
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Theorem 2. The competitive ratio of any deterministic online algorithm for Online
Sum-Radii Clustering in tree metrics is Ω(log n), where n is the number of demands.

Proof. For simplicity, let us assume that n is an integral power of 3. For some constant
α ∈ [2, 3), we consider an α-HST T of height K = log3 n whose non-leaf nodes have 3
children each. The cluster opening cost is f = 1. Let A be any deterministic algorithm.
We consider a sequence of demands located at the leaves of T . More precisely, starting
from the leftmost leaf and advancing towards the rightmost leaf, the next demand in the
sequence is located at the next leaf not covered by an open cluster of A. Since T has n
leaves, A may cover all leaves of T before the arrival of n demands. Then, the demand
sequence is completed in an arbitrary way that does not increase the optimal cost. We
let COPT be the optimal cost, and let CA be the cost of A on this demand sequence.

We let ck = 1 +
∑k−1
�=0 α� denote the cost of a cluster centered at a level-k node

vk with radius equal to the distance of vk to the nearest leaf. We observe that for any
k ≥ 1 and any α ≥ 2, ck ≤ αck−1. We classify the clusters opened by A according to
their cost. Specifically, we let Lk, 0 ≤ k ≤ K , be the set of A’s clusters with cost in
[ck, ck+1), and let k = |Lk| be the number of such clusters. The key property is that
a cluster in Lk can cover the demands of a subtree rooted at level at most k, but not
higher. Therefore, we can assume that all A’s clusters in Lk are centered at a level-k
node and have cost equal to ck, and obtain a lower bound of CA ≥

∑K
k=0 kck on the

algorithm’s cost.
To derive an upper bound on the optimal cost in terms of CA, we distinguish between

good and bad active subtrees, depending on the size of the largest radius cluster with
which A covers the demand points in them. Formally, a subtree Tk rooted at level k is
active if there is a demand point located at some leaf of it. For an active subtree Tk, we
let Cmax

Tk
denote the largest radius cluster opened by A when a new demand point in Tk

arrives. Let j, 0 ≤ j ≤ K , be such that Cmax
Tk

∈ Lj . Namely, Cmax
Tk

is centered at a
level-j node vj and covers the entire subtree rooted at vj . If j ≥ k, i.e. if Cmax

Tk
covers

Tk entirely, we say that Tk is a good (active) subtree (for the algorithm A). If j < k,
i.e. if Cmax

Tk
does not cover Tk entirely, we say that Tk is a bad (active) subtree (for A).

For each k = 0, . . . ,K , we let gk (resp. bk) denote the number of good (resp. bad)
active subtrees rooted at level k. To bound gk from above, we observe that the last
demand point of each good active subtree rooted at level k is covered by a new cluster
of A rooted at a level j ≥ k. Therefore, the number of good active subtrees rooted at
level k is at most the number of clusters in

⋃K
j=k Lj . Formally, for each level k ≥ 0,

gk ≤
∑K

j=k j . To bound bk from above, we first observe that each active leaf / demand
point is a good active level-0 subtree, and thus b0 = 0. For each level k ≥ 1, we observe
that if Tk is a bad subtree, then by the definition of the demand sequence, the 3 subtrees
rooted at the children of Tk’s root are all active. Moreover, each of these subtrees is
either a bad subtree rooted at level k − 1, in which case it is counted in bk−1, or a good
subtree covered by a cluster in Lk−1, in which case it is counted in k−1. Therefore, for
each level k ≥ 1, 3bk ≤ bk−1 + k−1.

Using these bounds on gk and bk, we can bound from above the optimal cost in terms
of CA. To this end, the crucial observation is that we can obtain a feasible solution by
opening a cluster of cost ck centered at the root of every active subtree rooted at level
k. Since the number of active subtrees rooted at level k is bk + gk, we obtain that for
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every k ≥ 0, COPT ≤ ck(bk + gk). Using the upper bound on gk and summing up for
k = 0, . . . ,K , we have that (K + 1)COPT ≤

∑K
k=0 ckbk +

∑K
k=0 ck

∑K
j=k j .

Using that ck ≤ αk and that ck ≤ αck−1, which hold for all α ≥ 2, we bound the
second term by:

K∑
k=0

ck

K∑
j=k

j =

K∑
k=0

k

k∑
j=0

cj ≤
K∑
k=0

k

k∑
j=0

αj ≤
K∑
k=0

kck+1 ≤ α

K∑
k=0

kck ≤ αCA

To bound the first term, we use that for every level k ≥ 1, 3bk ≤ bk−1 + k−1 and ck ≤
αck−1. Therefore, (3/α)bkck ≤ (bk−1 + k−1)ck−1. Summing up for k = 1, . . . ,K ,
we have that:

3

α

K∑
k=1

bkck ≤
K∑
k=1

bk−1ck−1 +

K∑
k=1

k−1ck−1

Using that b0 = 0 and that α < 3, we obtain that:

3

α

K∑
k=0

bkck ≤
K−1∑
k=0

bkck +

K−1∑
k=0

kck ≤
K∑
k=0

bkck + CA ⇒
K∑
k=0

bkck ≤
α

3− α
CA

Putting everything together, we conclude that for any α ∈ [2, 3), (K + 1)COPT ≤
(α+ α

3−α )CA. Since K = log3 n, this implies the theorem. .�
A Lower Bound for Deterministic OnlSumRad on the Plane. Motivated by the fact
that the deterministic competitive ratio of OnlSumRad on the line is constant [7], we
study OnlSumRad in the Euclidean plane. The following theorem uses a constant-
distortion planar embedding of a ternary α-HST, and establishes a lower bound of
Ω(log n) on the deterministic competitive ratio of OnlSumRad on the Euclidean plane.

Theorem 3. The competitive ratio of any deterministic algorithm for Online Sum-Radii
Clustering on the Euclidean plane is Ω(log n), where n is the number of demands.

Proof sketch. Using a planar embedding of a ternary α-HST T with distortion Dα ≤√
2α/(α−2), we can show that a c-competitive algorithm for OnlSumRad on the plane

implies a 2cDα-competitive algorithm for HSTs. .�

5 An Optimal Primal-Dual Online Algorithm

Next, we present a deterministic primal-dual algorithm for OnlSumRad in a general
metric space (M,d). In the following, we assume that the optimal solution only consists
of clusters with radius 2kf , where k is a non-negative integer (see also Proposition 1).
For simplicity, we let rk = 2kf , if k ≥ 0, and rk = 0, if k = −1. Let N = N ∪ {−1}.
Then, the following are a Linear Programming relaxation of OnlSumRad and its dual:

min
∑

(z,k)∈M×N
xzk(f + rk)

s.t
∑

(z,k):d(uj ,z)≤rk

xzk ≥ 1 ∀uj

xzk ≥ 0 ∀ (z, k)

max
n∑
j=1

aj

s.t
∑

j:d(uj ,z)≤rk

aj ≤ f + rk ∀ (z, k)

aj ≥ 0 ∀uj
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In the primal program, there is a variable xzk for each point z and each k ∈ N that
indicates the extent to which cluster C(z, rk) is open. The constraints require that each
demand uj is fractionally covered. If we require that xzk ∈ {0, 1} for all z, k, we obtain
an Integer Programming formulation of OnlSumRad. In the dual, there is a variable aj
for each demand uj , and the constraints require that no potential cluster is “overpaid”.

The primal-dual algorithm, or PD-SumRad in short, maintains a collection of clusters
that cover all the demands processed so far. When a new demand uj , j = 1, . . . , n,
arrives, if uj is covered by an already open cluster C, PD-SumRad assigns uj to C
and sets uj’s dual variable aj to 0. Otherwise, PD-SumRad sets aj to f . This makes
the dual constraint corresponding to (uj ,−1) and possibly some other dual constraints
tight. PD-SumRad finds the maximum k ∈ N such that for some point z ∈M , the dual
constraint corresponding to (z, k) becomes tight due to aj . Then, PD-SumRad opens a
new cluster C(z, 3rk) and assigns uj to it. The main result of this section is that:

Theorem 4. The competitive ratio of PD-SumRad is Θ(log n).

The lower bound on the competitive ratio of PD-SumRad follows from Theorem 2.
To establish the upper bound, we first observe that the dual solution maintained by
PD-SumRad is feasible. Thus the optimal cost for any demand sequence is at least the
value of the dual solution maintained by PD-SumRad. Combining this observation with
the following lemma, which shows that the total cost of PD-SumRad is at most O(log n)
times the value of its dual solution, we obtain the claimed competitive ratio.

Lemma 2. The cost of PD-SumRad is at most 3(2 + log2 n)
∑n
j=1 aj .

Proof. We call a cluster C(z, rk) tight if the dual constraint corresponding to (z, k) is
satisfied with equality. We observe that for any integer k > log2 n and for all points z,
C(z, k) cannot become tight, because the lefthand-side of any dual constraint is at most
nf . Therefore, we can restrict our attention to at most 2 + log2 n values of k.

Next, we show that for every k = −1, 0, . . . , 'log2 n(, each demand uj with aj > 0
contributes to the opening cost of at most one cluster with radius 3rk. Namely, there
is at most one cluster C(z, 3rk) for which uj belongs to the tight cluster C(z, rk). For
sake of contradiction, let us assume that for some value of k, PD-SumRad opens two
clusters C1 = C(z1, 3rk) and C2 = C(z2, 3rk) for which there is some uj with aj > 0
that belongs to both C(z1, rk) and C(z2, rk). Since PD-SumRad opens at most one new
cluster when a new demand is processed, one of the clusters C1, C2 opens before the
other. So, let us assume that C1 opens before C2. This means that PD-SumRad opened
C1 in response to a demand uj′ , with j′ ≤ j, that was uncovered at its arrival time and
made C(z1, rk) tight. Then, any subsequent demand u ∈ C(z2, rk) is covered by C1,
because:

d(u, z1) ≤ d(u, uj) + d(uj , z1) ≤ 2rk + rk = 3rk

The second inequality above holds because both u and uj belong to C(z2, rk) and uj
also belongs to C(z1, rk). Therefore, after C1 opens, there are no uncovered demands
in C(z2, rk) that can force PD-SumRad to open C2, a contradiction.
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To conclude the proof of the lemma, we observe that when PD-SumRad opens a new
cluster C(z, 3rk), the cluster C(z, rk) is tight. Hence, the total cost of C(z, 3rk) is at
most 3

∑
uj∈C(z,rk)

aj . Therefore, the total cost of PD-SumRad is at most:

∑
(z,k):C(z,3rk) op.

∑
uj∈C(z,rk)

3aj = 3

n∑
j=1

aj |{(z, k) : C(z, 3rk) opens ∧ uj ∈ C(z, rk)}|

≤ 3(2 + log2 n)

n∑
j=1

aj

The inequality holds because for each k = −1, 0, . . . , 'log2 n( and each uj with aj >
0, there is at most one pair (z, k) such that C(z, 3rk) opens and uj ∈ C(z, rk). .�

6 Randomized and Fractional Online Algorithms

Throughout this section, we assume that the optimal solution only consists of clusters
of radius 2kf . For simplicity, we assume that n is an integral power of 2 and known in
advance. Using standard techniques, we can remove these assumptions, by only losing
a constant factor in the competitive ratio.

Randomized Algorithm. We first present Simple-SumRad, that is a simple random-
ized algorithm of logarithmic competitiveness. Simple-SumRad is memoryless, in the
sense that it keeps in memory only its solution, namely the centers and the radii of its
clusters. When a new demand uj arrives, if uj is covered by an already open cluster
C, Simple-SumRad assigns uj to C. Otherwise, for each k = 0, . . . , log2 n, the algo-
rithm opens a new cluster C(uj , 2

kf) with probability 2−k, and assigns uj to the cluster
C(uj , f), which opens with probability 1. We can show that:

Lemma 3. Simple-SumRad achieves a competitive ratio of at most 2(4 + log2 n).

Fractional Algorithm. We conclude with a deterministic O(log logn)-competitive al-
gorithm for the fractional version of OnlSumRad in general metric spaces. The frac-
tional algorithm is based on the primal-dual approach of [2,1], and is a generalization
of the online algorithm for the fractional version of ParkPermit in [17, Section 4.1].

A fractional algorithm maintains, in an online fashion, a feasible solution to the Lin-
ear Programming relaxation of OnlSumRad. In the notation of Section 5, for each point-
type pair (z, k), the algorithm maintains a fraction xzk , which denotes the extent to
which the cluster C(z, rk) opens, and can only increase as new demands arrive. For
each demand uj , the fractions of the clusters covering uj must sum up to at least 1, i.e.∑

(z,k):uj∈C(z,rk)
xzk ≥ 1. The total cost of the algorithm is

∑
(z,k) xzk(f + rk).

The Algorithm. The fractional algorithm, or Frac-SumRad in short, considers K + 1
different types of clusters, where K = log2 n. For each k = 1, . . . ,K + 1, we let
ck = f + rk denote the cost of a cluster C(p, rk) of type k. The algorithm consid-
ers only the demand locations as potential cluster centers. For convenience, for each
demand uj and for each k, we let xjk be the extent to which the cluster C(uj , rk)
is open, with the understanding that xjk = 0 before uj arrives. Similarly, we let
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Fjk =
∑

(i,k):uj∈C(ui,rk)
xik be the extent to which demand uj is covered by clus-

ters of type k, and let Fj =
∑

k Fjk be the extent to which uj is covered.
When a new demand uj , j = 1, . . . , n, arrives, if Fj ≥ 1, uj is already covered.

Otherwise, while Fj < 1, Frac-SumRad performs the following operation:

1. For every k = 1, . . .K + 1, xjk ← xjk +
1

ck(K+1)

2. For every k = 1, . . . ,K+1 and every demand ui ∈ C(uj , rk), xik ← xik(1+
1
ck
)

Frac-SumRad maintains a (fractional) feasible solution in an online fashion. The proof
of the following theorem extends the competitive analysis in [17, Section 4.1].

Theorem 5. The competitive ratio of Frac-SumRad is O(log logn).
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Abstract. We study a randomised distributed communication-less coordination
mechanism for n uniform anonymous agents located on a circle with unit cir-
cumference. We assume the agents are located at arbitrary but distinct positions,
unknown to other agents. The agents perform actions in synchronised rounds. At
the start of each round an agent chooses the direction of its movement (clock-
wise or anticlockwise), and moves at unit speed during this round. Agents are not
allowed to overpass, i.e., when an agent collides with another it instantly starts
moving with the same speed in the opposite direction. Agents cannot leave marks
on the ring, have zero vision and cannot exchange messages. However, on the
conclusion of each round each agent has access to (some, not necessarily all)
information regarding its trajectory during this round. This information can be
processed and stored by the agent for further analysis.

The location discovery task to be performed by each agent is to determine the
initial position of every other agent and eventually to stop at its initial position,
or proceed to another task, in a fully synchronised manner. Our primary motiva-
tion is to study distributed systems where agents collect the minimum amount of
information that is necessary to accomplish this location discovery task.

Our main result is a fully distributed randomised (Las Vegas type) algorithm,
solving the location discovery problem w.h.p. in O(n log2 n) rounds (assuming the
agents collect sufficient information). Note that our result also holds if initially the
agents do not know the value of n and they have no coherent sense of direction.

1 Introduction

A cycle-based topology of communication networks is very often identified with the
ring of discrete nodes in which each node has two neighbours at its opposite sides.
The ring network is one of the most studied network topologies in the context of stan-
dard distributed computation tasks [2,19,22] as well as coordination mechanisms for
mobile agents [18]. In this paper, however, we focus on geometric rings, later referred
to as circles. The work presented in this paper refers to the recently popularised con-
cept of swarms, i.e., large groups of fairly primitive but cost-effective entities (robots,
agents) that can be deployed to perform an exploration or a monitoring task in a hard-
to-access hostile environment. There has been substantial progress in the design of ef-
ficient distributed coordination mechanisms in a variety of models for mobile agents,
e.g., see [1,5,16,23]. In this paper we consider a version of the model introduced in [1].
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In that model, the agents operate in synchronised rounds, they are assumed to be anony-
mous, and they lack means of communication. An agent wakes up at the beginning of
each round and performs its move that depends on the current location of other agents in
the network. In the model from [1] the moves are assumed to be instantaneous, but this
last assumption is not true for us here. Numerous algorithms have been developed in
the literature for a variety of control problems for robot swarms, see [1,5,12,13,16,23].
Most of these algorithmic solutions, with certain exceptions, e.g., [6], impose on the
participating agents access to the global picture, in other words the ability to monitor
performance of all agents. While there is a large volume of agent network exploration
algorithms, they mainly focus on network topology discovery either in graph-based net-
works [3,4,7,14] or in geometric setting [9,10,15,17].

In this paper, we focus on the network model similar to [1] in which communication
is limited to a bare minimum. In such networks, the communication deficiency of an
agent is compensated by an astute observation and analysis of its own movement. The
trajectory of an agent’s movement in a given round is represented as a continuous, recti-
fiable curve, that connects the start and the end points of the route adopted by the agent.
While moving along their trajectories, agents collide with their immediate neighbours,
and information on the exact location of those collisions might be recorded and fur-
ther processed. When agents are located on a circle, thanks to its closed topology, each
agent may eventually conclude on the relative location of all agents’ initial positions,
even given only limited information about its trajectory. This procedure, in turn, en-
ables other distributed mechanisms based on full synchronisation including equidistant
distribution along the circumference and optimal boundary patrolling scheme. Most of
the models adopted in the literature on swarms assume that the agents are either al-
most or entirely oblivious, i.e., throughout the computation process the agents follow
a very simple, rarely amendable, routine of actions. Oblivious algorithms have many
advantages including striking simplicity and self-stabilisation [11] properties.

The Model. In this paper we adopt a geometric network model, i.e., a circle with
circumference one, along which a number of agents move and interact in fully syn-
chronised rounds (each of which lasts one unit of time). The agents are uniform and
anonymous. Moreover, the agents do not necessarily share the same sense of direction,
i.e., while each agent distinguishes between its own clockwise (C) and anticlockwise
(A) directions, agents may not have a coherent view on this (see Section 3.4 for more
on this). At the beginning of each round an agent chooses a direction of its move from
{A,C} and moves at unit speed. We assume that agents are not allowed to overpass
each other along the circle. In particular, when an agent collides with another (agent)
it instantly starts moving with the same speed but in the opposite direction. The agents
cannot leave marks on the ring, they have zero visibility and cannot exchange messages.
Instead, on the conclusion of each round every agent learns a specific information con-
cerning its recent trajectory. In particular, for odd n we assume that an agent is informed
about the relative distance between its location at the start and the end of this round. For
even n, however, the agents must also learn about the exact time (location) of their first
collisions during this round. This information can be processed or stored for further
analysis. The aim of an agent is to discover the initial positions of all other agents. Our
main motivation in this paper is to study distributed systems where agents collect the
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minimum amount of information necessary to accomplish the location discovery task,
and the novelty in this paper comes from considering this situation where agents oper-
ate with a very limited amount of information collected during the discovery procedure.
One might consider, for example, that an agent spends energy to determine its current
location, and wants to minimize its energy expenditure.

Since the agents never overpass we may assume that the agents are arranged in an
implicit (i.e., never disclosed to the agents) periodic order from a0 to an−1. We also
denote by pi the original positions of ai, for all i ∈ [n]1. Note that, due to the periodic
order of agents, all calculations on implicit labels of agents that follow are performed
modulo n.

Our Results. We assume that n mobile agents are initially located on the boundary
of a circle at arbitrary, distinct and undisclosed positions. As stated previously, the
task of each agent is to determine the initial position of every other agent. On the
conclusion of the algorithm agents either synchronously stop at their initial positions
or may proceed with another task. For the clarity of presentation, we first provide a
solution to the distributed location discovery under assumption that the agents have a
coherent sense of direction and the value n is known in advance to all agents. Later, in
Sections 3.3 and 3.4 we provide further evidence on how these two assumptions can
be dropped. Finally, we briefly describe how the location-discovery mechanism can be
used to coordinate actions of agents in distributed boundary patrolling on circles, see
Section 3.5.

This last part should be seen as a natural continuation of [8] devoted to efficient
centralised patrolling mechanisms designed for agents with distinct maximum speeds.
We believe, this is the first attempt to solve the distributed boundary patrolling problem
in the geometric ring (circle) model.

All our bounds hold with high probability2 (w.h.p.) for n large enough. However, one
can easily modify our solutions such that by periodically repeating actions of agents,
they can solve the task with the required level of confidence even for smaller, e.g.,
constant values of n.

2 Rotation Mechanism

The location-discovery algorithm is formed of a number of stages. Each stage is a se-
quence of at most n consecutive rounds, each of unit duration. At the beginning of the
first round of each stage an agent ai randomly chooses the direction (clockwise or an-
ticlockwise) of its movement, and moves with unit speed throughout the entire stage.
Later throughout the same stage, the exact location and the movement direction of ai

depends solely on the collisions with its neighbours ai−1 and ai+1. We show that on
conclusion of each round the agents always reside at the initial positions p0, . . . , pn−1,
where there is a k ∈ [n] such that the current location of agent ai corresponds to pi+k.
Note that this observation allows agents to visit (and record) the initial positions of
other agents. Thus, part of the limited amount of information that an agent obtains is its

1 [n] = {0,1, . . . ,n−1} for any natural number n.
2 With probability at least 1−1/nc for some positive constant c.
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position, relative to its initial starting location, at the end of each round. A stage con-
cludes at the end of a round when each agent ai arrives at its original starting position
pi. We show that w.h.p. agents require O(log2 n) stages to learn the locations of their
counterparts. Since each stage is formed of at most n rounds, the total complexity of
our algorithms is bounded by O(n log2 n).

Throughout the discovery procedure, agents move with uniform speed one. Recall
when two agents collide, they instantly bounce back without changing their uniform
unit speed. While observing two indistinguishable colliding agents, one could wrongly
conclude that the two agents overpass each other. We assume that at the beginning of
each stage of our algorithm every agent ai holds a unique virtual baton bi. During the
first collision with either ai−1 or ai+1 this baton gets exchanged for a baton currently
held by the respective agent. In due course, further exchanges of batons take place. We
emphasize that the concept of batons is solely a proof device in what follows, that they
do not actually exist as far as the agents are concerned, and that no actual communica-
tion (or exchange of any object) takes place between the agents when they collide.

Lemma 1. At the start of each round baton bi resides at position pi, for all i ∈ [n].

Proof. At the start of the location discovery procedure, bi resides at pi for all i. During
the first round, baton bi moves in a unidirectional manner with unit speed (being ex-
changed as appropriate during collisions), so bi must arrive at pi on the conclusion of
this first round. Inductively, at the end of each round (i.e. start of the next round) of the
procedure, bi will reside at position pi. .�

Using Lemma 1 we can conclude that at the start of each round the agents populate
initial locations p0, . . . , pn−1. In fact, one can state a more accurate lemma.

Lemma 2. There is a k ∈ [n] s.t. at the start of each round, for all i ∈ [n], agent ai

resides at position pi+k.

Proof. At the start of the location discovery procedure, all initial positions are populated
by the agents, each carrying a (virtual) baton. From Lemma 1, bi begins (and ends) each
round at position pi. Since some agent must always be carrying bi, there is an agent
occupying the location pi at the beginning of a round, and some (possibly different)
agent occupying pi (and holding bi) at the end of the round. The same argument holds
for each i, hence all n initial locations are occupied at the end (start) of each round.
Recall that the agents never overpass, i.e., agent ai always has the same neighbours
ai−1 and ai+1. Thus, if ai resides at position pi+k for some k, then ai−1 and ai+1 must
reside at the respective locations pi+k−1 and pi+k+1. .�

Using the observation from Lemma 2, consider the respective locations p j+k1 and p j+k2

of agent ai at the start of two consecutive rounds. One can conclude that during one
round all agents rotated along the initial positions by a rotation index of r = k2−k1, i.e.
each agent experiences the same shift by r places (either clockwise or anticlockwise)
between the beginning and the end of one round.

Lemma 3. During one stage the rotation index r remains unchanged.
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Proof. At the beginning of a stage, the (random) choices of the agents determine the
directions of the batons during the entire stage, i.e. if agent ai chooses “clockwise”, then
baton bi will move clockwise during that entire stage. Since at the beginning of each
round, the virtual batons reside in their original positions (Lemma 1), and they don’t
change their directions during the entire stage, this means the pattern of movement and
collisions (swaps of batons) of the agent beginning a round at pi will be identical that
of ai during the first round of the stage. Hence, the rotation index remains unchanged
during an entire stage. .�

We now show the rotation index r depends on the initial choice of random directions
adopted by the agents. Consider the first round of any stage. Let sets BC and BA contain
the virtual batons that move during this round in the clockwise and anticlockwise direc-
tions, respectively, where |BC|= nc, |BA|= na, and nc +na = n. We say that during this
stage virtual batons form a (nc,na)-configuration.

Lemma 4. In a stage with an (nc,na)-configuration, the rotation index r = nc− na.

Proof. By Lemma 2 it is enough to prove the thesis of the lemma for one agent. Without
loss of generality, assume that baton bi is in BC. At the beginning of any round baton bi

is aligned with position pi, and assume that at the beginning of the considered round bi

is carried by agent a j.
First note that bi can be only exchanged with batons from BA since all batons in BC

move with the same speed in the clockwise direction. Moreover, during any round every
baton from BC is exchanged with every baton from BA exactly twice at certain antipodal
points of the ring. Why is this? Suppose bk ∈BA, and let d denote the distance (along the
circumference) between bi and bk, measured in the clockwise direction. Note that d < 1
since agents start at distinct locations. Then bi and b j meet (are exchanged by colliding
agents) at time d/2. After additional time 1/2 (since d/2+ 1/2 < 1), bi and bk meet
again at the antipodal point of their first collision before returning to their respective
positions at pi and pk.

Thus, during any round baton bi is exchanged between colliding agents exactly 2na

times. Also, since bi moves in the clockwise direction during each exchange, an index
of the new hosting agent is increased by one. Thus at the end of the considered round
when bi arrives at pi it is hosted by agent a j+2na . This leads to conclusion that the
rotation index is r =−2na.

Focusing on batons from BA, one can use an analogous argument to prove the rotation
factor r = 2nc. Now since nc + na = n we get −na = nc(mod n) and finally −2na =
2nc(mod n) admitting the uniform rotation index r across all agents.

Finally, we add na+nc (that has value 0 modulo n) to−2na and we obtain the rotation
index r = nc− na. .�

3 The Location Discovery Algorithm

Using the thesis from Lemma 4, one can observe that if the rotation factor nc− na is
relatively prime with n, denoted gcd(nc− na,n) = 1, a single stage with an (nc,na)-
configuration will last exactly n rounds. Moreover, during such a stage every agent
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will visit the original positions of all other agents. For example, if n > 2 is a prime
number, one stage with nc,na �= 0 would be enough to discover the original positions
of all agents. However, the situation complicates when n is a composite number. For
example, when n is even, the difference nc− na is always even, meaning that n and
nc− na cannot be relatively prime. This means that the mechanism described above
will allow agents to discover at most half of the original positions.

In what follows we present first the discovery algorithm for odd values of n. Later
we show how this algorithm can be amended to perform discovery also for even values
of n.

3.1 Algorithm for Odd Values of n

As we already know, the algorithm works in stages concluded by agents’ arrival to their
initial positions. We again assume that the agents know n and they have a coherent sense
of direction.

The algorithm explores the basic properties of the network model, reflected in the
functionality of the procedure SINGLE-ROUND, accompanied by a randomised con-
trol mechanism. The procedure SINGLE-ROUND describes the performance of an agent
during a single round. As input the procedure accepts two parameters: current relative
location loc and dir ∈ {C,A}, i.e., the clockwise (C) or the anti-clockwise (A) direction
of movement. On the conclusion of the round the procedure returns two parameters:
new-dir, i.e., the direction of the agent to move in the new round; and a real value
new-loc, a relative distance (positive or negative) that describes the position relative
to its starting point at the beginning of the round. (This allows the agent to compute
its relative distance from its starting point at the beginning of the stage, or the entire
discovery procedure.) Recalling the discussion at the beginning of this section, the set
of new-loc data collected during the procedure is sufficient to accomplish the loca-
tion discovery task when n is odd, if the agents are in an (nc,na)-configuration with
gcd(nc− na,n) = 1.

The main (randomised) control mechanism of the procedure DISCOVER is presented
in Figure 1. Initially, the list of known points is empty. At the end of each round the
content of the list is updated. Notice that in step (3) the initial directions are being
chosen uniformly at random as this clearly is the only sensible choice.

We say that a stage is successful when gcd(nc− na,n) = 1, i.e., when every agent
visits all initial positions of other agents.

Lemma 5. For any odd n > 0, a successful stage occurs within the first O(log2 n)
stages, w.h.p.

Proof. We already know we target a distribution of directions with gcd(nc−na,n) = 1.
To simplify our task we focus only on prime values of the rotation index where |nc−
na|<

√
n. Note that the probability that during a stage the value |nc−na| is obtained is

2 ·
( n

nc

)
/2n. Using Stirling’s factorial approximation one can prove that this probability

is Ω(1/
√

n), for all |nc− na|<
√

n.
We also know [20] that for an integer m large enough (> 15,985) the m-th prime

number is not larger than m(logm+ loglogm). This can be also interpreted that for m
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procedure DISCOVER(n: integer): list of points;
(1) the-list← /0;
(2) repeat /* stage begins */
(3) pick direction dir from {C,A} uniformly in random;
(4) set loc = 0;
(5) repeat
(6) (new-dir,new-loc)← SINGLE-ROUND(loc,dir);
(7) the-list← the-list ∪{new-loc};
(8) dir← new-dir; loc← loc+new-loc;
(9) until (loc = 0); /* return to initial location, stage ends */
(10) until (|the-list|= n); /* all points discovered, algorithm ends */
(11) return (the-list);
end.

Fig. 1. The location-discovery procedure of an agent

large enough there are Ω(m/ logm) prime numbers smaller than m. In particular, we
can conclude that there are Ω(

√
n/ logn) primes between 0 and

√
n. Note, however

that not all of these prime numbers need be relatively prime to n. However, n can have
at most O(logn) prime divisors. So there are Ω(

√
n

logn − logn) primes between 0 and
√

n
that are also relatively prime to n.

This leads to the conclusion that the probability that any one stage is successful is
Ω((

√
n

logn − logn) · 1√
n) = Ω( 1

logn ). In other words, there exists a constant co > 0 such

that a stage is successful with probability at least co/ logn.
Finally, the performance of DISCOVERY can be described by a Bernoulli process

where the probability of success is co/ logn in each stage. It is a well-known fact that
after co logn stages of such a process, the probability of reaching a successful stage is
constant, and after co log2 n stages this probability is high. .�

Since each stage is composed of at most n rounds, we have this conclusion.

Theorem 1. For any large enough odd n, the number of rounds required to perform
full discovery of the agents’ initial positions is O(n log2 n) w.h.p.

3.2 Amendment for Even n

Note that when n is even, for any nc + na = n we have that nc− na is also even. Thus,
one cannot await a stage with gcd(nc− na,n) = 1. Instead, we will target stages with
gcd(nc− na,n) = 2, and in particular when |nc− na| is a double of a prime. Using a
similar argument as in Lemma 5, one can prove that such a successful stage (where
gcd(nc − na,n) = 2) occurs with probability Ω(1/ logn). In a successful stage, the
agents form a bipartition Xeven ∪ Xodd, where Xeven = {a0,a2, . . . ,an−2} and Xodd =
{a1,a3, . . . ,an−1}, and each agent learns the initial positions of all other agents in the
same partition.

So can we solve the full location discovery problem in this case? Well, we can,
provided an agent receives the new-loc data at the end of each round, as well as the
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time until (or location of) its first collision in each round. We show that this very limited
additional information suffices to allow the agents to solve the discovery problem. Note
that this amendment is not changing the model as defined in the Introduction, but merely
changing the amount (and type) of information an agent receives during execution of
the procedure.

Consider a successful stage where gcd(nc− na,n) = 2. During this stage, for any
i = 0, . . . ,n− 1 and j = 0, . . . ,n/2, agent ai+2 j (respectively, ai+2 j+1) also visits the
initial position pi (resp. pi+1) of ai (resp. ai+1). Note that if at the beginning of this
stage agent ai picks direction C and agent ai+1 (from the other partition) picks direction
A, the two agents meet halfway between pi and pi+1 after traversing distance min-dist =
|pi− pi+1|/2. When this happens, the agents can retrieve the original positions of one
another, i.e. agent ai concludes that pi+1 = pi + 2 ·min-dist and agent ai+1 concludes
that pi = pi+1− 2 ·min-dist.

Note also that when agents ai and ai+1 pick the same direction C (or A) the distance
to the first meeting with ai+1 that is observed by agent ai is always longer than min-
dist. Thus, to learn the correct distance to pi+1, a single successful stage with initial
directions C of ai and A of ai+1 is sufficient. In other words, we need to run the pro-
cedure DISCOVERY long enough to ensure that such a stage occurs w.h.p. This means
that an agent ai ∈ Xodd will maintain a record of its current estimates of the starting
locations of neighbors in Xeven, and similar for an agent ai ∈ Xodd. These estimates use
the first collision information that an agent receives in each round, and the calculations
described above (i.e. the first collision distance is used to estimate min-dist to the left
or right neighbour). This record is updated, as appropriate, throughout the discovery
procedure to build up a complete picture of the starting locations of the agents in the
other partition.

Observe that if in the first round of a stage ai (respectively, ai+1) learns pi+1 (resp.
pi), then in the next n

2 − 1 rounds of this stage every other agent ai+2 j (resp. ai+2 j+1)
learns pi+1 (resp. pi) since the directions of the batons bi and bi+1 remain unchanged
throughout the entire stage.

This leads us to conclusion that to solve the location-discovery problem for even n
we need to run procedure DISCOVERY until, for each i = 0, . . . ,n− 1, there is some
successful stage in which agents ai and ai+1 start moving during the first round in di-
rections C and A, respectively. We show that O(log2 n) stages of procedure DISCOVERY

(modified so that an agent also collects the distance until its first collision in each round)
still guarantee a solution to the discovery problem (w.h.p.) for even n.

Lemma 6. For any even n > 0, each agent learns the positions of the others within the
first O(log2 n) stages w.h.p.

Proof. In order to simplify the proof we focus on two sets of pairs of initial positions:
P0 = {(p2 j, p2 j+1) : j ∈ [ n

2 − 1]} and P1 = {(p2 j+1, p2 j+2)) : j ∈ [ n
2 − 1]}. Within each

set, each pair contains distinct agents’ initial positions, and every such position belongs
to some pair.

We split consecutive successful stages (with gcd(nc− na,n) = 2) of procedure DIS-
COVERY into two alternating sequences S0 and S1, where in stages from S0 we consider
pairs from P0 and in stages from S1 we consider pairs from P1.
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Without loss of generality, consider the sequence S0. Recall that in these stages every
agent visits every second initial position on the circle. Thus if, e.g., in the beginning of
the first round of this stage agent a2 j moves in direction C and agent a2 j+1 moves in
direction A, after the first stage these two agents learn their relative positions, and in the
remaining n

2 − 1 rounds of this stage all other agents in Xeven learn p2 j+1 and all other
agents in Xodd learn p2 j. Thus we need to consider enough number of stages in S0 such
that, for each j = 0, . . . , n

2 , there is a stage in which agent a2 j starts moving in direction
C and agent a2 j+1 starts moving in direction A.

We first assume that |nc− na| <
√

n, which occurs w.h.p. Under this assumption,
during each stage in S0, we randomly populate the n

2 pairs in P0 with pairs of directions,
(A,A),(A,C),(C,A) and (C,C). Since our primary interest is in the pair (C,A), we first
estimate from below the expected number of (C,A) generated during each successful
stage in S0. We generate pairs sequentially at random assuming that initially the number

of As and Cs is at least n
2 −

√
n

2 . We generate these pairs until either the remaining

number of As or the remaining number of Cs is smaller than n
4 −

√
n

2 . This means that

we generate at least n/4
2 = n

8 pairs. One can now show that the probability of picking a
mixed pair (C,A) is at least 1/5.

Recall the Coupon Collector’s Problem (CCP) in which one player must collect m
coupons. During each consecutive attempt the player draws each coupon with probabil-
ity 1

m . One can use a short calculation and a union bound to prove that after α ·m logm
attempts the player is left without a full set of coupons with probability at most 1

mα−1 ,
for any constant α > 1 [21]. CCP can be also executed in consecutive stages, where
each stage can be formed of a fixed number  of consecutive attempts. In this case one
can conclude that it is enough to run α · m

 logm stages to collect all coupons with high
probability 1− 1/mα−1.

We note here that random generation and further distribution of (C,A)s in successful
stages can be also seen as a version of coupon collection executed in stages. The n

2
pairs of positions in P0 correspond to coupons in our version of CCP. During a single
attempt in a successful stage (that occurs with probability ce/ logn) a pair (C,A) is
drawn with probability 1/5 and allocated at random to one of the n/2 pairs in P0. Thus,
in a successful stage, in a single attempt each coupon (pair in P0 with allocated (C,A))
is drawn with probability 2/(5n).

Compare now a single stage in standard CCP with a successful stage in our version
of CCP. If in CCP a specific coupon is drawn more than once, the second and further
attempts are void. In other words, these multiple attempts are wasted. In a valid stage of
version of CCP (based on DISCOVERY), however, if an attempt results in a coupon (pair
in P0 with allocated (C,A)) that has been already collected in this stage, the attempt is
continued until a not yet collected coupon is found. In other words, during a valid
stage we may in fact generate more (but certainly not fewer) coupons compared to the
respective stage in standard CCP.

Recall that during a successful stage at least n/8 sequential attempts are made, where
each coupon out of n/2 is drawn with the probability 2/(5n). Since the probability
defined on all coupons does not sum up to one, we may add a missing number of “null”
coupons, each also drawn with probability 2/(5n). In turn, we obtain our version of
CCP run in stages with m = 5n/2 coupons and stages of length  = n

8 . Recall also
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that in our version of CCP α · m
 logm stages are required to collect all coupons w.h.p.

1− 1
mα−1 . Since the length of each stage is  = n

8 and m = 5n
2 , one can conclude that

α · 5n/2
n/8 log( 5n

2 ) = 20α · (log( 5
2 )+ logn)< 25α logn stages of DISCOVERY are needed

to generate (C,A) for each pair in P0, with probability 1− 1/( 5
2 · n)α−1. This gives a

high probability of success for α > 2.
Similarly, one can analyse the generation of (C,A)s for all pairs in P1. Thus w.h.p., all

agents can learn the position of all other agents with O(log2 n) stages of
DISCOVERY. .�

3.3 Amendment for Unknown n

When n is unknown we will need another important observation. Consider a single stage
where the direction of each of n batons is chosen uniformly at random. One can show
that w.h.p. the batons form a (nc,na)-configuration satisfying |nc− na|< 10

√
n.

During the DISCOVERY procedure, each agent is constructing a (partial) map of the
initial positions of all agents. If gcd(nc− na,n) = 1, then in one stage each agent will
learn the initial positions of all other agents (but, of course, will not know that if n is
unknown). If we have gcd(nc− na,n) > 1, an agent visits (records the location of) at
least n

|nc−na| initial agent positions during the stage. Assuming the agent collects the
distance to first collision in each round, it also builds (or updates) estimates of positions
of nearest neighbours in its map (when n is odd, these may coincide with positions the
agent visits; when n is even these estimates are necessary to determine the entire map,
as outlined in Section 3.2).

Because |nc− na| < 10
√

n w.h.p., we note that (w.h.p.) an agent will visit at least√
n/10 initial positions in any stage. Hence, after an initial small (constant) number of

stages, an agent can use the number of positions visited to obtain a very good estimate
(or overestimate) for n, except that it may not know if n is even or odd. An agent
determines the parity of n during the DISCOVERY procedure by observing if it actually
visits the (calculated) positions of its nearest neighbours.

3.4 Sense of Direction Agreement

While a coherent sense of direction was not essential during the execution of procedure
DISCOVERY, we will need it to solve other problems, such as boundary patrolling where
all agents are asked to move in one direction. Recall that when the agents start they may
not share the same sense of direction.

Two types of stages (rounds) can be distinguished: (1) when the agents do not collide,
and (2) when collisions happen. Note that an extra agreement procedure is not needed
if a stage of type (1) occurs. When the agents do not collide (i.e. after one time unit
they arrive back at their starting locations) they assume that their current direction is
the clockwise direction.

Observe that the probability that all agents choose the same direction is very small
( 2

2n = 1
2n−1 ). Therefore we focus on stages of type (2) where we also have the rotation

index r �= 0. When the first such stage occurs, the agents that experience r > 0 do not



Observe and Remain Silent 417

change their understanding of the clockwise direction, and those with r < 0 replace the
clockwise direction with its anticlockwise counterpart.

The probability that a stage of type (2) with r �= 0 occurs is 1− 1
2n−1 when n is odd

and 1−
( n

n/2

)
/2n− 1

2n−1 * 1/2 when n is even. Thus after O(log2 n) stages of procedure
DISCOVERY the probability that agreement on sense of direction is reached is very high.

3.5 Equidistant Distribution and Boundary Patrolling

In this section we consider application of location discovery to the boundary patrolling
problem, see [8], where agents walk along the circle indefinitely with the goal of min-
imising the maximum time between two consecutive visits at any point located on
the circle. During the location discovery procedure, agents always move with the unit
speed. However, in order to obtain the equidistant distribution each agent must be able
to set its speed as a value 0≤ s≤ 1 during the course of a single round.

Recall that on the conclusion of procedure DISCOVERY every agent ai is aware of
the relative location of (or distance to) other agents. For equidistant distribution, during
a single adjustment round each agent ai is asked to move from pi to a target position ti,
where |ti+1− ti|= 1

n , for all i ∈ [n].
Due to space limitations, we present only the main result of this section.

Theorem 2. In the considered distributed model of computation, n agents with the max-
imum speed one can reach equidistant distribution in one round, after the location of
all agents have been discovered.

In the boundary patrolling problem the mobile agents are asked to adopt movement
trajectories such that the maximum time, taken across all points in space, between two
consecutive visits by some (possibly different) agents is minimised. We omit the proof
of the following theorem due to space limitations.

Theorem 3. In the considered distributed model of computation, n agents with the max-
imum speed one can adopt an optimal cyclic boundary patrolling strategy.

4 Conclusion

We presented a fully distributed randomised algorithm that solves the location discovery
problem w.h.p. in O(n log2 n) rounds. We have shown that this result is also true if
initially the agents are not aware of their number n and they have no coherent sense of
direction.

Note however, that the circumference of the circle has to be known in advance. Oth-
erwise, a participating agent might not be able to tell the difference between n = 1 and
n > 1. In particular, if the agent imposed a limit on the traversal time until the first
collision, the adversary would always choose the circumference to be large enough to
accommodate distant locations between the agents preventing them from ever getting
close enough. On the other hand, if the agent continues its search indefinitely, the ad-
versary could choose n = 1 and the location discovery process would never end. Thus,
it is important to know either n or the circumference of the circle.



418 T. Friedetzky et al.

References

1. Ando, H., Suzuki, I., Yamashita, M.: Formation and agreement problems for synchronous
mobile robots with limited visibility. In: Proc. IEEE Symposium on Intelligent Control, pp.
453–460 (1995)

2. Attiya, H., Welch, J.: Distributed Computing. McGraw-Hill (1998)
3. Bender, M.A., Slonim, D.: The power of team exploration: Two robots can learn unlabeled

directed graphs. In: Proc. 35th Annual Symposium on Foundations of Computer Science,
FOCS 1994, pp. 75–85 (1994)

4. Chalopin, J., Flocchini, P., Mans, B., Santoro, N.: Network Exploration by Silent and Obliv-
ious Robots. In: Thilikos, D.M. (ed.) WG 2010. LNCS, vol. 6410, pp. 208–219. Springer,
Heidelberg (2010)

5. Cieliebak, M., Flocchini, P., Prencipe, G., Santoro, N.: Solving the Robots Gathering Prob-
lem. In: Baeten, J.C.M., Lenstra, J.K., Parrow, J., Woeginger, G.J. (eds.) ICALP 2003. LNCS,
vol. 2719, pp. 1181–1196. Springer, Heidelberg (2003)

6. Cohen, R., Peleg, D.: Local spreading algorithms for autonomous robot systems. Theoretical
Computer Science 399(1-2), 71–82 (2008)

7. Cooper, C., Frieze, A., Radzik, T.: Multiple Random Walks and Interacting Particle Systems.
In: Albers, S., Marchetti-Spaccamela, A., Matias, Y., Nikoletseas, S., Thomas, W. (eds.)
ICALP 2009. LNCS, vol. 5556, pp. 399–410. Springer, Heidelberg (2009)
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Abstract. Recent characterization [9] of those graphs for which
coloured MSO2 model checking is fast raised the interest in the graph
invariant called tree-depth. Looking for a similar characterization for
(coloured) MSO1, we introduce the notion of shrub-depth of a graph
class. To prove that MSO1 model checking is fast for classes of bounded
shrub-depth, we show that shrub-depth exactly characterizes the graph
classes having interpretation in coloured trees of bounded height. We also
introduce a common extension of cographs and of graphs with bounded
shrub-depth — m-partite cographs (still of bounded clique-width), which
are well quasi-ordered by the relation “is an induced subgraph of” and
therefore allow polynomial time testing of hereditary properties.

1 Introduction

In this paper, we are interested in graph parameters that are intermediate be-
tween clique-width and tree-depth, sharing the nice properties of both. Clique-
width, defined in [4], is the older of the two notions. In several aspects, the theory
of graphs of bounded clique-width is similar to the one of bounded tree-width.
Indeed, bounded tree-width implies bounded clique-width. However, unlike tree-
width, graphs with bounded clique-width include arbitrarily large cliques and
other dense graphs. On the other hand, clique-width is not closed under taking
subgraphs (or minors), just induced subgraphs.

The tree-depth of a graph has been defined in [16], and is equivalent or similar
to notions such as the vertex ranking number and the minimum height of an
elimination tree [1,5,20], etc. Graphs with bounded tree-depth are sparse, and
enjoy strong “finiteness” properties (finiteness of cores, existence of non-trivial
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automorphism if the graph is large, well quasi-ordering by subgraph inclusion
order). They received almost immediate attention and play a central role in the
theory of graph classes of bounded expansion [17].

Graphs of bounded parameters such as clique-width allow us to efficiently
solve various optimization problems which are difficult (e.g. NP-hard) in general
[3,6,12,11]. However, instead of solving each problem separately, we may ask
for results which give a solution to a whole class of problems. We call such
results algorithmic metatheorems. One of the most famous results of this kind
is Courcelle’s theorem [2], which states that every graph property expressible
in MSO2 logic of graphs can be solved in linear time on graphs of bounded
tree-width. More precisely, the MSO2 model-checking problem for a graph G
of tree-width tw(G) and a formula φ, i.e. the question whether G |= φ, can be
solved in time O(|G| · f(φ, tw(G))). (In the world of parameterized complexity
we say that such problems, solvable in time O(np · f(k)) for some constant p
and a computable function f , where k is some parameter of the input and n the
size of the input, are fixed-parameter tractable (FPT).) For clique-width a result
similar to Courcelle’s theorem holds: MSO1 model checking is FPT on graphs
of bounded clique-width [3].

However, an issue with these results is that, as showed by Frick and Grohe [7]
for MSO model checking of the class of all trees, the function f of Courcelle’s
algorithm is, unavoidably, non-elementary in the parameter φ (unless P=NP).
This brings the following question: Are there any interesting graph classes where
the dependency on the formula is better? Only recently, in 2010, Lampis [15] gave
an FPT algorithm for MSO2 model checking on graphs of bounded vertex cover
with elementary (doubly-exponential) dependence on the formula. A current
result of Gajarský and Hliněný [9] shows that there exists an FPT algorithm for
MSO2 model checking for graphs of bounded tree-depth, again with elementary
dependency on the formula.

Our Results. Motivated by the success of tree-depth, we would like to formalize
a parameter which extends tree-depth towards a logic-flavoured graph descrip-
tion such as that of clique-width. We start by introducing two such parameters:
shrub-depth and SC-depth. Both of these parameters are based on the notion of
tree-model, which can be seen as a minimalistic analogue of graph interpretation
into a tree. Shrub-depth and SC-depth are then defined in terms of the number
of layers (the depth) such a tree-model must have to be able to interpret a given
graph.

The first main result of this paper is that the classes of the graphs resulting
from an MSO1 graph interpretation in the class of all finite rooted trees of
height ≤ d, with vertices labelled by a finite set of labels, are exactly the classes
of graphs of shrub-depth at most d. This result, in combination with [9], leads to
an FPT algorithm for MSO1 model checking for graphs of bounded shrub-depth
(SC-depth) with an elementary dependence on the formula.

Continuing in the same direction we also introduce the notion of m-partite
cographs, which are a natural extension of ordinary cographs. (Recall that a
cograph is a graph that can be generated from K1 by complementations and
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disjoint unions.) We argue that m-partite cographs represent a smooth inter-
mediate transition from the shrub- and SC-depth to the significantly wider and
established notions of clique-width [4] and NLC-width [21]. Indeed, we show that
all graphs in any class of shrub-depth d are m-partite cographs with a represen-
tation of depth ≤ d, for suitable m. On the other hand, every m-partite cograph
has clique-width at most 2m.

The second main result of this paper is that the class of m-partite cographs
is well-quasi-ordered by the relation of “is an induced subgraph of”. This is
a significant result, which implies that a) testing whether a graph is an m-
partite cograph is an FPT problem, and b) deciding any hereditary property
(i.e. property closed under taking induced subgraphs) on this class is an FPT
problem.

Paper Organization. In Section 2 we give the necessary definitions, including
MSO1/MSO2 logics and FO/MSO graph interpretation, which is a specialized
instance of the concept of interpretability of logic theories. Section 3 then intro-
duces tree models and, through them, the new invariants shrub-depth and the
related SC-depth. Section 4 deals with MSO model checking and interpretability.
In Section 5 we investigate the more general concept of m-partite cographs and
relate it to other invariants. We conclude with Section 6.

2 Definitions

We assume the reader is familiar with standard notation of graph theory. In par-
ticular, all our graphs (both directed and undirected) are finite and simple (i.e.
without loops or multiple edges). For a graph G = (V,E) we use V (G) to denote
its vertex set and E(G) the set of its edges. We will often use labelled graphs,
where each vertex is assigned one of some fixed finite set of labels. A forest F
is a graph without cycles, and a tree T is a forest with a single connected com-
ponent. We will consider mainly rooted forests (trees), in which every connected
component has a designated vertex called the root. The height of a vertex x in
a rooted forest F is the length of a path from the root (of the component of F
to which x belongs) to x and is noted height(x, F ). The height1 of the rooted
forest F is the maximum height of the vertices of F . Let x, y be vertices of F .
The vertex x is an ancestor of y, and y is a descendant of x, in F if x belongs to
the path of F linking y to the corresponding root. If x is an ancestor of y and
xy ∈ E(T ), then x is called a parent of y, and y is a child of x.

Tree-Depth. The closure Clos(F ) of a forest F is the graph obtained from F
by making every vertex adjacent to all of its ancestors. The tree-depth td(G) of
a graph G is one more than the minimum height of a rooted forest F such that

1 There is a conflict in the literature about whether the height of a rooted tree should
be measured by the “root-to-leaves distance” or by the “number of levels” (a differ-
ence of 1 on finite trees). We adopt the convention that the height of a single-node
tree is 0 (i.e., the former view).
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G ⊆ Clos(F ) [16]. For a proof of the following proposition, as well as for a more
extensive study of tree-depth, we refer the reader to [18].

Proposition 2.1. Let G and H be graphs. Then the following is true:

– If H is a minor of G then td(H) ≤ td(G).
– If L is the length of a longest path in G then +log2(L+2), ≤ td(G) ≤ L+1.
– If tw(G) and pw(G) denote in order the tree-width and path-width of a graph,

then tw(G) ≤ pw(G) ≤ td(G)− 1.

Clique-Width. A k-expression is an algebraic expression with the following
four operations on vertex-labelled graphs using k labels: create a new vertex
with label i; take the disjoint union of two labelled graphs; add all edges between
vertices of label i and label j; and relabel all vertices with label i to have label
j. The clique-width [4] of a graph G equals the minimum k such that (some
labelling of) G is the value of a k-expression.

MSOLogic and Interpretation. We now briefly introduce themonadic second
order logic (MSO) over graphs and the concept of FO (MSO) graph interpretation.
MSO is the extension of first-order logic (FO) by quantification over sets:

Definition 2.2 (MSO1 logic of graphs). The language of MSO1 consists of
expressions built from the following elements:

– variables x, y, . . . for vertices, and X,Y for sets of vertices,
– the predicates x ∈ X and edge(x, y) with the standard meaning,
– equality for variables, quantifiers ∀, ∃ ranging over vertices and vertex sets,

and the standard Boolean connectives.

MSO1 logic can be used to express many interesting graph properties, such as
3-colourability. We also mention MSO2 logic, which additionally includes quan-
tification over edge sets and can express properties which are not MSO1 definable
(e.g. Hamiltonicity). The large expressive power of both MSO1 and MSO2 makes
them a very popular choice when formulating algorithmic metatheorems (e.g.,
for graphs of bounded clique-width or tree-width, respectively).

A useful tool when solving the model checking problem on a class of structures
is the ability to “efficiently translate” an instance of the problem to a different
class of structures, for which we already have an efficient model checking algo-
rithm. To this end we introduce simple FO/MSO1 graph interpretation, which
is an instance of the general concept of interpretability of logic theories [19]
restricted to simple graphs with vertices represented by singletons.

Definition 2.3. A FO (MSO1) graph interpretation is a pair I = (ν, μ) of FO
(MSO1) formulae (with 1 and 2 free variables respectively) in the language of
graphs, where μ is symmetric (i.e. G |= μ(x, y)↔ μ(y, x) in every graph G). To
each graph G it associates a graph I(G) (by standard abuse of notation), which
is defined as follows:
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– The vertex set of I(G) is the set of all vertices v of G such that G |= ν(v);
– The edge set of I(G) is the set of all the pairs {u, v} of vertices of G such

that G |= ν(u) ∧ ν(v) ∧ μ(u, v).

This definition naturally extends to the case of vertex-labelled graphs (using a
finite set of labels, sometimes called colours) by introducing finitely many unary
relations in the language to encode the labelling.

3 Capturing Height of Graphs

To motivate the definition of shrub-depth, we recall the simple neighbourhood
diversity parameter introduced by Lampis [15] in his search for graph classes
having a faster MSO1 model checking algorithm: Two vertices u, v are twins in
a graph G if NG(u) \ {v} = NG(v) \ {u}. The neighbourhood diversity of a graph
G is the smallest m such that V (G) can be partitioned into m sets such that
in each part the vertices are pairwise twins (each part is then either a clique or
independent). This basically means that V (G) can be coloured by m labels such
that the existence of an edge uv depends solely on the labels of u and v.

Inspired by some subsequent generalizations of neighbourhood diversity, e.g,
in [10,8], our idea is to enrich it with a bounded number of “layers”. That is, we
bring the following definition, which can also be viewed as a very simplified (or
minimalistic) analogue of a graph interpretation (Def. 2.3) into a tree of bounded
height:

Definition 3.1 (Tree-model). We say that a graph G has a tree-model of m
labels and depth d if there exists a rooted tree T (of height d) such that

i. the set of leaves of T is exactly V (G),
ii. the length of each root-to-leaf path in T is exactly d,
iii. each leaf of T is assigned one of m labels ( T is m-labelled),
iv. and the existence of a G-edge between u, v ∈ V (G) depends solely on the

labels of u, v and the distance between u, v in T .

The class of all graphs having a tree-model of m labels and depth d is denoted
by TMm(d).

Note that there is no explicit computability assumption in Definition 3.1.iv; it
is implicit from the fact that a tree-model has fixed height and uses a bounded
number of labels.

For instance, Kn ∈ TM1(1) or Kn,n ∈ TM2(1). Definition 3.1 is further il-
lustrated in Figure 1. It is easy to see that each class TMm(d) is closed under
complements and induced subgraphs, but neither under disjoint unions, nor un-
der subgraphs. The depth of a tree model generalizes tree-depth of a graph as
follows (while the other direction is obviously unbounded, e.g., for cliques):

Proposition 3.2. If G is of tree-depth d, then G ∈ TM2d(d), and G ∈
TM2d(d− 1) if, moreover, G is connected.
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Fig. 1. The graph obtained from K3,3 by subdividing a matching belongs to TM3(2)

In the technical definition of a tree-model, the depth parameter d is much more
important (for our purposes, e.g. efficient MSO property testing) than the num-
ber of labels m. With this in mind, it is useful to work with a more streamlined
notion which only requires a single parameter, and to this end we introduce the
following:

Definition 3.3 (Shrub-depth). A class of graphs G has shrub-depth d if there
exists m such that G ⊆ TMm(d), while for all natural m it is G �⊆ TMm(d− 1).

Note that Definition 3.3 is asymptotic as it makes sense only for infinite graph
classes; the shrub-depth of a single finite graph is always at most one (0 for
empty or one-vertex graphs). Furthermore, it makes no sense to say “the class
of all graphs of shrub-depth d”.

For instance, the class of all cliques has shrub-depth 1. For more relations of
shrub-depth to other established concepts such as cographs or clique-width we
refer the reader to Section 5. It is, however, immediate from Definition 3.1 that
all graphs in TMm(d) have clique-width ≤ m, and our bounded shrub-depth
indeed “lies between” bounded tree-depth and bounded clique-width:

Proposition 3.4. Let G be a graph class and d an integer. Then:

a) If G is of tree-depth ≤ d, then G is of shrub-depth ≤ d (cf. Proposition 3.2).
b) If G is of bounded shrub-depth, then G is of bounded clique-width.

The converse statements are not true in general.

SC-Depth. One can come with yet another, very simple and single-parameter
based, definition of a depth-like parameter which is asymptotically equivalent

to shrub-depth: Let G be a graph and let X ⊆ V (G). We denote by G
X

the
graph G′ with vertex set V (G) where x �= y are adjacent in G′ if (i) either
{x, y} ∈ E(G) and {x, y} �⊆ X , or (ii) {x, y} �∈ E(G) and {x, y} ⊆ X . In other

words, G
X

is the graph obtained from G by complementing the edges on X .

Definition 3.5 (SC-depth2). We define inductively the class SC(n) as follows:

– We let SC(0) = {K1};
– if G1, . . . , Gp ∈ SC(n) and H = G1∪̇ . . . ∪̇Gp denotes the disjoint union of

the Gi, then for every subset X of vertices of H we have H
X ∈ SC(n+ 1).
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Fig. 2. A graph G and two possible SC-depth representations by depicted trees

The SC-depth of G is the minimum integer n such that G ∈ SC(n).

The SC-depth of a graph G is thus the minimum height of a rooted tree Y , such
that the leaves of Y form the vertex set of G, and each internal node v is assigned
a subset X of the descendant leaves of v. Then the graph corresponding to v in
Y is the complement on X of the disjoint union of the graphs corresponding to
the children of v (see Fig. 2).

Theorem 3.6. Let G be a class of graphs. Then the following are equivalent:

– There exist integers d, m such that G ⊆ TMm(d) (i.e. G has bounded shrub-
depth).

– There exists an integer k such that G ⊆ SC(k) (i.e. G has bounded SC-depth).

The reason we introduce both asymptotically equivalent SC-depth and shrub-
depth measures here is that each one brings a unique perspective on the class of
graphs we are interested in (and for a yet another, more general, perspective we
refer to Section 5).

4 MSO Interpretation and Model Checking

In this section we present the first main result of the paper, Theorem 4.1, which
shows that our tree-model (Def. 3.1) indeed fully captures the power of an MSO1

graph interpretation. While such a result may be expected for FO logic, we
believe it is rather surprising in the full scope of MSO logic. The assumption of
bounded depth of the target tree is absolutely essential here.

Theorem 4.1. A class G of graphs has an MSO1 graph interpretation in the
class of all finite rooted trees of height ≤ d, with vertices labelled by a finite set
of labels, if and only if G has shrub-depth at most d.

While the proof of Theorem 4.1 is rather involved by itself, it strongly relies also
on the following recent result which is of independent interest:

2 As the “Subset-Complementation” depth.
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Proposition 4.2 (Gajarský and Hliněný [9]). Let T be a rooted tree with
each vertex assigned one of a finite set of m labels, and let φ be any MSO1

sentence with q quantifiers. There exists a function3 R(q,m, d) ≤ exp(d)
(
(q +

m)O(1)
)
such that the following holds:

Assume a node u ∈ V (T ) such that the subtree Tu ⊆ T rooted at u is of
height d, and denote by U1, U2, . . . , Uk the connected components of Tu − u. If
there is I ⊆ {2, . . . , k}, |I| ≥ R(q,m, d), such that there exist label-preserving
isomorphisms from U1 to each Ui, i ∈ I, let T ′ = T −V (U1). Then, T |= φ ⇐⇒
T ′ |= φ.

Theorem 4.1, combined with another recent result of [9] — stated here as The-
orem 4.3, gives us an MSO1 model checking algorithm which is in FPT and has
an elementary dependence on the size of the formula φ. Note that this claim is in
contrast with the well known algorithms of Courcelle [2] for MSO2 and Courcelle
et al. [3] for MSO1 model checking problems on the graphs of bounded tree- and
clique-width, both of which were shown to have a non-elementary lower bound
in φ by Frick and Grohe [7].

Theorem 4.3 (Gajarský and Hliněný [9]). Assume d ≥ 1 is a fixed integer.
Let T be a rooted tree of height d with vertices labelled by a finite set of m
labels, and let φ be any MSO1 sentence with q quantifiers. Then the MSO1 model
checking problem T |= φ can be solved by an FPT algorithm, concretely in time
O
(
|V (T )|

)
+ exp(d+1)

(
(q + m)O(1)

)
, which is elementary in the parameters φ

and m.

Corollary 4.4. Assume d ≥ 1 is a fixed integer. Let G be any graph class of
shrub-depth (or SC-depth) ≤ d. Then the MSO1 model checking problem on G,
i.e., testing G |= φ for the input G ∈ G and MSO1 sentence φ, can be solved by
an FPT algorithm, the runtime of which has an elementary dependence on the
parameter φ. This assumes G is given on the input alongside with its tree-model
of depth d.

Corollary 4.4 thus nicely complements Theorem 4.3 and its straightforward con-
sequence in fast MSO2 model checking of graphs of bounded tree-depth. The
converse direction of Theorem 4.1 moreover shows that bounded shrub-depth
exactly characterizes the largest extent to which faster MSO1 model checking
can be obtained by the means of Theorem 4.3 – the primary motivation of our
research here.

Note that the result of Corollary 4.4 assumes we are given a tree-model of
G of depth d on the input. It is therefore natural to ask what is the complex-
ity of obtaining such a model. So far, we have not reached much progress in
this direction—while we can test in FPT whether a graph belongs to TMm(d)
(Section 5), we are not yet able to construct a corresponding tree-model (or,
alternatively, an SC-depth tree).

3 Here exp(d) stands for the iterated (“tower of height d”) exponential, i.e., exp(1)(x) =

2x and exp(i+1)(x) = 2exp
(i)(x).



When Trees Grow Low: Shrubs and Fast MSO1 427

5 On m-Partite Cographs

A cograph, or complement-reducible graph, is a graph that can be generated
from K1 by complementations and disjoint unions. Cographs were introduced
independently by several authors in the seventies, and they are exactly those
graphs excluding an induced path of length three. The tree representation of a
cograph G is a rooted tree T (called cotree), whose leaves are the vertices of G
and whose internal nodes represent complemented union.

Some generalizations of cographs have been proposed; e.g., bi-cographs [13]
or k-cographs [14]. The following generalization we present here is very natural:

Definition 5.1 (m-partite cograph). An m-partite cograph is a graph that
admits an m-partite cotree representation, that is a rooted tree T such that

– the leaves of T are the vertices of G, and are coloured by a label from
{1, . . . ,m},

– the internal nodes v of T are assigned symmetric functions fv : {1, . . . ,m}×
{1, . . . ,m} → {0, 1} with the property that two vertices x and y of G with
respective colours i and j are adjacent iff their least common ancestor v in
T has fv(i, j) = 1.

By extension, the depth of an m-partite cograph G is the minimum height of an
m-partite cotree representation of G.

a b

c

d

e

1a 2e 1b 2c

f(1,2)=f(2,1)=1 f(1,2)=f(2,1)=1

f(1,1)=1 2 d

f(2,2)=1

Fig. 3. A 2-partite cotree representation of the graph cycle C5, with f(x, y)=0 unless
otherwise specified

One can easily deduce from the definition that the graphs in TMm(d) are all
m-partite cographs of depth ≤ d. A converse claim is also true (although not
immediate).

Theorem 5.2. Let G be a graph class. Then the following are equivalent:

– There exist integers d,m such that G only contains m-partite cographs of
depth ≤ d.

– The class G has bounded shrub-depth (or bounded SC-depth, cf. Theorem 3.6).
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It is instructive to look at the general relation of m-partite cographs to shrub-
depth and clique-width. The crucial difference between a tree-model and an
m-partite cotree representation is in bounding the height of the former. Com-
paring an m-partite cotree representation to a clique-width expression, roughly
saying, the difference lies in the absence of the relabelling operator for the former
(this is better seen with the related NLC-width notion [21]). Altogether we get:

Proposition 5.3. Every m-partite cograph has clique-width at most 2m.

Figure 4 summarizes the inclusion hierarchy of the classes we have considered.
We give next two examples illustrating the fact that the inclusions indicated in
the figure are strict.

Bounded tree-depth

Bounded shrub-depth

m-partite cographs

Bounded clique-width

Bounded height trees

Bounded tree-width

interpretation
well

quasi-ordered
by induced
subgraphs

Fig. 4. Hierarchy of graph classes. Arrows mean strict inclusion.

Example 5.4. a) Let Hn denote the graph obtained from the disjoint union of
an independent set {a1, . . . , an} and a clique on {b1, . . . , bn} by adding all
edges aibj such that i ≥ j. Although each Hn is a 2-partite cograph, the class
{Hn} has unbounded shrub-depth.

b) The class of all paths has clique-width ≤ 3, while a path of length n is an
m-partite cograph if and only if n < 3(2m − 1).

A well-quasi-ordering (or wqo) of a set X is a quasi-ordering such that for any
infinite sequence of elements x1, x2, . . . of X there exist i < j with xi ≤ xj . In
other words, a wqo is a quasi-ordering that does not contain an infinite strictly
decreasing sequence or an infinite set of non-comparable elements (i.e. an infinite
antichain). The existence of a well-quasi-ordering has great algorithmic conse-
quences. For instance, the Robertson-Seymour theorem, which proves that the
relation “is a minor of” is a well-quasi-ordering of graphs, implies that for every
minor-closed family C there is a finite set of forbidden minors for C, and hence
there is a polynomial time algorithm for testing whether a graph belongs to C.
Here we will focus on the quasi-ordering ⊆i (“is an induced subgraph of”). A
class C that is closed under taking induced subgraphs is said to be hereditary.

Theorem 5.5. Let m be an integer. The class of m-partite cographs is well-
quasi-ordered by the relation ⊆i (“is an induced subgraph of”).

Corollary 5.6. a) For every integer m, the class of m-partite cographs is de-
fined by a finite set of excluded induced subgraphs. Hence m-partite cographs
are recognizable by an FPT algorithm.
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b) For every hereditary property P and every integer m, the property P can be
decided by an FPT algorithm on the class of m-partite cographs.

For instance, for every fixed integers k and m, the k-colourability problem can
be solved in polynomial time in the class of m-partite cographs.

6 Concluding Notes

The main motivation of this paper has been to come up with a notion of
“bounded graph depth” which extends the established notion of tree-depth to-
wards dense graphs and parameters similar to clique-width. We have succeeded
in this direction with two new, asymptotically equivalent, parameters; shrub-
depth and SC-depth. The advantage of the former is that it exactly characterizes
the graph classes interpretable in trees of height d, while the latter (SC-depth)
outdoes the former with a simpler, single-parameter definition.

Our research topic is also closely related to the class of cographs, and to their
natural generalization — m-partite cographs. Saying briefly, graphs of bounded
SC-depth are those having m-partite cograph representation of bounded depth.
On the other hand, the larger class of all m-partite cographs is “sandwiched”
strictly between bounded shrub-depth and bounded clique-width, and it shares
several nice finiteness properties with classes of bounded shrub-depth (e.g., well-
quasi-ordering under induced subgraphs, which is not true for bounded clique-
width classes in general).

The prime algorithmic applications are of two kinds: Firstly, in connection
with [9], we obtained an FPT algorithm for MSO1 model checking for graph
classes of bounded shrub-depth which is faster than the algorithm of [3] in the
sense that it depends on the checked formula in an elementary way. Secondly,
via the well-quasi-ordering property of m-partite cographs, we have proved an-
other algorithmic metatheorem claiming FPT (nonuniform) decidability of all
hereditary properties on the classes of m-partite cographs.

Finally, we would like to mention some open questions and directions for future
research. Primarily, we do not know yet how to efficiently (in FPT) construct
decompositions related to our depth parameters (in this respect our situation
is similar to that of clique-width), though we can test existence of such de-
compositions via Corollary 5.6. We also suggest to investigate the complexity
of the isomorphism (or canonical labelling) problem on the classes of bounded
shrub-depth, and to try to characterize the maximal graph classes admitting
well-quasi-ordering under coloured induced subgraphs. Finally, we remark on
the possibility of extending our tools and notions from graphs to general rela-
tional structures.
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Abstract. We introduce a machine model for the execution of strate-
gies in (regular) infinite games that refines the standard model of Mealy
automata. This model of controllers is formalized in the terminologi-
cal framework of Turing machines. We show how polynomially sized
controllers can be found for Muller and Streett games. We are able to
distinguish aspects of executing strategies (“size”, “latency”, “space con-
sumption”) that are not visible in Mealy automata. Also, lower bound
results are obtained.

1 Introduction

Strategies obtained from ω-regular games are used to obtain controllers for re-
active systems. The controllers obtained in this way are transition systems with
output, also called Mealy machines. The physical implementation of such ab-
stract transition systems raises interesting questions, starting with the observa-
tion that the naive implementation of a Mealy machine by a physical machine
(such as a circuit or a register machine) essentially amounts to encoding a large
case distinction based on the current input and state. This approach entails
considerable complexity challenges [1], as it essentially preserves the size of the
underlying Mealy machine. These machines are known to be large in general
[2]. This is reflected in the complexity of solving ω-regular games [3,4,5,6]. Op-
timization of Mealy machines has been investigated [7,8], but must ultimately
obey the general bounds mentioned. These observations indicate that pursuing
a direct approach, without the detour via Mealy machines, in synthesizing con-
trollers may be worthwhile. We propose a new model for reasoning about such
physical machines and their synthesis. This model, called a strategy machine, is
based on an appropriate format of Turing machines. The concept of a Turing
machine is widely used in theoretical scenarios to model computational systems,
such as [9]. A strategy machine is a multi-tape Turing machine with two dis-
tinguished tapes, one for input and output and another for storing information
from one computation to the next. Referring to a given game graph, the code of
an input vertex appears on the IO-tape and an output is produced. The process
is then repeated. This model introduces new criteria for evaluating a strategy.
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For example, it now makes sense to investigate the number of steps required to
transform an input into the corresponding output, called the latency. Likewise
we may ask how much information needs to be stored from the computation
of one output to the computation of the next output. Note that translating a
Mealy machine into this model entails the problems discussed above and yields
a machine of roughly equal size (the number of control states).

Introducing this model, we present initial results for two classes of ω-regular
games, namely Muller and Streett games. Building on Zielonka’s algorithm [10],
we show that, in both cases, we may construct strategy machines implementing a
winning strategy of an exponentially lower size than any Mealy machine winning
strategy: Both the size of the strategy machine and the amount of information
stored on the tape are bounded polynomially in the size of the arena and of the
winning condition (given by a propositional formula φ or a set of Streett pairs).
Moreover, for Streett games even the latency is bounded polynomially in these
parameters. For Muller games the latency is linear in the size of the enumerative
representation of the winning condition. We also present lower bounds for the
latency and space requirement by translating some well known results from the
theory of Mealy machine strategies to our model. This yields lower bounds for
Muller, Streett, and LTL games.

In related work, Madhusudan [11] considers the synthesis of reactive programs
over Boolean variables. A machine executing such a program falls into the model
discussed above. The size of the program then loosely corresponds to the number
of control states. In the same way, the requirement of tape cells loosely corre-
sponds to the number of Boolean variables. The latency and space requirement
are not studied in [11].

The paper is an extended abstract of [12]. It is structured as follows. First,
we give a formal introduction of the Turing machine model mentioned above.
We formally define the parameters latency, space requirement, and size. Next,
we recall some elementary concepts of the theory of infinite two player zero-sum
games with ω-regular winning conditions. We show lower bounds for the latency
and space requirement of machines implementing winning strategies in Muller,
Streett, and LTL games. Then we develop an adaptive algorithm for Muller
games. This algorithm is based on Zielonka’s construction [10], using some ideas
from [2]. The latency and space consumption strongly depend on the way the
winning condition is given. We illustrate this fact by showing how the algorithm
can be used to obtain an efficient controller – that is, one with latency, size, and
space requirement bounded polynomially in the size of the arena and the winning
condition – if the winning condition is a Streett condition. This is promising,
because Streett conditions are more succinct than explicit Muller conditions.

2 Strategy Machines – A Formal Model

The intuition of a strategy1 machine is that of a “black box” which receives
an input (a bit-string), does some internal computation and, at some point,

1 For a definition of a strategy, the reader may want to skip ahead to the next section.



Strategy Machines and Their Complexity 433

produces an output. It then receives the next input and so forth. We will refer
to such a sequence of steps – receive an input, compute, produce an output –
as an iteration. In general, it is allowed for such a machine to retain some part
of its current internal configuration from one iteration to the next. However,
it need not do so. Also, the amount of information (how this is quantified will
be discussed shortly) is a priori not subject to any restriction. In particular, a
strategy machine may require an ever growing amount of memory, increasing
from one iteration to the next, to store this information.

Our model of a strategy machine is a deterministic (k+2)-tape Turing machine
M, k ∈ � = {1, 2, . . .}. The tapes have the following purpose. The first is a
designated IO-tape, responsible for input to and output from the machine. A
bit-string w ∈ �∗, � = {0, 1}, is the content of the IO-tape at the beginning of
an iteration. The machine M is also in a designated input-state at this point.
Next, M performs some computation in order to produce an output. During
this computation the remaining k+ 1 tapes may be used. We first discuss the k
computation tapes. As the name suggests, these tapes are used – as in any Turing
machine – to store all the data needed for the computation of the output. The
content of the computation tapes is deleted immediately before a new iteration
begins. In particular, they cannot be used to store information from one iteration
to the next. Storing such information is the purpose of the memory tape. Its
content is still available during the next iteration. In order to produce an output,
M will write this output, another bit-string, on the IO-tape. Then it will enter
a designated output-state. Let �̂ = � � {#}. We define:

Definition 1 (k-tape Strategy Machine). A strategy machine is a determin-
istic (k + 2)-tape Turing machine M = (Q,�, �̂, qI , qO, δ) with two designated
states qI and qO, called the input-state and the output-state of M respectively.
We require the partial function δ : Q × �̂k+2 ��� Q× (�̂ × {←, ↓,→})k+2 to be
undefined for all pairs (qO, b1, . . . , bk+2) ∈ Q × �̂k+2. By definition, no transi-
tion leads into qI . The tapes of M are the input-output-tape (IO-tape) tIO, the

computation-tapes t
(i)
com, 1 ≤ i ≤ k, and the memory-tape tmem.

Hereafter we assume k = 1 to simplify the notation. If k = 1, we simply write

tcom for t
(1)
com. Given a strategy machineM, we denote its size by ‖M‖ = |Q|−2.

The size is the number of states, not counting the input and output state. A
configuration c of M comprises the current state q(c), the contents of the IO-,
computation- and memory-tapes, tIO(c), tcom(c), and tmem(c), as well as the
current head positions hIO(c), hcom(c), and hmem(c) on the respective tapes. It
is defined as a tuple (q(c), tIO(c), tcom(c), tmem(c), hIO(c), hcom(c), hmem(c)) ∈
Q × (�̂∗)3 × �3. The successor relation on configurations is defined as usual
and denoted by 0. Its transitive closure is denoted by 0∗. An iteration of
M is a sequence c1, . . . , cl of configurations, such that for 1 ≤ i ≤ l − 1
we have ci 0 ci+1. It starts with c1 = (qI , x, ε, wmem, 0, 0, 0) and ends with
cl = (qO, y, w, w

′
mem, h, h′, h′′) for some elements x, y ∈ �

∗, arbitrary words
w,wmem, w′mem ∈ �̂∗ and integers h, h′, h′′ ∈ �. We denote iterations by pairs
of configurations (c, c′), where the state in c is qI and that in c′ is qO. Since M
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is deterministic, there exists at most one iteration from c to c′ (since qO has no
outgoing transitions and qI has no incoming transitions). If no such iteration
exists, the pair (c, c′) is an illegal iteration. Otherwise, it is a legal iteration.

Given a word u = x1 · · ·xn ∈ A∗, whereA = �∗, a run ofM on u is a sequence
of legal iterations (c1, c

′
1), . . . , (cn, c

′
n), such that tIO(ci) = xi and tmem(c′i) =

tmem(ci+1). By convention, tmem(c1) = ε. Note that, by the definition of an
iteration, tcom(ci) = ε and hcom(ci) = hIO(ci) = hmem(ci) = 0. A strategy
machine M defines a function f : A→ A, where f(x1) = tIO(c

′
1). By extension

it defines a function fM : A∗A→ A, the function implemented by M.
The latency T (c, c′) of a legal iteration (c, c′) is the number of configurations

on the unique path from c to c′. If the latency of all iterations in any run is
bounded by a constant, we define the latency T (M) of M to be the maximal
latency over all such (legal) iterations. Finally, we define the space requirement
S(c, c′) of a legal iteration (c, c′) to be the number of tape cells of tmem, visited
during that iteration. Again, the space consumption S(M) ofM is the maximum
over all space consumptions, if such a maximum exists. Note that both latency
and space consumption refer to quantities needed to execute a single iteration,
between reading a ∈ A and outputting b ∈ A.

A Mealy machine is a tuple M = (M,Σ,m0, δ, τ) with states M , IO-alphabet
Σ, initial state m0, transition function δ : M × Σ → M and output function
τ : M × Σ → Σ. By encoding Σ as a subset of �∗ and maintaining a table
of triples (m,x, δ(m,x)) and (m,x, τ(m,x)) in the state space, one obtains a
strategy machine M equivalent to M:

Proposition 1 (Straightforward Simulation). For every Mealy machine
M = (M,Σ,m0, δ, τ) there exists an equivalent 1-tape strategy machine MM

of size ‖MM‖ ∈ O(|M | · |Σ|), space requirement S(MM) ∈ O(log2(|M |)), and
latency T (MM) ∈ O(log2(|M | · |Σ|)).

This illustrates the relationship between a strategy machine and a straightfor-
ward simulation of a Mealy machine by a Turing machine: The latter can be
seen as a special case of the former. Note also that the complexity hidden in the
size of Σ is exposed by this simulation.

3 Basics on Games

We fix the notation and terminology on ω-regular games. We assume the reader
is familiar with these concepts. An introduction can be found in e.g. [13,14,15].

An infinite two player game (in this paper simply called a game) is a tuple
G = (A, ϕ) with an arena A = (V,E) and a winning condition ϕ ⊆ V ω. An
arena is a directed graph A with the property that every vertex has an outgoing
edge. We assume that there is a partition V = V0 � V1 of the vertex set. There
are two players, called player 0 and player 1. Given an initial vertex v0 ∈ V , they
proceed as follows. If v0 ∈ V0, player 0 chooses a vertex v1 in the neighborhood
vE of v. Otherwise, v0 ∈ V1 and player 1 chooses a neighbor v1. The play then
proceeds in the same fashion from the new vertex v1. In this way the two players
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create an infinite sequence π = π(0)π(1) · · · = v0v1 · · · ∈ V ω of adjacent vertices
(π(i), π(i+ 1)) ∈ E, called a play. Player 0 wins the play π if π ∈ ϕ. Otherwise,
player 1 wins. G is called ω-regular if ϕ is an ω-regular set. All games considered
in this paper are ω-regular. A strategy for player i is a mapping σ : V ∗Vi → V
assigning a neighbor of v to each string w ∈ V + with last(w) = v ∈ Vi (where
last(·) denotes the last element of a sequence). π is consistent with σ if for every
n ∈ �0 with π(n) ∈ Vi we have π(i + 1) = σ(π(0) · · · π(n)). σ is a winning
strategy for player i if every play consistent with π is won by player i. The
winning region of player i, written Wi, is the set of vertices v ∈ V , such that
player i has a winning strategy σv from v. It can be shown that in ω-regular
games V = W0 � W1 [16]. If v ∈ Wi, we say player i wins from v. A subarena
is an induced subgraph (V ′, E ∩ V ′ × V ′) which is again an arena. An i-trap
is a subarena from which player i cannot escape. The i-attractor on S ⊆ V is
the set of vertices from which player i can enforce to visit S and is denoted by
AttrAi (S). A corresponding strategy is called an attractor strategy (see [13,14]).
The complement of an i-attractor is a (1− i)-trap. We will need to use the fact
that a Turing machine can compute an attractor on S in time polynomial in |V |
and |E| (for details see [12]). In this paper we are concerned with only three kinds
of winning conditions: Muller, Streett, and LTL conditions. A Muller condition
is given by a propositional formula φ, using the set V as variables. A play π ∈ V ω

is won by player 0 if the infinity set Inf(π) of vertices seen infinitely often in π is
a model of φ. The equivalent explicit condition is F = {F ⊆ V | F |= φ}. It may
be exponentially larger than ‖φ‖. A game G = (A,F) with a Muller condition F
is called aMuller game. A Streett condition is a set Ω = {(R1, G1), . . . , (Rk, Gk)}
of pairs of sets Ri, Gi ⊆ V . A set X ⊆ V violates a Streett pair (R,G) ∈ Ω if
R ∩X �= ∅ but G ∩X = ∅. A play π violates (R,G) if Inf(π) violates (R,G). If
π does not violate any pair (R,G) ∈ Ω, then π satisfies Ω and is won by player
0. Otherwise, player 1 wins. A game G = (A, Ω) with a Streett condition Ω is
called a Streett game. Finally, an LTL condition is one where the set of winning
plays for player 0, ϕ, is given by an LTL-formula2. If φ is an LTL-formula over
the propositions V , a play π is won by player 0 iff π |= φ. A game with an LTL
condition is called an LTL game.

4 Lower Bounds

We investigate lower bounds on the space requirement and latency of any ma-
chine implementing a winning strategy for player 0 in certain classes of games.
Proofs are omitted in the present abstract, but can be found in [12]. Let f : �→
�. Let (Gn)n≥0 be a family of games with Gn = ((Vn, En), ϕn) and |Vn| ∈ O(n),
such that no Mealy machine with less than f(n) states implements a winning
strategy for player 0 in Gn. Then we say the family (Gn)n≥0 is f -hard. A class C
of games is f -hard if a witnessing f -hard family (Gn)n≥0 ⊆ C exists. In general,
this definition allows ϕn to be arbitrarily large. However:

2 Introducing LTL is beyond the scope of this paper (see [13,14]).
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Proposition 2. The classes of Muller and Streett games are 2n-hard. The con-
ditions (propositional formulas, set of Streett pairs) of the witnessing families are
no larger than O(n). The class of LTL-games has complexity 22

n

with winning
condition in the witnessing family of size O(n2).

A solution scheme for C is a mapping S assigning a strategy machine S(G) to
every G ∈ C which implements a winning strategy for player 0 in G. A function
f : � → � is sub-linear if f ∈ O(xq) for some q ∈ (0, 1). It is well known that,
for every k ∈ � and every q ∈ (0, 1), one has log(x)k ∈ O(xq). Likewise a sub-
exponential function is a mapping f : �→ � for which f ∈ O((2x)q) = O(2qx)
for some q ∈ (0, 1). All polynomial functions are sub-exponential. For a proof of
the following theorem, see [12]:

Theorem 1 (Lower Bounds)

– There is no solution scheme S for the class of Muller games or Streett games
which assigns a strategy machine S(G) to G = ((V,E), ϕ) that has latency
or space requirement sub-linear in |V |. In particular, for no k ∈ � can there
be such a scheme with latency or space requirement in log2(|V |)k.

– There is no solution scheme for LTL-games, assigning a strategy machine
with latency or space requirement sub-exponential in |V | to every LTL-game
G = ((V,E), ϕ). In particular, there can be no such scheme with latency or
space requirement polynomial in |V |.

5 Muller and Streett Games

In this section we outline (for formal proofs see [12]) how to construct a poly-
nomial sized strategy machine implementing a winning strategy in Muller and
Streett games. For Streett games we even get a machine with a latency poly-
nomial in the winning condition. We will consider a Muller game G = (A, φ),
A = (V,E), with a propositional formula φ and explicit condition F.

Our construction is based on Zielonka’s algorithm [10], while also using ideas
from [2]. We will define some notation, which will be used subsequently. If V ∈ F,
we define the set max(F) = {V ′ ⊆ V | V ′ /∈ F ∧ ∀V ′′ � V ′ : V ′′ ∈ F} of all
maximal subsets of V not in F. If X ⊆ V , let F � X := F ∩ P(X) be the
restriction of F to subsets contained in X . The Zielonka tree Z := ZF = (N, λ)
of F is a labeled tree N ⊆ �∗ with labels λ(x) ∈ P(V ) for all x ∈ N . ε is the
root, 1 is the first child of the root, 12 is the second child of 1, and so forth3.
The root has label λ(ε) = V . Let x ∈ N with label X = λ(x). If X ∈ F then x
has k = |max(F�X)| children c0, . . . , ck−1, each labeled with a distinct element
from max(F�X). If X /∈ F, we apply the same construction with respect to FC .
The tree obtained in this way is of depth ≤ |V |. A node labeled with a set X ∈ F
is called a 0-level node. The remaining nodes are 1-level nodes.

We will use an additional labeling function κ, which assigns (possibly empty)
subarenas to the nodes in N . The idea of attaching the subarenas to the nodes

3 We assume that, if n · a ∈ N , then n · b ∈ N for all 1 ≤ b ≤ a.
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Z1

U1

Z2

A2

U2

Z3

A3

U3

Z4

A4

U4U0

∅ · · ·

AttrX1 (λ(x) \ λ(ci+1 mod k))

Zi+1

XAi+1 =

Attr
κ(x)
0 (Ui)

Ui

Fig. 1. A play visiting Ui stays in Zi or is “pulled” into Ui−1

in Z is elaborated in [2]. Given x ∈ N , κ(x) is a subarena with the property
that player 0 can win the subgame (κ(x),F � λ(x)) from every vertex in κ(x).
The computation of κ is quite involved and only sketched here (see [2]). If x
is 0-level with label κ(x) and if c is a child of x in Z, the construction is an

attractor computation κ(c) = κ(x) \ Attrκ(x)0 (λ(x) \ λ(c)). If x is 1-level, one
constructs an increasing sequence (Ux

i )i≥0 of sets of “finished vertices” with
Ux
0 = ∅. Let c0, . . . , ck−1 be the children of x in Z. To compute Ux

i+1 we remove

Ai+1 = Attr
κ(x)
0 (Ui) from κ(x) and obtain X . Then we remove AttrX1 (λ(x) \

λ(ci+1 mod k)) obtaining Y . Now Zxi+1 is taken to be the winning region in the
subgame (Y,F � λ(ci+1 mod k)). Then Ux

i+1 = Ai+1 � Zxi+1. The label of ci is
κ(ci) =

⋃
j≡i (mod k) Z

x
j . The intuition is that, once a play reaches Ux

i for some
i, it must either stay in Zxi or will be forced into Ux

i−1. This can only happen
finitely many times, so the play will eventually stay in one Zxi ⊆ λ(ci mod k) (i.e.
in the subtree below ci mod k) or it must leave the entire subarena κ(x) (i.e. the
subtree under x). The situation is depicted in Fig. 1.

Lemma 1 ([10,2]). In the above notation, if W0 = V then κ(x) =
⋃
i U

x
i . Fur-

thermore, player 0 wins from every v ∈ Zxi in the subgame (Zxi ,F�λ(ci mod k)).

The sequence (Ux
i )i≥1 becomes stable after ≤ k·|V | steps. We use the superscript

x to indicate the (1-level) node for which the sequence has been computed.
We will now describe an adaptive strategy machine M implementing a win-

ning strategy for Muller games. By “adaptive” we mean that the machine contin-
uously refines the memory state it maintains, until eventually a sufficient amount
of information is computed to win the play. As a consequence, we must prevent
player 0 from inadvertently leaving W0 during the adaption phase. Hence, we
assume W0 = V , which can be achieved by preprocessing. Since we are inter-
ested in representing a winning strategy succinctly, not in deciding the game,
this is no restriction.M will store paths in Z on its memory tape. By a path we
mean one that begins in the root and ends in a leaf. In addition, M will store
the labels λ(x) and κ(x) for a given node x on the path. Say the current path
is p = p(0), . . . , p(m). Given an input v ∈ V the machine will then traverse the
path and find the unique lowest node p(i) such that v ∈ κ(p(i)). The idea is to
then play according to the classical Zielonka strategy: If p(i) is 0-level,M plays
an attractor strategy on the set λ(p(i)) \ λ(p(i+1)). Otherwise, it will compute

the minimal t with v ∈ U
p(i)
t (which exists by Lem. 1) and either update the

memory state (if v ∈ Z
p(i)
t to a path through the (t mod k)-th child of p(i),

where k is the number of children of p(i)) or it will attract to U
p(i)
t−1 .
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Unfortunately, since κ(c) =
⋃
i≡j (mod k) Z

x
i is expensive to compute if c is

the j-th child of a 1-level node x, the memory update in this approach is costly.
Computing the sequence (Zxi )i≥1 requires solving a subgame for every i. Also, to
retain all of this information, either in the control states or on the memory tape,
would yield a controller of exponential size (or exponential space requirement)
in |V |. Therefore the idea is to spread the computation of the sets (Ux

i )i≥0 and
(Zxi )i≥1 across multiple iterations of M. This is achieved using an auxiliary
Turing machine Mκ, which on input λ(x) ∈ F and κ(x) computes the number
kx of children of x and (Ux

i )i≥0, (Z
x
i )i≥1, or rather a compact representation

of the same (see below). We attach configurations c of Mκ to the parent of
those 0-level nodes x, for which κ(x) is currently being computed. We will store
the labels κ(x) where they have been computed. For 1-level nodes we also store
(Ux

i )i≥0, (Z
x
i )i≥1 (compactly represented), once available.

There are two obstacles: First, the path may need to be updated, whereby
some sets κ(p(i)) already computed are lost. In Lem. 2 we show that this is
tolerable. The second problem is storing the sequence (Ux

i )i≥0. It may contain
exponentially many sets (recall that it becomes stationary after ≤ k · |V | steps,
where the number k of children of x may be exponential in |V |). In the next
paragraph, we give a compact representation of the sequence (Ux

i )i≥0 which
allows us to recompute the sets Zxi and Ux

i efficiently for any i.
If Dx

i = Ux
i \Ux

i−1 then Dx
i �= ∅ for at most |V | indices i. Given (Dx

i )i≥1, one

obtains Zxi by computing Ux
i−1 =

⋃i−1
j=1 D

x
i and A = Attr

κ(x)
0 (Ux

i−1). Then Zxi =
Ux
i \A. If c is the j-th child out of kx children of x, then κ(c) =

⋃
i≡j (mod kx)

Zi.
Thus, it is sufficient to store the number kx of children of x as well as Dx =
{(Dx

t , bin(t)) | Dx
t �= ∅}, where bin(t) is the binary representation of t, in order

to compute Zxi and κ(c) for any child c of x and any i. This representation
requires space in poly(|V |). Computing Zxi and the label κ(c) requires time in
poly(|V |, |E|).

The memory tape will contain a labeled path p in Z, written as a sequence of
triples p(i) = (ni, λ(p, i), θ(p, i)). The i-th node is n1 · · ·ni ∈ N ⊆ �∗, which, by
abuse of notation, is denoted by p(i) as well. p(0) is always the root. By conven-
tion, n0 = 0. We let λ(p, i) = λ(n1 · · ·ni). For θ(p, i) we have three possibilities.
θ(p, i) = κ(p, i) if this label has already been computed and if p(i) is 0-level.
If p(i) is 1-level with kp(i) children, then either θ(p, i) = (κ(p, i),Dp(i), kp(i)), if
the set Dp(i) has been computed, or θ(p, i) = (κ(p, i), c) for some configuration
c of Mκ, otherwise. Finally, θ(p, i) = ∅ if the computation has not proceeded
this far down the path (note that invoking Mκ on any node n1 · · ·ni requires
κ(n1 · · ·ni−1)). We will refer to p as a memory path (see Fig. 2). Storing p re-
quires space in poly(|V |, SMκ), where SMκ is the space requirement of Mκ.

A node with θ(p, i) = ∅ is called untouched. One with θ(p, i) = (κ(p, i), c) is
called active (note that it must be 1-level). Nodes which are neither active nor
untouched are finished and necessarily have a κ-label. We require that, for any
memory path p, either all nodes are finished or there exists precisely one node
which is active. Since κ(p, i) can only be computed when κ(p, i− 1) is available,
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position i

p

(ni−1, λ(p, i− 1), κ(p, i− 1))

(ni, λ(p, i), κ(p, i), c)

(ni+1, λ(p, i+ 1), ∅)

finished

active

untouched

Fig. 2. A Memory Path p

any memory path p with an active node p(i) satisfies that all p(j) with j < i are
finished and all p(r) with r > i are untouched.

In addition to the auxiliary machineMκ we will also make use of an auxiliary
machineMλ, which computes the labeling function λ. Both auxiliary machines
Mλ andMκ are used implicitly, as subroutines, byM. Their runtime and space
requirement affect the bound on the latency and space requirement ofM we give
below4. We will assumeM has access to a representation of A and of the winning
condition φ in its state space. We do not give the exact construction here (see
[12]), but we point out that this requires a number of control states and query
time in poly(|V |, ‖φ‖).

Formally, M proceeds as follows. The initial memory path pI is obtained by
setting n0 = · · · = nr = 0. We choose r, such that n1 · · ·nr ∈ N is a leaf. Let i be
minimal with the property that n1 · · ·ni is 1-level (i.e. either i = 0 or i = 1). If i =
0, set pI(0) = (n0, λ(pI , 0), (V, cI)), where cI is the initial configuration of Mκ.
Otherwise, pI(0) = (n0, λ(pI , 0), V ) and pI(1) = (n1, λ(pI , 1), (κ(pI , 1), cI)). The
properties of θ described above then imply p(j) = (nj , λ(pI , j), ∅) for all j > i.
The memory update below will ensure that, for any memory path p, the highest
node p(i), such that κ(p, i) is not yet available (i.e. θ(p, i) = ∅), is 0-level. Note
that pI satisfies this invariant. Additionally, we assume that for any memory
path p either all sets κ(p, i) are computed or there exists an active node. The
memory update will also preserve this invariant.

Suppose the input to M is v ∈ V and the current path is p of length ‖p‖. By
assumption, the highest node in p for which κ has not been computed is 0-level.
Let i be the maximal index with θ(p, i) �= ∅ and v ∈ κ(p(i)), i.e. κ(p, i) has been
computed and contains v. We call this node the NOI (node of interest). Finding
the NOI is in poly(|V |), as the space requirement of a triple (ni, λ(p, i), θ(p, i)) is
independent of SMκ if p(i) is finished. We assume that i < ‖p‖ (the case i = ‖p‖
requires only minor modifications). Note that under this assumption we either
have v /∈ κ(p, i+1) or κ(p, i+1) has not been computed yet (i.e. θ(p, i+1) = ∅).
We distinguish these two cases:

(a) κ(p, i + 1) has not been computed yet. Then p(i) is 1-level by assumption.
Furthermore, p(i) must be active. Let θ(p, i) = (κ(p, i), c) where c is a
configuration of Mκ. Assume first that c is not a terminal configuration,
i.e. Mκ requires more computation steps. Then M simulates another com-

4 Note that Mλ may need Ω(2|V |) steps to produce a label. Depending on φ, this
can be improved (see results on Streett games, Thm. 3). We cannot spread out this
computation over several iterations (c.f. Rem. 1 on page 441).
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putation step of Mκ and replaces c by its unique successor configuration
c′. M outputs an arbitrary vertex neighboring v in κ(p, i). This requires a
number of steps in poly(|V |, |E|).

If c is a terminal configuration we replace c by the set Dp(i) and the integer
kp(i), which have been computed. We then compute κ(p, i + 1) from Dp(i).
If i+ 1 < ‖p‖, then we also compute κ(p, i+ 2). This is an attractor on the
set λ(p, i + 1) \ λ(p, i+ 2), as p(i+ 1) is 0-level. Finally, if even i+ 2 < ‖p‖,
we set p(i + 2) active, i.e. we replace θ(p, i+ 2) = ∅ by (κ(p, i+ 2), cI). All
these steps need time in poly(|V |, |E|).

For the next move, we distinguish v /∈ κ(p, i+ 1) and v ∈ κ(p, i+ 1). If

v /∈ κ(p, i+ 1), M computes the minimal t with v ∈ U
p(i)
t (note that this

can be done while computing κ(p, i + 1) above). Then v is either in the 0-

attractor to U
p(i)
t−1 or v ∈ Z

p(i)
t . In the first case,M outputs according to the

corresponding attractor strategy. Otherwise, M updates its memory state
to a path through the corresponding child of p(i). This requiresO(|V | ·TMλ

)
steps, where TMλ

is the runtime of Mλ. If v ∈ κ(p, i+ 1), M outputs an
arbitrary neighbor of v in κ(p, i+ 1).

(b) κ(p, i+ 1) has been computed. We proceed as the usual Zielonka strategy
indicates: If p(i) is 0-level, we play an attractor strategy on the set λ(p, i) \
λ(p, i + 1), updating the memory path if necessary. Otherwise, p(i) is 1-

level. Then we compute the minimal t with v ∈ U
p(i)
t and play an attractor

strategy on U
p(i)
t , or we update the memory to the leftmost path through

the unique child c of p(i) with Zt ⊆ κ(c) and output an arbitrary neighbor
of v in κ(c). Again, all of this is feasible in time in poly(|V |, |E|, TMλ

).

The proofs of the following two lemmas can be found in [12]:

Lemma 2. M, as described above, implements a winning strategy for player 0.

Note that the size of M depends only on the representations of A and φ it
uses, as well as on ‖Mλ‖ and ‖Mκ‖. Those representations can be implemented
with a polynomial number of control states. All other parts of the machine are
independent of the size of A or φ. Let TMλ

and SMκ denote the runtime ofMλ

and the space requirement ofMκ.

Lemma 3. Let G = (A, φ) be a Muller game, where A = (V,E) and φ is
a propositional formula. There exists a strategy machine M of size ‖M‖ ∈
poly(|V |, ‖φ‖), space consumption S(M) ∈ poly(|V |, SMκ), and latency T (M) ∈
poly(|V |, |E|, TMλ

) which implements a winning strategy for player 0.

Using that solving Muller games is in Pspace [3,4,17] we can show SMκ ∈
poly(|V |, ‖φ‖) (see [12]). Also, TMλ

∈ O(|V | · log2(|V |) ·max{|F|, |FC |}
)
, where

F is the explicit condition for φ. For a proof of the next theorem, see [12]:

Theorem 2. For any Muller game G = (A,F), where A = (V,E) and F is
given by a propositional formula φ: There exists a strategy machine M of size
‖M‖ ∈ poly(|V |, ‖φ‖), space consumption S(M) ∈ poly(|V |, ‖φ‖), and latency
T (M) polynomial in |V |+ |E| and linear in max{|F|, |FC |}.
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Remark 1. Unlike the situation of computing κ, we cannot spread out the com-
putation of Mλ across the infinite play, because we do not have a compact
representation of the sets λ(x0), . . . , λ(xk) (if x0, . . . , xk are siblings). For κ(xi)
the set Dx provides such a compact representation.

Muller games are usually solved via latest appearance records [18,17], yielding
a Mealy machine of size |V | · |V |!. The straightforward simulation (c.f. Prop.
1) of this machine is of size |V |2 · |V |!. The size we obtain is exponentially
lower, at the price of an exponentially longer latency. For Streett games we
can improve the bound on TMλ

. Every Streett condition Ω is equivalent to
FΩ = {X ⊆ V | X violates no pair in Ω}. We can show (for details, see [12]):

Proposition 3. Let Ω be a Streett condition. Then there exists a machine Mλ

computing λ with runtime polynomial in |V | and |Ω|.
With Prop. 3 and Lem. 3 one shows (see [12]):

Theorem 3. Let G = (A, Ω) be a Streett game. Then there exists a strategy ma-
chineM of size ‖M‖ ∈ poly(|V |, |Ω|), space consumption S(M) ∈ poly(|V |, |Ω|)
and latency T (M) ∈ poly(|V |, |Ω|).
Streett games are usually solved using index appearance records [19,13]. This
yields a Mealy machine with |Ω|2 · |Ω|! states. The straightforward simulation
(Prop. 1) gives a strategy machine of size O(|Ω|2 · |Ω|! · |V |) and latency O(|Ω|).
We significantly reduce the size while the latency remains polynomial in |Ω|.

6 Conclusion and Future Work

We introduced the formal model of a strategy machine, based on Turing ma-
chines. We showed how different new criteria of a strategy – latency, space re-
quirement and size – fit into this model, providing general lower bounds for the
classes of Muller, Streett, and LTL games. Using this model one can obtain poly-
nomial sized machines with polynomial space requirement implementing winning
strategies in Muller games. The runtime is linear in the size of the winning con-
dition. This machine adapts the strategy as the play proceeds and critically
relies on the fact that costly computations may be spread out over the course
of several iterations. We were able to show that in the special case of a Streett
game the very same algorithm can be made to work with a polynomial latency in
the size of the arena and of the number of Streett pairs. The space requirement
and size of all our strategy machines are polynomial in the size of the winning
condition (given by a propositional formula) and of the arena. Altogether, this
is an exponential improvement over the straightforward way of transforming a
Mealy machine into a strategy machine via a case distinction over all inputs.
This approach results in a machine of exponential size in general.

We plan to extend these results to other kinds of ω-regular games. We have
partial results on Request-Response games. Considering latency, space require-
ment, and size, we would like to find relations between the parameters indicating
the nature of a trade-off. Also, infinite-state strategies lend themselves to a closer
study based on our model. Finally, using an adaptive strategy raises the question
of how long the adaption takes. We try to address this in current research.
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tof Löding for their helpful comments and suggestions.

References

1. Bloem, R., Galler, S., Jobstmann, B., Piterman, N., Pnueli, A., Weiglhofer, M.:
Specify, compile, run: Hardware from psl. ENTCS 190, 3–16 (2007)

2. Dziembowski, S., Jurdzinski, M., Walukiewicz, I.: How much memory is needed
to win infinite games? In: LICS 1997, IEEE Computer Society. Washington, DC
(1997)

3. Hunter, P., Dawar, A.: Complexity Bounds for Regular Games (Extended Ab-
stract). In: Jedrzejowicz, J., Szepietowski, A. (eds.) MFCS 2005. LNCS, vol. 3618,
pp. 495–506. Springer, Heidelberg (2005)

4. Hunter, P., Dawar, A.: Complexity bounds for muller games. Theoretical Computer
Science (TCS) (2008) (submitted)

5. Horn, F.: Explicit muller games are ptime. In: FSTTCS, pp. 235–243 (2008)
6. Emerson, E.A., Jutla, C.S.: The complexity of tree automata and logics of pro-

grams. SIAM J. Comput. 29, 132–158 (1999)
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Holub, J., Žďárek, J. (eds.) CIAA 2007. LNCS, vol. 4783, pp. 253–264. Springer,
Heidelberg (2007)

8. Gelderie, M., Holtmann, M.: Memory reduction via delayed simulation. In: iWIGP,
pp. 46–60 (2011)

9. Grohe, M., Hernich, A., Schweikardt, N.: Lower bounds for processing data with
few random accesses to external memory. J. ACM 56, 12:1–12:58 (2009)

10. Zielonka, W.: Infinite games on finitely coloured graphs with applications to au-
tomata on infinite trees. Theor. Comput. Sci. 200, 135–183 (1998)

11. Madhusudan, P.: Synthesizing reactive programs. In: Proceedings of Comp. Sci.
Log., CSL 2011, Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, pp. 428–442
(2011)

12. Gelderie, M.: Strategy machines and their complexity. Technical Report AIB-
2012-04, RWTH Aachen University (2012),
http://sunsite.informatik.rwth-aachen.de/Publications/

AIB/2012/2012-04.pdf
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Petr A. Golovach1, Daniël Paulusma2, and Bernard Ries3

1 Department of Informatics, University of Bergen, Norway
petr.golovach@ii.uib.no

2 School of Engineering and Computing Sciences, Durham University
daniel.paulusma@durham.ac.uk

3 Laboratoire d’Analyse et Modélisation de Systèmes pour l’Aide à la Decision,
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Abstract. The Coloring problem is to test whether a given graph
can be colored with at most k colors for some given k, such that no two
adjacent vertices receive the same color. The complexity of this problem
on graphs that do not contain some graph H as an induced subgraph
is known for each fixed graph H . A natural variant is to forbid a graph
H only as a subgraph. We call such graphs strongly H-free and initiate
a complexity classification of Coloring for strongly H-free graphs. We
show that Coloring is NP-complete for strongly H-free graphs, even
for k = 3, when H contains a cycle, has maximum degree at least five,
or contains a connected component with two vertices of degree four. We
also give three conditions on a forest H of maximum degree at most
four and with at most one vertex of degree four in each of its connected
components, such that Coloring is NP-complete for strongly H-free
graphs even for k = 3. Finally, we classify the computational complexity
of Coloring on strongly H-free graphs for all fixed graphs H up to
seven vertices. In particular, we show that Coloring is polynomial-time
solvable when H is a forest that has at most seven vertices and maximum
degree at most four.

1 Introduction

Graph coloring involves the labeling of the vertices of some given graph by inte-
gers called colors such that no two adjacent vertices receive the same color. The
corresponding Coloring problem is to decide whether a graph can be colored
with at most k colors for some given integer k. Due to the fact that Coloring is
NP-complete for any fixed k ≥ 3, there has been considerable interest in study-
ing its complexity when restricted to certain graph classes. General motivation,
background and related work on coloring problems restricted to special graph
classes can be found in several surveys [13,14].

We study the complexity of the Coloring problem restricted to graph classes
defined by forbidding a graph H as a (not necessarily induced) subgraph. So far,
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Coloring has not been studied in the literature as regards to such graph classes.
Before we summarize some related results and present our results, we first state
the necessary terminology and notations.

Terminology. We consider finite undirected graphs without loops and multiple
edges. We refer to the textbook of Diestel [5] for any undefined graph terminol-
ogy. Let G = (V,E) be a graph. The subgraph of G induced by a subset U ⊆ V
is denoted G[U ]. The graph G − u is obtained from G by removing vertex u.
For a vertex u of G, its open neighborhood is N(u) = {v | uv ∈ E}, its closed
neighborhood is N [u] = N(u) ∪ {u}, and its degree is d(u) = |N(u)|. The max-
imum degree of G is denoted by Δ(G) and the minimum degree by δ(G). The
distance dist(u, v) between two vertices u and v of G is the number of edges of a
shortest path between them. The girth g(G) is the length of a shortest cycle in
G. We say that G is (strongly) H-free for some graph H if G has no subgraph
isomorphic to H ; note that this is more restrictive than forbidding H as an in-
duced subgraph. A subdivision of an edge uv ∈ E is the operation that removes
uv and adds a new vertex adjacent to u and v. A graph H is a subdivision of G
if H is obtained from G by a sequence of edge subdivisions. A coloring of G is
a mapping c : V → {1, 2, . . .}, such that c(u) �= c(v) if uv ∈ E. We call c(u) the
color of u. A k-coloring of G is a coloring c of G with 1 ≤ c(u) ≤ k for all u ∈ V .
If G has a k-coloring, then G is called k-colorable. The chromatic number χ(G)
is the smallest integer k such that G is k-colorable. The k-Coloring problem
is to test whether a graph admits a k-coloring for some fixed integer k. If k is in
the input, then we call this problem Coloring. The graph Pn is the path on n
vertices.

Related Work. Král’, Kratochv́ıl, Tuza and Woeginger [11] completely deter-
mined the computational complexity of Coloring for graph classes character-
ized by a forbidden induced subgraph and achieved the following dichotomy.
Here, P1 + P3 denotes the disjoint union of P1 and P3.

Theorem 1 ([11]). If some fixed graph H is a (not necessarily proper) induced
subgraph of P4 or of P1 + P3, then Coloring is polynomial-time solvable on
graphs with no induced subgraph isomorphic to H; otherwise it is NP-complete
on this graph class.

The complexity classification of the k-Coloring problem for graphs with no
induced subgraphs isomorphic to some fixed graph H is still open. For k = 3,
it has been classified for graphs H up to six vertices [3], and for k = 4 for
graphs H up to five vertices [7]. We refer to the latter paper for a survey on the
complexity status of k-Coloring for graph classes characterized by a forbidden
induced subgraph.

Our Results. Recall that a strongly H-free graph denotes a graph with no
subgraph isomorphic to some fixed graphH . Forbidding a graphH as an induced
subgraph is equivalent to forbidding H as a subgraph if and only if H is a
complete graph (a graph with an edge between any two distinct vertices). Hence,
Theorem 1 tells us that Coloring is NP-complete for strongly H-free graphs
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if H is a complete graph. We extend this result by proving the following two
theorems in Sections 2 and 3, respectively; note that the case when H is a
complete graph is covered by condition (a) of Theorem 2. The trees T1, . . . , T6

are displayed in Figure 1. For an integer p ≥ 0, the graph T p2 is the graph
obtained from T2 after subdividing the edge st p times; note that T 0

2 = T2.

t

T3T2T1 T4

T5 T6

s

Fig. 1. The trees T1, . . . , T6

Theorem 2. 3-Coloring (and hence Coloring) is NP-complete for strongly
H-free graphs if

(a) H contains a cycle, or
(b) Δ(H) ≥ 5, or
(c) H has a connected component with at least two vertices of degree four, or
(d) H contains a subdivision of the tree T1 as a subgraph, or
(e) H contains the tree T p2 as a subgraph for some 0 ≤ p ≤ 9, or
(f) H contains one of the trees T3, T4, T5, T6 as a subgraph.

Theorem 3. Coloring is polynomial-time solvable for strongly H-free graphs if

(a) H is a forest with Δ(H) ≤ 3, such that each connected component has at
most one vertex of degree 3, or

(b) H is a forest with Δ(H) ≤ 4 and |VH | ≤ 7.

Theorems 1–3 tell us that the Coloring problem behaves differently on graphs
characterized by forbidding H as an induced subgraph or as a subgraph. As
a consequence of Theorems 2 and 3(b) we can classify the Coloring prob-
lem on strongly H-free graphs for graphs H up to 7 vertices. The problem is
NP-complete if H is not a forest or Δ(H) ≥ 5, and polynomial-time solvable
otherwise.

Future Work. The aim is to complete the computational complexity classifica-
tion of Coloring for strongly H-free graphs. Our current proof techniques are
rather diverse, and a more unifying approach may be required.
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2 The Proof of Theorem 2

In the remainder of the paper we write H-free instead of strongly H-free as a
shorthand notation. Below we include the proofs of a number of cases of Theo-
rem 2. The remaining cases are left out due to space restrictions.

(a) Maffray and Preissmann [12] showed that 3-Coloring is NP-complete for
triangle-free graphs. This result has been extended by Kamiński and Lozin [10],
who proved that k-Coloring is NP-complete for the class of graphs of girth at
least p for any fixed k ≥ 3 and p ≥ 3. Suppose that H contains a cycle. Then
g(H) is finite. Let p = g(H) + 1. It remains to observe that any graph of girth
at least p does not contain H as a subgraph, and (a) follows.

(b) It is well known that 3-Coloring is NP-complete for graphs of maximum
degree at most four [6]. Then, because any graph G with Δ(G) ≤ 4 does not
contain a graph H with Δ(H) ≥ 5 as a subgraph, (b) holds.

(c) As before, we reduce from 3-Coloring for graphs of maximum degree at
most four. Let G = (V,E) be a graph of maximum degree at most four. We
define a useful graph operation. In order to do this, we need the graph displayed
in Figure 2. It has vertex set {x, y, z, t} and edge set {xz, xt, yz, yt, zt} and is
called a diamond with poles x, y. We observe that in any 3-coloring of a diamond
with poles x, y, the vertices x and y are colored alike.

v3

x y

v1

v4

v2

v3

u

x1

x2

x3

x4

u

v1

v4

v2

Fig. 2. A diamond with poles x, y and the vertex-diamond operation

The graph operation that we use is displayed in Figure 2. For a vertex u ∈ V
with four neighbors v1, . . . , v4, we do as follows. We delete the edges uvi for
i = 1, . . . , 4. We then add 4 diamonds with poles xi, yi for i = 1, . . . , 4 and
identify u with each yi. Finally, we add the edges vixi for i = 1, . . . , 4. We
call this operation the vertex-diamond operation. Note that this operation is
only defined on vertices of degree four. Because any 3-coloring gives the poles
of a diamond the same color, the resulting graph is 3-colorable if and only if G
is 3-colorable. We also observe that this operation when applied on a vertex u



Coloring Graphs Characterized by a Forbidden Subgraph 447

increases the distance between u and any other vertex of G by 2. Moreover, the
new vertices added have degree three.

To complete the proof of (c), letH be a graph that has a connected component
D with at least two vertices of degree four. Let α denote the maximum distance
between two such vertices in D. Then we apply α vertex-diamond operations
on each vertex of degree four in G. By our previous observations, the resulting
graph G∗ is D-free, and consequently, H-free, and in addition, G∗ is 3-colorable
if and only if G is 3-colorable. Hence (c) holds.

Subcases p = 0 and p = 1 of (e) and Case T5 of (f). As before, we reduce
from 3-Coloring for graphs of maximum degree at most four. Let G = (V,E)
be a graph of maximum degree at most four. We construct the graph G∗ defined
in case (c). We observe that G∗ is T 0

2 -free, T
1
2 -free and T5-free, because every

vertex of degree at least four in G∗ is obtained by identifying pole vertices of
diamonds. Hence, the subcases p = 0 and p = 1 of (e) and the corresponding
subcase of (f) hold.

3 The Proof of Theorem 3

Let G be a graph. A graph H is a minor of G if H can be obtained from a
subgraph of G by a sequence of edge contractions. We first prove Theorem 3(a).

Theorem 3(a). Let H be a fixed forest with Δ(H) ≤ 3, such that each connected
component of H has at most one vertex of degree three. Then Coloring can be
solved in polynomial time for H-free graphs.

Proof. Let G be a graph. If |VH | = 1, then the statement of the theorem holds.
Suppose that |VH | ≥ 2. Let H1, . . . , Hp be the connected components of H .
Consider a connected component Hi for some 1 ≤ i ≤ p. Because δ(H) ≤ 3,
we find that δ(Hi) ≤ 3. Moreover, by our assumption, Hi contains at most one
vertex of degree 3. Then Hi is either a path or a subdivided star, in which the
centre vertex has degree 3. As such, Hi is a subgraph of G if and only if Hi

is a minor of G. Consequently, H is a subgraph of a graph G if and only if
H is a minor of G. By a result of Bienstock et al. [2], every graph that does
not contain H as a minor has path-width at most |VH | − 2. Hence G has path-
width at most |VH | − 2. Because H is fixed, this implies that G has bounded
path-width, and consequently, bounded treewidth. Because Coloring can be
solved in linear time for graphs of bounded treewidth as shown by Arnborg and
Proskurowski [1], the result follows. .�

Theorem 3(a) limits the remaining cases of Theorem 3(b) to those graphs H
that are a forest on at most 7 vertices and that contain a vertex of degree 4 or
two vertices of degree at least 3. Moreover, our goal is to show polynomial-time
solvability for such cases, and a graph is H-free if it is H ′-free for any subgraph
H ′ of H . This narrows down our case analysis to the trees H1, . . . , H5 shown in
Fig. 3. We consider each such tree, but we first give some auxiliary results.
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H5H2 H3 H4H1

Fig. 3. The trees H1, . . . ,H5

Observation 1. Let G be a graph with |VG| ≥ 2. Let u ∈ VG with dG(u) < k
for some integer k ≥ 1. Then G is k-colorable if and only if G−u is k-colorable.

We say that a vertex u of a graph G is universal if G = G[NG[u]], i.e., if u is
adjacent to all other vertices of G.

Observation 2. Let u be a universal vertex of a graph G with |VG| ≥ 2. Let
k ≥ 2 be an integer. Then G is k-colorable if and only if G−u is (k−1)-colorable.

A vertex u of a connected graph G with at least two vertices is a cut-vertex if
G−u is disconnected. A maximal connected subgraph of G with no cut-vertices
is called a block of G.

Observation 3. Let G be a connected graph, and let k be a positive integer.
Then G is k-colorable if and only if each block of G is k-colorable.

Let (G, k) be an instance of Coloring. We apply the following preprocessing
rules recursively, and as long as possible. If after the application of a rule we can
apply some other rule with a smaller index, then we will do this.

Rule 1. Find all connected components of G and consider each of them.

Rule 2. Check if G is 1-colorable or 2-colorable. If so, then stop considering G.

Rule 3. If |VG| ≥ 2, k ≥ 3, and G has a vertex u with dG(u) ≤ 2, take (G−u, k).

Rule 4. If |VG| ≥ 2, k ≥ 3, and G has a universal vertex u, take (G− u, k − 1).

Rule 5. If G is connected, then find all blocks of G and consider each of them.

We obtain the following lemma. Its proof has been omitted due to space
restrictions.

Lemma 1. Let G be an n-vertex graph that together with an integer k ≥ 3 forms
an instance of Coloring. Applying rules 1–5 recursively and exhaustively takes
polynomial time and yields a set I of at most n instances, such that (G, k) is a
yes-instance if and only if every instance of I is a yes-instance. Moreover, each
(G′, k′) ∈ I has the following properties:

(i) |VG′ | ≤ |VG|;
(ii) δ(G′) ≥ 3;
(iii) G′ has no universal vertices;
(iv) G′ is 2-connected;
(v) 3 ≤ k′ ≤ k;
(vi) if G is H-free for some graph H, then G′ is H-free as well.
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3.1 The Cases H = H1 and H = H2

We first give some extra terminology. Let G = (V,E) be a graph. We let ω(G)
denote the size of a maximum clique in G. The complement of G is the graph G
with vertex set V , such that any two distinct vertices are adjacent in G if and
only if they are not adjacent in G. If χ(F ) = ω(F ) for any induced subgraph F
of G, then G is is called perfect. Let Cr denote the cycle on r vertices. We will
use the Strong Perfect Graph Theorem proved by Chudnovsky et al. [4]. This
theorem tells us that a graph is perfect if and only if it does not contain Cr or
Cr as an induced subgraph for any odd integer r ≥ 5.

Lemma 2. Let G be a 2-connected graph with δ(G) ≥ 3 that has no universal
vertices. If G is H1-free or H2-free, then G is perfect.

Proof. Note that H1 and H2 are both subgraphs of Cr for any r ≥ 7. Moreover,
C5 = C5. Then, by the Strong Perfect Graph Theorem [4], we are left to prove
that G contains no induced cycle Cr for any odd integer r ≥ 5. To obtain a con-
tradiction, assume that G does contain an induced cycle C = v0v1 · · · vr−1vr−1v0
for some odd integer r ≥ 5.

First suppose that G is H1-free. Let 0 ≤ i ≤ r − 1 and consider the path
vivi+1 · · · vi+3vi+4, where the indices are taken modulo r. Since δ(G) ≥ 3, vi+1

and vi+2 each have at least one neighbor in V ′ = V \ {v0, . . . , vr−1}, say vi+1

is adjacent to some vertex u and vi+2 is adjacent to some vertex v. Because G
is H1-free, u = v, and moreover, |N(vi+1) ∩ V ′| = |N(vi+2) ∩ V ′| = 1. Because
0 ≤ i ≤ r − 1 was taken arbitrarily, we deduce that the vertices v0, . . . , vr−1 are
all adjacent to the same vertex u ∈ V ′ and to no other vertices in V ′. Because
G is 2-connected, u is not a cut-vertex. Hence, V ′ = {u}. However, then u is a
universal vertex. This is a contradiction.

Now suppose that G is H2-free. By the same arguments and the fact that r
is odd, we conclude again that there exists a universal vertex u ∈ V ′. This is a
contradiction. .�

We are now ready to prove that Coloring is polynomial-time solvable for H1-
free and for H2-free graphs. Let G be a graph, and let k ≥ 1 be an integer. If k ≤
2, then Coloring is even polynomial-time solvable for general graphs. Suppose
that k ≥ 3. Then, by Lemma 1, we may assume without loss of generality that
G is 2-connected, has δ(G) ≥ 3 and does not contain any universal vertices.
Lemma 2 then tells us that G is perfect. Because Grötschel et al. [8] showed that
Coloring is polynomial-time solvable for perfect graphs, our result follows.

3.2 The Case H = H3

We first give some additional terminology. We say that we identify two distinct
vertices u, v ∈ VG if we first remove u, v and then add a new vertex w by making
it (only) adjacent to the vertices of (NG(u) ∪NG(v)) \ {u, v}.

Consider the graphs F1, . . . , F4 shown in Fig. 4. We call the vertices x1, x2

of F1, x1, x2, x3 of F2 and x1, x2, y1, y2 of F3 and F4 the pole vertices of the
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corresponding graph Fi, whereas the other vertices of Fi are called centre vertices.
We say that a graph G properly contains Fi for some 1 ≤ i ≤ 4 if G contains
Fi as an induced subgraph, in such a way that centre vertices of Fi are only
adjacent to vertices of Fi, i.e., the subgraph Fi is connected to other vertices of
G only via its poles.

F4

x1 x2

x1

x2

x3

F1 F2

x1

x2 y1

y2

F3

x1

x2 y1

y2

Fig. 4. The graphs F1, F2, F3, F4

For our result we need one additional rule that we apply on a graph G.

Rule 6. If G properly contains Fi for some 1 ≤ i ≤ 4, then remove the centre
vertices of Fi from G and identify the pole vertices of Fi as follows:

• if i = 1, then identify x1 and x2;
• if i = 2, then identify x1, x2, and x3;
• if i = 3 or i = 4, then identify x1 and y1, and also identify x2 and y2.

We prove that Coloring can be solved in polynomial time for H3-free graphs
as follows. Let G be an H3-free graph, and let k ≥ 1 be an integer.

Case 1. k ≤ 2.
Then Coloring can be solved in polynomial time even for general graphs.

Case 2. k ≥ 3.
By Lemma 1, we may assume without loss of generality that δ(G) ≥ 3 and that
G contains no universal vertices. In Lemma 3 we show that Δ(G) ≤ 4. Then
Brooks’ Theorem (Theorem 5.2.4 in [5]) tells us that G is 4-colorable unless
G = K5. In the latter case, G is 5-colorable.

Case 2a. k ≥ 5.
Then (G, k) is a yes-answer.

Case 2b. k = 4.
Then (G, k) is a yes-answer if and only if G �= K5.

Case 2c. k = 3.
We show in Lemma 4 (stated on the next page) that an application of Rule 6 on
G yields an H3-free graph that is 3-colorable if and only if G is 3-colorable. We
apply Rule 6 exhaustively. This takes polynomial time, because each application
of Rule 6 takes linear time and reduces the size of G. In order to maintain the
properties of having minimum degree at least 3 and containing no universal
vertices, we apply Lemma 1 after each application of Rule 6. Hence, afterward,
we have found in polynomial time a (possibly empty) set G of at most n graphs,
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such that G is 3-colorable if and only if each graph in G is 3-colorable. Moreover,
each G′ ∈ G is H3-free, has minimum degree at least 3, contains no universal
vertices, and in addition, does not properly contain any of the graphs F1, . . . , F4.
Then, by Lemma 3, each G′ ∈ G has Δ(G′) ≤ 4. As a consequence, we may apply
Lemma 5. This lemma tells us that a graph G′ ∈ G is 3-colorable if and only if
it does not contain K4 as a subgraph. As we can check the latter condition in
polynomial time and |G| ≤ n, i.e., we have at most n graphs to check, our result
follows.

What is left to do is to state and prove Lemmas 3–5. We omitted the proof
of Lemma 4.

Lemma 3. Let G be an H3-free graph with no universal vertices. If δ(G) ≥ 3,
then Δ(G) ≤ 4.

Proof. Let G = (V,E) be an H3-free graph with no universal vertices. Suppose
that δ(G) ≥ 3. To obtain a contradiction assume that dG(u) ≥ 5 for some vertex
u ∈ V . Because G has no universal vertices, there is a vertex v ∈ NG(u) such
that v has a neighbor x ∈ V \NG[u]. Because dG(v) ≥ δ(G) ≥ 3, we deduce that
v has another neighbor y /∈ {u, x}. Because dG(u) ≥ 5, we also deduce that u has
three neighbors z1, z2, z3 neither equal to v nor to y. However, the subgraph of G
with vertices u, v, x, y, z1, z2, z3 and edges uz1, uz2, uz3, uv, vx, vy is isomorphic
to H3. This is a contradiction, because G is H3-free. .�

Lemma 4. Let G be an H3-free graph with δ(G) ≥ 3 and Δ(G) ≤ 4. Let G′ be
the graph obtained from G after one application of Rule 6. Then G′ is 3-colorable
if and only if G is 3-colorable. Moreover, G′ is H3-free.

Lemma 5. Let G be an H3-free graph with δ(G) ≥ 3 and Δ(G) ≤ 4 that does
not properly contain any of the graphs F1, . . . , F4. Then G is 3-colorable if and
only if G is K4-free.

Proof. Let G = (V,E) be an H3-free graph with δ(G) ≥ 3 and Δ(G) ≤ 4 that
does not properly contain any of the graphs F1, . . . , F4. First suppose that G is
3-colorable. This immediately implies that G is K4-free.

Now suppose that G is K4-free. If Δ(G) ≤ 3, then Brooks’ Theorem (cf. [5])
tells us that G is 3-colorable unless G = K4, which is not the case. Hence, we
may assume that G contains at least one vertex of degree four. To obtain a
contradiction, assume that G is a minimal counter-example, i.e., χ(G) ≥ 4 and
G− v is 3-colorable for all v ∈ V .

Let u be a vertex of degree four in G, and let NG(u) = {v1, v2, v3, v4}. We
first show the following four claims.

(a) G[NG(u)] is C3-free;
(b) G[NG(u)] contains no vertex of degree three;
(c) G[NG(u)] is not isomorphic to P4;

(d) G[NG(u)] is not isomorphic to C4.
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Fig. 5. The structure of the graph G. We note that neighbors of w1, . . . , w4 not equal
to v1, . . . , v4 may not be distinct.

Claims (a)–(d) can be seen as follows. If G[NG(u)] contains C3 as a sub-
graph, then G[NG[u]], and consequently, G contains K4 is a subgraph of G. This
proves (a). If G[NG(u)] contains a vertex of degree three, then G properly con-
tains F2 as G is C3-free due to (a). This proves (b). If G[NG(u)] is isomorphic
to P4, then G properly contains F3. This proves (c). If G[NG(u)] is isomorphic
to C4, then G properly contains F4. This proves (d).

Because G is H3-free, each vj has at most one neighbor in V \NG[u]. Because
δ(G) ≥ 3, this means that G[NG(u)] contains no isolated vertices. Then, by
claims (a)–(d), we find that G[NG(u)] contains exactly two edges. Moreover,
dG(vj) = 3 for j ∈ {1, . . . , 4} as δ(G) ≥ 3.

We assume without loss of generality that v1v2 and v3v4 are edges in G. Let
wj be the neighbor of vj in V \ NG[u] for j = 1, . . . , 4. We note that w1 �= w2

and w3 �= w4, as otherwise G properly contains F1.
Recall that G−u is 3-colorable. Let c be an arbitrary 3-coloring of G−u. We

show that the following two claims are valid for c up to a permutation of the
colors 1, 2, 3.

(1) c(v1) = c(v3) = 1, c(v2) = 2 and c(v4) = 3;
(2) c(w1) = c(w2) = 3 and c(w3) = c(w4) = 2;

Claims (1) an (2) can be seen as follows. If c uses at most two different colors
on v1, . . . , v4, then we can extend c to a 3-coloring of G, which is not possible as
χ(G) ≥ 4. Hence, c uses three different colors on v1, . . . , v4. Then we may assume
without loss of generality that c(v1) = c(v3) = 1, c(v2) = 2 and c(v4) = 3.
This proves (1). We now prove (2). In order to obtain a contradiction, assume
that c(w1) �= c(w2). Because c(v2) = 2, we find that c(w2) = 1 or c(w2) = 3.
If c(w2) = 1, then we change the color of v2 into 3, contradicting (1). Hence,
c(w2) = 3. Then, as c(v1) = 1, we obtain c(w1) = 2. However, we can now change
the colors of v1 and v2 into 3 and 1, respectively, again contradicting (1). We
conclude that c(w1) = c(w2). Hence, c(w1) = c(w2) = 3. By the same arguments,
we find that c(w3) = c(w4). Hence, c(w3) = c(w4) = 2. This proves (2).

The facts that w1 �= w2 and w3 �= w4 together with Claim (2) imply that
w1, w2, w3, w4 are four distinct vertices. We observe that dG(wj) = 3 for j =
1, . . . , 4, as otherwise H3 is a subgraph of G. See Fig. 5 for an illustration. In
this figure we also indicate that w1, w2 have neighbors colored with colors 1 and
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2, and that w3, w4 have neighbors colored with colors 1 and 3, as otherwise we
could recolor w1, . . . , w4 such that c(w1) �= c(w2) or c(w3) �= c(w4), and hence
we would contradict Claim (2). We may also assume without loss of generality
that c is chosen in such a way that the set of vertices with color 1 is maximal,
i.e., each vertex with color 2 or 3 has a neighbor with color 1.

Consider the subgraphQ of G−u induced by the vertices colored with colors 2
and 3. We claim that the vertices w1 and v2 are in the same connected component
of Q. To show this, suppose that there is a connected component Q′ of Q that
contains w1 but not v2. Then we recolor all vertices of Q′ colored 2 with color 3
and all vertices of Q′ colored 3 with color 2. We obtain a 3-coloring of G−u such
that w1 and w2 are colored by distinct colors, contradicting Claim (2). Using
the same arguments, we conclude that w3 and v4 are in the same connected
component of Q. Now we show that all the vertices w1, v2, w3, v4 are in the same
connected component of Q. Suppose that there is a connected component Q′ of
Q that contains w1, v2 but not w3, v4. Then we recolor all vertices of Q′ colored 2
with color 3 and all vertices colored 3 with color 2. We obtain a 3-coloring of
G − u such that w1, w2, w3, w4 are colored with the same color, contradicting
Claim (2).

We observe that dQ(w1) = dQ(v2) = dQ(w3) = dQ(v4) = 1. Then, because
w1, v2, w3, v4 belong to the same connected component of Q, we find that Q
contains a vertex x with dQ(x) ≥ 3.

Let y1, . . . , yr denote the neighbors of x in Q for some r ≥ 3. Because y1, . . . yr
are colored with the same color, they are pairwise non-adjacent. BecauseΔ(G) ≤
4, we find that r ≤ 4. First suppose that r = 4. Because dG(y1) ≥ 3 as δ(G) ≥ 3
and y1, . . . , y4 are pairwise non-adjacent, y1 has at least two neighbors in V \
NG[x]. However, then G contains H3 as a subgraph. This is a contradiction. Now
suppose that r = 3. Recall that the set of vertices with color 1 is maximal. Hence
x is adjacent to a vertex z with color 1. Because G is H3-free and dG(yi) ≥ 3 for
i = 1, 2, 3, we find that z is adjacent to y1, y2, y3. However, since Δ(G) ≤ 4, this
means that G[NG[z]] is isomorphic to F2. Consequently, G properly contains F2.
This contradiction completes the proof of Lemma 5. .�

3.3 The Cases H = H4 and H = H5

For these cases we replace Rule 4 by a new rule. Let G = (V,E) be a graph and
k be an integer.

Rule 4∗. If k ≥ 3 and V \ NG[u] is an independent set for some u ∈ V , take
(G[NG(u)], k − 1).

We prove that Coloring can be solved in polynomial time for H4-free graphs
and for H5-free graphs in the following way. Let G = (V,E) be a graph, and let
k ≥ 1 be an integer. If k ≤ 2, then Coloring can be solved in polynomial time
even for general graphs. Now suppose that k ≥ 3. Lemma 6 (stated on the next
page) shows that Rule 4∗ is correct. Moreover, an application of Rule 4∗ takes
linear time and reduces the number of vertices of G by at least one. Hence, we
can replace Rule 4 by Rule 4∗ in Lemma 1. Due to this, we may assume without
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loss of generality that G is 2-connected and has δ(G) ≥ 3, and moreover, that
V \NG[u] contains at least two adjacent vertices for all u ∈ V . Then Lemma 7
tells us that Δ(G) ≤ 3. By using Brooks’ Theorem (cf. [5]) we find that G is
3-colorable, unless G = K4. Hence, (G, k) is a yes-answer when k ≥ 4, whereas
(G, k) is a yes-answer when k = 3 if and only if G �= K4.

What is left to do is to state and prove Lemmas 6 and 7. We omitted both
proofs.

Lemma 6. Let k ≥ 2 be an integer, and let u be a vertex of a graph G = (V,E)
such that V \NG[u] is an independent set. Then G is k-colorable if and only if
G[NG(u)] is (k − 1)-colorable.

Lemma 7. Let G = (V,E) be a 2-connected graph with δ(G) ≥ 3 such that
V \ NG[u] contains at least two adjacent vertices for all u ∈ V . If G is H4-free
or H5-free, then Δ(G) ≤ 3.
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Abstract. The Planar Contraction problem is to test whether a
given graph can be made planar by using at most k edge contractions.
This problem is known to be NP-complete. We show that it is fixed-
parameter tractable when parameterized by k.

1 Introduction

Numerous problems in algorithmic graph theory, with a large variety of appli-
cations in different fields, can be formulated as graph modification problems. A
graph modification problem takes as input an n-vertex graph G and an integer
k, and the question is whether G can be modified into a graph that belongs
to a prescribed graph class, using at most k operations of a certain specified
type. Some of the most common graph operations that are used in this setting
are vertex deletions, edge deletions and edge additions, leading to famous prob-
lems such as Feedback Vertex Set, Odd Cycle Transversal, Minimum

Fill-In and Cluster Editing, to name but a few. More recently, the study of
graph modification problems allowing only edge contractions has been initiated,
yielding several results that we will survey below. The contraction of an edge
removes both end-vertices of an edge and replaces them by a new vertex, which
is made adjacent to precisely those vertices that were adjacent to at least one of
the two end-vertices. Choosing edge contraction as the only permitted operation
leads to the following decision problem, for each graph class H.

H-Contraction

Instance: A graph G and an integer k.
Question: Does there exist a graph H ∈ H such that G can be contracted to H ,

using at most k edge contractions?

Heggernes et al. [8] presented a 2k+o(k) + nO(1) time algorithm for H-Con-

traction when H is the class of paths. Moreover, they showed that in this case
the problem has a linear vertex kernel. When H is the class of trees, they showed
that the problem can be solved in 4.98knO(1) time, and that a polynomial kernel
does not exist unless NP ⊆ coNP/poly. When the input graph is a chordal graph
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with n vertices and m edges, then H-Contraction can be solved in O(n+m)
time when H is the class of trees and in O(nm) time when H is the class of
paths [7]. Heggernes et al. [9] proved that H-Contraction is fixed-parameter
tractable whenH is the class of bipartite graphs and k is the parameter. This also
follows from a more general result from a recent paper by Marx, O’Sullivan, and
Razgon [14] on generalized bipartization. Golovach et al. [5] considered the class
of graphs of minimum degree at least d for some integer d. They showed that in
this case H-Contraction is fixed-parameter tractable when both d and k are
parameters, W[1]-hard when k is the parameter, and para-NP-complete when d
is the parameter.

The combination of planar graphs and edge contractions has been studied
before in a closely related setting. Kamiński, Paulusma and Thilikos [10] showed
that for every fixed graph H , there exists a polynomial-time algorithm for de-
ciding whether a given planar graph can be contracted to H . Very recently, this
result was improved by Kamiński and Thilikos [11]. They showed that, given
a graph H and a planar graph G, the problem of deciding whether G can be
contracted to H is fixed-parameter tractable when parameterized by |V (H)|.

Our Contribution. We study H-Contraction when H is the class of planar
graphs, and refer to the problem as Planar Contraction. This problem is
known to be NP-complete due to a more general result on H-Contraction

by Asano and Hirata [2]. We show that the Planar Contraction problem
is fixed-parameter tractable when parameterized by k. This result complements
the following results on two other graph modification problems related to planar
graphs. The problem of deciding whether a given graph can be made planar
by using at most k vertex deletions was proved to be fixed-parameter tractable
independently by Marx and Schlotter [15], who presented a quadratic-time al-
gorithm for every fixed k, and by Kawarabayashi [12], whose algorithm runs
in linear time for every k. Kawarabayashi and Reed [13] showed that deciding
whether a graph can be made planar by using at most k edge deletions can also
be done in linear time for every fixed k.

Our algorithm for Planar Contraction starts by finding a set S of at
most k vertices whose deletion transforms G into a planar graph. Such a set
can be found by using either the above-mentioned linear-time algorithm by
Kawarabayashi [12] or the quadratic-time algorithm by Marx and Schlotter [15].
The next step of our algorithm is based on the irrelevant vertex technique devel-
oped in the graph minors project of Robertson and Seymour [17,19]. We show
that if the input graph G has large treewidth, we can find an edge whose con-
traction yields an equivalent, but smaller instance. After repeatedly contracting
such irrelevant edges, we invoke Courcelle’s Theorem [4] to solve the remaining
instance in linear time.

We finish this section by making two remarks that show that we cannot apply
the techniques that were used to prove fixed-parameter tractability of the vertex
deletion and edge deletion variants of Planar Contraction. First, a crucial
observation in the paper of Kawarabayashi and Reed [13] is that any graph that
can be made planar by at most k edge deletions must have bounded genus. This
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property is heavily exploited in the case where the treewidth of the input graph
is large. The following example shows that we cannot use this technique in our
setting. Take a complete biclique K3,r with partition classes A and B, where
|A| = 3 and |B| = r for some integer r ≥ 3. Now make the vertices in A pairwise
adjacent and call the resulting graph Gr. Then Gr can be made modified into a
planar graph by contracting one of the edges in A. However, the genus of Gr is
at least the genus of K3,r, which is equal to r−2

2 [3].
Second, the problem of deciding whether a graph can be made planar by at

most k vertex deletions for some fixed integer k, i.e., k is not part of the input, is
called the k-Apex problem. As observed by Kawarabayashi [12] and Marx and
Schlotter [15], the class of so-called k-apex graphs (graphs that can be made
planar by at most k vertex deletions) is closed under taking minors. This means
that the k-Apex problem can be solved in cubic time for any fixed integer k
due to deep results by Robertson and Seymour [18]. However, we cannot apply
Robertson and Seymour’s result on Planar Contraction, because the class
of graphs that can be made planar by at most k edge contractions is not closed
under taking minors, as the following example shows. Take the complete graph
K5 on 5 vertices. For each edge e = uv, add a path Pe from u to v consisting of
p new vertices for some integer p ≥ k. Call the resulting graph G∗p. Then G∗p can
be made planar by contracting an arbitrary edge of the original K5. However, if
we remove all edges of this K5, we obtain a minor of G∗p that is a subdivision of
the graph K5. In order to make this minor planar, we must contract all edges of
a path Pe, so we need at least p+ 1 > k edge contractions.

2 Preliminaries

Throughout the paper we consider undirected finite graphs that have no loops
and no multiple edges. Whenever we consider a graph problem, we use n to
denote the number of vertices of the input graph. Let G = (V,E) be a graph
and let S be a subset of V . We write G[S] to denote the subgraph of G induced by
S, i.e., the subgraph of G with vertex set S and edge set {uv | u, v ∈ S with uv ∈
E}. We write G− S = G[V \ S], and for any subgraph H of G, we write G−H
to denote G − V (H). We say that two disjoint subsets U ⊆ V and W ⊆ V are
adjacent if there exist two vertices u ∈ U and w ∈ W such that uw ∈ E. Let H
be a graph that is not necessarily vertex-disjoint from G. Then G ∪ H denotes
the graph with vertex set V (G) ∪ V (H) and edge set E(G) ∪E(H), and G ∩H
denotes the graph with vertex set V (G) ∩ V (H) and edge set E(G) ∩ E(H).

The contraction of edge uv in G removes u and v from G, and replaces them
by a new vertex made adjacent to precisely those vertices that were adjacent to
u or v in G. A graph H is a contraction of G if H can be obtained from G by a
sequence of edge contractions. Alternatively, we can define a contraction of G as
follows. An H-witness structureW is a partition of V (G) into |V (H)| nonempty
sets W (x), one for each x ∈ V (H), called H-witness sets, such that each W (x)
induces a connected subgraph of G, and for all x, y ∈ V (H) with x �= y, the
sets W (x) and W (y) are adjacent in G if and only if x and y are adjacent in H .
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Clearly, H is a contraction of G if and only if G has an H-witness structure; H
can be obtained by contracting each witness set into a single vertex. A witness
edge is an edge of G whose end-vertices belong to two different witness sets.

Let W be an H-witness structure of G. For our purposes, we sometimes have
to contract edges in G such that the resulting graph does not contain H as con-
traction. In order to do this it is necessary to destroyW , i.e., to contract at least
one witness edge in W . After all, every edge that is not a witness edge has both
its end-vertices in the same witness set ofW , which means that contracting such
an edge yields an H-witness structure of a contraction of G. Hence, contracting
all such non-witness edges transforms G into H itself. Note that if we destroy
W by contracting a witness edge e in W , the obtained graph still has H as a
contraction if e was a non-witness edge in some other H-witness structure of G.
Hence, in order to obtain a graph that does not have H as a contraction, it is
necessary and sufficient to destroy all H-witness structures of G.

A planar graph G is a graph that can be embedded in the plane, i.e., that
can be drawn in the plane so that its edges intersect only at their end-vertices.
A graph that is actually drawn in such a way is called a plane graph, or an
embedding of the corresponding planar graph. A plane graph G partitions the
rest of the plane into a number of connected regions, called the faces of G. Each
plane graph has exactly one unbounded face, called the outer face; all other
faces are called inner faces. Let C be a cycle in a plane graph G. Then, by the
Jordan Curve Theorem, C divides the plane in exactly two regions: the outer
region of C, containing the outer face of G, and the inner region of C. We say
that a vertex u of G lies inside C if u is in the inner region of C. Similarly, u lies
outside C if u is in the outer region of C. The interior of C with respect to G,
denoted interiorG(C), is the set of all vertices of G that lie inside C. We also call
these vertices interior vertices of C. We say that C separates the vertices that
lie inside C from the vertices that lie outside C. A sequence of mutually vertex-
disjoint cycles C1, . . . , Cq in a plane graph is called nested if there exist disks
Δ1, . . . , Δq such that Ci is the boundary of Δi for i = 1, . . . , q, and Δi+1 ⊂ Δi

for i = 1, . . . , q − 1. We also refer to such a sequence of nested cycles as layers.
We say that a vertex u lies between two nested cycles Ci and Cj with i < j if u
lies in the inner region of Ci and in the outer region of Cj .

A graph G contains a graph H as a minor if G can be modified to H by a
sequence of edge contractions, edge deletions and vertex deletions. Note that a
graph G contains a graph H as a minor if and only if G contains a subgraph that
contains H as a contraction. The subdivision of an edge e = uv in a graph G
removes e from G and replaces it by a new vertex w that is made adjacent to u
and v. A subdivision of a graph G is a graph obtained from G after performing a
sequence of edge subdivisions. In Figure 1, three examples of an elementary wall
are given. The unique cycle that forms the boundary of the outer face is called the
perimeter of the wall. A wall W of height h is a subdivision of an elementary wall
of height h and is well-known to have a unique planar embedding. We also call
the facial cycle of W corresponding to the perimeter of the original elementary
wall the perimeter of W , and we denote this cycle by P (W ).
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Fig. 1. Elementary walls of height 2, 3, and 4 with perimeters of length 14, 22, and 30,
respectively

The r× r grid has all pairs (i, j) for i, j = 0, 1, . . . , r− 1 as the vertex set, and
two vertices (i, j) and (i′, j′) are joined by an edge if and only if |i−i′|+|j−j′| = 1.
The side length of an r × r grid is r. A well-known result of Robertson and
Seymour [16] states that, for every integer r, any planar graph with no r×r grid
minor has treewidth at most 6r− 5. Although it is not known whether a largest
grid minor of a planar graph can be computed in polynomial time, there exist
several constant-factor approximation algorithms. In our algorithm we will use
one by Gu and Tamaki [6]. For any graph G, let gm(G) be the largest integer r
such that G has an r × r grid as a minor. Gu and Tamaki [6] showed that for
every constant ε > 0, there exists a constant cε > 3 such that an r×r grid minor
in a planar graph G can be constructed in time O(n1+ε), where r ≥ gm(G)/cε.
Because we can obtain a wall of height 'r/2( as a subgraph from an r × r grid
minor by deleting edges and vertices, their result implies the following theorem.

Theorem 1 ([6]). Let G be a planar graph, and let h∗ be the height of a largest
wall that appears as a subgraph in G. For every constant ε > 0, there exists a
constant cε > 3 such that a wall in G with height at least h∗/cε can be constructed
in time O(n1+ε).

3 Fixed-Parameter Tractability of Planar Contraction

For our algorithm we need the aforementioned result of Kawarabayashi [12].

Theorem 2 ([12]). For every fixed integer k, it is possible to find in O(n) time
a set S of at most k vertices in an n-vertex graph G such that G− S is planar,
or conclude that such a set S does not exist.

We also need three lemmas, whose proofs are left out due to space restrictions.

Lemma 1. If a graph G = (V,E) can be contracted to a planar graph by using
at most k edge contractions, then there exists a set S ⊆ V with |S| ≤ k such that
G− S is planar.1

When k is fixed, we write k-Planar Contraction instead of Planar Con-

traction. A seminal result of Courcelle [4] states that on any class of graphs
of bounded treewidth, every problem expressible in monadic second-order logic
can be solved in time linear in the number of vertices of the graph.

1 As an aside, we point out that the reverse of this statement is not true. For instance,
take a K5 and subdivide each of its edges p ≥ 3 times. The resulting graph can be
made planar by one vertex deletion, but at least p−1 edge contractions are required.
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Lemma 2. For every fixed integer k, the k-Planar Contraction problem
can be expressed in monadic second-order logic.

Lemma 3. Let B be a planar graph that has an embedding with two nested
cycles C1 and C2, such that C1 is the boundary of its outer face and C2 is the
boundary of an inner face, and such that there are at least two vertex-disjoint
paths that join vertices of C1 and C2. Let I be a graph with B∩I = C2 such that
R = B ∪ I is planar. Then R has an embedding such that C1 is the boundary of
the outer face.

We are now ready to present our main theorem, which shows that Planar

Contraction is fixed-parameter tractable when parameterized by k. At some
places in our proof of Theorem 3 we allow constant factors (independent of k)
to be less than optimal in order to make the arguments easier to follow.

Theorem 3. For every fixed integer k and every constant ε > 0, the k-Planar
Contraction problem can be solved in O(n2+ε) time.

Proof. Let G be a graph on n vertices, and let k be some fixed integer. If G
has connected components L1, . . . , Lq for some q ≥ 2, then we solve for every
possible tuple (k1, . . . , kq) with

∑q
i=1 ki = k the instances (L1, k1), . . . , (Lq, kq).

Hence, we may assume without loss of generality that G is connected. We apply
Theorem 2 to decide in O(n) time whether G contains a subset S of at most k
vertices such that G − S is planar. If not, then we return no due to Lemma 1.
Hence, from now on we assume that we have found such a set S. We write
H = G− S.

Choose ε > 0. We apply Theorem 1 on the graph H to find in O(n1+ε) time
a subgraph W of H that is a wall with height h ≥ h∗/cε, where h∗ denotes the
height of a largest wall in H and cε > 3 is some constant.

Suppose that h ≤ +
√
2k + 1,(12k + 10). Then h∗ ≤ cεh ≤ cε+

√
2k + 1,(12k +

10), i.e., the height of a largest wall in H is bounded by a constant. Consequently,
the treewidth of H is bounded by a constant [16]. Since deleting a vertex from
a graph decreases the treewidth by at most 1, the treewidth of G is at most
|S| ≤ k larger than the treewidth of H . Because k is fixed, this means that the
treewidth of G is bounded by a constant as well. Then Lemma 2 tells us that we
may apply Courcelle’s Theorem [4] to check in O(n) time if G can be modified
into a planar graph by using at most k edge contractions.

Now suppose that h > +
√
2k + 1,(12k + 10). We consider some fixed planar

embedding of H . For convenience, whenever we mention the graph H below, we
always refer to this fixed embedding. The wall W is contained in some connected
component H̃ of H , and we assume without loss of generality that all other
connected components of H lie outside P (W ). Inside P (W ), we choose 2k + 1
mutually vertex-disjoint subwallsW1, . . . ,W2k+1 of height 12k+8 that are packed
inside W in +

√
2k + 1, rows of +

√
2k + 1, subwalls, such that vertices of distinct

subwalls are not adjacent; see Figure 2. Inside each Wi, we choose a subwall W ′
i

of height 12k + 6 such that the perimeters of Wi and W ′
i are vertex-disjoint;

see Figure 2 for a depiction of Wi and W ′
i in case k = 0. By definition, the
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W1 W2 W�√2k+1�

W2k+1

Fig. 2. On the left, a schematic depiction of the wall W with height h >
�
√
2k + 1�(12k+10) and the way the subwallsW1, . . . ,W2k+1, each with height 12k+8,

are packed within W . On the right, a more detailed picture of a subwall Wi of height
8 in case k = 0. The bold blue edges indicate the perimeter of the smaller subwall W ′

i

of height 6.

inner region of P (Wi) is the region that contains the vertices of W ′
i , and the

inner region of P (W ′
i ) is the region that contains no vertex of P (Wi). Note that

the interiors of P (Wi) and P (W ′
i ) are defined with respect to (the fixed planar

embedding of) the graph H . Hence, these interiors may contain vertices of H
that do not belong to W , as W is a subgraph of H .

We now consider the graph G. Recall that H = G − S, and that G is not
necessarily planar. Hence, whenever we speak about the interior of some cycle
below, we always refer to the interior of that cycle with respect to the fixed planar
embedding of H . For i = 1, . . . , 2k + 1, let Si ⊆ S be the subset of vertices of
S that are adjacent to an interior vertex of P (W ′

i ). Observe that the sets Si are
not necessarily disjoint, since a vertex of S might be adjacent to interior vertices
of P (W ′

i ) for several values of i. Also note that no vertex of S belongs to W ,
since W is a wall in the graph H = G − S. We can construct the sets Si in
O(n) time, because the number of edges of G is O(n). The latter can be seen as
follows. The number of edges in G is equal to the sum of the number of edges
of H , the number of edges between H and S, and the number of edges of G[S].
Because H is planar, the number of edges of H is at most 5|V (H)| ≤ 5n. Hence,
the number of edges of G is at most 5n+ kn+ 1

2k(k − 1) = O(n) for fixed k.
We say that a set Si is of type 1 if Si is non-empty and if every vertex y ∈ Si

also belongs to some set Sj for j �= i, i.e., every vertex y ∈ Si is adjacent to some
vertex z that lies inside P (W ′

j) for some j �= i; see Figure 3 for an illustration.
Otherwise we say that Si is of type 2. We can check in O(n) time how many sets
Si are of type 1. We claim the following.

Claim 1. If there are at least k+1 sets Si of type 1, then (G, k) is a no-instance.

We prove Claim 1 as follows. Suppose that there exist  ≥ k + 1 sets Si of
type 1, say these sets are S1, . . . , S�. Then for each i = 1, . . . ,  we can define a
K5-witness structure Xi of a subgraph of G as follows. We divide the perimeter
of Wi into three connected non-empty parts in the way illustrated in Figure 3.
The vertices of each part will form a separate witness set of Xi; let us call these
witness sets X1

i , X
2
i , X

3
i . Let H ′i be the subgraph of H induced by the vertices
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Wi Wj

Si

y

zx

Fig. 3. Two subwalls Wi and Wj , where the bold blue edges indicate the perimeters
P (W ′

i ) and P (W ′
j) of the smaller subwalls W ′

i and W ′
j . Vertex y is in Si, since it is

adjacent to an interior vertex x of P (W ′
i ). If, for every y ∈ Si, there is an edge between

y and an interior vertex z of P (W ′
j) for some j �= i, then Si is of type 1. The three

shaded areas indicate how the perimeter of Wi is divided into three non-empty parts,
each forming a separate witness set of a K5-witness structure Xi of a subgraph of G.

that lie inside P (Wi) in H . The fourth set X4
i of the witness structure Xi consists

of all the vertices of the connected component of H ′i that contains W ′
i . Let G′i

be the graph obtained from G by deleting all the vertices of P (Wi) and all the
vertices that lie inside P (Wi) in H , i.e., G′i = G − P (Wi) − interiorH(P (Wi)).
Let D be the connected component of G′i that contains the perimeter P (W ) of
the large wall W . It is clear that D contains all vertices that are on or inside
P (Wj) for every j �= i. Hence, due to the assumption that Si is of type 1, all
vertices of Si also belong to D. The fifth set X5

i is defined to be the vertex set of
D. Let us argue why these five sets form a K5-witness structure of a subgraph
of G.

It is clear that each of the sets X1
i , X

2
i , X

3
i is connected, and that they are

pairwise adjacent. The set X4
i is connected by definition. The choice of the

subwallW ′
i within Wi ensures that X

4
i is adjacent to each of the setsX1

i , X
2
i , X

3
i .

Let us consider the set X5
i . By definition, X5

i is connected. Since X5
i contains the

perimeter P (W ) of the large wall W and Wi lies inside P (W ), set X5
i is adjacent

to X1
i , X

2
i and X3

i . Since Si is of type 1 and hence non-empty, there is a vertex
y ∈ Si that is adjacent to a vertex x that lies inside P (W ′

i ) by the definition
of Si. We already argued that X5

i contains all vertices of Si, so y ∈ X5
i . Recall

that H̃ is the unique connected component of H that contains the wall W , and
that all connected components of H other than H̃ were assumed to lie outside
P (W ) in H . Because x lies inside P (W ′

i ), this means that x is in the connected
component of H ′i that contains W ′

i , implying that x ∈ X4
i . Consequently, the

edge between x and y ensures the adjacency between X4
i and X5

i .
We now consider the  different K5-witness structures Xi of subgraphs of G

defined in the way described above, one for each i ∈ {1, . . . , }. Let us see how
such a K5-witness structure Xi can be destroyed by using edge contractions only.
Denote by Ei the set of edges of G incident with the vertices of X1

i ∪ · · · ∪X4
i

for i = 1, . . . , . We can only destroy a witness structure Xi by edge contractions
if we contract the edges of at least one path that has its endvertices in different
witness sets of Xi and its inner vertices (in case these exist) not belonging to any
witness set of Xi. Clearly, such a path always contains an edge of Ei. Hence, in
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order to destroy Xi, we have to contract at least one edge of Ei. Because the sets
E1, . . . , E� are pairwise disjoint by the construction of the witness structures Xi,
we must use at least  ≥ k + 1 edge contractions in order to make G planar.
Hence, G is a no-instance. This proves Claim 1.

Due to Claim 1, we are done if there are at least k + 1 sets Si of type 1. Note
that every step in our algorithm so far took O(n1+ε) time, as desired. Suppose
that we found at most k sets Si of type 1. Because the total number of sets
Si is 2k + 1, this means that there are at least k + 1 sets Si of type 2. Let Si
be a set of type 2. If Si is non-empty, then Si contains a vertex x that is not
adjacent to an interior vertex of P (W ′

j) for any j �= i, as otherwise Si would
be of type 1. Consequently, Si is the only set of type 2 that contains x. Since
|S| ≤ k and there are at least k + 1 sets of type 2, at least one of them must be
empty. Without loss of generality, we assume from now on that S1 = ∅.

We will now exploit the property that S1 = ∅, i.e., that none of the vertices
in the interior of P (W ′

1) is adjacent to any vertex of S. We define a triple layer
as the perimeter of a wall with the perimeters of its two largest proper subwalls
inside, such that the three perimeters are mutually vertex-disjoint, and the mid-
dle perimeter is adjacent to the outer and inner perimeter. We define a sequence
of nested triple layers in the same way as we defined a sequence of layers in
Section 2. Because W ′

1 has height 12k + 6, there exist two adjacent vertices u
and v inside P (W ′

1), such that u and v are separated from the vertices outside
P (W ′

1) by 2k + 1 nested triple layers L1, . . . , L2k+1, i.e., u and v lie inside the
inner perimeter of triple layer L2k+1.

Let G′ be the graph obtained from G after contracting uv. The following claim
shows that uv is an “irrelevant” edge, i.e., that uv may be contracted without
loss of generality.

Claim 2. (G, k) is a yes-instance if and only if (G′, k) is a yes-instance.

We prove Claim 2 as follows. First suppose that (G, k) is a yes-instance. This
means that G can be modified into a planar graph F by at most k edge contrac-
tions. Let E′ ⊆ E(G) be a set of at most k edges whose contraction modifies G
into F . Observe that we can contract the edges in E′ in any order to obtain F
from G. If uv ∈ E′, then we can first contract uv to obtain the graph G′, and
then contract the other edges in E′ to modify G′ into the planar graph F . If
uv /∈ E′, then we first contract the edges in E′ to modify G into F , and then
contract the edge uv. This leads to a graph F ′. Since planar graphs are closed
under edge contractions, F ′ is planar. Moreover, F ′ can also be obtained from
G′ by contracting the edges in E′. We conclude that (G′, k) is a yes-instance.

Now suppose that (G′, k) is a yes-instance. This means that G′ can be modified
into a planar graph F ′ by at most k edge contractions. Let E′ ⊆ E(G′) be a set
of at most k edges whose contraction modifies G′ into F ′. Let F be the graph
obtained from G by contracting all the edges of E′. We will show that F is planar
as well.

Recall that S1 = ∅, and that we defined 2k + 1 triple layers L1, . . . , L2k+1

inside P (W ′
1). Let Qi, Q

′
i, and Q′′i denote the three perimeters in H that form
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the triple layer Li for i = 1, . . . , 2k + 1, where Qi is the outer perimeter, Q′i the
middle perimeter, and Q′′i the inner perimeter. Let Yi be the set of all vertices
of H that are in Qi ∪Q′i ∪ Q′′i or that lie in the intersection of the inner region
of Qi and the outer region of Q′′i , i.e., Yi is the set of vertices that lie on or “in
between” the perimeters Qi and Q′′i in H . Because we applied at most k edge
contractions in G′, there exists a set Yi, for some 1 ≤ i ≤ 2k+1, such that none
of its vertices is incident with an edge in E′. This means that Li is a triple layer
in F ′ as well. We consider a planar embedding of F ′, in which Q′′i is in the inner
region of Q′i, and Q′i is in the inner region of Qi; for convenience, we will denote
this planar embedding by F ′ as well.

We will now explain how to apply Lemma 3. We define C1 and C2 to be the
perimeters Q′i and Q′′i , respectively. We define B as the subgraph of F ′ induced
by the vertices that either are in Q′i ∪Q′′i or lie between Q′i and Q′′i in F ′. Here,
we assume that B is connected, as we can always place connected components
of B that do not contain vertices from Q′i ∪Q′′i outside Q′i. Because Q′i and Q′′i
are perimeters of subwalls in H , and Q′′i is contained inside Q′i, there exist at
least two vertex-disjoint paths P1, P2 in H joining Q′i and Q′′i using vertices of
Yi only. Because none of the vertices in Yi is incident with an edge in E′, the
two paths P1, P2 are also vertex-disjoint in F ′, and consequently in B.

We now construct the graph I. Because F ′ is a contraction of G′, and G′ is a
contraction of G, we find that F ′ is a contraction of G. Let W be an F ′-witness
structure of G corresponding to contracting exactly the edges of E′ ∪{uv} in G.
Then we define I to be the subgraph of G induced by the union of the vertices of
all the witness sets W (x) with x on or inside Q′′i in F ′. Just as we may assume
that B is connected, we may also assume that the subgraph of F ′ induced by the
vertices that lie on or inside Q′′i is connected. Because witness sets are connected
by definition, we then find that I is connected.

Because the edge uv is contracted when G is transformed into F ′, u and v
belong to the same witness set ofW . Let x∗ be the vertex of F ′, such that u and
v are in the witness set W (x∗). Recall that all the vertices of Q′′i and the vertices
u and v belong to the wall W ′

1. Since u and v lie inside Q′′i in H and walls have
a unique plane embedding, x∗ lies inside Q′′i in F ′. Hence, u and v are vertices
of I. Also recall that none of the vertices of Yi, and none of the vertices of Q′′i in
particular, is incident with an edge of E′. Hence, the vertices of Q′′i correspond
to witness sets ofW that are singletons, i.e., that have cardinality 1. This means
that we can identify each vertex of Q′′i in F ′ with the unique vertex of G in the
corresponding witness set. Hence, we obtain that B ∩ I = Q′′i = C2.

We now prove that R = B ∪ I is planar. For doing this, we first prove that B
contains no vertex x with W (x) ∩ S �= ∅, and that I contains no vertex from S.
To see that B contains no vertex x with W (x)∩S �= ∅, assume that x is a vertex
of B and s is a vertex of S with s ∈ W (x). Recall that no vertex from Q′i is
incident with an edge in E′. Hence, we can identify each vertex in Q′i in F ′ with
the unique vertex of the corresponding witness set, just as we did earlier with
the vertices of Q′′i . Because s ∈ W (x), this means that x is not in Q′i. Because
B is connected, we find that F ′ contains a path from x to a vertex y in Q′i that
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contains no vertex from Qi. Note that since y is in Q′i, y is a vertex in G as well.
Because W (x) induces a connected subgraph of G by definition, this path can
be transformed into a path in G from s to y that does not contain a vertex from
Qi. This is not possible, because S1 = ∅ implies that every path in G from s to
y must go through Qi.

We now show that I contains no vertex from S. In order to obtain a con-
tradiction, assume that I contains a vertex s ∈ S. Because I is connected, this
means that G contains a path from s to a vertex in Q′′i that contains no vertex
from Qi (and also no vertex from Q′i). This is not possible, because S1 = ∅.

Let R′ be the subgraph of G induced by the vertices in the sets W (x) with
x ∈ V (B) and the vertices of I. Since we proved that R′ contains no vertices
from S, R′ is a subgraph of H . Consequently, R′ is planar because H is planar.
As a result, R is planar because R can be obtained from R′ by contracting all
edges in every set W (x) with x ∈ V (B), and planar graphs are closed under
edge contractions. As we have shown that R = B∪I is planar, we are now ready
to apply Lemma 3. This lemma tells us that R has an embedding R, such that
Q′i = C1 is the boundary of the outer face. Now consider the embedding that
we obtain from the (plane) graph F ′ by removing all vertices that lie inside Q′i.
We combine this embedding with R to obtain a plane embedding of a graph
F ∗. We can obtain F from F ∗ by contracting all edges in E′ that are incident
to a vertex in I; recall that u and v are both in I and that uv is not an edge of
E′. Because planar graphs are closed under edge contractions, this means that
F is planar. This completes the proof of Claim 2.

We can find the irrelevant edge uv mentioned just above Claim 2 in O(n)
time. Since all other steps took O(n1+ε) time, we used O(n1+ε) time so far.
After finding the edge uv, we contract it and continue with the smaller graph
G′. Because removing S will make G′ planar as well, we can keep S instead of
applying Theorem 2 again. Hence, we apply Theorem 2 only once. Because G
has n vertices, and every iteration reduces the number of vertices by exactly one,
the total running time of our algorithm is O(n2+ε). This completes the proof. .�

4 Conclusions

We proved that Planar Contraction is fixed-parameter tractable when pa-
rameterized by k. Very recently, Abello et al. [1] independently showed that the
closely related problem that is to test whether a given graph can be made pla-
nar by contracting the edges of at most k mutually vertex-disjoint subgraphs,
each of which of size at most , can be solved in quadratic time for any fixed
k and  ≥ 2. Their algorithm can easily be modified to show that k-Planar
Contraction can be solved in quadratic time for any fixed k (just as we can
modify our algorithm to solve their problem).

A natural direction for future work is to consider the class H that consists of
all H-minor free graphs for some graph H and to determine the parameterized
complexity ofH-Contraction for such graph classes. Our proof techniques rely
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on the fact that we must contract to a planar graph, and as such they cannot be
used directly for this variant. Hence, we pose this problem as an open problem.
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Abstract. Given an edge-weighted graph G and ε > 0, a (1+ε)-spanner
is a spanning subgraph G′ whose shortest path distances approximate
those of G within a factor of 1+ε. For G from certain graph families (such
as bounded genus graphs and apex graphs), we know that light spanners
exist. That is, we can compute a (1+ε)-spannerG′ with total edge weight
at most a constant times the weight of a minimum spanning tree. This
constant may depend on ε and the graph family, but not on the particular
graph G nor on the edge weighting. The existence of light spanners is
essential in the design of approximation schemes for the metric TSP (the
traveling salesman problem) and similar graph-metric problems.

In this paper we make some progress towards the conjecture that
light spanners exist for every minor-closed graph family: we show that
light spanners exist for graphs with bounded pathwidth, and they are
computed by a greedy algorithm. We do this via the intermediate con-
struction of light monotone spanning trees in such graphs.

1 Introduction

1.1 Light Spanners

Suppose G is a connected undirected graph where each edge e has length (or
weight) w(e) ≥ 0. Let dG(u, v) denote the length of the shortest path between
vertices u and v. Suppose G′ is a spanning subgraph of G, where each edge
of G′ inherits its weight from G; evidently dG(u, v) ≤ dG′(u, v). Fix ε > 0. If
dG′(u, v) ≤ (1+ε) ·dG(u, v) (for all u, v), then we say that G′ is a (1+ε)-spanner
of G. In other words, the metric dG′ closely approximates the metric dG.

Let w(G′) denote the total edge weight of G′, and let MST(G) denote the min-
imum weight of a spanning tree in G. We are interested in conditions on G that
guarantee the existence of a (1 + ε)-spanner G′ with bounded w(G′)/MST(G).
Suppose G is a family of undirected graphs. We say G has light spanners if the
following holds: for every ε > 0 there is a bound f(ε), so that for any edge-
weighted G from G, G has a (1 + ε)-spanner G′ with w(G′) ≤ f(ε) ·MST(G).
Less formally, we say that G′ is a light spanner for G. Note f(ε) depends on ε
and G, but not on G or w.

We know that if a graph family has unbounded clique minors, then it does
not have light spanners; just consider a clique with uniform edge weights. We
conjecture the converse [7]:

B. Rovan, V. Sassone, and P. Widmayer (Eds.): MFCS 2012, LNCS 7464, pp. 467–477, 2012.
c© Springer-Verlag Berlin Heidelberg 2012
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Conjecture 1. Any graph family with a forbidden minor has light spanners.

Our pursuit of this conjecture is guided by the Robertson-Seymour theory [12],
which characterizes minor-closed graph families using four elements: bounded
genus graphs, apices, vortices, and repeated clique-sums. We already know that
if G has bounded genus or is an apex graph, then it has light spanners [7,8]. In
particular vortices are bounded pathwidth subgraphs, stitched inside the faces
of a bounded genus graph.

1.2 Motivation

Conjecture 1 seems like a natural question, and its proof would address the
“main difficulty” discussed in the concluding remarks of Demaine et al. [6], in the
general context of approximation algorithms on weighted graphs. As a specific
motivating problem, we review some results on the metric TSP, the Traveling
Salesman Problem with triangle inequality. (For some other problems, see [3,4].)

We are given an edge-weighted graph G, and we seek a cyclic order of its
vertices with minimum total distance as measured by dG. Equivalently, we want
a minimum weight cyclic tour in G visiting each vertex at least once. Let OPT(G)
denote the minimum tour weight; it is well known that MST(G) ≤ OPT(G) ≤
2 · MST(G). We seek an approximation scheme: an algorithm which takes as
inputs the weighted graph G and ε > 0, and which outputs a tour with weight
at most (1 + ε) ·OPT(G).

The problem is MAX SNP-hard [11], so we consider approximation schemes
where the input graphG is restricted to some graph family G (e.g., planar graphs).
We would like a PTAS (an approximation scheme running in time O(ng(ε)), for
some function g), or better yet an EPTAS (an approximation scheme running in
time O(g(ε) · nc), where the constant c is independent of ε).

Suppose G is a graph family, and that for any G ∈ G we can compute a
(1+ ε)-spanner G′ with w(G′) ≤ f(ε) ·MST(G). Then we may attempt to design
a PTAS (or an EPTAS) for the metric TSP on G, as follows:
1. On input G and ε, first compute G′, a (1 + ε/2)-spanner of G, with weight

at most f(ε/2) ·MST(G).
2. Choose δ = (ε/2)/f(ε/2). Apply some algorithm finding a tour in G′ with

cost at most OPT(G′) + δ · w(G′).
3. Return the tour, with cost at most (1+ε/2)·OPT(G)+δ·(f(ε/2)·MST(G)) ≤

(1 + ε) · OPT(G). (For other metric optimization problems, it may be less
trivial to lift a solution from G′ back to G.)

Step 2 looks like the original problem, except now we allow an error term pro-
portional to w(G′) instead of OPT(G′). This approach has already succeeded
for planar graphs [2,9] and bounded genus graphs [6,7].

A recent result of Demaine et al. [5, Thm. 2] implies a PTAS for metric
TSP when G is any graph class with a fixed forbidden minor. Since we do not
know that G has light spanners, for step 1 they substitute a looser result [8],
finding a (1 + ε)-spanner G′ with weight O((log n)/ε) · MST(G) (the hidden
constant depending on G). In step 2 their algorithm runs in time 2O(1/δ+log n).
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Their 1/δ is O(w(G′)/(MST(G) · ε)) = O((log n)/ε2), so their running time is

nO(1/ε2). If we could compute light spanners for G, then δ would improve to
something independent of n, and this would yield an EPTAS for metric TSP
on G. (Or alternatively, it would yield an approximation scheme allowing ε to
slowly approach zero, as long as 1/δ stays O(log n).)

1.3 Our Work

In this paper we make some progress towards Conjecture 1: we show that light
spanners exist for bounded pathwidth graphs.

Theorem 1. Bounded pathwidth graphs have light spanners, computable by a
greedy algorithm.

We prove this in Section 3. This result is not algorithmically interesting by itself,
since metric TSP (and many other problems) is exactly solvable in polynomial
time when G has bounded pathwidth, or even bounded treewidth. Rather, we
regard this as progress towards the conjecture, and towards an EPTAS for metric
TSP (and similar problems) on graphs with forbidden minors. See Section 4 for
some further remarks.

2 Preliminaries

2.1 Charging Schemes

In order to exhibit light spanners in a weight-independent way, we use charging
schemes [8]. (We use the notion called “0-schemes” in [8], not the more general
“ε-schemes” required for apex graphs.) Suppose each edge of graph G can hold
some quantity of charge, initially zero. A detour is an edge e ∈ E and a path
P such that e + P is a simple cycle in G. For each detour (e, P ) we introduce
a variable x(e,P ) ≥ 0. Each x(e,P ) describes a charging move: it subtracts x(e,P )

units of charge from edge e, and adds x(e,P ) units of charge to each edge of P .
When x(e,P ) > 0, we say “e charges P”.

Given graph G, a spanning tree T , and a number v, a charging scheme from
G to T of value v is an assignment of nonnegative values to the x(e,P ) variables
(i.e., a fractional sum of detours) meeting the three conditions listed below. Here
out(e) denotes the total charge subtracted from edge e, in(e) denotes the total
charge added to e (as part of various detour paths), and net(e) = in(e)− out(e)
is the total charge on e after all the moves are done:

(1) out(e) ≥ 1 for all e ∈ G− T,
(2) net(e) ≤ 0 for all e ∈ G− T,
(3) net(e) ≤ v for all e ∈ T.

Note “e ∈ G−T ” means e is an edge of G but not T . As we’ll see in Theorem 2,
charging schemes imply light spanners.
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Definition 1. An acyclic scheme is a charging scheme with two additional
conditions:

(4) If edge e charges some path, then e ∈ G− T .
(5) There is an ordering of the edges such that whenever edge e1 charges a path

containing edge e2, e1 precedes e2.

For example, planar graphs have integral acyclic schemes of value v = 2 [1].

Definition 2. Suppose we have detours (e1, P1) and (e2, P2), with e2 ∈ P1 and
e1 �∈ P2. Their shortcut is the detour (e1, P

′), where P ′ is the path derived from
P1 by replacing e2 with P2, and then reducing that walk to a simple path.

Lemma 1. Suppose we have an acyclic scheme of value v from G to T , and an
edge e in G− T . Then there is an acyclic scheme of value v from G− e to T .

Proof. Let e2 = e. While in(e2) is positive, we find some e1 charging a path P1

containing e2. Since net(e2) ≤ 0, e2 also charges some path P2. P2 cannot contain
e1, since the scheme is acyclic. Let α = min(x(e1,P1), x(e2,P2)). Now reduce both
x(e1,P1) and x(e2,P2) by α, and increase x(e1,P ′) (their shortcut) by α. After this
change all the conditions are still satisfied, except possibly for condition (1) at e2.
Repeat until in(e2) reaches zero. Finally remove e2 and any remaining charges
out of e2. .�

Theorem 2. Suppose G is a graph with spanning tree T , and we have an acyclic
scheme from G to T of value v. Then for any ε > 0, and for any non-negative
edge-weighting w on G, a simple greedy algorithm finds a (1 + ε)-spanner G′ in
G containing T , with total weight w(G′) ≤ (1 + v/ε) · w(T ).

We use the following greedy algorithm of Althöfer et al. [1], modified to force
the edges of T into G′:

Spanner(G, T , 1 + ε):
G′ = T
for each edge e ∈ G− T , in non-decreasing w(e) order

if (1 + ε) · w(e) < dG′(e) then
add edge e to G′

return G′

The proof of Theorem 2 is a variant of previous arguments by LP duality [7,8],
for completeness we sketch it here.

Proof. Since G′ is computed by the greedy algorithm, it is clearly a (1 + ε)-
spanner of G containing T ; the issue is to bound its weight w(G′). By Lemma 1
we have an acyclic scheme from G′ to T of value v.

Consider a detour (e, P ) in G′ with e �∈ T . We claim (1 + ε) · w(e) < w(P )
(to see this, compare e with the last edge inserted by the algorithm on the cycle
e+ P ). Multiply through by x(e,P ) and we have this:

x(e,P ) · ε · w(e) ≤ x(e,P ) · (w(P ) − w(e))
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When e ∈ T this is still valid, since x(e,P ) = 0. Now sum over all detours (e, P ):∑
(e,P )

x(e,P ) · ε · w(e) ≤
∑
(e,P )

x(e,P ) · (w(P ) − w(e))

ε ·
∑
e∈G′

w(e) · out(e) ≤
∑
e∈G′

w(e) · net(e)

ε · w(G′ − T ) ≤ v · w(T )

So w(G′) = w(T ) + w(G′ − T ) ≤ (1 + v/ε) · w(T ). .�

2.2 Bounded Pathwidth and Monotone Trees

Suppose G = (V,E) is a graph, P is a path (disjoint from G), and B = (Bi)i∈P
is a collection of subsets of V (bags) indexed by vertices i in P . We call the pair
(P,B) a path decomposition of G if the following conditions hold: (1)

⋃
i∈PBi =

V ; (2) for every edge {u, v} ∈ E, there is at least one bag Bi with {u, v} ⊆ Bi;
(3) for every v ∈ V , {i : v ∈ Bi} is connected (an interval) in P . The pathwidth
of the decomposition is the maximum bag size minus one, and the pathwidth of
G is the minimum pathwidth of any path decomposition of G.

Given (P,B), we may lay out P on the line, and regard G as a subgraph of an
interval graph. That is, for each vertex v we have a line interval Iv (corresponding
to an interval in P ), and we have Iu

⋂
Iv �= ∅ whenever {u, v} ∈ E, and at most

k+1 intervals overlap at any point of the line. For convenience we may eliminate
ties via small perturbation, so that all the interval endpoints are distinct. In
particular, let left(v) denote the leftmost point of Iv.

Suppose T is a rooted tree in G. We say T is amonotone tree if for every vertex
v in T with parent p, we have left(p) < left(v). When T is a path rooted at an
endpoint, we say it is a monotone path. In particular if T is a monotone spanning
tree in G, then from any vertex v, we can find a monotone path in T from v
to the root of T (the vertex with the leftmost interval). For this process, it is
convenient to imagine that edges connect intervals at their leftmost intersection
point.

3 Main Argument

We are given ε > 0, a connected edge-weighted graph G with n vertices, and an
interval representation {Iv} of G with pathwidth k. We want to find a (1 + ε)-
spanner G′ in G of low weight. First we apply some reductions to simplify G:

Nice Decomposition. We may assume that each pair of consecutive bags (as
vertex sets) differ by only one vertex. This can be enforced by an argument
similar to the construction of nice tree-decompositions [10]: if two consecutive
bags differ on m ≥ 2 vertices, we introduce m − 1 intermediate bags, in such
a way that each pair differs on only one vertex, and we do not increase the
maximum bag size. This does not modify G at all.
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Bounded Degree Assumption. We may assume each vertex appears in O(k)
bags, and so the maxdegree of G is O(k). To enforce this, we copy the bags of
G from left to right. After each group of k original bags, ending with a bag B,
we insert |B| “replacer” bags, each of which replaces one vertex v ∈ B with a
copy v′, connected to v by an edge of length zero. This ends with a bag B′,
where every vertex v ∈ B has been replaced by a copy v′ ∈ B′. See Figure 1. We
continue in this way (using the copies in place of the originals) across the entire
path decomposition. If we aren’t careful the pathwidth may increase by one, but
this does not matter for our asymptotic results. The original graph is obtained
by contracting a set S of weight-zero edges in the modified graph. So given a
spanner G′ in this modified graph, we may contract S in G′ ∪ S to recover a
spanner (of no greater weight) in the original.

Completion Assumption. We may assume that G is completed ; that is, it
contains all edges allowed by its overlapping intervals. In other words: we have
a clique in each bag, G is an interval graph. For each absent edge e = {u, v},
we simply add it with weight w(e) equal to the shortest path length dG(u, v).
This does not change dG at all. Given a spanner G′ in the completed graph, we
recover a spanner in the original graph by replacing each completion edge by the
corresponding shortest path.

Fig. 1. Each vertex v in bag B is replaced by v′ in bag B′

Proof (of Theorem 1). We assume all the above reductions have been applied:
the input graph G is a connected edge-weighted interval graph of width k, each
bag in its path decomposition introduces at most one vertex, and each vertex of
G has degree O(k).

By Lemma 2 (below), we compute a monotone spanning tree T with w(T ) =
O(k2) ·MST(G). By Lemma 3 (below), we exhibit an acyclic charging scheme
from G to T of value v = O(k). Finally we apply the greedy algorithm, which
computes a (1 + ε)-spanner G′. By Theorem 2, w(G′) ≤ (1 + v/ε) · w(T ) =
O(k3/ε) ·MST(G). .�
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Lemma 2. Given G as above, it contains a monotone spanning tree T with
w(T ) ≤ O(k2) ·MST(G).

Proof. Choose a minimum spanning tree T ∗, so w(T ∗) = MST(G). Let Il and
Ir be the leftmost and rightmost intervals. Let P1 be a shortest path from Il to
Ir; since G is completed, we may assume P1 is monotone, as in Figure 2. Note
w(P1) ≤ w(T ∗).

Consider the components T1
∗, T2

∗, ..., Tm
∗ of T ∗ − V (P1). Let ei be an edge

connecting the leftmost point of T ∗i to a vertex of P1 (it exists by completion).
For each Ti

∗, we recursively compute a monotone spanning tree Ti of G[V (Ti
∗)].

Finally, T = P1 ∪
⋃
i(Ti ∪ ei).

It is clear that T is monotone, but we must account for the total weight of
w(T ). For each component Ti

∗, let fi be an edge of T ∗ connecting Ti
∗ to P1

(there must be at least one). By triangle inequality, we see w(ei) is at most
w(Ti

∗) + w(fi) + w(P1,i), where P1,i is a subpath of P1 from the endpoint of ei
to the endpoint of fi. Note the fi’s and T ∗i ’s are disjoint parts of T ∗, but the
subpaths may overlap inside P1.

Fig. 2. P1 and the Ti
∗ subtrees. Each fi in T

∗ is replaced by an ei in T .

An edge e ∈ P1 appears in at most k − 1 of the P1,i subpaths, since each
subpath witnesses another vertex (from T ∗i ) that must appear in the bag with e.
So
∑
i w(ei) ≤

∑
i[w(fi)+w(Ti

∗)+w(P1,i)] ≤ w(T ∗)+(k−1)w(P1) ≤ k ·w(T ∗).
Since w(T ) ≤ O(k ·w(T ∗))+

∑
i w(Ti) and

∑
iw(Ti

∗) ≤ w(T ∗), a simple depth-k
recursion finishes our bound. .�

Remark: we do not have to compute T as in Lemma 2; it suffices to use any
light enough monotone spanning tree. A natural choice is to let T be the lightest
monotone spanning tree, which we compute as follows. Start with just the root
(in the leftmost bag), and grow the tree in a left-to-right scan of the bags: each
time a bag B introduces a new vertex v, add an edge connecting v to its nearest
neighbor in B (which is already in T ).

In the completed G, a triangle move is a charging move where a non-tree edge
e charges a path P of length two, where at most one edge of P is not in T . We
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now define T (2), a graph whose edges represent triangle moves. Each vertex jk of
T (2) corresponds to an edge {j, k} in G. We also represent the vertex jk by the
interval Ijk = Ij∩Ik. To define the edges of T (2), we first define a parent for each
vertex jk. If {j, k} is an edge of T , then jk has no parent. Otherwise, suppose
left(j) < left(k) (else swap them), and let i be the parent of k in T ; i must exist
since k is not the root. Note {i, j, k} is a triangle in G. Now we say the parent of
jk is ij, and we add the edge {ij, jk} in T (2). Note left(ij) < left(jk), so these
parent links are acyclic. Thus T (2) is a forest, with each component rooted at
a vertex corresponding to an edge of T . Figure 3 illustrates a simple monotone
tree T and its forest T (2).

(a) a monotone tree T (b) T (2) produced from T

Fig. 3. Horizontal lines are intervals, dashed verticals are edges of T

Lemma 3. Given G as above with a monotone spanning tree T , there is an
acyclic charging scheme from G to T of value O(k).

Proof. Recall T (2) is a forest. Fix a component C of T (2); it is a tree, rooted at
a vertex r corresponding to an edge of T , and that is the only such vertex in
C. Consider a directed Euler tour of C, traversing each edge twice. Delete each
tour edge out of r, so we get a list of directed paths, each of the form

e1 → e2 → · · · em → r

where each vertex ei corresponds to some edge of G−T . Since C is a tree, these
paths are vertex disjoint (except at r). However, a vertex may appear more
than once on the same path; call an appearance ei a repeat if the same vertex
appeared earlier on the path. Let P be the collection of all these paths, from all
components of T (2).

We now propose a charging scheme (which fails to be acyclic). Recall how we
constructed edges in T (2): we connect each vertex jk (corresponding to an edge
of G − T ) to its parent ij. If a path in P traverses this edge in the direction
jk → ij, we add the triangle move where edge {j, k} charges one unit to path
j − i − k. If a path traverses this edge in the other direction ij → jk (so ij is
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(a) some edges of T (solid) and G-T
(dashed)

(b) a shortcut tour in T (2), ending at ac

Fig. 4. Edges of G (left) are vertices of T (2) (right)

not a tree edge), we add the triangle move where edge {i, j} charges one unit to
path i− k − j. In either direction, the tree edge {i, k} is charged.

For an edge e ∈ G − T , the corresponding vertex appears at least once on a
path, and it has at least as many out-edges as in-edges, so our proposed scheme
satisfies conditions (1) and (2). For an edge e ∈ T , we must bound the number
of times it is charged. Since G has maxdegree O(k), e appears in O(k) distinct
triangles, and it is charged at most twice per triangle (this includes the charges
it receives in its role as r). So if we choose v = O(k), condition (3) is satisfied.
Also there are no charges out of tree edges, so condition (4) is also satisfied.

However, this charging scheme does not satisfy condition (5); if a vertex (cor-
responding to an edge e ∈ G−T ) has a repeat appearance on its path, then there
is no consistent way to order the edges. To fix this, we eliminate all “repeat” ap-
pearances using shortcuts. That is, whenever we have a sequence e1 → e2 → e3
where e2 is a repeat, we shortcut out e2. Note such shortcuts can be combined.
For example if we have a sequence e1 → e2 → e3 → e4 → e5, corresponding to
four triangle moves, it is possible to shortcut out e2, e3, e4 (in any order), and
the result is a single charge from e1 to a path containing e5 (the rest of the
charged path is all tree edges). After eliminating all repeats by shortcuts, we get
the desired acyclic scheme. .�

4 Conclusion and Further Work

Regarding our main result, it is not clear whether we really need to force the
edges of a monotone T in the greedy spanner computation. Also, we might hope
to reduce the O(k3) factor to something smaller.

The next obvious target is bounded treewidth graphs, a prerequisite for han-
dling clique sums as in the Robertson-Seymour characterization.
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There are several obvious directions to try extending the current approach
to further minor-closed graph families. First, as extensions of Theorem 1, we
propose two open problems: show light spanners for a planar graph with a single
vortex, and show light spanners for a path-like clique-sum of planar graphs.
For these cases it may help to compose multiple charging schemes into an “ε-
scheme”, as was necessary for apex graphs [8]. As usual, the main difficulty is
that we have no control over the MST topology; if the MST has a nice topology
(e.g. some form of monotonicity), then we would be done.

Given a bounded treewidth graph, we can still define the notion of a monotone
spanning tree T . We choose roots in the decomposition tree and T ; whenever
vertex v has parent p in T , we require p to be in the bag containing v which is
closest to the root. If we can find such a T that is light enough, then we could
repeat the rest of our argument from the bounded pathwidth case. However,
there is an obstacle: the light monotone tree might not exist.

Theorem 3. There is an edge-weighted graph G with a bounded treewidth de-
composition, such that any monotone spanning tree T in the completion of G
has weight Ω(lg n) ·MST(G).

Fig. 5. A bounded treewidth graph with no light monotone tree. The solid path P is
the minimum spanning tree. The horizontal edge in each leaf bag has weight one, all
other solid edges of P have weight zero. All other edges (in particular, the dashed ones)
have weight equal to the distance in P between its endpoints.

Proof. We construct G as follows (see Figure 5). We start with a balanced binary
tree with n nodes, think of this as our tree of bags. We assign 3 nodes to each
internal bag, and 2 to each leaf bag. We connect these vertices by a path P as
shown; each edge of P in a leaf bag has weight one, all other edges in P have
weight zero. (Note we must grow our bags a bit to support all these edges of P .)

Now in any monotone tree T for G, for each internal bag, the “bottom” vertex
of the three must be connected to one of the other two (its parent in T ); in other
words, we must pick one of the dashed edges shown in each internal bag.
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The main observation is that if we sum up the weights of these selected edges
over one level of the decomposition tree, their total is already a constant fraction
of w(P ). Summing over all levels, the total weight w(T ) is Ω(log n) · w(P ), as
claimed. .�
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Abstract. To reduce a graph problem to its planar version, a standard
technique is to replace crossings in a drawing of the input graph by
planarizing gadgets. We show unconditionally that such a reduction is
not possible for the perfect matching problem and also extend this to
some other problems related to perfect matching. We further show that
there is no planarizing gadget for the Hamiltonian cycle problem.

1 Introduction

The perfect matching problem is a very fundamental computational problem (see,
e.g., [16, 22]). Edmonds [8] developed a polynomial-time algorithm, but still it is
unknown whether there is an efficient parallel algorithm for the perfect matching
problem, i.e., whether it is in NC. In their seminal result, Mulmuley, Vazirani,
and Vazirani [26] isolated a perfect matching by assigning random weights to
the edges. This yielded a randomized parallel algorithm for the problem, it is
in RNC. A derandomization of this algorithm is a challenging open problem.

There are NC algorithms for the perfect matching problem for special graph
classes, for example for regular bipartite graphs [21], dense graphs [3], and
strongly chordal graphs [4].

Here we consider planar graphs . Planarity is an interesting property with
respect to the perfect matching problems, and seems to change the complexity
of the problem drastically:

– Valiant [28] showed that counting the number of perfect matchings in a graph
is a hard problem, namely it is #P-complete,

– whereas for planar graphs, Kasteleyn [17] showed that a Pfaffian orientation
can be computed in polynomial time, which leads to a polynomial time
algorithm for counting the number of perfect matchings. Vazirani [29] showed
that the problem is in fact in NC.
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In contrast, no NC algorithm is known for the construction of a perfect match-
ing in planar graphs. This is a puzzling state of affairs because, intuitively, count-
ing seems to be a harder problem than construction. There is, however, an RNC
algorithm for the construction problem [26].

Much work has been done on the perfect matching for bipartite planar graphs
[25, 23, 20, 6, 13, 7]. The current best bound on the problem is unambiguous
logspace, UL, for decision and construction [7]. Note that for the bipartite perfect
matching problem no better bounds are known than for the general perfect
matching problem.

In this paper, we investigate the question of whether there is a logspace or
NC reduction from the perfect matching problem to the planar perfect matching
problem. It is quite possible that such a reduction exists.

– Such a reduction would be a breakthrough result because it would deran-
domize the RNC algorithm for perfect matching. Many researchers conjec-
ture that such a derandomization is possible (see, e.g., [1]). Hence, this could
be one way of doing it.

– A reduction does not necessarily maintain the number of perfect matchings.
Hence, it does not imply an unexpected collapse of complexity classes.

An obvious approach to such a reduction is a planarizing gadget : a planar graph
that locally replaces the crossing edges of a given drawing of a graph. It is natural
to suspect that any more globally acting reduction would be very involved to con-
struct. Examples for planarizing gadgets are the reductions of 3-colorability and
vertex cover to their planar versions [10]. In contrast, because of the four color
theorem, a planarizing gadget for k-colorability cannot exist for k ≥ 4. Datta et
al. [5] have recently used a planarizing gadget to investigate the complexity of
computing the determinant of a matrix, which is the adjacency matrix of a pla-
nar graph. They construct a gadget that reduces the general determinant to the
planar determinant. Therefore, both problems have the same complexity, they
are GapL-complete. The analogous result has been shown for the permanent,
again via some planarizing gadget. Therefore, the permanent and the planar
permanent are #P-complete.

Our first result is to construct an obstacle in getting an NC algorithm for the
perfect matching problem: we show that planarizing gadgets for perfect matching
do not exist. We extend the result to unique perfect matching, weighted perfect
matching, exact perfect matching, and counting modulo k perfect matching.

The planar Hamiltonian cycle problem was shown to be NP-complete by
a direct reduction from 3-SAT [11]. In the Computational Complexity Blog,
Gasarch [12] asks whether there is a reduction from HAM to its planar version
via some planarizing gadget. In a comment to the blog, David Johnson finds
this to be an interesting open problem. Using similar arguments as we used for
the perfect matching problem, we give a negative answer to Gasarch’s question:
there is no planarizing gadget for the Hamiltonian cycle problem. Recently we
discovered that this observation was made independently and earlier in a post
by Burke [2].
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2 Preliminaries

Let G = (V,E) be an undirected graph. A matching in G is a set M ⊆ E, such
that no two edges in M have a vertex in common. A matching M is called perfect
if every vertex occurs as an endpoint of some edge in M . In the decision problem
of perfect matching, one has to decide whether G has a perfect matching,

PM = {G | G has a perfect matching}.

For a weight function w : E → IN of the graph, the weight of a matching M is
defined as w(M) =

∑
e∈M w(e).

Sequential algorithms to compute maximum matchings use augmenting path
techniques [15]. They are described in many textbooks, see for example [19, 16].
Wemention some simple facts. LetM andM ′ bematchings in a graphG = (V,E).
Consider the subgraph G′ = (V,M 7M ′) of G that contains only the edges in
the symmetric difference of M and M ′. This graph consists of alternating paths
(with respect to M and M ′). That is, the paths have edges alternating from M
and M ′. Note that some of these paths can be cycles (i.e., start and end vertex
being the same). Also, they are simple and pairwise disjoint. If M and M ′ are
perfect matchings in G, then M 7M ′ consists of alternating cycles only.

Problems. Let us now define the other matching problems which we consider.

– Unique perfect matching : Given a graph G, decide whether G has precisely
one perfect matching.

– Weighted perfect matching: Given a graph G, a weight function w on the
edges and a number W , decide whether there is a perfect matching in G of
weight at most W .

– Exact perfect matching : Given a graph G where every edge is colored either
red or blue, and a number k, decide whether there is a perfect matching in G
with exactly k red edges.

– Weighted exact perfect matching : Given a graph G, a weight function w on
the edges, and a number W , decide whether there is a perfect matching in G
of weight exactly W .

– Modk perfect matching: Given a graph G, decide whether the number of
perfect matchings in G is not zero modulo k.

The unique perfect matching problem is in P [9]. For bipartite graphs it is
in NC [18, 14], and for planar graphs it is also in NC [29]. It is an open problem
whether the unique perfect matching problem is in NC.

The weighted perfect matching problem is in P [24, 30]. If the weights are
polynomially bounded, then the problem is in NC for planar graphs [29].

The exact perfect matching problem is a very puzzling problem: it is not even
known to be in P (see, e.g., [27, 31]). It is known to be in RNC [26] and in NC
for planar graphs [29].

The weighted exact perfect matching problem with polynomially bounded
weights is (logspace) equivalent to the exact perfect matching problem. To re-
duce from the latter to the former we do the following: in a given red-blue
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graph G, assign weight 1 to each red edge and weight 0 to each blue edge. Then
a perfect matching with weight k is a perfect matching with k red edges in G.
The reduction in the other direction is also simple: in a given weighted graph G,
replace each edge e = (a, b) with a simple path of length 2w(e) − 1 from a
to b. Color the edges of the path with red and blue colors alternatingly, such
that there are w(e) red and w(e) − 1 blue edges. Only polynomial number of
edges are added. A perfect matching with W red edges corresponds to a perfect
matching of weight W in G.

In contrast, the weighted exact perfect matching problem in general, i.e., with
weights exponential in the number of nodes, is NP-complete. This is mentioned
in [27] without a proof. In fact, we can present a reduction from the subset
sum problem which shows that the problem becomes hard already with a simple
underlying graph structure: the problem is NP-complete for weighted graphs
that consist of disjoint copies of 4-cycles. Hence, in this case the general problem
reduces to the planar problem. As we show, such a reduction is not possible
using planarizing gadgets.

The counting class #P is defined as the class of functions that can be written
as accM (x) : Σ∗ → IN, where M is a nondeterministic polynomial time Turing
machine and accM (x) is the number of accepting computations of M on input x.
As shown in [28], it is complete for #P to compute pm(G), the number of perfect
matchings of a given bipartite graph G [28]. Counting modulo some integer k
leads to the complexity class ModkP of all problems that can be written as

{ x ∈ Σ∗ | accM (x) �≡ 0 (mod k)}.

⊕P is a more common name for Mod2P. Over GF(2), the permanent of a matrix
is the same as the determinant. That is, Mod2 perfect matching in bipartite
graphs can be computed in NC. Therefore, Mod2 perfect matching is unlikely
to be complete for ⊕P. On the other hand, it can be seen that Modk perfect
matching is complete for ModkP for every odd k ≥ 3 (cf. Valiant [28]).

Planarizing Gadgets. Let G be a given non-planar graph and consider a
drawing of G in the plane. A planarizing gadget is a planar graph which is used
to replace crossing edges of this drawing of G as shown in Fig. 1. The gadget
graph has four designated vertices v1, . . . , v4, called external vertices which are
identified with the corresponding vertices from the crossing. The other vertices
of the gadget are called internal.

v3

v1

v4

v2

v3

v1

v4

v2

Fig. 1. Planarizing gadget: the two crossing edges on the left are replaced by a planar
graph which is indicated by the gray box on the right
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The gadget is independent of the structure of the graph. Hence, every crossing
of edges is replaced by a copy of the same gadget. Let G′ be the resulting planar
graph. The gadget is called planarizing for a language L of graphs if

G ∈ L⇐⇒ G′ ∈ L. (1)

More generally L may be a language of pairs 〈G, k〉, where G is a (possibly
weighted) graph and k is a parameter. Then in the planarizing reduction it is
suitable to allow a modification of the parameter k with respect to the number
of gadgets introduced by the reduction. We call the (possibly weighted) gadget
graph planarizing for L if 〈G, k〉 ∈ L⇐⇒ 〈G′, k′〉 ∈ L, where k′ may depend on
k, the number t of crossings in the considered drawing of G and the number n
of nodes. Also, in case of weighted graphs the weights in the gadget may depend
on the weights of the crossing edges and the reduction may modify the weights
of G using a linear function depending on t and n.

For our purpose where we want to show that no planarizing gadget exists,
it suffices to consider the case when each edge crosses at most one other edge.
We will show that even for this case there is no planarizing gadget for various
languages L.

3 Perfect Matching Problems

First, we look more closely at the properties of a planarizing gadget for perfect
matching problems.

Note that it suffices to consider the case where the gadget contains a single
edge connected to vi, for i ∈ [4] = {1, 2, 3, 4}. For if there would be several
connections from nodes of the gadget to vi, we could introduce a new node yi to
the gadget and redirect these edges to yi instead of vi. Then we add one more
node xi to the gadget and connect it via the path (vi, xi, yi). Now this modified
gadget has the structure from Fig. 2 and there is a direct correspondence between
the perfect matchings in both gadgets.

v3

v2 v1

v4

v3

v2

v4

v1

e

e2

v′3

v′2

e′

e3

e1

e4

v′1

v′4

Fig. 2. More details on the planarizing gadget

As shown in Fig. 2, let e = (v2, v4) and e′ = (v1, v3) be the crossing edges
in G and let v′i be the node in the gadget that is connected with vi via edge ei,
for i ∈ [4].
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Definition 1. For I ⊆ [4] let MI be the set of matchings M of a gadget that
cover all internal nodes of the gadget, and M ∩ {e1, e2, e3, e4} = { ei | i ∈ I}.

The legal matchings are the matchings that belong to a set in L, where

L = {M∅,M{1,3},M{2,4},M[4]}.

The illegal matchings are the matchings that belong to a set in I, where

I = {M{1,2},M{2,3},M{3,4},M{1,4}}.

The next Lemma 1 states that in a planarizing gadget for PM legal matchings
need to exists and illegal matchings cannot exist which is the actual reason
behind naming these classes as legal and illegal. The existence of legal matchings
also implies that the gadget needs to have an even number of nodes. This directly
implies that MI = ∅ for odd |I| and we do not need to consider these sets.

Lemma 1. A gadget is planarizing for PM only if

– each set in L is non-empty, and

– there is no illegal matching.

Proof . Consider Fig. 3. Parts (a), (b), and (c) show thatM[4],M{2,4}, andM∅
should be non-empty (respectively). The case M{1,3} is symmetric to M{2,4}.

(a) (b) (c) (d)

e4
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G
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v3

v1

v4

v1

v4

v2

v3

v2

v3

v1

v4
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v4

v2

v3

v2

v3

v1

v4

v1

v4v3

v2

v3

v2 v1

v4

v4

v1v2

v3

e2

e3

e1

e4 e3

e2 e1

e4

e2

e3

e1

e4

e2

e3

e1

Fig. 3. Graphs G with a perfect matching that contains (a) both, (b) one, and (c)
none of the crossing edges. Matching edges are drawn with bold lines. Note that, for
graphs G′ to have a perfect matching, the gadget should have the legal matchings
which contain (a) all four, (b) two opposite, and (c) none of the edges e1, . . . , e4. In
(d), graph G has no perfect matching. If the gadget would allow the illegal perfect
matching that contains e3, e4 and not e1, e2, then the resulting graph G′ would have a
perfect matching. Hence, such a gadget does not work.
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Part (d) shows that a gadget which allows an illegal matching (a matching in
M{3,4}) is not planarizing for PM. The cases where two other neighboring edges
of e1, . . . , e4 are used, are symmetric. Therefore, no illegal matching is allowed
to exist. �

In the proof of Lemma 1, we argued with the graphs shown in Fig. 3. For sim-
plicity, these graphs are planar, but are drawn with two edges crossing. Clearly,
the gadget has to work also in such cases, and hence, we do not need to deal with
more complicated non-planar graphs. However, it is easy to extend our graphs to
non-planar graphs in such a way, that the perfect matchings are preserved: Let
G be one of the above graphs. For every pair of non-adjacent nodes u, v in G,
we add two additional nodes xu,v, yu,v which are connected by an edge, and con-
nect u and v with yu,v. Let G

∗ be the resulting graph. Since the only neighbor
of xu,v is yu,v, every perfect matching in G∗ has to use edge (xu,v, yu,v). The
other edges in the perfect matching are all from G. Hence, perfect matchings
in G and G∗ differ only by the newly introduced edges (xu,v, yu,v).

If G has n nodes, then G∗ has the complete graph Kn as minor. Therefore,
G∗ is non-planar for n ≥ 5. Only the graph in Fig. 3 (a) has just 4 nodes. But it
is easy to enlarge it by a few extra nodes and still cover the same case. Hence,
things do not change if we restrict our arguments to non-planar graphs only.

3.1 Perfect Matching

Next, we show that no planarizing gadget for the perfect matching problem
exists. The proof constructs an illegal perfect matching out of legal ones.

Theorem 1. There is no planarizing gadget for the perfect matching problem.

Proof . Suppose there is a planarizing gadget. We refer to the denotation in Fig. 2
and Definition 1. According to Lemma 1 there are legal matchingsM1,3 ∈M{1,3}
and M2,4 ∈M{2,4}.

Consider the subgraph with edges M1,37M2,4 of the gadget: as explained
in the preliminary section, M1,37M2,4 consists of some alternating cycles and
paths. The nodes v1, v2, v3, v4 must lie on alternating paths. Since the two match-
ings cover all nodes in the gadget, there are precisely two disjoint alternating
paths p and q, each of which connects two nodes in {v1, v2, v3, v4}. The remaining
edges of M1,37M2,4 form alternating cycles.

Let p denote the path that contains node v1. We distinguish three cases:

(i) Suppose that p connects v1 with v3. Therefore, q connects v2 with v4. As
we assume that there is a planar drawing of the gadget where v1, v2, v3, v4
are placed like in Fig. 2, the two paths must cross in at least one common
vertex. Since p and q are disjoint, this is not possible.

(ii) Suppose that p = p1,2 connects v1 with v2, and q = p3,4 connects v3 with v4.
From M1,3 and M2,4 we now construct two illegal matchings M2,3 and M1,4
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v′1

p1,2

p3,4
v3

v2

v′3

v′2

v4

v1

v′4

Fig. 4. Matchings M1,3 and M2,4 are indicated, M2,4 with bold edges. The upper
alternating path p = p1,2 connects v1 with v2, the lower path q = p3,4 connects v3
with v4. The illegal matching M2,3 is defined as the bold edges on p1,2 and the non-
bold edges on p3,4 and the other edges from M1,3 that are not on these paths. M1,4

consists of the remaining edges on both paths and the other edges from M2,4.

by exchanging the edges on path p1,2 between these two sets. Let E(p1,2)
denote the set of edges on path p1,2. We define

M2,3 = M1,37E(p1,2).

Similarly we define M1,4 = M2,47E(p1,2). Fig. 4 gives an example of the
construction. Now both matchings M1,3 and M2,4 cover each internal node
of the gadget, and
– e2, e3 ∈M2,3 and e1, e4 �∈M2,3 and
– e1, e4 ∈M1,4 and e2, e3 �∈M1,4.
Hence, M2,3 and M1,4 are illegal. Therefore, this case is not possible either.

(iii) The case that p connects v1 with v4 is analogous to case (ii).

Hence, all cases lead to a contradiction. Therefore, no such gadget exists. �

3.2 Unique Perfect Matching

A planarizing gadget for the unique perfect matching problem needs to have
the property that in each of the four legal cases, the matching inside the gadget
must be unique, i.e., each set in L of Definition 1 contains exactly one element.
Otherwise, it would not maintain uniqueness in Fig. 3 (a)–(c). However, as shown
in the proof of Theorem 1, we cannot avoid getting additional illegal matchings
in the gadget. This can be used to destroy the uniqueness in G′. The details can
be found in the full version of the paper.

Corollary 1. There is no planarizing gadget for the unique perfect matching
problem.

3.3 Weighted Perfect Matching

A planarizing gadget for weighted perfect matching may have illegal matchings.
But it can be seen that in each classM∈ L of legal matchings there is a matching
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M ∈ M whose weight is smaller than the weight of each illegal matching. The
proof of Theorem 1 can be extended to show that this is not possible. The details
can be found in the full version of the paper.

Corollary 2. There is no planarizing gadget for the weighted perfect matching
problem.

3.4 Exact Perfect Matching

Corollary 2 says that no planarizing gadget can preserve the minimum weight
perfect matching. But it might still be possible that a gadget can preserve some
exact weight, which is neither minimum nor maximum.

When replacing crossings of equal weight edges, it can be seen that there are
matchings M1,3 ∈ M{1,3} and M2,4 ∈ M{2,4} with some fixed weights and all
illegal matchings in the gadget have different weights. The proof of Theorem 1
can be extended to show that the gadget has two illegal matchings M2,3, M1,4

such that w(M2,3) + w(M1,4) = w(M1,3) + w(M2,4).
If a graph G is drawn with t ≥ 2 crossings, then we will have t gadgets in G′.

When the reduction increases the weight by someWt then there is a combination
with two illegal matchings that gives the same increasing weight. We can use this
to show that there is no planarizing gadget that works correctly for all graphs.
A detailed proof can be found in the full version of the paper.

Theorem 2. There is no planarizing gadget for the weighted exact perfect
matching problem.

The proofs of Corollary 2 and Theorem 2 already show the non-existence of a
planarizing gadget for the case when all edge weights are equal which corresponds
to the perfect matching problem. Hence, we can formulate the following corollary.

Corollary 3. There is no planarizing gadget that reduces the perfect matching
problem to the planar weighted perfect matching problem or the planar weighted
exact perfect matching problem.

Similarly the exact perfect matching problem is a special case of the exact
weighted perfect matching problem.

Corollary 4. There is no planarizing gadget for the exact perfect matching
problem. Moreover, there is no planarizing gadget that reduces the exact per-
fect matching problem to the planar weighted exact perfect matching problem.

3.5 Modk Perfect Matching

In the preliminary section we already mentioned that Modk perfect matching
(for short, Modk-PM), is complete for ModkP for odd k ≥ 3. Hence, there is
no planarizing gadget for Modk-PM nor any other NC computable planarizing
reduction, unless ModkP = NC, for odd k ≥ 3. We prove the non-existence of a
planarizing gadget independent of the ModkP �= NC assumption, for k ≥ 3.
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For a gadget to reduce a graph G to its planarized version G′, we must have
pm(G) ≡ 0 (mod k) if and only if pm(G′) ≡ 0 (mod k). From the graphs in
Fig. 3 it follows that we must have

– |M| �≡ 0 (mod k) for all M ∈ L and
– |M| ≡ 0 (mod k) for all M ∈ I.

A planarizing gadget for Mod2-PM has been provided by [5]. In the following
lemma we observe that the legal types of matching classes all have the same size
modulo k, say a, and a is relatively prime to k. The proof is omitted here.

Lemma 2. For a planarizing gadget for Modk-PM there is a number a such
that |M| ≡ a (mod k) for all M ∈ L. Moreover, gcd(a, k) = 1.

Our next goal is to construct a bijection between pairs of legal and illegal match-
ings of a gadget. Recall the proof of Theorem 1: we started with two legal
matchings M0 ∈M1,3 and M1 ∈ M2,4. Then we defined p to be the alternating
path in M07M1 that contains node v1, and matchings M2 = M07E(p) and
M3 = M17E(p). Path p either ends in v2 or in v4.

– If p ends in v2 then M2 ∈M2,3 and M3 ∈ M1,4,
– if p ends in v4 then M2 ∈ M3,4 and M3 ∈ M1,2.

Now observe that this process is reversible: we have M27M3 = M07M1. That
is,M27M3 defines the same alternating path p through v1 andM27E(p) = M0

and M37E(p) = M1.
The same argument will work if we start with legal matchings M0 ∈ M∅ and

M1 ∈M[4]. Hence, we constructed a bijection between the following sets:

S = (M∅ ×M[4]) ∪ (M{1,3} ×M{2,4})

T = (M{1,2} ×M{3,4}) ∪ (M{1,4} ×M{2,3})

We conclude:

Lemma 3. For a planarizing gadget we have |S| = |T |.

Theorem 3. There is no planarizing gadget for Modk-PM for k ≥ 3.

Proof . By Lemma 2, we have |S| ≡ 2a2 (mod k). Since T contains only illegal
classes of matchings, we have |T | ≡ 0 (mod k). By Lemma 3, it follows that
2a2 ≡ 0 (mod k). But since gcd(a, k) = 1, this is not possible for k ≥ 3. �

4 Hamiltonian Cycle

A Hamiltonian cycle in graph G is a simple cycle that visits every node in G.
The Hamiltonian cycle problem, HAM, is to decide whether a given graph G has
a Hamiltonian cycle. A proof can be found in the full version of the paper.

Theorem 4. There is no planarizing gadget for the Hamiltonian cycle problem.
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In a straightforward way one can modify the proof of Theorem 4 to obtain
similar results for the (directed) Hamiltonian path problem and the directed
Hamiltonian cycle problem.

Corollary 5. There is no planarizing gadget for the directed Hamiltonian cycle
problem nor for the (directed) Hamiltonian path problem.

A similar argument shows that there is no planarizing gadget for reachability.

5 Discussion

Our approach allowed us to show unconditionally that there are no planarizing
gadgets for various graph problems. Clearly, this does not imply that there is
no logspace reduction from the general problem to its planar version. For ex-
ample, for the Hamiltonian cycle problem or the exact weighted perfect match-
ing problem with large weights, the general and the planar versions are both
NP-complete. Nonetheless, we think that the observations are interesting and
give some new insight into the problems. Moreover, for the problems like perfect
matching where it is not clear whether the problem reduces to its planar version,
we eliminated some plausible approach to a reduction.

In our approach, we assumed that the planarizing gadget should work for
basically every drawing of the input graph in the plane. A major improvement
would be to show that there is no (logspace computable) drawing of the input
graph for which a planarizing gadget exists. In fact such a statement can be
made for k-colorability with k ≥ 4: there is no planarizing gadget for the 5-
clique K5, irrespective of the drawing of K5. Such a gadget would guaranty that
the planarized version K ′5 is non-4-colorable, which is not possible. On the other
hand, such an unconditional statement does not hold for the perfect matching
problem nor for the Hamiltonian cycle problem. For these problems there are
drawings that allow a planarizing gadget: If one is able to compute a Hamiltonian
cycle while computing a drawing of a graph, one can draw the graph such that all
edges that belong to the Hamiltonian cycle do not cross any other edge (start by
drawing the cycle as circle). Similarly, for the perfect matching problem there
is a drawing where matching edges do not have crossings. For such drawings
the empty graph is a planarizing gadget (just remove the crossing edges). The
following question arises: if one assumes that the Hamiltonian cycle, resp. the
perfect matching, of a graph G cannot be computed in logspace, can one show
that there is no planarizing gadget for any logspace computable drawing of G?
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Abstract. A kernelization for a parameterized computational problem
is a polynomial-time procedure that transforms every instance of the
problem into an equivalent instance (the so-called kernel) whose size is
bounded by a function of the value of the chosen parameter. We present
new kernelizations for the NP-complete Edge Dominating Set problem
which asks, given an undirected graph G = (V,E) and an integer k,
whether there exists a subset D ⊆ E with |D| ≤ k such that every
edge in E shares at least one endpoint with some edge in D. The best
previous kernelization for Edge Dominating Set, due to Xiao, Kloks
and Poon, yields a kernel with at most 2k2+2k vertices in linear time. We
first describe a very simple linear-time kernelization whose output has at
most 4k2 + 4k vertices and is either a trivial “no” instance or a vertex-
induced subgraph of the input graph in which every edge dominating set
of size ≤ k is also an edge dominating set of the input graph. We then
show that a refinement of the algorithm of Xiao, Kloks and Poon and a
different analysis can lower the bound on the number of vertices in the
kernel by a factor of about 4, namely to max{ 1

2
k2 + 7

2
k, 6k}.

1 Introduction

1.1 Problem Statement

An active research direction in the area of parameterized computation is the
search for kernelization algorithms for hard computational problems (see, e.g.,
[2]). Briefly stated, a kernelization algorithm for a parameterized computational
problem is a polynomial-time procedure that transforms every instance of the
problem into an equivalent instance whose size is bounded by a function of the
value of the chosen parameter. More formally, a kernelization for a parameterized
problem L ⊆ Σ∗×N, where Σ is an alphabet and N = {1, 2, . . .}, is an algorithm
A for which there exist a polynomial p : N→ N and a function f : N → N such
that, applied to an instance I = (G, k) ∈ Σ∗ × N, A computes, within p(|I|)
steps, an instance I ′ = (G′, k′) ∈ Σ∗ × N with |I ′| ≤ f(k) and k′ ≤ k such
that I ∈ L ⇔ I ′ ∈ L. Here |I| and |I ′| denote the number of symbols in the
representation of I and I ′, respectively, according to some suitable encoding
scheme. A kernelization can be valuable in the solution of a hard parameterized
problem because, used as a preprocessing routine, it allows the input instance

B. Rovan, V. Sassone, and P. Widmayer (Eds.): MFCS 2012, LNCS 7464, pp. 491–502, 2012.
c© Springer-Verlag Berlin Heidelberg 2012
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to be replaced by a potentially much smaller kernel before the application of
a presumably expensive solution algorithm. Because of the typical role of the
kernel as the input to an exponential-time computation, reducing the size of
the kernel for an important problem, if only by a constant factor, is considered
significant progress.

When e and e′ are edges in an undirected graph, e dominates e′ (and vice
versa) if e and e′ share at least one endpoint; this is the case, in particular, if
e = e′. An edge dominating set in an undirected graph G = (V,E) is a subset D
of E with the property that every edge in E is dominated by at least one edge
in D. Put differently, an edge dominating set in G is the same as a dominating
set in the usual sense in the line graph of G. Let us write Edom(G) for the
edge domination number of G, i.e., the size of a smallest edge dominating set
in G. This paper studies kernelizations for the problem Edge Dominating Set,
formally defined as the language

{(G, k) | G is an undirected graph, k ∈ N and Edom(G) ≤ k} ,

which is NP-complete, even if the input graph G is restricted to be bipartite
and of maximum degree 3 [8]. As is common, our terminology does not always
distinguish rigorously between the pair (G, k) and the graph G.

1.2 Previous Work

Fernau [1] showed the existence of a linear-time kernelization for Edge

Dominating Set that yields a kernel with at most 8k2 vertices. Prieto [5]
described a quadratic-time kernelization for the closely related Minimum

Maximal Matching problem and bounded the number of vertices in the kernel
by 4k2 + 8k; her algorithm is also a kernelization for Edge Dominating Set.
The best previous kernelization for Edge Dominating Set, due to Xiao, Kloks
and Poon [7], computes a kernel with at most 2k2 + 2k vertices for k ≥ 2 and
O(k3) edges in linear time.

1.3 Our Contributions

We first describe a kernelization for Edge Dominating Set that yields a kernel
with at most 4k2+4k vertices and O(k3) edges. In terms of kernel size, the new
algorithm does not compare favorably with the best kernelization cited above. It
does, however, have the following advantages: (1) With the exception of Fernau’s
algorithm, it is simpler than the earlier kernelizations; (2) the kernel is either a
trivial “no” instance or a vertex-induced subgraph of the input graphG; (3) every
edge dominating set in the kernel of size at most k is also an edge dominating
set in G.

Subsequently we show that a kernel with at most max{ 12k2 +
7
2k, 6k} vertices

and at most 8
27k

3+O(k2) edges can be computed in linear time. Our kernelization
builds on that of Xiao, Kloks and Poon [7], but refines and extends it and
analyzes the kernel size in a different way. We also show that the bound of
max{ 12k2 +

7
2k, 6k} vertices is tight for the algorithm.
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2 The Protection Algorithm

This section describes and analyzes a very simple kernelization for Edge Dom-

inating Set, the protection algorithm. The protection algorithm is parameter-
ized by a positive integer K. Let the input be a pair (G, k), where G = (V,E)
is an undirected graph and k ∈ N. Define a vertex to be small if its degree is at
most K, and large otherwise.

2.1 Description

The protection algorithm consists of the steps described below. Protecting a
vertex is a suggestive term for setting an initially cleared bit associated with the
vertex.

1. Protect every small vertex that has at least one small neighbor.
2. Protecting at most K + 2 additional vertices per large vertex, ensure that

every large vertex is protected and has at least K + 1 protected neighbors.
3. Obtain a graph G′ from G by removing every unprotected vertex.
4. If G′ is larger than allowed by the analysis (see below), return a trivial “no”

instance; otherwise return (G′, k).

To execute the algorithm, first classify each vertex as small or large. Then step
through the edges, protecting the endpoints of each if they are both small. Next
step through the large vertices in an arbitrary order and, for each large vertex
u, protect it, count the current number r of its protected neighbors and, if
r < K + 1, protect K + 1 − r arbitrary additional neighbors of u—since u
is large, of course, it has enough neighbors. (Another possibility is to protect
K + 1 arbitrary neighbors of u, independently of whether they were already
protected.) Finally step through the vertices again, removing each vertex that
is not protected, and, depending on the size of the resulting graph G′, return
G′ or a trivial “no” instance. The protection algorithm is easily executed in
O(|V |+ |E|) time.

2.2 Correctness

Assume that Step 4 does not return a trivial “no” instance and let G′ = (V ′, E′)
be the graph returned. If D is an edge dominating set in G, we can construct
a set D′ ⊆ E′ by replacing each edge {u, v} ∈ D by an edge {u′, v′} ∈ E′ such
that u′ = u if u ∈ V ′ and v′ = v if v ∈ V ′. To see that this is possible, let
{u, v} ∈ D and assume, e.g., that u ∈ V \ V ′, i.e., u is a vertex that is removed
when stepping from G to G′. Then, in G, u is small and v is large. But then v has
at least K + 1 incident edges in G′, any one of which can serve as {u′, v′}. If an
edge that belongs to E′ is dominated in G by an edge {u, v} ∈ D, it is dominated
in G′ by the replacement edge {u′, v′} ∈ D′ identified above, with which {u, v}
shares every “surviving” endpoint. Therefore D′ is an edge dominating set in G′

of size at most |D|.
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For the converse direction, fix K = 2k and assume that D′ is an edge domi-
nating set in G′ with |D′| ≤ k. Note that if a vertex in G′ is large, it must be
incident on an edge in D′—otherwise dominating all of its incident edges would
need more than k edges. A simple argument shows D′ to be an edge dominating
set not only in G′, but also in G: If an edge in E has an endpoint u that is large
in G, u is also present and large in G′ and, as noted above, one of its incident
edges belongs to D′. And if an edge in G has no large endpoint, it occurs also
in G′ and must be dominated by an edge in D′.

2.3 Kernel Size

Let D′ be an edge dominating set in G′ of size at most k and let S′ be the set
of endpoints of edges in D′. By definition, every edge in E′ has an endpoint in
S′, so if a vertex in G′ does not belong to S′, all of its neighbors do. A small
vertex in S′ has at most K neighbors, and the processing of a large vertex in
S′ protects at most K + 2 vertices that were not already protected. Therefore
|V ′| ≤ |S′|(K + 2) ≤ 2k(K + 2) = 2k(2k + 2) = 4k2 + 4k.

The number of edges in G′ with exactly one endpoint in S′ is bounded by
|S′|(|V ′| − |S′|), and the number of edges in G′ with both endpoints in S′ is

bounded by
(|S′|

2

)
≤ |S′|2/2. Therefore |E′| ≤ |S′|(|V ′| − |S′|/2). The quantity

|S′|(|V ′| − |S′|/2) is maximized by choosing |V ′| as large as possible, i.e., as
2k(K+2), and |S′| as close as possible to |V ′|, i.e., as 2k. Thus |E′| ≤ 2k(2k(K+
2)− k) = 8k3 + 6k2.

2.4 The Bipartite Case

Specialized to input graphs that are bipartite, the Edge Dominating Set

problem essentially becomes the Matrix Domination problem: Given a 0-1-
matrix X and a positive integer k, is it possible to choose a set D of at most k
positions (row-column intersections) in X , each of which contains a 1, so that
every position in X that contains a 1 is in the same row or column as a position
in D? Weston [6] described a kernelization for Matrix Domination and proved
that it runs in O(n3) time, where n is the largest dimension of the input matrix,
and yields a kernel matrix with dimensions of size O(k · 2k).

Specialized to bipartite input graphs, the protection algorithm is correct if
used with K = k, since k edges have at most k endpoints that are neighbors of
a fixed vertex. The protection algorithm therefore yields a kernel with at most
2k2 + 4k vertices and at most 4k3 + 6k2 edges. Translated to the setting of
Matrix Domination, it works in linear time, O(n2), and computes a kernel
matrix with dimensions of size at most k2 + 2k. Up to lower-order terms, this
matches the bound of the best previous kernelization, that of Xiao, Kloks and
Poon [7], which, applied to bipartite input graphs, performs only marginally
better than on general graphs and may yield a kernel with 2k2− 2k+6 vertices.
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3 The Algorithm of Xiao, Kloks and Poon

Recall that a matching in an undirected graph G is a set M of edges in G, no
two of which share an endpoint. A vertex in G is called free with respect to M
if it is not an endpoint of any edge in M . A path P in G is alternating with
respect to M if exactly one of every two consecutive edges on P belongs to M ,
and a path in G is augmenting with respect to M if it is alternating, begins and
ends at a free vertex, and is of length at least 1. For r ≥ 1, let us say that M is
r-maximal if there is no augmenting path of length ≤ r with respect to M . A
maximal matching is the same as a 1-maximal matching.

The following description of the algorithm of Xiao, Kloks and Poon [7] fixes
certain details that the original description left unspecified or seemingly in-
correct. The algorithm first computes a maximal matching M0 in the input
graph G = (V,E) and defines m as |M0|, Vm as the set of endpoints of the edges
in M0 and V ∗ = V \ Vm as the set of free vertices. If m ≤ k, it returns the
pair (G[M0], k), where G[M0] is the graph induced by the edges in M0. Oth-
erwise it proceeds to compute A′ as the set that consists of each vertex in Vm
whose neighbors in V ∗ number more than 2k−m or include a vertex of degree 1.
Subsequently it obtains a graph G′ = (V ′, E′) from G by removing each vertex
in V ∗ all of whose neighbors are contained in A′ and giving each vertex in A′

a new neighbor of degree 1. If the size of G′ is within the bounds established
by the analysis for graphs of edge domination number at most k, G′ is returned
together with the original parameter value k; otherwise a trivial “no” instance
is returned.

Xiao, Kloks and Poon state that if Edom(G) ≤ k, then |V ′| ≤ 2k2 + 2k
and |E′| = O(k3). We mention without proof that their kernelization does not
perform much better than indicated: The largest number of vertices that the
kernel can have is exactly max{2k2 − k + 4, 6k} for all k ∈ N.

4 The 3-MM Algorithm

This section describes and analyzes our best kernelization for Edge Dominat-

ing Set, the 3-MM algorithm.

4.1 Description

We change the algorithm of Xiao, Kloks and Poon [7] in two ways. The first
change, which motivated the name of the new algorithm, is to choose the match-
ingM0 slightly more carefully. Instead of allowingM0 to be an arbitrary maximal
matching, we require it to be 3-maximal. This change by itself lowers the number
of vertices in the kernel to k2 + k+ 3 for k ≥ 5. The second change is embodied
in the following reduction rule:

(∗) If a vertex u ∈ Vm \ A′ belongs to Vm \ A for some set A ⊆ Vm such that u
has more than |A| neighbors in V ∗ whose only neighbor in Vm \A is u, then
u may be added to A′.
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Testing the condition of (∗) for all A ⊆ Vm is too expensive. Instead we describe
a specific way of applying (∗) repeatedly for certain selected sets A (which are,
in fact, the successive values taken on by the set A′) until this no longer allows
A′ to be extended. The second change to the algorithm is to replace the original
set A′ of Xiao, Kloks and Poon by the set obtained in this manner. This change
by itself lowers the number of vertices in the kernel to ' 98k2+

7
4k+

25
8 ( for k ≥ 3.

4.2 Correctness

Our first change to the algorithm, the insistence that M0 be 3-maximal, does
not jeopardize its correctness, as established by Xiao, Kloks and Poon [7], but
the second change needs justification.

The correctness proof of the kernelization of [7] hinges on the fact that if the
edge domination number of the input graph G is at most k, then the set A′

computed by the algorithm is contained in the set of endpoints of some edge
dominating set in G of size at most k. The authors prove this and in fact prove
that A′ is contained in the set of endpoints of every edge dominating set in G of
size at most k. It can be seen from their proof that the algorithm remains correct
even if A′ is computed in a different way, provided that A′ remains contained in
the set of endpoints of some edge dominating set in G of size at most k.

As observed by Harary [3], if Edom(G) ≤ k, then G contains even an inde-
pendent edge dominating set, i.e., one whose edges form a matching, of size at
most k. Let D be such a set and, after zero or more applications of (∗), suppose
that u is a vertex in Vm \ A′ and that A ⊆ Vm is a set such that u belongs
to Vm \A and has more than |A| neighbors in V ∗ whose only neighbor in Vm \A
is u. Because D is independent, the edges in D incident on vertices in A but not
on u dominate at most |A| edges between u and vertices in V ∗. Moreover, V ∗

is independent. Therefore, unless u has an incident edge in D, its incident edges
are not all dominated by D. This proves that it is correct to insert u in A′.

4.3 Running Time

To compute a 3-maximal matching M0 in an undirected graph G = (V,E) in
linear time, proceed as follows: In a first phase, obtain a matching M in G by
stepping through the edges of E and including each in M exactly if both of its
endpoints are free with respect to (the current) M . This is just the usual greedy
computation of a maximal matching, and it takes O(|V |+|E|) time if each vertex
stores whether it is free. Then, in a second phase, step through the edges in a
copy M ′ of M and process each {u, v} ∈M ′ as follows: If G contains two distinct
free vertices x and y such that x is a neighbor of u and y is a neighbor of v,
choose such vertices x and y and replace the edge {u, v} in M by the two edges
{x, u} and {v, y}. It is easy to process {u, v} in time proportional to the sum of
the degrees of u and v, which sums to O(|E|) over the entire execution. Note,
in particular, that the requirement x �= y can always be satisfied if u and v each
propose at least two candidates for x and y, respectively, so that no expensive
element-uniqueness test is necessary.
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One easily observes that M remains a matching throughout the computation.
The final value M0 ofM is 3-maximal. To see this, assume otherwise and let P be
an augmenting path with respect to M0 of length at most 3. Note that a vertex,
once it stops being free during the computation, never again becomes free. This
implies that M ′ and M0 are maximal, since two adjacent vertices u and v are
not both free after the processing of {u, v} in the first phase. Therefore let P
contain the vertices x, u, v, y in this order. The edge {u, v} ∈M0 cannot belong
toM ′, since otherwise its processing in the second phase would have triggered the
replacement in M of {u, v} by {x, u} and {v, y} or by two other edges, following
which {u, v}, as an edge without a free endpoint, could not have reentered M .
Therefore {u, v} was inserted in M during the processing of some edge e ∈ M ′

in the second phase. But then either u or v was free immediately before this
processing of e. Since x and y are free even at the end of the computation, this
contradicts the maximality of M ′.

In order to apply the reduction rule (∗) repeatedly in linear overall time, store
the following information: (1) For each vertex v ∈ V ∗, the number N1[v] of its
neighbors in Vm \A′; (2) for each vertex u ∈ Vm \A′, the number N2[u] of those
of its neighbors in V ∗ for which it is the only neighbor in Vm \A′; (3) the set T
of vertices u ∈ Vm \A′ at which (∗) is applicable with A equal to the current or
a past value of A′.

The set A′ is initialized to the value that it has in the algorithm of Xiao,
Kloks and Poon, and (1)–(3) above are initialized accordingly. E.g., for each
u ∈ Vm \ A′, N2[u] is initialized to the number of neighbors v of u in V ∗ with
N1[v] = 1, and T is initialized to {u ∈ Vm \ A′ | N2[u] > |A′|}. Then, as long as
T �= Ø, an arbitrary vertex u is moved from T to A′ (i.e., (∗) is applied at u),
and N1[v] is decreased by 1 for each neighbor v of u in V ∗. For each v ∈ V ∗ such
that N1[v] reaches the value 1, N2[w] is incremented by 1, where w is the single
neighbor of v in Vm \A′, and if subsequently N2[w] > |A′|, w is inserted in T . All
of this can be done in time proportional to the degree of u, and it can be seen
to update (1)–(3) correctly. Since every vertex is inserted in A′ at most once,
the total time needed is O(|V |+ |E|). When T = Ø, (∗) is no longer applicable
with A = A′ at any vertex u.

4.4 The Number of Vertices

The analysis is facilitated by the following elementary observations: If a quadratic
polynomial has two real roots s and t, then it assumes its unique extremum at
(s+ t)/2. If a cubic polynomial p has two real roots s and t and s is a double
root, then p has local extrema exactly at s and at (s+ 2t)/3.

Denote by A0 the final value of the set A′. Assume that Edom(G) ≤ k, let D
be an independent edge dominating set in G with |D| ≤ k and let VD be the set
of endpoints of edges in D. Every edge in G has both an endpoint in Vm and an
endpoint (possible the same one) in VD. It follows that every neighbor in G of
a vertex u ∈ V ∗ \ VD belongs to Vm ∩ VD. Since such a vertex u is dropped in
the transition from G to G′ if its neighborhood is contained in A0, in G′ every
vertex in (V ∗ ∩ V ′) \ VD has a neighbor in the set B = (Vm ∩ VD) \ A0. Every
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edge in M0 has an endpoint in VD, which implies that |Vm \ VD| ≤ m and that
|VD \ Vm| ≤ 2k −m; in particular, m ≤ 2k. Since, in G, every neighbor in V ∗

of a vertex in Vm \ VD belongs to VD \ Vm and has at least one other neighbor
(namely in VD), the relation |VD \ Vm| ≤ 2k −m in turn shows that the initial
value of A′ is contained in Vm ∩VD. A vertex u ∈ Vm \VD cannot enter A′ in an
application of the reduction rule (∗) either. For assume otherwise and consider
the situation just before u is inserted in T . Let U be the set of neighbors of u
in V ∗ whose only neighbor in Vm \A′ is u. By assumption, |U | > |A′|. As noted
above, U ⊆ VD \ Vm, so each vertex in U has an incident edge in D, and the
|U | other endpoints of these edges are all distinct. Because they all belong to
Vm \ {u}, they must also all belong to A′, which is impossible since |U | > |A′|.
We may conclude that A0 ⊆ Vm∩VD . The relationship between some of the sets
considered above is illustrated in Fig. 1.

A0

B

Vm \ VD
(≤ m)

VD \ Vm
(≤ 2k −m)

V ∗ \ VD

Fig. 1. The main vertex sets of relevance to the analysis. In both G and G′, every edge
has an endpoint in A0 ∪ B = Vm ∩ VD or goes between Vm \ VD and VD \ Vm.

In G′, every vertex in A0 has just one neighbor in V ′ \ V . If m ≥ 2k − 1, by
definition of A0, every vertex in B has at most one neighbor in V ∗ ∩ V ′. On the
other hand, every vertex in G′ outside of Vm ∪ VD has a neighbor in A0 ∪ B.
If m ≥ 2k − 1, therefore, |V ′| ≤ |Vm ∪ VD| + |(V ∗ ∩ V ′) \ VD| + |V ′ \ V | ≤
(|Vm| + |VD| − |A0| − |B|) + |B| + |A0| = |Vm| + |VD| ≤ 2m + 2k ≤ 6k. In the
rest of the analysis, assume that m ≤ 2k − 2.

Lemma 1. The matching M0 is 3-maximal not only in G, but also in G′.

Proof. Since every edge in E′ \ E is incident on a vertex in Vm, M0 is maximal
in G′. Assume therefore, by way of contradiction, that G′ has an augmenting
path of length 3 with respect to M0 that contains the vertices x, u, v, y in this
order. Since the only vertices in Vm whose neighborhoods in G and G′ differ are
those in A0, u or v must belong to A0.

In G, u has a neighbor x′ ∈ V ∗. For every vertex in A0 has a neighbor in
V ∗, and if u �∈ A0, we can just take x′ = x. Similarly, in G, v has a neighbor
y′ ∈ V ∗. Now the vertices x′, u, v, y′, in this order, form an augmenting path in
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G, a contradiction, unless x′ = y′. And if x′ = y′, there must be an alternative
vertex for either x′ or y′, since otherwise neither u nor v could have entered A′.
To see this, observe that none of the three ways of entering A′—having more
than 2k −m neighbors in V ∗, having a neighbor in V ∗ of degree 1, and having
had (for the current or some past value of A′) more than |A′| neighbors in V ∗

with no other neighbor in Vm \ A′—can apply to a vertex u ∈ Vm \ A′ with
only one neighbor x′ in V ∗ if x′ has another neighbor v in Vm \ A′; recall, in
particular, that 2k −m ≥ 2. .�

Write M0 = M1∪M2, where M1 is the set of those edges {u, v} ∈M0 for which,
in G′, u and v have a common neighbor in V ∗ ∩ V ′, and M2 = M0 \M1. For
i = 1, 2, let Ui be the set of endpoints of the edges in Mi. By the 3-maximality
of M0 in G′, the following three claims are true: (1) In G′, every vertex in U1

has exactly one neighbor in V ∗ ∩ V ′; (2) U1 ∩ A0 = Ø; and (3) every edge in
M2 has at most one endpoint with one or more neighbors in G′ outside of Vm.
Since, in G′, every vertex in A0 has a neighbor in V ′ \ V , this implies that at
most |M2| − |A0| vertices in U2 \A0 have one or more neighbors in V ∗. Because
those that do have at most 2k −m neighbors in V ∗, the set E∗ of edges in G′

with one endpoint in Vm \A0 and one endpoint in V ∗ ∩ V ′ is of size at most

|U1|+ (|M2| − |A0|)(2k −m) ≤ (m− |A0|)(2k −m) .

Every vertex in V ∗ ∩V ′ is incident on an edge in E∗, and because the reduction
rule (∗) cannot be applied any further with A = A0, the number of vertices in
V ∗ ∩ V ′ incident on only one edge in E∗ (whose other endpoint must belong to
U2 \A0) is bounded by (m− |A0|)|A0|. Thus

|V ∗ ∩ V ′| ≤ (m− |A0|)min

{
2k −m, |A0|+

2k −m− |A0|
2

}
and

|V ′| ≤ |Vm|+ |V ′ \ V |+ |V ∗ ∩ V ′|

≤ 2m+ |A0|+ (m− |A0|)min

{
2k −m,

2k −m+ |A0|
2

}
.

If |A0| ≥ 2k −m and therefore m− |A0| ≤ 2(m− k),

|V ′| ≤ 3m+ (m− |A0|)(2k −m− 1) ≤ 3m+ 2(m− k)(2k −m− 1)

= 2m

(
6k + 1

2
−m

)
− 4k2 + 2k

≤ 2

(
6k + 1

4

)2

− 4k2 + 2k =
1

2
k2 +

7

2
k +

1

8
.



500 T. Hagerup

On the other hand, if |A0| ≤ 2k−m and therefore 2m+ |A0| ≤ 3k+ 1
2 (m−|A0|),

|V ′| ≤ 2m+ |A0|+
1

2
(m− |A0|)(2k −m+ |A0|)

≤ 3k +
1

2
(m− |A0|)(2k + 1− (m− |A0|))

≤ 3k +
1

2

(
k +

1

2

)2

=
1

2
k2 +

7

2
k +

1

8
.

Altogether we have established that |V ′| ≤ max{' 12k2+
7
2k+

1
8(, 6k} = max{ 12k2+

7
2k, 6k} for all k ∈ N. We next show that this bound is tight for the 3-MM al-
gorithm. For arbitrary k ≥ 1, an input graph that causes the kernel to have 6k
vertices consists of k disjoint copies of the ‘H’-shaped graph shown in Fig. 2(a).
It is easy to see that the graph has exactly 6k vertices and edge domination num-
ber k, and an application of the 3-MM algorithm returns a kernel isomorphic to
the input graph.

For even k ≥ 2, an input graph that may cause the kernel to have 1
2k

2 + 7
2k

vertices consists of k/2 disjoint copies with r = k/2 of the graph shown in
Fig. 2(b). The number of vertices is k

2 (2 ·
k
2 + 7) = 1

2k
2 + 7

2k, and it is easy to

see that the edge domination number is (at most) k
2 · 2 = k. If the matching M0

computed by an application of the 3-MM algorithm to the graph consists only of
edges drawn horizontally, the kernel returned is isomorphic to the input graph.

For odd k ≥ 3, finally, consider the disjoint union of (k − 3)/2 copies of
the graph in Fig. 2(b) and a single copy of the graph in Fig. 2(c), all with
r = (k − 1)/2. The number of vertices is

k − 3

2

(
2 · k − 1

2
+ 7

)
+

(
4 · k − 1

2
+ 11

)
=

1

2
k2 +

7

2
k ,

the edge domination number is (at most) k−3
2 · 2 + 3 = k, and an application of

the 3-MM algorithm may produce an isomorphic kernel.

4.5 The Number of Edges

This subsection gives a bound on the number of edges in the kernel that is not
tight, but tight for the algorithm with respect to its highest-order term.

When Q and R are disjoint subsets of V ′, denote by N(Q) the number of
edges in G′ with both endpoints in Q and by N(Q,R) the number of edges in G′

with one endpoint in each of Q and R. Then

N(Vm ∪ VD) =

N(Vm ∩ VD) +N(Vm ∩ VD, (Vm \ VD) ∪ (VD \ Vm)) +N(Vm \ VD, VD \ Vm) .

For brevity, put q = |Vm ∩ VD|. Then, since q ≥ m and m ≤ 2k,

N(Vm ∪ VD) ≤
(
q

2

)
+ q((2m− q) + (2k − q)) + (2m− q)(2k − q)

= 4km− q(q + 1)

2
≤ m(8k − 1−m)

2
≤ 6k2 − k .
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r r

r r

r r

(a)(a) (b)(b) (c)(c)

Fig. 2. Subgraphs of worst-case instances for the kernelization. Every gray rhombus
represents r degree-2 vertices, each connected to the two vertices at corners of the
rhombus. The wavy edges form a minimum edge dominating set D, and the heavy
solid edges form a 3-maximal matching M0. Computed with respect to these, the
vertices with a dot and the black vertices are those in A0 and in B, respectively. The
free vertices of degree 1 are removed, but later replaced.

Ifm ≥ 2k−1,N(B, V ∗∩V ′) ≤ |B| andN(A0, (V
∗∩V ′)\VD) ≤ |A0||B|, so that

|E′| ≤ 6k2−k+ |B|+ |A0||B|+ |A0|. Since |A0|+ |B| ≤ 2k, |B|+ |A0||B|+ |A0| ≤
k2 + 2k and |E′| ≤ 7k2 + k.

Assume from now on that m ≤ 2k − 2. According to earlier findings,

N(Vm \A0, V
∗ ∩ V ′) ≤ (m− |A0|)(2k −m) and

N(A0, V
∗ ∩ V ′) ≤ |A0|(m− |A0|)(2k −m) .

Let b = m− |A0|. Then |E′| is bounded by

N(Vm ∪ VD) +N(Vm \A0, V
∗ ∩ V ′) +N(A0, V

∗ ∩ V ′) + |A0|

≤ m(8k − 1−m)

2
+ b(2k −m) + (m− b)b(2k −m) +m− b

≤ m(8k − 1−m+ 2(2k −m− 1) + 2)

2
+ (m− b)b(2k −m)

≤ 6k2 + (m− b)b(2k −m) ≤ 6k2 +
1

4
m2(2k −m) .

The polynomial m2(2k−m) in m is maximal for m = 4
3k, so |E′| ≤

8
27k

3 +6k2.
The results of this section can be summarized as follows.

Theorem 1. Applied to a pair (G, k), where G = (V,E) is an undirected graph
and k ∈ N, the 3-MM algorithm computes, in O(|V |+ |E|) time, an undirected
graph G′ with at most max{ 12k2 + 7

2k, 6k} vertices and at most max{ 8
27k

3 +
6k2, 7k2 + k} edges such that (G′, k) belongs to Edge Dominating Set if and
only if (G, k) does.
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5 Open Problems

A problem that remains open is to discover whether there is a kernelization for
Edge Dominating Set whose output has o(k2) vertices. One may note that
the worst-case instances illustrated in Fig. 2 can be reduced to size O(k) with
the reduction rule (∗), even if not in the restricted way employed by the 3-MM
algorithm.

Another question that deserves elucidation is what—if anything—can be
achieved for Edge Dominating Set by kernelizations that operate without
knowledge of k. Such kernelizations (more precisely, “data reduction rules” with
an analogous property) are called “parameter-independent” in [2,4]; a better
term might be “parameter-oblivious”.
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Abstract. We consider a general notion of coalgebraic game, whereby
games are viewed as elements of a final coalgebra. This allows for a
smooth definition of game operations (e.g. sum, negation, and linear im-
plication) as final morphisms. The notion of coalgebraic game subsumes
different notions of games, e.g. possibly non-wellfounded Conway games
and games arising in Game Semantics à la [AJM00]. We define various
categories of coalgebraic games and (total) strategies, where the above
operations become functorial, and induce a structure of monoidal closed
or ∗-autonomous category. In particular, we define a category of coalge-
braic games corresponding to AJM-games and winning strategies, and a
generalization to non-wellfounded games of Joyal’s category of Conway
games. This latter construction provides a categorical characterization
of the equivalence by Berlekamp, Conway, Guy on loopy games.

Keywords: games, strategies, categories of games and strategies,
Conway games, AJM-games.

Introduction

In this paper, we consider a general notion of coalgebraic game, whereby games
are viewed as elements of a final coalgebra. This notion of coalgebraic game is gen-
eral enough to subsume various notions of games, e.g. possibly non-wellfounded
Conway games [Con01], and games arising in Game Semantics à la [AJM00].
Coalgebraic methods appear very natural and useful in this context, since they
allow to abstract away superficial features of positions in games, and to smoothly
define game operations as final morphisms.

The kind of games that we consider are 2-player games of perfect information,
the two players being Left (L) and Right (R). A game is identified with its initial
position. At any position, there are moves for L and R taking to new positions
of the game. Contrary to other approaches in the literature, where games are
defined as graphs, we view possibly non-wellfounded games as points of a fi-
nal coalgebra of graphs, i.e. minimal graphs w.r.t. bisimilarity. This coalgebraic
representation is motivated by the fact that the existence of winning/non-losing
strategies is invariant w.r.t. graph bisimilarity. We formalize the notion of play
as a sequence of pairs move-position, and, on top of it, we define a strategy as a
function on plays. We focus on total strategies for a given player, i.e. strategies
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that must provide an answer, if any, for the player. These differ from partial
strategies, in which the player can refuse an answer and give up the game. In
particular, we introduce and study winning/non-losing strategies, which provide
winning/non-losing plays when played against any counterstrategy.

In our general coalgebraic framework, we define and discuss various game
operations arising in the literature, i.e. sum and negation introduced by Con-
way [Con01] to analyze games such as Go, or Nim, and linear logic connectives
of Abramsky et al., see e.g. [Abr96, AJM00]. Coalgebraically, such operations
can be naturally defined as final morphisms, and they uniformly and naturally
subsume the corresponding original operations, allowing in particular for a com-
parison of operations arising in different contexts, such as Conway disjunctive
sum and tensor sum on AJM-games. Then, on the basis of these operations, we
discuss various categorical constructions, in the spirit of [Joy77], which gener-
alize categories of AJM-games as well as Joyal’s original category of Conway
games. In particular, we provide a general construction of a symmetric monoidal
closed category of possibly non-wellfounded games and (total) strategies, which
subsumes Joyal’s compact closed category as a full subcategory. Interestingly,
our category characterizes the equivalence on loopy games defined in [BCG82].

Constructions generalizing Joyal’s category to non-wellfounded games have
been previously considered in [Mel09, MTT09], but in the context of partial
strategies; hence they subsume Joyal’s category as a subcategory, but not as a
full subcategory, and the equivalence on games induced by the existence of partial
strategies becomes trivial. Solutions to the problem of defining a well-behaved
category of non-wellfounded games and total strategies have been presented
in [HLR11], for the class of non-wellfounded Conway games where all infinite
plays are draws. The solution in the present paper is based on a different and
more general construction, and it applies to the class of mixed games (infinite
plays can be either winning for any of the players or draws). To our knowledge,
this is the first category of mixed games subsuming Joyal’s construction as a full
subcategory and capturing the original loopy equivalence of [BCG82].

The coalgebraic notion of game in this paper generalizes the one introduced
in [HL11] for characterizing non-wellfounded Conway games. Coalgebraic meth-
ods for modeling games have been used also in [BM96], where the notion of
membership game has been introduced. This corresponds to a subclass of our
coalgebraic games, where at any position L and R have the same moves, and
all infinite plays are deemed winning for player II (the player who does not
start). However, no operations on games are considered in that setting. In the
literature, various notions of bisimilarity equivalences have been considered on
games, see e.g. [Pau00, Ben02]. But, contrary to our approach, such games are
defined as graphs of positions, and equivalences on graphs, such as trace equiva-
lences or various bisimilarities are considered. Differently, defining games as the
elements of a final coalgebra, we directly work up-to bisimilarity of game graphs.

Summary. In Section 1, we introduce our framework of coalgebraic games and
strategies, and we instantiate it to Conway games and AJM-games. In Sec-
tion 2, we introduce and study general game operations, and in Section 3 we
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present two parametric categories of games and strategies, subsuming as special
instances categories arising in Game Semantics as well as Joyal’s category of
Conway games. Conclusions and directions for future work appear in Section 4.

1 Coalgebraic Games and Strategies

We consider a general notion of 2-player game of perfect information, where
the two players are called Left (L) and Right (R). A game x is identified with
its initial position; at any position, there are moves for L and R, taking to
new positions of the game. By abstracting from superficial features of positions,
games can be viewed as elements of the final coalgebra for the functor FA(X) =
P<κ(A×X), where A is a parametric set of atoms which encode information on
moves and positions, i.e. move names, and the player who has moved, and P<κ
is the set of all subsets of cardinality < κ. The coalgebra structure captures, for
any position, the moves of the players and the corresponding next positions.

We work in the category Set∗ of sets belonging to a universe satisfying the
Antifoundation Axiom, see [FH83, Acz88]. Of course, we could work in the cat-
egory Set of well-founded sets, but we prefer to use Set∗ so as to be able to use
identities rather than isomorphisms. Formally, we define:

Definition 1 (Coalgebraic Games). Let A be a set of atoms with functions:

(i) μ : A →M yielding the name of the move (for a set M of names),
(ii) λ : A → {L,R} yielding the player who has moved.

Let FA : Set∗ → Set∗ be the functor defined by FA(X) = P<κ(A × X) (with
usual definition on morphisms), and let (GA, id) be the final FA-coalgebra.
A coalgebraic game is an element x of the carrier GA of the final coalgebra.

The elements of the final coalgebra GA are the minimal graphs up-to bisimilarity.
In the following, we often refer to coalgebraic games simply as games. We call
player I the player who starts the game (who can be L or R in general), and
player II the other. Once a player has moved on a game x, this brings to a new
game/position x′. We define the plays on x as the sequences of pairs, move-
position, from x; moves in a play are not necessarily alternating (this generality
will be useful in the sequel, in defining operations on games):

Definition 2 (Plays). A play on a game x0 is a possibly empty finite or infinite
sequence of pairs in A×GA, s = 〈a1, x1〉 . . . such that ∀n ≥ 0. 〈an+1, xn+1〉 ∈ xn.
We denote by Playx the set of plays on x and by FPlayx the set of finite plays.

The kind of strategies for a given player on which we focus are those that always
provide an answer, if any, of the player to the moves of the opponent player. In
this sense, such strategies are “total”, opposite to “partial strategies”, where the
player can possibly refuse an answer and give up the game. Formally, strategies in
our framework are partial functions on finite plays ending with a position where
the player is next to move, and yielding (if any) a pair in A× GA, consisting of
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“a move of the given player together with a next position” on the game x. In
what follows, we denote by

– FPlayLIx (FPlayRIx ) the set of possibly empty finite plays on which L (R)
acts as player I, and ending with a position where R (L) was last to move, i.e.
s = 〈a1, x1〉 . . . 〈an, xn〉, λa1 = L and λan = R (λa1 = R and λan = L ).
– FPlayLIIx (FPlayRIIx ) the set of finite plays on which L (R) acts as player II, and
ending with a position where R (L) was last to move, i.e. s = 〈a1, x1〉 . . . 〈an, xn〉,
λa1 = R (λa1 = L) and λan = R (λan = L).

Formally, we define:

Definition 3 (Strategies). Let x be a game. A strategy σ for LI ( i.e. L acting
as player I) is a partial function σ : FPlayLIx → A × GA such that, for any
s ∈ FPlayLIx ,

– σ(s) = 〈a, x〉 =⇒ λa = L ∧ s〈a, x〉 ∈ FPlayx
– ∃〈a, x〉. (s〈a, x〉 ∈ FPlayx ∧ λa = L) =⇒ s ∈ dom(σ).

Similarly, one can define strategies for players LII, RI, RII.

We are interested in studying the interactions of a strategy for a given player
with the (counter)strategies of the opponent player. When a player plays on
a game according to a strategy σ, against an opponent player who follows a
(counter)strategy σ′, a play arises. Formally, we define:

Definition 4 (Product of Strategies). Let x be a game.
(i) Let s be a play on x, and σ a strategy for a player in {LI,LII,RI,RII}. Then s
is coherent with σ if, for any proper prefix s′ of s, ending with a position where
the player is next to move, σ(s′) = 〈a, x〉 =⇒ s′〈a, x〉 is a prefix of s.
(ii) Given a strategy σ on x and a counterstrategy σ′, we define the product of
σ and σ′, σ ∗ σ′, as the unique play coherent with both σ and σ′.

Notice that a play arising from the product of strategies is alternating.
We distinguish between well-founded games, i.e. well-founded sets as elements

of the final coalgebra GA, and non-wellfounded games, i.e. non-wellfounded sets
in GA. Clearly, strategies on well-founded games generate only finite plays, while
strategies on non-wellfounded games can generate infinite plays.

Strategies for a given player, as we have defined so far, simply provide an
answer (if any) of the player to all possible moves of the opponent. Intuitively,
a strategy is winning/non-losing for a player, if it generates winning/non-losing
plays against any possible counterstrategy. We take a finite play to be winning
for the player who performs the last move. While infinite plays are taken to be
winning for L/R or draws. Formally, we define:

Definition 5 (Winning/non-losing Play). Let ν : Playx → {0, 1,−1} be a
payoff function defined on plays of a game x.
(i) A play s is winning for player L (R) if ν(s) = 1 (ν(s) = −1).
(ii) A play s is a draw if ν(s) = 0.
(iii) A play s is non-losing for player L (R) if ν(s) ∈ {0, 1} (ν(s) ∈ {0,−1}).
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Definition 6 (Winning/non-losing Strategy). Let ν : Playx → {0, 1,−1}
be a payoff function on x.
(i) A strategy σ on x for LI (LII) is winning (non-losing) for LI (LII) if for any
strategy σ′ for RII (RI), ν(σ ∗ σ′) = 1 (ν(σ ∗ σ′) ∈ {0, 1}).
(ii) A strategy σ on x for RI (RII) is winning (non-losing) if for any strategy σ′

for LII (LI), ν(σ ∗ σ′) = −1 (ν(σ ∗ σ′) ∈ {0,−1}).

We will refer to the whole class of coalgebraic games, where plays can be winning
or draws, as mixed games ; and we will call fixed games the subclass of games
where all plays are winning for one of the players.

The notion of strategy of Definition 3 is quite general, being defined on plays
which carry the information on moves and positions. Often, we are interested
in considering special classes of strategies, depending either on moves or on
positions (or even only on the last move/position). Here we collect the relevant
definitions. For any play s, we denote by s|A the sequence obtained by erasing
all positions, and by s|P the sequence obtained by erasing all moves from s.

Definition 7. Let σ be a strategy on a game x.
(i) σ is pos-independent if ∀s, s′ ∈ dom(σ). (s|A = s′|A =⇒ σ(s) = σ(s′)).

(ii) σ is move-independent if ∀s, s′ ∈ dom(σ). (s|P = s′|P =⇒ σ(s) = σ(s′)).

1.1 Conway Games

Conway (wellfounded) games are inductively defined in [Con01] as pairs of
sets x = (XL, XR), where XL (XR) is the set of next positions to which
L (R) can move. Such games are purely positional, no move names are con-
sidered. In [BCG82], non-wellfounded games are considered, called loopy or
mixed games, but these are defined as graphs of positions, rather than sets,
i.e. graphs up-to bisimilarity. Here we extend the original set-theoretical defi-
nition of [Con01], by representing possibly non-wellfounded Conway games as
coalgebraic games for A the two-element set {aL, aR}, where μaL = μaR = a,
λaL = L and λaR = R. These correspond to loopy games taken up-to graph
bisimilarity. Our coalgebraic approach is motivated by the fact that the exis-
tence of winning/non-losing strategies is preserved under graph bisimilarity of
loopy games. Winning/non-losing strategies on Conway games correspond to
(move-independent) winning/non-losing strategies of Definition 6.

1.2 Game Semantics

In Game Semantics various notions of games are used, here we focus on the
basic games à la [Abr96, AJM00], called AJM-games. We define an AJM-game
as a tuple G = (MG, λG, PG,WG), where MG is the set of moves, the function
λG : MG → {O,P} specifies for each move if it is an O (Opponent) or a P
(Player) move; O and P move in strict alternation, O starts the game; the set PG
is a non-empty prefix-closed set of finite alternating sequences of moves starting
with an O-move, which represents the set of legal positions. These correspond
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to the finite plays in our setting when positions are omitted. We define P∞G
as the set of infinite plays, i.e. infinite sequences whose finite prefixes are legal
positions. The winning condition for a player on a finite play corresponds to
the absence of moves for the other player, while any infinite play is fixed to be
winning either for O or for P via the predicate WG, which holds on an infinite
play s (WG(s) ↓) iff s is winning for P.

The underlying structure of any such game can be represented in our frame-
work by considering the tree of legal positions (plays). This can be viewed as an
element of our final coalgebra GA, provided we perform a bisimilarity quotient
on nodes (since the tree of plays is not necessarily minimal w.r.t. bisimilarity),
thus getting the graph of positions. Formally, we represent such games as follows:

– P is player L and O player R, R starts the game;
– the set A includes atoms am for any m ∈MG s.t. μam = m, λam = λGm;
– nodes {xp}p∈PG , xp = {(am, xp′ ) | p′ = pa ∈ PG}, are taken up-to bisimilarity;
– the initial position is xε;

– the payoff function ν is defined on infinite plays by ν(s) =

{
1 if WG(s) ↓
−1 otherwise.

Coalgebraic games representing AJM-games are fixed and have a special struc-
ture: R starts, at any non-ending position only moves for R or L are available, for
any move there is at most one arc labeled by that move, and along any path in
the game graph R/L moves strictly alternate. We call strict games such subclass
of coalgebraic games. They form a subcoalgebra of our final coalgebra.

Winning strategies on AJM-games are defined as suitable subsets of the le-
gal positions, see [Abr96] for more details, and hence they only depends on the
sequence of moves (pos-independent strategies in our setting). AJM-games to-
gether with winning strategies form a ∗-autonomous category C, see [Abr96].
The precise relationship between C and the corresponding category of coalge-
braic games is formalized in Section 3 via an equivalence of categories.

2 Game Operations

In this section, we show how to define various operations on coalgebraic games,
including sum, negation, and linear implication. In our framework, game op-
erations can be conveniently defined via final morphisms. These capture the
structure of compound games; the extra structure of the payoff function on infi-
nite plays of the compound game is obtained inductively from the payoff of the
components.

On mixed games, we define a notion of sum, inspired by Conway disjunctive
sum; while, on fixed games, we define a notion of sum subsuming the tensor
product of Game Semantics. The two notions of sum have the same coalgebraic
structure, and only differ by the definition of the payoff on infinite plays. This
neatedly emerges from the analysis carried out in our coalgebraic framework.

Sum. We start by defining the coalgebraic structure of the sum of two games. On
the sum game, at each step, the next player selects any of the component games
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and makes a legal move in that component, the other component remaining
unchanged. The other player can either choose to move in the same component
or in a different one. Notice that in this way, even if the play on the sum game
agrees with turns of L and R, the subplays in the single components may not
agree with turns, in general.

Definition 8 (Sum, coalgebraic structure). The sum of two games is given
by the final morphism + : (GA × GA, α+) −→ (GA, id), where the coalgebra
morphism α+ : GA × GA −→ FA(GA × GA) is defined by:
α+(x, y) = {〈a, 〈x′, y〉〉 | 〈a, x′〉 ∈ x} ∪ {〈a, 〈x, y′〉〉 | 〈a, y′〉 ∈ y}.
That is: x+ y = {〈a, x′ + y〉 | 〈a, x′〉 ∈ x} ∪ {〈a, x+ y′〉 | 〈a, y′〉 ∈ y}.

Two kinds of sum arise from the above coalgebraic definition, by suitably defining
the payoff function on infinite plays:

(i) Mixed sum ⊕. This is defined on mixed games, and it is inspired by Conway
disjunctive sum. The payoff of an infinite play will be 1 (−1) if all infinite plays
in the components have payoff 1 (−1), it will be 0 otherwise.
(ii) Fixed sum ⊗. This is defined on fixed games and it generalizes the tensor
product of Game Semantics. The payoff of an infinite play is 1 (winning for L)
iff all infinite subplays in the components have payoff 1, it will be -1 otherwise.
This “asymmetric” definition is motivated by the interpretation of the linear
logic tensor connective.

Notice that, on both sums, since plays which agree with turns do not necessarily
induce subplays on the components which agree with turns, in order to define the
payoff on infinite plays, we need the payoff on all plays of the components, also
those non conformed to turns. This is the reason for such a liberal definition of
plays in Section 1. But, if we restrict ourselves to coalgebraic strict games, which
correspond to games of Game Semantics, then any play on the sum game which
agrees with turns induces subplays with the same property in the components.
Moreover, the “switching condition” becomes straightforward.

Negation. The negation is a unary game operation, which allows us to build
a new game, where the roles of L and R are exchanged. Let us assume that the
set of atoms A is closed under an involution operation, i.e., for any a ∈ A, let
a ∈ A be such that λa = λa, νa = −ν(a), μa = μa, where L = R and L = R.
The coalgebraic definition of game negation is as follows:

Definition 9 (Negation). The negation of a game is given by the final mor-
phism − : (GA, α−) −→ (GA, id), where the coalgebra morphism α− : GA −→
FA(GA) is: α−(x) = {〈a, x′〉 | 〈a, x′〉 ∈ x}. That is: x = {〈a, x′〉 | 〈a, x′〉 ∈ x}.
The payoff on infinite plays of x is taken to be opposite to the payoff on x.

Clearly, winning/non-losing strategies for a given player on x become winning/
non-losing strategies for the opponent player on x, and x = x, i.e. negation is
involutive. Notice that both mixed and fixed games are closed under negation.
But strict games are not, of course.
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Linear Implicaton. Using the two notions of sum, and negation, we can now
define two linear implications :

Definition 10 (Linear Implications). We define
(i) on mixed games: the linear implication x→ y as the game x⊕ y;
(ii) on fixed games: the linear implication x 	 y as the game x⊗ y.

Notice that mixed sum satisfies the equality x⊕ y = x ⊕ y, hence the linear
implication x→ y amounts to x ⊕ y, while the corresponding equality for fixed
sum does not hold. More precisely, the coalgebraic structure of the game x 	 y
coincides with the coalgebraic structure of x ⊗ y, but the winning condition on
infinite plays is different, namely an infinite play is winning for L on x 	 y iff
the subplay on x or that on y is infinite and winning for L, while an infinite play
is winning for L on x⊗ y iff all infinite subplays on x and y are winning for L.

3 Game Categories

The fine analysis of game operations carried out in Section 2 allows us to pro-
vide two very general categorical constructions arising from such operations on
games. In particular, we provide a category XA of fixed games and winning
strategies, parametric w.r.t. the set of atoms A, which is ∗-autonomous, and a
symmetric monoidal closed category YA of mixed games, also parametric w.r.t.
A, obtained by analyzing mixed games via pairs of fixed games. A special in-
stance of XA is obtained by instantiating A as shown in Section 1.2, in order
to recover (up-to bisimilarity) AJM-games. A significant result that we obtain,
which clarifies the relationships between the original AJM-games and their rep-
resentation in our framework, is an equivalence between the category of games
and winning strategies of [Abr96] and our category of strict coalgebraic games
and pos-independent strategies. On the other hand, the category YA of mixed
games is related to Conway games. Namely, by suitably instantiating A, we get
a category whose objects correspond to the (non-wellfounded) mixed Conway
games of [BCG82], a full subcategory of which is Joyal’s compact closed cate-
gory. Remarkably, the equivalence on mixed games induced by the morphisms of
our category coincides with the equivalence defined in [BCG82] on loopy games.
To our knowledge, this is the first category of mixed games subsuming Joyal’s
construction as a full subcategory and capturing the original loopy equivalence.

The Category XA of Fixed Games. The notions of sum and linear impli-
cation on fixed games give rise to a ∗-autonomous category XA that generalizes
categories of AJM-games and winning strategies.

Definition 11 (The Category XA)
Objects: fixed games.
Morphisms: σ : x→ y winning strategy for LII on x 	 y.

Identities on XA are the copy-cat strategies, and closure under composition is
obtained via the swivel-chair strategy. I.e., given winning strategies for LII, σ
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on x 	 y, τ on y 	 z, the composition strategy, τ ◦ σ on x 	 z, is obtained by
using the “swivel chair”, as follows. Assume R opens on x 	 z, playing either
in z or in x, e.g. assume R opens in z. Then consider the L move given by the
strategy τ on y 	 z: if such L move is in z, then we take this as the L answer
in the strategy on τ ◦ σ; if the L move according to σ is in the y component of
y 	 z, then, using the “swivel chair”, we can view this move as an R move in
the y component of x 	 y. Now L has a next move in x 	 y, according to τ .
If this move is in the x component, then we take this as the L answer in τ ◦ σ;
otherwise, if the L move is in y, then we use our swivel chair, viewing this as
a move of R in the y component on y 	 z, and so on. Since both σ and τ are
winning strategies, by the winning condition on infinite plays on the 	 game,
spelled out at the end of Section 2, we are guaranteed that the dialogue between
the y components does not go on forever, and eventually the L move according
to σ or τ will be on z or x. This is the L answer to the starting R move in the
strategy τ ◦ σ. Then, we go on in the same way, for any possible next R move.
Associativity of composition is also proved by a standard argument.

Fixed sum gives rise to a tensor product on XA, which determines a structure
of a symmetric monoidal closed category; in particular the identity x⊗ y 	 z =
y 	 (x 	 z) holds, this latter following from the definition of the 	 game
and from the fact that negation is involutive. Negation is also functorial, and,
together with tensor, provides a ∗-autonomous structure on XA, namely we have
in particular the identity x⊗ y 	 z = x 	 (y ⊗ z). Summarizing:

Theorem 1. The category XA is ∗-autonomous.

The above construction encompasses categories used in Game Semantics. Namely,
let C be the category of AJM-games and winning strategies of [Abr96], and let us
instantiate the parameter A of XA with the set of moves M for such games, get-
ting the category XM . If we consider the subcategory SXM of strict games and
pos-independent winning strategies, then we obtain the following equivalence of
categories:

Theorem 2. The category SXM of strict games and pos-independent winning
strategies is equivalent to the category C of AJM-games and winning strategies.

Proof. The equivalence between the categories SXM and C is given by the func-
tor H : C → SXM , which, for a game in C, yields the coalgebraic game obtained
by performing a bisimilarity quotient on the tree of legal positions. Winning
strategies of C, which are defined on legal positions (i.e. plays where positions
are omitted, in our setting) are naturally mapped to pos-independent winning
strategies in SXM , providing a one-to-one correspondence. Moreover, each strict
coalgebraic game is the image of an AJM-game via H . .�

The Category YA of Mixed Games. Defining a category of mixed games
and non-losing strategies is not straightforward, the reason being that non-losing
strategies are not closed under composition. The situation has been analyzed in
[HLR11] for hypergames, i.e. non-wellfounded Conway games where all infinite
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plays are draws. The solution proposed there is to restrict the class of morphisms
to non-losing fair strategies. This category is symmetric monoidal with the mixed
sum ⊕ as tensor product, but it is not monoidal closed; moreover the categorical
construction does not immediately extend to the whole class of mixed games.
Here, by exploiting the investigation on operations carried out in Section 2, we
propose a different solution, which is inspired by the analysis of mixed Conway
games x in terms of pairs of fixed games, 〈x−, x+〉, [BCG82]. The idea is to
represent mixed games as pairs of fixed games obtained by considering all draws
to be winning for R or for L respectively, and to work with fixed tensor product
and the corresponding linear implication in the single components. We carry
out this construction in the full generality offered by our framework, building a
symmetric monoidal closed category YA, parametric w.r.t. A.

Definition 12. Let x be a mixed game. We define the pair 〈x−, x+〉 of fixed
games as follows: x− is obtained from x by taking all infinite plays which are
draws on x to be winning for R; x+ is obtained from x by taking all infinite plays
which are draws on x to be winning for L.

Notice that each mixed game is uniquely determined by its corresponding pair
of fixed games. In particular, for fixed games x, we have x = x− = x+.

Definition 13 (The Category YA)
Objects: mixed games x = 〈x−, x+〉.
Morphisms: pairs of winning strategies for LII, 〈σ−, σ+〉 : 〈x−, x+〉 → 〈y−, y+〉.

Identities on the category YA are the pairs of copy-cat strategies, and closure
under composition follows by closure in the single components. Fixed tensor
product in the components naturally induces a tensor on the category YA. This
yields the structure of a symmetric monoidal closed category on YA. In par-
ticular, we define: x ⊗ y = 〈x− ⊗ y−, x+ ⊗ y+〉, x = 〈x−, x+〉, x 	 y =

〈x− 	 y−, x+ 	 y+〉 = 〈x− ⊗ y−, x+ ⊗ y+〉. Closure of the monoidal category
YA follows from the identity x⊗ y 	 z = y 	 (x 	 z). Hence, we have:

Theorem 3. The category YA is symmetric monoidal closed.

Notice that YA is not ∗-autonomous, since x ⊗ y 	 z �= x 	 (y ⊗ z) on mixed
games. But, if we restrict YA to fixed games, we get the category XA, which is ∗-
autonomous. Moreover, YA restricted to well-founded games is compact closed,
with negation giving dual objects. Namely, the copy-cat strategy induces natural
winning strategies for LII on x ⊗ x 	 0 and 0 	 x ⊗ x, where 0 denotes the
empty game, for any well-founded game x. Thus we have:

Theorem 4. The full subcategory of YA, consisting of well-founded games and
winning strategies, is compact closed.

As shown in Section 1.1, non-wellfounded Conway games can be represented in
our framework by instantiating A to an appropriate 2-element set. Let us denote
by Y2 the corresponding category. As a corollary of Theorem 3 we get:
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Corollary 1. The category Y2 of Conway games is symmetric monoidal closed.

Moreover, by restricting to well-founded games, we obtain Joyal’s category as a
full subcategory, and from Theorem 4 we have:

Corollary 2 ([Joy77]). The category of Conway games and winning strategies
is compact closed.

Game Equivalences. Having defined games as a final coalgebra, games are
already taken up-to bisimilarity, thus abstracting from superficial features of
positions. Bisimilarity is a first structural equivalence on game graphs, but on
top of this one can define various equivalences and congruences, by looking at
strategies. Such equivalences arise in many conceptually different ways, and they
have been studied for Conway games and hypergames in [HL11, HLR11].

Our categorical constructions give rise to interesting notions of (pre)equiva-
lences on games induced by the morphisms, and defined by:

x ≤YA y iff there exists a winning strategy for LII on x 	 y .

Notice that, since XA is a full subcategory of YA, the (pre)equivalence induced
by XA coincides with the restriction on fixed games of ≤YA .

Identities on the category YA correspond to reflexivity of ≤YA , closure un-
der composition corresponds to transitivity, while functoriality of tensor and
negation ensures congruence of ≤YA w.r.t. the corresponding operations.

Interestingly, the equivalence ≤Y2 captured by our category Y2 of mixed Con-
way games coincides with the loopy game equivalence of [BCG82].

Definition 14 (Loopy Equivalence). For x, y mixed games, we define:

x ≤l y iff there are non-losing strategies for LII on x− ⊕ y− and x+ ⊕ y+.

Then we have:

Theorem 5. For mixed games x, y, x ≤l y ⇐⇒ x ≤Y2 y .

Proof. We prove that x− ⊗ y− (x+ ⊗ y+) has a winning strategy for LII iff

x− ⊕ y− (x+ ⊕ y+) has a non-losing strategy for LII. Equivalently, x− ⊗ y−

(x+ ⊗ y+) has a winning strategy for RII iff x− ⊕ y− (x+ ⊕ y+) has a non-losing
strategy for RII. This follows since, for fixed games, x⊗y has a winning strategy
for R (I or II) iff x⊕ y has a non-losing strategy for R (I or II). .�

4 Final Remarks and Directions for Future Work

We have considered a general notion of coalgebraic game, whereby non-wellfoun-
ded games are viewed as elements of a final coalgebra. This allows for a unified
treatment of games arising in different settings, in particular Conway games
and AJM-games, and it helps in shedding light on the relationships between
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them. We have introduced and studied general notions of categories of games
and strategies, subsuming Joyal’s category of Conway games as well as categories
used in Game Semantics. Categorical equivalences have been defined, providing
in particular a characterization of the equivalence on loopy games of [BCG82].

Here is a list of further comments and directions for future work.
Partial strategies. In this paper, we have considered total strategies, but in con-
texts such as Game Semantics, often partial strategies are considered. Categories
of games and partial strategies in the spirit of Joyal’s category have been studied
e.g. in [HS02, Mel09, MTT09]. Partial strategies could be naturally modeled in
our framework. It would be interesting to investigate the relationships between
partial and total strategies in generality. Intuitively, partial strategies should
allow to approximate total strategies up to plays of certain length.
Exponential. The general categorical constructions carried out in the present
paper provide symmetric monoidal closed and ∗-autonomous categories, which
allow to model fragments of Linear Logics. We claim that mixed games can be
endowed with an exponential operation, endowing YA with a structure of linear
category. The exponential operation can be defined by !x = Σ∞xR, where xR is
obtained from x by erasing all L-opening moves, and Σ∞ is an “infinite sum”
operation, which can be defined via a suitable generalized coiteration schema.
Games with payoff on a partially ordered set. In [San02], partial infinite games are
introduced. Various operations are defined, including a kind of sum operation.
A precise comparison with our categorical sums has still to be investigated.
Generalizing the coalgebraic framework. Coalgebraic games can be further gen-
eralized, by encoding more information in the parameter set A, e.g. the payoff or
the turn of the players. These allow us to model a wider range of games, including
automata games and games arising in Economics. It would be also interesting
to investigate a generalization for non-perfect information games. An approach
could be that of explaining them using the notion of coalgebra morphism.
Coinductive specification of strategies. One can give a coinductive definition of
the set of strategies for a player, via corecursive equations. Intuitively, if we
denote by SL(s) the set of strategies for L starting on the play s, a strategy in
SL(s), where s ends with the current position 〈a, x〉, amounts to: either the empty
strategy, if L has no move in the position x; or a strategy for L in SL(s〈a′, x′〉),
where 〈a′, x′〉 ∈ x and a′ is a L move, if L is next to move in the current position
〈a, x〉, i.e. a strategy in Σ〈a′,x′〉∈x.λa′=LSL(s〈a′, x′〉); or a collection of strategies
for L, for any possible R move from the current position 〈a, x〉, if R is next to
move, i.e. a collection of strategies in Π〈a′,x′〉∈x.λa′=RSL(s〈a′, x′〉).

It would be interesting to formalize the above idea.
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Abstract. It has been shown [6] that, within the McAlister inverse
monoid [10], whose elements can be seen as overlapping one-dimensional
tiles, the class of languages recognizable by finite monoids collapses com-
pared with the class of languages definable in Monadic Second Order
Logic (MSO).

This paper aims at capturing the expressive power of the MSO de-
finability of languages of tiles by means of a weakening of the notion of
algebraic recognizability which we shall refer to as quasi-recognizability.
For that purpose, since the collapse of algebraic recognizability is in-
trinsically linked with the notion of monoid morphism itself, we propose
instead to use premorphisms, monotonic mappings on ordered monoids
that are only required to be sub-multiplicative with respect to the monoid
product, i.e. mapping ϕ so that for all x and y, ϕ(xy) ≤ ϕ(x)ϕ(y).

In doing so, we indeed obtain, with additional but relatively natural
closure conditions, the expected quasi-algebraic characterization of MSO
definable languages of positive tiles. This result is achieved via the ax-
iomatic definition of an original class of well-behaved ordered monoid so
that quasi-recognizability implies MSO definability. An original embed-
ding of any (finite) monoid S into a (finite) well-behaved ordered monoid
Q(S) is then used to prove the converse.

1 Introduction

This paper is rooted in formal language theory where, classically, the object of
study are sets (languages) of words (or strings) over a finite alphabet A, that is,
subsets of the free monoid A∗. A main topic of research is the characterization
of various classes of languages and, for this, there are a number of approaches:
recognition by automata of various kinds, recognition by monoids, definability
through various logical systems. The vast theoretical corpus that has been de-
veloped has inspired the study of languages (subsets) in monoids other than free
monoids. A notable example is the theory of trace languages [3] where traces
model concurrent behaviors. Another example is the study of subsets of free
inverse monoids [17].
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In this paper, the monoid that replaces the free monoid is the monoid TA of
positive overlapping tiles. This monoid extends the free monoid A∗ by adjoin-
ing left and right compatibility constraints to words which define whether the
concatenation product is legal or not. The resulting objects are triples of words
extended with 0 to complete the product. Indeed, the product of incompatible
tiles is set to 0.

Our interest in languages of tiles originally stems from computational mu-
sic theory [8,1] where the monoid of positive tiles is defined as an abstraction
of sequential combinations of musical sequences with overlapping anacrusis or
conclusions.

It is also possible to generalize these modeling perspectives. Indeed, overlap-
ping tiles can be seen as extended models of guarded processes. The left compat-
ibility constraint of a tile can be seen as a sequence of actions that must occur
before a process is executed. Symmetrically, the right compatibility constraint
of a tile can be seen as a sequence of actions that must occur after a process
is executed. The behavior of a complex sequential process, with both past and
future guards for each executions, can thus be modeled as the set of its possible
guarded executions. This is a language of non zero tiles.

The study of languages of tiles have already been the subject of research on our
part [6]. The class of languages of tiles definable in Monadic Second Order Logic
(MSO) is shown to be simple, i.e. these languages are finite sums of cartesian
products of regular languages of words. Since non zero tiles are just triples of
words this result is not a surprise. This class is also shown to be robust. It is
not only closed under boolean operators and projections, but also under (tiles)
product, iterated product and left and right residuals. Since the product of tiles
involves arbitrarily long pattern matching contraints, this good property was
less expected.

Aiming at identifying efficient mechanism to manipulate these languages of
tiles, we also have studied recognition by monoids. However, despite interest-
ing mathematical properties related with covers of bi-infinite periodic words [6],
the class of languages of tiles recognizable by finite monoids is shown to col-
lapse. It thus provides no interesting notion of automata. Of course, we may try
to define, by brute force, finite state machines for MSO definable languages of
tiles. However, in order to be truly useful, this notion of machine needs to be
compositional with respect to the product of (languages of) tiles. Since composi-
tionality is guaranteed by algebraic approaches, we rather seek to identify ways
of remedying the collapse of recognition by monoids.

Within the context of tiles, morphisms, in that they preserve products, convey
far too much structure to induce enough expressive power. We thereby seek to
identify a relaxation of the notion of morphism itself.

In this paper, we introduce the notion of quasi-recognizability: recognizability
by means of premorphisms instead of morphisms. Defined on ordered monoids,
premorphisms are mappings that are only required to be sub-multiplicative w.r.t.
the monoid product [12], i.e. ϕ(xy) ≤ ϕ(x)ϕ(y) instead of ϕ(xy) = ϕ(x)ϕ(y).
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But this proposal comes with a price: in general, quasi-recognizability does
not imply MSO definability. This means that our proposal is necessarily two-
fold. On the one hand, we need to find an adequate restriction of the category
of ordered monoids and premorphisms that preserves MSO definability. On the
other, we need the induced subcategory to be as large as possible in order to
recover our expressiveness yardstick : MSO definability.

Is such a delicate balance achievable? The answer to this question is as yet
unknown and may well be negative but we provide here a solution that essentially
fulfills these goals.

Main Results. We define the subclass of strongly well-behaved ordered monoids
and the subclass of well-behaved premorphisms. In the associated category, we
prove that all quasi-recognizable languages of tiles are definable, i.e. QREC ⊆
MSO, i.e. Theorem 4. Our first goal is achieved. Conversely, provided languages
of tiles satisfy a context-coherence closure property (CC), we prove that MSO
definable languages of tiles are quasi-recognizable, i.e. MSO ∩ CC ⊆ QREC,
i.e. Theorem 7. Our second goal is essentially achieved.

As far as we can see, the context-coherence closure property seems inherently
linked with the notion of overlapping tiles itself. Moreover, the class QREC is
much larger than the class REC of (classically) recognizable languages of tiles.
Indeed, the class QREC contains all (embeddings of) regular word languages. It
thus truly generalizes the class of recognizable languages of words. In contrast,
as far as the embedding of languages of words is concerned, it can be shown [6]
that the classical recognizability over tiles leads to finite boolean combination of
languages of words of the form u(vu)k(vu)∗ with u ∈ A∗, v ∈ A+ and k ∈ IN .
This class is even smaller than the related case of languages of words defined by
finite inverse monoids [11].

Of course, our proposal may seem technical. These are new ideas and meth-
ods. Their presentation has not as yet benefited from the fine-tuning that tried
and tested practice brings. Setting up an adequate subcategory also requires the
definition of a non trivial subclass of ordered monoids. Further still, our proof
that context-coherent MSO-definable languages are quasi-recognizable relies on
a original embedding of any monoid S into a well-behaved ordered monoid Q(S).
The mathematical elegance of this construction justifies, a posteriori, the tech-
nicalities that led to its definition.

Related Works. Must we necessarily therefore conclude that our proposal is
totally disconnected from former studies?

In mathematics, it results that the (well-behaved) ordered monoids, consid-
ered in this paper, generalize the two-sided version of Restriction or Ehresmann
monoids [4]. Further still, it results that well-behaved ordered monoids coincide
with a stable order restriction of Lawson’s U -semiadequate monoids [9].

More precisely, the definitions advanced in this paper are based on ordered
monoids. In another paper [7], we set forward an equivalent axiomatic (bi-unary)
definition of the class of well-behaved ordered monoids. In doing so, the rela-
tionship with other known classes of monoids or semigroups is made clear in
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this particularly rich field of research of semigroups with local units (see [5])
at the frontier with the even richer inverse semigroup theory. Furthermore the
main construction, the embedding of any monoid S into a well-behaved ordered
monoid Q(S), proves to be an expansion in the sense of Birget and Rhodes [16]
within the category of premorphisms on ordered monoids [7]. As such, it may
have many more interesting consequences in that specific mathematical field.

In computer science itself, though more implicitly, the notion of tiles and the
related notion of concatenation products has been a subject of research for many
years. In his study of two-way automata, Pécuchet [14] defines partial runs’s do-
mains as (positive or negative) overlapping tiles. The product of tiles defined in
this paper explicits the composition of the underlying domains resulting from
the composition of two partial runs. Later, Birget proposes an algebraic reduc-
tion of two-way automata into finite monoids [2] where these ideas are further
developed. However, despite many attempts since then, the question raised by
Birget: does a true algebraic characterization of two-way automata in fact exist,
remains unanswered so far.

In this paper, we do provide an algebraic setting for languages of tiles. And
even the context coherence requirement no longer stands when two special letters
mark (as for two-way automata) the beginning and the end of the word upon
which given tiles are considered. Thereby, our proposal may constitute a first
step towards a positive answer to Birget’s long standing question.

Some Notations. For every monoid S, for every x and y ∈ S, we often write xy
for the product x.y of x and y in S. By extension, given X ⊆ S, and x ∈ S, let xX
(resp. Xx) be the set xX = {xy ∈ S : y ∈ X} (resp. Xx = {yx ∈ S : y ∈ X}).

The prefix preorder ≤p (resp. the suffix preorder ≤s) is defined, for all x and
y ∈ S by x ≤p y when xz = y for some z ∈ S (resp. x ≤s y when zx = y for
some z ∈ S). Under both prefix and suffix preorder, the neutral element 1 is the
least element of S, and the absorbant element 0 (if there is such) is the greatest.
We also write x−1

(y) = {z ∈ S : xz = y} and (y)x−1
= {z ∈ S : zx = y}.

This notation extends to sets as follows: for all x ∈ S and Y ⊆ S we write
x−1

(Y ) = {z ∈ S : xz ∈ Y } and (Y )x−1
= {z ∈ S : zx ∈ Y }.

The free monoid A∗ on the alphabet A is extended with 0 with, for all u ∈ A∗,
u0 = 0u = 0. Then, for every two words u and v, u−1

(v) (resp. (v)u−1) is defined
as the unique word, if it exists, such that v = uu−1

(v) (resp. v = (v)u−1u) or 0
otherwise. Last, we write u∨p v (resp. u ∨s v) for the smallest word w ∈ A∗

+ 0

such that both u ≤p w and v ≤p w (resp. u ≤s w and v ≤s w). In other words,
u ∨s v (resp. u ∨p v) equals the greatest word among u or v when they are
suffix-comparable (resp. prefix-comparable) or it equals 0 otherwise.

2 Monoids and Languages of Positive Tiles

We review here the definition of the monoid of positive tiles. We also review
how it can be seen as an ordered monoid with many additional properties. Our
former characterization of MSO definable languages of tiles is then presented [6].
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Here, this characterization is used as an alternative and simpler definition of this
class of languages of tiles.

Positive Tiles. The set TA of positive tile on the alphabet A is defined as the
set of triples of words u = (u1, u2, u3) ∈ A∗ × A∗ × A∗ extended with an extra
tile 0 called the undefined tile.

For all non zero tiles u = (u1, u2, u3) and v = (v1, v2, v3), the sequential
product of u and v is defined to be u.v = ((u1.u2∨sv1)u

−1

2
, u2v2, v

−1

2
(u3∨p v2v3))

when both the left matching constraint u1.u2 ∨s v1 �= 0 (u1u2 and v1 are suffix-
comparable) and the right matching constraint u3 ∨p v2v3 �= 0 (u3 and v2v3 are
prefix-comparable) are satisfied. This definition is illustrated by the following
figure where matching constraints are modeled, on the vertical dimension, by
letter to letter equality.

u1 u3u2
v1 v3v2

w1 w3w2

(u)
(v)
(u.v)

The product is completed by u.v = 0 when the matching constraint is not satis-
fied. For instance, with a, b and c three distinct letters, we have (a, b, c).(b, c, a) =
(a, bc, a), (a, b, c).(a, b, c) = 0 and (b, 1, ac).(ab, 1, a) = (ab, 1, ac).

Set TA equipped product of tiles is a monoid from now on called the monoid
of positive tiles. The neutral element (1, 1, 1) is denoted by 1.

Natural Order. Monoid TA is conveniently seen as an ordered monoid with the
natural order relation defined for all u ∈ TA by 0 ≤ u and for all u and v ∈ TA

with u = (u1, u2, u3) and v = (v1, v2, v3), by u ≤ v when v1 ≤s u1, v2 = u2 and
v3 ≤p u3.

The following lemma, proved in [6], summarizes some properties of the natural
order proved. For all non zero tile u = (u1, u2, u3), let uL = (u1u2, 1, u3) and let
uR = (u1, 1, u2u3). This notation is extended to 0 by setting 0L = 0R = 0.
Lemma 1. The set U(TA) = {t ∈ TA : t ≤ 1} of subunits of TA, is a commu-
tative monoid of idempotent elements and, ordered by the natural order, it is a
lattice with product as meet. Moreover, for all u ∈ TA, uL =

∧{x ∈ U(TA) :

ux = u} and uR =
∧{x ∈ U(TA) : xu = u}, and, for all v ∈ TA, u ≤ v if and

only if u = uRvuL.
The natural order also induces a structure theorem.
Theorem 1. Monoid TA is completely determined by the submonoid T̂A of its
maximal elements (isomorphic to A∗) and the lattice U(TA) of its subunits.
Proof. For all u ∈ A∗, let uC = (1, u, 1). The mapping u �→ uC from A∗ to
TA is a one-to-one morphism. These canonical images of words into tiles form
the submonoid T̂A of maximal elements w.r.t. the natural order of TA. Staying
coherent with notations above, for all u ∈ A∗, let also uL = (u, 1, 1) = (uC)L

and uR = (1, 1, u) = (uC)R. Both uL and uR ∈ U(TA). Moreover, for all non
zero tile (u, v, w) ∈ TA we have (u, v, w) = uLvCwR. �
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MSO Definable Languages of Tiles. Given a language L ⊆ TA−0, the word
congruence 
L associated to L is defined to be the greatest word congruence
such that, for all u and v ∈ A∗, u 
L v when for all w1, w2 and w3 ∈ A∗,
the following equivalences hold: (w1uw2, w3, w4) ∈ L ⇔ (w1vw2, w3, w4) ∈ L,
(w1, w2uw3, w4) ∈ L ⇔ (w1, w2vw3, w4) ∈ L, and (w1, w2, w3uw4) ∈ L ⇔
(w1, w2, w3vw4) ∈ L. In [6], this word congruence is shown to capture, in the
following sense, MSO definable languages.

Theorem 2. For all language L ⊆ TA − 0, L = Σ(u,v,w)∈L[u]L × [v]L × [w]L
with, for all u ∈ A∗, [u]L = {v ∈ A∗

: u 
L v}. Moreover, L is MSO-definable
if and only if the associated word congruence 
L over A∗ is of finite index and
thus L equals a finite sum of Cartesian products of regular languages.

3 Well-Behaved Ordered Monoids and Premorphisms

We provide in this section, the foundation of quasi-recognizability. It is based on
the notion of well-behaved ordered monoids - an abstract generalization of the
monoid of positive tiles, defined from the class of (stable) ordered monoid with
zero [15] - and the notion of premorphisms. However, the adequate definition of
quasi-recognizability itself is postponed to the next section.

Well-Behaved Ordered Monoids. Let S be an ordered monoid and let
U(S) = {x ∈ S : x ≤ 1}. Elements of U(S) are called the subunits of S. Monoid
S is a well-behaved ordered monoid when it satisfies the following axioms:

(A0) 0 ∈ U(S), i.e. 0 is a subunit,
(A1) for all x, y and z ∈ S, if x ≤ y then xz ≤ yz and zx ≤ zy, i.e. the

order relation is stable by product,
(A2) for all x ∈ U(S), x.x = x, i.e. subunits are idempotents,
(A3) for all x and y ∈ S, if x ≤ y then there is e and f ∈ U(S) such that

x = eyf , i.e. the monoid order is the two-sided variant of Namboori-
pad’s natural order [13].

(A4) for all x ∈ S, both sets Lx = {e ∈ U(S) : xe = x} and Rx = {e ∈
U(S) : ex = x} have least element xL =

∧
Lx and xR =

∧
Rx with

xL ∈ Lx and xR ∈ Rx.

Mappings x �→ xL and x �→ xR from S to U(S) are respectively called the left
and the right context operators on S. One can check that these mappings are
projective onto mappings, i.e. for all x ∈ U(S), xL = xR = x. As they capture
the order relation (see Lemma 2 below), this leads us, in [7], to propose an
equivalent axiomatization of well-behaved monoids based on these left and right
context operators.

But does there exist any well-behaved monoid? Actually yes, many! In partic-
ular, every monoid S can be completed into a well-behaved ordered monoid S0.
Indeed, let S0, called the trivial ordered extension of S, be defined by S0

= S+0
(with a new zero element) and the order relation defined, for all x and y ∈ S0,
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by x ≤ y if and only if x = 0 or x = y. The fact that S0 is well-behaved is
straightforward.

One can also check that the monoid of positive tiles is a well-behaved ordered
monoid. The next two Lemmas illustrate how well-behaved monoids generalize
the monoid of positive tiles.

Lemma 2. Let S be a well-behaved ordered monoid. Then 0 is the least element
of S and U(S) is a submonoid of S, U(S) ordered by natural order is a meet
semi-lattice with product as meet, and, in particular, U(S) is a commutative
submonoid.

We observe that, in well-behaved ordered monoids, idempotents do not neces-
sarily commute. More precisely, given E(S) the set of idempotents of S, axiom
(A2) tells that U(S) ⊆ E(S) but still, it may happen that xy �= yx for some
x and y ∈ E(S) − U(S). In the theory developed here, the distinction made
between subunits and idempotents is essential.

Lemma 3. Let S be a well-behaved ordered monoid. Then for all x and y ∈ S,
x ≤ y if and only if there exists e ∈ U(S) and f ∈ U(S) such that x = eyf if
and only if x = xRyxL.

Prehomomorphisms. The following definition is adapted from McAlister and
Reilly [12]. Let S and T be two ordered monoids. A mapping ϕ : S → T is
a premorphism when ϕ(0) = 0, ϕ(1) = 1, for all x and y ∈ S, if x ≤ y then
ϕ(x) ≤ ϕ(y) and, for all x and y ∈ S, ϕ(xy) ≤ ϕ(x)ϕ(y).

Well-behaved ordered monoids and premorphisms forms a category. Indeed,
for every premorphism ϕ : S → T and ψ : T → U , the mapping ϕψ : S → U
defined for all x ∈ S by ϕψ(x) = ψ(ϕ(x)) is a premorphism.

As a particular case, a premorphism ϕ such that ϕ(xy) < ϕ(x)ϕ(y) if and
only if xy = 0 is called a trivial premorphism. These premorphisms are already
worth being studied as illustrated by the following lemma.

Lemma 4. Let A be a finite alphabet and let L ⊆ A∗ be a regular language. Let
B = A+ �1+ �2 with �1 and �2 two distincts new letters. Let M = {(1, �1u�2, 1) ∈
TB : u ∈ L}. Then there is a finite monoid S and a trivial premorphism ψ :

TB → S0 such that M = ψ−1
(ψ(M)).

Proof. Since L ⊆ A∗ is recognizable so if L′
= �1L�2 ⊆ B∗. It follows that there

is a finite monoid S and a morphism ϕ : B∗ → S such that L′
= ϕ−1

(ϕ(L′
)).

Let then ψ : TB → S0 defined, for all (u, v, w) ∈ TB by ψ((u, v, w)) = ϕ(v) when
uvw ∈ �1A

∗�2 and ψ((u, v, w)) = 0 otherwise. Then one can easily check that
M = ψ−1

(ϕ(L′
)) hence the claim. �

This Lemma tells us that with pre-images of pre-morphism from monoids of
positives tiles to finite well-behaved ordered monoid, words being models as
maximal tiles, we indeed generalize classical recognizability. However, we cannot
take this as a definition of quasi-recognizability!

Indeed, the weakening of the morphism axiom ϕ(uv) = ϕ(u)ϕ(v) into the
premorphism axiom ϕ(uv) ≤ ϕ(u)ϕ(v) just breaks many standard and useful
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properties of morphisms. For instance, ϕ(S) is not in general a submonoid of S
since nothing ensures it is closed under product, i.e. (ϕ(S))∗ is the submonoid
induced by ϕ(S). Even worse, over tiles, MSO definability just fails without extra
hypothesis. These extra axioms are proposed in the next section.

4 From Quasi-recognizability to MSO Definability

In this section, within the category of well-behaved monoid and premorphisms,
we want to settle our definition of quasi-recognizability in such a way that quasi-
recognizability implies MSO definability. This is achieved by paying a special
attention to maximal elements and the way premorphisms behave on them.

Strongly Well-Behaved Ordered Monoids. A well-behaved ordered monoid
S is said to be strongly well-behaved when it satisfies the following additional
axioms:

(A5) for all non zero x ∈ S there is a unique maximal element x̂ ∈ S such
that x ≤ x̂, i.e. S is closed in some order theoretical sense,

(A6) for all pairs of non zero elements x and y ∈ S, x̂ŷ �= 0 and ̂̂xŷ = x̂ŷ,
i.e. maximal elements form a submonoid.

Theorem 3. Every strongly well-behaved ordered monoid S is completely deter-
mined by the submonoid Ŝ of its maximal elements and the semi-lattice U(S) of
its subunits.

Proof. By axiom (A5) and Lemma 3, for all x ∈ S, x = xRx̂xL with both xR

and xL ∈ U(S). �

The monoid TA of positive tiles is strongly well-behaved and Theorem 3 gen-
eralizes to strongly well-behaved ordered monoids what Theorem 1 says about
monoid TA.

The behavior of premorphisms on maximal elements is then restricted as
follows. A premorphism ϕ : S → T is a well-behaved premorphism when both
S and T are strongly well-behaved monoids and the following condition are
satisfied:

(P1) for all x and y ∈ Ŝ, ϕ(xy) ∈ T̂ ,
(P2) for all x, y and z ∈ Ŝ, ϕ(xLyzR) = (ϕ(x))Lϕ(y)(ϕ(z))R,

where Ŝ (resp. T̂ ) denotes the set of maximal elements of S (resp. T ).

Quasi-Recognizable Languages. We say that L ⊆ S is quasi-recognizable
(QREC) when there is a well-behaved premorphism ϕ : S → M with finite M
such that L = ϕ−1

(ϕ(L)).

Theorem 4. Quasi-recognizable subsets of TA are definable in MSO, i.e.
QREC ⊆ MSO.
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Proof. (sketch of) Let ϕ : TA → S be a well-behaved premorphism with S finite.
It suffices to show that, for all x ∈ S, ϕ−1

(x) is MSO-definable. Moreover, we
can restrict to non zero elements since we have ϕ−1

(0) = TA −⋃x 	=0
ϕ−1

(x) and
MSO definable languages are closed under finite boolean combination.

Let (u, v, w) ∈ TA. By Theorem 1, (u, v, w) = uLvCwR with uL = (u, 1, 1),
vC = (1, v, 1) and wR = (1, 1, w). It follows, by applying axiom (P2), that
ϕ((u, v, w)) = (ϕ(uC))Lϕ(vC)(ϕ(wC ))R. In other words, given ϕC : A∗ → S
defined, for all u ∈ A∗, by ϕC(u) = ϕ(uC), for all non zero x ∈ S,

ϕ−1
(x) =

⋃
{ϕ−1

C (y)×ϕ−1

C (y′
)×ϕ−1

C (y′′
) ⊆ TA : (y, y′, y′′

) ∈ Ŝ, x = (y)Ly′
(y′′

)R}

Since S is finite, this union is finite. Moreover, axiom (P1) ensures that ϕC is a
morphism (since T̂A = {uC ∈ TA : u ∈ A∗}) hence, for all y ∈ Ŝ, ϕ−1

C (y) ⊆ A∗ is
a regular language. We conclude by applying Theorem 2. �

Does the converse of Theorem 4 hold ? In general no. But this comes from a
rather welcome property: left and right constraints in tiles are. . . just product
constraints. It follows that quasi-recognizable languages satisfy a closure prop-
erty on left and right constraints that is studied below.

Context Coherence Closure Property. The following lemma tells that
quasi-recognizable languages are closed w.r.t. to equivalent left and right con-
straints.

Lemma 5. Let ϕ : TA → S be a well-behaved premorphism with finite S. For all
x ∈ S, for all (u, v, w) ∈ ϕ−1

(x), for all u′ and w′ ∈ A∗, if ϕ(u) is L-equivalent
with ϕ(u′

) and ϕ(w) is R-equivalent to ϕ(w′
), then (u′, v, w′

) ∈ ϕ−1
(x).

Proof. Let us first recall that two elements x and y ∈ S are L-equivalent (resp.
R-equivalent) when both x ≤s y and y ≤s x (resp. both x ≤p y and y ≤p x).

Since ϕ((u, v, w)) = (ϕ(uC))Lϕ(vC)(ϕ(wC))R, the statement then follows
from the easy observation that, for all x and y ∈ S, since S is well-behaved, if x
and y are L-equivalent (resp. R-equivalent) then xL = yL (resp.
xR = yR). �

Observe that the underlying closure property is rather subtle. Indeed, we still
lack of explicit canonical minimal structures (as syntactical monoids) that char-
acterize quasi-recognizable languages of tiles. This means we still do not have a
way to define that closure property in a minimal way. However, the word congru-
ence 
L associated to every language of tiles still gives us a canonical definition
instead.

A language of tiles L ⊆ TA is context-coherent when, given the induced word
congruence 
L associated to L, for all tiles (u, v, w) ∈ L, for all u′ and v′ ∈ A∗,
if u and u′ are L-equivalent with respect to 
L and w and w′ are R-equivalent
with respect to 
L, then (u′, v, w′

) ∈ L.
Is this closure property a real loss in expressive power? We have seen in

Lemma 4 that plugs can be used on words so that R-equivalence on right con-
straints and L-equivalence on left constraints trivialize in some sense. It follows
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that, from a modeling perspective, the context-coherence constraint is just a mat-
ter of modeling choice! In particular, as already mentioned in the introduction,
this is probably enough in order to model the behavior of two-way automata on
words where left and right plugs are classically used to mark words’ extremities.

5 From MSO-Definability to Quasi-Recognizability

Given a MSO definable language L ⊆ TA, assumed to be context-coherent, we
need now to provide a finite strongly well-behaved monoid that quasi-
recognizes L.

By Theorem 2, since L is MSO definable, the word congruence 
L associated
to L is finite. Our point is then to built from S = A∗/ 
L (the finite monoid
induced by that congruence) a strongly well-behaved ordered monoid Q(S) that
quasi-recognizes L itself. This well-behaved extension Q(S) of S, is presented in
this section.

We will show that this extension is made in such a way that the monoid of
positive tiles TA itself becomes a submonoid of the well-behaved extension Q(A∗

)

of the free monoid A∗. In other words, any morphism ϕ : A∗ → S can be lifted
to a well-behaved premorphism from Q(ϕ) : Q(A∗

)→ Q(S).

Prefix and Suffix Upper Sets. Let S be a monoid. Let Up(S) (resp. Us(S))
be defined as the set of upward closed subsets of S preordered by ≤p (resp. ≤s)
the prefix (resp. suffix) preorder. More precisely, as S is a monoid hence with
1 ∈ S, Up(S) (resp. Us(S)) is the set of subsets U ⊆ S such that US = U (resp.
SU = U).

For both t = p or t = s, elements of Ut(S) are from now on called x-upper
set. The set Ut(S) is turned into a monoid by taking ∩ as product. Indeed, the
intersection of two t-upper sets is a t-upper set and the neutral (or maximal)
element is S itself, and ∅ is the absorbant (or minimal) element. In semigroup
theory, non empty elements of Up(S) (resp. Us(S)) are the right (resp. left) ideals
of S.

Lemma 6. Let S be some monoid and let x ∈ S. Set xS is a p-upper set (resp.
Sx a s-upper set) and, for every p-upper set (resp. s-upper set) U ⊆ S:

(1) if x ∈ U then x−1
(U) = S (resp. (U)x−1

= S),
(2) xU is a p-upper set (resp. Ux is a s-upper set),
(3) x−1

(U) is a p-upper set (resp. (U)x−1 is a s-upper sets),
(4) xx−1

(U) ⊆ U ⊆ x−1
(xU) (resp. (U)x−1x ⊆ U ⊆ (Ux)x−1),

The Strongly Well-Behaved Extension. Let S be a monoid. The extension
Q(S) of S is defined to be Q(S) = (Us(S) − ∅)× S × (Up(S) − ∅) + 0 with, for
all non zero element u1 = (L1, x1, R1) and u2 = (L2, x2, R2) the product u1u2

defined by u1.u2 = (L1 ∩ (L2)x
−1

1
, x1x2, R2 ∩ x−1

2
(R1)) when both compatibility

contraints L1∩(L2)x
−1

1
�= ∅ and R2∩x−1

2
(R1) �= ∅ are satisfied, and by u1.u2 = 0

otherwise.
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The expected natural order is defined as follows. For all pairs of non zero
elements u1 = (L1, x1, R1) and u2 = (L2, x2, R2) ∈ Q(S), we say that u1 ≤ u2

when L1 ⊆ L2, x1 = x2 and R1 ⊆ R2. This relation is extended to zero by taking
0 ≤ u for all u ∈ Q(S).

As an ordered monoid, we already have:

Lemma 7. The mapping i : S0 → Q(S) that maps zero to zero and any non
zero element x ∈ S to i(x) = (S, x, S) is a one-to-one monoid morphism. The
set i(S), isomorphic to S, is the submonoid of Q(S) that contains exactly all
maximal elements of Q(S). The mapping π : Q(S) → S0 that maps 0 to 0 and
any non zero element (L, x, R) to π(L, x, R) = x is an onto trivial premorphism
with π ◦ i = IS0 , the identity mapping in S0.

Proof. The fact that i is a monoid morphism is immediate and the product on
elements of i(S), all of the form (S, x, S), just mimics the product in S since, for
all x ∈ S, x−1

(S) = (S)x−1
= S.

Mapping π is obviously onto since π ◦ i = IS0 . Then we check that it is a
(trivial) premorphism, i.e. for all u1 and u2 ∈ Q(S) either u1u2 �= 0 and then
π(u1u2) = πS(u1)πS(u2) or u1u2 = 0 and thus π(u1u2) = 0. �

Moreover, as intended:

Theorem 5. For all monoid S, the monoid Q(S) ordered by the extension order
≤ is a strongly well-behaved ordered monoid.

Last, the following theorem says that our construction above essentially extends
to arbitrary monoids the way the monoid of positive tiles is built from the free
monoid A∗.

Theorem 6. There is a one to one morphism i : TA → Q(A∗
) such that, for

all u ∈ TA, i(uL) = (i(u))L and i(uR) = (i(u))R.

Proof. Observe that A∗ is totally ordered by ≤s and ≤p. It follows that for
x = p and x = s, the mapping ϕx : A

∗
+ 0 → Ux(A

∗
) defined, for every u ∈ A∗,

by ϕx(u) = {v ∈ A∗
: u ≤x v} is one-to-one. It is then an easy task to check

that i : TA → Q(A∗
) defined by i(0) = 0 and, for every tile (u, v, w) ∈ AT ,

i((u, v, w)) = (ϕs(u), v, ϕp(w)) is a one-to-one morphism. The last property is
immediate. �

From MSO-Definability to Quasi-Recognizability. We are now ready to
make the picture complete. More precisely:

Theorem 7. If L ⊆ TA is MSO definable and context coherent then L is quasi-
recognizable.

Proof. Let L ⊆ TA be an MSO definable language of positive tiles and let
S = A∗/ 
L be the finite monoid defined by the quotient of A∗ under the (finite
index) word congruence induced by L. For every word u ∈ A∗, let us write
[u] ∈ S the class of words of A∗ equivalent under 
L to u.
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Let define ϕ : TA → Q(S) by taking, for every non zero positive tile u =

(u1, u2, u3) ∈ TA, ϕ(u) = (S[u1], [u2], [u3]S). One can check that ϕ is a well-
behaved premorphism. Moreover, by construction, L ⊆ ϕ−1

(ϕ(L)).
The converse inclusion follows from the fact that L is context coherent. �

6 Conclusion

We have defined and studied the notion of quasi-recognizability: algebraic recog-
nizability by means of premorphism instead of morphisms. Applied to the monoid
of positive tiles, this notion is shown to be effective. It is also a successful remedy
to the collapse of classical recognizability by monoid morphisms.

Now, the potential link with two-way automata needs to be further investi-
gated. In particular, studying quasi-recognizability over arbitrary (positive and
negative) tiles seems necessary. The study of quasi-recognizability of subsets
of the free inverse monoid, which elements are birooted trees, may also be of
interest. It may lead to a new algebraic approach to regular languages of trees.
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Abstract. The variable-sized bin packing problem (VBP) is a well-
known generalization of the NP-hard bin packing problem (BP) where
the items can be packed in bins ofM given sizes. The objective is to mini-
mize the total capacity of the bins used. We present an AFPTAS for VBP
and BP with performance guarantee P (I) ≤ (1+ε)OPT (I)+O(log2( 1

ε
)).

The additive term is much smaller than the additive term of already
known AFPTAS. The running time of the algorithm is O( 1

ε6
log

(
1
ε

)
+

log
(
1
ε

)
n) for bin packing and O( 1

ε7
log2

(
1
ε

)
+log

(
1
ε

)
(M + n)) for varia-

ble-sized bin packing, which is an improvement to previously known
algorithms.

Keywords: Bin Packing, Variable-Sized Bin Packing, AFPTAS,
Asymptotic Fully Polynomial Approximation Scheme, Integrality Gap.

An instance (I, C) of the variable-sized bin packing problem (VBP) is a pair
consisting of a list I = {a1, . . . , an} of items and a list C = {c1, . . . , cM} of
different bin sizes with n,M ∈ IN. Every item a ∈ I has a size s(a) ∈ ]0, 1]. The
bin sizes cl ∈ C satisfy cl ∈ ]0, 1], and there is one unit-sized bin cM = 1. A
set of items S ⊂ I can be packed in a bin of size cl, 1 ≤ l ≤ M , as long as the
total volume of the items does not exceed the capacity (i.e. size) of a bin, i.e.∑

a∈S s(a) ≤ cl.

The Variable-Sized Bin Packing Problem. Pack the items I of an instance
(I, C) into bins of size in C so that the total size of the bins used is minimized.

The classic bin packing problem (BP) is obviously a special case of the variable-
sized bin packing problem (VBP) with C = {1}. Closely related to BP and
VBP is the (multiple-length) cutting-stock problem (MLCSP), where the input
is provided in a more compact form: it consists of a vector (d,M, a, b, c, ρ) of
d item sizes a = (a1, . . . , ad), the associated number of items bi of size ai, the
M stock-lengths c = (c1, . . . , cM ) and stock-length prices ρ = (ρ1, . . . , ρM ). It is
asked to partition the items into sets so that every set fits into a stock and the
total price of stocks used is minimized. In our case, the price of a stock would
be equal to its length.
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1 Introduction

Known Results. Bin Packing is a classic NP-complete problem [9]. The first
to consider it in the form of the cutting-stock problem (but naming it differ-
ently) were Kantorovich [15] and Eisemann [5]. Several approximation algorithms
with polynomial running time are known for Bin Packing (e.g. First-Fit (FF),
Next-Fit (NF), Best-Fit, First-Fit Decreasing (FFD) or Next-Fit Decreasing
(NFD)). There is however a lower bound for the absolute approximation ra-
tio A(I)

OPT (I) , where I is a BP instance, OPT (I) denotes its optimum and A(I)
stands for the number of bins a polynomial-time algorithm A needs to pack
I. No efficient algorithm can achieve A(I)

OPT (I) <
3
2 for all bin packing instances

I, unless P = NP [9]. (In fact, First-Fit Decreasing attains this absolute ratio
[24].) It is therefore a good idea to consider the asymptotic approximation ra-

tio lim supk→∞ sup{ A(I)
OPT (I) |OPT (I) = k}. For example, every packing FFD(I)

found by FFD satisfies FFD(I) ≤ 11
9 OPT (I) + 6

9 [4] and has therefore an
asymptotic approximation ratio of 11

9 , which is obviously smaller than 3
2 .

In 1981, Fernandez de la Vega and Lueker [7] presented an asymptotic poly-
nomial time approximation scheme (APTAS), i.e. an algorithm with asymptotic
approximation ratio (1 + ε) for ε > 0. The running time is polynomial in the in-
put size |I| = n, but exponential in 1

ε . One year later, Karmarkar and Karp [16]
found an algorithm satisfyingA(I) ≤ (1+ε)OPT (I)+O( 1

ε2 ) and with polynomial
running time in n and 1

ε , i.e. an asymptotic fully polynomial time approximation
scheme (AFPTAS). In 1991, Plotkin et al. [19] presented an improved algorithm
satisfying A(I) ≤ (1 + ε)OPT (I) + O(1ε log(

1
ε )) and with better running time

O(n log(1ε ) +
1
ε6 log

6 1
ε ). Shachnai and Yehezkely [22] reduced the running time

further to O(n log(1ε ) +
1
ε4 log

3(1ε ) · min{ 1
ε2 ,

1
ε0.62 log

0.62(1ε )N}), where N is the
longest binary representation of any input element. For general BP instances,
the algorithm therefore needs O( 1

ε6 log
3(1ε ) + log(1ε )n) time. The algorithm is

an application of Shachnai’s and Yehezkely’s AFPTAS for bin packing with size
preserving fragmentation (BP-SPF).

The Variable-Sized Bin Packing Problem was investigated by Friesen and
Langston [8] who analyzed three algorithms with approximation ratios 2, 3

2
and 4

3 . Murgolo [18] presented an AFPTAS with performance guarantee (1 +
ε)OPT (I) + O( 1

ε4 ). This was improved to (1 + ε)OPT (I) + O( 1
ε2 log(

1
ε )) by

Shachnai and Yehezkely [22], again by an application of their BP-SPF algorithm.
The improved running time of the algorithm is O((M + n) log(1ε ) +

1
ε8 log

3(1ε ) ·
min{ 1

ε2 log(
1
ε ),

1
ε0.24N}), where N is (again) the longest binary representation of

any input element. For general instances, the running time is therefore bounded
by O( 1

ε10 log
4(1ε ) + log(1ε )(M + n)).

Our Result. We have found an AFPTAS for BP and VBP with the improved
additive term O(log2(1ε )) and a further improved running time:

Theorem 1. Let (I, C) be a VBP instance with M bin sizes, and let OPT (I, C)
denote its optimal objective value. For a given 0 < ε ≤ 1

2 , there is an algo-
rithm P that finds a solution of the instance with objective value of at most
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P (I, C) ≤ (1 + ε)OPT (I, C) + O
(
log2
(
1
ε

))
. The running time of P is bounded

by O
(

1
ε7 log

2
(
1
ε

)
+ log

(
1
ε

)
(M + n)

)
.

Corollary 2. Let I be a BP instance. There is an AFPTAS algorithm P for
BP that finds for ε > 0 a packing of I in P (I) ≤ (1 + ε)OPT (I) + O(log2(1ε ))
bins, where OPT (I) denotes the optimum for I. The running time is bounded
by O( 1

ε6 log(
1
ε ) + log(1ε )n).

Techniques. The basic scheme of our algorithm is similar to the one of other
AFPTAS for BP [7,16,19] and VBP [18,22]. Based on a threshold defined by
ε, we divide the items I into large and small items Ilarge and Ismall. The large
items are further grouped into sets G1 and Ilarge \G1. The set G1 contains the
largest items so that rounding up Ilarge \G1 results in a set I(1) that still satisfies
OPT (I(1), C) ≤ OPT (I, C). To reduce the running time, only a subset C(1) ⊂ C
of bin sizes is used, which does not increase the approximation ratio too much.

The main part is finding a packing of (I(1), C(1)) close to the optimum. For
this, the VBP for (I(1), C(1)) is expressed as an integer linear program (ILP),
which is a well-known technique (see [5,15,18]):

min cTx with Ax ≥ b, x ∈ Zq and x ≥ 0 . (1)

AFPTAS usually consider the relaxed version of (1) with x ∈ IRq≥0. The main
difficulty is to solve it efficiently and to round it to an integer solution close
to the optimum. Our algorithm does this by combining a method based on the
algorithm by Grigoriadis et al. [12] and a practical application of a theoretical
result by Shmonin [20,23], which are both adapted to VBP.

Shmonin proved the integrality gap OPT (I) ≤ LIN(I)+O(log2 d) for cutting
stock. Here, OPT (I) stands for the optimal integer value and LIN(I) for the
optimal fractional value of the relaxed linear program (1) of a cutting stock
instance I. The basic idea of Shmonin’s proof is to take an optimal fractional
solution x of (1) that is rounded down to the next integer. Some of the items
not packed by 'x( are then packed using NF whereas the other remaining items
are rounded using geometric grouping. They form a new VBP instance Ĩ. This
procedure is applied to Ĩ and iterated until all items of I have been packed.

In contrast to Shmonin’s proof, we solve the LPs only approximately and
not optimally by applying to VBP the algorithm by Grigoriadis et al. [12]. The
columns of A needed are generated dynamically by solving unbounded knapsack
problems. Since the relaxed LPs (1) are only solved approximately, we have to
prove that the number of item sizes and the size Area(I(k)) of the items halves in
every iteration k to bound the final objective value. Note that Shmonin’s method
is a modification of a bin packing algorithm by Karmarkar and Karp [16]. More-
over, a column generation approach is a common technique [10,11,16,18,19,22].
It is necessary because we normally have an exponential number of columns, i.e.
q ∈ 2O( 1

ε log2( 1
ε )).

After having packed I(1) (and therefore Ilarge \ G1) as explained above, the
remaining items in G1 and Ismall can be packed greedily without increasing the
approximation ratio too much.



532 K. Jansen and S. Kraft

Due to space constraints, some proofs are omitted and can be found in the
full version of the paper.

2 The Basic Algorithm

In this section, we will introduce the sub-algorithm Alg(I(1), C(1), ε), which is
the core element of our algorithm P .

2.1 Integer Linear Programs and Linear Programs for VBP

Let (I, C) be an instance with d different item sizes and where every item has
size at least s(a) ≥ δ > 0. We introduce configurations: a configuration K

(l)
j

for the bin size cl is a subset J ⊆ I such that the items in J fit into a bin of
size cl, i.e.

∑
a∈J s(a) ≤ cl. Let K

(l)
1 , . . . ,K

(l)
q(δ,d,l) be all configurations of a bin

size cl. The number q(δ, d, l) of the configurations is normally exponential in the
number of item sizes d.

Let b1 > . . . > bd be the subsequence consisting of the different item sizes

in s1 ≥ . . . ≥ sn. Then, a configuration K
(l)
j can be described by a multiset

{a(K(l)
j , b1) : b1, . . . , a(K

(l)
j , bd) : bd} where a(K

(l)
j , bi) denotes the number of

items of size bi in configuration K
(l)
j . Furthermore, let ni be the total number

of items of size bi in I. (Obviously, n1 + · · · + nd = n holds.) It is possible to
describe the VBP instance as an integer linear program (ILP):

min

M∑
l=1

q(δ,d,l)∑
j=1

cl v
(l)
j

M∑
l=1

q(δ,d,l)∑
j=1

a(K
(l)
j , bi) v

(l)
j = ni for i = 1, . . . , d

v
(l)
j ∈ IN ∪ {0} for l = 1, . . . ,M and j = 1, . . . , q(δ, d, l)

(ILP-VBP)

The optimal value of this ILP is equal to OPT (I, C). We now consider the
relaxed linear program (LP) with optimum LIN(I, C) by replacing the condition

v
(l)
j ∈ IN∪ {0} by v

(l)
j ≥ 0 and the conditions . . . = ni by . . . ≥ ni. In the ILP as

well as the relaxed LP, a variable v
(l)
j can be interpreted as a vertical slice of a

bin, packed according to configuration K
(l)
j . The slice has width v

(l)
j .

We introduce a partial order on VBP instances that will be useful later. It is
a natural extension of the order by Fernandez de la Vega and Lueker [7].

Definition 3. Let (J1, C) and (J2, C) be two VBP instances with the same set
of bin sizes C. We write (J2, C) ≤ (J1, C) if there is an injective function f :
J2 → J1 such that s(a) ≤ s(f(a)) for every a ∈ J2. We write J2 ≤ J1 for item
sets if the same condition holds.
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The following lemmas will be used later. Lemma 5 is proved in [7].

Lemma 4. Let Area(I) :=
∑
a∈I s(a) be the volume of the items in I. Then we

have Area(I) ≤ LIN(I, C) ≤ OPT (I, C).

Lemma 5. If J2 ≤ J1 or (J2, C) ≤ (J1, C) holds, then Area(J2) ≤ Area(J1),
LIN(J2, C) ≤ LIN(J1, C) and OPT (J2, C) ≤ OPT (J1, C).

2.2 The Algorithm

Let (I(1), C(1)) be a VBP instance with d1 item sizes, M1 bin sizes and with
s(a) ≥ δ for all items a ∈ I(1). The basic algorithm Alg is presented below: as
mentioned in the introduction, it is an adaptation and a practical application of
the methods presented by Karmarkar and Karp [16] and Shmonin [20], [23, Ch.
6], combined with a method based on the algorithm by Grigoriadis et al. [12].

Algorithm Alg(I(1), C(1), ε)
(1) Set k := 1.
(2) while true do begin
(2.1) Solve the relaxed linear program corresponding to (I(k), C(1)) approxi-

mately with accuracy (1 + ε) (see Subsection 2.3).
(2.2) Take the integral part 'v(k)( = ('v(l,k)j () of the approximate solution

v(k) = (v
(l,k)
j ). Pack the items according to 'v(k)( in the respective bins:

these items are the instance (I
(k)
int , C

(1)). The remaining, non-packed

items are the residual instance (I
(k)
res , C(1)).

(2.3) if I
(k)
res = ∅ then break; else Transform (I

(k)
res , C(1)) into two instances

(J ′k, C
(1)) and (Jk, C

(1)), where the items in Jk have been rounded up
(see Subsection 2.4).

(2.4) Pack J ′k into unit-sized bins with Next-Fit; open a new bin if necessary
(2.5) if Jk = ∅ then break; else Set (I(k+1), C(1)) := (Jk, C

(1)); k := k + 1;
end

(3) Replace the rounded-up sizes of the items by their original sizes in I(1).

Remark 6. The algorithm finishes if either all items in an instance I(k) are packed

by 'v(k)(, i.e. I(k)int = I(k), or all items that have not been packed by 'v(k)( are
contained in J ′k and packed with Next-Fit. If neither of these conditions is met,
the remaining unpacked items Jk become the new instance (I(k+1), C(1)), which
is processed again in the same way. Since items are packed integrally either by

'v(l,k)j ( or by Next-Fit, we obtain an integral and feasible packing.

2.3 Solving the LPs Approximately

The algorithm has to approximately solve the relaxation of the integer programs
(ILP-VBP) of the instances (I(k), C(1)), where we have dk different item sizes
and M1 bin sizes. There is a well-known method for LPs of packing problems
(see e.g. [13,3,1] for Strip Packing) based on the algorithm by Grigoriadis et al.
[12]. The method can be adapted to VBP.
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The idea is to first assume r = LIN(I(k), C(1)) = 1 and to solve for r = 1 an
equivalent max-min resource sharing problem with the algorithm by Grigoriadis
et al. [12] (see also [13]). The columns of (ILP-VBP) that are needed can be
generated dynamically by approximately solving unbounded knapsack problems

max

dk∑
i=1

pi
nicl

zi s.t.

dk∑
i=1

bizi ≤ cl, zi ∈ IN ∪ {0}

for every bin size cl, l = 1, . . . ,M1. Since normally r = 1 < LIN(I(k), C(1)), we
will usually find an infeasible solution not packing all items. However, we can

scale the solution for r = 1 to get a feasible solution v = (v
(l)
j ) whose value is

close enough to the optimum LIN(I(k), C(1)). Moreover, the number of variables

v
(l)
j > 0 can be reduced to dk +1 without changing the value of the solution [2].
Details and the proof of Th. 7 can be found in the full version of the paper.

Theorem 7. Let ε > 0, ε̄ := ε
4 , and let (I(k), C(1)) be a VBP instance with M1

bin sizes and dk item sizes. Moreover, let KP be an approximation algorithm
for the unbounded knapsack problem that solves an unbounded knapsack instance
with dk item sizes and accuracy (1− ε̄

6 ) within KP (dk,
ε̄
6 ). There is an algorithm

that finds a solution v = (v
(l)
j ) of the relaxed (ILP-VBP) with only dk+1 variables

v
(l)
j > 0 and satisfying

∑
l cl
∑

j v
(l)
j ≤ (1 + ε)LIN(I(k), C(1)). The running time

is

O

(
dk

(
log(dk) +

1

ε2

)
max

{
M1 ·KP

(
dk,

ε̄

6

)
, O

(
dk log log

(
dk

1

ε

))}
+ d2.594k

(
log dk +

1

ε2

))
.

2.4 Transforming I(k)
res

The transformation of I
(k)
res into Jk and J ′k is the geometric rounding technique

by Shmonin [20] (see also [23, Ch. 6.4]), which is the core element of his proof
OPT (I) ≤ LIN(I) +O(log2(d)) for MLCSP. The rounding is a slight modifica-
tion of the geometric grouping by Karmarkar and Karp [16]. We therefore refer
to [23, Ch. 6.4] for details, or the full version of the paper, and only present the
basic idea.

Roughly speaking, Jk contains rounded-up items so that it has less item sizes

than I
(k)
res , and J ′k contains the largest and smallest items of I

(k)
res so that Jk ≤ I

(k)
res

holds even with the rounded-up items in Jk. More formally, the items of I
(k)
res

are partitioned into groups G
(k)
1 ∪ . . . ∪ G

(k)
Kk

of size at least 2 so that Kk ≤
'Area(I

(k)
res )

2 ( + 1, and where G
(k)
1 contains the largest items of I

(k)
res , G

(k)
2 the

remaining largest items, and so on. Then, we split G
(k)
l = G

′(k)
l ∪ ΔG

(k)
l for

l = 2, . . . ,Kk− 1 so that |G′(k)l | = |G(k)
l−1|. Since G

(k)
l−1 does not contain less items

than G
′(k)
l for l = 2, . . . ,Kk−1, and these items are not smaller than the largest
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item in G
′(k)
l , we can round the items in G

′(k)
l up to the largest item in it to

obtain H
(k)
l where H

(k)
l ≤ G

(k)
l−1 still holds. We define Jk :=

⋃Kk−1
l=2 H

(k)
l and

J ′k := G
(k)
1 ∪G

(k)
Kk
∪
⋃Kk−1
l=2 ΔG

(k)
l .

Lemma 8. Let dk be the number of different item sizes that instance I(k) has
in the execution of Alg(I(1), C(1), ε), and let k0 be the number of times the main
loop of Alg is executed. The following properties hold:

– (Jk, C
(1)) ≤ (I

(k)
res , C(1)) ≤ (Jk ∪ J ′k, C

(1)) for k = 1, . . . , k0.

– The latest moment Alg terminates is when Area(I
(k)
res ) ≤ 4 because I

(k)
res = J ′k

holds then.
– I(k+1) = Jk has dk+1 ≤ Kk − 1 ≤ 'Area(I

(k)
res )

2 ( − 1 different item sizes for

k = 1, . . . , k0 − 1 because every H
(k)
l consists of rounded items of only one

size .

2.5 Analysis and Running Time of the Basic Algorithm

In this section, we prove that Alg(I(1), C(1), ε) finds a packing for a given instance
(I(1), C(1)) that is not too far from the optimum OPT (I(1), C(1)).

Theorem 9. Let (I(1), C(1)) be a VBP instance with s(a) ≥ δ > 0 for a ∈ I(1)

and d1 different item sizes. Alg(I(1), C(1), ε) finds a packing v = (v
(l)
j ) such that∑M

l=1 cl
∑

j v
(l)
j ≤ (1 + 4ε)OPT (I(1), C(1)) +O(log(1δ ) log(d1)).

We need some lemmas. The proof of Lemma 12 is an adaptation of the corre-
sponding proof in [20,23].

Lemma 10. Let dk be the number of different item sizes in I(k) and k0 the
number of iterations of the main loop of Alg. Then we have

1. Area(I
(k)
res ) ≤ dk + 1,

2. Area(I
(k+1)
res ) ≤ dk+1 + 1 ≤ 1

2Area(I
(k)
res ) ≤ dk

2 + 1 for k = 1, . . . , k0 − 1,

3. dk ≤ d1
2k

for k = 1, . . . , k0, and

4. Area(I
(k)
res ) ≤ Area(I(1)res )

2k−1 for k = 1, . . . , k0 and Area(I(k)) ≤ Area(I(1))
2k−2 for

k = 2, . . . , k0.

Proof. Let v(k) = (v
(l,k)
j ) be the approximate solution to the relaxed LP

(ILP-VBP) corresponding to I(k). As stated in Theorem 7, there are at
most dk + 1 many variables v

(l,k)
j > 0. Thus, there are at most dk + 1 many

v
(l,k)
j − 'v(l,k)j ( > 0, which form a fractional packing of I

(k)
res and correspond to

at most dk + 1 bins. Since every bin is at most of size 1, we get the desired
inequality. The next inequality follows from the first one and Lemma 8. The two

remaining inequalities are proved by induction and the fact that I
(1)
res ≤ I(1). .�

Lemma 11. Let k0 be the largest value of the variable k during the execution
of Algorithm Alg. Then k0 ≤ log2(d1 + 1) holds.
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Lemma 12. Let J ′k be defined as above. Next-Fit packs J ′k in at most O(log(1δ ))
unit-sized bins.

Lemma 13. The following inequalities hold:

– LIN(I(k), C(1))− LIN(I
(k)
res , C(1)) ≤ LIN(I

(k)
int , C

(1)),

– LIN(I(k+1), C(1)) ≤ LIN(I
(k)
res , C(1)), and

– LIN(I(k), C(1))− LIN(I
(k)
res , C(1)) ≤ LIN(I(k), C(1))− LIN(I(k+1), C(1)).

Proof (Theorem 9). Let Bins(L) denote the volume of the bins into which the
algorithm has packed the instance (L,C(1)). Obviously, the solution found by

Alg has the total objective value
∑k0

k=1(Bins(I
(k)
int ) +Bins(J ′k)).

First, we derive a bound for Bins(I
(k)
int ). For an instance (I(k), C(1)) with ap-

proximate packing v(k) = (v
(l,k)
j ) found by Alg, we have the following inequality:

M∑
l=1

cl

q(δ,d,l)∑
j=1

v
(l,k)
j =

M∑
l=1

cl

q(δ,d,l)∑
j=1

⌊
v
(l,k)
j

⌋
+

M∑
l=1

cl

q(δ,d,l)∑
j=1

(
v
(l,k)
j −

⌊
v
(l,k)
j

⌋)
≤ (1 + ε)LIN(I(k), C(1)) .

Since (v
(l,k)
j −'v(l,k)j () is a fractional packing of (I(k)res , C(1)) with LIN(I

(k)
res , C(1)) ≤∑

l cl
∑

j(v
(l,k)
j − 'v(l,k)j (), together with Lemma 13 we get

Bins
(
I
(k)
int

)
=

M∑
l=1

cl

q(δ,d,l)∑
j=1

⌊
v
(l,k)
j

⌋

≤ (1 + ε)LIN(I(k), C(1))−
M∑
l=1

cl

q(δ,d,l)∑
j=1

(
v
(l,k)
j −

⌊
v
(l,k)
j

⌋)
≤ (1 + ε)LIN(I(k), C(1))− LIN(I(k)res , C

(1))

≤ (1 + ε)LIN(I(k), C(1))− LIN(I(k+1), C(1)) . (2)

We deduce with LIN(I
(k0)
res , C(1)) ≥ 0 and (I(3), C(1)) ≤ (I(2), C(1)) ≤ (I(1), C(1))

k0∑
k=1

Bins
(
I
(k)
int

)
≤

k0−1∑
k=1

[
(1 + ε)LIN(I(k), C(1))− LIN(I(k+1), C(1))

]
+(1 + ε)LIN(I(k0), C(1))− LIN(I(k0)res , C(1))

= LIN(I(1), C(1)) + ε

k0∑
k=1

LIN(I(k), C(1))− LIN(I(k0)res , C(1))

≤ LIN(I(1), C(1)) + 3εLIN(I(1), C(1))

+ε

k0∑
k=4

LIN(I(k), C(1)) . (3)
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LIN(I(k), C(1)) ≤ (2Area(I(k))+1) holds because FF could always provide such
a packing. Moreover, we have 2Area(I(k)) ≤ 2

2k−2Area(I
(1)) = 1

2k−3Area(I
(1))

according to Lemma 10. Hence, the sum (3) can be bounded as follows:

k0∑
k=1

Bins
(
I
(k)
int

)
≤ LIN(I(1), C(1)) + 3εLIN(I(1), C(1))

+ε

k0∑
k=4

[
1

2k−3
Area(I(1)) + 1

]
≤ LIN(I(1), C(1)) + 3εLIN(I(1), C(1))

+εLIN(I(1), C(1)) + ε (k0 − 3)

≤ (1 + 4ε)LIN(I(1), C(1)) + ε log2 (d1 + 1) . (4)

For the last two inequalities, we have used Area(I(1)) ≤ LIN(I(1), C(1)) and

k0 ≤ log2(d1 + 1) (see Lemma 11). Finally,
∑k0
k=1 Bins(J ′k) = O(log(1δ ) log (d1))

holds because Bins(J ′k) = O(log(1δ )) (see Lemma 12) and k0 ≤ log2(d1 +1). By

combining this with (4) and LIN(I(1), C(1)) ≤ OPT (I(1), C(1)), we obtain the
desired result. .�

Remark 14. The LPs of the instances (I(k), C(1)) are only approximately solved
in contrast to Shmonin’s proof [20,23] where optimal solutions are used. This re-
sults in the additional additive terms εLIN(I(k), C(1)) and ε

∑
k LIN(I(k), C(1))

in (2) and (3). Thus, it is necessary to prove that the sum is bounded by∑
k

1
2k−3Area(I

(k)), which yields the final estimate (4).

Theorem 15. Let ε > 0, and let (I(1), C(1)) be a VBP instance with d1 item
sizes, M1 bin sizes and s(a) ≥ δ for a ∈ I(1). Then Alg has a running time of

O

(
d1

(
log(d1) +

1

ε2

)
max

{
M1 ·KP

(
d1,

ε̄

6

)
, O

(
d1 log log

(
d1

1

ε

))}
+ d2.5941

(
log(d1) +

1

ε2

)
+

d1
δ

+ n

)
.

(5)

3 The General Algorithm

A general VBP instance (I, C) has to be preprocessed to apply Alg. For this,
let δ := ε2 and I = Ilarge ∪ Ismall := {a ∈ I | s(a) > δ} ∪ {a ∈ I | s(a) ≤ δ}.
We now use the geometric grouping introduced by Karmarkar and Karp [16]

with scaling factor k = + εArea(I)
log2(

1
δ )+1

, to partition Ilarge (see also the cutting-stock

section in [19]). We obtain two item sets G1 and Ilarge \ G1. The items in G1

can be packed in at most εArea(I) + O(log2(
1
δ )) unit-sized bins with NF if

the items of G1 in ]2−(r+1), 2−r] for r = 0 are packed first, then the items for
r = 1, 2, . . . , 'log2(1δ )( (see [16, Proof of Lemma 5]). Since G1 moreover contains

the largest items of Ilarge, the items in Ilarge \G1 can be rounded up to get I(1)
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with I(1) ≤ Ilarge. As the running time depends on the number of bin sizes (see

(5)), we only use a subset of the M bin sizes in C. Set C̃ := {c ∈ C|c ≥ ε}.
If M ≤ ' 2ε ln

1
ε( + 1, set C(1) := C̃. If M > ' 2ε ln

1
ε( + 1, partition C̃ into⋃� 2ε ln 1

ε �
l=0 C̃l with C̃l := {c|c ∈](1+ ε)−(l+1), (1+ ε)−l]}, and let then C(1) consist

of the largest c in every C̃l. (This construction of C(1) is mentioned in [22].) I(1)

has d1 = O(1ε log
1
ε ) many different item sizes and C(1) at most M1 ≤ ' 2ε ln

1
ε(+1

different bin sizes. The general algorithm is presented below.

Algorithm P (I, C, ε)

(1) Preprocess instance (I, C) as above to obtain (G1, C
(1)), (Ismall, C

(1)) and
(I(1), C(1)).

(2) Pack instance (I(1), C(1)) with algorithm Alg(I(1), C(1), ε) (see Section 2).
(3) Replace the rounded-up and packed items of (I(1), C(1)) by their original

counterparts to obtain a packing of Ilarge \G1.
(4) Pack the items of G1 into unit-sized bins using Next-Fit where the items

in ]2−(r+1), 2−r] for r = 0 are packed first, then the items for r = 1, 2 . . . ,
'log2(1δ )(.

(5) Add the small items Ismall greedily to the existing bins using Next-Fit: open
a new unit-sized bin if an item cannot be added to the existing bins.

Lemma 16 below shows that the reduced bin set C(1) does not increase the value
of an optimal or approximate solution too much, and Lemma 17 and Th. 18 sum
the results up to obtain the final approximation ratio. Note that the proofs of
Lemma 16 and Th. 18 use a slight modification of [18, Pr. of Th. 1].

Lemma 16. We have OPT (I(1), C(1)) ≤ OPT (Ilarge, C
(1))

≤ (1 + ε)OPT (Ilarge, C̃) ≤ (1 + 4ε)OPT (I, C) + 2.

Lemma 17. Let (Ilarge, C) = ({a ∈ I|s(a) ≥ δ} , C) be defined as above. Before
adding the small items in Step (5), the algorithm P has found an integral packing

v = (v
(l)
j ) for (Ilarge, C) with

∑
l cl
∑

j v
(l)
j ≤ (1 + 17ε)OPT (I, C) +O(log2(1ε )).

Theorem 18. Let (I, C) be a VBP instance with n items. For a given 0 < ε ≤
1
2 , the algorithm P finds a solution of the instance with objective value of at most∑
l cl
∑

j v
(l)
j ≤ (1 + 17ε)OPT (I, C) +O(log2(1ε )).

Deriving the running time is a rather straightforward calculation. The main
difficulty lies in the construction of I(1) and G1, which can be obtained in time
O(log(d1)n) = O(log(1ε )n) even when Ilarge is not sorted [19, p. 298]. The running
time of Step (2) is already known (see Eq. (5)), the other steps can be performed
in O(log(1ε )(M + n)). As C(1) contains at most ' 2ε ln

1
ε( + 1 different bin sizes,

we get the following overall running time:
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O

(
max

{
min

{
M,

⌊
2

ε
ln

1

ε

⌋
+ 1

}
·KP

(
d1,

ε̄

6

)
, O

(
1

ε
log

(
1

ε

)
log log

(
1

ε

))}
· 1
ε
log

(
1

ε

)
·
[
log

(
1

ε

)
+

1

ε2

]
+

1

ε2.594
· log2.594

(
1

ε

)[
log

(
1

ε

)
+

1

ε2

]
+

1
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(6)
The last missing part of the algorithm is an FPTAS for the unbounded knapsack
problem. Lawler’s classic algorithm [17] has a running time of KP (ñ, ε̃) = O(ñ+
1
ε̃3 ), i.e. KP (d1,

ε̄
6 ) = O(1ε log(

1
ε )+

1
ε3 ) because of ε̄ = Θ(ε). The general running

time can be obtained by inserting this expression into the estimates above and
by simplifying them.

Theorem 19. P (I, C, ε) has for VBP a running time of O( 1
ε7 log

2(1ε ) + log(1ε )
(M + n)).

Remark 20. The complexity for BP is obtained from (6) with M = 1. Note that
we can even set δ = O(ε) for BP as done e.g. by Karmarkar and Karp [16].
Moreover, the approximation ratio of (1 + ε) for BP and VBP is achieved by
replacing ε by ε

17 , which does not change the asymptotic running time.

4 Concluding Remarks

We have found an AFPTAS for BP and VBP with improved running time and
approximation ratio (1+ε)OPT (I, C)+O(log2(1ε )). The algorithm is a practical
application of Shmonin’s theoretical result [23] combined with the algorithm by
Grigoriadis et al. [12] applied to VBP. To obtain the asymptotic approximation
ratio of (1 + O(ε)), it is shown that the number of item sizes and therefore
Area(I(k)) halves in every iteration.

Further running time improvements can probably be achieved. For instance,
several unbounded knapsack problems have to be solved for column generation.
At the moment, the authors consider an adapted FPTAS that takes advantage
of values already calculated for smaller bins and therefore has a faster running
time.

An interesting question is whether the techniques presented in this paper can
be applied to other problems to find AFPTAS with improved additive terms.
Bin Covering might be such a problem, for which Jansen and Solis-Oba [14]
found an AFPTAS with additive term O( 1

ε3 ). Other examples may be Class
Constrained Bin Packing [6], Bin Packing with Size Preserving Fragmentation
and Bin Packing with Size Increasing Fragmentation [21,22].
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20. Sebő, A., Shmonin, G.: On the integrality gap for the bin-packing problem (un-
published manuscript)



An Improved Approximation Scheme for Variable-Sized Bin Packing 541

21. Shachnai, H., Tamir, T., Yehezkely, O.: Approximation schemes for packing with
item fragmentation. Theory Comput. Syst. (MST) 43(1), 81–98 (2008)

22. Shachnai, H., Yehezkely, O.: Fast Asymptotic FPTAS for Packing Fragmentable
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Abstract. We propose a gathering protocol for an even number of robots in a
ring-shaped network that allows symmetric but not periodic configurations as
initial configurations, yet uses only local weak multiplicity detection. Robots are
assumed to be anonymous and oblivious, and the execution model is the non-
atomic CORDA model with asynchronous fair scheduling. In our scheme, the
number of robots k must be greater than 8, the number of nodes n on a network
must be odd and greater than k+ 3. The running time of our protocol is O(n2)
asynchronous rounds.

Keywords: Asynchronous Gathering, Local Weak Multiplicity Detection, Robots.

1 Introduction

We consider autonomous robots that are endowed with visibility sensors (but that are
otherwise unable to communicate) and motion actuators. Those robots must collaborate
to solve a collective task, namely gathering, despite being limited with respect to input
from the environment, asymmetry, memory, etc. The area where robots have to gather is
modeled as a graph and the gathering task requires every robot to reach a single vertex
that is unknown beforehand, and to remain there hereafter.

Robots operate in cycles that comprise look, compute, and move phases. The look
phase consists in taking a snapshot of the other robots positions using its visibility sen-
sors. In the compute phase, a robot computes a target destination among its neighbors,
based on the previous observation. The move phase simply consists in moving toward
the computed destination using motion actuators. We consider an asynchronous com-
puting model, i.e., there may be a finite but unbounded time between any two phases
of a robot’s cycle. Asynchrony makes the problem hard since a robot can decide to
move according to an old snapshot of the system and different robots may be in differ-
ent phases of their cycles at the same time. Moreover, the robots that we consider here
have weak capacities: they are anonymous (they execute the same protocol and have no
mean to distinguish themselves from the others), oblivious (they have no memory that
is persistent between two cycles), and have no compass whatsoever (they are unable to
agree on a common direction or orientation in the ring).
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While most of the literature on coordinated distributed robots considers that those
robots are evolving in a continuous two-dimensional Euclidean space and use visual
sensors with perfect accuracy that permit to locate other robots with infinite precision,
a recent trend was to shift from the classical continuous model to the discrete model.
In the discrete model, space is partitioned into a finite number of locations. This setting
is conveniently represented by a graph, where nodes represent locations that can be
sensed, and where edges represent the possibility for a robot to move from one location
to the other. For each location, a robot is able to sense if the location is empty or if robots
are positioned on it (instead of sensing the exact position of a robot). Also, a robot is
not able to move from a position to another unless there is explicit indication to do so
(i.e., the two locations are connected by an edge in the representing graph). The discrete
model permits to simplify many robot protocols by reasoning on finite structures (i.e.,
graphs) rather than on infinite ones.

Related Work. In this paper, we focus on the gathering problem in the discrete setting
where a set of robots has to gather in one single location, not defined in advance, and
remain on this location [4,2,6,7,5,1]. Several deterministic algorithms have been pro-
posed to solve the gathering problem in a ring-shaped network, which enables many
problems to appear due to the high number of symmetric configurations. The case of
anonymous, asynchronous and oblivious robots was investigated only recently in this
context. It should be noted that if the configuration is periodic and edge symmetric, no
deterministic solution can exist [7]. The first two solutions [7,6] are complementary: [7]
is based on breaking the symmetry whereas [6] takes advantage of symmetries. How-
ever, both [7] and [6] make the assumption that robots are endowed with the ability to
distinguish nodes that host one robot from nodes that host two robots or more in the
entire network (this property is referred to in the literature as global weak multiplic-
ity detection). This ability weakens the gathering problem because it is sufficient for
a protocol to ensure that a single multiplicity point exists to have all robots gather in
this point, so it reduces the gathering problem to the creation of a single multiplicity
point. Nevertheless, the case of an even number of robots proved difficult [3,1] as more
symmetric situations must be taken into account.

Investigating the feasibility of gathering with weaker multiplicity detectors was re-
cently addressed in [4,5]. In those papers, robots are only able to test that their current
hosting node is a multiplicity node (i.e. hosts at least two robots). This assumption
(referred to in the literature as local weak multiplicity detection) is obviously weaker
than the global weak multiplicity detection, but is also more realistic as far as sensing
devices are concerned. The downside of [4] compared to [6] is that only rigid config-
urations (i.e. non symmetric configuration) are allowed as initial configurations (as in
[7]), while [6] allowed symmetric but not periodic configurations to be used as initial
ones. Also, [4] requires that k < n/2 even in the case of non-symmetric configurations,
where k denotes the number of robots and n the size of the ring, respectively. By con-
trast, [5] proposed a gathering protocol that could cope with symmetric yet aperiodic
configurations and only made use a local weak multiplicity detector, allowing k to be
between 3 and n− 3. However, [5] requires an odd number of robots, which permits to
avoid a number of possibly problematic symmetric configurations.
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Our Contribution. We propose a gathering protocol for an even number of robots in
a ring-shaped network that allows symmetric but not periodic configurations as initial
configurations, yet uses only local weak multiplicity detection. Robots are assumed to
be anonymous and oblivious, and the execution model is the non-atomic CORDA model
with asynchronous fair scheduling. For the even number of robots setting, our protocol
allows the largest set of initial configurations (with respect to impossibility results) yet
uses the weakest multiplicity detector to date. In our scheme, k must be greater than
8, n must be odd and greater than k + 3. The running time of our protocol is O(n2)
asynchronous rounds.

Outline. The paper is organized as follow: we first define our model in Section 2, we
then present our algorithm in Section 3. Due to the lack of space, the complete proofs
of correctness are omitted1. Finally we conclude the paper in Section 5.

2 Preliminaries

System Model. In the following, we use the same model as in [5]. We considered in
this paper is similar We consider the case of an anonymous, unoriented and undirected
ring of n nodes u0,u1,..., u(n−1) such that ui is connected to both u(i−1) and u(i+1) and
u(n−1) is connected to u0. We assume n odd. Since no labelling is enabled (anonymous),
there is no way to distinguish between nodes, or between edges.

On this ring, k robots operate in distributed way in order to accomplish a common
task that is to gather in one location not known in advance. We assume that k is even.
The set of robots considered here are identical; they execute the same program using
no local parameters and one cannot distinguish them using their appearance, and are
oblivious, which means that they have no memory of past events, they can’t remember
the last observations or the last steps taken before. In addition, they are unable to com-
municate directly, however, they have the ability to sense the environment including the
position of the other robots. Based on the configuration resulting of the sensing, they de-
cide whether to move or to stay idle. Each robot executes cycles infinitely many times,
(1) first, it catches a sight of the environment to see the position of the other robots
(look phase), (2) according to the observation, it determines a neighboring target des-
tination (compute phase), (3) if it decides to move, it moves to its neighboring node
towards a target destination (move phase). At instant t, a subset of robots is activated
by an entity known as the scheduler. The scheduler can be seen as an external entity
that selects some robots for the execution. This scheduler is considered to be fair i.e, all
robots must be activated infinitely many times. The model considered in this paper is
the CORDA model [8]. This model enables the interleaving of phases by the scheduler
(For instance, one robot can perform a look operation while another is moving). In our
case we add the following constraint: the Move operation is instantaneous i.e, when a
robot takes a snapshot of its environment, it sees the other robots on nodes and not on
edges. However, since the scheduler is allowed to interleave the different operations,
robots can move according to an outdated snapshot since during the Compute phase,
some robots may have moved.

1 The complete proofs can be found at http://hal.inria.fr/hal-00709074

http://hal.inria.fr/hal-00709074
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During the process, some robots move and occupy nodes of the ring at any time, their
positions form a configuration of the system at that time. We assume that, at instant t = 0
(i.e, at the initial configuration), some of the nodes on the ring are occupied by robots,
such that, each node contains at most one robot. A node ui is said empty if there is no
robot on ui. The segment [up,uq] is defined by the sequence (up,up+1, · · · ,uq−1,uq) of
consecutive nodes in the ring, such that all the nodes of the sequence are empty except
up and uq that contain at least one robot. The distance Dt

p of segment [up,uq] in the
configuration of time t is equal to the number of nodes in [up,uq] minus 1. We define
a hole as the maximal set of consecutive empty nodes. That is, in the segment [up,uq],
(up+1, · · · ,uq−1) is a hole. The size of a hole is the number of empty nodes that compose
it, the border of the hole are the two empty nodes who are part of this hole, having one
robot as a neighbor.

We say that there is a multiplicity at some node ui, if at this node there is more than
one robot (Recall that this multiplicity is distinguishable only locally).

When a robot takes a snapshot of the current configuration on node ui at time t, it has
a view of the system at this node. In the configurationC(t), we assume [u1,u2],[u2,u3],· · ·,
[uw,u1] are consecutive segments in a given direction of the ring. Then, the view of a
robot on node u1 at C(t) is represented by
(max{(Dt

1,D
t
2, · · · ,Dt

w),(D
t
w,D

t
w−1, · · · ,Dt

1)},mt
1), where mt

1 is true if there is a multi-
plicity at this node, and sequence (ai,ai+1, · · · ,a j) is larger than (bi,bi+1, · · · ,b j) if there
is h(i ≤ h ≤ j) such that al = bl for i ≤ l ≤ h− 1 and ah > bh. It is stressed from the
definition that robots don’t make difference between a node containing one robot and
those containing more. However, they can detect mt of the current node, i.e. whether
they are alone on the node or not (they have a local weak multiplicity detection).

Configurations that have no multiplicity are classified into three classes in [7]. A
configuration is said to be periodic if it is represented by a configuration of at least two
copies of a sub-sequence. A configuration is said to be symmetric if the ring contains
a single axis of symmetry. Otherwise, the configuration is said to be rigid. For these
configurations, the following lemma is proved in [7].

Lemma 1. If a configuration is rigid, all robots have distinct views. If a configuration
is symmetric and non-periodic, there exists exactly one axis of symmetry.

This implies that, if a configuration is symmetric and non-periodic, at most two robots
have the same view.

We now define some useful terms that will be used to describe our algorithm. We
denote by the inter-distance d the minimum distance taken among distances between
each pair of distinct robots (in term of the number of edges). Given a configuration
of inter-distance d, a d.block is any maximal elementary path where there is one robot
every d edges. The border of a d.block consists in the two external robots of the d.block.
The size of a d.block is the number of robots that it contains. We refer to the d.block
which has the biggest size by biggest d.block. A robot that is not in any d.block is said
to be an isolated robot.

We evaluate the time complexity of our algorithm with asynchronous rounds. An
asynchronous round is defined as the shortest fragment of an execution where each
robot performs a move phase at least once.
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Fig. 1. Terminal Configuration

Problem to Be Solved. The problem considered in our work is the gathering problem,
where starting from any arbitrary, non periodic configuration without multiplicities,
k robots have to gather in one location not known in advance before stopping there
forever.

3 Proposed Algorithm

We propose in this section an algorithm that solves the gathering problem starting from
any non-periodic configuration on a ring provided that n is odd, k is even, k > 8 and
n > k+ 3.

In the following, a configuration is said to be Terminal if it is symmetric and contains
two 1.blocks of size k/2 at distance 2 from each other (refer to Figure 1).

The algorithm comprises three main phases as follow:

– Phase 1. The aim of this phase is to reach a configuration with either a single
1.block of size k or two 1.blocks of the same size k/2. The initial configuration of
this phase is any arbitrary non-periodic configuration without multiplicities.

– Phase 2. The goal of this phase is to reach Terminal configuration (refer to Figure
1) starting from any configuration with either a single 1.block or two 1.blocks of
the same size. In the following Csp includes any configuration that can occur during
Phase 2.

– Phase 3. The starting configuration of this phase is the Terminal configuration.
During this phase, robots perform the gathering such that at the end of this phase,
all robots are on the same node.

During the execution of Phase 1, if a configuration part of Csp is reached, the algorithm
immediately moves to Phase 2.

When the configuration is symmetric, and since the number of nodes is odd, the axis
of symmetry intersects with the ring on exactly one node and one edge. Let us refer to
such a node by S. Additionally, because the number of robots is even, there is no robot
on S. Observe that the size of the hole including S is odd. Let us call such a hole the
Leader hole and let us refer to it by H. The other hole on the axis of symmetry is called
the Slave hole. Both the Leader Hole and the Slave Hole can be part of a d.block.
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3.1 Phase 1 Algorithm

Starting from a non periodic configuration without multiplicities, the aim of this phase
is to reach a configuration with either a single 1.block of size k or two 1.blocks of size
k/2.

The idea of this phase is the following: In the initial configuration, in the case
where the configuration contains isolated robots, these isolated robots are the ones
that can move in order to join a d.block. Thus, in a finite time, the configuration con-
tains only d.blocks. If all the d.blocks have the same size, robots move such that there
will be at least two d.blocks in the configuration that have different size. Robots then
move towards the closest biggest d.block. In order to avoid creating periodic config-
urations, only some robots are allowed to move, these robots are the ones that have
the biggest view. Depending on the nature of the configuration (symmetric or rigid),
only one d.block (respectively two d.blocks if the configuration is symmetric) becomes
the biggest d.block in the configuration (let refer to the set of these d.block by target
blocks). These d.blocks are then the target of all the other robots that move in order to
join them. When all the robots are in a d.blocks part of the set target blocks then in the
case d > 1, some robots move in order to decrease d. After that, the system will have
the same behavior unless d = 1.

The following configurations are considered:

– BlockDistance Configuration. In this configuration, there are only two d.blocks of
the same size (k/2) or a single d.block of size k such that in both cases d > 1. Note
that the configuration is symmetric and does not contain any isolated robot. The
robots allowed to move are the ones that are neighbors of H. Their destination is
their adjacent empty node in the opposite direction of H.

– BlockMirror Configuration. In such a configuration there are only d.blocks of the
same size and no isolated robots. The number of d.blocks is bigger than 2. Two sub
configurations are possible as follow:

• BlockMirror1 Configuration. The configuration is in this case rigid. The robot
allowed to move is the one that is the closest to a d.block. If there are two or
more such robots, then the one having the biggest view among them is allowed
to move. Its destination is its adjacent empty node towards the closest neigh-
boring d.block.

• BlockMirror2 Configuration. The configuration is in this case symmetric. Let
the d.blocks that are neighbors to H or including H be the guide blocks. The
robots allowed to move are the ones that share a hole other than H with the
guide blocks. Their destinations are their adjacent empty node towards the clos-
est guide block.

– BigBlock Configuration. In this configuration, the configuration is neither Block-
Mirror nor BlockDistance. Then, there is at least one d.block that has the biggest
size. Two sub configurations are defined as follow:
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• BigBlock1 Configuration. In this case there is at least one isolated robot that
shares a hole with one of the biggest d.blocks. Two sub-cases are possible as
follow:

∗ BigBlock1-1 Configuration. The configuration is rigid and contains either
(i) two 1.blocks of the same size (k− 2)/2 and two isolated robots that
share a hole together or (ii) one 1.block of size (k− 2) and two isolated
robots that share a hole together. The robot that is allowed to move in both
cases is the one that is the farthest to the neighboring 1.block. Its destina-
tion is its adjacent empty node towards the neighboring 1.block.

∗ BigBlock1-2 Configuration. This configuration is different from Big-
Block1-1 and includes all the other configurations of BigBlock1. The robots
allowed to move are part of the set of robots that share a hole with a biggest
d.block such that they are the closest ones to a biggest d.block. If there
exists more than one such robot, then only robots with the biggest view
among them are allowed to move. Their destination is their adjacent empty
node towards one of the nearest neighboring biggest d.blocks.

• BigBlock2 Configuration. In this case there is no isolated robot that is neighbor
of a biggest d.block. The robots allowed to move are the ones that are the
closest to a biggest d.block. If there exist more than one such robots, then only
robots with the biggest view among them can move. Their destination is their
adjacent empty node towards one of the nearest neighboring biggest d.blocks.

3.2 Phase 2 Algorithm

Recall that the aim of Phase 2 is to reach Terminal configuration. The starting config-
uration of this phase is one of the configurations part of Csp. When the configuration
is symmetric, the two 1.blocks that are neighbors of the Leader hole (H) (respectively
Slave hole) are called the Leader block (respectively the Slave block). To simplify the
explanation we assume in the following that an isolated robot is also a single 1.block
of size 1. The idea of this phase is to make the robots move towards the Leader Hole
while keeping both the symmetry of the configuration and the inter-distance equal to 1.
The symmetry of the configuration is maintained in the following matter: If the sched-
uler activates only one robot in the configuration then in the next step the robot that
was supposed to move is the only one that can move. Note that this robot can be easily
determined since we have an odd number of nodes and an even number of robots in the
ring. Thus the robots keep moving in the same direction, towards the Guide Hole whose
size decreases at each time. Hence, Terminal configuration is reached in a finite time.
The algorithm of Phase 3 can then be executed.

In the following, we define the nine configurations that are part of the set Csp: Start,
Even-T, Split-S, Split-A, Odd-T, Block, Biblock, TriBlock-S and TriBlock-A. The behav-
ior of robots in each configuration is also provided.

1. Start Configuration. This configuration is symmetric and contains two 1.blocks
with size k/2 but not being at distance 2. The robots allowed to move are the two
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Hole with an even size

Hole with an even size

Fig. 2. Even−T Configuration

Leader Hole

Slave Hole

Slave BlockSlave Block

Leader BlockLeader Block

Fig. 3. Split−S Configuration

Hole with an odd size

Hole with an odd size

Fig. 4. Odd−T Configuration

The robot 
allowed to move

Fig. 5. Biblock Configuration

Middle 1.block

Fig. 6. TriBlock−S Configuration

Middle 1.block

Fig. 7. TriBlock−A Configuration

robots that are at the border of the 1.blocks neighboring to the Leader hole. Their
destination is their adjacent empty node in the opposite direction of the 1.block they
belong to.

2. Even-T Configuration. The configuration is in this case rigid and contains three
1.blocks of size respectively k/2, (k/2)−1 and 1. Additionally, the 1.block of size
1 is at distance 2 from the 1.block of size k/2− 1. The number of holes between
the 1.block of size 1 and the one of size k/2 is even. Note that this is also the case
for the hole between the 1.block of size (k/2)− 1 and the one of size k/2 (refer
to Figure 2). The only robot allowed to move is the one that is at the border of the
1.block of size k/2 sharing a hole with the 1.block of size 1. Its destination is its
adjacent empty node in the opposite direction of the 1.block it belongs to.
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3. Split-S Configuration. The configuration is symmetric and contains four 1.blocks
such that the 1.blocks on the same side of the axis of symmetry are at distance 2
(refer to Figure 3). The robots allowed to move in this case are the ones that are at
the border of the Slave block sharing a hole with the Leader block. Their destina-
tion is their adjacent empty node towards the Leader block.

4. Split-A Configuration. The configuration is rigid and contains four 1.blocks and
exactly one hole of an even size. Let the 1.blocks that are neighbors of the hole of
an even size be S1 and S2, and let the other two 1.blocks be L1 and L2. S1 and L1
(respectively S2 and L2) are at distance 2 from each other. Then, |S1| = |S2|+ 1,
|L2| = |L1|+ 1, |S1|+ |L1|= |S2|+ |L2|= k/2. The size of the hole between L1
and L2 is odd, and the distances between L1 and S1 (respectively between L2 and
S2) is equal to 2. In this case, only one robot is allowed to move. This robot is the
one at the border of S1 sharing a hole with L1. Its destination its adjacent empty
node towards L1.

5. Odd-T Configuration. The configuration is rigid and contains three 1.blocks of size
respectively k/2, (k/2)− 1 and 1. Additionally, the 1.block of size 1 is at distance
2 from the 1.block of size k/2−1. Observe that this configuration is different from
Even-T Configuration since all the holes in the ring have an odd size (refer to Figure
4). The only robot allowed to move is the one that is part of the 1.block of size 1.
Its destination is its adjacent empty node towards the 1.block of size (k/2)− 1.

6. Block Configuration. The configuration contains in this case, a single 1.block of
size k. Note that the configuration is symmetric. The robots allowed to move are
the ones that are at the border of the 1.block. Their destination is their adjacent
node in the opposite direction of the 1.block they belong to.

7. Biblock Configuration. This configuration is rigid and contains two 1.blocks B1 and
B2 at distance 2 from each other such that |B1|= k−1 and |B2|= 1 (refer to Figure
5). The robot allowed to move is the one that is at the border of the biggest 1.block
not having a neighboring occupied node at distance 2. Its destination is its adjacent
node in the opposite direction of the 1.block it belongs to.

8. TriBlock-S Configuration. This configuration is symmetric and contains three 1.
blocks separated by one empty node (refer to Figure 6). The robots allowed to move
are the ones that are at the border of the 1.block on the axis of symmetry. Their des-
tination is their adjacent empty node in the opposite direction of the 1.block they
belong to.

9. TriBlock-A Configuration. This configuration is rigid and contains three 1.blocks
(B1, B2 and B3) such that there is one 1.block that is at distance 2 from both other
1.blocks (let B1 be this 1.block, refer to Figure 7). |B2|= |B3|+1. The robot allowed
to move is the one that is at the border of B1 and the closest to B3. Its destination is
its adjacent empty node in the opposite direction of the 1.block it belongs to.
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The transitions between the configurations of Phase 2 are illustrated in Figure 8.

TriBlock-SBlock

Biblock

TriBlock-A

Start

Even-T

Split-A

Split-S

Terminal

Odd-T

Fig. 8. Transition of the configuration by Phase 2

3.3 Phase 3 Algorithm

During this phase, robots perform the gathering such that at the end, all robots are on
the same location. The starting configuration of this phase is the Terminal configuration.

When the Terminal configuration is reached at the end of the second phase (or when
the configuration is built in the first phase), the only robots that can move are the ones
that are at the extremity of a 1.block being neighbors of a hole of size 1. Since the
configuration is symmetric there are exactly two robots allowed to move. Two cases are
possible as follow:

1. The scheduler activates both robots at the same time. In this case the configuration
remains symmetric and a multiplicity is created on the axis of symmetry.

2. The scheduler activates only one robot. In this case the configuration that is reached
becomes asymmetric and contains two 1.blocks B1 and B2 at distance 2 such that
|B2| = |B1|− 2 (one robot from B2 has moved and joined B1, let this robot be r1).
Note that this configuration is easily recognizable by robots. The robot that is in
B1 being neighbor of r1 is the one allowed to move. Its destination is its adjacent
occupy node towards r1. Note that once it moves, the configuration becomes sym-
metric and a multiplicity is created on the node that is on the axis of symmetry. Let
us refer to such symmetric configuration with a multiplicity Target configuration.

In the Target configuration, robots that are part of the multiplicity are not allowed to
move anymore. For the other robots, they can only see an odd number of robots in
the configuration since they are enable to see the multiplicity on the axis of symmetry
(recall that they have a local week multiplicity detection). In addition, since they are
oblivious, they cannot remember their number before reaching Target configuration.
On the other hand, an algorithm has been proposed in [5] that solves the gathering
problem from such a configuration (Phase 2 in [5]). Robots can then execute the same
algorithm to perform the gathering.

4 Proof of Correctness

In the following, we prove the correctness of our algorithm. We define an outdated
robot as the robot that takes a snapshot at instant t but moves only at instant t + j where
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j > 0. Thus, when such a robot moves, it does so based on an outdated perception of the
configuration. Additionally, we define an outdated robot with an incorrect target as the
outdated robot that its target destination is incorrect in the current configuration, i.e., if
the robot takes a new snapshot to the current configuration, the computed destination is
different.

– Phase 1

To prove the correctness of Phase 1 algorithm, we first show that there exists in the
configurations at most one outdated robot with an incorrect target. Next, we prove
that starting from non periodic configuration without any multiplicities, neither a
periodic configuration nor a configuration with a multiplicity is reached during the
execution of Phase 1. Finally, we show that either Terminal configuration or a con-
figuration C∗ ∈ Csp is eventually reached. Thus:

Theorem 1. From any non-periodic initial configuration C without any multiplici-
ties, either Terminal configuration or a configuration C∗ ∈Csp is reached in O(n2)
rounds.

– Phase 2

To prove the correctness of Phase 2 algorithm, we first show that when a configu-
ration C∗ ∈Csp is reached, there exist no outdated robots with incorrect target. We
then show that Terminal configuration is eventually reached. Hence:

Theorem 2. Starting from any configuration C∗ ∈ Csp, Terminal configuration is
reached in O(kn) rounds.

– Phase 3

The correctness of Phase 3 algorithm is proven by showing first that when Terminal
configuration is reached, it does not contain any outdated robots with incorrect
target. Target configuration is then proven to be eventually reached. Proofs in [5]
are then used to show that the gathering is performed in O(k2) rounds.

The following Theorem holds:

Theorem 3. Starting from any non-periodic initial configuration without any multi-
plicities, the gathering is performed in O(n2) rounds.

5 Conclusion

We presented a gathering protocol for an even number of anonymous and oblivious
robots that are initially located on different nodes of a ring, and are endowed with a
weak local multiplicity detector only. Our gathering can start from any configuration
that is not periodic, yet expects the ring to have an odd size. This constraint permits
to avoid edge-edge symmetries in the initial configurations, as they are known to be
ungatherable [7].
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If we relax the constraint on the parity of the ring size (that is, the ring is even)
but maintain the absence of edge-edge symmetry and periodicity requirement (that are
mandatory for problem solvability), no node-edge symmetry can actually occur in the
initial configuration. If the initial configuration is rigid, it is known that gathering with
local weak multiplicity detection is feasible [4]. There remains the case of the initial
node-node symmetry. With global weak multiplicity detection, this case is solvable for
6 robots [1] or more than 18 robots [7]. A similar characterization using only local weak
multiplicity detection looks challenging.
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Reversal Hierarchies for Small 2DFAs
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Abstract. A two-way deterministic finite automaton with r(n) reversals
performs ≤ r(n) input head reversals on every n-long input. Let 2D[r(n)]
be all families of problems solvable by such automata of size polynomial
in the index of the family. Then the reversal hierarchy 2D[0] ⊆ 2D[1] ⊆
2D[2] ⊆ · · · is strict, but 2D[O(1)] = 2D[o(n)]. Moreover, the inner-
reversal hierarchy 2D(0) ⊆ 2D(1) ⊆ 2D(2) ⊆ · · · , where now the bound
is only for reversals strictly between the input end-markers, is also strict.

1 Introduction

A long-standing open question of the Theory of Computation is whether every
two-way nondeterministic finite automaton (2nfa) is equivalent to a determin-
istic one (2dfa) with only polynomially more states; or, in other terms, whether
2D = 2N, where 2D and 2N are the classes of (families of) problems which are
solvable by ‘small’ (i.e., polynomial-size) 2dfas and 2nfas, respectively [8].

In 2002, J.Hromkovič suggested approaching this question by its variants for
2dfas with restricted number of input-head reversals [3]. Specifically, let a ‘2dfa
with r(n) reversals ’ be one which performs≤ r(n) reversals on every n-long input.
Next, for any class R of natural functions, let 2D[R] be the restriction of 2D to
problems that are solvable by small 2dfas with r(n) reversals, for some r ∈ R.
Then, the following obvious inclusions hold, where 0, 1, . . . are singletons for the
individual constant functions, and const is all these functions together:

2D[0]⊆
(a)

2D[1] ⊆
(b)

2D[2]⊆ · · · ⊆ 2D[r]⊆ · · ·
⊆ 2D[const]⊆ 2D[O(1)]⊆ 2D[o(n)]

(c)

⊆ 2D[O(n)]
(d)

⊆ 2D .
(1)

Hromkovič suggested resolving all these inclusions, as well as every relationship
between a class and its counterpart for 2nfas [3, Research Problems 2–4].

Some answers are known: (a), (b), (c) are strict, by [7, Prop. 1], [1, Th. 2.2],
and [4, Th. 3]; (d) is equality, as small 2dfas have small halting equivalents [9,2],
which reverse O(n) times [4, Fact 3]; and every class up to 2D[o(n)] is strictly
inside its counterpart for 2nfas, as the witness to [4, Th. 1] admits small 2nfas
even with 0 reversals. Here, we resolve most of the remaining inclusions in (1).

We start in Sect. 3, with a crossing-sequence argument which proves that a
2dfa cannot reverse o(n) times unless it already reverses O(1) times (and thus
the lower bound of [4, Th. 1] is really a bound for 2dfas with O(1) reversals).
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Theorem 1. Every 2dfa with o(n) reversals is a 2dfa with O(1) reversals.

We continue in Sect. 4, with a uniform argument for all r ≥ 1, which proves that
small 2dfas with r reversals are strictly more powerful than small 2dfas with
<r reversals. Crucially, our argument makes black-box use of [4, Th. 2].

Theorem 2. Let r ≥ 1. For each h ≥ 1, some problem requires 2Ω(h/r) states on
every 2dfa with <r reversals, but only O(r+h) states on a 2dfa with r reversals.

Hence, with Theorems 1 and 2 counted in, the chain of (1) is updated as follows:

2D[0]
∗
�
[7]

2D[1]
∗
�
[1]

2D[2]
∗
� · · ·

∗
� 2D[r]

∗
� · · ·

�
∗
2D[const] =

?
2D[O(1)] =

∗
2D[o(n)]

[4]

� 2D[O(n)]
[9,2]

= 2D ,
(2)

where ‘∗’ marks our contributions, and ‘?’ marks the only remaining unresolved
inclusion —we conjecture that the seemingly obvious equality is indeed true.

Finally, in Sect. 5 we show that Theorem 2 remains valid even when we bound
only the inner reversals, which occur strictly between the two input end-markers
(as opposed to outer reversals, which occur on the end-markers). Crucially, our
proof builds on a stronger variant of the argument behind [4, Th. 2].

Theorem 3. Let r ≥ 1. For each h ≥ 1, some problem requires Ω(2h/2) states on
every 2dfa with <r inner reversals, but only O(h) states on a 2dfa with r inner
reversals (and 0 outer reversals, if r is even; or 1 outer reversal, if r is odd).

Thus, an additional inner-reversal hierarchy 2D(0)� 2D(1)� · · · � 2D(const) is
established, where now 2D(R) restricts 2D to problems solvable by small 2dfas
with r(n) inner reversals, for some r ∈ R. (Clearly, 2D[R] ⊆ 2D(R) for all R;
moreover, from const upwards this inclusion is easily seen to be an equality.)

2 Preparation

If h ≥ 0, then [h] := {0, . . . , h−1}. If S is a set, then |S|, S, P(S), S⊥ are its size,
complement, powerset, and augmentation S ∪ {⊥}. If f, g are partial functions,
then the composition (f ◦g)(a) is defined iff both f(a) and g(f(a)) are, and then
equals g(f(a)); the k-fold composition of f with itself is denoted by fk.

Let Σ be an alphabet. If z ∈ Σ∗ is a string, we write |z|, zj, zj, and zR for
its length, j-th symbol (1 ≤ j ≤ |z|), j-fold concatenation with itself (j ≥ 0),
and reverse; its j-th boundary (1 ≤ j ≤ |z|+1) is the left boundary of zj , or the
right one if j = |z|+1. If Z ⊆ Σ∗, then ZR := {zR | z ∈ Z}.

A (promise) problem over Σ is a pair L = (L, L̃) of disjoint subsets of Σ∗.
Every w in the promise L ∪ L̃ is an instance of L: positive if w ∈ L, or negative
if w ∈ L̃. To solve L is to accept every w ∈ L but no w ∈ L̃.

2.1 Two-Way Automata

A two-way deterministic finite automaton (2dfa) is any M = (Q,Σ, δ, qs, qa, qr),
where Q is a set of states, Σ is an alphabet, qs, qa, qr ∈ Q are the start, accept,
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and reject states, and δ : Q× (Σ ∪ {0,:})→ Q× {l,r} is the (total) transition
function, using two end-markers 0,: /∈ Σ and the two directions l,r. An input
w ∈ Σ∗ is presented to M between the end-markers, as 0w:. The computation
starts at qs and on 0. At each step, the next state and head motion are derived
from δ and the current state and symbol. End-markers may be violated only if
the next state is qa or qr: δ(· ,0) is always (qa,l), (qr,l), or (· ,r); and δ(· ,:) is
always (qa,r), (qr,r), or (· ,l). So, the computation loops, or falls off 0w: into qr,
or falls off 0w: into qa. In this last case, we say M accepts w.

Formally, the computation of M from state p and the j-th symbol of string z,
denoted compM,p,j(z), is the longest sequence c = ((qt, jt))0≤t<m such that
0 < m ≤ ∞, (q0, j0) = (p, j), and every next (qt, jt) follows from the previous
one via δ and z in the usual way (Fig. 1a). We call (qt, jt) the t-th point of c. If
m = ∞ then c loops ; otherwise it halts, and hits left (if jm−1= 0) or hits right
(if jm−1 = |z|+1) into qm−1. The computation lcompM,p(z) := compM,p,1(z)
is the l-computation of M from p on z; depending on whether it loops, hits
left, or hits right, we call it a l-loop, l-turn, or lr-traversal. Symmetrically, the
r-computation of M from p on z, rcompM,p(z) := compM,p,|z|(z), is a r-loop,
r-turn, or rl-traversal. The (full) computation of M on w ∈ Σ∗ is compM (w) :=
lcompM,qs(0w:). So, M accepts w iff compM (w) falls off 0w: into qa.

The j-th crossing sequence of a computation c on a string z is the sequence
q1, q2, . . . where qi is the state immediately after c crosses the j-th boundary of z
for the i-th time. Easily, if c halts, then every crossing sequence contains ≤ 2|Q|
states, and thus ≤ (|Q|+1)2|Q| of these sequences are distinct.

A reversal of c is a point ( . , jt) whose predecessor and successor exist and lie
on the same side relative to it: t �= 0,m−1, and jt−1, jt+1 <jt or jt<jt−1, jt+1

(Fig. 1a). If c is full, a reversal is either an outer reversal, if it lies on 0 or :,
or an inner reversal, otherwise. We write r(c) for the total number of reversals
in c. Clearly 0 ≤ r(c) ≤ ∞, with r(c) = ∞ iff c loops. We write rM (n) for
the maximum r(c) over all full computations c of M on n-long inputs. Easily, if
finite, rM (n) is at most linear: rM (n) =∞ or rM (n) ≤ |Q|·(n+2), for all n.

We say M is a 2dfa with r(n) reversals if rM (n) ≤ r(n) for all n; or a 2dfa
with r(n) inner reversals if every full computation on an n-long input performs

pt

q1p1
q2p2

p3 q3

j0 j2jm−1

# #

x

...
qt

(a) (b)

q0 q2

qm−1

c

Fig. 1. (a) A left-hitting computation c with m = 15 and r(c) = 5 reversals, at points
2, 6, 8, 11, and 12. (b) A certificate for x (for the case of odd t).
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≤ r(n) inner reversals. If M is a 2dfa with 0 inner reversals, we call it sweeping
(sdfa). If it is a 2dfa with 0 reversals and may also hang (i.e., δ is a partial
function), we call it one-way (1dfa); then, the state qi for which δ(qs,0) = (qi,r)
is called initial, every state q with δ(q,:) = (qa,r) is called final, andM accepts w
iff lcompM,qi(w) hits right into a final state.

2.2 Parallel Automata

A (two-sided) parallel automaton (p21dfa) [10] is any triple M = (A,B, F ) where
A,B are disjoint families of 1dfas over an alphabet Σ, and F is a subset of the
cartesian product of all sets QD

⊥, for D ∈ A ∪ B and QD the state set of D. To
run M on input w ∈ Σ∗ means to run each D on w (without end-markers) from
its initial state and record the result (the state in which D falls off w, or ⊥ if it
hangs), but with a twist: each D ∈ A reads w from left to right (as usual), while
each D ∈ B reads w from right to left (i.e., it reads wR). We say M accepts w iff
the produced tuple of |A|+|B| results is in F .

If F consists of the tuples where every result is a final state in the respective
1dfa, then M is a parallel intersection automaton (∩21dfa) [8]: it accepts iff all
its components do. If F consists of the tuples where at least one of the results is
a final state, then M is a parallel union automaton (∪21dfa) [8]: it accepts iff any
of its component does. In both cases, we write only M = (A,B). When B = ∅ or
A = ∅, we say M is left-sided (∩l1dfa, ∪l1dfa) or right-sided (∩r1dfa, ∪r1dfa).

We now recall notions and facts leading to generic strings and blocks [10,4].
For D ∈ A and y ∈ Σ∗, the set of states that can be produced on the right

boundary of y by l-computations of D is denoted by:

QD

lr
(y) := {q | (∃p)[ lcompD,p(y) hits right into q ]} .

For every right extension yz of y, we let αD
y,z : QD

lr
(y) ⇀ QD be the partial

function whose value on each q ∈ QD
lr
(y) is either the state which lcompD,q(z)

hits right into, or undefined if lcompD,q(z) hangs. Similarly, for D ∈ B, we let
QD

rl
(y) := {q | (∃p)[rcompD,p(y) hits left into q ]}, and βD

z,y : QD
rl
(y) ⇀ QD be

such that βD
z,y(q) = r iff rcompD,q(z) hits left into r. The next straightforward

fact is a summary of [6, Facts 3.7–9] (as well as a special case of [5, Facts 3–4]).

Fact 1. If D ∈ A then αD
y,z partially surjects QD

lr
(y) to QD

lr
(yz), thus |QD

lr
(y)| ≥

|QD
lr
(yz)|; in addition, QD

lr
(yz) ⊆ QD

lr
(z). If D ∈ B then βD

z,y partially surjects
QD

rl
(y) to QD

rl
(zy), thus |QD

rl
(zy)| ≤ |QD

rl
(y)|; in addition, QD

rl
(z) ⊇ QD

rl
(zy).

For L ⊆ Σ∗, we say y is generic for M over L if y ∈ L and no right (resp.,
left) extension of y in L reduces the number of states produced on the right (left)
boundary by the l-computations (r-computations) of any D ∈ A (any D ∈ B):

(∀yz ∈ L)(∀D ∈ A)[ |QD

lr
(yz)| = |QD

lr
(y)| ]

y ∈ L and
(∀zy ∈ L)(∀D ∈ B )[ |QD

rl
(zy)| = |QD

rl
(y)| ] .

If ϑ is a fixed generic string for M over L, every string of the form ϑxϑ is
called a block, with infix x. For D ∈ A, we write αD

ϑ,xϑ simply as αD
x , and note
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that it partially maps QD
lr
(ϑ) to itself, since QD

lr
(ϑxϑ) ⊆ QD

lr
(ϑ) (by Fact 1).

Similarly, for D ∈ B we write βD

ϑx,ϑ : QD
rl
(ϑ) ⇀ QD

rl
(ϑ) simply as βD

x . The tuple(
(αD

x )D∈A, (β
D

x )D∈B
)

is the inner behavior of M on ϑxϑ, and satisfies the next lemma, by standard
‘cut-and-paste’ arguments (e.g., see [4, Lemma 3], [5, Fact 6], [10]), and the fol-
lowing fact, by the definition of generic string (e.g., see [5, Fact 5], [10]).

Lemma 1. (a) If the inner behavior of M on ϑxϑ consists of identities, then
M decides identically on ϑ and ϑxϑ. (b) If the inner behaviors of M on ϑxϑ
and ϑyϑ are identical, then M decides identically on ϑxϑ and ϑyϑ.

Fact 2. On every ϑxϑ ∈ L, the inner behavior of M consists of permutations.

The next fact (variant of [5, Facts 7–8]) says that the inner behavior on a block of
the form ϑxϑyϑ, where ϑ appears in the infix, composes the two inner behaviors
for the overlapping blocks ϑxϑ and ϑyϑ; this then generalizes to blocks of the
form ϑx(k)ϑ, where the infix x(k) := x(ϑx)k−1 is k ϑ-separated copies of the same
string. Finally, Fact 4 (variant of [4, Fact 7]) follows as an easy corollary.

Fact 3. For all D ∈ A, it is αD

xϑy = αD
x ◦αD

y ; hence αD

x(k) = (αD
x )
k for all k ≥ 1.

Similarly, for all D ∈ B, it is βD

xϑy = βD
y ◦βD

x ; hence βD

x(k) = (βD
x )

k for all k ≥ 1.

Fact 4. If the inner behavior of M on ϑxϑ consists of permutations, then for
some k ≥ 1 the inner behavior of M on ϑx(k)ϑ consists of identities.

2.3 Hardness Propagation

In the “hardness propagation” style of [6], all our witnesses are built by applying
appropriate ‘hardness increasing’ operators to a single, well-understood, ‘core’
problem. Below, we first recall some of these operations along with some associ-
ated hardness propagation lemmata. We then also recall our one ‘core’ problem.

Let L = (L, L̃). The reverse and the complement of L are the problems
LR := (LR, L̃R) and ¬L := (L̃, L). Easily, ¬(LR) = (¬L)R, and [4, Fact 12] holds:

Lemma 2. (a) If no ∪l1dfa with s-state components solves L, then no ∪r1dfa
with s-state components solves LR. (b) If no ∩l1dfa with (s+1)-state components
solves L, then no ∪l1dfa with s-state components solves ¬L.

The conjunctive star of L is the problem of checking that a #-delimited list of
instances of L contains only positives; dually, the disjunctive star is the problem
where at least one instance in the list must be positive [6, §3.1]:∧

L :=
(
{#x1# · · ·#xl# | (∀i)(xi ∈ L)}, {#x1# · · · #xl# | (∃i)(xi ∈ L̃)}

)∨
L :=

(
{#x1# · · ·#xl# | (∃i)(xi ∈ L)}, {#x1# · · · #xl# | (∀i)(xi ∈ L̃)}

)
,

where #x1# · · · #xl# means l ≥ 0, each xi ∈ L∪ L̃, and # is a fresh symbol. Easily,

¬
(∧

L
)
=
∨
¬L ¬

(∨
L
)
=

∧
¬L

(∧
L
)R

=
∧
LR

(∨
L
)R

=
∨
LR ,

by the definitions. In addition, the following lemma holds [6, Lemma 3.3]:
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Lemma 3. If no s-state 1dfa solves L, then no ∩l1dfa with s-state components
solves

∨
L.

The ordered star Ll<Lr of two problems Ll = (Ll, L̃l) and Lr = (Lr, L̃r) of
disjoint promises is defined as follows [4, §7.2]: an instance is promised to be a
list x = #x1# · · · #xl# of #-delimited instances of Ll and Lr where all positives
of one of the problems appear before all positives of the other (note that this
includes lists where at most one problem contributes positives); the task is to
check that either both problems contribute positives and the one that places
them first is Ll or neither problem contributes any positives. So, in a positive x,
there are xi both from Ll and from Lr, and all those from Ll precede all those
from Lr; or all xi are in L̃l ∪ L̃r. In a negative x, there are xi both from Ll and
from Lr, and all those from Lr precede all those from Ll; or exactly one of Ll,Lr

contributes some xi. The next hardness propagation lemma is [4, Lemma 8]:

Lemma 4. If no ∪l1dfa with 1+
(
s
2

)
-state components solves Ll and no ∪r1dfa

with 1+
(
s
2

)
-state components solves Lr, then no s-state sdfa solves Ll<Lr.

The membership problem is defined over the alphabet [h] ∪ P([h]) as follows:
“Given an i ∈ [h] and an α ⊆ [h] (in this order), check that i ∈ α.” Formally:

M = membershiph :=
(
{iα | α ⊆ [h] & i ∈ α}, {iα | α ⊆ [h] & i ∈ α}

)
. (3)

Easily, M has an h-state 1dfa, but MR and ¬MR (where α precedes i) have no
1dfa with < 2h−1 states [6,4]. (In [4, Eq. (7)], MR is called set numh.)

3 From Few Reversals to Bounded Reversals

We now prove Theorem 1. We pick a 2dfa M with rM (n) �= O(1), and show that
rM (n) �= o(n), too. Note that this is trivial if rM (n) =∞ for infinitely many n.
So, the interesting case is when rM (n) is finite for all sufficiently large n.

Since rM (n) �= O(1), every bound r admits infinitely many n with rM (n) ≥ r.
Consider in particular r := s·(s+1)2s, for s the number of states in M . Then,
for infinitely many n, some full computation cn on some n-long input performs
≥ s·(s+1)2s reversals. Moreover, for all sufficiently large n, these cn are halting,
exactly because we are in the interesting case. Let c be one of these halting cn.

Let j1 < · · · < jm be the indices of the cells where c performs its ≥ s·(s+1)2s

reversals. Then m ≥ (s+1)2s, or else m < (s+1)2s cells would host ≥ s·(s+1)2s

reversals, so some cell would host >s reversals, so c would repeat a point on
that cell and thus loop, a contradiction.

Now let q0, q1, . . . , qm be the crossing sequences of c on any m+1 boundaries
that are separated by the m cells above. Since m+1 exceeds the number (s+1)2s

of distinct crossing sequences in halting computations (cf. Sect. 2.1), two of the qi
must be identical. Let y be the infix between the corresponding two boundaries.
Then the input is xyz, for some x,z.

We know y hosts ≥ 1 of the reversals of c, because it contains ≥ 1 of the cells
indexed by the ji. We also know, by a standard ‘cut-and-paste’ argument, that
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every full computation ct := compM (xytz) repeats on every copy of y every
computation segment performed by c on y, including all reversals contained
therein. So, every ct performs ≥ 1 reversal on each copy of y, for a total of
≥ t reversals. Hence, for the infinitely many lengths nt := |xytz| some nt-long
input forces M to perform ≥ t = (nt−|xz|)/|y| reversals. Hence, rM (n) �= o(n).

So, Theorem 1 holds, making the inclusion 2D[O(1)] ⊆ 2D[o(n)] an equality.
Concerning the inclusion 2D[const] ⊆ 2D[O(1)] one level down, it is tempting

to suggest that it is also an equality, caused by the seemingly obvious reduction
(analogous to that of Theorem 1) that every 2dfa with O(1) reversals is a 2dfa
with r reversals, for some r. But this suggestion is wrong (easily). The next
tempting suggestion is that, although a 2dfa with O(1) reversals is not already
one with r reversals, it can be made into one, with some increase in size. Indeed:

Lemma 5. Every s-state 2dfawith O(1) reversals is equivalent to a O(rs)-state
2dfa with r reversals, for some r.

Still, in this lemma, r may be super-polynomial in s (as in the 2dfa built in the
proof of Theorem 1), resulting in a 2dfa too large to prove 2D[const] = 2D[O(1)].

4 Inside the Reversal Hierarchy

In this section we prove Theorem 2. We first introduce a new ‘hardness increas-
ing’ operator and prove an associated ‘hardness propagation’ lemma.

The r-th conjunctive power of L = (L, L̃) is the problem of checking that a
#-delimited list of exactly r instances of L contains only positives:∧

rL :=
(
{#x1# · · ·#xr# | (∀i)(xi ∈ L)}, {#x1# · · ·#xr# | (∃i)(xi ∈ L̃)}

)
,

where #x1# · · ·#xr# means that every xi ∈ L ∪ L̃ and # is a fresh symbol.

Lemma 6. If no 4rs2r+1-state sdfa solves L, then no s-state 2dfa with <r re-
versals solves

∧
rL.

Proof. Let L=(L, L̃). Let M be an s-state 2dfa with <r reversals for
∧
rL. We

build a sdfa M ′ for L with 4rs2r+1 states. We first introduce certificates, then
show how they characterize the positives of L, then use them to design M ′.

Pick any positive x of L. Then w := #(x#)r is a positive of
∧
rL. Therefore,

c := compM (w) is accepting. Moreover, the reversals in c are fewer than the
copies of x in w. So, on one or more of these copies, c performs 0 reversals. Fix
any such copy (e.g., the leftmost one). On it, c consists of t ≤ r one-way traversals
(one-way, since there are 0 reversals; and ≤ r, because with <r reversals in total
c can traverse each infix ≤ r times). Let px := (p1, . . . , pt) and qx := (q1, . . . , qt)
be the crossing sequences of c on the outer boundaries of that copy of x (Fig. 1b).
Finally, consider the set of all pairs of crossing sequences created in this way,

C := {(px, qx) | x ∈ L} ,

as we iterate over all positives of L. We use this set in the next definition.
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Definition. A pair (p, q) of t-long sequences of states of M is a certificate for an
instance x of L if it satisfies the following three clauses:

1. (p, q) ∈ C.
2. For every odd i = 1, . . . , t: lcompM,pi(x) is one-way and hits right into qi.
3. For every even i = 1, . . . , t: rcompM,qi(x) is one-way and hits left into pi.

Claim. An instance of L is positive iff it has a certificate.

Proof. [⇒] Let x ∈ L. Then clearly (px, qx) is a certificate for x. [⇐] Let x̃ ∈ L̃.
Suppose x̃ has a certificate (p, q). By Clause 1, there is x ∈ L such that the ac-
cepting computation c := compM (#(x#)r) exhibits p and q on the outer bound-
aries of a copy of x on which it contains 0 reversals. By Clauses 2 and 3,M notices
no difference if we replace that copy with a copy of x̃. So, the computation of M
on the modified string is also accepting. But this modified string is a negative
of

∧
rL. Therefore, M does not solve

∧
rL —a contradiction. 


By the Claim, one way to check an instance x of L is to check whether any
pair in C is a certificate for it; because C is ‘small’ and each pair is checkable by
‘few’ sweeps, this strategy can be implemented by a ‘small’ sdfa. Specifically,
M ′ iterates over all ((p1, . . . , pt), (q1, . . . , qt)) ∈ C. For each of them and each
odd (resp., even) i = 1, . . . , t, it simulates M on x from pi (from qi) on the
leftmost (rightmost) symbol, to see whether it hits right (left) into qi (into pi)
without ever reversing; on any attempt to reverse, M ′ stops simulating and just
completes the sweep. If these checks succeed for all i, then M ′ accepts; otherwise,
it continues to the next pair. If all pairs have been tried, then M ′ rejects.

If Q are the states of M , then M ′ uses states Q′ := C×{1, . . . , r}×Q⊥. State
(p, q, i, p) means we are at state p in simulating M in the i-th check for the
candidate certificate (p, q); if p=⊥, then the i-th check has already failed due
to an attempt to reverse, and we are just completing the sweep. Easily, |C| ≤∑r

t=0(s
t·st) ≤ 2s2r, therefore |Q′| = |C|·r·(|Q|+1) ≤ 2s2r·r·(s+1) ≤ 4rs2r+1. �

We are now ready to introduce our witness. For r ≥ 1 and M as in (3), it is

Rr :=
∧
r

[ (∧
MR
)
<
(∧

M
) ]

. (4)

So, an instance ofRr is a list of the form $y1$ · · · $yr$; each yj is a list of the form
*x1* · · ·*xl*, for arbitrary l; and each xj is a list of the form #α1i1# · · · #αlil#
or #i1α1# · · · #ilαl#, again for arbitrary l. The task is to check that, in every yj :
either every xj has some ij not in the adjacent αj (i.e., all xj are negatives of∧
MR and

∧
M); or xj of both forms exist with all their ij in the adjacent αj , and

those of the set-number form precede those of the number-set form (i.e., both∧
MR and

∧
M contribute positives, and those of

∧
MR precede those of

∧
M).

For the lower bound, we know that every sdfa for
∧
MR<

∧
M has 2Ω(h) states

(by the lower-bound argument of [4, §7.3], which uses Lemma 4). Therefore, by
Lemma 6, every 2dfa with <r reversals for Rr has 2Ω(h/r) states.

For the upper bound, we start as in [4, §7.3]. We let M0 be the h-state 1dfa
for M. We then build a O(h)-state 1dfa M1 for

∧
M, which just repeatedly

simulates M0 on the successive instances of M and accepts iff all are accepted.



562 C.A. Kapoutsis and G. Pighizzini

Next, we build a O(h)-state 2dfa M2 with 1 reversal for
∧
MR<

∧
M. On input

*x1* · · ·*xl*, M2 scans forward simulating M1 on every instance of
∧
M until it

detects a positive or reaches :. In either case, it reverses and scans backwards
simulating M1 on (the reverse of) every instance of

∧
MR until it detects a

positive or reaches 0. Then M2 knows what to do: (1) if neither scan detected
a positive, then all xj are negative, so M2 must accept; (2) if the forward scan
detected no positive but the backward scan did, then only

∧
MR contributes

positives, so M2 must reject; (3) if the forward scan detected a positive but the
backward scan did not, then M2 must reject either because only

∧
M contributes

positives or because both problems do but the order is wrong; (4) if both scans
detected a positive, then both problems contribute and the order is correct, so
M2 must accept. So, M2 finishes the backward scan (if needed) and decides on 0.

Finally, we build a 2dfa Rr with r reversals for Rr. On input $y1$ · · · $yr$,
a successive pair $yj$yj+1$ is checked by a 2-reversal lr-traversal, as follows:
scan forward past yj; simulate M2 on yj+1 by a 1-reversal l-turn which ends
on the middle $; from there, simulate M2 on (the reverse of) yj by a 1-reversal
r-turn which also ends on the middle $; from there, scan forward past yj+1.
Easily, this check needs O(h) states. Now, if r is even, then Rr simply repeats
this check on every pair of successive yj until it reaches :. If r is odd, then
Rr first scans forward past y1, . . . , yr−1, to simulate M2 on yr by a 1-reversal
l-turn that ends on the penultimate $; from there, it starts checking pairs of
successive yj by repeating the above check (backwards and in reverse) until 0.
Easily, the number of states in Rr is O(r+h) —for even r, it is only O(h).

5 Inside the Inner-Reversal Hierarchy

We now prove Theorem 3. Most crucially, we improve the lower bound of Sect. 4
to make it (i) independent of r, and (ii) valid even when only inner reversals are
restricted. For this, we enhance our chain of hardness propagation, by proving
variants of Lemmata 4 and 6 where sdfas are replaced by p21dfas.

Lemma 4*. If no ∪l1dfa with 1+
(
s
2

)
-state components solves Lland no ∪r1dfa

with 1+
(
s
2

)
-state components solves Lr, then no p21dfa with s-state components

solves Ll<Lr.

Proof. The structure of the argument is exactly as in the proof of [4, Lemma 8];
we just adapt some of its steps for p21dfas. So, let Ll = (Ll, L̃l), Lr = (Lr, L̃r).
Suppose some p21dfa M = (A,B, F ) solves Ll<Lr with s-state components.

We first consider the strings of #-delimited instances of Ll and Lr where
neither problem contributes positives, and those where exactly one does:

L := {#x1# · · · #xl# | (∀i)(xi ∈ L̃l ∪ L̃r) } , and
L̃ := {#x1# · · · #xl# | (∃i)(xi ∈ Ll ∪ Lr) & ¬(∃i)(∃j)(xi ∈ Ll & xj ∈ Lr) } ,

where #x1# · · · #xl# means l ≥ 0 and every xi ∈ Ll ∪ L̃l ∪ Lr ∪ L̃r. Note that
all strings in L∪ L̃ are instances of Ll<Lr: positive if in L, negative if in L̃. So,
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M solves (L, L̃). From now on, fix ϑ to be a generic string for M over L. (The
existence of such a string follows from standard observations [6, §3.3.2].)
Definition. A pair {p, q} of distinct states in M is a forward certificate for an
instance x of Ll or Lr if there exists D ∈ A such that

p, q ∈ QD

lr
(ϑ) and

if both lcompD,p(xϑ) and lcompD,q(xϑ) hit right,
then they do so into the same state.

(5)

A backward certificate is defined symmetrically, with A, QD
lr
, lcompD, . (xϑ),

and “hit right” replaced respectively by B, QD
rl
, rcompD, . (ϑx), and “hit left”.

Claim 1. An instance of Ll or Lr is positive iff it has a certificate.

Proof. As in [4, Lemma 8]. [⇒] By Fact 4 and Lemma 1a. [⇐] By Fact 2. 

Note that, for positive instances, Claim 1 does not specify whether the existing

certificates are of the forward or of the backward kind. It turns out that a stronger
criterion is possible for at least one of Ll or Lr.

Claim 2. At least one is true: (i) every positive instance of Ll has a forward
certificate, or (ii) every positive instance of Lr has a backward certificate.

Proof. Suppose not. Then there is x ∈ Ll with no forward certificate and y ∈ Lr

with no backward certificate. As in the proof of Claim 1, this means that every αD
x

forD ∈ A permutes QD
lr
(ϑ) and every βD

y forD ∈ B permutes QD
rl
(ϑ). Pick k ≥ 1

so that each of these |A|+|B| permutations becomes an identity after k iterations:

(∀D ∈ A)[ (αD

x )
k= id ] and (∀D ∈ B)[ (βD

y )
k= id ] ,

where ‘id’ is the identity function on the appropriate domain. Then, by Fact 3,

(∀D ∈ A)[ αD

x(k) = id ] and (∀D ∈ B)[ βD

y(k) = id ] . (6)

Intuitively, this means that no D ∈ A can distinguish ϑx(k)ϑ from ϑ, and no
D ∈ B can distinguish ϑy(k)ϑ from ϑ. Hence, M cannot distinguish between

ϑx(k)ϑy(k)ϑ and ϑy(k)ϑx(k)ϑ , (7)

because they both ‘look’ like ϑy(k)ϑ to every D ∈ A, and like ϑx(k)ϑ to every
D ∈ B. If this intuition is correct, then M treats identically a positive (on the
left) and a negative (on the right) instance of Ll<Lr—a contradiction.

Indeed, the inner behavior of every D ∈ A on the two instances of (7) is:

αD

x(k)ϑy(k) = αD

x(k) ◦ αD

y(k) = id ◦ αD

y(k) = αD

y(k)

αD

y(k)ϑx(k) = αD

y(k) ◦ αD

x(k) = αD

y(k) ◦ id = αD

y(k) ,

where in each line all functions are partial from QD
lr
(ϑ) to itself, the first step

uses Fact 3, and the second step uses (6). Hence, αD

x(k)ϑy(k) = αD

y(k) = αD

y(k)ϑx(k) .

By this and a symmetric argument for every D ∈ B, we eventually conclude that(
(αD

x(k)ϑy(k))D∈A, (β
D

x(k)ϑy(k))D∈B
)(

(αD

y(k)ϑx(k))D∈A, (β
D

y(k)ϑx(k))D∈B
)} =

(
(αD

y(k))D∈A, (β
D

x(k))D∈B
)
.

Hence, M treats the blocks of (7) the same (Lemma 1b), as expected. 
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Now, if Claim 2i is true, then along with Claim 1 it implies a criterion for Ll:
an instance of Ll is positive iff it has a forward certificate. We thus get:

Claim 3. Some ∪l1dfa with 1+
(
s
2

)
-state components solves Ll.

Proof. By the criterion, an instance x of Ll is positive iff there is D ∈ A and
distinct p, q ∈ QD

lr
(ϑ) such that either one of lcompD,p(xϑ) or lcompD,q(xϑ)

hangs or both hit right into the same state. A ∪l1dfa can check this using a
1+
(
s
2

)
-state component Dp,q for every such combination of D and p, q. 


If Claim 2ii holds, we work similarly with Lr and backward certificates. �

Lemma 6*. If no p21dfa with s-state components solves L, then no s-state 2dfa
with <r inner reversals solves

∧
rL.

Proof. Let L=(L, L̃). Let M be a 2dfa with <r inner reversals for
∧
rL, with

set of states Q = [s]. We build a p21dfa M ′ with s-state components for L.
We use certificates as in Lemma 6. For each x ∈ L, c := compM (#(x#)r) is

accepting and avoids reversals on one or more copies of x (since every reversal on
a copy of x is inner). So, the crossing sequences px,qx on the outer boundaries
of the leftmost such copy are again ‘linked’ by t one-way traversals (Fig. 1b).
This time, however, it is not guaranteed that t ≤ r, as some pairs of successive
traversals may be separated by outer reversals, whose number is not bounded
by r. We just know that t ≤ 2s (or else c would repeat a state on an outer cell
of x, and loop), so the set C := {(px, qx) | x ∈ L} of candidate certificates may
be exponentially large, forbidding an exhaustive search by a small sdfa.

However, a small-component p21dfa can delegate this exhaustive search to its
set of accepting tuples. So, we let M ′ := ({Ap | p ∈ Q}, {Bp | p ∈ Q}, F ). Each
1dfa Ap simulates M from p for as long as it moves right; if M ever attempts to
reverse, Ap hangs. Similarly, each Bp simulates M from p for as long as it moves
left, and hangs at any attempt to reverse. Hence, on input x, M ′ simulates M
from every state and in every fixed direction, covering every possible one-way
traversal of x byM . In the end, it checks whether x has a certificate by comparing
the results of these 2s computations against each (p, q) ∈ C. Formally, for each
p = (p1, . . . , pt) and q = (q1, . . . , qt) we let F(p,q) be the set of all 2s-tuples that
we can build from two copies of all states in Q = {0, 1, . . . , s−1}

( 0, 1, . . . , s−1, 0, 1, . . . , s−1 ) ,

by replacing (i) every odd-indexed pi in the left copy with the respective qi (to
ask Api to hit right into qi); (ii) every even-indexed qi in the right copy with
the respective pi (to ask Bqi to hit left into pi) and (iii) all other states in either
copy with any result in Q⊥ (to let all other 1dfas free). This way, F(p,q) is all
tuples which prove that (p, q) is a certificate. So, letting F :=

⋃
(p,q)∈C F(p,q), we

ensure that M ′ accepts x iff x has a certificate, namely iff x ∈ L. �

We are now ready to proceed to the main argument that proves Theorem 3.



Reversal Hierarchies for Small 2DFAs 565

For the lower bound, we start as in [4, §7.3]. We know no (2h−2)-state 1dfa
solves ¬MR. So, Lemma 3 implies no ∩l1dfa with (2h−2)-state components
solves

∨
¬MR. Hence, Lemma 2b for

∨
¬MR = ¬

∧
MR implies that

no ∪l1dfa with (2h−3)-state components solves
∧
MR.

This, together with Lemma 2a for
∧
MR = (

∧
M)R, implies that

no ∪r1dfa with (2h−3)-state components solves
∧
M.

So, by Lemma 4*, in every p21dfa for
∧
MR<

∧
M some component has Ω(2h/2)

states. By Lemma 6*, the same holds for all 2dfas with <r inner reversals forRr.
For the upper bound, we note that our 2dfa Rr from Sect. 4 performs only

inner reversals. Moreover, its size can stay independent of r, if we allow ≤ 1 outer
reversal: for odd r, we modify Rr to work as if r were even; this causes 1 outer
reversal during the check of yr. So, the modified Rr solves Rr with O(h) states,
r inner reversals, and 0 or 1 outer reversals (depending on the parity of r).

6 Conclusion

We studied 2dfas with few, bounded, and fixed reversals (o(n), O(1), r, respec-
tively). We showed that the first two are actually the same, whereas small 2dfas
of the last kind strictly increase their power with every additional reversal, even
if we focus only on those performed strictly between the end-markers.

It would have been nice if we had also resolved 2D[const] ⊆ 2D[O(1)]. It would
also be interesting to repeat this analysis for 2nfas [3, Research Problem 4].
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Abstract. We present a pumping lemma for each level of the collapsible
pushdown graph hierarchy in analogy to the second author’s pumping
lemma for higher-order pushdown graphs (without collapse). Using this
lemma, we give the first known examples that separate the levels of the
collapsible pushdown graph hierarchy and of the collapsible pushdown
tree hierarchy, i.e., the hierarchy of trees generated by higher-order re-
cursion schemes. This confirms the open conjecture that higher orders
allow one to generate more graphs and more trees.

Full proofs can be found in the arXiv version[10] of this paper.

1 Introduction

Already in the 70’s, Maslov ([12,13]) generalised the concept of pushdown sys-
tems to higher-order pushdown systems and studied such devices as acceptors
of string languages. In the last decade, renewed interest in these systems has
arisen. They are now studied as generators of graphs and trees. Knapik et al.
[11] showed that the class of trees generated by deterministic level n pushdown
systems coincides with the class of trees generated by safe level n recursion
schemes,1 and Caucal [5] gave another characterisation: trees on level n+ 1 are
obtained from trees on level n by an MSO-interpretation followed by an unfold-
ing. Carayol and Wöhrle [4] studied the ε-contractions of configuration graphs
of level n pushdown systems and proved that these are exactly the graphs in the
n-th level of the Caucal hierarchy.

Driven by the question whether safety implies a semantical restriction to re-
cursion schemes, Hague et al. [7] extended the model of higher-order pushdown
systems by introducing a new stack operation called collapse. They showed that
the trees generated by the resulting collapsible pushdown systems coincide ex-
actly with the class of trees generated by all higher-order recursion schemes and
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this correspondence is level-by-level. Recently, Parys ([14,15]) proved the safety
conjecture, i.e., he showed that higher-order recursion schemes generate more
trees than safe higher-order recursion schemes, which implies that the class of
collapsible pushdown trees is a proper extension of the class of higher-order
pushdown trees. Similarly, due to their different behaviour with respect to MSO
model checking, we know that the class of collapsible pushdown graphs forms a
proper extension of the class of higher-order pushdown graphs.

Several questions concerning the relationship of these classes have been left
open so far. Up to now it was not known whether collapsible pushdown graphs
form a strict hierarchy in the sense that for each n ∈ N the class of level n
collapsible pushdown graphs is strictly contained in the class of level (n+1) col-
lapsible pushdown graphs. The same question was open for the hierarchy of trees
generated by collapsible pushdown systems (i.e. by recursion schemes). Extend-
ing the pumping arguments of Parys for higher-order pushdown systems [16] to
the collapsible pushdown setting, we answer both questions in the affirmative.

Our main technical contribution is the following pumping lemma which sub-
sumes the pumping lemmas for level 2 collapsible pushdown systems [9] and for
higher-order pushdown systems [16]. Set exp0(i) = i and expk+1(i) = 2expk(i).

Theorem 1.1. Let S be a collapsible pushdown system of level n. Let G be the
ε-contraction of the configuration graph of S. Assume that it is finitely branching
and that there is a path in G of length m from the initial configuration to some
configuration c. For CS a constant only depending on S, if there is a path p in G
of length at least expn−1((m+1) ·CS) which starts in c, then there are infinitely
many paths in G which start in c and end in configurations having the same
control state as the last configuration of p.

Corollary 1.2. Let G be the successor tree induced by {1i0expn(i) | i ∈ N}.
G is the ε-contraction of the configuration graph of a pushdown system of

level n+1 but not the ε-contraction of the configuration graph of any collapsible
pushdown system of level n. Moreover, G is generated by a safe level (n + 1)
recursion scheme but not by any level n recursion scheme.

G is not in the n-th level because application of the pumping lemma to the node
12·CS0 yields a contradiction. The proof that G is in level n+1 follows from [2].
Moreover, our techniques allow us to decide the following problems.2

Lemma 1.3. Given a collapsible pushdown system, it is decidable

1. whether the ε-contraction of its configuration graph is finitely branching,

2. whether the ε-contraction of its configuration graph is finite, and

3. whether the unfolding of the ε-contraction of its configuration graph is finite.

2 We thank several anonymous referees of our LICS submissions for pointing our in-
terest towards these problems.
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1.1 Related Work

Hayashi [8] and Gilman [6] proved a pumping and a shrinking lemma for indexed
languages. It is shown in [1] that indexed languages are exactly the string lan-
guages accepted by level 2 collapsible pushdown systems. For higher levels, no
shrinking techniques are known so far. Since our pumping lemma can be used
only for finitely branching systems, it cannot be used to show that certain string
languages do not occur on certain levels of the (collapsible) higher-order push-
down hierarchy. Note that we do not know whether the string languages accepted
by nondeterministic level n pushdown systems and by nondeterministic level n
collapsible pushdown systems coincide for n > 2. Thus, it is an interesting open
question whether there is a stronger pumping lemma for runs of higher-order
systems that could be used to separate these classes of string languages.

2 Collapsible Pushdown Graphs

Collapsible pushdown systems of level n (from now on n ∈ N is fixed) are an
extension of pushdown systems where we replace the stack by an n-fold nested
stack structure. This higher-order stack is manipulated using a a push, a pop
and a collapse operation for each stack level 1 ≤ i ≤ n. When a new symbol
is pushed onto the stack, we attach a copy of a certain level k substack of the
current stack to this symbol (for some 1 ≤ k ≤ n) and at some later point the
collapse operation may replace the topmost level k stack with the level k stack
stored in the topmost symbol of the stack (we also talk about the linked k-stack
of the topmost symbol). In some weak sense the collapse operation allows one to
jump back to the (level k) stack where the current topmost symbol was created
for the first time.

Definition 2.1. Given a number n (the level of the system) and stack alphabet
Γ , we define the set of stacks as the smallest set satisfying the following.

– If s1, s2, . . . , sm are (k − 1)-stacks, where 1 ≤ k ≤ n, then the sequence
[s1, s2, . . . , sm] is a k-stack (with sm its topmost k − 1-stack). This includes
the empty sequence (m = 0).

– If sk is a k-stack, where 1 ≤ k ≤ n, and γ ∈ Γ , then (γ, k, sk) is a 0-stack.

For a 0-stack s0 = (γ, k, tk) we call γ the symbol of s0 and for some k-stack tk

the topmost symbol is the symbol of its topmost 0-stack.
For a k-stack sk and a (k − 1)-stack sk−1 we write sk : sk−1 to denote the

k-stack obtained by appending sk−1 on top of sk. We write s2 : s1 : s0 for
s2 : (s1 : s0).

Let us remark that in the original definition stacks are defined differently: they
are not nested, a 0-stack does not store the linked k-stack but the number of
pop-operations a collapse is equivalent to. With respect to constructible stacks
this is only a syntactical difference. Independently, Broadbent et al. recently also
introduced this representation of stacks under the name annotated stacks in [3].
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Definition 2.2. We define the set of stack operations OP as follows. We de-
compose a stack s of level n into its topmost stacks sn : sn−1 : · · · : s0. For
si �= ∅ set popi(s) := sn : · · · : si+1 : si. For si = ∅, popi(s) is undefined. For
2 ≤ i ≤ n we have pushi(s) := sn : · · · : si+1 : (si : · · · : s0) : si−1 : · · · : s0. The
level 1 push is push1γ,k for γ ∈ Γ , 1 ≤ k ≤ n which is defined by push1γ,k(s) :=

sn : · · · : s2 : (s1 : s0) : (γ, k, sk).3 The collapse operation coli (where 1 ≤ i ≤ n)
is defined if the topmost 0-stack is (γ, i, ti), and ti is not empty. Then it is
coli(s) := sn : · · · : si+1 : ti. Otherwise the collapse operation is undefined.

Definition 2.3. The initial 0-stack ⊥0 is (⊥, n, []) for a special symbol ⊥ ∈ Γ ,
i.e., a 0-stack only containing the symbol ⊥ with link to the empty stack. The
initial (k + 1)-stack is [⊥k]. Some n-stack s is a pushdown store (or pds), if
there is a finite sequence of stack operations that create s from ⊥n.

Remark 2.4. If s is a pds and if colj(s) is defined, then there is a k ≥ 1 such
that colj(s) is the stack obtained from s by applying popj k times.

Definition 2.5. A collapsible pushdown system of level n (an n-CPS) is a tuple
S = (Γ,A,Q, qI ,⊥, Δ) where Γ is a finite stack alphabet with ⊥ ∈ Γ , A is a
finite input alphabet, Q is a finite set of states, qI ∈ Q is an initial state, and
Δ ⊆ Q × Γ × (A ∪ {ε})×Q×OP is a transition relation. A configuration is a
pair (q, s) with q ∈ Q and s a pds. The initial configuration of S is (qI ,⊥n).

Definition 2.6. We define a run of a CPS S. For 0 ≤ i ≤ m, let ci = (qi, si)
be a configuration of S and let γi denote the topmost stack symbol of si. A run
R of length m from c0 to cm is a sequence c0 0a1 c1 0a2 · · · 0am cm such that,
for 1 ≤ i ≤ m, there is a transition (qi−1, γi−1, ai, qi, op) where si = op(si−1).
We set R(i) := ci and call |R| := m the length of R. The subrun R�i,j is
ci 0ai+1 ci+1 0ai+2 · · · 0aj cj. For runs R,S with R(|R|) = S(0), we write R ◦ S
for the composition of R and S which is defined as expected.

Definition 2.7. Let S be a collapsible pushdown system. The (collapsible push-
down) graph4 of S = (Γ,A,Q, qI ,⊥, Δ) is G := (G, (Ea)a∈A∪{ε}) where G con-
sists of all configurations reachable from (q0,⊥n) and there is an a-labelled edge
from a configuration c to a configuration d if there is a run c 0a d. The ε-
contraction of G is the graph (G′, (E′a)a∈A) where G′ := {c ∈ G : ∃d ∈ G d 0a c
for some a ∈ A} and two configurations c, d are connected by E′a if there is a
run c 0ε c1 0ε · · · 0ε cn 0a d for some n ∈ N.

3 Proof Structure

The proof of the pumping lemma consists of three parts. In the first part we in-
troduce a special kind of context free grammars (called well-formed grammars)

3 In the following, we write push1 whenever we mean some push1γ,k operation where
the values of γ and k do not matter for the argument.

4 In fact it is an edge-labelled graph; sets Ea need not to be disjoint.
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for runs of a collapsible pushdown system S. In such a grammar, each nontermi-
nal represents a set of runs and each terminal is one of the transitions of S. LetX
and X1, . . . , Xm be sets of runs and δ some transition. A rule X ⊇ δX1X2 . . . Xm

describes a run R if R = S ◦ T1 ◦ T2 ◦ · · · ◦ Tn such that S performs only the
transition δ and Ti ∈ Xi. A grammar describes a family X of sets of runs if the
rules for each X ∈ X describe exactly the runs in X . Well-formed grammars are
syntactically restricted in order to obtain the following result. If X is a finite
family described by a well-formed grammar, we can define

1. a function ctypeX from configurations of S to a finite partial order (TS ,�)
(of types of configurations), and

2. for each X ∈ X a level lev(X) ∈ {0, 1, . . . , n}

such that the following transfer property of runs holds.

Theorem 3.1. Let X be a family of sets of runs described by a well-formed
grammar, R ∈ X ∈ X , and c be a configuration with ctypeX (R(0)) � ctypeX (c).

1. There is a run S ∈ X starting in c which has the same final state as R and
2. if lev(X) = 0, then ctypeX (R(|R|)) � ctypeX (S(|S|)).

The idea behind the definition of ctypeX is that we assign a type not only
to the whole configuration, but also to every k-stack (for every k). This type
summarises possible behaviours of the k-stack in dependence on the type of the
n-stack below this k-stack. This makes types compositive: the type of a stack
sk+1 : sk is determined by the type of sk+1 and of sk. The above theorem
generalises results of [16] in two ways: first, it works for collapsible systems;
second, it works for arbitrary well-formed grammars instead of a fixed family of
sets of runs. The corresponding part of the proof from [16] is not transferable to
collapsible systems at all. For collapsible systems we even need a new definition
of types. We stress that the new definition of types relies on the different form
of representing links in stacks: our k-stack already contains all linked stacks,
so we can summarise it using a type from a finite set. On the other hand the
original k-stack has arbitrarily many numbers pointing to stacks “outside”, and
we could not define a type from a finite set because the behaviour of a k-stack
would depend on this unbounded context “outside”.

In the second part of the proof (cf. Section 5), we introduce a well-formed
grammar for a certain family X . As a main feature, X contains the set of so-
called pumping runs P . In the grammar describing X , the level of P is 0 whence
the strong version of Theorem 3.1 applies. If a pumping run R starts and ends in
configurations of the same type, this theorem then allows to pump this run, i.e.,
basically we can append a copy of this run to its end and iterating this process
we obtain infinitely many pumping runs.

The last part of the proof uses Theorem 3.1 for the above family X to de-
duce the pumping lemma. This part follows closely the analogous proof for the
non-collapsible pushdown systems in [16] (details in [10]): we prove that a long
run contains a pumping run such that the application of Theorem 3.1 yields a
configuration c on this path such that either the graph is infinitely branching at



Strictness of the Collapsible Pushdown Hierarchy 571

c or the pumped runs yield longer and longer paths in the ε-contraction of the
pushdown graph.

4 Run Grammars

Let X be a finite family whose elements are sets of runs of S. We want to describe
this family using a kind of context free grammar. In this grammar the members
of X appear as nonterminals and the transitions of S play the role of terminals.

We assume that there is a partition X =
⋃n
i=0 Xi into pairwise distinct families

of sets of runs. For each setX ∈ X , we define its level to be lev(X) := i if X ∈ Xi.
We only consider well-formed grammars that satisfy the restriction that all rules
of the grammar have to be well-formed.

Definition 4.1. A well-formed rule over X (wf-rule for short) is of the form

1. X ⊇ where X ∈ X , or
2. X ⊇ δ where δ ∈ Δ, X ∈ X and if the operation in δ is popk or colk then

k ≤ lev(X), or
3. X ⊇ δY where δ ∈ Δ, X,Y ∈ X , lev(Y ) ≤ lev(X) and if the operation in δ

is popk or colk then k ≤ lev(Y ), or
4. X ⊇ δY Z where δ ∈ Δ, X,Y, Z ∈ X , lev(Z) ≤ lev(X), if the operation in

δ is popk or colk then k ≤ lev(Y ), and whenever R is a composition of a
one-step run performing transition δ with a run from Y , then the topmost
lev(Y )-stacks of R(0) and R(|R|) coincide.

Definition 4.2. We say that a run R is described by a wf-rule X ⊇ δX1 . . .Xm,
m ∈ {0, 1, 2} if there is a decomposition R = R0 ◦R1 ◦ · · · ◦Rm such that R0 has
length 1 and performs δ and Ri ∈ Xi for each 1 ≤ i ≤ m; a run R is described by
X ⊇ if |R| = 0. We say that a family X is described by a well-formed grammar
RX if for each X ∈ X , a run R is in X if and only if it is described by some
rule X ⊇ δX1 . . . Xm ∈ RX .

Example 4.3. Let Q be the set of all runs. Setting lev(Q) = n, the one-element
family {Q} is described by the wf-rules Q ⊇ δQ for each transition δ, and Q ⊇ .

Indeed, for every runR either |R| = 0 orR consists of a first transition followed
by some run. Note that we cannot choose lev(Q) different from n whenever S
contains a transition δ0 performing coln or popn. If we set lev(Q) < n, then
Q ⊇ δ0Q would not be a wf-rule.

Next we prove that the class of families described by well-formed grammars is
closed under addition of unions and compositions. This is crucial for the decid-
ability results mentioned in Lemma 1.3. If X and Y are sets of runs, we set
X ◦ Y := {R ◦ S : R ∈ X,S ∈ Y }.

Lemma 4.4. Let X be a family described by a well-formed grammar. For X,Y ∈
X the family X ∪ {X ∪ Y } is described by a well-formed grammar. Moreover,
there is a family Y ⊇ X ∪ {X ◦ Y } that is described by a well-formed grammar.
In these grammars, we have lev(X ∪ Y ) = lev(X ◦ Y ) = max(lev(X), lev(Y )).
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Proof. For each rule Z ⊇ δZ1 . . . Zm with Z ∈ {X,Y } adding the rule (X ∪ Y ) ⊇
δZ1 . . . Zm settles the case of unions.

For the composition, we add a set Z ◦ Y for each Z ∈ X , and a new set Y i

for 0 ≤ i ≤ n. Y i contains exactly the same runs as Y , but we set lev(Y i) :=
max(lev(Y ), i). Wf-rules describing Y i are clearly obtained from the rules for
Y by replacing the left-hand side by Y i. Note that increasing the level of the
left-hand size turns well-formed rules into well-formed rules. Rules for each of
the Z ◦ Y are easily obtained from rules for Z as follows.

– If there is a rule Z ⊇ , for each rule having Y on the left side we add the
same rule with Z ◦ Y on the left side,

– for each rule Z ⊇ δ we add a rule (Z ◦ Y ) ⊇ δY lev(Z),
– for each rule Z ⊇ δX1 we add a rule (Z ◦ Y ) ⊇ δ(X1 ◦ Y ),
– for each rule Z ⊇ δX1X2 we add a rule (Z ◦ Y ) ⊇ δX1(X2 ◦ Y ).

It is straightforward to check that this is a well-formed grammar describing the
family Y := X ∪ {Z ◦ Y : Z ∈ X} ∪ {Y i : 0 ≤ i ≤ n}. .�

5 A Family of Runs

We now define a family X described by a well-formed grammar.We first name the
sets of runs that we define in the following. Some of our classes have subscripts
from ε, �ε, =, and <. Subscript ε marks a set if all runs in the set only perform
ε-transitions, while �ε marks a set if each run in the set performs at least one
non-ε-transitions. Subscript < marks sets (of pumping runs) where each run
starts in a smaller stack than it ends, while = marks sets where no run starts in
a smaller stack than it ends (it follows that each such pumping run ends in the
same stack as it starts). X consists of the following sets (which we describe in
detail on the following pages).

– Q of all runs,
– Nk of topk-non-erasing runs,
– P of pumping runs which is the disjoint union of the sets Px,y for x ∈ {<,=},

y ∈ {ε, �ε}. Additionally, we set P� ε = P<,� ε ∪ P=,� ε and Pε = P<,ε ∪ P=,ε.
– Rk,j of k-returns of change level j ≥ k which is the disjoint union of the sets
Rk,j,y for y ∈ {ε, �ε}, and

– Ck,j of k-colreturns of change level j ≥ k which is the disjoint union of the
sets Ck,j,y for y ∈ {ε, �ε}.

In order to easily distinguish between ε-runs and �ε-runs in the rules, we partition
the transition relation Δ = Δε∪Δ� ε such that Δε contains exactly the ε-labelled
transitions. Before we can give rules for the family we need to define the levels
of its sets. We set lev(Q) = n, lev(Rk,j,y) = k, lev(Ck,j,y) = k, lev(Nk) = n and
lev(Px,y) = 0.

Now we give rules for these sets and we describe the main properties of runs
in each of the sets.
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Recall that we have described Q by well-formed rules in Example 4.3. The
sets of returns and colreturns are auxiliary sets. Returns occur in the wf-rules
for Nk and Px,y while colreturns are necessary to give wf-rules for returns.
Nk contains all runs R where the topmost k-stack of R(0) is never removed

during the run. First, we give an idea how the set N0 plays an important role in
our pumping lemma. Recall that we want to apply Theorem 3.1 to pumping runs
in order to obtain arbitrarily many runs starting in a given configuration. Our
final goal is to construct infinitely many different paths in the ε-contraction of
the graph of a given collapsible pushdown system that all end in a specific state
q. But in general, the pumping runs we construct end in a different state. Thus,
the type of the stack reached by each of the pumping runs should determine
that we can reach a configuration with state q from this position. This could be
done using the set Q but it is not enough: if the pumping runs induce ε-labelled
paths then we could append runs from Q that all lead to the same configuration.
In this case, we construct longer and longer runs but all these runs encode the
same edge in the ε-contraction. This is prohibited by the use of runs from N0:
we can prove that the longer pumping runs we construct end in larger stacks.
Appending a run from N0 to such a run ensures that the resulting run also ends
in a large stack. From this observation we will obtain infinitely many runs that
end in different configurations with state q. Thus, they induce infinitely many
paths in the ε-contraction. The rules for Nk are

– Nk ⊇ ,

– Nk ⊇ δNk for each δ ∈ Δ performing an operation of level at most k,

– Nk ⊇ δjNj−1 for each δj ∈ Δ performing a pushj and j ≥ k + 1,

– Nk ⊇ δjRj,jNk for each δj ∈ Δ performing a pushj .

Our analysis of returns reveals that δj followed by a run fromRj,j starts and ends
in the same stack. Thus, the last rule satisfies the requirement that the topmost
j-stacks of these stacks coincide. Moreover, such a run never changes the topmost
j-stack of the initial configuration. Using this fact it is straightforward to see
that every run described by these rules does not remove the topmost k-stack.
The other direction is more involved and the proof can be found in [10].

Some run R is a pumping run, i.e., R ∈ P , if its final stack is created com-
pletely on top of its initial stack in the following sense: the topmost 1-stack of
R(|R|) is obtained as a (possibly modified) copy of the topmost 1-stack of R(0),
and in this copy the topmost 0-stack of R(0) was never removed. Another view
on this definition is as follows: for each k, the run R may look into a copy of the
topmost k-stack of R(0) only if this copy is not directly involved in the creation
of the topmost k-stack of R(|R|). In [10], we define a history function that makes
the notion of being involved in the creation of some stack precise: for each i < |R|
and for each k-stack sk of R(|R|) we can identify a k-stack tk in R(i) which is
the maximal k-stack involved in the creation of this stack.

In the rest of this section y, y0, y1, y2 are variables in {ε, �ε} where we assume
that either all are ε or y = �ε and one of the yi occurring in the rule is �ε. j is a
variable ranging over {1, 2, . . . , n}. The rules for P are
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– P=,ε ⊇ ,
– P<,y ⊇ δy0Px,y1 for each δy0 ∈ Δy0 performing pushj and x ∈ {=, <},
– Px,y ⊇ δjy0Rj,j,y1Px,y for each δjy0 ∈ Δy0 performing pushj and x ∈ {=, <},
– P<,y ⊇ δjy0Rj,j′,y1Px,y2 for each δjy0 ∈ Δy0 performing pushj , j′ > j and

x ∈ {=, <}.

Proving the correctness of this set of rules with respect to our intended meaning
of the sets Px,y requires a detailed study of returns which can be found in [10].
In order to see that the rules of the last two kinds are well-formed we need the
property that for every run R which first performs a pushj operation followed
by a j-return, the topmost j-stack of R(0) and R(|R|) is the same.

Example 5.1. A run of length 1 performing a push1 operation is a pumping run.
Also a run of length 2 performing a push1 operation followed by a pop1 operation
is a pumping run. However a run of length 2 performing first a pop1 operation and
then a push1 operation is not a pumping run. This shows that in the definition
of a pumping run we do not only care about the initial and final configuration,
but about the way the final configuration is created by the run: a pumping run
R may never remove the topmost 0-stack of R(0).

Next consider a run R of length 3 performing the sequence of operations
push2, pop1, pop2. It is also a pumping run. Notice that this run “looks” into a
copy of the topmost 1-stack of R(0), i.e., it removes its topmost 0-stack whence
it depends on symbols of R(0) other than the topmost one. One can see that in
any 2-CPS, whenever a pumping run R looks into a copy of the topmost 1-stack
of R(0), then this copy is completely removed from the stack at some later point
in the run. However, this is not true for higher levels. A counter example is a
run performing push2, pop1, push3, pop2.

Next we define returns. A run R is a k-return (where 1 ≤ k ≤ n) if

– the topmost (k − 1)-stack of R(|R|) is obtained as a copy of the second
topmost (k − 1)-stack of R(0) (in particular we require that there are at
least two (k − 1)-stacks in the topmost k-stack of R(0)), and

– while tracing this copy of the second topmost (k − 1)-stack of R(0) which
finally becomes the topmost (k − 1)-stack of R(|R|), it is not the topmost
(k − 1)-stack of R(i) for any i < |R|.

Additionally, for a k-return R its change level is the maximal j such that the
topmost j-stack of the initial and of the final stack of R differ in size (i.e. in the
number of (j − 1)-stacks they contain).5 One can see that the topmost k-stack
of R(0) is always greater by one than the topmost k-stack of R(|R|), so we have
j ≥ k. Recall that Rk,j is the set of k-returns of change level j.

Let us just give some intuition about returns before we state their exact
characterisation using wf-rules. The easiest sets of returns are those where k = j.
A run R ∈ Rk,k starts in some stack s, ends in the stack popk(s), and never visits

5 One can see that it is the same as saying that the topmost j-stack of the initial and
of the final stack of R differ. However a definition using size is more convenient.
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popk(s) (or any smaller stack) before the final configuration. Notice also that
there is a minor restriction on the use of collapse operations: R is not allowed to
use links of level k stored in s in order to reach popk(s). Indeed, if such a link
was used, then the topmost (k − 1)-stack of R(|R|) would not be a copy of the
second topmost (k − 1)-stack of R(0), but a copy of the (k − 1)-stack stored in
the link used. Note that this distinction is due to our special representation of
links, yet it is useful for the understanding of the definitions.

In the case that j > k things are more complicated but similar. This time
R ∈ Rk,j makes a number of copies of the (possibly modified) topmost (j − 1)-
stack of the initial stack s whence the topmost j-stack of the final stack s′ is of
bigger size than the topmost j-stack of s. But again the topmost k-stack of s′ is
the same as the topmost k-stack of popk(s), and is in fact created as a modified
copy of the topmost k-stack of s. Furthermore, while tracing the history of this
copy along the configurations of the run, the size of this copy is always greater
than its size in R(|R|). Notice however that we may also create some other
copies of the topmost k-stack of s, in which we can remove arbitrarily many
(k − 1)-stacks. Finally, there is again a minor restriction on the use of collapse
links stored in the initial stack s. This restriction implies that the stack obtained
via application of the stack operations of the return to s is independent of the
linked stacks, i.e., if we replace one of the links of the stack s such that the stack
operations of R are still applicable to the resulting stack s′, then this sequence
of stack operations applied to s′ results in the same stack (as when applied to s).
In Example 5.4 we discuss the conditions under which we may use a link stored
in the initial stack of some return.

Example 5.2. Consider a run R of length 6 which performs the sequence

push2, pop1, pop2, pop1, push1, pop1.

Below we use the notation that symbols taken in square brackets are in one
1-stack (omitting collapse links). Started in [aa][aa], the configurations of R are

R(0) = [aa][aa][aa], R(1) = [aa][aa][a], R(2) = [aa][aa],

R(3) = [aa][a], R(4) = [aa][aa], R(5) = [aa][a].

We have R�0,2 ∈ R1,2, R�0,4, R�1,2, R�3,4, R�5,6 ∈ R1,1 and R�1,3, R�2,3 ∈ R2,2.
These are the only subruns of R being returns, in particular R is not a 1-return
because it visits its final stack before its final configuration.

Example 5.3. The run R of length 5 performing the sequence of operations

push2, pop1, push3, pop2, pop1

is a 1-return of change level 3. Notice that the final stack contains a copy of the
topmost 1-stack of R(0) with its topmost 0-stack removed.



576 A. Kartzow and P. Parys

The rules for returns are as follows:

– Rk,k,y ⊇ δy0 for each δy0 ∈ Δy0 performing popk,
– Rk,j,y ⊇ δy0Rk,j,y1 for each δy0 ∈ Δy0 performing an operation of level < k,

– Rk,j,y ⊇ δj0y0Rk,j1,y1 for each δj0y0 ∈ Δy0 performing a pushj0 such that j0 > k
and max{j0, j1} = j,

– Rk,j,y ⊇ δj0y0Rj0,j0,y1Rk,j,y2 for each δj0y0 ∈ Δy0 performing a push of level j0,

– Rk,j,y ⊇ δj0y0Rj0,j1,y1Rk,j2,y2 for each δj0y0 ∈ Δy0 performing a pushj0 such
that j1 > j0 and max{j1, j2} = j, and

– Rk,j,y ⊇ δy0Ck,j,y1 for each δy0 ∈ Δy0 performing a push1a,k.

A k-colreturn is a run R that performs in the last step a colk on a copy of the
topmost symbol of its initial stack. The change level of k-colreturns is (again)
defined as the maximal j such that the topmost j-stack of the initial and of the
final stack of the colreturn R differ in size.

Note that k-colreturns appear in the rules for returns after a push of level 1.
The simplest example of a return described by the last rule is a run R starting in
a stack s and performing push1a,k and then colk. Note that such a sequence has

the same effect as applying popk to s. Note that R�1,2 in this example is a run

from the stack s′ := push1a,k(s) to popk(s′) (for k ≥ 2). Nevertheless we exclude
it from the definition of a k-return of change level k because this effect is not
transferable to arbitrary other stacks: of course, we can apply the transition of
R�1,2 to the stack pushk(s′) and obtain a run R′ from pushk(s′) to popk(s′). But

apparently this is not a run from some stack s′′ to a stack popk(s′′), so it is not
a k-return. For this reason our definition of returns disallows the application of
certain stored collapse links. The colreturns take care of such situations where
we use the links stored in the stack. Notice that k-colreturns occur in the rules
defining the other sets of runs only at those points where we performed a push of
level 1 whence we can be sure that the effect of the collapse operation coincides
with the application of exactly one popk operation to the initial stack.

Example 5.4. Consider a run R of length 4 performing push2, col1, pop2, pop1.
It is a 1-return of change level 1. Notice that it performs a collapse operation
using a (copy of a) link already stored in R(0). But R�1,3 is a 2-return (of change
level 2) which covers this collapse operation, i.e., whenever the whole sequence
is applicable to some stack s it ends in the stack pop1(s). As a general rule, we
allow the use of a colk from a (copy) of a link stored in the initial stack of some
return R if it occurs within some subrun R′ that is a k′-return or k′-colreturn
of higher level(i.e., k′ > k). In such cases the resulting stack does not depend on
the stack stored in the link (as long as the whole sequence of operations of the
return is applicable). Hence, the following sequence of operations also induces a
1-return of change level 1: push3, col2, pop3, pop1.

Finally, let us state the rules for k-colreturns.

– Ck,k,y ⊇ δy0 for each δy0 ∈ Δy0 performing a colk,
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– Ck,j,y ⊇ δj0y0Ck,j1,y1 for each δj0y0 ∈ Δy0 performing a pushj0 such that j0 ≥ 2
and max{j0, j1} = j,

– Ck,j,y ⊇ δj0y0Rj0,j0,y1Ck,j,y2 for each δj0y0 ∈ Δy0 performing a pushj0 , and

– Ck,j,y ⊇ δj0y0Rj0,j1,y1Ck,j2,y2 for each δj0y0 ∈ Δy0 performing a pushj0 such that
j1 > j0 and max{j1, j2} = j.

This completes the presentation of the well-formed grammar describing X .
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1 University of Tokyo, Tokyo, Japan
2 Technische Universität Darmstadt, Darmstadt, Germany

Abstract. The computational complexity of the solution h to the or-
dinary differential equation h(0) = 0, h′(t) = g(t, h(t)) under various
assumptions on the function g has been investigated in hope of un-
derstanding the intrinsic hardness of solving the equation numerically.
Kawamura showed in 2010 that the solution h can be PSPACE-hard
even if g is assumed to be Lipschitz continuous and polynomial-time
computable. We place further requirements on the smoothness of g and
obtain the following results: the solution h can still be PSPACE-hard if g
is assumed to be of class C1; for each k ≥ 2, the solution h can be hard
for the counting hierarchy if g is of class Ck.

1 Introduction

Let g : [0, 1]×R→ R be continuous and consider the differential equation

h(0) = 0 , Dh(t) = g(t, h(t)) t ∈ [0, 1] , (1)

whereDh denotes the derivative of h. How complex can the solution h be, assum-
ing that g is polynomial-time computable? Here, polynomial-time computability
and other notions of complexity are from the field of Computable Analysis [1,2]
and measure how hard it is to approximate real functions with specified precision
(Sect. 2).

If we put no assumption on g other than being polynomial-time computable,
the solution h (which is not unique in general) can be non-computable. Table 1
summarizes known results about the complexity of h under various assumptions
(that get stronger as we go down the table). In particular, if g is (globally)
Lipschitz continuous, then the (unique) solution h is known to be polynomial-
space computable but still can be PSPACE-hard [3]. In this paper, we study the
complexity of h when we put stronger assumptions about the smoothness of g.

In numerical analysis, knowledge about smoothness of the input function (such
as being differentiable enough times) is often beneficial in applying certain al-
gorithms or simplifying their analysis. However, to our knowledge, this casual
understanding that smoothness is good has not been rigorously substantiated
in terms of computational complexity theory. This motivates us to ask whether,
for our differential equation (1), smoothness really reduces the complexity of the
solution.
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Table 1. The complexity of the solution h of (1) assuming g is polynomial-time
computable

Assumptions Upper bounds Lower bounds

— — can be all non-computable [4]

h is the unique solution computable [5] can take arbitrarily long time
[6,7]

the Lipschitz condition polynomial-space [6] can be PSPACE-hard [3]

g is of class C(∞,1) polynomial-space can be PSPACE-hard
(Theorem 1)

g is of class C(∞,k)

(for each constant k)
polynomial-space can be CH-hard (Theorem 2)

g is analytic polynomial-time [8,9,10] —

One extreme is the case where g is analytic: h is then polynomial-time com-
putable (the last row of the table) by an argument based on Taylor series1 (this
does not necessarily mean that computing the values of h from those of g is
easy; see the last paragraph of Sect. 4). Thus our interest is in the cases between
Lipschitz and analytic (the fourth and fifth rows). We say that g is of class C(i,j)

if the partial derivative D(n,m)g (often also denoted ∂n+mg(t, y)/∂tn∂ym) exists
and is continuous for all n ≤ i and m ≤ j;2 it is said to be of class C(∞,j) if it is
of class C(i,j) for all i ∈ N.

Theorem 1. There exists a polynomial-time computable function g : [0, 1] ×
[−1, 1] → R of class C(∞,1) such that the equation (1) has a PSPACE-hard
solution h : [0, 1]→ R.

Theorem 2. Let k be a positive integer. There is a polynomial-time computable
function g : [0, 1]× [−1, 1]→ R of class C(∞,k) such that the equation (1) has a
CH-hard solution h : [0, 1]→ R, where CH ⊆ PSPACE is the Counting Hierarchy
(see Sect. 3.2).

We said g : [0, 1]× [−1, 1]→ R instead of g : [0, 1]×R→ R, because the notion
of polynomial-time computability of real functions in this paper is defined only

1 As shown by Müller [8] and Ko and Friedman [9], polynomial-time computability of
an analytic function on a compact interval is equivalent to that of its Taylor sequence
at a point (although the latter is a local property, polynomial-time computability on
the whole interval is implied by analytic continuation; see [8, Corollary 4.5] or [10,
Theorem 11]). This implies the polynomial-time computability of h, since we can
efficiently compute the Taylor sequence of h from that of g.

2 Another common terminology is to say that g is of class Ck if it is of class C(i,j) for
all i, j with i+ j ≤ k.
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when the domain is a bounded closed region.3 This makes the equation (1) ill-
defined in case h ever takes a value outside [−1, 1]. By saying that h is a solution
in Theorem 1, we are also claiming that h(t) ∈ [−1, 1] for all t ∈ [0, 1]. In any
case, since we are putting stronger assumptions on g than Lipschitz continuity,
such a solution h, if it exists, is unique.

Whether smoothness of the input function reduces the complexity of the out-
put has been studied for operators other than solving differential equations, and
the following negative results are known. The integral of a polynomial-time com-
putable real function can be #P-hard, and this does not change by restricting
the input to C∞ (infinitely differentiable) functions [1, Theorem 5.33]. Similarly,
the function obtained by maximization from a polynomial-time computable real
function can be NP-hard, and this is still so even if the input function is re-
stricted to C∞ [1, Theorem 3.7]4. (Restricting to analytic inputs renders the
output polynomial-time computable, again by the argument based on Taylor
series.) In contrast, for the differential equation we only have Theorem 2 for
each k, and do not have any hardness result when g is assumed to be infinitely
differentiable.

Theorems 1 and 2 are about the complexity of each solution h. We can also
talk about the complexity of the operator that maps g to h; see Sect. 4.

Notation. Let N, Z, Q, R denote the set of natural numbers, integers, rational
numbers and real numbers, respectively.

Let A and B be bounded closed intervals in R. We write |f | = supx∈A f(x)
for f : A→ R. A function f : A→ R is of class Ci (i-times continuously differ-
entiable) if all the derivatives Df,D2f, . . . , Dif exist and are continuous.

For a differentiable function g of two variables, we write D1g and D2g for the
derivatives of g with respect to the first and the second variable, respectively.
A function g : A × B → R is of class C(i,j) if for each n ∈ {0, . . . , i} and m ∈
{0, . . . j}, the derivative Dn

1D
m
2 g exists and is continuous. A function g is of

class C(∞,j) if it is of class C(i,j) for all i ∈ N. When g is of class C(i,j), we write
D(i,j)g for the derivative Di

1D
j
2g.

3 Although we could extend our definition to functions with unbounded domain [11,
Sect. 4.1], the results in Table 1 do not hold as they are, because polynomial-time
compubable functions g, such as g(t, y) = y + 1, could yield functions h, such as
h(t) = exp t−1, that grow too fast to be polynomial-time (or even polynomial-space)
computable. Bournez, Graça and Pouly [12, Theorem 2] report that the statement
about the analytic case holds true if we restrict the growth of h (and its extention
to the complex plane) appropriately.

4 The proof of this fact in [1, Theorem 3.7] needs to be fixed by redefining

f(x) =

{
us if not R(s, t),

us + 2−(p(n)+2n+1)·n · h1(2
p(n)+2n+1(x− ys,t)) if R(s, t).
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2 Computational Complexity of Real Functions

This section reviews the complexity notions in Computable Analysis [1,2]. We
start by fixing an encoding of real numbers by string functions.

Definition 3. A function φ : {0}∗ → {0, 1}∗ is a name of a real number x if for
all n ∈ N, φ(0n) is the binary representation of 'x · 2n( or +x · 2n,, where '·(
and +·, mean rounding down and up to the nearest integer.

In effect, a name of a real number x receives 0n and returns an approximation
of x with precision 2−n.

We use oracle Turing machines (henceforth just machines) to work on these
names (Fig. 1). Let M be a machine and φ be a function from strings to strings.
We write Mφ(0n) for the output string when M is given φ as oracle and string
0n as input. Thus we also regard Mφ as a function from strings to strings.

Fig. 1. A machine M computing a real function f

Definition 4. Let A be a bounded closed interval of R. A machine M computes
a real function f : A → R if for any x ∈ A and any name φx of it, Mφx is a
name of f(x).

Computation of a function f : A → R on a two-dimensional bounded closed
region A ⊆ R2 is defined in a similar way using machines with two oracles.
A real function is (polynomial-time) computable if there exists some machine
that computes it (in polynomial time). Polynomial-time computability of a real
function f means that for any n ∈ N, an approximation of f(x) with error bound
2−n is computable in time polynomial in n independent of the real number x.

By the time the machine outputs the approximation of f(x) of precision 2−n,
it knows x only with some precision 2−m. This implies that all computable real
functions are continuous. If the machine runs in polynomial time, this m is
bounded polynomially in n. Hence for every polynomial-time computable real
function, there is a polynomial p such that |f(x)−f(y)| ≤ 2−n for all x, y ∈ domf
and n ∈ N with |x− y| ≤ 2−p(n).

To talk about hardness, we define reduction. A language L ⊆ {0, 1}∗ is iden-
tified with the function L : {0, 1}∗ → {0, 1} such that L(u) = 1 when u ∈ L.
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Definition 5. A language L reduces to a function f : [0, 1]→ R if there exists
a polynomial-time function S and a polynomial-time oracle Turing machine M
(Fig. 2) such that for any string u,

(i) S(u, ·) is a name of a real number xu, and
(ii) Mφ(u) accepts if and only if u ∈ L for any name φ of f(xu).

This definition may look stronger than the one in Kawamura [3], but is easily
seen to have the same power. For a complexity class C, a function f is C-hard
if all languages in C reduce to f .

Fig. 2. Reduction from a language L to a function f : [0, 1]→ R

3 Proof of the Theorems

The proofs of Theorems 1 and 2 proceed as follows. In Sect. 3.1, we define dif-
ference equations, a discrete version of the differential equations. In Sect. 3.2,
we show the PSPACE- and CH-hardness of difference equations with certain re-
strictions. In Sect. 3.3, we show that these classes of difference equations can be
simulated by families of differential equations satisfying certain uniform bounds
on higher-order derivatives. In Sect. 3.4, we prove the theorems by putting these
families of functions together to obtain one differential equation having the de-
sired smoothness (C(∞,1) and C(∞,k)).

The idea of simulating a discrete system of limited feedback capability by
differential equations was essentially already present in the proof of the Lipschitz
version [3]. We look more closely at this limited feedback mechanism, and observe
that this restriction is one on the height of the difference equation. We show that
a stronger height restriction makes the difference equation simulable by smoother
differential equations, leading to the CH-hardness for C(∞,k) functions.

3.1 Difference Equations

In this section, we define difference equations, a discrete version of differen-
tial equations, and show the PSPACE- and CH-hardness of families of difference
equations with different height restrictions.
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Let [n] denote {0, . . . , n−1}. Let G : [P ]× [Q]× [R]→ {−1, 0, 1} and H : [P +
1]× [Q+1]→ [R]. We say that H is the solution of the difference equation given
by G if for all i ∈ [P ] and T ∈ [Q] (Fig. 3),

H(i, 0) = H(0, T ) = 0 , (2)

H(i+ 1, T + 1)−H(i+ 1, T ) = G(i, T,H(i, T )) . (3)

We call P , Q and R the height, width and cell size of the difference equation.
The equations (2) and (3) are similar to the initial condition h(0) = 0 and the
equation Dh(t) = g(t, h(t)) in (1), respectively. In Sect. 3.3, we will simulate
difference equations by differential equations using this similarity.

Fig. 3. The solution H of the difference equation given by G

We view a family of difference equations as a computing system by regarding
the value of the bottom right cell (the gray cell in Fig. 3) as the output. A family
(Gu)u of functions Gu : [Pu] × [Qu] × [Ru] → {−1, 0, 1} recognizes a language
L if for each u, the difference equation given by Gu has a solution Hu and
Hu(Pu, Qu) = L(u). A family (Gu)u is uniform if the height, width and cell
size of Gu are polynomial-time computable from u (in particular, they must be
bounded by 2p(|u|), for some polynomial p) and Gu(i, T, Y ) is polynomial-time
computable from (u, i, T, Y ). A family (Gu)u has polynomial height if the height
Pu is bounded by some polynomial p(|u|). A family (Gu)u has logarithmic height
if the height Pu is bounded by c log |u| + d with some constants c and d. With
this terminology, the key lemma in [3, Lemma 4.7] can be written as follows:

Lemma 6. There exists a PSPACE-hard language L that is recognized by some
uniform family of functions with polynomial height5.

Kawamura obtained the hardness result in the third row in Table 1 by simulating
the difference equations of Lemma 6 by Lipschitz-continuous differential equa-
tions. Likewise, Theorem 1 follows from Lemma 6, by a modified construction
that keeps the function in class C(∞,1) (Sects. 3.3 and 3.4).

We show further that difference equations restricted to have logarithmic height
can be simulated by C(∞,k) functions for each k (Sects. 3.3 and 3.4). Theorem 2
follows from this simulation and the following lemma.

5 In fact, the languages recognized by uniform families with polynomial height coincide
with PSPACE.
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Lemma 7. There exists a CH-hard language L that is recognized by some uni-
form family of functions with logarithmic height.

The definition of the counting hierarchy CH, its connection to difference equa-
tions and the proof of Lemma 7 will be presented in Sect. 3.2.

3.2 The Counting Hierarchy and Difference Equations
of Logarithmic Height

The polynomial hierarchy PH is defined using non-deterministic polynomial-time
oracle Turing machines:

Σp0 = P , Σpn+1 = NPΣp
n , PH =

⋃
n

Σpn . (4)

The counting hierarchy CH is defined similarly using probabilistic polynomial-
time oracle Turing machines [13,14]:

C0P = P , Cn+1P = PPCnP , CH =
⋃
n

CnP . (5)

It is known that PH ⊆ CH ⊆ PSPACE, but we do not know whether PH =
PSPACE.

Each level of the counting hierarchy has a complete problem defined as follows.
For every formula φ(X) with the list X of l free propositional variables, we write

CmXφ(X)←→
∑

X∈{0,1}l
φ(X) ≥ m , (6)

where φ(X) is identified with the function φ : {0, 1}l → {0, 1} such that φ(X) = 1
when φ(X) is true. This “counting quantifier” Cm generalizes the usual quanti-

fiers ∃ and ∀, because C1 = ∃ and C2l = ∀. For lists X1, . . . , Xn of variables and
a formula φ(X1, . . . , Xn) with all free variables listed, we define

〈φ(X1, . . . , Xn),m1, . . . ,mn〉 ∈ CnBbe ←→ Cm1X1 · · ·CmnXnφ(X1, . . . , Xn) .
(7)

Lemma 8 ([13, Theorem 7]). For every n ≥ 1, the problem CnBbe is CnP-
complete.

We define the problem ClogBbe by

〈02n , u〉 ∈ ClogBbe ←→ u ∈ CnBbe . (8)

We show that ClogBbe is CH-hard and recognized by a logarithmic-height uniform
function family, as required in Lemma 7.
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Proof (Lemma 7). First we prove that ClogBbe is CH-hard. For each problem A in
CH, there is a constant n such that A ∈ CnP. From Lemma 8, for each u ∈ {0, 1}∗
there is a polynomial-time function fn such that u ∈ A↔ fn(u) ∈ CnBbe. So

u ∈ A←→ 〈02n , fn(u)〉 ∈ ClogBbe . (9)

Since 〈02n , fn(·)〉 is polynomial time computable, A is reducible to ClogBbe.
Next we sketch (the details will be given in the full version of this paper) how

to construct, for each formula with n counting quantifiers, a difference equation
of height n+ 1 such that the output of its computation (i.e., the number in the
bottom right cell) is equal to the value of the formula, and other cells in the last
column contain 0. Once we have such a difference equation, we can construct a
logarithmic-height uniform function family recognizing ClogBbe, since n is log-
arithmic in the length of the input of ClogBbe because of the padding 02

n

in
(8). We build up the difference equation recursively. For n = 0, it is easy be-
cause the value of a formula without quantifiers is polynomial-time computable.
Consider the formula CmXψ(X), where ψ(X) has i counting quantifiers, and
assume that for each Y ∈ {0, 1}l, there exists a difference equation of height
i+1 that computes ψ(Y ). By connecting these equations along the T -axis (i.e.,
arranging tables like Fig. 3 horizontally), we construct a new difference equation
that computes

∑
Y ψ(Y ) in the (i+1)st row and then uses this sum to compute

CmXψ(X) in the next row. To bring the value in the (i + 1)st row back to 0,
we further connect the difference equation computing −

∑
Y ψ(Y ), which can be

constructed similarly by changing the signs. .�

3.3 Families of Real Functions Simulating Difference Equations

We show that certain families of smooth differential equations can simulate
PSPACE- or CH-hard difference equations stated in previous section.

Before stating Lemmas 9 and 10, we extend the definition of polynomial-
time computability of real function to families of real functions. A machine M
computes a family (fu)u of functions fu : A→ R indexed by strings u if for any
x ∈ A and any name φx of x, the function taking v to Mφx(u, v) is a name of
fu(x). We say a family of real functions (fu)u is polynomial-time if there is a
polynomial-time machine computing (fu)u.

Lemma 9. There exist a CH-hard language L and a polynomial μ, such that
for any k ≥ 1 and polynomials γ, there are a polynomial ρ and families (gu)u,
(hu)u of real functions such that (gu)u is polynomial-time computable and for
any string u:

(i) gu : [0, 1]× [−1, 1]→ R, hu : [0, 1]→ [−1, 1];
(ii) hu(0) = 0 and Dhu(t) = gu(t, hu(t)) for all t ∈ [0, 1];
(iii) gu is of class C(∞,k);
(iv) D(i,0)gu(0, y) = D(i,0)gu(1, y) = 0 for all i ∈ N and y ∈ [−1, 1];
(v)
∣∣D(i,j)gu(t, y)

∣∣ ≤ 2μ(i,|u|)−γ(|u|) for all i ∈ N and j ∈ {0, . . . , k};
(vi) hu(1) = 2−ρ(|u|)L(u).
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Lemma 10. There exist a PSPACE-hard language L and a polynomial μ, such
that for any polynomial γ, there are a polynomial ρ and families (gu)u, (hu)u of
real functions such that (gu)u is polynomial-time computable and for any string
u satisfying (i)–(vi) of Lemma 9 with k = 1.

In Lemmas 9 and 10 we have the new conditions (iii)–(v) about the derivatives
of gu that were not present in [3, Lemma 4.1]. These conditions will permit the
family of functions to be put together in one smooth function in Theorems 1
and 2.

We will prove Lemma 9 using Lemma 7 as follows. Let a function family
(Gu)u be as in Lemma 7, and let (Hu)u be the family of the solutions of the
difference equations given by (Gu)u. We construct hu and gu from Hu and Gu
such that hu(T/2

q(|u|)) =
∑p(|u|)
i=0 Hu(i, T )/B

du(i) for each T = 0, . . . , 2q(|u|) and
Dhu(t) = gu(t, hu(t)). The polynomial-time computability of (gu)u follows from
that of (Gu)u. We can prove Lemma 10 from Lemma 6 in the same way.

3.4 Proof of the Main Theorems

Using the function families (gu)u and (hu)u obtained from Lemmas 9 or 10, we
construct the functions g and h in Theorems 1 and 2 as follows. Divide [0, 1)
into infinitely many subintervals [l−u , l

+
u ], with midpoints cu. We construct h by

putting a scaled copy of hu onto [l−u , cu] and putting a horizontally reversed
scaled copy of hu onto [cu, l

+
u ] so that h(l−u ) = 0, h(cu) = 2−ρ

′(|u|)L(u) and
h(l+u ) = 0 where ρ′ is a polynomial. In the same way, g is constructed from (gu)u
so that g and h satisfy (1). We give the details of the proof of Theorem 2 from
Lemma 9, and omit the analogous proof of Theorem 1 from Lemma 10.

Proof (Theorem 2). Let L and μ be as Lemma 9. Define λ(x) = 2x+ 2, γ(x) =
μ(x, x) + xλ(x) and for each u let Λu = 2λ(|u|), cu = 1 − 2−|u| + 2ū+ 1/Λu,
l∓u = cu ∓ 1/Λu, where ū ∈ {0, . . . , 2|u| − 1} is the number represented by u
in binary notation. Let ρ, (gu)u, (hu)u be as in Lemma 9 corresponding to the
above γ.

We define

g

(
l∓u ±

t

Λu
,
y

Λu

)
=

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

±
k∑
l=0

D(0,l)gu(t, 1)

l!
(y − 1)l if 1 < y ,

±gu(t, y) if −1 ≤ y ≤ 1 ,

±
k∑
l=0

D(0,l)gu(t,−1)
l!

(y + 1)l if 1 < y ,

(10)

h

(
l∓u ±

t

Λu

)
=

hu(t)

Λu
(11)

for each string u and t ∈ [0, 1), y ∈ [−1, 1]. Let g(1, y) = 0 and h(1) = 0 for any
y ∈ [−1, 1].

It can be shown similarly to the Lipschitz version [3, Theorem 3.2] that g and
h satisfy (1) and g is polynomial-time computable. Here we only prove that g is
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of class C(∞,k). We claim that for each i ∈ N and j ∈ {0, . . . , k}, the derivative
Di

1D
j
2g is given by

Di
1D

j
2g

(
l∓u ±

t

Λu
,
y

Λu

)
=

⎧⎪⎪⎨⎪⎪⎩
±Λi+ju

∑k
l=j

D(i,l)gu(t,1)
(l−j)! (y − 1)l if y < −1 ,

±Λi+ju D(i,j)gu(t, y) if −1 ≤ y ≤ 1 ,

±Λi+ju

∑k
l=j

D(i,l)gu(t,−1)
(l−j)! (y + 1)l if 1 < y

(12)

for each l∓u ± t/Λu ∈ [0, 1) and y/Λu ∈ [−1, 1], and by Di
1D

j
2g(1, y) = 0. This is

verified by induction on i + j. The equation (12) follows from calculation (note
that this means verifying that (12) follows from the definition of g when i = j =
0; from the induction hypothesis about Dj−1

2 g when i = 0 and j > 0; and from

the induction hypothesis about Di−1
1 Dj

2g when i > 0). That Di
1D

j
2g(1, y) = 0

is immediate from the induction hypothesis if i = 0. If i > 0, the derivative
Di

1D
j
2g(1, y) is by definition the limit

lim
s→1−0

Di−1
1 Dj

2g(1, y)−Di−1
1 Dj

2g(s, y)

1− s
. (13)

This can be shown to exist and equal 0, by observing that the first term in the
numerator is 0 and the second term is bounded, when s ∈ [l−u , l

+
u ], by

|Di−1
1 Dj

2g(s, y)| ≤ Λi−1+j
u

k∑
l=j

|D(i−1,l)gu| · (Λu + 1)l

≤ Λi−1+j
u · k · 2μ(i−1,|u|)−γ(|u|) · (2Λu)k

≤ 2(i−1+j+k)λ(|u|)+2k+μ(i−1,|u|)−γ(|u|) ≤ 2−2|u| ≤ 2−|u|+1(1− s) , (14)

where the second inequality is from Lemma 9 (v) and the fourth inequality
holds for sufficiently large |u| by our choice of γ. The continuity of Di

1D
j
2g on

[0, 1)×[−1, 1] follows from (12) and Lemma 9 (iv). The continuity on {1}×[−1, 1]
is verified by estimating Di

1D
j
2g similarly to (14). .�

4 Complexity of Operators

Both Theorems 1 and 2 state the complexity of the solution h under the as-
sumption that g is polynomial-time computable. But how hard is it to “solve”
differential equations, i.e., how complex is the operator that takes g to h? To
make this question precise, we need to define the complexity of operators taking
real functions to real functions.

Recall that, to discuss complexity of real functions, we used string functions
as names of elements in R. Such an encoding is called a representation of R.
Likewise, we now want to encode real functions by string functions to discuss
complexity of real operators. In other words, we need to define representations
of the class C[0,1] of continuous functions h : [0, 1] → R and class CL[0,1]×[−1,1]
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of Lipschitz continuous functions g : [0, 1] × [−1, 1] → R. The notions of com-
putability and complexity depend on these representations. Following [11], we
use δ� and δ�L as the representations of C[0,1] and CL[0,1]×[−1,1], respectively.
It is known that δ� is the canonical representation of C[0,1] in a certain sense
[15], and δ�L is the representation defined by adding to δ� the information on
the Lipschitz constant.

Since these representations use string functions whose values have variable
lengths, we use second order polynomials to bound the amount of resources
(time and space) of machines [11], and this leads to the definitions of second-
order complexity classes (e.g. FPSPACE, polynomial-space computable), reduc-
tions (e.g.≤W, polynomial-timeWeihrauch reduction), and hardness. Combining
them with the representations of real functions mentioned above, we can restate
our theorems in the constructive form as follows.

Let ODE be the operator mapping a real function g ∈ CL[0,1]×[−1,1] to
the solution h ∈ C[0,1] of (1). The operator ODE is a partial function from
CL[0,1]×[−1,1] to C[0,1] (it is partial because the trajectory may fall out of the
interval [−1, 1], see the paragraph following Theorem 2). In [11, Theorem 4.9],
the (δ�L, δ�)-FPSPACE-≤W-completeness of ODE was proved by modifying the
proof of the results in the third row of Table 1. Theorem 1 can be rewritten in a
similar way. That is, let ODEk be the operator ODE whose input is restricted
to class C(∞,k). Then we have:

Theorem 11. The operator ODE1 is (δ�L, δ�)-FPSPACE-≤W-complete.

To show this theorem, we need to verify that the information used to construct
functions in the proof of Theorem 1 can be obtained easily from the inputs.
We omit the proof since it does not require any new technique. Theorem 11
automatically implies Theorem 1 because of [11, Lemmas 3.7 and 3.8].

In contrast, the polynomial-time computability in the analytic case (the last
row of Table 1) is not a consequence of a statement based on δ�. It is based on
the calculation of the Taylor coefficients, and hence we only know how to convert
the Taylor sequence of g at a point to that of h. In other words, the operator
ODE restricted to the analytic functions is not (δ�L, δ�)-FP-computable, but
(δTaylor, δTaylor)-FP-computable, where δTaylor is the representation that encodes
an analytic function using its Taylor coefficients at a point in a suitable way.
More discussion on representations of analytic functions and the complexity of
operators on them can be found in [16].
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Abstract. The effect of severely tightening the uniformity of Boolean
circuit families is investigated. The impact on NC1 and its subclasses
is shown to depend on the characterization chosen for the class, while
classes such as P appear to be more robust. Tightly uniform subclasses of
NC1 whose separation may be within reach of current techniques emerge.

1 Introduction

Motivation. Uniformity is imposed on Boolean circuit families in order for
circuit families to define classes of languages that correspond to machine-based
classes. For example, logspace-uniform and polytime-uniform Boolean circuit
families of polynomial size [Bor77] capture the class P, while non-uniform circuit
families of constant size recognize undecidable languages.

Uniformity notions more permissive than the circuit resources under study
were considered in the literature (e.g. [All89]). But tighter and tighter notions
were needed to capture low complexity classes. Borodin [Bor77] and Cook [Coo79]
first showed the usefulness of enforcing uniformity by means of space-bounded
Turing machines computing circuit descriptions. This worked well for NC2 and
above. Inspired by Goldschlager [Gol78], Ruzzo [Ruz81] then tied uniformity to
circuit connectivity queries. Ruzzo defined an ALOGTIME notion of uniformity
under which NC1 meaningfully equals ALOGTIME. Yet tighter notions were
needed to investigate AC0 ⊂ ACC0 ⊆ TC0 ⊆ NC1. Barrington, Immerman and
Straubing [BIS90] thus developed DLOGTIME-uniformity. They proved that
the model-theoretic notion introduced by Immerman [Imm87] and the Turing
machine-based notion studied by Buss [Bus87] were equivalent to their own.

Roy and Straubing [RS07] later triggered the need for an even stronger no-
tion of uniformity than DLOGTIME. This requires some explaining, because
DLOGTIME is surely the lowest meaningful Turing machine-based complexity
class imaginable.

Motivation Continued: Enters Descriptive Complexity. The language of
words w ∈ {a, b}� having no b at an even position can be described by the
intuitive formula ¬∃i

(
Even(i) ∧ Qb(i)

)
. In such a formula, the variables range

over positions in w, the predicate Qσ for σ ∈ {a, b} holds at i iff wi = σ, and the
numerical predicate Even holds at i iff i is even. This example is a first-order

� Supported by the Natural Sciences and Engineering Research Council of Canada.

B. Rovan, V. Sassone, and P. Widmayer (Eds.): MFCS 2012, LNCS 7464, pp. 590–602, 2012.
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formula, more precisely a FO[<,Even] formula, where the numerical predicates
allowed are listed and they include “i < j” for the formalism to be able to
describe words, i.e., (ordered) sequences of letters.

Descriptive complexity based on ExtFO (our appellation here for FO extended
with generalized quantifiers) is tied to circuit complexity in two important ways.
First, low circuit complexity classes have crisp ExtFO characterizations. Second,
FO provides the desired notions of uniformity finer than DLOGTIME.

Indeed a language is in non-uniform AC0 iff it can be described by a FO[arb]
formula [Imm87], where arb means that “any arbitrary set of numerical predi-
cates” is allowed. A language is in non-uniform TC0 iff it can be described by
a MAJ[arb] formula [BIS90], where MAJ refers to replacing “∃” and “∀” with
the “there exist more than half of the possible positions i at which the formula
holds” quantifier. And a language is in non-uniform NC1 iff it can be described
in S5 + FO[arb], where S5 + FO refers to allowing, in addition to “∃” and “∀”,
a (Lindström) quantifier testing whether a sequence of five-point permutations
associated with each position i composes to the identity permutation [Bar89].

Strikingly, replacing [arb] above with [+, x], or equivalently [<, bit] as shown
in [BIS90], imposes DLOGTIME-uniformity. For example, FO[+, x] precisely
equals DLOGTIME-uniform AC0 and S5+FO[+, x] equals DLOGTIME-uniform
NC1. The numerical predicates available to the ExtFO description of a circuit-
based class of languages thus regulate the uniformity of the circuit families.

Roy and Straubing proved [RS07] that any regular language expressed in
MODq+FO[<,+] can be re-expressed without the non-regular1 numerical pred-
icate “+”, where MODq refers to allowing the “there exist m modulo q positions
i at which the formula holds” quantifiers. Roy and Straubing asked whether
MODq +FO[<,+] also has a circuit characterization. This was answered by the
first and third authors who proved, using a new encoding for circuit connections,
that ExtFO[<,X] is meaningfully captured by FO[<,X]-uniform circuits, for any
reasonable set X of numerical predicates [BL06].

Motivation Concluded. Meaningful uniformity notions even tighter than
DLOGTIME uniformity thus abound: examples are FO[<,+]-uniformity and
FO[<]-uniformity. In the FO[<,+]-uniform world, Roy and Straubing thus sep-
arated classes that are only conjectured to differ in the more usual FO[+, x]-
uniform, i.e., DLOGTIME-uniform, world.

Our main motivation is to examine the impact of imposing FO[<]-uniformity.
Do the separations conjectured in the DLOGTIME-uniform world hold here?
What happens to TC0 and to the following well-known characterizations of NC1,

Characterization Depth Fan-in Size Gates used

NC1 O(log n) constant poly AND,OR,NOT

AC0(M) O(1) poly poly AND,OR,M
AC0(D+) O(1) poly poly AND,OR, D+

AC0(D+)LIN O(1) linear poly AND,OR, D+

1 A numerical predicate is said to be regular if a finite automaton can compute it;
much of the structure of NC1 hinges on a “regularity” conjecture [Str94, IX.3.4].
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FO[<,+, x]-uniform

NC1=AC0(M)=AC0(D+)=

=AC0
LIN(M)=AC0

LIN(D+)

TC0=TC0
LIN

ACC0=ACC0
LIN

AC0=AC0
LIN

NC0

FO[<]-uniform

AC0(D+) AC0
LIN(D+)

TC0 TC0
LIN

ACC0=ACC0
LIN AC0(M)=AC0

LIN(M)

AC0=AC0
LIN

NC0 =Thm 1 NC1

Thm 4

Thm 3

Thm 1

Thm 4

Fig. 1. Except in the case of NC1 = ALOGTIME, FO[ ]-uniformity here refers to
direct connection language expressivity under unary shuffled encoding (see Section 2).
A solid arc, a bidirectional arc and a dashed arc from A to B denote A ⊆ B, A = B
and A ⊂ B respectively. Arrows with no labels were known prior to this paper.

where AC0(M) is the AC0-closure of a set of word problems over finite monoids
from a set M that contains at least one non-solvable monoid, e.g. A5 [Bar89],
where D+ is a variant of the Boolean formula value problem [Bus87, BCGR92]
(see Section 2) and where AC0(D+)LIN is AC0(D+) with linear fanin gates?
Our Results. See Figure 1. Together with some further observations, we deduce
the following properties of the FO[<]-uniform world:

– the logarithmic depth characterization of NC1 collapses down to NC0; more
generally (Theorem 1), any class described by sublinear depth circuits, such
as AC1 or NC, collapses down to its constant-depth level;

– by contrast, adding to “i < j” the numerical predicate “i = 2j”, hence a
predicate weaker than + or x, restores ALOGTIME (Theorem 6);

– AC0(A5) ⊂ ACC0(A5) ⊂ REGULAR [BIS90, BL06], thus AC0(A5) �⊇ TC0;
– ALOGTIME = AC0(D+) [Bus87], thus AC

0(D+) ⊇ TC0;

– AC0(D+)LIN ⊇ TC0
LIN (Theorem 3);

– AC0(D+)LIN can neither express the x nor the bit numerical predicate; since
the presence of the bit predicate is a major hurdle in lower bound proofs,
this suggests attempting to separate AC0(D+)LIN from TC0

LIN as the next
target towards understanding the relationship between TC0 and NC1;

– polynomial size Boolean circuits capture P (Theorem 5).
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FO[<]-uniformity is defined here as in [BL06] using unary shuffled encoding. For
purposes of comparison, we also define a FO[+1]-uniformbin world, where “<”
is replaced with the weaker “+1” and circuit parameters are expressed in binary
notation (following [BCGR92]). In that world, NC1 does contain ALOGTIME
(Theorem 6) and polynomial size circuits still capture P.

2 Preliminaries and Definitions

We assume familiarity with circuits and only recall some fundamental definitions.
For i ≥ 0, the class NCi is the set of languages recognized by circuit families of
depth O((log n)i) and polynomial size built from bounded fan-in AND, OR and
NOT gates. The class ACi is obtained instead when the AND and OR gates have
unbounded fan-in and ACCi is further obtained when unbounded fan-in MODq
gates are also permitted. The class TCi is the set of languages recognized by
circuit families of depth O((log n)i) and polynomial size built from unbounded
fan-in MAJORITY gates. We write AC0(G) for the class AC0 in which the
circuits are additionally equipped with unbounded fan-in gates of type G.

Definition 1 (Direct connection language of a circuit family). Let Cn be
a circuit with n inputs and size ≤ nc. We label the gates by c-tuples of numbers
from 1 to n. Then the direct connection language of Cn is

LCn = {〈t,a, b, n〉 |the gate g labeled by a has type t and, either,

t = input and g queries the input bit b1 ∈ {1, . . . , n}, or
t ∈ {true, false} and g is assigned the value t, or

t ∈ {¬,∧,∨, G} and the gate labeled b is a predecessor of g}.

The direct connection language of a sequence of circuits C = (C1, . . . ) is LC =⋃
n LCn. The predecessors of a gate are fed into the gate in ascending order

of their numbers (w.l.g., since a gate g input to a gate g′ can be assigned any
number smaller than the numbering of g′ by the insertion of a dummy gate along
the edge (g, g′)). The output gate is always labeled by (1, . . . , 1).

The language LCn may describe gates having no path to the output, or unreach-
able from the inputs, or both. Such gates do contribute to the size of Cn. The
depth of Cn is defined as the longest path in the graph of the circuit, regardless
of whether this path connects an input gate to the output gate. We will use
numbers to encode the type of a gate in t.

We have yet to fix an encoding that will turn the above direct connection
language into a set of words over a fixed alphabet. The unary n-encoding of a
number 1 ≤ i ≤ n is defined as the word aibn−i over Σ = {a, b}.

Given a sequence of words w1, . . . , wc of a common length n over a common
alphabet Σ, the shuffle of this sequence is the unique word u of length n over
Σc, defined by setting the i-th letter of u to (σ1, . . . , σc) iff σj is the i-th letter
of wj for 1 ≤ j ≤ c.
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Definition 2 (Unary shuffled encoding [BL06]). The unary shuffled n-
encoding of a sequence α1, . . . , αk of numbers between 1 and n is the shuffle
of the sequence of unary n-encodings of α1, . . . , αk. When n is understood, this
shuffle is denoted 〈α1, . . . , αk〉 (and is a word of length n over {a, b}k).

Definition 3 (FO[X]-uniform circuit family). For X a set of numerical pred-
icates, i.e., a set of relations of various arities over N, we say that a circuit family
(Cn)n≥1 is FO[X ]-uniform if the following language is expressible in FO[X ]:⋃
n≥1

{w∈({a, b}2c+2)∗ : w= unary shuffled n-encoding of some 〈t,a, b, n〉∈LCn}.

Remark 1. By [BL06], FO[<,+, x]-uniform AC0(G), ACC0 and TC0 respectively
equal DLOGTIME-uniform AC0(G), ACC0 and TC0 as defined in [BIS90]. In
particular, FO[<,+, x]-uniform AC0(A5) equals what is commonly referred to
as DLOGTIME-uniform NC1 and thus ALOGTIME [BIS90]. To clear possible
confusion, recall that to obtain DLOGTIME-uniform NC1 from a DLOGTIME
criterion applied to logarithmic depth circuits, the extended connection language
is used [Ruz81]. It is known that UD-NC

1 ⊇ ALOGTIME, where UD-NC
1 is

defined by DLOGTIME recognition of LC for logarithmic depth circuit families
C, but equality is still open (see [Vol99, P. 162]).

When dealing with the Dyck language D1 over one pair of parentheses we will
use the letters {a, b} instead of {(, )} to improve readability.

We define now a formal language version of the formula value problem. We
encode complete binary trees, i.e.: trees where each inner node has exactly two
predecessors, by a traversal from left to right. A left edge is labeled by a and
a right edge is labeled by b. This gives a one-to-one correspondence between
complete binary trees and the Dyck language D1 ⊂ {a, b}∗.

We decided in favor of labelling the edges and against the more usual labelling
of the vertices, which would lead to the well known representation of complete
binary trees by the Lukasiewicz language.

A tree labelled by Boolean functions and constants evaluates either to true
or to false. In this way the Dyck set D is divided into the two disjoint subsets
D = D+ ∪ D− where D+ consists in those elements of D which represent a tree
(labelled with the NAND-function and the constant true) which evaluates to true
and D− contains those which evaluate to false . Thus D+ is a special formulation
of the Boolean formula value problem which makes D+ NC1-complete.

Definition 4 (D+ language). Any word in the Dyck language D1 corresponds
to a tree as defined above. If we let every leaf of the tree be a true node and every
inner node be a NAND, the tree is a formula evaluating either to true or false.
We let D+ ⊂ {a, b}∗ be the set of words that are in the Dyck language and whose
corresponding formula evaluates to true.

We now define two gate types based on languages that are complete for NC1,
even in the case of DLOGTIME-uniformity.
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Definition 5 (A5 Gate). Let A5 be the alternating group over 5 elements and
g0, g1 ∈ A5 be two 5 cycles that span the whole group. An A5 gate with k Boolean
inputs x1, . . . , xk evaluates to 1 if gx1 . . . gxk

= 1, otherwise to 0.

Recall that we write the Dyck language over the alphabet {a, b}.

Definition 6 (D+ Gate). A D+ gate with k Boolean inputs x1, . . . , xk evaluates
to 1 if replacing every 0 by a and every 1 by b in the word x1 · · ·xk yields a word
in D+.

We assume some familiarity with first order descriptive complexity. We follow
Straubing and use his semantics based on V-structures [Str94, P. 14]. We write
FO to denote first order logic and write the set of allowed numerical predicates
in brackets. We will use the binary predicates bit, <, +1, and x2. Since the
value of a numerical predicate depends only on the position of the variables and
the word length, we will freely switch between variables and natural numbers
denoting their positions. To make this transition clearer we write “x = i” for
a variable x and a natural number i when x points to the i-th position. The
predicate bit(i, j) is true if the i-th bit of the binary representation of j is a 1.
The successor predicate +1(i, j) is true i = j + 1. The double predicate x2(i, j)
is true if i = 2j. Recall that FO[<] only describes regular languages (it in fact
captures the aperiodic regular languages [MP71]). The class FO[+1] is a proper
subclass of FO[<] that in fact captures the threshold testable languages [Tho78].

The class FO can also be extended by adding additional quantifiers. We write
FO+MAJ, FO+A5, and FO+M , resp., for the class FO which is also equipped
with the majority quantifier, with an A5-quantifier, and with arbitrary finite
monoid quantifiers, respcectively.

3 FO[<]-Uniform Logarithmic Depth Circuits

Our first theorem shows that FO[<]-uniform NC1 is restrictive as the class col-
lapses down to NC0. If we add a simple numerical predicate like x2 we obtain
full DLOGTIME-uniform NC1.

To prove our first theorem we show that FO[<] cannot express an edge relation
such that the resulting graph has paths of length Θ(log n). We first explain why
we need only to consider the expressiveness of FO[<] in terms of numerical
predicates.

The expressive power of FO[<] is well understood. One important restriction
of FO[<] is that a fixed formula can only count up to a constant. Beyond this
constant it can only check the relative ordering. It is for example known that

for quantifier depth d a formula cannot distinguish between the words a2
d

and

a2
d+1.
We use the following observation, see for example [Str94][p. 79].

Lemma 1. Let φ be a formula of quantifier depth d over the alphabet Σ, let

u,w ∈ Σ∗, and let v ∈ Σ. Then uv2
d−1w |= φ iff uv2

d

w |= φ.
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This allows us to prove the following theorem:

Theorem 1. Let X be any circuit class that limits the depth d(n) to be sublinear,
i.e. d(n) ∈ o(n), and X ′ be the same circuit class with the restriction that the
depth is constant. FO[<]-uniform X=FO[<]-uniform X ′.

Proof. Let (Cn)n be a family of circuits in FO[<]-uniform X of depth l(n),
the labels of (Cn)n are k-tuples of numbers, and the connection language is
recognized by a FO[<] formula φ of quantifier depth d.

We prove the theorem by showing that one cannot define a circuit of depth
sublinear but not constant, i.e. l(n) is sublinear. There is a value N0 such that
for all n > N0 we have n ≥ (l(n) · k + 1) · (2d + 1). By induction we show for all
n ≥ N0 that l(n) ≤ l(N0). For the basis l(N0) ≤ l(N0) there is nothing to prove.

Choose any n > N0. Let (G1, . . . , Gl(n)) be a sequence of gates in Cn, such that
for 1 < i ≤ l(n) the gate Gi is an input gate of Gi−1. So the gates form a “path”
in the circuit Cn. We let Li be the gate label of Gi, which is a shuffled unary
encoding of k numbers. Let w be the shuffled encoding of all Li for i = 1, . . . , l(n),
and let Σ be the corresponding alphabet. So w is a word which is the unary
shuffled encoding of l(n) · k numbers. We have a formula ψ for our family of
circuits that checks if a word over Σ∗ is the shuffled encoding of a path of length
l(n) in any one of the circuits Cn′ , by using a (l(n)− 1)-ary conjunction of the
connection formula φ. The depth of ψ is d.

Let α1, . . . , αl(n)·k be the ordered set of the l(n) · k numbers. The shuffled
encoding of these numbers will have the same letter in each of these intervals,
i.e. for i < i′ if there does not exist a j such that i ≤ αj ≤ i′, then the i-th letter
equals i′-th letter, i.e. wi = wi′ . Since n ≥ (l(n) · k + 1) · (2d + 1) there exists a

factor word in w of the form σ2d for σ ∈ Σ, i.e. w = uσ2dv for u, v ∈ Σ∗.
So we will apply Lemma 1 to w and ψ, and obtain a word w′ of length n− 1.

But this word can be interpreted as the shuffled encoding of the labels of a gates
sequence (G′1, . . . , G

′
l(n)) in C′n−1. Also by Lemma 1 we know that no formula of

depth d can distinguish w and w′, hence G′i is an input gate of G′i−1 in Cn−1. It
follows that l(n) ≤ l(n− 1) and by the induction hypothesis l(n) ≤ l(N0). .�

In the previous theorem if we choose G1 to be the output gate, we would have
that G′1 is also the output gate, hence not just some irrelavent gates that do not
influence the output gate generate the problem, but an actually path form the
output gate to an input gate can only have constant length.

Corollary 1. In the world of FO[<]-uniformity, NCi = NC0, ACi = AC0 and
TCi = TC0 hold for every i ≥ 1.

In view of the inability for a FO[<]-uniform class to recognize polylogarithmic
depth properly, one might consider adding a unary predicate such as logn(x)
defined to be true if log(n) = x.

Using the same idea as above one can show that the output gate labeled by
(l1, . . . , lk) can only access input positions in a polylogarithmic range around
(l1, . . . , lk), since we have a path from the gate labeled (l1, . . . , lk) to the input
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gate at position pi of polylogarithmic length. Hence the same proof shows that
one cannot obtain FO[<, log]-uniform NCi circuits that are able to recognize the
language 1∗.

While FO[<] cannot describe circuits of logarithmic length, adding a simple
binary predicate like x2, which is much weaker than for example +, already
allows to describe DLOGTIME uniform circuits (see Theorem 6).

We obtain a dichotomy for our uniformity definitions and circuits of
logarithmic depth. The classes result either in subclasses of NC0 or contain
DLOGTIME-uniform NCi. The fact that even low uniform circuit classes cap-
ture DLOGTIME-uniform NC1 stems from its equivalence to ALOGTIME. Tur-
ing machines are uniform and operate only locally. As noted in [BL06] this also
allows tightly uniform circuit characterizations for polynomial time. In Section
5 we discuss how this can be extended to a general framework.

4 FO[<]-Uniform Constant-Depth NC1 Characterizations

In this section we will not consider log depth circuits but constant depth circuits
equipped with gates that compute NC1 complete languages. We consider D+

and the word problem over A5 as complete problems.
Extending AC0 by A5 gates gives a proper subclass of the regular languages.

Theorem 2. Let M be any subset of monoids, then FO[<]-uniform AC0(M) ⊆
REGULAR, where equality only occurs if every finite monoid can be simulated
by (i.e., is a homomorphic image of a submonoid of) a monoid from M .

Proof. This follows by translating the circuit into a FO + M [<] formula and
applying Theorem 11.6 from [BIS90]. Here FO +M stands for first order logic
equipped with monoid quantifiers as defined in [BIS90]. .�

The same argument does not only show that FO[<]-uniform AC0(M) circuits are
contained in the regular languages but that even FO[<]-uniform ACC0(M) rec-
ognize only a subset of the regular languages. The only way to obtain something
containing an acceptably large subclass of TC0 seems to be the bit predicate,
but this immediately yields uniform NC1.

So instead of choosing gates based on finite non-solvable groups, we choose a
gate type that corresponds to the Boolean formula value problem. It is known
[BL06] that that FO[<]-uniform TC0 is separated from FO[<]-uniform TC0 with
linear fan-in. While the former can simulate the bit predicate and is hence equal
to DLOGTIME-uniform TC0 the latter equals FO+MAJ[<] and cannot simulate
the bit predicate.

Yet we can show that inclusion under DLOGTIME uniformity remains valid
under FO[<] uniformity:

Theorem 3. FO[<]-uniform AC0(D+)LIN ⊇ FO[<]-uniform TC0
LIN .

We mention that MODq gates can be simulated in FO[<]-uniform TC0
LIN . To-

gether with the previous theorem it follows that FO[<]-uniform AC0(D+) ⊇
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FO[<]-uniform TC0 ⊇ FO[<]-uniform ACC0. These inclusions remain valid for
the corresponding circuit classes with linear fan-in. The following theorem shows
that AC0(D+)LIN is strictly weaker than NC1, but it is still not clear whether
it is contained in (even non uniform) TC0.

The following theorem is a consequence of Theorem 4.16 in [LMSV01], where it
is shown that only semilinear predicates can be computed by groupoidal qunati-
fiers using only the order predicate.

Theorem 4. The predicate x (and hence bit) cannot be expressed in
FO[<]-uniform AC0(D+)LIN .

Theorem 3 and Theorem 4 highlight the important difference between
AC0(D+) and AC0(D+)LIN ; indeed the former is able to simulate bit and thus
equals NC1. Note that superlinear fan-in of gates corresponds to quantifiers over
tuples of variables in the logic world.2

Summarizing we are able to say: in contrast to A5 gates, using D+ gates yields
a class that is weaker than DLOGTIME uniform NC1 but contains uniform sub-
classes of TC0

LIN . Hence, FO[<]-uniform AC0(D+)LIN is a candidate subclass
of NC1 worthy of attempts to separate it from TC0.

5 A Guide to Minimal Uniformity

In Section 3 we noticed that log depth circuits with very tight uniformity can
already simulate circuits which are defined by a more powerful uniformity. Ruzzo
already showed that for larger classes in NC different uniformity notions coincide.
This phenomenon is much more general and we explore it in this section. We start
by showing that polynomial time admits very uniform circuits over the standard
Boolean gates. Recall that a polynomial size circuit family is P-uniform if LCn

can be listed by a Turing machine in time polynomial in n.

Theorem 5. P-uniform and FO[+1]-uniform polynomial size circuits each cap-
ture the class P.

An obvious extension to Theorem 5 is to consider more general complexity classes
of Turing machines. Consider a complexity class M defined by time and space
bounds. When simulating a TM inM as a circuit then time translates to depth
and space to width. If one equips FO[<] with unary predicates that allow to check
the depth and width bounds, it is possible to perform the construction without
much overhead. Therefore, a (deterministic) Turing machine can be simulated by
very uniform circuits. If now conversely such a circuit can be evaluated by a TM
in M then any M-uniform C circuit can be converted to a FO[<, pB]-uniform
C circuit. Here pB stands for a set of unary predicates that allow to check the
bounds on the circuit. This construction requires some minimal closure proper-
ties for the function for the functions giving the time and space bounds on the

2 For the A5 quantifier we do not have to distinguish between quantifiers over one
variable and quantifiers over a tuple of variables.
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machine. The idea is to take the machine that evaluates a circuit inM-uniform
C and to construct the FO[<, pB]-uniform circuit for this machine. An example is
polynomial time where P -uniform polynomial size circuits equal FO[<]-uniform
polynomial size circuits. (Here, pB can be directly expressed within FO[<].)

Similar observations hold for alternating Turing machines as exhibited in
[Ruz81]: for k > 1 the different notions of uniformity define identical circuit
families including LOGSPACE-uniform families. Then, it is easy to see how to
extend the construction of Theorem 6 to circuits of depth logk.

We believe that the requirement for C to be contained in some Turing class can
be omitted. Let M be the machine that would decide the uniformity language.
The idea is the following: Let a be a gate and b be a possible candidate to be a
predecessor. Instead of letting the uniformity language to decide whether there
is a wire from b into a, we build a circuit, that will evaluate M and then either
feed in b or not. (Note this requires to be able to feed in a neutral input.) This
is done for all possible gates b for a. We call this construction a “switch gate”.
So we need to be able to simulate M in the circuit class C. This idea is can be
already found in [Ruz81].

This is an explanation why log-depth circuits seem to be always at least
DLOGTIME-uniform as exhibited in Section 3.

6 Binary Encoding

In this section only, we replace unary by binary in our shuffled encodings and
consider the effect on the uniformity notions that arise. The binary n-encoding of
a number 0 ≤ i < 2n is defined as w1 · · ·wn ∈ {0, 1}n such that i =

∑
j 2

j−1wj .
Note that the resulting encoding differs from the encoding in [BIS90] not only
in the shuffling, but in the fact that here y is also given in binary:

Definition 7 (Binary shuffled encoding). The binary shuffled n-encoding of
a sequence α1, . . . , αk of numbers between 1 and n is the shuffle of the sequence of
binary n-encodings of α1, . . . , αk. When n is understood, this shuffle is denoted
〈α1, . . . , αk〉b (and is a word of length +log(n+ 1),).
We say that a circuit family (Cn)n≥1 is FO[X ]-uniformbin if the language formed
by the union, over all n, of the language of binary shuffled n-encodings of the
tuples in LCn can be described by an FO[X ] formula.

Note that Theorem 5 also holds for binary encoding. It is easy to see that
we can switch from unary to binary shuffled encoding. The tests for the fixed
cases are clearly in FO[+1], for the other tests the formula must compute ±1 on
binary numbers, but this can be done in FO[+1].

For binary encoding we get a similar result for NC1:

Theorem 6. The classes FO[<, x2]-uniform NC1 and FO[+1]-uniformbin NC1

each contain DLOGTIME-uniform NC1.

The proof of Theorem 6 builds the circuit for an ALOGTIME machine from its
configuration tree. Both theorems exploit the locality of a computational step of
a Turing machine.
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7 Discussion

Our focus in this paper was the following reasoning: if circuit classes such as
ACC0 ⊆ TC0 ⊆ NC1 resist separation attempts, then why not tighten their
uniformity and draw intuition from comparing the restricted classes?

Our results slightly extend [BL06]. They mostly concern FO[<]-uniformity,
a notion provably tighter than the robust DLOGTIME-uniformity commonly
accepted as the natural choice for defining fundamental circuit subclasses of P.

Our first conclusion is that no intuition comes out of applying to logarithmic
depth circuits the tight uniformities considered here, because these circuits either
retain their full power or they cannot exploit their depth beyond a constant.

Another observation is that a language (such as A5 here) complete for a
large class (such as ALOGTIME here) under the reduction relevant to a robust
uniformity (such as DLOGTIME-uniformity here) may no longer be complete
for the same class defined under a tighter uniformity. Indeed, here we noted that
in the FO[<]-uniform world, the AC0-closure of A5 no longer contains TC0.

By contrast with A5, we observed that the D+ variant of the NC1-complete
formula value problem behaves differently. We could show that in the FO[<]-
uniform world, the AC0 closure of D+ equals ALOGTIME and thus contains
TC0. This suggested considering AC0(D+)LIN ⊇ TC0

LIN because imposing a
linear bound on the fanin of unbounded fanin circuits nicely fits into the first-
order characterizations of the language classes captured. In the FO[<]-uniform
world (a world free of the “tyranny” of the bit predicate), can AC0(D+)LIN �=
TC0

LIN be proved? Such a separation would further amount to distinguishing
the power of MAJ from the power of D+. We have been unable to answer that
question though it might be within reach.

In [MTV10], the regularity conjecture (see footnote in Section 1) was gener-
alized and named the “uniform duality property”. Simplifying somewhat, the
property holds for a class C if any language in C expressed in ExtFO[arb] can be
reexpressed in ExtFO[<,CN ], where CN is a set of numerical predicates defined
from C. A marginal link with the uniform duality property can be found in our
Theorem 5. Let ExtFO locally here mean allowing a Lindström quantifier for a
P-complete problem under AC0-reducibility. Then

ExtFO[PN ] ∩ C = ExtFO[+1] ∩C ⊆ ExtFO[<,+] ∩ C ⊆ ExtFO[CFLN ] ∩C

where C is the class of context-free languages, the “=” uses Theorem 5 and
the rightmost “⊆” follows by [MTV10]. This is a weaker instance of the duality
property in which we replace predicates from PN (rather than from arb) in order
to reexpress any context-free language. Can stronger instances of the duality be
proven, by extending the present work or by bringing in the extensions to [RS07]
recently announced in [KS12]?

The fact that we can find strictly uniform circuit classes for ALOGTIME
is based on the exploitation of uniformity and locality of the steps of a Turing
machine. This also allows FO[<]-uniform characterizations of polynomial time as
observed in [BL06]. We think that this could be extended to circuit classes that
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have characterizations in terms of Turing machines, or to circuit classes whose
uniformity languages are defined by Turing machines as long as the circuit class
is at least as powerful as the uniformity language.

Perhaps one other research avenue would be to consider direct connection
language encodings that are intermediate between the unary shuffled encoding
and the binary shuffled encodings studied here. Or could a meaningful encoding-
free notion of uniformity be developed? Would there be a use for such a notion?

Acknowledgement. We thank anonymous referees for useful comments on ear-
lier versions of the present paper.
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Abstract. The variety DA of finite monoids has a huge number of dif-
ferent characterizations, ranging from two-variable first-order logic FO2

to unambiguous polynomials. In order to study the structure of the sub-
varieties of DA, Trotter and Weil considered the intersection of varieties
of finite monoids with bands, i.e., with idempotent monoids. The vari-
eties of idempotent monoids are very well understood and fully classified.
Trotter and Weil showed that for every band variety V there exists a
unique maximal variety W inside DA such that the intersection with
bands yields the given band variety V. These maximal varieties W define
the Trotter-Weil hierarchy. This hierarchy is infinite and it exhausts DA;
induced by band varieties, it naturally has a zigzag shape. In their paper,
Trotter and Weil have shown that the corners and the intersection levels
of this hierarchy are decidable.

In this paper, we give a single identity of omega-terms for every join
level of the Trotter-Weil hierarchy; this yields decidability. Moreover, we
show that the join levels and the subsequent intersection levels do not
coincide. Almeida and Azevedo have shown that the join of R-trivial
and L-trivial finite monoids is decidable; this is the first non-trivial join
level of the Trotter-Weil hierarchy. We extend this result to the other
join levels of the Trotter-Weil hierarchy. At the end of the paper, we
give two applications. First, we show that the hierarchy of deterministic
and codeterministic products is decidable. And second, we show that the
direction alternation depth of unambiguous interval logic is decidable.

1 Introduction

The lattice of band varieties was classified independently by Birjukov, Fennemore,
and Gerhard [3,6,7]. For the purpose of this paper, a band is a finite idempo-
tent monoid; and a variety is a class of finite monoids which is closed under
submonoids, homomorphic images, and finite direct products. We denote the
variety of all bands by B. The relation between the band varieties can be found
on the left-hand side of Figure 1 where we use the notation of [8,21]. A famous
supervariety of B is DA, the class of all finite monoids such that every regu-
lar D-class is an aperiodic semigroup. This variety appears at a huge number
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Fig. 1. The band hierarchy and the Trotter-Weil hierarchy

of different occasions, see e.g. [19,4] for overviews. The most prominent results
along this line of work are the following: A language is definable in two-variable
first-order logic FO2 if and only if its syntactic monoid is in DA [20] if and only
if it is a disjoint union of unambiguous monomials [16].

Trotter and Weil studied the lattice of all subvarieties of DA. This lattice is
uncountably infinite whereas the lattice of band varieties is countably infinite.
Considering the bands inside the subvarieties of DA led to the following result.
For every given band variety V they showed that there exists a unique maximal
variety W ⊆ DA such that V = W ∩ B, cf. [21]. These maximal varieties W
define the Trotter-Weil hierarchy. Its structure is depicted on the right-hand side
of Figure 1. The zigzag shape gives rise to the following notions. We say the vari-
eties Rm and Lm are the corners, varieties of form Rm ∩Lm are the intersection
levels, and Rm ∨ Lm are the join levels of the Trotter-Weil hierarchy. Only the
corners and the intersection levels are maximal subvarieties of DA such that
their intersection with bands yields a given band variety; by Theorem 2 below,
the join levels are not maximal with this property. Kufleitner and Weil showed
that there exist several different ways of climbing up along the corners of the
Trotter-Weil hierarchy. One possibility is in terms of Mal’cev products with defi-
nite and reverse definite semigroups [10]; and another possibility uses condensed
rankers [12]. The concept of condensed rankers is a refinement of the rankers of
Weis and Immerman [22] and the turtle programs of Schwentick, Thérien, and
Vollmer [17]. Condensed rankers are very similar to the unambiguous interval
logic of Lodaya, Pandya, and Shah [13], which in turn gives yet another way of
climbing up the Trotter-Weil hierarchy.

Kufleitner and Weil showed that the FO2 quantifier alternation hierarchy and
the Trotter-Weil hierarchy are interwoven [12]. Only recently, they tightened this
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connection: A language is definable in FO2 with m blocks of quantifiers if and
only if it is recognizable by a monoid in Rm+1 ∩ Lm+1, cf. [11]. Therefore, a
result of Straubing on the FO2 alternation hierarchy shows that it is possible to
climb up the Trotter-Weil hierarchy along the intersection levels by using weakly
iterated block products of J -trivial monoids [18].

Pin showed that the algebraic operations of taking Mal’cev products with
definite and reverse definite semigroups admit language counterparts by means of
deterministic and codeterministic products [14], see also [15,16]. Thus a language
over the alphabet A is recognizable by a monoid in DA if and only if it is in the
closure of languages B∗ for B ⊆ A under Boolean operations and deterministic
and codeterministic products [12]. This naturally defines a hierarchy of languages
inside DA. Let W1 be the Boolean closure of languages of the form B∗, and let
Wm+1 be the Boolean closure of deterministic and of codeterministic products
of languages in Wm. Now, a language is in Wm if and only if it is recognizable
by a monoid in Rm ∨ Lm. In particular, this is an infinite hierarchy which
exhausts the class of all DA-recognizable languages. Note that if one would
replace deterministic and codeterministic products by unambiguous products,
then Schützenberger’s result [16] shows that the resulting hierarchy collapses at
level 2.

Our main result Theorem 1 gives a single identity of omega-terms for each of
the varieties Rm∨Lm. It follows that membership in Rm∨Lm is decidable. Since
R2 is the class of R-trivial monoids and L2 is the class of L-trivial monoids, this
extends the decidability result for the join of R-trivial and L-trivial monoids by
Almeida and Azevedo [2] to the other join levels of the Trotter-Weil hierarchy. In
fact, the Almeida-Azevedo result is the base of our proof. As a byproduct, we give
a new single identity of omega-terms for the corners of the Trotter-Weil hierarchy.
Different identities were obtained by Trotter and Weil [21]. We complement our
main result by showing that, for every m ≥ 2, the variety Rm ∨ Lm is strictly
contained in Rm+1 ∩ Lm+1, see Theorem 2. Note that for band varieties, the
join levels coincide with the subsequent intersection levels, see e.g. [8].

We give two applications. The first one is decidability of the hierarchy Wm

of deterministic and codeterministic products, see Proposition 4. This easily
follows from our main result and from Pin’s characterization of deterministic
and codeterministic products [14]. The second application (Corollary 3) is the
following: For every integer m it is decidable whether a given regular language L
is definable in unambiguous interval logic with at most m direction alternations,
see Section 6.2 for definitions.

2 Preliminaries

Words and Languages. Throughout this paper we let A be a finite alphabet.
The set of finite words over A is denoted by A∗. It is the free monoid over
A. The empty word 1 is the neutral element. As usual, we set A+ = A∗ \ {1}.
The length of a word u = a1 · · · an with ai ∈ A is |u| = n, and its alphabet
(also known as its content) is the set α(u) = {a1, . . . , an}. A homomorphism
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ϕ : A∗ → M to a monoid M recognizes a language L ⊆ A∗ if ϕ−1(ϕ(L)) = L.
A monoid M recognizes L ⊆ A∗ if there exists a homomorphism ϕ : A∗ → M
which recognizes L. Every language admits a unique minimal monoid M which
recognizes L. This monoid is called the syntactic monoid of L, see e.g. [15] for
details. A language L is regular (or recognizable) if it is recognized by a finite
monoid.

Finite Monoids. Let M be a monoid. An element e ∈ M is idempotent if e2 = e.
If M is finite, then there exists a positive integer ω such that xω is the unique
idempotent element generated by x ∈ M . Green’s relations R and L are an
important tool for describing the structure of monoids. For x, y ∈ M we define

x R y if and only if xM = yM, x ≤R y if and only if xM ⊆ yM,

x L y if and only if Mx = My, x ≤L y if and only if Mx ⊆ My.

We frequently use these relations as follows: The relation x ≤R y holds if and
only if there exists z ∈ M such that x = yz, Similarly, x ≤L y if and only if
there exists z ∈ M such that x = zy. We say that a monoid M is R-trivial (resp.
L-trivial) if R (resp. L) is the identity relation on M .

Every homomorphism ϕ : A∗ → M induces a congruence ≡ϕ on A∗ by setting
x ≡ϕ y if ϕ(x) = ϕ(y). Now, the submonoid ϕ(A∗) of M is isomorphic to
A∗/≡ϕ. For defining the Trotter-Weil hierarchy, we introduce the congruences
∼K and ∼D on M . We let x ∼K y if for all idempotents e of M we have:

if ex R e or ey R e, then ex = ey.

Using more semigroup theoretic notions, the meaning of x ∼K y is that, for
every regular D-class D, the right translations by x and by y define the same
partial function on D, see e.g. [9]. The left-right dual ∼D is defined by x ∼D y
if for all idempotents e of M we have that if xe L e or ye L e, then xe = ye.

Varieties of Finite Monoids. A variety is a class of finite monoids which is
closed under submonoids, homomorphic images, and finite direct products. The
empty direct product of monoids yields the one-element monoid {1}. Thus the
monoid {1} is contained in every variety. The join V ∨ W of two varieties V
and W is the smallest variety containing both V and W. A language variety is
a class of regular languages which is closed under Boolean operations, inverse
homomorphic images, and residuals. More formally, the languages in a language
variety are parametrized by the alphabet, but in order to keep the notation in this
paper simple, we use this distinction only implicitly. Eilenberg has shown that
there is a one-to-one correspondence between language varieties and varieties of
finite monoids [5]. This connection is defined by the following mutually inverse
correspondences: To every language variety V one assigns the variety of finite
monoids generated by the syntactic monoids of languages in V ; and to every
variety V of finite monoids one assigns the languages recognized by the monoids
in V.
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Identities of omega-terms are a very common way of defining varieties. We
inductively define omega-terms over a set of variables Σ. The empty word 1
and every x ∈ Σ is an omega-term; and if u and v are omega-terms, then so
are uv and (u)ω. Every homomorphism ϕ : Σ∗ → M to a finite monoid M
naturally extends to omega-terms by setting ϕ(uω) = ϕ(u)ω , i.e., ϕ(uω) is the
idempotent generated by ϕ(u). Let u and v be two omega-terms over Σ. A finite
monoid M satisfies the identity u = v if for every homomorphism ϕ : Σ∗ → M
we have ϕ(u) = ϕ(v). The class of all finite monoids which satisfy u = v is
denoted by �u = v�. This class is a variety for all omega-terms u, v. The monoids
in �xω = xωx� are called aperiodic. We will use the following varieties in this
paper:

DA = �(xy)ωx(xy)ω = (xy)ω�
R = �(zx)ωz = (zx)ω�
L = �z(yz)ω = (yz)ω�
J = R ∩ L

B =
�
x2 = x

�
J1 = �xy = yx� ∩ B

Wm = �em · · · e1zf1 · · · fm = em · · · e1f1 · · · fm� where
e1 = 1 and ei+1 = (ei · · · e1zf1 · · · fixi)ω,

f1 = 1 and fi+1 = (yiei · · · e1zf1 · · · fi)ω.

The identity for Wm uses variables x1, . . . , xm−1 as well as y1, . . . , ym−1 and z.
In particular, we have W2 = �(zx1)ωz(y1z)ω = (zx1)ω(y1z)ω�. Using xi = yi = 1
for all 1 ≤ i < m we see that all monoids in Wm are aperiodic. A monoid is
in R if and only if it is R-trivial, and it is in L if and only if it is L-trivial, see
e.g. [15]. The elements of J are called J -trivial monoids.

If V is a variety, then M is in the variety K m V if M/∼K is in V. Symmetri-
cally, M is in the variety D m V if M/∼D is in V. Usually, the Mal’cev products
K m V and D m V are defined using relational morphisms, but the definition
given here is equivalent [9]. We are now ready to define the Trotter-Weil hierar-
chy. We set R2 = R and L2 = L, and for m ≥ 2 we let Rm+1 = K m Lm and
Lm+1 = D m Rm. There are several possible extensions to the first level so as
to obtain the same hierarchy for the higher levels: we have K m V = R2 and
D m V = L2 for every variety V with J1 ⊆ V ⊆ J, see e.g. [15]. It depends on
the context what the most natural choice is, and we therefore start the hierarchy
at level 2. The structure of the Trotter-Weil hierarchy is depicted on the right-
hand side of Figure 1. It is well-known that

⋃
m Rm =

⋃
m Lm = DA, see [10].

We also note that every m-generated finite monoid in DA is in Rm+1 ∩ Lm+1,
see e.g. [12, Proposition 3.23]. The main purpose of this paper is to show

Wm = Rm ∨ Lm � Rm+1 ∩ Lm+1.

The containment Rm ∨ Lm ⊆ Rm+1 ∩ Lm+1 is straightforward, see [12, Corol-
lary 3.19]. Almeida and Azevedo [2] have shown that R ∨ L = W2, see also [1].
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3 Identities for the Corners

The following lemma is one of the main properties of monoids in DA. It basically
says that, inside DA, whether or not u R ua only depends on a and the R-class
of u, but not on the element u itself. Symmetrically, for monoids in DA, whether
or not u L au only depends on a and the L-class of u.

Lemma 1. Let ϕ : A∗ → M be a homomorphism with M ∈ DA, let u, v ∈ M ,
and let x, y ∈ A∗ with α(x) = α(y). If u R v, then u R uϕ(x) if and only if
v R vϕ(y). If u L v, then u L ϕ(x)u if and only if v L ϕ(y)v.

The next lemma shows that we can apply Lemma 1 for M ∈ Wm.

Lemma 2. For all m ≥ 2 we have Wm ⊆ DA.

Proof. Let M ∈ Wm. Setting xi = yi = z for all i yields ei = fi = zω and
consequently zωz = zω, that is, M is aperiodic. With xi = yi = y for all i we get
ei = (zy)ω and fi = (yz)ω. The defining identity for Wm implies (zy)ω(yz)ω =
(zy)ωz. Hence, (yz)ωy(yz)ω = y(zy)ω(yz)ω = y(zy)ωz = (yz)ω. The last equality
relies on the aperiodicity of M . �

The next proposition gives a new equational description of the corners of the
Trotter-Weil hierarchy. This description immediately yields Rm ∨ Lm ⊆ Wm.

Proposition 1. Let e1 = f1 = 1 and for i ≥ 1 let ei+1 = (ei · · · e1zf1 · · · fixi)ω

and fi+1 = (yiei · · · e1zf1 · · · fi)ω. Then for all m ≥ 2 we have

Rm = �em · · · e1zf1 · · · fm−1 = em · · · e1f1 · · · fm−1� ,

Lm = �em−1 · · · e1zf1 · · · fm = em−1 · · · e1f1 · · · fm� .

Proof. For m = 2 the claim is true by definition of R2 and L2. Let now
m ≥ 3. By left-right symmetry it suffices to show the statement for Rm. First,
we consider the inclusion from left to right. Let M ∈ Rm. Then M/∼K ∈ Lm−1

and by induction, M/∼K ∈ �em−2 · · · e1zf1 · · · fm−1 = em−2 · · · e1f1 · · · fm−1�,
i.e., the elements u = em−2 · · · e1zf1 · · · fm−1 and v = em−2 · · · e1f1 · · · fm−1 sat-
isfy u ∼K v in M . Thus em−1u ∼K em−1v. We have em R emem−1u because
em ≤R em−1u. Hence, emem−1u = emem−1v by definition of ∼K .

Next, we show the inclusion from right to left. Let M satisfy the identity
em · · · e1zf1 · · · fm−1 = em · · · e1f1 · · · fm−1. We have M ∈ DA by Lemma 2. For
u = em−2 · · · e1zf1 · · · fm−1 and v = em−2 · · · e1f1 · · · fm−1 we claim u ∼K v.
Then M/∼K ∈ Lm−1 by induction which yields M ∈ Rm. Consider an idem-
potent element e ∈ M such that eu R e. Note that by Lemma 1, we have
eu R e if and only if ev R e. There exists xm−1 ∈ M with e = euxm−1.
Let xm−2 = fm−1xm−1, let em−1 = (em−2 · · · e1zf1 · · · fm−2xm−2)ω, and let
em = (em−1em−2 · · · e1zf1 · · · fm−1xm−1)ω. One can verify that em = em−1 =
(uxm−1)ω , from which it follows that e = eemem−1. By the choice of M we have
emem−1u = emem−1v and hence, eu = eemem−1u = eemem−1v = ev. This shows
u ∼K v. �
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4 Rankers

Condensed rankers are important for the proofs of both of our main results
Theorem 1 and Theorem 2. A ranker is a nonempty word over the alphabet
ZA = {Xa, Ya | a ∈ A} with 2 |A| letters. The set ZA is partitioned into ZA =
XA ∪ YA with XA = {Xa | a ∈ A} and YA = {Ya | a ∈ A}. Every ranker is
interpreted as a sequence of instructions of the form “go to the next a-position”
and “go to the previous a-position”. More formally, for u = a1 · · · an ∈ A∗ and
x ∈ {0, . . . , n + 1} we let

Xa(u, x) = min {y | y > x and ay = a} , Xa(u) = Xa(u, 0),
Ya (u, x) = max {y | y < x and ay = a} , Ya (u) = Ya (u, n + 1).

Here, both the minimum and the maximum of the empty set are undefined. The
modality Xa is for “neXt-a” and Ya is for “Yesterday-a”. For a ranker r = Zs
with Z ∈ ZA we set r(u) = s(u, Z(u)) and r(u, x) = s(u, Z(u, x)). In particular,
the instructions of a ranker are executed from left to right. Every ranker r either
defines a unique position in a word u, or it is undefined on u. For example,
XaYbXc(bca) = 2 and XaYbXc(bac) = 3 whereas XaYb Xc(abac) and XaYb Xc(bcba)
are undefined. A ranker r is condensed on u if it is defined and, during the
execution of r, no previously visited position is overrun [12]. More formally,
let r = Z1 · · · Zk with Zi ∈ ZA be defined on u and let xi = Z1 · · · Zi(u) be
the position reached after i instructions. Then r is condensed on u if for every
i ≤ k − 1 we have that either all positions xi+1, . . . , xk are greater than xi or all
positions xi+1, . . . , xk are smaller than xi. By definition, every ranker which is
condensed on u is also defined on u, but the converse is not true. For example,
XaYbXc is condensed on bca but not on bac. Let

Lc(r) = {u ∈ A∗ | r is condensed on u} .

The depth of a ranker is its length as a word. A block of a ranker is a maximal
factor either in X+

A or Y +
A . A ranker with m blocks changes direction m − 1

times. By Rm,n we denote the rankers with depth at most n and with up to m
blocks. Let Rm =

⋃
n Rm,n. We set RX

m,n = (Rm,n ∩ XAZ∗
A) ∪ Rm−1,n−1 and

RY
m,n = (Rm,n ∩YAZ∗

A)∪Rm−1,n−1. We write u�m,n v (resp. u�m,n v) if u and v

are condensed on the same rankers in RX
m,n (resp. RY

m,n). Let u ≡m,n v if u and v
are condensed on the same rankers from Rm,n, i.e., if both u�m,n v and u�m,n v.
The relations �m,n and �m,n are finite index congruences [12, Lemma 3.13] and
hence so is ≡m,n.

The following result of Kufleitner and Weil shows that condensed rankers
can be used for defining the languages corresponding to the Trotter-Weil hierar-
chy [12, Theorem 3.21].

Proposition 2. For all m, n ∈ N we have A∗/�m,n ∈ Rm and A∗/�m,n ∈ Lm.
For every homomorphism ϕ : A∗ → M with M ∈ Rm (resp. M ∈ Lm) there
exists n ∈ N such that u �m,n v (resp. u �m,n v) implies ϕ(u) = ϕ(v) for all
u, v ∈ A∗.



610 M. Kufleitner and A. Lauser

This leads to the following corollary, which is the main motivation for considering
condensed rankers in this paper.

Corollary 1. For all m, n ∈ N we have A∗/≡m,n ∈ Rm ∨ Lm. For every ho-
momorphism ϕ : A∗ → M with M ∈ Rm ∨ Lm there exists n ∈ N such that
u ≡m,n v implies ϕ(u) = ϕ(v) for all u, v ∈ A∗.

5 Identities for the Join Levels

This section contains our main contribution. Theorem 1 gives a description of
the join levels of the Trotter-Weil hierarchy by a single identity of omega-terms.
Since for every given monoid M one can effectively verify whether or not M
satisfies this identity, Theorem 1 immediately yields Corollary 2.

Theorem 1. For every m ≥ 2 we have Rm ∨ Lm = Wm.

Corollary 2. For every given integer m ≥ 2 and every given finite monoid M
it is decidable whether M is in Rm ∨ Lm.

The proof of the inclusion Wm ⊆ Rm ∨ Lm in Theorem 1 is by induction on m.
The base case m = 2 was shown by Almeida and Azevedo [2]. The induction step
connects condensed rankers with the variety Wm. It uses rewriting techniques
(see Proposition 3) and relies on a combination of properties of DA and con-
densed rankers (given in Lemma 3). Corollary 1 yields the connection between
condensed rankers and the join levels of the Trotter-Weil hierarchy.

Lemma 3. Let m ≥ 3, let n ∈ N, and let ϕ : A∗ → M be a homomorphism
with M ∈ DA. Suppose for all u, v, x, y ∈ A∗ the following implication holds:

u ≡m−1,n v, ϕ(x) R ϕ(xu), ϕ(y) L ϕ(vy) ⇒ xuy ≡ϕ xvy.

Then u ≡m,n+2|M|−1 v implies u ≡ϕ v for all u, v ∈ A∗.

Proposition 3. Let m ≥ 2 and let ϕ : A∗ → M be a homomorphism with
M ∈ Wm. Then there exists n ∈ N such that u ≡m,n v implies ϕ(u) = ϕ(v).

Proof. The proof is by induction on m. Almeida and Azevedo have shown
R2 ∨ L2 = W2, see [2,1]. Thus, by the second statement in Corollary 1, the
claim holds for m = 2. Let now m > 2 and let ϕ : A∗ → M be a surjective
homomorphism onto M ∈ Wm. We extend relations G on M to words by set-
ting u G v if and only if ϕ(u) G ϕ(v). Let ω ≥ 1 be an integer such that xω is
idempotent for all x ∈ M .

For words u, v ∈ A∗ we set u → v if u ≡ϕ v or if u = pem−1 · · · e1zf1 · · · fm−1q
and v = pem−1 · · · e1f1 · · · fm−1q for some words p, q, ei, fi, xi, yi, z ∈ A∗ with
e1 = 1 = f1 and ei+1 = (ei · · · e1zf1 · · · fixi)ω and fi+1 = (yiei · · · e1zf1 · · · fi)ω .
One can think of → as a semi-Thue system induced by equality in M and the
identity for Wm−1. We let ∗↔ be the equivalence relation generated by →. That
is, u

∗↔ v if there exists w0, . . . , wk with u = w0, v = wk and with wi → wi+1
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or wi+1 → wi for all 0 ≤ i < k. The relation ∗↔ is a congruence on A∗ with
finite index, and A∗/ ∗↔ is in Wm−1 by definition. Note that ϕ(u) = ϕ(v) implies
u

∗↔ v and therefore, A∗/ ∗↔ is a quotient of M . In particular, we have u2ω ∗↔ uω.
By induction there exists n such that u ≡m−1,n v implies u

∗↔ v.
Next, we show that M satisfies the assumptions of Lemma 3. Suppose

u ≡m−1,n v, x R xu, and y L vy. By choice of n there exists u = w0, . . . , wk = v
with wi → wi+1 or wi+1 → wi. We claim that if t → w and x R xt and y L ty,
then xty ≡ϕ xwy. This is trivial if t ≡ϕ w. Suppose t = pt′q and w = pw′q with
t′ = em−1 · · · e1zf1 · · · fm−1 and w′ = em−1 · · · e1f1 · · · fm−1 where e1 = 1 = f1

and ei+1 = (ei · · · e1zf1 · · · fixi)ω and fi+1 = (yiei · · · e1zf1 · · · fi)ω. We have
xp R xpt′ because x R xt. Hence there exists xm−1 ∈ A∗ such that xp ≡ϕ

xpt′xm−1 ≡ϕ upem with em = (t′xm−1)ω = (em−1 · · · e1zf1 · · · fm−1xm−1)ω .
Symmetrically, for some ym−1 ∈ A∗ and fm = (ym−1em−1 · · · e1zf1 · · · fm−1)ω

we get qy ≡ϕ fmqy. With M ∈ Wm we conclude

xty = xpem−1 · · · e1zf1 · · · fm−1qy

≡ϕ xpemem−1 · · · e1zf1 · · · fm−1fmqy

≡ϕ xpemem−1 · · · e1 f1 · · · fm−1fmqy

≡ϕ xpem−1 · · · e1f1 · · · fm−1qy = xwy.

If t → w, then either t ≡ϕ w or α(t) = α(w). Therefore, by Lemma 1, we have
x R xt if and only if x R xw, and y L ty if and only if y L wy whenever t → w.
Thus x R xwi and y L wiy for all 0 ≤ i ≤ k. The above claim now yields
xuy = xw0y ≡ϕ xw1y ≡ϕ · · · ≡ϕ xwky = xvy. Now, by Lemma 3, we see that
u ≡m,n+2|M|−1 v implies u ≡ϕ v. �

Proof (Theorem 1). We have Rm ⊆ Wm and Lm ⊆ Wm by Proposition 1. Since
Wm is a variety, we see that Rm ∨ Lm ⊆ Wm. The converse inclusion follows
by Proposition 3 and the first statement in Corollary 1. �

Separating the Join Levels from the Intersection Levels

For every m ≥ 2 we show that there is a language which is recognized by a monoid
in Rm+1 ∩Lm+1, but not by a monoid in Rm ∨Lm. This last statement relies on
Theorem 1; and the membership in Rm+1 ∩ Lm+1 uses condensed rankers and
Proposition 2.

Theorem 2. For all m ≥ 2 we have Rm ∨ Lm � Rm+1 ∩ Lm+1.

6 Applications

In this section, we relate the join levels of the Trotter-Weil hierarchy with two
other hierarchies. First, we consider the hierarchy of deterministic and code-
terministic products, starting with languages of the form B∗ for B ⊆ A; and
we show that this hierarchy is decidable. This result essentially follows from
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Theorem 1 and from Pin’s characterization of deterministic and codeterministic
products [14]. Our second application is unambiguous interval temporal logic
(unambiguous ITL). It has been introduced by Lodaya, Pandya, and Shah [13]
as an expressively complete logic for DA. We show that the direction alterna-
tion depth within unambiguous ITL is decidable. This result heavily relies on
combinatorial properties of rankers given by Kufleitner and Weil [12].

6.1 Deterministic and Codeterministic Products

A language of the form L = L0a1L1 · · · akLk with Li ∈ V and ai ∈ A is called a
monomial over a class of languages V . The monomial L is unambiguous if every
word u ∈ L has a unique factorization u = u0a1u1 · · · akuk such that ui ∈ Li;
it is deterministic if for every word u ∈ L and every i ∈ {1, . . . , k} there is
a unique prefix of u which is in L0a1 · · ·Li−1ai; and it is codeterministic (also
called reverse deterministic) if for every word u ∈ L and every i ∈ {1, . . . , k}
there is a unique suffix of u in aiLi · · · akLk. Every deterministic monomial and
every codeterministic monomial is unambiguous.

If V is a class of languages, then the deterministic closure Vdet of V (resp. the
codeterministic closure Vcodet of V) is the Boolean closure of the deterministic
(resp. codeterministic) monomials over V . Alternating between closure under
deterministic and codeterministic monomials and between closure under Boolean
operations yields the following hierarchy: W1 contains all Boolean combinations
of languages B∗ for B ⊆ A, and Wm+1 consists of all Boolean combinations
of deterministic and codeterministic monomials over Wm, i.e., Wm+1 is the
Boolean closure of Wdet

m ∪ Wcodet
m . Since Vdet and Vcodet are varieties if V is a

variety [14], each of the language classes Wm is a variety. The next proposition
shows that Wm corresponds to the level Rm ∨ Lm of the Trotter-Weil hierarchy.

Proposition 4. Let L ⊆ A∗ and let m ≥ 2. Then L is in Wm if and only if L
is recognized by a monoid in Rm ∨ Lm. In particular, membership in Wm is
decidable.

6.2 Alternation within Unambiguous ITL

The syntax of unambiguous interval temporal logic (unambiguous ITL) is as
follows. Formulae are built from the atoms � for true and ⊥ for false, and if ϕ
and ψ are formulae in unambiguous ITL, then so are

¬ϕ | ϕ ∨ ψ | ϕ ∧ ψ | ϕ Fa ψ | ϕ La ψ

for every letter a ∈ A. The modality Fa stands for “First a-position” and La is for
“Last a-position”. Usually, models are finite words and an interval of positions.
For the purpose of this paper, we use only word models (without intervals). The
semantics is as follows. Every word u ∈ A∗ models �, written as u |= �, and no
word models ⊥. Boolean combinations are as usual. The semantics of Fa and La

is given by
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u |= ϕ Fa ψ ⇔ a ∈ α(u) and for u = u0au1 with a �∈ α(u0)
we have u0 |= ϕ and u1 |= ψ,

u |= ϕ La ψ ⇔ a ∈ α(u) and for u = u0au1 with a �∈ α(u1)
we have u0 |= ϕ and u1 |= ψ.

That is, for the formula ϕ Fa ψ, the model is “split” at the first a-position and ϕ
and ψ are interpreted over the resulting left and right factors, respectively. The
modality La is the left-right dual, “splitting” at the last a-position. For a formula
ϕ we set L(ϕ) = {u ∈ A∗ | u |= ϕ}. Then

L(ϕ Fa ψ) = (L(ϕ) ∩ B∗)aL(ψ), L(ϕ La ψ) = L(ϕ)a(L(ψ) ∩ B∗)

where B = A \ {a}. We introduce the parameter t for “turns” of a formula: we
let t(�) = t(⊥) = 0, t(¬ϕ) = t(ϕ) and t(ϕ ∨ ψ) = t(ϕ ∧ ψ) = max {t(ϕ), t(ψ)};
and for the temporal modalities we let

t(ϕ Fa ψ) = max {t(ϕ) + 1, t(ψ)} , t(ϕ La ψ) = max {t(ϕ), t(ψ) + 1} .

The parameter t defines the number of direction alternations in a formula (more
precisely, the number of blocks of directions). We shall also need the following
parameter d(ϕ) capturing the nesting depth of Fa and La of the formula: let
d(�) = d(⊥) = 0, d(¬ϕ) = d(ϕ) and d(ϕ∨ψ) = d(ϕ∧ψ) = max {d(ϕ), d(ψ)}; and
for the temporal modalities we set d(ϕFa ψ) = d(ϕLa ψ) = 1+max{d(ϕ), d(ψ)}.
Let ITLm,n contain all unambiguous ITL-formulae ϕ with t(ϕ) ≤ m and d(ϕ) ≤
n. Let ITLm =

⋃
n ITLm,n.

Next we show that agreement of words u, v ∈ A∗ on ITLm,n-formulae is the
same as agreement on condensed rankers in Rm,n. We write u ≈m,n v if

u |= ϕ ⇔ v |= ϕ for all ϕ ∈ ITLm,n.

For every fixed alphabet, the set ITLm,n is finite up to equivalence. Thus ≈m,n

is a finite index congruence.

Proposition 5. Let m, n ∈ N and u, v ∈ A∗. Then u ≈m,n v if and only if
u ≡m,n v.

Corollary 3. Let L ⊆ A∗ and m ≥ 2. Then L is definable in ITLm if and only
if L is recognized by a monoid in Rm ∨Lm. In particular, it is decidable whether
a given regular language is definable in ITLm.
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Abstract. It has recently been shown, that hyper-arithmetical sets can
be represented as the unique solutions of language equations over sets
of natural numbers with operations of addition, subtraction and union.
It is shown that the same expressive power, under a certain encoding,
can be achieved by systems of just two equations, X + A = B and
(X + X) + C = (X − X) + D, without using union. It follows that
the problems concerning the solutions of systems of the general form
are as hard as the same problems restricted to these systems with two
equations, it is known that the question for solution existence is Σ1

1

complete.

1 Introduction

Language equations are equations with formal languages as unknowns. They
have lately been under active research, a survey on the topic has been writ-
ten by Kunc [8]. This paper is focused on equations over unary alphabet, or,
equivalently, over natural numbers.

Systems of language equations can be used to characterize formal languages.
For example context-free languages can be represented as components of the
least solutions of certain type of systems of equations. These were introduced by
Ginsburg and Rice [1] and consists of equations

X1 = φ1(X1, . . . , Xn)

...

X1 = φn(X1, . . . , Xn),

whereXi are variables on formal languages over some fixed finite alphabetΣ, and
φi are expressions with operations of union and concatenation of languages and
finite constants. This kind of systems of equations, that have only an occurence
of a variable on the left-hand side, are called resolved. If intersection is added to
the set of operations the least solutions of such systems define the conjunctive
languages introduced by Okhotin [12]. If also the negation is allowed, then the
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systems are able to represent the recursively enumerable languages as their least
solutions, co-recursively enumerable languages as the greatest solutions, and
recursive languages as the unique solutions [13].

If a more general form of systems of equations is considered

φ1(X1, . . . , Xn) = ψ1(X1, . . . , Xn)

...

φm(X1, . . . , Xn) = ψm(X1, . . . , Xn),

called unresolved systems, where there can be any expressions on both sides of
the equations, then the expressive power remains the same for systems where all
Boolean operations are allowed. However, unresolved systems using more limited
set of operations are a lot more powerful than resolved ones. Already systems
with only the operations of union and concatenation can express all recursive
(recursively enumerable, co-recursively enumerable) languages as their unique
(least, greatest) solution [14], while their resolved counterpart can represent only
the context-free languages.

The previous results concern languages over alphabets with multiple letters.
In this setting non-commutativity is a fundamental property. The power of non-
commutation was underlined by the result of Kunc [7], who showed that com-
putational universality occurs in extremely simple equations LX = XL, only
concerning commutation with a finite language L ⊂ {a, b}∗. The greatest solu-
tion of such an equation can be co-recursively enumerably universal.

In the case of a unary alphabet Σ = {a}, unary words ak are in one to one
correspondence with their lengths. Moreover, the length of concatenation of two
words is the sum of their lengths. So unary words can be considered as natural
numbers, and the algebraic structure remains the same. Sets of numbers take
the place of unary languages, {k ∈ N | ak ∈ L} instead of L. The notions of
natural numbers and unary words can be used to represent the same thing. This
paper uses natural numbers, as the notation is simpler, but everything could be
stated also in terms of unary languages.

The concatenation of unary languages (or addition in terms of numbers) is
commutative, so one cannot take advantage of non-commutativity when express-
ing complicated objects. For example the commutation equation LX = XL is
always trivially true in this case. Also the resolved systems with operations of
concatenation and union can only define regular languages in the unary case.

Leiss [11] had constructed an equation over unary alphabet, with operations
of concatenation and complementation, that has a non-regular solution. Still the
expressive power of equations over a unary alphabet seemed quite limited until
Jeż [2] proved that conjuctive languages over unary alphabet can be non-regular.
Jeż and Okhotin [5] were able to use similar methods than Jeż [2] to prove that,
in fact, unresolved systems of equations over sets of natural numbers with the
operations of union and addition are computationally complete.

Jeż and Okhotin [3] further showed that computational universality can be
achieved by systems of equations that use only the operation of addition and
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eventually periodic constants. These systems cannot represent all recursive (r.e.,
co-r.e.) languages [9], but they can represent encodings of these languages. Here
an encoding S′ of a set of numbers S means, that there is an embedding τ : N→
N, such that n ∈ S if and only if τ(n) ∈ S′.

Lehtinen and Okhotin [10] finally showed that encodings of recursive (r.e.,
co-r.e.) can be represented as the unique (least, greatest) solutions of systems of
equations using only one variable, the operation of addition and two equations

X +X +A = X +X +B

X + C = D,

where A, B, C and D are eventually periodic constants. In this paper a similar
result is presented concerning systems of equations with quotient.

In the context of natural numbers, the operation corresponding to quotient
is subtraction, defined by A − B = {a − b | a ∈ A, b ∈ B, a � b} for A,B ⊆ N.
Jeż and Okhotin [6] studied systems of equations over natural numbers with the
operations of addition, subtraction and union. They found out, that the unique
solutions of such systems can represent exactly the hyper-arithmetical sets.

Hyper-arithmetical sets Δ1
1 are defined as the intersection Σ1

1 ∩Π1
1 of the two

bottom classes of the analytical hierarchy.
In this paper it is shown, that these systems of equations over sets of natural

numbers can be simulated by univariate systems of equations with the operations
of addition and subtraction, and eventually periodic constants. The number of
equations in the systems can be limited to two, the systems being of the form

X +A = B

(X +X) + C = (X −X) +D.

Thus all hyper-arithmetical sets can be represented, although only in encoded
form, by the unique solutions of this kind of simple systems of equations. So-
lutions of these systems are in one to one correspondence to the systems of
more general form, and thus inherit the complexity of decision problem on the
existence of solutions from the general case, which is Σ1

1 -complete.
The encodings used in [10] were able to encode only sets including zeroes. The

encoding presented in this paper does not have the same limitation.

2 Simulating Many Variables by One

The main object in this paper is the set of natural numbers N = {0, 1, 2, . . .}.
Focus is on systems of equations over the subsets of natural numbers P(N).
Addition and subtraction of numbers can be defined to these sets of numbers
by A + B = {a + b | a ∈ A, b ∈ B} and A − B = {a − b | a ∈ A, b ∈ B, a � b}
for A,B ⊆ N. These operations correspond to concatenation and quotient of
languages, when a set of natural numbers is considered as a language over a
unary alphabet. More precisely, if Â = {ak | k ∈ A} and B̂ = {ak | k ∈ B}, then
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Â · B̂ = {ak | k ∈ A + B} and Â · B̂−1 = {ak | k ∈ A − B}, so the structures of
sets of natural numbers and unary languages are isomorphic.

Systems of equations over sets of natural numbers are sets of equations

φ(X1, . . . , Xn) = ψ(X1, . . . , Xn),

where φ and ψ are expressions using the variables, and operations and constant
sets from some fixed sets. An m-tuple (S1, . . . , Sn) is a solution of the system, if
φ(S1, . . . , Sn) = ψ(S1, . . . , Sn) holds for every equation in the system.

The goal of this section is to simulate a multivariable system using addition,
subtraction and union by a system with one variable, and without using union.
First the system of equations to be simulated should be fixed.

For I ⊆ {1, 2, . . . ,m − 1} × {1, 2, . . . ,m − 1}, J ⊆ {1, 2, . . . ,m − 1} and
eventually periodic F ⊆ N, define the expressions

φ(I,J,F )(X1, . . . , Xm−1) =
⋃

(i1,i2)∈I
(Xi1 +Xi2) ∪

⋃
j∈J

Xj ∪ F

and

ψ(I,J,F )(X1, . . . , Xm−1) =
⋃

(i1,i2)∈I
(Xi1 −Xi2) ∪

⋃
j∈J

Xj ∪ F.

These expressions will be the left and right-hand sides of the equations in the
system.

So the starting point is a system of equations ofm−1 variables, with equations
of the form

φ(I1,J1,F1)(X1, . . . , Xm−1) = ψ(I2,J2,F2)(X1, . . . , Xm−1)

where I1, I2 ⊆ {1, 2, . . . ,m − 1} × {1, 2, . . . ,m − 1}, J1, J2 ⊆ {1, 2, . . . ,m − 1},
F1, F2 ⊆ N are eventually periodic constant sets. The index set I, that contains
pairs of elements from

P({1, . . . ,m− 1} × {1, . . . ,m− 1})× P({1, . . . ,m− 1})×F ,

where F is the set of eventually periodic subsets of natural numbers, is used to
specify the system.

It is easy to see by possibly introducing new variables, that any system using
the operations of addition, subtraction and union can be transformed into this
kind of an equation in such a way, that the solutions stay the same. This sys-
tem will be simulated by a system with only one variable, using addition and
subtraction as the only operations.

The encoding uses the structure of the natural numbers. If p is a positive
number, then define the embeddings τpi : P(N)→ P(N) as τpi (S) = {pn+ i | n ∈
S}.

For any set S the numbers of the form pn+ i are referred to as the track i of
S. Track i is said to contain the set {n ∈ N | pn+ i ∈ S}.
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The encoding π : P(N)m−1 → P(N) for the simulation is defined by

π(S1, . . . , Sm−1) = (
2m⋃
i=0

τpi (N))) ∪

(
m−1⋃
k=1

τp(3m+k)(Sk)) ∪

(
m−1⋃
k=1

τp(kb)(Sk)) ∪

τp4m({0}) ∪ τpbm({0})
where b = 4(2m+ 1), p = (m+ 1)b and c = p− 4m− 1 = bm+ 4m+ 3.

Suppose S = π(S1, . . . , Sm−1) for some S1, . . . , Sm−1 ⊆ N. Then the set Sk
is encoded on tracks 3m + k and bk. To simulate the system of equations with
multible variables, the sums and differences of two sets Sk and S� are needed.
They are encoded on tracks bk + 3m + 	 of S + S and bk − 3m − 	 of S − S,
respectively.

To compare the contents of individual tracks, useless information must be
overwritten. For that purpose, define the three sets

E = (

4m⋃
i=0

{(2m+ 1)i}) ∪ {bm+ 2, bm+ 2m+ 2} ∪ {c+ 1, c+ 2m+ 1}

E+ =

m−1⋃
i=0

{bi, bi+ 4m+ 4} ∪ {bm− 2m+ 2, bm+ 4m+ 4}

E− =

m−1⋃
i=0

({bi}+ {0, 2, 2m+ 2, 6m+ 4}).

Adding these to S, S+S and S−S results in a set that has all other tracks full,
except track c, which remains empty. This is stated in the following lemma. The
proof is omitted due to space constraints.

Lemma 1. If S = π(S1, S2, . . . , Sm−1) for some Si ⊆ N, then S+E = S+S+
E+ = (S − S) + E− =

⋃
i�=c τ

p
i (N) .�

Now the track c can be used to represent expressions over over S1, S2, . . . , Sm−1.
For example, the track bk + 3m+ 	 of S + S contains the sum Sk + S�. Adding
this to c− (bk + 3m+ 	) moves it to track c, so that

S + S + (E+ ∪ {c− (bk + 3m+ 	)}) =
⋃
i�=c

τpi (N) ∪ τpc (Sk + S�).

This makes it possible to express the expressions used in the system being sim-
ulated. For each expression

φ(I,J,F )(X1, . . . , Xm−1) =
⋃

(i1,i2)∈I
(Xi1 +Xi2) ∪

⋃
j∈J

Xj ∪ F

appearing in the system, define a set
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E+
(I,J,F ) = E+∪{c−(bi1+3m+i2)|(i1, i2) ∈ I}∪{c−(bm+3m+j)|j ∈ J}∪τ p(c−bm−4m)(F ).

Similarly, for each expression

ψ(I,J,F )(X1, . . . , Xm−1) =
⋃

(i1,i2)∈I
(Xi1 −Xi2) ∪

⋃
j∈J

Xj ∪ F,

define the set

E−
(I,J,F ) = E−∪{c−(bi1−(3m+i2))|(i1, i2) ∈ I}∪{c−(bj−4m)|j ∈ J}∪τ p(c−bm+4m)(F ).

When these sets are added to S + S and S − S, all other tracks will be
full, except track c will contain the encoding of φ(I,J,F )(S1, . . . , Sm−1) or
ψ(I,J,F )(S1, . . . , Sm−1). This is stated in the next lemma.

Lemma 2. Let S = π(S1, S2, . . . , Sm−1) for some Si ⊆ N. Then

S + S + E+
(I,J,F ) =

⋃
i�=c

τpi (N) ∪ τpc (φ(I,J,F )(S1, . . . , Sm−1))

and

(S − S) + E−(I,J,F ) =
⋃
i�=c

τpi (N) ∪ τpc (ψ(I,J,F )(S1, . . . , Sm−1)).

Proof. First consider S + S + E+
(I,J,F ).

By Lemma 1, S + S + E+ =
⋃
i�=c τ

p
i (N).

Track bi1+3m+i2 of S+S contains the encoding of Si1+Si2 , track bm+3m+j
contains Sj and track bm+4m contains {0}. The proof that these are the exact
contents on these tracks will be omitted here.

Adding these to c − (bi1 − (3m + i2)) takes Si1 + Si2 on track c. similarly,
adding to c− (bj − 4m) takes Sj on track c, and adding τp(c−bm+4m)(F ) takes F

to the same track.
The union of these is φ(I,J,F )(S1, . . . , Sm−1), and hence

S + S + E+
(I,J,F ) =

⋃
i�=c

τpi (N) ∪ τpc (φ(I,J,F )(S1, . . . , Sm−1)).

The other case of

(S − S) + E−(I,J,F ) =
⋃
i�=c

τpi (N) ∪ τpc (ψ(I,J,F )(S1, . . . , Sm−1)).

is proved in a similar manner.

The fact that the encoded expressions are on the same track, all other tracks
being full, makes it easy to compare the expessions:
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Lemma 3. Let S = π(S1, . . . , Sm−1) for some Si ⊆ N. Then the equation

φ(I1,J1,F1)(X1, . . . , Xm−1) = ψ(I2,J2,F2)(X1, . . . , Xm−1)

has (S1, . . . , Sm−1) as a solution if and only if the equation

X +X + E+
(I1,J1,F1)

= (X −X) + E−(I2,J2,F2)

has S as a solution.

Proof. By Lemma 2

S + S + E+
(I1,J1,F1)

=
⋃
i�=c

τpi (N) ∪ τpc (φ(I1,J1,F1)(S1, . . . , Sm−1))

and

(S − S) + E−(I2,J2,F2)
=
⋃
i�=c

τpi (N) ∪ τpc (ψ(I2,J2,F2)(S1, . . . , Sm−1)).

It follows that

S + S + E+
(I1,J1,F1)

= (S − S) + E−(I2,J2,F2)

if and only if

τpc (φ(I1,J1,F1)(S1, . . . , Sm−1)) = τpc (ψ(I2,J2,F2)(S1, . . . , Sm−1)).

This is equivalent to

φ(I1,J1,F1)(S1, . . . , Sm−1) = ψ(I2,J2,F2)(S1, . . . , Sm−1),

which was claimed. .�
The correspondence of the equations in the two systems requires S to be an
encoding of some sets. To make the simulating system complete, there needs to
be equations guaranteeing this indeed is the case.

The following lemma states a set of equations that has S ⊆ N as a solution
only if it is almost a correct encoding of some sets. The only thing missing is,
that the two sets of data tracks do not have to have equal content. The set

E∅ = E∪
(
{c}−({0, . . . , c}\({0, . . . , 2m}∪(

m⋃
k=1

{(3m+k), kb})∪{c+1, . . . , p−1}
)
,

is used to declare one of the equations.

Lemma 4. If a set of natural numbers S is a solution of the equations

X + E∅ =
⋃
i�=c

τpi (N) (1)

X + (E ∪ {c− i}) = N, for each i = 0, . . . , 2m (2)

X + (E ∪ {c− 4m}) =
⋃
i�=c

τpi (N) ∪ τpc ({0}) (3)

X + (E ∪ {c− bm}) =
⋃
i�=c

τpi (N) ∪ τpc ({0}), (4)

then π(∅, . . . ,∅) ⊆ S ⊆ π(N, . . . ,N).
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The proof is omitted here. Another set of equations is needed to check, that the
tracks 3m+ k and bk of S have the same content. The next lemma states these
equations, the proof is omitted again.

Lemma 5. Let S satisfy the equations in Lemma 4 and the equation

S + S + (E+ ∪ {c− (bm+ 3m+ k)}) = (S − S) + (E− ∪ {c− (bk − 4m)})

Then the tracks 3m+ k and bk of S have the same content. If this holds for all
k = 1, 2, . . . ,m, then S = π(S1, . . . , Sm−1) for some sets Si ⊆ N. .�

The above Lemmas 4 and 5 state equations that have valid encodings of m− 1
sets as their solutions. Lemma 3 states equations that have such encodings as
solutions if and only if the equations of the original system has the encoded sets
as solutions. The next theorem sums up the correctness of the simulation.

Theorem 1. A set S ⊆ N is a solution of the equations

X + E∅ =
⋃
i�=c

τpi (N)

X + (E ∪ {c− i}) = N, for each i = 0, . . . , 2m

X + (E ∪ {c− 4m}) =
⋃
i�=c

τpi (N) ∪ τpc ({0})

X + (E ∪ {c− bm}) =
⋃
i�=c

τpi (N) ∪ τpc ({0})

X +X + (E+ ∪ {c− (bm+ 3m+ k)}) = (X −X) + (E− ∪ {c− (bk − 4m)}),
for k = 1, . . . ,m− 1,

and

X +X + E+
(I1,J1,F1)

= (X −X) + E−(I2,J2,F2)
, for ((I1, J1, F1), (I2, J2, F2)) ∈ I

if and only if S = π(S1, . . . , sm−1) for some Si ⊆ N such that (S1, . . . , Sm−1) is
a solution of the equations

φ(I1,J1,F1)(X1, . . . , Xm) = ψ(I2,J2,F2)(X1, . . . , Xm), for ((I1, J1, F1), (I2, J2, F2)) ∈ I.

.�

The solutions of these two systems are in one to one correspondence, so
it essentially irrelevant which of them is solved. Moreover, the encoding
π(S1, . . . , Sm−1) ⊆ π(S′1, . . . , S

′
m−1) if and only if Si ⊆ S′i for all i. In other

words, the order of solutions is preserved in the simulation as well.

3 Two Equations

In the previous section a systems of equations were constructed. These systems
consist of equations of unified forms of two types.
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Suppose

X +Ai = Bi, for i = 1, 2, . . . , e1

X +X + Ci = (X −X) +Di, for i = 1, 2, . . . , e2,

where Ai, Bi, Ci and Di are eventually periodic constants, is an arbitrary fixed
system of that kind. This system will be simulated by a system with only two
equations.

Let p = max(e1, e2) + 1.
In this system all the equations of the same type are handled by one equation.

This can be achieved by taking the constants of the above system, and defining
new constants by letting the old ones be on different tracks. That is, the new
constants are defined by:

A =

e1⋃
i=1

τpi (Ai)

B =

e1⋃
i=1

τpi (Bi)

C =

e2⋃
i=1

τpi (Ci)

D =

e2⋃
i=1

τpi (Di)

Lemma 6. The equation τp0 (S) + A = B holds if and only if the equations
S +Ai = Bi for i = 1, 2, . . . , e1 hold. .�

Proof. By the definition of A τp0 (S) +A =
⋃e1
i=1 τ

p
i (S +Ai). This is the same as

B =
⋃e1
i=1 τ

p
i (Bi) if and only if they are equal on all tracks i = 1, . . . , e1, that is

if and only if all equations S +Ai = Bi hold.

Lemma 7. The equation τp0 (S)+ τ
p
0 (S)+C = (τp0 (S)− τ

p
0 (S))+D holds if and

only if the equations S + S + Ci = (S − S) +Di for i = 1, 2, . . . , e2 hold.

Proof. As in the proof of the previous lemma,

τp0 (S) + τp0 (S) + C =

e2⋃
i=1

τpi (S + S + Ci)

and

(τp0 (S)− τ
p
0 (S)) +D =

e2⋃
i=1

τpi ((S − S) +Di).

The sets are equal if and only if the equations S + S + Ci = (S − S) +Di for
i = 1, 2, . . . , e2 hold, which was claimed. .�



624 T. Lehtinen

Lemma 8. A set S ⊆ N is the solution of

X +A = B

X +X + C = (X −X) +D

if and only if S = τp0 (S
′) for some solution S′ of

X +Ai = Bi, for i = 1, 2, . . . , e1

X +X + Ci = (X −X) +Di, for i = 1, 2, . . . , e2.

Proof. Let S′ be a solution of

X +Ai = Bi, for i = 1, 2, . . . , e1

X +X + Ci = (X −X) +Di, for i = 1, 2, . . . , e2,

and S = τp0 (S
′). Then S′ is a solution of the equations Xk + Ai = Bi and by

Lemma 6 S is a solution of X+A = B. At the same time S′ is a solution of of all
X+X+Ci = (X−X)+Di, and thus, by Lemma 7, X+X+C = (X−X)+D
has S as a solution as well.

Conversely, assume that S + A = B and S + S + C = (S − S) + D. Let
pn+ a ∈ S, where 0 � a < p. If p −m � a, then pn′ − a ∈ A for some n′ ∈ N
and (pn+ a) + (pn′ − a) = p(n+ n′) ∈ B. This is a contradiction, since track 0
of B is empty.

If 0 < a < p −m, then (pn + a) + (pn′ +m) = p(n+ n′) + (m + a) ∈ B, as
pn′+m ∈ A for some n′ ∈ N by the definition of A. This is again a contradiction,
because m < m+ a < p and the corresponding tracks are empty in B.

So it must be the case that a = 0, and thus S = τp0 (S
′) for some S′ ⊆ N. It

follows from Lemmas 6 and 7, that S′ is a solution of

X +Ai = Bi, for i = 1, 2, . . . , e1

X +X + Ci = (X −X) +Di, for i = 1, 2, . . . , e2,

which completes the proof the lemma. .�

Theorem 1 and the construction in this section together yield the following
theorem.

Theorem 2. Let

φi(X1, . . . , Xm) = ψi(X1, . . . , Xm), for i ∈ I.

be a system of equations.
There exist such eventually periodic sets A, B, C and D, and numbers 0 <

di < p, that (S1, . . . , sm−1) is a solution of the above equation if and only if there
is a solution S of

X +A = B

X +X + C = (X −X) +D,

such that S ∩ τpdi(N) = τpdi(Sdi), for i ∈ I. .�
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The correspondence of the solutions is one to one, and preserves order. Hence a
system has a unique solution if and only if the constructed system has a unique
solution. Also the least and greatest solution exist for these equations at the
same time.

4 Conclusion

It has been shown that systems of two equations

X +A = B

X +X + C = (X −X) +D

over the sets of natural numbers can simulate any systems of equations over
sets of natural numbers using the operations of addition, subtraction and union.
The solutions of any simulated system over multiple variables are in one to one
correspondence with the solutions of the constructed simple system.

Consequently, solving questions about system of two equations using only
addition and subtraction are as hard as solving the same questions in the gen-
eral case. The unique solutions of the general systems can represent hyper-
arithmetical sets and the problem for solution existence is Σ1

1 -complete. The
systems of the stated simple form can represent the same sets in an encoded
form, that is n is in some set S if and only if n · p+ i, for some fixed p and i, is
in the corresponding set containing the encoding of S, and solution existence is,
as mentioned above, the same, Σ1

1 -complete.
The high expressive power of these simple systems seem to imply, that no

practical (in the sense of computational complexity) families of languages can
be defined by this kind of systems. Allthough, restricting the set of constants
from all regular sets to some subfamily might still lead to a some practically
computable subclass.

Also the expressive power of the general systems by the least and greatest
solutions is an open question, while it is expected these are the Σ1

1 - and Π
1
1 -sets.

Whatever they turn out to be, they can be represented in an encoded form by
the simple system of two equations presented in this paper.
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Appendix

A Proofs of Lemmas 1, 4 and 5

Lemma 1. If S = π(S1, S2, . . . , Sm−1) for some Si ⊆ N, then S +E = S + S +
E+ = (S − S) + E− =

⋃
i�=c τ

p
i (N)

Proof. Case of S + E:
The tracks 0, 1, . . . , 2m of S are full and sums with

⋃4m
i=0{(2m + 1)i} give

full tracks 0, 1, . . . , bm+ 2m. Then sums with {bm+ 2, bm+ 2m+ 2} give full
tracks bm+2, bm+3, . . . , c− 1 and sums with {c+1, bm+6m+4} give tracks
c+ 1, c+ 2, . . . , p− 1.

Track c remains empty by the first equation of Lemma 4.
Case of S + S + E+:
The tracks 0, 1, . . . , 6m of S+S are full. The sum with

⋃m−1
i=0 {bi, bi+4m+4}

gives full tracks 0, 1, . . . , b(m− 1)+ 4m+4+6m, that is 0, 1, . . . , bm+2m. The
sum with bm− 2m+2 makes tracks bm− 2m+2, . . . , bm+4m+2(= c− 1) full,
and the sum with bm+ 4m+ 4 = c+ 1 makes tracks c+ 1, c+ 2, . . . , p− 1 full.

The track c remains empty, as the tracks c − bi = b(m − i) + 4m + 3 and
c− (bi − 4m− 4) = b(m− i)− 1 of S + S are empty for i = 0, 1, . . . ,m− 1, as
well as tracks c− (bm− 2m+ 2) = 6m+ 1 and c− (bm+ 4m+ 4) = −1, which
is the track p− 1.

Case of (S − S) + E−:
In the set S − S the tracks 0, . . . , 2m are full. Summing these with E− gives

full tracks
⋃m−1
i=0

(
bi+({0, 1, . . . , 4m+2}∪{6m+4, 6m+5, . . .8m+4})

)
. Since

bm ∈ S, also the tracks (p + {0, . . . , 2m}) − bm = b + {0, . . . , 2m} are full in
S − S. The sum of these with b(m− 1) + {0, 2, 2m+ 2, 6m+ 4} ∈ E− give full
tracks bm+({0, 1, . . . , 4m+2}∪{6m+4, 6m+5, . . .8m+4}). So all tracks but
bi + {4m + 3, 4m + 4, . . . , 6m + 3} for i = 0, 1, . . . ,m are known to be full in
(S − S) + E−.

The tracks p− 4m, p− 4m+1, . . . , p− 1 are full in S−S, since 0, 2m, 4m ∈ S
and the tracks 0, 1, . . . 2m are full in S. This yields full tracks bm+4m+4(= p−
4m), bm+4m+5, . . . , bm+6m+3. Furthermore, the sums with bi+6m+4 ∈ E−
makes tracks bi+4m+3, bi+4m+4, . . . , bi+6m+3 almost full, possibly missing
only the first number. The tracks 2m + 1, 2m + 2, . . . , 4m of S − S contain at
least 0 and sums with bi+2m+2 ∈ E− give bi+{4m+3, 4m+4, . . . , 6m+3} ∈
(S − S) + E− for i = 0, 1, . . . ,m− 1.

So all tracks except c = bm+ 4m+ 3 are full. For this track to be empty in
(S − S) + E−, the tracks bm + 4m + 3 − ({bi} + {0, 2, 2m+ 2, 6m + 4}) need
to be empty in S − S for i = 0, 1, . . . ,m− 1. In different notation these are the
tracks bj + {−2m− 1, 2m+1, 4m+1, 4m+3} for j = 1, 2, . . . ,m, which indeed
are empty in S − S. .�
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Lemma 4. If a set of natural numbers S is a solution of the equations

X + E∅ =
⋃
i�=c

τpi (N) (5)

X + (E ∪ {c− i}) = N, for each i = 0, . . . , 2m (6)

X + (E ∪ {c− 4m}) =
⋃
i�=c

τpi (N) ∪ τpc ({0}) (7)

X + (E ∪ {c− bm}) =
⋃
i�=c

τpi (N) ∪ τpc ({0}), (8)

then π(∅, . . . ,∅) ⊆ S ⊆ π(N, . . . ,N).

Proof. Suppose S is a solution of the equations.
The first equation implies that the tracks of S with numbers in {0, 1, . . . , c} \

({0, 1, . . . , 2m} ∪ (
⋃m
k=1{(3m+ k), kb})))∪ {c+ 1, c+ 2, . . . , p− 1} are empty. If

one of them, say track j, would contain a number, this number added to c − j
would end up on track c, which is empty.

Similarly the tracks c + 1, c + 2, . . . , p − 1 of S are empty, as otherwise the
track c would not be empty in the sum. This follows as

(c+ 1) + (p− 1) = (c+ 2) + (p− 2) = . . . = (p − 1) + (c+ 1) = c+ p

and c+ p is the same track as c.
Since S+E ⊆

⋃
i�=c τ

p
i (N) by the first equation, the equations S+(E∪{c−i}) =

N quarantee that the tracks 0, 1, . . . , 2m are full.
Similarly the last two equations ensure that the tracks 4m and bm contain

the encoding of {0}.
It follows that π(∅, . . . ,∅) ⊆ S ⊆ π(N, . . . ,N). .�

Lemma 5. Let S satisfy the equations in Lemma 4 and the equation

S + S + (E+ ∪ {c− (bm+ 3m+ k)}) = (S − S) + (E− ∪ {c− (bk − 4m)})

Then the tracks 3m+ k and bk of S have the same content. If this holds for all
k = 1, 2, . . . ,m, then S = π(S1, . . . , Sm−1) for some sets Si ⊆ N.

Proof. The sides of the equations are⋃
i�=c

τpi (N) ∪ τpc (T1) =
⋃
i�=c

τpi (N) ∪ τpc (T2),

where T1 has the same contents as track bm+ 3m+ k of S + S and T2 has the
same contents as track bk − 4m of S − S. It follows that the contents on these
tracks are the same, that is T1 = T2.

The set T1 is equal to the sum of contents on tracks bm and 3m + k of S.
And since track bm contains the set {0}, this sum equals the contents on track
3m+ k of S.
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Similarly, T2 equals the subtraction of content on track 4m from content on
track bk of S. Again the track 4m contains {0}, and thus T2 equals the content
on track bk. It follows that the tracks 3m+k and bk of S have the same content.

If this holds for all k, then S = π(S1, . . . , Sm−1) for some sets Si ⊆ N by the
definition of π. .�



Weakly-Synchronized Ground Tree Rewriting

(with Applications to Verifying Multithreaded Programs)
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Abstract. Ground tree rewrite systems (GTRS) are a well-known tree-
extension of prefix-rewrite systems on words (a.k.a. pushdown systems),
where subtrees (instead of word prefixes) are rewritten. GTRS can model
programs with unbounded recursion depth and thread-spawning, wherein
the threads have a tree-shaped dependency graph. We consider the ex-
tension of GTRS with a finite (global) control unit for synchronizing
among the active threads, a.k.a. state-extended GTRS (sGTRS). Since
sGTRS is Turing-complete, we restrict the finite control unit to dags
possibly with self-loops, a.k.a. weakly-synchronized GTRS (wGTRS).
wGTRS can be regarded as a generalization of context-bounded analy-
sis of multipushdown systems with dynamic thread spawning. We show
that reachability, repeated reachability, and the complement of model
checking deterministic LTL over weakly-synchronized GTRS (wGTRS)
are NP-complete by a polynomial reduction to checking existential Pres-
burger formulas, for which highly optimized solvers are available.

1 Introduction

Pushdown systems (PDS) are a natural abstraction of sequential programs with
unbounded recursions. Their verification problems have been extensively studied
(e.g. see the survey [5]), many of which are not only decidable, but also relatively
tractable.

Apart from having function calls, real-world programs are often multi-
threaded. Given the rapidly increasing popularity of multi-core computers,
multithreaded applications are only becoming increasingly more popular. Most
popular programming languages (e.g. Java, Python, C++, C#) now have built-
in constructs to support multithreading, e.g., Fork/Join, parbegin-parend,
Parallel.For. Such constructs allow an unbounded number of threads at any
given time (due to thread-spawning). This motivates the study of verification
problems on extensions of pushdown systems with multithreading.

In this paper, we start with a well-known extension of PDS called ground
tree rewrite systems (GTRS), e.g., see [14]. Since PDS can be thought of as
prefix-rewrite systems (prefixes are rewritten based on a given set of rewrite
rules on words), GTRS can be construed as a tree-extension of PDS, wherein
subtrees (instead of prefixes) are rewritten based on a given set of rewrite rules
on ranked trees. Owing to the tree structure of GTRS, one can easily mimic the
effect of parbegin-parend and Parallel.For language constructs, whereby a

B. Rovan, V. Sassone, and P. Widmayer (Eds.): MFCS 2012, LNCS 7464, pp. 630–642, 2012.
c© Springer-Verlag Berlin Heidelberg 2012
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parent thread spawns several child threads and waits for the return values of
computation of these child threads. This statement actually only holds so long
as there is no “shared” (global) variables, which permit synchronization between
the active (instead of waiting) threads.

A natural way to extend GTRS so as to allow synchronization via shared
variables between the active threads is to extend GTRS with a finite num-
ber of (global) control states. Such an extension is called state-extended GTRS
(sGTRS). Unlike GTRS, for which reachability and repeated reachability are
solvable in polynomial time, sGTRS can easily simulate multistack pushdown
automata for which most verification problems quickly become undecidable [19].

One way to extend GTRS with control states while staying within the realm
of decidability is to disallow cycles (other than self-loops) in the transition graph
of the control states of sGTRS. Such transition graphs of (with initial/accepting
states) are often called 1-weak automata [16]. The class of sGTRS which satisfies
this restriction is called weakly-synchronized (or weakly-extended) GTRS, which
we abbreviate as wGTRS [21]. It is known [21] that reachability, repeated reach-
ability, and the complement of model checking deterministic fragment of LTL
(LTLdet) over wGTRS are all solvable in exponential time, but are NP-hard.
LTL model checking over GTRS is known to be undecidable (e.g. see [4,11]). For
GTRS, reachability and repeated reachability are in P (e.g. [14]).

What Is the Modeling Power of wGTRS? Useful timing and event con-
straints can be embedded in 1-weak automata (e.g. see [9]). In addition, we shall
see later that wGTRS: (1) generalizes multipushdown systems with bounded con-
text switches [18] by allowing dynamic thread creation using parbegin-parend
or Parallel.For constructs, and (2) provides a natural underapproximation of
sGTRS, where global synchronizations take place for at most a given bound n
of times.

Contributions. The main contribution of this paper is a technique for showing
optimal complexity of model checking weakly-synchronized GTRS by a poly-
time reduction to satisfiability of existential Presburger formulas, which is NP-
complete and for which there are highly-optimized solvers. We firstly consider
the global reachability problem: given a wGTRS P over ranked alphabet Σ and
two tuples (s0,S), (t0, T ) of control states of P and tree automata over Σ, decide
if there exists a path from some configuration (s0, T1) of P , where T1 ∈ L(S)
to some configuration (t0, T2) of P , where T2 ∈ L(T ). We show in Section 4
that this problem is NP-complete by a reduction to satisfiability of existential
Presburger formulas.

We give several further applications of this upper bound in Section 5: (1)
another poly-time algorithm for global reachability for GTRS and (2) NP-
completeness for repeated reachability and the complement of LTLdet model
checking for wGTRS.

In the sequel, when deriving upper bounds, we allow infinitely many rewrite
rules in the input (w)GTRS compactly represented by means of tree automata.

Other Related Work. There are two other approaches to extend push-
down systems with dynamic thread spawning. Process rewrite systems hierarchy
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proposed by Mayr [17]. Some classes of systems in this hierarchy (including PA
and PAD processes) are intimately connected to GTRS [11]. Another approach
was considered by Bouajjani et al. [3] in their work on networks of pushdown
systems (called CPDN).

The authors of [13] studied the extension of process rewrite systems and other
classes in the hierarchy with 1-weak finite control unit. They showed that de-
cidability can still be retained for reachability, among others. Decidability and
undecidability of fragments of LTL have also been fully classified [4]. The tech-
niques considered in this paper can be easily adapted to show that reachability,
repeated reachability for weakly extended PA and PAD are NP-complete, while
LTLdet model checking for weakly extended PA and PAD are coNP-complete.

Context-bounded model checking over multipushdown systems was first stud-
ied in [18] and is shown to be NP-complete for multipushdown systems. Various
extensions have been proposed including phase-bounds [22], ordered multi-stack
machines [1], bounded languages [8,10], dynamic thread creation [2], and more
general approach [15]. The work of [2] considers a different style of multithread-
ing than what we consider in this paper. The difference is akin to the difference
between GTRS and CPDN, which are unexplored. We leave it as future work to
explore the connections.

2 Preliminaries

General Notations. For two given natural numbers i ≤ j, we define [i, j] =
{i, i+ 1, . . . , j}. Define [k] = [0, k]. Given a function f : S1 → S2 and a subset
S′1 ⊆ S1, the notation f|S′

1

is used to denote the restriction of f to the domain

S′1. Vectors v over a set S are simply elements of Sk for some positive integer
k. An example is when S = N, which gives us vectors of naturals. In the sequel,
vectors are also thought of as a function v : I → S, where I is some nonempty
finite index set. Vectors in the standard sense use I = [1, k] for some positive
integer k. When comparing two vectors of naturals u,v over the same index
set I, we use the component-wise ordering. We write u ≤ v iff, for each i ∈ I,
u(i) ≤ v(i). This partial ordering ≤ is well-known to be well-founded.

Transition Systems. Let ACT be a finite set of action symbols. A transition
system over ACT is a tuple S = 〈S, {→a}a∈ACT〉, where S is a set of config-
urations, and →a ⊆ S × S is a binary relation over S. We use → to denote
the relation

(⋃
a∈ACT →a

)
. The notation →+ (resp. →∗) is used to denote the

transitive (resp. transitive-reflexive) closure of →. Given two sets S1, S2 ⊆ S of
configurations, we write S1 →+ S2 if s1 →+ s2 for some s1 ∈ S1 and s2 ∈ S2. The
notations S1 →∗ S2 and S1 → S2 are defined likewise. We say that a sequence
s1 → · · · → sn is a path (or run) in S (or in →). Given two paths π1 : s1 →∗ s2
and π2 : s2 →∗ s3 in →, we may concatenate them to obtain π1 ; π2 (by glu-
ing together s2). Given a subset S′ ⊆ S, denote by Rec

→(S′) to be the set of
elements s0 ∈ S for which there exists an infinite path s0 → s1 → · · · visiting
S′ infinitely often, i.e., sj ∈ S′ for infinitely many j ∈ N. A transition system
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S = 〈S, {→a}a∈ACT〉 is said to be 1-weak if each path s1 → · · · → sn in S with
s1 = sn satisfies si = si+1 for all i ∈ [1, n− 1]. In other words, every cycle in S
is a self-loop.

Word Languages and Parikh Images. An alphabet Σ is a finite set of sym-
bols. We use standard notations from word language theory (e.g. [12]). Given a
word w ∈ Σ∗ and a ∈ Σ, we use |w|a to denote the number of occurrences of a
in w (e.g. |abaa|a = 3). The Parikh image of w, denoted by P(w), is the integral
vector v : Σ → N such that v(a) = |w|a. Given a language L ⊆ Σ∗, its Parikh
image is P(L) = {P(w) : w ∈ L}.

Tree Automata and Languages. A ranked alphabet is a nonempty finite set
of symbols Σ equipped with a rank function rank : Σ → N. When the context is
clear, a ranked alphabet will simply be referred to as an alphabet. Let rank(Σ)
denote max{rank(a) : a ∈ Σ}. A tree domain D is a nonempty finite subset of
N∗ satisfying (1) prefix closure, i.e., if vi ∈ D with v ∈ N∗ and i ∈ N, then v ∈ D,
(2) younger-sibling closure, i.e., if vi ∈ D with v ∈ N∗ and i ∈ N, then vj ∈ D for
each natural number j < i. Standard terminologies (e.g. nodes, parents, children,
ancestors, descendants) will be used. A tree over a ranked alphabet Σ is a pair
T = (D,λ), where D is a tree domain and the node-labeling λ is a function
mapping D to Σ such that, for each node v ∈ D, the number of children of v in
D equals the rank rank(λ(v)) of the node label of v. Write Tree(Σ) for the set
of all trees over Σ. In the sequel, we also use the standard term representations
of trees (cf. [6]).

A (bottom-up) nondeterministic tree-automaton (NTA) over a ranked alpha-
bet Σ is a tuple A = 〈Q,Δ, F 〉, where Q is a finite nonempty set of states, Δ is

a finite set of rules of the form (q1, . . . , qr)
a
↪→ q, where a ∈ Σ, r = rank(a), and

q, q1, . . . , qr ∈ Q, and F ⊆ Q is a set of final states. A rule of the form ()
a
↪→ q

is also written as
a
↪→ q. For a state q ∈ Q, the notation Aq is used to denote

the NTA 〈Q,Δ, {q}〉. A run of A on a tree T = (D,λ) is a mapping ρ from D
to Q such that, for each node v ∈ D (with label a = λ(v)) with its all children

v1, . . . , vr, it is the case that (λ(v1), . . . , λ(vr))
a
↪→ λ(v) is a transition in Δ. For

a subset Q′ ⊆ Q, the run is said to be accepting if ρ(ε) ∈ F . The NTA is said to
accept T if it has an accepting run on T . The language L(A) of A is the set of
trees which are accepted by A. A language L is said to be regular if there exists
an NTA accepting L.

A context tree with (context) variables x1, . . . , xn is a tree T = (D,λ) over the
alphabet Σ∪{x1, . . . , xn}, where Σ∩{x1, . . . , xn} = ∅ and for each i = 1, . . . , n,
it is the case that rank(xi) = 0 and there exists a unique context node ui with
λ(ui) = xi. In the sequel, we will often denote such a context tree as T [x1, . . . , xn]
and, by convention, assume that u1, . . . , un appear in an inorder tree traversal
ordering. Given trees T1 = (D1, λ1), . . . , Tn = (Dn, λn) over Σ, we use the
notation T [T1, . . . , Tn] to denote the tree (D′, λ′) obtained by filling each hole
xi by Ti, i.e., D

′ = D ∪
⋃n
i=1 ui · Di and λ

′(uiv) = λi(v) for each i = 1, . . . , n
and v ∈ Di. Given a tree T , if T = C[t] for some context tree C[x] and a tree t,
then t is called a subtree of T .
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Notation for Context-Free Grammars. A context-free grammar (CFG) over
an alphabet Σ is a tuple G = (Nt, Tt, Rules, Start), where Nt is a finite set of
nonterminals, Tt = Σ is a finite set terminals, Rules is a finite set of production
rules of the form X → α where X ∈ Nt and α ∈ (Nt ∪ Tt)∗, and Start ∈ Nt is
the start nonterminal. In the sequel, for each X ∈ Nt, we use the notation GX to
denote the CFG (Nt, Tt, Rules, X). We denote by L(G) the language of words
generated by G.
Existential Presburger Formulas. Existential Presburger formulas are for-
mulas in the existential fragment of Presburger arithmetic, i.e., first-order the-
ory over 〈N,+〉. If ϕ(x) is a formula with the vector x of free variables, where
x : I → {x1, . . . , xm} is a vector with some index set I, and v : I → N is a
vector over natural numbers, we write 〈N,+〉 |= ϕ(v) if ϕ is a true formula in
〈N,+〉 under the interpretation that maps each variable x(i) to v(i). A formula
ϕ(x) is said to be satisfiable in 〈N,+〉 if there exists v such that 〈N,+〉 |= ϕ(v).
It is well-known that deciding satisfiability over 〈N,+〉 is NP-complete [20], for
which there are highly optimized solvers (e.g. Z3 [7]).

3 Weakly Extended Ground Tree Rewrite Systems

A state-extended ground tree rewrite systems (sGTRS) over a finite set ACT of
action symbols is a tuple P = 〈Q,Σ,Δ〉, where Q is a nonempty finite set of
control states, Σ is a ranked alphabet, and Δ is a finite set of rules of the form

(q1,A1)
α
↪→ (q2,A2), where q1, q2 ∈ Q, α ∈ ACT, and A1,A2 are NTA over Σ. A

configuration of P is a tuple (q, T ), where q ∈ Q and T ∈ Tree(Σ). Let Conf(P)
denote the set of configurations of P . The transition system generated by P is
SP = 〈Conf(P), {→a}a∈ACT〉, where (q1, T1)→α (q2, T2) iff there exist a context

tree T [x], a rule (q1,A1)
α
↪→ (q2,A2) in Δ, and trees t1 ∈ L(A1) and t2 ∈ L(A2)

such that T1 = T [t1] and T2 = T [t2]. We define →P to be the union of all →a,
where a ranges over ACT.

The underlying control graph of P = 〈Q,Σ,Δ〉 is the finite transition system

S = 〈Q, {→a}a∈ACT〉, where q1 →a q2 iff (q1,A1)
a
↪→ (q2,A2) is a rule in Δ. We

say that P is a weakly-synchronized (or weakly-extended) ground tree rewrite sys-
tems (wGTRS) if its underlying control graph is 1-weak. In the case of wGTRS,
we often denote edge relation of this underlying control graph as ≺. We say
that P is a ground tree rewrite systems (GTRS) if its underlying control graph
is 〈{q}, {→a}a∈ACT〉, where q →a q, for each a ∈ ACT. In this case, a GTRS
P = 〈Q,Σ,Δ〉 is also written as 〈Σ,Δ〉 (or simply Δ) for simplicity. If each
letter in Σ is of rank ≤ 1, P is also called a pushdown system (PDS).

Remark: “Ground tree rewrite systems” are often defined in a rather restrictive
form, wherein each NTA A in the rewrite rule is explicitly given as a tree t ∈
Tree(Σ) representing the singleton set {t}. Our definition of GTRS coincides
with what is commonly referred to as “regular GTRS”. See [14].

Notation: In the sequel, given s ∈ Q and an NTA A over Σ, we shall use the
notation (s,L(A)) to mean {s} × L(A).
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We define the (global) reachability problem for sGTRSs as follows: given two
NTAs A1,A2 over the ranked alphabet Σ, an sGTRS P = 〈Q,Σ,Δ〉, and two
states q1, q2 ∈ Q, decide if (q1,L(A1)) →∗P (q2,L(A2)). When we restrict the
input sGTRSs to wGTRSs (resp. GTRSs), we call the resulting subproblems to
be global reachability problem for wGTRSs (resp. GTRSs).

An Intuitive Example. Modeling sequential programs as PDS is standard
(e.g. see [17]): the stack is used to record program points (function names and
values of local variables), while the finite control is used to record the return
values from the previous function call. Modeling with (s)GTRS is similar except
that the tree structure can model multithreading.

Consider a program with two functions called fun1 and fun2 (among others).
The function fun2, which we leave unspecified, inputs and outputs a boolean
value. The function fun1 is defined in as follows:

bool b[5]; Par.For(0,4,i,=>){b[i] = fun2(a[i])}; return
4∧
i=0

b[i];

In this example, we assume that the boolean array a is given as input to fun1 and
has size 5. This program simply executes the assignment b[i] = fun2(a[i])

in parallel for each i ∈ [0, 4], and afterwards outputs the boolean value obtained
by taking the conjunction of all the boolean variables b[i].

Assuming there is no global variables, the above program can be easily mod-
eled as a GTRS. For example, a GTRS model may contain the following rules:
(1) 〈fun1, s 2, a〉 → 〈fun1, s 3, a〉(〈fun2, s 1, a[0]〉, . . . , 〈fun2, s 1, a[4]〉), reflect-
ing the Par.For step (s i means step i), and (2) for all j1, . . . , j4 ∈ {0, 1},
〈fun1, s 3, a〉(j1, . . . , j4)→

∧4
i=0 ji, reflecting the return step of fun1.

With the existence of global (shared) variables, the above GTRS does not
suffice because after rule of type (1) has been applied, the five subthreads can no
longer communicate in this GTRS. Communication in general can be captured
by sGTRS by embedding synchronization in the finite control. wGTRS actually
suffices provided that the vector of values of the shared variables can change
only for a bounded number of times.

Modeling Power of wGTRS. wGTRS can be used to underapproximate
sGTRS. Intuitively, given an sGTRS P and a “depth” parameter d ∈ N, a
wGTRS Pd is constructed in polynomial time that underapproximates P up to
d switches of control states. We can also show that context-bounded analysis
of multipushdown systems [18] can be efficiently reduced to analyzing wGTRS.
Both are shown in the full version.

4 Reachability

Theorem 1. Global reachability for wGTRS is NP-complete. In fact, it is poly-
time reducible to satisfiability of existential Presburger formulas.

NP-hardness follows from the proof of Proposition 5.4.6 in [21] (by a reduction
from hamiltonian path problem). We now show the upper bound. The idea of the
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reduction to satisfiability of existential Presburger formulas is as follows: first
construct a CFG G which “overapproximates” the given wGTRS P ; the behavior
of G is then limited by adding an extra existential Presburger constraint ψ. Since
there is a linear-time algorithm [24] for computing the Parikh image of L(P) as
existential Presburger formulas Ψ , the desired formula will be Ψ ∧ ψ.

We now provide the details of the reduction. We are given a wGTRS P =
〈Q,Σ,Δ〉 over the action alphabet ACT, and two tuples (s0,S) and (t0, T ) of
states s0, t0 ∈ Q and NTA S, T over Σ representing, respectively, a set {(s0, T ) :
T ∈ L(S)} of start configurations and a set {(t0, T ) : T ∈ L(T )} of target
configurations. Denote by SP = 〈Conf(P), {→a}a∈ACT〉 the transition system
generated by P . The task is to decide whether (s0,L(S))→∗ (t0,L(T )).

Denote the a-labeled edge relation of the underlying control graph G of P
by ≺a, and the transitive closure (resp. transitive-reflexive closure) of ≺ :=⋃
a∈ACT ≺a by ≺+ (resp. ≺∗). Since G is a DAG possibly with self-loops, it

follows that ≺+ is antisymmetric, i.e., if s1 ≺+ s2 and s2 ≺+ s1, then s1 = s2.
Without loss of generality, we assume that: (1) s0 ≺∗ t0 (for, otherwise, we
immediately have (s0,L(S)) �→∗ (t0,L(T ))), and (2) each state s ∈ Q satisfy
s0 ≺∗ s ≺∗ t0 (for all T, T ′ ∈ Tree(Σ), i.e., each path (s0, T )→∗ (t0, T ′) cannot
go via configurations of the form (s, T ′′) with either s0 �≺∗ s or s �≺∗ t0).

We now define the CFG G = (Nt, Tt, Rules, Start). In the following, we
use the notation M (possibly with a subscript) to range over the NTAs S,
T , or NTAs appearing in Δ. The notation qM (possibly with a subscript) will
be used to denote a state in the NTA M. The notation qMF will be used to
denote a final state ofM. The starting nonterminal Start ∈ Nt is marked. Add
the rule Start → X(s0,qSF ),(t0,qTF ), for each qSF and each qTF . The nonterminal
X(s0,qSF ),(t0,qTF ) is initially unmarked. We then repeat the following two rules
until all elements of Nt have been marked. If X(s,qM1 ),(t,qM2 ) ∈ Nt is unmarked,
then mark X(s,qM1 ),(t,qM2) and apply the following rules:

(Rule I) For all transitions (qM1
1 , . . . , qM1

r )
a
↪→ qM1 and (qM2

1 , . . . , qM2
r )

a
↪→

qM2 in M1 and M2, respectively, add the rule

X(s,qM1 ),(t,qM2) → X
(s,q

M1
1 ),(t,q

M2
1 )

· · ·X
(s,q

M1
r ),(t,q

M2
r )

to Rules and add each X
(s,q

M1
i ),(t,q

M2
i )

on the r.h.s. of the rule to Nt un-

marked (if not already a member of Nt).

(Rule II) For each wGTRS rule r = (s′,A) α
↪→ (t′,B) with s ≺∗ s′ ≺ t′ ≺∗ t,

and each qAF and each qBF , add the rule

X(s,qM1 ),(t,qM2 ) → α(s′, t′)X(s,qM1 ),(s′,qAF )X(t′,qBF ),(t,qM2 )

to Rules, add X(s,qM1 ),(s′,qAF ) and X(t′,qBF ),(t,qM2 ) to Nt unmarked (if not

already a member of Nt), and add (s′, t′) and each letter in α ∈ ACT∗ to Tt.

Observe that s ≺+ t for each X(s,qM1 ),(t,qM2 ) ∈ Nt is an in-
variant throughout the above procedure. Termination of this proce-
dure is immediate since (1) Nt ⊆

⋃
M1,M2

{X(s,qM1),(t,qM2 ) : s ≺+
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t, and for each i = 1, 2, qMi is a state of Mi} and the size of the set on the
r.h.s. is at most |Q|2 × (total number of NTA states in P)2, and (2) the r.h.s.
of each production rule is a word of length at most max{rank(Σ), 4}.

Let m := |Tt|. We use the linear-time algorithm from [24] on the input G to
produce an existential Presburger formula Ψ(x), where x : Tt → {x1, . . . , xm},
capturing the Parikh image of L(G), i.e., for each v : Tt → N, we have v ∈
P(L(G)) iff 〈N,+〉 |= Ψ(v). We also write x(s, t) to mean x((s, t)), if (s, t) ∈ Tt.

We now define several constraints as quantifier-free Presburger formulas:

– Dom :=
∧
s≺t,s�=t x(s, t) ≤ 1. This “domain” formula asserts that advancing

from control state s to its strict successor t can take place at most once.
– Out≤1 :=

∧
s≺t1,s≺t2,distinct(s,t1,t2) (x(s, t1) = 1→ x(s, t2) = 0). This for-

mula asserts that from control state s, the system can only advance to at
most one of its successors.

– NoIncomp :=
∧
s:s0≺+s≺+t0

(
Invs →

∧
s′:s′ �=s,s�≺+s′,s′ �≺+s ¬Invs′

)
, where

Invt is a shorthand for the formula
∨
s≺t x(s, t) = 1 ∨

∨
t≺s x(t, s) = 1.

Intuitively, if a control state s is involved in a path, then no control states
that are incomparable to s (with respect to ≺+) can be involved in this path.

– if s0 = t0, then Init := �, and if s0 �= t0, then Init :=
∨
s0≺t,s0 �=t x(s0, t) =

1. This formula states that the system must advance from the initial state.
– Progress :=

∧
t∈Q,s0≺+t≺+t0,distinct(s0,t,t0)(∨

s≺t,s�=t x(s, t) = 1→
∨
t≺t′,t�=t′ x(t, t

′) = 1
)
. This formula states that the

system must advance from a control state it is in to one of its successors.

In the sequel, we let ϕ1 denote the formula Dom∧Out≤1∧NoIncomp, and ϕ2

denote the formula Init∧Progress. The desired existential Presburger formula
is ϕ := Ψ∧ϕ1∧ϕ2. Correctness of the reduction follows from the following lemma.

Lemma 2 (Correctness of Reduction). For each w ∈ ACT∗, (s0,L(S))→v

(t0,L(T )) for some v ∈ ACT∗ with P(v) = P(w) iff there exists v : Tt→ N such
that v(a) = |w|a for each a ∈ ACT and 〈N,+〉 |= ϕ(v).

It is not hard to show that the reduction takes polynomial time; more precisely,
O(|Q|3+(rank(Σ)×N)) time, where N := (|Q|2×N2

max)× (M2
max+ |Δ|), Nmax

be the maximum number of automata states in any given NTA appearing in P
or S or T , and Mmax be the maximum number of automata transitions in any
given NTA in P or S or T . The analysis is given in the full version.

Remark: Adding a “counting constraint” on the path as an existential Presburger
formula is easy. Such a counting constraint is simply an existential Presburger
formula ψ(x′), where x′ = x|ACT . In this case, the desired formula is simply ϕ∧ψ.

Correctness: Proof of Lemma 2. The proofs for both directions of Lemma
2 are done by induction. However, in both cases, we will have to strengthen
the statements; for, otherwise, the induction hypothesis will not get us off the
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ground. To this end, we will define a slight variant of the transition system SP
generated by P (which we call S′P).

Let S′P be the transition system obtained by adding to SP each ε-transition
(s, T )→ε (t, T ), for each T ∈ Tree(Σ) and s ≺+ t. Given a path

π = (p0, T0)→a1 · · · →an (pn, Tn)

in S′P and w = a1 · · · an, we define χ(π) to be the vector v : Tt→ N such that
(1) if a ∈ ACT, then v(a) = |w|a, and (2) if a = (s, t) with s ≺ t, then v(a) is
the number of indices i ∈ [1, n] with (pi−1, pi) = (s, t) and ai �= ε.

Lemma 3. For all X(s,qM1 ),(t,qM2 ) ∈ Nt, if w ∈ L(GX(s,qM1 ),(t,qM2 )) with

〈N,+〉 |= ϕ1(P(w)), then there exists a path π : (s,L(MqM1

1 ))→v (t,L(MqM2

2 ))
in S′P with χ(π) = P(w).

It is not hard to see that Lemma 3 implies the direction (⇐) of Lemma 2. A
proof can be found in the full version.

Proof (of Lemma 3). As we previously saw, we have s ≺+ t for each
X(s,qM1 ),(t,qM2) ∈ Nt. The proof is by induction on the length of derivations
of the word w from X(s,qM1 ),(t,qM2 ).

The base case is when X(s,qM1 ),(t,qM2 ) → ε, which is a production rule gener-

ated by Rule I. This means that there exists a ∈ Σ such that
a
↪→ qM1 and

a
↪→ qM2

are transitions ofM1 andM2, respectively, and thus a ∈ L(MqM1

1 )∩L(MqM2

2 ).
Since s ≺+ t, it follows that (s, a) →ε (t, a) is path π in S′P . It is also easy to
see that P(ε) = χ(π) = 0, and that 〈N,+〉 |= ϕ1(0).

We now proceed to the induction cases. There are two cases. We only consider
the first case; the second case is considered in the full version.

The first induction case is when the first production rule applied in the deriva-
tion of w from X(p1,qM1 ),(p2,qM2 ) (with p1 = s and p2 = t) is

X(p1,qM1 ),(p2,qM2 ) → α(p3, p4)X(p1,qM1),(p3,qM3)X(p4,qM4 ),(p2,qM2 )

where qM3 and qM4 are final states ofM3 andM4, respectively. This production

rule is generated by Rule II, which means that there exists a rule r = (p3,M3)
α
↪→

(p4,M4) with p1 ≺∗ p3 ≺ p4 ≺∗ p2 in P . We may also write w as α(p3, p4)w1w2,

where w1 ∈ L(GX(p1 ,qM1 ),(p3,qM3 )) and w2 ∈ L(GX(p4 ,qM4 ),(p2,qM2 )). Furthermore,
since 〈N,+〉 |= ϕ1(P(w)) and P(w1),P(w2) ≤ P(w), it follows that 〈N,+〉 |=
ϕ1(P(wi)) for each i = 1, 2. By induction, there exist paths π1 : (p1, T1) →∗

(p3, T3) and π2 : (p4, T4) →∗ (p2, T2) in S′P such that Ti ∈ L(MqMi

i ), for each
i ∈ [1, 4], and χ(πj) = P(wj), for each j = 1, 2. By applying the rule r above,
we also see that π3 : (p3, T3) →α (p4, T4) is a transition in SP . Therefore,
π := π1 ; π3 ; π2 is a path from (p1, T1) to (p2, T2) in S′P . We have χ(π) =∑3

i=1 χ(πi) = P(w1) + P(w2) + P(α(p3, p4)) = P(w). This completes the proof
for the second induction case. .�
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It remains to prove the direction (⇒) of Lemma 2. To this end, we need the
following lemma.

Lemma 4. For all X(s,qM1 ),(t,qM2 ) ∈ Nt, if there exists a path π :

(s,L(MqM1

1 )) →v (t,L(MqM2

2 )) in S′P , then there exists w ∈ Tt∗ with P(w) =
χ(π) such that w ∈ L(GX(s,qM1 ),(t,qM2 )).

To show the direction (⇒) of Lemma 2, first observe that each path π :
(s0,L(S))→v (t0,L(T )) in SP is also a path in S′P . By Lemma 4, there exists a
word w ∈ L(G) with χ(π) = P(w). Let v := P(w). It follows that 〈N,+〉 |= Ψ(v).
It suffices to show that 〈N,+〉 |= ϕ1(v) ∧ ϕ2(v). If s0 = t0, it is easy to see that
〈N,+〉 |= ϕ1(v)∧ϕ2(v). Therefore, assume that s0 �= t0. In this case, we take the
projection of π on to its first component (i.e. control states), say, p0, . . . , pk such
that p0 = s and pk = t. By removing duplicates, we may assume that p0, . . . , pk
are pairwise distinct control states. This means that for all distinct p, p′ ∈ Q, we
have v(p, p′) = 1 iff p = pi−1 and pi for some i ∈ [1, k]. Since p0, . . . , pk is a path
in the underlying graph of P , it is easy to check now that 〈N,+〉 |= ϕ1(v)∧ϕ2(v)
by exhausting all the five subconjuncts in the formula ϕ1 ∧ ϕ2.

We now prove Lemma 4. To this end, we need the following technical lemma
about path decompositions for wGTRS.

Lemma 5. For each path π : (p, T1) →v (q, T2) in S′P , there exists a context
tree C[x1, . . . , xn] for some n ∈ N such that:

1. T1 = C[t1, . . . , tn] for some trees t1, . . . , tn ∈ Tree(Σ),
2. T2 = C[t′1, . . . , t

′
n] for some trees t′1, . . . , t

′
n ∈ Tree(Σ),

3. for each i ∈ [1, n], there exists a path πi : (p, ti)→∗ (p1i , t1i )→αi (p
2
i , t

2
i )→∗

(q, t′i) in S′P for some rewrite rule (p1i ,Ai)
αi
↪→ (p2i ,Bi) in P such that t1i ∈

L(Ai) and t2i ∈ L(Bi).
4. χ(π) =

∑n
i=1 χ(πi).

It is not hard to see that Lemma 5 implies Lemma 4. The proof is done by induc-
tion on χ(π) (with componentwise ordering ≤). The above path decomposition
lemma is used to prove the inductive case. The proof is not hard but tedious,
and so is relegated into the full version. For space reasons, we also relegate the
proof of Lemma 5 into the full version.

5 Applications

A Polynomial-Time Algorithm for GTRS Reachability. The reduction
from the previous section can be easily modified to give another polynomial-
time algorithm for GTRS global reachability. Given the GTRS P and two tuples
(s0,S) and (t0, T ) of control states and NTAs, consider the CFG G and formula
ϕ = Ψ ∧ϕ1 ∧ϕ2 produced by the reduction. Observe that, in the case of GTRS,
we have ϕ1∧ϕ2 ≡ �. Therefore, Lemma 2 implies that (s0,L(S))→∗P (t0,L(T ))
iff Ψ is a satisfiable Presburger formula iff L(G) �= ∅. Therefore, we have reduced
global GTRS reachability to language emptiness of CFG, which is solvable in
polynomial time. This gives us another proof of the following proposition.
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Proposition 6. GTRS global reachability is solvable in polynomial-time.

Repeated Reachability. Repeated reachability for sGTRS is the following
problem: given an sGTRS P = 〈Q,Σ,Δ〉, an initial set (s0,L(S)) of configu-
rations of P given as (s0,S), a final set C of target configurations of P given as a
function mapping a control state p ∈ Q to an NTA Ap over Σ (here, C consists
of configurations of the form (p, T ) for some p ∈ Q and T ∈ L(Ap)), decide
whether (s0,L(S)) ∩Rec

→P (C) �= ∅. As for reachability problem, this problem
is undecidable.

Theorem 7. Repeated reachability for wGTRS is NP-complete. In fact, it is
poly-time reducible to satisfiablity of existential Presburger formulas.

NP-hardness follows from the proof of Proposition 5.4.6 in [21] (by a reduction
from hamiltonian path problem). To obtain the upper bound for this theorem,
we reduce this problem to satisfiability of existential Presburger formulas in
polynomial time. To this end, for each p ∈ Q, we define Pp to be GTRS obtained
by restricting P to control state p, i.e., Pp = 〈{p}, Σ,Δp〉, where Δp consists of
all rules in Δ of the form (p,A)→a (p,B). We first use Löding’s result [14] that
an NTA A′p representing Rec

→Pp ((p,L(Ap))) is computable in time polynomial
in ‖Ap‖ + ‖Pp‖, for each p ∈ Q. It follows that (s0,L(S)) ∩ Rec

→P (C) �= ∅
iff, for some p ∈ Q, (s0,L(S))→∗P (p,L(A′p)). Applying our poly-time reduction
from the previous section for the problem instance (s0,L(S))→∗P (p,L(A′p)), for
each p, and existentially quantifying all free variables, we obtained existential
Presburger sentences ϕp such that (s0,L(S)) →∗P (p,L(A′p)) iff 〈N,+〉 |= ϕp. It
immediately follows that (s0,L(S))∩Rec

→P (C) �= ∅ iff 〈N,+〉 |=
∨
q∈Q ϕp. This

shows that the desired existential Presburger sentence is
∨
q∈Q ϕp.

Model Checking Deterministic LTL over wGTRS. Deterministic LTL
(LTLdet) over ACT is the fragment of LTL with the following syntax:

ϕ, ϕ′ := p | Xϕ | ϕ ∧ ϕ′ | (p ∧ ϕ) ∨ (¬p ∧ ϕ′) |(p ∧ ϕ)Op(¬p ∧ ϕ′)

where p ranges over boolean combinations of ACT, and Op ranges over {U,W}.
The semantics [[ϕ]] ⊆ ACTω of an LTL formula ϕ can be defined in the same
way as for LTL, which is standard (e.g. see [23]). Given a transition system
S = 〈S, {→a}a∈ACT〉 over ACT, we write [[ϕ]]S to denote the set of configurations
s0 ∈ S from which all infinite paths π : s0 →a1 s1 →a2 · · · in S satisfy a1a2 . . . ∈
[[ϕ]]. The problem of model checking deterministic LTL for sGTRS is defined as
follows: given an LTLdet formula ψ and a sGTRS P = 〈Q,Σ,Δ〉 over the same
set ACT of action symbols, and an initial set of configurations (s0,L(S)) of P
represented as the tuple (s0,S) of control state s0 ∈ Q and NTA S over Σ,
decide if (s0,L(S)) ⊆ [[ψ]]S.

Theorem 8. LTLdet model checking over wGTRS is coNP-complete. In fact, it
is poly-time reducible to non-satisfiablity of existential Presburger formulas.

coNP-hardness for the problem is known [21]. For space reasons, we relegate the
proof for the upper bound into the full version.
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Abstract. We study the descriptional complexity of regular languages
that are definable by deterministic regular expressions. First, we examine
possible blow-ups when translating between regular expressions, deter-
ministic regular expressions, and deterministic automata. Then we give
an overview of the closure properties of these languages under various
language-theoretic operations and we study the descriptional complex-
ity of applying these operations. Our main technical result is a general
property that implies that the blow-up when translating a DFA to an
equivalent deterministic expression can be exponential.

1 Introduction

Deterministic or one-unambiguous regular expressions have been a topic of re-
search since they were formally defined by Brüggemann-Klein and Wood in order
to investigate a requirement in the ISO standard for the Standard Generalized
Markup Language (SGML), where they were introduced to ensure efficient pars-
ing. Today, the prevalent schema languages for XML data, such as Document
Type Definition (DTD) and XML Schema, require that the regular expressions
in their specification be deterministic. From a more foundational point of view,
one-unambiguity is a natural manner in which to define determinism in regular
expressions. As such, several decision problems behave better for deterministic
regular expressions than for general ones. For example, language inclusion for
regular expressions is PSPACE-complete but is tractable when the expressions
are deterministic.

Although deterministic regular expressions are rather widespread and have
been around for quite some time, they are not yet well-understood. This mo-
tivates us to study various foundational properties. In particular, we investi-
gate the differences in the descriptional complexity between regular expressions
(REs), deterministic regular expressions (DREs), and deterministic finite au-
tomata (DFA). Our initial motivation for this work was an unproved claim in
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[2] which states that, for expressions of the form Σ∗w, where w is a Σ-string,
every equivalent DRE is at least exponential in w. However, to the best of our
knowledge, no proof for this result exists in the literature and proving it turned
out to be rather non-trivial. Since this language has a polynomial-size RE and
DFA, we needed to develop new techniques for proving lower bounds on the size
of DREs.

A second set of contributions in this paper is a study of the effect of language-
theoretic operations on languages that are definable by a DRE. In particular,
we consider union, intersection, difference, concatenation, star, and reversal, for
unary and arbitrary alphabets. We provide a complete overview of the closure
properties of DRE-definable languages under these operations and we study the
descriptional complexity of applying such operations on DREs and their DFAs.
Several of these operations are relevant in XML schema management [7,17].

Until now, research on descriptional complexity of regular languages focused
mainly on REs and DFAs. It is well-known that an exponential blow-up cannot
be avoided when translating an RE into a DFA [12]. Ehrenfeucht and Zeiger
[5] proved that there also exist DFAs which are exponentially more succinct
than each equivalent RE. Gruber and Holzer [9,11] showed that there exist cer-
tain characteristics of automata which make equivalent regular expressions large.
However, these characteristics cannot näıvely be transferred to DREs. For ex-
ample, the languages used in the literature for proving lower bounds on the size
of REs (e.g. [5,9,11]) are not definable by DREs.

The state complexity of boolean operations on DFAs is studied in [15,18,20],
where in [18] the focus is on unary languages. In Section 4.2 we see that many
results in [20] directly apply for DRE-definable languages, since they are on finite
languages and every finite language is DRE-definable [1]. Gelade and Neven [8]
and Gruber and Holzer [10] independently examined the descriptional complex-
ity of complementation and intersection for REs. They showed that the size of
the smallest RE for the intersection of a fixed number of REs can be exponen-
tial; and that the size of the smallest RE for the complement of an RE can be
double-exponential. Furthermore, these bounds are tight. Gelade and Neven also
investigate these operations on DREs and proved that the exponential bound on
intersection is also tight when the input is given as DREs instead of REs [8]. Fur-
thermore, they proved that the complement of a DRE can always be described
by a polynomial-size RE. However, in their proofs, the languages of the resulting
REs are not DRE-definable. Concatenation and reversal operations on regular
languages are studied in [3,13,14,19,21], where in [21] also unary languages are
examined.

2 Definitions

By Σ we always denote a finite alphabet of symbols. A (Σ-)word w over alphabet
Σ is a finite sequence of symbols a1 · · ·an, where ai ∈ Σ for each i = 1, . . . , n.
The set of all Σ-words is denoted by Σ∗. The length of a word w = a1 · · · an is
n and is denoted by |w|. The empty word is denoted by ε.
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A (deterministic, finite) automaton (or DFA) A is a tuple (Q,Σ, δ, q0, F ),
where Q is a finite set of states, the transition function δ ⊆ Q × Σ → Q is a
partial function, q0 is the initial state and F ⊆ Q is the set of accepting states.
We sometimes abuse notation and denote a transition δ(q1, a) = q2 by a tuple
(q1, a, q2). We say that the aforementioned transition is q1-outgoing, q2-incoming,
or a-labeled. The run of A on word w = a1 · · · an is a sequence q0 · · · qn where,
for each i = 1, . . . , n, δ(qi−1, ai) = qi. Word w is accepted by A if the run is
accepting, i.e., if qn ∈ F . By L(A) we denote the language of A, i.e., the set of
words accepted by A. By δ∗ we denote the extension of δ to words, i.e., δ∗(q, w)
is the state which is reached from q by reading w. In this paper we assume
that all states of automata are useful, that is, every state can appear in some
accepting run. This implies that, from each state in an automaton, an accepting
state can be reached. The size |A| of a DFA is the cardinality of {(q, a) | δ(q, a)
is defined}.

The regular expressions (RE) over Σ are defined as follows: ε and every Σ-
symbol is a regular expression; and whenever r and s are regular expressions then
so are (r · s), (r + s), and (s)∗. In addition, we allow ∅ as a regular expression,
but we do not allow ∅ to occur in any other regular expression. We refer to
Σ-symbols, ε, and ∅ as atomic expressions. For readability, we usually omit
concatenation operators and parentheses in examples. The language defined by
an RE r, denoted by L(r), is defined as usual. Whenever we say that expressions
or automata are equivalent, we mean that they define the same language. The size
|r| of r is defined to be the total number of occurrences of alphabet symbols,
epsilons, and operators, i.e., the number of nodes in its parse tree. A regular
expression r is minimal if there does not exist a regular expression r′ with
L(r′) = L(r) and |r′| < |r|. By first(L) we denote the set of all symbols a ∈ Σ,
such that there is a word aw ∈ L. For a regular expression r, we define first(r)
as first(L(r)).

Deterministic regular expressions are defined as follows. Let r̄ stand for the
RE obtained from r by replacing, for every i and a, the i-th occurrence of
alphabet symbol a in r (counting from left to right) by ai. For example, for
r = b∗a(b∗a)∗ we have r̄ = b∗1a1(b

∗
2a2)

∗. A regular expression r is deterministic
(or one-unambiguous [2] or a DRE ) if there are no words waiv and wajv

′ in
L(r̄) such that i �= j. The expression (a + b)∗a is not deterministic since both
strings a2 and a1a2 are in L((a1 + b1)

∗a2). The equivalent expression b∗a(b∗a)∗

is deterministic. Brüggemann-Klein and Wood showed that not every regular
expression is equivalent to a deterministic one [2]. We call a regular language
DRE-definable if there exists a DRE that defines it. The canonical example for
a language that is not DRE-definable is (a+ b)∗a(a+ b) [2].

3 Descriptional Complexity of DFAs, REs, and DREs

We consider the relative descriptional complexity of REs, DREs and DFAs. An
overview of our results is shown in Figure 1. Since every DRE is an RE, we know
that every minimal RE for a language L is smaller or equal to a minimal DRE
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Finite Languages Infinite Languages
RE DRE DFA Case exists? Ref RE DRE DFA Case exists? Ref

Θ(n) Θ(n) Θ(n) yes Obs.1 Θ(n) Θ(n) Θ(n) yes Obs.1

Θ(n) 2Ω(n) 2Ω(n) yes [15,2] Θ(n) 2Ω(n) 2Ω(n) yes Th.6

2Ω(n) 2Ω(n) Θ(n) no [6] 2Ω(n) 2Ω(n) Θ(n) ?

Θ(n) 2Ω(n) Θ(n) ? Θ(n) 2Ω(n) Θ(n) yes Th.15

Ω(nlog n) Ω(nlog n) Θ(n) yes [11]

Fig. 1. Overview descriptional complexity

for L. Furthermore, Brüggemann-Klein and Wood showed that, given a DRE r,
one can construct a DFA A for L(r) with size O(|Σ||r|). Thus the table contains
all substantial cases that ought to be considered.

We start with a trivial observation that shows that there are languages that
do not cause any significant blow-up between the different representations. For
example, consider the singleton {an} and the infinite language {ak | k ≡ 0
mod n} = L((aa · · ·a)∗) in which the latter expression has n occurrences of a.

Observation 1. There exists a class of finite languages (Ln)n∈N and a class of in-
finite languages (L′n)n∈N such that, for each n ∈ N, the minimal DFAs, minimal
REs, and minimal DREs for Ln and L′n have size Θ(n).

3.1 Finite Languages

We present an overview of what is known in the case of finite languages. For the
language (0+1)≤n1(0+1)n, Kintala and Wotschke, and Brüggemann-Klein and
Wood showed that every DFA and every DRE has size exponential in n.

Theorem 2 ([15,2]). For each n ∈ N, the minimal DFA (and therefore every
minimal DRE) for the language (a+ b)≤na(a+ b)n have size 2Ω(n).

Ellul et al. [6] showed that, for each DFA (or even non-deterministic automaton)
A of size n that defines a finite language L(A), there exists an RE for L(A)
of size O(nlog n). Gruber and Johannsen showed that this upper bound is also
tight. However, this problem was open for quite some time [11].

Theorem 3 ([6]). Let A be a DFA of size n and let L(A) be finite. Then there
exists an RE r for L(A) such that |r| ≤ O(nlog n).

Theorem 4 ([11]). There exists a family of finite languages (Ln)n∈N, such that
the minimal DFA for Ln has Θ(n) states but every minimal RE for Ln has size
Θ(nlog n).

It remains open whether there exists a class of finite languages (Ln)n∈N, such
that the minimal REs and the minimal DFA for Ln are exponentially more
succinct than a minimal DRE for Ln.
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3.2 Infinite Languages

In the case of infinite languages, it is well known that an exponential blow-up
can occur when translating between REs and DFAs:

Theorem 5 ([12,5])
– The minimal DFA for (a+ b)∗a(a+ b)n has size 2Θ(n).
– There exists a family of infinite regular languages (Ln)n∈N, s.t. the minimal

DFA for Ln has size Θ(n2) and every minimal RE for Ln has size 2Ω(n).

However, to the best of our knowledge, all languages that are used in the litera-
ture to prove those blow-ups are not DRE-definable. Here, we prove that those
blow-ups cannot be avoided for DRE-definable languages, too. For an exponen-
tial blow-up when translating an RE for a DRE-definable language to a DFA,
we can extend the language of Theorem 2 to an infinite language.

Theorem 6. For each n ∈ N, the minimal DFA and every minimal DRE for
the DRE-definable language (a+ b)≤na(a+ b)n#∗ have size 2Ω(n).

Next, we prove that there can be an exponential blow-up when translating a
DFA to a DRE. The main idea of the proof is to identify concatenations of a
minimal DRE in a DFA. Therefore, we search for bottleneck states, which are
states through which every accepting run needs to go.

Definition 7. Let A = (Q,Σ, δ, q0, Qf) be a DFA. A state q ∈ Q \ {q0} is a
bottleneck state of A if
– for every w ∈ L(A) there are v, z ∈ Σ∗, s.t. w = v · z and δ∗(q0, v) = q, and
– if q ∈ Qf , then Qf = {q} and there are a ∈ Σ and p ∈ Q s.t. δ(q, a) = p.

Notice that we explicitly define initial states not to be bottleneck states.

Lemma 8. Let A = (Q,Σ, δ, q0, Qf) be a DFA with a bottleneck state q. Then
A has no equivalent DRE that is atomic or of the form s∗.

In the following we show that accepting bottleneck states in a DFA identify con-
catenations in an equivalent minimal DRE. Therefore, let A = (Q,Σ, δ, q0, Qf)
be a DFA. Then an equivalent DRE r is a q-concatenation if and only if r = r1 ·r2
and for every v ∈ L(r1) it holds that δ∗(q0, v) = q in A. If r is a DRE with these
conditions such that L(r) � L(A), then r is a partial q-concatenation for A.

Lemma 9. Let A = (Q,Σ, δ, q0, {qf}) be a DFA for a DRE-definable language
L, such that qf is a bottleneck state of A. Then every minimal DRE r for L is
a qf -concatenation r1 · r2 with first(r2) = {a ∈ Σ | δ(qf , a) is defined}.

Proof. By Lemma 8 it holds that r is neither atomic nor an expression s∗. It
remains to show that r is neither a disjunction nor a concatenation which is not
a qf -concatenation. We can prove the following claim:

Claim 10. Let A = (Q,Σ, δ, q0, {qf}) be a DFA for a DRE-definable language L,
such that qf is a bottleneck state of A. Let ∅ �= S ⊆ first(L) and r = r1r2 · · · rn
(with n > 1) be a minimal DRE for L∩SΣ∗, such that no ri is a concatenation.
Then there exists an i ∈ {1, . . . , n− 1} such that,
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– for every word w ∈ L(r1 · · · ri), it holds that δ∗(q0, w) = qf , and
– first(ri+1 · · · rn) = {a ∈ Σ | δ(qf , a) is defined}.

In particular, this means that r is a partial qf -concatenation for A.

We show why Claim 10 implies Lemma 9. From the discussion above, we know
that r is either a concatenation or a disjunction. In the case that r is a concate-
nation, Claim 10 clearly implies the lemma (if S = first(r), then L∩ SΣ∗ = L).

We now show that, if r is a disjunction (s1 + · · ·+ sk), then r is not minimal,
which contradicts the assumption we made about r. As an intermediate step we
want to apply Claim 10 to every si. We therefore have to show that, for every i,
(a) L(si) = L ∩ SiΣ∗ with ∅ � Si ⊆ first(L) and (b) si is a concatenation.

Since r is a DRE, it holds that first(si)∩first(sj) = ∅ for all i �= j. Furthermore,
we know that ε /∈ L and therefore ε /∈ L(si) for every i. Thus we can conclude
that L(si) = L ∩ SiΣ∗ with Si = first(si) ⊆ first(r) for every i. This proves
(a). Notice that Si �= ∅ because r is minimal. Next we prove that every si is a
concatenation. W.l.o.g., si is not a disjunction. Since ε /∈ L(si), si is not of the
form t∗. Now take an arbitrary a ∈ Si. Then there exists a word aw ∈ L(r) with
w �= ε, because qf has at least one outgoing transition. Since r is a DRE, L(si)
contains all words b · v ∈ L where b ∈ Si and v ∈ Σ∗, and therefore aw ∈ L(si).
As |aw| > 1, si cannot be atomic. The only remaining possibility is that si is a
concatenation, which proves (b). Also, si is a minimal DRE.

We can now apply Claim 10 to every si and conclude that we can write every
si as s

a
i s
b
i such that (i) δ(q0, w) = qf for every w ∈ L(sai ) and (ii) first(sbi ) =

{a ∈ Σ | δ(qf , a) is defined}. Notice that sai and sbi can be concatenations again.
Let Aqf = (Σ,Q, δ, qf , {qf}) be the automaton A where the initial state is qf .

From (i) and (ii), we can conclude that L(sbi) = L(Aqf ) for every i. Therefore all
expressions sbi are equivalent. Thus, r can equivalently be written as (sa1 + · · ·+
sak)s

b
1, which is strictly smaller than r. This contradicts the minimality of r and

therefore contradicts that r is a disjunction, which concludes the proof. �

Notice that a DRE can have multiple qf -concatenations. For example, the ex-
pression a · b∗ · (c · b∗)∗ has a DFA with a unique accepting state qf and has
two qf -concatenations. However, a DRE can only have one qf -concatenation
of the form r1 · r2 where first(r2) = {a | δ(qf , a) is defined}. Furthermore, if
A = (Q,Σ, δ, q0, {qf}) is a DFA with a bottleneck state qf , it holds that L(A)
is infinite. Lemma 9 gives us a rather precise structure of each minimal DRE
r1 · r2. The following lemma also clarifies L(r1) and L(r2).

Lemma 11. For a DFA A = (Q,Σ, δ, q0, {qf}) with a bottleneck state qf let the
qf -concatenation r1 · r2 be an equivalent minimal DRE with first(r2) = {a ∈ Σ |
δ(qf , a) is defined}. Then
(1) L(r1) = L(AS) where AS = (Q,Σ, δ − S, q0, {qf}), S = {(qf , a, q) ∈ δ | a ∈

Σ, q ∈ Q}; and
(2) L(r2) is infinite where L(r2) = L(Aqf ) with Aqf = (Q,Σ, δ, qf , {qf}).

Note that (2) follows from the proof of Lemma 9.
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q0 q1 q2 · · · qn−1 qn
a a a a

b

b
b b b

(a) Class of DFAs where the minimal
DREs are exponentially large in n.

q0 q1 q2 · · · qn−1 qn
a a a a

b

b
b b

(b) Minimal DFA AS for L(r1).

q0 q1 q2 · · · qn−1 qn
a a a a

b

b
b b b

(c) Minimal DFA Aqn for L(r2).

o q0 q1 q2 · · · qn−1 qn
ab a a a

b

b
b

b

(d) Minimal DFA for L(s2).

Fig. 2. Minimal DFAs for subexpressions from the proof of Lemma 14

Before we can finally prove the blow-up from DFA to DRE, we need two
general results on minimal DREs. The first is a very straightforward relation
between a state and a concatenation in the DRE. Therefore, we say that a
regular language L is prefix-free if and only if, for every word v ∈ L, there exists
no z ∈ Σ∗ such that v · z ∈ L.

Lemma 12. Let La = L ·{a} be a prefix-free regular language. Then there exists
a minimal DRE for La which is either a or of the form r · a.

Lemma 13. If r∗ is a minimal DRE, then ε /∈ L(r).

However, the DRE r in a minimal DRE r∗ in Lemma 13 can still contain ε-
symbols. This holds, for example, for the DRE r = (a(b + ε))∗.

Now we are ready to prove the exponential blow-up when translating DFAs
to DREs. In particular, we prove that every minimal DRE for the DFA in Fig-
ure 2(a) is exponential in n. We denote the language of this DFA with L[n].

Lemma 14. There is a minimal DRE r for L[n] containing at least 2n concate-
nations.

Proof. Let A be the minimal DFA for L[n] (see Figure 2(a)). The proof is by
induction on n. For the induction basis, let n = 1. Since A has an accepting
bottleneck state, we know by Lemma 9 that r is a concatenation r1 · r2 with
first(r2) = {b}. By Lemma 11, it follows that L(r1) = L(b∗a). This implies that
there is a minimal DRE for L[1] = L(b∗ · a · r2), with at least 2 concatenations.

For the induction step, assume that there exists a minimal DRE for L[n−1]

containing at least 2n−1 concatenations. By Lemma 9, r is a qn-concatenation
r1 · r2 with first(r2) = {b}. Lemma 11 implies that the automaton in Figure 2(b)
is a DFA for L(r1) and the automaton in Figure 2(c) is a DFA for L(r2).

Next we show that r1 and r2 each contain a subexpression for the language
L[n−1]. For r1 we observe that L(r1) (see Figure 2(b)) is prefix-free and a lan-
guage of the form L′ · {a}. Thus there exists a minimal DRE r1 of the form
s1 · a by Lemma 12, where L(s1) is defined by the DFA of Figure 2(b) without
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the transition δ(qn−1, a) = qn and with qn−1 as accepting state. As we can see,
this is a DFA for L[n−1]; hence L(s1) =L[n−1]. Then, by induction hypothe-
sis there exists a DRE s1, such that s1 and therefore r1 contain at least 2n−1

concatenations.
For r2, we observe that L(r2) is infinite (see A

qn in Figure 2(c)), which implies
that r2 is not an atomic expression. Furthermore, it holds that | first(r2)| = 1
and ε ∈ L(r2). It follows that r2 cannot be a concatenation r2 = r3 · r4, as the
first sets of r3 and r4 would have to be disjunct because of ε ∈ r3. Next we
show that r2 cannot be a disjunction. Since first(r2) = {b}, the only possible
disjunction is r2 = b ·r3+ε for some DRE r3. As δ(qn, b) = q0 in Aqn , we observe
that L(r3) = L[n], which directly contradicts that r is a minimal DRE for L[n].

Thus r2 is an expression of the form s∗2. Next we investigate the structure
of a DFA for L(s2). For every word v ∈ L(s2), it holds that δ∗(qn, v) = qn in
Aqn . Since s∗2 is a DRE and first(r2) = {b}, L(s2) cannot contain a word v such
that v = w · z with w, z �= ε and δ∗(qn, w) = qn. These properties characterize
L(s2), for which the minimal DFA is shown in Figure 2(d). Because the DFA
has a bottleneck state q1, s2 cannot be atomic or an expression t∗ by Lemma 8.
Furthermore, s2 is not a disjunction, because | first(s2)| = 1, ε /∈ L(s2), and s2
is a DRE. Thus s2 is a concatenation b · t, where L(t) is definded by the DFA
from Figure 2(d) without the transition (o, b, q0) and with q0 as initial state. By
Lemma 12, it follows that s2 = b · t · a, where L(t) =L[n−1]. Thus, by induction
hypothesis, t and therefore r2 contain at least 2n−1 concatenations.

Finally, it holds that r1 and r2 contain at least 2n−1 concatenations each, i.e.,
r = r1 · r2 contains at least 2n concatenations. This concludes the proof. �

Since we can write L[n] = L((b + ab + · · · + anb)∗an) = L((b(a + b(· · · (ab +
b) · · · )))∗an), we obtain the following theorem:

Theorem 15. For each n ∈ N, the minimal DFA for L[n] has size Θ(n), every
minimal RE for L[n] has size Θ(n), and every minimal DRE has size 2Ω(n).

3.3 Application on an Example from the Literature

Brüggemann-Klein and Wood claimed that every minimal DRE for languages
of the form Σ∗a1 · · · an, where a1 · · · an is a fixed Σ-word, is exponential [2].
However, to the best of our knowledge, no proof for this result exists in the lit-
erature. We prove this claim by using bottleneck states. Therefore we will gen-
eralize the special structure of the automata of languages L[n] (see Figure 2(a))
and L(Σ∗a1 · · ·an) to provide a formal proof.

Definition 16. Let A = (Q,Σ, δ, o, {qn}) be a DFA with Σ ⊇ {a1, . . . , an} and
Q ⊇ {q0, . . . , qn}. Then A contains a bottleneck tail of length n, if all of the
following hold:

1. qi is a bottleneck state for every i ∈ {0, . . . , n};
2. (qi−1, ai, qi) ∈ δ for all i ∈ {1, . . . , n};
3. for every i ∈ {0, . . . , n} there is an a ∈ Σ and a transition (qi, a, o) in A; and
4. for every i ∈ {1, . . . , n}, if (q, a, qi) ∈ δ then q = qi−1 and a = ai.
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Op. |Σ| = 1 |Σ| ≥ 1 Op. |Σ| = 1 |Σ| ≥ 1 Op. |Σ| = 1 |Σ| ≥ 1

\ no no ∪ no no · no no
Rev yes no ∩ yes no ∗ yes no

Fig. 3. Closure Properties of DRE-definable languages

For example, the automaton in Figure 2(a) and the minimal DFA for L(Σ∗a1 · · ·
an) each contain a bottleneck tail of length n − 1. We prove that a bottleneck
tail causes a blow-up in a DRE, exponential in the length of the tail.

Theorem 17. Let A = (Q,Σ, δ, o, {qn}) be a DFA for a DRE-definable regular
language L with a bottleneck tail of length n. Then there exists a minimal DRE
r for L which contains at least 2n concatenations.

Theorem 18. Every minimal DRE for L(Σ∗a1 · · ·an) has size 2Ω(n).

4 Operations on DRE-Definable Languages

We investigate the descriptional complexity of several language-theoretic oper-
ations on DREs and their DFAs. Most results concern DFAs for DRE-definable
languages, which allows us to infer lower bounds for DREs as well. First, we
present an overview of the closure properties of DRE-definable languages.

4.1 Closure Properties of DRE-Definable Languages

It has been observed that DRE-definable languages are not closed under union [2],
intersection [16,4] or complement [8]. DRE-definable languages are also not
closed under concatenation [2], reversal1 (take L((a + b)∗a(a + b))) or Kleene
star [2]. These results hold for alphabets with at least two symbols. For unary
alphabets, the same results hold, except for reversal, intersection and star. In
these three cases, we prove that DRE-definable languages are closed. It is easy
to see that DRE-definable languages over unary alphabets are closed under re-
versal, since for unary alphabets the language and its reversal are equal. The
other two cases are non-trivial. The results are summarized in Figure 3.

Theorem 19. DRE-definable regular languages over a unary alphabet are closed
under reversal, intersection, and Kleene star.

4.2 Descriptional Complexity of Operations on DRE-Definable
Languages

We are now ready to apply previously obtained results to prove lower bounds on
the descriptional complexity of operations on DREs. From Section 4.1 we know
that we need to be careful that the language after performing the operations is
indeed DRE-definable. We first prove some lower bounds directly on DREs. For
DRE-definable languages we get the following by Theorem 2 and 15.

1 The reversal of a language L is the set of strings {an · · · a1 | a1 · · · an ∈ L}.
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Theorem 20. There exist regular languages (Ln)n∈N such that, for each n ∈ N,
the minimal DREs for Ln have size Θ(n), whereas the minimal DREs for the
reversal of Ln have size 2Θ(n). This holds in the case where all Ln are finite
languages and in the case where all Ln are infinite languages.

Indeed, in the finite case one could take Ln to be L((a+ b)≤na(a+ b)n) and in
the infinite case take the language L[n] from Theorem 15.

Theorem 21. There exist regular languages (L1
n)n∈N and (L2

n)n∈N such that,
for each n ∈ N, the minimal DREs for L1

n and L2
n have size Θ(n) and the

minimal DREs for L1
n · L2

n have size 2Θ(n). This holds in the case where all L1
n

and L2
n are finite languages and in the case where all L1

n and L2
n are infinite

languages.

Indeed, in the finite case we can take L1
n = (a+ b)≤n and L2

n = a(a+ b)n and in
the infinite case we can take L1

n = (a+ b)∗ and L2
n = ancc∗.

The following results do not immediately concern the minimal size of DREs
after performing an operation, but focus on the minimal size of the DFAs for
the DREs. For DRE-definable languages, lower bounds can always be transfered.
In some cases, we can even infer upper bounds on the DRE size. Consider, for
example, the case of languages over a unary alphabet: For those languages all
minimal DREs have size linear in the minimal DFA.

Theorem 22. Let A be a minimal DFA with m states for a DRE-definable
language L over a unary alphabet. Then there exists a minimal DRE r for L,
such that r is of size O(m).

To this end, for a DRE-definable language L, we write DDFA(L) for the minimal
DFA defining L. We summarize our results in Figure 4 and 5, where in each case
we consider a single use of a boolean operation and a k-times application. In
Figure 5 the resulting DFA has to define an infinite language.

It is well-known that for the complement on DFAs there is no blow-up [12].
Since all finite languages are DRE-definable, we provide the known results of Yu
[20] separated in Figure 4. For all remaining operations the upper bounds are ob-
tained by the standard product construction [12]. For the union and intersection
of two finite languages an exact result is as far as we know still open.

Theorem 23. For every k ∈ N there exists finite languages L1, . . . , Lk, such
that the minimal DFA for every Li has Θ(k) states and the minimal DFA for
L1 ∩ · · · ∩ Lk or L1 ∪ · · · ∪ Lk has at least 2Θ(k) states.

The theorem is obtained by taking Li = {x1 . . . xkyk . . . y1 ∈ {a, b}∗ | xi = yi}.
Now we examine DDFAs which are the result of a boolean operation on k ≥ 2

infinite DRE-definable languages. For general DFAs the descriptional complexity
is studied in [18,20]. In the following we show that for infinite DRE-definable
languages the complexity remains the same in almost all cases. Only for the union
of two DDFAs the descriptional complexity is strictly lower than for DFAs.
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|Σ| = 1 |Σ| ≥ 1
1 k 1 k

\ Θ(m) [12] — Θ(m) [12] —

∩ Θ(min{m1,m2}) [20] Θ(min{m1, ..., mk}) [20] O(m1m2) [20] 2Ω(k) (Th. 23)

∪ Θ(max{m1,m2}) [20] Θ(max{m1, ..., mk}) [20] O(m1m2) [20] 2Ω(k) (Th. 23)

Fig. 4. Descriptional complexity of minimal DFAs for finite languages

|Σ| = 1 |Σ| ≥ 1
1 k 1 k

\ Θ(m) [12] — Θ(m) [12] —

∩ Θ(m1m2) (Th. 24) 2Ω(k) (Th. 24) Θ(m1m2) (Th. 24) 2Ω(k) (Th. 24)

∪ Θ(max{m1m2}) (Th. 25) Θ(max{m1, ..., mk})(Th. 25) O(m1m2) 2Ω(k) (Th. 26)

Fig. 5.Descriptional complexity of minimal DFAs for inifinite DRE-definable languages

Theorem 24. For each k ∈ N, there exist infinite DRE-definable languages
L1, . . . , Lk, such that, for every i ∈ {1, . . . , k} the minimal DFA for Li has
O(k log k) states and DDFA(L1 ∩ · · · ∩ Lk) has kΩ(k) states. This holds even
when the alphabet is unary.

The theorem is obtained by k languages Li = (ami)∗ with 1 ≤ i ≤ k and k
different mi, such that gcd(mi,mj) = 1 for each pair (mi,mj).

At last we examine the union of DFAs for DRE-definable languages where
the result still describes a DRE-definable language. We get that for DFAs over
unary alphabets the complexity is only linear; hence is strictly lower than for
intersection. For arbitrary alphabets the complexity is again exponential.

Theorem 25. Let L1, . . . , Lk be infinite languages over a unary alphabet, such
that the minimal DFAs for every Li with i ∈ {1, . . . , k} has mi states. Then the
DDFA A for L1 ∪ · · · ∪ Lk has Θ(max{m1, . . . ,mk}) states.
Theorem 26. For each k ∈ N, there are infinite DRE-definable languages L1,
. . . , Lk such that, for each i ∈ {1, . . . , k} there is a DFA of size Θ(k) for Li, but
DDFA(L1 ∪ · · · ∪ Lk) has size 2Θ(k).

The theorem follows from taking Li = {x1 . . . xkyk . . . y1w ∈ {a, b}∗ | xi = yi}.

5 Conclusions and Further Work

In this paper we were motivated by the aim to come to a better understanding of
DRE-definable languages. For example, we developed a new technique to prove
lower bounds on the size of DREs by using bottleneck states and tails in a
DFA. As a consequence of this technique, we now know that, when translating
an RE into a DFA and when translating a DFA into a DRE, an exponential
blow-up cannot be avoided. However, we do not know yet whether there are
DRE-definable languages for which a translation from an RE to a DRE causes
a double exponential blow-up.

Finally we examine several operations on DRE-definable languages. We obtain
an overview of the closure properties and the descriptional complexity of these
operations on DRE-definable languages. A tight lower bound for the union of
two DFAs for DRE-definable languages remains open.



654 K. Losemann, W. Martens, and M. Niewerth

References

1. Bex, G.J., Gelade, W., Martens, W., Neven, F.: Simplifying XML Schema: effortless
handling of nondeterministic regular expressions. In: SIGMOD (2009)
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13. Jirásek, J., Jirásková, G., Szabari, A.: State Complexity of Concatenation
and Complementation of Regular Languages. In: Domaratzki, M., Okhotin, A.,
Salomaa, K., Yu, S. (eds.) CIAA 2004. LNCS, vol. 3317, pp. 178–189. Springer,
Heidelberg (2005)
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Abstract. We study the problem of testing if the polynomial computed
by an arithmetic circuit is identically zero (ACIT). We give a determin-
istic polynomial time algorithm for this problem when the inputs are
read-twice formulas. This algorithm also computes the MLIN predicate,
testing if the input circuit computes a multilinear polynomial.

We further study two related computational problems on arithmetic
circuits. Given an arithmetic circuit C, 1) ZMC: test if a given monomial
in C has zero coefficient or not, and 2) MonCount: compute the number
of monomials in C. These problems were introduced by Fournier, Malod
and Mengel [STACS 2012], and shown to characterize various levels of
the counting hierarchy (CH).

We address the above problems on read-restricted arithmetic circuits
and branching programs. We prove several complexity characterizations
for the above problems on these restricted classes of arithmetic circuits.

1 Introduction

A fundamental question concerning a given arithmetic circuit is: does the circuit
compute the identically zero polynomial? This is the well-known problem Arith-
metic Circuit Identity Testing ACIT, that has spurred an enormous amount of
research in the last two decades. A complete derandomization of black-box ACIT
even for depth four arithmetic circuits implies circuit lower bounds [13,2].

Today, there are two frontiers for identity testing. One is based on the (alter-
nation) depth of the circuit. Deterministic identity testing algorithms are known
for depth-2 crcuits, for depth-3 circuits with restrictions on the top fanin, and
for restricted depth-4 circuits. (See [1] and the references therein.) As indicated
by [2], improving this to arbitrary depth-4 circuits will be a major breakthrough.

The other frontier is concerned with formulas. Restricting fanout in a circuit
to 1 yields formulas; further restricting formulas to allow each variable at no
more than k leaves yields Read-k Formulas. The simplest kind of formulas are
read-once formulas ROFs: every variable appears at most once. Deterministic
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polynomial-time algorithms for ACIT on such formulas are trivial. Going beyond
these for k > 1, one breakthrough in [15] shows how to test k-sums of ROFs: for
each k ∈ O(1), ACIT can be efficiently performed on a sum of k ROFs.

However, not every Read-k formula can be expressed as a sum of k ROFs.
Along this thread, the next improvement in [5] shows how to do identity testing
on read-k formulas that are known to be multilinear, that is, the polynomials
computed at each node are multilinear.

To use the algorithm from [5] for a Read-k formula, we first need to check
whether it is multilinear. The multilinearity testing predicate MLIN is as hard
as ACIT in general ([11]), but for read-k formulas, it could conceivably be easier.
Thus one way to extend the result of [5] to arbitrary read-k formulas is to develop
a multilinearity test for such formulas.

Our main result is a multilinearity test for read-twice formulas R2Fs. Such
a test, in conjunction with [5], would give an ACIT test for R2Fs too. But our
test is actually intertwined with an ACIT test for subformulas. We give a de-
terministic polynomial-time algorithm that simultaneously decides whether an
R2F is multilinear and whether it is identically zero. It performs identity tests
on partial derivatives. It also uses the sum-of-k-ROFs test from [15] on some
subformulas as well as on some formulas obtained by transforming subformulas
of the input formula. Thus it is inherently a non-blackbox algorithm; so is the
polynomial-time algorithm from [15].

ACIT tests check whether the polynomial computed by the crcuit has at least
one monomial. Natural generalizations/variants of this question are (1) Mon-
Count: compute the number of monomials in the polynomial computed by a
given circuit, and (2) ZMC: Decide whether a given monomial has zero coeffi-
cient in the polynomial computed by a given circuit. ZMC was introduced by
Koiran and Perifel [14]. More recently, Fournier, Malod and Mengel [11] showed
that ZMC and MonCount characterize certain levels of the counting hierarchy
(CH, the hierarchy based on the complexity classes PP and C=P). In fact, Mon-
Count remains hard even if restricted to formulas. They also show that if the
circuits compute multilinear polynomials, then these problems become easier
(equivalent to PP and ACIT respectively), and that multilinearity checking itself
is equivalent to ACIT. All these results from [11] are in the non-black-box model,
where the circuit is given explicitly in the input.

Since ACIT on Read-k formulas appears easier, naturally one could ask
whether MonCount and ZMC become easier as well? We observe that this is
not the case: even for monotone (no negative constants) read-twice formulas,
MonCount is #P-hard. This further leads us to the investigation: where exactly
does hardness for MonCount and ZMC begin? Further, translating the classes be-
tween NP and PSPACE down to classes below P, can we show that on restricted
circuits, MonCount and ZMC are complete for the translated classes?

Starting with ROFs, we show (Theorem 2) that MonCount for ROFs is in the
GapNC1-hierarchy, i.e. the AC0-closure of GapNC1, where GapNC1 is the class
of Boolean problems that can be computed by arithmetic formulas over the
integers with constants 0, 1, -1. The GapNC1-hierarchy is an intriguing class
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that lies between NC1 and DLOG and has been studied extensively in the last
two decades; see for instance [3]. We also show that ZMC for ROFs is in logspace
(Theorem 6). It is straightforward to see that ZMC for ROFs is hard for C=NC

1,
so this is almost tight. (The “gap” between Boolean NC1, C=NC

1, GapNC1 and
DLOG is very small.)

Another natural, well-studied restriction is when the circuit is an algebraic
branching program BP with edges labeled by the allowed constants or by vari-
ables. Evaluation of BPs on Boolean-valued inputs is complete for the arithmetic
class GapL, the logspace analogue of the class GapP. The GapL hierarchy (the
AC0 closure of GapL) is known to be contained in logn depth threshold circuits
TC1 and hence in log2 n depth Boolean circuits NC2. Two restrictions on BPs,
in order of increasing generality, are: (1) occur-once BPs, or OBPs, where each
variable appears at most once anywhere in the BP, these subsume ROFs, and
(2) multilinear BPs, or MBPs, where the polynomial computed at every node is
multilinear. Again, deterministic algorithms are known for ACIT on OBPs, [12].
We show that MonCount for OBPs is in the GapL hierarchy (Theorem 4), while
ZMC for OBPs and even MBPs is complete for the complexity class C=L (The-
orem 5). (As a comparison, a well-known complete problem for C=L is testing
singularity of an integer matrix [4].)

A related problem explored in [11] as a tool to solving MonCount is that of
checking, given a circuit C and monomialm, whether C computes any monomial
that extends m. Denote this problem ExistExtMon. Though our algorithms for
MonCount do not need this subroutine, we also show that for OBPs (and hence
for ROFs), ExistExtMon lies in the GapL hierarchy (Theorem 7).

2 Preliminaries

Circuits, Formulas, Branching Programs, Polynomials. An arithmetic
circuit C over a ring R is a directed acyclic graph where every node has in-degree
zero or two. The nodes with in-degree zero are called leaves. Internal nodes are
labeled + or × and leaves are labeled from X ∪ R, where X = {x1, . . . , xn},
a set of variables. There is a node of out-degree zero, called the root node or
the output gate. Unless otherwise stated, R is the ring of integers Z, and we
allow only the constants {−1, 0, 1} in the circuits. An arithmetic formula F is
an arithmetic circuit where fan-out for every gate is at most one.

The depth of a circuit is the length of a longest root-to-leaf path. The
alternation-depth is the maximum number of alternations between + and ×
gates along any root-to-leaf path. In the literature on identity testing, depth is
used to mean alternation-depth. However we differentiate between these, as is
done in uniform circut complexity literature, because bounded fanin is crucial
to some of our algorithms. Note that converting a circuit to a bounded fanin
circuit increases only the depth, not the size or the alternation depth.

Every node in C computes a polynomial in R[x1, . . . , xn] in a natural way.
Let g be a gate in a circuit (or formula) C. We denote by pg the polynomial
computed at gate g of C. We denote by pC the polynomial pr, where r is the

output gate of C. Let varg
Δ
= {xi | some descendant of g is a leaf labelled xi}.



658 M. Mahajan, B.V. Raghavendra Rao, and K. Sreenivasaiah

A read-once arithmetic formula (ROF for short) is an arithmetic formula
where each variable occurs at most once as a label. More generally, in a read-k
arithmetic formula a variable occurs at most k times as a label.

An algebraic branching program (ABP for short) over a ring R is a directed
acyclic graph B with edges labeled from {x1, . . . , xn} ∪ R, and with two desig-
nated nodes, s with zero in-degree, and t with zero out-degree. For any directed
path ρ in B, let weight(ρ) =

∏
e: an edge in ρ label(e).

Any pair of nodes u, v in B computes a polynomial in R[x1 . . . xn] defined by:
pB(u, v) =

∑
ρ: ρ is a u � v path in B weight(ρ). The ABP B computes the polyno-

mial pB
 
= pB(s, t). We drop the subscript B when clear from context.

We consider the following restrictions of ABPs in increasing order of general-
ity: (1) occur-once ABPs (OBP for short), where each variable appears at most
once anywhere in the ABP (such BPs generalize ROFs), (2) read-once ABPs, or
RBPs, where no path has two occurrences of the same variable, and (3) multi-
linear BPs, or MBPs, where the polynomial computed at every pair of nodes is
multilinear.

Complexity Classes. For all the standard complexity classes, the reader is
referred to [6]. We define some of the non-standard complexity classes that are
used in the paper. Let f = (fn)n≥0 be a family of integer valued functions
fn : {0, 1}n → Z. f is in the complexity class GapL exactly when there is some
nondeterministic logspace machine M such that for every x, f(x) equals the
number of accepting paths of M on x minus the the number of rejecting paths
of M on x. C=L is the class of languages L such that for some f ∈ GapL, for
every x, x ∈ L⇔ f(x) = 0. The GapL hierarchy is built over bit access to GapL
functions, with a deterministic logspace machine at the base, and is known to
be contained in NC2. (See [4,3] for more details.)

GapNC1 denotes the class of families of functions (fn)(n≥0), fn : {0, 1}n →
Z, where (fn)n>0 can be computed by a uniform polynomial size log depth
arithmetic circuit family. This equals the class of functions computed by uni-
form polynomial-sized arithmetic formulas ([8]). C=NC

1 is the class of lan-
guages L such that for some GapNC1 function family (fn)n≥0, and for every
x, x ∈ L⇔ f|x|(x) = 0. The GapNC1 hierarchy comprises of languages accepted
by polynomial-size constant depth unbounded fanin circuits (AC0) with oracle
access to bits of GapNC1 functions, and is known to be contained in DLOG.
(See [9,10] for more details.)

Miscellaneous Notation. A monomial is represented by the sequence of de-
grees of the variables. For instance, over x1, x2, x3, the monomial x21 is repre-
sented as (2, 0, 0), and the monomial x1x3 is represented as (1, 0, 1). For a degree
sequencem = (d1, . . . , dn) we denote the monomial

∏n
i=1 x

di
i by Xm. For any set

S ⊆ [n], we denote by mS the multilinear monomial
∏
i∈S xi. For a monomial

m and polynomial p, coeff(p,m) denotes the coefficient of m in p. [statement S]
is a Boolean 0-1 valued predicate that takes value 1 exactly when S is true.
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We now describe the computational problems considered in this paper.

ACIT: Given an arithmetic circuit C over Z, test if the polynomial computed by
C is identically zero.

MonCount: Given an arithmetic circuit C over Z, compute the number of mono-
mials in the polynomial computed by C.

MLIN: Given an arithmetic formula F over Z, test if the polynomial pF is mul-
tilinear.

ZMC: Given an arithmetic circuitC overZ, and a monomialm, test if coeff(pC ,m)
is zero or not.

ExistExtMon: Given an arithmetic circuit C over Z, and a monomial m, test if
there is a monomial M with non-zero coefficient in pC such that M extends
m; that is, m|M .

Note: for a single variable xi, ExistExtMon(C, xi) just tests if the partial deriva-
tive of pC with respect to xi is identically zero.

The following propositions list some of the known results used in the paper.

Proposition 1 ( [7,8]). Evaluating an arithmetic formula where the leaves are
labelled {−1, 0, 1} is in DLOG (even GapNC1).

Proposition 2 ( [15]). Given k ROFs in n variables, there is a deterministic
(non black-box) algorithm that checks whether they sum to zero or not. The
running time of the algorithm is nO(k).

Proposition 3 (folklore). The following problems are in DLOG:

1) Given a formula F , a gate g ∈ F , and a variable x, check whether x ∈ varg.
2) Given a rooted tree T , and two nodes u, v, find lowest common ancestor (LCA)
of u and v.

3 Read-Twice Formulas: Multilinearity and Identity
Tests

In this section we consider the problem of testing multilinearity (MLIN) and
testing identically zero (ACIT) on read-twice formulas. The individual degree of
a variable in a polynomial p computed by read-twice formula F is bounded by
two. Thus, multilinearity testing boils down to testing if the second order partial
derivative of xi is zero for every variable xi. We use the inductive structure of
a read-twice formula to test first order partial derivatives for zero, using the
knowledge of MLIN and ACIT at gates at the lower levels, and to combine this
information to compute MLIN and ACIT at the root.

Theorem 1. For read-twice formulas, the problems ACIT, MLIN, and
ExistExtMon(φ, x) (where φ is the input formula and x is a single variable in it)
are in P.
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Proof. Let φ be the given read-twice formula on variables x1, . . . , xn, with S
internal nodes. Without loss of generality, assume that φ is alternating; that is,
inputs to a + gate are either leaves or are × gates, and inputs to a × gate are
either leaves or are + gates.

We proceed by induction on the structure of the formula φ. For each gate g
in φ and each variable x ∈ X , we iteratively compute the value of the constant
term of pg, denoted const(g), and the following set of 0-1 valued functions:

ACIT(g) = 1⇔ pg ≡ 0; MLIN(g) = 1⇔ pg is multilinear;

ExistExtMon(g, x) = 1⇔ pg has a monomial m that contains x .

Recall that ExistExtMon(g, x) = 1 exactly when the partial derivative of pg with
respect to x is not identically zero; in this case we say that x survives in g. (Note:
Since φ is a formula, the values const(g) can be represented with poly(|φ|) bits.)

The base case is when φ is a single variable or a constant. That is, φ consists
of a single gate g, labelled L ∈ X ∪ {0,+1,−1}. Then ACIT(g) = 1 if and only
if L = 0, MLIN(g) = 1 always, and ExistExtMon(g, x) = 1 if and only if L = x.
Also, const(g) is L if L �∈ X , 0 otherwise.

Now assume that for every gate u below the root gate of φ, the above functions
have been computed and stored as bits. Let f be the root gate of φ. We show how
to compute these functions at f . The order in which we compute them depends
on whether f is × or a + gate.

First, consider f = g×h. We compute the functions in the order given below.

1. const(f) = const(g)× const(h).

2. ACIT(f) = ACIT(g) ∨ ACIT(h).

3. MLIN(f): If f is identically zero, then it is vacuously multilinear. Otherwise,
for it to be multilinear, it must be the product of two (non-zero) multilinear
polynomials in disjoint sets of variables. Thus

MLIN(f) = ACIT(f) ∨
[
MLIN(g) ∧MLIN(h)∧( ∧

x∈X
[¬ExistExtMon(g, x) ∨ ¬ExistExtMon(h, x)]

)]

Note that the ACIT(f) term is necessary, since f can be multilinear even if,
for instance, g is not, provided h ≡ 0.

4. ExistExtMon(f, x): x appears in pf if and only if pf �≡ 0 and x appears in at
least one of pg, ph. Thus

ExistExtMon(f, x) = ¬ACIT(f) ∧ [ExistExtMon(g, x) ∨ ExistExtMon(h, x)]
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Next, consider f = g + h. We compute the functions in the order given below.

1. const(f) = const(g) + const(h).
2. MLIN(f): Since f is read-twice, a non-multilinear monomial in g cannot get

cancelled by a non-multilinear monomial in h; that would require at least 4
occurrences of some variable. Thus, f is multilinear only if both g and h are.
The converse is trivially true. Thus MLIN(f) = MLIN(g) ∧MLIN(h).

3. ExistExtMon(f, x): This is the non-trivial part; we defer it to a bit later.
4. ACIT(f): Once we compute the functions above, this is straightforward:

ACIT(f) = [const(f) = 0] ∧
∧
x∈X

¬ExistExtMon(f, x)

We now describe how to compute ExistExtMon(f, x) when f = g+h. If x survives
in neither g nor h, then it does not survive in f . But if it survives in exactly one
of g, h, it cannot get cancelled in the sum, so it survives in f . Thus

ExistExtMon(g, x) ∨ ExistExtMon(h, x) = 0 =⇒ ExistExtMon(f, x) = 0

ExistExtMon(g, x)⊕ ExistExtMon(h, x) = 1 =⇒ ExistExtMon(f, x) = 1

So now assume that x survives in both g and h. We can write the polynomials
computed at g, h as pg = αx+ α′ and ph = βx+ β′, where α′, β′ do not involve
x; and we know that α �≡ 0, β �≡ 0. We want to determine whether α+ β ≡ 0.

Since x appears in varg and varh, and since f is read-twice, we conclude that
x is read exactly once each in g and in h. Hence α, β also do not involve x.

We construct a formula computing α as follows: In the sub-formula rooted at
g, let ρ be the unique path from x to g. For each + gate u on the path ρ, let u′

be the child of u not on ρ; replace u′ by the constant 0. Thus we retain only the
parts that multiply x; that is, we compute αx. Setting x = 1 gives us a formulaG
computing α. A similar construction with the formula rooted at h gives a formula
H computing β. Set F = G+H . Note that F is also a read-twice formula, and
it computes α+ β. Thus in this case ExistExtMon(f, x) = 1⇔ ACIT(F ) = 0, so
we need to determine ACIT(F ).

Let Y denote the set of variables appearing in F ; Y ⊆ X \ {x}. Partition Y :
A: variables occurring only in G; B: variables occurring only in H ;
C: variables occurring in G and H .
If A∪B = ∅, then Y = C, and each variable in F appears once in G and once

in H . That is, both G and H are read-once formulas. We can now determine
ACIT(F ) in time polynomial in the size of F using Proposition 2.

If A ∪ B �= ∅, then let y ∈ A. If y survives in G, it cannot get cancelled
by anything in H , so it survives in F and F �≡ 0. Similarly, if any y ∈ B
survives in H , then F �≡ 0. We briefly defer how to determine this and complete
the high-level argument. If no y ∈ A survives in G, and no y ∈ B survives
in H , then let F ′ = G′ + H ′ be the formula obtained from F,G,H by setting
variables in A∪B to 0. Clearly, the polynomial computed remains the same; thus
α+ β = pF = pF |A∪B←0 = pF ′ . But F ′ satisfies the previous case (with respect
to F ′, A′ ∪ B′ = ∅), and so we can use Proposition 2 as before to determine
ACIT(F ′) = ACIT(F ).
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Now we describe how to determine whether a variable y ∈ A survives in G.
(The situation for y ∈ B surviving in H is identical.) We exploit the special
structure of G: there is a path ρ where all the + gates have one argument 0
and the path ends in a leaf labeled 1. Let T = {T1, . . . , T�} be the subtrees
hanging off the × gates on ρ; let ui be the root of Ti. Note that each Ti ∈ T is
a sub-formula of our input formula φ, and hence by the iterative construction
we know the values of the functions ACIT, MLIN, ExistExtMon at gates in these
sub-trees. In fact, we already know that ACIT(ui) = 0 for all i, since we are in the

situation where α �≡ 0, and α =
∏�
i=1 pui . Hence, if y appears in just one sub-tree

Ti, then ExistExtMon(G, y) = ExistExtMon(ui, y). If y appears in two sub-trees
Ti, Tj, then ExistExtMon(G, y) = ExistExtMon(ui, y) ∨ ExistExtMon(uj , y). .�

A direct attempt to generalise this to read-k formulas would be to maintain
ExistExtMon(f, xi) for 1 ≤ i ≤ k at each gate. However, this does not work
because in iteratively computing these values, we generate 2-sums of read-k
formulas, not k-sums of ROFs, and cannot use Proposition 2.

4 Counting Monomials

We now consider theMonCount problem. In an ROF, a monomial, once generated
in a sub-formula, can be cancelled only by multiplication with a zero polynomial.
We exploit this fact to obtain an efficient algorithm for MonCount on ROFs.
We then show that even for read-twice formulas, the problem becomes very
hard. Since we cannot generalise Theorem 2 to read-twice formulas, we consider
generalising it beyond ROFs to read-once BPs. For OBPs, similar properties as
for ROFs hold, and again we obtain an efficient algorithm for MonCount.

We start with ROFs:

Theorem 2. Given a read-once formula F , MonCount(pF ) can be computed by
an AC0 circuit with oracle gates for GapNC1 functions, and hence in DLOG.

The following lemma is used in proving Theorem 2:

Lemma 1. The language L defined below is in C=NC
1:

L = {〈F, g〉 | F is an arithmetic formula, g is a gate in F , and NZ(g) = 0}

For any polynomial p, p ≡ 0 if and only if the constant term of p is 0 and
MonCount(p) is 0. Hence, from Theorem 2 and Lemma 1 we have the following:

Corollary 1. In the non-blackbox setting, ACIT on ROFs is in the GapNC hi-
erarchy and hence in DLOG.

Our next result shows that extending Theorem 2 to Read-k formulas for k > 1 is
extremely unlikely. Even for formulas that are monotone (no negative constants)
and read-twice, and furthermore, are decomposable as the sum of two read-once
formulas, MonCount is at least as hard as #P.
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Theorem 3. MonCount is #P complete for the sum of two monotone read-once
formulas.

We now show how to count monomials in OBPs. The approach used in Theorem 2
does not directly generalize to OBPs, i.e., knowing MonCount at immediately
preceding nodes is not enough to compute MonCount at a given node in an
OBP. However, since every variable occurs at most once in an OBP, every path
generating a monomial should pass through one of these edges. This allows us to
keep track of the monomials at any given node of the OBP, given the monomial
count of all of its predecessors.

We begin with some notations. Let B be an occur-once BP on the set of
variables X , and u, v be any nodes in B. Let c(u, v) be the constant term in
p(u, v). We define the 0-1 valued indicator function that describes whether this
term is non-zero:

NZ(u, v) =

{
1 if c(u, v) �= 0,

0 otherwise.

We cannot directly use the strategy we used for
ROFs, since even in an OBP, there can be cancel-
lations due to the constant terms. For instance, in
the figure alongside, #p(s, b) = #p(s, c) = 1, but
#p(s, t) = 0. We therefore identify edges critical for
a polynomial. We say that edge e = (w, u) of B is
critical to v if

b
1

���
��

��
��

�

s
x �� a

1

����������

−1 ���
��

��
��

� t

c
1

���������

1. label((w, u)) ∈ X ; and
2. B has a directed path ρ from u to v with all edges labeled by {−1, 1}.

We have the following structural property for the monomials in p(s, v):

Lemma 2. In an occur-once OBP B with start node s, for any node v in B,

p(s, v) = c(s, v) +
∑

(w,u) critical to v

p(s, w) · label(w, u) · c(u, v) .

Proof. Note that if edges (w, u) �= (w′, u′) are both critical to v, then the mono-
mials in p(s, w)· label(w, u) and p(s, w′)· label(w′, u′) will be disjoint, because P is
occur-once. (The variables labeling (w, u) and (w′, u′) make the monomials dis-
tinct.) Moreover, for any monomialm in p(s, v), there is exactly one critical edge
(w, u) such thatm has non-zero coefficient in the polynomial p(s, w)×label(w, u).
The critical edge corresponds to the last variable of the monomial to be “col-
lected” en route to v from s. This completes the proof. .�

For nodes w, u, v in B where (w, u) is an edge, define a 0-1 valued indicator
function that specifies whether or not (w, u) is critical to v. That is,

critical(〈w, u〉, v) =
{
1 if (w, u) is critical for v

0 otherwise

Using this and Lemma 2, we can show:
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Lemma 3. In an occur-once OBP B with start node s, for any node v in B,

#p(s, v) =
∑

e=(w,u)

critical(〈w, u〉, v) ·
(
#p(s, w) + NZ(s, w)

)
· NZ(u, v).

If w is not in a layer to the left of v, then (w, u) cannot be critical to v, and so
#p(s, w) is not required while computing #p(s, v). Hence we can sequentially
evaluate #p(s, v) for all nodes v in layers going left to right, provided we have
all the values NZ(s, w) and critical(〈w, u〉, v).

Lemma 4. Define languages L1, L2 as follows:

L1 = {〈B, u, v〉 | B is an OBP, u, v are nodes in B, and NZ(u, v) = 0. }

L2 =

{
〈B, u, v, w〉 | B is an OBP, u, v, w are nodes in B, and

critical(〈w, u〉, v) = 1.

}
Then L1 and L2 are both in C=L.

From Lemma 3, the comment following it, and Lemma 4, we obtain a polynomial
time algorithm to count the monomials in pB. However, with a little bit of care,
we can obtain the following stronger result:

Theorem 4. Given an occur-once branching program B, the number of mono-
mials in pB can be computed in the GapL hierarchy and hence in NC2.

Proof. Starting from B, we construct another BP B′ as follows: B′ has a node
v′ for each node v of B. For each triple w, u, v where (w, u) is an edge in B,
we check via oracles for L1 and L2 whether (w, u) is critical to v and whether
NZ(u, v) = 1. If both checks pass, we add an edge from w′ to v′. We also check
whether NZ(s, w) = 1, and if so, we add an edge from s′ to v′. (We do this
for every w, u, so we may end up with multiple parallel edges from s′ to v′.
To avoid this, we can subdivide each such edge added.) B′ thus implements
the right-hand-side expression in Lemma 3. It follows that pB′(s′, v′) equals
#pB(s, v). Note that B′ can be constructed in logspace with oracle access to
C=L. Also, since B

′ is variable-free, it can be evaluated in GapL. Hence #pB can
be computed in the GapL hierarchy. .�

As in Corollary 1, using Theorem 4 and Lemma 4, we have:

Corollary 2. In the non-blackbox setting, ACIT on OBPs is in the GapL hier-
archy and hence in NC2.

5 Zero-Test on a Monomial Coefficient (ZMC)

From [11], ZMC is known to be in the second level of CH and hard for the
class C=P. For the case of multilinear BPs MBPs, we show that ZMC exactly
characterizes the complexity class C=L.
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Theorem 5. ZMC for multilinear BPs is complete for C=L. More precisely,

1. ZMC for OBPs is hard for C=L.
2. Given a BP B computing a multilinear polynomial pB, and given a multi-

linear monomial m, the coefficient of m in pB can be computed in GapL.

Proof. (Sketch) Hardness: A complete problem for C=L is: does a BP B with
labels from {−1, 0, 1} evaluate to 0? Add a node t′ as the new target node, and
add edge t → t′ labeled x to get B′. Then B′ is an OBP, and (B′, x) ∈ ZMC if
and only if B evaluates to 0.

Upper bound: The idea is to construct (by relabelling the edges ofB) a branch-
ing program B′ computing a univariate polynomial, and a monomial m′, such
that the coefficients of m in pB and of m′ in pB′ are the same. The coefficients
of pB′ can be computed in GapL, establishing the second statement. This will
imply that the zero-test is in C=L. .�
The upper bound above, for ZMC on MBPs, also applies to ROFs, since ROFs
can be converted to OBPs by a standard construction. However, with a careful
top-down algorithm, we can give a stronger upper bound of DLOG for ZMC on
ROFs.

Theorem 6. Given a read-once formula F computing a polynomial pF , and
given a multilinear monomial m, the coefficient of m in pF can be computed in
DLOG. Hence ZMC for ROFs is in DLOG.

The lower bound proof in Theorem 5 can be modified to show that ZMC on ROFs
is hard for C=NC

1. It is natural to ask whether there is a matching upper bound.
In our construction above, we need to compute predicates of the form [x ∈ varg].
If these can be computed in NC1 for ROFs, then the monomial coefficients can be
computed in GapNC1, improving the upper bound of ZMC to C=NC

1. However,
this depends on the specific encoding in which the formula is presented. In the
standard pointer representation, the problem models reachability in out-degree-1
directed acyclic graphs, and hence is as hard as DLOG.

6 Checking Existence of Monomial Extensions

We now address the problem ExistExtMon. Given a monomial m, one wants to
check if the polynomial computed by the input arithmetic circuit has a monomial
M that extends m (that is, with m|M). This problem is seemingly harder than
ZMC, and hence the bound of Theorem 5 does not directly apply to ExistExtMon.
We show that ExistExtMon for OBPs is in the GapL hierarchy.

Theorem 7. The following problem lies in the GapL hierarchy: Given an occur-
once branching program B and a multilinear monomial m, check whether pB
contains any monomial M such that m|M .

The above bound can be brought down to DLOG for the case of ROFs.

Theorem 8. The following problem is in DLOG: Given a read-once formula F
computing a polynomial pF , and given a multilinear monomial m, check whether
pF contains any monomial M such that m|M .
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7 Conclusion

In this paper, we studied the complexity of certain natural problems on severely
restricted circuits.

We have shown that ACIT and MLIN are easy on read-twice formulas. In a
recent extension, we have shown that using [5] instead of [15] yields a simpler al-
gorithm that works even for read-3 formulas. Extending this to Read-k formulas
for any constant k > 3 remains open.

We have shown that MonCount remains #P-hard for read-twice formulas.
We have shown that on read-once formulas and occur-once branching pro-

grams, the complexity of ZMC and ExistExtMon does reduce drastically. Ideally,
we would like these problems to characterise complexity classes within P; we
have partially succeeded in this.

We leave open the question of extending these bounds for formulas and
branching programs that are constant-read.
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Abstract. The notion of repetition of factors in words is central to
considerations on sequences. One of the recent generalizations regarding
this concept was introduced by Czeizler et al. (2010) and investigates a
restricted version of that notion in the context of DNA computing and
bioinformatics. It considers a word to be a pseudo-repetition if it is the
iterated concatenation of one of its prefixes and the image of this prefix
through an involution. We present here a series of results in the fashion of
the Fine and Wilf Theorem in a more general setting where we consider
the periods of some word given by a prefix of it and images of that prefix
through some arbitrary morphism or antimorphism.

1 Introduction

The notions of repetition and primitivity are two fundamental concepts on words
that play an important role in several research areas, e.g., stringology and al-
gebraic coding theory. We call a word a repetition (or power) if there exists a
decomposition of it in terms of one of its prefixes. This paper addresses combi-
natorial questions of a generalization of this concept, namely pseudo-repetitions
in words. A word w is said to be a pseudo-repetition if it has a decomposition in
terms of some prefix t and its image f(t) under some morphism or antimorphism
(for short “anti-/morphism”) f , more precisely, w ∈ t{t, f(t)}+.

A central combinatorial result regarding repetitions in words is the Fine and
Wilf Theorem [1]. It states in a general context that if one can construct using
two different words u and v two different sequences in such a way that one starts
with u and the other with v, and they share a common prefix of at least the sum
of the lengths of the two words minus their greatest common divisor, then the
two sequences are equal. Moreover, u and v are both powers of a factor of length
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equal to the greatest common divisor of their lengths. This theorem addresses
the probably most basic natural question one could ask about repetitions in
sequences. Therefore, questions in the style of Fine and Wilf are considered
whenever a new form of repetition in words is proposed. Up to now several
generalizations of this theorem have been investigated [2–5]. We contribute to
that line of research by stating Fine and Wilf style results in a more general
setting where not only the words but also their images through some arbitrary
functions are considered.

Having as a strong biological motivation the fact that Watson-Crick comple-
mentarity can be formalized as an antimorphic involution, and the fact that both
a DNA-single stranded molecule and its complementary basically encode the
same information, the authors of [5] introduce the notions of pseudo-repetition
and pseudo-primitivity. In particular, a word is a pseudo-repetition if it can be
expressed as the iterated concatenation between one of its prefixes and its image
through a function f . A word is pseudo-primitive if it is not a pseudo-repetition.
Until now, the considered functions were quite simple, being restricted to cases
of anti-/morphic involutions, following the original motivation.

Considering that the notion of repetition is central in the study of combina-
torics of words and the plethora of applications that this concept has in many
parts of computer science, the study of pseudo-repetitions seems even more at-
tractive, at least from a theoretical point of view. A natural extension of these re-
sults is to consider this concept for some more general classes of anti-/morphisms.
Although the biological motivation seems appropriate only for the case of invo-
lutions, we are interested in identifying factors of words which can be written as
the iterated concatenation of a word and its encoding through some arbitrary
simple function f . In this setting, pseudo-repetitions can be seen as strings that
have an intrinsic repetitive structure, hidden by rewriting some of the factors
that define it through some anti-/morphism.

The next section presents some basis for the study of (pseudo-)repetitions
and some basic observations that will help us throughout this work. In Section 3
we extend the pseudo-periodicity results obtained for involutory morphisms to
arbitrary degree literal morphic functions. The section following it treats the
antimorphic case. The results of both sections are shown to be optimal or, in
one case, at least as good as the corresponding result for involutions. The paper
is concluded with remarks stating the impossibility of deriving similar results
for arbitrary anti-/morphisms.

We end this section with an overview of basic concepts used in this paper. For
more detailed definitions we refer to [5, 6].

Let V be a finite alphabet. We denote by alph(w) the alphabet of letters that
occur in a word w ∈ V ∗ and by ε the empty word. The length of w is denoted
by |w|. We say u is a factor of w, if w = xuy, for some words x, y. Moreover, u
is a prefix of w, if x = ε and a suffix of it if y = ε. Denote by w[i] the symbol at
position i in w, and by w[i..j] the factor of w starting at position i and ending at
position j, consisting of the concatenation of the symbols w[i], . . . , w[j], where
1 ≤ i ≤ j ≤ n. Moreover, w = u−1v, whenever v = uw. The powers of w are
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defined recursively by w0 = ε, wn = wwn−1 for n ≥ 1, and wω = ww · · · , an
infinite concatenation of the word w. If w cannot be expressed as a power of
another word, then w is said to be primitive.

We say that f : V ∗ → V ∗ is a morphism if f(xy) = f(x)f(y) for any words
x, y ∈ V ∗. On the other hand, f is an antimorphism if f(xy) = f(y)f(x). Note
that, to define an anti-/morphism it is enough to give the definitions of f(a)
for all a ∈ V . For some anti-/morphism f : V ∗ → V ∗ we say that f is uniform
if there exists a number k with f(a) ∈ V k for all a ∈ V . If k = 1, then f is
called literal. If f(a) = ε for some a ∈ V , then f is called erasing, otherwise
non-erasing. Recall that an anti-/morphism f : V ∗ → V ∗ is an involution when
f2(a) = a for all a ∈ V . Note that, all bijective anti-/morphisms are literal.
Furthermore, a bijective morphism is also called isomorphism.

A word w is said to be an f -repetition, or, an f -power, if w ∈ t{t, f(t)}+ for
some prefix t of w. If w is not an f -power, then w is f -primitive.

The word abcaab is i-primitive, where i is the identical morphism, and f -
primitive for some morphism or antimorphism f with f(a) = b, f(b) = a and
f(c) = c. However, for the morphism f(a) = c, f(b) = a and f(c) = b note
that abcaab is the concatenation of ab, f(ab) = ca and ab, thus, an f -power in
this setting. In [5, 7] the authors investigate generalizations of the Fine and Wilf
Theorem for f -repetitions, when f is a morphic or an antimorphic involution.

2 Fine and Wilf’s Theorem and Pseudo-repetitions

The central concept of our investigation is periodicity with a main role played
by the following result:

Theorem 1 (Fine and Wilf [1]). Let u and v be in V ∗ and d = gcd(|u|, |v|).
If two words α ∈ u{u, v}∗ and β ∈ v{u, v}∗ have a common prefix of length
greater than or equal to |u|+ |v|−d, then u and v are powers of a common word
of length d. Moreover, the bound |u|+ |v| − d is optimal.

Other important parts in this work are played by functions, namely morphisms
and antimorphisms of different types.

The study of generalizations of the Fine and Wilf theorem for the case of
pseudo-repetitions, that is anti-/morphic involutions, started in [5] and was con-
tinued in [7]. The following summarize the existing results for pseudo-repetitions:

Theorem 2. Let u and v be two words over an alphabet V and f : V ∗ → V ∗

a morphic involution. If u{u, f(u)}∗ and v{v, f(v)}∗ have a common prefix of
length greater than or equal to |u| + |v| − gcd(|u|, |v|), then there exists t ∈ V ∗

such that u, v ∈ t{t, f(t)}∗. Moreover, the bound |u|+|v|−gcd(|u|, |v|) is optimal.

Theorem 3. Let u and v be in V ∗ and f : V ∗ → V ∗ an antimorphic involution.
1. If |u| > |v| = 2 gcd(|u|, |v|) and u{u, f(u)}∗ and v{v, f(v)}∗ have a common
prefix of length greater than or equal to 2|u| − 'gcd(|u|, |v|)/2(, then there exists
t ∈ V ∗ such that u, v ∈ t{t, f(t)}∗. The bound is optimal.
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2. If |u| > |v| > 2 gcd(|u|, |v|) and u{u, f(u)}∗ and v{v, f(v)}∗ have a common
prefix of length greater than or equal to 2|u|+ |v|−gcd(|u|, |v|)−'gcd(|u|, |v|)/2(,
then there exists t ∈ V ∗ such that u, v ∈ t{t, f(t)}∗.

We start with the simple remark that for a two letter alphabet {a, b}, the case of
bijective anti-/morphisms is quite trivial, since either f is the identity, or f is the
involution given by f(a) = b and f(b) = a. The results are given by Theorem 1
and its generalizations from [5, 7]. Thus, for the rest of this paper we consider
alphabets of three or more letters.

Furthermore, since f is a bijective function from V to V , one can see f as
a permutation of V . Thus, there exists a minimum m > 0 such that fm is the
identity of V . Generally, this value is denoted by ord(f), called the order of f ,
and is less than g(|V |), where g is the Landau function1.

We end this section with a well known lemma and an immediate observation
that will help us with the proofs throughout the paper:

Lemma 1. For a word w, if ww = xwy with x �= ε and y �= ε, then x, y and w
are powers of the same word t.

Lemma 2. Let w ∈ V ∗ be a word and f : V ∗ → V ∗ a bijective anti-/morphism.
If w = f(w), then, for any letter a ∈ alph(w), we have f2(a) = a.

Proof. Let us denote w = a1 · · · an with ai ∈ V , where 1 ≤ i ≤ n. Since
f(w) = w, then f2(w) = f(f(w)) = f(w), and it follows that w = a1 · · · an =
f2(a1) · · · f2(an). Thus, ai = f2(ai) for all i with 1 ≤ i ≤ n. .�

3 Morphisms and Pseudo-repetitions

Using standard techniques similar to the one in [8] one can prove the following
first important result:

Theorem 4. Let u, v ∈ V ∗ and f : V ∗ → V ∗ be an isomorphism with ord(f) =
k + 1. If a word α ∈ u{u, f(u), . . . , fk(u), v, f(v), . . . , fk(v)}∗ has a common
prefix of length greater than or equal to |u|+ |v| − gcd(|u|, |v|) with a word β ∈
v{u, f(u), . . . , fk(u), v, f(v), . . . , fk(v)}∗, then there exists a t ∈ V ∗, such that
u, v ∈ t{t, f(t), . . . , fk(t)}∗.

Proof. Note that, if |u| = |v| then u = v and the claim follows trivially. Assume
without loss of generality that |u| > |v|. Then for some word w we have u = vw.
Observe that the prefix of length |v| of v−1β is an iteration of f(v). Denoting

1 The Landau function is defined for every natural number n as the largest order of an
element in the symmetric group Sn. Equivalently, g(n) is the largest least common
multiple of any partition of n, or the maximum number of times a permutation of n
elements can be recursively applied to itself before it returns to its starting sequence.
It is known that limn→∞

ln(g(n))√
n ln(n)

= 1.
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this prefix by z and changing appropriately all occurrences from α and β of
iterations of f over v with iterations over z, we get

v−1α ∈ w{w, f(w), . . . , fk(w), z, f(z), . . . , fk(z)}∗

and
v−1β ∈ z{w, f(w), . . . , fk(w), z, f(z), . . . , fk(z)}∗

and the claim follows by induction. .�

This generalizes both Fine and Wilf and Kari et al. periodicity results.

Corollary 1. Let u, v ∈ V ∗ and f : V ∗ → V ∗ be an isomorphism with ord(f) =
k+1. If u{u, f(u), . . . , fk(u)}∗ and v{v, f(v), . . . , fk(v)}∗ have a common prefix
of length greater than or equal to |u|+ |v|−gcd(|u|, |v|), then there exists t ∈ V ∗,
such that u, v ∈ t{t, f(t), . . . , fk(t)}∗. The bound is optimal.

Next we show that in the case of arbitrary bijective literal morphisms the result
of Theorem 4 is optimal also regarding the number of different iterations of
the function f that are used in expressing both u and v. The counterexample
obtained in this result exploits the algebraic properties of f , as permutation.

Proposition 1. Let f : V ∗ → V ∗ be an isomorphism with ord(f) = k+1. There
exist u, v ∈ V ∗ with |u| = |v| + gcd(|u|, |v|) and vf(v) a prefix of u2, such that
u is not part of t{f i1(t), . . . , f i�(t)}∗ for any common prefix t of u and v with
v ∈ t{t, f(t), . . . , fk(t)}∗, and {i1, . . . , i�} a set strictly included in {1, . . . , k}.

Proof. Let us assume that V = {a1, . . . , an}. As we explained, f is seen as a per-
mutation of V . Assume that f has m disjoint cycles and let ci = (ai,1, . . . , ai,pi)
for 1 ≤ i ≤ m denote these cycles (we assume that the numbers in a cycle are
ordered increasingly). Also let xi be the word obtained by concatenating the
letters ai,j of a cycle for 1 ≤ j ≤ pi and denote x = x1 . . . xm. Now take

u = xfk(x)fk−1(x) · · · f(x) and v = xfk(x)fk−1(x) · · · f2(x),

where u basically contains all possible iterations of f , while v contains only k
factors. Note that gcd(|u|, |v|) = |x| and that |u| = |v|+ |x|. It is straightforward
to check that vf(v) is a prefix of length |u|+ |v| − |x| of u2.

Now we show that there does not exist a word t, such that

u ∈ t{f i1(t), . . . , f i�(t)}∗ and v ∈ t{t, f(t), f2(t), . . . , fk(t)}∗

for any set {i1, . . . , i�} strictly included in {1, . . . , k}.
If such a word t exists, then its length is a divisor of n (as it divides both

|u| = (k+1)n and |v| = kn). If |t| = n one would not be able to generate all the
factors of length n of u using only the factors f i1(t), . . . , f i�(t), as the order of f
is k+1 > 	. If |t| < n, then x = tf j1(t) . . . f jp(t) for a set of numbers {j1, . . . , jp}
included in {i1, . . . , i�}. Let us assume that f is not a cyclic permutation. If t
does not contain any symbol of xm, then these symbols do not appear in f �(t)
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for any 	, thus a contradiction with the fact that x = tf j1(t) . . . f jp(t). Hence,
t has as suffix a part of xm and f jp(t) is included in xm; from this we get that
t contains only symbols from xm, another contradiction. It follows that f is a
cyclic permutation (thus, of order n) and that all the factors of length n of u
begin with a different letter. Therefore, all iterations of f must be used in writing
u as the catenation of factors of the form f i(t). .�

Following the results of Kari et al. a natural question that comes up is what are
good bounds for the case when we consider descriptions given by some prefix of
the words and applications of a morphism to that prefix. The rest of this section
is dedicated to finding such optimal bounds.

Example 1. Let i be a natural number. Consider the words

u = bidaicaie and v = bidaic,

and an isomorphism f with f(a) = b, f(b) = a, f(c) = d, f(d) = e and f(e) = c.
The words u2 and vf(v)2 share a prefix of length |u| + |v| − 1 and no word t
exists, such that u, v ∈ t{t, f(t)}∗. �

Proposition 2. Let u, v ∈ V ∗ such that |u| > |v| = 2 gcd(|u|, |v|) and f : V ∗ →
V ∗ be an isomorphism. If α ∈ u{u, f(u)}∗ and β ∈ v{v, f(v)}∗ have a common
prefix of length greater than or equal to |u|+ |v|, then there exists t ∈ V ∗, such
that u, v ∈ t{t, f(t)}∗. The bound is optimal.

Proof. Let v1 be the prefix of length gcd(|u|, |v|) of v, where v = v1v2. It is rather
easy to see that u ∈ v{v, f(v)}∗v1 or u ∈ v{v, f(v)}∗f(v1).

When u ends with v1, it follows that v2 is a prefix of u or f(u), since the first
u of α is followed by either u or f(u). In the first case, v2 is a prefix of v and,
thus v1 = v2. In the second case, we have v2 = f(v1). Moreover, looking at what
follows v2 in β, either f(v2) = v1 or f(v2) = f(v1). In both cases, one may take
t = v1 and obtain that u, v ∈ t{t, f(t)}∗.

Let us now analyse the case when u ends with f(v1). Here, we obtain as above,
that f(v2) is either a prefix of u or of f(u). First, we obtain that f(v2) = v1,
and, looking at what follows the prefix uf(v2) of β we once more get that v2 ∈
{v1, f(v1)}. Similarly, in the second case, f(v2) = f(v1), thus, v2 = v1. In both
cases, one may take t = v1 and obtain that u, v ∈ t{t, f(t)}∗. The conclusion
follows with the optimality derived from Example 1. .�

However, when the length of the shortest word is strictly greater than two times
the greatest common divisor of the two words, the result is a bit more compli-
cated. Considering that f is a permutation, and taking into account again the
algebraic properties that follow from this, we get the following results.

Proposition 3. Let u, v ∈ V ∗ such that |u| > |v| > 2 gcd(|u|, |v|), and f : V ∗ →
V ∗ be an isomorphism. If α ∈ uu{u, f(u)}∗ and β ∈ v{v, f(v)}∗ have a common
prefix of length greater than or equal to 2|u|, then there exists t ∈ V ∗, such that
u, v ∈ t{t, f(t)}∗. The bound is optimal.
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Proof. Denote by u′ the longest prefix of u with u′ ∈ v{v, f(v)}∗ and by v1 the
prefix of v with |v1| = |u| − |u′|. Obviously, gcd(|v1|, |v|) = d �= |v|/2.

Let us assume first that |v1| < |v|/2 and denote v = v1v2v3, where |v2| = |v1|.
Consider the case when α = u′v1uα

′ = u′v1v1v2v3u
′′α′, where α′ ∈ {u, f(u)}∗

and u = vu′′. Note that u′ is a prefix of β, such that β = u′vβ′, with β′ ∈
{v, f(v)}∗. The discussion follows now several cases.

If β = u′vvβ′′, then since the factors v1v following u′ in α and vv1 following
u′ in β match, by Lemma 1 we obtain that v1 and v are both powers of the same
word t. Thus, we easily get that u, v ∈ t{t, f(t)}∗.

Now take β = u′vf(v)β′′. We have v2 = v1 and v3 = v�1x for some number
	 ≥ 0 and x ∈ V ∗ a possibly empty prefix of v1 with |x| < |v1|. Denoting v1 = xy
we obtain that yx = f(v1). If u

′′ starts with v we have the prefix yxv1 of yxu′′

equal to the prefix f(v1)f(v1) of β
′. Therefore, f(v1) = v1. It follows that f is

the identity on the alphabet of the words u and v, and the conclusion follows
from Theorem 1. If u′′ starts with f(v), this f(v) ends with the suffix f(yx). But
this suffix matches either a prefix f(v1) of β′′ or a prefix v1 of β′′. In the first
case we get that f is the identity on the alphabet of u and v, and we conclude
by Theorem 1, while in the second case we get that f2(v1) = v1, and, thus, f is
an involution on the alphabet of u and v, and conclude by Theorem 2.

Next, we analyse the case when α = u′f(v1)uα
′ = u′f(v1)v1v2v3u

′′α′, where
α′ ∈ {u, f(u)}∗ and u = vu′′. Note that u′ is a prefix of β such that β = u′f(v)β′

with β′ ∈ {v, f(v)}∗. Here f(v2) = v1 and the suffix f(v1) of the u factor
occurring before α′ in α matches an f(v2) or a v2 factor from β. In the first case
we obtain that f is the identity on all letters of u and v, and and we conclude
by Theorem 1, while in the second case we get that f2(v1) = v1 and, thus, f is
an involution on the alphabet of u and v, and we conclude by Theorem 2.

We move now to the case when |v1| > |v|/2 and set v = v1v2 with |v2| < |v1|.
Assume first that α = u′v1uα

′ = u′v1v1v2u
′′α′, where α′ ∈ {u, f(u)}∗ and

u = vu′′. Note that u′ is a prefix of β such that β = u′vβ′ with β′ ∈ {v, f(v)}∗.
Clearly, v2 is a prefix of v1. If β

′ starts with v, then by Lemma 1 both v1 and v
are powers of some t, and, therefore, u and v are in t{t, f(t)}∗. If β′ starts with
f(v), then f(v1) has v2 as a suffix.

If u′′ starts with v we obtain that the suffix f(v2) of the prefix f(v) of β′

matches the prefix v2 of the prefix v of u′′. Thus, f is the identity on the symbols
of v2. It is easy to see that the symbols of v1 are those of v2 and f(v2), and so,
f is the identity also for the symbols of v1 and, consequently, for the symbols of
u and v. The conclusion follows from Theorem 1.

Now, consider the case when u′′ starts with f(v). If β′ starts with f(v)f(v)
we obtain that f(v2) is a suffix of f(v1) and, thus, it is equal to v2. As in the
previous case, this leads to the conclusion that f is the identity on the alphabet
of u and v, and the conclusion follows from Theorem 1. If β′ starts with f(v)v we
obtain that f(v2) is a suffix of v1 and, thus, f2(v2) is a suffix of f(v1). Therefore,
f is an involution on the alphabet of v2 and an involution on the alphabet of u
and v. The conclusion follows from Theorem 2.
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Assume now that α = u′f(v1)uα
′ = u′f(v1)v1v2u

′′α′, where α′ ∈ {u, f(u)}∗
and u = vu′′. Note that u′ is a prefix of β such that β = u′f(v)β′ with β′ ∈
{v, f(v)}∗ and f(v2) is a prefix of v1.

Assume first that β′ starts with f(v). If u′′ starts with f(v1), then f(v2) is a
prefix of f(v1). But f

2(v2) is a prefix of f(v1) as well, so f is the identity on v2.
As in the previous cases, we obtain that f is the identity on all letters of u and
v, and with the help of Theorem 1 reach the conclusion.

When u′′ starts with v, if β′ starts with f(v)v we have that v1v2 = f(v2)f(v1)
and v1v2 = f(v2)v1. Thus, v1 = f(v1) and f is the identity for the alphabet
of u and v. The conclusion follows again from Theorem 1. If β′ starts with
f(v)f(v) we get that u′′ starts with either vv or with vf(v1). In the latter case
the conclusion follows as in the case when u′′ starts with f(v1). In the first case,
the analysis is restarted, ending up with either a solution as in the case when β′

starts with f(v)v, or the case when u′′ starts with f(v1), as u ends with f(v1).
Hence, we conclude that this case leads also to what we wanted to prove.

Finally, assume that β′ starts with v. If u′′ starts with v1 we obtain that both
f(v2) and v2 are prefixes of v1, so f is the identity on the alphabet of u and v.
If u′′ starts with f(v1), then f(v1) starts with v2, so f

2(v2) = v2. Thus, f is an
involution on the alphabet of u and v, and we conclude by Theorem 2.

The optimality of the result is obtained from Example 2. .�
Example 2. Let i be a natural number. Consider the words

u = (deadebdec)idec and v = (deadebdec)i,

and an isomorphism f with f(a) = c, f(b) = a, f(c) = b, f(d) = d and f(e) = e.
The words u2 and vf(v)2 share a common prefix of length 2|u| − 1 and no word
t exists, such that u, v ∈ t{t, f(t)}∗. �

Using the strategy of the proof of Proposition 3, one gets the following result:

Proposition 4. Let u, v ∈ V ∗ such that |u| > |v| > 2 gcd(|u|, |v|) and f : V ∗ →
V ∗ be an isomorphism. If α ∈ uf(u){u, f(u)}∗ and β ∈ v{v, f(v)}∗ have a
common prefix of length greater than or equal to 2|u| + gcd(|u|, |v|), then there
exists t ∈ V ∗ such that u, v ∈ t{t, f(t)}∗. The bound is optimal.

Proof. Denoting again by u′ the longest prefix of u with u′ ∈ v{v, f(v)}∗, for a
factorization v = v1 · · · vm with |vi| = gcd(|u|, |v|) = d for all 1 ≤ i ≤ m we let
v′ = v1 · · · vi be the prefix of v for which |v′| = |u| − |u′|. It is straightforward
that gcd(|v′|, |v|) = gcd(|u|, |v|) = d �= |v|/2, so gcd(i,m) = 1.

The proof consists of several case analysis just as that of Proposition 3.
First we consider α = u′v1 . . . vif(u)α

′, where α′ ∈ {u, f(u)}∗, and thus β =
u′vβ′ with β′ ∈ {v, f(v)}∗, and analyze what happens when i < m/2 (we have
in this case f(v1) = vi+1 and f2(v1) = f(vi+1) = v2i+1), and then what happens
when i > m/2 (now we have 2i+1 > m and f2(v1) = f(vi+1) ∈ {v(2i+1) mod m,
f(v(2i+1) mod m)}).

Finally, we consider the case when α = u′f(v1 . . . vi)f(u)α
′, where α′ ∈

{u, f(u)}∗ and u = vu′′.
The optimality of the result is obtained from Example 3. .�
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Example 3. Let i be a natural number. Consider the words

u = (abcabdabe)iabc and v = (abcabdabe)i

and an isomorphism f with f(a) = a, f(b) = b, f(c) = d, f(d) = e and f(e) = c.
The words uf(u)ab and v3 share a common prefix of length 2|u|+gcd(|u|, |v|)−1
and no word t exists such that u, v ∈ t{t, f(t)}∗. �

4 Pseudo-repetitions for Antimorphisms

For a bijective antimorphism f and a word t, denote by f−1(t) the unique word
x with f(x) = t. Clearly, f2ord(f)−1(t) = f−1(t), as f2ord(f)(x) = x, but not
necessarily ford(f)(x) = x, as for some even integer k, fk+1(x) is x mirrored.

First, we note that a result similar to that of Theorem 4 does not hold in this
case, even when we allow common prefixes of arbitrarily large length.

Example 4. Let i be a natural number. Consider the words

u = aibic and v = aibi,

and a bijective antimorphism f with f(a) = e, f(b) = d, f(c) = c. Moreover, f
can be chosen as involution. The infinite word w = aibic(diei)ω can be written
as w = uf(v)ω = vf(u)f(v)ω and all three words u, v and w are f -primitive. �

So which are the bounds in the antimorphism case? When |v| = 2 gcd(|u|, |v|)
the following result is not difficult to prove:

Proposition 5. Let u, v ∈ V ∗ with |u| > |v| = 2 gcd(|u|, |v|) and f : V ∗ → V ∗

be a bijective antimorphism. If α ∈ u{u, f(u)}∗ and β ∈ v{v, f(v)}∗ have a
common prefix of length greater than or equal to 2|u| − 'gcd(|u|, |v|)/2(, then
there exists t ∈ V ∗ such that u, v ∈ t{t, f(t)}∗ or u, v ∈ t{t, f−1(t)}∗. The bound
is optimal.

Proof. Since |v| = 2 gcd(|u|, |v|), there exist factorizations v = v1v2 and u =
v1v2 . . . v2k+1, where k ≥ 1 and |vi| = gcd(|u|, |v|) for 1 ≤ i ≤ 2k + 1.

Assume first that u ∈ v{v, f(v)}∗v1, thus the prefix of length |u| of β is
followed by v2. If uu is a prefix of α, then v1 = v2k+1, v2 = v1 and u ∈
v1{v1, f(v1)}+. If uf(u) is a prefix of α, then v1 = v2k+1, v2 = f(v2k+1)
and, thus, v2 = f(v1). When u ∈ {v}+v1 we have u ∈ v1{v1, f(v1)}+. If ex-
ists i such that 1 < i ≤ k and v2i−1v2i = f(v2)f(v1), we look at the fac-
tor that corresponds to f(v2i)f(v2i−1) in the occurrence of f(u) of the prefix
uf(u) of α that we analyse; note that 2i ≤ 2|u| − 'gcd(|u|, |v|)/2(. We have
f(v2i)f(v2i−1) ∈ {v1v2, f(v2)f(v1)}. In both cases we have that f is an involu-
tion and the conclusion follows by Theorem 3.

Now assume that u ∈ v{v, f(v)}∗f(v2), that is the prefix of length |u| of β
is followed by f(v1). If uu is a prefix of α, then f(v2) = v2k+1 and f(v1) = v1.
Looking at the prefix of length |v| of the second occurrence of u in α we obtain



Fine and Wilf and Pseudo-repetitions 677

that v2 = f(v2) or v2 = v1. In the first case, f is an involution and we conclude
by Theorem 3, while in the second case we have u ∈ v1{v1, f(v1)}+. If uf(u) is a
prefix of α, then f(v2) = v2k+1 and f(v1) = f(v2k+1), and, thus, f(v2) = v1. As
above, if u ∈ {v}+f(v2), then u ∈ v1{v1, f−1(v1)}+. If there exists i such that
1 < i ≤ k and v2i−1v2i = f(v2)f(v1) we look at the factor that corresponds to
f(v2i)f(v2i−1) in the occurrence of f(u) of the prefix uf(u) of α that we analyse;
note that 2i ≤ 2|u| − 'gcd(|u|, |v|)/2'. The conclusion follows as above.

In conclusion, there always exists a prefix t of u such that u, v ∈ t{t, f(t)}∗ or
u, v ∈ t{t, f−1(t)}∗. The optimality of the bound 2|u| − 'gcd(|u|, |v|)/2' follows
from the optimality result in Theorem 3. .�

In fact, the following example shows that there are words u and v as in the
statement of the previous proposition for which there exists a unique t such that
u, v ∈ t{t, f(t)}∗ (or, alternatively, u, v ∈ t{t, f−1(t)}∗).

Example 5. This example shows that for any bijective antimorphism f : V ∗ →
V ∗ which is not an involution there exist two words u, v ∈ V ∗ such that |u| >
|v| = 2 gcd(|u|, |v|) and the words α ∈ u{u, f(u)}∗ and β ∈ v{v, f(v)}∗ having
a common prefix of length greater than or equal to 2|u|+ gcd(|u|, |v|) such that
there exists a unique prefix x of v such that u, v ∈ x{x, f−1(x)}∗ and there exists
no prefix t of v such that u, v ∈ t{t, f(t)}∗.

Since f is not an involution, f has at least one cycle of length greater than
or equal to 3; denote the elements of this cycle with a1, a2, . . . , ak with k ≥ 3,
f(ai) = ai+1 for 1 ≤ i ≤ k − 1 and f(ak) = a1. Consider the words

u = a1akak−1 . . . a3a2a1a2 . . . ak−1aka1akak−1 . . . a3a2

and
v = a1akak−1 . . . a3a2a1a2 . . . ak−1ak.

The words uf(u) and vf(v)2 are equal, but no word t exists such that u and v are
both in t{t, f(t)}∗. Clearly, an infinite iteration of uf(u) = vf(v)2 still has two
different factorizations: one as a word from u{u, f(u)}∗ and one from v{v, f(v)}∗,
respectively. Also, u = xf−1(x)x and v = xf−1(x), for x = a1akak−1 . . . a3a2,
and there is no other prefix t of u and v such that u, v ∈ t{t, f−1(t)}∗.

Similar examples can be devised to show that, for any bijective antimorphism
f : V ∗ → V ∗, there exist two words u, v ∈ V ∗ with |u| > |v| = 2 gcd(|u|, |v|)
and the words α ∈ u{u, f(u)}∗ and β ∈ v{v, f(v)}∗ having a common prefix of
length greater than or equal to 2|u|+gcd(|u|, |v|) such that there exists a unique
prefix x of v such that u, v ∈ x{x, f(x)}∗ and there exists no prefix t of v such
that u, v ∈ t{t, f−1(t)}∗. Just take, in the above setting,

u = a1akak−1 . . . a3a2a3a4 . . . aka1a2akak−1 . . . a3a2

and
v = a1akak−1 . . . a3a2a3a4 . . . aka1a2.

If f is an involution, then we have f−1(x) = f(x) for any word x. Assume that f
is over an alphabet including {a, b}, with f(a) /∈ {a, b}. Let i be a prime number,
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and consider the words u = (ab)if((ab)i)(ab)i and v = (ab)if((ab)i). As in the
previous cases, uf(u) = v(f(v))2 and u, v ∈ x{x, f(x)}∗ for x = (ab)i, but there
is no other prefix t of u and v such that u, v ∈ t{t, f(t)}∗. �

The following result represents a variation of Lemma 1. The proof is done iden-
tifying factors that give equalities as in Lemma 2 and conclude that the anti-
morphism is an involution.

Lemma 3. For a word w and a bijective antimorphism f defined on the alphabet
of w, if w or f(w) are proper factors of {w, f(w)}2, such that not all three factors
are equal, it is the case that f is an involution.

Proof. Assume first that w = a1 · · · an is a proper factor of wf(w), where n is the
length of w. It follows that for some j with 1 < j ≤ n we have that aj · · ·an =
f(an) · · · f(aj) and by Lemma 2 we get that for the alphabet of this factor, f is
an involution. Looking now at the equality a1 · · · aj−1 = an−j+1 · · ·an, one can
easily prove that the alphabet of this factor is the same as the one of aj · · · an,
and, therefore, f is an involution for all letters in w.

If w is a proper factor of f(w)w, then a1 · · ·aj = f(aj) · · · f(a1) and, again
by Lemma 2, for the alphabet of this factor f is an involution. The equality
aj+1 · · ·an = a1 · · · an−j shows that f is an involution for w.

If w is a proper factor of f(w)f(w), then a1 · · · aj = f(aj) · · · f(a1) and
aj+1 · · ·an = f(an) · · · f(aj+1). Again by Lemma 2, we conclude that f is an
involution for w.

Assume that f(w) is a proper factor of wf(w). It follows that for some j with
1 < j ≤ n we have that f(an) · · · f(aj) = aj · · ·an, and by Lemma 2 for the
alphabet of this factor f is an involution. From the equality f(aj−1) · · · f(a1) =
f(an) · · · f(an−j+1), one can prove that the alphabet of this factor is the same
as that of aj · · · an, and so f is an involution for all letters in w.

If f(w) is a proper factor of f(w)w, then f(aj) · · · f(a1) = a1 · · · aj and by
Lemma 2 for the alphabet of this factor f is an involution. From the equality
f(an) · · · f(aj+1) = f(an−j) · · · f(a1), one concludes again that f is an involution
for the entire alphabet of w.

Finally, take f(w) a proper factor of ww. Since f(an) · · · f(aj) = aj · · · an and
f(aj−1) · · · f(a1) = a1 · · · aj−1, by Lemma 2 we conclude that f is an involution
for alph(w). .�

The case of |v| ≥ 3 gcd(|u|, |v|) is proved by looking at the alignment of the prefix
v, or, respectively, suffix f(v), of the second factor of length |u| of α with the
corresponding factors from β.

Proposition 6. Let u, v ∈ V ∗ be such that |u| > |v| > 2 gcd(|u|, |v|) and let
f : V ∗ → V ∗ be a bijective antimorphism. If α ∈ u{u, f(u)}∗ and β ∈ v{v, f(v)}∗
have a common prefix of length greater than or equal to 2|u|+ |v|−gcd(|u|, |v|)−
'gcd(|u|, |v|)/2(, then there exists t ∈ V ∗, such that u, v ∈ t{t, f(t)}∗.

Proof. Let d = gcd(|u|, |v|). The proof of this is based on the key remark that
the prefix u in α is followed by either v, the prefix of u, or f(u), which has f(v)
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as a suffix. Further, it is worth noting that, when α has uf(u) as a prefix, the
suffix f(v) of f(u) is a proper factor of a word from {v, f(v)}2. This is true
since, otherwise, we have that for some coprime integers k, k′ with |u| = kd
and |v| = k′d ≥ 3d there exists an integer h such that 2kd = hk′d. Thus, from
2k = hk′ and the fact that k and k′ are coprime, we get that k = h and k′ = 2,
a contradiction.

Now, in both cases above, since |v| ≥ 3d, we get that there exist the words
x, y, z ∈ {v, f(v)} such that x is a proper factor of yz. If not all three factors x,
y, and z are equal, we conclude by Lemma 3. Otherwise, we have x = y = z = v,
and it follows by Lemma 1 that v is a power, or x = y = z = f(v). In the
last case, we get by Lemma 1 that f(v) = tj , for some word t with |t| | |u| and
positive natural number j. Hence, we have v = f−1(tj) = (t′)j . As |t′| = |t| | |u|,
we get that u ∈ t′{t′, f(t′)}∗. .�

5 Conclusion

We end this work with some concluding remarks.
First note that the result of Proposition 6 matches the one existing for anti-

morphic involutions, see Theorem 3. Thus, an optimality of this bound derives
an optimality for the antimorphic involution bound, or vice-versa.

The following three examples show that results similar to the ones presented
here cannot be derived for more general anti-/morphisms. In all the following
examples f can be considered both as a morphism and as an antimorphism over
an alphabet that includes {a, b} and some natural number i ≥ 1.

Example 6. Consider the words

u = biaibia2ib3i and v = biaibia2ibi,

and a function f with f(a) = ε and f(b) = b. Then w = (uf(u)2)ω = (vf(v)4)ω

and one can check that there is no t with |t| ≤ |v| such that u, v ∈ t{t, f(t)}∗. �

Example 7. Consider the words

u = aibia2i and v = aibiai,

and a function f with f(a) = f(b) = a. We have w = (uf(u)2)ω = (vf(v)3)ω

and exists no t with |t| ≤ |v| such that w ∈ t{t, f(t)}∗. �

Finally we consider strictly increasing anti/morphisms.

Example 8. Consider the words

u = (ab)2i−1a and v = a,

and a function f with f(a) = bab and f(b) = aba. Then w = (uf(u))ω =
(vf(v))ω , but u is not part of {v, f(v)}∗. �
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Taking It to the Limit:
Approximate Reasoning for Markov Processes
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Abstract. We develop a fusion of logical and metrical principles for reasoning
about Markov processes. More precisely, we lift metrics from processes to sets of
processes satisfying a formula and explore how the satisfaction relation behaves
as sequences of processes and sequences of formulas approach limits. A key new
concept is dynamically-continuous metric bisimulation which is a property of
(pseudo)metrics. We prove theorems about satisfaction in the limit, robustness
theorems as well as giving a topological characterization of various classes of
formulas. This work is aimed at providing approximate reasoning principles for
Markov processes.

1 Introduction

Probabilistic bisimulation, introduced by Larsen and Skou [15] has become the key
concept for reasoning about the equivalence of probabilistic and stochastic systems.
Labelled Markov processes are the probabilistic analogs of labelled transition systems;
they have state spaces that might be continuous but include discrete state spaces as a
special case. The theory of probabilistic bisimulation has been extended to stochastic
bisimulation relating processes with continuous-state spaces and continuous distribu-
tions [6, 4]. These papers provided a characterization of bisimulation using a negation-
free logic.

However, it is also widely realized that probabilistic and stochastic bisimulations are
too “exact” for most purposes — they only relate processes with identical behaviours.
In applications we need instead to know whether two processes that may differ by a
small amount in the real-valued parameters (rates or probabilities) have similar be-
haviours. These motivated the search for a relaxation of the notion of equivalence of
processes.

The metric theory was initiated by Desharnais et al. [8] and greatly developed and
explored by van Breugel, Worrell and others [19, 18]. The key idea was to consider a
behavioral pseudometric, i.e. a variation of the concept of metric for processes where
pairs of distinct processes are at distance 0 whenever the processes are bisimilar.

Though behavioural pseudometrics were defined, approximate reasoning principles
as such did not develop. The present work is a step in that direction. We lift the metric
between processes to a metric between logical formulas by standard techniques, using
the Hausdorff metric; but then we break new ground by exploring the relationship be-
tween convergence of processes and of formulas. We thus lay the groundwork for a
notion of approximate reasoning not by getting rid of the logic but by fusing metric and
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logical principles. The completeness theorems of [4, 5] are a powerful impetus for the
present paper.

Consider the sequence of stochastic processes represented in Figure 1. The process m
has only one state and one self-transition at rate 5; similarly, for each k ∈ N, the process
mk has one state and one transition at rate 4. 9..9

︸︷︷︸

k

. Using a behavioral pseudometric,

we expect to prove that the sequence (mk)k∈N of processes converges to m. We often
meet such problems in practice where m is a natural process that we need to analyze,
while mk are increasingly accurate models of m. If, in addition, we have a convergent
sequence of logical formulas φk with limit φ such that mk |= φk for each k, we want to
understand whether we can infer m |= φ.

Fig. 1. A sequence of convergent stochastic processes and their limit

In order to address such problems, we identify a general metrical notion that we
call dynamical continuity. It characterizes the behavioral pseudometrics for which a
sequence of processes as the one in our example is convergent; and it allows us to relate
the convergence in formulas with convergence of the processes.

Using this concept we can address the above mentioned problem and prove that in
general we do not have, at the limit, m |= φ. For the probabilistic case m |= φ only if φ
is a positive formula. Positive formulas will be defined in the paper; they are restricted,
but they suffice for the modal characterization of probabilistic bisimulation. For the
stochastic case we have to restrict the set of formulas slightly more, remaining however
within a set of formulas that characterize bisimulation. In either case, even if m �|= φ,
there exists a sequence of processes (nk)k∈N such that lim

k→∞
nk = m and nk |= φ for each

k ∈ N. So this gives a handle on constructing approximations satisfying prescribed
conditions. Along the way we give topological characterizations of various classes of
formulas as defining open, closed, Gδ or Fσ sets1. All these results hold whenever one
has a dynamically-continuous metric bisimulation, as it is the case with the behavioral
pseudometrics introduced in [8, 19, 18].

The Relevance of This Work. We prove that the process of extrapolating properties
from arbitrary accurate approximations of a system to the system itself – a method
widely accepted as valid and used in applications – is not always consistent. Often
one constructs better and better approximations of a system, proves properties of these
approximations and extrapolates the results to the original system. But can we indeed

1 In topology, a Gδ set is a countable intersection of open sets and a Fσ set in a countable union
of closed sets.
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be sure that if, for instance, the approximants show oscillatory behaviours [3] then the
original system also oscillates? The mathematical framework developed in this paper
allows us to address such a question and to prove that the answer is no, in general:
there may exist sequences of arbitrarily accurate approximations of a system showing
properties that are not preserved to the limit; and this already happens for fragments
of modal probabilistic and stochastic logics, less expressive than CSL or pCTL. We
prove that the preservation to the limit depends on the logical structure of the property;
“negative information” and “approximations from above”, for instance, are obstructions
to this kind of limiting argument. Moreover, different logics behave differently to the
limit. In this paper we show that there is a considerable difference between probabilistic
and stochastic logical properties.

2 Preliminaries

In this section we introduce notation and establish terminology. We assume that the
basic terminology of topology and measure theory is familiar to the reader. In appendix
we collect some basic definitions and the proofs of the major results.

Sets and Measurability. If (M, Σ) is a measurable space with σ-algebra Σ ⊆ 2M, we
use Δ(M, Σ) to denote the set of measures μ : Σ → R+ on (M, Σ) and Π(M, Σ) to denote
the set of probability measures μ : Σ → [0, 1] on (M, Σ).

We organize Δ(M, Σ) and Π(M, Σ) as measurable spaces: for arbitrary S ∈ Σ and
r > 0, let Θ = {μ ∈ Δ(M, Σ) : μ(S ) ≤ r} and Ω = {μ ∈ Π(M, Σ) : μ(S ) ≤ r}; let Θ and Ω
be the σ-algebras generated by Θ and Ω on Δ(M, Σ) and Π(M, Σ) respectively.

Given two measurable spaces (M, Σ) and (N, Σ′), we use �M → N� to denote the
class of measurable mappings from (M, Σ) to (N, Σ′).

Given a relation R ⊆ M × M, the set N ⊆ M is R-closed iff {m ∈ M | ∃n ∈
N, (n,m) ∈ R} ⊆ N. If (M, Σ) is a measurable space, we denote Σ(R) = {S ∈ Σ |
S is R-closed}.

Distances. Let M be a set. A function d : M × M → R+ is a pseudometric on M if it
satisfies, for arbitrary x, y, z ∈ M, the following axioms.

(1): d(x, x) = 0 (2): d(x, y) ≤ d(x, z)+d(z, y) (3): d(x, y) = d(y, x).
If d is a pseudometric, (M, d) is a pseudometric space.
Given a pseudometric space (M, d), we define the following distances for arbitrary

a ∈ M and A, B ⊆ M with A � ∅ � B.
(1): dh(a, B) = inf

b∈B
d(a, b), (2): dH/2(A, B) = sup

a∈A
inf
b∈B

d(a, b),

(3): dH(A, B) = max{sup
a∈A

inf
b∈B

d(a, b), sup
b∈B

inf
a∈A

d(a, b)}.

We call dH the Hausdorff pseudometric (associated to d).

Lemma 1. If (M, d) is a pseudometric space and X is the closure of X ⊆ M in the open
ball topology Td, then for arbitrary A, B ⊆ M,
(1): dH(A, B) = 0 iff A = B, (2): dH(A, B) = dH(A, B) = dH(A, B) = dH(A, B).

In what follows, we consider for pseudometric spaces (M, d) the following notions of
convergence in the open ball topologies Td and TdH respectively2:

2 A pseudometric space is not a Hausdorff space and consequently the limits are not unique.
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– For an arbitrary sequence (mk)k∈N of elements of M and an arbitrary m ∈ M, we write
m ∈ lim

k→∞
mk (or lim

k→∞
mk � m) to denote that lim

k→∞
d(mk,m) = 0.

– For an arbitrary sequence (S k)k∈N of subsets of M and an arbitrary set S ⊆ M, we
write S ∈ lim

k→∞
S k (or lim

k→∞
S k � S ) to denote that lim

k→∞
dH(S k, S ) = 0.

Lemma 2. Let (M, d) be a pseudometric space and (Bi)i∈N a decreasing sequence of
compact subsets of M in the topology Td. If lim

k→∞
Bk � A, then dH(A,

⋂

i∈N
Bi) = 0.

Lemma 3. Let (M, d) be a pseudometric space and (mk)k∈N ⊆ M, (S k)k∈N ⊆ 2M con-
vergent sequences with m ∈ lim

k→∞
mk and S ∈ lim

k→∞
S k. If mk ∈ S k for each k ∈ N, then

dh(m, S ) = 0. In particular, if S is closed, then m ∈ S .

3 The Pseudometric Spaces of Processes

In this section we introduce two classes of processes, discrete-time Markov processes
(DMPs), which are similar to the ones studied in [17, 6, 10]; and continuous-time
Markov processes (CMPs) [4], which are models of stochastic systems with continu-
ous time transitions. We emphasize that the terms “discrete” and “continuous” refer to
time and not to the state space. In this paper we use for both classes the definitions pro-
posed in [4, 5], which exploits an equivalence between the definitions of Harsanyi type
spaces [16] and a coalgebraic view of labelled Markov processes [12]. However, with
respect to [4, 5] or to [17, 6, 10], we do not consider action labels. The subtle issues all
involve convergence and other analytical aspects; the labels can easily be added without
changing any of these aspects of the theory.

Definition 1 (Processes). Let (M, Σ) be an analytic space, where Σ is its Borel algebra.

• A discrete Markov kernel (DMK) is a tupleM= (M, Σ, θ), where θ ∈ �M → Π(M, Σ)�;
if m ∈ M, (M,m) is a discrete Markov process.
• A continuous Markov kernel (CMK) is a tupleM= (M, Σ, θ), where θ∈�M→Δ(M, Σ)�;
if m ∈ M, (M,m) is a continuous Markov process.
For both types of processes, M is called the support set ofM denoted by supp(M).

If m is the current state of a DMP and N is a measurable set of states, the transition
function θ(m) is a probability measure on the state space and θ(m)(N) ∈ [0, 1] represents
the probability of a transition from m to an arbitrary state n ∈ N.

Similarly, if m is the current state of a CMP and N is a measurable set of states, the
transition function θ(m) is a measure on the state space and θ(m)(N) ∈ R+ represents the
rate of an exponentially distributed random variable that characterizes the duration of a
transition from m to an arbitrary state n ∈ N. Indeterminacy in such systems is resolved
by races between events executing at different probabilities/rates.

Notice that, in both cases, θ is a measurable mapping between the space of processes
and the space of (probabilistic/stochastic) measures. These requirements are equivalent
to the conditions on the corresponding two-variable probabilistic/rate function used in
[17, 6, 10] to define labelled Markov processes and in [9] to define continuous Markov
processes (for the proof see, Proposition 2.9 [10]).
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The definitions of bisimulation for DMPs and CMPs follow the line of the Larsen-
Skou definition of probabilistic bisimulation [15].

Definition 2 (Bisimulation). Given the DMK (CMK) M = (M, Σ, θ), a bisimulation
relation onM is a relationR ⊆ M×M such that whenever (m, n) ∈ R, for any C ∈ Σ(R),
θ(m)(C) = θ(n)(C). Two processes (M,m) and (M, n) are bisimilar, written m ∼M n, if
they are related by a bisimulation relation.

The bisimulation relation between processes with different Markov kernels is defined
by taking the disjoint union of the two [17, 6, 4, 5]. For this reason, in what follows
we use ∼ without extra indices to denote the largest bisimulation relation. We call the
largest bisimulation of DMPs probabilistic bisimulation and the largest bisimulation of
CMPs stochastic bisimulation.

As we have already underlined in the introduction, the concept of bisimulation for
probabilistic or stochastic processes is very strict. We can however relax it by intro-
ducing a behavioral pseudometric [8, 17] which, formally, is a distances between pro-
cesses that measure their similarity in terms of quantitative behaviour: the kernel of a
behavioral pseudometric is a bisimulation. Moreover, we expect that a behavioral pseu-
dometric can prove that a sequence of processes as (mk)k∈N represented in Figure 1 is
convergent to m. Hereafter in this section we identify a sufficient condition satisfied by
any behavioral pseudometric that can prove such a convergence.

Before proceeding with the definition, recall that the convergences are in the corre-
sponding open ball topologies, as defined in the preliminary section. In addition, we
define the kernel of d as being the set ker(d) = {(m, n) ∈ M × M | d(m, n) = 0}.

Definition 3 (Dynamically-continuous metric bisimulation). Given the DMK (CMK)
M = (M, Σ, θ), a pseudometric d :M×M→ R+ is

– a metric bisimulation if ker(d) =∼
– dynamically-continuous if whenever (mk)k∈N ∈ M with lim

k→∞
mk � m (in Td), for any

S ∈ Σ(∼) there exists a decreasing sequence (S k)k∈N ⊆ Σ(∼) of compact sets in the
topology Td such that lim

k→∞
S k � S (in TdH ) and lim

k→∞
θ(mk)(S k) = θ(m)(S ).

All the behavioral pseudometrics defined in [8, 19, 18] are dynamically-continuous
metric bisimulations. Notice also the coinductive nature of this definition, which is rem-
iniscent of the general definition of bisimulation.

Example 1. Let us now convince ourselves that any behavioral pseudometric that can
prove the convergence in Figure 1 is indeed a dynamically-continuous metric bisim-
ulation. Formally, in Figure 1 we have represented the CMK M = (M, Σ, θ) where
M = {m,m1, ..mk, ..}, Σ = 2M , θ(mk)({mk}) = 4. 9..9

︸︷︷︸

k

for k ∈ N and θ(m)({m}) = 5.

If in the open ball topology we can prove that lim
k→∞

mk � m, then for each k ∈ N,

S k = {m,mk,mk+1, ..} is a compact set – since it is closed and bounded in a com-
plete pseudometric space; S k ⊇ S k+1 and lim

k→∞
S k � {m}. Because θ(mk) is a mea-

sure, θ(mk)(S k) = θ(mk)({mk}) + θ(mk)(S k+1). But θ(mk)(S k+1) = 0, hence θ(mk)(S k) =
θ(mk)({mk}). This implies that lim

k→∞
θ(mk)(S k) = lim

k→∞
θ(mk)({mk}) = θ(m)({m}) and
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verifies the second condition of the previous definition. All these arguments motivate
our choice for the definition of dynamically-continuous metric bisimulation. ��

4 Markovian Logics

In this section we present two logics for Markovian processes: the discrete Markovian
Logic (DML) for semantics based on DMPs, similar to the logics introduced in the liter-
ature, for example in [2, 13, 15]; and the continuous Markovian logic (CML) for seman-
tics based on CMPs [4]. In addition to the boolean operators, these logics are endowed
with probabilistic/stochastic modal operators that approximate the probabilities/rates
of transitions. For r ∈ Q+, Lrφ characterizes (M,m) whenever the probability/rate of
the transition from m to the class of states satisfying φ is at least r; symmetrically, Mrφ
is satisfied when this probability/rate is at most r.

Definition 4 (Syntax). The formulas of L are introduced by the following grammar.
L : φ := � | ¬φ | φ ∧ φ | Lrφ | Mrφ, r ∈ Q+.

We isolate the fragment L[0, 1] ⊆ L defined only for r ∈ [0, 1] ∩ Q+. L contains the
well-formed formulas of CML, L[0, 1] contains the well-formed formulas of DML. As
usual, both logics use all the boolean operators including ⊥ = ¬�.

The major difference between the two logics is reflected in their semantics. The
semantics of DML is defined for DMPs, while the semantics of CML is defined in
terms of CMPs. The satisfiability relations is similar for the two logics. It assumes a
fixed structure M = (M, Σ, θ) that represents a DMK when it refers to DML, and a
CMK when it refers to CML; and m ∈ M is an arbitrary process.

m |= � always,
m |= ¬φ iff it is not the case that m |= φ,
m |= φ ∧ ψ iff m |= φ and m |= ψ,
m |= Lrφ iff θ(m)(�φ�) ≥ r,
m |= Mrφ iff θ(m)(�φ�) ≤ r,

where �φ� = {m ∈ M | m |= φ}.
When it is not the case that m |= φ, we write m �|= φ.
The semantics of Lrφ and Mrφ are well defined only if �φ� is measurable. This is

guaranteed by the fact that θ is a measurable mapping – for the proof see [4].
In spite of their apparent similarities, the two logics are very different at the prov-

ability level. Below we present a complete axiomatization for DML in Table 1 [20]
and a complete axiomatization for CML in Table 2 [4]. The key differences between
the two logics consists of the relation between Lrφ and Mrφ. In the discrete logic the
two are related by De Morgan dualities, stating that the probability of a transition to
a state satisfying φ depends of the probability of a transition to some state satisfying
¬φ: � Lrφ ↔ M1−r¬φ and � Mrφ ↔ L1−r¬φ. In the continuous case, the two modal
operators are independent [4]. We will see in the following sections that this difference
is deeply reflected in the topologies of the two spaces of formulas.

There exist strong relations between logical equivalence and bisimulation both for
the probabilistic and for the stochastic cases. In [9, 17] it was shown that the logi-
cal equivalence induced by L[0, 1] on the class of DMPs coincides with probabilistic
bisimulation. A similar result holds for CML, [4].
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Table 1. The axiomatic system of DML

(A1): � L0φ
(A2): � Lr�
(A3): � Lrφ↔ M1−r¬φ
(A4): � Lrφ→ ¬Ls¬φ, r + s > 1
(A5): � Lr(φ ∧ ψ) ∧ Ls(φ ∧ ¬ψ)→ Lr+sφ, r + s ≤ 1
(A6): � ¬Lr(φ ∧ ψ) ∧ ¬Ls(φ ∧ ¬ψ)→ ¬Lr+sφ, r + s ≤ 1
(R1): If � φ→ ψ then � Lrφ→ Lrψ
(R2): {¬Mrψ | r < s} � Lsψ

Table 2. The axiomatic system of CML

(B1): � L0φ
(B2): � Lr+sφ→ ¬Mrφ, s > 0
(B3): � ¬Lrφ→ Mrφ

(B4): � ¬Lr(φ ∧ ψ) ∧ ¬Ls(φ ∧ ¬ψ)→ ¬Lr+sφ
(B5): � ¬Mr(φ ∧ ψ) ∧ ¬Ms(φ ∧ ¬ψ)→ ¬Mr+sφ
(S1): If � φ→ ψ then � Lrφ→ Lrψ

(S2): {Lrψ | r < s} � Lsψ
(S3): {Mrψ | r > s} � Msψ
(S4): {Lrψ | r > s} � ⊥

5 The Topological Space of Logical Formulas

Since a dynamically-continuous metric bisimulation is a relaxation of the bisimulation
relation, in what follows we try to identify similar logical characterization results for
dynamically-continuous metric bisimulation. In order to do this, we organize the space
of the logical formulas as a pseudometric space, by identifying a logical formula with
the set of its models and using the Hausdorff distance.

Formally, assume that the space M of the continuous (or discrete) Markov kernel
is a pseudometric space defined by d : M ×M → R+. The Hausdorff pseudometric
dH associated to d is a distance between the sets �φ� of models, for arbitrary φ ∈ L
(or φ ∈ L[0, 1] respectively). Consequently, we can define, for arbitrary φ, ψ ∈ L (or
φ, ψ ∈ L[0, 1] respectively), a distance δ by δ(φ, ψ) = dH(�φ�, �ψ�).

Proposition 1. (L, δ) and (L[0, 1], δ) are pseudometric spaces.

5.1 The Topology of Discrete Markovian Logic

In this subsection we concentrate on the discrete Markovian logic. LetM = (M, Σ, θ) be
the universal DMP organized as a pseudometric space by the behavioural pseudometric
d. Let (L[0, 1], δ) be the pseudometric space of logical formulas.

To understand deeper the relation between the induced topologies, in what follows
we isolate the following fragments of L[0, 1].

L[0, 1]+ : f := � | f ∨ f | f ∧ f | Lrφ | Mrφ, φ ∈ L[0, 1],
L[0, 1]− = {¬ f | f ∈ L[0, 1]+}.
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As in the preliminaries, we use Td to denote the open ball topology, X and Xint to denote
the closure and the interior of X ⊆ M, respectively.

Proposition 2. Let d be a dynamically-continuous metric bisimulation onM.
1. If φ ∈ L[0, 1]+, then �φ� is a closed set in the topology Td.
2. If φ ∈ L[0, 1]−, then �φ� is an open set in the topology Td.
3. �¬Mrφ� = �Lrφ� and �¬Lrφ� = �Mrφ�.
4. �Mrφ�int = �¬Lrφ� and �Lrφ�int = �¬Mrφ�.

At this point we want to understand more about the kernel of δ and its relation to prov-
ability. Since the axiomatic system of DML is complete, the next theorem follows from
the definition of Hausdorff distance.

Theorem 1. If φ, ψ ∈ L[0, 1] and � φ↔ ψ, then δ(φ, ψ) = 0.

The next results and the example will show that actually the reverse of Theorem 1 is
not true: not all the formulas at distance zero are logically equivalent.

Theorem 2. Let d be a dynamically-continuous metric bisimulation and φ, ψ ∈ L[0, 1]
such that δ(φ, ψ) = 0.
1. If φ ∈ L[0, 1]+, then � ψ→ φ.
2. If φ, ψ ∈ L[0, 1]+, then [δ(φ, ψ) = 0 iff � φ↔ ψ].

Proof. 1. δ(φ, ψ) = 0 is equivalent to dH(�φ�, �ψ�) = 0, which is equivalent, as stated
in Lemma 1, to �φ� = �ψ�. If φ ∈ L[0, 1]+, by Proposition 2, �φ� is closed. Hence,
�ψ� = �φ�. This implies that �ψ� ⊆ �φ�, i.e., |= ψ → φ, which is equivalent to
� ψ→ φ. ��

Example 2. There exist logical formulas that are at distance zero without being logi-
cally equivalent:

δ(Lrφ,¬Mrφ) = 0, � ¬Mrφ→ Lrφ but � Lrφ→ ¬Mrφ.
To prove these, observe that for any model m ∈ M, if m |= ¬Mrφ, then m |= Lrφ. This
guarantees that the closure of �¬Mrφ� is included in �Lrφ�. Observe that if θ(m)(�φ�) =
r, then m |= Lrφ, but m �|= ¬Mrφ.

Suppose that there exists a model m ∈ M such that m ∈ �Lrφ� and dh(m, �¬Mrφ�) >
0. Then, θ(m)(�φ�) ≥ r and θ(m)(�φ�) < r - impossible. Hence the closure of �¬Mrφ�
coincides with �Lrφ� and this proves that δ(Lrφ,¬Mrφ) = 0. ��

The next theorem states that whenever (mk)k∈N is a sequence of increasingly accurate
approximations of m, if mk |= φk for each k, we cannot guarantee that m satisfies the limit
φ of (φk)k∈N; but, there exists a sequence of approximations of m satisfying φ.

Theorem 3. If d is a dynamically-continuous metric bisimulation and (φk)k∈N ⊆ L[0, 1],
(mk)k∈N ⊆ M are two convergent sequences such that lim

k→∞
φk � φ, lim

k→∞
mk � m and for

each k ∈ N, mk |= φk, then there exists a convergent sequence (nk)k∈N ⊆ M such that
lim
k→∞

nk � m and nk |= φ for each k ∈ N.

Proof. If we apply Lemma 3 for S k = �φk� and S = �φ�, we obtain that dh(m, �φ�) = 0
which implies that there exists a sequence (nk)k∈N ⊆ �φ� such that lim

k→∞
nk = m. ��
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There exist, however, properties that can be ”taken to the limit”.

Theorem 4. Let d be a dynamically-continuous metric bisimulation and (φk)k∈N ⊆
L[0, 1], (mk)k∈N ⊆ M two convergent sequences such that lim

k→∞
φk � φ, lim

k→∞
mk � m

and mk |= φk for each k ∈ N. If φ ∈ L[0, 1]+, then m |= φ.

Proof. As in Theorem 3, dh(m, �φ�) = 0. Since φ ∈ L[0, 1]+, Proposition 2 guarantees
that �φ� is closed and using the second part of Lemma 3 we obtain m ∈ �φ�. ��

5.2 The Topology of the Continuous Logic

In this subsection we investigate similar problems for the case of CMPs and continuous
Markovian logic. Hereafter, let M be the universal CMP organized as a pseudomet-
ric space by the behavioural pseudometric d. Let (L, δ) be the pseudometric space of
logical formulas.

Lemma 4. For arbitrary φ ∈ L,
1. �¬Mrφ� = �Lrφ�, 3. �Mrφ� =

⋂

k∈N
�¬Lr+ 1

k
φ�

2. �Mrφ�int = �¬Lrφ�, 4. �Lrφ� =
⋂

k∈N
�¬Mr− 1

k
φ�.

In the following examples we show that, unlike in the probabilistic case, �Mrψ� is
sometimes neither open nor closed in Td.

Example 3. We return to the stochastic system described in Example 1 and represented
in Figure 1. Notice that, for each k ∈ N, mk |= M0L5� meaning that each mk cannot
do a transition to a state (which is equivalent with ”it does it at rate 0”) where from
it is possible to do a transition at rate at least 5. But at the limit, m |= ¬M0L5� since
θ(m)(�L5��) = 5 > 0. Consequently, �M0L5�� is not closed in Td, since we found a
sequence of processes from �M0L5�� with a limit outside �M0L5��.

To prove that sometimes �Mrψ� is not open either, consider the same processes as
before only that for each k ∈ N, θ(mk)({mk}) = rk, where (rk)k∈N ∈ Q+ is a strictly
decreasing sequence with limit 5. In this case, for each k ∈ N, mk |= ¬M5�, since
θ(mk)({mk}) > 5. However, to the limit we have m |= M5� proving that �¬M5�� is not
closed in Td, hence, �M5�� is not open. ��

To understand this topology more deeply, we isolate the following fragments ofL.

L+ : f := � | f ∧ f | f ∨ f | Lrφ | Mrφ, L− = {¬ f | f ∈ L+},
L0 : f := � | f ∧ f | ¬ f | Lrφ,
L+0 : f := � | f ∧ f | f ∨ f | Lrφ, L−0 = {¬ f | f ∈ L+0 },

where in the previous definitions φ ∈ L[0, 1]+.
The next lemma marks essential differences between the topology of DML formulas

and the topology of CML formulas. Recall that, in topology, a Gδ set is a countable
intersection of open sets and a Fσ set is a countable union of closed sets.
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Theorem 5. If d is a dynamically-continuous metric bisimulation, then
1. If φ ∈ L+0 , then �φ� is a closed set in the topology Td.
2. If φ ∈ L−0 , then �φ� is an open set in the topology Td.
3. If φ ∈ L+, then �φ� is a Gδ set in the topology Td.
4. If φ ∈ L−, then �φ� is a Fσ set in the topology Td.

As for DML, logical equivalence is a subset of the kernel of δ.

Theorem 6. If � φ↔ ψ, then δ(φ, ψ) = 0.

However, Theorem 2 does not hold for CML. Instead we have the following weaker
result relying on the fact that �φ� is closed whenever φ ∈ L+0 .

Theorem 7. Let d be a dynamically-continuous metric bisimulation and φ, ψ ∈ L such
that δ(φ, ψ) = 0.
1. If φ ∈ L+0 , then � ψ→ φ.
2. If φ, ψ ∈ L+0 , then [δ(φ, ψ) = 0 iff � φ↔ ψ].

A similar result to Theorem 3 holds for CML.

Theorem 8. If d is a dynamically-continuous metric bisimulation and (φk)k∈N ⊆ L,
(mk)k∈N ⊆ M are two convergent sequences such that lim

k→∞
φk � φ, lim

k→∞
mk � m and

mk |= φk for each k ∈ N, then there exists a convergent sequence (nk)k∈N ⊆ M such that
lim
k→∞

nk � m and nk |= φ for each k ∈ N.

Theorem 4 does not hold for CML. But since �φ� is closed whenever φ ∈ L+0 , we have
a weaker version of it that does not involve the operators of type Mr.

Theorem 9. Let d be a dynamically-continuous metric bisimulation and (φk)k∈N ⊆ L,
(mk)k∈N ⊆ M two convergent sequences such that mk |= φk for each k ∈ N, lim

k→∞
φk � φ

and lim
k→∞

mk � m. If φ ∈ L+0 , then m |= φ.

6 Conclusions

The main contributions of the present paper are the following results:

– The definition of dynamically-continuous metric bisimulation which is the correct
distance-based counterpart of the concept of probabilistic/stochastic bisimulation.
– The definition of the topology of logical formulas canonically induced by the be-
havioural pseudometrics.
– Theorems that establish when parallel sequences of (probabilistic or stochastic) pro-
cesses and formulas converge to give satisfaction in the limit; these results reveal im-
portant differences between the probabilistic and stochastic Markovian logics.
–Theorems regarding the relationships between logical formulas being at zero distance
and logical equivalence/provability.
– Topological characterization of various classes of formulas.

There are many new things to explore. We currently prepare a coalgebraic presentation
of this work that helped us understanding a metric analogue of Stone duality for Markov
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processes. These results are in preparation and are directly inspired by the present work.
One topic that we have not understood to our satisfaction is the precise relationship
between the kernel of the Hausdorffmetric on formulas and provability. We would like
to find a definition of the logical distance independent of the semantics and, in this
sense, we exploit our previous works on completeness of Markovian logics. Another
topic that we are currently explore is the relation with the approximation theory for
Markov processes that, we believe, can highly benefit from this work.
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Abstract. We introduce and study the concept of an asymmetric swap-
equilibrium for network creation games. A graph where every edge is
owned by one of its endpoints is called to be in asymmetric swap-
equilibrium, if no vertex v can delete its own edge {v, w} and add a
new edge {v, w′} and thereby decrease the sum of distances from v to all
other vertices. This equilibrium concept generalizes and unifies some of
the previous equilibrium concepts for network creation games. While the
structure and the quality of equilibrium networks is still not fully under-
stood, we provide further (partial) insights for this open problem. As the
two main results, we show that (1) every asymmetric swap-equilibrium
has at most one (non-trivial) 2-edge-connected component, and (2) we
show a logarithmic upper bound on the diameter of an asymmetric
swap-equilibrium for the case that the minimum degree of the unique
2-edge-connected component is at least nε, for ε > 4 lg 3

lgn
. Due to the

generalizing property of asymmetric swap equilibria, these results hold
for several equilibrium concepts that were previously studied. Along the
way, we introduce a node-weighted version of the network creation games,
which is of independent interest for further studies of network creation
games.

1 Introduction

Many communication networks (such as the Internet) are planned, maintained
and built locally by individual entities (such as the autonomous systems). This
new phenomenon contrasts with centrally planned and built networks. Network
creation games study the quality and structure of communication networks that
are created in this non-central way.

The first and arguably the most prominent game-theoretic consideration in
this field is the (original) network creation game [5]) – a strategic game param-
eterized by a value α > 0 in which the players buy adjacent edges at the price
α each, and aim to minimize the cost expressed as the usage cost plus the cost
for the bought edges, where a usage cost is the sum of all distances from the
respective player. A series of papers [5,1,3,7] studied the structure and the price
of anarchy of (Nash) equilibria in network creation games. The price of anarchy
is expressed as the social cost of the worst equilibrium network divided by the

B. Rovan, V. Sassone, and P. Widmayer (Eds.): MFCS 2012, LNCS 7464, pp. 693–704, 2012.
c© Springer-Verlag Berlin Heidelberg 2012
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social cost of an optimum (centrally-planned) network (where, a social cost is
the sum of all individual costs of the players). It is believed that the price of
anarchy is constant for all values of α. This has been shown for almost all values
of α – with the exception of the range n1−ε ≤ α ≤ 273 · n (for ε ≥ 1/ lgn).
It remains a major open problem to prove/disprove the conjecture. In each of
these papers, a completely new proof-technique for giving an upper bound on
the price of anarchy has been developed, largely depending on the parameter α.
To overcome this rather unnatural “dependency” on α, Alon et al. [2] defined
and studied a new equilibrium concept: a graph is called to be in swap equilib-
rium, if no vertex v (a player) can delete an existing edge {v, w} and add a new
edge {v, w′} and thereby decrease the usage cost of v. Swap equilibria indeed
do not depend on α, but they do fail to generalize Nash equilibria. The authors
conjecture that swap equilibria have at most polylogarithmic diameter. We give
a partial affirmation of this.

Another approach to “get rid of” α (although having a different motivation
than Alon et al. [2]) has been presented by Ehsani et al. [4] which studied the so
called bounded-budget network creation game – a variant of the original network
creation game in which the players’ only goal is to minimize their usage cost
(as opposed to minimizing the usage cost plus the creation cost in the original
game) given that every player can buy at most a given number of edges. While
conceptually different, these two approaches enjoy several similarities, which
shall become obvious with our work.

Driven by the desire to answer the aforementioned open problem, and follow-
ing the original idea of Alon et al. to “get rid of” of α, we define and study the
asymmetric swap-equilibrium, a natural modification of the swap equilibrium:
a graph where every edge is owned by one of its endpoints is called to be in
asymmetric swap-equilibrium, if no vertex v can delete its own edge {v, w} and
add a new edge {v, w′} and thereby decrease the usage cost of v. Asymmetric
swap-equilibria have, on top of the inherent properties of swap equilibria (such as
that best responses can be calculated efficiently), the interesting property that
they generalize swap equilibria and they also generalize Nash equilibria in both
the original and the bounded-budget network creation games. Thus, any quality
and structural “upper bounds” that one proves for asymmetric swap-equilibrium
immediately hold for these equilibrium concepts as well.

As solving the main open problem seems to be difficult (as evidenced by
the many papers on the topic that only partially solve it), we are also inter-
ested in partial results towards this direction. Besides the quality of asymmetric
swap-equilibria, we thus also study their structure, which helps understanding
equilibrium graphs. In fact, analyzing the diameter of equilibrium networks is
another main open problem.

Definition of the Problem and Related Concepts. For every (undirected)
graph G we use the following notation. We denote the vertex set of G by V (G)
and its edge set by E(G). For u, v ∈ V (G) we denote by dG(u, v) the length of
a shortest u-v-path in G. If G is not connected we define dG(u, v) := ∞. We
denote the diameter of G by diam(G) and the radius by rad(G). We sometimes
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omit writing G and write simply d(u, v), diam or rad if the underlying graph G
is clear from the context. Recall that a 2-edge-connected graph is a graph of size
at least 2 that does not contain a bridge, i.e. an edge whose removal makes the
graph disconnected, and that a 2-edge-connected component of a graph G is a
maximal 2-edge-connected subgraph of G.

The (original) network creation game (as defined by Fabrikant et al. [5]) is a
strategic game parameterized by a positive real number α called the edge price.
The game is played by n players [n] representing nodes in a graph, where a
strategy si of a player i ∈ [n] is a set of adjacent edges that it buys (or builds).
The (played) strategies s = (s1, s2, . . . , sn) of the players naturally define the
graph G(s) = ([n],

⋃
si). The creation cost of player i in the game is α|si|, i.e.,

the amount it pays for the edges si, and the usage cost of player i in the game
is the sum of distances from i to all other nodes in the graph G(s). The cost
function ci(s) of player i is expressed as the creation cost plus the usage cost.
A Nash equilibrium (NE for short) of the network creation game are strategies
s = (s1, . . . , sn) of the players such that no player can lower her current cost
ci(s) by changing its chosen strategy si to a different one. It is easy to see that
for every finite α every NE induces a connected graph. We call a graph induced
by a Nash equilibrium a stable graph or simply, by abusing the notation a bit, a
Nash equilibrium.

The bounded-budget network creation game (as defined and studied by Ehsani
et al. [4]) is a network creation game without the parameter α where every player
i has a budget bi on the number of edges it can buy. The set of strategies Si
contains only sets of adjacent edges of i of cardinality no more than bi. The cost
function ci of player i is then just the usage cost of the original network creation
game. We will see that several of the results for the bounded-budget network
creation game carry over to our model studied in this paper.

The basic network creation game (as defined and studied by Alon et al. [2]) is
not a strategic game. Rather, it is an equilibrium concept for graphs. Analogously
to network creation games, each vertex possesses a cost function (which is the
usage cost of the original network creation game). A graph G is called to be
in swap equilibrium if no vertex v ∈ V (G) can improve its cost by deleting an
adjacent edge {v, w} ∈ E(G) and creating a new adjacent edge {v, w′}.

In this paper we define the asymmetric swap-equilibrium based on the own-
ership of edges. An ownership of a graph G is a function o : E(G)→ V (G) that
assigns to every edge {u, v} ∈ E(G) either u or v. If o({u, v}) = u we say that u
owns the edge {u, v} and that the edge {u, v} is owned by u. Again, every vertex
(a player) has a cost – the usage cost of the original network creation game. A
graph G with an ownership o is called to be in asymmetric swap-equilibrium
if no vertex v ∈ V (G) can improve its cost by deleting its own adjacent edge
{v, w} ∈ E(G) and creating a new adjacent edge {v, w′}. Such a modification
is called a swap (of an edge), and results in a modified graph and modified
ownership in that the newly created edge is owned by the vertex v.

Asymmetric swap equilibria generalize these equilibrium concepts in the fol-
lowing sense. Every stable graph G(s) of the (original) network creation game



696 M. Mihalák and J.C. Schlegel

induces an ownership o in which each edge is owned by the player which bought
it in the Nash equilibrium s (and observe that in a Nash equilibrium no edge is
bought by two players). It is easy to see that for this ownership o, the graph G(s)
is in asymmetric swap equilibrium. One can make similar arguments about Nash
equilibria of the bounded-budget network creation games. Furthermore, a swap
equilibria of the basic network creation game is an asymmetric swap-equilibrium
for any ownership o. Thus, we have:

Proposition 1. Every stable graph of the original network creation game, ev-
ery stable graph of the bounded-budget network creation game, and every swap
equilibrium graph is an asymmetric swap-equilibrium graph.

Another motivation to study (asymmetric) swap equilibria is that computing a
best swap of a player is easy (i.e., polynomial), while computing the best strategy
si of a player i (given the strategies of all other players) in the original/bounded-
budget network creation game is an NP-hard problem [5,4]. We note that this
is also true for the basic network creation game if an arbitrary number of swaps
is permitted [6].

2 The Structure of Asymmetric Swap-Equilibria

In the following we state and prove the main result of this paper.

Theorem 1. Every graph in asymmetric swap-equilibrium has at most one 2-
edge-connected component.

Proof. Let G be an asymmetric swap-equilibrium and assume for contradiction
that there are two 2-edge-connected components H1, H2 ⊂ G. Assign every ver-
tex v ∈ V (G) whose shortest v-H1-path passes through H2 to H2 and every
vertex v ∈ V whose shortest v-H2-path passes through H1 to H1. Denote by H̃1

the vertices assigned to H1 and by H̃2 the vertices assigned to H2. Without loss
of generality H̃1 is the smallest of the two, i.e., |H̃1| ≤ |H̃2|. Let {x1, x2} ∈ E(G)
with x1 ∈ H1 be the first edge in the (unique) shortest H1-H2-path in G (and
observe that {x1, x2} is a bridge of G). A schematic illustration of the situation
is depicted in Figure 1.

The main idea of the proof is the following. Observe that every vertex u of
H1, with the exception of x1, decreases its distance to every vertex of H̃2, if an
edge {u, x2} is added to G. We will show that there always exists a vertex u in
H1 that owns an edge {u,w} such that the deletion of the edge does not increase
the usage cost too much so that this vertex v can swap {u,w} for {u, x2} and
improve its usage cost – a contradiction with the assumption that the graph is in
asymmetric swap-equilibrium. We consider three cases: Either there is a vertex
u which owns an edge {u, v} ∈ E(H1) such that v is closer to x1 than u, or
this is not the case but there is a vertex u which owns an edge {u, v} ∈ E(H1)
such that u and v are at the same distance from x1, or neither is the case and
therefore every edge {u, v} ∈ E(H1) has both its vertices at different distances
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x1 x2
H1 H2H̃1 H̃2

Fig. 1. 2-edge-connected components

x1 x2
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yA(y)
z

z′
z′
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S(z′)

v

Fig. 2. Case 3 of the proof of Theorem 1

from x1 and the vertex which owns the edge is closer to x1 than the other vertex
of the edge.

Case 1. In the first case, consider the swap of the edge {u, v} with the edge
{u, x2}. The distance of u to every vertex of H̃2 decreases by d(u, x2) − 1 =
d(u, x1) and the distance of u to every vertex of H̃1 \ {u} increases by at most
d(v, x2) = d(u, x1). The distance of u to any other vertex does not increase.
Hence, as |H̃1 \ {u}| < |H̃2|, u could improve by swapping, a contradiction.

Extra Notation. We will consider all vertices of H̃1 aligned in layers accord-
ing to the distance from x1; all vertices at distance k from x1 will be referred to
as layer k. We will also call an edge a layer-edge if both its endpoints lie in the
same layer. Let p be a path connecting two vertices a and b in H̃1 and {u, v} an
edge in it, where u is from layer k and v from layer k + 1 for some k. We can
consider the path as oriented from a to b or vice versa. For a considered orien-
tation, we call {u, v} a forward-edge in p if u precedes v on p. Similarly, we call
{u, v} a backward-edge in p if v precedes u on p. Thus, “forward”/“backward”
reflects on the progression of the path away from x1.

Case 2. Consider now the second case where a vertex u owns an edge {u, v}
such that u and v are at the same distance k from x1, i.e., {u, v} is a layer-edge.
Consider the swap of edge {u, v} with edge {u, x2}. Recall that the endpoints
of the edge {u, v} lie in the same layer, and therefore the distance from x1 to
every vertex of H̃1 cannot increase after the swap. Let us investigate how much
the distances from u to H̃1 could increase. Let us first consider the simple case
when k = 1. Then the increase of the distance from u to vertices in H̃1 \ {u}
is at most d(u, x1) + d(x1, v) − 1 = 1. Vertex u decreases its distance to all
vertices in H̃2 by d(u, x2) − 1 = 1, and as |H̃2| > |H̃1 \ {u}|, u improves its
usage cost by the swap, a contradiction. We therefore assume that k > 1. The
distances from u to every vertex of H̃2 decrease by d(u, x2) − 1 = k. Let us
now consider the increase of the distances from u. In general, the length of a
shortest path from u to a vertex w ∈ H̃1 could change after the swap, but the
length is upper bounded by the length of the u-w-path that uses the new edge
{u, x2} and goes via x1. Obviously, after the swap, u can increase its distance
only to vertices w for which a shortest u-w-path pw uses the edge {u, v}. We
classify the vertices w according to the shortest u-w-path pw before the swap:
(i) path pw contains, besides {u, v}, only forward-edges, (ii) pw contains, besides
{u, v}, exactly one layer-edge and forward-edges, (iii) pw is none of the first
two. Let S(i), S(ii) denote, respectively, the vertices w for which pw satisfies (i)
and (ii). By the swap, the distances of u to vertices in S(i) increase by at most
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1+1+ d(x1, v)− 1 = k+1. The distances of u to vertices in S(ii) increase by at
most 2 + d(x1, w)− d(u,w) ≤ k. The distances of u to other vertices w increase
by at most k − 1. Comparing the total increase and decrease of the distances
from u, the total decrease of the usage cost of vertex u is at least

k · |H̃2| − (k + 1) · |S(i)| − k · |S(ii)| − (k − 1) · (|H̃1 \ {u}| − |S(i)| − |S(ii)|)
> |H̃1| − 2|S(i)| − |S(ii)|.

If |H̃1| − 2|S(i)| − |S(ii)| ≥ 0 then, by the above equation, vertex u improves its
usage cost by the swap, a contradiction. Assume therefore that |H̃1| − |S(i)| −
|S(ii)| < |S(i)|. But then S(i) contains a lot of vertices and vertex x1 can swap
the incident edge {x1, y} in a shortest x1-v-path (which x1 owns as we are not
in case 1) with the edge {x1, v} and improve its usage cost: observe that such
a swap decreases the distances of x1 to S(i) by k − 1, does not increase the
distances to S(ii), and increases the distances to H̃1 \ {S(i)∪ S(ii)} by at most
1 + d(v, y)− 1 = k − 1. This is a contradiction.

Further Extra Notation. For the analysis of the third case we introduce
the following notation. For every vertex v ∈ H1 we define S(v) ⊂ H̃1 to be
the set of vertices u ∈ H̃1 such that some (but not necessarily every) shortest
u-x1-path passes through v, and we define A(v) ⊂ S(v) to be the set of vertices
u ∈ H̃1 such that all shortest u-x1-paths pass through v. Note that by definition
v ∈ A(v).

Case 3. Consider now the third case, i.e., the case where every edge {u, v} ∈
E(H1) has the vertices u, v at different distances from x1 and the “owner” of
the edge is closer to x1 than the other vertex. Observe that, as there is no layer-
edge, and because H1 is 2-edge-connected, there are at least three layers in H1

(including the 0-th layer consisting of x1).
Note that, as H1 is 2-edge-connected, x1 has at least 2 neighbors in H1, and

therefore it has a neighbor y ∈ V (H1) such that |A(y)| < |H̃1|/2. Because H1

is 2-edge-connected, every vertex v ∈ A(y) has an alternative v-x1-path in H1

that does not go via y. Moreover, for every v ∈ A(y), there is such an alternative
v-x1-path of the following type: starting from v, the first (nonempty) part of the
path is using only vertices from A(y), and the second (nonempty) part is using
only vertices from V (H1) \A(y) and is a shortest path to x1 (see Figure 2). Let
us consider the edge {z, z′} where such an alternative v-x1-path (for any vertex
v) leaves the first part of the path, i.e., where z is from A(y) and z′ is not from
A(y) anymore. Obviously, z and z′ are from different layers (as we assume there
is no layer-edge). Moreover, z has to be closer to x1 than z′ is, as otherwise there
would be a shortest path from z to x1 that does not go via y, a contradiction
with the assumption that z ∈ A(y). Let k denote the distance of z from x1, i.e.,
k = d(x1, z).

First, if k = 1, i.e., z = y, and {z, z′} = {y, z′}, we consider the swap of {y, z′}
with {y, x2} by vertex y. The distance of y to H̃2 decreases by d(y, x2)− 1 = 1,
the distance of y to S(z′) increases by at most d(y, x1)+ d(x1, z

′)− 1 = 2 (recall
that z′ /∈ A(y) and therefore the swap cannot increase the distance of z′ from
x1), and no other distances increase. Therefore, as we assume y cannot improve
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Fig. 3. An example of a graph in asymmetric swap-
equilibrium that has two 2-vertex-connected components.
The ownership of an edge is depicted by the arrows – the
owner is the tail of the respective edge.

by this swap, we have 2|S(z′)| ≥ |H̃2| (≥ |H̃1|). But then vertex x1 can improve
its usage cost by swapping {x1, y} with {x1, z′}: the distance to S(z′) decreases
by 1, the distance to A(y) increases by 1, and no other distance increases; as
|A(y)| < |H̃1|/2 and |S(z′)| ≥ |H̃1|/2, vertex x1 improves its usage cost. This is
a contradiction.

Assume now that k ≥ 2. Consider the vertex z and the swap of the edge
{z, z′} with the edge {z, x2}. After the swap, vertex z decreases its distance to
the vertices in H̃2 by d(z, x2)−1 = k. It may increase its distance to the vertices
w for which the shortest z-w-path pw used the edge {z, z′}. Let us classify such
vertices w according to the number of backward-edges in pw: let S(i) denote the
set of vertices w �= z for which pw uses only forward-edges (i.e., S(i) is equal to
S(z)); and let S(ii) denote the set of vertices w �= z for which pw uses exactly
one backward-edge. Then, after the swap, z increases its distances to vertices in
S(i) by at most 1 + 1 + d(x1, z

′)− 1 = k + 2 (z can now get to w via the direct
connection to x2) and it increases its distances to vertices in S(ii) by at most k,
and it increases its distances to any other vertex of H̃1 \z by at most k−2. (This
follows because the shortest z-w path pw to any other vertex w either does not
use {z, z′}, or it uses at least 2 backward-edges). Therefore, the total decrease
of the usage cost of z after the swap is at least

k · |H̃2| − (k + 2) · |S(i)| − k · |S(ii)| − (k − 2) · (|H̃1 \ {z}| − |S(i)| − |S(ii)|)
> 2 · |H̃1| − 4 · |S(i)| − 2 · |S(ii)|.

The graph is in asymmetric swap-equilibrium and therefore z cannot improve by
this swap. Thus, 2 · |H̃1|−4 · |S(i)|−2 · |S(ii)| < 0, or equivalently, |H̃1|− |S(i)|−
|S(ii)| < |S(i)|. But in this case S(i) is very large and x1 would benefit from an
edge to z′: Consider a swap of {x1, y} with {x1, z′}; x1 decreases its distances to
S(i) by d(x1, z

′)− 1 = k; it decreases its distances to S(ii) by k − 2 (recall that
k ≥ 2; thus, x1 cannot increase its distance to S(ii)); it increases its distances
to any other vertex in H̃1 by at most 1 + d(z′, y)− 1 = k; thus, x1 improves by
the swap, a contradiction. .�

We note that the theorem cannot be made stronger in that there are asymmetric
swap-equilibria that have more than one 2-(vertex)-connected components – see
Figure 3. Not many constructions of bridge-less (Nash or swap) equilibrium
graphs are known (a small cycle or a complete graph are the firm favorites) and
they all have diameter ≤ 3 (to the best of our knowledge). Figure 3 gives a
simple example of a bridge-less asymmetric swap-equilibrium with diameter 4.
Finding less trivial examples is definitely an interesting quest.

Besides the 2-edge-connected component H , an asymmetric swap-equilibrium
also contains trees. If H is an empty graph, then the equilibrium is a tree. Ehsani
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et al. [4] analysed trees in the bounded-budget network creation games. A careful
inspection of their proofs shows that their analysis can be taken 1-to-1 to argue
about asymmetric swap equilibria, too:

Theorem 2 ([4]). A tree in asymmetric swap-equilibrium has diameter O(logn).
Moreover, a complete binary tree where every node owns all adjacent edges to its
children is in asymmetric swap-equilibrium.

2.1 A Vertex-Weighted Version of the Game

An asymmetric swap-equilibriumG thus consists of a nontrivial 2-edge-connected
component H with trees attached to the vertices of H . This suggests the follow-
ing natural variant of the game. Consider a node-weighted graph Ḡ, i.e., a graph
with a weight c(v) ∈ N for every vertex v ∈ V (Ḡ). For such a graph, consider
the modified usage cost where every distance is “weighted” by the corresponding
weight of the vertex:

∑
v∈V (Ḡ) c(v)·d(u, v). We further define c(Ḡ) :=

∑
v∈Ḡ c(v)

for any graph Ḡ. Instead of studying G, we may study the node-weighted graph
Ḡ where Ḡ is the 2-edge-connected component H of G, and the weight c(v) of
vertex v ∈ H is the number of vertices in the attached trees. For node-weighted
graphs, we are interested in both the swap equilibria and the asymmetric swap-
equilibria. Adapting the proofs and results for the non-weighted setting (the
missing proofs can be found in [8]), we obtain:

Proposition 2. Let T be a tree and c : V (T ) −→ N an arbitrary weight func-
tion. If T is in asymmetric swap-equilibrium in the weighted version of the game,
then diam(T ) = O(log c(T )).

Corollary 1. Let G be a non-tree graph in asymmetric swap-equilibrium for the
unweighted version of the game and H be its unique 2-edge-connected component.
Then diam(G) = diam(H) + 2 logn.

Proposition 3. Let T be a tree and c : V (T ) −→ N a weight function. If T is
a swap equilibrium in the weighted version of the game then diam(T ) ≤ 2.

Corollary 2. Let G be a non-tree swap equilibrium and H its 2-edge-connected
component in the unweighted version of the game. Then diam(G) ≤ diam(H)+4.

3 Diameter of Non-tree Asymmetric Swap-Equilibria

In this section we consider the problem of bounding the diameter of asymmetric
swap-equilibria. Ehsani et al. [4] showed that the diameter of any Nash equilib-

rium in the bounded-budget network creation game is at most 2O(
√
logn). They

proved this for a more general concept of equilibrium graphs, which, it turns
out, is equivalent to the asymmetric swap-equilibrium. Therefore, they proved:

Theorem 3 ([4]). The diameter of a graph in asymmetric swap-equilibrium is

at most 2O(
√
log n).
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It is believed, however, that the diameter of equilibrium graphs is much smaller.
Similarly to the original network creation game, where for various values of α
different techniques have been applied to show constant price of anarchy, we
believe that studying various classes of asymmetric swap-equilibria can have a
similar effect. In the following we focus on a special case where the unique 2-
edge-connected component of an equilibrium graph has a large minimum degree.
Along the way we present a more general approach that can possibly be applied
to more general (asymmetric) swap-equilibria. Let G be a non-tree asymmetric
swap-equilibrium on n vertices. By Theorem 1 we know that G has a unique 2-
edge-connected componentH . We will show that in our special case, the diameter
of H is a constant, and hence, by Corollary 1, a O(log n) upper bound on the
diameter of G, or respectively, by Corollary 2, a constant upper bound on the
diameter of G if G is a swap equilibrium. This problem can also be seen as a
problem to show a constant (with respect to c(H)) bound on the diameter of a
bridge-less asymmetric swap-equilibrium H in the weighted version of the game
(with appropriately chosen weight function c : V (H) −→ N) – in the following
we use this approach.

We define and use the following notation. For every vertex v ∈ V (H) let T (v)
denote the set of vertices u ∈ V (G) for which a shortest u-H-path ends in v.
Note that v ∈ T (v), T (v) induces a tree in G, and V is a disjoint union of T (v),
v ∈ V (H). We define the weight function c : V (H) −→ N for vertices in H by
setting c(v) := |T (v)|, and introduce the notation c(H ′) :=

∑
v∈H′ c(v) for any

H ′ ⊂ H . We note that c(H) = n. From now on we only consider H as a stand-
alone, vertex-weighted, bridge-less graph. For k ∈ N and u ∈ V (H) we define
Bk(u) := {v ∈ V (H) : dH(u, v) ≤ k} to be the ball of radius k and center u in
H , and we define Sk(u) := {v ∈ V (H) : dH(u, v) = k} to be the sphere of radius
k and center u in H . We further define Ck := minu∈V (H) c(Bk(u)) to be the
minimum weighted size of any ball of radius k in H . For a vertex u ∈ V (H) we
denote its eccentricity in H by D(u) (and recall thatD(u) = maxv∈V (H) d(u, v)).

We will need the following lemma, which shows that in asymmetric swap-
equilibria a large (linear in n) number of vertices is far away from any given
vertex u (the proof can be found in [8]).

Lemma 1. For every vertex u ∈ V (H) and k < D(u)−1
2 we have

c(Bk(u)) <
D(u)+1

2(D(u)−k)−1 · n.

Corollary 3. If r := rad(H) > 14 then for every vertex u ∈ V (H) we have
c(Br/4(u)) <

3
4n.

In the following discussion, we bound the diameter of H using the “region-
growing” technique of Demaine et al. [3] for the original network creation game

(which showed an upper bound 2O(
√
logn) on the price of anarchy). The details,

however, differ significantly from the proofs in [3] due to the different definition
of the games (players are only allowed to swap and not to buy new edges) and
our new structural insights from Section 2.
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Lemma 2. If H has minimum degree d(H) ≥ nε for 4 lg 3
lgn < ε < 1, then for

every vertex u ∈ V (H) there is an edge {x, y} induced by B8/ε(u) owned by x

whose deletion increases x’s usage cost by at most 20
ε n

1−ε/2.

Proof. We first show that there exists a vertex v ∈ B2/ε(u) which owns at

least nε/2

2 edges in H . The main argument goes along the line “if there are
m′ edges among n′ vertices, then there is a vertex that owns at least m′/n′

edges (pigeon-hole principle)”. First we consider the case when |Bk+1(u)| ≥
nε/2|Bk(u)| for every k < 2/ε. Clearly in this case, |Bk(u)| is at least nkε/2 and

therefore |B2/ε(u)| = |H |. As H contains at least |H|n
ε

2 edges, there is a vertex

v ∈ B2/ε(u) = H which owns at least |H|n
ε

2|H| = nε/2 edges.

Assume now that |Bk+1(u)| < nε/2|Bk(u)| for some k < 2/ε. The ball Bk+1(u)
contains at least n

ε

2 |Bk(u)| edges (as all edges adjacent to vertices in Bk(u) need
to lie within Bk+1(u)). Therefore, there is a vertex in Bk+1(u) which owns at

least nε

2 |Bk(u)|/|Bk+1(u)| > nε

2 |Bk(u)|/(nε/2|Bk(u)|) =
nε/2

2 edges.

We now investigate whether among the at least nε/2

2 edges which vertex
v ∈ B2/ε(u) owns there is an edge whose deletion increases the usage cost by the
claimed amount. For every edge {v, w} which v owns, let A(w) be the vertices x
such that every shortest path from x to v goes via w. Observe that, as v owns at

least n
ε/2

2 edges, there is an edge {v, w} such that c(A(w)) ≤ n/(n
ε/2

2 ) = 2n1−ε/2.
If this edge {v, w} lies in a “short” cycle of length l, then deleting this edge would
increase the usage cost of v by at most l · c(A(w)). Consider vertices of A(w)
ordered in layers according to the distance to v. Let k ∈ N be the smallest in-
dex for which an edge between Sk(v) ∩ A(w) and V (H) \ A(w) exists (such an
edge indeed exists for some k as otherwise {v, w} would be a bridge). If k is
“small”, then the edge lies in a “short” cycle of length 2k and we can bound
the increase of the usage cost as suggested. Define for every j ≤ k the set
Bj := Bj(v) ∩ A(w). In the case that |Bj+1| ≥ nε/4|Bj | for all j < k, we have
|Bk| ≥ n(kε)/4. But as |Bk| is clearly upper bounded by n, we get k < 4/ε. Thus, k
is a constant and deleting the edge {v, w} increases the usage cost of v by at most

2k · c(A(w)) < 16n1−ε/2

ε . In the other case, let j < k such that |Bj+1| < nε/4|Bj |.
Note that, as |Bj | < n, j < 4/ε. In this case we do not consider deleting {v, w}
but instead we find another edge within Bj that can be deleted and which
does not increase the usage cost of the owner of the edge too much. There are
at least nε

2 |Bj | edges that are incident to vertices of Bj . If we subtract from
these edges the edges that form a breadth-first search tree of Bj+1 (there are at

most |Bj+1| ≤ nε/4|Bj | of these), we obtain at least nε−2nε/4

2 |Bj | edges that are
part of a “short” cycle of length no more than (2j + 2) ≤ 8

ε + 2. Observe that

nε − 2nε/4 = n3ε/4(nε/4 − 2n−2ε/4) ≥ n3ε/4(nε/4 − 2) > n3ε/4(nlg 3/ lgn − 2) ≥
n3ε/4. Therefore, there are at least n3ε/4

2 |Bj | edges within Bj+1 that are part
of a “short cycle”. There has to be a vertex w ∈ Bj+1 which owns at least
n3ε/4/2|Bj |
|Bj+1| ≥ nε/2

2 of these edges. By the pigeon-hole principle, among these



Asymmetric Swap-Equilibrium 703

edges of w, there has to be one edge whose deletion increases the usage cost of
w by at most 2(j + 1) 2n

nε/2 < (16ε + 4)n1−ε/2 < 20
ε n

1−ε/2. .�

Theorem 4. If H has minimum degree d(H) ≥ nε for 4 lg 3
lg n < ε < 1, then there

is a constant C(ε) > 0 (depending on ε) such that diam(H) ≤ C(ε).

Proof. We will show that for every k ≤ r
8 − 1, where r := rad(H): C3k+3+8/ε >

ε·nε/2

40 Ck. Assuming this, the result follows immediately: Let u ∈ V (H) be a

vertex with eccentricity D(u) = diam(H) and let C̃ > 0 be a constant such that

C̃k ≥ 3k + 3 + 8/ε. We have c(BC̃k(u)) ≥ C3k+3+8/ε >
ε·nε/2

40 Ck for k ≤ r
8 − 1.

Now, in the trivial case when n is at most the constant threshold
(
40
ε

)4/ε
, then

of course the diameter of H is at most this value (a constant). For the general
case when n is larger than the threshold, we must have r

8−1 < C̃4/ε as otherwise

c(B r
8−1(u)) ≥ c(BC̃4/ε(u)) ≥

(
εnε/2

40

)4/ε
C1 ≥ n. Thus, in this case, the diameter

of H is at most 2r < 16C̃4/ε + 16, a constant.

We now prove that C3k+3+8/ε > ε·nε/2

40 Ck for every k ≤ r−1
4 . Consider

an arbitrary vertex u ∈ V (H). By Lemma 2 there is an edge {x, y} within
E(B8/ε(u)) owned by x whose deletion increases x’s usage cost by at most
20n1−ε/2

ε . We select a maximal subset {x1, . . . , xl} ⊂ S2k+3(x) subject to the con-
dition d(xi, xj) ≥ 2k + 1 for every i �= j. We assign every vertex in S2k+3(x) to

the closest xi, breaking ties arbitrarily. Let S2k+3(x) =
⋃l
i=1 Ai be the obtained

partition. We now prove that l ≥ ε·nε/2

40 . We extend the partition and also assign
each vertex z ∈ V (H) \B2k+2(x) to one of the xi, as follows: Pick any shortest
path from z to x, and assign z to the same xi as the (unique) vertex w ∈ S2k+3(x)

which is contained in the path. After this step, V (H) \ B2k+2(x) =
⋃l
i=1 Ai is

the resulting partition. Consider vertex x and the swap of the edge {x, y} with
{x, xi} for arbitrary i: the distance of x to xi decreases by 2k+ 2 and hence, by
the construction of Ai, the distance of x to the vertices of Ai decreases by at least
2. On the other hand, by Lemma 2, the swap increases x’s usage cost by at most
20n1−ε/2

ε . Hence, as x cannot improve its usage cost by the swap (we are consider-

ing an asymmetric swap-equilibrium), 20n1−ε/2

ε ≥ 2c(Ai). As i was arbitrary, we

have l · 20n1−ε/2

ε ≥ 2
∑l
i=1 c(Ai). On the other hand, as 2k+2 ≤ r/4, we have by

Corollary 3: c(B2k+2(x)) < 3n/4, so
∑l

i=1 c(Ai) = c(V (H) \ B2k+2(x)) ≥ n/4.

Therefore l · 20n1−ε/2

ε ≥ 2
∑l
i=1 c(Ai) ≥ n/2 and hence l ≥ ε·nε/2

40 .

By definition, Bk(xi) ∩ Bk(xj) = ∅ for every i �= j. Hence c(
⋃l
i=1Bk(xi)) =∑l

i=1 c(Bk(xi)) ≥ l · Ck. Furthermore, for every 1 ≤ i ≤ l, we have d(u, xi) ≤
d(u, x)+d(x, xi) ≤ 2k+3+8/ε, so vertex u has a path of length at most 3k+3+

8/ε to every vertex in Bk(xi). Therefore c(B3k+3+8/ε(u)) ≥
∑l

i=1 c(Bk(xi)) >

l · Ck ≥ εnε/2

40 Ck. Hence, as u ∈ V (H) was chosen arbitrarily, C3k+3+8/ε >
εnε/2

40 Ck. .�
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Together with Corollary 1 resp. Corollary 2 this implies a logarithmic bound on
the diameter of asymmetric swap-equilibria, respectively a constant bound on
the diameter of swap equilibria:

Corollary 4. For any ε and any non-tree asymmetric swap equilibrium G, the
following holds. If the unique 2-edge-connected component H of G has minimum
degree d(H) ≥ nε and 4 lg 3

lgn < ε < 1 then diam(G) = O(lg n).

Corollary 5. For every constant 0 < ε < 1 there is a constant C(ε) such that
the following holds. The diameter of any graph G, where d(H) ≥ nε and 4 lg 3

lgn < ε

(and H is the unique 2-edge-connected component of G), is at most C(ε).

Inspired by Theorem 4 and by the fact that one could not find any bridge-less
equilibrium graph of diameter greater than 4, we conjecture:

Conjecture 1. There exists a constant C > 0 such that the diameter of the unique
2-edge connected component of any asymmetric swap-equilibrium is smaller than
C. In particular, every asymmetric swap-equilibrium has diameter O(log n) and
every swap equilibrium has diameter ≤ C + 4.
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Abstract. In static analysis of queries over trees in the presence of
schemas, there is an exponential complexity gap between conjunctive
queries (CQs, positive existential first-order formulae without disjunc-
tion) and tree patterns (tree-like acyclic CQs). Motivated by applica-
tions in XML data management, we consider various restrictions of CQs
that bring their complexity down to that of tree patterns. Most impor-
tantly, we show that vertical tree patterns can be costlessly extended with
full horizontal CQs over children. We also consider restricted classes of
schemas and show that under disjunction-free schemas the complexity of
static analysis sometimes drops dramatically.

1 Introduction

Static analysis is a common name used in database theory for problems that do
not deal with data, but only with queries. Such problems are often part of complex
datamanagement tasks, like data integration and data exchange [15, 19]. Most im-
portant static analysis problems include satisfiabiliy (Given a query q, is there a
databaseD such that the returned set of tuples q(D) is nonempty?) and query con-
tainment (Given q1, q2, does q1(D) ⊆ q2(D) hold for each D?). As for first order
logic these problems are undecidable, restricted query languages are considered.
For relational databases, conjunctive queries (CQs, positive existential formulae
without disjunction) and their unions (UCQs) are used most widely. The reason is
a relatively low cost of static analysis [12], and expressive powermeeting most typ-
ical needs (select-from-where SQL queries). In contrast, in XML static analysis,
where problems are relativized to XML trees accepted by a given schema (often
modelled as a tree automaton), the complexity of full CQs, using child and descen-
dant relations, and sibling order, is prohibitively high [8, 9, 16]. As a remedy, more
restrictive languages of acyclic CQs and tree patterns (tree-like acyclic CQs) were
introduced. For instance, literature on XML data exchange and metadata man-
agement considers almost exclusively tree patterns [1–3, 14]. A fine complexity
analysis for CQs and UCQs over XML trees would be useful in designing richer
formalisms, based on intermediate classes of queries.

Most research on static analysis for queries over XML trees was done for
fragments of XPath 1.0, which is a language allowing only acyclic queries
[5, 18, 20, 21, 24, 25], or XPath 2.0, which allows path intersection, but not

B. Rovan, V. Sassone, and P. Widmayer (Eds.): MFCS 2012, LNCS 7464, pp. 705–717, 2012.
c© Springer-Verlag Berlin Heidelberg 2012
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arbitrary joins [11, 17]. As has been observed by Gottlob, Koch, and Shulz, each
CQ on trees can be translated to a union of exponentially many polynomial
tree patterns [16]. This gives an upper bound on the complexity of contain-
ment exponentially higher then that for tree patterns: 2ExpTime in general and
ExpSpace under non-recursive schemas (where the depth of trees is bounded by
the size of the schema), while for tree patterns they are ExpTime and PSpace,
respectively [5, 20, 24]. Björklund, Martens, and Schwentick show that the expo-
nential gap cannot be avoided in general, as even containment of CQs using only
child and descendant relation is 2ExpTime-complete, and ask if there are more
manageable classes of CQs, other then acyclic CQs [9]. We are most interested
in results of the form: under certain restrictions, the complexity of containment
of UCQs is the same as that of unions of tree patterns. For example, if only child
relation is available, the general case reduces to the acyclic case, as each CQ can
be rewritten as a single tree pattern of linear size (cf. [4]).

We focus on the restrictions most commonly studied in XML data exchange
and metadata management: non-recursive or disjunction-free schemas (cf. nested-
relational DTDs [2, 3, 6]), and limited use of horizontal or vertical relations. We
first prove that, over words, containment of UCQs is PSpace-complete, just like
for unions of tree patterns (Sect. 4). Then we apply these results to trees (Sect. 5)
and show that the complexities match for a fairly general class of “forest-like”
UCQs, combining vertical tree patterns with arbitrary horizontal CQs over chil-
dren. This is further exploited to prove the same for

– UCQs that do not use the descendant relation;
– UCQs specifying labels of all mentioned nodes, under non-recursive DTDs.

Finally in Sect. 6 we show that under disjunction-free schemas the containment
of UCQs without the next-sibling relation is in coNExpTime and PSpace-
hard, and if additionally schemas are non-recursive, it is on the second level of
the polynomial hierarchy; with next-sibling, the complexity does not drop.

We work exclusively with Boolean queries; as explained in [9], this is not a re-
striction. Due to space limitations some arguments are omitted. For more details
see the appendix available at www.mimuw.edu.pl/~fmurlak/papers/patsat.pdf.

2 Preliminaries

XML documents and trees. We model XML documents as unranked labelled
trees. Formally, a tree over a finite labelling alphabet Γ is a relational structure

T = 〈T, ↓, ↓+,→, +→, (aT )a∈Γ 〉, where
– the set T is an unranked tree domain, i.e., a prefix-closed subset of N∗ such

that n · i ∈ T implies n · j ∈ T for all j < i;
– the binary relations ↓ and → are the child relation (n ↓ n · i) and the next-

sibling relation (n · i→ n · (i+ 1));

– ↓+ and
+→ are transitive closures of ↓ and →;

– (aT )a∈Γ is a partition of the domain T into possibly empty sets.

We write |T | to denote the number of nodes of tree T . The partition (aT )a∈Γ
defines a labelling of the nodes of T with elements of Γ , denoted by 	T .
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Automata and DTDs. The principal schema language we use are tree automata,
abstracting Relax NG [22, 23]. We are using a variant in which the state in a
node v depends on the states in the previous sibling and the last child of v. Such
automata are equivalent to standard automata on unranked trees, as explained
in [23]. Formally, an automaton is a tuple A = (Σ,Q, q0, F, δ), where Σ is the
labelling alphabet (the set of element types in our case), Q is the state space
with the initial state q0 and final states F , and δ ⊆ Q × Q × Σ × Q is the
transition relation. A run of A over a tree T is a labelling ρ of the nodes of T
with the states of A such that for each node v with children v ·0, v ·1, . . . , v ·k and
previous sibling w,

(
ρ(w), ρ(v · k), 	T (v), ρ(v)

)
∈ δ. If v has no previous sibling,

ρ(w) in the condition above is replaced with q0. Similarly, if v has no children,
ρ(v · k) is replaced with q0. The language of trees recognized by A, denoted by
L(A), consists of all trees admitting an accepting run of A, i.e. a run that assigns
one of the final states to the root.

A simpler schema language is provided by DTDs. A document type definition
(DTD) over a labelling alphabet Γ is a pair D = 〈r, PD〉, where r ∈ Γ is a
distinguished root symbol and PD is a function assigning regular expressions
over Γ − {r} to the elements of Γ , usually written as σ → e, if PD(σ) = e. A
tree T conforms to a DTD D, denoted T |= D, if its root is labelled with r and
for each node s in T the sequence of labels of its children is in the language of
PD(	T (s)). The set of trees conforming to D is denoted by L(D). It is well known
(and easy to see) that there is a PTime translation from DTDs to automata.

We shall often consider non-recursive schemas, DTDs or automata. A DTD
D is non-recursive if in every tree conforming to D each path contains each label
at most once. A schema given by a tree automaton is non-recursive if in each
run (accepting or not) each path contains each state at most once. The height of
trees conforming to non-recursive schemas is bounded by the size of the schema.

CQs and Patterns. A conjunctive query (CQ) over alphabet Γ is a formula of
first order logic using only conjunction and existential quantification, over unary

predicates a(x) for a ∈ Γ and binary predicates ↓, ↓+,→, +→ (referred to as child,
descendant, next sibling, and following sibling, respectively). Since we work only
with Boolean queries, to avoid unnecessary clutter we often skip the quantifiers,
assuming that all variables are by default quantified existentially.

An alternative way of looking at CQs is via patterns. A pattern π over Γ can
be presented as π = 〈V,Ec, Ed, En, Ef , 	π〉 where 	π is a partial function from
V to Γ , and 〈V,Ec ∪ Ed ∪ En ∪ Ef 〉 is a finite graph whose edges are split into
child edges Ec, descendant edges Ed, next-sibling edges En, and following-sibling
edges Ef . By |π| we mean the size of the underlying graph.

We say that a tree T = 〈T, ↓, ↓+,→, +→, (aT )a∈Γ 〉 satisfies a pattern π =
〈V,Ec, Ed, En, Ef , 	π〉, denoted T |= π, if there exists a homomorphism h : π →
T , i.e., a function h : V → T such that

– h : 〈V,Ec, Ed, En, Ef 〉 → 〈T, ↓, ↓+,→, +→〉 is a homomorphism of relational
structures; and

– 	T (h(v)) = 	π(v) for all v in the domain of 	π.
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Fig. 1. Typical patterns. Void and solid heads indicate horizontal and vertical order,
respectively. Dashed lines indicate transitive closure. The leftmost pattern can be ex-
pressed using path intersection operator from XPath 2.0, but the middle one cannot.

Each pattern can be seen as a CQ, and vice versa. In what follows we use the
terms “pattern” and “CQ” interchangeably. Tree patterns are patterns whose
underlying graph is a directed tree with edges pointing from parents to children.

Containment and Satisfiability. We focus on the following satisfiability problem.

Problem: BC-SAT
Input: Boolean combination of patterns ϕ, schema S (automaton or DTD).

Question: Is there a tree T ∈ L(S) such that T |= ϕ?

For σ ⊆ {↓, ↓+,→, +→, } we write BC-SAT(σ) to denote BC-SAT restricted to
patterns which use only the axes listed in σ. If the wildcard symbol, , is not
present in σ, the labelling functions in patterns are required to be total, or in
other words that each variable must occur in an atom of the form a(x) for some

a ∈ Γ . We use the following abbreviations: ⇓ for ↓, ↓+, ; and ⇒ for →, +→, .
Containment for UCQs is inter-reducible with non-satisfiability for Boolean

combinations of the form π ∧ ¬π1 ∧ ¬π2 ∧ · · · ∧ ¬πk. Validity of a query is
equivalent to non-satisfiability of its negation. Most of our lower bounds only
use conjunctions of negations of patterns, thus giving dual lower bounds for
validity (and containment).

3 Basic Complexity Bounds

In this section we briefly summarize known complexity bounds and establish
some new bounds in the case of non-recursive schemas. The complexity of
BC-SAT for tree patterns follows immediately from the results on XPath sat-
isfiability and containment.

Theorem 1 ([5, 11, 20, 24]). For tree patterns, BC-SAT(⇓,⇒) is ExpTime-
complete and PSpace-complete under non-recursive schemas. The lower bounds
hold even for containment of unions of tree patterns using only ↓.

The ExpTime upper bound follows from the translation of downward XPath
to automata [24], later extended to cover horizontal axes in [11] (also implicit
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in [20]). The PSpace upper bound follows from [5]. The lower bounds in [5, 24]
rely on the availability of wildcard (or disjunction inside XPath expressions),
but they can be strengthened to queries using only ↓.

As we have mentioned, for CQs the bounds are exponentially worse.

Theorem 2 ([9]). For arbitrary patterns, BC-SAT(⇓,⇒) is 2ExpTime-
complete. The lower bound holds already for validity of a single CQ using
only ⇓.

To complete the background for the main results of this paper, described in Sec-
tions 4–6, we now settle the complexity of BC-SAT under non-recursive schemas.
The complexity drops only slightly, but the cost of → begins to show.

Theorem 3. Under non-recursive schemas BC-SAT(⇓) and BC-SAT(⇓, +→) is
NExpTime-complete and BC-SAT(⇓,⇒) is ExpSpace-complete. The lower
bounds hold already for conjunctions of negated patterns.

The ExpSpace upper bound follows immediately by translation to tree pat-
terns. The NExpTime upper bound is obtained via a linearly-branching model
property, which relies on the fact that an unsatisfied pattern without → never
becomes satisfied when a subtree is deleted. The lower bounds use an ingenious
pattern construction from [9].

4 CQs over Words

In the classification sketched out in the previous section, horizontal CQs were to
some extent drowned in the overall complexity of patterns. We shall have a closer
look at them now: we restrict our models to words. We show that under this
restriction the complexity of CQs matches that of tree patterns (Theorem 4); in
the next section we show how this can be applied to the tree case.

Our main building block is a procedure Matchπ associated with each pattern
π. The procedure takes as input a word w and checks if w |= π. It reads w letter
by letter, possibly storing some information in the working memory, polynomial
in |π| and independent of w (it can be seen as a DFA, exponential in π). The
procedure looks for the earliest (leftmost) matching of π in w, as defined below.
We note that earliest matchings were previously used in [7] for tree patterns.

We use ≤ and +1 for the standard order and successor on the positions of
words (an initial segment of natural numbers), and define homomorphisms just
like for trees. Whenever we write h : π → w, we implicitly assume that h is a
homomorphism.

Definition 1. Let g, h : π → w be two homomorphisms.

– We write g ≤ h if g(v) ≤ h(v) for each vertex v of π.
– We define min(g, h) : π → w as min(g, h)(v) = min(g(v), h(v)).

Lemma 1. Let w be a word satisfying a ⇒-pattern π.



710 F. Murlak, M. Ogiński, and M. Przyby�lko

1. For all g, h : π → w, min(g, h) is a homomorphism.
2. There exists hmin : π → w such that hmin ≤ h for all h : π → w.
3. For each set X of vertices of π and each h : π → w there is a ĥ : π → w

extending h|X such that ĥ ≤ h′ for each h′ : π → w extending h|X .

We call the unique hmin from Lemma 1 the earliest matching of π in w.
Matchπ(w) works with components of π, called firm subpatterns, described

in Definition 3.

Definition 2. A →-component of π is a maximal connected subgraph of →-
graph of π. In the graph of →-components of π, denoted Gπ, there is an edge

from a →-component π1 to a →-component π2 if there is a
+→ edge in π from a

vertex of π1 to a vertex of π2.

Definition 3. A pattern π is firm if Gπ is strongly connected. In general, each
strongly connected component X of Gπ defines a firm subpattern of π: the sub-
graph of π induced by the vertices of →-components contained in X. The DAG
of firm subpatterns of π, denoted Fπ, is the standard DAG of strongly connected
components of Gπ.

For example, the pattern in Fig. 2 on page 712 is firm, but has three →-
components.

The matching procedure Matchπ(w) works as follows:

– it reads the input word w from left to right trying to match firm subpatterns
of π in the topological order given by Fπ;

– for each firm subpattern it finds the earliest matching that does not violate

the
+→ edges connecting it with previously matched firm subpatterns.

Since we are proceeding in the topological order, each firm subpattern is pro-
cessed after all its predecessors have been matched. Hence, the algorithm always
finds a correct homomorphism or none at all. Completeness of the algorithm fol-
lows from the lemma below by straightforward induction (where Y is the union
of previously matched firm patterns and X is obtained by adding a new one).

Lemma 2. Let h : π → w be the earliest matching and let X be a set of vertices
of π such that no edge enters X from the outside, and the only edges leaving X

are
+→. For each Y ⊆ X, if g : π|X → w is the least homomorphism extending

h|Y to X, then h|X = g.

Now we need to bound the memory used by Matchπ(w). We claim that the
algorithm only needs to remember last |π| symbols read (plus the matching
constructed so far, restricted to this suffix). It is straightforward to check that
each homomorphic image of a firm pattern π0 is a subword of length at most
|π0|. Based on this observation, we prove the claim. For i ≤ |w|, let Πi be the
set of firm subpatterns of π matched by Matchπ(w) after processing the first i
symbols of w. Note that if a position j is not touched by the matching, all firm
subpatterns matched before this position are in Πj . By pigeon-hole principle,
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there is a position j between i− |π| and i that is not touched by the matching.
By the previous comment, all patterns from Πi \ Πi−1 are matched between j
and i. It follows that Matchπ(w) only needs to remember the last |π| symbols.

Using the matching procedure we prove the main result of this section.

Theorem 4. On words BC-SAT(⇒) is PSpace-complete, with hardness already

for conjunctions of negated tree patterns using only→, or CQs using only→, +→.

Proof. To check if a Boolean combination ϕ is satisfiable in a word accepted by
an automaton A, we non-deterministically generate letters of a word w ∈ L(A)
and feed with them Matchπ for each π used in ϕ. We accept if the split into
matched and unmatched patterns satisfies ϕ. To prevent looping, we count the
number of letters and stop when we reach certain threshold, single exponential
in |ϕ|. To establish the threshold, recall that Matchπ can be seen as a DFA,
exponential in |π|. The product automaton corresponding to all running copies
of the matching procedure is single exponential in ϕ. The threshold can be set
to the size of the product automaton. By Savitch theorem we can eliminate
non-determinism from this algorithm.

For the lower bound we give a reduction from the following tiling problem,
which is known to be PSpace-complete: Given a set of tiles T = {t1, t2, . . . , tk},
relations H,V ⊆ T ×T , and a number n in unary, decide if there is a number m
and an m × n matrix (ai,j) with entries from T such that a1,1 = t1, am,n = tk,
(ai,j , ai,j+1) ∈ H for 1 ≤ i ≤ m, 1 ≤ i < n and (ai,j , ai+1,j) ∈ V for 1 ≤ i < m,
1 ≤ i ≤ n. In fact we give the reduction from the following linearised tiling
to which the original problem can be easily reduced: Given T,H, V, n, decide if
there is a sequence of tiles s1s2 . . . s� such that s1 = t1, s� = tk, (si, si+1) ∈ H
for all i ≤ 	− 1, and (si, si+n) ∈ V for all i ≤ 	− n.

Let an instance of the linearised tiling problem be T,H, V, n. If wildcard is
available, we can assume our alphabet is T ∪ {r} and take the DTD r→ t0T

∗tk
and the following combination of patterns:∧
(ti,tj)/∈H

¬∃x∃y (x→ y)∧ ti(x)∧ tj(y)∧
∧

(ti,tj)/∈V
¬∃x∃y (x→n y)∧ ti(x)∧ tj(y) .

Without wildcard we cannot express →n, but we can circumvent this obstacle

using
+→ if we modify our encoding properly. We encode the tile ti as the word

wi = �āaibaj ā�

with ā = aak and i + j + 1 = k. For the DTD we take r → w0W
∗wk, where

W = {wi | i = 1, 2, . . . , k}. The patterns are replaced with

x1
wi−→ x′1 → x2

wj−→ x′2 ,

x1
wi−→ x′1 → x2

w∗−→ x′2 → . . .→ xn
w∗−→ x′n → xn+1

wj−→ x′n+1 ,

where x
wi−→ x′ is a pattern that says that the segment of the word from position

x to x′ is wi and x
w∗−→ y is the following pattern (see also Fig. 2)

(x
�ā−→ x′′) ∧ (x′

ābā−→ y′) ∧ (y′′
ā�−→ y) ∧ (x

+→ x′
+→ x′′) ∧ (y′′

+→ y′
+→ y) . .�
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Fig. 2. Pattern x
w∗−→ y for k = 2

Thus BC-SAT(⇒) is PSpace-complete if either wildcard or
+→ and arbitrary joins

are allowed. If we forbid wildcards and restrict the use of joins, the complexity
drops to NP. Using Matchπ and the following observation, we prove the upper
bound for a relatively large class of patterns, extending tree patterns.

Lemma 3. For all w1, w2, . . . , wn ∈ Γ ∗ there is a linear-size deterministic au-
tomaton recognizing

⋃n
i=1 Γ

∗wiΓ
∗. One can compute it in PTime.

Proof. States of the automaton are prefixes of wi’s. After reading u, the state
is the longest prefix that is a suffix of u. If the prefix is the whole word wi, the
automaton moves to a distinguished accepting state. .�

Theorem 5. For patterns whose firm sub-patterns do not contain
+→, the prob-

lem BC-SAT(→, +→) on words is NP-complete.

Proof. The lower bound is proved in [9]. To get the upper bound, we prove a
polynomial model property. Given that ⇒-patterns can be evaluated in PTime,
the proposition follows.

Let w ∈ L(A) be a word satisfying a Boolean combination ϕ. For each pattern
π in ϕ consider its earliest partial matching, i.e., the partial matching computed
by Matchπ. Clearly, π is satisfied if and only if its earliest partial matching is
total. It suffices to show that the segments of w outside of the partial matches
can be chosen small, without changing the matches.

Suppose that w = u1vu2 and v is not touched by the partial matchings. A
partial matching is earliest if and only if each firm sub-pattern π0 is matched
at its first occurrence after the launching point : the latest position i such that

matching π0 at i (regardless of labels) violates some
+→ edge entering π0. When

shortening v we only need to make sure that we do not introduce an occurrence
of a subpattern between its launching point and its original match in w. For sub-
patterns matched in u1 changing v makes no difference. Suppose π0 is matched
in u2. Where can the launching point of π0 be? If it is enforced by a sub-pattern
matched in u1, it is in u1. If it is enforced by a subpattern matched in u2, it is
either in u2 or within the last |π0| positions of v.

Let π1, π2, . . . , πk be all sub-patterns matched in u2 whose launching points

are in u1. Since they contain no
+→ nor , they can be turned into single words

by merging along the → edges. Let B be the deterministic automaton accepting
words that contain some πi (Lemma 3). Let v = v1v

′v2, where |v1| = |v2| is
equal to the maximal size of a firm subpattern. By standard pumping we can
shorten v′ to at most ‖A‖ · ‖B‖, without introducing new occurrences of πi’s in
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vu2. Since we are not touching v1, we do not introduce new occurrences of πi’s
in the whole word w. Similarly, since we are not touching v2, the patterns whose
launching points are in v2u2 are not influenced either. .�

5 Back to Trees

We now lift the restriction on models and see what happens for trees. We have
already seen that BC-SAT for full CQs is exponentially harder than for tree
patterns: 2ExpTime versus ExpTime, and ExpSpace versus PSpace under
non-recursive schemas (Theorems 1–3). Here we consider several restrictions on
CQs and schemas that lower the complexity of CQs to that of tree patterns.

We show first that, for vertical tree patterns extended with arbitrary hori-
zontal CQs over siblings, our PSpace algorithm for BC-SAT on words can be
incorporated into the procedures for tree patterns without increasing their com-
plexity. (Allowing joins with arbitrary horizontal CQs would immediately violate
the intended tree structure of the vertical part of the pattern.) We say that a
pattern is forest-like if its ⇓-subgraph is a disjoint union of trees and all vertical
edges coming to the same connected⇒-subpattern originate in the same vertex.

Theorem 6. For forest-like patterns, BC-SAT(⇓,⇒) is ExpTime-complete, and
under non-recursive schemas it is PSpace-complete.

Proof. For a forest-like pattern π we shall construct an equivalent deterministic
automatonAπ, whose states and transitions can be generated in PSpace. (Recall
that a tree automaton is (bottom-up) deterministic, if for all q1, q2 ∈ Q and
a ∈ Σ there exists exactly one state q such that (q1, q2, a, q) ∈ δ.) Using this
construction one can reduce BC-SAT(⇓,⇒) to nonemptiness of tree automata in
PSpace. Both upper bounds follow, since nonemptiness of A over trees of depth
d can be tested in space O(d · log ‖A‖), and over arbitrary trees in PTime.

A horizontal component of π is a connected component of the ⇒-subgraph
of π. Let Hπ = 〈Vπ, ↓, ↓+〉 be a graph over horizontal components of π, where
edge π1 ↓ π2 is present if x ↓ y for some x ∈ π1 and y ∈ π2, and π1 ↓+ π2 is
present if x ↓+ y for some x ∈ π1 and y ∈ π2, but there is no edge π1 ↓ π2. Since
π is forest-like, this graph is a forest. The subtree of Hπ rooted at π1 defines a
subpattern of π, denoted by (π1)⇓. We call such subpatterns subtrees of π.

The automaton Aπ , after reading the sequence of children of a node v, passes
to v information about subtrees of π that were matched in the children of v and
those that were matched in the children of some descendant of v. The automaton
accepts, if the information passed from the root says that π was matched. To
compute the information to be passed to v the automaton needs to aggregate
the information passed from v’s grandchildren to their parents. This is done by a
modified version of Match working over an extended alphabet, described below.

A subtree (π1)⇓ of π can be viewed as a horizontal pattern obtained from π1
by including in the label of each vertex x the information about the subtrees of
π to which x is connected by ↓ and ↓+ edges. At each step Match is fed with a
symbol that consists of the label of a tree node u and the information passed to



714 F. Murlak, M. Ogiński, and M. Przyby�lko

u from its sequence of children. (At the leaf level of T this information is void
and Match works just like for words.) Match is only altered in this way that
a vertex labelled with an extended label σ can be matched in a position labelled
with an extended label τ if the original labels agree and all patterns listed in
σ are also listed in τ (keeping the distinction between patterns connected by ↓
and ↓+). It is straightforward to check that this does not influence correctness
of Match. Observe that the extended alphabet is exponential, but each symbol
can be stored in polynomial memory. Hence, Match still works in memory
polynomial in the size of the pattern.

This procedure can be easily implemented by an exponential deterministic
tree automaton. Within a sequence of children, Aπ behaves like the automaton
implementing Match(π̃), where π̃ is the disjoint union of all subtrees of π.
It reads the extended label from the label of the current child u and the state
coming from the children of u. When the last child is read, the information about
matched subtrees of π is complete and can be passed up, to the parent. .�

From this result we obtain further upper bounds. For purely horizontal patterns,
a standard pumping argument allows us to bound the height of the witnessing
tree by the size of the schema, and with some care the algorithm for non-recursive
schemas can be used even if the original schema is recursive.

Corollary 1. BC-SAT(⇒) is PSpace-complete.

Furthermore, as observed in [16], each pattern using no ↓+ can be turned in
PTime into an equivalent forest-like pattern by simply merging each pair of
vertices that have outgoing ↓ edges to the same connected⇒-subpattern. Hence,
we immediately get the following corollary (hardness from Theorem 1).

Corollary 2. BC-SAT(↓,⇒) is ExpTime-complete and PSpace-complete un-
der non-recursive schemas.

Finally, with a little more effort one can prove that in the presence of a non-
recursive DTD the same holds for patterns that do not use wildcard.

Corollary 3. BC-SAT(↓, ↓+,→, +→) is PSpace-complete under non-rec. DTDs.

The lower bound follows from Theorem 1 and the upper bound relies on the
fact that in the presence of a non-recursive DTD labels come in a fixed order
in the paths. For non-recursive tree automata this is no longer the case. In fact,
under such schemas one can carry over the lower bounds of Theorem 3 to the
case without wildcard.

6 Disjunction-Free DTDs

Theorem 3 shows that under non-recursive schemas BC-SAT does not get much
easier. We now introduce another restriction, often used in combination with
non-recursivity in complex data management tasks [2, 3]: we limit the use of
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disjunction. A DTD is disjunction-free if its regular expressions use only con-
catenation, Kleene star and the operator α≤m = (ε |α |α2 | . . . |αm).

BC-SAT under disjunction-free DTDs is not easier unless → is forbidden.
Indeed, using → we can simulate full DTDs, e.g., a production a → α |β can
be simulated by a → �(�α�)∗(�β�)∗�, with conjunct ¬∃x∃y

(
�(x) → �(y)

)
∧

¬∃x∃y
(
� (x)→ �(y)

)
added to the combination tested for satisfiability.

If → is forbidden, the complexity under disjunction-free non-recursive DTDs
drops to low levels of the polynomial hierarchy, compared to NExpTime for
non-recursive DTDs allowing disjunction (Theorem 3).

Theorem 7. Under non-recursive disjunction-free DTDs BC-SAT(⇓, +→) is Σ2P-
complete and NP-complete for tree patterns.

The problem is Σ2P-hard already for Boolean combinations of the form π1∧¬π2
where π1 is a pattern with a single node, but without π1 it is coNP-complete.

If the non-recursivity restriction is lifted the complexity is still (potentially)
below the general 2ExpTime lower bound.

Theorem 8. Under disjunction-free DTDs BC-SAT(⇓, +→) is in NExpTime and
PSpace-complete for tree patterns. The lower bound holds already for contain-
ment of unions of tree patterns using only ↓, .

7 Conclusions

We have shown that under several independent restrictions, CQs have the same
complexity of the satisfiability of Boolean combinations, and the containment
of unions of queries problem, as tree patterns. Most importantly, vertical tree
patterns can be extended with full horizontal CQs over children without in-
creasing the complexity of static analysis tasks. We have also showed that under
non-recursive, disjunction-free schemas the complexity of static analysis for CQs
without the next-sibling relation is in low levels of the polynomial hierarchy. This
could be applied in the analysis of mappings between nested-relational schemas
[2]. (We point out the complexity gap for general disjunction-free schemas as an
elegant theoretical challenge.) We focused on containment of UCQs, since this
is the problem relevant for XML metadata management, but a finer analysis of
the containment for CQs would also be desired (the 2ExpTime-lower bound of
[9] holds already for validity of CQs). Similarly, patterns with data comparisons
might be considered (again, some cases are settled in [9]).
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Abstract. Many combinatorial problems involving weights can be for-
mulated as a so-called ranged problem. That is, their input consists of a
universe U , a (succinctly-represented) set family F ⊆ 2U , a weight func-
tion ω : U → {1, . . . , N}, and integers 0 ≤ l ≤ u ≤ ∞. Then the problem
is to decide whether there is an X ∈ F such that l ≤

∑
e∈X ω(e) ≤ u.

Well-known examples of such problems includeKnapsack, Subset Sum,
Maximum Matching, and Traveling Salesman. In this paper, we de-
velop a generic method to transform a ranged problem into an exact prob-
lem (i.e. a ranged problem for which l = u). We show that our method
has several intriguing applications in exact exponential algorithms and
parameterized complexity, namely:

– In exact exponential algorithms, we present new insight into whether
Subset Sum and Knapsack have efficient algorithms in both time
and space. In particular, we show that the time and space complexity
of Subset Sum and Knapsack are equivalent up to a small polyno-
mial factor in the input size. We also give an algorithm that solves
sparse instances of Knapsack efficiently in terms of space and time.

– In parameterized complexity, we present the first kernelization
results on weighted variants of several well-known problems. In
particular, we show that weighted variants of Vertex Cover and
Dominating Set, Traveling Salesman, and Knapsack all admit
polynomial randomized Turing kernels when parameterized by |U |.

Curiously, our method relies on a technique more commonly found in
approximation algorithms.

1 Introduction

In many computational problems in the field of combinatorial optimization the
input partly consists of a set of integers. Since integers are naturally represented
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in binary, they can be exponential in the number of bits of the input instance.
For many problems this is not an issue, particularly for problems admitting a
strongly polynomial-time algorithm (recall that the running time of such an
algorithm does not depend on the size of the integers). However, (exponentially)
large numbers present a major issue for other problems. For example, in weakly
NP-complete problems the large integers are even the sole source of hardness.
Strongly NP-complete problems are often studied in their weighted variants, and
often such weighted variants are even considerably harder than their unweighted
counterpart. In this paper, we present a novel method to reduce the challenges
posed by (exponentially) large numbers in the input of NP-complete problems.

We first give a description of the type of problems that we consider. All of the
studied problems can be stated according to the following generic pattern. First,
there is a universe U (for example the set of vertices or edges of a graph) and a
weight function ω : U → {1, . . . , N}. Second, there is a succinctly-represented set
family F ⊆ 2U . We will assume that membership of the set F can be determined
in polynomial time by an oracle given as part of the input. Finally, we are given
two non-negative integers l, u such that 0 ≤ l ≤ u ≤ ∞. Then the problem
is to decide whether there exists an X ∈ F such that ω(X) ∈ [l, u], where
ω(X) =

∑
e∈X ω(e). We call this a ranged problem. If a problem additionally

specifies that l = u, this is an exact problem. We will be mainly interested in the
case where N is exponential, or even super-exponential, in |U |.

The main question that we consider and answer in this paper is whether the
computational complexity of a ranged problem is equal to that of its corre-
sponding exact problem. This question is motivated by the recent availability of
powerful tools for exact problems, such as hashing (see e.g. [8]) and interpola-
tion (see e.g. [11,12]), that do not seem directly applicable to ranged problems.
Hence we may wonder whether there is a difference between ranged and exact
problems from the point of view of computational complexity.

Certain cases of this main question are particularly intriguing. For example,
the arguably most fundamental pair of an exact and its corresponding ranged
problem is Subset Sum and Knapsack respectively1. Recall that in Subset

Sum, we are given a set U = {1, . . . , n}, a weight function ω : U → {1, . . . , N},
and an integer t ≤ N , and we are asked to decide whether there exists an X ⊆ U
such that ω(X) = t. In the Knapsack problem we are additionally given a
weight function ν and integer b, and we are asked to decide whether there exists
a set X with ω(X) ≥ t among all X ⊆ U for which ν(X) ≤ b. From the
perspective of exact exponential algorithms (see e.g. [7,17] for an introduction),
both problems are known to be solvable in O∗(2n/2) time and O∗(2n/4) space
[15] (see also [7, Chapter 9]), while the best polynomial-space algorithms are
still the trivial brute-force O∗(2n)-time algorithms. It is an interesting question
whether either of these problems can be solved in O∗(1.99n) time and polynomial
space. Also, are the problems related in the sense that an improved algorithm
for Subset Sum would imply an improved algorithm for Knapsack?

1 In the field of cryptography, “Knapsack” is often used to refer to “Subset Sum”.
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Another interesting perspective is that of sparse instances. It is known that
the Subset Sum and Knapsack problems can be solved in pseudo-polynomial
time and space using a dynamic programming (DP) algorithm [2]. An intensively
studied case of DP is where the DP-table is guaranteed to be sparse. In Subset

Sum, for example, this means that the number of distinct sums of the subsets
of the given integers is small. Using memorization, this type of sparseness can
be easily exploited if we are allowed to use exponential space. Very recently,
polynomial-space equivalents of memorization were given in [10] (see also [13,
Chapter 6]). The first step in this approach uses hashing, and the second step uses
interpolation. It is unclear whether the approach can be extended to Knapsack.
One issue is that a good hash function does not hash the target interval to a
single interval. Furthermore, interpolation does not apply directly to the ranged
case, and the typical solution of adding a few “slack weights” to reduce it to the
exact case destroys the sparseness property.

We note that different measures of sparseness for Knapsack have been con-
sidered previously. Nemhauser and Üllmann [14] considered the case when the
number of Pareto-optimal solutions is small. A solution X for Knapsack is
Pareto-optimal if there is no X ′ with ν(X ′) < ν(X) and ω(X ′) ≥ ω(X), or
with ν(X ′) ≤ ν(X) and ω(X ′) > ω(X). Note that the number of Pareto-optimal
solutions is always at most the number of distinct sums in the instance. The al-
gorithm of Nemhauser and Üllmann uses O(

∑n
i=k pi) time and O(max pi) space

to enumerate all Pareto-optimal solutions, where pi is the number of Pareto-
optimal solutions over the first i items. Note that the space requirement is poly-
nomial in the sparseness, whereas the space requirement of the algorithm of [10]
is polynomial in the size of the instance. In the framework of smoothed analysis2,
however, the number of Pareto-optimal solutions for Knapsack is polynomial
in the instance size [1].

In the field of kernelization (see [4] for a survey), the Subset Sum problem is
known to admit a so-called polynomial randomized kernel when parameterized
by the number of integers [8]. Can a similar kernel be obtained for the Knap-

sack problem? Again, since [8] heavily relies on hashing, it does not seem to
be applicable. Similar questions can be asked for weighted variants of several
fundamental problems in the field of kernelization, such as the weighted vari-
ant of Vertex Cover. Is there a (randomized Turing) kernel for this problem

parameterized by |U |, i.e. can we reduce the weights to be at most 2|U|
O(1)

?

Our Results. In this paper, we show that a ranged problem is equally hard as its
corresponding exact problem, modulo a factor O(|U | · lg(|U |N)) in the running
time. This implies a positive answer on all of the above questions. This result
uses a generic and clean method to transform a ranged problem into instances
of its corresponding exact problem. The method covers the interval [l, u] with a
small number of “fuzzy intervals” such that an integer is in [l, u] if and only if
it is in one of the fuzzy intervals. It relies on a scaling technique that is more

2 Smoothed analysis aims to provide a middle ground between average-case and worst-
case analysis. See e.g. [16].
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commonly found in approximation algorithms; in fact, the prime example of its
use is in the FPTAS for Knapsack [9].

The paper is organized as follows. In Section 2, we introduce the required
notation and definitions. In Section 3, we state and prove our main technical
contribution. Sections 4 and 5 are dedicated to corollaries of the main theorem
in the fields of exact exponential algorithms and kernelization. Finally, we give
a conclusion, further remarks, and open questions in Section 6.

2 Preliminaries

Throughout, we use the O∗(·) notation that suppresses any factor polynomial
in the input size of the given problem instance. We use Greek symbols such as
ω to denote weight functions, i.e. for a universe U and an integer N , ω : U →
{1, . . . , N}. In this context, we shorthand ω(X) =

∑
e∈X ω(e) for any X ⊆ U .

For two integers l ≤ u, the set of integers {l, l+ 1, . . . , u} is denoted by [l, u].
A kernelization algorithm (or kernel) for a parameterized problem Π (that

is, a problem together with an input measure k) computes in polynomial time,
given an instance (x, k) of Π , a new instance (x′, k′) of Π such that (x′, k′) ∈ Π
if and only if (x, k) ∈ Π , and |x′| ≤ f(k) for some computable function f . The
instance (x′, k′) is called a kernel of Π , and it is called a polynomial kernel if f is
a polynomial. Not every problem admits a polynomial kernel, or the polynomial
hierarchy collapses to the third level [5]. We refer to [4] for a recent overview.

A generalization of the notion of a kernel is a Turing kernel. Here the re-
quirement that given a kernel yields an equivalent instance is relaxed. Instead,
a polynomial number of instances with the same size restrictions as before may
be produced. Moreover, there should be a polynomial-time algorithm that, given
which of the produced instances are a Yes-instance, decides whether the original
instance is a Yes-instance. The special case where the algorithm returns the OR
of the produced instances is called an OR-kernel or a many-to-one kernel [6].
Generalizing these notions further, we use the adjective “randomized” to indi-
cate that the polynomial-time algorithm computing the final answer may have
a constant one-sided error probability. Interestingly, the results of [5] even apply
to the randomized variant of the original kernel definition, but not to Turing
kernels.

Given a graph G = (U,E), a subset X ⊆ U is a vertex cover if u ∈ X or v ∈ X
for every (u, v) ∈ E, and it is a dominating set if u ∈ X or (u, v) ∈ E for some
v ∈ X for every u ∈ U . In the weighted Vertex Cover and Dominating Set

problems, we are given a graph on vertex set U together with a weight function
ω : U → {1, . . . , N} and an integer t, and are asked to decide whether there is
a vertex cover or dominating set X ⊆ U , respectively, such that ω(X) ≤ t. A
Hamiltonian cycle is a subset X ⊆ E such that the graph (V,X) is a cycle. In
the Traveling Salesman problem we are given a graph on edge set U together
with a weight function ω : U → {1, . . . , N} and an integer t, and are asked to
decide whether there exists a Hamiltonian cycle X ⊆ U such that ω(X) ≤ t.
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3 The Main Method

In this section, we give the main technical contribution of the paper: we transform
a ranged problem into a small number of exact problems. The naive way to obtain
such a transformation would be to return a new instance for each x ∈ [l, u], thus
yielding u− l problems. However, as u − l can be exponential in the size of the
input, this procedure is clearly not efficient. Instead, Theorem 1 develops a new
family of O(|U | lg(|U |N)) weight functions.

We want to stress that the main conceptual consequence of Theorem 1 is that,
modulo a small polynomial factor, weighted subset-selection problems that aim
to find a subset of given exact weight are equally hard as those that aim to find
a subset with weight in a given interval.

Theorem 1 (Shrinking intervals). Let U be a set of cardinality n, let ω :
U → {0, . . . , N} be a weight function, and let l < u be non-negative integers
with u − l > 1. Then there is a polynomial-time algorithm that returns a set
of pairs Ω = {(ω1, t1), . . . , (ωK , tK)} with ωi : U → {0, . . . , N} and integers
t1, . . . , tK ≤ N such that

(C1) K is at most (5n+ 2) lg(u− l), and
(C2) for every set X ⊆ U it holds that ω(X) ∈ [l, u] if and only if there exist an

index i such that ωi(X) = ti.

Proof. The theorem is implemented in Algorithm 1. Let T (u − l) denote the
maximum number of pairs that shrink returns. We claim that T (u − l) is at
most (5n + 2) lg(u − l). The cases when either l or u is odd can only happen
twice in a row before either case one or four occurs. Observe that for the first
case our claim is clearly true, and that for the last case we obtain the bound
T (u− l) ≤ (5n+2)+T ((u− l)/2), which clearly meets our claim since u− l ≥ 2.
This settles (C1) and the claim concerning the running time.

We prove (C2) by induction. For the thirst three cases, (C2) clearly holds,
so let us directly proceed to the last case. For the forward direction, assume

Algorithm shrink(ω, l, u)
1: if u− l ≤ 5n then
2: return {(ω, l), (ω, l + 1), . . . , (ω, u)}.
3: else if l is odd then
4: return {(ω, l)} ∪ shrink(ω, l + 1, u).
5: else if u is odd then
6: return {(ω, u)} ∪ shrink(ω, l, u− 1).
7: else
8: For every e ∈ U , set ω′(e) = �ω(e)/2�.
9: Ωl ← {(ω, l), (ω, l + 1), . . . , (ω, l + 3n)}.
10: Ωr ← {(ω, u), (ω,u− 1), . . . , (ω, u− 2n)}.
11: return Ωl ∪ shrink(ω′, (l + 2n)/2, (u− 2n)/2) ∪Ωr.

Algorithm 1. Shrinking intervals
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that ω(X) ∈ [l, u]. If ω(X) ∈ [l, l + 3n] ∪ [u − 2n, u], then a pair fulfilling (C2)
is in Ωl ∪ Ωr. So assume that ω(X) ∈ [l + 3n, u − 2n]. Then a pair fulfilling
(C2) will be added in the recursive step by the induction hypothesis, because
ω′(X) ∈ [(l + 2n)/2, (u− 2n)/2] since

ω(X)− n
2

≤
∑
e∈X

⌊
ω(e)

2

⌋
= ω′(X) ≤ ω(X)/2. (1)

For the reverse direction, assume that there is a pair (ωi, ti) ∈ Ω such that
ωi(X) = ti. If the pair is from Ωl ∪ Ωr, then ω(X) ∈ [l, u]. So assume that
it is added in the recursive step. Then by the induction hypothesis, ω′(X) ∈
[(l + 2n)/2, (u− 2n)/2], and ω(X) ∈ [l, u] by (1). .�

4 Exact Exponential Algorithms

In this section, we demonstrate the applicability of Theorem 1 to exact expo-
nential algorithms. First, we consider the relation between the computational
complexity of Knapsack and Subset Sum. It is trivial that any algorithm for
Knapsack can be used for Subset Sum: Given an instance (U, ω, b) of Subset
Sum, we can define t = b and ν(e) = ω(e) for every e ∈ U . Then the instance
of Subset Sum is a Yes-instance if and only if the constructed instance of
Knapsack is a Yes-instance. This can be decided by the assumed algorithm for
Knapsack. We prove the converse relation below by applying Theorem 1.

Theorem 2. If there exists an algorithm that decides the Subset Sum problem
in O∗(t(n)) time and O∗(s(n)) space, then there exists an algorithm that decides
the Knapsack problem in O∗(t(n)) time and O∗(s(n)) space.

Proof. Consider a Knapsack instance, consisting of a universe U = {1, . . . , n},
weight functions ω, ν : U → {1, . . . , N}, and integers b, t. Now we apply Theo-
rem 1 on both weight functions to obtain two sets Ωω, Ων . By considering the ele-
ments ofΩ := Ωω×Ων as quadruples, we obtain a setΩ of at mostO(n2 lg2(nN))
quadruples (ωi, νi, bi, ti) such that for every X ⊆ U it holds that ν(X) ∈ [0, b]
and ω(X) ∈ [t, nN ] if and only if there exists an i such that νi(X) = bi and
ωi(X) = ti. It remains to show that, for every quadruple (ωi, νi, bi, ti), we can
determine whether there exists an X ⊆ U such that νi(X) = bi and ω(X) = ti.
To do this, we create an instance of Subset Sum by concatenating the integer
values. Specifically, given a quadruple (ωi, νi, bi, ti), define

αi(e) = νi(e)N(n+ 1) + ωi(e) for every e ∈ U and ci = bi(n+ 1)N + ti.

It is easy to see that, since ωi(X) ≤ N(n+1), αi(X) = ci if and only if νi(X) = bi
and ω(X) = ti. Then the assumed algorithm for Subset Sum can be used to
decide for every quadruple (ωi, νi, bi, ti) whether there exists X ⊆ U such that
αi(X) = ci. This in turn enables us to decide the Knapsack instance. The
bound on the time and space complexity follows immediately from the fact that
|Ω| is O(n2 lg2(nN)), which is polynomial in the size of the instance. .�
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As an easy corollary, we observe that we can apply binary search to even deal
with the maximization variant of Knapsack.

Corollary 1. There exists an algorithm that decides the Subset Sum problem
in O∗(t(n)) time and O∗(s(n)) space if and only if there exists an algorithm that
solves the Maximum Knapsack problem in O∗(t(n)) time and O∗(s(n)) space.

We can use the ideas in the proof of Theorem 2 to give another result on Knap-

sack. To this end, we assume that the given instance of Knapsack or Subset
Sum is sparse, that is, the number of distinct sums in the instance is small. We
recall a recent result of Kaski et al. [10].

Theorem 3 ([10]). There is an algorithm that decides an instance (U, ω, t) of
Subset Sum in O∗(S) expected time and O∗(1) space, where S = |{ω(X) : X ⊆
U}|.

Using Theorem 1 and the ideas of Theorem 2, we can prove the following.

Theorem 4. There is an algorithm that decides an instance (U, ω, ν, t, b) of
Knapsack in O∗(S) expected time and O∗(1) space, where S = |{(ω(X), ν(X)) :
X ⊆ U}|.

To prove Theorem 4, we require the following auxiliary lemma.

Lemma 1. Let U be a set of n elements, let ω, ν : U → {1, . . . , N} be weight
functions, let p ≥ 1 be an integer, and let ω̃(e) = 'ω(e)/p( and ν̃(e) = 'ν(e)/p(
for every e ∈ U . Then

|{(ω̃(X), ν̃(X)) : X ⊆ U}| ≤ n2 · |{(ω(X), ν(X)) : X ⊆ U}|.

Proof. For any pair of integers (x, y), consider the set Z = {X ⊆ U : ω(X) =
x, ν(X) = y}. For each X ∈ Z, we have that ω(X)− n ≤ p · ω̃(X) ≤ ω(X) and
ν(X) − n ≤ p · ν̃(X) ≤ ν(X). Therefore, |{(ω̃(X), ν̃(X)) : X ∈ Z}| ≤ n2, and
the lemma follows. .�

Proof (of Theorem 4). We first apply the same construction as in the proof of
Theorem 2 to obtain pairs (αi, ci). We then apply the algorithm of Theorem 3
on all of these pairs and return Yes if the algorithm finds an index i and a set
X ⊆ U such that αi(X) = ci.

It remains to prove that this introduces at most a polynomial overhead. Since
the number of pairs is bounded by a polynomial in the input length, it suffices to
show that for every i, the quantity |{αi(X) : X ⊆ U}| is at most O∗(S). Observe
that new weight functions are created in two places. First when Theorem 1 is
invoked: note that in Algorithm 1, all created weight functions are effectively
obtained by halving the weights x times and rounding down, which is equivalent
to truncating the bitstring or dividing by 2x and rounding down. Hence, for all
created weight functions ωi, we have that |{(ωi(X), νi(X)) : X ⊆ U}| ≤ n2 · S
for every i by Lemma 1. The second place is when α is defined by concatenating
the integers: then |{αi(X) : X ⊆ U}| = |{(ωi(X), νi(X)) : X ⊆ U}| ≤ n2 · S.
Hence the overhead is at most polynomial. .�
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5 Kernelization

In this section we show that Theorem 1 can be used in combination with a
known kernelization technique to reduce the number of bits needed to represent
the weights of weighted minimization problems to an amount that is polynomial
in the number of bits needed to represent the remainder of the input instance.

Theorem 5. The weighted variants of the Vertex Cover and Dominating

Set problems, Traveling Salesman, and Knapsack all admit polynomial
randomized Turing kernels when parameterized by |U |.

We need the following lemma from Harnik and Naor [8], which uses randomiza-
tion to reduce the weights.

Lemma 2 ([8]). Let U be a set of size n. There exists a polynomial-time algo-
rithm that, given ω : U → {0, . . . , N}, an integer t, and a real ε > 0, returns ω′ :
U → {0, . . . ,M} and integers t1, . . . , tn ≤ M where M ≤ 2n · poly(n, lgN, ε−1)
such that for every set family F ⊆ 2U :

(R1) if there is an X ∈ F such that ω(X) = t, then there exist i such that
ω′(X) = ti,

(R2) if there is no X ∈ F such that ω(X) = t then

Prob[there exist i and X ∈ F such that ω′(X) = ti] ≤ O(ε). (2)

We give the proof of the lemma in the appendix for completeness. It relies on the
fact that in every interval of length l the number of primes is roughly l/ ln l and
that a random prime can be constructed in time polylogarithmic in the upper
bound of the interval.

Proof (of Theorem 5). In all problems mentioned in the statement of Theorem 5,
there is a set family F ⊆ 2U and we are asked whether there exists an X ∈ F
such that either ω(X) ∈ [0, t] or ω(X) ∈ [t, nN ] (depending on the problem).
Note that we can assume that lgN ≤ 2|U|; otherwise the input is of size at least
2|U| and we can use a trivial brute-force algorithm to solve the instance and
reduce it to an equivalent instance of constant size.

Now we use Theorem 1 to obtain a set Ω of 	 = O(n lg(nN)) pairs (ωi, ti) and
reduce the original problem to detecting whether there exists a pair (ωi, ti) ∈ Ω
and X ∈ F such that ωi(X) = ti. To reduce the latter problem further, we apply
the algorithm of Lemma 2, setting ε = ε′/	 for some small value of ε′. Hence,
for every (ωi, ti), we obtain a weight function ω′i and n integers t′i1, . . . , t

′
in such

that if there exists an X ∈ F with ωi(X) = ti, then there exists a j such that
ω′i(X) = t′ij for some j and otherwise (2) holds. Hence, this procedure generates

O(n2 lg(nN)) pairs such that (i) if there is X ∈ F with ω(X) ∈ [0, t], a pair
(ω′i, t

′
ij) with ω

′
i(X) = t′ij is generated (ii) if there is no X ∈ F with ω(X) ∈ [0, t]:

Prob[there exist i, j and X ∈ F such that ω′i(X) = t′ij ] ≤ 	 · ε = O(ε′).
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Now we have reduced the original decision problem to a problem that is clearly
in NP: indeed, we can obtain the correct X ⊆ U in non-deterministic polyno-
mial time and verify whether it satisfies X ∈ F (that is, is it a vertex cover,
dominating set, ...) and ω′i(X) = t′ij . Then, since the original problem (Vertex

Cover, Dominating Set, ...) is NP-complete, we can reduce the problem to
instances of the original problem with a Karp-reduction. Hence we have reduced
one problem instance to many problem instances such that:

– if the original instance is a Yes-instance, then one of the created instances
is also a Yes-instance;

– if the original instance is a No-instance, then with constant probability all
created instances are No-instances.

Thus it remains to show that the number and the description lengths of the
created instances are bounded by a polynomial in the original input size. To see
that this is the case, first note that after applying Lemma 2 we haveO(n2 lg(nN))
pairs of weight functions bounded by 2n · poly(n, lgN, ε−1). Since we assumed
that lgN ≤ 2n, these weight functions are represented by polynomially many
bits. Then, the theorem follows from the fact that a Karp-reduction increases
the size of a problem by at most a polynomial factor. .�

6 Conclusion

We presented a generic and simple method to convert ranged problems into exact
problems. While this result is already interesting by itself given its generality,
we also gave a number of corollaries that followed by combining our method
with techniques for exact problems already available from previous work. It is
worth emphasizing the generality of our results in Section 3 and Section 4. For
example, in the context of exact exponential algorithms, Traveling Salesman

seems to be significantly harder than its unweighted version, Hamiltonian Cy-

cle. Recently, the latter was shown to be solvable in O∗(1.66n) time and poly-
nomial space [3], whereas the best algorithm for Traveling Salesman that is
insensitive to large weights uses O∗(2n) and space. By combining the hashing
idea of [10] with our method, it is for example possible to obtain a polynomial-
space algorithm for Traveling Salesman that runs in O∗(2nW ) time, where
W = |{ω(X) : X is a Hamiltonian cycle.}|.

We leave the reader with several interesting open questions:

– Can we get a “classical”(i.e. non-Turing or many-to-one) polynomial kernel
for the considered parameterized version of weighted Vertex Cover?

– Further, significant reduction of the weights in polynomial time seems hard
(for example, it would imply an improved pseudo-polynomial algorithm for
Subset Sum), but is it possible in pseudo-polynomial time for example for
Traveling Salesman?

– When is minimizing/maximizing as hard as the general range problem?
– Can we modify Theorem 1 to make it counting-preserving? More precisely,

can we obtain a variant of the theorem with a third condition (C3) saying
that for every X ⊆ U there is at most one i such that ωi(X) = ti?
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ber and random intersection graphs (a model in which each one ofm labels
is chosen independently with probability p by each one of n vertices, and
there are edges between any vertices with overlaps in the labels chosen).

We first present a simple algorithm which, on input G finds a maxi-
mum clique in O(22

m+O(m) + n2 min{2m, n}) time steps, where m is an
upper bound on the intersection number and n is the number of vertices.
Consequently, when m ≤ ln lnn the running time of this algorithm is
polynomial.

We then consider random instances of the random intersection graphs
model as input graphs. As our main contribution, we prove that, when
the number of labels is not too large (m = nα, 0 < α < 1), we can use the
label choices of the vertices to find a maximum clique in polynomial time
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1 Introduction

A clique in an undirected graph G is a subset of vertices any two of which are
connected by an edge. The cardinality of the maximum clique is called the clique
number of G. The problem of finding the maximum clique in an arbitrary graph
is fundamental in Theoretical Computer Science and appears in many different
settings. As an example, consider a social network where vertices represent peo-
ple and edges represent mutual acquaintance. Finding a maximum clique in this
network corresponds to finding the largest subset of people who all know each
other. More generally, the analysis of large networks in order to identify com-
munities, clusters, and other latent structure has come to the forefront of much
research. The Internet, social networks, bibliographic databases, energy distri-
bution networks, and global networks of economies are some of the examples
motivating the development of the field.

It is well known that determining the clique number of an arbitrary graph
is NP-complete [16]. In fact, the fastest algorithm known today runs in time
O(1.1888n) [20], where n is the number of vertices in the graph. Moreover, the
best known approximation algorithm for the clique number has a performance

guarantee of O
(
n(log log n)2

(logn)3

)
[8] (there are algorithms with better approxima-

tion ratios for graphs with large clique number; see e.g. [1]). Even though this
approximation ratio appears to be weak at first glance, there are several results
on hardness of approximation which suggest that there can be no approxima-
tion algorithm with an approximation ratio significantly less than linear (see e.g.
[11]). It was also shown in [5] that, if k is the clique number, then the clique
problem cannot be solved in time no(k), unless the exponential time hypothesis
fails (note that the brute force search algorithm runs in time O(nkk2), which
seems quite close).

The intractability of the maximum clique problem for arbitrary graphs lead
researchers to the study of the problem for appropriately generated random
graphs. In particular, for Erdős-Rényi random graphs Gn, 12 (i.e. random graphs

in which each edge appears independently with probability 1
2 ), there are sev-

eral greedy algorithms that find a clique of size about lnn with high probability
(whp, i.e. with probability that tends to 1 as n goes to infinity), see e.g. [10,15].
Since the clique number of Gn, 12 is asymptotically equal to 2 lnn with high prob-
ability, these algorithms approximate the clique number by a factor of 2. In fact,
it was conjectured that finding a clique of size (1+ ε) lnn (for a constant ε > 0),
with probability at least 1

2 , would require techniques beyond the current limits
of complexity theory. This belief was strengthened by the fact that the Metropo-
lis algorithm also fails to find the maximum clique in Gn, 12 (see [12]). A more

dramatized version of the above conjecture was presented in [12], stating that
the problem of finding an 1.01 lnn clique remains hard even if the input graph
is a Gn, 12 random graph in which we have planted a randomly chosen clique

of size n0.49. This conjecture has some interesting cryptographic consequences,
as shown in [13]. It also seems tight, since finding the maximum clique in the
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case where the planted clique has size at least
√
n can be done in polynomial

time by using spectral properties of the adjacency matrix of the graph (see [2]).
We finally note that there are quite a few nice results concerning generalizations
of the planted clique problem in various (quite general) random graphs models
(see e.g. [6,7]).

1.1 Our Contribution

In this work, we complement the state of the art by relating the maximum
clique problem to the intersection number of the input graph G (i.e. the mini-
mum number of cliques that can edge cover G). In particular, we consider the
maximum clique problem for graphs with small intersection number and random
intersection graphs.

More analytically, we begin by considering arbitrary graphs with small in-
tersection number. We present a simple algorithm which, on input G finds a
maximum clique in O(22

m+O(m) + n2 min{2m, n}) time steps, where m is an
upper bound on the intersection number of G and n is the number of vertices.
Consequently, when m ≤ ln lnn the running time of this algorithm is polyno-
mial. We note here that computing the exact value of the independence number
of G is itself an NP-complete problem, but this knowledge is only needed in the
analysis of the algorithm.

We then consider random instances of the random intersection graphs model
(introduced in [14,22]) as input graphs. In this model, denoted by Gn,m,p, each
one of m labels is chosen independently with probability p by each one of n
vertices, and there are edges between any vertices with overlaps in the labels
chosen. Random intersection graphs are relevant to and capture quite nicely
social networking. Indeed, a social network is a structure made of nodes (indi-
viduals or organizations) tied by one or more specific types of interdependency,
such as values, visions, financial exchange, friends, conflicts, web links etc. Social
network analysis views social relationships in terms of nodes and ties. Nodes are
the individual actors within the networks and ties are the relationships between
the actors. Other applications include oblivious resource sharing in a (general)
distributed setting, efficient and secure communication in sensor networks [17],
interactions of mobile agents traversing the web etc. Even epidemiological phe-
nomena (like spread of disease) tend to be more accurately captured by this
“interaction-sensitive” random graph model [3].

As our main contribution, we prove that, when the number of labels is not too
large, we can use the label choices of the vertices to find a maximum clique in
polynomial time (in the number of labels m and vertices n of the graph). Most
of the work in this paper is devoted in proving our Single Label Clique Theorem
(Theorem 3 in Section 4). The theorem states that when the number of labels is
less than the number of vertices, any large enough clique in a random instance
of Gn,m,p is formed by a single label. This statement may seem obvious when p
is small, but it is hard to imagine that it still holds for all “interesting” values
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for p (see also the discussion in Section 2). Indeed, when p = o
(√

1
nm

)
, by

slightly modifying an argument of [4], we can see that Gn,m,p almost surely has
no cycle of size k ≥ 3 whose edges are formed by k distinct labels (alternatively,
the intersection graph produced by reversing the roles of labels and vertices is
a tree). On the other hand, for larger p a random instance of Gn,m,p is far from
perfect1 and the techniques of [4] do not apply (for a more thorough discussion
see the beginning of Section 4). By using the Single Label Clique Theorem, we
provide a tight bound on the clique number of Gn,m,p when m = nα, α < 1. A
lower bound in the special case where mp2 is constant, was given in [22]. We
considerably broaden this range of values to also include vanishing values for
mp2 and also provide an asymptotically tight upper bound.

We claim that our proof also applies for α < 2, provided p is not too small.
We should note here that in [9] the authors prove the equivalence (measured in
terms of total variation distance) of random intersection graphs and Erdős-Rényi
random graphs, when m = nα, α > 6. This bound on the number of labels was
improved in [21], by showing equivalence of sharp threshold functions among the
two models for α ≥ 3. In view of these results, we expect that our work will shed
light also in the problem of finding maximum cliques in Erdős-Rényi random
graphs.

Finally, as yet another consequence of our Single Label Clique Theorem, we
prove that the problem of inferring the complete information of label choices for
each vertex from the resulting random intersection graph (i.e. the label represen-
tation of the graph) is solvable whp; namely, the maximum likelihood estimation
method will provide a unique solution (up to permutations of the labels).2 In
particular, given values m,n and p, such that m = nα, 0 < α < 1, and given
a random instance of the Gn,m,p model, the label choices for each vertex are
uniquely defined. Finding efficient algorithms for constructing such a label rep-
resentation is left as an open problem for future research.

1.2 Organization of the Paper

In Section 2 we formally define random intersection graphs. We also provide
some useful definitions and notation which are used throughout the paper. The
relation of the intersection number to the clique number of an arbitrary graph is
discussed in Section 3. Section 4 is devoted to the proof of our Single Label Clique
Theorem for random intersection graphs. The consequences of our main theorem
concerning the efficient construction of a maximum clique and the uniqueness of
the label representation of Gn,m,p are presented in Section 5. Finally, we discuss
the presented results and further research in Section 6.

1 A perfect graph is a graph in which the chromatic number of every induced subgraph
equals the size of the largest clique of that subgraph. Consequently, the clique number
of a perfect graph is equal to its chromatic number.

2 More precisely, if B is the set of different label choices that can give rise to a graph
G, then the problem of inferring the complete information of label choices from G is
solvable if there is some B∗ ∈ B such that Pr(B∗|G) > Pr(B|G), for all B " B �= B∗.
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2 Definitions and Preliminaries

The formal definition of the random intersection graphs model is as follows:

Definition 1 (Random Intersection Graph - Gn,m,p [14,22]). Consider
a universe M = {1, 2, . . . ,m} of elements and a set of n vertices V . Assign
independently to each vertex v ∈ V a subset Sv of M, choosing each element
i ∈ M independently with probability p and draw an edge between two vertices
v �= u if and only if Sv ∩ Su �= ∅. The resulting graph is an instance Gn,m,p of
the random intersection graphs model.

In this model we also denote by Li the set of vertices that have chosen label
i ∈ M . Given Gn,m,p, we will refer to {Li, i ∈ M} as its label representation.
Consider the bipartite graph with vertex set V ∪M and edge set {(v, i) : i ∈
Sv} = {(v, i) : v ∈ Li}. We will refer to this graph as the bipartite random
graph Bn,m,p associated to Gn,m,p. Notice that the associated bipartite graph is
uniquely defined by the label representation.

It follows from the definition of the model that the edges in Gn,m,p are not
independent. In particular, the (unconditioned) probability that a specific edge
exists is 1 − (1 − p2)m. Therefore, if mp2 goes to infinity with n, then this
probability goes to 1. In the paper, we will thus consider the “interesting” range
of values mp2 = O(1) (i.e. the range of values for which the unconditioned
probability that an edge exists does not go to 1). Furthermore, as is usual in
the literature, we will assume that the number of labels is some power of the
number of vertices, i.e. m = nα, for some α > 0.

The following definition will also be useful:

Definition 2 (Intersection number). The intersection number of a graph G
is the smallest number of cliques needed to cover all of the edges of G.

2.1 Notation

We use the convention that the random intersection graphs model is denoted by
Gn,m,p (i.e. with a calligraph G), while a specific random instance of the model
is denoted by Gn,m,p (i.e. with a simple G).

For a vertex v ∈ V , we denote by NG(v) the set of neighbors of v in G. We
will say that two vertices v, u ∈ V belong to the same closed neighborhood in G
and we will write v ↔G u if and only if NG(v) ∪ {v} = NG(u) ∪ {u}.

Let C′ denote a partition of the vertex set V of a graph G and let v ∈ V .
We will denote by C′[v] the unique set inside C′ that contains v, that is C′[v] =
{C′ ∈ C′ : v ∈ C′}.

Throughout the paper, the notation f(n) ∼ g(n) means that limn→∞
f(n)
g(n) = 1

or equivalently f(n) = g(n) + o(g(n)).

3 An Algorithm for Maximum Clique

In this section we consider arbitrary graphs as input graphs for the maximum
clique problem. In particular, we relate the running time of the following al-
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gorithm to the intersection number of the input graph G. The key observation
behind the design of Algorithm FIND MAX-CLIQUE is that a closed neighbor-
hood is either a proper subset of or disjoint from a maximum clique. Therefore,
we can reduce every closed neighborhood to a single vertex and then search for
a clique in the reduced graph G′ that corresponds to a maximum clique in G.

Algorithm. FIND MAX-CLIQUE
Input: G = (V,E)

1. Set U = V and C′ = ∅;
2. while U �= ∅ do
3. Pick v ∈ U and let C′ = {u ∈ U : u↔G v};
4. Include C′ in C′;
5. Set U = U\C′; endwhile
6. Let G′ = (V ′, E′) be an induced subgraph of G that has exactly one vertex

for every set C′ ∈ C′;
7. Using exhaustive search, find a clique S in G′ such that | ∪v′∈S C′[v′]| is

maximum;
8. Output Q = ∪v′∈SC′[v′];

An example of a graph G and corresponding G′ (as constructed in step 6) can
be found in the full version of the paper [18].

3.1 Analysis of FIND MAX-CLIQUE

We first present the following lemma that concerns basic properties of the rela-
tion ↔G. Its easy proof can be found in the full version of the paper [18].

Lemma 1. The closed neighborhood relation ↔G is an equivalence relation with
the following properties:

1. It is an equivalence relation which partitions the vertex set V in equivalence
classes called closed neighborhoods.

2. A closed neighborhood is a clique. Two closed neighborhoods either form a
clique, or no edge between their vertices exists.

The following theorem concerns the correctness of the Algorithm FIND MAX-
CLIQUE. Its proof can be found in the complete version of the paper [18].

Theorem 1 (Correctness). FIND MAX-CLIQUE correctly outputs a maxi-
mum clique in G.

The following result relates the running time of Algorithm FIND MAX-CLIQUE
to the intersection number of its input graph G. Its proof can be found in the
complete version of the paper [18].

Theorem 2 (Efficiency). Let G = (V,E) be a graph with intersection number
m. Then FIND MAX-CLIQUE on input G finds a maximum clique in
O(22

m+O(m) + n2 min{2m, n}) time steps.
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Note that the algorithm does not need the actual value of the independence num-
ber. We only use this information for bounding its running time. The following
is a direct consequence of Theorem 2.

Corollary 1. Let m ≤ ln lnn be an upper bound on the independence number of
an arbitrary undirected graph G on n vertices. Then there is an algorithm that
finds the maximum clique of G in time O(n2 lnn).

As a final remark, since the intersection number of Gn,m,p is at most m (but
could be even less), the above result also holds for any random instance of the
random intersection graphs model with at most ln lnn labels.

4 Clique Number for m = nα, 0 < α < 1

In this section we give a tight bound on the clique number of Gn,m,p when
m = nα, α < 1. A lower bound in the special case where mp2 is constant,
was given in [22]. We considerably broaden this range of values to also include
vanishing values for mp2 and also provide a tight upper bound.

We will also assume, without loss of generality, that p = Ω
(√

1
nm

)
. Indeed,

when p = o
(√

1
nm

)
, by slightly modifying an argument of [4], we can see that

Gn,m,p almost surely has no cycle of size k ≥ 3 whose edges are formed by k

distinct labels. Therefore, the maximum clique of Gn,m,p when p = o
(√

1
nm

)
,

is formed by exactly one label. As a matter of fact, if Li is the set of vertices
that have chosen label i ∈ M, then the maximum clique is equal to Ll, where
l ∈ argmaxi∈M |Li|. Furthermore, since Gn,m,p is chordal whp (see Lemma 5 in
[4]), the maximum clique can be found in polynomial time.

We stress out the fact that the techniques employed to provide the algorithmic

and structural results in [4] cannot be used in the case where p = Ω
(√

1
nm

)
.

In particular, Gn,m,p is far from perfect, especially in the the case mp = ω(lnn)
(which is included in the range of values that we study here). An intuitive justi-
fication is as follows: when mp = ω(lnn), then the size of the label sets of every
vertex are highly concentrated around their mean value mp. Therefore, the sta-
tistical behavior of Gn,m,p is expected to be similar to the statistical behavior of
uniform random intersection graphs Gn,m,λ, in which each vertex selects exactly
λ = mp labels from M. It was proved in [19] (part (iii) in Corollary 2), that
the size of the maximum independent set when m = nα, α < 1 and λ = ω(lnn),
is asymptotically equal to 2(1 − α)m lnn

λ2 . Therefore, when mp = ω(lnn), the

size of the maximum independent set in Gn,m,p will be around Θ
(

lnn
mp2

)
, so its

chromatic number will be Ω
(
nmp2

lnn

)
. However, as can be seen in Corollary 4

(which is a direct consequence of our main theorem), the size of the maximum
clique in Gn,m,p when m = nα, α < 1 and mp2 = O(1) is asymptotically equal

to np. This is much smaller than the lower bound Ω
(
nmp2

lnn

)
on the chromatic
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number in the case mp = ω(lnn). Therefore, Gn,m,p is far from perfect in this
range of values.

We first provide some concentration results concerning the number of vertices
that have chosen a particular label and the number of labels that have been
chosen by a particular vertex. The proof of the following lemma can be found in
the full version of the paper [18].

Lemma 2. Let Gn,m,p be a random instance of the random intersection graphs

model with m = nα, 0 < α < 1 and p = Ω
(√

1
nm

)
. Then the following hold:

A. Let Li be the set of vertices that have chosen label i ∈M. Then Pr(∃i ∈M :
||Li| − np| ≥ 3

√
np lnn) ≤ 1

n3 → 0.
B. Let also Sv denote the set of labels that were chosen by vertex v. Then

Pr(∃v ∈ V : |Sv| > mp+ 3
√
mp lnm+ lnn)→ 0.

Notice that the above lemma provides a lower bound on the clique number.
However, a clique in Gn,m,p can be formed by combining more than one label.
Clearly, a clique Q which is not formed by a single label will need at least 3
labels, since 2 labels cannot cover all the edges needed for Q to be a clique. In
the discussion below, we will provide a much larger lower bound on the number
of labels needed to form a clique Q of size |Q| ∼ np which is not formed by a
single label. The following definition will be useful.

Definition 3. Denote by Ay,x the event that there are two disjoint sets of ver-
tices V1, V2 ⊂ V , where |V1| = y and |V2| = x such that the following hold:

1. All vertices in V1 have chosen some label l0, i.e. l0 ∈ ∩u∈V1Su.
2. None of the vertices in V2 has chosen l0, i.e. l0 /∈ ∪v∈V2Sv.
3. Every vertex in V1 is connected to every vertex in V2.

As a warm-up, we present the following technical lemma, which is a first indi-
cation that in a Gn,m,p graph, whp we cannot have y too large and x too small
at the same time. This lemma is also used as a starting step in the proof of our
main theorem. Its proof can be found in the full version of the paper [18].

Lemma 3. Let Gn,m,p be a random instance of the random intersection graphs

model with m = nα, 0 < α < 1 and p = Ω
(√

1
nm

)
and mp2 = O(1). Then, for

any y ≥ np
(
1− o

(
1

lnn

))
, Pr(Ay,1) = o(1).

The above lemma has the following useful, alternative interpretation (for the
proof see the full version of the paper [18]):

Corollary 2. Let Gn,m,p be a random instance of the random intersection graphs

model with m = nα, 0 < α < 1, p = Ω
(√

1
nm

)
and mp2 = O(1). Let also Q

be a clique in Gn,m,p that is not formed by a single label and also |Q| ∼ np.
If l0 ∈ M is any label chosen by some vertex v ∈ Q, then there is a positive
constant c′ < 1−α

2 , such that whp there are at least nc
′
vertices in Q that have

not chosen l0.
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We can strengthen the above results by using the following simple observation:

For a set of vertices V2 and k ≥ 2, let S
(k)
V2
⊆ M denote the set of labels that

have been chosen by at least k of the vertices in V2. Then the probability that
every vertex of a set of vertices V1 is connected to every vertex in V2 is

p(V1, V2) ≤
(
|S(2)
V2
|p+ (1− p)|S

(2)
V2
| ∏
v∈V2

(
1− (1− p)|Sv−S(2)

V2
|
))y

(1)

≤
(
|S(2)
V2
|p+

∏
v∈V2

(
1− (1− p)|Sv|

))y
(2)

Indeed, the first of the above inequalities corresponds to the probability that
each vertex in V2 either choses one of the labels shared by at least two vertices
in V2, or it is connected to all vertices in V2 by using labels chosen by exactly
one vertex in V2.

The proof of the following Lemma can be found in the full version of the paper
[18].

Lemma 4. Let Gn,m,p be a random instance of the random intersection graphs

model with m = nα, 0 < α < 1, p = Ω
(√

1
nm

)
and mp2 = O(1). Let also

x = 1
pε , for some positive constant ε < 1 that can be as small as possible. Then,

for any y ≥ np1+c, where 0 < c < 1−α
1+α is a constant, we have Pr(Ay,x) = o(1).

Lemma 4 has the following interpretation (for the proof see the full version of
the paper [18]):

Corollary 3. Let Gn,m,p be a random instance of the random intersection graphs

model with m = nα, 0 < α < 1, p = Ω
(√

1
nm

)
and mp2 = O(1). Let also Q be

a clique in Gn,m,p that is not formed by a single label and also |Q| ∼ np. Then
whp, for any label l0 ∈ M, we have that |Q ∩ Ll0 | ≤ np1+c, where 0 < c < 1−α

1+α
is a constant.

In particular, if Q is not formed by a single label, then whp it is formed by at
least 1

pc distinct labels.

Before presenting our main theorem, we provide the following useful lemma,
which states that if a large clique is not formed by a single label, then it must
contain a quite large clique Q′ whose edges are formed by distinct labels. Its
proof can be found in the full version of the paper [18].

Lemma 5. Let Gn,m,p be a random instance of the random intersection graphs

model with m = nα, 0 < α < 1, p = Ω
(√

1
nm

)
and mp2 = O(1). Let also Q

be any clique in Gn,m,p that is not formed by a single label and also |Q| ∼ np.
Then whp, Q contains a clique Q′ whose edges are formed by distinct labels and
whose size is at least p−

c
2 , for any positive constant c < 1−α

1+α .
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We now present our main theorem. Its proof can be found in the full version of
the paper [18].

Theorem 3 (Single Label Clique Theorem). Let Gn,m,p be a random in-
stance of the random intersection graphs model with m = nα, 0 < α < 1 and
mp2 = O(1). Then whp, any clique Q of size |Q| ∼ np in Gn,m,p is formed by a
single label. In particular, the maximum clique is formed by a single label.

Notice that, by Theorem 3, the maximum clique in Gn,m,p with m = nα, 0 <
α < 1 and mp2 = O(1) must be one of the sets Ll, l ∈M. Therefore, the clique
number of Gn,m,p can be bounded using the first part of Lemma 2. In particular

Corollary 4. Let Gn,m,p be a random instance of the random intersection graphs

model with m = nα, 0 < α < 1, p = Ω
(√

1
nm

)
and mp2 = O(1). Then, whp the

maximum clique Q of Gn,m,p satisfies |Q| ∼ np.

5 Label Reconstruction

One of the implications of our main Theorem 3 is that whp we can find the max-
imum clique in Gn,m,p with m = nα, 0 < α < 1 and mp2 = O(1) in polynomial
time, just by looking at the associated bipartite graph Bn,m,p. More specifically,
if we denote by Li the set of neighbors of label i ∈ M in Bn,m,p, then whp the
maximum clique in Gn,m,p is any label l such that Ll = maxi |Li|. Furthermore,
given Bn,m,p this maximum can be determined in O(nm) time. Therefore, the
randomness of the model works in our favor for this case. Indeed, since any graph
can be written as an intersection graph with at most

(
n
2

)
labels, the problem of

finding a maximum clique in a graph, given its label representation remains NP-
complete. Furthermore, it remains hard even when the intersection number is
nα, 0 < α < 1 unless the exponential time hypothesis fails (see e.g. [5]).

This leads to the following natural question: Could one infer any information
about the structure of the associated bipartite graph when provided with Gn,m,p
(i.e. the vertices and the edges of the graph)? Notice here that a graph Gn,m,p
can correspond to more than one associated bipartite graphs. However, we show
here that the problem of finding the associated bipartite graph given Gn,m,p and
the actual values of m,n and p is solvable whp when the number of labels is
less than the number of vertices; namely, the maximum likelihood estimation
method will provide a unique solution (up to permutations of the labels). More
specifically, if Bn,m,p is the set of non-isomorphic associated bipartite graphs that
give rise to Gn,m,p, then there is some B∗ ∈ Bn,m,p such that Pr(B∗|Gn,m,p) >
Pr(B|Gn,m,p), for all Bn,m,p > B �= B∗. The proof of the following Theorem can
be found in the full version of the paper [18].

Theorem 4. Let Gn,m,p be a random instance of the random intersection graphs

model with m = nα, 0 < α < 1, p = Ω
(√

1
nm

)
and mp2 = O(1). Then, whp

the bipartite graph Bn,m,p associated to Gn,m,p is uniquely determined, up to
permutations of the labels.
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Notice that the uniqueness of the bipartite graph can also be proved in the case

where p = o
(√

1
nm

)
. Indeed, in this case Gn,m,p almost surely has no cycle of

size k ≥ 3 whose edges are formed by k distinct labels (see also the beginning of
Section 4). Therefore, every clique of size at least 3 is formed by a single label
and so the proof of Theorem 4 applies in this (sparser) case also.

6 Conclusions

In this work, we studied the maximum clique problem by relating it to the
intersection number of the input graph. In particular, we first proved that if the
intersection number of the graph G is sufficiently small, then a simple algorithm
can find a maximum clique in G in polynomial time. We then considered random
instances of the random intersection graphs model as input graphs. In particular,
by proving the Singe Label Clique Theorem, we provided new, more general and
asymptotically tight bounds for the clique number of Gn,m,p when m = nα, α <
1. We also claim that our proof carries over for α < 2, provided there is a lower
bound on p (in particular, we claim that our analysis can be applied also for
mp2 = Θ(1)). One of the consequences of our theorem is that we can use the
label representation of Gn,m,p to find a maximum clique in polynomial time
whp. This raised the question of whether we could reconstruct the label choices
of the vertices in Gn,m,p given only the graph structure. We proved here that the
label reconstruction problem is solvable whp when the number of labels is less
than the number of vertices. Finding efficient algorithms for constructing such
a label representation is left as an open problem for future research. In view
of the equivalence results between random intersection graphs and Erdős-Rényi
random graphs, we expect that our work will shed light also in the problem of
finding maximum cliques for input graphs generated by the latter model.
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A Finite Basis

for ‘Almost Future’ Temporal
Logic over the Reals

Dorit Pardo (Ordentlich) and Alexander Rabinovich

The Blavatnik School of Computer Science, Tel Aviv University, Israel

Abstract. Kamp’s theorem established the expressive completeness of
the temporal modalities Until and Since for the First-Order Monadic
Logic of Order (FOMLO) over Real and Natural time flows. Over Natural
time, a single future modality (Until) is sufficient to express all future
FOMLO formulas. These are formulas whose truth value at any moment
is determined by what happens from that moment on. Yet this fails to
extend to Real time domains: Here no finite basis of future modalities
can express all future FOMLO formulas. In this paper we show that
finiteness can be recovered if we slightly soften the requirement that
future formulas must be totally past-independent: We allow formulas to
depend just on the very very near-past, and maintain the requirement
that they be independent of the rest - actually - of most of the past. We
call them ‘almost future’ formulas, and show that there is a finite basis
of almost future modalities which is expressively complete over the Reals
for the almost future fragment of FOMLO.

1 Introduction

Temporal Logic (TL) introduced to Computer Science by Pnueli in [Pnu77]
is a convenient framework for reasoning about “reactive” systems. This made
temporal logics a popular subject in the Computer Science community, enjoying
extensive research in the past 30 years. In TL we describe basic system properties
by atomic propositions that hold at some points in time, but not at others.
More complex properties are expressed by formulas built from the atoms using
Boolean connectives and Modalities (temporal connectives): A k-place modality
M transforms statements ϕ1 . . . ϕk possibly on ‘past’ or ‘future’ points to a
statement M(ϕ1 . . . ϕk) on the ‘present’ point t0. The rule to determine the
truth of a statement M(ϕ1 . . . ϕk) at t0 is called a Truth Table. The choice of
particular modalities with their truth tables yields different temporal logics. A
temporal logic with modalities M1, . . . ,Mk is denoted by TL(M1, . . . ,Mk).

The simplest example is the one place modality FX saying: “X holds some
time in the future”. Its truth table is formalized by ϕ

F
(t0, X) ≡ (∃t > t0)X(t).

This is a formula of the First-Order Monadic Logic of Order (FOMLO) - a funda-
mental formalism in Mathematical Logic where formulas are built using atomic
propositions P (t), atomic relations between elements t1 = t2, t1 < t2, Boolean

B. Rovan, V. Sassone, and P. Widmayer (Eds.): MFCS 2012, LNCS 7464, pp. 740–751, 2012.
c© Springer-Verlag Berlin Heidelberg 2012
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connectives and first-order quantifiers ∃t and ∀t. Most modalities used in the
literature are defined by such FOMLO truth tables, and as a result every tem-
poral formula translates directly into an equivalent FOMLO formula. Thus, the
different temporal logics may be considered a convenient way to use fragments of
FOMLO . FOMLO can also serve as a yardstick by which to check the strength
of temporal logics: A temporal logic is expressively complete for a fragment L
of FOMLO if every formula of L with a single free variable t0 is equivalent to a
temporal formula.

Actually, the notion of expressive completeness is with respect to the type
of the underlying model since the question whether two formulas are equivalent
depends on the domain over which they are evaluated. Any (partially) ordered
set with monadic predicates is a model for TL and FOMLO , but the main,
canonical , linear time intended models are the Naturals 〈N, <〉 for discrete time
and the Reals 〈R, <〉 for continuous time.

A major result concerning TL is Kamp’s theorem [Kam68, GHR94], which
states that the pair of modalities “X until Y ” and “X since Y ” is expressively
complete for FOMLO over the above two linear time canonical models.

Many temporal formalisms studied in computer science concern only future
formulas - whose truth value at any moment is determined by what happens
from that moment on. For example the formula X until Y says that X will hold
from now (at least) until a point in the future when Y will hold. The truth value
of this formula at a point t0 does not depend on the question whether X(t) or
Y (t) hold at earlier points t < t0.

Over the discrete model 〈N, <〉 Kamp’s theorem holds also for future formulas
of FOMLO : The future fragment of FOMLO has the same expressive power as
TL(Until) [GPSS80, GHR94]. The situation is radically different for the continu-
ous time model 〈R, <〉. In [HR03] it was shown that TL(Until) is not expressively
complete for the future fragment of FOMLO and there is no easy way to remedy
it. In fact it was shown in [HR03] that there is no temporal logic with a finite
set of future modalities which is expressively equivalent to the future fragment
of FOMLO over the Reals.

The proof there goes (roughly) as follows: Define a sequence of future formulas
φi(z) such that given any set B of modalities definable in the future fragment of
FOMLO by formulas of quantifier depth at most n, the formula φn+1(z) is not
expressible in TL(B).

The interesting point is that these formulas are all expressible in a temporal
language based on the future modality Until plus the modality K− of [GHR94].
The formula K−(P ) holds at a time point t0 if given any ‘earlier’ t, no matter how
close, we can always come up with a t′ in between (t < t′ < t0) where P holds.
This is of course not a future modality - the formula K−(P ) is past-dependent.
And it turns out that not only the above mentioned sequence of future formulas -
but all future formulas - can be expressed (over Real time) in TL(Until,K−). This
is a consequence of Gabbay’s separation theorem [GHR94].

This future-past mixture of Until and K− is somewhat better than the standard
Until - Since basis in the following sense: Although K− is (like Since) a past
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modality, it does not depend on much of the past: The formula K−(P ) depends
just on an arbitrarily short ‘near past’, and is actually independent of most of
the past. In this sense we may say that it is an “almost” future formula (see
Section 3.1 for precise definitions).

In [HR03] it was conjectured that TL(Until,K−) is expressively complete for
almost future formulas of FOMLO . Our main result here confirms this conjecture
with respect to the Real time domain (R, <). In the full paper we extend this
result to Dedekind complete time flows.

The rest of the paper is organized as follows: In Section 2 we recall the defini-
tions of the monadic logic, the temporal logics and Kamp’s theorem. In Section
3.1 we define “almost futureness”, then most of the ‘machinery’ needed for the
proof is in Sections 3.2 and 3.3, with the heart of the proof in Lemma 3.13.
Section 3.4 then just puts it all together to complete the proof. Finally, Section
4 states further results and comments.

2 Preliminaries

We start with the basic definitions of First-Order Monadic Logic of Order
(FOMLO) and Temporal Logic (TL), and some well known results concerning
their expressive power. Fix a signature (finite or infinite) S of atoms. We use
P,Q,R, S . . . to denote members of S. Syntax and semantics of both logics are
defined below with respect to such a fixed signature.

2.1 First-Order Monadic Logic of Order

Syntax: In the context of FOMLO, the atoms of S are referred to (and used)
as unary predicate symbols. Formulas are built using these symbols, plus two
binary relation symbols, < and =, and a finite set of first-order variables
(denoted by x, y, z, . . . ). Formulas are defined by the grammar:

atomic ::= x < y | x = y | P (x) (where P ∈ S)

ϕ ::= atomic | ¬ϕ1 | ϕ1 ∨ ϕ2 | ϕ1 ∧ ϕ2 | ∃xϕ1 | ∀xϕ1

The notation ϕ(x1, . . . , xn) implies that ϕ is a formula where the xi’s are the only
variables occurring free; writing ϕ(x1, . . . , xn, P1, . . . , Pk) additionally implies
that the Pi’s are the only predicate symbols that occur in ϕ. We will also use the
standard abbreviated notation for bounded quantifiers, e.g.: (∃x)>z(. . . ) de-
notes ∃x((x > z)∧ (. . . )), (∀x)≤z(. . . ) denotes ∀x((x ≤ z)→ (. . . )), (∀x)<u>l (. . . )
denotes ∀x((l < x < u)→ (. . . )), etc.

Semantics: Formulas are interpreted over structures. A structure over S is
a tripletM = (T , <, I) where T is a set - the domain of the structure, < is an
irreflexive partial order relation on T , and I : S → P(T ) is the interpretation
of the structure (where P is the powerset notation). We use the standard notation
M, t1, t2, . . . tn |= ϕ(x1, x2, . . . xn). The semantics is defined in the standard
way. Notice that for formulas with a single free first-order variable, this
reduces to:

M, t |= ϕ(x).



A Finite Basis for ‘Almost Future’ Temporal Logic over the Reals 743

2.2 Propositional Temporal Logics

Syntax: In the context of TL, the atoms of S are used as atomic propositions
(also called propositional atoms). Formulas are built using these atoms, and
a set (finite or infinite) B of modality names, where a non-negative integer
arity denoted by |M| is associated with each M ∈ B. The syntax of TL with the
basis B over the signature S, denoted by TL(B), is defined by the grammar:

F ::= P | ¬F1 | F1 ∨ F2 | F1 ∧ F2 | M(F1, F2, . . . , Fn)

where P ∈ S and M ∈ B an n-place modality (that is, with arity |M| = n). As
usual True denotes P ∨ ¬P and False denotes P ∧ ¬P .

Semantics: Formulas are interpreted at time-points (or moments) in
structures (elements of the domain). The domain T of M = (T , <, I) is called
the time domain , and (T , <) - the time flow of the structure. The semantics
of each n-place modality M ∈ B is defined by a ‘rule’ specifying how the set
of moments where M(F1, . . . , Fn) holds (in a given structure) is determined by
the n sets of moments where each of the formulas Fi holds. Such a ‘rule’ for M
is formally specified by an operator OM on time flows, where given a time flow
F = (T , <), OM(F) is yet an operator in (P(T ))n −→ P(T ).

The semantics of TL(B) formulas is then defined inductively: Given a struc-
tureM = (T , <, I) and a moment t ∈ M (read t ∈M as t ∈ T ), define when a
formula F holds in M at t - notation: M, t |= F - as follows:

– M, t |= P iff t ∈ I(P ), for any propositional atom P .

– M, t |= F ∨G iff M, t |= F or M, t |= G; similarly (“pointwise”) for ∧, ¬.
– M, t |= M(F1, . . . , Fn) iff t ∈ [OM(T , <)](T1, . . . , Tn) where M ∈ B is an
n-place modality, F1, . . . , Fn are formulas and Ti =def {s ∈ T :M, s |= Fi}.

Truth tables: Practically most standard modalities studied in the literature
can be specified in FOMLO : A FOMLO formula ϕ(x, P1, . . . , Pn) (with a single
free first-order variable x and with n predicate symbols Pi) is called an n-place
first-order truth table. Such a truth table ϕ defines an n-ary modality M
(whose semantics is given by an operator OM) iff for any time flow (T , <), for
any T1, . . . , Tn ⊆ T and for any structure M = (T , <, I) where I(Pi) = Ti:

[OM (T , <)](T1, . . . , Tn) = {t ∈ T :M, t |= ϕ(x, P1, . . . , Pn)}

Example 2.1. Below are truth-table definitions for the well known “Eventu-
ally”, the (binary) strict-Until and strict-Since of [Kam68] and for K− of
[GHR94]:

– � (“Eventually”) defined by: ϕ
�
(x, P ) =def (∃x′)>xP (x′)

– Until defined by : ϕ
Until

(x, P,Q) =def (∃x′)>x(Q(x′) ∧ (∀y)<x′

>x P (y))

– Since defined by: ϕ
Since

(x, P,Q) =def (∃x′)<x(Q(x′) ∧ (∀y)<x>x′P (y))

– K− defined by: ϕ
K−

(x, P ) =def (∀x′)<x(∃y)<x>x′P (y)
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We use infix notation for the binary modalities Until and Since: P Until Q denotes
Until(P,Q), meaning “there is some future moment where Q holds, and P holds
all along till then”. The non-strict version Untilns requires that P should hold
at the “present moment” as well. The formula K−(P ) holds at the “present
moment” t0 iff given any earlier t < t0 - no matter how close - there is a moment
t′ in between (t < t′ < t0) where the formula P holds.

2.3 Kamp’s Theorem

We are interested in the relative expressive power of TL (compared to FOMLO)
over the class of linear structures. Major results in this area are with respect to
the subclass of Dedekind complete structures - where the order is Dedekind
complete, that is, where every non empty subset (of the domain) which has an
upper bound has a least upper bound.

Equivalence between temporal and monadic formulas is naturally defined:
F ≡ ϕ(x) iff for any M and t ∈ M: M, t |= F ⇔ M, t |= ϕ(x). We will
occasionally use ≡L / ≡DC / ≡C to distinguish equivalence over linear / Dedekind
complete / any class C of structures.

Definability : A temporal modality is definable in FOMLO iff it has a FOMLO
truth table; a temporal formula F is definable in FOMLO over a class C of struc-
tures iff there is a monadic formula ϕ(z) such that F ≡C ϕ(z). In this case we say
that ϕ defines F over C. Similarly, a monadic formula ϕ(z) may be definable
in TL(B) over C.

Expressive completeness/ equivalence : A temporal language TL(B) (as
well as the basis B) is expressively complete for (a fragment of) FOMLO over
a class C of structures iff all monadic formulas (of that fragment) ϕ(z) are de-
finable over C in TL(B). Similarly, one may speak of expressive completeness
of FOMLO for some temporal language. If we have expressive completeness in
both directions between two languages - they are expressively equivalent .

As Until and Since are definable in FOMLO, it follows that FOMLO is expres-
sively complete for TL(Until, Since). The fundamental theorem of Kamp shows
that for Dedekind complete structures the opposite direction holds as well:

Theorem 2.2 ([Kam68]). TL(Until, Since) is expressively equivalent to
FOMLO over Dedekind complete structures.

This was further generalized by Stavi who introduced two new modalities Until′

and Since′ and proved that TL(Until, Since,Until′, Since′) and FOMLO have the
same expressive power over all linear time flows [GPSS80, GHR94].

2.4 In Search of a Finite Basis for Future Formulas

We use standard interval notations and terminology for subsets of the domain of
a structure M = (T , <, I), e.g.: (t,∞) =def {t′ ∈ T |t′ > t}; similarly we define
(t, t′), [t, t′), (t,∞), [t,∞), etc., where t < t′ are the endpoints of the interval.
The sub-structure ofM restricted to an interval is defined naturally. In partic-
ular: M|>t0

denotes the sub-structure of M restricted to (t0,∞): Its domain is



A Finite Basis for ‘Almost Future’ Temporal Logic over the Reals 745

(t0,∞) and its order relation and interpretation are those ofM, restricted to this
interval.M|≥t0

is defined similarly with respect to [t0,∞). If structures M,M′

have domains T , T ′, and if I is an interval of M, with endpoints t1 < t2 in M,
such that I∪{t1, t2} ⊆ T ∩T ′ and the order relations of both structures coincide
on I ∪ {t1, t2} - we will say that I is a common interval of both structures.
This is defined similarly for intervals with ∞ or −∞ as either endpoint. Two
structures coincide on a common interval iff the interpretations coincide there.
Two structures agree on a formula at a given time-point (or along a common
interval) iff the formula has the same truth value at that point (or along that
interval) in both structures.

Definition 2.3 (Future / past formulas and modalities). A formula (tem-
poral, or monadic with a single free first-order variable) F is (semantically):

A future formula iff whenever two linear structures coincide on a common
interval [t0,∞) they agree on F at t0.

A pure future formula iff whenever two linear structures coincide on a com-
mon interval (t0,∞) they agree on F at t0.

Past and pure past formulas are defined similarly.

A temporal modality is a first-order future (past) modality iff it is definable
in FOMLO by a future (past) truth table.

Note that ‘future’ can be characterized also syntactically: A formula ϕ(x0) is a
future formula iff it is equivalent to a formula with all quantifiers relativized to
[x0,∞), that is, all quantifiers are of the form (∀x)≥x0 (. . . ) or (∃x)≥x0(. . . ).

Looking at their truth tables, it is easy to verify that Until is a future modal-
ity and Since is a past modality. This pair {Until, Since} forms an expressively
complete (finite) basis in the sense of Kamp’s theorem. Do we have a finite basis
of future modalities which is expressively complete for all future formulas? Here
are some answers:

Theorem 2.4 ([GPSS80]). TL(Until) is expressively equivalent to the future
fragment of FOMLO over discrete time flows (Naturals, Integers, finite).

Theorem 2.5 ([HR03]). There is no temporal logic with a finite basis of fu-
ture modalities which is expressively equivalent to the future fragment of FOMLO
over Real time flows.

Theorem 2.6 ([GHR94]). TL(Until,K−) is expressively complete for the fu-
ture fragment of FOMLO over Dedekind complete time flows.1

Here we don’t have expressive equivalence, as not all TL(Until,K−) formulas
are future formulas. Theorem 2.6 offers a finite basis {Until,K−}, but just like
Kamp’s {Until, Since} - this is a ‘mixed’ future-past basis. [HR03] points out that
in spite of its ‘past’ nature, K− is “almost” a future modality because it depends
just on an arbitrarily small portion of the near past, and is independent of most
of the past. It is conjectured there that this “almost future basis” ‘generates’
only such “almost future formulas”, and that it generates all of them. In this
paper we show that this conjecture holds over the Real time domain (R, <).
1 This follows [GHR94]’s work along the proof of their separation theorem (10.3.20).
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3 A Finite Basis for Almost Future Formulas over R

In Section 3.1 below we define almost future formulas. In Section 3.2 we refine
a result of [Hod99], then the most technical part of the proof is in Section 3.3,
with the heart of the proof in Lemma 3.13. Section 3.4 finally puts it all together
to complete the proof.

3.1 Almost Future Formulas

Definition 3.1 (Almost future formulas, modalities, bases). A formula
(monadic, temporal) F is an almost future formula iff whenever two linear struc-
tures coincide on a common interval (t,∞) they agree on F all along (t,∞).
A temporal modality is almost future iff it has an almost future truth table in
FOMLO. A basis is almost future iff all its modalities are.

Clearly, all pure future formulas are in particular future formulas and all future
formulas are almost future. Note that we can give an alternative (equivalent)
definition for future and pure future formulas in the style of Definition 3.1 as
follows (compare with Definition 2.3): A formula F is

– Future iff whenever two linear structures coincide on a common interval
[t,∞) they agree on F all along [t,∞).

– Pure future iff whenever two linear structures coincide on a common in-
terval (t,∞) they agree on F all along [t,∞).

In the sequel we will be interested in “Real structures” - these are structures
over time domains isomorphic to the Real time flow (R, <). We denote this class
of structures by R. Note that if M ∈ R, then for every t ∈ M, the structure
M|

>t
is also in R.

Remark 3.2. The next two facts and the lemma below follow immediately:
1. If an almost future formula holds at t0 in a substructure M|

>t
of some

M ∈ R where t < t0 - then it holds there in M as well.
2. If an almost future formula holds at t0 in a structure M ∈ R then it holds

at t0 in all substructures M|>t where t < t0.

Lemma 3.3. If a basis B is almost future then so are all of TL(B) formulas.
In particular: Until, K− and all the formulas of TL(Until,K−) are almost future.

Example: Consider the following property: “Any open interval (t, t0) contains
a proper subinterval (t2, t1) such that P (an atomic property) holds at the ends
t1 and t2, but doesn’t hold anywhere inside (t2, t1)”. This is an almost future
property expressible in FOMLO. In TL(Until,K−) it is expressed by:

K−(P ∧ (¬P Until P ))

Our main result states that, with respect to the class R, any almost future
property expressible in FOMLO can be translated to TL(Until,K−):
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Main Theorem 3.4. TL(Until,K−) is expressively equivalent to the almost fu-
ture fragment of FOMLO over the class of Real structures.

As Until and K− are definable in FOMLO, the expressive completeness of almost
future FOMLO for TL(Until,K−) over all linear structures (and in particular over
Real ones) follows immediately by Lemma 3.3. For the opposite direction we have
to show how almost future monadic formulas translate into TL(Until,K−). Most
of our effort will now be in finding such a translation.

In the rest of the paper we highlight the core of the proof, omitting less
significant technical details. A detailed proof can be found in the full paper.

3.2 Decomposition Formulas

Both expressive completeness proofs of [GPSS80] (for Theorem 2.4 above) and of
[Hod99] (for Kamp’s Theorem 2.2) go through manipulating monadic formulas
to reach an equivalent formula in some standard form that can then be translated
to the target temporal language. We follow the same track:

Definition 3.5 ([Hod99] Decomposition formulas). 2 A FOMLO formula
is basic over TL(B) (where B is any temporal basis) iff it is a boolean combina-
tion of: (1) Atomic FOMLO formulas and (2) FOMLO formulas definable over
Dedekind complete structures in TL(B). A formula of the form: ∃x̄∀yχ(x̄, y, z)
where x̄ is a tuple of first-order variables and χ is basic over TL(B) is called a
decomposition formula over TL(B).

Theorem 3.6 ([Hod99]). Every FOMLO formula ϕ(z) is equivalent over
Dedekind complete structures to a positive boolean combination of decomposi-
tion formulas over TL(Until,K−):

ϕ(z) ≡DC

∨
i

∧
j

∃x̄∀yχij(x̄, y, z), where χij are basic over TL(Until,K−).

Targeting at Kamp’s theorem, [Hod99] formulates this theorem and the pre-
ceding definition with respect to TL(Until, Since); yet, the proof there actually
uses Since in a restricted form: ‘X Since True’, which is equivalent to ¬K−(¬X).
Thus, the proof actually holds for TL(Until,K−) as well.

[GPSS80] introduces a specific form of decomposition formulas where the basic
χ(x̄, y, z) is ‘split’ into TL(B)-definable formulas that ‘talk’ about a sequence
of moments (represented by the tuple x̄) and about the sequence of intervals
‘marked’ by these points:

Definition 3.7 ([GPSS80]
←−∃∀-formulas). A FOMLO formula is a

←−∃∀-formula over TL(B) iff it is of the form:

2 [Hod99]’s definitions are more general; this simplified version is sufficient for us.
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ψ(z) := ∃xn . . . ∃x1∃x0
[(xn < xn−1 < · · · < x1 < x0 = z) “Ordering”

∧
n∧
j=0

αj(xj) “All αj
′s hold at the points xj”

∧
n−1∧
j=0

[(∀y)<xj

>xj+1
βj(y)] “Each βj holds along (xj+1, xj)”

∧ (∀y)<xnβn(y)] “βn holds everywhere
′before′ xn”

where αj, βj are FOMLO formulas definable over Dedekind complete structures
in TL(B).

Notation 3.8. Having a particular interest in
←−∃∀-formulas over TL(Until,K−),

we shortly call them
←−∃∀-formulas. We use the notation ψn(z) to explicitly re-

flect the length of the quantifier prefix; and we use the abbreviated notation

ψn = (〈α0, β0〉 , . . . , 〈αn, βn〉) for a
←−∃∀-formula as above, with αi, βi definable

over Dedekind complete structures in TL(Until,K−).

The following can be derived from Theorem 3.6 by standard logical equivalences:

Proposition 3.9. Every FOMLO formula ϕ(z) is equivalent over Dedekind com-

plete structures to a finite disjunction of
←−∃∀-formulas.

3.3 Formulas That Hold “Regardless of Most of the Past”

A formula F “holds inM at t0 regardless of most of the past” if we can truncate
the past as close we wish to the left of t0, and F persistently holds at t0 in all such
truncated structures. As we will not be using here the dual notion of “holding
regardless of most of the future” - we will shortly say that F “almost-holds in
M at t0”. Formally:

Definition 3.10 (‘Almost holds’). Given M ∈ R and t0 ∈ M, and given a
formula (monadic, temporal) F : F almost-holds inM at t0 iff for every t < t0
in M there is a t′ ∈ (t, t0) such that M|

>t′ , t0 |= F .

Remark 3.11.
1. If a formula F is almost future, M ∈ R and t0 ∈ M then: F holds in M at

t0 iff it almost-holds there.
2. In general, it might be the case that a formula F (which is not almost future)

almost-holds in some M at t0, yet F does not hold inM at t0. Example: “P
always held in the past” ((∀x)<zP (x)). Similarly, “P once held in the past”
((∃x)<zP (x)) demonstrates the converse situation.

Lemma 3.12. If a finite disjunction of FOMLO formulas ϕ(z) =
∨
ψi(z) is

almost future, then for any M∈ R and t0 ∈ M:

M, t0 |= ϕ(z) iff some ψi(z) almost-holds in M at t0 (1)
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Proof. Given an almost future ϕ(z) =
∨
ψi(z) and t0 ∈M ∈ R as above:

Proof of ⇐: Let t < t0. Assume that some ψi(z) almost-holds in M at t0,
then there is a t′ ∈ (t, t0) such that M|

>t′ , t0 |= ψi(z), hence M|
>t′ , t0 |= ϕ(z),

and as ϕ is almost future - M, t0 |= ϕ(z) as well (Remark 3.2 (1)).
Proof of ⇒: Assume thatM, t0 |= ϕ(z), then (by Remark 3.2 (2)) for every

t < t0 in M: M|>t , t0 |= ϕ(z), hence for every t < t0:

M|>t , t0 |= ψi(z) for some index i (2)

Now, assume to the contrary that none of the disjuncts ψi almost-holds in M
at t0. Then for each i there is a point - denote it by ti - such that ti < t0 and
for all t′ ∈ (ti, t0): ψi(z) does not hold in M|

>t′ at t0. Let t̄ denote the largest
(‘latest’) ti (we started off with a finite disjunction) and let t ∈ (t̄, t0). Then for
each i: ti ≤ t̄ < t < t0, and therefore for each i: ψi(z) does not hold in M|

>t

at t0. This contradicts (2) above. Thus, we conclude that (at least) one of the
disjuncts ψi does almost-hold in M at t0. .�

The above lemma motivates us to seek a way to express in TL(Until,K−) the
fact that “a formula almost-holds inM at t0”. The main technical lemma below

shows that this is possible for
←−∃∀-formulas.

Main Lemma 3.13. For every
←−∃∀-formula ψ(z) there is a TL(Until,K−) for-

mula Fψ such that for every structure M ∈ R and every t0 ∈ M:

M, t0 |= Fψ iff ψ(z) almost-holds in M at t0 (3)

Proof. Let ψn(z) = (〈α0, β0〉 , . . . , 〈αn, βn〉) be a
←−∃∀-formula (see Notation 3.8),

and let Ai, Bi be TL(Until,K
−) formulas defining αi, βi (αi ≡DC Ai ; βi ≡DC Bi).

Define TL(Until,K−) formulas Gψ
n

0 , Gψ
n

1 , . . . , Gψ
n

n , Gψ
n

n+1 and Fψn as follows:

Gψ
n

0 := A0

Gψ
n

j+1 := Aj+1 ∧ (Bj Until Gψ
n

j ) - for j = 0, 1, . . . , n− 1

Gψ
n

n+1 := Bn Until Gψ
n

n

Fψn := A0 ∧ ¬K−(¬B0) ∧
n+1∧
j=1

K−(Gψ
n

j )

Now let t0 ∈ M, and show that Fψn satisfies the required property (3). The
⇐ direction follows directly from definitions. For the ⇒ direction: Assume that
M, t0 |= Fψn . Let t < t0. To show that ψn(z) almost-holds in M at t0 we must
find a t′ ∈ (t, t0) such that M|

>t′ , t0 |= ψn(z).

First, as M, t0 |= ¬K−(¬B0) we have an interval (t̃, t0) where B0 holds and

t < t̃ < t0. Second, as M, t0 |= K−(Gψ
n

n+1), we have a t′ ∈ (t̃, t0) where Gψ
n

n+1

holds, that is: M, t′ |= (Bn Until Gψ
n

n ). We will find points t1, . . . , tn, tn+1 in
M such that (i) t < t̃ < t′ = tn+1 < tn < · · · < t1 < t0 and (ii) for each 0 ≤
i ≤ n: Bi holds in M along (ti+1, ti) and M, ti |= Gψ

n

i (and thus, in particular
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M, ti |= Ai). Then, as Ai, Bi are almost future (Lemma 3.3), the same holds in
the substructureM|

>t′ as well (Remark 3.2 (2)). And as Ai ≡DC αi ; Bi ≡DC βi,
we conclude that M|

>t′ , t0 |= ψn(z).
It remains to show there are points ti as above. For tn+1 we simply pick t′.

Next, we construct tn: We haveM, tn+1 |= (Bn Until Gψ
n

n ), hence, Gψ
n

n holds at
some t′′ > tn+1 and Bn holds along (tn+1, t

′′). Now, if t′′ < t0 denote: tn = t′′.
Otherwise, as M, t0 |= K−(Gψ

n

n ), there is a t∗ ∈ (tn+1, t0) where Gψ
n

n holds -
and in this case denote: tn = t∗. In any case, we have t < t̃ < t′ = tn+1 < tn <
t0, Bn holds along (tn+1, tn) and M, tn |= Gψ

n

n . Repeat the above arguments
(induction, down-counting from tn to t1) to construct the rest of the ti’s. Finally,
B0 clearly holds along (t1, t0) andM, t0 |= A0, so the points ti indeed satisfy (i)
and (ii) as required. .�

3.4 Putting It All Together

Lemma 3.13 renders the desired semantics-preserving translation over Real struc-
tures for almost future FOMLO formulas. Now we are ready to complete the
proof of our main result (Theorem 3.4):

Given an almost future ϕ(z) in FOMLO, we will construct a TL(Until,K−)
formula Fϕ such that:

ϕ(z) ≡R Fϕ (4)

1. Given an almost future ϕ(z), by Proposition 3.9 we have: ϕ(z) ≡DC

∨
ψi(z)

where ψi are
←−∃∀-formulas.

2. By Lemma 3.13 each disjunct ψi has a ‘representative’ Fψi in TL(Until,K−)
that satisfies property (3) of the lemma, or - in other words - that asserts
that “ψi(z) almost-holds in a Real structure M at t0”. Define:

Fϕ =def
∨
Fψi

3. Notice that so far we haven’t used the fact that ϕ is almost future: Steps 1
and 2 above hold for any monadic ϕ(z). Now verify that (4) above indeed
holds: Let t0 ∈ M ∈ R. By Lemma 3.12 (and this is the point where the
“almost futureness” of ϕ is crucial),M, t0 |= ϕ(z) iff there is an index i such
that ψi(z) almost-holds in M at t0, in other words - by Lemma 3.13 - iff
there is an i such that M, t0 |= Fψi , that is, iff M, t0 |= Fϕ.

4 Further Results and Comments

We have shown expressive equivalence of TL(Until,K−) and almost future
FOMLO over time flows isomorphic to the Reals. The notion of past, future,
almost future formulas is defined with respect to the class of all linear struc-
tures. One may as well consider similar notions relative to specific classes of
structures. For example, a formula is a future formula over R (the class of Real
structures) if any pair of Real structures that coincide on the future of some
point t agree on the formula at t. Clearly, every future formula over the class
of all linear structures is also a future formula over R. The converse doesn’t
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hold: “There is a first-moment and P holds there” for example, is unsatisfiable
over R, and therefore a future formula over R, but this is not a future formula
over Natural time domains. We actually proved a stronger result: Every formula
which is almost future over R has a TL(Until,K−)-equivalent over R.

It is decidable whether a formula ϕ(x) is almost future over R. Indeed let

ϕrel
>x′ (x) be obtained from ϕ by relativization of all quantifiers to (x′,∞). A

formula ϕ is almost future over R iff ∀x
(
(∀x′)<x(ϕ(x) ↔ ϕrel

>x′ (x))
)
is valid

over R. Since the validity of a FOMLO formula over R is decidable [BG85], we
conclude that it is decidable whether a formula is almost future over R.

In the full paper we prove expressive equivalence of TL(Until,K−) and almost
future FOMLO over all Dedekind complete structures. Lifting the proof from
the Reals to Dedekind complete orders requires careful handling of subtleties
that don’t appear in the Reals. In Dedekind complete structures there are three
types of points: A structure may have a least element or not - a “first moment”.
A non-first moment is a “successor” if it has a “latest earlier moment” and a
“left-limit” otherwise. The fact that in R all points are left-limits simplifies the
proof. The translation presented in Section 3.4 works fine for left-limit points in
Dedekind complete structures as well, but fails for successors and first moments.
These two types of points need different (but simpler) handling. The core of the
proof - handling left-limit points - is the same as presented in this paper.

Over linear structures in general, {Until,K−} is not expressive enough: It is
not a basis for almost future formulas. Stavi generalized Kamp’s theorem by
enhancing {Until, Since} to obtain a basis expressively equivalent to FOMLO
over linear time [GHR94]. Unfortunately, {Until,K−} cannot be extended in a
similar manner: In the full paper we show that no finite basis of almost future
modalities is expressively equivalent to almost future FOMLO over linear time.

Acknowledgments. We are very grateful to Yoram Hirshfeld for numerous in-
sightful discussions, and to the anonymous referees for their helpful suggestions.
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Abstract. We study extendability of ternary square-freewords. Namely,
we are interested in the square-free words that cannot be infinitely ex-
tended preserving square-freeness. We prove that any positive integer is
the length of the longest extension of some ternary square-free word and
thus solve an open problem by Allouche and Shallit. We also resolve the
two-sided version of this problem.

1 Introduction

Repetition-free words and languages are among the most popular objects of
study in formal language theory. Such languages are given by avoidance proper-
ties: their words do not contain certain “forbidden” repetitions such as powers,
Abelian powers, patterns, palindromes, etc. Lots of challenging problems on
these languages are still open. One group of such problems concerns the internal
structure of repetition-free languages.

Any repetition-free language can be viewed as a poset with respect to prefix,
suffix, or factor order. In case of prefix [suffix] order, the diagram of such a poset
is a tree. Each node generates a subtree and is a common prefix [respectively,
suffix] of its descendants. Little is known about the structure of these trees. For
some power-free languages, it is decidable whether a given word generates finite
or infinite subtree [4]. For all kth power-free languages, the subtree generated by
any word has at least one leaf [3]. For some particular languages, there is more
information. For example, for the binary overlap-free language it is decidable in
linear time whether the subtrees generated by two given words are isomorphic
[9]. The deciding procedure allows one to check finiteness of a given subtree and
some other properties of the tree. In [7] it was proved that binary cube-free
words generate arbitrarily large finite subtrees in the corresponding tree. The
problem of existence of such subtrees for ternary square-free words was posed in
[1, Problem 1.10.9]. Note that considering the factor order instead of the prefix
or the suffix one, we get a more general acyclic digraph instead of a tree, but
still can ask the same questions about the structure of this digraph. The results
of [7, 9] apply to the digraphs of factor order as well.

In this paper we exhibit two infinite series of ternary square-free words. The
first series provides the solution to the mentioned problem of [1]; the second
series solves the two-sided analog of this problem.
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2 Preliminaries

1. Notation, definitions, auxiliary results. We study words (finite and infinite)
and formal languages over the main alphabet Σ = {a, b, c} and over some auxil-
iary alphabets. We write Σ∗ for the set of all words over Σ including the empty
word λ, and |W | for the length of the word W . If some letter of Σ is denoted
by x, then y and z denote the other two letters. The letters of nonempty finite
and right-infinite words are numbered from 1; thus, W = W [1] · · ·W [|W |]. The
reversal of W is the word (

←−
W ) =W [|W |] · · ·W [1].

We use standard definitions of factors, prefixes, and suffixes of a word. For
convenience, the factor W [i] · · ·W [j] is written as W [i..j]. A positive integer
p ≤ |W | is a period of a word W if W [1..|W |−p] = W [1+p..|W |]. The exponent
exp(W ) of a word W is the ratio between the length and the minimal period
of W . Words of exponent 2 are called squares. The local exponent of a word is
the number lexp(W ) = sup{exp(V ) | V is a factor of W}. A word W is β-free
[β+-free] if lexp(W ) < β [respectively, lexp(W ) ≤ β]. The 2-free words are called
square-free. The language of square-free words over Σ is denoted by SF.

Consider the substitutions αo (“odd”) and αe (“even”) over the alphabet Σ:

αo : a→ abc, b→ bca, c→ cab, αe : a→ cba, b→ acb, c→ bac (1)

These substitutions are extended to the function α : Σ∗ → Σ∗ in the following
way. To get the image of a word W , substitutions (1) are applied to each letter
W [i]; if i is odd [even], then the odd [resp., the even] substitution is used. From
the definition it follows that the word αk(a) is a prefix of αk+1(a) for any k ≥ 0.
Hence, one can consider the “limit” right-infinite word

A = α∞(a) = abc acb cab cba cab acb cab cba bca . . . ,

which was introduced in [2] and is called the Arshon word. We also consider the

reversal
←−
A of A. The word A is square-free [2] and, moreover, (7/4)+-free [5].

The factors of A are called Arshon factors.

Remark 1. Some Arshon factors occur in A in positions of different parity and
thus have two different α-images. We write αo(W ) [αe(W )] for the image of the
factorW ifW begins in A at an odd [resp., even] position. Obviously, the Arshon
factor αo(W ) [αe(W )] begins in an odd [resp., even] position. Thus, W has at
most two different αk-images, denoted by αko(W ) and αke(W ), for any k > 0.

The words U and V are conjugates if exists two words X and Y such that
U = XY and V = Y X . If we link up the ends of a word U , we will get a
cyclic sequence of letters called a circular word and denoted by (U). A circular
word represents a conjugacy class of ordinary words. By definition, the factors
of (U) are ordinary words of length ≤ |U | including U and its conjugates. The
word V = U2 is called a minimal square if all its proper factors are square-free.
Clearly, a word is square-free if and only if there are no minimal squares among
its factors. The following proposition shows the role of circular words in the
study of square-free words.
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Proposition 1 ([8]). The word U2 is a minimal square if and only if (U) is
square-free.

2. Formulation of the main result. Let L ⊂ Σ∗ and W ∈ L. Any word U ∈ Σ∗
such that UW ∈ L is called a left context ofW in L. The wordW is left maximal
[left premaximal ] if it has no nonempty left contexts [respectively, finitely many
left contexts]. The level of the left premaximal wordW is the length of its longest
left context1. Thus, left maximal words are of level 0. The right counterparts
of the above notions are defined in a symmetric way. We say that a word is
premaximal if it is both left and right premaximal. The level of a premaximal
word W is the pair (n, k) ∈ N2

0 such that n and k are the length of the longest
left context of W and the length of its longest right context, respectively.

The aim of this paper is to prove the following theorem:

Theorem 1. In the language SF, there exist
a) left premaximal words of any level n ∈ N0;
b) premaximal words of any level (n, k) ∈ N2

0.

3. Overview of the main construction. We prove Theorem 1, a by exhibiting a
series of left premaximal words, containing words of any level. The series is
constructed in two steps:

1) building an auxiliary series {Wn}∞0 such that each word Wn has a unique
left context of any length ≤ n;

2) completing the word Wn to a left premaximal word Ŵn.

In order to prove Theorem 1, b, we connect the word Ŵn to the reversal of the
word Ŵk through some “buffer” word.

If a word W ∈ SF has a unique left context of length n, say U , and two left
contexts of length n+1, then we say that U is the fixed left context of W . Let
us explain step 1. We build the series {Wn}∞0 inductively. The fixed left context
Un of the word Wn has length ≥ n. We put W0 = cabcacba and note that this
word has the fixed left context ba of length 2. We require that each word Wn,
n > 0, has the following properties:

1. Wn−1 is a prefix of Wn;

2. any suffix of
←−
A is a left context of Wn;

3. the fixed left context Un of Wn equals
←−
A [k..1] for some k ≥ n;

4. if |Un| > n, then Wn+1 =Wn (trivial iterations).

If the (n+1)th iteration is nontrivial, then the fixed context Un+1 is longer than

Un =
←−
A [n..1]. If Un[1] = x, then both words yUn and zUn are left contexts

of Wn by definition of the fixed context. Hence, we need to extend Wn to the
right in a manner that will “prohibit” the appearance of some letter before Un
in the left context. Let yUn =

←−
A [n+1..1]. Then we prohibit z on the (n+1)th

iteration. Proposition 1 suggest the following idea. Find a word Sn such that

1 Or the height of the subtree generated by W in the tree of suffix order of L.
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the circular word (zUnWnSn) is square-free and put Wn+1 = WnSnzUnWnSn.
Then zUn is not a left context of Wn+1 while yUn is likely to be such a context
if the word Sn is chosen appropriately. Thus, if we find an appropriate word Sn
for any nontrivial iteration, we are done. For trivial iterations, we artificially put
Sn = λ.

In what follows, the prohibited context zUn is denoted by U ′n+1.

Remark 2. The (n+1)th iteration is trivial if Un starts with aba, abcab, or
abcbabc up to renaming the letters. In all other cases, we will be able to provide
a nontrivial iteration due to (7/4)+-freeness of the Arshon word. In particular,
U ′n+1 is a square-free word for sure.

3 Codewords and Codewalks

1. Definitions and basic properties. Any ternary square-free circular word U can
be encoded by a binary Pansiot codeword cwd(U) of length |U | − 2.

cwd(U)[i] =

{
0 if U [i] = U [i+2],

1 otherwise;
for example,

U =a b c b a c b c . . . ,
cwd(U)=1 0111 0 . . . .

This type of encoding was proposed in [6] for bigger alphabets and studied in
[8] for the ternary alphabet. Recall some facts from [8]. First, Pansiot encoding
can be naturally extended for circular words. Pansiot codeword for a square-free
circular word (U) is the binary circular word (cwd(U)) of length |U | ≥ 3 obtained
as in following example:

a
b

c
b
a

c
b

c

−→ 1

0
1

1

1

0
1

1

Note that one can consider the Pansiot codeword for any ternary word of length
≥ 3 containing no squares of letters. The codewords of square-free (ordinary or
circular) words are also called square-free.

Let us consider square-free circular codewords. They do not contain the fac-
tors 00 and 1111 encoding the squares of period 2 and 3, respectively. 0’s in
a codeword correspond to the “jumps” of one letter over another letter in the
encoded word. There are six such jumps, represented by the factors aba, bcb,
cac, aca, bab, and cbc. We call the first three jumps right and the remaining
jumps left. A right jump in a square-free circular word is always followed by the
left jump and vice versa. Thus, the number of 0’s in any square-free circular
codeword is even. The next jump is obtained from the previous one by

- changing the central letter (e. g., aba↔ aca) if the 0’s are separated by 1;
- changing the side letters (e. g., aba↔ cbc) if the 0’s are separated by 11;
- switching the letters (e. g., aba↔ bab) if the 0’s are separated by 111.

In order to describe square-free codewords, the complete bipartite graph K3,3 is
used. Left [right] jumps correspond to the bottom [resp., top] part of the graph.
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aba bcb cac

bab cbc aca

3

2

1

1 3 2

2

1

3

Fig. 1. The graph of jumps in ternary circular words. Bold edges mark the closed
codewalk (1213).

The number of 1’s between two jumps equals the weight of the edge connecting
the corresponding vertices. Each square-free circular codeword of length at least
4 corresponds to a closed walk in the weighted graph shown in Fig. 1.

A walk in the obtained graph is uniquely determined by the initial vertex
and the sequence of edge weights. Due to symmetry, this sequence of weights
determines whether the walk is closed independently of the initial vertex. Since
we are interested in the codewords rather than the encoded words, we consider
the walks just as sequences of weights (i. e., words over {1, 2, 3}), or codewalks.
Any closed walk is a combination of simple cycles (a closed walk of length two
is considered as a simple cycle also). Any simple cycle is defined by a circular
word over {1, 2, 3}. The next lemma is crucial for our considerations.

Lemma 1 ([8]). A closed walk having (a) no factors 11, 222, 223, 322, 333,
and (b) no factors of the form XYX such that |Y | = 2, |X | is even, and (XY )
is the label of a closed walk, defines a square-free circular codeword.

We define a codewalk cwk(U) for an arbitrary ternary square-free (ordinary)
word U as follows. Take the codeword cwd(U), replace each block of 1’s by its
length and omit all 0’s. For uniqueness, it is necessary to keep the information
about the first and the last letters of cwd(U) (e.g., if cwd(U)[1] = 1, then the
first block of 1’s in cwd(U) can be a factor of a longer block). We will underline
the first [last] letter of cwk(U) if cwd(U) begins [resp., ends] with 1. For example,

U = abcacbacaba, cwd(U) = 110111010, cwk(U) = 231.

2. Building the words Sn: closures and buffers. Recall that we look for a word Sn
such that the circular word (zUnWnSn) is square-free. This word serves three
purposes:
- “close” the corresponding codewalk if it is not closed;
- contain some “buffer” word preventing the appearance of squares after linking
up the beginning and the end of the word;
- make the next nontrivial iteration possible (see the following remark).

Remark 3. Since the word UnWn+1 = UnWnSnzUnWnSn is a square without
one letter, it has a unique right context of length 1. We add this context before
adding the buffer word on the next nontrivial iteration.

We describe Sn in terms of codewalks (sometimes, codewords also should be
considered). Note that |cwd((U))| = |cwd(U)| + 2; so, we need to add at least
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two symbols to the codeword of zUnWn. Let V = cwd(zUnWnSn). Then the
codeword cwd(Wn+1) is obtained as follows: we take V 2, delete its first n+1
symbols (which encode U ′n+1), and delete the last two symbols (which connect
the end of the circular word to its beginning). According to Remark 3, we always
begin constructing the codeword of the next buffer word with its first symbol;
this symbol encodes the “must” next letter from the previous nontrivial iteration.
Since this letter is not z, the added symbol differs from the second last symbol
of V (that symbol encodes z in the circular codeword).

Starting from the 7th (3rd nontrivial) iteration, all nontrivial iterations fol-
low the general scheme described in Sect. 4 below. The 1st, 2nd, 5th, and 6th
iterations are trivial. The first two nontrivial iterations go as follows:

W2 =W0 = cabcacba, U ′3W2 = a ba cabcacba, cwd(U ′3W2) = 010111011.

Adding 0111 at the end of this codeword, we obtain the closed codewalk 1323
corresponding to a square-free circular word by Lemma 1. So we double the
codeword, delete three first symbols and two last symbols, add the new last
symbol and decode the result to get W3 (for convenience, the codeword of U ′4W3

required for the next iteration, is shown on the same picture):

0 1 0 1 1 1 0 1 1 0 1 1 1 0 1 0 1 1 1 0 1 1 0 1 1 1
cwd(W3) 1 1 1 0 1 1 0 1 1 1 0 1 0 1 1 1 0 1 1 0 1
W3 c a b c a c b a b c a b a c a b c a c b a b c
cwd(U ′4W3) 0 1 1 0 1 1 1 0 1 1 0 1 1 1 0 1 0 1 1 1 0 1 1 0 1

The “must” letter after W3 is b (a is prohibited on this iteration). Now con-
sider the 4th iteration. The codeword cwd(U ′4W3) corresponds to a closed code-
walk 23231321, but we need to add a symbol 0 to the codeword to encode
the “must” letter. Then we add 1110111 to get a closed codewalk 2323132133.
By Lemma 1, it encodes a square-free circular word. After decoding, we get
W4 =W3bacbca bcbaW3bacbca.

3. The Arshon word and codewalks. The word cwk(A) has a specially nice form.

Lemma 2. Let f = 132, g = 123, and let B be the right-infinite word generated
by the morphism β : {f, g}∗ → {f, g}∗ defined by β(f) = fgf , β(g) = fgg. Then

cwk(A) = 2B and cwk(
←−
A ) =

←−
B′12, where B′ is obtained from B by renaming the

letters f and g.

Proof. By Remark 1, for any k > 0, the αk-image of a letter x is determined by
the parity of the position of x. We call the words αko(x), α

k
e(x) α

k-blocks. Note
two obvious properties of the Arshon word and the function α.
(i) α-blocks can be viewed as permutations of Σ: odd α-blocks are permutations
of the same parity, while the even α-blocks have the opposite parity.
(ii) x is the first [resp., the last] letter of αo(x) [resp., of αe(x)].

Assume that x ∈ Σ and αo(x) = xyz. Using (i),(ii), it is easy to check that

α2
o(x) = xyz xzy zxy and α2

e(x) = yxz yzx zyx. Note that α2
e(x) =

←−−−
α2
o(x). By

induction, it is easy to obtain the equality αke(x) =
←−−−
αko(x) for any k.
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Now note that in view of (i) all α2-blocks are equivalent in a sense that they
are images of each other under permutations of the alphabet. Thus, any α2-
block has the codeword 1101011 and the codewalk 212. If we concatenate two
α2-blocks, two symbols should be inserted between their codewords. These two
symbols are 01 or 10, because codewords of square-free words avoid 00 and 1111.
Then, the codewalk will look like 213212 or 212312. Thus, cwk(A) ∈ 2(f + g)∗.

Now consider α3-blocks. One has α3
o(x) = α2

o(x)α
2
e(y)α

2
o(z). Looking at begin-

nings and ends of these α2-blocks, we see that the first insertion into the code-
word is 10, and the second one is 01. Hence, the codewalk of an odd α3-block is
213212312. Since this codewalk is a palindrome and the odd and even α3-images
of a letter are reversals of each other, all α3-blocks have this codewalk. From the
definition of B it follows that if i ≡ 0 (mod 3), then B[i] = B[i/3], B[i+1] = f ,
B[i+2] = g. So, we have just proved the two last equalities; it remains to prove
the first one. To do this, we find the symbols inserted into the codeword at the
border of two αk-blocks, where k > 2. Consider an αk+1-block. As above, due to
symmetry it is enough to look at a particular odd block:

A =

αk+1
o (x)

αk
o(x) αk

e (y) αk
o(z)

αk−1
o (x) αk−1

e (y) αk−1
o (z) αk−1

e (x) αk−1
o (z) αk−1

e (y) αk−1
o (z) αk−1

e (x) αk−1
o (y)

The first border is in the middle of the factor αk−1
o (z)αk−1

e (x). This factor ap-
pears in αko(z), see the picture, and then never appears in an even αk-block by
(i). Thus, the insertion in the codeword at the border of two first αk-blocks in
an αk+1-block is the same as the insertion at the border of two first αk−1-blocks
in an αk-block. The argument for the insertion at the second border of αk-blocks
is the same. Thus, we have confirmed the required condition B[i] = B[i/3]. The

proof of the equality cwk(A) = 2B is finished. Now the formula for cwk(
←−
A ) is

straihgtforward from defenitions. .�

4. Properties of the word U ′n.

Lemma 3. Let V be a closed walk which is a prefix of the codewalk cwk(U ′n),
|V | ≥ 6, and V ′ is the longest prefix of cwk(U ′n) with the period |V |. Then
|V ′| ≤ 2|V | − 4.

Proof. Recall that the word U ′n is square-free. Since the words Un =
←−
A [n..1] and

U ′n differ only in the first position, the same is true for cwd(U ′n) and cwd(Un).
Let us consider the possible prefixes of cwd(Un). This codeword cannot have
the prefixes 10, 0111, or 110101, because the words 00, 1111, and 010101 en-
code squares. Also, cwd(Un) cannot begin with 01010, 0110110, or 1110111 by
Lemma 2. The remaining cases are considered below.

– 01011 . . .. According to Lemma 2, this is the beginning of the block 123 or
132 in the codewalk. Since cwd(U ′n) = 11011 . . ., we have cwk(U ′n) = 22 . . .
or cwk(U ′n) = 232 . . .. The factors 22, 33, 323, and 232 do not occur inside
the codewalk of Un. Hence, |V ′| ≤ |V |+ 2 ≤ 2|V | − 4.
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– 11011 . . .. By Lemma 2, this is a fragment of 231 or 321 in the codewalk.
Changing the first letter, we obtain 121 or 131. These factors do not occur
inside cwk(Un). Hence, |V ′| ≤ |V |+ 2 ≤ 2|V | − 4.

– 0110111 . . .. Here cwk(U ′n) = 33 . . .. The factor 33 does not occur inside
cwk(Un). Hence, |V ′| ≤ |V |+ 1 < 2|V | − 4.

– 1110110 . . .. Here cwk(U ′n) = 22 . . .. The factor 22 does not occur inside
cwk(Un). Hence, |V ′| ≤ |V |+ 1 < 2|V | − 4.

– 011010 . . .. We have cwk(U ′n) = 31 . . ..
– 111010 . . .. We have cwk(U ′n) = 21 . . ..

The last two cases are quite similar and we study them simultaneously. Assume
that the blocks f = 132 and g = 123 of cwk(U ′n) are numbered from left to right
starting with 1. Thus, the first block starts in the second position of cwk(U ′n).
Therefore, if |V ′| > |V |+ 1, then |V | is divisible by 3. Since V is a closed walk,
|V | is even. So, we conclude that |V | is divisible by 6. It can be checked directly
from Fig. 1 that the only closed walks of length 6 that satisfy the partition into
blocks f and g are 123123, 132132, and their conjugates. Such roots of length 12
are combinations of 123123, 132132, and conjugates of these combinations. From
the description of cwk(A), an easy calculation shows that the longest prefix of
cwk(U ′n) with the period |V | = 6 has length 8 (2ff1 or 3gg1) and the longest
prefix of cwk(U ′n) with the period |V | = 12 has length 20 (3gffggf1).

Finally, let |V | = 6k for some k ≥ 3. Note that a block g or f in the codewalk
corresponds to the factor of length 9 in the original word. The word V encodes
6k
3 · 9 = 18k letters, k ≥ 3. Assume to the contrary that the longest prefix of
cwk(U ′n) with the period |V | has the length at least 2|V |−3. The suffix of V
of length 3 encodes at most 10 letters. If U ′n has the prefix of length 36k−10
with the period 18k, then Un has a factor of length 36k−11 with this period,
namely, the factor Un[2..36k−10]. But (36k−11)/18k > 7/4 contradicting to the
(7/4)+-freeness of the Arshon word. This contradiction concludes the proof. .�
Remark 4. From the proof of Lemma 3 it follows that even stronger statement
is true for cwk(Un): the inequality |V ′| ≤ 2|V | − 5 holds in this case.

Remark 5. Completing the result of Lemma 3, we show that extending U ′n to
the left one can avoid short squares.
(1) By Lemma 2, cwk(U ′n) has no prefixes 11, 11, 223, 222, 222, 322, 322, 333,
and 333. If cwk(U ′n) = 223 . . ., we change 2 to 3 (i.e., cwd(Sn) ends with 1). Thus
we avoid the factors listed in Lemma 1,a.
(2) There are three different cycles of length 4 in K3,3, they are represented
by codewalks 1213, 1232, 1323 and their conjugates. Six of these 12 codewalks
can be prefixes of cwk(U ′n): 1213, 1312, 2123, 3132, 2321, and also 2231 that
will be changed to 3231 according to the previous paragraph. The first four
codewalks cannot be extended to periodic words due to Lemma 2. 2321 and
3231 can be extended to nasty-looking, in view of Lemma 1,b, codewalks 232123
and 323132, respectively. In both cases these periodic factors are followed by 1.
When cwk(U ′n) = 232123 . . ., we change 2 to 3. When cwk(U ′n) = 323132 . . ., we
end cwk(Sn) with 32 and break this period. (Lemma 1 is not a criterion; the
codewalk 323132 decodes to a square without one letter.)
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4 Constructing Buffer Words and Proving
Square-Freeness

The construction of buffer words Sn is based on the following lemma.

Lemma 4. For any word U ′n there exists a word S′n such that for any m with
the property cwd(A)[m+1] = 0 the word A[1..m]S′n is the left context of U ′n.

Proof. We look for a codeword C such that cwd(A)[1..m]Ccwd(U ′n) is a square-
free codeword for any m satisfying cwd(A)[m+1] = 0. That is, C always starts
with 0.. Naturally, we can switch from codewords to codewalks, looking for a
codewalk C′ such that the codewalk cwk(A)[1..m]C′cwk(U ′n) decodes to a square-
free word.

We know that cwk(U ′n) coincides with cwk(Un) except for the first letter, and

Un =
←−
A [n..1]. The codewalk cwk(U ′n) has one of the following forms:

1. 212 . . . 4. 131 . . . 7. 223 . . .
2. 312 . . . 5. 221 . . . 8. 232123 . . .
3. 121 . . . 6. 331 . . . 9. 232132 . . . .

The dependence between the forms of cwk(U ′n) at successive nontrivial iterations
is shown in Fig. 2. For each vertex, the codewalk C′ is written on the outgoing
edge. These codewalks are chosen to serve as “Arshon suppressors”: their prefixes
of length 3 and their suffixes of length 4 (in most cases, 3) do not occur in cwk(A).
Let us show that the codewalk corresponding to the form 1 of cwk(U ′n) satisfies
the conditions of the lemma. The proofs for all other cases are similar.

Vertex 1 corresponds to the prefix 212 and C′ = 3233233. It is easy to see that
the codewalk cwk(A)[1..m]C′cwk(U ′n) has no factors listed in Lemma 1,a. Fur-
thermore, cwk(A)[1..m]C′ decodes to a square-free word by Lemma 1,b. Indeed,
by Remark 4 any suffix XYX of cwk(A)[1..m] such that XY is a closed walk
is of length at most 2|XY | − 5, and this suffix can be extended by at most two
symbols of C′, because 323 cannot occur inside cwk(A)[1..m]. Next, C′cwk(U ′n)
decodes to a square-free word since the suffix 33 of C′ does not occur in cwk(U ′n).

Finally, assume that cwk(A)[1..m]C′cwk(U ′n) contains a periodic factor XYX
that strictly contains C′. Then the factor 3323 of C′ belongs to Y , because
neither 323 nor 33 can repeat inside the codewalk of the Arshon word. Thus,
|XYX | ≤ 2|XY | − 4, and the considered codewalk decodes to a square-free
word by Lemma 1,b. After decoding, we obtain a square-free word of the form
A[1..m]S′nU

′
n, as required. .�

Below we assume that the nth iteration is nontrivial and m is its number among
general nontrivial iterations. Using the formula for cwk(A) (Lemma 2), we take
the codewalk B[m..2m−1]C′cwk(U ′n) which decodes to a square-free word by
Lemma 4. Consider the codewalk B[m..2m−1]C′cwk(U ′nWn−1). If it is closed,
we will prove that it decodes to a square-free circular word. It it is open, we first
make it closed, replacing B[m..2m−1] = cwk(A)[3m−1..6m−2] by some longer
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Fig. 2. Nontrivial iterations. Vertices correspond to the forms of cwk(U ′
n), edges are

marked with the values of C′.

factor cwk(A)[3m−1..km]. From Fig. 1 it is clear that any two vertices of this
graph can be connected with the walk 1, 2, 3, 12, or 13. 1 is the next letter from
the Arshon codewalk. Each of the other four walks can be replaced by a factor
of cwk(A) immediately following B[m..2m−1]:

2 can be replaced by 123 or 13213 or 1321231
3 can be replaced by 132 or 12312 or 1231321
12 can be used or replaced by 1321
13 can be used or replaced by 1231

(2)

Inserting the appropriate factor after B[m..2m−1] in the considered codewalk,
one obtains a closed codewalk Vm = cwk(A)[3m−1..km]C′cwk(U ′nWn−1). The
prefix cwk(A)[3m−1..km]C′cwk(U ′n) of Vm decodes to the square-free word
A′nS

′
nU
′
n, where A

′
n is some factor of A. Now consider the border between the

factors cwk(Wn−1) and B[m..2m−1] in (Vm).
The word Wn−1 ends with the buffer built at the (m−1)th general nontrivial

iteration from the codewalk ended by some C′′. Note that cwk(Wn−1) ends with
a “distorted” version of C′′ according to Remark 3. Namely, the suffix 321 [resp.,
232, 233, 233 or 332] of C′′ was changed to 33 [resp., 231, 231, 232, and 331].
The word B[m] begins with 1, so if cwk(Wn−1) ends with 1, we add 33 to the

distorted version of C′′. We write C̃m−1 for the word finally obtained from C′′.

Lemma 5. The following codewalk decodes to a square-free word for any m:

Dm = cwk(A)[2..k1]C̃1cwk(A)[5..k2]C̃2 · · · cwk(A)[3m−1..km]C̃m.

Proof. Lemma 1 holds for codewalks of ordinary words as well. By construction,
Dm has no factors listed in Lemma 1,a. Suppose that Dm has a periodic factor
XYX from Lemma 1,b. For |XY | = 4, the absence of such factors can be
checked directly. Let |XY | ≥ 6. For short factors, we argue as in the proof of
Lemma 4. Recall that such a factor in the Arshon codewalk has the length at
most 2|XY | − 5 and can be extended inside C̃i by at most two letters. If such
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a factor is contained in cwk(A)[3i−1..ki]C̃icwk(A)[3i+2..ki+1] and contains C̃i,

then at least three letters from C̃i belong to Y . For longer factors, the word Y
in XYX is even longer, because the word C̃i can be equal only to some C̃i+j .

But C̃i = C̃i+j implies j ≥ 3 (see Fig. 2), and the fragments of cwk(A) around

C̃i are strictly shorter than their counterparts around C̃i+j . .�

The codewalk C̃m decodes to S′nZm for some word Zm. We define Sn−1 =
Zm−1A

′
nS
′
n, S

+
n−1 = S6 · · ·Sn−1. Then Dm encodes S+

n−1Zm.

Lemma 6. The word UnWn is square-free.

Proof. We need to prove two statements: (a) U ′nWn is a minimal square and
(b) UnWn does not begin with a square. The considered words are “marked”
with the occurrences of W4 (such occurrences appear only when we double the
word Wi−1 to get Wi at nontrivial iterations). Each W4 in UnWn is preceded
by some U ′i , i ≤ n and only the first occurrence is preceded by Un. The latter
property accompanied by the direct check for short periods implies (b). In view of
Lemma 1, for (a) it suffices to prove that the circular word (V ) = (U ′nWn−1Sn−1)
is square-free. We do this by induction on n; the base n ≤ 6 was established in
Sect. 3. Let us prove the inductive step. The following picture demonstrates the
structure of V 2. From above, the factors that already proved to be square-free,
are indicated.

z zUn−1 Un−1W4 W4. . . . . .W4 W4
S+
n−2 S+

n−2Sn−1 Sn−1

Hypothesis
Lemma 5

Lemma 4
Hypothesis

Wn−1 Wn−1

Let some square XX = X(1)X(2) be a factor of (V ). The words Sn−1 and
U ′nW4 occur only once in (V ), so they cannot be factors of X . So, there are only
three possible positions for XX : X(2) ends in Sn−1; X

(2) begins in Sn−1 and
ends in U ′n; X

(2) begins in U ′n. In the first case, the part of S+
n−1 which belongs to

X(2) does not occur to the left, a contradiction. In the second case, the “Arshon
suppressing” suffix of Sn−1 can repeat to the left not later than in Sn−4. But
then the period of the square is greater than |Sn−1U

′
n|, a contradiction. In the

third case, X(2) contains W4, but there is no room to repeat this factor to the
left. This contradiction finishes the proof. .�

5 Constructing Premaximal Words

By construction, the word Un is the fixed left context of Wn. Now we consider
the second step, that is, the completion of such “almost uniquely” extendable
word Wn to a premaximal word. The main idea is the same as at the first step.
In order to obtain a premaximal word of level n, we build the wordWn+1 in n+1
iterations and then prohibit the extension of UnWn+1 by the first letter of the
word Un+1. We denote the obtained premaximal word of level n by Wn. Then

Wn = Wn+1Sn+1︸ ︷︷ ︸Un+1Wn+1Sn+1︸ ︷︷ ︸, (3)
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where Sn+1 is a buffer word inserted similarly to Sn+1 in order to close the
codewalk and to prevent the appearance of squares at the border. In contrast
with the first step, the construction (3) is used only once.

Remark 6. In order to prove Theorem 1,a, it is sufficient to show the existence of
left premaximal words of level n for infinitely many different values of n. Indeed,
if a word W is left premaximal of level n and a1 · · · anW is a left maximal word,
then the word anW is left premaximal of level n−1.
According to this remark, we construct premaximal words of level n only for the
numbers n such that the (n+1)th iteration is general nontrivial and cwk(U ′n+1) =
212 . . . (vertex 1 in Fig. 2). Then, Un+1 = 312 . . .. Let this iteration be the mth
nontrivial general iteration. Then we produce the buffer word from the codewalk
B[m+1..2m+1]32332 (if necessary to close the codewalk, we extend the used
factor of the Arshon codewalk according to (2)). The correctness one can check
in the same way as for general nontrivial iterations that this insertion leads to
a square-free circular word, and then the word Wn will have the context Un of
length n but no contexts of bigger length. Thus, Theorem 1,a is proved.

For Theorem 1,b, the rest is easy. We take the wordsWn and
←−
W k and connect

them through an Arshon factor of length at least 7(|Wn|+|W k|). The word 32332
in the end of cwk(Wn) changes to 32331 by Remark 3. (No symmetry here: the

prefix 23323 of cwk(
←−
W k) does not change.) So, we can take any factor of cwk(A)

which is a product of blocks 321 and 231, and insert between 32331 in the end

of cwk(Wn) and 23323 in the beginning of cwk(
←−
W k) to get the required Arshon

factor. Thus, the proof of Theorem 1 is finished.
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Abstract. We show that the regularity and equivalence problems are
decidable for deterministic weak pushdown ω-automata, giving a partial
answer to a question raised by Cohen and Gold in 1978. We prove the de-
cidability by a reduction to the corresponding problems for deterministic
pushdown automata on finite words. Furthermore, we consider the prob-
lem of deciding for pushdown games whether a winning strategy exists
that can be implemented by a finite automaton. We show that this prob-
lem is already undecidable for games defined by one-counter automata
or visibly pushdown automata with a safety condition.

1 Introduction

Finite automaton and pushdown automaton are two of the most fundamental
automaton models in computer science. Finite automata have good closure and
algorithmic properties. For example, language equivalence and inclusion are de-
cidable (see [9]), and for many subclasses of the regular languages it is decidable
whether a given automaton accepts a language inside this subclass (see [17] for
some results of this kind). In contrast to that, the situation for pushdown au-
tomata is much more difficult. For nondeterministic pushdown automata many
problems like language equivalence and inclusion are undecidable (see [9]), and
it is also undecidable whether a given nondeterministic pushdown automaton
accepts a regular language. The class of languages accepted by deterministic
pushdown automata forms a strict subclass of the context-free languages. While
inclusion remains undecidable for this subclass, a deep result from [14] shows the
decidability of the equivalence problem. Furthermore, the regularity problem for
deterministic pushdown automata is also decidable [16, 18].

While automata on finite words are a very useful tool, some applications,
in particular verification by model checking (see [2]), require extensions of these
models to infinite words. Although the theory of finite automata on infinite words
(called ω-automata in the following) usually requires more complex constructions
because of the more complex acceptance conditions, many of the good proper-
ties of finite automata on finite words are preserved (see [11] for an overview).

⋆ Supported by the DFG Research Training Group 1298 “Algorithmic Synthesis of
Reactive and Discrete-Continuous Systems” (AlgoSyn).

B. Rovan, V. Sassone, and P. Widmayer (Eds.): MFCS 2012, LNCS 7464, pp. 764–776, 2012.
� Springer-Verlag Berlin Heidelberg 2012



Regularity Problems for Weak Pushdown ω-Automata and Games 765

Pushdown automata on infinite words (pushdown ω-automata) have been stud-
ied because of their ability to model executions of non-terminating recursive
programs. In [7], efficient algorithms for checking emptiness of Büchi pushdown
automata are developed (a Büchi automaton accepts an infinite input word if
it visits an accepting state infinitely often during its run). Besides these results,
the algorithmic theory of pushdown ω-automata has not been investigated very
much. For example, in [6], the decidability of the regularity problem for deter-
ministic pushdown ω-automata has been posed as an open question and to our
knowledge no answer to this question is known. Furthermore, it is unknown
whether the equivalence of deterministic pushdown ω-automata is decidable.

Our first contribution addresses these questions. We prove the decidability of
the two problems (regularity and equivalence) for the subclass of deterministic
pushdown ω-automata with weak acceptance condition. Intuitively, an automa-
ton with weak acceptance condition only allows a bounded number of alterna-
tions between accepting and rejecting states. This class of automata is capable of
expressing boolean combinations of reachability and safety conditions. Our proof
is based on a reduction to the corresponding questions for pushdown automata
on finite words in the spirit of the minimization algorithm for deterministic weak
ω-automata in [10].

We continue our investigations by considering the regularity problem in the
extended setting of pushdown games. A pushdown game is given by a pushdown
ω-automaton and a partition of the state space into states for Player 0 and
Player 1. In a play, the two players build up an infinite sequence of configura-
tions. The partition of the state space determines which player chooses the next
successor configuration. In case this automaton is deterministic, the sequences of
configurations and sequences of input letters are in one-to-one correspondence,
and Player 0 wins if the infinite input word is accepted by the automaton. In
this setting, a strategy for a player is a function that tells the player for a given
finite sequence of input letters (corresponding to the previous moves of the play)
which input letter to choose next (thereby determining the next configuration).
It is a winning strategy if each play in which the player follows the strategy is
winning for this player. For pushdown games with winning conditions like Büchi
condition, or more generally Muller or parity conditions, it is decidable which of
the players has a winning strategy, and it is known that such a strategy can be
computed by a pushdown automaton with output function reading the letters
of the play and outputting the next letter according to the strategy [19].

The regularity problem for pushdown games asks whether the player who has
a winning strategy also has one that can be computed by a finite automaton. For
example, the question studied in [13, 12], that asks whether for a given document
type definition (DTD) one can decide if it is possible to validate streaming XML
documents against this DTD with constant memory (by a finite automaton), can
be expressed as a regularity problem for a pushdown game with a safety winning
condition.

We show that the regularity problem for pushdown games is already undecid-
able in very simple cases, namely for one-counter automata (pushdown automata
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with a single stack symbol), and visibly pushdown automata (in which the type
of the stack operation is determined by the input letter [1]), both with safety
winning conditions. While this result does not transfer back to the constant
memory validation question for DTDs, it shows that the latter problem cannot
be solved by this more general approach.

The remainder of the paper is structured as follows. In Section 2, we give
basic definitions on automata and games. In Section 3, we show the decidability
of the regularity and equivalence problem for deterministic weak pushdown ω-
automata by a reduction to automata on finite words, and in Section 4 we present
our results on the regularity problem for pushdown games.

2 Preliminaries

The set of non-negative integers is N ∶= {0,1, . . .}. For a set S, we denote its
cardinality by ∣S∣. Let Σ be an alphabet, i.e., a finite set of symbols, then Σ∗

(Σω) is the set of (ω-)words over Σ, i.e., finite (countably infinite) sequences
of Σ symbols. The subsets of Σ∗ (Σω) are called (ω-)languages. For a word
w = a1 . . . an ∈ Σ

∗, we define ∣w∣ = n ∈ N as its length and wR
= an . . . a1 ∈ Σ

∗

as its reversal. The empty word ε is the word of length ∣ε∣ = 0. We assume
the reader to be familiar with regular languages, i.e., the languages specified
by regular expressions or equivalently by finite state automata. We are mainly
concerned with deterministic pushdown automata in this work.

Definition 1. A deterministic pushdown machine M = (Q,Σ,Γ, δ, q0,�) con-
sists of

– a finite state set Q, and initial state q0 ∈ Q,
– a finite input alphabet Σ (we abbreviate Σε = Σ ∪ {ε}),
– a finite stack alphabet Γ , and initial stack symbol � ∉ Γ (let Γ� = Γ ∪ {�}),
– a partial transition function δ ∶ Q×Γ� ×Σε → Q×Γ ∗

�
such that for each p ∈ Q

and A ∈ Γ�:
● δ(p,A, a) is defined for all a ∈ Σ and δ(p,A, ε) is undefined, or the other
way round.
● For each transition δ(p,A, a) = (q,W ) with a ∈ Σε, the bottom symbol �
stays at the bottom of the stack and only there, i.e., W ∈ Γ ∗� if A = �,
and W ∈ Γ ∗ if A ≠ �.

The set of configurations of M is QΓ ∗� where q0� is the initial configura-
tion. For a given input (ω-)word w ∈ Σ∗ (w ∈ Σω), a finite (infinite) sequence
q0W0, q1W1, . . . of configurations with q0W0 = q0� is a run of w on M if there
are ai ∈ Σε with w = a1a2 . . . and δ(qi,A, ai+1) = (qi+1, U) is such that Wi = AV
and Wi+1 = UV for some stack suffix V ∈ Γ ∗

�
.

If the size ∣Γ ∣ of the stack alphabet is 1, then M is called a one counter
machine. If the size ∣Γ ∣ of the stack alphabet is 0, thenM is called a finite state
machine, and we omit the components related to the stack from the notation of
the machine and the transitions.
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Automata and Languages. For finite words, we consider the model of a deter-
ministic pushdown automaton (DPDA) A = (M, F ) consisting of a deterministic
pushdown machineM = (Q,Σ,Γ, δ, q0,�) and a set of final states F ⊆ Q. It ac-
cepts a word w ∈ Σ∗ if w induces a run ending in a final state. These words form
the language L∗(A) ⊆ Σ

∗. For ω-words, we use the model of a deterministic
parity pushdown automaton (ω-DPDA) A = (M, τ) consisting of a deterministic
pushdown machine M as above and a function τ ∶ Q → N assigning colors to
the states ofM. An infinite word α ∈ Σω is accepted if it induces an infinite run
such that the lowest color of the states occurring infinitely often is even. The
accepted ω-words form the ω-language Lω(A) ⊆ Σ

ω. We call an ω-DPDA weak
if colors never increase during a run. When restricting the color set of a (weak)
ω-DPDA to {0,1} or {1,2}, we end up with Büchi (reachability) and coBüchi
(safety) acceptance, respectively.

To ensure that an infinite run reads an infinite word, we require that A has
no infinite sequence of ε-transitions. The presence of such sequences can be
tested, and they can be removed in polynomial time by redirecting some of the
ε-transitions into sink states. Under this assumption, for a finite word w, we
define δ∗(w) to be the last state qn of a run q0W0, . . . , qnWn on w such that
there is no further ε-transition possible.

All restrictions in the type of the underlying pushdown machine carry over to
the automata. Finite state (ω-)automata are denoted by (ω-)DFA. As usual, an
(ω-)language is called regular if it can be accepted by a (ω-)DFA.

Games and Strategies. A pushdown game (PDG) G = (M, τ,Q0) consists of
an ω-DPDA (M, τ) and a set Q0 ⊆ Q. A play is an ω-word α = a1a2 . . . ∈
Σω successively build up by two players. After the prefix a1 . . . ai, the next
action ai+1 ∈ Σ is chosen by Player 0 if δ∗(a1 . . . ai) ∈ Q0, otherwise Player 1
chooses (sinceM is total). Player 0 wins the play α iff it is accepted by the ω-
DPDA (M, τ). This can be considered as the game with the (possibly infinite)
configuration graph ofM as arena. A strategy is a function f ∶ Σ∗ → Σ advising
to choose action f(w) after a finite play prefix w ∈ Σ∗. We call it winning
for a Player if he wins a play as long as he obeys to f no matter what his
opponent does. A game can be won by a player if he has a winning strategy.
We are especially interested in winning strategies representable by automata.
A pushdown strategy (PDS) F = (M′, σ) consists of a deterministic pushdown
machineM′ and a function σ ∶ Q′ → Σ advising actions according to the states
ofM′. It defines the strategy f(w) = σ(δ∗(w)).

Again the definitions carry over for the restricted classes of finite state and
one counter machines. Finite state games and one counter games are denoted by
FSG and 1CG. In general, the winning player of a PDG has a winning pushdown
strategy [19], and the winner of an FSG has a winning finite state strategy (FSS)
[3].

A pushdown game that is useful in several places in this work is the so called
classification game associated to an ω-DPDA A and a set C of colors. The idea
in this game is that one player plays an infinite input word and the other player
plays an infinite sequence of colors from C. The configurations of the game
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mimic the run of A on the input word played. The player who is in charge of the
colors wins with an accepting color sequence iff the ω-DPDA accepts the input
word played. Since we are interested in weak automata, we consider the weak
classification game in which the player in charge of the colors is not allowed to
increase the colors during a play.

Definition 2. Let C ⊆ N be finite and A = (M, τ) with M = (Q,Σ,Γ, δ, q0,�)
be an ω-DPDA. We define the weak classification game GA,C = (M

′, τ ′,Q′0) with
M
′

= (Q′,Σ′, Γ ′, δ′, q′0,�
′

) as follows:1

– Q′ = Q ×C × {0,1}, q′0 = (q0,max(C),0), and (q, i, x) ∈ Q′0 iff x = 0,

– Σ′ = Σ ⊎C, Γ ′ = Γ , �′ = �,

– δ′((q, i,0),A, j) = ((q, j,1),A), where j ∈ {0, . . . , i},

δ′((q, i,1),A, ε) = ((p, i,1),W ), if δ(q,A, ε) = (p,W ), and otherwise

δ′((q, i,1),A, a) = ((p, i,0),W ), if δ(q,A, a) = (p,W ) for a ∈ Σ,

– τ ′((q, i, x)) = (τ(q) + i)

Note that the winning condition is a parity condition in general which is weak
iff A is weak. Since the second component in the vertices representing the color
from C can never increase, it remains fixed to some i from some point on in
every play. Then the original parity condition of A is evaluated shifted by this
fixed index i. If i is even, then Player 0 wins if the input word is accepted by
A. If i is odd, then Player 0 wins if the input word is rejected by A. Thus, the
acceptance status of the color sequence played by Player 0 has to correspond
to the acceptance status of the played input word. Therefore, if Player 0 has a
winning strategy in the game that can be implemented by some kind of machine
(pushdown or finite state), then this strategy can directly be transformed into a
weak automaton for Lω(A) by using the color output of the strategy as colors
for the acceptance condition.

A first application of this game is the observation that the computation power
of the automaton model (pushdown or finite state) and the expressiveness of the
acceptance condition are in some sense orthogonal. This statement can also be
derived from the proof of Theorem 24 in [15].

Lemma 3. Let A be a weak ω-DPDA such that Lω(A) is regular. Then there
exists a weak ω-DFA A′ with the same colors as A such that Lω(A

′

) = Lω(A).

Proof. Let A and L = Lω(A) be as above, andA
′′ be an ω-DFA with Lω(A

′′

) = L.
Consider the weak classification game GA′′,C with C = τ(Q) being the colors of
A. Player 0 can easily win GA′′,C by a pushdown strategy simulating A, i.e.,
always playing the colors according to A. Since A′′ is a finite automaton, GA′′,C
is a finite state game, and Player 0 also has a finite state strategy [3] which can
be used as a weak ω-DFA A′ with colors C such that Lω(A

′

) = L. ⊓⊔

1 For readability, we dropped the definition of a positive and negative sink state for
cases in which a wrong action is played, and the corresponding player has to lose.
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3 Regularity and Equivalence Testing for Weak ω-DPDA

In this section, we show how to decide the regularity and the equivalence prob-
lems for weak ω-DPDAs. The equivalence problem asks for two given weak ω-
DPDAs whether they accept the same language, and the regularity problem asks
for a given weak ω-DPDA whether it accepts a regular ω-language. Both prob-
lems are decidable in the case of DPDAs over finite words ([14] for equivalence
and [16, 18] for regularity). We show that the problems for weak ω-DPDAs can
be reduced to the case of finite words. Our technique is inspired by a normal
form of weak ω-DFA which assigns minimal colors to each state [10]. Then cer-
tain decision problems for ω-DFA can be reduced to DFA on finite words. The
same approach for weak ω-DPDA faces the difficulty that minimal colors also
depend on the stack content. We overcome this by considering minimal colors for
configurations which yields a regular coloring. This also allows us to normalize
weak ω-DPDA such that we can apply known algorithms for finite words.

For the remainder of this section, let A = (M, τ) be a weak ω-DPDA with
M = (Q,Σ,Γ, δ, q0,�) and greatest color k = max (τ(Q)). W.l.o.g., we assume
k ≥ 1. The first important step is to define a language of finite words from the
ω-language of A by simply setting states with an accepting (even) color as final.

Definition 4. The finitary language L
∗(A) ⊆ Σ

∗ of A is the language of finite
words accepted by the DPDA (M, F ) with F = {q ∈ Q ∣ τ(q) is even}.

By L∗(AqW ) and Lω(AqW ), we denote the respective languages recognized by
A starting from configuration qW . The following observation is a direct conse-
quence of the definitions.

Remark 5. If L
∗(AqW ) = L∗(ApV ), then Lω(AqW ) = Lω(ApV ).

If the inverse would also be true, then we would have established a strong relation
between the ω-language of a weak ω-DPDA and its language of finite words.
Unfortunately, this is not true in general, as illustrated by the following example.

Example 6. For n ∈N, consider the language Ln ⊆ Σ
ω over alphabet Σ = {a, b, c}

defined as follows:

Ln = ⋃

x∈{a,b}

(x{a, b}∗x{a, b}ncΣω
).

Obviously, Ln is a regular ω-language since it is defined by a regular expression.
Every ω-DFA recognizing Ln needs a state set of size at least exponential in n
because before reading the first c it has to remember the last n + 1 symbols. A
weak ω-DPDA with a state set of size linear in n and a stack alphabet of constant
size can recognize Ln by writing the string w ∈ {a, b} that occurs before the first
c onto the stack (using state q0). Afterwards, one can check the reversal wR of
w with linearly many states by counting to n + 1 (using the states q1, . . . , qn+1),
then moving to qa or qb depending on the letter on the stack, and comparing
this letter with the bottom letter on the stack (moving to q⊺ or q� to indicate
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the result of the comparison). To identify the bottom letter, it is stored as �a or
�b while the other letters are stored as #a or #b on the stack.

The full definition of the weak ω-DPDA An = ((Q,Σ,Γ, δ, q0,�), τ) is: Q =
{q0, . . . , qn+1, qa, qb, q⊺, q�}, Σ = {a, b, c}, Γ = {�a,�b,#a,#b}, and transitions as
follows (where A ∈ Γ�, x, y ∈ {a, b}, z ∈ Σ, i ∈ {1, . . . , n}):

– δ(q0,A,x) =

⎧
⎪
⎪

⎨

⎪
⎪
⎩

(q0,�xA) if A = �,

(q0,#xA) if A ≠ �,

– δ(q0,A, c) = (q1,A), δ(qi,#x, z) = (qi+1, ε), δ(qn+1,#x, z) = (qx, ε),

– δ(qx,#y, z) = (qx, ε), δ(qx,�y, z) =

⎧
⎪
⎪

⎨

⎪
⎪
⎩

(q
⊺, ε) if x = y,

(q�, ε) if x ≠ y,

– δ(q
⊺,A, z) = (q⊺,A), and for all other transitions: δ(q,A, z) = (q�,A),

and reachability coloring τ ∶ Q → {0,1} (where i ∈ {1, . . . , n + 1}): τ(q⊺) = 0 and
τ(q0) = τ(qi) = τ(qa) = τ(qb) = τ(q�) = 1.

Then we have Lω(An) = Ln. To see that the inverse of Remark 5 does not
hold, note that in configurations with a state from {q1, . . . , qn+1, qa, qb}, it is
already clear whether the remaining word is accepted or not (this only depends
on the stack content). For example from configurations qaW�a� and qbV �b�, all
infinite words are accepted but the set of finite words accepted depends on the
height of the stack and is thus different if W and V are of different length.

Furthermore, L∗(An) is not regular because a finite word is only accepted if
it reaches q⊺, which requires as many letters after the first c as before the first c:

L∗(An) = ⋃

x∈{a,b}

(x{a, b}ix{a, b}ncΣ1+i+1+nΣ∗).

Our next goal is to normalize A such that the inverse of Remark 5 becomes true.
Therefore, we redefine the coloring of configurations (not simply states) based
on the sets Ki defined below. The intuition behind the definition is that each
configuration should be assigned the lowest color possible.

Definition 7. We partition the configurations of a A into classes Ki for i ∈ N,
where Ki is the biggest subset of (QΓ ∗�) ∖ (⋃j<iKj) such that:

a) each run staying in Ki forever is accepting iff i is even, and
b) each run leaving Ki leaves it to ⋃j<iKj.

Example 8. The classes Ki for An from Example 6 are (where # = {#a,#b}):

K0 = (q⊺Γ
∗

�) ∪ ⋃

x∈{a,b}

(qx#
∗

�xΓ
∗

�) ∪ ⋃

x∈{a,b}
i∈{0,...,n}

(qn+1−i#
i#x#

∗

�xΓ
∗

�),

K1 = (QΓ
∗

�) ∖K0, for i ≥ 2.

Note that K0 are exactly the configurations from where every word is accepted.
All other configurations belong to K1, like the ones with the bottom state
(q�Γ

∗

� ⊆K1) but also the initial state (q0Γ
∗

� ⊆K1). Further, some states occur
in both K0 and K1, like qa�a� ∈ K0 but qa�b� ∈ K1, or q1#a#

n�a� ∈ K0 but
q1#a#

n�b� ∈K1.
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Definition 9. A is in normal form if colors correspond to classes, i.e., qW ∈

Kτ(q) for all qW ∈ QΓ ∗� that are reachable from the initial configuration.

Example 8 shows that An is not in normal form. However, the classes K0 and K1

are regular sets of words. This is true in general and can be used to transform
A into normal form.

Lemma 10. For A, one can compute in exponential time a weak ω-DPDA A′

in normal form such that Lω(A
′

) = Lω(A), and a DPDA A′′ such that L∗(A
′′

) =

L∗(A
′

), where A′′ has O(∣Q∣) states and ∣Γ ∣⋅2O(∣Q∣⋅k) stack symbols.

Proof (Sketch). The core of the proof consists in constructing a deterministic
finite state machine that reads a reversed configuration and assigns the corre-
sponding class Ki to it. This can be achieved by considering the weak classifi-
cation game GA,C where C is the set of colors of A. Obviously, Player 0 has
a winning strategy (by simply playing the colors from the unique run on the
input word played by Player 1). From the definition of the Ki one can deduce
that the smallest i such that Player 0 wins from a position (qW, i,0) is such that
qW ∈Ki. The set of configurations from which Player 0 has a winning strategy
is regular and can be accepted by an alternating automaton with a number of
states linear in the number of states of the pushdown machine defining GA,C
[4, 8]. This alternating automaton can be turned into a DFA of exponential size
reading the reversed configurations [5]. This DFA can then be simulated on the
configurations along a run of A by storing its states on the stack in parallel to
the actual stack symbols, which yields the normalized ω-DPDA A′. Therefore,
the blowup of the stack alphabet is exponential. The states of A′ only contain
the additional information on the class Ki the configuration is in. Finally, for
the DPDA A′′, this information is reduced to whether the class is even or odd,
resulting in 2⋅∣Q∣ many states. Each step of the computation can be done in
exponential time. ⊓⊔

The example illustrates that the deterministic automaton reading the configura-
tions in reverse has to be of exponential size in general. For weak ω-DPDA in
normal form, the inverse of Remark 5 is true.

Lemma 11. Let A be in normal form. If Lω(AqW ) = Lω(ApV ), then L∗(AqW ) =
L∗(ApV ).

Proof (Sketch). Using basic properties on the sets Ki, a simple argument shows
that if A is in normal form, then two configurations qW and pV with Lω(AqW ) =
Lω(ApV ) must have the same color, i.e., τ(q) = τ(p). From this, the statement
of the lemma easily follows. ⊓⊔

Remark 5 and Lemma 11 can be summarized as follows when considering the
special case of initial configurations of two weak ω-DPDA.

Corollary 12. Let A and A′ be weak ω-DPDA in normal form. L∗(A) = L∗(A
′

)

iff Lω(A) = Lω(A
′

).
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The next result is an immediate consequence since the equivalence problem for
DPDA is decidable [14].

Corollary 13. The equivalence problem for weak ω-DPDA is decidable.

We can also use Corollary 12 to reduce the regularity problem to the case of
finite words.

Theorem 14. Let A be in normal form. L∗(A) is regular iff Lω(A) is regular.

Proof. For the implication from finite to infinite words, suppose L
∗
(A) is regu-

lar, i.e., L
∗
(A) = L

∗
(A
′

) for some DFA A′. Viewing A′ as a Büchi automaton
(assigning color 1 to rejecting and color 0 to accepting states), we obtain that
Lω(A) = Lω(A

′

) because A′ visits a state of color 0 after the same prefixes as A
visits a state with even color. Therefore, Lω(A) is regular (this also shows that
A
′ is a weak ω-DFA for an appropriate coloring).
If Lω(A) is recognizable by an ω-DFA, then Lemma 3 shows that there is

even a weak such ω-DFA A′. We can assume that A′ is in normal form (using
our construction or the results in [10]). Applying Corollary 12, we obtain that
L
∗(A) = L∗(A

′

) is regular. This shows the inverse implication. ⊓⊔

Our main result uses the fact that regularity for DPDA is decidable [16, 18].

Corollary 15. The regularity problem for weak ω-DPDA is decidable.

Complexity. Our method to decide regularity is composed of transforming weak
ω-DPDA into normal form and, applying the known regularity test for DPDA
on its finitary language. Finally, in case of a positive result, the DFA being
equivalent to the finitary language can be colored appropriately according to
Theorem 14, to yield a weak ω-DFA that recognizes the original ω-language.

Lemma 10 normalizes a given weak ω-DPDA A in exponential time, and
yields a DPDA A′′ that recognizes its finitary language, with O(∣Q∣) states and

∣Γ ∣⋅2O(∣Q∣
2
) stack symbols since we assume k ∈ O(∣Q∣). For the regularity test

in the second step, we refer to [18] which gives better complexity bounds than
[16]. According to Valiant’s work, a DPDA that recognizes a regular language
with n states, t stack symbols, and words of at most length h in transitions,
can be transformed in doubly exponential time into an equivalent DFA with
E2
(n2 logn + log t + logh) states, where Ei(f) = expi (O(f)) denotes an expo-

nentiation tower of height i. Both steps in composition run in triply exponential
time. In case that the ω-language is regular, it yields a DFA, the number of
states of which is bounded by E2

(∣Q∣2 log ∣Q∣ + log ∣Γ ∣ + logh), and which can be
colored appropriately to yield a weak ω-DFA equivalent to A.

Hence, the regularity test for ω-languages presented here is more expensive
in terms of computation time than for languages of finite words. Nevertheless,
in case of a regular ω-language, the resulting weak ω-DFA has the exact same
bound on the number of states as for finite words. From Example 8, we see that
an exponential blowup for the resulting weak ω-DFA is unavoidable.
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4 Finite State Strategies for Pushdown Games

In this section, we are going to generalize the regularity problem to pushdown
games. Testing for regularity in this setting means to ask for the existence of
a winning finite state strategy. Let us first reconsider the weak classification
game from Definition 2 which connects ω-languages and games in the context
of regularity testing. We show that having a finite state representation for an
ω-language naturally extends to having a finite state winning strategies.

Lemma 16. Let A be a weak ω-DPDA with color set C. Lω(A) ⊆ Σ
ω is regular

iff Player 0 can win the weak classification game GA,C with a finite state strategy.

Proof. Let A and C be as above. The ω-language Lω(A) is regular iff it is
recognized by a weak ω-DFA A′ with colors C according to Lemma 3. Such a
weak ω-DFA naturally corresponds to a winning FSS for Player 0 in GA,C . ⊓⊔

In the rest of this section, we study the decision problem whether Player 0 can
win a weak PDG with an FSS. We give a trivial answer in case of games with
reachability condition but a negative answer for safety condition.

Lemma 17. For a reachability PDG, Player 0 has a winning finite state strategy
if he can win.

Proof. Let G = (M, τ,Q0) be a weak PDG with M = (Q,Σ,Γ, δ, q0,�), colors
τ(Q) = {0,1}, and f a winning strategy for Player 0. We consider all possible
play prefixes where Player 0 plays according to f until a state of color 0 is
reached. Such a state exists on each play since f is winning for Player 0. When
we arrange these play prefixes as a tree, then it is a finitely branching tree in
which each branch is finite. According to König’s Lemma, the tree must be finite.
Using the nodes of this tree as states of a finite automaton yields a finite state
winning strategy. ⊓⊔

Lemma 17 implies the following since PDGs are effectively determined [19].

Corollary 18. For a reachability PDG, it is decidable whether Player 0 has a
winning finite state strategy.

This problem is not symmetric, meaning that it is undecidable from the perspec-
tive of Player 1, which is about having a winning FSS for a safety condition. To
this end, we encode the run of a 2-register machine (2RM) as a pushdown game.
A 2RM can be seen as an input-free deterministic machine that is equipped with
2 counters which can be increased, decreased and tested for zero. The halting
problem is undecidable for this machine model as it can encode Turing machines.
For our next proof, we consider a similar problem which is to decide whether the
unique run of a 2RM is ultimately periodic (UP), i.e., whether the state sequence
starting from the initial configuration forms an infinite word uvω where u, v are
nonempty finite state sequences.

Lemma 19. It is undecidable whether the run of a 2RM is ultimately periodic.
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Theorem 20. For a safety 1CG, it is undecidable whether Player 0 has a win-
ning finite state strategy.

Proof (Sketch). We use Lemma 19 and construct for a given 2RM M a safety
1CG G such that Player 0 can win with an FSS iff M has a UP run. The main
idea of G is divided into two phases. First, Player 1 increases and decreases
the counter to an arbitrary value. Whether at this point the value is zero or
not determines which register of M will be simulated by the counter of G in
the second phase. There Player 0 has to play an infinite transition sequence
of M that is correct just according to the simulated register. Thus, a play is
won by Player 0 iff Player 1 never leaves the first phase, or the second phase is
reached and Player 0 can give an infinite run ofM which simulates the according
register correctly. This can be modeled by a safety winning condition where only
an incorrect simulation in the second phase leads to an unsafe state.

Obviously, Player 0 has a winning strategy. But here we are interested in a
winning FSS for Player 0. If he has a winning FSS f , then its limited memory
cannot remember after the first phase whether the counter is zero or not, i.e.,
which register will be simulated by G in the second phase. But independent from
that information, f is winning in the second phase and hence the transition
sequence that f produces must be correct in both cases. This means that the
sequence is indeed the unique run of M , and since it can be represented by the
FSS f , it must be UP. For the inverse, assume that the run of M is UP. Then it
can be represented by a finite state machine. Hence, a winning FSS for Player 0
is to ignore the first phase and to play in the second phase the run of M which
is correct with respect to both registers. ⊓⊔

The undecidability of that problem can be shown in a similar way for visibly
PDG, i.e., where the type of the stack operation is determined by the input
symbol played in the game [1]. Due to this new restriction, the construction
needs additional stack symbols to make an FSS of Player 0 not see what is
happening on the stack.

Theorem 21. For a safety visibly PDG, it is undecidable whether Player 0 has
a winning finite state strategy.

5 Conclusions

In Section 3, we considered weak pushdown ω-automata. We established a nor-
mal form that each weak pushdown ω-automaton can be effectively converted to,
and revealed its close relation to languages of finite words. This allowed us to lift
known decision procedures for equivalence [14] and regularity [18] from the case
of finite words to ω-automata. Our regularity test can be performed in triply
exponential time. The worst case size of an equivalent ω-DFA is between singly
and doubly exponential. Especially the upper bound for ω-languages coincides
with the one given by Valiant [18] for languages of finite words. He further gave
singly exponential bounds for some restricted types of pushdown automata (like
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ε-free, 1-counter). It is open whether they can be used to improve the test on re-
spective types of ω-automata. Finally, the decidability of the regularity problem
for (non-weak) pushdown ω-automata, as formulated in [6], remains open.

We dedicated Section 4 to an extension of the regularity problem for pushdown
games, which asks for the existence of a finite state winning strategy. Beside
a simple decidability result in the case of reachability winning conditions, we
showed in the main result of that section the undecidability for safety conditions.
The latter result extends to more complicated winning conditions of course. The
decidability remains open in the case of visibly one-counter games.

Acknowledgements. With thanks to Wladimir Fridman for fruitful
discussions.
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Abstract. We investigate the computational properties of cellular au-
tomata on countable (equivalently, zero entropy) sofic shifts with an em-
phasis on nilpotency, periodicity, and asymptotic behavior. As a tool
for proving decidability results, we prove the Starfleet Lemma, which is
of independent interest. We present computational results including the
decidability of nilpotency and periodicity, the undecidability of stabil-
ity of the limit set, and the existence of a Π0

1-complete limit set and a
Σ0

3-complete asymptotic set.

Keywords: cellular automata, subshifts, nontransitivity, undecidability.

1 Introduction

Symbolic dynamics is often viewed from the perspective of coding, and then
infinite words represent information flowing to the left in the orbit given by the
shift action. From this perspective, positive dynamical entropy is crucial, and
transitivity of the subshift is a very natural assumption. In the case of a sofic
shift, transitivity essentially means that the behavior of the medium stays the
same no matter what has been sent sofar. However, from a purely mathematical
perspective, zero entropy, or countable, sofic shifts are quite interesting, consist-
ing of a simple periodic background pattern broken by a finite number of local
disturbances. They lie in the other extremity of the spectrum of sofic shifts,
where almost no information can be sent. Still, as far as we know, the conjugacy
problem is still open even in the case of countable SFTs.

Our point of view is that of investigating the computational capabilities of
cellular automata running on a countable sofic shift. Such a cellular automaton
can be thought of as a kind of counter machine, with the distances between the
local disturbances representing the counter values. As a tool for proving decid-
ability results for such systems, we prove the Starfleet Lemma, which provides
insight into the precise dynamics the cellular automata, and is of independent
interest.
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We present a variety of computational results: We prove the decidability of
nilpotency and periodicity and that limit sets and asymptotic sets always lie in
Π0

1 and Σ0
3 in the arithmetical hierarchy, respectively. Further, we prove that limit

sets and asymptotic sets in fact capture the respective classes by finding complete
sets for them. The examples proving completeness are based on a rather direct
simulation of counter machines by CA, and we also obtain many undecidability
results using this idea.

2 Definitions

Let S be a finite set, called the state set or alphabet. The set SZ of bi-infinite
state sequences, or configurations, is called the full shift on S. If x ∈ SZ, then
we denote by xi the ith coordinate of x, and we adopt the shorthand notation
x[i,j] = xixi+1 . . . xj . If w ∈ S∗, we denote w � x, and say that w occurs in x, if
w = x[i,i+|w|−1] for some i. For words t, u, v, w ∈ S∗, the notation ∞tu.vw∞ has
the intuitive meaning, with the word v starting at coordinate 0. The dot can be
omitted if the position of the words is irrelevant. Two elements x, y ∈ SZ are
right (left) asymptotic if xi = yi for all sufficiently large (small) i.

We define a metric d on the full shift by d(x, y) = inf{2−n | x[−n,n] = y[−n,n]}.
The topology defined by d makes SZ a compact metric space. We define the shift
map σ : SZ → SZ by σ(x)i = xi+1. Clearly σ is a homeomorphism from the full
shift to itself.

A subshift is a closed subset X of the full shift with the property σ(X) = X .
Alternatively, a subshift is defined by a set F ⊂ S∗ of forbidden words as the
set XF = {x ∈ SZ | ∀w ∈ F : w �� x}. If F is finite, then XF is of finite type,
and if F is regular, XF is sofic. We define Bk(X) = {w ∈ Σk | ∃x ∈ X : w � x}
as the set of words of length k occurring in X , and define the language of X as
B(X) =

⋃
k∈N Bk(X). The language of a subshift determines it [1], so we may

also denote X = B−1(L), if B(X) is the set of factors of L. We denote by σX
the restriction of σ to X .

Given a directed graph G = (V,E), we define its edge shift, a subshift of EZ,
as the set of bi-infinite paths on its edges. Every sofic shift X is equal to the
set of labels of bi-infinite paths on a directed graph with labeled edges, and the
edge shift of the (essentially unique) deterministic graph with the least number
of edges is called the minimal Shannon cover of X .

Let X ⊂ SZ be a subshift. A cellular automaton is a continuous function
c : X → X with the property c ◦ σX = σX ◦ c. Equivalently, cellular automata
can be defined by local functions C : B2r+1(X) → B1(X) for some r ∈ N such
that c(x)i = C(x[i−r,i+r]). The smallest such r is called the radius of c. The limit
set of c is

⋂
n∈N c

n(X), and c is stable if the limit set is equal to some cn(X). A
state 0 is quiescent for c if c(∞0∞) = ∞0∞. A CA c on X is weakly nilpotent if
for all x ∈ X we have an n such that cn(x) = ∞0∞, and nilpotent if the n are
uniformly bounded. Also, c is weakly periodic if for all x ∈ X we have an n such
that cn(x) = x, and periodic if the n are uniformly bounded. A spaceship of c is
a configuration x ∈ X such that cn(x) = σi(x) for some n ∈ N and i ∈ Z. We
say the spaceship is nontrivial if it is not spatially periodic.
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Let k ∈ N. A k-counter machine is a quintuple M = (Σ, k, δ, q0, qf ), where Σ
is a finite state set, q0, qf ∈ Σ the initial and final states and δ : (Σ − {qf})→
[1, k] × Σ2 ∪ [1, k] × {↑, ↓} × Σ the transition function. A configuration of M
is an element of Nk × Σ, with the interpretation of (n1, . . . , nk, s) being that
the machine is in state s with counter values n1, . . . , nk. The machine operates
in steps as directed by δ. The case δ(s) = (i, r, t) ∈ [1, k] × Σ2 means that if
M is in state s, then it will change its state to r if ni = 0, and otherwise to
t. The case δ(s) = (i, d, r) ∈ [1, k] × {↑, ↓} × Σ means that M increments or
decrements ni by 1, depending on d (but never decrementing it below 0), and
then goes to state r. The language L(M) of M is the set of n ∈ N such that
(n, 0, . . . , 0, q0) eventually reaches a configuration with state qf . The machine
M is reversible if every configuration can be reached in one step from at most
one other configuration. Note that a reversible counter machine need not be
bijective, only injective.

Let φ be a formula in first-order arithmetic. If φ contains only bounded quan-
tifiers, then we say φ is Σ0

0 and Π0
0. For all n > 0, we say φ is Σ0

n if it is equivalent
to a formula of the form ∃k : ψ where ψ is Π0

n−1, and φ is Π0
n, if it is equivalent

to a formula of the form ∀k : ψ where ψ is Σ0
n−1. This classification is called

the arithmetical hierarchy. A subset X of N is Σ0
n or Π0

n, if X = {x ∈ N | φ(x)}
for some φ with the corresponding classification. It is known that the class Σ0

1

consists of exactly the recursively enumerable subsets of N, and Π0
1 of their

complements.
A subset X ⊂ N is many-one reducible (or simply reducible) to another set

Y ⊂ N, if there exists a computable function f : N → N such that x ∈ X iff
f(x) ∈ Y . If every set in a class C is reducible to X , then X is said to be C-hard.
If, in addition, X is in C, then X is C-complete.

3 Basics

We remark here, and it would not be hard to prove either, that a sofic shift
is countable if and only if the cycles of its Shannon cover are disjoint. Thus
the configurations of a countable sofic shift consist of arbitrarily long periodic
patterns (corresponding to the cycles of its Shannon cover), separated by finite
period-breaking patterns (the transitions between cycles). In particular, there
are a finite number of periodic configurations and a global upper bound on the
number of transitions in a single configuration. Furthermore, a sofic shift is easily
seen to be countable if and only if it has zero topological entropy with respect
to the shift map, but we will not elaborate on this here (see [1, Chapter 4] for
more information).

We now prove a fundamental result concerning the dynamics of cellular au-
tomata on countable sofic shifts, which is very useful for decidability results. For
this, we need a canonical representation for configurations of the shift, given by
the following lemma.
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Lemma 1. Let X be a countable sofic shift. Then there exists a finite set T
of tuples of words in B(X) such that every point x ∈ X is representable as
x = ∞u0v1u

n1
1 · · ·unm−1

m−1 vmu
∞
m for a unique t = (u0, . . . , um, v1, . . . , vm) ∈ T .

Proof. Let p be a common period for all the periodic points of X , and let U =
{u ∈ Bp(X) | ∞u∞ ∈ X}. For all x ∈ X we add a tuple T (x) ∈ T corresponding
to x as follows. First, there is a unique u0 ∈ U such that x is of the form ∞u0ay
for some letter a ∈ S − {(u0)1} and y ∈ SN. This follows from the disjointness
of the cycles in the Shannon cover of X . Let the coordinate of a be i1.

We inductively define ik as the first coordinate greater than ik−1 such that
uk := x[ik−p,ik−1] ∈ U and xik �= (uk)1. When such a coordinate can no longer
be found, we are in the right periodic tail of x. Finally, the last um is chosen as
we would choose u0 for x

R, the reversal of x. The vk are then the words occurring
in between the uk-periodic patterns, and we set T (x) = (u0, . . . , um, v1, . . . , vm).

This representation is now unique, since the parsing process is deterministic
from left to right. .�

We continue to write T (x) for the unique tuple (u0, . . . , um, v1, . . . , vm) given by
the previous lemma for x ∈ X , and M(x) for the tuple (n1, . . . , nm−1).

Lemma 2 (Starfleet Lemma). If c is a cellular automaton on a countable
sofic shift X, then for all x ∈ X there exists a tuple t = (r0, . . . , r�, s1, . . . , s�) ∈
B(X)2�+1 (not necessarily in T ) such that

– for all N ∈ N, there exist n ∈ N and n1, . . . , n�−1 ≥ N such that

cn(x) = ∞r0s1r
n1
1 s2 · · · s�−1r

n�−1

�−1 s�r
∞
�

modulo a power of the shift, and
– for all i ∈ [1, 	], the configuration ∞ri−1sir

∞
i is a nontrivial spaceship for c.

We call a tuple t as above a starfleet for x.

Proof. Let x ∈ X . Define Ux = {(T (cn(x)),M(cn(x))) | n ∈ N}, and for all
t ∈ T , letWx(t) be the set {τ | (t, τ) ∈ Ux}. Let t = (u0, . . . , um, v1, . . . , vm) ∈ T ,
and let Cx(t) be the closure of the set Wx(t) in N̄m−1, where N̄ = N ∪ {∞} is
the one-point compactification of N.

If Cx(t) is finite for all t ∈ T , then x must evolve into a spaceship, and
the requirements of the lemma clearly hold. If this is not the case, let t =
(u0, . . . , um, v1, . . . , vm) ∈ T and τ = (n1, . . . , nm−1) ∈ Cx(t) be such that τ
contains a maximal number of infinite coordinates. Let (k1, . . . , k�−1) be the
infinite coordinates of τ , let k0 = 0 and k� = m, and consider the words

wi = vki−1+1u
nki−1+1

ki−1+1 · · ·u
nki−1

ki−1 vki ,

for i = 1, . . . , 	.
Clearly, by the maximality of 	, each ∞uki−1wiu

∞
ki

will evolve into a nontrivial
spaceship ∞ri−1sir

∞
i in some p steps. Let x1, x2, . . . be the subsequence of the

orbit of x such that T (xi) = t and M(xi) converges to τ . Then, the subsequence
x′i = cp(xi) shows that (r0, . . . , r�, s1, . . . s�) has the required properties. .�
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For CA on a mixing sofic shift, it is well-known that injectivity implies surjectiv-
ity [1]. However, in general, surjectivity and injectivity do not imply each other
even in a countable SFT. The following example shows this, and will also turn
out useful later on.

Example 1. Let X = B−1(0∗1∗2∗) and let f be a cellular automaton that ex-
pands the pattern of 1’s to both directions by one. Clearly, such a CA is injective
on X , but it is not surjective. Similarly, the CA g which removes a single 1 from
each end is surjective, but not injective (in fact, not even preinjective, that is,
two distinct left and right asymptotic configurations can have the same image).

Of course, a CA that is surjective and injective is still reversible. Furthermore,
the usual decidability results hold also in the general case: Surjectivity, injectivity
and reversibility of cellular automata are decidable properties on all sofic shifts,
which is easily seen using standard techniques of symbolic dynamics.

4 Nilpotency and Periodicity

In this section, we prove that nilpotency and periodicity are decidable properties
for cellular automata on countable sofic shifts. The decidability of nilpotency is
a rather direct application of the Starfleet Lemma and the following result.

Lemma 3. Let X be a subshift. Then a cellular automaton c on X is nilpotent
if and only if it is weakly nilpotent.

Proposition 1. For cellular automata on countable sofic shifts, nilpotency is
decidable.

Proof. We will prove that one of the following cases holds for a CA c on a count-
able sofic shift X : either c is nilpotent, it is not nilpotent on periodic configu-
rations, or X contains a nontrivial spaceship for c. Since the latter cases imply
non-nilpotency and all three are semi-decidable, this proves the proposition.

Assume that c is not nilpotent, but is nilpotent on the finitely many peri-
odic configurations of X , and let ∞0∞ be their limit. We will show that X
contains a nontrivial spaceship for c. By Lemma 3, c is not even weakly nilpo-
tent, so there exists a configuration x ∈ X with cn(x) �= ∞0∞ for all n. Let
(r0, . . . , r�, s1, . . . , s�) ∈ B(X)2�+1 be a starfleet for x, which must be nontrivial:
si /∈ 0∗ for some i. But now ∞ri−1sir

∞
i is a nontrivial spaceship for c. .�

Note that this is not true in general: It is proved in [2] that on the full shift,
nilpotency is undecidable for one-dimensional cellular automata. In fact, there is
an analogue of Rice’s theorem on the limit sets of CA on the full shift [3], implying
that all nontrivial properties of the limit set are undecidable. An interesting
question is whether some weaker form of Rice’s theorem holds on countable
sofic shifts, since Theorem 2 implies that individual limit sets can have very
complicated structure.
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The decidability of periodicity also follows from the Starfleet Lemma.

Lemma 4. A cellular automaton c on an arbitrary subshift X ⊂ SZ is periodic
iff it is weakly periodic.

Proof. We only need to prove that weak periodicity implies periodicity, so let c
be weakly periodic. Then its two-way trace subshift

{y ∈ SZ | ∃(xi)i∈Z ∈ XZ : ∀i ∈ Z : xi+1 = c(xi) ∧ yi = xi0}

contains only periodic points, and thus must be finite [4]. Then c is periodic with
period the least common multiple of this finite set of periods. .�

Proposition 2. For cellular automata on countable sofic shifts, periodicity is
decidable.

Proof. We will prove that one of the following cases holds for a CA c on a
countable sofic shift X : either c is periodic, c is noninjective, or X contains a
nonperiodic spaceship for c. Since the latter cases imply nonperiodicity and all
three are semi-decidable, this proves the proposition.

Suppose on the contrary that c is nonperiodic (hence not weakly periodic
by Lemma 4) and injective, and all spaceships are periodic. Now let x ∈ X be
arbitrary, and let (r0, . . . , r�, s1, . . . , s�) be a starfleet for it. Since the configura-
tions ∞ri−1sir

∞
i are spaceships, they must be periodic, so 	 = 1. Now cn(x) is

a spaceship for large enough n, and by injectivity of c, x is a spaceship itself,
hence periodic. This is a contradiction, since c was not weakly periodic. .�

We remark that the decidability proofs of nilpotency and periodicity both involve
three semi-decidable properties, of which every cellular automaton must possess
at least one. In addition to proving the propositions, these triplets are interesting
in themselves, shedding light on the possible dynamics of cellular automata on
countable sofic shifts.

5 Computation and Limit Sets

In this section, we focus on the limit sets of cellular automata and their computa-
tional properties. We start by defining a natural tool for proving undecidability
results, namely, a cellular automaton which simulates a counter machine. Since
the limit set is exactly the set of configurations with an infinite chain of preim-
ages, it is natural to run a counter machine in reverse.

Theorem 1 ([5]). For any k-counter machine M = (Σ, k, δ, q0, qf ) there exists
a reversible (2k + 2)-counter machine M ′ = (Σ′, 2k + 2, δ′, p0, pf) such that

(m1, . . . ,mk, q0)⇒∗M (n1, . . . , nk, qf )

if and only if

(m1, . . . ,mk, 0, 0, 0, . . . , 0, p0)⇒∗M ′ (m1, . . . ,mk, 0, 0, n1, . . . , nk, pf ).
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Let M = (Σ, k, δ, q0, qf ) be a counter machine. We construct a countable SFT
XM and a CA cM on XM simulating M in a specific way.

Denote Σ′ = Σ × {←,→}. The subshift XM is defined as the subset of

B−1(a∗Σ′b∗)×
∏

i∈[1,k]∪{#}
B−1(a∗ib∗)

where none of the symbols [1, k] can occur to the left of #, and not all symbols
[1, k] ∪# can occur on the same side of s ∈ Σ′. A configuration of XM is good
if it contains some s′ ∈ Σ′, the symbol # and all symbols i ∈ [1, k].

The automaton cM simulates M as follows. The value of a counter i is coded
as its distance from the symbol #. Each state (s,→) ∈ Σ′ starts on #, where the
automaton can immediately check whether any counter has value 0. If needed,
the state travels to the right until it encounters the counter symbol. It shifts the
symbol one step to the desired direction, flips its own arrow, returns to the #
and enters a new state as determined by δ. If x is a configuration ofM , we denote
by XM (x) the corresponding family of configurations of XM (the configuration
with # placed in the origin, and all its shifts).

If M is reversible, we may add a direction bit to each state and have cM
simulate M either forward or backward, flipping the bit whenever an image or
preimage does not exist. We denote this augmented automaton by c̄M . Note that
this is possible since a CA can, in one step, check which counters have value 0,
when the state lies on the #-symbol, even if the reverse function cannot actually
be computed by a counter machine. The notation X→M (x) stands for the forward
and X←M (x) for the backward configuration family.

When this basic construction is used in proofs, it will be modified as needed.
It is easy to see that the language of a limit set of a CA is always Π0

1, and the
following complementary theorem holds.

Theorem 2. There exists a CA c : X → X on a countable SFT X such that
the limit set of c is Π0

1-complete.

Proof. Let M be a reversible counter machine whose language is Σ0
1-complete

with the property that the initial configuration (n, 0, . . . , 0, q0) has no preimage
for any n, and if n /∈ L(M), then M does not halt when started on this configu-
ration. Such a machine can be constructed using Theorem 1 and its proof from
[5]. We modify c̄M to start filling the space with a new spreading state when an
accepting state is reached in a forward state.

Now we claim that a forward CA configuration corresponding to

xn = (n, 0, . . . , 0, q0)

is in the limit set of c̄M if and only if n /∈ L(M). It is clear that if n /∈ L(M), then
an infinite chain of preimages is obtained by running M backwards towards the
initial state. Consider the case n ∈ L(M). SinceM is reversible and c̄M simulates
it on good configurations, the only possible preimage chain for an element of
X→M (xn) under c̄M could be obtained by running M back and forth between
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the initial and accepting states. But this is not possible, since we introduced
a spreading state, and adding a spreading state clearly cannot add any new
preimages for good configurations. .�

Theorem 3. It is undecidable whether a CA on a countable SFT is stable.

Proof. Given a reversible counter machine M , it easily follows from Theorem 1
that it is undecidable whether M halts on x = (0, . . . , 0, q0). Modify c̄M so that
the configurations in X←M (x) become fixed points, but no other configuration is
affected. We now claim that the modified c̄M is stable iff M halts from x.

Suppose first that M does not halt from x. Then every point in c̄nM (X→M (x))
has a single preimage chain of length n ending in X→M (x). Thus c̄M is unstable.

Suppose then that M halts from x. Then X→M (x) eventually evolves into
X→M (y) for a final counter machine configuration y. From there, c̄M will run
backwards to X←M (x), which consists of fixed points. Thus there are (up to a
shift) only a finite number of points in Y =

⋃
n∈N c̄

n
M (X→M (x)) without an infi-

nite preimage chain. Furthermore, every point of XM − Y has an infinite chain
of preimages, and thus c̄M is stable. .�

6 Asymptotic Sets

The limit set is not the only notion corresponding to ‘where points eventually
go’. Another such concept, studied at least in [6], is the asymptotic set. We show
that this idea makes sense also in the countable sofic case, and is in some sense
stronger than the concept of limit set.

Definition 1. The asymptotic set of CA c : X → X is⋃
x∈X

⋂
J∈N

{cn(x) | n ≥ J}

A configuration x ∈ X lies in the asymptotic set iff there exists another config-
uration y ∈ X and a subsequence of the orbit (cn(y))n∈N which converges to x.
Note that the asymptotic set contains all temporally periodic points of c, but not
necessarily all the spaceships, unlike the limit set. Asymptotic sets have much
stronger computational capabilities than limit sets.

Lemma 5. The asymptotic set Y of a CA c on a countable sofic shift X is Σ0
3.

Proof. Given a word w, it is clearly (by its form) in Σ0
3 to check that

∃x ∈ X : ∀n : ∃m > n : cm(x)[1,|w|] = w,

which is equivalent to w ∈ B(Y ). Note that the values x of the first quantifier
can easily be enumerated by a Turing machine. .�

Theorem 4. There exists a countable SFT X and a CA f : X → X such that
the asymptotic set of f is Σ0

3-complete.
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Proof. It is easy to see that there exists a recursive set L such that solving

∃r : ∀	 : ∃m : (r, 	,m,w) ∈ L

for given w ∈ N is Σ0
3-complete. We say that such an w is a solution to L. We

will many-one reduce any such set to the language of the asymptotic set of a
CA.

Let M be an always halting counter machine for L which never re-enters the
initial state. We construct a counter machine M ′ with state set {s1, s2, . . . , sp},
counters Cw, Cr, C�, C

′
�, Cm, and a suitable set of auxiliary counters, having the

property that started from configuration (s1, w, r, i1, . . . , ih), M
′ enters the state

s1 infinitely many times if and only if w is a solution to L for that choice of r,
and the ij are arbitrary. The counter Cw will always contain the value w and
is never modified. The counters Cr , C�, C

′
� and Cm in M ′ will play the role of

quantifiers, with Cr containing the guess r. The idea of the construction is that
C′� will loop through the values [1, n] for larger and larger n, which is stored in
C�, and at every value 	, Cm is used to search for anm such that (r, 	,m,w) ∈ L.
Such an event is followed by setting all counters to 0, except Cw, Cr, C� and C

′
�,

and visiting the state s1. It follows that the state s1 is visited infinitely many
times if and only if r was a correct guess for w.

We wish to have the central pattern of the configuration corresponding to
(s1, w,∞, . . . ,∞) in the asymptotic set of the corresponding CA if and only if w
is a solution to L. Infinite values in counters during the simulation are handled by
simply making the machine head check that all counter values are finite before
entering s1. We also have the problem that while entering s1 infinitely many
times indeed characterizes the solutions of L, the values of other counters might
be visible in the asymptotic set. We thus modify all counters except Cw to store
their data in the form 2n · n′, where n′ is odd and n is the useful piece of data,
and increase n′ by 2 every time M enters the state s1. .�

Corollary 1. There exists a CA c on the full shift such that the asymptotic set
of c is Σ0

3-complete.

Proof. Let X and c be given by Theorem 4. We embed X in a full shift and add
a spreading state t for c which appears whenever a neighborhood is forbidden in
X . Then we may use the same reduction as before, since points outside X only
contribute words in t∗ to the language of the asymptotic set. .�

Starting from a fixed sofic shift, asymptotic sets do not necessarily form a larger
class than limit sets:

Proposition 3. There exists a countable sofic shift X and a CA c : X → X
such that the limit set of c is not the asymptotic set of any CA on X.

Proof. Let

X = B−1(0∗	0∗#0∗r0∗ + 0∗	′0∗#0∗r′0∗)
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and c the CA on X which moves 	 and r towards #, and moves 	′ and r′ away
from #, changing 	#r to 	′#r′, but 	#0 and 0#r to 0#0. It is clear that the
limit set is

Y = B−1(
⋃
n∈N

(0∗	0∗#0∗r0∗ + 0∗	′0n#0nr′0∗)).

We claim that no CA e onX has Y as its asymptotic set. Assume on the contrary
that this is possible, and let e have radius R. In general, it is clearly true for
asymptotic sets that for all N , the en(x)[−N,N ] must be a word of Y for all x
and sufficiently large n. In particular, words of Y must map to words of Y . Also,
points in Y have preimages in Y .

Since configurations of the form y(M,M ′) = ∞0	0M#0M
′
r0∞ appear in the

asymptotic set with no restriction on M and M ′, but the point z(M,M ′) =
∞0	′0M#0M

′
r′0∞ only appears for M =M ′, a simple case analysis shows that

for large M and M ′, such points map to points of the same form.
Since z(M,M) is isolated in X , it must be e-periodic, and since it is in the

asymptotic set, it must map to a point of the form z(N,N). If for some M ,
a point of the form z(N,N) with N ≤ 2R − 1 never appeared in the orbit,
we would also find an e-periodic point of the form z(M,M ′) with M �= M ′.
Therefore, there exists a point z(N,N) with N ≤ 2R − 1 such that z(M,M)
appears in its orbit for arbitrarily large M . But this is a contradiction, since
z(N,N) must be e-periodic.

However, if the subshift is not fixed, we have the following realization theorem.
Note that this is not stronger than Theorem 4, since it only implies the existence
of a sofic shift, and not an SFT.

Theorem 5. Let X be a countable sofic shift and let Y be a Σ0
3 subshift of X.

Then there exists a countable sofic shift Z ⊃ X and a CA c : Z → Z such that
the asymptotic set of c from Z is exactly Y .

Proof. The subshift Z has the same periodic points as Y and the cellular au-
tomaton c having Y as an asymptotic set from Z behaves as the identity map
on the periodic points. Let p be a common period for the periodic points of Z.

If x and y are periodic, and there is a unique point z that is left asymptotic
to x and right asymptotic to y, then c also behaves as the identity map on z. For
all pairs of periodic points without this property, we construct a subshift Z(x, y)
such that starting from Z(x, y), the automaton c produces exactly the points of
Y left and right asymptotic to x and y, respectively, in the asymptotic set.

Let x be u-periodic and y be v-periodic for |u| = |v| = p. The general form of
a ‘good’ point in Z(x, y) is

∞uM1u
∗wv∗M2v

∞,

where w is called amessage moving either left or right, such that∞uwv∞ appears
in X , and u∗wv∗ is called the periodic medium. The words M1 and M2 encode
counter machines. Since there are at least two points left and right asymptotic to
x and y, respectively, we may choose a nonperiodic word wok such that∞uwokv

∞
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is an isolated point in X . Between a pattern of u’s and v’s, wok is shifted a
multiple of p steps to the right, and all other words are shifted some multiple of
p steps to the left. Since there are only finitely many different choices of x and
y, it is easy to handle the finite amount of words wok separately and move them
in a different direction than all others (since these islands are maximal).

By the assumption on Y , the set of good words w that occur between ∞u and
v∞ must be given by the solutions w to

∃k : ∀l : ∃m : (k, l,m,w) ∈ L
for a recursive language L.

The machines M1 and M2 have to be encoded slightly differently than usual,
so that large values in counters do not change the set of periodic points of Z from
those of Y . The finitely many counter markers, however, can be over a separate
alphabet altogether. In the evolution of c, the machinesM1 andM2 move slowly
away from each other, so that they cannot be seen in the asymptotic set. The
‘base points’ of counters (where counters become zero) ofM1 and M2 are on the
side of the periodic medium between them. This makes the sending of messages
more intuitive, and makes it clearer that the machines actually disappear from
the asymptotic set.

The basic idea is that M2 will have the word w encoded in its counters, and
a guess k that it keeps constant. It iterates through all choices of l (checking
all values infinitely many times) just like in the proof of Theorem 4, and for
each l, it then starts iterating through all m. When the case (k, l,m,w) ∈ L
occurs, it sends w to the left. We omit the details of outputting w at a sufficient
speed. After outputting w, M2 waits for M1 to respond in order not to send
multiple messages at once (which would add entropy to Z). The sofic rule of Z
makes sureM2 is in a waiting state if a message is on its way. When the message
wok is received from M1, M2 continues its computation. The message w is sent
infinitely many times iff it is a solution to L and the guess k was correct.

The machineM1 behaves similarly. It waits for a message fromM2, and when
one is received, it sends the message wok to the right. Note that there are only
finitely many different forms of points in X (and in particular Y ), so the rule of
the sofic shift can share this information about w between M1 and M2.

Now it is clear that if the automaton is started from a good point, we obtain
only words of Y in the asymptotic set. Also, for any w ∈ B(Y ), a good point puts
it in the asymptotic set if M2 uses w as a message. As for bad points, we note
that if only one counter machine occurs in a point, or a counter has an infinite
value, then the worst that can happen is that the flow of messages stops at one
point, leaving only the periodic medium – which is in Y – in the asymptotic
set. .�
In particular, all limit sets are asymptotic sets in the following sense:

Corollary 2. Let X be a countable sofic shift and f : X → X a CA with limit
set Y . Then there exists a countable sofic shift Z ⊃ X and a CA g : Z → Z such
that the asymptotic set of g is Y .

Proposition 3 shows that Z above cannot be chosen equal to X in general.
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7 Conclusions and Future Work

In this paper, we have studied cellular automata on sofic shifts mainly from
the computational point of view. We proved a useful result about the long-term
evolution of points under such automata (the Starfleet Lemma), and showed
the decidability of some dynamical properties (nilpotency and periodicity) and
undecidability of others (stability). It seems that those properties that depend
on the exact behavior of spaceships are likely to be decidable. The Starfleet
Lemma is, in these cases, a very powerful tool. We also studied the computational
capacity and complexity of asymptotic sets, which turned out to be quite high.

We have already proved several results about the dynamics of cellular au-
tomata on countable sofic shifts which did not make it into this article due to
lack of space. Future work might involve studying the relations between dynami-
cal systems defined in this way. In particular, the conjugacy problem of countable
sofic shifts, which seems more combinatorial than the general conjugacy problem,
but challenging nevertheless, is still unsolved.

Acknowledgements. We’d like to thank Jarkko Kari for pointing out that
Lemma 3 holds even in the case of a general subshift, Pierre Guillon for his
useful comments, in particular on the last section, and the anonymous referees
for their suggestions on the overall presentation and structure of the article.
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Abstract. We present an algorithm which computes the Lempel-Ziv
factorization of a word W of length n on an alphabet Σ of size σ online
in the following sense: it reads W starting from the left, and, after read-
ing each r = O(logσ n) characters of W , updates the Lempel-Ziv factor-
ization. The algorithm requires O(n log σ) bits of space and O(n log2 n)
time. The basis of the algorithm is a sparse suffix tree combined with
wavelet trees.

1 Introduction

The Lempel-Ziv factorization (further LZ-factorization for short) of a word W
is a decomposition W = f1f2 . . . fz, where a factor fi, 1 ≤ i ≤ z, is either a
character that does not occur in f1f2 . . . fi−1 or the longest prefix of fi . . . fz
that occurs in f1f2 . . . fi at least twice [1, 2].

The most famous application of the LZ-factorization is data compression (e.g.
the LZ-factorization is used in gzip, WinZip, and PKZIP). Moreover, it is a basis
of several algorithms [3, 4] and text indexes [5].

Let W be a word of length n on an alphabet Σ of size σ. There are many
algorithms that compute the LZ-factorization in O(n log n) bits of space 1. These
algorithms use suffix trees [6], suffix automata [1] or suffix arrays [7–12] as a basis.

However, only two algorithm have been known which use O(n log σ) bits of
space [12, 13]. The algorithms exploit similar ideas (both are based on an FM-
index and a compressed suffix array). The algorithm [12] is offline and requires
linear time.

The algorithm [13] is online. To understand the idea behind it, consider the
factors f1, f2, . . . , fi of the LZ-factorization of a word X . The LZ-factorization
of a word Xa, where a is a character, contains either i or i+1 factors: in the first
case the factors are f1, f2, . . . , fi−1, f

′
i , where the last factor f

′
i = fia; and in the

second case the factors are f1, f2, . . . , fi, fi+1, where fi+1 = a. The algorithm [13]
reads W and after reading each new character updates the LZ-factorization, i.e.
either increases the length of the last factor by one or adds a new factor. The
running time of this algorithm is O(n log3 n).

For many practical applications dealing with large volumes of data it would
be natural to allow updating the LZ-factorization only each r > 1 new characters

1 In this paper log stands for log2.
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of W , for some small parameter r, in order to reduce the running time. Unfor-
tunately, naive application of this idea to the algorithm [13] does not improve
its running time.

Here we propose a new online and linear-space algorithm which achieves a rea-
sonable trade-off between frequency of updates and running time. The algorithm
updates the LZ-factorization of W each r =

logσ n
4 characters of W , requiring

O(n log2 n) time and O(n log σ) bits of space. It is assumed that both σ and n
are known beforehand and n ≥ σ. The basis of the algorithm is a sparse suffix
tree combined with wavelet trees.

Let X be a word of length |X | on Σ. Throughout the paper, positions in X are
numbered from 1. The subword of X from position i to position j (inclusively) is
denoted by X [i..j]. If j = |X |, then we write X [i..] instead of X [i..|X |]. A word
X [i..] is called a suffix of X and a word X [1..j] is called a prefix of X .

With each word Y of length r on Σ we associate a meta-character Y ′ formed
by concatenating bit-representations of characters of Y . Note that a bit repre-
sentation of any character of Y can be obtained from the bit representation of
Y ′ by two shift operations. Also, Y ′ can be obtained from Y in O(r) time by
standard bit-vector operations.

2 Algorithm

Let f1, f2, . . . fz be the factors of the LZ-factorization of W . For the sake of
clarity we describe not how to update the LZ-factorization after reading each
block of letters but rather how to compute f1, f2, . . . fz sequentially. However, it
will be easy to see that the presented algorithm can be easily modified to solve
the problem we formulated in the introduction.

Suppose that f1, f2, . . . fi−1 of total length 	i have been computed. The algo-
rithm consists of two procedures. The procedure P<r checks if |fi| is less than
r and, if it is, computes fi (Section 2.2). The procedure P≥r computes fi only
if it is already known that |fi| ≥ r (Section 2.3). To compute fi the algorithm
runs P<r first and then, if necessary, runs P≥r.

2.1 Data Structures

The algorithm makes use of several data structures. To explain what these data
structures are, we need to give a definition a compacted trie first.

Definition 1. A trie for a set of words S is a rooted tree edges of which are
labelled by letters. For each prefix P of a word of S there must exist exactly one
vertex such that P is spelled out by the path from the root of the trie to this
vertex, and vice versa, a word spelled by any downward path must be a prefix of
one of the words of S. A compacted trie for S can be constructed from the trie
by eliminating all vertices with one son, thus forming edges that spell out words
rather than single letters.
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The algorithm readsW by blocks of r letters starting from the left. After reading
the t-th block of W , the first data structure is a compacted trie on suffixes of
words W [rj + 1..r(j + 2)], j = 0..t− 2. Each explicit vertex v of the trie stores
a starting position of one of the suffixes ending in the subtree rooted at v.

Let W ′ be the meta-word formed by replacing each block of characters of W
with the corresponding meta-character. The second data structure is an implicit
suffix tree forW ′[1..t], i.e. a compacted trie for the set of suffixes ofW ′[1..t]. This
tree is also called a sparse suffix tree for W [1..tr] [14–16], though the original
definition of a sparse suffix tree is slightly different [17].

For each explicit vertex v of the suffix tree we store a compacted trie CTv
on words of length r corresponding to the first meta-characters on the edges
outgoing from v.

Definition 2. Consider a tree with labels on edges (a suffix tree or a trie). We
say that a word X is represented by a vertex v (or that v represents X), if the
path from the root of the tree to v is labelled by X.

If the label of an edge (v, u) of the suffix tree begins with a meta-character Y ′,
and Y is the corresponding word of length r, then we store a pointer to the
edge (v, u) in the leaf of CTv representing Y . The tries in vertices are used for
navigation in the suffix tree (but not only for it). Clearly, given a vertex and
a meta-character, it takes O(r log σ) = O(log n) time to find the edge outgoing
from the vertex, the label of which starts with the meta-character.

After reading the (t + 1)-th block of W , we first compute W ′[t + 1] in O(r)
time and then update the suffix tree by Ukkonen’s algorithm [18].

Definition 3. Block borders are positions of W of the form pr + 1, where p ∈
[1,
⌊
n
r

⌋
].

Let Bv be a set of block borders corresponding to the starting positions of the
suffixes represented by the leaves of the subtree rooted at an explicit vertex v. We
store an additional data structure which allows, given v, a word Y ∈ Σ[1,r], and
a block border b, to determine whether Bv \{b} contains a block border preceded
by an occurrence of Y . If there are such block borders, the data structure reports
one of them. The query takes O(log2 n) time.

Details of implementation are not important to understand the algorithm and
will be explained later, in Section 3.

Hereafter
⌊
�i
r

⌋
is denoted by 	′i. We assume that the algorithm has read the

first 	′i + 1 blocks of W before running the procedures P<r and P≥r.

2.2 Procedure P<r

Lemma 1. W [	i + 1..	i + r] occurs in one of the words W [rj + 1..r(j + 2)],
j = 0..	′i − 1, iff |fi| ≥ r (see Fig. 1).
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W [rk + 1] W [r(k + 2)] W [�i]

Previous occurrence of fi
W [�i + 1..�i + r]

fi
W [�i + 1..�i + r]

Fig. 1. Case |fi| ≥ r, r = 4. The word W [rk + 1..r(k + 2)], k < �′i, containing an
occurrence of W [�i + 1..�i + r], is highlighted in grey. Block borders are in bold.

We traverse the trie starting at the root and following edges labelled with the
characters of W [	i+1..	i+r]. Two cases are possible: either we will read out the
whole wordW [	i+1..	i+ r] or we will stop after readingW [	i+1..s], s < 	i+ r,
and will not be able to proceed. It follows from the lemma that in the first case
|fi| ≥ r and in the second case |fi| < r. Moreover, it is easy to see that in
the second case |fi| is equal to |W [	i + 1..s]| and that we can report a previous
occurrence of fi in O(1) time.

Obviously, P<r takes O(|fi|) time in both cases.

2.3 Procedure P≥r

P≥r consists of two steps. The first one is preliminary, and during the second
step we compute |fi|.

The First Step. P≥r starts with reading W . After reading the s-th block, it
updates the data structures and checks whetherW ′[	′i..s] is represented by a leaf
in the suffix tree of W ′[1..s]. If it is, P≥r proceeds to the second step. From the
description of Ukkonen’s algorithm [18] it follows that after the first step of P≥r
all suffixes starting at positions less than 	′i will be represented by leaves.

Lemma 2. During the first step at most |fi|+ r characters of W will be read.

Proof. Since s is the minimal position such thatW ′[	′i..s] is represented by a leaf,
W ′[	′i..s−1] is represented by an inner vertex in the suffix tree ofW ′[1..s−1] and,
consequently, occurs before the position 	′i in W

′. Therefore, W [	i + 1..(s− 1)r]
occurs before the position 	i (see Fig. 2) and |fi| ≥ |W [	i + 1..(s − 1)r]|. The
statement of the lemma easily follows.

We initialize M with |W [	i+1..(s− 1)r]|. The lemma guarantees that |fi| ≥M .
During the computation process we will increaseM until, finally, it will become
equal to |fi|.

Definition 4. Depth of a vertex v of the suffix tree is the length of the word
represented by v.

Lemma 3. Let v be an explicit inner vertex of the suffix tree of W ′[1..s] with
depth at least

⌊
M
r

⌋
. If a block border belongs to the set Bv, then it is not bigger

than (	′i + 1)r + 1.
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Proof. Indeed, a subtree rooted at v can only contain leaves representing suffixes
of length at least

⌊
M
r

⌋
= s− 	′i, and all such suffixes start at positions ≤ 	′i + 1.

The statement immediately follows.

We will read a new block of characters of W and update the data structures
only when 	i+M is bigger than the position of the last read character. This will
guarantee that a statement similar to the statement of the lemma will be true
throughout P≥r.

Idea of the Second Step. Consider the first block border which intersects a
previous occurrence of fi (see Fig. 3). It divides the occurrence into two parts:
the first short part equal to W [	i + 1..	i +m− 1] and the second part equal to
a prefix of W [	i +m..], m ∈ [1, r].

Let fmi be the longest prefix of W [	i +m..] with at least one occurrence at
a block border which is less than 	i and preceded by an occurrence of W [	i +
1..	i +m− 1]. Obviously, |fi| = maxm∈[1,r](|fmi |+m− 1).

For each m = 1..r the procedure P≥r either computes |fmi | and updates M
or proves that |fmi |+m− 1 ≤M and starts computation of |fm+1

i |.
If (	′i+1)r+1−m ≤ 	i, then the second step of P≥r starts with computing the

length q of the longest common prefix ofW [	i+1..] andW [(	′i+1)r+1−m..]. In
order to compute q the procedure compareW [	i+1..] and W [(	′i+1)r+1−m..]
character by character. If q > M , the procedure puts M equal to q. Then the
procedure starts to work with the suffix tree.

Let W ′
�i+m

be a meta-word formed by grouping every r characters of W [	i +
m..] into a single meta-character. Note that each character of W ′

�i+m
can be

obtained by at most two shift operations from appropriate characters of W ′,
therefore there is no need to compute W ′

�i+m
in advance or to store it explicitly.

Note that if a path from the root of the suffix tree to a vertex v is labelled by
W ′
�i+m

[1..p], then W [	i +m..	i +m+ pr] occurs at all block borders of Bv, and
vice versa.

This simple observation gives us the idea of how |fmi | can be computed. We
traverse the suffix tree starting at the root and following the edges labelled
with the characters of W ′

�i+m
. Let v be an explicit vertex representing a word

W [�i] W [rs]

W [�i + 1..r(s − 1)] W [�i + 1..r(s − 1)]

W ′[�′i] W ′[s]

Prev. occ. of W [�′i..s − 1] W [�′i..s − 1]

Fig. 2. Relation between W ′[�′i..s− 1] and W [�i + 1..r(s− 1)]
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W [rk + 1] W [r(k + 2)] W [�i]

Previous occurrence of fi fi

Fig. 3. A previous occurrence of fi. The part equal to W [�i + 1..�i +m− 1] (m = 4)
is highlighted in grey.

W ′
�i+m

[1..p], where p > M−m+1
r . Clearly, |fmi | ≥ pr iff Bv contains a block

border less than 	i preceded by an occurrence of W [	i + 1..	i +m− 1].
Since the depth of v is equal to p ≥ M−m+1

r + 1 ≥
⌊
M
r

⌋
, Bv can contain only

one block border bigger than 	i, namely, (	′i+1)r+1 (Lemma 3). So, |fmi | ≥ pr
iff Bv \ {(	′i + 1)r + 1} contains a block border preceded by an occurrence of
W [	i + 1..	i + m − 1], and this is exactly the type of questions the additional
data structure for the suffix tree can answer for (see Section 3). If there is such
a border, the algorithm updates M by pr + m − 1 and proceeds. If not, the
algorithm starts computation of |fm+1

i |.
We have omitted several technical details from the description of the second

step of P≥r and give them in Appendix. We also show there that the procedure
P≥r takes O(|fi| log2 n+ r log2 n) time.

3 Data Structures

As we have already said, our algorithm maintains two data structures. In this
section we give the details and describe update procedures.

3.1 Trie

After reading W [1..tr] the trie contains suffixes of words W [rj + 1..r(j + 2)],
j = 0..t− 2. To update the trie after reading the (t + 1)-th block of characters
we first check if W [r(t − 1) + 1..r(t + 1)] is represented in the trie. To do that
we traverse the trie starting at the root and following edges labelled with the
characters of W [r(t − 1) + 1..r(t + 1)]. If we read out the whole word, then
W [r(t− 1)+1..r(t+1)], and, consequently, all its suffixes are represented in the
trie. If not, we add all suffixes of W [r(t − 1) + 1..r(t + 1)], including the word
itself, to the trie.

Lemma 4. The trie occupies o(n) bits and its maintenance takes O(n log σ)
time.

Proof. Due to our choice of r, there are at most σ2r = σ
logσ n

2 = n
1
2 different

words of length 2r on Σ. Therefore, the trie has o(n
1
2 r) = o(n) leaves and,

consequently, edges, since each inner vertex of the trie has at least two sons. All
labels are subwords of W , and we can specify them by their starting and final
positions. So, the trie occupies o(n) space.
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To check if the words W [rj + 1..r(j + 2)], j = 0..nr − 2, are represented in the
trie one needs O(n log σ) time in total. During the algorithm we add suffixes of

at most n
1
2 < n

r2 words. All suffixes of a word of length 2r can be added to the
trie in O(r2 log σ) time, so we get the announced time bound.

Finally, suppose that we create a new vertex v in the process of adding a suffix
W [p..r(k+2)] of the wordW [rk+1..r(k+2)] to the trie. Then we just remember
the position p as a starting position of a suffix ending in the subtree rooted at
v. This completes the description of the update procedure.

3.2 Suffix Tree

The suffix tree is updated by Ukkonen’s algorithm [18]. When we create a new
edge outgoing from a vertex v with the first character of the label equal toW ′[k],
we add W [(k − 1)r + 1..kr] to CTv.

Below we describe additional data structures which allow, given an explicit
vertex v, a word Y ∈ Σ[1,r], and a block border b, to determine whether Bv \{b}
contains a block border preceded by an occurrence of Y in O(log2 n) time.

We define a meta-character cmin as follows: reverse the bit representation of
Y and then append (r−|Y |) log σ zeros to it. A meta-character cmax is defined in
a similar way, but ones are appended instead of zeros. Obviously, a block border
pr+1 is preceded by an occurrence of Y iff the reverse of the bit representation
of W ′[p− 1] lies in the interval [cmin, cmax].

Let pi be the starting position of the suffix represented by the i-th leaf in
the left-to-right order on the leaves of the suffix tree. Consider virtual sequences
GBWT , GBWT [i] equal to the reverse of the bit representation of W ′[pi − 1],
and B, B[i] equal to the block border pir + 1. We store GBWT and B using
dynamic wavelet trees (Theorem 9 [19]). In Theorem 9 [19] σ denotes the size
of the alphabet of the sequence, i.e. log σ = O(log n) for GBWT and B, and
we put q = 2. In this case, the dynamic wavelet trees occupy O(n log σ) bits of
space and allow to read any element and to add a new element after the i-th one
in O(log2 n) time.

Let l(v) and r(v) be the minimal and the maximal ranks of leaves of the
subtree rooted at v in the left-to-right order on the leaves of the suffix tree.
Then Bv = {B[k]|k ∈ [l(v), r(v)]} and the subset BYv ⊆ Bv of block borders
preceded by Y can be defined as BYv = {B[k]|k ∈ [l(v), r(v)] and GBWT [k] ∈
[cmin, cmax]}. Clearly, Bv\{b} contains a block border preceded by an occurrence
of Y iff BYv contains a block border different from b.

Each block border belonging to BYv can be retrieved in O(log2 n) time (see
also [20]). Obviously, it is enough to retrieve at most two block borders to de-
termine whether BYv contains a block border different from b.

It remains to show how the minimal and the maximal ranks of the leaves
in the subtree rooted at v can be computed. The data structure we will use is
similar to the one from [21].

We maintain a dynamic doubly-linked list EL corresponding to the Euler tour
of the current suffix tree. Each internal vertex of the suffix tree is stored in two
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copies in EL, corresponding respectively to the first and last visits of the vertex
during the Euler tour. Leaves of the suffix tree are kept in one copy. Observe that
the leaves of the suffix tree appear in EL in the “left-to-right” order, although
not consecutively.

We also maintain a balanced binary tree, denoted BT , whose leaves are el-
ements of EL. Note that the size of BT is bounded by 2nr and the height
of BT is O(log n). Since the leaves of the suffix tree are a subset of the leaves of
BT , we call them suffix leaves to avoid the ambiguity. Each internal vertex u of
BT stores the number of the suffix leaves in the subtree of BT rooted at u.

The minimal rank of a leaf in the subtree rooted at v is the number of the
suffix leaves in EL preceding the first copy of v in EL plus one. This number
can be computed in O(log n) time by following the path from the leaf of BT
corresponding to this copy to the root of BT and summing up the number of
the suffix leaves in the subtrees rooted at the left sons of the vertices on the
path. The maximal rank can be computed in a similar way.

Now we should explain how to update the additional data structures. When
a new vertex v is added to a suffix tree, the following updates should be done
(in order):

(i) insert v at the right place of the list EL (in two copies if v is an internal
vertex),

(ii) rebalance the tree BT if needed,
(iii) if v is a leaf of the suffix tree (i.e. a suffix leaf of BT ), update information

about the number of suffix leaves in BT .

To see how update (i) works, we have to recall how suffix tree is updated when
a new document is inserted. Two possible updates are creation of a new internal
vertex v by splitting an edge into two (edge subdivision) and creating a new leaf
u as a child of an existing vertex. In the first case, we insert the first copy of
v right after the first copy of its parent, and the second copy right before the
second copy of its parent. In the second case, the parent of u has already at least
one child, and we insert u either right after the second (or the only) copy of its
left sibling, or right before the first (or the only) copy of its right sibling.

Rebalancing the tree BT (update (ii)) is done using standard methods. Ob-
serve that during the rebalancing we may have to adjust the information about
the number of the suffix leaves for internal vertices, but this is easy to do as only
a constant number of local modifications is done at each level.

Update (iii) is triggered when a new leaf u is created in the suffix tree and
added to EL. We then have to follow the path in BT from the new leaf u to the
root and possibly update the information about the number of suffix leaves for
all vertices on this path. These updates are straightforward. All these steps take
O(log n) time.

To update the wavelet trees after adding a new leaf to the suffix tree, we only
need to know the rank of this leaf in the left-to-right order on the leaves of the
suffix tree, and as we have already explained it can be computed in O(log n)
time using BT .
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Lemma 5. The suffix tree and additional data structures occupy O(n log σ) bits
and their maintenance takes O(n log2 n) time.

Proof. The suffix tree has at most nr leaves and therefore O(nr ) edges. We specify
labels of edges by their starting and final positions in W ′. So, the suffix tree
occupies O(n log σ) bits.

Tries in vertices of the suffix tree have O(nr ) leaves in total and occupy
O(n log σ) bits as well (labels are specified by their starting and final positions
in W ). Finally, BT , EL and dynamic wavelet tree use O(nr logn) = O(n log σ)
bits of space.

Ukkonen’s algorithm [18] takes O(nr log n) time (additional logn appears be-
cause of the cost of navigation). To update tries in the vertices of the suf-
fix tree we need O(nr logn) = O(n log σ) time. All wavelet tree updates take

O(nr log
2 n) = O(n log n log σ) = O(n log2 n) time. And finally, update of BT

and EL takes O(nr logn) = O(n log σ) time.

4 Results and Conclusions

To conclude, we prove the following theorem.

Theorem 1. The presented algorithm computes the Lempel-Ziv factorization of
a word W in O(n log2 n) time and O(n log σ) bits of space.

Proof. Lemmas 4 and 5 guarantee that the data structures occupy O(n log σ)
bits of space in total and that their maintenance takes O(n log2 n) time.

To compute fi, first P<r is run. As we have proved, it takes O(|fi|) time. P≥r
is run only when |fi| ≥ r (i.e., at most n

r times) and takes O((|fi| + r) log2 n)

time. Therefore, the total time spent by procedures P<r and P≥r is O(n log
2 n),

and this completes the proof.

It is easy to see that the described algorithm can be implemented as online
algorithm with the same running time and working space.
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Appendix: Technical Details of the Second Step of P≥r

Here we explain technical details of the second step of the procedure P≥r and
show that P≥r does not take too much time.

First of all, Lemma 3 works only for inner vertices. If during the traverse we
arrive to a leaf of the suffix tree, we first check if this leaf corresponds to a block
border less than 	i+1 and then check if the border is preceded by an occurrence
of W [	i + 1..	i +m− 1] using a character-by-character comparison. After that,
the algorithm proceeds as described earlier.

Secondly, suppose that during the traverse we stop in a vertex v representing
a word W ′

�i+m
[1..p] and cannot proceed. It follows that W [	i+m..(p+1)r] does

not occur at block borders ofW [1..	i] preceded by an occurrence ofW [	i+1..	i+
m− 1]. However, this can be false for a word W [	i+m..pr+ q], q < r. Next two
paragraphs explain how to find the biggest such q.

Two cases are possible depending on whether v is implicit or explicit. Let v
be implicit and u be the lower end of the edge containing v. To find q, we first
ask if Bu \ {(	′i + 1)r + 1} contains a block border preceded by an occurrence
of W [	i + 1..	i +m − 1]. If it does, we compare the word corresponding to the
next meta-character on the edge with the word corresponding to the next meta-
character of W ′

�i+m
character by character to find the length of their longest

common prefix, which obviously will be equal to q.
Suppose now that v is an explicit vertex. We traverse CTv starting at the

root and following the edges labelled with the characters of W [pr+1..(p+ 1)r].
Let u be an explicit vertex of CTv representing a word W [pr+ 1..pr+ t], where
pr+t+m−1 > M . Suppose that u1, u2, . . . , uk are the sons of v corresponding to
the leaves of the subtree of CTv rooted at u. Obviously, a wordW [	i+m..pr+ t]
occurs at all block borders of Bu1∪Bu2∪ . . .∪Buk

. Moreover, the set Bu1∪Bu2∪
. . .∪Buk

can contain only one block border bigger than 	i, namely, (	′i+1)r+1
(Lemma 3).

In each vertex u with such properties we ask whether the set Bu1 ∪ Bu2 ∪
. . .∪Buk

\ {(	′i+1)r+1} contains a block border preceded by W [	i..	i+m− 1].
From the description of the additional data structure we store for the suffix tree
(Section 3) it is quite obvious that such queries also can be answered in O(log2 n)
time.

The following lemma estimates the time spent during P≥r, not including the
time for updates of the data structures.

Lemma 6. The procedure P≥r takes O(|fi| log2 n+ r log2 n) time.

Proof. First step of P≥r reads O(|fi|+ r) characters of W (Lemma 2).

To follow fmi down in the suffix tree we need O(
|fm

i |
r logn) = O(|fi| log σ) time

(remember that search of an appropriate edge in a vertex takes O(log n) time).
Since after each query to the additional data structure we either increase M or
proceed to the computation of fm+1

i , there are at most r+ |fi| queries. A query
takes O(log2 n) time (see Section 3). Therefore, the total time spent during the
second step of P≥r is O((r + |fi|) log2 n+ r log σ|fi|) = O(|fi| log2 n+ r log2 n).
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Abstract. Repetition threshold is the smallest number RT(n) such
that infinitely many n-ary words contain no repetition of order greater
than RT(n). These “extremal” repetition-free words are called threshold
words. All values of RT(n) are now known, since the celebrated Dejean’s
conjecture (1972) was finally settled in 2009. We study two questions
about threshold words. First, does the number of n-ary threshold words
grow exponentially with length? This is the case for 3 ≤ n ≤ 10, and a
folklore conjecture suggests an affirmative answer for all n ≥ 3. Second,
are there infinitely many n-ary threshold words containing only finitely
many different repetitions of order RT(n)? The answer is “yes” for n = 3,
but nothing was previously known about bigger alphabets.

For odd n = 7, 9, . . . , 101, we prove the strongest possible result in this
direction. Namely, there are exponentially many n-ary threshold words
containing no repetitions of order RT(n) except for the repeats of just
one letter.

1 Introduction

Families of combinatorial objects parametrized by a certain numerical parameter
appear in many areas of mathematics and computer science. Many of them
have “phase transitions”, when the properties of objects sharply change at some
threshold value of the parameter. Evaluating threshold values and studying the
properties of “threshold” objects is an important and challenging task connected
to deep properties of the objects in question. In this paper we study repetition-
free words. Over any fixed alphabet, these natural and well-known objects form
a family parametrized by the maximum order of “admitted” repetitions.

Recall that the exponent of a word w is the ratio between its length and its
minimal period: exp(w) = |w|/per(w). If this ratio equals β > 1, then w is a
fractional power (β-power). Fractional powers constitute a natural and impor-
tant class of repetitions in words. A word is called β-free for some rational β > 1
if all its factors have exponents less than β. The repetition threshold function
RT(n) was introduced by Dejean [6], see also [2]. Dejean’s conjecture, now fully
resolved, see [4–6, 12], states that the set of n-ary β-free words is infinite if and
only if β > RT(n), where

RT(3) = 7/4, RT(4) = 7/5, and RT(n) = n/(n−1) otherwise.
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The n-ary words that are β-free for any β > RT(n) are called threshold words
and constitute the threshold language Tn.

Dejean’s conjecture boosted the interest to the structure and properties of
threshold languages. We mention two groups of questions concerning these lan-
guages. The first group consists of questions about the growth properties of
threshold languages. It is known that T2 grows polynomially with length [13],
while the folklore Exponential conjecture says that Tn grows exponentially for
any n ≥ 3. This conjecture was settled for n ≤ 10 by Ochem, Kolpakov, and
Rao [7, 9]. Exponential conjecture was strengthened in [15] to the Growth Rate
conjecture: Tn grows exponentially at base that tends to a limit α ≈ 1.242 as n
approaches infinity.

If the Growth Rate conjecture holds, there is enough room for different addi-
tional restrictions on threshold words. The second group contains the questions
of the form “does the set of threshold words remain infinite under some restric-
tion?”. Such restrictions may concern, e.g., the densities of letters, see [10,12], or
some of the repetitions of smaller order. The latter type of restriction was intro-
duced by Shallit [14] who considered binary words simultaneously avoiding some
avoidable power and also all but finitely many squares (i.e., repetitions of or-
der RT(2)). Badkobeh and Crochemore [1] proved that there are infinitely many
ternary threshold words containing only two RT(3)-powers, and conjectered a
similar result for quaternary words. As for bigger alphabets, nothing was known
about this type of restrictions up to now.

The aim of this paper is to prove the following theorem, linking up the two
groups of questions mentioned above. Let n ≥ 5. It is easy to see that any
threshold word over n letters contains the factors of the form a1a2 · · · an−1a1
which we call trivial RT(n)-powers. A threshold word is said to be pure if it
contains only trivial RT(n)-powers.

Theorem 1. For any odd n, 7 ≤ n ≤ 101, the set of n-ary pure threshold words
is infinite and, moreover, has exponential growth.

Theorem 1 settles the Exponential conjecture for the listed alphabets and shows
that all non-trivial “threshold” repetitions can be simultaneously avoided by
threshold words. So, threshold languages are big indeed in spite of the fact that
the proof of their infiniteness took 37 years. Also, our proof can be considered
as an alternative proof of Dejean’s conjecture for the listed alphabets. Finally,
it seems very probable that the statement of Theorem 1 can be extended for all
alphabets with at least 5 letters; this is our Conjecture 1.

The text is organized as follows. A new method of constructing threshold
words over the alphabets with at least 5 letters is described in Sect 2. A particular
implementation of this method given in Sect. 3 proves Theorem 1. Note that the
construction is given explicitly, but its validation requires some computer checks
based on standard pattern matching and search algorithms.

2 Uniform Sets

In this section, we show that Dejean’s conjecture and Exponential conjecture can
be confirmed for a given alphabet by constructing a special finite set of threshold
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words. We exhibit “weak” and “strong” version of such sets. Strong version uses
only pure threshold words.

2.1 Preliminaries and Auxiliary Results

We study words over finite alphabets and use standard notions of length, con-
catenation, factor, prefix, suffix, power, period, exponent, etc, see, e.g., [8]. We
write Σn for an unspecified n-letter alphabet, and ∗ for the Kleene star operation
(thus, Σ∗n is the set of all n-ary words, including the empty word λ). The notation
wω stands for the ω-word (i.e., right-infinite word) obtained by concatenating
infinitely many copies of w. We say that words u and w are equivalent and write
u ∼ w if w can be obtained from u by some permutation of the alphabet. Words
u and w are conjugates if u = xy, w = yx for some words x, y. Any factor of w
can be written as w[i...j] for some i, j; w[1...|w|] = w. A suffix of an ω-word can
be written as w[i...].

A word w is a β-power, 1 < β < 2, if w = xyx such that |w|/|xy| = β
and per(w) = |xy| is the minimal period of w. The number ex(w) = |x| is the
excess of w. A word w is unbordered if it cannot be represented as w = xyx for
a non-empty word x. Recall that n-ary threshold words are exactly the words
containing no β-powers for all β greater than the repetition threshold RT(n).

Languages are just the subsets of some Σ∗n. A language is factorial if it con-
tains all factors of every its element, and is symmetric if it contains all words
equivalent to any of its elements. Combinatorial complexity of a language L ⊆ Σ∗n
is the function CL(l) = |L ∩ Σl|. A language is exponential if its combinatorial
complexity has exponential growth.

A substitution over the alphabets Σk, Σn is any function h : 2Σ
∗
k → 2Σ

∗
n

defined by its action on letters as follows:

h(L) =
⋃
w∈L h(w), h(a1 · · · an) = h(a1) · · ·h(an), h(λ) = λ.

If the image of any letter consists of a single word, then h is a morphism. The
tools similar to the following lemma were widely used to prove exponentiality of
languages since [2, 3].

Lemma 1. Let K ⊂ Σ∗k, L ⊂ Σ∗n be symmetric infinite factorial languages, h
be a substitution over the alphabets Σk, Σn such that h(1) = w1, . . . , h(k−1) =
wk−1, h(k) = {wk, w′k} for some words w1, . . . , wk, w

′
k of length m > 1, and

h(K) ⊆ L. Then L has exponential complexity.

Proof. For any u ∈ Σ∗k, one has |h(u)| = 2|u|k , where |u|k is the number of
occurrences of the letter k in u. By condition, if u ∈ K, then all words from
the equivalence class of u belong to K. This class can be partitioned into k sub-
classes of equal size, having h-images of size 2|u|1 , . . . , 2|u|k , respectively. So, if the
equivalence class of u has the cardinality M , then its image has the cardinality

M(2|u|1 + . . .+ 2|u|k)/k ≥M · 2l/k,
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where l = |u|. Since the set K ∩Σl
k is a union of equivalence classes, we have

CL(ml) ≥ |h(K ∩Σl
k)| ≥ CK(l) · 2l/k ≥ 2l/k.

Since m and k are constants while l runs over the set of positive integers, the
function CL grows exponentially.

The function lcp(u, v) [lcs(u, v)] returns the length of the longest common prefix
[resp., suffix] of the words u and v. For a set V , the notation lcp(V ), lcs(V )
refers to the maximums of the corresponding functions over all pairs of distinct
elements of V . We write F(u) [P(u), S(u)] for the set of all factors [resp., prefixes,
suffixes] of the word u. Suppose that V is a nonempty set of words, w ∈ V ∗,
v ∈ V is a factor of w. If w = w1vw2, where w1, w2 ∈ V ∗, then we say that v
occurs as a block in w. The set V is synchronized if for any v ∈ V , w ∈ V ∗, all
occurrences of v in w are blocks.

A set V ⊆ Σ∗n is called 	-uniform if the following conditions are satisfied:
(U1) all words in V have the length 	;
(U2) all words in V are unbordered;
(U3) for any distinct words v1, v2 ∈ V, the word v1v2 is threshold;
(U4) for any distinct words v1, v2, v3 ∈ V, lcs(v1, v2) + lcp(v2, v3) ≤ �

n−1 .

Remark 1. The condition (U3) implies lcp(v1, v2), lcs(v1, v2) ≤ �
n−1 , but for our

purposes, a stronger condition (U4) is needed.

Lemma 2. Any 	-uniform set is synchronized.

Proof. If some occurrence of u in some v ∈ V∗ is not a block, then by (U1) there
exist v1, v2 ∈ V such that v1 has a nonempty suffix x, v2 has a nonempty prefix
y, and xy = u. Neither of the words v1, v2 can be equal to u in view of (U2).
Hence the word v1u contains a square xx, which is impossible by (U3).

Lemma 3. Let V be an 	-uniform set, v1, v2, v3, v4 ∈ V.
(1) if v1 �= v2 and u ∈ F(v1) ∩ F(v2), then |u| ≤ �

n−1 ;

(2) if u = xy such that x, y �= λ, u ∈ F(v1), x ∈ S(v2), y ∈ P(v3), then |u| ≤ �
n−1 ;

(3) if v1 �= v3, v2 �= v4, and u = xy = x′y′ such that x, y, x′, y′ �= λ, x ∈ S(v1),
x′ ∈ S(v3), y ∈ P(v2), y

′ ∈ P(v4), then |u| ≤ 2�
n−1 and x = x′.

Proof. If u ∈ F(v1)∩ F(v2), then each of the words v1v2 and v2v1 has a periodic
factor with the excess |u|. The shortest of these two factors has the period at

most 	. By (U3), |u|� ≤
1

n−1 , whence (1) follows.
Let us prove (2). Put v1 = s1xys2:

x xy y

u u

s1 s2
v1 v2 v3

Then xs1x is a factor of v2v1, while ys2y is a factor of v1v3. If v2 �= v1 �= v3,

then (U3) implies |u| = |x|+ |y| ≤ |s1x|
n−1 + |ys2|

n−1 = �
n−1 .
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If v1 = v2 �= v3, then let s2 = s′2x; the word v2v3 has the factor xys′2xy. From

(U3), we derive |u| = |xy| ≤ |xys′2|
n−1 < �

n−1 . The case v1 = v3 �= v2 is similar to
the above one. Finally, if v1 = v2 = v3, we write v1 = ys′1xys

′
2x to get

|u| = |x|+ |y| ≤ |ys′1x|
n−1 +

|ys′2x|
n−1 = �

n−1 .

The condition of statement (3) is illustrated by the following picture. The re-
quired inequality follows immediately from (1), (2).

x y x′ y′
u u

v1 v2 v3 v4

If |x| > |x′|, as in the picture, then some nonempty suffix of x (and then, of
v1) is a prefix of y′ (and of v4). By (U2), v1 �= v4. The word v1v4 contains a
square in contradiction with (U3). The assumption |x′| > |x| leads to a similar
contradiction. Thus, |x| = |x′|, whence the result.

Lemma 4. Let V be an 	-uniform set, v ∈ V∗, w ∈ F(v), ex(w) > �
n−1 . Then

per(w) ≡ 0 (mod 	).

Proof. Let w = uzu such that |u| = ex(w). If u contains some word v ∈ V,
consider the leftmost occurrences of v in both u’s. The distance between these
occurrences of v in w equals per(w) and is divisible by 	 in view of Lemma 2.

Next we assume that u is a factor of some v ∈ V. Because of the length
argument, u cannot occur in v twice. By Lemma 3(1), u is not a factor of any
other element of V. By Lemma 3(2), u cannot appear on the border of two
elements of V. Hence, the distance between the occurrences of u in w equals the
distance between two blocks v, whence the result.

In the remaining case, Lemma 3(3) is applicable. Namely, u occurs only on the
border of two blocks, and all these occurrences are equally placed with respect
to such a border. So we again have per(w) ≡ 0 (mod 	).

2.2 Weak Sufficient Condition for Exponential Conjecture

From now on, let n ≥ 5. Hence, RT(n) = n
n−1 .

Theorem 2. Let f : Σ∗n+k → Σ∗n (k ≥ 1, n ≥ 5) be an injective morphism such
that V = f(Σn+k) is an 	-uniform set. Then f maps any threshold word over
n+k letters to a threshold word over n letters.

Proof. Let w = a1 . . . at ∈ Tn+k, w′ = f(w) = v1 . . . vt, where f(ai) = vi for all
i. Furthermore, let uzu be a factor of maximum exponent of w′, ex(uzu) = |u|.
Aiming at a contradiction, we assume that exp(uzu) > n

n−1 , i.e., |uz| < (n−1)|u|.
First consider the case |u| > �

n−1 . By Lemma 4, |uz| ≡ 0 (mod 	). Due to the
choice of uzu, the two occurrences of u in w′ are preceded by different letters and
are followed by different letters also. Then these occurrences cannot be proper
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factors of equal blocks. By Lemma 3(1), they cannot be proper factors of differ-
ent blocks as well. Hence, there exists a factor vi . . . vi+j (i, j ≥ 1) of w′ such
that the leftmost occurrence of u begins with a proper (possibly empty) suffix of
vi, contains the blocks vi+1, . . . , vi+j−1, and ends with a proper (possibly empty)
prefix of vi+j , see the picture below. The rightmost occurrence of u is placed in
the same way inside the factor vi′ . . . vi′+j . Thus, |uz| = (i′−i)	. Note that by
the choice of uzu the blocks vi and vi′ are different, as well as the blocks vi+j
and vi′+j . This means, in particular, that the mentioned suffix of vi and the
mentioned prefix of vi+j both have the length at most �

n−1 by Lemma 3(1).

· · ·w′ =

u

vi vi+1 vi+j−1 vi+j

If j = 1, then |u| ≤ 2�
n−1 . Then |uz| < 2	, whence |uz| = 	. So we have i′ = i+1,

and the factor uzu is placed in w′ as follows:

w′ =

u uz

vi vi+1 vi+2

We see that the condition (U4) applied to the words vi, vi+1, and vi+2, contra-
dicts to the assumption |u|> �

n−1 . So, from now on, j > 1. One has |u| ≤ (j−1)	+
2�
n−1 and then |uz| < ((n−1)(j−1) + 2)	. Consider the factor w[i+1...i′+j−1]
having the excess j−1 and the period i′−i = |uz|

� < (n−1)(j−1) + 2. Since w
is a threshold word, i′−i ≥ (n+k−1)(j−1). From the two inequalities on i′−i,
we conclude that k(j−1) < 2, k = 1, j = 2, i′−i = n. Now consider the factor
w[i...i′+j] = aiai+1 . . . ai+n+1ai+n+2. Since any n successive letters in an (n+1)-
ary threshold word are distinct, the equality ai+1 = ai+n+1 implies ai = ai+n+2.
Applying (U4) to the blocks vi+n, vi+n+2 = vi, and vi+2, we improve the upper
bound on the length of u: |u| ≤ 	 + �

n−1 = n�
n−1 . Then |uz| < n	, contradicting

to the previously found equality i′ − i = n. The case is finished.
It remains to consider the case |u| ≤ �

n−1 . We have |uz| < 	 by our assumption.
Hence, u does not meet the conditions of Lemma 3(3). This implies that u is
a factor of some block vi. By the restriction on |uz|, the whole factor uzu is
contained either in vi−1vi or in vivi+1. Then our assumption contradicts to (U3).
The theorem is proved.

Theorem 2 allows one to make the following conclusions about particular cases
of Dejean’s conjecture and Exponential conjecture:

Corollary 1. Suppose that there exists an 	-uniform set V ⊂ Σ∗n of size n+k.
(1) If Dejean’s conjecture holds for n+k, then it holds for n.
(2) If Exponential conjecture holds for n+k, then it holds for n.
(3) If k ≥ 2 and Dejean’s conjecture holds for n+k−1, then Exponential conjec-
ture holds for n.

Proof. Theorem 2 implies that for any N , the number of n-ary threshold words
of length 	N is not less than the number of (n+k)-ary threshold words of length
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N . Statements 1, 2 immediately follow from this. For the last statement, one can
build a substitution of the form described in Lemma 1.

2.3 Strong Sufficient Condition for Exponential Conjecture

In order to prove the cases of Dejean’s conjecture and Exponential conjecture
without assumptions concerning bigger alphabets, we need a stronger version of
	-uniform sets. Let ε ≥ 0. A threshold word w ∈ Σ∗n is said to be ε-threshold if
any factor xyx of w such that |x| ≥ 3 satisfies the inequality

|x|+ε
|xy| ≤

1
n−1 or, equivalently, exp(xyx) ≤ n

n−1 −
ε

per(xyx) . (1)

It can be directly verified that for w, any factor xyx of excess 2 has the period at
least 2n−1. Thus, 0-threshold words are just threshold words, while ε-threshold
words with ε > 0 are pure threshold words having a prescribed “reserve” in the
exponent of long factors. An 	-uniform set V ⊆ Σ∗n is called (	, ε)-uniform if the
following stronger versions of (U3) and (U4) are satisfied:

(U3’) for any distinct words v1, v2 ∈ V, the word v1v2 is ε-threshold;
(U4’) for any distinct words v1, v2, v3 ∈ V, lcs(v1, v2) + lcp(v2, v3) + ε ≤ �

n−1 .

Though there are no morphisms preserving the threshold language Tn [2], the
existence of (	, ε)-uniform sets allows us to build a morphic-like construction
that preserves Tn. A k-valued morphism η over Σn is defined as follows. Take
kn distinct words and assign them to letters, k words per letter; enumerate the
words assigned to each letter a as η0(a), . . . , ηk−1(a). Then the η-image of any
word w is calculated from left to right such that the mth occurrence of a letter
a is replaced by the word ηm mod k(a). Note that a 1-valued morphism is just a
usual injective morphism. A simple example illustrates the introduced notion.

Example 1. Suppose that a 2-valued morphism η over Σ2 is given by η0(1) = 11,
η1(1) = 12, η0(2) = 22, η1(2) = 21. Then η4(1) = 11 12 11 22 12 11 21 22.

Theorem 3. Let η : Σ∗n → Σ∗n (n ≥ 5) be a 3-valued morphism such that the

set V = {ηi(a) | i = 0, 1, 2; a ∈ Σ∗n} is (	, ε)-uniform for ε = lcp(V)+lcs(V)
�−1 . Then η

maps any ε-threshold word to an ε-threshold word.

Proof. Let w = a1 . . . at ∈ Σ∗n be an ε-threshold word, w′ = η(w) = v1 . . . vt,
where vi ∈ {η0(ai), η1(ai), η2(ai)}. We need to check that the exponents of all
factors of w′ satisfy (1). If such a factor is contained in a product of two or
three successive blocks, then it satisfies (1) by (U3’), (U4’), because any three
successive blocks in w′ are different. In particular, all factors of w′ with the
excess at most �

n−1 satisfy (1).

Now let uzu be a factor of w′ such that ex(uzu) = |u| > �
n−1 , and prove (1).

W.l.o.g., assume that uzu is not contained in a longer factor of period |uz|. By
Lemma 4, |uz| ≡ 0 (mod 	). Similarly to the proof of Theorem 2, we conclude
that u is not contained inside any block, and consider two factors of w′. The
factor vi · · · vi+j (i, j ≥ 1) is such that the leftmost occurrence of u begins with
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a proper (possibly empty) suffix of vi, contains the blocks vi+1, . . . , vi+j−1, and
ends with a proper (possibly empty) prefix of vi+j . The factor vi′ · · · vi′+j has
the same properties with respect to the rightmost occurrence of u. Recall that
vi �= vi′ and vi+j �= vi′+j (otherwise, uzu can be extended to a longer word with
the same period).

Let j = 1. Since the considered occurrences of u are preceded by different let-
ters and followed by different letters, we have |u| = lcp(vi+1, vi′+1)+ lcs(vi, vi′) ≤
2�
n−1 − 2ε by (U4’). Hence we immediately get (1) if per(uzu) ≥ 2	. In the case
per(uzu) = 	 one has uzu ∈ F(vivi+1vi+2) and (1) follows from (U4’).

Now let j > 1. Since vi+1 = vi′+1, we have ai+1 = ai′+1. Moreover, since η is
a 3-valued morphism, the letter ai+1 occurs at least two more times between the
two mentioned positions. The distance between the two occurrences of the same
letter in an n-ary threshold word cannot be less than n−1. Hence, i′−i ≥ 3n−3.
Recall that per(uzu) = (i′−i)	, |u| ≤ (j−1)	+ lcp(V)+ lcs(V). Hence, in the case
j ≤ 3 the word uzu satisfies (1), because lcs(V ), lcs(V ) ≤ �

n−1 by Remark 1.
Now let j ≥ 4. Then, the excess of the factor w[i+1...i′+j−1] is at least 3. Since
the word w is ε-threshold, we obtain j−1+ε

i′−i ≤ 1
n−1 by (1). Now we finish the

proof confirming the condition (1) for uzu:

|u|+ε
|uz| ≤

(j−1)�+lcp(V)+lcs(V)+ε
(i′−i)� = (j−1)�+ε�

(i′−i)� = j−1+ε
i′−i ≤ 1

n−1 .

Corollary 2. Let V ⊂ Σ∗n be an (	, ε)-uniform set, where ε = lcp(V)+lcs(V)
�−1 .

(1) If |V| = 3n, then Dejean’s conjecture holds for n.
(2) If |V| > 3n, then Exponential conjecture holds for n.

Proof. Theorem 3 implies that for any N , the number of ε-threshold n-ary words
of length 	N is not less than the number of such words of length N . Statement 1
follows from this. Having one more word in V, one can build an analog of the
substitution from Lemma 1 and use the same argument to get statement 2.

3 Construction of Uniform Sets

In this section, we present a method of building (	, ε)-uniform sets of required
cardinality by means of sets of their ternary codes. A particular implementation
of this method (Sect. 3.2) proves Theorem 1. Ternary encoding of threshold
words [15] is a variation of the Pansiot encoding [11].

3.1 Ternary Encoding and Its Properties

In n-ary threshold words, two successive occurrences of a letter are at the dis-
tance n−1, n, or n+1, and are followed by different letters. Then a threshold
word u = a1 · · · al can be uniquely encoded by its first n letters and a ternary
codeword w = b1 · · · bl−n over the auxiliary alphabet Δ = { , , } such that

bi = [resp., , ] if ai+n = ai+1 [resp., ai+n = ai, ai+n = ai−1]. The
notation refers to the “cylindric representation” of threshold words, see [15].
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Remark 2. In fact, three words participate in the encoding procedure: the initial
segment u′ = u[1...n], the encoded part u′′ = u[n+1...l], and the codeword w.
Any two of these words uniquely determine the third one. So, it is convenient to
“factor out” the initial segment and say that u′′ encodes to w [starting with u′]
and w decodes to u′′ [starting with u′]. In this way, encoding and decoding are
length-preserving functions.

It is easy to see that if w ∈ Δ∗ encodes a threshold word, then in it is always
followed by , is always preceded by (we denote each such pair as ),

and is always followed by . Below we refer to the words satisfying these
conditions as Δ-words. We call a Δ-word whole if it is of the form · · · ,
· · · , or · · · . Let w be a whole word. Then wω is an infinite Δ-word.
Let π be an arbitrary permutation of Σn, i.e., an element of the symmetric

group Sn. We consider π as a word of length n and denote by μ(π,w) the word
encoded by a Δ-word w starting with π. If w ∈ Δ∗ is a whole word, then for
any π ∈ Sn the word μ(π,w) ends with a permutation. Thus, we can identify w
with a permutation mapping π to the suffix of μ(π,w) of length n. Let kw be
the order of this permutation (we refer to kw as the order of w). Then the word
μ(π,wkw ) ends with π. Hence, we get the following lemma.

Lemma 5. For any whole word w ∈ Δ∗ and any π ∈ Sn, one has μ(π,wω) =
ŵω, where ŵ = μ(π,wkw ).

We say that the word ŵ from Lemma 5 is the word generated by w. Since the
avoidance properties of such words are independent of π, we suggest by default
that π is the identity permutation 1n. We prove two more simple properties,
followed by the main result of this subsection.

Lemma 6. If two whole words are conjugates, then their orders coincide.

Proof. If some words w and u are conjugates, then so are their powers; so, we
can write wkw = xy and ukw = yx. Since xy acts as the identity permutation,
the same holds for yx.

Lemma 7. If whole words u and w are conjugates, then the word generated by
u is equivalent to a conjugate of the word generated by w.

Proof. Let w = xy and u = yx be whole words. Then the ω-words wω and uω are
suffixes of each other. The word x, acting as a permutation, maps π to some σ.
Thus, the ω-words μ(π,wω) and μ(σ, uω) are suffixes of each other as well. Since
u and w have the same order k by Lemma 6, the words μ(π,wk) and μ(σ, uk) are
conjugates. The words μ(σ, uk) and μ(π, uk) are equivalent, whence the result.

Lemma 8. Suppose a whole word w of order k ≥ 3 generates an ε-threshold
word for some ε ≥ 0. Then any whole word which is a conjugate of w also
generates an ε-threshold word.

Proof. In all words generated by ternary codewords, the factors of excess 1 and
2 have exponents at most n

n−1 . If the statement of the lemma fails, some word
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generated by a (whole) conjugate of w has a factor uzu, ex(uzu) = |u| ≥ 3
such that exp(uzu) > exp(s) for any factor s of ŵ with excess |u|. W.l.o.g.,
exp(uzu) ≥ exp(x) for any factor x with excess |u| of any word generated by a
whole conjugate of w. Note that uzu is equivalent to a factor of ŵω by Lemma 7.

Recall that ŵ = v1 . . . vk, where vi ∼ v2 ∼ . . . ∼ vk, since all these blocks are
decoded from w. Moreover, for any positive integer m, the ω-word ŵω [ml+1...],
where l = |vi|, is generated by wω and hence is equivalent to ŵω . In particular,
any k successive blocks in ŵω constitute a word which is equivalent to ŵ. Fur-
thermore, we have, for anym and i, ŵω [ml+i...] ∼ ŵω [i...]. So, a word equivalent
to uzu begins inside v1. W.l.o.g., we assume that this word is uzu itself. Since
|uzu| ≤ lk and uzu is not a factor of ŵ, the word uzu must occur in ŵω as in
the following picture.

ŵω =

u uz

v1 v2 vk vk+1
· · ·

Since vk+1 . . . v2k = v1 . . . vk, one more occurrence of u begins inside the block
vk+1, so we can add a few details to the previous picture:

ŵω =

u uz z′ u

x xy yx′ y′

v1 vk+1
· · ·

ŵ ŵ

We see that |z′| ≤ l−2. On the other hand, |z| ≤ |z′| by the choice of uzu.
Let us write u = xy = x′y′, where x is the prefix of u contained in v1 and y′ is

the suffix of u contained in vk+1 (see the picture above). Since ŵ is a threshold
word by the conditions of the lemma, we have exp(uzx′), exp(yzu) ≤ n

n−1 . Thus,
(n−1)|x′|, (n−1)|y| ≤ |u|+ |z|. By simple transformations, we get

|x′| ≤ |y′|+|z|
n−2 , |y| ≤ |x|+|z|

n−2 ; (2)

in particular, |x′|, |y| < l. Note that yzx′ is a product of blocks. Hence, if z
is a factor of a block, then yzx′ is a block. But then k = 2, contradicting to
the conditions of the lemma. Therefore, z should occur at the border of two
blocks, and yzx′ equals the product of these two blocks. Recall that |z| ≤ |z′| =
l − |y′| − |x|. Since n ≥ 5, from these conditions and (2) we obtain

l < 2(n−2)l−l
n−1 = (n−2)(|y|+|z|+|x′|)−|z′|−|y′|−|x|

n−1 ≤

≤ (n−2)|z|+|x|+|z|+|y′|+|z|−|z′|−|y′|−|x|
n−1 ≤ |z|,

contradicting to the condition |z| ≤ l−2 obtained above. The lemma is proved.

Lemma 8 suggests a way to construct (	, ε)-uniform sets: find a whole word
w which generates an ε-threshold word of length 	 over a given alphabet, and
choose the other elements of the required set among the words generated by the
conjugates of w. All these words have length 	 by Lemma 6 and are ε-threshold by
Lemma 8. So, the problem is to choose such an “axial” word and its conjugates in
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a way that ensures the fulfilment of conditions (U2), (U3’), and (U4’). Below we
introduce an axial word that defines (	, ε)-uniform sets over odd-size alphabets.

3.2 Axial Words for Odd-Size Alphabets

Fix an odd number n ≥ 5. For any odd j ≥ 1, let dj = ( )(n+j−4)/2 .
Then one has |dj | = n+j. We call the words dj inner blocks. Furthermore,
we define outer blocks ri = d7d1d5d2i+7d1d7 and r′i = d7d1d2i+7d5d1d7 for
all numbers i = 1, . . . ,m = (n−3)/2. Finally, the n-ary axial word w1 =
r1r
′
1r1r2 · · · rmr1r′1r′1r′2 · · · r′m consists of n+1 outer blocks. Note that |ri| = |r′i| =

6n+ 28 + 2i, and then

|w1| = (6n+ 28)(n+ 1) + 8 + 2(2 + 4 + . . .+ 2m) = 13n2/2 + 32n+ 75/2.

Now consider the following conjugates of the n-ary axial word:

- the words w2, . . . , wn+1, obtained by cyclic shifts of w1 by an integer number
of outer blocks (the words w1, . . . , wn+1 are referred to as “type 0” words);

- the words w−j and w+
j , where j = 1, . . . , n+1, obtained by a cyclic shift of

the word wj by the inner block d7 to the left (“type –” words) and to the
right (“type +” words), respectively.

Let W = {w1, . . . , wn+1, w
−
1 , . . . , w

−
n+1, w

+
1 , . . . , w

+
n+1}. Theorem 1 follows from

the next proposition and Corollaries 2 (2) and 1 (2) [resp., for n ≥ 9 and n = 7].

Proposition 1. Suppose that n is a fixed odd number, 7 ≤ n ≤ 101, k is the
order of the n-ary axial word, ŵ = μ(1n, w

k) for all w ∈ W , Ŵ = {ŵ | w ∈ W},
	 = |ŵ|, and ε = lcp(Ŵ )+lcs(Ŵ )

�−1 . Then the set Ŵ is (	, ε)-uniform if n ≥ 11,
contains an (	, ε)-uniform subset of cardinality 28 if n = 9, and an (	, ε)-uniform
subset of cardinality 9 if n = 7.

Our Conjecture 2 states that the set Ŵ from Proposition 1 is (	, ε)-uniform
for any odd n ≥ 11. If it holds true, it implies Conjecture 1 for all mentioned
alphabets.

Proof (of Proposition 1, sketched). First we calculate k with the aid of computer,
getting k ≥ 4. Next we check the condition (U4’). Note that two words from
Ŵ have a common prefix or suffix of length t if and only if their codewords
have a common prefix [resp., suffix] of this length. The maximum of the sum
S(w,w′, w′′) = lcp(w,w′) + lcp(w′, w′′) over all triples of distinct words from
W equals S(w3, wm+5, wm+4) = 24n + 116. This is less by more than a unit
than 	/(n−1) = k(13n/2 + 77/2 + 76/(n−1)) if k ≥ 4. Since ε < 1, we obtain
(U4’). Note that (U2) follows from (U3’) and the structure of Ŵ . Indeed, if
ŵ = xyx ∈ Ŵ , then |x| ≤ |ŵ|/n and most conjugates of ŵ contain the square
xx. Then some word from W generates a word containing a square equivalent
to xx (Lemma 6), a contradiction.

So, it remains to establish (U3’). Since k may be quite big, a direct computer
search does not look feasible. We shrink the size of this search to a polynomial
in n using the following technical lemma and then apply computer.
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Lemma 9. A subset Ŵ ′ of Ŵ satisfies the condition (U3’) if
(a) different elements of Ŵ ′ are not conjugates, and
(b) for any ŵ �= ẑ ∈ Ŵ ′, the word μ(1n, w

4z4) is ε-threshold.

The condition (b) can be checked in time polynomial in n and independent of
k. In fact, this lemma states that if a sufficiently long factor occurs twice in the
word ŵẑ, then these two words are conjugates. The check of conjugacy can be
further simplified with the help of Lemma 7. Finally, this check can also be made
in O(np) time for some p.

We verified the conditions of Lemma 9 for 5 ≤ n ≤ 101. For n ≥ 11, the whole
setW is (	, ε)-uniform. For n = 9, we found an (	, ε)-uniform subset of size 3n+1.
So, in this cases Theorem 1 is obtained through Corollary 2 (2). For n = 7, (	, ε)-
uniform subsets are much smaller, but still enough to prove Theorem 1 through
Corollary 1 (2). For n = 5, the maximal (	, ε)-uniform subsets are of size 6 for
ε = 0 and even less for ε > 0; this is not enough to “descent” from n + 2 = 7
through Corollary 1 (2). Finally, we note that the upper bound 101 is the limit of
interest rather than the limit of feasibility: the next step in this direction should
be an analytic proof for this (or some other) construction and arbitrarily big
alphabets.
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Abstract. We present a monadic second-order logic which is extended
by an expected value operator and show that this logic is expressively
equivalent to probabilistic automata for both finite and infinite words. We
give possible syntax extensions and an embedding of our probabilistic
logic into weighted MSO logic. We further derive decidability results
which are based on corresponding results for probabilistic automata.

1 Introduction

Probabilistic automata, introduced already by Rabin [19], form a flourishing field.
Their applications range from speech recognition [20] over prediction of climate
parameters [17] to randomized distributed systems [11]. For surveys of theoretical
results see the books [18,5]. Recently, the concept of probabilistic automata has
been transfered to infinite words by Baier and Grösser [1]. This concept led to
further research [2,7,8,9,10,22].

Though probabilistic automata admit a natural quantitative behavior, namely
the acceptance probability of each word, the main research interest has been to-
wards qualitative properties (for instance the language of all words with positive
acceptance probability). We consider the behavior of a probabilistic automaton
as function mapping finite or infinite words to a probability value. In spite of
the paramount success of Büchi’s [4] and Elgot’s [14] characterizations of rec-
ognizable languages by MSO logic, no logic characterization of the behavior of
probabilistic automata has been found yet.

We solve this problem by defining a probabilistic extension of MSO logic.
Our probabilistic MSO (PMSO) logic is obtained from classical MSO logic by
adding a second-order expected value operator�pX . In the scope of this operator,
formulas x ∈ X are considered to be true with probability p. The semantics of
the expected value operator is then defined as the expected value over all sets. We
illustrate our logic by an example of a communication device with probabilistic
behavior, which can be modeled in PMSO.

In our main result, we establish the desired coincidence of behaviors of proba-
bilistic automata and semantics of probabilistic MSO sentences. Our proof also
yields a characterization of probabilistically recognizable word functions in terms
of classical recognizable languages and Bernoulli measures. We show that every
PMSO formula admits a prenex normal form, which is similar to existential MSO.
Furthermore we give possible syntax extensions which do not alter the expressive-
ness of PMSO. Weighted MSO is another quantitative extension of MSO logic.
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As shown in [12], a restricted form of weighted MSO is expressively equivalent
to weighted automata for finite and infinite words. For finite words, probabilis-
tic automata can be viewed as special case of weighted automata. We give a
direct embedding of PMSO into the restricted fragment of weighted MSO, thus
obtaining PMSO as a special case of weighted MSO.

There are many decidability results already known for probabilistic automata
on finite [15] and infinite words [2,9,10]. By the expressive equivalence of proba-
bilistic automata and PMSO, we obtain these results also for PMSO. For instance,
it is decidable for a given formula whether there is a finite word with positive
or almost sure semantics. On the downside, it is undecidable for a given formula
whether there is a finite word with semantics greater than some non-trivial cut
point, or if there is an infinite word with semantics equal to one.

2 Bernoulli Measures and Probabilistic Automata

For the rest of this work let Σ be a finite alphabet. We let Σ+ be the set of all
finite, non-empty words over Σ, and Σω the set of all infinite words over Σ. If
w ∈ Σ+ is a finite word we write |w| for its length. If w ∈ Σω we let |w| = ω. For
convenience we write Σ∞ if either Σ+ or Σω can be used. For a word w ∈ Σ∞

let dom(w) be � if w ∈ Σω and {1, . . . , |w|} otherwise.
For two words u = (ui)i∈dom(u) ∈ Σ∞

1 and v = (vi)i∈dom(v) ∈ Σ∞
2 with

dom(u) = dom(v) we define the word (u, v) as ((ui, vi))i∈dom(u) ∈ (Σ1 × Σ2)∞.
Given a set X and a subset Y ⊆ X let �Y : X → {0, 1} be the characteristic

function of Y , i.e. �Y (x) = 1 if x ∈ Y and �Y (x) = 0 otherwise. In the case
X = �, �Y is also interpreted as ω-word over {0, 1}. Also for f : X → � let
supp(f) = {x ∈ X | f(x) = 0}.

A σ-field over a set Ω is a system A of subsets of Ω which includes the empty
set and is closed under complement and countable union. The pair (Ω, A) is
called a measurable space. A measure on A is a mapping μ : A → [0, ∞] such
that μ(∅) = 0 and μ(

⋃
i≥1 Mi) =

∑
i≥1 μ(Mi) for pairwise disjoint Mi ∈ A. If

μ(Ω) = 1, μ is called a probability measure.
Let (Ω′, A′) be another measurable space. A function f : Ω → Ω′ is A-A′-

measurable if f−1(M ′) ∈ A for every M ′ ∈ A′. Now let f be A-A′-measurable
and μ a measure on A. The image measure of μ under f is the measure μ ◦ f−1

on A′ defined by (μ ◦ f−1)(M ′) = μ(f−1(M ′)) for all M ′ ∈ A′.
A measurable function s : Ω → � of the form s =

∑n
i=1 ri�Mi for ri ≥ 0 and

Mi ∈ A is called simple. The integral of s is defined by
∫

s dμ =
∑n

i=1 ri · μMi.
For an arbitrary A-Borel(�)-measurable function f : Ω → [0, ∞] the integral is
then given by∫

f dμ =
∫

Ω

f(x) μ(dx) = sup
{∫

s dμ

∣∣∣∣ 0 ≤ s ≤ f, s simple
}

.

2.1 Bernoulli Measures

Let X be a finite set. We denote the product σ-field
⊗∞

i=1 P(X) on the base set
Xω by AX . Then AX is the σ-field generated by all cones xXω for x ∈ X∗. As
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the system of all cones is closed under intersection, any two measures that agree
on all cones are equal by standard measure theory.

For a probability distribution p = (px)x∈X on X let �X
p be the corresponding

probability measure on P(X), i.e. �X
p ({x}) = px for all x ∈ X . If X = {0, 1}

and p ∈ [0, 1], we simply write �p for �{0,1}
(1−p,p), i.e. �p({1}) = p.

The Bernoulli measure BXω

p is defined as the product measure
⊗∞

i=1�
X
p . It is

explicitly given by BXω

p (x1 · · · xkXω) =
∏k

i=1 pxi , for all cones x1 · · · xkXω ∈ AX .
Hence BXω

p is a probability measure on AX . In the case X = {0, 1} and for
p ∈ [0, 1] we write Bω

p for B{0,1}ω

(1−p,p). For more background information on Bernoulli-
and product measures see for example [16, Theorem 1.64].

A binary sequence m = (mi)i∈dom(m) ∈ {0, 1}∞ corresponds bijectively to
the set supp(m) = {i ∈ dom(m) | mi = 1}. We define Aω as the σ-field on P(�)
generated by supp, i.e. Aω = supp(A{0,1}). Note that Aω is actually a σ-field,
as supp is bijective. The Bernoulli measure Bω

p is also transfered to Aω by supp,
i.e. Bω

p ◦ supp−1 is a measure on Aω. We will denote this measure also by Bω
p .

Let n ∈ �. It is also possible to define a Bernoulli measure on the finite σ-
field P(Xn). The measure BXn

p is defined as the finite product
⊗n

i=1�
X
p . The

measure Bn
p on {0, 1}n resp. P({1, . . . , n}) is defined analogously to the infinite

case: Bn
p = B{0,1}n

(1−p,p) resp. Bn
p = B{0,1}n

(1−p,p) ◦ supp−1.

2.2 Probabilistic Automata

A probabilistic automaton A is given by a quadruple (Q, δ, μ, F ), where

– Q is a finite set of states
– δ : Q × Σ × Q → [0, 1] is the transition probability function such that∑

q∈Q δ(r, a, q) = 1 for every r ∈ Q and a ∈ Σ
– μ : Q → [0, 1] is the initial distribution such that

∑
q∈Q μ(q) = 1

– F ⊆ Q is the set of final states.

For a word w = w1 . . . wk ∈ Σ+ we define the behavior ‖A‖ : Σ+ → [0, 1] of A by

‖A‖(w) :=
∑

q0,...,qk−1∈Q
qk∈F

μ(q0)
k∏

i=1
δ(qi−1, wi, qi),

for each w ∈ Σ+. It follows that ‖A‖(w) ∈ [0, 1] for every w ∈ Σ+.
We call a function S : Σ+ → [0, 1] probabilistically recognizable if there is a

probabilistic automaton A such that S = ‖A‖.

2.3 Probabilistic ω-Automata

Probabilistic ω-automata are a generalization of deterministic ω-automata. A
probabilistic Muller-automaton A over an alphabet Σ is a quadruple (Q, δ, μ, F),
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where Q, δ, μ are defined as in the finite case and F ⊆ P(Q) is a Muller accep-
tance condition (cf. [1]).

For an infinite run ρ ∈ Qω let inf(ρ) denote the set of states which occur
infinitely often in ρ. We say the run ρ is successful, if inf(ρ) ∈ F . For each word
w = w1w2 . . . ∈ Σω we define a probability measure �w

A on the σ-field AQ by

�
w
A(q0 . . . qkQω) := μ(q0) ·

k∏
i=1

δ(qi−1, wi, qi).

By standard measure theory, there is exactly one such probability measure �w
A.

The behavior ‖A‖ : Σω → [0, 1] of A is then given by

‖A‖(w) :=�w
A

(
ρ ∈ Qω ; inf(ρ) ∈ F),

i.e. ‖A‖(w) is the measure of the set of all successful runs.
We call a function S : Σω → [0, 1] probabilistically ω-recognizable if there is a

probabilistic Muller-automaton A such that S = ‖A‖.

3 Syntax and Semantics of PMSO

This section first introduces assignments and encodings. Using these definitions
we will define the syntax and semantics of probabilistic MSO (PMSO) logic.
Afterwards, we will give first semantic equivalences and consider possible syntax
extensions.

3.1 Assignments and Encodings

For a uniform treatment of semantics we introduce assignments and their encod-
ings. Let V1 be a finite set of first order variable symbols and V2 a disjoint finite
set of second order variable symbols. We write V for V1 ∪̇ V2. Let w ∈ Σ∞ be
a word. A mapping α : V → dom(w) ∪ P(dom(w)) is called a (V , w)-assignment
if α(V1) ⊆ dom(w) and α(V2) ⊆ P(dom(w)). For i ∈ dom(w) and x ∈ V1 the
assignment α[x → i] denotes the (V ∪ {x}, w)-assignment which assigns x to i
and agrees with α on all other variables. Likewise for M ⊆ dom(w) and X ∈ V2
the (V ∪ {X}, w)-assignment α[X → M ] assigns X to M and agrees with α
everywhere else. We write α[L1 �→ R1, . . . , Ln �→ Rn] for the chained assignment
α[L1 �→ R1] · · · [Ln �→ Rn].

We encode assignments as words as usual. The extended alphabet ΣV is de-
fined as Σ ×{0, 1}V. Let w = ((wi, αi))i∈dom(w) ∈ Σω

V and w = (wi)i∈dom(w). We
say w encodes an (V , w)-assignment α if for every x ∈ V1 there is exactly one po-
sition j such that αj(x) = 1. In this case α(x) is then the unique position i with
αi(x) = 1 and, for X ∈ V2, α(X) is the set of all positions j′ with αj′ (X) = 1.
We denote the set of all valid encodings by NV ⊆ Σ∞

V .
Likewise every pair of a word w ∈ Σ∞ and a (V , w)-assignment α can be

encoded as a word in NV in the obvious way. We will use (w, α) to describe both
the pair and its encoding as word depending on the context.
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Table 1. PMSO semantics

[[Pa(x)]](w, α) =

⎧⎨
⎩1, if wα(x) = a

0, otherwise
[[x ≤ y]](w, α) =

⎧⎨
⎩1, if α(x) ≤ α(y)

0, otherwise

[[x ∈ X]](w, α) =

⎧⎨
⎩1, if α(x) ∈ α(X)

0, otherwise

[[¬ϕ]](w, α) = 1 − [[ϕ]](w, α)
[[ϕ1 ∧ ϕ2]](w, α) = [[ϕ1]](w, α) · [[ϕ2]](w, α)

[[∀x.ϕ]](w, α) =

⎧⎨
⎩1, if [[ϕ]](w, α[x → i]) = 1 for all i ∈ dom(w)

0, otherwise

[[∀X.ϕ]](w, α) =

⎧⎨
⎩1, if [[ϕ]](w, α[X → M ]) = 1 for all M ⊆ dom(w)

0, otherwise

[[�pX.ϕ]](w, α) =
∫

P(dom(w))
[[ϕ]](w, α[X �→ M ]) B|w|

p (dM)

3.2 Boolean PMSO

Following an idea from [3], we define the syntax of Boolean PMSO (bPMSO) by

ψ ::= Pa(x) | x ∈ X | x ≤ y | ψ ∧ ψ | ¬ψ | ∀x.ψ | ∀X.ψ,

for x, y ∈ V1, X ∈ V2 and a ∈ Σ.
The set Free(ψ) of free variables in ψ is defined as usual.
The semantics [[ψ]] of a Boolean PMSO formula ψ maps a pair (w, α) of a

word w ∈ Σ∞ and a (V , w)-assignment α with Free(ψ) ⊆ V to a value in [0, 1].
The inductive definition of the semantics is given in the upper part of Table 1.
It easily follows by structural induction that [[ψ]](w, α) ∈ [0, 1].

Boolean PMSO corresponds essentially to the classical MSO. Disjunction and
existential quantification can be obtained from the defined operators as usual.

3.3 Full PMSO

We will now extend Boolean PMSO to full PMSO. The syntax of a PMSO
formula ϕ is given in BNF by

ϕ ::= ψ | ϕ ∧ ϕ | ¬ϕ | �pX.ϕ,

where ψ is a Boolean PMSO formula, X ∈ V2, and p ∈ [0, 1] is a real number. In
other words, we have added an “expected value” operator �p to Boolean PMSO
and permit conjunction, negation and expected value as logical operations. The
set of free variables of the expected value operator is

Free(�pX.ϕ) := Free(ϕ) \ {X} .

The semantics of a PMSO formula is given in the full Table 1.
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In order for [[�pX.ϕ]] to be well-defined, one must and can show, that the
function M �→ [[ϕ]](w, α[X �→ M ]) is Aω-measurable and integrable for all (w, α).
This is a consequence of the measurability of all ω-recognizable sets (cf. [3,23])
and of Fubini’s theorem.

In case of finite words, the semantics of �pX.ϕ can be rewritten to

[[�pX.ϕ]](w, α) =
∑

M⊆dom(w)

[[ϕ]](w, α[X �→ M ]) · p|M|(1 − p)|w|−|M|.

Next we give an intuitive argument for the semantics of �pX.ϕ. The classical
existential quantifier states the existence of a set which satisfies the quantified
formula. Here, for the expected value operator sets are chosen using a stochastic
process: For every position k we make a probabilistic choice whether k should
be included in the set or not, where the probability of inclusion is p. This choice
is independent from the other positions. Such a process can be considered as
tossing an unfair coin for every position k to decide whether k ∈ X holds. The
semantics of the expected value operator is then the expected value of [[ϕ]] under
this distribution. If ϕ is Boolean, this value can be considered as the probability
that (w, α[X �→ M ]) satisfies ϕ for an arbitrary set M .

The semantics of a PMSO formula ϕ transfers to the extended alphabet ΣV
with Free(ϕ) ⊆ V as follows. We define [[ϕ]]V : Σ∞

V → � by

[[ϕ]]V(w) :=

{
[[ϕ]](w, α), if w ∈ NV and w = (w, α)
0, otherwise.

We will use some common abbreviations:

(ϕ ∨ ψ) := ¬(¬ϕ ∧ ¬ψ), (ϕ → ψ) := ¬(ϕ ∧ ¬ψ),
(∃x.η) := ¬∀x.¬η, (∃X.η) := ¬∀X.¬η,

for formulas ϕ, ψ ∈ PMSO and η ∈ bPMSO. Note that if ϕ and ψ are Boolean
PMSO formulas, then the abbreviated formulas are again Boolean.

From the definition the semantics of ϕ∨ψ is [[ϕ ∨ ψ]] = [[ϕ]]+[[ψ]]−[[ϕ]][[ψ]]. This
is analogous to the fact that that the probability of the union of two independent
events A and B is �(A ∪ B) = �(A) +�(B) −�(A)�(B).

The following example demonstrates the use of PMSO logic using a model of
a communication device.

Example 1. We consider a communication device for sending messages. At every
point of time either a new input message becomes available or the device is
waiting for a new message. When a new message is available the device tries to
send this message. Sending a message may fail with probability 1/3. In this case
the message is stored in an internal buffer. The next time the device is waiting for
a message, sending the stored message is retried. Intuitively, as sending a buffered
message has already failed once, it seems to be harder to send this message. So
sending a buffered message is only successful with probability 1/2. The buffer can
hold one message.
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The PMSO sentence below defines for every sequence of message input (i) and
wait (w) cycles the probability that this sequence will not overflow the device’s
buffer. In this sentence the set variable I contains all positions (i.e. points of time)
where sending an input message is successful, B all positions where sending a
buffered message is successful, and F all positions where the buffer is full.

�2/3I.�1/2B.∃F.1 ∈ F ∧ ∀x.∀y.y = x + 1 →(
(Pw(x) ∧ x ∈ B) → (x ∈ F ↔ y ∈ F )

)∧((Pw(x) ∧ x ∈ B) → y ∈ F
) ∧(

(Pi(x) ∧ x ∈ I) → (x ∈ F ↔ y ∈ F )
)∧((Pi(x) ∧ x ∈ I) → (x ∈ F ∧ y ∈ F )

)
3.4 Basic Properties of PMSO Semantics

The following consistency lemma is a fundamental property.

Lemma 1. Let ϕ be a PMSO formula, w ∈ Σ∞, V a finite set of variables such
that Free(ϕ) ⊆ V, and α a (V , w)-assignment. Then [[ϕ]](w, α) = [[ϕ]](w, α|Free(ϕ)).

As usual we call PMSO formula ϕ a PMSO sentence if Free(ϕ) = ∅. As a con-
sequence of Lemma 1, if ϕ is a PMSO sentence, we define [[ϕ]](w) as [[ϕ]](w, α)
where α is an arbitrary (V , w)-assignment.

For two PMSO formulas ϕ and ψ we write ϕ ≡ ψ, if [[ϕ]] = [[ψ]] holds. It
follows from the semantics definition that the usual associativity, commutativity,
and distributivity laws also hold for PMSO logic. For distributivity the outer
formula has to be a Boolean one, i.e. ϕ ∧ (ψ1 ∨ ψ2) ≡ (ϕ ∧ ψ1) ∨ (ϕ ∧ ψ2) only
if ϕ ∈ bPMSO. For formulas containing the expected value operator, we obtain
new equivalences:

¬�pX.ϕ ≡ �pX.¬ϕ, �pX.(ϕ ∧ ψ) ≡ ϕ ∧�pX.ψ if X ∈ Free(ϕ),
�pX.�qY.ϕ ≡ �qY.�pX.ϕ, �pX.ϕ ≡ ϕ if X ∈ Free(ϕ).

Note that contrary to classical quantifiers, pulling negation out of the expected
value operator does not change the operator at all.

These equivalences allow us to transform PMSO formulas to a simpler form.
We say a formula ϕ is in prenex normal form if it of the form

ϕ = �p1X1. . . .�pk
Xk.ϕ0

for a bPMSO formula ϕ0, real values p1, . . . , pk ∈ [0, 1], and distinct second order
variables X1, . . . , Xk.

Lemma 2. Let ϕ be a PMSO formula, then there is an equivalent PMSO for-
mula ϕ′ in prenex normal form.

3.5 Syntax Extensions

We discuss three possible syntax extensions in this section. extensions do not
alter the expressiveness of PMSO.
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Probability Constants. For a real number p ∈ [0, 1], we add the formula “p”
to PMSO and define the semantics by [[p]](w, α) = p for all w ∈ Σ∞ and all
(V , w)-assignments α. Then p can be expressed in PMSO by �pX.1 ∈ X .

An Extended First Order Universal Quantifier. As for weighted MSO
(see Section 5), it is possible to extend the syntax and semantics of the universal
first order quantifier in PMSO to PMSO formulas ϕ by

[[∀x.ϕ]](w, α) :=
∏

i∈dom(w)

[[ϕ]](w, α[x �→ i]).

Unfortunately it follows using a shrinkage argument that this form of the uni-
versal quantifier does not preserve recognizability. Therefore we restrict ϕ to
particular formulas, which we define next.

A step formula is a PMSO formula ϕ such that there are bPMSO formu-
las ϕ1, . . . , ϕn and real numbers p1, . . . , pn ∈ [0, 1] such that ϕ is equivalent to∧n

i=1(ϕi → pi). When this condition is satisfied ∀x.ϕ can be rewritten as

�p1 X1. . . .�pnXn.∀x.

n∧
i=1

(ϕi → x ∈ Xi),

for new second order variables X1, . . . , Xn.

A First Order Expected Value Operator. In the case of infinite words, it is
possible to define a first order expected value operator with reasonable semantics.

Let ϕ be a PMSO formula, p ∈ (0, 1), and x a first order variable. We define

�px.ϕ :=�pX.ϕ̃,

where ϕ̃ is obtained from ϕ by replacing every occurrence of x with min X . Note
that, though “min X” is not valid PMSO syntax, it is a well-known MSO property
and thus expressible in PMSO. Also {∅} is a Bω

p -null set.
To express the semantics of the just defined operator in a natural way, we intro-

duce the geometric distribution on �. For p ∈ (0, 1) let Gp

({n}) = (1 − p)n−1p.
Intuitively, Gp({n}) is the probability to get one success after n experiments in
an infinitely running Bernoulli experiment. It follows that Gp = Bω

p ◦ min−1. We
apply this equality to �px.ϕ and obtain

[[�px.ϕ]](w, α) =
∫
�

[[ϕ]](w, α[x �→ i]) Gp(di).

4 Equivalence of PMSO and Probabilistic Automata

Our main theorem establishes the desired expressive equivalence of PMSO sen-
tences and probabilistic automata for both cases of finite and infinite words.
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Theorem 1. Let Σ be an alphabet.
1. A function S : Σ+ → [0, 1] is probabilistically recognizable iff there is a PMSO

sentence ϕ such that [[ϕ]] = S.
2. A function S : Σω → [0, 1] is probabilistically ω-recognizable iff there is a

PMSO sentence ϕ such that [[ϕ]] = S.
We will sketch the proof of Theorem 1 for infinite words in the rest of this section.
The finite case is analogous.

For the rest of the section we write simply Bp for the Bernoulli measure if the
base set is understood.

4.1 Characterization by Bernoulli Measures
We give a characterization of probabilistically recognizable functions using
Bernoulli measures. This characterization could be of independent interest.
Theorem 2. A function S : Σω → [0, 1] is probabilistically ω-recognizable iff
there is an alphabet Γ , a distribution p on Γ and an ω-recognizable language
L ⊆ (Σ × Γ )ω such that

S(w) = Bp

({u ∈ Γ ω | (w, u) ∈ L}), (1)

for all w ∈ Σω.
Equation 1 means that S is an image measure. Indeed if θw(u) = (w, u), then
(1) can be written as S(w) = Bp ◦θ−1

w (L).
Proof. Given a probabilistic ω-automaton A = (Q, δ,�{ι}, F) we use an enumer-
ation 0 = d0 < . . . < dn = 1 of the set {∑q

i=1 δ(p, a, q) | p, q ∈ Q, a ∈ Σ}∪{0} to
define Γ :={1, . . . , n} and p by pk :=dk−dk−1 for all k ∈ Γ . We construct a Muller-
automaton B = (Q, T, ι, F) from A such that

∑
u∈Γ, (p,(a,u),q)∈T = δ(p, a, q) and

define L as the language accepted by B.
Conversely, given a Muller-automaton B = (Q, T, ι, F), we construct a prob-

abilistic Muller-automaton A which recognizes S. We define A := (Q, δ,�{ι}, F)
where δ(p, a, q) :=

∑
u∈Γ, (p,(a,u),q)∈T pu. ��

The last theorem used a Bernoulli measure on a finite, but arbitrary large, set Γ .
In PMSO only Bernoulli measures on the two element set {0, 1} are available.
Corollary 1. A function S : Σω → [0, 1] is probabilistically ω-recognizable iff
there are a natural number n ∈ �, real numbers r1, . . . , rn ∈ [0, 1] and an ω-
recognizable language L ⊆ (Σ × {0, 1}n)ω such that

S(w) =

(
n⊗

i=1
Bri

)({
(M1, . . . , Mn) ∈ P(�)n ∣∣ (w,�M1 , . . . ,�Mn) ∈ L

})
,

for all w ∈ Σω.
Proof. We show that a Bernoulli measure on an arbitrary finite set can be written
as an image measure under a suitable mapping h of a finite product of binary
Bernoulli measures. Next, we apply Theorem 2 and show that h−1 retains the
recognizability of L in Theorem 2. ��
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4.2 Proof of Theorem 1

Let S : Σω → [0, 1] be probabilistically ω-recognizable. By Corollary 1 there
are n ∈ �, real numbers r1, . . . , rn ∈ [0, 1] and an ω-recognizable language
L ⊆ (Σ × {0, 1}n)ω such that

S(w) =

(
n⊗

i=1
Bri

)({
(M1, . . . , Mn) ∈ P(�)n ∣∣ (w,�M1 , . . . ,�Mn) ∈ L

})
.

Let V = {X1, . . . , Xn}. By Büchi’s theorem there is a bPMSO formula ϕ0 over
Σ with Free(ϕ0) = V which defines L, i.e. L = supp([[ϕ0]]V). Let ϕ be the PMSO
sentence given by

ϕ = �r1 X1. . . .�rnXn.ϕ0.

It follows by Fubini’s theorem that S = [[ϕ]].
Conversely, let ϕ be a PMSO sentence with S = [[ϕ]]. By Lemma 2 we may as-

sume that ϕ is in prenex normal form, i.e. ϕ = �r1X1. . . .�rnXn.ϕ0 for a Boolean
PMSO formula ϕ0, real numbers r1, . . . , rn ∈ [0, 1], and distinct set variables
X1, . . . , Xn. Let V = {X1, . . . , Xn} and L = supp([[ϕ0]]V). Then [[ϕ0]]V = �L and
L is ω-recognizable by Büchi’s theorem as ϕ0 is Boolean. By Fubini’s theorem
we obtain

S(w) =

(
n⊗

i=1
Bri

)({
(M1, . . . , Mn) ∈ P(�)n ∣∣ (w,�M1 , . . . ,�Mn) ∈ L

})
.

Therefore S is probabilistically ω-recognizable by Corollary 1. ��
Remark 1. When translating a PMSO formula to a probabilistic Muller-auto-
maton the acceptance condition of the automaton can be chosen to be a Rabin,
Streett, or parity condition. This is because for all of these acceptance conditions
classical ω-automata can be determinized. The latter is not true for the Büchi,
reachability or safety acceptance conditions.

5 Relation to Weighted MSO

In [12] a weighted MSO (wMSO) logic was introduced. It was shown that a
certain fragment of weighted MSO logic is expressively equivalent to weighted
automata. This expressive equivalence holds for finite and infinite words and
also for arbitrary semirings. Whereas probabilistic automata on infinite words
represent a different model than weighted automata on infinite words, probabilis-
tic automata on finite words are a special case of weighted automata over the
semiring of the non-negative real numbers �+.

For the exact definitions of weighted automata, weighted MSO, and syntacti-
cally restricted weighted MSO (srMSO) see [12,13].

As shown in [12], a function S : Σ+ → �
+ is recognizable by a weighted

automaton iff S is definable in srMSO. Hence every PMSO formula can be
translated to a probabilistic automaton, which then can be translated to a srMSO
formula. We give a direct mapping to embed PMSO into srMSO using a syntactic
transformation.
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Theorem 3. Let ϕ be a PMSO formula. Then there is a srMSO formula ϕ′ over
the semiring of the non-negative real numbers such that [[ϕ]] = [[ϕ′]]. Moreover ϕ′

can be obtained from ϕ by a effective syntactic transformation.

Intuitively, ϕ′ is obtained from ϕ by replacing every occurrence of �pX.ϕ0 with
∃X.ϕ0 ∧ ∀x.

(
(r ∧ x ∈ X) ∨ ((1 − r) ∧ x ∈ X)

)
where x is a new variable.

6 Conclusion and Future Work

We introduced a probabilistic extension of classical MSO logic by the addition
of an expected value operator. We could show that, similarly to the fundamental
Büchi-Elgot-Theorem, this probabilistic MSO logic is expressively equivalent to
probabilistic automata on finite and infinite words. We also gave several syntax
extensions and an effective embedding into weighted MSO logic.

As our transformations between PMSO sentences and probabilistic automata
are effective, all decidability results for probabilistic automata also apply to
PMSO sentences. For example, it is decidable for a PMSO sentence ϕ if there
is a finite word w ∈ Σ+ such that [[ϕ]](w) > 0 (= 1) [18], or if two given PMSO
formulas are equivalent on finite words [21]. On the other hand, interesting prob-
lems are undecidable. For instance, for a given formula ϕ it is undecidable if
there is an infinite word w such that [[ϕ]](w) > 0 (= 1) [2]. Another undecidable
problem is to decide for a formula ϕ and some λ ∈ (0, 1) if there is a finite or
infinite word w such that [[ϕ]](w) > λ [18]. This problem remains undecidable
even for λ = 1/2 and ϕ = �1/2X.ϕ0 where ϕ0 is Boolean [15].

Many concepts of probabilistic ω-automata like safety, reachability or Büchi ac-
ceptance conditions, hierarchical probabilistic automata [6], #-acyclic automata
[15], or probabilistic automata which induce a simple process [10] have better
decidability properties. It is an open problem to derive any of these concepts for
PMSO logic.

In current work, we wish to find similar probabilistic extensions for temporal
logics. For example a suitable probabilistic LTL should be expressively equivalent
to the first order fragment of probabilistic MSO logic. We also hope to obtain
better decidability properties using this approach.
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Prof. Manfred Droste at Leipzig University.
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Abstract. The k-feedback arc set problem is to determine whether there
is a set F of at most k arcs in a directed graph G such that the removal
of F makes G acyclic. The k-feedback arc set problems in tournaments
and bipartite tournaments (k-FAST and k-FASBT) have applications in
ranking aggregation and have been extensively studied from the view-
point of parameterized complexity. Recently, Misra et al. provide a prob-
lem kernel with O(k3) vertices for k-FASBT. Answering an open question
by Misra et al., we improve the kernel bound to O(k2) vertices by intro-
ducing a new concept called “bimodule.”

Keywords: Kernelization; Feedback arc set, Bipartite tournament,
Graph algorithms, Parameterized algorithms.

1 Introduction

The feedback set problem, to make a graph acyclic by deleting minimum number
(weight) of vertices or edges, is a classical graph problem and has applications
in many areas. Several different versions of the problem, according to vertex or
edge deletion, in directed or undirected graphs, and so on, have been extensively
studied in the literature. The feedback edge set problem (edge deletion version) in
undirected graphs is equivalent to the maximum spanning tree problem. However
the feedback vertex set problem (vertex deletion version) in undirected graph is
a famous NP-hard problem. When the input graph is a directed graph, both ver-
sions (deleting vertices or arcs) are polynomial-time reducible to each other and
remain NP-hard. There is a long list of papers that study different versions of
the feedback set problem concerning parameterized complexity. The correspond-
ing parameterized problem—the k-feedback set problem—asks whether one can
make a given graph acyclic by deleting as most k vertices or edges. We study the
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k-feedback arc set problem in bipartite tournaments (orientations of complete
bipartite graphs).

The k-feedback arc/vertex set problems in tournaments (orientations of com-
plete graphs) and bipartite tournaments have applications in rank aggregation.
A natural consistency measure for rank aggregation is the number of pairs that
occur in a different order in the outcome ranking. This leads to Kemeny rank
aggregation [11,12], a special case of a weighted version of the k-feedback arc set
problem in tournaments. The problems in bipartite tournaments have similar
applications, such as the establishment of mappings between ontologies (see [15]
for more details).

In the last few years several interesting algorithmic results on the feedback
set problem in tournaments and bipartite tournaments were achieved. Specken-
meyer [16] established the NP-completeness of the k-feedback vertex set problem
in tournaments (k-FVST) many years ago. However the NP-completeness for
k-FAST had been conjectured for a long time. Later, Alon [2] and Charbit et
al. [6] independently proved this result. Cai et al. [4] showed that the k-feedback
vertex set problem in bipartite tournaments is NP-complete. Finally, Guo et
al. [8] proved that k-FASBT is also NP-complete. In terms of parameterized al-
gorithms, k-FVST can be reduced to the 3-hitting set problem and then can be
solved in O∗(2.076k) time [18]. Raman and Saurabh [19] showed that k-FAST is
fixed-parameter tractable by giving an O∗(2.415k)-time algorithm. Alon et al. [3]
proved that k-FAST allows sub-exponential parameterized algorithms of run-

ning time O∗(kO(
√
k)), and Karpinsky and Schudy [10] improved the running

time bound to O∗(2O(
√
k)). Sasatte [17] showed that k-FVSBT can be solved in

O∗(3k) time, which was improved to O∗(2k) recently by Hsiao [9]. For k-FASBT,
Dom et al. [7] gave an O(3.373k)-time algorithm.

Kernelization is one of the most active subfields in parameterized complexity,
in which we are asked to find a polynomial-time algorithm to reduce the input
instance to an equivalent instance of size bounded by a function p(k) of the
parameter k. The resulted instance is also called a p(k) kernel (or a kernel
of size p(k)) of the problem. Different versions of the k-feedback set problem
have been studied concerning kernelizations. It is known that k-FVST allows
an O(k2)-vertex kernel [1], k-FAST allows an O(k)-vertex kernel [5,14], and k-
FVSBT allows an O(k3)-vertex kernel [1]. Recently, Misra et al. [13] gave the
first polynomial kernel of O(k3) vertices for k-FASBT and asked for kernels
of O(k2) vertices. In this paper, we answer this open question affirmatively by
presenting a kernel with 12k2 − 2 vertices. Our kernel algorithm is based on a
newly introduced concept “bimodule.” Previously, modules were used in [5,13]
to get kernels for k-FAST and k-FASBT.

2 Preliminaries

A directed graph is denoted asD = (V,A) and a bipartite tournament is denoted
as H = (X ∪ Y,A). A subset F of arcs in a directed graph D is called a feedback
arc set of D if the removal of F makesD acyclic. A feedback arc set is minimal if
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none of its proper subsets is a feedback arc set in the graph. Among all feedback
arc sets, the ones of the minimum size are called minimum feedback arc sets.
In k-FASBT, we are asked to check whether there is a feedback arc set of size
at most k in a bipartite tournament. An instance of k-FASBT is denoted as
(H, k). For a subset F ′ of arcs in a directed graph D, the graph D{F ′} is the
directed graph obtained from D by reversing all arcs in F ′, while D \ F ′ is the
resulting graph after deleting F ′ from D. For a vertex v in D = (V,A), we define
N+(v) = {w ∈ V |(v, w) ∈ A} and N−(v) = {u ∈ V |(u, v) ∈ A}. A vertex is
adjacent to another vertex v if it is in N+(v) ∪N−(v). For a directed graph D,
we use V (D) and A(D) to denote the set of vertices and arcs in D respectively.
For two disjoint vertex subsets V1 and V2, we use A(V1, V2) to denote the set of
all arcs with one endpoint in V1 and the other one in V2. For two subsets S1 ⊆ X
and S2 ⊆ Y of a bipartite tournament H = (X ∪Y,A), the bipartite tournament
induced by S1 ∪ S2 is denoted as H [S1 ∪ S2]. When we say a topological sort of
an acyclic graph, it means a linear ordering of the vertices of the graph where
all arcs go from left to right. A cycle (resp. path) in a directed graph means a
directed cycle (resp. directed path). A cycle (resp. path) with i vertices is called
a length-i cycle (resp. length-i path). Sometimes a set {a} of a single element is
simply written as a. The following proposition is a folklore.

Proposition 1. If a subset F of arcs in a directed graph D = (V,A) is a mini-
mal feedback arc set of D, then D{F} is a directed acyclic graph.

3 Bimodules and Their Properties

In order to present our kernelization algorithm, we firstly introduce a new con-
cept called bimodule and analyze its properties. We will concentrate on some
special vertices in a bimodule, called k-central and k-redundant vertices.

3.1 Bimodules of Bipartite Tournaments

We call two vertices u, v in H similar, if N−(u) = N−(v) and N+(u) = N+(v).
A maximal set of pairwise similar vertices is called a module. A bimodule B of a
bipartite tournament H = (X∪Y,A) is a pair of nonempty subsets SX ⊆ X and
SY ⊆ Y of vertices such that the induced directed graphH [SX∪SY ] has no cycle
and for any two vertices v, u ∈ S∗ (S∗ = SX or SY ) it holds N

+(v)\(SX ∪SY ) =
N+(u) \ (SX ∪ SY ) and N−(v) \ (SX ∪ SY ) = N−(u) \ (SX ∪ SY ). A bimodule
B = (SX , SY ) is maximal if it cannot be extended by adding vertices into SX
or SY .

Lemma 1. There is at most one maximal bimodule that contains any pair of
non-similar vertices a and b on the same side of a bipartite tournament H =
(X ∪ Y,A) (i.e., either {a, b} ⊆ X or {a, b} ⊆ Y ).

Proof. With out loss of generality, we assume that {a, b} ⊆ X . Suppose to the
contrary that there are two different maximal bimodules B1 = (X1, Y1) and
B2 = (X2, Y2) such that {a, b} ⊆ X1 ∩X2.



828 M. Xiao and J. Guo

We claim that there exist a vertex c ∈ Y1 ∩ Y2 such that a, b and c form a
length-3 directed path acb or bca in H (without loss of generality, we assume the
path is acb). If there is no such a vertex c ∈ Y1 ∩ Y2, then for each vertex y ∈ Y
the two arcs between {y} and {a, b} have the same direction and then a and b
are similar vertices, a contradiction.

We also claim that there is a cycle in H [B1∪B2]. For each vertex x0 ∈ X \X1

(resp., y0 ∈ Y \ Y1), all the arcs between x0 and Y1 (resp., between y0 and
X1) have the same direction as (x0, c) (resp. (y0, a)), since B1 = (X1, Y1) is a
bimodule. Then for each vertex x0 ∈ X \ (X1∪X2) (resp. y0 ∈ Y \ (Y1∪Y2)), all
the arcs between x0 and Y1 (resp. between y0 and X1) have the same direction
as (x0, c) (resp. (y0, a)). By symmetry, for each vertex x0 ∈ X \ (X2 ∪ X1)
(resp. y0 ∈ Y \ (Y2 ∪ Y1)), all the arcs between x0 and Y2 (resp. between y0 and
X2) have the same direction as (x0, c) (resp. (y0, a)). Therefore, for each vertex
x0 ∈ X \ (X1∪X2) (resp. y0 ∈ Y \ (Y1∪Y2)), all the arcs between x0 and Y1∪Y2
(resp. between y0 and X1∪X2) have the same direction. Since B1 and B2 cannot
be joined into one big bimodule, by the defintion of bimodules, we know that
there is a cycle in H [B1 ∪B2].

It is easy to verify that a tournament contains a cycle iff it contains a length-4
cycle. Let C denote a length-4 cycle in H [B1 ∪ B2]. Clearly, cycle C cannot be
completely contained in B1 or B2. Moreover, C ∩ (B1 ∩ B2) = ∅, since, other-
wise, one of B1 and B2 would contain three vertices of C and by the definition
of bimodules the two arcs between the remaining vertex of C and these three
vertices should have the same direction, contradicting the fact that C is a cycle.
Therefore, |C ∩ B1| = 2, |C ∩ B2| = 2, and C ∩ (B1 ∩ B2) = ∅. Let u, v, w, x
be the vertices of C with {(u, v), (v, w), (w, x), (x, u)} ⊆ A, {u, v} = C ∩ B1,
and {w, x} = C ∩B2.

We will try to find some contradiction based the cycle C and the path acb.
If u ∈ X (now {u,w, a, c} ⊆ X and {v, x, b} ⊆ Y ), then, since B1 is a bimodule,
the arcs between {a, c} and x should have the same direction as (x, u) and the
arc between b and w should have the same direction as (v, w). This implies a
cycle formed by a, b, w and x which is completely contained in B2, contradicting
the fact that B2 is a bimodule. The other case of u ∈ Y will lead to the same
contradiction, which completes the proof.

Lemma 2. If there is a bimodule containing a pair of non-similar vertices a and
b on the same side of a bipartite tournament H, then the maximal bimodule B
containing a and b can be found in polynomial time.

Proof. Assume that {a, b} ⊆ X . We construct the maximal bimodule in a greedy
manner. Initially let X ′ = {a, b} and Y ′ = ∅. We repeat the following two steps
until H [X ′ ∪ Y ′] becomes cyclic or X ′ ∪ Y ′ cannot be changed. Step 1: (1) If
there are vertices in Y that have arcs with different directions to X ′, then add
these vertices to Y ′; (2) Switch the roles of X and Y and of X ′ and Y ′ and go to
(1). Step 2: If H [X ′∪Y ′] becomes cyclic, then there is no bimodule containing a
and b; otherwise, we iterate over all vertices in X \ X ′ and Y \ Y ′ and check
for each of them whether it can be added to X ′ and Y ′ without destroying the
properties of bimodules. Finally, we output the resulting X ′ and Y ′.
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The soundness of the above procedure is based on the observation that, if
there is a bimodule containing a and b, then all vertices satisfying Condition
(1) must be in the bimodule. Then, by Lemma 1, the above procedure correctly
constructs the maximal bimodule containing a and b. The polynomial running
time is easy to verify.

3.2 k-Central and k-Redundant Vertices

Let B = (SX , SY ) be a bimodule of a bipartite tournament H = (X ∪ Y,A).
A vertex u in S∗ (∗ ∈ {X,Y }) is k-central if there are two topological sorts T
and T ′ of H [SX ∪ SY ] (T and T ′ could be identical) such that at least k + 1
vertices in S∗ are on the left of u in T and at least k + 1 vertices in S∗ are on
the right of u in T ′. A vertex u is k-redundant if it is (k + 1)-central and S∗
contains another vertex u′ which is similar to u. It is easy to see that if S∗
contains a module M of size at least k + 2, then every vertex in M is k-central
and k-redundant.

Lemma 3. A k-redundant vertex in a bimodule can be found in polynomial time
if it exists.

Proof. Let T be an arbitrary topological sort of the bimodule B. By the definition
of topological sorts, we can see that we can switch the seats of two vertices in T
to get another topological sort iff the two vertices are similar. To check whether
a vertex u in B is k-redundant or not, we only need to do this: Move all vertices
that are similar to u to the left (resp. right) of u in T and check if there are at
least k + 1 vertices on the left (resp. right) of u.

Lemma 4. Let u be a k-redundant vertex in a bimodule B of a bipartite tour-
nament H. Every vertex u′ in B that is similar to u is a k-central vertex in the
bimodule B′ := B \ {u} of H ′ := H \ {u}.

Proof. It is easy to see that B′ is a bimodule ofH ′. Note that we can exchange the
positions of u and u′ in every topological sort T of B to get another topological
sort T ′. By the symmetry, we know that u′ is also k-redundant (and hence
(k + 1)-central) in B. After removing u from B, vertex u′ is clearly k-central
in B′.

The following two lemmas are crucial for the correctness of our kernelization
algorithm.

Lemma 5. Let H = (X ∪ Y,A) be a bipartite tournament and u be a k-central
vertex in a bimodule B = (SX , SY ) of H. No minimal feedback arc set of size at
most k of H contains arcs incident on u.

Proof. Without loss of generality, we assume that the k-central vertex u is in SX .
By the definition of k-central vertices, we know that |SX | ≥ k + 2. Note that
in this lemma, we do not require that SX contains two non-similar vertices, i.e.,
it is possible that all vertices in SX are in a same module. Let F be a minimal
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Fig. 1. Arc e′ = (x0, y0) is in A(SX , Y \ SY )

feedback arc set of size at most k. Assume to the contrary that F contains an
arc e incident on u. We will show a contradiction.

Since F is minimal, there is a cycle Ce in H containing only one arc e in F .
Since H [SX ∪ SY ] has no cycle, Ce contains some arc e′ in A(SX ∪ SY , X ∪ Y \
(SX ∪ SY )) = A(SX , Y \ SY ) ∪ A(SY , X \ SX).

First of all, we show that e′ cannot be in A(SX , Y \ SY ). Assume to the
contrary that Ce contains an arc e′ ∈ A(SX , Y \SY ). We will show a contradiction
that |F | > k. Assume e′ = (x0, y0) (resp. e′ = (y0, x0)), where x0 ∈ SX and
y0 ∈ Y \ SY . Let w be the vertex in Ce such that there is an arc (w, u) (resp.
(u,w)). Then the path P from y0 to w (resp. from w to y0) in Ce does not
contain any arc in F . See Figure 1 for the reference. Next we show that there
are at least k + 1 different vertices {xi | 1 ≤ i ≤ k + 1} in SX such that
P ∪ A(xi, {w, y0}) induces a graph Cxi that is a cycle or two arc-disjoint cycles
(the later case happens only when xi is a vertex in P ). Then H needs at least
k + 1 different arcs to intersect all the cycles in the k + 1 graphs Cxi (note that
each pair of the cycles only share path P where all arcs are not in F ), which is
contradicting the fact that |F | ≤ k. To find {xi | 1 ≤ i ≤ k+1}, we consider two
cases. Case 1: w ∈ SY (see Figure 1(a)). There are at least k+1 different vertices
{xi | 1 ≤ i ≤ k+1} in SX such that all the arcs between {xi | 1 ≤ i ≤ k+1}∪{u}
and {w} have the same direction by the definition of k-central vertices. All the
arcs between {xi | 1 ≤ i ≤ k + 1} ∪ {x0} and {y0} also have the same direction
by the definition of bimodules. If xi is not in P , then Cxi is a cycle. If xi is in P ,
then Cxi is a graph of two arc-disjoint cycles (sharing a common vertex xi).
Case 2: w ∈ Y \ SY (see Figure 1(b)). For any vertex x ∈ SX the arcs between
{x, u} and {w} (resp. between {x, u} and {y0}) are of the same direction by the
definition of bimodules. Then xi’s can be any k + 1 different vertices in SX .

By the fact that Ce ∩ A(Sx, Y \ SY ) = ∅, cycle Ce contains at least two arcs
in A(SY , X \ SX). One is from SY to X \ SX and one is from X \ SX to SY
(see Figure 2). We assume that they are (x1, y1) and (y2, x2), where xi ∈ X \SX
and yi ∈ SY for i = 1, 2. Note that by the definition of bimodules, x1 �= x2.
With the same reason, we can safely assume that the path from x2 to x1 in Ce
does not contain any vertex in SX ∪ SY (such an arc pair (x1, y1) and (y2, x2)
always exists). Let w �= y2 be the other vertex adjacent to x2 in Ce (i.e. there is
an arc (x2, w)). By the selection of the arc pair, vertex w is clearly not in SY .
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Now consider the arc between u and w. In the case that (u,w) ∈ A, all vertices
in SX have arcs to w. Let z be the vertex on Ce with (z, u) and P ′ be the path in
Ce from w over x1 to z. Moreover, by the case discussed above, we have z ∈ SY .
Since u is k-central, there are at least k+1 vertices {ai | 1 ≤ i ≤ k+1} with (z, ai)
for all i’s. For each i, the arcs (z, ai) and (ai, w) together with the path P ′ form
one or two arc-disjoint cycles, depending on whether ai is on P ′. Therefore, F
must contain at least one of (ai, w) and (z, ai) for each i, contradicting the fact
that |F | ≤ k. The case (w, u) ∈ A can be argued in the same way. We consider
then the vertex z′ on Ce with (u, z′). There are k + 1 vertices bi’s with (bi, z

′)
and (w, bi). Then the arcs (bi, z

′) and (w, bi) together with path P ′′ (the path
in Ce from z′ over x2 to w) form one or two arc-disjoint cycles. Therefore, we
know that if |F | ≤ k then F cannot contain an arc incident on u.

Lemma 6. Let H be a bipartite tournament and u be a k-redundant vertex in a
bimodule B of H. Graph H has a feedback arc set of size at most k if and only
if H ′ has a feedback arc set of size at most k, where H ′ = H \ {u} is the graph
obtained by deleting u from H.

Proof. Clearly, every feedback arc set of H is a feedback arc set of H ′, since H ′

is a subgraph of H . Next, we only need to prove that if H ′ has a feedback arc
set of size at most k then H also has one.

Assume that F is a minimal feedback arc set in H ′ with |F | ≤ k. We show
that F is also a feedback arc set in H . Let u′ be a vertex u′ �= u in the same
module of u (u′ exists since u is k-redundant). Then u′ is k-central in H ′ (by
Lemma 4) and no arc incident on u′ is in F (by Lemma 5). Assume to the
contrary that F is not a feedback arc set of H . Then there is a cycle C in H
that does not contain any arc in F but contains vertex u. If u′ is not in C,
then we can get another cycle C′ by replacing u with u′ in C. Note that C′

does not contain any arc in F , since no arc incident on u′ is in F . Then C′ also
is a cycle in H ′ that does not contain any arc in F , which is a contradicting
the fact that F is a feedback arc set of H ′. Next, we assume that u′ is in C.
Note that u′ and u cannot have a common neighbor in C, since u′ and u are
similar. Let w �= u′ be the vertex on C with (w, u). We can then replace the
path in C between w and u′ that contains u by the single arc between w and u′

to get another cycle C′. Cycle C′ is a cycle in H ′ containing no arc in F , also a
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contradiction. Therefore, we know that F is also a feedback arc set of H , which
completes the proof.

4 Data Reduction Rules

Now we are ready to introduce our reduction rules that can be applied in poly-
nomial time on an instance of k-FASBT to get an equivalent instance with
“smaller” size.

Rule 1. Delete any vertex from the bipartite tournament if the vertex in not
contained in any cycle.

Rule 2. If k < 0, report that there is no feedback arc set of size at most k.

Rule 3. If there are an arc e and at least k + 1 4-cycles such that each pair of
the 4-cycles have only one common arc e, then reverse e and reduce k by one,
i.e., return the instance (H{e}, k − 1).

Rule 4. If there is a module M of size more than k + 1, then remove vertices
from M until |M | = k + 1.

Rule 5. For every pair of non-similar vertices on the same side of the bipartite
tournament, compute the maximal bimodule B containing them, if such one ex-
ists, and iteratively remove a k-redundant vertex from B until no such kind of
vertices exist.

We say that a reduction rule is correct, if, whenever it transforms an instance
(H, k) to (H ′, k′), graph H has a solution of size at most k iff H ′ has a solution
of size at most k′, and k ≥ k′. All the above reduction rules can be applied in
polynomial time. The correctness of the first two reduction rules is obvious, the
correctness of Rule 3 is based on Proposition 1, and the correctness of Rules 4
and 5 is based on Lemma 6 (note that any vertex in a module M of size at
least k + 2 is a k-redundant vertex in some bimodule containing M). In fact,
Rule 4 is introduced in [13] to get a cubic vertex kernel for k-FASBT.

We say a bipartite tournament is reduced, if it cannot be changed by applying
the above rules.

Lemma 7. For every pair of non-similar vertices on the same side in a reduced
bipartite tournament H = (X ∪Y,A), if there is maximal bimodule B containing
them, then B has at most 6k + 2 vertices.

Proof. Assume that there is a maximal bimodule B = (SX , SY ) that contains
the three non-similar vertices and has more than 6k + 2 vertices. We show that
at least one reduction rule can be applied to the bipartite tournament. Let T
be a topological sort of B. One of SX and SY , say SX , contains at least 3k + 2
vertices. Considering the ordering TX that is the restriction of T to SX , we use Z
to denote the set of the SX -vertices of the i-th positions with k+2 ≤ i ≤ 2k+1
from the left to the right in TX . If there was one vertex z in Z whose left or right
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neighbor in T is also in SX , then this neighbor should be in the same module
as z. This would imply that vertex z is a k-redundant vertex and Rule 5 can
be applied. Thus, both neighbors of z in T are vertices in SY for all z ∈ Z
and |SY | ≥ k + 1 (notice that |Z| = k). Since Rule 1 cannot be applied, all
vertices in B are contained in some cycles, in particular, in some length-4 cycles,
in H . Let z be a vertex in Z and C be a length-4 cycle in H containing z,
i.e., C = {z, a, b, c} with (z, a), (a, b), (b, c), and (c, z). Moreover, we use l(z)
and r(z) to denote the left and right neighbor of z in T , respectively. Clearly,
l(z), r(z) ∈ SY . By definition of bimodules, |C ∩ B| ≤ 2. If |C ∩ B| = 2, then
either {z, a} ⊆ B or {z, c} ⊆ B. If the former case applies, then we have the
arc (r(z), b) and a cycle of z, r(z), b, c. Moreover, by the definition of bimodules,
we have a length-4 cycle z′, r(z′), b, c for every z′ ∈ Z. Since |SY | ≥ k + 1, we
have then more than k cycles sharing only the arc (b, c) and Rule 3 would then
apply. If |C ∩ B| = 1, then consider the arcs between SY and b. If they are
directed from SY to b, then we have for each z ∈ Z a length-4 cycle containing
arcs (z, r(z)) and (b, c); else, the cycle contains l(z) and (a, b). This implies again
that there are more than k length-4 cycles pairwise intersecting only in one arc
and Rule 3 would apply.

Now we have all tools to prove the kernel.

Theorem 1. k-FASBT admits a problem kernel with 12k2 − 2 vertices.

Proof. If suffices to prove that, if a reduced bipartite tournament H has a feed-
back arc set of size at most k, then H has at most 12k2 − 2 vertices.

Let F be a feedback arc set of size at most k in H and T be a topological
sort of the graph after reversing the arcs in F , where all arcs go from left to
right. For convenience, we say that vertices that appear in some arc in F are
affected vertices and the other vertices are unaffected vertices. Affected vertices
separate T into several sections which are groups of unaffected vertices (called
spans). There are at most 2k affected vertices and at most 2k − 1 spans (the
first and last vertices in T should be affected vertices, since otherwise Rule 1
would apply). If a span contains vertices from at most two modules, then this
span contains at most 2k+2 vertices, due to Rule 4. If the span contains vertices
from at least three modules, then choose arbitrary two vertices a and b from two
modules on the same side. We claim that H contains a maximal bimodule B
containing a and b and the vertices in the span are contained in B. The reason for
this claim is as follows: The vertices of the span induce clearly an acyclic graph
and satisfy the neighborhood condition of bimodules. By Lemma 1, there is only
one maximal bimodule containing them. Lemma 7 implies that this span contains
at most 6k+2 vertices. Therefore, graphH contains at most (6k+2)(2k−1)+2k =
12k2 − 2 vertices.

5 Conclusion

By introducing the new concept “bimodule,” we have improved the size of the
kernel for k-FASBT from O(k3) vertices to O(k2) vertices. It remains open
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whether this bound can be further lowered to O(k). To this end, a more thor-
oughful study of the bimodule structure could be a promising starting point.

Acknowledgements. The authors thank all the anonymous reviewers for their
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paper.
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Kůrka, Petr 323

Lamani, Anissa 542
Lange, Klaus-Jörn 590
Larsen, Kim Guldstrand 681



838 Author Index

Lauser, Alexander 603
Lehtinen, Tommi 615
Lenisa, Marina 503
Leßenich, Simon 160
Lin, Anthony Widjaja 630
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