
MIRABEL DW: Managing Complex Energy Data
in a Smart Grid

Laurynas Siksnys, Christian Thomsen, and Torben Bach Pedersen

Department of Computer Science,
Aalborg University

{siksnys,chr,tbp}@cs.aau.dk

Abstract. In the MIRABEL project, a data management system for a smart grid
is developed to enable smarter scheduling of energy consumption such that, e.g.,
charging of car batteries is done during night when there is an overcapacity of
green energy from windmills etc. Energy can then be requested by means of flex-
offers which define flexibility with respect to time, amount, and/or price. In this
paper, we describe MIRABEL DW, a data warehouse (DW) for the management
of the large amounts of complex energy data in MIRABEL. We present a unified
schema that can manage data both at the level of the entire electricity network
and at the level of individual nodes, such as a single consumer node. The schema
has a number of complexities compared to typical DW schemas. These include
facts about facts and composed non-atomic facts and unified handling of different
kinds of flex-offers and time series. We also discuss alternative data modeling
strategies and present typical queries from the energy domain and a performance
study.

1 Introduction

More and more green energy is being produced by renewable energy sources (RES)
such as windmills. It is, however, not possible to store larger amounts of energy and
use it later. Therefore, there often is an unused capacity, e.g., during nights when most
consumers sleep, but not enough green energy during day hours when most consumers
are active. The EU FP7 project MIRABEL (Micro-Request-Based Aggregation, Fore-
casting, Scheduling of Energy Demand. Supply and Distribution) [11] addresses this
challenge by proposing a “data-driven” solution for balancing supply and demand uti-
lizing their flexibilities. Flexible demand such as for dishwashers and charging an elec-
tric vehicle can often be shifted to a time when green energy is available. Non-flexible
demand such as lights, TV, or cooking stoves must still be satisfied at demand-time. In
the MIRABEL-settings, a consumer offers a so-called flex-offer [2,14] for every intent
of flexible energy demand. The flex-offer must describe when and how much energy is
needed and how flexible the demand is in time and amount. Likewise, a producer can
offer a flex-offer for every intent of energy supply. The different flex-offers can then
be accepted (or rejected if they cannot be fulfilled) and scheduled for execution at a
given time. There will be extremely large quantities of such flex-offers and they can-
not be scheduled individually. Instead flex-offers are aggregated into larger flex-offers
which become scheduled and then disaggregated into the smaller flex-offers again [14].

A. Cuzzocrea and U. Dayal (Eds.): DaWaK 2012, LNCS 7448, pp. 443–457, 2012.
c© Springer-Verlag Berlin Heidelberg 2012



444 L. Siksnys, C. Thomsen, and T.B. Pedersen

To enable this, there will be smart nodes at both consumer sites and producer sites in
the electricity grid which we denote a smart grid.

There is a a strong need for efficient data management in these nodes. In this paper,
we present MIRABEL DW which is a data warehouse (DW) for the management of
large amounts of complex energy data in the MIRABEL project. This paper is the first
to present a DW schema for the important domain of energy data. The schema can rep-
resent different “actors” in different “roles” as defined by the “Harmonised Electricity
Market Role Model” [4] as well as (individual and aggregated) flex-offers, and time
series. In the future, the managed data is to be distributed over millions of nodes [2]
in non-traditional ways. In the paper, we focus on a DW on a single node, but present
a unified schema that can manage data both at the level of the entire electricity net-
work and at the level of individual nodes, such as a single consumer node. Compared
to typical DW schemas, the schema has a number of complexities which we discuss in
the paper. These include facts about facts and composed non-atomic facts and unified
handling of different kinds of flex-offers and time series. We also discuss alternative
data modeling strategies that use denormalization and arrays, respectively. Further, we
present typical queries from the energy domain and a performance study that compares
the described schemas with the denormalized and array-based alternatives.

The rest of the paper is organized as follows: Our representations of flex-offers, time
series and actors are presented in Sections 2, 3, and 4, respectively. These parts together
form the full schema which is presented in Section 5. Examples of analytical queries on
the schema are given in Section 6. A performance study is given in Section 7. Previous
work related to this is presented in Section 8 before the concluding remarks and pointers
to future work which are given in Section 9.

2 Modeling of Flex-Offers

In this and the following two sections, we first present the data model we use in MIRA-
BEL DW. Then we discuss the non-standard and advanced techniques that are applied
in the modeling.

2.1 Data Model

To represent MIRABEL’s flex-offers (both aggregated and non-aggregated) is an es-
sential task for MIRABEL DW. This is done by means of the tables shown in Fig. 1.
We first describe the dimensions (which are recognized by the prefix D in their table
names) and then the fact tables (recognized by the prefix F in their names). All dimen-
sion tables have surrogate keys with names ending with Id. The possible states for a
flex-offer (such as “offered”, “accepted”, and “rejected”) are represented in the dimen-
sion D flexEnergyState. A flex-offer has its state for a certain reason (for example, a
flex-offer becomes rejected if the offered price is too high). The possible reasons are
represented in the dimension D flexEnergyStateReason. As we expect few generic rea-
son categories (e.g, “Price too high”) and many more specific reason descriptions (e.g.
“Price (499.50 euros) too high”) to exist, we have columns for both the generic cate-
gories and the specific reasons such that a hierarchy exists. In MIRABEL DW, we repre-
sent time by discretized time intervals. This is done by D timeInterval which represents



MIRABEL DW: Managing Complex Energy Data in a Smart Grid 445

Fig. 1. Tables for representing flex-offers

15 minutes intervals (for now; other interval lengths can be chosen if needed). Flex-
offers are always related to at least one metering point (at the location where the energy
is to be consumed or produced), but if a flex-offer is aggregated, it will be associated
with many metering points. To capture this, D meteringPointGroup is used as bridge
table [7] between the fact table and D meteringPoint which represents the individual
metering points. To represent the aggregation level of a flex-offer, D aggregationLevel
is used.

The fact table F flexOffer holds flex-offer facts. It references all the previously de-
scribed dimension tables. There are six foreign keys to D timeInterval to represent dif-
ferent times such as when the flex-offer was created and when it at the latest has to be
assigned etc. These foreign keys thus all represent an absolute time. There is also an
attribute assignmentBeforeDuration which holds a time span telling how long before
the actual execution time the assignment must take place.

Further, F flexOffer references D legalEntityRole (explained later) twice to represent
who offered and accepted the flex-offer, respectively. Only the current information
about a flex-offer is held; if a flex-offer is modified, the old fact is overwritten. There are
measures to hold the lowest and highest amount of energy required by the flex-offer as
well as a measure to hold the “fixed” amount of energy that becomes accepted. Further,
a measure holds the total cost of the fix. Finally, each represented flex-offer is given a
unique identifier in the attribute flexOfferId which technically is a degenerate dimension.

Information about the profile intervals of flex-offers is represented in the fact table
F enProfileInterval. This fact table only has a single foreign key which references the
unique flexOfferId in F flexOffer. The imported value together with a sequential inter-
valNr forms the primary key for F enProfileInterval. The reason for this design is that a
single flex-offer can have many profile intervals. For each represented profile interval,
there is a duration specifying how many time units the profile interval spans over, and
both the lowest and highest amount of energy needed in this interval. When the flex-
offer becomes fixed, the actual amount of energy in the interval and the price for this
energy also becomes represented. An alternative to this design would be to represent



446 L. Siksnys, C. Thomsen, and T.B. Pedersen

the measures of F enProfileInterval in arrays in F flexOffer such that all data about a
given flex-offer would be represented in a single fact. Yet another alternative would be
to represent all attributes of F enProfileInterval in F flexOffer, i.e., denormalize the data
and have one (wide) fact in F flexOffer for each profile interval. (For space reasons, we
do not show the alternative schemas in figures.)

As flex-offers can be aggregated into larger flex-offers, we also introduce the ta-
ble F aggregationMeta which references F flexOffer twice to point to the aggregating
“parent flex-offer” and the smaller “child flex-offer” which has been aggregated, re-
spectively. Profiles of each child flex-offer can be shifted relatively to the profile start of
the parent flex-offer when aggregating child flex-offers into the parent. Therefore, for
every child flex-offer, the childProfileTimeShift attribute indicates the amount of time
units the profiles of the child flex-offer has been shifted in the aggregated flex-offer.
This information is used in the disaggregation.

2.2 Modeling Challenges

The fact table F flexOffer is the central fact table for representation of flex-offers. It is,
however, also used as a dimension table in the sense that each fact has a unique ID such
that F enProfileInterval and F aggregationMeta can reference F flexOffer and in effect
store facts about facts. Considering F flexOffer and F enProfileInterval, it can even be
discussed what a fact is. An energy profile interval (in this context) always belongs to
a flex-offer and any meaningful flex-offer has an energy profile interval (a flex-offer
for zero consumption/production at an undefined point in time is hardly interesting).
It could be argued that a single fact is represented by a single row in F flexOffer and
many rows in F enProfileInterval. Unlike traditional DW schemas, we thus have non-
atomic composed facts. As pointed out above, we could alternatively have modeled this
by using arrays in F flexOffer to hold the measures that currently are represented in
F enProfileInterval. This would, however, make it more cumbersome to compare dif-
ferent measures (e.g., en low with the minimum energy requirement to en fix with the
assigned energy) as the interval position currently represented by intervalNr only would
be implicitly represented by the position in the array. The denormalized variant (with a
fact in F flexOffer for each profile interval) would increase redundancy dramatically.

Another interesting aspect of MIRABEL DW is how it represents facts for both non-
aggregated and aggregated flex-offers in a unified way. The aggregation is unlike tra-
ditional aggregation since the parent flex-offer contains other flex-offers that can be
shifted within the parent flex-offer. We call the contained flex-offers shiftable child
facts.

3 Modeling of Time Series

3.1 Data Model

In MIRABEL DW, time series are represented by means of the tables shown in Fig. 2.
It is necessary to be able to represent time series of various types, for now energy,
power, and price. To represent these general classes, we use the D typeClass dimen-
sion table. Apart from its surrogate key, it has the attribute typeClassDesc which holds



MIRABEL DW: Managing Complex Energy Data in a Smart Grid 447

Fig. 2. Tables for representing time series

a textual description of the time series type (such as “Energy”) and the attribute unit
which holds the unit of measurements (such as “kWh”). Instances of the general types
are represented in the table D type. For example, an instance of the “Energy” class is
“Energy-Metered-Production-RES-Wind”. D type references D typeClass to represent
the hierarchy between types and type classes. For different types of time series, it is,
however, necessary to store different information. Therefore, we introduce the tables
D typeEnergy, D typePower, and D typePrice to hold the attributes that are relevant for
the different types. These tables supplement, but cannot replace, D type. The reason is
that we need a single table to reference from D timeSeries to represent the type of the
time series in question. Thus D type is referenced from D timeSeries, but the special
attributes for an energy time series are represented in D typeEnergy. The latter table has
columns to describe the origin of the time series (e.g. “Metered” or “Forecasted”), the
flow direction (i.e., if it is production or consumption), the category (e.g., energy from
renewable energy sources), and the type of energy (e.g. “Wind”). The design is likely
to evolve in the future. For example, there is a traditional hierarchy where types roll
up into categories that roll up into flow directions. A more advanced hierarchy is, how-
ever, needed to represent hybrid energy types like “At least 90% energy from renewable
energy sources and the rest produced from coal”.

D timeSeries holds a single entry for an entire time series. For each represented
time series, there is a unique ID tid and a name may be given. Further, D timeSeries
references D type (as previously described), D aggregationLevel to represent the level
of aggregation of the time series, and D meteringPointGroup to represent which me-
ters the time series describes. Thus, D timeSeries is mainly used to relate different di-
mension values that describe the represented time series. The values of the time series
are, however, represented in the fact table F timeSeriesInterval. This table references



448 L. Siksnys, C. Thomsen, and T.B. Pedersen

D timeSeries to identify the time series a value belongs to and D timeInterval to identify
the time instant when the value occured. Finally, the table holds the value itself as the
measure. A fact thus exists for each value in each time series. It can, however, also be
argued that a fact consists of what it represented in F timeSeriesInterval and what is
represented in D timeSeries which – apart from a possible name – only points out to
other dimensions.

3.2 Modeling Challenges

Similarly to the represention of flex-offers, our representation of time series also leads to
compound facts where one fact can be considered to be made up of parts in different ta-
bles (D timeSeries and F timeSeriesInterval). Actually, an alternative design is to merge
F timeSeriesInterval into D timeSeries such that the values instead are represented in an
array, meaning that a single time interval (and all its values) only would result in one
fact. Yet another alternative is to merge D timeSeries and F timeSeriesInterval and have
a row for each value in a time series. There are thus different possible ways to represent
the complex sequence-facts arising from time series. We choose the model in Fig. 2
since it both reduces complexity (compared to the first alternative where two arrays
must be processed to find the value for a given time instant) and redundancy (compared
to the second alternative where there is very wide fact for each value in the time series).

In our modeling of time series, the schema is neither a traditional star schema nor
a snowflake schema. One reason for this is of course the compound facts discussed
above. Another reason is the support for different types of time series for which differ-
ent attributes are needed. We have different tables that reference D type which also is
the dimension table referenced from the fact table. Consider for example D typeEnergy
which represents attributes that are relevant for energy time series. An alternative de-
sign would be to join all these D type* tables into one dimension table, but for every
dimension member many attribute values would then be NULL.

4 Modeling of Different Actors and Market Areas

4.1 Data Model

Many different entities are involved in different roles in energy trading and network
operation. We represent the needed actors from the “Harmonised Electricity Market
Role Model” [4] by means of the tables in Fig. 3.

The table D role represents roles such as “Producer” and “Consumer”. A role can
belong to another parent role and this is captured by a self-reference. For example, the
parent role of both “Producer” and “Consumer” is “Party Connected To Grid”. Legal
entities are represented by D legalEntity. To capture when a certain legal entity plays
a certain role (a single legal entity can play several roles), we use D legalEntityRole.
This table references both D role and D legalEntity. Further, it has an attribute to hold
a unique ID for a given legal entity playing a given role. We include this ID as it
makes it easy to point to a legal entity in a certain role. We do exactly that from a



MIRABEL DW: Managing Complex Energy Data in a Smart Grid 449

Fig. 3. Tables for representing different actors/roles

number of tables as shown in Fig. 3. For each role, there is a specialized table that (di-
rectly or indirectly through another table) references D legalEntityRole. Some of them,
like D lerSystemOperator, are simple and do only have one attribute which is a ref-
erence to this ID. The specialized table can be referenced and it is then explicit what
kind of role is referenced. For example, the table D lerSystemOperator is referenced
from D marketBalanceArea as shown in Fig. 5. A slightly more complex example is
D lerPartyConnectedToGrid which references D legalEntityRole and also D lerBalance-
Supplier to represent that a party connected to the grid always is so through a balance
supplier. Further, D lerPartyConnectedToGrid is itself referenced from its specializa-
tions, D lerProducer and D lerConsumer.

Fig. 4. Tables for representing market areas



450 L. Siksnys, C. Thomsen, and T.B. Pedersen

Finally, we have tables to represent market areas as shown in Fig. 4. D localMetering-
Point represents the meters that are connected to the grid. Such meters are installed
both at the producer and consumer sites. D localMeteringPoint references four different
specializations of D legalEntityRole. Further, it references D balanceGroup which in
turn references D marketBalanceArea which hierarchically groups metering points.

4.2 Modeling Challenges

To the best of our knowledge, this is the first paper to describe a DW for the complex
concepts of actors and roles in the “Harmonised Electricity Market Role Model” [4].
Our model captures both how legal entities can play different roles and how roles can
be parts of other roles. This is captured by the tables D legalEntity, D role, and D legal-
EntityRole. In addition to these tables, a (narrow) table has been added for each role
a legal entity can play (see the D ler* tables). It is then possible to represent attributes
that are only relevant for certain roles such as done for D lerBalanceSupplier. Further,
when foreign keys reference these tables (instead of just referencing D legalEntityRole),
it is explicit what kind of role playing is referenced and it helps to avoid mistakes
where, e.g., a balance supplier is referenced where a balance responsible party actually
should have been referenced. We note that if no special attributes must be stored for the
different roles, then instead of storing the D ler*’s as physical tables, they can be views
selecting from D legalEntityRole. This reduces the risk of mistakes further and makes
maintenance of them automatic.

5 The Full Schema

To summarize the previous descriptions, the full schema for MIRABEL DW is shown
in Fig. 5. The schema can capture the (needed) roles from the Harmonised Model [4]
as well as the “actor configurations” where different actors play different roles. The
schema also includes specializations of legal entities. Further, the schema can capture
different kinds of time series as complex sequence facts. The schema is thus general
enough to hold all the data that is needed in the MIRABEL project. It should, however,
be noted that no single node is intended to hold all data. Instead, a node should only
hold data that is relevant for the site where it is installed. For an end-consumer this
would typically be her own non-aggregated flex-offers and time series about metered
energy. For a balance responsible party buying electricity on the market and selling
it to end-consumers, it would include both aggregated and non-aggregated flex-offers,
forecasted and metered time series, and market areas. The data will thus be distributed
accordingly to the roles played by the owners of the nodes. The data will also be at
different aggregation levels such that some nodes have detailed data while others have
more aggregated data. For example, will a consumer know the details of her flex-offers,
i.e., when she has requested energy and how much. For a balance responsible party, the
individual non-aggregated flex-offers and end-users generating may not be known, but
the aggregated information will be known, e.g., that x MWhs must be produced in a
given time interval. Note that the different nodes can use the same schema.



MIRABEL DW: Managing Complex Energy Data in a Smart Grid 451

Fig. 5. The full schema for MIRABEL DW

6 Queries

In this section, we give examples of interesting queries on data in MIRABEL DW. We
first focus on queries on flex-offers and then on time series.

6.1 Queries on Flex-Offers

The first example, Q1, considers the flexibility in flex-offers, both with respect to time
and amount of energy.

Q1: SELECT AVG((enProfile_startBeforeTimeIntervalId -
enProfile_startAfterTimeIntervalId) *

(SELECT SUM((en_high - en_low) * intervalDuration)
FROM F_enProfileInterval i
WHERE i.flexOfferId = f.flexOfferId)

)
FROM F_flexOffer f;

The query uses the flexibility with respect to time, i.e., the difference between when the
flex-offer at the latest has to be executed and when it at the earliest can be scheduled.



452 L. Siksnys, C. Thomsen, and T.B. Pedersen

We assume that time interval IDs are assigned sequentially and thus use the difference
between the IDs of the time intervals to find the flexibility. This flexibility is multiplied
with the SUM of the energy flexibility in each profile interval. The energy flexibility in a
profile interval is found as the length of the profile interval multiplied with the difference
between the maximally required amount of energy and the minimally required amount
of energy. Finally, the shown query considers the average of the combined flexibility
for all flex-offers. The query is an example of a non-traditional kind of aggregation. If
we consider a graph showing the relative start and end times for profile intervals on the
X axis and the minimal and maximal energy amounts on the Y axis, the query Q1 finds
the area of energy flexibility for all flex-offers and multiplies these with the length of
their time flexibilities before the entire average is found. This number is primarily of
interest before the scheduling gets done and a high number indicates much freedom in
the scheduling while a low number shows that the considered flex-offers are not very
flexible.

The next example, Q2, is of interest after the scheduling and gives the total amount
of scheduled energy. This is a simple query which, however, must read data from many
rows in a realistic setting (the DBMS we use does currently not support materialized
views).

Q2: SELECT SUM(en_fix)
FROM F_enProfileInterval;

Q3 is a more complex query to apply after scheduling has taken place. It builds a time
series that for each time interval ID shows the amount of fixed energy.

Q3: SELECT timeIntervalId, SUM(en_fix_part)
FROM (SELECT en_fix_part, ROW_NUMBER() OVER (PARTITION BY i.flexOfferId

ORDER BY intervalNr) - 1 + f.enProfile_startFixTimeIntervalId
AS timeIntervalId

FROM (SELECT flexOfferId, intervalNr, en_fix / intervalDuration
AS en_fix_part, generate_series(1, intervalDuration)

FROM F_enProfileInterval
WHERE en_fix IS NOT NULL

) i, F_flexOffer f, D_flexEnergyState s
WHERE i.flexOfferId = f.flexOfferId AND f.stateId = s.stateId

AND s.stateDesc = ’Assigned’
) AS subquery

GROUP BY timeIntervalId
ORDER BY timeIntervalId;

The query computes the IDs of the time intervals where a flex-offer’s profile intervals
are executed. But a profile interval has a duration (in intervalDuration) which defines
how many time intervals the profile interval spans. Therefore, it is necessary to (evenly)
distribute the profile intervals’ energy amounts over one or more time intervals. To do
this, one “part” row is generated for each time interval a profile interval covers by means
of generate series. This happens in the innermost SELECT. The result of this is used
by the second SELECT which also uses the SQL window function ROW NUMBER to
enumerate the rows in each partition where a partition consists of the part rows for a
given flex offer and is ordered by the interval numbers. Thus, the resulting row number
corresponds to the number of time intervals between the assigned start time for the en-
tire flex offer and the part represented by the row (we subtract 1 since ROW NUMBER
counts from 1). When we add enProfile startFixTimeInterval for the flex-offer, we get



MIRABEL DW: Managing Complex Energy Data in a Smart Grid 453

the ID of tje absolute time interval when the part executes. Finally, the outermost SE-
LECT aggregates the sums of fixed energy amounts over all parts belonging to a given
time interval.

6.2 Queries on Time Series

Q4 is query that finds the balance, i.e., the difference between produced and consumed
energy, for a 24 hours period.

Q4: SELECT date, timeDesc,
SUM(CASE energyFlowDirection WHEN ’Production’ THEN value

ELSE 0 END) AS production,
SUM(CASE energyFlowDirection WHEN ’Consumption’ THEN value

ELSE 0 END) AS consumption
SUM(CASE energyFlowDirection WHEN ’Production’ THEN value

WHEN ’Consumption’ THEN -1 * value
ELSE 0 END) AS balance

FROM F_timeSeriesInterval f, D_timeSeries ts, D_type ty,
D_typeEnergy te, D_timeInterval ti

WHERE f.tid = ts.tid AND ts.typeId = ty.typeId AND te.energyTypeId =
ty.typeId AND ti.timeIntervalId = f.timeIntervalId AND
te.energyOrigin = ’Metered’ AND ti.date = ’2011-06-01’

GROUP BY ti.timeIntervalId
ORDER BY ti.timeIntervalId;

The query Q4 is an example where we use the special attributes that only apply to
some time series. In this example, we consider consumed and produced energy and we
thus use energyFlowDirection and energyOrigin which only exist for energy time series.
The query sums the production values, consumption values, and the difference between
them for each time interval that belongs to a given date.

Our last example, Q5, is a query to find those time series where the average energy
usage grouped on hours exceeds the average energy usage for the hour with 25% or
more at least 10 times.

Q5: WITH indavguse AS (
SELECT tid, hour, COUNT(value) AS indcnt, AVG(value) AS indavg
FROM F_timeSeriesInterval NATURAL JOIN D_timeInterval
GROUP BY tid, hour

),
totavguse AS (

SELECT hour, SUM(indcnt * indavg) / SUM(indcnt) AS totavg
FROM indavguse
GROUP BY hour

),
overuse AS (

SELECT tid, t.hour, indavg, totavg,
COUNT(*) OVER (PARTITION BY tid) AS cnt

FROM totavguse t, indavguse i
WHERE t.hour = i.hour AND indavg >= 1.25 * totavg

)
SELECT tid, cnt, hour, indavg, totavg
FROM overuse
WHERE cnt > 10
ORDER BY tid, hour;

The query has Common Table Expressions (CTEs) in the WITH part. In the first CTE,
indavguse, we compute a (temporary) table with the average hourly energy usage for
each time series. The result is used again to compute the second CTE, totavguse,



454 L. Siksnys, C. Thomsen, and T.B. Pedersen

where we find the average energy use per hour among all time series (we could join
F timeSeriesInterval and D timeInterval again, but it is faster to reuse the result of the
previously computed CTE). In the third CTE, overuse, we join the the results of the
two previous CTEs to find the IDs of time series and the hours fromindavgusewhere
the consumption is at least 25% higher than the general hourly average consumption
found in totavguse. Further, we use COUNT as a window function to count how
many such hours we find for a given time series. Finally, we select the ID of the time
series, the count of hours with an average energy usage at least 25% higher than the
average, and the consumption in the last SELECT clause.

7 Performance Study

In this section, we compare the performance of the queries from the previous sec-
tion. We consider them as they are on the described schema (called “MDW”) and in
addition, we consider alternative queries on the described schema alternatives with
denormalization and arrays, respectively. In the denormalized variant, F flexOffer and
F enProfileInterval are joined and so are F timeSeriesInterval and D timeSeries (how-
ever, with the name varchar attribute replaced by an integer to make it a typical fact
table). In the array variant, the same tables are joined, but now grouped on all dimen-
sion references and with measures aggregated into arrays. For the tests, we use a real
life data set with consumption data from 963 customers (the data originates from the
MeRegio project [10]) and we synthetically generate flex-offers based on this data set.
This gives rise to 963 (energy consumption) time series with 32.1 million time series
values, and 3,1 million flex-offers. We test the performance on a Linux server with two
Quad Core 1.86GHz Intel Xeon CPUs, 16 GB RAM, 4 SATA 7200RPM disks (with
one dedicated to the DBMS). The DBMS is PostgreSQL 9.1 [12] and has the param-
eter shared buffers set to 4GB, temp buffers to 128MB, and work mem to 96MB. All
tables are “fully vacuumed” such that their disk representations only take up the needed
space and do not occupy unused space. Further, the tables are “analyzed” such that their
statistics are up-to-date. Each query is executed once in a warm-up round and then the
queries are executed in a round-robin fashion such that each query gets executed five
times. We report the average execution times. The results are shown in Figure 6.

For Q1, it can be seen that the MDW variant is the fastest followed by the array
variant (38.3 seconds and 49.1 seconds, respectively). These two query variants have
similar plans, but with arrays there are fewer rows to process. On the other hand, these
rows need to have their arrays “unnested” to produce as many values as there are rows
to consider in the MDW variant. When the denormalized variant is considered, there
are also many rows and these rows are wide. Further, the plan is not similar to the plans
for the other variants as GROUP BY is necessary with this variant. This makes the
denormalized variant the slowest (123.4 seconds).

For Q2, the MDW variant is again the fastest (8.9 seconds) to use. Again, the array
variant is the second fastest (11.1 seconds). With this variant the arrays must again be
unnested to produce the values that are available in the rows in the MDW variant. The
denormalized variant uses wider rows and is the slowest (16.8 seconds).



MIRABEL DW: Managing Complex Energy Data in a Smart Grid 455

 0

 50

 100

 150

 200

 250

Q1 Q2 Q3 Q4 Q5

S
ec

on
ds

MDW
denorm.

array

Fig. 6. Results of performance study

For Q3, the MDW variant remains the fastest (172.1 seconds) while the array variant
now is the slowest (237.2 seconds) even though it avoids a join. On the other hand,
the array variant requires a SELECT clause to unnest the array and an extra use of
ROW NUMBER to recreate the values from intervalNr which only are implicitly avail-
able from the array positions. The denormalized variant (192.2 seconds) is bit slower
than the MDW variant even though it avoids a join.

For Q4, the MDW variant is significantly faster (0.8 seconds) than the others. The
denormalized variant which avoids a join, uses an order of magnitude more time (7.7
seconds). The array variant is by far the slowest (131.9 seconds) as there is no index on
timeIntervalId which is an array. Thus all rows must be processed and have their rows
unnested to perform a join with D timeInterval.

For Q5, the MDW and denormalized variants perform similarly (59.1 and 61.3 sec-
onds, respectively). The queries involve the same number of rows and are identical
apart from that the denormalized variant uses a wider table. For the array variant, the
first CTE has to unnest two arrays and the query takes longer time (143.8 seconds).

To summarize, the MDW variant performs the best for all queries. Another interest-
ing thing to consider, is the disk space usage. The tables F flexOffer, F enProfileInterval,
F timeSeriesInterval, and D timeSeries take up 4.1 GB in the MDW variant (not count-
ing indexes). Their alternative representations take up 7.0 GB in the denormalized vari-
ant and 1.9 GB in the array variant, respectively. It notable how little space the array
variant uses compared to the other variants due to its fewer number of rows (and thus
fewer space-consuming row headers). Overall, the MDW variant is a good choice con-
sidering both its performance and space requirements.

8 Related Work

In the energy sector, there is number of standardized data models used to represent the
major objects in an electric utility enterprise [6] as well as to define administrative data
internally interchanged between European electricity markets [4,5]. These models focus



456 L. Siksnys, C. Thomsen, and T.B. Pedersen

on various aspects of energy trading and physical electricity delivery, and specify 1)
components of a power system at the electrical level, 2) actors and roles involved in the
energy trading, 3) relationships and data exchange between those entities. These models
are used as a basis for the MIRACLE data model [8], which further enriches them with
the concept of shiftable consumption and production. All these models, however, focus
on a semantic rather than the storage or the management of energy-related entities. By
focusing on two most important entities in MIRABEL, i.e., time series and flex-offers,
this paper, on the other hand, presents data representation models for these two types of
entities offering a convenient storage and a good performance of analytical queries.

This paper is the first to dealt with the storage of flex-offers, but there are previ-
ous works which focus on time series and warehousing, e.g. UML-based modeling of
time-series in DWs [15], and temporal aggregation of multidimensional data [3], and
temporal DWs exploiting research results from the field of temporal databases [9]. Our
modeling of different time-series types have similarities with Bauer et al.’s work [1].
They discuss “locally valid dimensional attributes” whose existence depends on values
of dimensional elements. This is the case, e.g., for our attribute energyType which only
exists if the D type value represents an energy time-series. The problem of representing
all these attributes in a single dimension table (as in a typical star schema) is that there
will be many NULLs in the held data. Bauer et al. propose to have separate tables with
the specific attributes and then create views “on top” of these with common attributes as
well as textual values showing the name of the relation the data comes from which can
be used for hierarchical classification. In contrast, we use tables (and not views) for the
common attributes of a dimension and then represent special attributes that only exist
for some dimensional values in other tables that reference the table with the common
attributes. This makes it possible to declare foreign keys to the dimension table with
the common attributes and also declare indexes and constraints on these tables. Bauer
et al. also propose to use table inheritance to represent such cases. This would also be
possible in our DBMS [12], but constraints cannot be enforced on child tables then.

In the current paper, we consider different representations of profile intervals and
time series intervals which can be considered as facts with multi-valued measures. The
latter case also has a many-many relationship between the time series facts and the
time interval dimension. Previous work [13] has considered many-many relationships
between fact tables and dimension tables. Our denormalized representation is similar to
one of the methods of [13] whereas our other approaches with fact tables referencing
other fact tables and measure values in arrays, respectively, are different.

9 Conclusion

In this paper, we have presented a DW schema for managing the complex energy data
in a smart grid, including actors playing roles, flex-offers, and different types of time
series. The schema has a number of interesting complexities such as facts about facts
and composed non-atomic facts. The different nodes will hold different parts of the data
accordingly to the roles of the node owners and the data will be at different aggregation
levels at different nodes. The same schema can, however, be used for all kinds of nodes.
We have considered different alternatives for the schema modeling using denormaliza-
tion and arrays, respectively, but based on the performance and space usage, the chosen



MIRABEL DW: Managing Complex Energy Data in a Smart Grid 457

design is favourable. In the near future, we are going to perform large-scale simulations
with realistic data amounts from different types of nodes. We will also address the chal-
lenges with distribution of the data on many nodes such propagation of data through
the hierarchy, caching, etc. Further, we plan to investigate the possibilities for having
specialized versions of the schema for different types of nodes, but such that queries can
be formulated on the generic schema and automatically be translated to the specialized
schemas to make the results combinable.

References

1. Bauer, A., Hümmer, W., Lehner, W.: An Alternative Relational OLAP Modeling Approach.
In: Kambayashi, Y., Mohania, M., Tjoa, A.M. (eds.) DaWaK 2000. LNCS, vol. 1874, pp.
189–198. Springer, Heidelberg (2000)

2. Boehm, M., et al.: Data Management in the M Smart Grid System. In: Proc. of EDBT/ICDT
Workshops (2012)

3. Böhlen, M.H., Gamper, J., Jensen, C.S.: Multi-dimensional Aggregation for Temporal Data.
In: Ioannidis, Y., Scholl, M.H., Schmidt, J.W., Matthes, F., Hatzopoulos, M., Böhm, K., Kem-
per, A., Grust, T., Böhm, C. (eds.) EDBT 2006. LNCS, vol. 3896, pp. 257–275. Springer,
Heidelberg (2006)

4. European Network of Transmission System Operators for Electricity. The Harmonised Elec-
tricity Market Role Model, version 2011-01 (June 12, 2012),
http://www.ebix.org/Documents/role_model_v2011_01.pdf

5. Introduction to Business Requirements and Information Models (June 12, 2012),
http://www.ebix.org/documents/Introduction%20to%20ebIX
%20Models%200.0.D.pdf

6. IEC61970-301 Ed. 2, Energy management system application program interface (EMS-API)
- Part 301: Common information model (CIM) base, International Electrotechnical Commis-
sion (2009)

7. Jensen, C.S., Pedersen, T.B., Thomsen, C.: Multidimensional Databases and Data Warehous-
ing. Morgan & Claypool (2010)

8. Konsman, M.J., Rumph, F.J.: MIRABEL Deliverable 2.3: Final data model, specification of
request and negotiation messages and contracts (June 12, 2012),
http://www.db.inf.tu-dresden.de/miracle/files/deliverables/
M18/D2.3 final.pdf

9. Malinowski, E., Zimányi, E.: Advanced Data Warehouse Design From Conventional to Spa-
tial and Temporal Applications. Springer (2009)

10. www.meregio.de/en/ (June 12, 2012)
11. www.mirabel-project.eu/ (June 12, 2012)
12. postgresql.org (June 12, 2012)
13. Song, I.-Y., et al.: An Analysis of Many-to-Many Relationships Between Fact and Dimension

Tables in Dimensional Modeling. In: Proc. of DMDW (2001)
14. Šikšnys, L., Khalefa, M.E., Pedersen, T.B.: Aggregating and Disaggregating Flexibility Ob-

jects. In: Ailamaki, A., Bowers, S. (eds.) SSDBM 2012. LNCS, vol. 7338, pp. 379–396.
Springer, Heidelberg (2012)

15. Zubcoff, J., Pardillo, J., Trujillo, J.: A UML profile for the conceptual modelling of data-
mining with time-series in data warehouses. Information and Software Technology 51(6),
977–992 (2008)

http://www.ebix.org/Documents/role_model_v2011_01.pdf
http://www.ebix.org/documents/Introduction%20to%20ebIX%20Models%200.0.D.pdf
http://www.ebix.org/documents/Introduction%20to%20ebIX%20Models%200.0.D.pdf
http://www.db.inf.tu-dresden.de/miracle/files/deliverables/M18/D2.3_final.pdf
http://www.db.inf.tu-dresden.de/miracle/files/deliverables/M18/D2.3_final.pdf
www.meregio.de/en/
www.mirabel-project.eu/
postgresql.org

	MIRABEL DW: Managing Complex Energy Data in a Smart Grid
	Introduction
	Modeling of Flex-Offers
	Data Model
	Modeling Challenges

	Modeling of Time Series
	Data Model
	Modeling Challenges

	Modeling of Different Actors and Market Areas
	Data Model
	Modeling Challenges

	The Full Schema
	Queries
	Queries on Flex-Offers
	Queries on Time Series

	Performance Study
	Related Work
	Conclusion
	References




