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Preface

Data warehousing and knowledge discovery is an extremely active research area
where a number of methodologies and paradigms converge, with coverage on
both theoretical issues and practical solutions. Under a broad vision, data ware-
housing and knowledge discovery has been widely accepted as a key technology
for enterprises and organizations, as it allows them to improve their abilities in
data analysis, decision support, and the automatic extraction of knowledge from
data. With the exponentially growing amount of information to be included in
the decision-making process, data to be considered become more and more com-
plex in both structure and semantics. As a consequence, novel developments are
necessary, both at the methodological level, e.g., complex analytics over data,
and at the infrastructural level, e.g., cloud computing architectures. Orthogonal
to the latter aspects, the knowledge discovery and retrieval process from huge
amounts of heterogeneous complex data represents a significant challenge for
this research area.

Data Warehousing and Knowledge Discovery (DaWaK) has become one of
the most important international scientific events bringing together researchers,
developers, and practitioners to discuss the latest research issues and experiences
in developing and deploying data warehousing and knowledge discovery systems,
applications, and solutions.

The 14th International Conference on Data Warehousing and Knowledge Dis-
covery (DaWaK 2012) continued the tradition by discussing and disseminating
innovative principles, methods, algorithms, and solutions to challenging prob-
lems faced in the development of data warehousing and knowledge discovery,
and applications within these areas. In order to better reflect novel trends and
the diversity of topics, like the previous edition, DaWaK 2014 was organized
into four tracks: Cloud Intelligence, Data Warehousing, Knowledge Discovery,
and Industry and Applications.

Papers presented at DaWaK 2014 covered a wide range of topics on cloud in-
telligence, data warehousing, knowledge discovery, and applications. The topics
included data warehouse modeling, spatial data warehouses, mining social net-
works and graphs, physical data warehouse design, dependency mining, business
intelligence and analytics, outlier and image mining, pattern mining, and data
cleaning and variable selection.

It was encouraging to see that many papers covered emerging important
issues such as social network data, spatio-temporal data, streaming data, non-
standard pattern types, complex analytical functionality, multimedia data, as
well as real-world applications. The wide range of topics bears witness to the
fact that the data warehousing and knowledge discovery field is dynamically
responding to the new challenges posed by novel types of data and applications.



VI Preface

From 112 submitted abstracts, we received 99 papers from Europe, North and
South America, Asia, and Oceania, further confirming to us the wide interest
in the topics covered by DaWaK within the research community. The Program
Committee finally selected 36 papers, yielding an acceptance rate of 32%.

We would like to express our most sincere gratitude to the members of the
Program Committee and the external reviewers, who made a huge effort to
review the papers in a timely and thorough manner. Owing to the tight timing
constraints and the high number of submissions, the reviewing and discussion
process was a very challenging task, but the commitment of the reviewers ensured
a successful result . We would also like to thank all authors who submitted papers
to DaWaK 2012, for their contribution to the excellent technical program.

Finally, we send our warmest thanks to Gabriela Wagner for delivering an out-
standing level of support on all aspects of the practical organization of DaWaK
2012. We also thank Amin Anjomshoaa for his support of the conference man-
agement software.

September 2012 Alfredo Cuzzocrea
Umeshwar Dayal



Organization

Program Committee Co-chairs

Alfredo Cuzzocrea ICAR-CNR and University of Calabria, Italy
Umeshwar Dayal Hewlett-Packard Laboratories, Palo Alto, CA,

USA

Program Committee
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Enhancing Coverage and Expressive Power of Spatial Data Warehousing
Modeling: The SDWM Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

Alfredo Cuzzocrea and Robson do N. Fidalgo

Sprint Planning Optimization in Agile Data Warehouse Design . . . . . . . . 30
Matteo Golfarelli, Stefano Rizzi, and Elisa Turricchia

ETL Methodologies and Tools

Using OCL for Automatically Producing Multidimensional Models
and ETL Processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

Faten Atigui, Franck Ravat, Olivier Teste, and Gilles Zurfluh

A Case Study on Model-Driven Data Warehouse Development . . . . . . . . . 54
Thomas Benker and Carsten Jürck

Integrating ETL Processes from Information Requirements . . . . . . . . . . . . 65
Petar Jovanovic, Oscar Romero, Alkis Simitsis, and Alberto Abelló
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BPMN-Based Conceptual Modeling

of ETL Processes

Zineb El Akkaoui1, José-Norberto Mazón2,
Alejandro Vaisman1, and Esteban Zimányi1

1 Department of Computer and Decision Engineering (CoDE)
Université Libre de Bruxelles,

Brussels, Belgium
{zelakkao,avaisman,ezimanyi}@ulb.ac.be

2 Department of Software and Computing Systems (WaKe)
Universidad de Alicante,

Alicante, Spain
jnmazon@dlsi.ua.es

Abstract. Business Intelligence (BI) solutions require the design and
implementation of complex processes (denoted ETL) that extract, trans-
form, and load data from the sources to a common repository. New ap-
plications, like for example, real-time data warehousing, require agile
and flexible tools that allow BI users to take timely decisions based on
extremely up-to-date data. This calls for new ETL tools able to adapt
to constant changes and quickly produce and modify executable code.
A way to achieve this is to make ETL processes become aware of the
business processes in the organization, in order to easily identify which
data are required, and when and how to load them in the data ware-
house. Therefore, we propose to model ETL processes using the standard
representation mechanism denoted BPMN (Business Process Modeling
and Notation). In this paper we present a BPMN-based metamodel for
conceptual modeling of ETL processes. This metamodel is based on a
classification of ETL objects resulting from a study of the most used
commercial and open source ETL tools.

1 Introduction

The term Business intelligence (BI) refers to a collection of techniques used for
identifying, extracting, and analyzing business data, to support decision-making.
BI applications include a broad spectrum of analysis capabilities, including On-
Line Analytical Processing (OLAP) and data mining tools. In most cases, orga-
nizational data used by BI applications come from heterogeneous and distributed
operational sources that are integrated into a data warehouse (DW). To achieve
this integration, the data warehousing process includes the extraction of the data
from the sources, the transformation of these data (e.g., to correct semantic and
syntactic inconsistencies) and the loading of the warehouse with the cleansed,
transformed data. This process is known as ETL (standing for Extraction, Trans-
formation, Load). It has been widely argued that the ETL process development

A. Cuzzocrea and U. Dayal (Eds.): DaWaK 2012, LNCS 7448, pp. 1–14, 2012.
c© Springer-Verlag Berlin Heidelberg 2012



2 Z. El Akkaoui et al.

is complex, error-prone, and time-consuming [9,13]. Today’s business dynamics
requires fresh data for BI, posing new challenges to the way in which the develop-
ment of ETL process is carried out. Real-time data warehousing and right-time
data warehousing [11] are already established and accepted concepts. These new
requirements call for agile and flexible ETL tools, that can quickly produce and
modify executable code based on these changing needs. To address these chal-
lenges, we believe that ETL processes must be aware of business processes, in
order to easily identify which data are required and how to include them in the
data warehouse. We remark that the need for a tighter integration of data and
processes has been acknowledged by the database community [1]. As an exam-
ple, consider an scenario where a sales business process is such that a discount
applied to a sale is directly related to the customer’s purchases during the last
year: the more purchases a customer has performed, the greater the discount
that will be applied. In this scenario, the value of the discount that is stored in
the data warehouse may change according to the related sales business process.
Moreover, ETL tools in modern BI projects must interact with foreign appli-
cations and processes, for example, to get real-time currency rate through web
services. To accomplish these goals, we propose to model ETL processes using
the standard business process representation mechanism BPMN (standing for
Business Process Model and Notation)1.

To allow matching ETL and business process concepts, we first need to pro-
duce a classification of ETL. Even though some efforts were carried out to pro-
duce such a classification (e.g., [13]), a generic, vendor-independent classification
is still missing. Therefore, our first contribution is a classification of ETL pro-
cesses, that accounts for both, the data and process aspects of ETL. Based on
this classification, as our second and main contribution, we extend BPMN in a
such a way that ETL processes are modeled analogously to business process.
Concretely, we propose a novel vendor-independent metamodel which allows de-
signers to focus on the ETL semantics rather than in implementation issues.
Based on this metamodel, conceptual models for ETL can be produced. Since
these models are based on BPMN, a translation to a logical model and code
generation are strainghtforward. Metamodel consistency conditions can be de-
fined using Object Constraint Language (OCL)2 expressions [3]. The rationale
behind our proposal is the characterization of the ETL process as a combina-
tion of two perspectives: (i) as a control process, responsible of synchronizing the
transformation’s flows; (ii) as a data process.

This paper is organized as follows. Section 2 studies existing work on ETL
models and taxonomies. Section 3 presents preliminaries and our running exam-
ple, while Section 4 introduces the rationale for our approach. The ETL clas-
sification is presented in Section 5. The BPMN-based metamodel is discussed
in Section 6. We conclude in Section 7.

1 http://www.bpmn.org
2 http://www.omg.org/spec/OCL/2.0.

http://www.bpmn.org
http://www.omg.org/spec/OCL/2.0.
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Fig. 1. BPMN main objects and notation

2 Related Work

Conceptual models that use a workflow language for ETL design have been
previously proposed [7,8]. These approaches use modeling languages specifically
designed for ETL, thus, opposite to our work, not aimed at integrating BP
and ETL. Moreover, an ETL programming approach using the Python language
(which prevents a vendor-independent design) has been proposed in [10]. The
work we present in this paper is built along the lines of [2] and [5]. The
former introduces a basic set of BPMN constructs that are used to translate
a conceptual ETL model into BPEL (a workflow execution language). In [5]
the authors present a Model-Driven Architecture approach to design the ETL
processes by means of the UML Activity Diagram; in a sequel of this work,
a representation of the ETL process is produced through a manually-designed
specific-vendor metamodel [4]. None of these proposals are aimed at providing
a vendor-specific code generation utility. On the contrary, our proposal allows
a straightfoward translation from a vendor-independent conceptual model, to
a vendor-specific executable code generation. Two key mechanisms allow us to
do this: the characterization of the ETL process as a combination of a control
process and a data process, and the ETL classification. With respect to the latter,
a limited number of efforts attempted to classify ETL tasks. Among these works,
Vassiliadis et al. [13] present a taxonomy of ETL transformations, although only
addressing the transformation component of ETL. The Transaction Processing
Council (TCP) has built a taxonomy of ETL tasks aimed at providing a test
platform for evaluating and comparing ETL tools [15]. This work is based on
a benchmark on several ETL tools. Our approach takes into account these two
taxonomies in addition to the analysis of several ETL tools, to produce a general
classification that includes most of the ETL components.

3 Preliminaries and Running Example

The term business process denotes a collection of related, structured activities
or tasks that produce an specific service or product for a particular customer or
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customers. In the case of ETL, the service consists in taking data from the data
sources to the data warehouse. In this paper, we propose a characterization of
ETL processes as business processes, in the same way as this is done with other
processes in an organization. We perceive the ETL architecture as a combination
of control and data processes, where control processes manage the coarse-grained
groups of tasks and/or sub-processes, and data processes operate at finer granu-
larity, detailing how input data are transformed and output data are produced.
For example, populating each fact (dimension, view, temporary, etc.) table in
the data warehouse constitutes a data process. Given this assumption, modeling
and designing ETL processes using BPM tools appears natural. BPMN 2.0 is
an OMG3 standard, widely used for modeling business processes at a high level
of abstraction, and with a well-defined semantics. We briefly introduce BPMN
next. Fig. 1 depicts the most relevant objects in the BPMN specification, which
are organized in the following classes. Activities represent a task performed as
part of a process. Can either be atomic or a collection of atomic tasks (denoted
Subprocesses). Connections link objects in the diagram. For example, the Gate-
way component is a particular connection with multiple incoming and outgoing
connections. An Event is an action that occurs during the execution of a process,
and that can catch or throw processes. For example, a process could be modeled
to start when a certain condition is met or when a timer notifies that a certain
time period has elapsed. Swimlanes allow subdividing the BPMN diagram into
Pools (process containers) and Lanes (division of a pool in roles) for an organiza-
tional purpose. Finally, Artifacts allow adding information to the model. Three
types of artifacts are defined: data objects, groups, and annotations.

Running Example. We now present the running example we use throughout
the paper. A retailing company has a business process related to sales in which
the value of the discount applied to a customer is directly related to the pur-
chases made by the customer in the previous twelve months. Thus, data should
be consolidated in a data warehouse, and an ETL process must be defined. Op-
erational data reside in a relational database and other kinds of support (e.g.,
flat and XML) files. These data must be mapped to a data warehouse, designed
as a collection of facts and dimension tables. The main data source is a relational
database, whose logical schema is shown in the left hand side Fig. 2, and contains
information about Orders placed by Customers, processed by Employees, and de-
livered by Shippers. The logical schema of the target data warehouse is shown in
Fig. 2 (right hand side). There is a fact table FactSales, and several dimension
tables. Dimensions are organized in levels that conform an aggregation hierar-
chy. For example, the dimension DimCustomer contains the following hierarchy
levels: DimCustomer→DimGeography→ DimState→DimCountry→DimArea. The
last four levels are also shared with the DimSupplier dimension. The data con-
tained in the hierarchy DimArea→ DimCountry→ DimState come from an XML
file called Territories.xml. In addition, to identify which state a city belongs to,
the file cities.txt is used. It contains three fields separated by tabs.

3 http://www.omg.org

http://www.omg.org
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Fig. 2. Source database schema (left), and target data warehouse schema (right)

4 ETL Control Process and Data Processes

We characterize the ETL process as a combination of two perspectives: (i) a
control process view; (ii) a data process view. The control process is able to
manage the branching and synchronization of the flow, and handles execution
errors and exceptions. This is called process orchestration. It also coordinates the
information exchanged with foreign processes. This allows to have a high-level
overview of the whole ETL process. We illustrate the notion of control process
using the portion of our running example that loads the Sales data warehouse.
This ETL process is shown in Fig. 3. The control process entails several activ-
ities, synchronized by sequences and gateways, controlled through events, and
organized in swimlanes. Further, a process can be depicted at different levels of
detail. For example, the Temporary Tables Load task from Level 1 is subdivided
into subprocesses at Levels 2 and 3. Level 1 shows the overall process in which
the dimensions must be loaded prior to loading the fact table. Also, the con-
trol process can communicate with external processes through messages such as
Convert Currency WS, a web service that provides a currency conversion for gen-
erating the current Euro value of UnitPrice from the OrderDetails table, when it
is expressed in a foreign currency. The control process can also collaborate with
other remote data warehouse processes as it is the case of DimEmployee Load.

The data process view captures the original nature of the ETL processes.
Typically, this process takes data from the operational databases or other data
sources to the data warehouse, providing precise information about the input
and output data of each (data) process element. A data process can also create
mappings between any data store, not necessarily from the data sources to the
data warehouse. In our approach, one fact, dimension (or hierarchy level) is pop-
ulated at a time through an specific data process. The synchronization between
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Fig. 3. The ETL control process for loading the Sales fact table

these different data processes is handled at the control level. Fig. 4 depicts the
data processes that populate the DimGeography dimension. Data come from the
Customers and Suppliers tables (see Fig. 2, left), more precisely from the City,
Region, PostalCode, and Country attributes. As shown in Fig. 4 (a), attribute
State may be null in the Customer and Supplier tables. In these cases, data should
be filled with its corresponding value using the TempCities table. Referential
integrity in the temporary TempGeography table is also checked previously to the
final loading, using lookup tasks. For example, the StateName could be written
in the original language or in its English translation (e.g., Kärnten or Carinthia,
respectively, for a state in Austria). Also, the state and/or country name can be
abbreviated (AZ for Arizona and USA for United States). Fig. 4 (b) shows the
sequence of lookup data tasks for these cases.

In summary, although the data process allows a fine-grained tracking of data
subject to the transformation(s) task, it provides no way of synchronizing these
data with external events and decisions. It is therefore definitely complementary
with the control process, which allows to determine what operations will be
performed, in what order, and under which circumstances.

5 A Classification of ETL Objects

We now present a classification of ETL objects, which is the basis of the meta-
model we present in Section 6. This classification is founded on a study of some of
the most used technologies in the proprietary and open source marketplaces, like
Oracle Warehouse Builder (OWB), SQL Server Integration Services (SSIS), and
Talend Open Studio, and in existing ETL taxonomies (e.g., [13]). We organize the
tasks in a tree structure where the leaves represent the model components and
the inner leaves represent the categories they belong to. Of course, categorization
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Fig. 4. ETL data process for loading the DimGeography dimension

is a subjective process. For example, [13] is an input-output relationship-based
taxonomy. Other task taxonomies are implicitly included in some Business Pro-
cess languages, which we do not address here. In the ETL classification tree
shown in Fig. 5, an ETL component may belong to the following five categories:
Task, Sequence, Event, Container, and Artifact. Elements in the tree could be
control objects, data objects, or both. That means, this classification, together
with the characterization in Section 3, induces two different classification trees
which we denote: (i) ETL control classification tree; (ii) ETL data classification
tree. The former accounts for control processes, while the latter accounts for data
processes. This is indicated by the type of line of the rectangles in Fig.5: the ones
filled belong to (i), the ones dotted, to (ii). Note that the first two levels in the
tree are common to (i) and (ii). At the third level, Control Task belongs to (i),
and Data Task belongs to (ii). At this same level, category ‘Connection’ belongs
to both classes of trees. We only show the first levels in this classification. Finer
levels will be addressed in Section 6.

Fig. 5. ETL classification tree
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5.1 ETL Control Classification Tree

We briefly describe the main subclasses in the second level of the tree.

Task. The Control Task process manages the execution sequence of Data pro-
cess tasks. It also manages other applications, e.g., Foreign Control Tasks, and
interacts with other business processes which we have denoted Foreign Business
Process. For instance, it may launch other ETL processes (not necessarily in the
same data warehouse). A Control Task could be further classified as: (i) a Data
Process; or (ii) a Foreign Control Task (not shown in Fig. 5). In Fig. 3, DimCate-
gory Load is a data process task, and Create Table is a foreign control task.
Sequence. Gateways and Connections represent relationships between control
process objects. Control tasks exchange data using Connections. Control Con-
nections are used by control tasks from the same process, while communication
between tasks from different processes use Message flows. A message flow entails
all inter-process communication mechanisms such as message queues and web
services. A Gateway allows the synchronization and the branching of the flow, by
merging multiple ingoing control connections and/or branching multiple outgo-
ing control connections.

Event. Represents something that happens and affects the sequence and timing
of the process tasks. A control event could be of the type: Start, Non-boundary,
Boundary, and End (which in turn could be further classified). Each type of event
enables a set of particular behaviors. For instance, a Start event of type timer
start may be added to depict the execution schedule of the ETL process. Other
common event types include error, message, or terminate events.
Container. A container is either a Swimlane, a Process/Subprocess, or a Loop.
The Swimlane is a structuring control object that comprises Pools and Lanes.
Subprocesses represent semantically coupled adjacent objects, that accomplish
a significant portion or stage of a process. Finally, it is usual that one or more
tasks must be executed multiple times, sequentially or not, which is addressed
by the Loop container.

5.2 ETL Data Classification Tree

We now discuss our classification of constructs used when creating data pro-
cesses. We focus on the data task, crucial in the process.
Task. This class corresponds to the Data Task class (see Fig.5). We have iden-
tified seven major categories of data tasks. Each category may be further subdi-
vided into subcategories until defining the target data tasks at the leaf level in
the tree (further details provided in the next section). These categories are:

1. Variable Derivation. Focus on variable manipulation, where a variable can
be a single element or a sequence. Transformations could be: Alter Variable ,
Add/Delete Variable (modify the input schema by adding or deleting fields),
and Variable Extraction (focuses on extracting data from a variable).

2. Branching Flow. Given as input a set of rows, the branching flow tasks
deliver multiple output sets of rows. Can be further classified in Row-based
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Branching (filters rows based on conditions), and Column-based Branching. In
the former, we can also identify the classes Data Condition Branching (where
a condition is applied on the row), and Lookup Branching (used to locate the
matching records in a reference table).

3. Merging Flow. Includes tasks that combine multiple row sets into a single
one. When the input row sets have identical schemes, we haveMerge or Union
tasks. The Join task allows combining multiple sets of columns into one set
of columns using different types of join, such as inner and left joins.

4. Aggregation. Includes the Standard Aggregation task, typical in SQL, and the
Custom Aggregation task, which accounts for particular data warehouses such
as temporal or spatial warehouses, which use custom aggregation functions.

5. Pivot and Sort. Data input of these tasks are displayed in the output orga-
nized differently e.g., sorted and/or pivoted.

6. Data Input. The entry point of data into the process from any possible
source of data. Can be a Database Input, a File Input, or a Web Service Input.

7. Data Output. Entails the set of tasks responsible of loading data into ex-
ternal data stores. Can be of types Database Output, and File Output.

The Sequence class corresponds to the Data Connection class (recall that in the
Control Classification Tree the latter also includes Gateways). This class does
not perform any action on the flow, although, it may make some conditions to
be activated. The Event class corresponds to the Data Event class, which can be
of type Intermediate event (aimed at detecting potential exceptions during the
data task execution), or Start/End event, which wait for a triggering event to
occur, for starting and/or ending a process or sub-process. The other classes are
analogous to the ones in the control classification tree.

6 A Metamodel for ETL Processes

We now present the metamodel for ETL processes, based on the BPMN 2.0
metamodel, and in the classification presented in Section 5. Because of the for-
mer, several control concepts have been borrowed from the BPMN metamodel,
and extended with specific ETL control and data concepts. Each task in a leaf
of the trees in Fig. 5 is matched to a concrete class in the metamodel, and tasks
in inner nodes are matched to abstract classes in the metamodel. The classifica-
tion of Section 5 induces two kinds of metamodels: the control metamodel, and
the data metamodel, which we study next. (We depict the metamodel using the
Meta Object Facilities (MOF), an OMG standard for developing metamodels.
We use the implementation of MOF provided by the Eclipse tree editor4).

6.1 Control Metamodel

The control metamodel is depicted in Fig. 6. The ControlProcess class is the
main class of the metamodel. It represents an ETL process or a foreign busi-
ness process respectively depicted by the ETLProcess and ForeignBusinessProcess

4 http://wiki.eclipse.org/Ecore

http://wiki.eclipse.org/Ecore
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classes. The ControlProcess class entails several ControlObjects that are linked
to each other by means of Connections. For representing business information
transferred through connections, a DataObject can be attached to them. Also,
a control object is a generalization of the ControlTask, ControlEvent, and Gate-
way classes. The ControlTask is an autonomous and executable unit of an ETL
process. We distinguish between a data process control task, depicted by the
DataProcess class (DimGeography Load in Fig. 3), and a foreign application par-
ticipating in the ETL process, represented by the ForeignControlTask class (for
example Bad XML File in Fig. 3) . The ControlEvent class typically allows defin-
ing handling strategies related to particular events that may occur during an
ETL process. Based on their position within the process components, four types
of event classes are specified: StartEvent, EndEvent, BoundaryEvent, and Non-
BoundaryEvent classes. Depending on the event type, the event handling strat-
egy can be configured through the eventTrigger property. Examples of handling
strategies are: a cancellation of the execution flow, and a message exchange,
which notifies an external application about the event by sending and receiving
messages. In addition, other events can be defined in order to orchestrate the
task execution, for instance, a timer, that delays the execution of the subse-
quent tasks for a period of time The metamodel in Fig. 6 also includes various
subtypes of gateway, the component responsible of managing the execution flow
merging and splitting. For instance, the ParallelSplitGateway class models a split
gateway able to activate all the outgoing connections once it is activated. Anal-
ogously we define the ParallelMergeGateway classto model the synchronization of
ingoing connections. The ExclusiveSplitGateway class activates exactly one path
at a time based on an exclusive condition, and the InclusiveSplitGateway class
activates alternative outgoing paths based on conditions.

Fig. 6. Control metamodel
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6.2 Data Metamodel

Designing full-fledged ETL processes requires extending the BPMN metamodel
to support data processes. Therefore, we developed a set of metamodels, namely:
Core, Resource, IDS, Condition, Computation, and Query. Due to space limita-
tion we limit ourselves to only explain the Core metamodel in detail.

The Core metamodel (Fig. 8) provides the facilities required for modeling data
processes that are part of an ETL process. The main class is DataProcess, which
aims at providing mechanisms to manage the data extracted from the source until
loading them into the data warehouse. A DataProcess class is composed of several
DataTask classes for defining different ETL operations that can be applied to
data. Fig. 7 depicts a small part of the DimGeography Load data process of Fig. 4,
implemented over the Eclipse Ecore tree editor. It includes the Data Conversion
data task. The incoming and outgoing data flows of a task are respectively
depicted by the InputSet and OutputSet classes. Both, DataProcess and DataTask
classes are related to DataEvent classes to ensure the control and customization of
exception handling through triggers using the eventTrigger property. Data tasks
sharing the same objective or having similar characteristics may be organized in
subprocesses, represented by the DataSubProcess class.

Fig. 7. A portion of a data process as seen in the tree editor

The classification presented in Section 5 facilitates the metamodeling of data
tasks, and it is also useful for guiding the creation of new tasks. According to such
classification, data tasks can be represented as subclasses (depicted in italics in
Fig. 8) of the abstract DataTask class. The concrete classes are predefined data
tasks. The data task classes yield an intuitive, organized and well-founded task
palette to be used for the ETL design. We next describe some of the classes of
the metamodel that correspond to the data task classification.

Within the FieldTransformation abstract class, the OneFieldDerivation subclass
applies a computation and creates a new field called fName. Similarly, the Mul-
tiFieldDerivation class applies a computation for every output field (e.g. the case
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Fig. 8. Core metamodel

of Data Conversion in Fig. 7). The metamodel also specifies how to model the
merging tasks from two incoming flows using the Join and Union classes. The
Join class requires a condition for defining any kind of joining flows, namely
unique, inner, and outer join. On the contrary, the Union class does not require
a condition, and simply applies the non-ordered union of rows. These classes
are able to determine the fields to merge. Aggregation tasks are handled by the
CustomAggregation and SimpleAggregation classes, also referred to in the classi-
fication. The DataInput, and DataOutput classes represent the extracting (and
loading) tasks from and to the external environment, particularly the databases.
Several classes indicate the specific extraction properties to be provided by the
user. In this sense, a selectQuery should be provided for the ColumnDataInput
class representing the extraction task from a database; or a list of XPath queries
xpathQueries should be provided for the extraction task from an XML file, mod-
eled by the XMLDataInput class. Other properties can be associated to these
classes, as properties of the parent DataInput class. For example, the property
typeLoad allows specifying the type of loading such as update, delete and in-
sert, or advanced update using specific algorithms. This input task can specify
the exception handling strategies, depicted by the transferExceptionTrigger, and
extractExceptionTrigger properties. Further, parallelLoad in the DataInput class
indicates if parallel load is allowed or not. For instance, in the data process of
Fig. 7, the data input task properties are depicted on the right hand side, e.g.
the transfer trigger is set to DropReload and the type of load to DeleteInsert.

The Resource metamodel provides tools to model at the conceptual level both,
the data resources and their access information. This is inspired in the metamod-
els in the CommonWarehouseMetamodel (CWM) specification5. The rationale is

5 http://www.omg.org/cgi-bin/doc?formal/03-03-02

http://www.omg.org/cgi-bin/doc?formal/03-03-02
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that modeling ETL processes should account for the data streaming through the
ETL process (non-persistent). Therefore, the designer specifies how the ETL pro-
cess interacts with the resources through a set of resource configurations.Themain
concept of the metamodel is the Resource class, representing a real-world data re-
source. A Resource is composed of FieldSet, which groups a set of Fields (actually
the data items). EachField has a name to identify it, a type (whose value is provided
by the SimpleDataType Enumeration), a set of properties to qualify the type of the
Field (i.e., scale, precision, and dataFormat), a primaryKey property to recognize if
theField is a key of theFieldSet, and a foreignKeyproperty alongwith the referenced
foreignFieldSet class, to define the field as a foreign key if it corresponds.

The IDS metamodel (Intermediate Data Store) models the non-persistent
data in an ETL process. This metamodel comprises the OutputSet and InputSet
classes. Also, for each InputSet and OutputSet of a data task, the IDSFieldValue
provides the values property to represent field values. Therefore, a field can be
contained either in a FieldSet for persistent data related to resources, or in In-
putSet, and OutputSet for non-persistent data related to the process execution.

The Expression metamodel supports three types of expressions: computations,
conditions, and queries. Creating a technology-independent metamodel for these
expressions involves several challenges. On the one hand, ETL models should al-
low an easy translation into expression languages tailored to some tools. On the
other hand, ETL models should be enough abstract and technology-independent.
Our framework addresses these challenges by proposing an ETL expression lan-
guage, where the expression creation follows an OCL-like syntax. The Compu-
tation metamodel allows defining a large collection of computations related to
tasks. A computation consists of a linear function applied on a set of fields in
order to generate a new field. The Condition metamodel is aimed at specifying
any kind of condition in an expression.

Metamodel Consistency OCL rules are built to ensure the metamodel’s con-
sistency using the OCLInEcore Eclipse tool. In the following example, an OCL
constraint prevents the definition of custom parameters for predefined tasks.

1 Not dataTask.ocl IsTypeOf (CustomTask) imp l i e s
2 dataTask.outputSets .customParameterSets . i sEmpty ( )

Line 1 tells that the constraint only concerns tasks other than CustomTask (i.e.,
predefined data tasks, such as Aggregation and Filter). This constraint forbids
the specification of customParameterSets, using the OCL function isEmpty(). For
instance, the Aggregation task has parameters fName and aggFunction.

7 Conclusion and Open Problems

We presented a BPMN-based metamodel for producing conceptual models of
ETL processes. Conceptual models can be straightforwardly mapped into logi-
cal models and implemented in any vendor tool, using Model-to-Text transfor-
mations. The framework accounts for ETL components, selected after a study
of the most popular ETL tools. These components are addressed from two
perspectives: control and data. The use of OMG standards promotes reusability,
extensibility, and collaborative work.
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Future work includes developing a validation procedure for the models pro-
duced using this framework. This will allow to produce a rigourous comparison
between the outcome of this methodology, and other ones, not only in terms of
workflow structure, but also in terms of flexibility, adaptability to change, usabil-
ity, and performance. Changes can occur during the lifecycle of the warehouse,
not only in sources, but also within the warehouse for example, due to changes
in requirements, ETL evolution [6]. accounts for this. The question is: how does
this affect the conceptual and logical models for ETL?
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Abstract. This paper proposes a novel perspective of research on the 
challenging issue of modeling Spatial Data Warehouses (SDW) that nicely 
contributes to improve state-of-the-art proposals. This conveys in the so-called 
Spatial Data Warehouse Metamodel (SDWM) that allow us to enhance both 
coverage and expressive power of SDW modeling by means of the following 
amenities: (i) separating the conceptual SDW modeling from the conceptual 
(spatial) OLAP modeling; (ii) supporting the modeling of complex constructs in 
SDW; and (iii) stereotyping attributes and measures as spatial objects directly. 
All these contributions finally depict a novel perspective of research in the 
investigated scientific field, which breaks the actual trend of state-of-the-art 
initiatives, by pinpointing their limitations. We complete our analytical 
contribution by means of a real-life application implemented via SDWM, which 
highlights the benefits deriving from applying SDWM in contrast with 
traditional SDW modeling methodologies. 

Keywords: Data Models, Spatial Databases, Spatial Data Warehouses. 

1 Introduction 

The process of decision-making may involve the use of tools, such as Data Warehouse 
(DW) [1], On-Line Analytical Processing (OLAP) [2], Geographical Information 
Systems (GIS) [3] and Data Mining [4]. In this context, there are two different types of 
technologies: one for storing data and other for querying data. That is, from a database 
(e.g. DW), any query tool (e.g. OLAP, GIS or Data Mining) may be used to analyze its 
data. Hence, the DW concepts (i.e. fact table, dimension table and attributes) must be 
independent of those associated to query tools, in particular, with regard to OLAP tools, 
which has concepts (i.e. hierarchy and level) that are frequently mixed with the concepts 
of DW modeling (i.e. dimensions and attributes). That is, in DW there are neither 
hierarchies nor levels, because if these concepts were intrinsic to a DW, any query tool 
for DW would be able to process multilevel queries (i.e. drill-down and roll-up [2]), but 
only OLAP query tools can do it. For this reason, in this paper we argue that DW 
modeling should not mix its concepts with concepts of any query tool and our focus is 
on concepts and techniques for DW (or Spatial DW – SDW) modeling.  
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Much research has focused in SDW modeling (see Section 5). However, we 
identified that most of these works defines metamodels that mix concepts for DW 
dimensional modeling with concepts for OLAP data cube modeling, which we disagree, 
because, as already stated, a DW (conventional or spatial) can be analyzed/queried by 
any data analysis tool (not only OLAP). Moreover, we also note other limitations (also 
see in Section 5), for example: the most proposed metamodels (i) does not support 
important techniques of DW modeling (e.g. degenerate dimensions, role-playing 
dimensions and bridge tables) and (ii) represents the spatiality in a SDW stereotyping 
the dimensions and fact tables as spatial or hybrid, rather than directly stereotyping the 
attributes/measures as spatial. With aim of overcoming such limitations, we have 
proposed the Spatial Data Warehouse Metamodel (SDWM) [5]. However, due to space 
restriction, a more elaborated specification of SDWM cannot be made in our previous 
work. Therefore, specifically in this paper, we present a more detailed and precise 
definition of SDWM, which is formalized and presented using UML metaclasses.  

The remaining of this paper is organized as follows. In Section 2 we briefly present 
the main concepts and techniques that may be used for DW/SDW modeling. Next, in 
Section 3, we present a more detailed and precise specification of SDWM. In Section 
4 we give an overview about SDWCASE (our tool for modeling DW/SDW according 
to SDWM) and present a real-life use of our work. Then, in Section 5 we make a brief 
discussion about relevant works for SDW modeling. Finally, in Section 6 we present 
some final remarks and indications for future work. 

2 Conceptual Background 

DW is a typical database that is usually designed using the star model [1]. It has two 
types of tables: fact and dimension, where a fact table is used to store some metrics of 
a business and a dimension table to record its descriptive information. Basically, the 
structure of a fact table is defined by its identifier (formed from a non-empty set of 
references for dimensions), a possibly empty set of degenerated dimension, a possible 
empty set of attributes and a possible empty set of measures. The structure of a 
dimension table is defined by its identifier (a surrogate key [1]), a possibly empty set 
of references for sub-dimensions (outrigger or mini dimensions [1]) and a non-empty 
set of descriptive attributes.  

There are many techniques/concepts for modeling dimensions and fact tables, for 
example [1]: fact less fact table, additive facts, semi-additive facts, non-additive facts, 
degenerate dimensions, role-playing dimensions, bridge tables, slowly changing 
dimensions, monster dimensions, junk dimensions, heterogeneous dimensions, 
outriggers dimensions and mini dimensions. Many of these techniques/concepts only 
provide guidelines for modeling the DW schema. That is, they do not provide additional 
information (metadata) required to allow a Computer-Aided Software Engineering 
(CASE) tool to correctly generate code. For example, they do not provide extra and 
essential information to define table identifiers nor references/links among tables, as 
well as to create new tables or views. On the other hand, some techniques/concepts 
bring additional information/metadata required to a CASE tool generates correct code, 
namely: degenerate dimensions, role-playing dimensions and bridge tables (or many-to-
many relationship). That is, a degenerate dimension ensures that it can be used only in a 
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fact table and that it will be part of the identifier of the fact table, but it cannot be a 
reference/link for a dimension. In turn, a role-playing dimension allows creating 
different views of the same dimension. Finally, a bridge table (or many-to-many 
relationship) allows creating a third table with two one-to-many relationships, where we 
can specify the name of this table and some additional attributes.  

A lot of data stored in a DW has some spatial context (e.g., address, ZIP-code, city, 
state, country). This means that if one intends to properly use this data in decision 
support systems, it is necessary to consider the use of SDW [6]. A SDW is an 
extension of the traditional DW through the inclusion of a spatial component in 
dimension tables (i.e. a spatial attribute) and/or in fact tables (i.e. a spatial measure), 
where this spatial component (a spatial feature type) has a position (a geometric 
attribute) more a location (a descriptive attribute), being the latter optional. That is, 
we can have a feature type with only a geometric attribute.  

Modeling languages are defined in terms of their domain concepts and rules 
(abstract syntax), and the notation used to represent these concepts (concrete syntax). 
The abstract syntax is defined by a metamodel, which describes the concepts of the 
language, the relationships between them, and the structuring rules that constrain the 
combination of model elements according to the domain rules. The concrete syntax 
specifies how the domain concepts included in the metamodel are represented, and is 
usually defined by a mapping between the metamodel and a graphical notation. Each 
model is written in the language of its metamodel. Thus, a metamodel is useful to 
provide a precise definition of all modeling concepts and the well-formed rules 
needed for creating syntactically correct models. That is, a metamodel provides 
facilities for building CASE tools. For example, a CASE tool based on a metamodel 
can: detect errors earlier or even prevent them from happening, guide toward 
preferable design patterns, check completeness by informing about missing elements, 
minimize modeling work by conventions and default values, make full code 
generation and keep specifications consistent. Moreover, a metamodel also can serve 
as a basis for integrating and sharing the models/elements with other tools. So, a 
metamodel is as useful for a modeling language/CASE tool as a grammar is for a 
programming language/compiler [7][8]. 

3 The Spatial Data Warehouse Metamodel (SDWM) 

SDWM is a metamodel that embeds the following significant features: (i) 
disassociating DW dimensional modeling from OLAP data cube modeling; (ii) 
representing the spatiality in a SDW directly stereotyping attributes/measures as 
spatial, rather than stereotyping dimension/fact table as spatial or hybrid; (iii) 
capturing whether the geometry of a spatial attribute/measure can be normalized 
and/or shared; (iv) supporting the following DW modeling techniques: degenerated 
dimension, many-to-many relationship (bridge table) and role-playing dimensions; (v) 
providing a set of stereotypes with pictograms that aims to be concise and friendly; 
(vi) being used as a basic metamodel for a CASE tool that aims to model logical 
schemas of SDW, as well as to check whether these schemas are syntactically valid. 
In Figure 1 we introduce SDWM using the UML class diagram. In next paragraphs, 
based on [9], we give the definitions of our metamodel. 
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Definition 2 – Domain. A domain is a set of values of some base type T. Primitive 
types comprehend the types String (the set of all strings), Integer (the set of all 
integer numbers), and Boolean (the set formed by the elements true and false). 
Symbolic types comprehend all enumeration types stated in Definition 1. 
 

Our metamodel has five main metaclasses, namely: Schema, Relationship, Table, 
DimensionColumn and FactColumn. Schema is the root metaclass that corresponds to 
the drawing area for a SDW schema. For this reason, Schema is a composition of zero 
or more Table and zero or more Relationship. At last, FactColumn and 
DimensionColumn are just a set of different types of columns (in Definition 4, we 
define these columns). In Definition 3, we present such main metaclasses. 

 

Definition 3 - Main Metaclasses. Let Schema, Relationship, Table, FactColumn and 
DimensionColumn be sets, such that ∀ sch:Schema, st:Schema ↛ Table and 
sr:Schema ↛ Relationship ∴ st(sch) ∩ sr(sch) = ∅ ∧ dom(st) ∪ dom(sr) = Schema.   

 

Besides the main metaclasses, our metamodel has eight specialized metaclasses, 
namely: Fact, Dimension, Bridge, SpatialMeasure, DegenerateDimension, 
ConventionalMeasure, SpatialAttribute and ConventionalAttribute. That is, a Table is 
specialized in Fact, Dimension or Bridge, which capture the concepts of fact table, 
dimension table and a bridge table, respectively. A FactColumn is specialized in 
SpatialMeasure, DegenerateDimension and ConventionalMeasure, which correspond 
to a spatial feature type, a descriptive attribute and a measurable attribute, 
respectively. Finally, a DimensionColumn is specialized in SpatialAttribute and 
ConventionalAttribute, which represent a spatial feature type and a descriptive 
attribute. Note that all inheritances are disjoint and complete. Moreover, a Fact is a 
composition of zero or more FactColumn and zero or more ConventionalAttribute. In 
turn, a Dimension and a Bridge are a composition of zero or more DimensionColumn. 
In this context, it is important to point out that a Dimension differs from a Bridge, a 
SpatialMeasure from a SpatialAttribute and a DegenerateDimension from a 
ConventionalAttribute because they have different stereotypes, since they represent 
different concepts and have distinct behaviors. For example: (i) a SpatialAttribute 
always has a position (i.e. a geometry) and a location (i.e. a description), while a 
SpatialMeasure only need to have a position, given that it can be defined without a 
location (hasDescription = false) and (ii) a DegenerateDimension cannot be defined 
in a dimension table. In Definition 4, we formalize all specialized metaclasses of our 
metamodel. 

 

Definition 4 - Specialized Metaclasses. Let Fact, Dimension, Bridge, 
SpatialMeasure, DegenerateDimension, ConventionalMeasure, SpatialAttribute, and 
ConventionalAttribute be sets, such that: Fact ⊆ Table, Dimension ⊆ Table, and 
Bridge ⊆ Table (Fact ∩ Dimension ∩ Bridge = ∅ ∧ Fact ∪ Dimension ∪ Bridge = 
Table); SpatialMeasure ⊆ FactColumn, DegenerateDimension ⊆ FactColumn and 
ConventionalMeasure ⊆ FactColumn (SpatialMeasure ∩ DegenerateDimension ∩ 
ConventionalMeasure = ∅ ∧ SpatialMeasure ∪ DegenerateDimension ∪ 
ConventionalMeasure = FactColumn), and SpatialAttribute ⊆ DimensionColumn and 
ConventionalAttribute ⊆ DimensionColumn (SpatialAttribute ∩ Conventional 
Attribute = ∅ ∧ SpatialAttribute ∪ ConventionalAttribute = DimensionColumn),  
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∀ dc:DimensionColumn, dcb:DimensionColumn ↛ Bridge and 
dcd:DimensionColumn ↛ Dimension ∴ dcb(dc) ∩ dcd(dc) = ∅ ∧ dom(dcb) ∪ 
dom(dcd) = DimensionColumn, ∀ fcf:Fact ↛ FactColumn ∴ dom(fcf) = Fact, and ∀ 
fca:Fact ↛ ConventionalAttribute ∴ dom(fca) = Fact. 

 

In order to capture the tables that are source and target in a relationship, we have the 
associations named Source and Target between Table and Relationship. In Definitions 
5 and 6, we present these associations. 

 

Definition 5 - Source Associations. Let sourceR be injective functions from 
Relationship to Table (sourceR: Relationship ↣ Table). 

 

Definition 6 - Target Associations. Let targetR be an injective function from 
Relationship to Table (targetR: Relationship ↣ Table). 

 

Attributes are formalized as functions from their metaclasses to the domains they use. 
In Definition 7, we start by specifying cardinality as an attribute used in metaclass 
Relationship. 

 

Definition 7 - Cardinality Let cardinality and role be functions from metaclass 
Relationship to domain Cardinality (cardinality: Relationship → Cardinality). 

 

A dimension can play different roles (views) in a fact table. In this situation we use 
the technique called role-playing dimension. In Definition 8, we introduce the role 
attribute. 

 

Definition 8 - Role Let role be a function from metaclass Relationship to domain 
String (role: Relationship → String). 

 

Another important attribute is Name. This attribute stores a label that identifies a 
metaclass. In Definition 9, we specify Name as an attribute used in several 
metaclasses. 

 

Definition 9 - Name Let nameT be a function from metaclass Table to domain String 
(nameT: Table → String), nameFC be a function from domain FactColumn to domain 
String (nameFC: FactColumn → String), nameDC be a function from domain 
DimensionColumn to domain String (nameDC: DimensionColumn → String). 

 

In order to define whether the position of a spatial measure/attribute must be 
normalized in a different table from its location, the isNormalized attribute is defined 
as a Boolean. That is, whether this attribute is defined as true, the geometric 
information is normalized in a separate table from the table that stores the descriptive 
information of the spatial attribute/measure. Otherwise (isNormalized = false), the 
geometric information is defined in the same table that stores the descriptive 
information of spatial attribute/measure. In Definition 10, we present the attribute 
isNormalized. 

 

Definition 10 - isNormalized Let isNormalizedSM be a function from SpatialMeasure 
to domain Boolean (isNormalizedSM: SpatialMeasure → Boolean) and 
isNormalizedSA be a function from SpatialAttribute to domain Boolean 
(isNormalizedSA: SpatialAttribute → Boolean). 
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SDWM also allows defines whether the position of a spatial attribute/measure can be 
shared among several spatial attributes/measures. To accomplish this, it is necessary 
to define the same name and the same geometric type. Furthermore, for each spatial 
attribute/measure that will share its geometry, the attributes isNormalized and 
isShared must be defined as true. For example, considering an insured dimension and 
a fact table about accidents, these tables can share the neighborhood geometry where 
the insured lives and the local that the accident occurs. We also define this attribute 
using Boolean. In Definition 11, we specify attribute isShared. 

 

Definition 11 - isShared Let isSharedSM be a function from SpatialMeasure to 
domain Boolean (isSharedSM: SpatialMeasure → Boolean) and isSharedSA be a 
function from SpatialAttribute to domain Boolean (isSharedSA: SpatialAttribute → 
Boolean). 

 

Spatial measures have the attribute hasDescription, which allows to define whether 
the spatial measure has a location/description (hasDescription = true) and a 
position/geometry or, otherwise (hasDescription = false), whether the spatial measure 
has only a position/geometry. We also define this attribute using Boolean. In 
Definition 12, we introduce attribute hasDescription. 

 

Definition 12 - hasDescription Let hasDescription be a function from 
SpatialMeasure to domain Boolean (hasDescription: SpatialMeasure → Boolean). 

 

Each measure/attribute has an associated type from our allowed data types. These 
types are captured as attributes of SWDM metaclasses. This is formalized in 
Definition 13. 

 

Definition 13 - Type Let typeSM be a function from SpatialMeasure to GeometricType 
(typeSM: SpatialMeasure → GeometricType), typeDD be a function from 
DegeneratedDimension to DataType (typeDD: DegeneratedDimension → DataType), 
typeCM be a function from ConventionalMeasure to DataType (typeCM: 
ConventionalMeasure → DataType), typeSA be a function from SpatialAttribute to 
GeometricType (typeSA: SpatialAttribute → GeometricType), and typeCA be a function 
from ConventionalAttribute to DataType (typeCA: ConventionalAttribute → 
DataType). 

 

Some metaclasses  may have a size to restrict the data types of its columns. Thus we state 
this in Definition 14. 

 

Definition 14 - Size Let sizeDD be a function from DegeneratedDimension to domain 
Integer (sizeDD: DegeneratedDimension → Integer), sizeCM be a function from 
ConventionalMeasure to domain Integer (sizeCM: ConventionalMeasure → Integer), 
and sizeCA be a function from ConventionalAttribute to domain Integer (sizeCA: 
ConventionalAttribute → Integer). 

 

SDWM uses stereotypes with pictograms to increase its capacity of expression and 
visualization. In Figure 2 we show the stereotypes with pictograms to represent the 
main SDWM constructors.  
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Fig. 2. SDWM Metamodel Stereotypes 

In Figure 3 and Figure 4 we present the stereotypes with pictograms for primitive 
types and spatial types of SDWM, respectively. Furthermore, we point out that, when 
isNormalized or isShared are defined as true the spatial attribute/measure appears in 
bold or italic font, respectively. 

 

 

Fig. 3. SDWM Primitive Type Stereotypes 

 

Fig. 4. SDWM Geometry Type Stereotypes 

4 A Real-Life Case Study 

In order to evaluate the correctness and usefulness of our metamodel, we have 
developed a CASE tool, called SDWCASE, that was used to design a SDW with 
meteorological data from the Laboratory of Meteorology of Pernambuco (LAMEPE). 
This laboratory has a net of meteorological Data Collection Platform (DCP) for 
monitoring atmospheric conditions. Meteorological data are important information for 
predictions about the occurrence and volume of rainfall in the state of Pernambuco. 

SDWCASE is a CASE tool for specifying a SDW schema that offers a concise and 
friendly GUI that is based on the stereotypes with pictograms of SDWM (see Figures 
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2, 3 and 4). With our CASE tool, the designer can interact with the SDW schema by 
inserting, excluding, editing, visualizing at different zoom levels, exporting a figure 
(e.g. JPG, GIF, PNG) or XMI file. Moreover, SDWCASE also allows the validation 
of the modeled schema. For example, (i) two tables (dimension or fact) or two 
attributes (in the same table) cannot have the same name; (ii) a table cannot be 
isolated or associated with itself; (iii) measures and degenerated dimensions can only 
exist in a fact table; and (iv) dimension tables and bridged tables can only have 
attributes. The first and the second validations are ensured by programming, but the 
third and the fourth are intrinsically/automatically ensured by our metamodel (see 
Figure 1). SDWCASE is implemented using Java/Eclipse technologies [11] (i.e. 
Eclipse Modeling Framework (EMF), Graphical Modeling Framework (GMF) and 
Epsilon Framework), which are conform to the Essential Meta Object Facility 
(EMOF) [12] standard and, in its current version, it generates code only for 
PostgreSQL with PostGIS. However, it can be done for any spatial DBMS. For this, 
basically, we need to develop a new compiler considering the data types and reserved 
words of a specific SQL/DDL. 

In Figure 5 we show the SDWCASE GUI with the LAMEPE SDW using many-to-
many relationship. The SDWCASE GUI has a palette (area 2 in Figure 5) with all 
elements (defined in SDWM) that the designer needs to model a SDW. The modeling 
tasks starts with a click on the desired element in the palette and place it in the 
drawing area (area 1 in Figure 5). Next, the designer may edit the properties of the 
element (area 3 in Figure 5), and add new elements or relationships. Note that (i) each 
element is easily identified by its pictogram and (ii) the SDW schema is concise. That 
is, only using spatial attributes/measures, we can represent the spatiality in a SDW 
with a short notation.  

Also, in Figure 5 we have one fact table and four dimension tables. The fact table 
(Meteorology) has only conventional measures and the dimension tables (Time, 
Hydrographic Basin, Localization, DCP, Research and Researcher) have the 
following spatial attributes: dimension Localization - city, micro_region, meso_region 
and state (attributes of type MultiPolygon); dimension Hydrographic Basin - area 
(attribute of type MultiPolygon); and dimension DCP - localization (attribute of type 
Point). In Figure 5 there is a many-to-many relationship between the fact table 
Meteorology and the dimension Research. In this case, our CASE tool abstracts the 
creation of a third table to implement this relationship. However, an explicit bridge 
table also can be defined in SDWCASE, where we can specify the name of this table 
and some additional attributes (e.g. weighting_factor and primary_indicator). In 
Figure 6 we redefine this many-to-many relationship as an explicit bridge table 
(Research_Collection) and, to illustrate a full use of our metamodel and CASE tool, 
we apply the following concepts: role-playing dimensions, spatial measure, 
degenerated dimension and conventional attribute. For this, we remove the DCP 
dimension and redefine its attributes installation_date and extintion_date as two role-
playing dimensions, as well as its attributes location, DCP_number and status, 
respectively, as a spatial measure, a degenerated dimension and a conventional 
attribute in that fact table. 
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(conventional and spatial) and dimensions (conventional, spatial and hybrid). 
However, the metamodel and the CASE tool, although support the degenerated 
dimension technique, do not support: spatial attributes, many-to-many relationships 
and role playing dimensions. That is, the position of a spatial attribute cannot be 
defined as normalized and/or shared. Moreover, the use of dimensions stereotyped 
with spatial pictograms does not provide a concise/short notation, because it defines 
one dimension for each spatial information, which pollutes the SDW schema whether 
it has much spatial information. 

Malinowski and Zimányi [19][20] define an extension of ER model to represent 
dimensions, hierarchies and spatial measures/levels. The extension makes use of 
classes and relationships, both stereotyped with spatial pictograms, in order to model 
the geometry of spatial levels and the topological relationships between these levels. 
As already stated, we stress that the use of dimensions stereotyped with spatial 
pictograms does not provide a concise notation, because it also defines one class for 
each spatial level, which pollutes the SDW schema whether it has many spatial 
information. Moreover, as we can observe, this work also mix DW modeling with 
OLAP modeling and, although the authors define a metamodel, it does not support 
spatial attributes neither DW modeling techniques, it does not capture whether the 
geometry of a spatial attribute must be normalized and/or shared and it is not used as 
a basic metamodel for a CASE tool.  

Glorio and Trujillo [21][22] define an UML profile and a CASE tool that use a set 
of stereotypes with pictograms for dimensions, hierarchies and spatial 
measures/levels. As we can note, both metamodel and CASE tool, also mix DW 
modeling with OLAP modeling and do not consider the concept of spatial attribute. 
Consequently, this work does not capture whether the geometry of a spatial attribute 
must be normalized and/or shared. Moreover, although this work supports the 
technique degenerated dimension, it does not support many-to-many relationships 
neither role playing dimensions. This work provides a set of spatial stereotypes with 
pictograms. However, the authors represent a spatial level as a stereotyped class and, 
similar to the last two works, this does not provide a short notation. That is, this work 
defines one stereotyped class for each spatial level, which, as already stated, pollutes 
the SDW schema whether it has much spatial information. 

As we can note, these works support spatial measure, but they do not support 
spatial attributes. Consequently, they cannot capture whether the geometry of a spatial 
attribute/measure must be normalized and/or shared. Moreover, only Fidalgo et al. 
[16][17][18] do not mix DW modeling with OLAP modeling, as well as, only Fidalgo 
et al. [16][17][18] and Glorio and Trujillo [21] [22] support degenerated dimension 
technique, but these works do not support many-to-many relationships neither role 
playing dimensions techniques. Finally, although these works provide a set of spatial 
stereotypes with pictograms, they represent the spatial information as a stereotyped 
class, which does not provide a concise/short notation, because it pollutes the SDW 
schema whether it has much spatial information. In Table 1 we compare our work 
with the related works discussed in this Section. 
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Table 1. Analysis of related works and our proposal  Han et al. Fidalgo et 

al 

Malinowski 

and Zimányi 

Glorio and 

Trujillo 

Our 

Proposal 

DW vs. OLAP Modeling NO YES NO NO YES 

CASE Tool NO YES NO YES YES 

Degenerated Dimensions NO YES NO YES YES 

M-N Relationships NO NO NO NO YES 

Role-Playing Dimensions NO NO NO NO YES 

Spatial Attributes NO NO NO NO YES 

Spatial Measures YES YES YES YES YES 

Short notation NO NO NO NO YES 

Normalized/Shared Geo. NO NO NO NO YES 

6 Final Remarks 

Metamodels play a fundamental role in modeling language definition and CASE tool 
creation, because it describes the constructors and the valid constructions of a 
modeling language/CASE tool. That is, a metamodel specifies modeling elements, 
their relationships and their well-formed rules, disallowing the specification of 
incorrect or ambiguous models [7][8]. Many proposals have focused in metamodel 
and/or CASE tool for SDW. However, most of these works defines metamodels that 
(i) mixes concepts of DW dimensional modeling (i.e. dimensions and its attributes) 
with concepts of the OLAP data cube modeling (i.e. hierarchy and its levels); (ii) does 
not support important techniques of DW modeling (e.g. degenerate dimensions, role-
playing dimensions and/or bridge tables), (iii) represents the spatiality in a SDW 
stereotyping the dimensions and fact table as spatial or hybrid, rather than directly 
stereotyping the attributes/measures as spatial; (iv) defines a complex taxonomy of 
spatial dimensions and measures, (v) does not provide a concise and friendly set of 
stereotypes with pictograms; and/or (vi) is not used as a basic metamodel for a CASE 
tool that aims to model logical schemas of SDW, as well as to check the 
consistency/integrity of these schemas. 

In this paper, in order to give a contribution to solve this problem, we have 
presented a more detailed and precise definition of SDWM, which describes the 
constructors and the restrictions needed to design SDW schemas that are consistent 
and unambiguous. Our metamodel is more straightforward and more expressive than 
its related works, because it (i) represents the spatiality in a SDW assigning spatial 
stereotypes directly in attributes and measures, (ii) disassociates the DW dimensional 
modeling from the OLAP data cube modeling, (iii) captures whether the geometry of 
a spatial attribute/measure can be normalized and/or shared, (iv) proposes a set of 
stereotypes with pictograms that aims to provide a short/concise notation, and (iv) 
supports the following DW modeling techniques: degenerated dimension, bridge table 
and role-playing dimensions. For this, SDWM can be used as a basic metamodel for a 
CASE tool that aims to provide facilities to make the design of invalid or incorrect 
SDW schema much harder, as well as to make the automatic SQL/DDL code 
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generation from these schemas. To the best of our knowledge, our proposal is the first 
one to gather these features, depicting a novel perspective of research, since our work 
breaks the actual trend of state-of-the-art. 

To evaluate our proposal, SDWM has been implemented in a CASE tool and tested 
with a real-life application that illustrates a full use of our metamodel, demonstrating 
that the semantic and syntax of our metamodel are modeled correctly, and its notation 
is unambiguous. The CASE tool is named SDWCASE. It is implemented in Java 
using EMF, GMF and Epsilon Frameworks, which are conform to the EMOF 
standard. In its current version, SDWCASE generates SQL/DDL code for 
PostgreSQL with PostGIS. In future work, other spatial DBMS will also be covered. 
Other direction for future work is the: definition of a metamodel and CASE tool to 
model and query a Spatial OLAP cube. 

 
Acknowledgment. This work was supported by the process BEX 5026/11 
CAPES/DGU from the CAPES Brazilian foundation. 

References 

[1] Kimball, R., Ross, M., Thornthwaite, W., Mundy, J., Becker, B.: The Data Warehouse 
Lifecycle Toolkit, 2nd edn. John Wiley & Sons (2008) 

[2] Thomsen, E.: OLAP Solutions: Building Multidimensional Information Systems, 2nd 
edn. John Wiley & Sons (2002) 

[3] Heywood, D.I., Cornelius, M.S., Carver, D.S.: An Introduction to Geographical 
Information Systems, 3rd edn. Prentice-Hall (2006) 

[4] Witten, I.H., Frank, E., Hall, M.A.: Data Mining: Practical Machine Learning Tools and 
Techniques, 3rd edn. The Morgan Kaufmann Series in Data Management Systems. 
Morgan Kaufmann (2011) 

[5] Del Aguila, P.S.R., Fidalgo, R.N., Mota, A.: Towards a more straightforward and more 
expressive metamodel for SDW modeling. In: Proceedings of the ACM 14th International 
Workshop on Data Warehousing and OLAP, pp. 31–36 (2011) 

[6] Damiani, M.L., Spaccapietra, S.: Spatial data warehouse modelling. In: Darmont, J., 
Boussaid, O. (eds.) Processing and Managing Complex Data for Decision Support, pp. 
12–27. Idea Group Publishing (2006) 

[7] Kelly, S., Tolvanen, J.-P.: Domain-Specific Modeling: Enabling Full Code Generation. 
Wiley-IEEE Computer Society Pr. (2008) 

[8] Moreno, N., Romero, J.R., Vallecillo, A.: An Overview of Model-Driven Web 
Engineering and the Mda. In: Rossi, G., Pastor, O., Schwabe, D., Olsina, L. (eds.) Web 
Engineering: Modelling and Implementing Web Applications, pp. 353–382. Springer, 
London (2008) 

[9] Schmitt, P.H.: UML and its Meaning (2003),  
http://formal.iti.kit.edu/~beckert/teaching/ 
Spezifikation-SS04/skriptum-schmitt.pdf 

[10] Open Geospatial Consortium Inc, OpenGIS® Implementation Specification for 
Geographic information - Simple feature access - Part 1: Common architecture (2006) 

[11] Eclipse.org, Eclipse Modeling Project, http://www.eclipse.org/modeling/ 
(accessed: April 2012) 
 



 Enhancing Coverage and Expressive Power of Spatial Data Warehousing Modeling 29 

[12] OMG, Meta Object Facility (MOF) Core Specification - Version 2.4.1 (2011),  
http://www.omg.org/spec/MOF/2.4.1/PDF/ 

[13] Kolovos, D., Rose, L., Paige, R.: The Epsilon Book. Eclipse (2011) 
[14] Stefanovic, N., Han, J., Koperski, K.: Object-based selective materialization for efficient 

implementation of spatial data cubes. IEEE Transactions on Knowledge and Data 
Engineering 12(6), 938–958 (2000) 

[15] Bédard, Y., Merrett, T., Han, J.: Fundamentals of spatial data warehousing for geographic 
knowledge discovery. Geographic Data Mining and Knowledge Discovery 2, 53–73 
(2001) 

[16] Fidalgo, R.N., Times, V.C., da Silva, J., Souza, F.F.: GeoDWFrame: A Framework for 
Guiding the Design of Geographical Dimensional Schemas. In: Kambayashi, Y., 
Mohania, M., Wöß, W. (eds.) DaWaK 2004. LNCS, vol. 3181, pp. 26–37. Springer, 
Heidelberg (2004) 

[17] Times, V.C., Fidalgo, R.N., da Fonseca, R.L., da Silva, J., de Oliveira, A.: A Metamodel 
for the Specification of Geographical Data Warehouses. In: Kozielski, S., Wrembel, R., 
Sharda, R., Voß, S. (eds.) New Trends in Data Warehousing and Data Analysis, vol. 3, 
pp. 1–22. Springer, US (2009) 

[18] da Silva, J., de Oliveira, A.G., Fidalgo, R.N., Salgado, A.C., Times, V.C.: Modelling and 
querying geographical data warehouses. Information Systems 35(5), 592–614 (2010) 

[19] Malinowski, E., Zimányi, E.: Logical Representation of a Conceptual Model for Spatial 
Data Warehouses. GeoInformatica 11(4), 431–457 (2007) 

[20] Malinowski, E., Zimányi, E.: Advanced Data Warehouse Design: From Conventional to 
Spatial and Temporal Applications (Data-Centric Systems and Applications). Springer 
(2009) 

[21] Glorio, O., Trujillo, J.: An MDA Approach for the Development of Spatial Data 
Warehouses. In: Song, I.-Y., Eder, J., Nguyen, T.M. (eds.) DaWaK 2008. LNCS, 
vol. 5182, pp. 23–32. Springer, Heidelberg (2008) 

[22] Glorio, O., Trujillo, J.: Designing Data Warehouses for Geographic OLAP Querying by 
Using MDA. In: Gervasi, O., Taniar, D., Murgante, B., Laganà, A., Mun, Y., Gavrilova, 
M.L. (eds.) ICCSA 2009, Part I. LNCS, vol. 5592, pp. 505–519. Springer, Heidelberg 
(2009) 

 



Sprint Planning Optimization

in Agile Data Warehouse Design

Matteo Golfarelli, Stefano Rizzi, and Elisa Turricchia

DEIS - Univ. of Bologna,
V.le Risorgimento 2, 40136 Bologna, Italy

{matteo.golfarelli,stefano.rizzi,elisa.turricchia2}@unibo.it

Abstract. Agile methods have been increasingly adopted to make data
warehouse design faster and nimbler. They divide a data warehouse
project into sprints (iterations), and include a sprint planning phase
that is critical to ensure the project success. Several factors impact on
the optimality of a sprint plan, e.g., the estimated complexity, business
value, and affinity of the elemental functionalities included in each sprint,
which makes the planning problem difficult. In this paper we formalize
the planning problem and propose an optimization model that, given the
estimates made by the project team and a set of development constraints,
produces an optimal sprint plan that maximizes the business value per-
ceived by users. The planning problem is converted into a multi-knapsack
problem with constraints, given a linear programming formulation, and
solved using the IBM ILOG CPLEX Optimizer. Finally, the proposed
approach is validated through effectiveness and efficiency tests.

Keywords: Agile methods, Optimization, Data warehouse design.

1 Introduction

As empirical studies suggest [9,2], agility is one of the most promising directions
to overcome the problems of traditional software engineering approaches. The
twelve principles stated in the Agile Manifesto [3] are followed by several agile
methods, such as Scrum and eXtreme Programming, that have been adopted by
an increasing number of companies to make the software development process
faster and nimbler. Agile principles also find large application for designing data
warehouses (DWs), that are characterized by a particularly long and expensive
development process, so some agile approaches to DW design have been devised
in recent years [13,11].

A key practice shared by all agile methods is incremental and iterative design
and implementation. The DW system is described in terms of detailed user
functionalities (user stories) [13]; a user story can correspond for instance to a
set of correlated reports, a piece of ETL, or a conceptual schema for a fact. At
each iteration (sprint in the Scrum terminology), the team should deliver the
set of user stories that maximizes the utility for the users and fulfills a set of
development constraints [22]; typical constraints include limiting the duration of
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an iteration, respecting dependencies and correlations among user stories (e.g.,
logical design must follow conceptual design), reducing the non-delivery risk.

Clearly, the sprint planning phase is critical to ensure the project success.
User story prioritization and definition of sprint boundaries are obtained by
sharing and averaging the estimates given by the different team members about
story complexity, utility, and dependencies. For example, advancing high-valued
stories (e.g., those that implement critical analysis reports) could lead to an early
significant result for users; similarly, risky user stories (e.g., those that implement
cleaning procedures for very dirty data) can be advanced to avoid late side-
effects, but at the price of a higher probability of delays in the initial stages. The
success of a sprint planning phase mainly depends on the accuracy of estimates
and on the capability of properly taking several variables and constraints into
account. While the first issue is mainly related to the team experience, the second
one can be formulated as an optimization problem whose complexity increases
with the project size. Clearly, a non-optimal solution to this problem leads to
inefficiencies that easily turn into extra-costs and project delays.

Though some commercial tools support agile project management for generic
software systems [23,8], they do not provide any support to optimal sprint plan-
ning. In this direction, in this paper we formalize the sprint planning problem for
DW projects and propose an optimization model that, given the team estimates
and a set of development constraints, produces an optimal sprint plan that max-
imizes the business value perceived by users. Remarkably, though our approach
fully complies with the agile principles that give the team experience and knowl-
edge a key role in delivering an effective plan, it also relieves the team from the
difficult task of quickly producing an optimal plan. The optimization problem
is formalized as a multi-knapsack problem with constraints, and is solved using
the IBM ILOG CPLEX Optimizer [14].

The paper is organized as follows. Section 2 reviews the related literature;
Section 3 summarizes the key agile practices in DW design; Section 4 formalizes
the sprint planning problem and proposes an optimization model that takes
agile principles into account; Section 5 presents a set of tests on both synthetic
and real projects to prove efficiency and effectiveness of our approach; Section 6
draws the conclusions and sketches our future work.

2 Related Literature

A pioneering work in the field of agile DW design is [13], that breaks with strictly
sequential approaches by applying two Agile development techniques, namely
scrum and eXtreme Programming, to the specific challenges of DW projects. To
better meet user needs, the work suggests to adopt a user stories decomposition
step based on a set of architectural categories for the back-end and front-end
portions of a DW. In [11] the potential advantages arising from the application
of modern software engineering methodologies to a DW project are analyzed,
and a design methodology called Four-Wheel-Drive (4WD) is proposed. 4WD
aims at making the DW design process more reliable, robust, productive, and
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timely; to this end it adopts six key principles (incrementality, prototyping,
user involvement, component reuse, light documentation, and automated schema
transformation), most of which perfectly fit the agile paradigm.

More generally, in the software engineering field several approaches inspired by
agile principles have been proposed [2]. In [9], the authors propose a systematic
review and comparison of different agile methods, focusing on both organiza-
tional and technical features. They also emphasize the increasing penetration of
Scrum and Extreme Programming practices in industries. The Scrum approach
is deeply discussed in [22], where its key ideas and its life-cycle are described. A
more pragmatic work is presented in [7], that focuses on user stories and gives
practical hints for estimating their complexity and business value.

As to tools for agile project management, a few solutions are available. Ag-
ileFant [1] offers a set of basic functionalities to monitor the progress of project
iterations. Mingle [23] and ScrumWorks [8] provide a more complete set of agile
parameters to deal with user story risk, complexity, and business value. However,
all these solutions lack in providing an automated solution to the sprint opti-
mization problem; similarly, to the best of our knowledge, no research prototypes
have been developed to this purpose.

In the broader context of project scheduling, several models and algorithms
have been proposed in the literature (see [15] for a survey). According to the
classifications proposed in [12] and [5], our problem is categorized as resource-
constrained with renewable resources (i.e., manpower) available on a period-by-
period basis. As in the basic PERT/CPM model, finish-start precedences with
zero time lag are considered and no preemption of activities is allowed.

The project scheduling literature provides no model that perfectly fits the
problem discussed here, and this is where operational research comes into play.
Sprint optimization can be formulated as a multi-knapsack problem [17], where
sprints are the knapsacks, while user stories are the items. The sprint optimiza-
tion problem is made original by its objective function and the way how affinity
and risk affect the solution. Though the multi-knapsack problem is NP-hard
[10], branch-and-bound techniques can efficiently compute exact solutions for
medium-sized instances. For large problems, heuristic methods can be used to
find approximate results.

3 A Summary of Agile Data Warehouse Design Practices

The success of a DW project is directly related to customer satisfaction, so agile
methods strive to better comply with user requests. In particular, agile principles
aim at reducing the delivery time and making the development process more
flexible; indeed, accelerating the time-to-market leads to overcoming the business
pressure, while flexibility ensures fast reactions to both technology evolution and
user requirement changes. To achieve these goals, agile methods propose several
complemental practices:

– Incremental process: The DW system is broken up into smaller portions
which are scheduled, developed, and integrated when completed; each
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portion represents an increment in business functionality, that users can
validate. For instance, 4WD is based on nested iteration cycles: a data mart
cycle that defines and maintains the global plan for the development of the
whole DW and, at each iteration, designs and releases one data mart; a fact
cycle that refines the data mart plan and incrementally designs and releases
its facts; a modeling and an implementation cycle that include the activities
for delivering reports and applications concerning a single fact [11].

– Iteration: The DW system is built in iterations, where each cycle expands the
product until the project is completed. Since the process is also incremental,
each iteration includes analysis, design, coding, and testing. Noticeably, a
stepwise refinement based on short iterations increases the quality of projects
by supporting rapid feedback and quick deliveries [4,18].

– User involvement: Analysis specifications are difficult to be understood dur-
ing the preliminary life-cycle phases. Continuous interaction with users is
promoted to progressively refine the specifications, reduce inadequate re-
quirements, and increase the trust between users and developers. In more
general terms, a user-centered design increases customer satisfaction [11].

– Continuous and automated testing: To facilitate requirement validation and
obtain better results, a DW is developed by refining and expanding an evo-
lutionary prototype that progressively integrates the implementation of each
increment [20]. Unit tests are written for each release of the prototype and
automated tests are used whenever possible to accelerate error detection.

– Lean documentation: A well-defined documentation is a key feature to com-
ply with user requirements. Small and simple formal schemata are preferred
to extensive specifications; thanks to continuous user involvement, up-to-
date and clear documentation can be achieved [16,21].

Figure 1 shows the general life-cycle of an agile DWproject. Depending on the spe-
cific methodology adopted, the macro-analysis returns a high-level description of
the requirements in terms of facts to be designed, functional areas to be covered, or
analysis applications to be developed. The project team and the users break these
requirements into user stories and assign a utility and a development complexity
(measured in terms of story points) to each of them.Typical examples of user stories
include: one or more forms for manual input of data to ETL; a report or a group of
related reports; the conceptual schema of a fact or a conformed hierarchy; an ETL
unit; the glossary for a functional area; a security profile.

Then, the team assigns a priority to each user story and defines possible corre-
lations (affinities) among stories. The resulting list composes the data warehouse
backlog, that must be partitioned into sprints to produce a plan. Sprints should
be short and regular enough to guarantee a prompt feedback from users. During
each sprint, the team carries out a micro-analysis of the user stories involved,
then its members take charge of one or more user stories that are then designed,
implemented, and tested. After closing a sprint, the users verify if the stories
developed match the requirements they expressed. The approved stories are de-
livered, while the remaining ones are reinserted in the backlog; noticeably, new
requirements may arise at this stage from user feedbacks.
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Fig. 1. Agile life-cycle for DW design

4 An Optimization Model

Our formulation of the sprint planning problem takes into account the main
variables that affect user stories prioritization and sprint composition. The un-
derlying concepts are:

– Plan: a sequence of sprints. All modern DW design methodologies agree on
incrementally releasing one data mart at a time, so we will assume the scope
of a plan is that of a data mart.

– Sprint: the time-bound unit of iteration, typically a one- to four-week period,
depending on the project complexity and risk assessment. A sprint includes a
set of user stories, and it normally ends with a delivery. A maximum duration
is fixed for each sprint by the project team.

– User story: a relatively small piece of functionality valuable for users [7].
It represents a light specification that can be later detailed thanks to a
continuous communication with the user, but at the same time it must be
sufficiently described to estimate its development complexity.

– Utility: the business value of a user story as it is perceived by the user
that defines it. In general it is quantified through a positive numerical score
(typically ranging between 10 and 100 [19]).

– Story point: a unit of measurement for the development complexity of user
stories. Team members assign story points to each user story based on their
experience and knowledge of the domain and project specificities. Story
points are non-dimensional and are preferred to time/space measures to
avoid subjective and incomparable estimates. Typical complexities of user
stories range between 1 and 10 story points [19].
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– Risk: the risk that the project is not completed as desired. We consider risks
related to two different characteristics of user stories: (i) A critical story is one
that has a strong impact on the other stories, so that taking a wrong solution
for it can dramatically affect the success of the project (e.g., the conceptual
design of a conformed dimension); (ii) An uncertain story is one for which it
is somehow hard to estimate the complexity due to unexpected problems that
could arise (e.g., changes in the analysis requirements or faulty/incomplete
source data). Both types of risk are estimated by positive numbers; here we
adopted four classes of risk: 1 (no risk), 1.3 (low risk), 1.7 (medium risk),
and 2 (high risk).

– Affinity: the degree of correlation between user stories. Similar stories have
higher utility if they are included in the same sprint, because users better per-
ceive the overall business value of the functionality delivered. For instance,
an “incremental data extraction” story may have low utility on its own, but
its utility increases if delivered together with the complemental “incremental
data loading” story. The affinity range we adopted is [0, 0.5], meaning that
the utility of a story can be increased at most by 50%.

– Dependence: a development constraint between two user stories, indicat-
ing that a user story (post-condition) cannot start before the other (pre-
condition) is completed. Though agile methods discourage user story
relationships to improve the project flexibility, some development dependen-
cies must necessarily be preserved (e.g., logical design must follow conceptual
design). The dependency type of a user story takes value AND (all the pre-
condition stories must be completed) or OR (at least one of the pre-condition
stories must be completed).

– Development speed: the estimated number of story points the team can de-
liver per day. It is used to convert the sprint duration into the sprint capacity
(i.e., the maximum number of story points the team can deliver in a sprint).

We can now list the goals an optimal plan should pursue:

�1 Customer satisfaction. It can be obtained by delivering user stories with
higher utility first. In the agile philosophy, this also increases the user aware-
ness and trust.

�2 Affinity management. Similar stories should be carried out in the same sprint
to increase their value for users.

�3 Risk management. It can be achieved by (i) advancing critical user stories
to avoid late side-effects, on the one hand; (ii) distributing uncertain stories
in different sprints and postponing them to reduce the risk that the sprint
delivery is delayed, on the other hand.

Besides, all constraints related to the sprint capacity and inter-story dependen-
cies must obviously be met.

The problem of determining an optimal plan, i.e., one that achieves these
goals, can be converted into a multi-knapsack problem [17], where the knap-
sacks are the sprints and the items are the stories. Story points measure the
weight of an item, while utility represents its value. Knapsack capacity is mea-
sured as the story points that the team can deliver given the sprint duration and
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the team development speed, i.e., as the sprint capacity. The objective function
to be maximized is the cumulative utility of the project (goal �1), where the
utility of each story is increased if some similar stories are included in the same
sprint (goal �2) and/or if that story is critical (goal �3-i). Finally, in the formu-
lation of the capacity constraint, the story points of user stories are increased by
their uncertainty, which discourages the inclusion of two uncertain stories in the
same sprint (goal �3-ii). The multi-knapsack problem is NP-hard [10]; the linear
programming formulation we adopt is shown in the following.

Definition 1 (Sprint Planning Problem). Given a set of m sprints S and
a set of n user stories U , let:

– xij = 1 iff story j is included in sprint i, 0 otherwise;
– uj be the utility of story j;
– pj be the number of story points of story j;
– pmax

i be the capacity of sprint i, measured in story points;
– rcrj be the criticality risk of story j;
– runj be the uncertainty risk of story j;
– aj be the affinity of story j;
– Yj ⊂ U be the set of stories similar (i.e., with some affinity) to story j;
– yij be an accessory variable related to the number of stories in Yj included

in sprint i;
– Dj ⊂ U be the set of stories the story j depends on;
– U ⊇ UAND ∪ UOR, where UAND and UOR are the subsets of stories having

dependency type AND and OR, respectively.

The sprint planning problem consists in determining an optimal assignment of
the xij ’s, i.e., in finding which stories compose each sprint in an optimal plan.
Its linear programming formulation is as follows:

z = Max

m∑
k=1

k∑
i=1

n∑
j=1

uj(r
cr
j xij + aj

yij
|Yj | ) (1)

s.t.
n∑

j=1

pjr
un
j xij ≤ pmax

i ∀i ∈ S (2)

m∑
i=1

xij = 1 ∀j ∈ U (3)

i∑
k=1

∑
z∈Dj

xkz ≥ xij ∀i ∈ S, j ∈ UOR (4)

i∑
k=1

∑
z∈Dj

xkz ≥ xij |Dj | ∀i ∈ S, j ∈ UAND (5)

yij ≤
∑
k∈Yj

xik ∀i ∈ S, j ∈ U (6)

yij ≤ |Yj |xij ∀i ∈ S, j ∈ U (7)
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The explanation of the elements of this formulation is as follows:

(1) The objective function z states that the optimal plan maximizes the cu-
mulative utility function. The criticality risk rcrj increases the utility uj of
a critical story j, thus encouraging an early placement of critical stories.
Affinity is managed through term aj

yij

|Yj| , that increases the utility of a story

j proportionally to the fraction of similar stories included in sprint i.

(2) These inequalities ensure that the sum of the story points of the stories
included in each sprint i does not exceed the sprint capacity pmax

i . The
story points pj of story j are increased according to the uncertainty risk runj
of that story, so as to fairly distribute uncertainty risk among the sprints.

(3) This constraint imposes that each story is included in exactly one sprint.

(4) These inequalities handle OR dependencies by stating that at least one story
in Dj is placed before each story j.

(5) These inequalities handle AND dependencies by stating that all stories in
Dj are placed before each story j.

(6) These inequalities manage affinity by bounding the number of stories similar
to j in sprint i. Using an inequality is necessary to accommodate the fact
that, if sprint i includes stories similar to j but j is not part of i, it is yij = 0
(see constraint 7).

(7) These inequalities state that yij is zero if story j is not part of sprint i,
otherwise it cannot be greater than the number of stories similar to it.

CPLEX solves this optimization problem using a branch-and-cut approach [6],
that is, a method of combinatorial optimization for solving integer linear pro-
gramming problems (i.e., linear programming problems where some or all the
unknowns are restricted to integer values —the xij ’s and yij ’s in our case). The
method is an hybrid of branch-and-bound and cutting plane methods that dra-
matically improves the performance of classic branch-and-bound methods by
incorporating cutting planes, that is, inequalities that improve the linear pro-
gramming relaxation of integer linear programming problems.

5 Model Validation

5.1 Effectiveness Tests

To verify the effectiveness of our model we applied it to a real DW project in the
area of pay-tvs, carried out by an Italian system integrator who has successfully
been adopting agile methods for five years. The subproject we describe here had
an overall duration of 8 months; it included 44 user stories —mostly related to
the development of reports, complex ETL units, and forms for manual input
of data— and consisted of 10 sprints with an average duration of 17 days. 52
dependencies and just one affinity were involved. The project team included 4
members, but in a few cases one additional programmer was added to support
the team.
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Fig. 2. Comparison of cumulative utilities (a) and difference in sprint composition (b)
for the optimal and the team plans

The goal of the test presented here is to compare the sprint plan manually
defined by the project team with the one generated by our model, using a devel-
opment speed of 2.43 story points per day. Figure 2.a compares the cumulative
utilities of the optimal plan (Opt) and of the plan defined by the team (Team).
The curve of the optimal plan is always higher mainly due to a better opti-
mization of sprint composition, but also to a better handling of risk. Indeed,
in the team’s plan some critical stories with low utility (essentially related to
infrastructural needs) were advanced too much.

To better understand how the two plans differ in terms of sprint composition,
we measured their difference as the average of the gaps of all user stories:

Definition 2 (User Story Gap). Let j be a story. Let iteam and iopt be the
sprints j belongs to in the team plan and in the optimal plan, respectively. The
gap of story j is

gap(j) =
1

N − 1
|iteam − iopt|

where N is the maximum number of sprints in the two plans.

The user story gap ranges from 0 to 1, where 0 means that the story belongs
to the same sprint in both plans. As shown in Figure 2.b, the average gap is
always lower then 0.3, denoting a good correspondence between the two plans.
The main difference arises in sprints 1, 7, 8, and 10. In particular, in sprint 1,
the team plan aimed at anticipating critical stories, thus exceeding the sprint
capacity. The strong difference in the composition of the first sprint necessarily
affected the subsequent sprints. Noticeably, both plans made good use of affinity
relationships.

In order to have a further evaluation of the optimal plan, we discussed it with
the team chief after the project end. Here are the main outcomes:

– The team spent a couple of days in defining their plan, while the optimal
plan was generated in a few seconds.

– The team was used to collecting user story estimates using standard forms,
but the level of detail required by our framework is slightly higher. This was
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Fig. 3. Time for computing the optimal plan for projects (a) with an increasing number
of stories and no dependencies, and (b) with an increasing number of dependencies and
50 stories

perceived has a positive aspect since it leads to more refined estimates, thus
producing a better plan.

– The team chief recognized that his plan failed in properly distributing risks,
which led to some delay in the first sprint.

– The optimal plan was judged to be feasible and realistic, showing that the
elements considered in our model provide a good distribution of user stories.

– Most of the differences in sprint compositions were evaluated as improve-
ments over the team plan. In particular, the team plan did not take into
account the side effects of postponing some stories, thus causing the stories
depending on them to be delayed too much.

5.2 Efficiency Tests

These tests were carried out on an Intel Core 2 Duo platform with 3 Gb of RAM,
running at 3 GHz under Windows XP professional. To test the model behavior
on a broad benchmark we generated a set of 58 synthetic projects; utility and
story points of the user stories were randomized in the intervals [10,100] and
[1,10], respectively. The maximum sprint duration was set to 15 days, while the
development speed was set to 3 story points per day (i.e., sprint capacity was 45
story points). All planning problems were solved using CPLEX; performances
were measured in seconds.

First of all we evaluate performances in function of the total number of user
stories on projects that do not include dependencies. Figure 3.a reports the aver-
age time needed to compute the exact solution. As expected for a multi-knapsack
problem, the computation time grows non-linearly, reflecting an exponential in-
crease in the search space.

The presence of dependencies makes planning harder for the project team.
To study their impact on our model, two types of dependencies were added to
our benchmark projects: (1) chain dependencies, where each story depends on
at most another story; and (2) graph dependencies, where a story can depend
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on several stories. In both cases dependencies were obviously acyclic. Figure 3.b
shows how the computation time changes in function of the number of dependen-
cies. This figure suggests that a small number of dependencies tends to reduce
the computation time because dependencies allow a set of unfeasible plans to be
pruned, thus reducing the search space. However, when the number of depen-
dencies is high, the computation time increases again because finding a feasible
plan becomes harder for the solver. Noticeably, we observed that both chain and
graph dependencies show similar trends.

Though the time to obtain an exact solution for very complex problems (more
than 100 stories) can be too high, the time to obtain a good feasible solution
is always limited. CPLEX can be configured so that it first looks for a feasible
solution, then it tries to improve it until the exact one is found; at each step it
returns the utility of the best solution found so far (i.e., an upper bound to the
utility of the optimal solution) and a lower bound to the utility of the optimal
solution. We measure the suboptimality at each step (i.e., how the current solu-
tion is far from the optimal one) as the ratio between the lower and the upper
bounds. Remarkably, a solution that is less than 1% worse than the optimal one
is always produced within 5 seconds.

6 Conclusions and Future Work

In this paper we formalized the sprint planning problem for agile DW design
and we proposed a multi-knapsack model to solve it. We tested our model on
a set of (both synthetic and real) projects. We found that, for medium-sized
problems, an exact solution is determined in a time that is fully compatible
with the development process (i.e., from some seconds to a few minutes), while
for large problems a heuristic solution that is just a few percentage points far
from the exact one can be returned in a couple of seconds. As to effectiveness,
the team chief judged the optimal plan to be feasible and realistic, and most of
the differences in sprint composition were evaluated as improvements over the
team plan. Currently, the optimal plan is delivered to the team in tabular form;
however, to present the plan in a more effective way, our optimization module
could be coupled with existing softwares for agile project management.

We are currently working on extending our model to better support the plan-
ning activity. First of all we will accommodate iterative planning, i.e., given a
first solution the team will manually adjust it by pinning some user stories to
some sprints, and then run the optimizer again. This requires an extension of
our model to deal with further types of constraints while preserving the overall
structure of the resulting plan. Further improvements that will make the model
best fit for real cases are: (1) allowing different development speeds for different
sprints due to a variable team composition; (2) modeling different team capabil-
ities (e.g., design, implement, test) so that, in each sprint, the team will be able
to deliver a different number of story points for each capability.
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Abstract. During the last few years, several frameworks have dealt with
Data Warehousing (DW) design issues. Most of these frameworks pro-
vide partial answers that focus either on multidimensional (MD) mod-
elling or on Extraction-Transformation-Loading (ETL) modelling. Yet,
neither the study of unifying both modelling issues nor their automation
have been considered thoroughly. To overcome these limits, we suggest
a generic unified method that automatically integrates DW and ETL
design. The framework is handled within the Model Driven Architecture
(MDA). In this paper we present a unified conceptual model that de-
scribes both the DW and its ETL process using the constellation model
and the Object Constraint Language (OCL). Morevoer, we give a logi-
cal model for the ETL workflow and a set of Query/View/Transforma-
tion(QVT) mapping rules from the conceptual level to the logical level
and then to the physical one. At the end, we describe the implemented
prototype architecture.

Keywords: Data Warehouse, Multidimensional Modelling, Extraction-
Transformation-Loading, Object Constraint Language, Model Driven Ar-
chitecture.

1 Introduction

When building a Data Warehouse (DW), the designer deals with two major
issues. The first issue addresses the DW design and the second, ETL process
design. There are three basic steps in the DW modelling task. Conceptual mod-
elling provides a common representation of decision-makers requirements and
data incoming from various sources. The conceptual model is then mapped into
a logical one in the second step. In the last step, the multidimensional (MD)
structures are implemented within a target platform. The next task deals with
the ETL processes description and implementation.

Current frameworks provide partial solutions that focus either on the MD
structure or on the ETL processes, yet both could benefit from each other.
In fact, the whole process (that creates MD structures and loads data in the
warehouse) requires the use of different models. Data integration problems must
be considered in order to select the appropriate models. Besides, most of the
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existing approaches do not provide means to automatically generate or document
all of these aspects.

The Model Driven Architecture (MDA)1 is known to be a framework that
manages complexity, significantly reduces development costs, improves the soft-
ware quality and accomplishes high levels of re-use [7]. In previous work [1] we
have presented a general framework for MD and ETL design. The framework is a
model driven approach that addresses both DW and ETL process modelling. The
work in [1] details the structural features and provides formal rules to generate
the MD model. This paper focuses on the behavioral features i.e ETL processes.
The main contribution of this paper focuses on:

1. A unified conceptual model for MD structures and ETL that reduces design
costs and efforts.

2. Extraction formulas formalization using an OCL extension that allows the
early detection of inconsistencies and limits their impact.

3. Formal models and rules to accomplish automatic translation of ETL con-
ceptual operations.

The rest of this paper is organized as follows: in section 2 we present related work.
In section 3 we introduce our approach. Afterwards, we detail the conceptual
model in section 4. In section 5 we present the logical and the physical models
as well as the mapping rules. Section 6 shows our prototype.

2 Related Work

Several researches studied DW design problems. In the literature, this issue has
been tackled from two complementary but different viewpoints [14]. The first one
deals with the MD modelling and attempts to describe the DWs MD structures
[15]. As for the second one, it represents processes that load and update data
in the warehouse [20]. Regarding the MD design, the existing approaches can
be classified into three categories [14]. Requirement-driven approaches [12] pro-
vide MD schemas based on a detailed analysis of decision-makers’ needs. Data-
driven approaches [5] start with the data sources analysis in order to identify the
structure of the MD schema and then select relevant data for decision-making.
Finally, hybrid approaches [9] consider both decision-makers’ requirements and
data availability within operational sources. Regarding ETL processes, academic
researchers use either specific models or existing standards such as UML. [17]
introduces specific graphical notations for defining ETL conceptual mechanism
and presents a set of rules that map the conceptual model to the logical one. [18]
suggests to ease the selection of relevant data sources that are transformed and
loaded in the warehouse using semantic web technologies. Some authors extend
UML notations to describe ETL workflows. [8] extends UML using a mapping di-
agram to represent the transformation rules between sources and MD attributes.
[10] uses the UML activity diagrams to design the ETL process. Furthermore,
there are tools for running ETL workflows [2], e.g. Oracle Warehouse Builder

1 http://www.omg.org/cgi-bin/doc?omg/03-06-01

http://www.omg.org/cgi-bin/doc?omg/03-06-01
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and Microsoft Integration Services. However, these tools use specific notations
and languages, thus decreasing the integration and the interoperability levels of
the system.

Compared to the existing approaches, our approach has the advantages of
combining the description of MD data structures and ETL operations within a
unified model. By using a unified model we avoid redundant steps, such as link-
ing data sources. This model also avoids problems of inconsistency, integration
and interoperability encountered when using separate models and/or methods.
Besides, the facts and the dimensions include both structures and operations and
therefore ready to be used in other MD models. Moreover, our approach reuses
and adapts existing models and languages as the Object Constraint Language2

and the constellation model [4], [13].

3 Overview of Our Approach

Figure 1 depicts our MDA-based framework. The designer builds a unified con-
ceptual model (PIM: Platform Independent Model) that describes the MD struc-
tures as well as the related ETL processes. The automatic transformations
(M2M: Model-To-Model and M2T: Model-To-Text) translate it into successive
models (PSM: Platform Specific Model) in order to get the code tailor-made
to the chosen platform. The conceptual model (PIM1) describes the MD struc-
tures that considers the decision-makers’ needs and the existing data sources.
The PIM1 is mapped into several logical models (PIM2) (CWM::Relational,
CWM::XML, etc.) depending on a chosen deployment platform (Oracle, Mon-
drian, etc.). The framework provides the appropriate script that creates the MD
structure and the ETL workflow. The data sources modelling levels are generated
by Reverse Engineering (RE) from physical models.

The framework addresses the process of designing a DW that includes mod-
elling the MD structures and the associated ETL processes. This paper defines
a platform-independent conceptual model based on MD model enhanced with
OCL expressions. We present a formal conceptual description of ETL operations
using OCL. Then we introduce the formal rules that generates the ETL logical
and physical models. Finally, we describe the code generation phase.

4 Unified PIM: ETL Formal Modelling

Even though there is no standard method for DW conceptual modelling [16],
the constellation model is widely used to represent MD databases [14]. However,
this model represents the DW structural features only and lacks a mechanism
that describes the behavioral aspects. In order to overcome this limit, we ex-
tend the Object Constraint Language and we define OCL expressions within the
constellation model.

2 http://www.omg.org/spec/OCL/2.2/PDF

http://www.omg.org/spec/OCL/2.2/PDF
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Fig. 1. Overview of our approach

4.1 Why ETL Formal Language?

In an ETL workflow, the data sources are transformed and loaded into the DW.
ETL conceptual design specifies the transformation relation between the DWs
target attributes and the source attributes. In order to describe the multidimen-
sional structure and the associated ETL processes, it is important to integrate
these operations into the multidimensional model. We need to express the re-
lationships between attributes that belong to different models. We require a
language that describes the ETL operations in a platform independent way and
reports to the conceptual abstraction level. This language needs to be formal
in order to automatically generate the final code. It must be able to express
arithmetic and string operations as well as selection and aggregation operations.

The Object Constraint Language partially meets these needs. It expresses con-
straints and queries within platform independent model. OCL is a formal language
that could be automatically translated to the logical and physical levels. The ma-
jor advantage of the OCL expressions is the ability to detect some of the inconsis-
tency that could exists between sources and target attributes [21]. This language
is intended to refine the UML class diagrams. It has been extended to express con-
straints and queries on various models such as multidimensional models [11], [3].

4.2 ETL-OCL Syntax

In multidimensional modelling, each attribute is derived from one or more source
attributes. It is possible to use OCL to express relations between attributes of dif-
ferent models. For this, it is crucial to express the relationship between attributes
in terms of relations between concepts (classes, facts, dimensions, etc.). The two
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models (source and target) are then linked in order to navigate within source
concepts and define ETL-OCL expressions. Each target concept (fact or dimen-
sion) is connected to one origin concept (class or association) in each source. An
OCL expression is defined within a context (a class, an attribute or operation
in a class diagram). OCL can express invariants, pre- and post-conditions. An
ETL-OCL expression is a specific OCL expression defined within the context
of a multidimensional attribute and expresses a derivation relationship between
this attribute and one or more sources attributes.

To transform the data sources, ETL-OCL expressions use the operations
provided by the OCL library such as concat(), size(), substring(), toInteger(),
toUpperCase(), etc. for string attributes. Moreover, the OCL library provides
mathematical functions applied to transform numeric attributes (min(), max(),
product(), sum(), etc.). Except for data aggregation, we believe that OCL is rich
enough to provide a conceptual description of the most common ETL operations.
Yet, OCL lacks ways to express the data aggregation often used to transform
the source data. We extend OCL with an aggregation function as follows:

AGG(Asi → AF ;Asj [;Pasj ]) where :

– Asi: an aggregated source attribute,
– AF: aggregation function predefined in the OCL library (sum, count, min,

max, avg (sum / size)), etc.
– Asj : a set of source attributes used for grouping values,
– Pasj : optional selection predicate applied on the aggregation.

The table 1 presents the main ETL conceptual operations and their definition
using the ETL-OCL language [17], [19].

Example 1. The case study describes a company that wishes to analyze the
sales of an internationally sold product. Figure 2 shows the MD model (top of the
figure) used for analyzing the sales amount and quantities according to products,
customers and dates. At the bottom, the class diagram describes the data source
(SR) schema. Each target concept is connected to a source concept. These links
are shown as dotted lines. The association roles are used to navigate within
the data sources. Figure 3 presents an example of the ETL-OCL extracting
formulas. Due to lack of space, we expose the extracting formulas relative to the
“Customer” dimension and the “Sales” fact only.

5 Automatic Generation of Logical and Physical Models

In this section, we present the mapping rules from ETL-OCL operations to their
respective logical operations in relational algebra. Then, we present the transfor-
mation rules from logical to physical operations (SQL). The mapping rules are
formalized using the QVT language3. QVT is the OMG standard language for

3 http://www.omg.org/spec/QVT/1.1/PDF/

http://www.omg.org/spec/QVT/1.1/PDF/
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Table 1. Transformation operations

Transformation
operation

Description ETL-OCL

Identity A simple mapping relation
between a target and source
attribute.

Equality operator.

Conversion
(classes, associa-
tions)

Convert the source at-
tributes value, format and
type.

OCL library Operations (mathe-
matical operations, string opera-
tions).

Selection (filter) Select attributes values that
satisfy a given criteria.

Select and Reject operations.

Aggregation Aggregates source attributes
according to others sources
attributes.

AGG operation.

Incorrect Detects incorrect data (type
or format).

Exception rose when the OCL ex-
pression is assessed to invalid.

Join (classes or
association)

Joins two data sources re-
lated to each other with
common attributes.

Navigation through association and
classes to access attributes.

Merge (models) Connects source and target
models.

Links established between target
model (fact and dimensions) and
source classes diagram.

Fig. 2. Multidimensional PIM (top side) and the source class diagram (bottom side)
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-- These ETL-OCL expressions specify the type and the extraction formulas of the
‘‘Customer" dimension attributes (the customer’s code, name, sex, city and country).
context Customer::cID: Integer
derive: SR.customer.cID
context Customer::name: String
derive: SR.customer.name.concat(SR.customer.firstName)
context Customer::sex: String
derive: IF SR.customer.sexC=‘male’ THEN ‘M’ ELSE ‘F’ ENDIF
context Customer::city: String
derive: SR.customer.city
context Customer::country: String
derive: SR.customer.country.cName

-- The sales quantity is the daily quantity sold per customer and per product.
context Sales::quantity: Real
derive: AGG(SR.comLine.quantity->sum();
SR.ComLine.product.pID, SR.comLine.command.customer.cID,SR.comLine.command.dateC)

-- The sales amount is the sum of the quantity multiplied by the product’s
unit price for each customer, product and date. context Sales::amount: Real
derive: AGG(SR.comLine.quantity*SR.ComLine.product.unitPrice->sum();
SR.ComLine.product.pID,SR.comLine.command.customer.cID,SR.comLine.command.dateC)

Fig. 3. Example of ETL-OCL extracting formulas

model-to-model (M2M) transformations. It is a declarative language that offers
both graphical and textual syntax. Furthermore, QVT allows multi-directional
transformations as well as merging models (two or more models are mapped into
one model or more). A QVT transformation between two candidate models is
specified by a set of relations. Relations are defined by two or more domains that
identify a candidate model and a set of corresponding elements to be matched
as well as a pair of “When” (pre-conditions) and “Where” (post-conditions)
predicates. In the next subsections, we detail the ETL-OCL mapping rules to
the relational algebra that carry out the transformation rules presented in [1].
Then we present the QVT mapping relation to the Oracle 11g platform specific
models. Finally we present the Model-To-Text (M2T) transformations rules that
generate the final SQL script.

5.1 Logical Model

Logical models are automatically generated from conceptual models by applying
a set of rules. In order to cover as much as possible of warehousing applications,
the main framework (cf. figure1) provides a set of logical models. The designer
can choose the most suitable one to his application such as the normalized or
the denormalized ROLAP (Relational On Line Analytical Processing) or the
XML models, etc. To illustrate our framework, we define transformation rules
to denormalized ROLAP often used to represent MD models [6]. In previous
work [1], we have developed the structural translation rules from the MD model
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Table 2. Mapping ETL-OCL operations to relational algebra operations

Conceptual operations Logical operations

Identity Projection (Π [attribute] R).
Join (classes) Join relations related to each other with attributes

(R1 ��
R1.a=R2.a

R2)

Select (criteria) Selection (criteria): (σ[criteria] R)
Conversion Conversion or aggregation functions.
Aggregation Aggregation functions (AGG(R; group; at-

tributes; predicates)).
Incorrect –
Merge (models) Creates a link between models.
– Surrogate: generates unique surrogate keys.

to the denormalized ROLAP. This section carries out those rules and presents
the behavioral mapping rules from conceptual to logical ETL models. In table 2
we examine each of the ETL-OCL operations and we identify their respective
logical (relational algebra) operations.

In this table, the “Incorrect” operation belongs to the conceptual level only.
It raises an exception that disables the translation to the logical level. Once the
exception is treated (data type and format are evaluated to true), the translation
to the logical level is enabled . On the other side, the “Surrogate” operation is
specific to the relational logical level for generating synthetic unique keys.

Example 2. The ETL-OCL expressions of the conceptual model as presented
in example 1 are mapped into the following relational algebra expressions. The
source relations (SR) define the logical model respective to the class diagram
shown in figure 2.

DW.Customer = Π[cu.cID, name||firstName AS name, city, cName AS country, sexC AS
sex] SR.Customer ��

couID
SR.Country

DW.Sales = Π[dateC AS date, pID, cID, quantity, amount] ((Sum(SR.Command ��
coID

SR.ComLine.pID, SR.Command.cID, SR.Command.dateC; SR.ComLine.quantity AS quantity;
)) ��

coID
(Sum(SR.Command ��

coID
SR.ComLine ��

pID
SR.Product; SR.ComLine.pID, SR.Command.cID,

SR.Command.dateC; SR.ComLine.quantity * SR.Product.unitPrice As amount; )))

Fig. 4. Example of Relational Algebra extracting formulas

5.2 Physical Model

Physical models depend on a specific platform; e.g. here we detail the trans-
formation rules that generate the Oracle 11g materialized views. The use of
materialized views is advantageous since the computation, the load and the re-
fresh tasks are performed automatically by the database management system.
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Fig. 5. Relational Algebra to SQL expression rule

The QVT structural rules that maps fact and dimension tables into materialized
views are detailed in [1]. In the following, we present the main and the relational
algebra to the (Oracle 11g) SQL expression rules.

RelationalAlgebraToOracleSQL Relation. This relation is shown in figure
5 and maps each relational algebra expression into an SQL query. The “When”
clause specifies that the appropriate ROLAP table must be already mapped
into a materialized view. The “Where” clause specifies that relations, attributes
and operators are mapped into their equivalent SQL relations, attributes and
operators.

5.3 Code Generation: MOF M2T Transformation Rules

The last phase of our framework describes the code generation process. The
code is obtained from the physical model using the MOF (Meta-Object Facility)
Model-to-text which is an OMG standard4. For instance, starting from a single
relational data source, the “Customer” and the “Country” tables’ tuples are
loaded in the “Customer” materialized view. The figure 6 shows the SQL script
that creates the “Customer” and the “Sales” materialized views.

6 Implementation

Figure 7 shows our prototype architecture. This prototype allows loading a mul-
tidimensional model and ETL-OCL expressions. Then the prototype executes a
set of model to model (QVT) and model to text (MOF M2T) transformations

4 http://www.omg.org/spec/MOFM2T/1.0/PDF

http://www.omg.org/spec/MOFM2T/1.0/PDF
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CREATE MATERIALIZED VIEW Customer
BUILD IMMEDIATE
REFRESH COMPLETE ON DEMAND
AS SELECT cID, concat (name,firstName) AS name, city, cName AS country
FROM SR.Customer, SR.Country
WHERE SR.Customer.couID = SR.Country.couID ;

CREATE MATERIALIZED VIEW Sales
BUILD IMMEDIATE
REFRESH COMPLETE ON DEMAND
AS SELECT SR.Customer.cID, pID, dateC AS date, SUM (quantity) AS quantity,
SUM(amount*unitPrice) AS amount
FROM SR.Command, SR.Customer, SR.ComLine
WHERE SR.Command.coID = ComLine.coID AND Command.cID = Customer.cID
GROUP BY pID, SR.Customer.cID, dateC ;

Fig. 6. Example of the SQL script

Fig. 7. The prototype architecture

rules in order to generate the SQL script that creates and loads data in the
warehouse. These rules use a set of metamodels stored as “Ecore”5 files. The
prototype is based on three main steps:

– Step 1: Creating the unified metamodels (“Ecore” files):

1. The conceptual metamodel describes the multidimensional structure and
ETL operations.

2. The logical metamodel describes relational structures and algebraic ex-
pressions.

3. The physical metamodel describes Oracle materialized views and their
SQL queries.

5 http://www.eclipse.org/modeling/emf/?project=emf

http://www.eclipse.org/modeling/emf/?project=emf
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– Step 2: Creating the QVT model to model transformation rules:
1. The transformations rules from the conceptual model to the logical

model.
2. The merging rules of both conceptual and logical models into the physical

model.
– Step 3: Creating the MOF M2T model to text transformation rules.

The transformations and merging rules have been implemented using the Medini-
QVT6 Eclipse plugin. This plugin uses the QVT textual syntax. Then, the
model to text transformation rules are implemented within the MOFScript7

Eclipse plugin. This plugin implements transformation rules using the MOFM2T
language.

As shown in figure 7, the designer creates an instance of the multidimensional
model and their associated ETL-OCL operations as an XMI8 file. Then, this con-
ceptual model (2) is automatically transformed into a logical relational model.
Afterwards, both conceptual and logical models (3) are combined to get an Or-
acle physical model. Finally, the latter (4) is transformed into SQL commands
by applying a set of MOF M2T rules.

7 Conclusion

In this paper we have presented a unified and automatic model driven approach
for multidimensional and ETL design with the support of MDA.

As for conceptual design, the method provides a unified description of the
multidimensional structure and the associated ETL processes. Thus, the unified
model allows reducing design costs and efforts. The conceptual model presents a
constellation and a set of ETL-OCL expressions that describe the multidimen-
sional attributes extracting formulas. These extraction formulas are formalized
using an OCL extension allowing the early detection and management of incon-
sistencies as well as limiting their impact in the lower levels. We have detailed
the mapping rules between the ETL-OCL and the relational algebra. Then, we
have presented the transformation rules from the logical model to the Oracle 11g
materialized views and dimensions. The model-to-model transformations rules
are formalized using QVT. While the model-to-text rules are formalized using
the MOF model-to-text transformation language. Finally, we have presented our
prototype.

In future work, we plan to focus on the requirements formalization phase
(CIM) and on automating the transition between the CIM and the conceptual
PIMs. This can be done by defining a set of QVT rules. Additionally, we in-
tend to develop our method by considering different implementation platforms.
Moreover, we plan to treat multiple data sources. We also intend to improve the
prototype by adding a graphical interface.

6 http://projects.ikv.de/qvt
7 http://www.eclipse.org/gmt/mofscript/
8 XMI: XML Metadata Interchange

http://projects.ikv.de/qvt
http://www.eclipse.org/gmt/mofscript/
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Abstract. The development of data warehouses (DW) is still complex and cost-
ly. In recent years, a growing number of contributions suggested the application 
of Model-Driven Architecture (MDA) to DW development. However, most of 
these approaches are not evaluated in practice. Therefore, we conducted an 
evaluation of the Multidimensional Model-Driven Architecture (MD²A), based 
on a case study derived from a real-world DW project. The case study results 
can be summarized as follows: The suggested full-automatic transformation of 
conceptual schemas is not feasible under all circumstances. Necessary perfor-
mance optimizations in the logical level cannot be derived from the conceptual. 
Additionally, we can conclude that the integration of evolution concepts into an 
MDA approach for DWs is desirable for two reasons: First, when conceptual 
schemas are changed and transformed into the logical level, previously made 
manual optimizations have to be conserved. Second, transformations from the 
logical level to code have to consider the protection of historicized data. 

Keywords: data warehouse, model driven architecture, case study. 

1 Introduction 

Data warehouse (DW) systems are the cornerstones of corporate information manage-
ment. They provide access to integrated, quality-assured, subject-oriented, and histori-
cal data for decision support (cf. [1]). However, the construction of these systems is 
still a complex and costly task. In recent years, more and more contributions advocated 
the use of the Model-Driven Architecture (MDA) for data warehouse engineering 
(e. g., [2-6]). Each of these approaches presents a framework for a distinct number of 
DW components and MDA viewpoints including the corresponding meta-models and 
transformations. However, most of these approaches, to the best of our knowledge, are 
not evaluated against requirements of real-world projects. For this reason, suggestions 
for future research based on practical insights are currently missing. 

We present a case study based on a real-world project to evaluate the Multidimen-
sional Model-Driven Architecture (MD²A) of Mazón et al. ([6]). We selected  
this framework for two reasons: First, it is one of the earliest contributions and a  
good sample for other MDA approaches in the context of data warehouse engineering 
(e.g., [2-5]). Second, it is the best described approach measured by the number of 
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contributions. The publications cover various data warehouse engineering topics like 
the unified development process and an MDA framework, including transformations 
and meta-models as well as extensions to special problems like spatial-data warehous-
ing or secure XML data warehouses (cf. [7-11]). 

The fundamental research question in this work is: Does the MD²A approach work 
and which assumptions have to be made? To answer this research question we fol-
lowed a three step process: First, we created a case study, based on a two-year project 
in the public sector, with the goal of building a data warehouse for human resources. 
Second, we implemented the MD2A framework based on the Eclipse Modeling 
Framework. Finally, we used the prototype to implement the case study and evaluated 
the results against the requirements of the project.  

The remainder is structured as follows: Section 2 gives a brief introduction to the 
design process of data warehouse systems in general. Section 3 describes the profile 
of the Human Capital Management (HCM) Project, which serves as an outline for our 
case study. It also presents the central requirements identified in the course of the 
project. Section 4 gives a short introduction to the MD2A approach. The application 
of this approach in the HCM case study is presented in section 5. Thereby, the focus 
is set to the conceptual design of multidimensional schemas and the derivation of 
logical data structures. Section 6 encompasses a discussion of the results. The paper 
ends with a conclusion and future research proposals (section 7).  

2 The Data Warehouse Design Process 

In [12] the authors distinguish, as a consensus of different approaches, four phases 
within a data warehouse design process: the requirements analysis, the conceptual 
design, the logical design, and in some approaches the physical design. We agree to 
these steps which are also adopted by the reviewed MD2A approach. Currently, there 
is a lack of agreement on the particulars that are considered within each phase. There-
fore, we explicate our perspective on this process. The first phase is the requirements 
analysis. Its purpose is the collection and filtering of user requirements. Together with 
an analysis of the operational data sources, the specification of user requirements 
delivers the input for the conceptual design phase [13]. In this phase a multidimen-
sional schema is created. It serves as foundation for the reconciliation between de-
signer and user. Therefore, the conceptual design should emphasize business concepts 
and not on technical issues [12]. The logical schema is derived from the conceptual 
schema and is specific to a certain platform type (e. g., relational database). It is  
adjusted for the implementation on a certain target system type, considers platform 
specific constraints, and is optimized to reach non-functional requirements [12]. An 
example of a non-functional requirement could be the minimization of query response 
time. The logical design encompasses the translation of the multidimensional model 
into tables, and the improvement of the schema design such as view materialization 
[14] or junk dimensions and rapidly changing dimensions as presented in [15]. We 
consider all adoptions of the relational data structures to be in logical design, because 
they are largely independent from a specific data base system. All optimizations, like 
indices or partitions, which are very likely to be database-specific, are considered in 
the physical design. 
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3 The Human Capital Management Project 

The CEUS (computer-aided decision support system) project1 is funded by the Bava-
rian State Ministry of Sciences, Research and the Arts (StMWFK). The StMWFK 
planned to build a human resources data warehouse system based on the SAP HCM 
module for the Universities Augsburg, Bamberg, Erlangen-Nuremberg, and Munich. 
SAP data sources are integrated as DW via an extraction, transformation, and load 
(ETL) process. The resulting DW system will be operated and maintained in the 
CEUS project. The goal of the project is to deliver a specialized data mart for tactic 
and strategic management of human resources processes. The development of the DW 
systems took place in parallel with the roll out of the HCM module in the participat-
ing organizations. Therefore, we used a hybrid iterative development process for this 
project, i.e. starting simultaneously with the analyses of SAP HCM data sources, and 
the collecting of user requirements. During the course of the project several proto-
types had to be provided for clarification of requirements and refinement of the multi-
dimensional schema, due to the missing user experience with the operational systems. 
This project works as a blueprint for the present case study and is representative of 
most of the development projects implemented in CEUS. We simplified the require-
ments and corresponding multidimensional schemas for the sake of clarity and due to 
space constraints.  

In the following, two use cases are presented that were captured during user inter-
views.  
Functional requirements (F) for the project can be stated as follows: 

F1: A human resources employee needs to analyze the number of persons and full-
time equivalents for a given day regarding the working time and the organizational 
unit of a person. 
F2: A human resource employee needs to analyze the number of employees that 
have part time jobs regarding the organizational unit, job description and gender.  

Non-functional requirements (NF) for the project can be stated as follows: 

NF1: Reports are categorized in groups describing the desired response time: For 
example (group 1) reports should be finished within a minute; (group 2) reports 
should be finished within 3 minutes; (group 3) reports can take more than 3 mi-
nutes. 

Organizational requirements concerning the project proceeding and used approaches 
can be stated as following: 

O1: The development has to follow a prototyping approach, i.e. first a prototype of 
a central system part is implemented and then iteratively evaluated and enhanced. 
This is because of low user experience with the new operational system. It is not 
expected that valid and complete requirements will be achieved by merely using 
interviews. 
O2: Data warehouse systems are not expected to remain static after their develop-
ment. Further changes in functional requirements are very likely. These changes 
must be integrated during the systems production phase, too. 

                                                           
1  http://ceushb.de/ 
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4 Introduction of the MultiDimensional Model Driven 
Architecture (MD2A) 

In [6] the authors present an approach that is motivated by the goal to define a holistic 
data warehouse development approach. Holistic means that it covers all parts of such 
a system, e.g., ETL processes, data sources or DW repository. This approach is com-
bined with the Model Driven Architecture to achieve, among others, the following 
advantages: (i) automatic generation of the data warehouse and, therefore, enhanced 
productivity of its development; (ii) enhanced portability of the platform independent 
model (PIM) between different target platforms; (iii) reusability of transformations in 
different projects; and (iv) concentration on business issues during development. The 
focus in [6] and, in subsequent publications is on the application of the MDA to mul-
tidimensional modeling, called MD²A. After a short introduction of the MDA and the 
MD²A approach, in the following section we describe the application in context of our 
case study. 

The Model Driven Architecture represents a standard of the Object Management 
Group (OMG) and can, in short, be characterized as follows ([16]): Its main contribu-
tion is to provide an architecture, which allows the separate specification of the func-
tionality of a system and its target platform. The PIM is used for the functional system 
specification without concerning peculiarities of certain platforms. Model transforma-
tions use this PIM together with a platform description to produce a platform specific 
model (PSM) for the system. The PSM itself can also be used as input of a transfor-
mation producing code for the implementation of the system on a certain platform. 

The MD2A approach classifies the conceptual model of multidimensional schemas 
as PIM and presents a UML profile ([17]) as a meta-model for multidimensional 
modeling. At the platform specific layer the authors pay only attention to relational 
OLAP systems. For their specification they propose to use the relational package of 
the Common Warehouse Metamodel (CWM, [18]). The transformations are imple-
mented by using the relational part of the Query/View/Transformation Specification 
(QVT, [19]). 

5 Application of MD2A to the Human Capital Project 

This section describes the application of the MD²A to the Human Capital Project in 
detail. We developed a prototype using the Eclipse Modeling Framework (EMF) with 
its meta²-model ecore and operational QVT. The UML profile was implemented fol-
lowing the specification in [17]. The relational package of the CWM is an adjusted 
implementation from the Technical University of Dresden2. The transformations of 
dimensions and associated elements follow the specifications in [6]. Transformations 
of fact related elements are derived from [17]. The following subsections present the 

                                                           
2  http://svn-st.inf.tu-dresden.de/svn/dresdenocl/trunk/ 

ocl20forEclipse/eclipse/tudresden.ocl20.pivot.tools.CWM/ 
resources/model/CWM.ecore 
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application of MD²A, starting with conceptual design and ending with the derivation 
of relational structures. 

5.1 Conceptual Data Warehouse Design  

Following the data warehouse design process of section 2, we defined our concep-
tual model using the UML profile, illustrated in Fig. 1. The core concept of the 
meta-model is the Fact object type, representing a collection of measures. Measures 
are modeled using the FactAttribute object type. Each fact object is aggregated 
along multiple dimensions (represented by the Dimension object type) and its 
Bases. Bases are used to model an acyclic graph representing the various hierarchy 
levels of a dimension. A detailed description of the meta-model can be obtained 
from [17]. 

 

Fig. 1. Meta-Model of the UML Profile for Conceptual Modeling [17] 

The conceptual schema of our case has five dimensions and two facts in order to 
provide the needed analytical capabilities described in section 3 (F1, F2). An ex-
cerpt of the resulting conceptual schema is shown as tree-based diagram in Fig. 2. 
We modeled the facts, Employees and Person. While a person represents a unique 
natural person, an employee represents a natural person with a specific contract 
type. It has to be considered that one person can have more than one contract and to 
address this, one person may represent multiple employees one for each contract. 
Both facts share the measure ‘sum of full time equivalent3’ and a measure counting 
the number of persons, respectively employees. The fact objects are characterized 
by five dimensions: ‘PersonalData,’ ‘JobCategory,’ ‘Time,’ ‘WorkingTime,’ and 
‘OrganizationalChart.’ Each dimension is associated with at least one root base 
object representing the lowest hierarchy level. This is the base ‘WorkingTime’ in 
the case of the dimension ‘WorkingTime.’ A Base can further be characterized by a 
number of DimensionAttributes. The Base ‘WorkingTime’ for instance has the 
three DimensionAttributes ‘regular working time,’ ‘planned working time,’ and the 
‘days of absence.’ 
                                                           
3  Sum of fulltime equivalent = actual working time / planed working time. 
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Fig. 2. Partial Conceptual Schema of the Case Study 

5.2 Logical Data Warehouse Design and Transformation 

The relevant part of the CWM meta-model is illustrated in Fig. 3. It offers concepts 
for modeling relational data structures. Star and snowflake schema are well known 
alternatives for the description of data warehouse databases. The MD²A specification 
in [17] and [6] focuses on the derivation of star schemas from the conceptual schema. 
The developers of MD²A defined corresponding transformation rules in QVT rela-
tional language. The relevant rules which are implemented in the prototype are briefly 
introduced and explained by the application to the case study. The resulting logical 
schema is shown in Fig. 4. 
 
Dimension2Table: Each Dimension is mapped to a Table object which is denoted by 
“D_” concatenated with the Dimension’s name. An additional column and a con-
straint for the primary key are added to the table. The table ‘D_WorkingTime,’ for 
example, is derived from the dimension ‘WorkingTime’ and contains a primary key 
constraint, ‘PK_WorkingTime’ at column ‘ID_WorkingTime.’ Subsequently it trig-
gers the transformation Base2Column. 
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Fig. 3. Part of the Relational Package of the CWM [6] 

Base2Column: For each Base, all referenced DimensionAttributes are mapped to 
columns. For example, the DimensionAttributes ‘Regular Working Time’ and ‘Days 
of Absence’ result in the columns ‘WT_WorkingTime_Regular,’ ‘WT_Working 
Time_Actual’ and ‘WT_WorkingTime_Days of Absence.’ 

 

Fig. 4. Resulting Logical Schema of the Case Study 
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Fact2Table: Each Fact is mapped to a Table. For each referenced Dimension a  
Column is created and the transformation Aggregation2Foreignkey is called. The 
example in Fig. 4 illustrates this for the fact table ‘F_Person’ with its foreign key 
constraints and the corresponding columns. To reference the dimension table 
‘D_JobCategory,’ the foreign key constraint ‘FK_D_JobCategory’ at column 
‘ID_JobCategory’ is contained. Afterwards each FactAttribute of the fact object is 
mapped to a column object and is associated with the fact table. According to this, the 
fact table ‘F_Person’ contains the facts ‘F_NumberOfPersons’ and 
‘F_SumOfFullTimeEquivalent.’ 

6 Discussion of the Case Study Results 

In this chapter we discuss the results of the MD²A application to our case study. We 
will discuss the results as follows: (i) functional requirements, (ii) non-functional 
requirements, and (iii) organizational requirements. 
 

(i) At first, we have to ask whether the resulting logical schema is appropriate  
to satisfy the functional requirements of our users, stated in chapter 3. It is obvious 
that the requirements F1 and F2 can be answered with the resulting logical schema in 
Fig. 4. Therefore, we can state that in our case the MD²A approach transformed a 
semantically valid conceptual schema into a semantically equivalent logical schema, 
without manual intervention and loss of analytical capabilities. 
 

(ii) The second point of our discussion concerns the non-functional requirement NF1. 
It was stated that specific reports have to be delivered under certain time constraints. 
In the following we focus on logical design factors and not on hardware performance 
or capacity utilization. We assume that a report fulfilling the requirement F1 has to be 
delivered in less than one minute and that this cannot be held by the given conceptual 
schema and the resulting implementation. The analysis (F1) utilizes the dimension 
‘D_WorkingTime.’ In the current form this dimension has three dimension attributes 
‘planned working time,’ ‘actual working time’ (considering part time contracts) and 
the ‘days of absence.’ These attributes also track the changes over time (i.e. slowly 
changing dimension of type 2 [15]). This means that for each change in an instance of 
a dimension attribute a new row is added to the dimension table. In our case the di-
mension attribute ‘days of absence’ changes much more quickly over time than the 
other attributes. Depending on the size of the dimension and the fact table, response 
time could be improved by separating this dimension attribute into its own dimension 
table. This concept of rapidly changing dimensions is described in [15]. As argued in 
section 2, such a restructuring of the multidimensional schema should be considered 
in the logical schema. The most obvious solution is to adjust the logical schema ma-
nually. But these changes will get lost by regeneration of the logical structures. Ad-
justing the conceptual model will lead to an additional dimension for the working 
time with no functional requirement as background. This contradicts the idea of a 
conceptual model focusing on business requirements and facilitating communication 
(cf. section 2). Hence, within a more complex project all response time requirements 
will be realized through additional dimensions within a conceptual model. Another 
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option could be the parameterization of the transformation or the annotation of the 
conceptual schema targeted at deriving optimized logical structures. But neither the 
conceptual meta-model nor the transformation rules of MD²A support these features. 
These arguments also hold for the other structural optimizations such as materialized 
views or junk dimensions as mentioned in section 2. 
 

(iii) Finally, we evaluate the organizational requirements (O1, O2) within the case. 
The first requirement was the prototype driven development of the data warehouse 
system. This requirement is considered as supported by the MD²A approach, because 
the time between the deployment of the results and further discussion of open issues 
between designer and user is reduced through automatic transformations. But this is 
only the case for the early phases of a DW project, when optimizations on the logical 
level are not necessary. The organizational requirement O2 was that the conceptual 
schema would very likely be changed in the production phase and that this should be 
supported by the approach. The MD²A approach can be used to manipulate the exist-
ing conceptual schema and then generate the logical schema and the actual code from 
it. But this fails for two reasons: First, when regenerating a logical schema from the 
changed conceptual schema all manual modifications (e.g. materialized views, junk 
dimensions, and rapidly changing dimensions) to the design will get lost. Second, in a 
production phase of a data warehouse system, the multidimensional data structures 
will hold analytical data. Depending on the architecture of the DW, a full-reload of a 
star schema via the ETL process could be more or less difficult, or even impossible, 
when the data is not redundantly held in another database. But even so, the problem is 
only shifted to another part of the DW architecture. 

7 Conclusion and Future Work 

Based on the insights of the presented case study we have seen that applying the 
Model Driven Architecture to the development of multidimensional schemas is feasi-
ble and useful. The MD²A approach provides a solid base, but further research is ne-
cessary to gain broader praxis relevance. As result of our work we can conclude that 
the MD²A approach is well suited for DW projects that encompass only the early 
design stages. The approach gives the opportunity to quickly implement prototypes 
and so shorten the time between analyzing requirements and discussing their imple-
mentation with the end user. In that situation the automatic generation of multidimen-
sional schemas enhances the productivity of DW development. But there is a number 
of projects in practice which share the same characteristics, especially in later phases, 
with the presented case study:  

• dynamic changing functional requirements during production phase 
• necessity of restructuring the logical schema due to non-functional requirements 
• difficult or impossible complete data reload in production phase 

Due to the loss of logical optimizations, the possible need to manually adjust the 
physical data structures, and missing features to support changing functional require-
ments during production phase, we can state that the MD²A approach is not well 
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suited for projects sharing the mentioned characteristics. This also is the case for other 
multidimensional MDA approaches (cf. [2-5]). Neither of them considers logical 
optimizations or maintenance tasks during production phase closely. In our opinion, 
these are the main features which should be supported by a model driven multidimen-
sional design approach in praxis.  

To close this gap, future work has to be done in the fields of generating optimized 
data structures and handling varying functional requirements at runtime. In our ongo-
ing work we plan to evaluate the parameterizing of transformations in order to auto-
matically generate optimized logical schema. An alternative solution could be the 
tracing of manual adjustments at the logical level and merge them to new logical 
schema versions. For the case of changing functional requirements at production 
phase we plan an evolutionary concept. This means the incorporation of such changes 
at conceptual level and their transformation to extensions of the existing physical 
tables in a way that does not require existing analytical data to be reloaded or recalcu-
lated.  

References 

1. Inmon, W.H.: Building the data warehouse, 4th edn., pp. 29–70. Wiley, Indianapolis 
(2005) 

2. Fernandes, L.A., Neto, B.H., Fagundes, V., Zimbrao, G., de Souza, J.M., Salvador R.: 
Model-Driven Architecture Approach for Data Warehouse. In: 2010 Sixth International 
Conference on Autonomic and Autonomous Systems, pp. 156–161 (2010) 

3. Gluchowski, P., Kurze, C., Schieder, C.: A Modeling Tool for Multidimensional Data us-
ing the ADAPT Notation. In: Proceedings of the 42nd Hawaii International Conference on 
System Sciences, pp. 1–10 (2009) 

4. Zepeda, L., Cecena, E., Quintero, R., Zatarain, R., Vega, L., Mora, Z., Clemente, G.G.: A 
MDA Tool for Data Warehouse. In: Proceedings of the 2010 International Conference on 
Computational Science and Its Applications, pp. 261–265. IEEE Computer Society (2010) 

5. Choura, H., Feki, J.: MDA Compliant Approach for Data Mart Schemas Generation. In: 
Bellatreche, L., Mota Pinto, F. (eds.) MEDI 2011. LNCS, vol. 6918, pp. 262–269.  
Springer, Heidelberg (2011) 

6. Mazón, J.-N., Trujillo, J., Serrano, M., Piattini, M.: Applying MDA to the development of 
data warehouses. In: Proceedings of the 8th ACM International Workshop on Data Ware-
Housing and OLAP, pp. 57–66. ACM, Bremen (2005) 

7. Luján-Mora, S., Trujillo, J.: A Data Warehouse Engineering Process. In: Yakhno, T. (ed.) 
ADVIS 2004. LNCS, vol. 3261, pp. 14–23. Springer, Heidelberg (2004) 

8. Soler, E., Trujillo, J., Fernández-Medina, E., Piattini, M.: A set of QVT relations to trans-
form PIM to PSM in the Design of Secure Data Warehouses. In: Second International 
Conference on Availability, Reliability and Security, pp. 644–654 (2007) 

9. Mazón, J.-N., Trujillo, J., Lechtenbörger, J.: A set of QVT relations to assure the correct-
ness of data warehouses by using multidimensional normal forms. In: Proceedings of the 
25th International Conference on Conceptual Modeling, pp. 385–398. Springer, Tucson 
(2006) 

10. Glorio, O., Trujillo, J.: An MDA Approach for the Development of Spatial Data Ware-
houses. In: Proceedings of the 10th International Conference on Data Warehousing and 
Knowledge Discovery, pp. 23–32. Springer, Turin (2008) 



64 T. Benker and C. Jürck 

11. Mazón, J.-N., Pardillo, J., Trujillo, J.: Applying transformations to model driven data 
warehouses. In: Proceedings of the 8th International Conference on Data Warehousing and 
Knowledge Discovery, pp. 13–22. Springer, Krakow (2006) 

12. Rizzi, S., Abelló, A., Lechtenbörger, J., Trujillo, J.: Research in data warehouse modeling 
and design: dead or alive? In: Proceedings of the 9th ACM International Workshop on Da-
ta Warehousing and OLAP, pp. 3–10. ACM, Arlington (2006) 

13. Golfarelli, M., Rizzi, S., Pagliarani, C.: Data Warehouse Design. In: Modern Principles 
and Methodologies, pp. 43–60. McGraw-Hill, New York (2009) 

14. Golfarelli, M., Rizzi, S.: A methodological framework for data warehouse design. In: Pro-
ceedings of the 1st ACM International Workshop on Data Warehousing and OLAP, pp. 3–
9. ACM, Washington, D.C. (1998) 

15. Kimball, R., Ross, M.: The data warehouse toolkit. The complete guide to dimensional 
modeling. Wiley, New York (2002) 

16. Object Management Group: MDA Guide Version 1.0.1,  
http://www.omg.org/cgi-bin/doc?omg/03-06-01.pdf 

17. Luján-Mora, S., Trujillo, J., Song, I.-Y.: A UML profile for multidimensional modeling in 
data warehouses. Data & Knowledge Engineering 59, 725–769 (2006) 

18. Object Management Group: Common Warehouse Metamodel (CWM) Specification, 
http://www.omg.org/spec/CWM/1.1/PDF/ 

19. Object Management Group: Meta Object Facility (MOF) 2.0 Query/View/Transformation 
Specification, http://www.omg.org/spec/QVT/1.1/PDF/ 

 



Integrating ETL Processes from Information

Requirements

Petar Jovanovic1, Oscar Romero1, Alkis Simitsis2, and Alberto Abelló1
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Abstract. Data warehouse (DW) design is based on a set of require-
ments expressed as service level agreements (SLAs) and business level
objects (BLOs). Populating a DW system from a set of information
sources is realized with extract-transform-load (ETL) processes based on
SLAs and BLOs. The entire task is complex, time consuming, and hard
to be performed manually. This paper presents our approach to the
requirement-driven creation of ETL designs. Each requirement is con-
sidered separately and a respective ETL design is produced. We propose
an incremental method for consolidating these individual designs and
creating an ETL design that satisfies all given requirements. Finally, the
design produced is sent to an ETL engine for execution. We illustrate
our approach through an example based on TPC-H and report on our
experimental findings that show the effectiveness and quality of our ap-
proach.

1 Introduction

Organizations share their common Data Warehouse (DW) constructs among
users of different skills and needs, involved in different parts of the business
process. Information requirements coming from such users may consider differ-
ent analytical perspectives; e.g., Sales is interested in analyzing suppliers data,
while Finance analyzes different data like cost or net profit. Complex business
models, often make these data intertwined and mutually dependent. Taking into
account dynamic enterprise environments with constantly posed information re-
quirements, we need a means for dealing with the complexity of building a com-
plete target schema and supporting extract-transform-load (ETL) process from
the early design phases. In addition, due to typical maintenance tasks of such
constructs, a great challenge is to provide the designer with the means for dy-
namic and incremental building of such designs considering real business needs.

In this paper, we focus on ETL design and present our approach to the incre-
mental consolidation of ETL processes, each created to satisfy a single business
requirement. For new projects, we create the ETL design from scratch based on
a given set of requirements. If an ETL process already exists, we build upon
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Fig. 1. TPC-H Schema Fig. 2. Information Requirements

it and extend it according to new or changed requirements. For these tasks,
we propose the CoAl algorithm. As ‘coal’ is formed after the process and ex-
treme compaction of layers of partially decomposed materials (src. Wikipedia),
CoAl processes partial ETL designs, each satisfying a single business require-
ment, and consolidates them into a unified design satisfying the entire set of
requirements. The algorithm is flexible and applies various equivalence rules to
align the order of ETL operations for finding the appropriate matching part
among different input ETL designs. At the same time, it accounts for the cost
of ETL designs, searching for near-optimal solutions. At the end, the solution
suggested by CoAl is sent to an ETL engine for execution. Hence, we provide a
novel, end-to-end, requirement-driven solution to the ETL design problem. Our
experiments show the effectiveness and usefulness of the proposed method.

Contributions. In particular, our main contributions are as follows.

– We present our approach to the incremental integration of new information
requirements into new or existing ETL designs.

– We introduce a novel consolidation algorithm, called CoAl, that deals with
both structural and content comparison of ETL designs, identifies the max-
imal matching area among them, and finally, taking into account the cost,
produces an ETL design satisfying all requirements.

– We show a set of experiments showing the effectiveness and quality of CoAl.

Outline. Section 2 introduces a running example used throughout the paper.
Section 3 presents the ETL design consolidation problem, describes equivalence
rules, and formalizes operation comparisons. Section 4 presents the CoAl algo-
rithm and Section 5 reports on our experimental findings. Finally, Sections 6
and 7 discuss related work and conclude the paper, respectively.

2 Running Example

To illustrate our approach, we use a scenario based on the TPC-H schema [2].
Figure 1 shows an abstraction of the TPC-H schema. Assuming a set of five
requirements (IR1, ..., IR5) over the TPC-H schema, as shown in Figure 2, we
describe how we automatically produce a design that fulfills all five requirements.

First, we create an ETL design for each of these requirements. In the litera-
ture there are methods for dealing with such a task (e.g., [14]). Having a design
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Fig. 3. ETL designs satisfying IR1 and IR2

per requirement at hand, in this paper, we focus on integrating the individual
ETL designs into a design that satisfies all requirements. Considering Figure 3,
we define the referent ETL design as the integrated ETL design for a number
of requirements already modeled (we start from IR1) and the new ETL design
as the design for a requirement not integrated yet (IR2). In terms of graphical
notation, the gray bottom rectangles represent data sources, whereas the other
boxes represent operations. The design for IR1, say G1, contains four join op-
erations, jrk, k=1 . . . 4. The design for IR2, G2, has three joins jnl, l=1 . . .3.
Both designs contain other operations like filters, and so on.

Observe that the two designs have a number of common operations, like for
example those on the paths involving the source nation (shaded paths in Figure
3). For both performance and maintainability purposes, we need to create an
alternative, equivalent design having the minimum number of overlapping oper-
ations. Figure 4 (left) shows an alternative ETL design that satisfies both IR1
and IR2 requirements and the common computation is realized only once.

Once the designs satisfying IR1 and IR2 have been integrated, we iteratively
proceed with the remaining requirements, IR3, IR4, and IR5, until we consolidate
all five ETL designs into one (assuming that all five designs share operations;
otherwise, a design is not merged with the others). For this example, the ETL
design that satisfies all five requirements is shown in the right part of Figure 4.

For the sake of presentation we discuss here functional requirements, but our
approach works seamlessly for non-functional requirements too. For example,
a requirement regarding availability might lead to a fault-tolerant design that
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Fig. 4. ETL designs satisfying IR1 and IR2 (left) and all five requirements (right)

uses replication. Such a design would involve a splitter and a voter operations –to
create and merge back the replicas, respectively– whereas the flow fragment be-
tween these two operations would have been replicated by a factor –for example–
of 3 (triple-modular redundancy). In such cases, the design integration proceeds
using the same techniques we describe next by means of the running example.

3 The Design Consolidation Problem

In this section, we describe the problem of consolidating ETL designs satisfy-
ing single requirements. We first discuss the challenges that need to be solved
and then, we formally present the theoretical underpinnings regarding design
equivalence and operation comparisons.

3.1 Goals and Challenges

Typically, an ETL design is modeled as a directed acyclic graph. The nodes of
the graph are data stores and operations, and the graph edges represent the data
flow among the nodes.

Intuitively, for consolidating two ETL designs, a referent G1 and a new G2 de-
signs, we need to identify the maximal overlapping area in G1 and G2. Therefore,
we proceed as follows:

1. First, we identify the common source nodes between G1 and G2. In terms
of our running example, let us assume that G1 satisfies IR1 and G2 satisfies
IR2. The common sources for the two designs are nation, supplier, partsupp,
and lineitem (see Figure 3).

2. For each source node, we consider all paths up to a target node and search
for common operations in both designs. Starting with the nation source
node, we identify the paths up to the target in both designs (shaded paths
in Figure 3). In these paths, we search for common operations that could be
consolidated into a single operation in the new design.



Integrating ETL Processes from Information Requirements 69

Deciding which operations can be consolidated and how is not an easy task. If
two operations, each placed in a different design, can be matched, then we have
a full match. For example, the join operation jn3 in the new design G2 fully
matches the join operation jr4 in the referent design G1 (see also Figure 3).
If two operations, one in the referent design and the other in the new design,
partially overlap, then we have a partial match. For example, if jn3 involved
only predicate ps partkey = l partkey, then the referent design would partially
overlap, since in that case jr4 would be more specific and thus would provide
only a subset of the necessary results set.

For being able to guarantee full or partial matching, we should also look
at the operations performed before the ones considered for the matching; i.e.,
we need to check the input paths of each operation considered for matching.
For example, we cannot consolidate operations jr2 and jn1 until we ensure
that their predecessors have been already fully matched too. In order to enable
better matching, we also consider design restructuring by moving operations
before or after those considered for matching. This task is performed by our
CoAl algorithm described in detail in Section 4.

Before presenting CoAl, we first describe two theoretical aspects that set the
foundations of our method. In 3.2, we show how to reorder operations within
the same design, in order to facilitate the search for full or partial matchings. In
3.3, we show how partial and full matches may be identified between operators.

3.2 Equivalence Rules

Reordering operations within an ETL design may be desirable for several reasons;
e.g., for improving performance by pushing selective operations early in the
flow. Here, we focus on design restructuring with the goal of favoring operation
matching between two different designs.

In order to change the structure of a design, we need to ensure that the change,
called transition, is valid and leads to a semantically equivalent design. For this
reason, all possible transitions obey to a set of equivalence rules, which guaran-
tees the equivalence of designs after a transition has taken place. We consider
some of the transitions previously proposed in the context of ETL optimization
[15]. These transitions include: swap, distribute, and factorize. Swap (swp) in-
terchanges the position of two adjacent unary operations. Factorize (fct) and
distribute (dst) represent the factorization and distribution of unary operations
over an adjacent n-ary one. It is proven that these transitions are sound and
produce equivalent designs, as long as some conditions based on the schemata of
operations hold. For example, two unary operations o1 and o2 cannot be swapped
if o2 has as a parameter an attribute generated by o1. For further details and
a complete list of these conditions, we refer the interested reader to [15]. In
addition, we use another two transitions: association (asc), which refers to the
associativity rule of n-ary operations of the same kind (e.g., joins), and n-ary
distribution (distr), which refers to the distributive rule between n-ary operators
(e.g., join and union), all with their well-known properties.
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Table 1. Equivalence rules for the running example

oper. f sM j ∪ a UDF SK

f
√

swp ∼swp
√

dst/fct

√
dst/fct ∼swp

√
swp

√
swp

sM
√

swp × √
dst/fct

√
dst/fct ∼swp

√
swp

√
swp

j
√

dst/fct ∼dst/fct

√
asc × ∼dst/fct ∼dst/fct ∼dst/fct

∪ √
dst/fct

√
dst/fct

√
distr

√
asc × √

dst/fct ∼dst/fct

a ∼swp ∼swp ∼dst/fct × × ∼swp ∼swp

UDF ∼swp ∼swp ∼dst/fct

√
dst/fct ∼swp ∼swp ∼swp

SK ∼swp ∼swp ∼dst/fct

√
dst/fct ∼swp ∼swp ×

Table 1 shows the applicability of equivalence rules for an example set of opera-
tions (we explain them in 3.3). Although, for the sake of presentation, we list here a
limited set of operations (as those needed for the running example), the transitions
work for amuchbroader set of operation as discussed in the literature (e.g., [15,17]).
The table reads as follows. For each cell we present how the operation of the column
can be rearranged and pushed down the adjacent operation of the row. A tick (

√
)

means that the unconditional equivalence rule(s) exists between these operations.
The additional label(s) besides this symbol refer to which transitions are allowed.
If there is a conflict and no equivalence rule can be applied over operations, the cell
is crossed (×). Furthermore, in the cases of partial conflicts the cell is marked with
(∼) and has an appropriate label. This happens when certain equivalence rules can
be applied only if certain conditions hold. In all cases, CoAl considers only valid
transitions based on the equivalence rules.

For example, note that reordering sMr4 in the referent design of the running
example is not allowed, since it projects out s suppkey included in the predicate
of jr3. As another example, a filter and an aggregator can be swapped, assuming
that the input schema of filter does not have an attribute contained in the group-
ing attributes of the aggregate. In addition, it is possible to dst/fct aggregate
over join if afterwards the specified set of functional dependencies that ensures
the equivalence of such transition holds [20]. Other operations behave similarly.

3.3 Operation Comparisons

Next, we describe how we determine whether between two operations, say oref
(placed in the referent design) and onew (placed in the new design) there exists
either full or partial or no match.

As we discussed before (see 3.1), two operations can be consolidated if they
match and if their input data flows also coincide. Even if they do not coincide at
first, after finding the matching, either full or partial, we try design restructuring
based on the equivalence rules until we meet this condition (if it is possible). We
discuss this in the next section. Here, we describe comparison of two operations
oref and onew , without considering their input flows.

Figure 5 illustrates the four possible outcomes of operation comparison.
(1) The compared operations are equal: oref = onew . Then, we consolidate

the two operations as a single one in the integrated design.
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Fig. 5. Integration of the operations

(2) The results of onew can be obtained from the results of oref . Then, both
operations can be partially collapsed as depicted in Figure 5. Hence, the output
of onew can be computed from the output of oref (i.e., oref≺onew) and thus,
it partially benefits from the transformations already performed by oref . Also,
the consolidation of the partially matched operation onew may involve a trans-
formation of this operation for obtaining the original output data. For example,
if jr4 in Figure 3 involved only the predicate ps partkey = l partkey we could
then only identify partial matching between jn3 and jr4 and the consolidation
of these operations would require an extra operation to filter data according to
the remaining predicate (ps suppkey = l suppkey).

(3) The results of oref can be obtained from the results of onew (onew≺oref ).
(4) Finally, it may happen that neither onew can benefit from oref nor the

opposite. Then, the two operations cannot be consolidated. In such cases, we use
a fork in the already matched ETL subset, as shown in Figure 5(4). (Note that
the fork is implemented as a copy-partitioning operation in the physical design.)

In general, each operation is characterized by its input (I) and output (O)
schemata (see also [15]).We also consider the semantics (S) involved in the com-
putation performed by this operation. To express the wide complexity of ETL
flows we can define the semantics of their operations as programs with corre-
sponding precondition (Pre) and postcondition (Post) predicates. Accordingly,
we can formally represent an ETL operation o as o(I, O, S, Pre, Post).

– o1(I1, O1, S1, P re1, Post1) = o2(I2, O2, S2, P re2, Post2) iff I1 = I2 ∧O1 =
O2 ∧ Pre1 ≡ Pre2 ∧ Post1 ≡ Post2;

– o1(I1, O1, S1, P re1, Post1) ≺ o2(I2, O2, S2, P re2, Post2) iff ∃o3(I3, O3, S3,
P re3, Post3) : I1 = I2 ∧ O1 = I3 ∧ O3 = O2 ∧ Pre1 ≡ Pre2 ∧ Post3 ≡
Post2 ∧ Post1 ⇒ Pre3;

The definition of a specific operation semantics (S) along with the correspond-
ing postconditions and preconditions predicates and their implications (⇒) are
provided by template definitions for operations. Hence, any given ETL design
uses instances of these operations that inherit such properties from their generic
template definitions. This process is straightforward and a detailed discussion
on this topic falls out of the scope of this paper.

Next, we show formal definitions for operation comparison for the operations
shown in Table 1. Due to space considerations, we do not elaborate here on other
operations, but the process is similar.
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– Filter - fψ(R)
For comparing filter operations, besides the input schema, we also check
the comparison of included predicates ψ. The comparison of the equivalence
or logical implication of these predicates (ψ1 ⇐ ψ2) can be facilitated by
generic reasoners. We compare filter operations as follows:
• fψ1(R) = fψ2(S ) iff R=S ∧ ψ1 ≡ ψ2;
• fψ1(R) ≺ fψ2(S ) iff R=S ∧ ψ1 ⇐ ψ2;

– Schema Modification - sMa1,a2,..,an(R)
For comparing schema modifications, besides the input relations, we also
compare the attributes that are modified. Therefore, we compare schema
modification operations as follows:
• sMa1,..,an(R) = sMb1,..,bm(S ) iff R=S ∧ {a1,..,an} = {b1,..,bm};
• sMa1,..,an(R) ≺ sMb1,..,bm(S ) iff R=S ∧ {a1,..,an} ⊃ {b1,..,bm};

– Join - R jψ S
To compare joins, we take into account the commutative property that ap-
plies over the inputs of a join. As with filter, we compare the corresponding
join predicates. Thus, we compare joins as follows:
• P jψ1

Q = R jψ2
S iff ((P=R ∧ Q=S) ∨ (P=S ∧ Q=R)) ∧ ψ1 ≡ ψ2;

• P jψ1
Q ≺ R jψ2

S iff ((P=R ∧ Q=S) ∨ (P=S ∧ Q=R)) ∧ ψ1 ⇐ ψ2;
– Union - R ∪ S

To compare unions, we only compare their input relations, as they do not
have any additional parameters defined. Here, we also consider the commu-
tative property. Thus, we compare unions as follows:
• P ∪ Q = R ∪ S iff ((P=R ∧ Q=S) ∨ (P=S ∧ Q=R));

– Aggregator - g1,..,gmaf1(A1′), .., fk(Ak′) (R)
To compare aggregators, besides the input relations, we also compare the
grouping attributes regarding equality or functional dependency between
them (gi → ti). Currently, we consider the set of aggregation functions to
be equal. However, this can be extended considering the class of expandable
aggregation functions, discussed in [4]. Thus, we compare them as follows:
• g1,..,gna... (R) = t1,..,tma... (S ) iff R=S ∧ m=n ∧ ∀i = 1..m, gi=ti;
• g1,..,gna... (R) ≺ t1,..,tma... (S ) iff R=S ∧ m≤n ∧ ∀i = 1..m, gi =
ti ∨ gi→ti;

– User Defined Function (UDF) - UDF(R)
A udf is expressed as f :I→Oo(R). For comparing udfs we consider their be-
havior over the input records (r), as follows:

• f1:I1→O1 o1(R) = f2:I2→O2 o2(S) iff R = S ∧ ∀r ∈ R : f1(r) = f2(r);
• f1:I1→O1 o1(R) ≺ f2:I2→O2 o2(S) iff ∃f3:I3→O3 o3(P):R = S ∧ O1 =
I3 ∧O3 = O2 ∧ ∀r ∈ R : f3(f1(r)) = f2(r);

– Surrogate Key Assignment (SK) - SK(R,S)
Surrogate key assignment (SK) is a typical ETL operation that
joins the incoming data (R) with a lookup dimension table (S) and replaces
the pair “source of data, primary key”(value) with a unique identifier for
DW called “surrogate key”(sk). If a surrogate key does not exist for the pair
“source, primary key”, then a new surrogate key is generated, typically by a
function producing values like max(SK) + 1. The comparison is as follows:
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• SK(R1, S1) = SK(R2, S2) iff R1 = R2∧(∀t ∈ R1 : (∃t′ ∈ S1, t[value] =
t′[value] ∧ ∃t′′ ∈ S2, t[value] = t′′[value]) → t′[sk] = t′′[sk]);

Due to specific semantics of the SK transformations, the above comparison
does not actually test equality of two SK transformations, but their ability
to be consolidated. Therefore, we define that two SK transformations can be
consolidated iff there is no conflict between their lookup tables, i.e., iff the
SK values can be found either in one or in none of the tables.

4 Consolidation Algorithm

The CoAl algorithm looks for all matching opportunities between operators from
the referent and new designs and at the end, it produces a consolidated design.
For each source node, we explore its paths up to a target following a topological
order of the nodes in the design. At each iteration of the algorithm, we only
match two operations (one from each design), and we only add this match to
the final result if and only if all previous nodes in the path have been fully
matched. To ensure this, we proceed using the equivalence rules between the
operations at hand and taking into account the performance cost of the design.

Returning to the running example that shows how we consolidate the designs
for IR1 and IR2 (see Figure 3), we identify a full match between jr2 and jn1

operations. However, their input paths have not been fully matched yet. One
solution to handle this is to check if we can push jr2 and jn1 down to their
respective sources (supplier and nation). This is possible because on the one
side jr2 may move over sMr2, sMr3, jr1, and sMr1, while on the other side
operation jn1 may move over sMn1, sMn2, and fn1, and we may still produce
equivalent designs that fulfill our constraint.

As we discussed, only when a full match is not possible (either directly or after
reordering of operations), we search for a partial match. Partial matches finish
our exploration in the considered branch, as we do not fulfill our constraint:
fully match of the input paths is required in order to keep exploring the branch.
Hence, if at the end a complete match is not found –i.e., the new ETL cannot
be completely subsumed by the referent ETL– we explore the partial matchings
identified and estimate their costs. The cheapest solution according to the cost
model considered (discussed later in this section) is chosen for integration.

Formally, CoAl starts with two ETL designs, the referent and the new, and
iterates following a topological order of the ETL operations, which guarantees
the following two invariants:

(I1): At each iteration, only one pair of operations can be partially or fully
matched.
(I2): A new match is added to the set of already matched operations iff the input
flows of the operations involved in the new match have been fully matched in
previous iterations.

These invariants have some interesting consequences. Two matched operations
are eventually consolidated in the output, integrated design if the designs they
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inputs: G1, G2, output: Gint

1. matchingsQueue := matchLeafs(G1, G2);
2. alternativeList := ∅;
3. while (matchingsQueue is not empty) do

(a) currentMatchings(G1′,G2′) := dequeue(matchingsQueue);
(b) newOperationsForMatching(LOps ref, LOps new) := explore(G1′,G2′);
(c) if (LOps new is empty) then

i. insert(G1′,G2′, ∅, 0) into alternativeList;
(d) foreach pair(Onew from LOps new, Oref from LOps ref)

i. if (Onew fully matches Oref ) then
A. G1′′ =: reorder(G1′); G2′′ =: reorder(G2′);
B. enqueue(matchingsQueue, {G1′′,G2′′}, {Onew,Oref});

ii. else if (Onew partially matches Oref ) then
A. G1′′ =: reorder(G1′); G2′′ =: reorder(G2′);
B. insert(G1′′, G2′′, {Onew, Oref}, Cost(G1′′, G2′′)) into alternativeList ;

(e) if (no matching found) then
i. insert(G1′, G2′, ∅, Cost(G1′, G2′)) into alternativeList;

4. if (alternativeList is not empty)
(a) Gint := integrate(cheapestAlternativeMatching);

5. Return Gint;

Fig. 6. Pseudocode for CoAl

belong to can be reordered so that their children are fully matched. Since we
are looking for the maximal overlapping area between the two designs, we can
guarantee that any two operations that fully match can be immediately added
to the output. The proof based on contradiction is straightforward.

Suppose that oref1 and oref2 are two operations from the referent design and
onew1 and onew2 are two operations from the new design. Let us assume that
oref1 fully matches with onew1, from now pair1, and oref2 fully matches with
onew2, from now pair2. Both belong to the maximal overlapping area between
both designs and there is no other full match left to identify. If the order to
add them to the output matters, it means that one of these pairs, say pair1,
should be added to the result before pair2. But this can only happen if no
equivalence rules can be applied between the corresponding operators in each
design (i.e., between oref1 and oref2 in the referent design and between onew1

and onew2 in the new design). In such a case, and knowing that they belong to the
maximal overlapping area, pair1 can be moved according to the equivalence rules
down in both designs, so that all their input data flows are fully matched and
consequently, they will be added to the output in the next iteration. After pair1
has been integrated, we use another finite set of equivalence rules for pushing
pair2 down and fulfill (I2). Thus, in the next iteration it will be also added to
the output. Relevantly, this is also the proof that our algorithm will eventually
finish. Due to this property we define rule R1:

(R1): When looking for matchings, the first two operations to be compared from
the referent and the new designs are those that fulfill (I2).

Although it favors the cheapest solutions (i.e., that do not require any re-
ordering), R1 nevertheless does not eliminate better solutions that may appear.

CoAl comprises four steps (see Figure 6): i) search for the next operations to
match; ii) compare the next operations ; iii) reorder input designs if a match has
been found; and iv) integrate the alternative matching with the lowest estimated
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cost. The three first are executed in each iteration of the algorithm, whereas the
last one is executed only once, when no match is pending.

Through the algorithmwe maintain two structures. First, a priority queue that
contains fully matched areas that may be further extended with new matching
operations. Each queue element contains the list of matching operations together
with the input ETL structures specifically reordered for such matchings. Second,
a list for keeping all alternative matching combinations ending up in a partial
matching found through the algorithm, along with the estimated costs of such
matchings. The algorithm starts by matching the source nodes of the referent
and the new designs (step 1). The comparison of the source nodes is based on
the parameters that characterize them: source type, source name, and extracted
fields. The steps of CoAl are as follows.

Search for the next operations to match. We identify the operations to be
compared next (step 3b). We start with comparing operations according to (R1).
If there is no full match, the algorithm identifies all operations that can be
reordered, by applying equivalence rules, and pushes them down according to (I2)
and hence it identifies different possibilities for comparing. As a result, two sets
of operations to be compared (LOps new and LOps ref) are produced. In terms
of the running example, for the paths starting from the matching source nation
(see Figure 3), in the referent design we identify the set: (jr1, jr2, and sMr1)
and in the new design: (jn1, sMn1, and fn1).

Compare thenext operations.Wethenproduce the cartesianproduct of these two
sets (step 3d). For each pair, we proceed as explained in subsection 3.3 depending
on the result of the comparison: (a) we can identify a full match (equality) (step
3(d)i); (b) a partial match (step 3(d)ii) or (c) no match (step 3e).

Reorder the input designs. If CoAl finds a (full or partial) match between
two operations, then it tries reordering of the input designs to guarantee (I2)
(steps 3(d)iA and 3(d)iiA). Considering the running example, when we find a
full match between joins jr2 and jn1, the algorithm pushes them down to the
sources nation and supplier. CoAl then adds the match found to the integrated
design and depending on the type of match found it proceeds as follows.

– For a full match, it enqueues back to priority queue the two designs (possibly
reordered) to further extend the matching in next iterations (step 3(d)iB).

– For a partial match, it estimates the cost of such a solution and then adds
it, along with its cost, to the list of integration alternatives (step 3(d)iiB).

– Finally, if there is no match, this alternative, along with its estimated cost,
is also added to the list of potential integration alternatives (step 3(e)i).

Regarding a cost estimation model, CoAl is not tied to a specific cost model;
in fact, it is extensible to any given cost model. Example cost models for ETL
designs can be found in the literature (e.g., [16]).

The matching process ends when the algorithm finishes with all possible paths
and the comparison among their operations (i.e., when there are no more ele-
ments in the priority queue). Alternatively, the algorithm terminates when a
complete matching of the new design is identified (step 3c). This extreme case
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happens only when the new design is completely subsumed by the referent one
and thus the cost of such an alternative (i.e., the referent design itself) is 0.

Integrate an alternative match. After the iterations finish, CoAl checks if there
is any alternative matching. It checks the list of all possible alternatives and
chooses the one with the lowest estimated cost. Then, it continues the design
consolidation with that alternative (step 4a).

Finally, CoAl returns the consolidated design.

5 Evaluation

This section describes our prototype and reports on our experimental findings.

CoAl in GEM. Our work revolves around GEM, which is a prototype for
the creation of multidimensional (MD) schemata and the respective ETL design
based on a given set of business requirements. In a nutshell, starting from a set of
requirements expressed in a proprietary XML-like form, we semi-automatically
construct the resulting MD schemata and ETL designs using Semantic Web
technology for inferring the necessary mappings [14]. The outcome of this process
is a conceptual MD and an ETL designs. The conceptual ETL design is encoded
in an XML-like format, namely xLM, previously proposed in [19]. Our method
produces one ETL design per business requirement and then, we use CoAl for
consolidating the results into a unified ETL process.

As a next step, our prototype translates the conceptual ETL design into a
physiological ETL model, expressed again in xLM, which then may be executed
in an ETL engine. Figure 7 shows a physical rendition for the running example.
For now, GEM is connected to an open source ETL engine (PDI, a.k.a. Kettle
[1]). For the connection, we translate xLM to the engine-specific XML form
for storing ETL metadata, and thus, we are able to import a design into the
engine and execute it. Our design choice of use an XML-like encoding was made
for achieving a greater extensibility, since many modern ETL engines use XML

Fig. 7. Physical ETL design satisfying (IR1 - IR5)



Integrating ETL Processes from Information Requirements 77

encoding to import/export ETL metadata. Thus, GEM may connect to any of
them, assuming that the correct XSLT to tool-specific XML parser is provided.

Experimental Methodology. We constructed designs based on the TPC-H
[2] schema and queries (information requirements). We first used GEM to build
designs corresponding to individual requirements and then, we launched CoAl to
consolidate these designs. We considered all order permutations of the provided
designs. Here, due to space considerations, we present our representative results
for six TPC-H queries: Q3, Q5, Q7, Q8, Q9, and Q10. For each permutation,
we first started by consolidating two requirements, and then we incrementally
added the other four.

Scrutinizing CoAl. Next we report on our experimental findings.
Search Space. As shown in Figure 8(right), for a naive search, the search space
grows with the �requirements. For input designs of an average size of 28 opera-
tions, the number of states considered starts from 1.2k for 2 requirements and go
up to 9.7k for 6 requirements. At the same time, the time needed to complete the
search grows exponentially with the �requirements –see Figure 8(left)– starting
from 60sec for 2 requirements and go up to 7.7ksec for 6 requirements. Hence,
it is obvious that we need to prune the state space.

For that, we used the (R1) rule (see Section 4). For evaluating the effectiveness
of (R1), we performed the same set of experiments with and without the rule.
This is shown in Figure 8: the red bars represent the naive search and the blue
bar shows the results of applying the (R1) rule into our search. The improvement
is obvious in terms of both space and time.

As another experiment, we studied the behavior of the internal characteristics
of CoAl. Figure 9 shows how �matches, �maxTransitions (this relates to the
(I2) invariant), �firstMatches (R1-effect), and �solutions are affected by the size
of the problem. While the number of matches increases with the number of
requirements, both the numbers of solutions and reorganizations drop as we
encounter additional requirements. At first, CoAl aggressively matches different
designs, but as the incrementally integrated design matures and the design space
is covered, there are lesser novel, valid moves. This is also verified by the �visited
states (not shown in the graph) that increases with the �requirements.

Quality of our solutions. Figure 10 presents our findings regarding the qual-
ity of solutions provided by CoAl with respect to optimal designs, which were
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manually constructed. Figure 10(left) shows a comparison based on a combi-
nation of design metrics that measure the coverage of the optimal cases by
the respective designs. Interestingly, the quality of CoAl increases with the
�requirements. Figure 10(right) reports on an individual metric, namely
�operations. In all cases, the �operations in designs produced by CoAl, follows
the same pattern as in the respective optimal cases. Moreover, CoAl matches all
data stores (not shown in the figure). It is worth noting that the time needed for
finding the optimal case was 3-4x larger than the respective time needed for get-
ting the designs automatically. In addition, CoAl produces equivalent designs;
i.e., designs that when executed produce the exact same results.

6 Related Work

ETL. Previous work on ETL has studied modeling and optimization issues. Re-
garding modeling, there are two directions: the use of ad-hoc formalisms (e.g.,
[18]) and standard modeling languages (e.g., [3,11,12]). These approaches do
not describe how the ETL design adapts to change of requirements. Past work
has also tackled the problem of optimizing ETL designs for a variety of objec-
tives (e.g., performance, fault-tolerance, etc.) without showing how to deal with
business requirements [15,17].

Query optimization. Both traditional query optimization [8] and multi-query
optimization approaches [9] focus on performance and consider a different subset
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of operations than those typically encountered in ETL. Also, database optimizers
do not work well for operations with ‘black-box’ semantics [17]. Our equivalence
rules, however, are based on transitions that have been proved to work for a
wider range of operations [15](e.g., arbitrary user functions, data mining trans-
formations, cleansing operations, etc.).

Data mappings and data exchange. Data mapping specifications aim at bridg-
ing the heterogeneities between source and target schemas by mapping the
relationships between schemas [10]. The data exchange problem aims at restruc-
turing data structured under one source schema in terms of a given target schema
[7]. However, current algorithms and tools generating automatic data mappings
(e.g., [5,6,13]) either cannot tackle grouping and aggregation or overlook complex
transformations like those with black-box semantics.

7 Conclusions

We have presented CoAl, our approach to facilitate the incremental consolidation
of ETL designs based on business requirements. CoAl identifies different possi-
bilities for consolidation and suggests near-optimal designs taking into account
their processing cost too. Our method can be used either at the early stages of an
ETL project for creating the ETL design or at later stages, to facilitate the bur-
densome process of adapting an ETL design to evolving requirements. CoAl is
integrated in our prototype tool called GEM, which connects to an ETL engine
for the actual execution of the produced designs. Our experiments show that
CoAl successfully automates the design process, a task that is largely infeasible
to be performed manually in a timely fashion.

Our future plans include the optimization of our method by exploiting heuris-
tics based on the observation of past execution results for a variety of designs.
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Abstract. The similarities between data cubes and multi-dimensional tables 
have long been noted. Routinely, OLAP reporting tools produce multi-
dimensional tables from data cubes. In this paper, we develop a scheme that 
does the reverse transformation, automatically, so that one may produce charts 
directly from multi-dimensional tables using standard OLAP data visualization 
tools. In the process, we develop several new techniques for table processing: 
(i) extraction of non-overlapping hierarchies from a table; (ii) extraction of me-
tadata from the table title via natural language processing; and (iii) integration 
of tables in a table series, and integration of tables with common dimensions. 
Experiments were conducted on some 800 summary tables from Statistics Can-
ada, and our success rate was greater than 90% for each component that was 
tested. 

Keywords: Data Cube, Information Extraction, Multi-dimensional Tables. 

1 Introduction 

A data cube is a multi-dimensional database, where the members of each dimension 
form a hierarchy. Each cell in the cube is labeled by a member from each hierarchy. 
Inside a non-empty cell are a number of numeric values, which are called measures. 
These measures may, or may not, be arranged as a hierarchy. Data cube provides a 
convenient data model which allows the user to access data by naming the member of 
each dimension hierarchy, and to roll-up/drill-down on specific dimensions by moving 
up to the ancestors/descendants of the current members. Through the slice-and-dice 
operation, a data cube can shrink into another equivalent data cube with fewer dimen-
sions, by simply ‘aggregating away’ some selective dimensions. This is usually called 
the OLAP (On-line Analytic Processing), or dimensional, approach to data analysis.  

Early on, the similarities between a data cube and a statistical table have been  
recognized [1], by showing how the data and headers of a statistical table may be 
transformed into a data cube. In [2], a table is defined such that table headers are par-
titioned into a number of groups, or dimensions as viewed in the OLAP terminology. 
Obviously, not all tables are suitable for modeling as a data cube. Many simple tables 
are straightly one-dimensional, in the sense that all column names are members of a 
single hierarchy. As a result we called tables with more than one dimension multi-
dimensional tables. Multi-dimensional tables tend to be high quality data tables,  
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published on the Web not only by statistical agencies, but also by public organizations 
such as universities, e.g., enrolment reports. In fact, reports generated by OLAP tools 
are precisely multi-dimensional tables. As well, the de facto standard query language 
on data cubes is called MDX, or multi-dimensional expression.  

In this paper, we develop a scheme that automatically transforms a multi-
dimensional table into a data cube, complete with its schema. The derived schema 
must satisfy some properties in order to achieve our objectives. Our basic objective is 
to enable users to query the table by a well-established query language, or to visualize 
the data in some chart. Thus, the schema must satisfy the rule of summarizability[3], 
which is a design principle for data cube. To us, this rule means that a dimension 
hierarchy must be non-overlapping, i.e., a header in the dimension hierarchy must not 
have more than one parent header. At a more advanced level, by transforming a table 
into a data cube, we hope to present a new way of integrating multiple tables into one 
or integrating tables with existing structured databases. To accomplish table integra-
tion, we need not only the names of the dimensions as they are specified in the table, 
but also the domains associated with them.  

There has been considerable research on extracting semantic information from 
multi-dimensional tables, e.g., [4], [5], [6], [7], [8]. Many propose to store the seman-
tic information in a proprietary format, while others propose to store in a standard 
format, i.e., RDF, associated with Semantic Web. None of them resort to the table 
title for extraction of metadata. While the Semantic Web as a technology is getting 
more attention, OLAP technology has been around much longer. All of these papers 
are concerned with extracting from a single table. Issues about table integration are 
not addressed.   

The rest of this paper is organized as follows. In Section 2, a table model is pro-
posed, with specifications of various table components. Section 3 is about how a table 
is automatically transformed into a data cube, with emphasis on three issues: con-
structing non-overlapping hierarchies, locating a name for a dimension, and table 
integration. Section 4 presents our experimental results. Section 5 is the conclusion 
and future work.  

2 Table to Data Cube 

Our model of multi-dimensional table consists of four parts: table title, column head-
ing, row heading and data region, as shown in the example in Fig. 1, where the table 
is divided into these four regions, each indicated by an arrow. A table title summariz-
es the information stored in the table. It usually consists of two components: (a)  
description of the data stored in the cells of the table, and (b) the names of the dimen-
sions. Usually these elements are connected together with a preposition such as ‘by’, 
or punctuation ‘,’, as shown as an example in Fig. 1. Most of the names for dimen-
sions are present in the table title, although some common ones, such as years, are 
often omitted from there. A multi-dimensional table has two kinds of headings: the 
row heading and the column heading. The text string contained in a cell in either 
heading is called a header. For large tables, these headings are not symmetric, due to 
the normal page layout of a web page. Most viewers are more used to scrolling  
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vertically on a web page than scrolling horizontally. As a result, when there are more 
than three dimensions on the table, dimensions with fewer members and shorter head-
ers, e.g., time dimension, are often located in the column heading.  Information about 
the data, e.g., measurement units, is also often found in the column heading too. The 
data region is populated with data cells that contain numeric data items. A data cell is 
indexed horizontally by a row header and vertically by a column header. For example 
the numeric data ‘6,153,120’ is directly associated with the column header ‘2003’ and 
a row header ‘Female’. An experienced human reader, however, will recognize that 
an additional header ‘Single’ should also be included because the row comes under 
the header ‘Single’ which is visually and semantically distinct from the row header 
‘Female’, especially given that there is a hint of the marital status as a dimension in 
the table titles.  

The goal of this research is to develop a scheme to transform a table like the one on 
the left in Fig. 1 to an equivalent cube like the one on the right.  

 

Fig. 1. Transformation of a Table to a Data Cube 

3 Table Processing 

Multi-dimensional tables published by large organizations, especially national agen-
cies, are often meticulously prepared, with consistent naming conventions and visual 
format, such that a human can easily extract the information in a multi-dimensional 
way. However, it is still a non-trivial task for a program to do the same. In [9], an 
algorithm is developed which is capable of partitioning the headers of a multi-
dimensional table into multiple groups, so that the headers that belong to a dimension 
are grouped together. It largely relies on the visual clues installed in the table by the 
table designer for the benefit of the human reader. While a program can be trained to 
see what a human can see, the visual clues alone will not be sufficient to extract the 
metadata from the table required to build a schema for the data cube. In this section, 
instead of going over the entire table transformation scheme, we will focus on three 
aspects as highlights of our scheme: constructing non-overlapping hierarchies, assign-
ing labels to dimensions, and table integration.   
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3.1 Constructing Non-overlapping Hierarchies 

To see why we insist on non-overlapping hierarchies, consider the following table 
about the student majors of the Faculty of Applied Sciences:  

Table 1. Enrolment, Faculty of Applied Science 

Student Majors 2008 2009 
CS Majors 45 52 

ENG Majors 25 27 
 

The design of the dimension ‘Student Majors’ on the first column is ambiguous, 
considering the fact that there is a likelihood of joint majors. As a result, it is not poss-
ible to compute the enrolment from the entire faculty for each year.  This table does 
not have summarizability on the dimension ‘Student Majors’, according to [3]. The 
proper design of dimension will include all categories such that each student belongs 
to one, and only one, category. Clearly, an experienced table designer would not make 
this mistake. However, there are three situations when our system may run into over-
lapping hierarchies:  

1. A hierarchy presented in the table is an integration of two or more hierar-
chies. This is likely for any data cube other than 2-dimensional ones because the 
table designer must arrange all necessary headers in two hierarchies, one in either 
column or row heading. In the table in Fig. 1, two dimension hierarchies, i.e., Both 
Sexes and Marital Status, are squeezed into the row heading. The resulting hie-
rarchy will have the same member at the leaf level, e.g., male and female.   

2. Not all members of a hierarchy are presented in the hierarchy on table. Some-
times, the table designer would like to highlight only a subset of members of a hie-
rarchy. Consider a segment of the table on educational attainment in Fig. 2 from 
US Census data [10], which consists of column heading plus one associated row in 
the data region (the segment is folded because it does not fit into the width of the 
paper). The row heading, which is not shown here, consists of headers for the di-
mension ‘Detailed Years of School’. The second part of this column heading de-
picts an incomplete race hierarchy. According to a table on race in the US, which 
does satisfy the summarizability rule, Non-Hispanic white is a descendant member 
of White. Asian has a descendant member Hispanic Asian, which is also a descen-
dant member of Hispanic (of any race). Presumably, it is the intention of the table 
designer to highlight a selective set of races, but it would be wrong to conclude 
from the table that there are only five members in the race.   

All Races Males Females 25 to 34 
years old 

35 to 54 
years old 

55 years old 
and over 

201,543 97,220 104,323 41,584 83,796 76,163 

White Non-Hispanic 
White 

Black Asian Hispanic (of 
any race) 

163,979 139,146 23,364 9,723 26,672 

Fig. 2. A Segment of a Table – Column Heading and Associated Cells 
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3. The multi-dimensional table is a composite table. Some tables are very similar, 
as they share exactly the same, say, row (or column) heading. For the sake of com-
parison, the table designer may decide to integrate these tables so that all column 
headers for these tables are included in the same row heading. Consider the column 
heading in Fig. 2 again. The column headers may be partitioned into three groups, 
by gender, by age group, and by race. One can look upon the table as an amalga-
mation of three separate tables, each with the same row heading but a different 
group of column headers. Note that these dimensions do not add to the dimensio-
nality of the data cube, unlike the case for the table in Fig. 1. There, every numeric 
value inside a cell of the cube is indexed by a header in all three dimensions. Here, 
it is indexed by only two headers, i.e., a header from a dimension in the row head-
ing, which is ‘Detailed Years of School’, and a member from one of three tables. 
There is nothing about the schooling of the male population in the age group of 55 
years old and over. This is a form of table integration: integration of 3 tables to-
gether as a composite table. A human can easily understand, but there are no visual 
clues for the program, unless the program adds up the associated numeric values. 
For example, 97,220 + 104,323 = 201,543, which means ‘All Races’ is a parent 
header of headers ‘Males’ and ‘Females’. The same is true with age-related head-
ers. More about this summarizability test later.    

For the rest of this sub-section, we consider how to construct a non-overlapping hie-
rarchy out of potentially overlapping ones. Initially, there are two hierarchies, one 
from each heading. They will be derived by observing the visual presentations, e.g., 
font style, font size, and rows with or without empty cells. These are visual clues 
installed by the table designer for the benefit of the human reader. For brevity, we will 
skip the procedure to extract the hierarchy from the headings. We use the technique of 
dimension factoring to the overlapping hierarchies arising from the first case, and the 
summarizability test for those from the remaining cases. 

Dimension Factoring 
We will first present a common way of integrating two hierarchies into one, and then 
we show how to separate them.  

Consider the hierarchies in Fig. 3 where Hierarchies A and B are independent hie-
rarchies. A common way to integrate them is to attach one of the hierarchies as a des-
cendant hierarchy to each leaf node of the other. This is how the Hierarchy X is 
created. This is also how the row heading of the table in Fig. 1 is constructed. There 
are in total 15 entries, judging by the data region in the 2nd column from the left. The 
corresponding headers can be seen as the Cartesian product of these two sets {Both 
sexes, Female, Male} and {Total, Single, Married, Widowed, Divorced}. Mathemati-
cally, they are orthogonal to each. Consequently, the product should be factored into 
two independent dimensions, and each of the 15 entries may be represented by 2 
headers, one from each set.   

We now present a procedure to detect a non-overlapping hierarchy. It is slightly 
more general than simply factoring out the nodes which should have been part of 
another separate hierarchy. We first examine the leaf nodes (header) of the given 
hierarchy. If at least two headers are identical, then it is an overlapping hierarchy. We 
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then search for a set of nodes which has the largest set of descendants that are com-
mon to all of them. The splitting of the hierarchy will take place along these nodes, 
which become the leaf nodes of the reduced hierarchy; their descendants will become 
a separate hierarchy.  

As an example, consider the row heading of the table in Fig. 3. Initially, the hie-
rarchy contains many identical headers in the leaf node. During the processing of 
hierarchy, we identify the headers ‘Single’, ‘Married’, etc. which have identical nodes 
as descendants, i.e., {Total, Female, Male}. Consequently, the descendants are split 
off to become a separate hierarchy, and headers such as ‘Single’ and ‘Married’ be-
come of the leaf nodes of the original hierarchy.    

 

Fig. 3. Composition of Hierarchy A and B 

Summarizability Test and Table Decomposition 
To detect hierarchies that do not satisfy the summarizability rule as well as disinte-
grate a composite table, we introduce a summarizability test.  Given a set of p head-
ers of a certain dimension hierarchy at the same level (in appearance), say H={h1, …, 
hp}, we apply the test to H to determine if there is any header that is actually a parent 
of other headers in H. Suppose we want to know if h1 is a parent of h2 and h3. This is 
true if:  

Measure(h1, c2, …, cn) = Measure(h2, c2, …, cn) + Measure(h3, c2, …, cn),  

where Measure is the numeric value inside the cell identified by the coordinate, and 
cj, 2<=j<=n is any header in the jth dimension. The header h1 is then called the dimen-
sional summary header of h2 and h3. The summarizability test is to identify every 
dimension summary header in H, and its descendant headers in H. The test procedure 
is exhaustive, but quite straightforward. One should sort the numbers in M and, for 
each number in a decreasing order, calculate all possible sums of all numbers below.   

With this test result, we will be able to decide how to decompose this composite 
table. If there is only a summary header for the remaining headers, no disintegration is 
warranted for this dimension, since the hierarchy is already a non-overlapping one. 
Otherwise, the data cube will be sliced into different sub-cubes, along the dimension. 
Each sub-cube will have a summary header together with its constituent members on 
that dimension. For example, there will be three sub-cubes as the result of this spin-
off exercise. The headers for the dimension in each sub-cube will be: {All Races, 
Male, Female}, {All Races, 25 to 40 years old,…}, and {White, Non-Hispanic 
White,…}. The sub-cube with the last set of headers should be marked as one that 
does not satisfy the summarizability rule. We should perform this test for all headers 
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in every dimension of the data cube so that finally each sub-cube has non-overlapping 
hierarchy.  

Note that the summarizability test is not applicable when the aggregate function is 
not summation, but this situation rarely occurs.   

3.2 Dimension Labeling  

Once the headers have been partitioned into a number of dimensions, the next step is 
to annotate each dimension with a label, which will properly describe the collection of 
headers therein. More importantly, the label should uniquely identify a domain, such 
that dimensions from different data cubes with the same label share the same domain. 
As a consequence, the data cubes that have some common dimension name are inte-
gratable. We will return to this table integration issue in the next section.  Since our 
labeling process depends on the table title, the table in question must be intact. In 
particular, a composite table must not be split until after this labeling process, in order 
that the table title properly describes the table.   

To start off, we will attempt to identify all dimensions containing time-related 
headers, as this is the most common dimension by far. For the rest of the dimensions, 
we will solve an optimization problem: given a set of headers H = {h1, …, hm}, we 
produce a set of candidate labels, i.e., C = {c , … , c , based on H, and then search for 
a c , 1<=i<=p, which is the most appropriate label for H. That is, each label in C is 
given a score measuring the semantic distance between the label and H as a whole. 
The label that is closest to H will be the choice.  

The candidate set is formed with labels from the two main sources: the table title, 
and the dimension summary header for H. The latter is located right above the headers 
in either column or row headings. It is distinguished from the headers by font 
type/size and/or indentation. The dimension summary header is ignored when it is an 
aggregate word only, such as total. Neither the table title nor the dimension summary 
header is likely to be a sentence. Many of them resemble noun phrases. Therefore, we 
need to partition them to appropriate sizes in order to find a label to be matched 
against the headers in H.  Chunking any sentence/phrase, in our case the table title 
and the dimension summary header, depends on the part of speech tagging of words 
in the sentence. We refer to “Statistical parsing of English sentences” [11] to divide 
the candidates into appropriate noun phrases, verb phrases and words. For example, 
for the table title in Fig. 1, the chunking process will result in 3 chunks: population, 
marital status, sex. We may use these chunks as candidate labels to be included in C. 
Due to the restriction of WordNet, we include in C all single WordNet synset from 
the chunks. C will include the following labels: population, marital, status, sex. Note 
that if any candidate label is chosen as the optimal choice, it is the chunk containing 
the candidate label that is to be presented. For example if ‘marital’ is chosen as the 
optimal choice, the dimension label will be ‘marital status’.  

To the matching process between C and H, we take an indirect approach. The 
headers in H could be phrases or short sentences and there could be many of them. 
Consequently, they could also be too diverse semantically. When the headers  
are phrases or short sentences, we do not know which word of the header is more 
dominant. Therefore, we do not think it is appropriate to match the headers directly to 
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the candidate set. Instead, we identify a list of words, A = {a1,…, ap} from the Word-
Net taxonomy that are ancestors to some subsets of headers in H. It is hoped that this 
pre-processing will result in a smaller set than H, and a reduced level of semantic 
diversity among the members in A. Thus A becomes a proxy for H, and every label in 
C will match against A instead of H. We have conducted some experiments on a 
small number of tables, and our results justify our indirect approach. By introducing 
pre-processing, the precision is increased from 60% to 90%.    

To proceed with this pre-processing, we first represent each header in the dimen-
sion within the WordNet taxonomy. It is reasonable to assume that headers in the 
same dimension should share a common ancestor. Two important factors must be 
considered when choosing a common ancestor for the dimension headers: the size of 
the coverage (c), where c is the set of headers in the dimension that retrieves this an-
cestor, and height (h), which is the median distance between the common ancestors of 
the headers in c. The greater the height, the more tenuous is the ancestor-descendant 
relationship. Conversely, the larger the coverage, the more relevant is the ancestor to 
the header set as a whole. For each ancestor matching at least 25% of the headers in 
the set, we define the common ancestor score to be |c|/h. The list of ancestors thus 
derived is sorted according to their common ancestor score; the low scoring ancestors 
will be dropped from the list. The remaining ancestors form the set of ancestors A, as 
the proxy for H.  

In practice, we need to adjust the above procedures slightly to cope with the re-
strictions imposed by WordNet. Because some headers in the dimension are phrases 
or short sentences, it can be difficult to collect the common ancestor for these headers, 
since we cannot be sure which word is most closely related to the other headers in the 
set. WordNet contains single words and some general purpose/common phrases. 
Since the headers are mostly phrases defined by the table designer and they are not 
common or general purpose WordNet synset, for WordNet to retrieve them we need 
to divide each dimension header to the appropriate WordNet synset. Also some ances-
tors may be retrieved more than once for the same group, for the reason given above. 
Therefore, we choose the shortest height between them.  

We now proceed with the matching between the ancestors in A and the candidate 
labels in C. This is done by making use of the semantic score presented in “WordNet-
based semantic similarity measurement” [12] [13]. We compute the semantic similari-
ties between the ancestors in A and the candidate set, beginning with the highest scor-
ing ancestor and the candidates that appear most of the time after the prepositions in 
the table title. To measure the score, each candidate is partitioned to a single WordNet 
synset. The score of the candidate is assigned as the maximum similarity score of any 
WordNet synset belonging to the candidate and the ancestor. The candidate that 
matches one of the ancestors and has the highest score is selected as a label.  

When the candidates are single WordNet synsets, we measure the semantic similar-
ity between each ancestor and each candidate according to Wu and Palmer [14], as 
shown in (1), where LCA is the least common ancestor depth in WordNet taxonomy 
between two WordNet synsets, i.e., the ancestor and the candidate,  is the depth 
for the ancestor, and  is the depth for the candidate word.  

Sim= LCA /  )                          (1) 
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3.3 Table Integration 

Here we address two common and practical ways for effective integration of tables: 
integrating tables in a table series, and domain integration.   

Table Series 
It is a common practice to organize tables in a table series, where the tables contain 
table links to other related table(s). (In fact, EXCEL has the same feature). These 
tables are derived from a larger table, which presumably contains too much informa-
tion to be properly displayed as one single web table. Normally, in recognition that a 
multi-dimensional table is transformable into a multi-dimensional array, each table is 
a slice of the cube across one selected dimension. Consequently, these tables share 
roughly the same table title, column heading, and row heading; however data inside 
the data cells are different. Each table is accessible by moving to the associated head-
er of that dimension in a drop-down box, or equivalently clicking the associated but-
ton, as shown in the table in Fig. 4.   

Integration of tables in a table series is straightforward. It is just the reverse of the 
process of splitting a large table into a number of tables across a selected dimension. 
Each table in the series will be processed in exactly the same way, though care must 
be taken to remove the references in the table to the associated members in that di-
mension, e.g., the string ‘2009’ under the title in Fig. 4, because there is another refer-
ence to this year in the column heading. 

 

Fig. 4. A Table in a Table Series 

Domain Integration 
Sometimes, tables that are not tightly coupled together, as in a table series, may still 
be integrated if they share some common dimensions in their schema. A case in point 
is the composite table in Fig 2, which is formed by integrating three tables that have 
the identical dimension, ‘Detailed Years of School’. It is not enough to claim that two 
dimensions are identical just because they have the same name. Conversely, dimen-
sions with different names may turn out to be identical. To us, two dimensions are the 
same if they share the same domain. 
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A domain consists of a set of values from which a dimension draws its members. 
In this sense, a domain of a dimension is similar to a domain for an attribute in the 
relational model. Domain integration is about identifying dimensions that share the 
same domain. Domain integration will establish the join connectivity of cubes with 
common domains. Domain integration plays an important part in table processing too. 
For example, suppose a member of a dimension has an abbreviation, e.g., N.B., and a 
member of another dimension is New Brunswick. If it is found that the two dimen-
sions share the same domain, the former member will be reverted back into its full 
name, since the latter is syntactically closest to the abbreviation.  

To achieve domain integration, a list of domains and related information is kept 
during the table processing to keep track of the domains that have been processed. 
Whenever a dimension is derived (with or without a name), an attempt is made to 
match the dimension with one of the dimensions on the list. If a match occurs, the 
union of the members of the two dimensions replaces the members of the dimension 
already on the list. If either of the matched dimensions has been labeled, the other one 
will be given the same label.  

4 Experimental Results 

Our system was tested against the summary tables in the Statistics Canada web-
site[15]. They are freely accessible, and belong to one of the few national statistical 
agencies that continue to publish in HTML, although they are available in PDF, and 
recently in Excel spreadsheet. More importantly, these tables are quite different from 
all other non-summary tables because they cover a wide range of topics and often 
pack together data from a multitude of non-summary tables. Consequently, they are 
more appropriate for our extractor for testing purposes than the non-summary tables 
published by government agencies including Statistics Canada. Our test dataset con-
tains some 800 randomly selected tables. They are domain-independent and cover 
such topics as education, construction, household, travel, etc. To measure the results 
for each process proposed in our paper, we count the total number of dimensions in 
the tables, the number of tables that need to be integrated, and the total number of 
domains that need to be extracted. 

Table 2. Experimental Results 

Process name Number of 
components 

Success rate 

Deriving the dimension and 
assigning the dimension label 

2446 91% 

Table integration 119 92% 

Domain integration 50 96% 

 
To confirm that our method works for different government agencies that have 

HTML multidimensional tables (in English), we tested our algorithms in a small 
number of tables in English from Statistics Austria and Statistics Finland, and re-
trieved good results. 



 Automatic Transformation of Multi-dimensional Web Tables into Data Cubes 91 

5 Conclusion and Future Work 

We have presented a scheme to allow one to view and manipulate a multi-
dimensional table as if it were a data cube for querying and data visualization. In ad-
dition, one can integrate tables that share common dimensions and treat them as one 
big virtual cube. We have also made contributions to the state of the art of table 
processing. We introduce the summarizability test, which will allow a program to 
discover child-parent relationships among a group of headers, in the absence of any 
visual clues. We develop a technique to analyze a table title as a natural language 
entity and extract vital metadata about the table.  

Currently, we are in the process of expanding the coverage of the tables our system 
can analyze. Many, if not most, tables are not published in the HTML form. They are 
either part of a PDF document or, increasingly, are published individually as spread-
sheets. We hope to apply our system to large sets of multi-dimensional tables from a 
variety of sources.   
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Abstract. Many models have been proposed for multidimensional data ware-
house modeling and most consider a same function to determine how measure 
values are aggregated according to different data detail levels. We provide a 
conceptual model that supports (1) multiple aggregations, associating to the 
same measure a different aggregation function according to analysis axes, and 
(2) differentiated aggregation, allowing specific aggregations at each detail lev-
el. Our model is based on a graphical formalism that allows controlling the va-
lidity of aggregation functions (distributive, algebraic or holistic). We also 
show how conceptual modeling can be used, in an R-OLAP environment, for 
building lattices of pre-computed aggregates. 

Keywords: Data warehouse, Conceptual modeling, Aggregate lattice, multiple 
aggregations, Aggregation functions. 

1 Introduction 

Multidimensional databases (MDB) are used by decision makers to analyze data with-
in their organizations [ 7]. To query efficiently data, these systems represent the ana-
lyzed data from analysis indicators (i.e. measures grouped into facts) as points in the 
multidimensional space [ 4]. Each dimension having various granularity/detail levels. 
Decision makers visualize extracts of the MDB with two-dimensional “slices” of the 
cube, i.e. multidimensional tables (MT) [ 5] and can interact with these extracts with 
manipulation operations [ 15]. 

A classical MBD supports only the calculation of a measure using the same aggre-
gation function while performing drilling or rotating operations (i.e. changing the 
analyzed slice of the cube). For example, if we consider sales amounts, these can be 
calculated as the sum of the products sold by cities and years (Fig. 1-a). When drilling 
from cities to countries, the new amounts are calculated using the same aggregation 
function (also sum in Fig. 1-b). When the user wishes to change the aggregation func-
tion between two slices of the manipulated cube, the classical MBD aggregates all-
ready aggregated data and has no way of guaranteeing the validity of the newly  
aggregated data (for example, averages of averages are usually erroneous). 

This paper aims at allowing non-uniform aggregations during user manipulations. 
To ensure the validity of such aggregations, we define differentiated multiple  
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aggregations. Our proposal aims at developing a multidimensional model flexible 
enough for designing cubes with aggregation functions according to different levels. 
 

Case Study. A diploma delivery jury. Here, decision makers (jury members) deliver 
diplomas by analyzing the marks of students. Students are split into groups and the 
academic year has two semesters. Each semester consists of Teaching Units (TU) and 
each TU is comprised of several courses. Each course is associated with a coefficient 
that represents the importance of the course in the TU, which itself is linked to an 
ECTS (European Credit Transfer System). Each semester has the same amount of 
ECTS. 

Fig. 2-a shows the conceptual star schema [ 14] of the MDB of our case study. This 
MDB analyzes the Marks (measure) by Courses and Students (dimensions). A course 
is characterized by a course number (C_Id), a teaching unit number (TU_Id) and a 
semester. Each student has a student number (S_Id) and a group number (G_Id). 

SUM(SALES.Amount) DATE
Year 2009 2010 2011

STORE City
Toulouse 100 120 115
Bordeaux 110 100 105
Barcelona 90 115 100

SUM(SALES.Amount) DATES
Year 2009 2010 2011

STORE Country
France 210 220 220
Spain 90 115 100

(b)(a)  

Fig. 1. (a) and (b) Uniform aggregation in slices of a cube 

Semester

TU_Id U2

C_Id M1 M2 M3

S_Id (SName)

St1 (Tom) 14 10 12

St2 (Sara) 8 10 9

Courses

S1

U1

Students

AVG(Graduate.Mark)

Graduate

Mark

Courses
C_Id TU_Id Semester ALL

CTitle
Coeff

TUTitle
ECTS

Students
S_Id G_Id ALL

SName GName

HCourse

HGroup

measures (MFi)

dimension
weak attributes (WeakHj(Pk))

hierarchy

fact

(b)(a)

parameters

 

Fig. 2. (a) Diploma delivery case study; (b) Average marks by course by students in a MT 

Illustration of the Problem. This schema analyzes average marks by courses and by 
students (Fig. 2-b). Obtaining the average mark by TU in this multidimensional envi-
ronment requires aggregating the average marks by courses in accordance with the 
function associated with the measure Mark (AVG). But this operation gives a result 
that does not correspond to examination modalities: an average mark by TU should be 
calculated from the course marks and taking into account the coefficient of each 
course (equation 1). Similarly, for average marks by semester, the ECTS of each TU 
(equation 2) has to be taken into account. 


=

Coeff

CoeffMark
TUAVG

*
_

 
(1)
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Therefore, classical approaches that consider a single aggregation function for all 
modeled aggregation levels in the star schema suffer from several limits: 

─ Variability of the aggregation function. Traditionally, models do not allow the 
use of aggregation functions that vary along dimensions or hierarchical levels. In 
our example, the aggregation function changes between the levels C_Id (courses), 
TU_Id (teaching units) and the semester level. 

─ Shortcomings of basic functions. When aggregating data across hierarchical le-
vels, in our example, we use non-standard aggregation functions which use com-
plementary data other than measure values (i.e. coefficients Coeff, weights ECTS). 

─ Aggregation constraints. Aggregation functions belong to three different catego-
ries [ 4]: distributive functions can calculate aggregated values of the selected gra-
nularity level from the values already aggregated at the lower level (e.g. yearly 
amounts can be calculated by summing monthly values); Algebraic functions can 
calculate aggregated values from stored intermediate results (for example, the av-
erage of an amount per year can be calculated from the sum of the amounts and the 
count of occurrences from a month level); Finally, holistic functions cannot be cal-
culated from intermediate results. In this case, aggregated values must be calcu-
lated from the elementary values of the lowest granularity level (e.g. RANK). 

In addition to these functions categories, constraints on how to make the calculation 
of distributive or algebraic functions may exist. In our example, the average per seme-
ster is calculated from the average per TU as shown in the first expression of (2). 

The objective of this paper is to propose a multidimensional model sufficiently ex-
pressive to support this type of aggregation. 

The rest of this paper is organized as follows: section  2 reviews related work. Sec-
tion  3 defines our conceptual multidimensional model followed by extensions for 
differentiated multiple aggregations, then we present the associated graphical formal-
ism. Section  4 shows the logical R-OLAP model of our star schema and its optimiza-
tion relations. We detail our experiments in section  5 and the last section concludes 
this work and states some research perspectives. 

2 Related Work 

There are typically two approaches for modeling multidimensional databases. The 
first is based on the data cube (or hypercube) metaphor according to which the MDB 
is represented by cubes. The second is known as multidimensional modeling, where 
the MDB is described by a star schema or constellation [ 7]. Our work falls in the 
second category. A cube is based on an equivocal separation between the structure 
elements and the values [ 16]: modeling analysis axes is not very expressive especially 
due to the difficulty for representing the hierarchical organization of the data. It is also 
limited for representing constellations of facts with shared dimensions.  

Several surveys of the domain [ 2, 17, 11] and comparative studies [ 13, 1, 10, 15, 12, 8] 
exist. Most of the existing proposals consider that a measure is associated with only 
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one aggregation function for all aggregation levels. This function calculates the same 
aggregation for all combinations of all modeled parameters. 

The YAM2 model [ 1] is the only model that supports a different aggregation func-
tion with each dimension. But this model does not allow changing the function within 
the hierarchical levels. In [ 13] the authors can link several aggregation functions to a 
single measure but each one will be used for all dimensions and all hierarchical levels. 

Regarding commercial tools, “Business Objects” uses a single aggregation function 
for each measure. By contrast, “Microsoft Analysis Services” offers the possibility 
that a "custom rollup" can be applied in a hierarchy in several ways [ 6]: 

─ By using unary operators to solve the aggregation problem over a particular type of 
hierarchy (parent-child attributes hierarchy). These hierarchies are built from a sin-
gle attribute with a reflexive join relationship on the attribute itself (i.e. a join on 
the dimension table itself). 

─ By using MDX scripts, either directly or by using the attribute property “Custo-
mRollupColumn” which indicates a column where MDX scripts are stored. 

Although concerning aggregation functions, they are not related to a specific dimen-
sion or an aggregation level. They are related to a member (an instance) of an aggre-
gation level in a hierarchy (i.e. a line in the dimension table). Therefore, applying this 
“custom rollup” to an aggregation level requires repeating it for all the instances of 
that level with storage problems and reduced performance [ 6]. Moreover, binding a 
“custom rollup” with a specific instance can cause difficulties when updating data. 

Our aim is to remove this limit by designing a conceptual model for representing 
differentiated multiple multidimensional aggregates. By multiple we mean that the 
same measure can be aggregated by several aggregation functions according to analy-
sis axes and by differentiated we mean that these aggregations may vary, depending 
on the chosen aggregation level. 

In addition to the aggregation functions classification [ 4] (distributive, algebraic 
and holistic), there are other classifications: 

─ From a summerizability point of view, aggregation functions are classified in two 
groups [ 1]: (1) “Transitive” that guarantees summerizability, (2) “Non-Transitive” 
which implies that aggregations must always be calculated from the base level. 

─ From a measure point of view, aggregation functions are of three types [ 13]: (1) for 
additive data, (2) for snapshot data that can be used for average calculations, (3) for 
constant data, i.e. data that can only be counted.  

All these proposals as well as aggregation functions classifications assume that the 
measure aggregation can be calculated from the base level. Our goal is to add the 
means to consider the opposite case (when the measure cannot be aggregated from the 
base level) using aggregation constraints. 

3 Conceptual Data Model 

3.1 Classical Concepts 

Let us define N, F and D such as: N = {n1, n2, ... } a finite set of non-redundant 
names; F = {F1,..., Fn} is a finite set of facts, n ≥ 1; and D = {D1,..., Dm} is a finite set 
of dimensions, m ≥ 2. 
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Definition 1. A fact, denoted Fi, ∀i∈[1..n], is defined by (nFi, MFi), where: nFi∈N is 
the name that identifies the fact; and MFi = {m1,..., mpi} is a set of measures. 

We define the measure set as  n

i

FiMM
 

1 =
= .

 
Definition 2. A dimension, denoted Di, ∀i∈[1..m], is defined by (nDi, ADi, HDi), where: 

nDi∈N is the name that identifies the dimension; ADi = { iD
a1 ,..., i

i

D
ra } is the set of the 

attributes of the dimension; and HDi = { iD
H1 ,..., i

i

D
sH } is a set of hierarchies.  

 

Hierarchies organize the attributes of a dimension, from the finest graduation (root 
parameter) to the most general graduation (extremity parameter, “All”). Thus a hie-
rarchy defines the valid navigation paths on an analysis axis. 

We define the attribute set  m

i

DiAA
 

1 =
=  and the hierarchy set  m

i

DiHH
 

1 =
= . 

Definition 3. A hierarchy, denoted Hj (abusive notation of iD
jH , ∀i∈[1..m], 

∀j∈[1..si]) is defined by (nHj, PHj, ≺Hj, WeakHj), where: 

─ nHj∈N is the name that identifies the hierarchy, 

─ PHj = { jH
p1 ,..., j

j

H

qp } is a set of attributes called parameters, PHj ⊆ ADi, 

─ ≺Hj = {(pHj
x, p

Hj
y) | p

Hj
x ∈ PHj ∧ pHj

y ∈ PHj } is an antisymmetric and transitive bi-
nary relation between parameters. Remember that the antisymmetry means that 

(pHj
k1 ≺Hj pHj

k2) ∧ (pHj
k2 ≺Hj pHj

k1)  pHj
k1 = pHj

k2 while the transitivity means that 

(pHj
k1 ≺Hj pHj

k2) ∧ (pHj
k2 ≺Hj pHj

k3)  pHj
k1 ≺Hj pHj

k3. 

─ WeakHj : PHj → 
jHiD PA \2  is an application that associates to each parameter a set of 

dimension attributes, called weak attributes (2N represents the power set of N). 

We define parameter sets  Si

j

HD ji PP
 

1 =
=  and   m

i

Si

j

Hm

i

D ji PPP
 

1 

 

1 

 

1 = ==
== . 

Lemma 1. For each dimension Di, all its attributes are exclusively either parameters 
or weak attributes, PDi ∩ WDi = ∅ and PDi ∪ WDi = ADi. 

3.2 Extensions for Differentiated Multiple Aggregations 

We enrich the multidimensional model by the following extensions: 
 

─ Differentiated aggregation. The aggregation function is associated with one 
measure and one parameter. This kind of aggregation allows a specific aggregation 
over each level of granularity. 

─ Multiple aggregations. This is a simplified representation instead of a repeated 
use of the same differentiated function over several levels of granularity. The same  
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aggregation is performed over each level of granularity of a dimension. The func-
tion is associated with one measure and a dimension. Therefore, it is important to 
note that several aggregation functions can be associated to a same measure; one 
for each analysis axis. 

─ General aggregation. This function is associated only with a measure without 
taking into account neither parameter nor dimension. This is a simplified represen-
tation instead of a repeated use of the same multiple function over several dimen-
sions. This is equivalent to aggregation functions in classical models. 

─ Execution order. it is possible to have different aggregation functions, one for 
each dimension. These functions are generally not commutative. Therefore, it is 
necessary to plan in the MDB an execution order for the use of the functions be-
tween the different dimensions involved in a same analysis. 

Let F = {f1, f2,...} be a finite set of aggregation functions. 

Definition 4. A multidimensional schema, denoted S, is defined by (F, D, Star, Order, 
Aggregate), where: 

─ F = {F1,..., Fn} is the set of facts, if |F| = 1 then the multidimensional schema is 
called a star schema while if |F| > 1 it is a constellation schema, 

─ D = {D1,..., Dm} is the set of dimensions, 
─ Star: F → 2D is a function that associates each fact to a set of dimensions according 

to which it can be analyzed (note that 2D represents the power set of D).  
─ Order: M → 2D × ℕ* is a function that binds to each dimension (regarding each 

measure) an execution order used for aggregating the measure. The aggregation 
function of the dimension with the smallest order is the highest priority. If the ag-
gregation functions of two dimensions are commutative, then both dimensions will 
have the same order. 

─ Aggregate: M → F × 2D × 2H×P × ℕ- associates each measure to an aggregation 
function and a specific aggregation level. Aggregate defines the different types of 
aggregation functions supported by our model: 
 

• General aggregation: 2D and 2H×P are not used (2D = ∅ and 2H×P = ∅). 
• Multiple aggregation: 2H×P is not used (2H×P = ∅). Here, the function is used to 

aggregate the measure over the entire considered dimension. 
• Differentiated aggregation: the function aggregates the measure between a con-

sidered parameter and the parameter directly above it in the same hierarchy. 

ℕ- is to constraint aggregations by indicating a specific level from which the consi-
dered aggregation must be calculated. An unconstrained aggregation will be asso-
ciated with 0 while a constrained aggregation will be associated with a negative value 
to force the calculation from a chosen level lower than the considered level. 

Lemma 2. Aggregation functions ensure the full coverage of multidimensional sche-
mas. Thus there does not exist any parameter (i.e. aggregation levels) for which the 
aggregation function to be applied is unknown. 
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Less formally, the coverage of the schema is carried out in several ways: 

─ By using a general aggregation function, 
─ By using a multiple aggregation function for each dimension, 
─ By using a differentiated aggregation function for each aggregation level, 
─ By combining multiple aggregation functions with differentiated ones. Each di-

mension having no multiple function must have a differentiated function for each 
aggregation level (i.e. parameter). 

3.3 Graphical Formalisms 

The following example, illustrated in Fig. 3, is defined formally by (F, D, Star, Order, 
Aggregate) where: 

─ F = {FGraduate}, where the fact is defined by FGraduate = ('Graduate', {Mark}). 
─ D = {DCourses, DStudents}, where the dimensions are defined by: 

 

• DCourses = ('Courses', {aC_Id, aCoeff, aCTitle, aTU_Id, aECTS, aTUTitle, aSemester, 
ALLDCourses}, {HHCourse}) with HHCourse = ('HCourse', { aC_Id, aTU_Id, aSemester, 
ALLDCourses}, {( aC_Id, aTU_Id), (aTU_Id, aSemester), (aSemester, ALLDCourses)}, {(aC_Id, 
{aCoeff, aCTitle}), (aTU_Id, {aECTS, aTUTitle})}), and  

• DStudents is specified similarly. 
 

─ Star : F → 2D | Star(FGraduate) = {DCourses, DStudents} 
─ Order : M → 2Dxℕ*| Order(Mark) = {(Courses, 1), (Students, 2)} 
─ Aggregate : M → F x 2D x 2HxP x ℕ- | 

Aggregate (Mark) = { (AVG(Mark), {Students},{},0) 1, 
 (AVG_W2 (Mark, Coeff), {Courses}, {(HCourse, C_Id)},-1) 3, 
 (AVG_W(Mark, ECTS), {Courses}, {( HCourse, TU_Id)}, -1), 
 (AVG(Mark), {Courses}, {( HCourse, Semester)}, -1)}. 

We introduce a 2 level graphical formalism to facilitate the understanding of the 
MDB schema: 

─ Structural Schema. The structural schema is used to display the multidimensional 
elements (facts, dimensions and hierarchies) hiding aggregation mechanisms. This 
global view (see Fig. 2) is defined by the function Star. The graphical formalism is 
based on [ 3, 15]. 

                                                           
1 Note that there is no constraint on the aggregation. 
2 AVG_W is the function that computes a weighted average. 
3 The aggregated values are computed from the values at the level directly below the one considered. 
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─ Aggregation schema. For each measure mk∈MFi, an aggregation schema is  
obtained using the functions Order and Aggregate. Fig. 3 details the aggregation 
mechanisms involved in the Mark measure analysis (multiple, differentiated and 
general aggregations, constraints of aggregation and execution order) but shows 
simply the structural elements directly related to the Mark measure. 

aggregation function 

legend : 

f()   C aggregation constraint 

x order of execution Courses
C_Id TU_Id Semester ALL

Coeff ECTS HCourse
1Graduate

Mark Students

AVG(Grade ) 0

2

 

Fig. 3. Graphical notation extensions (Student dimension is not completely displayed) 

As illustrated in the above figure, the execution order is symbolized by numbers 
on the edges that connect the fact to dimensions while the aggregation functions  
are modeled by diamonds. The positions of the diamonds depend on the type of 
function: 

─ A general function is represented by a diamond on the fact (none in our example), 
─ A multiple aggregation function is on the edge connecting facts to dimensions, 
─ A differentiated aggregation function is a label on the edge linking two parameters. 

4 Relational-OLAP (R-OLAP) Logical Model  

Current multidimensional schema implementations use mainly the relational approach 
[ 7]. This approach has many advantages such as reusing proven data management 
mechanisms and the ability to manage very large volumes of data. 

4.1 R-OLAP Star  

In this relational context, the MDB is translated into relations [ 7]. Applied to our ex-
ample, the R-OLAP schema is the following: 

 COURSE  (C_Id,Coeff,CTitle,TU_Id,ECTS,TUTitle,Semester) 
 STUDENTS (S_Id,SName,G_Id,GName)   
 GRADUATE (C_Id#,S_Id#,Mark) 

The aggregation functions are stored in the database engine. We use a metaschema 
(not detailed here due to lack of space) to describe the multidimensional schema 
(facts, dimensions and hierarchies) corresponding to the R-OLAP relations that store 
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the analysis data. It also describes the different aggregation functions and the possible 
aggregation constraints. 

4.2 Optimized Star  

Conceptual modeling allows structuring hierarchically the analysis axis (dimension) 
graduations (parameters). These hierarchies are exploited for pre-computing the ag-
gregations required by decision makers to navigate and to perform analyses in the 
multidimensional space (using OLAP). Traditionally, these pre-aggregations are 
modeled by a lattice of pre-computed aggregates [ 4, 2] where: 

─ each node represents a pre-computed aggregate and  
─ each edge represents a path for computing aggregates. If the aggregation function 

used is distributive or algebraic, the aggregate can be calculated from the directly 
lower aggregate, while if it is holistic, the calculus is from the base relation [ 4]. 

The flexibility introduced in the conceptual model impacts the lattice. The differen-
tiated and multiple aggregation functions involve using different aggregation compu-
tations for each edge of the lattice (Fig. 4), contrary to the traditional approach which 
usually considers only a single aggregation function. 

When multiple paths are possible, the less costly path is preferred. The cost func-
tion (not detailed here) favors the most effective computation time [ 9]. However, the 
use of different aggregation functions on each edge of the lattice makes the cost esti-
mate more complex than in usual lattices. 

Furthermore, some paths or edges are invalid; therefore, these can be eliminated to 
reduce the lattice size. This pruning is possible using the execution order. In our ex-
ample, we cannot apply the function AVG_W(Mark, Coeff) on the Courses dimen-
sion after AVG(Mark) on the Students dimension. Thus, average marks of TU for 
each group (TU_Id_G_Id) cannot be calculated from the average marks of courses by 
groups (C_Id_G_Id) as this would give erroneous results. Therefore, the edge be-
tween C_Id_G_Id and TU_Id_G_id can be deleted. 

Moreover, constraints (the specific level from which the considered aggregation 
must be calculated) associated with the aggregation functions have repercussions on 
the lattice. Edges with a symbol (crosses in a circle in Fig. 4) come from these con-
straints which require calculating the node from another specific node. It is then for-
bidden to calculate an upper node using transitivity from lower nodes as it would be 
in a classical schema. Thus the computing paths are blocked as soon as such an edge 
is encountered; e.g. the node Semester_ALLStudents is calculable from the direct lower 
node Semester_G_Id; using transitivity, it is also calculable from the lower node 
Semester_S_Id. However, the edge resulting from the constraint of the function 
AVG_W(Mark, ECTS) which operates on the edge (Semester_S_Id, TU_Id_S_Id) 
blocks the calculation transitivity. 
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Courses Graduate Students

AND

C_Id _S_Id

TU_Id_S_Id C_Id _G_Id

Semester_S_Id TU_Id_G_Id C_Id _ALLStudents

ALLCourses_S_Id Semester_G_Id TU_Id_ALLStudents

ALLCourses_G_Id Semester_ALLStudents

ALLCourses_ALLStudents

legend : 
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legend : 
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Fig. 4. Optimization lattice 

5 Experiments 

To demonstrate the feasibility of our approach, we have produced a prototype using 
Oracle 12g DBMS. We have implemented the aggregation functions (1) and (3) de-
scribed in section  1. For this, a generic aggregation function was implemented:  

─ An Oracle object type (class) was used to implement the four routines of the inter-
face ODCIAggregate that are ODCIAggregateInitialize, ODCIAggregateIterate, 
ODCIAggregateMerge and ODCIAggregateTerminate. These methods correspond 
to internal operations that each aggregation function performs (respectively Initial-
ize, Iterate, Merge and Terminate). 

─ Then, our aggregation function AVG_W was created to compute a weighted mean. 
This function takes one parameter (TYPE ty_weighted_data AS OBJECT (value 
NUMBER, weight NUMBER)) composed of the data to aggregate and the weight. 

Our own aggregation function was tested using three SQL queries that simulate user 
navigation in the multidimensional space. Note that the SQL Queries are generated 
using an interface where the user manipulates only multidimensional concepts. Thus, 
the complexity of the logical structure of the MDB is hidden.  

Firstly, the decision maker visualizes biannual average marks of students (the SQL 
query on the R-OLAP schema is Q1 in Fig. 5. Secondly, in order to have a detailed 
view of students who have failed, the user carries out a drilling operation to get aver-
age marks of the student by Teaching Units (Q2 in Fig. 5). Thirdly, to find the courses 
that students will have to take the exam again, another drilldown views the average 
marks by courses (Q3 in Fig. 5). 

Fig. 6 shows the execution time (ms) according to the number of processed tuples 
for each of the three queries. The time of the two first queries increase regularly with 
the number of tuples while the third query is almost stable because the number of 
tuples was low and relatively constant in our experiments. These first results are in-
tended to show the feasibility of our approach. They are encouraging as we do not 
observe notable changes in the query execution behavior in a data warehouse either 
built in a traditional way or on the base or our proposals of differentiated multiple 
aggregations. 
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Q1

Q2 Q3

SELECT Semester, S_Id,
AVG_W(ty_weighed_data (Mark, ECTS)) AS Mark

FROM ( SELECT Semester, ECTS, TU_Id, D1.S_Id,
AVG_W(ty_weighed_data (Mark, Coeff)) AS Mark
FROM Graduate F, Students D1, Courses D2
WHERE F.S_Id = D1.S_Id

AND F.C_Id = D2.C_Id
GROUP BY Semester, ECTS, TU_Id, D1.S_Id

GROUP BY Semester, S_Id;

SELECT TU_Id, S_Id, Mark
FROM ( SELECT TU_Id, S_Id,

AVG_W(ty_weighed_data(Mark, Coeff)) AS Mark
FROM Graduate F, Students D1, Courses D2
WHERE F.S_Id = D1.S_Id
AND F.C_Id = D2.C_Id
GROUP BY TU_Id, S_Id)

WHERE Mark < 10;

SELECT C_Id, S_Id, Mark
FROM Graduate F, Students D1, Courses D2
WHERE Mark < 10
AND F.S_Id = D1.S_Id
AND F.C_Id = D2.C_Id;

 

Fig. 5. SQL Queries  

However, our experiments will be extended to define the contours of our approach. 
Moreover, we must adapt existing lattice computing algorithms; this is very promis-
ing since our model allows pruning as we mentioned in the previous section. 
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Fig. 6. Query execution results  

6 Conclusion and Future Work 

This paper defines a conceptual multidimensional data model flexible enough to allow 
the designer to specify differentiated and multiple aggregations. Multiple, as the same 
measure can be aggregated by several aggregation functions according to analysis 
axes and differentiated as these aggregations may vary, depending on the aggregation 
level. The model can combine a measure with different aggregation functions accord-
ing to parameters. Furthermore, the model is expressive enough to check function 
calculations validity. At the logical level, the implementation can be optimized by a 
lattice of pre-computed aggregates, where invalid edges can be pruned. 

We plan to extend our experimentations using different sets of tests to draw the 
outline of our approach (performance, storage volumes, complexity of the model, etc). 
We also plan to study OLAP manipulation operators on our model. 
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Abstract. Time series data appear in a broad variety of economic, medical, and 
scientific applications.  Because of their high dimensionality, time series data 
are managed by using representation methods. Symbolic representation has 
attracted particular attention because of the possibility it offers to benefit from 
algorithms and techniques of other fields in computer science. The symbolic 
aggregate approximation method (SAX) is one of the most important symbolic 
representation techniques of times series data. SAX is based on the assumption 
of “high Gaussianity” of normalized time series which permits it to use 
breakpoints obtained from Gaussian lookup tables. The use of these breakpoints 
is the heart of SAX. In this paper we show that this assumption of Gaussianity 
oversimplifies the problem and can result in very large errors in time series 
mining tasks. We present an alternative scheme, based on the genetic 
algorithms (GASAX), to find the breakpoints. The new scheme does not 
assume any particular distribution of the data, and it does not require 
normalizing the data either. We conduct experiments on different datasets and 
we show that the new scheme clearly outperforms the original scheme. 

Keywords: Time Series Mining, Symbolic Aggregate Approximation, Genetic 
Algorithms.  

1 Introduction 

A time series is a collection of observations at intervals of time points. These data 
appear in a broad variety of economic, medical, and scientific applications. Indexing, 
search and retrieval are the main topics of research in time series mining. Due to the 
numerous applications in which time series are involved, and the large size of time 
series databases, speed has always been the principal focus of all the methods and 
algorithms that deal with this type of data.  

Time series data mining handles several tasks such as classification, clustering, 
similarity search, motif discovery, anomaly detection, and others. One key to perform 
these tasks efficiently and effectively is to use suitable indexing structures.  
                                                           
* This work was carried out during the tenure of an ERCIM “Alain Bensoussan” Fellowship 

Programme. This Programme is supported by the Marie-Curie Co-funding of Regional, 
National and International Programmes (COFUND) of the European Commission.  
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However, the high dimensionality of time series can cause indexing structures to 
fail to handle these data. One of the best solutions to deal with the high 
dimensionality of time series is to utilize a dimensionality reduction technique, also 
called a representation method, which helps represent the time series at a lower 
dimensional space, and then to use an indexing structure on this reduced space. The 
different tasks can then be processed in this reduced, lower dimensional space.  

Using this scheme may result in two side effects; false alarms and false dismissals. 
False alarms are data objects that belong to the response set in the reduced space, but 
do not belong to the response set in the original space. False dismissals are data objects 
that the search algorithm excluded in the reduced space, although they are answers to 
the query in the original space. In order to guarantee no false dismissals the distance 
between the data objects in the reduced space should underestimate the distance in the 
original space. This condition is known as the lower-bounding lemma. [2] 

A tight transformation is, by definition, one in which the distance defined on the 
reduced space is as close as possible (but always smaller) to the distance in the 
original space. Such a property increases the pruning power of the method thus 
decreases post-processing time.  

There have been different suggested representation methods in the literature, to 
mention a few; Discrete Fourier Transform (DFT) [2] and [3], Discrete Wavelet 
Transform (DWT) [5], Singular Value Decomposition (SVD) [11], Adaptive 
Piecewise Constant Approximation (APCA) [8], Piecewise Aggregate Approximation 
(PAA) [7] and [21], Piecewise Linear Approximation (PLA) [16], Chebyshev 
Polynomials (CP) [4], etc.  

Among representation methods of time series, symbolic representation of time 
series has several advantages which have particularly interested researchers in this 
field of computer science. One of its main advantages is that symbolic representation 
allows researchers to benefit from the ample symbolic algorithms known in the text-
retrieval and bioinformatics communities [13]. 

There have been many suggestions to represent time series symbolically. But in 
general, most of these methods suffered from two main inconveniences [14]: the first 
is that the dimensionality of the symbolic representation method is the same as that of 
the original space, so there is no virtual dimensionality reduction. The second 
drawback is that although distance measures have been defined on the reduced 
symbolic spaces, these distance measures are poorly correlated with the original 
distance measures defined on the original spaces.   

One of the most widely-known symbolic representation methods of time series is 
SAX. SAX is based on an assumption that normalized time series have a highly 
Gaussian distribution. This assumption permits SAX to determine the locations of 
breakpoints by using Gaussian lookup tables. This in turn enables SAX to use pre-
computed distances. 

In this work we show that this assumption of Gaussianity oversimplifies the 
problem and may result in very high values of error when performing time series 
mining tasks. We present a new method to determine the breakpoints. The new 
method is based on the genetic algorithm. This new method does not presume any 
particular distribution of the time series. We show experimentally how the new 
method outperforms the original one.   
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2 Background 

2.1 The Symbolic Aggregate Approximation (SAX)  

The Symbolic Aggregate approXimation method (SAX) [13] stands out as probably 
the most powerful symbolic representation method of time series. The main 
advantage of SAX is that the similarity measure it utilizes, called MINDIST, uses 
statistical lookup tables. This makes SAX easy to compute with an overall complexity 
of ( )NO . 

SAX is based on an assumption that normalized time series have “highly Gaussian 
distribution”, so by determining the breakpoints that correspond to a particular 
alphabet size, one can obtain equal-sized areas under the Gaussian curve. SAX is 
applied as follows:  

 

1- The time series are normalized.  
2- The dimensionality of the time series is reduced by using PAA [7], [21].  
3- The PAA representation of the time series is discretized.  

 

This is achieved by determining the number and location of the breakpoints. The 
number of breakpoints is related to the desired alphabet size (which is chosen by the 
user); i.e. number_of_breakpoints = alphabet_size -1. Their locations are determined, 
as mentioned above, by using Gaussian lookup tables. The interval between two 
successive breakpoints is assigned to a symbol of the alphabet, and each segment of 
PAA that lies within that interval is discretized by that symbol. The last step of SAX 
is using the following similarity measure: 

( ) ( )( )
=

≡
N

i
ii r̂,ŝdist

N

n
R̂,ŜMINDIST

1

2
 (1)

Where n is the length of the original time series, N is the number of segments, 

Ŝ and R̂ are the symbolic representations of the two time series S and R , 
respectively, and where the function )(dist  is implemented by using the appropriate 

lookup table.  
We also need to mention that the similarity measure used in PAA is: 
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Where n is the length of the time series, N is the number of segments.  
It is proven in [7], [21] that the above similarity measure is lower bounding of the 

Euclidean distance applied in the original space of time series. This results in the fact 
that MINDIST is also lower bounding of the Euclidean distance, because it is lower 
bounding of the similarity measure used in PAA. This guarantees that PAA produces 
no false dismissals.  

There are other versions and extensions of SAX [9], [18], [19], [20], [17]. These 
versions use it for other applications or to apply it to index massive datasets, or 
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compute MINDIST differently. However, the version of SAX that we presented 
earlier, which is called classic SAX, is the base of all these versions and extensions 
and it is actually the most widely-known one.  

2.2 The Genetic Algorithms (GAs) 

The Genetic Algorithms are an optimization and search technique based on the 
principles of genetics and natural selection [12]. GA has the following elements: a 
population of individuals, selection according to fitness, crossover to produce new 
offspring, and random mutation of new offspring [15]. GA creates an environment in 
which a population of individuals, representing solutions to a particular problem, is 
allowed to evolve under certain rules towards a state that minimizes, in terms of 
optimization, the value of a function which is usually called the fitness function.  

There has been a great amount of research on the genetic algorithms and their 
applications in many fields of science and engineering. In the following we present a 
description of the simple, classical GA. The first step of GA is defining the problem 
variables and the fitness function. The range of the variable values can be constrained 
or unconstrained. A particular configuration of variables produces a certain value of 
the fitness function and the objective of GA is to find the configuration that gives the 
“best” value of the fitness function. This configuration represents the best solution to 
the problem. This solution can be optimal or close-to-optimal.  

GA starts with a collection of individuals, also called chromosomes, each of which 
represents a possible solution to the problem at hand. This collection of randomly 
chosen chromosomes constitutes a population whose size popsize is chosen by the 

algorithm designer. This step is called initialization. The variables of the problem can 
be encoded using different schemes the most famous of which is real-valued 
encoding. In this scheme a candidate solution is represented as a real-valued vector in 
which the dimension of the chromosomes is constant and equal to the dimension of 
the solution vectors [1]. This dimension is denoted by nbp . The fitness function of 

each chromosome is evaluated. The next step is selection. The purpose of this 
procedure is to determine which chromosomes are fit enough to survive and possibly 
produce offspring. This is decided according to the fitness function of the 
chromosome in that the higher the fitness function is the more chance is has to be 
selected for mating. There are several selection methods such as the roulette wheel 
selection, random selection, rank selection, tournament selection, and others [15]. 
The percentage of chromosomes selected for mating is denoted by srate . Crossover is 
the next step in which offspring of two parents are produced to enrich the population 
with fitter chromosomes. There are several approaches to perform this process, the 
most common of which is single-point crossover and multi-point crossover.   

While crossover is the mechanism that enables the GA to communicate and share 
information about fitter chromosomes, it is not sufficient to efficiently explore the 
search space. Mutation, which is a random alteration of a certain percentage mrate  of 
chromosomes, is the other mechanism which enables the GA to examine unexplored 
regions in the search space. It is important to keep a balance between crossover and 
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mutation. High crossover rate can cause converging to local minima and high 
mutation rate can cause very slow convergence.   

Now that a new generation is formed, the fitting function of the offspring is 
calculated and the above procedures repeat for a number of generations NrGen  or 
until a stopping criterion terminates the algorithm.   

3 Genetic Algorithms-Based SAX (GASAX) 

The heart of SAX, as we saw in Section 2, is the assumption that normalized time 
series have a highly Gaussian distribution. This is an intrinsic part of the method 
because it permits localizing the breakpoints, which, in turn, allows SAX to use pre-
computed distances, which is the main advantage of SAX over other methods. 

Nevertheless, this assumption is a very general one that does not take into account 
the dataset to which SAX is applied. The direct result of this assumption of 
Gaussianity is the weak, even very weak, performance of SAX on certain datasets (as 
we will show later in Section 4). 

Another direct result of this assumption of Gaussianity is the requirement of 
normalizing the time series before applying SAX. This requirement can restrict the 
application of SAX in certain cases. We give the example of streaming time series 
that undergo trends. Correct normalizing of such times series requires that all the data 
be available before the normalization process.     

In this paper we popose a different scheme to localize the breakpoints. The new 
scheme does not presume any distribution of the time series. It does not even require 
normalizing the data as it can be applied to normalized and non- normalized time 
series. The main point here is that this scheme does not presume either that the 
normalized time series are non-Gaussian. It simply localizes the breakpoints without 
any particular assumption of the data distribution, whether these data are normalized 
or not. 

Our proposed scheme, GASAX, processes in the same manner illustrated in 
Section 2.1, but instead of using Gaussian lookup tables; it uses the genetic algorithms 
to localize the breakpoints.  

As we saw in Section 2.2, applying the genetic algorithms requires choosing an 
appropriate fitness function. There are several fitness functions that can be applied 
with our method. Time series data mining handles several tasks, one of the most 
important of which is classification. In a classification task we have categorical 
variables which represent classes, and the task is to assign class labels to the dataset 
according to a model learned from a learning phase on a training data where the 
classes are known. So we can choose the classification error as a fitness function; i.e. 
we aim at minimizing the classification error and find the breakpoints, for each value 
of the alphabet size, which minimize the classification error.  Another possible fitness 
function that can be used with GASX is the average tightness (the rate of the 
similarity measure using GASAX with a certain configuration of the breakpoints to 
the Euclidean distance in the original space. See Section 1 for the definition of 
tightness). This tightness can be calculated on each pair of time series in the dataset or 
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on a randomly chosen sample of the time series in the dataset. Since most GA 
problems are formulated as minimization problems, we can choose the fitness 
function in this case to be the function that minimizes the difference between the 
similarity measure using GASAX (with a certain configuration of the breakpoints) 
and the Euclidean distance in the original space. Other fitness functions can also be 
used with GASAX in addition to the two functions mentioned above.  

However, because computational cost is an issue to be considered when applying 
the genetic algorithms, we used the classification error as a fitness function in our 
experiments because we wanted to test the worst-case application of our method.  

In our problem each chromosome is a vector that represents potential locations of 
the breakpoints for a particular alphabet size, so the optimal solution constitutes the 
locations of the breakpoints, for that particular alphabet size, which minimize the 
classification error. The alphabet size, as in the case with the original SAX, is chosen 
by the user.   

While genetic algorithms usually define the different control parameters (crossover 
rate, mutation rate, etc) before starting the algorithm and these parameters remain 
unchanged, GASAX proposes an approach in which some of these parameters are 
modified dynamically during the GASAX run. 

The variables of GASAX are constrained by the following condition: 

∈∀<< βαβα βα ,llif  (3)

where   is the alphabet used, βα l,l  are the locations of  βα , , respectively. This 

condition is obvious for one chromosome, but taking into account the different 
crossover and mutation processes, this condition should hold under all such possible 
processes that the chromosome may undergo, so the above condition should be 
modified to become:     

∈∀<< βαβα βα ,lminlmaxif  (4)

where max and min are taken for all the chromosomes. This condition means that for 
all the chromosomes, the right-most location of one character in the alphabet should 
not exceed the left-most location of the character that comes directly after that first 
character. Condition (4) cannot be modified during the GASAX run.  

The mutation rate is modified dynamically during the GASAX run. This means that 
GASAX starts with a relatively small value of the mutation rate and if the fitness 
function remains unchanged for several generations, this indicates that GASAX is 
stuck in a local minimum, so the mutation rate is increased for the next generations. 
This is particularly important for the first generations.   

4 Experiments 

We compared our method GASAX against SAX on the datasets available at [10], 
which is the same archive on which the original SAX was tested. This archive makes 
up between 90% and 100% of all publicly available, labeled time series data sets in 
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the world, and it represents the interest of the data mining/database community, and 
not just one group [6].  

We tested our method in a classification task based on the first near-neighbor (1-
NN) rule using leaving-one-out cross validation. This means that every time series is 
compared to the other time series in the dataset. If the 1-NN does not belong to the 
same class, the error counter is incremented by 1.  

In the experiments we conducted we had to normalize the time series for 
comparison reasons only, since SAX, as indicated earlier, can only be applied to 
normalized time series, but GASAX does not require normalization.  

The two methods SAX and GASAX were tested for all values of the alphabet size on 
which SAX is defined (3 through 20). However, GASAX does not require predefined 
lookup tables so it can practically be used for any value of the alphabet size.  

As indicated in Section 3, for each value of the alphabet size, we train GASAX on 
the training sets, using the classification error as a fitness function, to obtain the 
optimal values of the breakpoints for that alphabet size. Then these breakpoints are 
used to find the classification error of the testing sets of the corresponding dataset. 
There is no training phase for SAX and it is applied directly to the testing sets.  

For GASAX, the population size (the number of chromosomes) was between 12 
and 16, depending on the size of the dataset. These chromosomes were encoded using 
a real-valued encoding scheme. We used two stopping criteria with GASAX: the first 
is the number of generations, which was set to 100, and the second is the value of the 
fitness function, which was set to 0. GASAX terminated and exited as soon as one of 
these criteria was met. These criteria are in fact strict and could have been relaxed.  

Concerning the first one, for 
example, in many cases the 
algorithm gave good solutions 
after 20 or 30 generations, or even 
earlier. The second criterion could 
have also been relaxed to a value 
appropriate to the dataset in 
question. We know from 
experience that the classification 
error of some datasets is high for  
any time series representation 
method used and it is low for others. However, we wanted to test GASAX under strict 
conditions which do not assume any prior knowledge about the dataset tested, so 
GASAX is based completely on the knowledge acquired at run time only. Table 1 
summarizes the symbols used in the experiments together with their corresponding 
values.  

Figure 1 shows some of the results we obtained. As we can see from the figure, 
GASAX clearly outperforms SAX for all values of the alphabet size and for all the 
datasets presented. We obtained similar results when we conducted these experiments 
on the other datasets.  Dataset (Coffee) was particularly adapted to GASAX. As we 
can see, the classification error for this dataset was 0 in 14 of the 18 values of 
alphabet size. This also shows the utility of using the 0 value of the fitness function as 
a stopping criterion, because, interestingly, GASAX terminated very quickly on this 

popsize Population size 12-16 

NrGen Number of generations 100 

mrate Mutation rate 0.2 

srate Selection rate 0.5 

nbp Number of parameters varies 

Table 1. The symbol table together with the 
corresponding values used in the experiments 
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dataset as it found the optimal values of the breakpoints after few generations only. 
Having found that GASAX gave a 0 value of the classification error on this dataset, 
we wanted to conduct further experiments on this dataset, so we ran GASAX several 
times. We found that the optimal solution was not unique, and the classification error 
was also 0 for other values of the breakpoints for certain values of the alphabet size.  
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Fig. 1. Comparison between the classification errors of GASAX and SAX on datasets (CBF), 
(Coffee), (Beef),(FaceFour),(Trace) and (Gun_Point), for  alphabet size between 3 and 20 
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Table 2. The minimum and maximum values of the normalized data, the breakpoints, and the 
training errors of datasets (CBF) and (Coffee) for alphabet size 3 through 10 using GASAX 
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3 [0.979  1.16] 0.033 

4 [0.855  1.017  1.825] 0 

5 [0.824  1.029  1.062  1.848] 0 

6 [0.696  0.780  0.909  1.057  1.59] 0 

7 [0.337  0.626  0.925  1.053  1.928  2.833] 0 

8 [-1.144  0.244  0.582  0.736  0.876 0.975  1.582] 0 

9 [-1.826  -1.679  -1.487  0.537  0.714  0.848  0.945  1.559] 0 

10 [-1.907  -1.512  -1.448  -1.133  -0.979  0.692  0.718  0.898  1.357] 0 

C
of

fe
e 

[-
2.

06
4 

   
2.

17
7]

 

3 [0.792  0.798] 0.107 

4 [-0.337  0.887  0.906] 0 

5 [-0.434  0.557  0.731  0.762] 0 

6 [-0.535  0.39  0.728  0.84  0.937] 0 

7 [-0.862  -0.276  -0.153  0.158  0.938  0.979] 0 

8 [-0.979  -0.878  0.014  0.485  0.778  0.818  0.925] 0 

9 [-0.625  -0.096  0.642  0.717  0.846  0.853  0.898  0.932] 0 

10 [-0.627  0.026  0.106  0.394  0.564  0.821 0.855  0.962  1.127] 0 

 
In Table 2 we show the breakpoints 

obtained by applying our method GASAX 
on some of the datasets presented in Figure 
1 in addition to the corresponding 
classification error on the training sets 
(because of space restrictions, we present 
the results of two datasets only and for 
alphabet size between 3 and 10). The 
figures are rounded to 3 decimal places. 
The breakpoints of SAX are presented later 
in Table 3. 

As indicated earlier, the breakpoints of 
SAX are the same for all datasets and they 
are obtained from the lookup tables of the Gaussian distribution. We also show the 
minimum and maximum values of the normalized data of those datasets    

We can see from Figure 1 and Table 2 that these datasets do not follow a Gaussian 
distribution and that the breakpoints, taking into account the minimum and maximum 
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Fig. 2. A comparison between the 
classification error of GASAX and that of 
SAX on the testing set of (OliveOil). 
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values of the normalized time series, are in general very different from those used in 
SAX.  

The results of a certain dataset (OliveOil) were particularly interesting. In data 
mining, the use of a random classifier (one that classifies time series completely at 

random) results in an error that is equal to 
NbrClass

NbrClass 1− , where NbrClass  is the 

number of classes of that dataset. This error value of the random classifier constitutes 
the worst-case value that no classification method should exceed. (OliveOil) has 4 
classes, so the classification error of a random classifier on that dataset is 0.750. 
Surprisingly, the classification error of SAX on (OliveOil) is 0.833. This error is not 
only very high, but it even exceeds that of a random classifier. Another strange result 
is that using SAX on that dataset yielded the same classification error for all values of 
the alphabet size. After applying GASAX to that dataset the classification error 
decreased to almost half that of SAX, and much less for some values of the alphabet 
size (it dropped to 0.1 for alphabet size=12) as we can see in Figure 2 which shows 
the classification error on the testing set of (OliveOil) for both SAX and GASAX. 

Table 3. Comparison between the classification error of SAX and that GASAX on the testing 
of (OliveOil) 
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Error  
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-1
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  3
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19
] 

3 [-0.43  0.43] 0.833 

4 [-0.67  0  0.67] 0.833 

5 [-0.84  -0.25  0.25  0.84] 0.833 

6 [-0.97  -0.43  0  0.43  0.97] 0.833 

7 [-1.07  -0.57  -0.18  0.18  0.57  1.07] 0.833 

8 [-1.15  -0.67  -0.32  0  0.32  0.67  1.15] 0.833 

9 [-1.22  -0.76  -0.43  -0.14  0.14  0.43  0.76  1.22] 0.833 

10 [-1.28  -0.84  -0.52  -0.25  0  0.25  0.52  0.84  1.28] 0.833 

G
A

S
A

X
 

3 [0.914  0.93] 0.467 

4 [-0.4  0.91  0.93] 0.467 

5 [-0.39  0.43  0.91  0.92] 0.467 

6 [-0.049  -0.034  0.402  1.303  1.307] 0.333 

7 [-0.05  -0.03  0.40  1.3035  1.3065  2.23] 0.333 

8 [-0.048  -0.044  0.01  0.016  0.787  0.794  0.798] 0.333 

9 [-0.47  -0.456  -0.039  -0.036  1.061  1.062  1. 4349 1.4352] 0.267 

10 [-0.445  -0.433   -0.431  -0.115  -0.009  -0.005  0.908  0.935  1.666] 0.267 
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Table 3 shows the classification error on the testing set of (OliveOil), together with 
the corresponding breakpoints using GASAX. As mentioned earlier, these breakpoints 
are obtained by applying GASAX on the training set to obtain the optimal 
breakpoints, and then we use these optimal breakpoints on the testing set to obtain the 
classification error. Table 3 also shows the breakpoints given by SAX (which, as 
indicated earlier, are the same for all datasets). We can easily see that the assumption 
of Gaussianity of normalized time series oversimplifies the problem, which results in 
a very high error value for this dataset. In fact, as we can see from Table 3 , the 
breakpoints of SAX even go out of range staring alphabet size=7 which makes the 
representation useless. We witnessed similar cases with other datasets too.   

5 Conclusion  

In this paper we introduced a new scheme, GASAX, which uses the genetic algorithms 
to determine the optimal locations of the breakpoints, which is the main idea of SAX; 
one of the most important methods of time series representation methods. We showed 
how these optimal breakpoints found by GASAX can successfully boost the 
performance of SAX. The new scheme GASAX does not assume any particular 
distribution of the time series and does not require that the time series be normalized, 
unlike SAX which requires normalizing the time series to localize the breakpoints. 
SAX also assumes that normalized time series have a Gaussian distribution. This 
assumption, as we illustrated, can result in a high error rate.   

We validated the new scheme by conducting classification task experiments on 
different datasets. The experiments showed that our new algorithm, GASAX, clearly 
outperforms SAX for all values of the alphabet size, and for all the datasets tested.  

SAX uses predefined lookup tables, so it can only be applied for alphabet size on 
which lookup tables are defined, but GASAX is not based on predefined lookup 
tables, so it can be applied for any value of the alphabet size.   

The training phase of GASAX is performed offline to determine the locations of 
the breakpoints, so GASAX has exactly the same online speed as that of SAX. 

While our direct objective of this work was to use the genetic algorithms on a 
particular problem of time series representation, our indirect aim was to explore the 
application of one optimization methodology to this domain of research. We believe 
that the genetic algorithms, and other optimization methodologies, still have many 
applications in time series data mining and information retrieval. 
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Abstract. In the Data Warehouse (DW) technology, On-line Analytical
Processing (OLAP) is a good applications package that empowers deci-
sion makers to explore and navigate into a multidimensional structure
of precomputed measures, which is referred to as a Data Cube. Though,
OLAP is poorly equipped for forecasting and predicting empty measures
of data cubes. Usually, empty measures translate inexistent facts in the
DW and in most cases are a source of frustration for enterprise man-
agements, especially when strategic decisions need to be taken. In the
recent years, various studies have tried to add prediction capabilities to
OLAP applications. For this purpose, generally, Data Mining and Ma-
chine Learning methods have been widely used to predict new measures’
values in DWs. In this paper, we introduce a novel approach attempting
to extend OLAP to a prediction application. Our approach operates in
two main stages. The first one is a preprocessing one that makes use of
the Principal Component Analysis (PCA) to reduce the dimensionality
of the data cube and then generates ad hoc training sets. The second
stage proposes a novel OLAP oriented architecture of Multilayer Per-
ceptron Networks (MLP) that learns from each training set and comes
out with predicted measures of inexistent facts. Carried out experiments
demonstrate the effectiveness of our proposal and the performance of its
predictive capabilities.

Keywords: Data Warehouse, OLAP, Data Mining, Principal Compo-
nent Analysis, Machine Learning, Multilayer Perceptron, Prediction.

1 Introduction

Inmon defines a Data Warehouse (DW) as a subject oriented, nonvolatile, inte-
grated, time variant collection of data, in support of management’s decisions [1].
A DW is a corner stone in the Business Intelligence (BI) process. It is used to
store analysis contexts within multidimensional data structures referred to as
Data Cubes. Then, data cubes are usually manipulated by using On-line Analyt-
ical Processing (OLAP) applications to allow senior managers exploring infor-
mation and getting BI reportings thought interactive and friendly dashboards.

However, even if a DW should fundamentally contain integrated data [1],
generally exploration of cubes disclose a sparse structure within several empty
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measures. In the DW model, empty measures correspond to inexistent facts gen-
erally reflecting either out-of-date events that did not happen, or future events
that have not yet occurred and may possibly happen in the future. Empty mea-
sures can cause the delivery of irrelevant analysis and be a source of frustration
for the enterprise management, especially when strategic decisions need to be
taken. We argue that predicting these measures can consolidate the BI reporting
and could even provide new opportunities to DW customers by enlarging their
dashboard picture and empowering them with knowledge on what should occur
if inexistent facts had already happened.

For instance, it will be very useful to a car sale company to predict the po-
tential turnover that a new agency can produce in a new city by the next year’s
end. This indicator will definitely help the company’s management to assess the
potential investment. So far, inexistent measures in a data cube may potentially
be learned from its neighborhood. Agarwal and Chen affirm that making future
decisions over historical data is one important goal of OLAP [2]. However, OLAP
is restricted to exploration and not equipped with a framework to empower user
investigation of interesting information. In fact, despite the fundamental Cood’s
statement of goal seeking analysis models (such as “What if” analysis) required
in OLAP applications since the early 90’s [3], most of today’s OLAP products
still lack an effective implementation of this feature.

Hence, several studies have been proposing to enhance OLAP applications by
using Data Mining and Machine Learning methods in order to respond to vari-
ous analysis purposes like cube exploration [4] and association rules mining [5].
Recently, new approaches are attempting to extend OLAP to prediction capa-
bilities, in order to anticipate forthcoming events [6,2]. However, as far as we
know, none of them is providing DW customers with explicit values instead of
inexistent measures.

In this paper, we propose a novel approach for extending OLAP to prediction
using a machine learning technique. It aims at producing explicit values for in-
existent measures in a data cube using Multilayer Perceptron Networks (MLP)
known for their prediction performances [7,8]. However, MLPs are not adapted
to perform on multidimensional data such as data cubes. So, we propose a novel
MLP architecture suited to multidimensional structure of data. Moreover, vol-
umes of data stored in real-world OLAP cubes are usually huge [9]. The data size
overlapped with the multidimensional structure leads generally to highly corre-
lated measures values which generate confusion over MLP during the training
process and thus, degrades their generalization capability [10]. So we propose
to associate our proposal with a preprocessing stage to provide the neural net-
work with ad hoc training sets that contain reduced and decorrelated predictors
generated over the original measures.

This paper is organized as follows. In Section 2, we expose a state of the
art of works related to predictions in data cubes. In Section 3, we present the
main objectives and the general overview of our approach. Section 4 details
the methods formalization that we followed in the two stages of our proposal.
In Section 6, we carry out experiments investigating the effectiveness of our
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proposal and the performance of its predictive capabilities. Finally, Section 7
summarizes our findings and addresses future research directions.

2 Related Work

In the recent years, several studies have addressed the issue of extending OLAP
to advanced analysis capacities. As they were driven under different objectives
(discovery-driven exploration of cubes, cube mining, cube compression, and so
on), they are based on various concepts and methodologies. In line with our
concern, we focus on those having a close linkage with prediction in DWs.

Table 1. Proposals integrating prediction in data cubes

Proposal Goal Optimization Reduction Measures Values

Sarawagi et al. [4] Exploration + - - -
Palpanas et al. [9] Compression - + - -
Chen et al. [11] Prediction + - + -
Chen et al. [12] Compression - + + -
Bodin-Niemczuk et al. [6] Prediction + - - -
Agarwal and Chen [2] Prediction + - + -
Our approach Prediction - + + +

We summarize in Table 1 proposals that have attempted to extend OLAP to
prediction. These proposals are detailed according to five main criteria: (1) What
is the overall goal of the proposal? (2) Does the proposal include an algorithmic
optimization? (3) Does it use a reduction technique? (4) Does it introduce new
classes of measures? and (5) Does it provide explicit predicted values of empty
measures? We note (+) if the proposal meets the criteria, and (-) if not.

Sarawagi et al. proposed to assist DW users when exploring data by detecting
exceptions. Their approach is based on a log linear model [4]. In order to compress
data cubes, Palpanas et al. used the principle of information entropy to build a
probabilistic model capable of detecting measure deviations [9]. Their approach
predicts low-level measures from high-level precalculated aggregates. Chen et
al. introduced the concept of Prediction Cubes where a score or a probability
distribution of measures are fetched beside their original values [11]. Prediction
Cubes are then used to build prediction models. Chen et al. proposed a new
type of multidimensional structures called Regression Cubes [12]. They contain
compressible measures and each cell of a Regression Cube indicates the general
tendency and the variation compared to its original measures. Agarwal and Chen
built a new data cube class called Latent-Variable Cube [2] characterized by its
ability to compute aggregate functions, such as mean and variance, over latent
variables detected by a statistical model. Bodin-Niemczuk et al. proposed to
equip OLAP with a regression tree to predict measures of forthcoming facts [6].
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From the above cited references, an outstanding common observation dealing
with data dimensionality need to be addressed. In fact, one of the most chal-
lenging issues of integrating predictive models into OLAP data cubes concerns
the multidimensional structure of data and the usual huge facts’ volumetry in
DWs. This could be of a negative effect on the prediction performance, which
is supposed to provide BI reporting costumers with fast and accurate results in
line with OLAP applications. We note that some of the above proposals consider
a pre-processing stage to reduce the dimensionality effect on the algorithms per-
formance [9,12]. Some others rather rely on heuristics to optimize implemented
algorithms [4,11,2]. In our case, we include a PCA-based preprocessing stage
in our approach to reduce the dimensionality of the data cube and generate
adequate training sets for the prediction stage.

While some approaches provide approximations of inexisting measures [4,9,6],
some others introduce new classes of data cubes within new measures generated
over the existing ones [11,12,2]. This is generally argued by the need for ad-
ditional indicators to enrich the BI reporting. In our approach, we attempt to
enlarge the dashboard picture for the decision maker by giving explicit pre-
dicted values of inexisting measures. To do so, we base our prediction model on
a machine learning approach that uses a novel architecture of MLP networks. In
addition, we introduce a new class of data cubes integrating customized measures
referring to predictors stored in an external database.

3 Objectives and Overview

Our proposal consists in integrating a predictive model in the OLAP environment
in order to enrich the decision-making process. We aim at predicting inexistent
measures according to the existent ones while dealing with large data cubes.
We give a formalized framework of our proposal with respect to traditional BI
customers’ needs and integrate in a machine learning algorithm. Our overarching
objectives can be summed up in the following points:

1. Generating reduced training sets from the original data cube;
2. Adapting MLPs to the multidimensional structure of data;
3. Predicting an explicit value of an inexistent measure;
4. Assess predicted measures with quality indicators.

As far as we know, despite their proven performances [8,7], MLPs are not yet
used for prediction purposes in OLAP cubes. On the other hand, the multidimen-
sional structure and the volume of data cubes are challenging issues when data
mining or machine learning frameworks needs to be embedded into OLAP ap-
plications. In particular, attempting to integrate the MLPs within OLAP needs
to fix these two issues. In fact, they are not designed to deal with a multidimen-
sional structure of data. Moreover, the size of a real-world data cube leads to
highly correlated measures values with a lot of noise and redundancy. According
to Bishop [10], these characteristics may corrupt the training phase of the MLPs
and degrades their generalization capability.
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Therefore, the first stage of our approach consists in generating reduced train-
ing sets over the original cube comparing to the original data structure in terms
of measures and dimensions’ attributes. In order to do so, we resort to the Prin-
cipal Component Analysis (PCA) procedure and exploit its orthogonal transfor-
mation to convert the correlated cube attributes into a smaller set of principal
components [13]. The obtained components design a linearly combination of the
original attributes and concentrate the largest possible variance of the original
measures. Recently some studies have been interested in the factorial approach
to fulfill prediction tasks, considering the principal components as independent
variables of their prediction models [14,15]. We intend to follow this trail as a
one-shot backstage preprocessing step that ensures the generation of comple-
mentary training sets that preserves the measure variation and the semantics
linking attributes and dimensions. On the other hand, neural networks are rec-
ognized as a potent prediction tool with research and applications [7]. One of
the most used MLPs are multilayer perceptrons with a backpropagation process.
This is due to their operation simplicity, their excellent generalization capacity
and their ability to approximate any universal function [16]. Thus, for the second
stage, we apply an MLP learning process on the generated data sets. In order
to overtake the multidimensional aspect of these input data, we propose a novel
MLP architecture based on an interconnection of a multiple childre-networks.
It involves several training sets in the same learning process without having to
merge them and yet generates a unique prediction value for each targeted one.

It is important to note that our approach is not a completion technique and
is not supposed to fill all empty measures of a data cube. The main objective
of our proposal is to promptly come-out with prediction to any empty measure
upon the request of the OLAP user in order to anticipate a decisive indicator
such as a future turnover as the example described previously in Section 1.

4 Formalization of Our Proposal

4.1 General Notations

In our framework, we propose to reuse the same notations and definitions pro-
vided in [5]. We assume that the user has set an hierarchical level per dimension
with li categorical attributes per dimension; 1 ≤ i ≤ d. Thus, let C be a data
cube having the following proprieties:

– C has a non empty set of d dimensions D = {Di}(1≤i≤d);
– C contains a non empty set of m measures M = {Mq}(1≤q≤m);
– Each dimension Di contains li attributes, i.e., A = {ai1, ..., ait, ..., aili} is the

set of dimension attributes Di.

4.2 Dimensions Reduction

Themain purpose of this stage is to generate concentrated, information-preserving
training sets over the original data cube. To do so, we intend to exploit the PCA as
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a reduction technique. However, to respect OLAP dependencies, the data trans-
formation requires to keep on the original variation of the cubemeasures according
to all the concerned dimensions, otherwise, the training sets may promote some
dimensions at the expense of others. Therefore, we decompose the cube in a rig-
orous manner which preserves the multidimensional aspect of measures’ variation
and respect the semantics connecting each dimension attributes.

Technically, the same slice of a data cube generates two transposed matrices.
While applying a numerical analysis technique like PCA, these two matrices
provide two different results. To meet the basic idea of our approach, which
aims at covering all variations of the measure, we propose to treat separately
all extractable matrices from an OLAP slice. To do so, we provide the notion of
Cube-face that identifies all the possible configurations of a data cube and the
notion of PCA-slice that captures the variations of the measures according to
attributes’ semantics of specific dimensions.

Definition 1 (Cube-face). Let {Dk, Dv, Ds1 , . . . , Dsi , . . . , Dsd−2
} be a non-

empty subset of d distinct dimensions. We denote by Cf(Dk, Dv, (Ds1 , . . . , Dsi ,
. . . , Dsd−2

)) a Cube-face of a data cube C. A Cube-face is identifiable by the
geometrical positions of its dimensions that we call: Key dimension Dk, Variant
dimension Dv and a set of (d − 2) Slicer dimensions {Dsi}; i ∈ [1, d− 2]. The
number of extractable cube-faces over a data cube is equal to the number of its
geometrical faces.

Definition 2 (PCA-slice). T (Dk, Dv, (a
o
t1 , . . . , a

p
ti , . . . , a

q
td−2

)) is the PCA-slice

obtained by applying the Slice operator onCf ; with aot1a
p
ti and a

q
td−2

∈Ds1 , Dsi and
Dsd−2

, respectively.
Note that T (Dk, Dv, (a

o
t1 , . . . , a

p
ti , . . . , a

q
td−2

)) �= T (Dv, Dk, (a
o
t1 , . . . , a

p
ti , . . . ,

aqtd−2
)).

To reduce the dimension of our cube, we start by identifying all its cube-faces.
Then, we extract all the PCA-slices from the cube-faces. Finally, we apply it-
eratively PCA on each PCA-slice. This operation generates a set of coordinate
factors for every single PCA-slice. In order to track the membership of a cell
and its corresponding coordinate factors, we store the sets of coordinate factors
in relational tables that we refer to as PCA-tables. Thus, each PCA-slice has its
corresponding PCA-table and each cell of the original cube is associated with a
set of PCA-tables corresponding to its containing PCA-slices. We introduce then
the new notion of PCA-cube which associates each cell with its correspondent
coordinate factors.

Definition 3 (PCA-cube). A PCA-cube is a data cube which contains a new
type of measures, consisting of references to the sets of the coordinate factors
associated to original measure. These coordinate factors are stored in an external
database.

Thus, every single cell is associated with a number of predictor sets equal to the
number of its containing cube-faces. Hereby, we note that cells belonging to the
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same PCA-slice and sharing the same attribute along their variant dimensions
share the same factorial coordinates. This highlights the reduction aspect and
contributes to the decrease of the training data size comparing to the original
data cube. Moreover, we admit that this reduction stage is a time consuming
process, which is just like most conventional OLAP pre-processing phases. There-
fore, we believe that it should be executed in backstage on a regular basis by
the end of each periodic data loading of the DW.

4.3 Prediction of Inexistent Measures

As mentioned above, our predictive model considers the factorial coordinates
as predictors and the measures values as targets. In our case, every PCA-table
corresponding to the same PCA-slice serves as an exclusive training sub-sets
of its contained measures. To perform the learning process, a naive approach
consists in merging all the training sub-sets into a unique large one.

Fig. 1. Our proposed MLP architecture

However, this approach will damage the uniqueness of information provided by
each PCA-cube, which represents the variation of the targeted measure over par-
ticular dimensions. Thereafter, we propose a novel architecture of feed-forward
neural networks capable of separately consider a set of distinct training sub-sets
without having to merge them. In such a way, we allow MLP to deal with the
challenges of the multidimensional structure. Therefore, we empower the impact
of the unique contributions of each network. Therefore, we allow MLP to be
embedded into a multidimensional environment.

As shows in Figure 1, our novel neural networks architecture is based on an
interconnection of a multiple children-networks. Each child-network is associated
with one particular PCA-cube and considers the data referenced by its measure
as predictors. In addition, each child-network has a single output neuron taking
the values of the targeted classical measure during the learning process. The
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set of the children-networks output neurons are brought together as inputs of
a second network that we will refer to as a combinator-network. It has a single
output neuron that provides the predicted value of the inexistent measure at the
end of the learning process. In such a way, we allow each PCA-cube to contribute
in a unique way in the learning process by feeding separate child-networks and
thus allow MLPs to deal with the multidimensional structure.

Let us noteN(Dk, Dv, (Ds1 , . . . , Dsi , . . . , Dsd−2
)) the child-network associated

to the cube-face Cf(DckDv, (Ds1 , . . . , Dsi , . . . , Dsd−2
)).

For each sub-network of our prediction system, we restrict the MLP archi-
tecture to three layer networks, including a hidden one, as several theoretical
and empirical studies showed that a single hidden layer is sufficient to achieve a
satisfactory approximation of any nonlinear function [16]. We also use the gra-
dient back-propagation algorithm [17] that has proved its usefulness in several
applications [7,8]. We associate it with the conjugate gradient learning method
and the sigmoid activation function.

Algorithm 1. Training algorithm
Input: Pcc,A[], RMSE min
Output: child, combinator,RMSE
foreach child do

child ← initialize(child);
converged ← false while converged = false do

while A[] 	= ∅ do
m ← extract measure(A[],Pcc);
cp ← extract compoment(m);
propagte(cp, child);
adjust(child);

if RMSE(child[]) < RMSE min then
converged ← true;

combinator ← initialize(combinator);
converged ← false while converged = false do

while A[] 	= ∅ do
foreach child do

m ← extract measure(A[],Pcc);
cp ← extract compoment(m);
combinator − input[] ← propagte(cp, child);

propagte(combinator − input[], combinator);
adjust(combinator);

if RMSE(combinator) < RMSE min then
converged ← true;
RMSE ← RMSE(combinator);
returnchild[],combinator,RMSE ;

The learning process of the whole system is provided in Algorithm 1. It starts
by the initialization of each child-network by setting-up its appropriate struc-
ture, according to its associated cube-faces. Then, each child-network, is trained
individually using a randomly selected set of cells A from the PCA-Cube Pcc.
As cited above, the cells of these sets contains, in addition to their conven-
tional measures, a reference to their corresponding coordinate factors scores in
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external PCA-tables. Therefore, a PCA-table is extracted following the treated
child-network. Then, following the treated cell, a specific record is extracted and
injected in the child-network. After the training of all children-networks, the
combinator-network is to be initialized and then trained with obtained outputs
of the trained child-networks.

The main contribution of this novel architecture is that it involves different
training sets in the same learning process without having to merge them and yet
generates one unique prediction for each targeted value through the combinator-
network. This fact outlines the contribution of each PCA-cube in the learning
process and thus, highlights the particularity of the new OLAP oriented MLP
architecture.

5 Experimentation

To validate our approach, we implemented an experimental prototype of our
system. We exploited the database American Community Surveys 2000-2003 1,
after adapting it to context of DW. It is a real-life database of the U.S.A census
that concerns samples of the population treated between 2000 and 2003.

Fig. 2. Prediction quality Fig. 3. Proposal performance

5.1 Analysis Context

We consider a 4 dimensions data cube; Location, Origin, Education and Time,
with 3.8 million facts. The Location dimension contains the geographic data of
the census. TheOrigin dimension contains information about the racial structure
of the U.S.A population. The Education dimension contains information about
the levels of education attained by the subjects of the census. As for the Time
dimension, it provides the time information. We aim at predicting the number of
people of a certain race, according to their cities and their levels of education in
2003. To do so, we focus on the person count measure and select the hierarchical

1 American Community Surveys is accessible from the official site IPUMS-USA (Inte-
grated Public Use Microdata Series); http://sda.berkeley.edu

http://sda.berkeley.edu
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levels; State, Race and Education. These levels include, respectively, 51, 10 and
14 dimension attributes. We start by applying our reduction approach, we end
up with 6 PCA-cubes, which generate 10, 12, 4, 3, 4 and 3 principal components.
For the prediction phase, we use the 10-fold cross-validation technique and the
Root Mean Squared Error (RMSE) as a quality indicator. Our experimental
study is spread over four experiments to meet the following aspects.

5.2 Prediction Quality

The objective of the first experiment is to investigate the performance of our
predictive system in the case of real-life sparse data cube. To do so we elaborated
a predictive system that faithfully represents our proposed architecture. We have
set the hidden neurons number of each sub-network hidden layer, to one half of
the number of its own input. Then we tried to predict a set of random measures
that had been not included neither in the reduction nor in the learning process.
To properly present the results, we considered measure values that are separated
by regular intervals. We presented the resulting curve in the Figure 2. We note
that the predicted values have minimum distances from the line observed measure
= predicted measure. Furthermore, the correlation coefficient of these values is
equal to 0.97, which shows a good quality prediction accuracy.

Table 2. Detailed performances of the the child-networks

N(L,O,(E))N(L,E,(O))N(E,O,(L))N(E,L,(O))N(O,E,(L))N(O,L,(E))

RMSE Train 0.390 0.045 0.690 0.032 0.098 0.035 0.022

RMSE Test 0.482 0.068 0.630 0.061 0.183 0.027 0.025

5.3 Performance of Our Proposal

Even if resolving the data cubes sparsity is not part of our main objectives.
We find it incessant to investigate the impact of sparsity level of data cubes on
the performance of our system. Therefore, in the second experiment, we studied
the prediction quality of our system with different percentages of the inexistent
facts in the training set. In the resulting curve, presented in Figure 3, we notice
that the performance of our proposal gradually decreases when data sparsity
increases. Actually, RMSE values evolve in a monotonous manner between a
percentage of 0% and 20% of inexistent facts. From 20%, changes in RMSE be-
come important. This may be explained by the absence of a sufficient number of
valid instances to support the learning process starting from this rate. Moreover,
from a rate of 20%, the system starts to face serious difficulties in capturing the
patterns of measures.
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Table 3. Detailed performances of the different systems

Nc Nc restrictedN classical

RMSE Train 0.022 0.032 0.050

RMSE Test 0.025 0.039 0.071

5.4 Novel Architecture Contribution

In the third experiment, we investigate the performances of the distinct child-
networks involved in our global system. For this purpose, we extracted the dis-
tinct values of RMSEs obtained from the different child-networks that form our
system. We present these values in Table 2.

We observe that RMSEs values remarkably vary from of a child-network to
another. This is justified by the particularity of the data structure. We find that
the two child-networks, which provide the largest RMSEs thus the worst quality
of prediction, are N(E,O, (L)) and N(L,O, (E)). We note that these two child-
networks consider Origin as their Variant dimension. Here, we must keep in
mind that in our proposal the number of available instances in a training set for
a child-network is equal to the number of rows in its correspondent PCA-slice,
which is equal to the number of dimension attribute of the Variant dimension
of that PCA-slice. In our case, Origin dimension is the poorer dimension in
term of attributes number (10 attributes). Subsequently, child-networks that
consider it as their Variant dimension have the smallest number of training
instance. Inversely, we found thatN(E,L, (O)) andN(O,L, (E)), which consider
Location as its Variant dimension, produces the smallest RMSE among all child-
networks. We note that the more instances of learning a system have, the better
performance it will provide.

Although these results are obtained in order to detail the performance of
our system components, only the results produced by the combiner-network Nc
presented in Table 3, which predict the final value, reflect the quality of our global
system. Interestingly, the combinator-network surpasses all the child-networks in
training and in test phases. Thus, we conclude that combinator-network merge
the information provided by the child-networks to provide conclusive values.

Following these results, a logical question arises: How would the system per-
form if we eliminate the child-networks that which produces the worst results
from the analysis? To answer this question, we trained the network Nc restricted,
in which we eliminated N(E,O, (L)) and N(L,O, (E) from the analysis. We
found that the performance of the global system deteriorates comparing to Nc,
as is shown in Table 3. Actually, irrelevant information provided by the two elim-
inated child-networks, become relevant for the global system. In other words, the
values predicted from a cube-face, serves to refine the quality of the global system
even if they are not usable in individual manner.
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In order to further investigate the contribution of our system. In the fourth
experiment, we trained N classical, which is a classical architecture MLP. This
network receives all the coordinate factor associated to a particular cell at once
as inputs, in a classical manner, without using the concept of child-network. In
other words, this architecture merges all the training sub-sets into a unique large
one. This system, provided in Table 3, provided the worst performances among
all the studied architectures. This is due to the incapacity of a classical system
to capture the measure pattern over the multidimensional architecture even if it
receives decorrelated data. This fact highlights further the efficiency of our novel
architecture.

6 Conclusion and Perspectives

In this paper, we encouraged the integration of machine learning techniques
OLAP environment. The key idea of our proposal is that these sophisticated
techniques can be used even with the constraints raised by the important di-
mensionality and volumetry of data cubes. However, we highlighted that some
pre-processing steps have to be considered. In our study, we proposed to feed
an MLP network with several sets of reduced data that are generated over the
original measures. Nevertheless, these reduced sets have been extracted in a
particular manner that preserved their fundamental distributions and semantic
proprieties. In order to enhance the unique contribution of each training set, we
proposed a novel MLP architecture that involves separate data sets in the same
learning process and still provide conclusive values for the targeted measures.

The carried out experimental study showed good prediction performance. Fur-
thermore, it helped to get further insights for the different results obtained over
the sub-systems that form our global model.

In future work, we plan to include a framework that explains the reasons of
inexistent measures occurrences, similarly to that of [18], which is performed
on classical two-dimensional data. We also would like to involve the hierarchical
structure of data cubes in our system. This way we could exploit the different
levels of aggregation to predict lower/higher level facts. Finally, we believe that
modeling a theoretical relation between the reduction and the prediction system
can be very useful to optimize our model.
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Abstract. Mobile activity recognition focuses on inferring the current
activities of a mobile user by leveraging the rich sensory data that is avail-
able on today’s smart phones and other wearable sensors. The state of
the art in mobile activity recognition research has focused on traditional
classification learning techniques. In this paper, we propose the Mobile
Activity Recognition System (MARS) where for the first time the clas-
sifier is built on-board the mobile device itself through ubiquitous data
stream mining in an incremental manner. The advantages of on-board
data stream mining for mobile activity recognition are: i) personalisation
of models built to individual users; ii) increased privacy as the data is
not sent to an external site; iii) adaptation of the model as the user’s
activity profile changes. In our extensive experimental results using a
recent benchmarking activity recognition dataset, we show that MARS
can achieve similar accuracy when compared with traditional classifiers
for activity recognition, while at the same time being scalable and effi-
cient in terms of the mobile device resources consumption. MARS has
been implemented on the Android platform for empirical evaluation.

1 Introduction

The integration of small wireless sensors into objects of everyday life allows to
create a non-intrusive sensory data rich environment. Thus, the miniaturisation
and cost reduction of sensor hardware and mobile devices has led to the emer-
gence of research into mobile AR [1]. In several existing studies wearable sensors
are used by people while performing their daily activities [1,6], while others ad-
ditionally use sensors embedded into tools and utensils in an apartment, which
allows the analysis of more fine grained activities [8].

Mobile AR is usually formulated as a classification problem, where supervised
machine learning is used to interpret sensed data into activities [1,7]. The learn-
ing process normally goes through the following stages: i) data collection, where
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sensor data is collected over a specified period of time from one or more mo-
bile users, with the users typically labelling/annotating their activities; ii) data
transfer, where the collected data is transferred to and collated in a centralised
repository; iii) learning/model building, where the AR classification model is
trained and tested using the collected data; iv) model deployment, where the
learnt model is deployed on-board the mobile device for identifying and classi-
fying activities from sensory data. These state of the art mobile AR approaches
from ubiquitous sensors have been shown to achieve high recognition rates [7].
This may give the impression that the general problem of AR has been solved
successfully. However, in existing approaches the obtained models are static, are
built off-line in an external (to the mobile device) environment and little atten-
tion is given to issues such as personalisation of generic models and privacy.

To address these issues in this paper, we propose the Mobile Activity Recog-
nition System (MARS) that learns the classification model on-board the mobile
device itself through ubiquitous data stream mining in an incremental manner.
The proposed system (MARS) has been implemented on the Android platform
to evaluate its feasibility.

The rest of the paper is organised as follows. The following Section reviews the
related work. Section 3 presents the definition of mobile AR as classification prob-
lem, which is followed by a detailed description of the existing open challenges
in Section 4. The proposed Mobile Activity Recognition System (MARS) is pre-
sented Section 5. The experimental setup and results are discussed in Section 6.
Finally, in Section 7, conclusions of this work and future work are presented.

2 Related Work

AR from sensor data is a popular research field that has contributed with several
high recognition rate approaches. Many of these use supervised machine learn-
ing algorithms, such as Decision Trees [1], Artificial Neural Networks, Hidden
Markov Models, Naive Bayes, K-Nearest Neighbour or Support Vector Machines.
For an extensive review of supervised learning approaches for AR please refer
to [7]. Here we focus our review on works that perform mobile AR from sensor
data.

One of the most cited publications on activity recognition in pervasive com-
puting [1] deployed five small biaxial accelerometers worn simultaneously on
different body positions in order to distinguish 20 activities of interest. The data
was collected from 20 subjects that annotated it themselves without researcher
supervision or observation. From the learning algorithms tested, C4.5 decision
trees showed the best performance with an overall accuracy rate of 84%. Such
technique is considered to be slow to train but quick to run. Therefore, the au-
thors suggest that a pre-trained decision tree should be able to recognise user
activities in real-time on a 2004 top-end mobile device. Moreover, it is reported
that some activities are recognised with subject-independent training data while
others seem to require subject-specific training data.

In a recent paper, [6] proposes and experimentally evaluates a system that
uses phone-based accelerometers to perform mobile AR. Data was collected from
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29 subjects as they performed their daily activities such as walking, jogging,
climbing stairs, sitting, and standing. This works shows how a smart phone
(Android) can be used to perform activity recognition, simply by carrying it in a
fixed position (front pants leg pocket). The results show that most activities are
recognised correctly over 90% of the time. Still, the collected data is transferred
to an Internet-based server where a static model is generated off-line. Again the
issues of personalisation or privacy are not addressed but in the future work
section it is mentioned that an improvement of the proposed system would be
to generate the model on-board. Nevertheless, to the best of our knowledge such
improvement has not yet been proposed.

The reviewed approaches built static classification models off-line in an exter-
nal (to the mobile device) environment. Moreover, the streaming nature of data
is not taken into account nor the possibility that the model needs to be adapted
over time. In addition, little attention has been given to the personalisation of
the built model to suit a particular user, despite the results that seem to indicate
that better accuracy is obtained with personalised models (i.e., training and test
data from the same subject). To the best of our knowledge, no other ubiquitous
data stream mining approach has been proposed so far to address mobile AR.

For a more extensive review of data stream mining systems that have been
used successfully in other applications please refer to [5]. A demo of MARS has
been recently presented in [2].

3 Problem Definition

Let X be the space of features that correspond to the available input sensor
features and Y be the set of possible (discrete) class labels that correspond to
the activities of interest. Consider a data stream DS, where Xi = (xi , yi) with
xi ∈ X and yi ∈ Y , represents the ith record in DS. The modelling of AR is
formulated as a function f that assigns each sensor feature input record xi to
the true activity label yi. This function f can be approximated using supervised
learning by training a model m. The goal is that the trained model m minimises
the number of wrongly recognised activities (i.e., achieves high accuracy).

4 Open Challenges

Despite the good results of existing supervised learning approaches in AR, there
are still open challenges that to the best of our knowledge have not been ad-
dressed. The following subsections introduce such challenges.

4.1 Training Data

The usual supervised learning approach to AR assumes that there is abundant
training data and that the function f to model is static. However, in realistic
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situations, f is usually subject dependent and can even change over time within
subject. Moreover, past work shows that if the training data is collected from
the subject of interest then there is no advantage to use additional training
data from other subjects [1,7,6]. Still, in the case where training data from the
subject of interest is not available, having data from higher number of subjects
is beneficial to the resulting recognition accuracy.

4.2 Model Generation

In most existing supervised learning approaches to mobile AR, the training data
is collected, a classification model is generated offline from the collected data,
and finally the obtained model is deployed. Nevertheless, there are disadvantages
that can result from using this type of offline learning process:

– The obtained model is static - Once a model is generated it cannot incorpo-
rate new information.

– Computational costs - The batch algorithms typically used to generate the
model are not designed to be executed in mobile devices. Such algorithms
usually require several passes over the dataset and require that the entire
dataset is allocated into main memory. In contrast, ubiquitous data stream
mining approaches process each record only once and are memory efficient
[5].

– Accuracy assessment in a realistic scenario - The static model that is de-
ployed can have good accuracy on a testing set which is usually similar to
the training set, when methods such as cross validation or a hold-out set are
used. However, the performance of this model in a realistic situation depends
on how the test set is representative of the usage scenario.

Fig. 1. MARS: framework and implementation
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5 MARS: Mobile Activity Recognition System

This paper proposes MARS, a ubiquitous data stream mining approach to mobile
AR. Such approach is motivated and focused on addressing the open challenges
described in the previous section. Conversely to traditional supervised learning,
data stream classification algorithms are able to update an anytime model mt

as new training records are available in the stream. Moreover, these algorithms
are light-weight and can be executed using the computational resources usually
available on nowadays mobile devices. The proposed approach enables greater
personalisation and privacy while bringing the whole learning process on-board
the mobile device.

The learning process is divided into two phases:

– Training - During the training phase the user performs the activities of in-
terest, either in predefined drills or freely during normal activities and anno-
tates interactively the data collected from the sensors using a user-friendly
interface (i.e., usually simply by selecting from a list the activity that he
previously executed). This type of naturalistic data collection has been suc-
cessfully used before, however, the records are saved to be then processed
by a offline learning algorithm, while we propose that the annotated data
stream should be processed on-board by an incremental learning algorithm.
Moreover, since an anytime model mt (i.e., model at time t) is assumed, it
is possible to estimate the accuracy of this model as new records are incor-
porated. For this purpose we propose that the prequential statistic is used
[4]. Figure 1 illustrates MARS training phase, where the data (unlabelled)
is coming from the available sensors, then the user annotates/labels such
data which is processed by the learning algorithm that updates the anytime
model mt.

– Activity Recognition - the new records (unlabelled) to be classified are given
to the anytime model mt that returns the predicted activity. This phase is
also illustrated in Figure 1.

6 Experiments

This section describes the experiments that were performed to evaluate the
MARS feasibility and accuracy. The data used in the experiments has been
released for the OPPORTUNITY AR challenge1, which aims to provide a com-
parative benchmark dataset for AR approaches.

6.1 The AR Challenge Data

The lack of established benchmarking problems for AR is one of the motivations
behind the OPPORTUNITY AR challenge [8]. The data contains daily human
activities recorded in a sensor rich environment: a room simulating a studio

1 http://www.opportunity-project.eu/challenge

http://www.opportunity-project.eu/challenge
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flat with kitchen, deckchair, and outdoor access where subjects performed daily
morning activities. Two types of recording sessions were performed: Drill sessions
where the subject performs sequentially a pre-defined set of activities and ”daily
living activities” runs (ADL) where the subject executes a high level task (wake
up, groom, prepare breakfast, clean) with more freedom about the sequence of
individual atomic activities. It records 72 sensors of 10 modalities, integrated
in the environment, in objects, and on the body. It consists of an annotated
dataset of complex, interleaved and hierarchical naturalistic activities, with a
particularly large number of atomic activities (around 30.000), collected in a
rich sensor environment. Data was manually labelled during the recording and
later reviewed by at least two different persons based on the video recording.

The data used for the challenge is composed of the recordings for 4 subjects.
For each subject there are 5 unsegmented sessions. During the challenge, for 3
of the 4 subjects the last two session were used by the organisers to evaluate
the performance of the contributed methods. Moreover, the subject number 4 is
used to assess robustness to noise, as rotational and additive noise has be added
to the test data (last two sessions) of this subject.

The challenges consisted of 4 challenges, but for the purpose of this work
evaluation we will consider the multimodal classification tasks that are:

– Modes of locomotion (Task A) - The goal of this task is to classify the subject
mode of locomotion (i.e., stand, walk, sit, lie) from body-worn sensors.

– Gestures (Task B2) - This task concerns recognition of right-arm gestures
(17 classes) performed in a daily activities scenario. Gestures include, clean
the table, open/close a door/fridge/dishwasher/drawer and toggle a switch.

For the experiments we followed the evaluation proposed in the challenge, that
is, the last two sessions were used for testing and the Drill session plus the first
3 ADL sessions were used for training. Note that we are also using data from
subject 4 that contains noise in the test set (last two sessions). Therefore, we
can also asses how the approach deals with noise, which is somehow similar to
the challenge Task C which used data from subject 4, instead of subjects 2 and
3, to asses the accuracy for the Gestures classification task.

6.2 Implementation

To evaluate the feasibility of the MARS, we implemented a prototype on the
Android platform. The experiments where carried out on a low-end Android
phone, ZTE Blade, sold in UK as Orange San Francisco, that in early 2011 was
one of the budget Android phones on the market. The phone has a Qualcomm
MSM7227 600 MHz processor, 512MB of RAM, 1250 mAh battery and runs
Android 2.2 Froyo.

The learning algorithms used in the experiments (i.e., the incremental Naive
Bayes and C4.5 decision tree) are available in the WEKA Since these algorithms
are developed in Java it was easy to port them to the Android application.
However, during our preliminary tests we noted it was not even possible to
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execute the decision tree algorithm (implemented in WEKA as J48) without
getting a memory exception (java.lang.OutOfMemoryError), as this algorithm
requires that all the dataset is loaded into memory. The max heap size for an
Android application depends on the device but if the application is supposed
to run on any device the memory allocation should be kept under 16MB. Since
each AR challenge session file ranges from 10MB to 33 MB and the training
set for each subject contains 4 sessions. Consequently, we had to perform the
accuracy measures and running time experiments for the decision tree algorithm
on a laptop computer with a 2.10 GHz Intel Core 2 Duo processor and 4GB of
RAM memory.

The incremental Naive Bayes approach executed on the device without prob-
lems. The data files are read sequentially as a stream to incrementally train the
classification model. Then this model is used to sequentially classify the session
files that belong to the test set. During this process the only memory consumed
is the one required to keep the anytime model and to read the record to be
processed, that is then subsequently freed from memory.

The learning algorithm is executed in a dedicated thread that can run in
background as a service and therefore the anytime classification model can be
updated or asked for prediction at anytime.

6.3 Incremental vs Traditional

Here we report the experiments where we compared in terms of accuracy and
running time the incremental Naive Bayes (NB) approach and the J48 Decision
Tree (DT). We decided to compare the proposed approach with DT because
this algorithm have been shown high accuracy in AR problems and was the first
ranked algorithm on the locomotion predictive task of the OPPORTUNITY AR
challenge (task A).

Table 1 summarises the results for the different subjects (rows) on the two
classification tasks (i.e., locomotion and gestures) that are shown on the respec-
tive column. The first thing noticed is that for both algorithms there is higher
accuracy on the locomotion task than in the gestures task. This is justified by
the fact that the gestures task is more demanding, that is, has more classes (17
instead of 4) and the available sessions have less annotated data for this task
than the locomotion one. Nevertheless, these results are within what has been
reported in the literature for state of the art approaches in AR [7] and what has
been reported recently for the OPPORTUNITY AR challenge [8].

Looking at the accuracy results between the NB vs DT, we observe that for the
locomotion task the mean accuracy for the NB is 86,4% ± 3.9 while it is slightly
lower for the DT with 85,9% ± 2,5. For subjects S1 and S2 the incremental NB
even achieves higher accuracy than the DT. When the gestures task is considered,
the mean accuracy for the NB is 56,1% ± 5,4 and the DT obtains 60,9% ± 7,1.
Still, the simple incremental NB approach achieves similar accuracy, particularly
for subject S3 where only 1.1% difference exists. Moreover, subject 4 achieves
the lowest accuracy on both tasks, due to the presence of noise, which seems to
have a minor impact on the accuracy.
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Table 1. Accuracy results of NB vs DT

Locomotion Gestures

NB DT NB DT

S1 91.5% 88.8% 61.7% 69.1%
S2 87.4% 86.8% 53.3% 54.4%
S3 84.4% 85.5% 59.4% 64.4%
S4 82.3% 82.7% 50.0% 55.7%

Table 2. Training times of NB vs DT

Locomotion Gestures

NB DT NB DT

S1 21.91s 664.09s 6.48s 127.28s
S2 18.93s 564.03s 6.11s 151.62s
S3 23.67s 793.60s 6.56s 119.46s
S4 16.78s 546.70s 4.65s 100.82s

Table 2 summarises the training times for obtaining the models for the dif-
ferent subjects (rows) and tasks/learning algorithms in columns. The training
times, show that on both tasks the NB is much faster than the DT. Note that
both measures of the training time were performed on a laptop computer as it
was not possible to run the DT on the Android device. The results show that
NB only takes a few seconds to build a model while the DT algorithm takes on
average about 10 minutes for the locomotion task and 2 minutes for the gestures
task. The greater training time for the locomotion task results from the larger
number of training records in this task.

6.4 Accuracy over Time

To further analyse the accuracy results of NB and since we are proposing an
incremental approach, we decided to measure how the accuracy changes over
time as more records are processed.

Fig. 2. Accuracy for the Locomotion task Fig. 3. Accuracy for the Gestures task

Figure 2 shows for the different subjects the accuracy for the locomotion task
anytime model after training is performed with data from the different sessions
(on the horizontal axis) in an incremental way. The accuracy curves show that
the accuracy increases as more data is processed. The results are similar across
the subjects, however, it can be observed that the Drill session for subject one is
enough to achieve accuracy in the order or 80% while for the other subjects at this
stage accuracies of around 60% are obtained. Moreover, the gain in accuracy from
an additional session decreases with the number of sessions as can be observed in
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Figure 2. This is an interesting result because it can be used to determine when
a stable accuracy value has been obtained and no further training is needed.

Figure 3 shows for the different subjects the accuracy for the gestures task
anytime model. Again the accuracy curves show that the accuracy increases
as more data is processed. However, for this task, which is more demanding
than the locomotion one, for the reasons that have been mentioned previously,
the accuracy grows more slowly as more records are observed. We should note
again that each session has less training data for the gestures task than the
locomotion one, which can itself have an impact on the accuracy growth rate
with additional sessions. For this task the learning curves are even more similar
among the subjects.

6.5 Memory Consumed by the Model

Since memory is a critical resource in mobile environments, we measured the
memory size consumed by the classification models.

Fig. 4. Memory user in the Locomotion
task

Fig. 5. Memory used in the Gestures
task

Figure 4 shows the memory consumption of the incremental NB and DT with
the number of training sessions for the locomotion task. Since DT is a non-
incremental approach the algorithm was run again with the sessions desired. For
instance the results for ADL3 of a particular subject represent a classification
model that was built using a training set that contains session ADL3 and the all
the previous sessions (i.e., Drill, ADL1 and ADL2). The results show that the
NB algorithm resulting model achieves the lowest memory consumption (71KB)
and that this value is independent of the number of training records. This is the
consequence of the model representation of the NB which only requires to store
estimators for the marginal and conditional distributions, which once built stays
the same over the entire learning process (possible infinite number of training
records). In contrast, the decision tree structure size in memory depends on the
tree itself. In Figure 4 we observe that this value often increases linearly with
the number of training records.
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Figure 5 shows results similar to the Figure 4. For the gestures task the
NB model requires again the smallest memory size (185KB). This size is larger
than the locomotion model, as this task has more classes, and therefore more
estimators need to be stored. For the DT we observe that the trees are of similar
size than the ones used to model the locomotion task as the number of classes
does not influence the model size directly.

In general these results show that both approaches achieve model sizes that
are very small when compared to nowadays mobile devices memory capabilities.
However, since the DT requires that the training set must be stored in memory
in order to built the model, its usability for on-board modelling is compromised.
Consequently, for this reason the majority of studies that use DT for mobile AR
require that the model is built on an external server that is later deployed on
the mobile for classification of the activities.

6.6 Battery Consumed by the Process

In this experiment the training process was programmed to be in an infinite
loop and was left running in background. In addition to the battery level we
measured the processing rate, that is, how many records per second the algorithm
processes. This way we can analyse how the processing rate influences the battery
consumption and assess the feasibility of the approach. Please note that there a
battery cost associated with the data collection from sensors while here we are
accessing the file system. Nevertheless, we are controlling our experiment for the
impact that the learning algorithm has on the battery, since the cost associated
with collecting data from the sensors will be independent of the learning method
and will be an existing factor to consider in every approach.

Fig. 6. Battery consumption and processing rate over time

Figure 6 shows the battery consumption and processing rate over a period of
about 12hours. The battery level starts at 70% and it decreases slowly over time
until the phone is plugged-in at around time 33569s. It can also be seen that the
battery consumption rate is related to the processing rate.

The processing rate can be as low as 1 record for every 10 seconds to 40 records
per second. This is well within what is required in mobile AR. For instance in
[6] where 10-second intervals are considered for basic locomotion activities or in
the more demanding case of the OPPORTUNITY AR challenge dataset [8] used
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in our experiments, where for the gestures task the shortest gesture found in
the dataset lasts about 0.5 seconds. It is considered that such rate is enough to
achieve high speed of recognition without missing activities. We should note that
the dataset used in the experiments contains a large number of attributes (i.e.,
114 numeric attributes + 2 discrete class attributes) than what is normal and no
feature selection or tuning to increase the efficiency of our proposed approach.
This way we intend to demonstrate the feasibility of the approach in a highly
demanding learning task.

A possible way to save battery would be to adapt the processing rate to the
situation (i.e., resources and context) [3] to address the mobile application AR
requirements.

6.7 Adaptation to Different Subjects

In MARS, there is greater opportunity for personalisation of the model as the
training data is subject specific. Nevertheless, in some applications, for instance
in elderly monitoring, asking the subjects to annotate their activities can become
an issue if they suffer from Alzheimer or other memory related condition.

In this set of experiments we tested how a model built using Naive Bayes with
data from other subjects can be used to accurately classify the activities of a
particular subject.

The results indicate (tables not included due to space limitations) that in
general for subjects 1, 2 and 3 the models are able to still achieve good accuracy
(in both tasks) in relation to the scenario where subject-specific training data is
used. Moreover, we observe that for subjects 2 and 3, when the training data
from subject 1 is used better accuracy than with the subject-specific data is
obtained. We can note that this can be attributed to the fact that the training
set for subject 1 has more training records than the other two. Nevertheless, for
subject 4 the adaptation is poor, either when its data is used for training of
testing. The bad performance with subject can be attributed to the noise that
its test dataset includes or maybe to a very different user profile. To further
investigate this issue we performed the same experiments without using training
data of subject 4 and this results in higher accuracy values.

7 Conclusions and Future Work

In this paper we proposed and experimentally evaluated the Mobile Activity
Recognition System (MARS), that is an ubiquitous data stream mining approach
to mobile activity recognition. In MARS, a data stream classification algorithm
(incremental Naive Bayes) is used to update an anytime model from a stream
of ubiquitous sensor data. The main contribution of this work is to show the
feasibility to execute such integrated learning approach to mobile AR on the
mobile device itself. The advantages of on-board mobile data stream mining
are higher personalisation of the AR models (that are built based on individual
users annotated data), increased privacy as the data is not sent to an external
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site, and also using an adaptive anytime model instead of a static model enables
adaptation of the activity profile to changes.

In future work, in line with the latest experiments conducted in this work we
plan to study how to depend less on labelled/annotated data, for instance by
using a semi-supervised or active learning approach to AR.
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Roggen, G. Tröster: Benchmarking classification techniques using the Opportunity
human activity dataset. In: IEEE International Conference on Systems, Man, and
Cybernetics (2011)



 

A. Cuzzocrea and U. Dayal (Eds.): DaWaK 2012, LNCS 7448, pp. 142–155, 2012. 
© Springer-Verlag Berlin Heidelberg 2012 

Warehousing Manufacturing Data 

A Holistic Process Warehouse  
for Advanced Manufacturing Analytics 

Christoph Gröger, Johannes Schlaudraff,  
Florian Niedermann, and Bernhard Mitschang 

Institute of Parallel and Distributed Systems 
University of Stuttgart 

Universitätsstrasse 38, 70569 Stuttgart, Germany 
{christoph.groeger,johannes.schlaudraff,florian.niedermann, 

bernhard.mitschang}@ipvs.uni-stuttgart.de 

Abstract. Strong competition in the manufacturing industry makes efficient and 
effective manufacturing processes a critical success factor. However, existing 
warehousing and analytics approaches in manufacturing are coined by substan-
tial shortcomings, significantly preventing comprehensive process improve-
ment. Especially, they miss a holistic data base integrating operational and 
process data, e. g., from Manufacturing Execution and Enterprise Resource 
Planning systems. To address this challenge, we introduce the Manufacturing 
Warehouse, a concept for a holistic manufacturing-specific process warehouse 
as central part of the overall Advanced Manufacturing Analytics Platform. We 
define a manufacturing process meta model and deduce a universal warehouse 
model. In addition, we develop a procedure for its instantiation and the integra-
tion of concrete source data. Finally, we describe a first proof of concept based 
on a prototypical implementation. 

Keywords: Data Warehouse, Manufacturing, Process Optimization, Analytics, 
Business Intelligence, Data Integration. 

1 Introduction 

1.1 Motivation 

The manufacturing industry is faced with strong global competition. Apart from 
product quality and pricing, flexibility, short lead times and a high adherence to deliv-
ery dates have become critical success factors [1]. Efficient, effective and continu-
ously improved manufacturing processes thus play a central role in a comprehensive 
competitive strategy [2]. 

Both in research and in industry, Business Intelligence (BI) technology is recog-
nized as an enabler for analytics-based optimization of business activities as well as 
decision support. It has repeatedly proven its potential in the service industry for the 
improvement of workflow-based business processes [3], [4]. 
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With respect to BI approaches in manufacturing, we currently know of essentially 
two types wide-spread in industry: Pre-packaged dashboard applications, typically 
part of Manufacturing Execution systems (MES), based on standardized metrics with 
simple reporting functions [5] as well as custom BI applications, partly built on data 
warehouses, mainly focusing on spreadsheet-based Online Analytical Processing 
(OLAP) and reporting functions [6]. 

Several decisive insufficiencies of these approaches significantly prevent compre-
hensive process optimization in manufacturing: Most importantly, they miss a holistic 
process view integrating operational data and process data, e. g., from MES and En-
terprise Resource Planning (ERP) systems, to find a broader range of optimization 
opportunities. Moreover, they do not make use of advanced analytics techniques, esp. 
data mining, to automatically identify hidden data patterns for process improvement. 
To overcome these deficiencies, in our overall work we develop the Advanced Manu-
facturing Analytics (AdMA) Platform as a novel approach for data-driven manufac-
turing process optimization. In this article, we focus on the central component of the 
AdMA Platform, the Manufacturing Warehouse, a manufacturing-specific holistic 
process warehouse. 

The remainder is organized as follows: First, we introduce the AdMA Platform and 
structure related work for process warehousing and data integration in Section 2. 
Next, we define analytic requirements and potential data sources for the Manufactur-
ing Warehouse in Section 3. Based on a manufacturing process meta model, described 
in Section 4, we develop a standardized warehouse model as well as a procedure for 
its instantiation and the integration of concrete data in Section 5. Our prototypical 
implementation and a first proof of concept are presented in Section 6. We conclude 
in Section 7 and highlight future work. 

1.2 The Advanced Manufacturing Analytics Platform 

The Advanced Manufacturing Analytics Platform, introduced in [7], is an integrated 
BI platform for manufacturing process optimization. It is based on a transfer of con-
cepts of the Deep Business Optimization Platform [3], [8-10] to manufacturing with 
its conceptual architecture comprising the following components (see Fig. 1). 

The manufacturing process is typically deployed on an MES and corresponding 
execution data is generated during process execution. Process data and additional 
operational data are integrated in the Manufacturing Warehouse, the focal point of 
this article. It is provisioned by the Manufacturing Data Integrator, which matches 
process and operational data. In general, operational data is subject-oriented and 
represents data of traditional data warehouses, e. g., financial data. Process data is 
flow-oriented and comprises execution data, i. e., events recorded during process 
execution, and process model data [9]. 

Process Analytics comprises different analysis methods, esp. data mining tech-
niques and metrics calculation, to generate insights with the Manufacturing Insight 
Repository serving as a central component for the sharing of analysis results. 

Indication-based Manufacturing Optimization uses pre-configured data mining 
models to explain and predict process characteristics. 
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Pattern-based Manufacturing Optimization goes beyond that and proposes con-
crete process modifications using optimization patterns. Both focus on the overall 
manufacturing process from the creation of the production order until the finishing of 
the product including all process steps and resources. They are further detailed and 
differentiated from existing data mining approaches in manufacturing in [11]. 

 

Fig. 1. Conceptual architecture of the Advanced Manufacturing Analytics Platform with the 
focus of this article marked in grey 

The AdMA Platform can be seen as an application of process mining [12] to manu-
facturing whereas it focuses on the enhancement of process models, not on the classic 
process mining disciplines, i. e., discovery and conformance of process models. In 
contrast to traditional enhancement concepts, we use not only process data but also 
operational data in combination with novel analytical approaches, esp. indication-
based and pattern-based optimization. 

2 Related Work 

For the discussion of related work, we distinguish between work referring to ware-
housing and analysing business processes as well as work related to data integration 
aspects. 

Concepts and techniques for warehousing and analysing business processes are 
discussed in the area of Business Process Intelligence (BPI) [13]. BPI primarily fo-
cuses on workflow-based business processes and related process modelling and proc-
ess execution concepts. Thus, traditional process warehouse concepts like [14], [15] 
are based on audit trail data of Workflow Management systems and corresponding 
meta models like [16]. Next-generation process warehouse approaches – we call them 
holistic process warehouses – try to enrich process data with additional operational  
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data to realize corresponding holistic BI applications. Initial holistic process ware-
house concepts are proposed in [17], [18]. The only fully developed holistic process 
warehouse, we know of, is the integrated data warehouse of the Deep Business Opti-
mization Platform (dBOP) [8], [19] focusing on workflows. 

Yet, workflow-oriented approaches cannot simply be applied to manufacturing for 
several reasons. First, manufacturing processes are significantly more complex than 
workflow-based business processes, involving a variety of heterogeneous resources 
and activities [20]. In addition, process planning and process execution systems in 
manufacturing use proprietary event models and process data formats. Moreover, 
processes optimization requires specific metrics and suitable optimization patterns. 
Based on these constitutive differences, we take the dBOP process warehouse as a 
starting point to develop a manufacturing-specific holistic process warehouse.  

Considering existing manufacturing-specific process warehousing approaches, an 
initial traditional process warehouse for manufacturing is modelled in [21]. It defines 
five rudimentary dimensions and a few basic metrics to analyse processes at the level 
of the whole process. With respect to standardized data warehouse implementations in 
industry practice, the SAP Business Content as part of the SAP NetWeaver Business 
Intelligence Platform [22] provides a variety of manufacturing-specific metrics and 
multi-dimensional data models, called InfoCubes. Yet, it misses a consequent integra-
tion of process and operational data in a holistic approach. 

Regarding data integration aspects, traditional warehousing concepts are based on 
Extraction, Transformation and Load (ETL) processes for materialized data integra-
tion [23], [24]. A holistic process warehouse requires an extended ETL approach 
based on the matching of operational and process data [25]. The foundations are gen-
eral concepts for schema matching and integration [26], [27] that have to be adapted 
to the specific semantics of process data. [28], [19] present a framework and a tool for 
matching process and operational data based on workflow standards, esp. BPEL. Tak-
ing these concepts as a basis, we develop a procedure for manufacturing-specific 
matching and ETL that is able to cope with heterogeneous event models and source 
formats of various data acquisition systems. 

3 Requirements and Data Sources 

3.1 Analytic Requirements 

From a business perspective, there are two central preconditions for efficient and 
effective manufacturing processes, namely process transparency and process respon-
siveness [5]. The former alludes to the availability of integrated up-to-date informa-
tion about currently running processes and their status as well as details about the 
performance and weaknesses of completed processes, always with respect to the 
whole process and all participating resources. Transparency is necessary for respon-
siveness, referring to the ability to quickly realize potentials for improvement  
and react to changing environmental conditions. The analytic requirements for the 
Manufacturing Warehouse and the corresponding data integration concepts have to  
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implement these preconditions and realize the vision of the AdMA Platform to pro-
vide a standardized integrated BI platform for the holistic data-driven optimization of 
manufacturing processes. Hence, the following analytic core requirements result: 

• Holistic data base: Holistic process optimization requires the integration of all data 
pertaining to process performance, i. e., operational and process data related to a 
manufacturing process have to be consolidated and integrated. 

• Standardization and Flexibility: To realize pre-defined optimization services a 
standardized and generalized data model is necessary. As manufacturing processes 
and data sources are extremely heterogeneous in industry practice, both the data 
model and the integration concepts should be flexible enough to be adapted to con-
ditions of different manufacturing companies. 

• Real-time capability: Both data integration and analytics have to work (near-) real-
time to provide the user with up-to-date information about processes in progress. 

• Historization: All integrated data have to be historized to analyse process perform-
ance over time. 

3.2 Data Sources in Manufacturing 

To structure potential data sources for the Manufacturing Warehouse we refer to a 
simplified version of the ISA hierarchy model of manufacturing [29]. We distinguish 
the following three levels on top of the actual manufacturing process: 

The Business Planning and Logistics level comprises business-related activities, 
esp. product and process planning using Computer Aided Design (CAD) and Com-
puter Aided Planning (CAP) systems. Moreover, production planning and scheduling 
typically supported by ERP systems is carried out on this level as well as Customer 
Relationship Management (CRM). 

The level for Manufacturing Operations Management contains all activities to co-
ordinate the execution of manufacturing processes and related resources. Typical IT 
systems are Production Data Acquisition (PDA) systems for the recording of process 
execution data as well as Computer Aided Quality (CAQ) systems. MES are the cen-
tral IT systems for Manufacturing Operations Management integrating and extending 
PDA and CAQ functionalities. They connect the business level with the actual proc-
ess by transforming production plans into concrete process executions and reporting 
results [5]. 

The Automation level comprises all activities for the direct technical monitoring 
and control of the actual process. At this level, Computer Aided Manufacturing 
(CAM) systems are used. 

On this basis, the central data sources for the Manufacturing Warehouse can be de-
fined: Process execution data is provided by MES, PDA and CAQ systems whereat 
process model data is supposed to be contained in MES, ERP as well as CAP systems. 
Operational data, esp. master data concerning product and customer information as 
well as production plans, is provided by ERP, CRM and CAD systems. 
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4 Manufacturing Meta Models 

4.1 Motivation 

To specify a standardized and universal data model, we follow a top-down develop-
ment approach independent of syntax and semantics of concrete data sources. In order 
to define generalized information needs for the analysis of manufacturing processes, 
we develop both conceptual manufacturing meta models and a catalogue of basic 
manufacturing-specific metrics. In this section, we focus on the meta models, esp. the 
manufacturing process meta model (MPMM). 

The MPMM provides a unified and technology-independent definition of essential 
concepts and their relationships relevant to the execution of manufacturing processes, 
e. g., process steps and different types of resources. It is based on a holistic view inte-
grating process and operational aspects independent of the actual data source. Hence, 
the MPMM represents the basis for the selection of central analysis objects and re-
lated entities, i. e., facts and dimensions in the multi-dimensional warehouse scheme. 

We complement the MPMM with a conceptual manufacturing event meta model 
(MEMM) in terms of a state machine with the main states and state transitions of a 
manufacturing process step, e. g., start, pause and completion of a step. Thus, the 
MEMM defines requirements for necessary process execution data, i. e., events that 
have to be provided by corresponding process data sources, e. g., MES. Moreover, it 
supports the definition of event-based facts in the Manufacturing Warehouse. Due to 
space restrictions, we do not go into detail on the MEMM in this article.  

Both the MPMM and the MEMM abstract proprietary meta models used in  
data sources, esp. PDA systems and MES, to establish a common and consistent un-
derstanding of manufacturing processes and related events for data integration and 
analytics. 

4.2 Manufacturing Process Meta Model 

We conducted literature analyses to define a comprehensive meta model for manufac-
turing processes esp. adapted to the needs of serial and mass manufacturers. It takes a 
static perspective and models concepts relevant for the execution of a single process 
instance, i. e., it adopts a run-time not a built-time point of view and doesn’t differen-
tiate between process model and process instance. We took generic manufacturing 
meta models, esp. [21], [29], [30], as a starting point to concretize and extend them 
with respect to factors influencing the four basic target and analysis dimensions of 
manufacturing, i. e., time, cost, quality and flexibility [31]. Moreover, for an initial 
evaluation and refinement of the model, we did industry interviews with manufactur-
ing consultants. 

Fig. 2 shows a simplified excerpt of the MPMM as a UML class diagram. A manu-
facturing process consists of production steps and is linked with a production order 
defining, e. g., the batch size to be produced. A production order is associated with a 
customer, who can be internal or external, as well as with the product that is going to 
be produced as an output of the process. There are different types of production steps, 
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esp. the actual manufacturing steps as well as transportation steps. Manufacturing 
steps refer to the manufacturing and assembly of parts, whereat transportation steps 
comprise the transportation of parts between different manufacturing steps, e. g., by 
pallet transporters. In each manufacturing step scrap quantity and yield of parts can be 
measured. 

 

Fig. 2. Excerpt of the Manufacturing Process Meta Model (MPMM) 

Regarding spatial aspects, a work unit and a corresponding hierarchy of areas and 
sites can be assigned to a production step. Moreover, a production step can have  
several successors and predecessors in a process execution. Resources used and proc-
essed in production steps are employees, i. e., production workers, operating 
 resources, i. e., machines and production aids, like tools, as well as material. All  
resources can be described by various additional information like vendors of material 
or manufacturers of machines. For the sake of simplicity, we omit many details of the 
MPMM full version, esp. the modelling of operating supply items, environmental 
emissions or failures of production steps. 

5 Manufacturing Warehouse 

5.1 Conceptual Warehouse Model 

To define a standardized conceptual warehouse model, i. e., a multi-dimensional 
scheme of the Manufacturing Warehouse, we first describe the generic structure of 
facts and dimensions of a holistic process warehouse. Next, we develop the actual 
warehouse model based on the above MPMM.  
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The generic structure represents a framework for the instantiation of the standard-
ized model in individual cases based on available source data. This is necessary as 
concrete process and operational data sources vary significantly in existing manufac-
turing environments. For example, in an energy-intensive manufacturing process 
power consumption is relevant and recorded. In contrast, in another case CO2 emis-
sions are logged. Hence, different warehouse models result which mainly differ by the 
dimensions describing the process. 

In general, a limited number of process-oriented information is obligatory to define 
an activity-centric model for a holistic process warehouse. According to [32] we as-
sume that each event during process execution occurs in a certain point of time, is 
associated with the instance of a single process step, thus is related to a single process 
instance, and provides a description about itself. Moreover, it provides various infor-
mation about its context, i. e., links to objects relevant for the corresponding event. 
E. g., the start event provides information about machines used in the step. Hence, 
facts at lowest level of granularity are events with the obligatory dimensions “Time”, 
“Process” and “Event”. These dimensions are called flow dimensions as they describe 
the process flow over time. Context information provided by events, e. g., identifiers 
for material or machines, is the basis for additional dimensions, so called context 
dimensions. Flow and context dimensions result from process data and are enriched 
with supplementary operational data forming additional hierarchy levels, so called 
operational sub dimensions. It has to be remarked that events as central facts have no 
quantitative characteristics like metrics in traditional data warehouses. Hence, to ease 
analytics, so called derived, i. e., aggregated, facts are defined at the level of process 
steps and whole processes comprising basic process-oriented metrics, e. g., cycle 
time, which may already be computed during ETL. Although it extends the data vol-
ume of the warehouse, we decide to model event facts in addition to derived facts as 
they define the entire scope of process information available, thus enabling flexibility 
regarding previously unknown information needs. Finally, a fact constellation scheme 
with shared dimensions results as a generic structure for a holistic process warehouse. 

 

Fig. 3. Conceptual Model of the Manufacturing Warehouse 
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On the basis of this generic structure we define the standardized model of the 
Manufacturing Warehouse (see Fig. 3) using the MPMM as well as a set of basic 
manufacturing metrics related to process steps and whole processes operationalising 
the four manufacturing target dimensions cost, quality, time and flexibility. We de-
fined ten standardized context dimensions in addition to the obligatory flow dimen-
sions “Time”, “Process” and “Event”. 

Fig. 3 shows a simplified version of the model in a multi-dimensional UML [33] 
package diagram. The source dimension refers to the technical source of an event, 
e. g., a certain machine. Emissions comprise environmental pollution like the genera-
tion of CO2 or waste. Material refers to input that becomes part of the product to be 
manufactured, whereat operating supply items like oil or electricity are consumed 
during manufacturing. The output dimension refers to yield and scrap quantity and the 
failure dimension comprises failures occurred during process execution.  

 

Fig. 4. Excerpt of the detailed Manufacturing Warehouse model 

For illustrative purposes, an excerpt of a detailed model of the machine, employee 
and process dimension is shown in Fig. 4. According to the MPMM, a process com-
prises steps, whereat steps and processes are instantiated for process execution. 
Events provide context information about employees and machines and refer to a 
specified step instance. Derived facts are defined at process step level, e. g., duration 
for setup or costs of a step, with machines and employees taking part in a step. 

5.2 Warehouse Instantiation and Data Integration 

As mentioned in Section 2, we need an extended ETL approach for the integration of 
concrete source data in the Manufacturing Warehouse. Moreover, our standardized 
warehouse model has to be instantiated in each individual case as mentioned in Sec-
tion 5.1. Hence, in the following, we provide a coarse-grained overview about the 
major steps of our integrated procedure for both warehouse instantiation and the inte-
gration of source data (see Fig. 5). 

Instantiation focuses on the tailoring of the standardized warehouse model to avail-
able data sources in an individual case. Integration aims at determining matches  
between source data and warehouse model to define necessary ETL processes. Our 
concept relies on the ontology-based annotation [34] of both available process source 
data, i. e., concrete event logs esp. from PDA systems and MES, and standardized 
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dimensions of the warehouse model. Therefore, we refer to an adapted version of the 
manufacturing-specific domain ontology in [35]. To enrich process data with opera-
tional data, we first match process data with the standardized warehouse model and 
then match operational data with the resulting selected warehouse dimensions. 

 

Fig. 5. Procedure for warehouse instantiation and data integration 

The essential steps of our procedure are sketched in Fig. 5. First, all attributes of a 
given event log are annotated using the ontology to infer corresponding standardized 
context and process dimensions. For example, an event log containing the attributes 
“TimeStamp”, “EventName”, “MachineNumber” and “EmployeeNumber” is anno-
tated. Thus, the process dimensions “Event” and “Time” as well as the two context 
dimensions “Machine” and “Employee”, resp. the corresponding dimensional attrib-
utes, result. Next, the selected dimensions are enriched with available operational 
data, e. g. from ERP or CRM systems, defining operational sub dimensions. Hence, 
matching mechanisms are employed to map given operational attributes to dimen-
sional attributes of the standardized warehouse model. In this context, various tradi-
tional schema matching techniques [26] or ontology-based methods may be used. 
E. g., master data of machines and employees, like names and cost rates, are matched. 
Thus, the complete instantiated model of the Manufacturing Warehouse is based on 
concrete source data. 

Finally, transformation rules are defined to realize all identified mappings. For ex-
ample, transformations to convert proprietary event names or adjust different curren-
cies are created. These transformation rules are the basis for the development of the 
corresponding ETL processes populating the warehouse and calculating standardized 
facts, i. e., metrics. 

6 Prototypical Implementation and First Proof of Concept 

Our current prototypical implementation comprises a first relational version of the 
Manufacturing Warehouse, basic data transformation and data mining functionalities 
as well as a dashboard-oriented GUI and is described in [7]. In addition, we devel-
oped universal process-centric data mining use cases for Indication-based Manufac-
turing Optimization (IbMO) presented in [11]. We are currently realizing the above 
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instantiation and integration procedure in the Manufacturing Data Integrator, too. In 
the following, we demonstrate that the Manufacturing Warehouse in combination 
with IbMO enables the generation of novel insights for process improvement beyond 
traditional process warehousing approaches. 

In a first proof of concept we implemented the so called metric-oriented root cause 
analysis as an IbMO explication use case designed for production managers [11]. It 
aims at explaining categorized metrics of process instances, e. g., lead time, by pro-
viding comprehensible explication models, namely decision trees. E. g., reasons for 
excessive lead times can be identified. Moreover, we developed a sample scenario for 
a manufacturing process, the production of steel springs for the automotive industry, 
and generated corresponding data to load the Manufacturing Warehouse. On this ba-
sis, we conducted metric-oriented root cause analyses on lead times. The latter are 
categorized as “OK” or “too high” in our proof of concept. Two exemplary decision 
rules, that are based on the decision tree depicted in Fig. 6, are: 

• If the first machine in production step 1 was maintained more than 15 days ago 
and vendor V7 delivered the material processed in step 3, then lead time is typi-
cally too high. 

• If the former isn’t the case but the skill level of the first employee in step 2 is lower 
than level 4 and machine M2 is used, then lead time is typically too high. 

 

Fig. 6. Functional components of the prototype 
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These decision rules represent valid indications for concrete process improve-
ments, e. g., to enhance training for employees engaged in step 2 or improve mainte-
nance schedules for machines used in step 1. They demonstrate the fundamental  
feasibility and usefulness of the Manufacturing Warehouse in combination with suit-
able analytics. Based on the integration of operational and process data, the Manufac-
turing Warehouse enables the cross-correlation of all relevant aspects pertaining to 
process performance, e. g., machine- product-, material-, and employee-oriented as-
pects, in order to generate novel insights for process optimization. In contrast, typical 
traditional process warehouses are not aware of operational aspects like additional 
information on vendors of input material or employee training. In general, the univer-
sal holistic data model of the Manufacturing Warehouse can be used as a basis for 
various holistic analytics, ranging from holistic OLAP and reporting concepts to data 
mining-driven approaches like IbMO and pattern-based optimization. 

Fig. 6 shows the exemplary decision tree from which the above listed decision 
rules were deduced from as well as the necessary functional components of our proto-
type for metric-oriented root cause analyses. On top of the Manufacturing Warehouse, 
data transformation is concerned with data denormalization and data filtering which 
prepare data for pattern detection, i. e., decision tree induction. The relational struc-
ture of the warehouse is deduced from the above conceptual model. Further technical 
details about the prototype are given in [7], [11]. 

7 Conclusion and Future Work 

In this article we presented the Manufacturing Warehouse, a concept for a holistic 
manufacturing-specific process warehouse as central part of the overall Advanced 
Manufacturing Analytics Platform. It integrates operational and process data in a 
standardized multidimensional warehouse and is based on a generalized manufactur-
ing process meta model. In addition, we introduced a procedure for warehouse instan-
tiation and the integration of concrete source data. 

To demonstrate the usefulness and feasibility of the Manufacturing Warehouse, we 
described a first proof of concept comprising a process-centric data mining use case 
for Indication-based Manufacturing Optimization on top of the warehouse. 

In our future work, we plan to investigate application scenarios in discussion with 
industry partners comprising typical MES and ERP systems to further validate and 
extend the Manufacturing Warehouse. Moreover, we are going to refine it with re-
spect to the implementation of pattern-based optimization in manufacturing. 
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Abstract. In the relational data warehouses, each OLAP query shall
involve the fact table. This situation increases the interaction between
queries that can have a significant impact on the warehouse performance.
This interaction has been largely exploited in solving isolated problems
like (i) the multiple-query optimization, (ii) the materialized view se-
lection, (iii) the buffer management, (iv) the query scheduling, etc. Re-
cently, some research efforts studied the impact of the query interaction
on optimization problems combining interdependent sub-problems such
as buffer management problem (BMP) and the query scheduling problem
(QSP). Note that combining two complex problems usually increases the
complexity of the integrated problem. In this paper, we study the effect
of considering the query interaction on an integrated problem including
BMP and QSP (namely, BMQSP). We first present a formalization of
the BMQSP and show its hardness study. Due to high complexity of the
BMQSP, we propose an algorithm called queen-bee inspired from the
natural life of bees. Finally, theoretical and effective (on Oracle 11G)
experiments are done using the star schema benchmark data set.

Keywords: Multi-query optimization, Query Scheduling, Buffer Man-
agement, Query Interaction.

1 Introduction

Relational data warehouses (RDW) represent the ideal environment in which
complex OLAP queries interact with each other. These queries often have a lot
of common sub-expressions, either within a single query, or across multiple such
queries run as a batch. This is because binary operations (such as join) involve
the fact table of the RDW schema. This phenomenon is related to the prob-
lem of multi-query optimization (MQO). MQO aims to exploit (reuse) results
of common sub-expressions. This is a major cause of performance problems in
database systems [1]. Several research studies were focused on the modeling and
the exploitation of the query interaction. From modeling point of view, several
graph structures were proposed: multiquery graph [4, 21] and multiple view pro-
cessing plan [22]. It has been exploited by several research studies either in the
centralized and the distributed environments by proposing solutions for materi-
alizing and caching the intermediate results of the sub-expressions [18, 15, 14, 3].
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The selection of materialized views is one of the major problems that exploits
this phenomenon [22]. When materialized views are selected; their storage may
concern two main devices: the hard disk and the main memory. Materialized in-
termediate results are usually stored on the disk, especially, when a large number
of huge views is selected. Due to the growing size of the main memory, the inter-
mediate results become candidate for bufferisation (consequently stored in the
memory). This solution avoids the high cost of reading from or writing to disk.
In this case, the MQO impacts directly the buffer management problem (BMP).
Another important problem that may be impacted by MQO is the query schedul-
ing (QSP). The QSP consists in finding an ordering of the queries that reduces
the overall cost of processing queries. Recently, in [14], the authors propose a
method for selecting materialized views incorporating the QSP.

Fig. 1. Interaction between different
optimization techniques

Fig. 2. A MVPP for ten star join
queries

By exploring the most important studies related to QSP, we distinguish two
main classes: (i) partial query scheduling: it consists in finding the best order to
evaluate sub-expressions identified by the means of MQO (this problem is known
as NP-complete) [17, 18, 20] and (ii) entire query scheduling : it considers the
entire queries for the scheduling process [20, 14]. Usually, most studies done on
the buffer management in traditional databases, in general and in the RDW , in
particular, assume that queries are already ordered. As consequence, to execute
the first query of a given workload, the DBMS may perform the following tasks:
(1) it identifies the relevant disk pages; (2) it loads them in the main memory
cache and (3) it executes the query. The next query of the workload may get
benefit from the actual content of the buffer if it shares some intermediate results
with the first query. If not, DBMS repeats the same process as for the first one,
and so on. Based on this scenario, we claim that if the query scheduler has a
snapshot of the buffer content, it may reorder the queries to allow them getting
benefit from the buffer. This shows the strong interaction between the BMP
and the QSP [20, 9]. The complexity of the integrated problem including BMP
and QSP may be very high [20]. It is proportional to the number of queries of
the workload and the number of intermediate sub-expressions. To reduce this
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complexity, we propose in this paper to use the divide and conquer method. It
consists in dividing the queries of the workload into subsets treated separately.
This partitioning is performed based on the affinity between queries. To illustrate
our proposal, let us consider the following motivating example.

1.1 Motivating Example

We assume a workload with 10 OLAP queries, where each query may be repre-
sented by an algebraic tree. Due to the strong interaction between queries, their
10 trees may be merged to generate a graph structure called, Multiple View Pro-
cessing Plan (MVPP) [22] (Figure 3). The leaf nodes of MVPP represent the
tables of the RDW . The root nodes represent the final query results and the
intermediate nodes represent the common sub-expressions shared by the queries.
Among intermediate nodes, we distinguished: (i) unary nodes representing the
selection (σ) and the projection operations and (ii) binary nodes representing
join (��), union, intersection, etc. The intermediate results of the MVPP are can-
didates for bufferization. To show the interaction between BMP and QSP, we
propose to reorganize the initial structure of the MVPP by generating clusters of
queries, each one contains queries having at least one common node. Each cluster
is called hive. Figure 3 shows the results of clustering of our MVPP, where three
hives are obtained. In each hive, we elect a query to be the Queen-Bee. Once
elected all its common nodes are cached. Thus, queries in the same hive will be
ordered and get benefit from the buffer content. A long this paper, we detail the
hints announced in this example: (1) the identification of intermediate nodes,
(2) the generation of hives, (3) buffer allocation, (4) query scheduling, and (5)
validation of the proposal.

Fig. 3. An example for MVPP with clustered queries (hives)

This paper is structured as follows: Section 2 presents related works. Section
3 formalizes our combined problem and presents all ingredients of our approach.
Section 4 details our queen-bee algorithm. Section 5 gives experiments validating
our proposal in a simulated environment and on Oracle 11G DBMS. Section 6
concludes our paper by summarizing the main results and presenting some open
issues.
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2 Related Work

Several studies have shown the importance of the query interaction and its prac-
ticability in commercial DBMS [2, 14–16, 21, 22]. This interaction is mainly
related to an important problem of the physical design of RDW known by the
MQO. Note that each query can have several alternative evaluation plans, each
with a different set of tasks. Therefore, the goal of MQO is to choose the right
set of plans for queries which minimizes the total execution time by performing
common tasks only once. MQO is known as NP-hard problem [16]. The MQO
impacts other hard optimization problems such as materialized view selection
problem (MVSP) [22], BMP [7, 6, 8], QSP [5, 12] and the problem combining
BMP and QSP [19, 9, 20] as shown in Figure 1.

The BMP got a lot of attention from the database community, where it has
studied in different types of databases: (a) traditional databases [7, 6, 8], (b)
semantic databases [23], (c) data warehouses [15], (d) flash databases [13]. In the
first generation of studies related to BMP, solutions were proposed to allocate
pages and to replace them when the buffer is full using policies like LRU, FIFO,
etc. without considering the impact of the MQO. In the second generation, some
research efforts were concentrated on incorporating MQO in the buffer allocation
[7, 15], where algorithms for selecting common intermediate results to be cached
in a limited cache space were proposed.

Similarly, the QSP was studied in isolated way in several environments: cen-
tralized [20], distributed and parallel databases/data warehouses [12]. It has been
proved as a strongly NP-complete problem [9, 5, 12]. After, it has been mixed
with other optimization problems like the MVSP [14]. [19, 9] considered the
problem of caching and QSP in the context of RDW and proposed some heuris-
tics. [20] presented several issues related to the combination of BMP and QPS by
considering MQO problem. A complete hardness study was proposed and a ten-
tative of algorithms without a real validation is proposed. By summarizing the
few existing studies on combined BMP and QSP (BMQSP) considering MQO,
some observations are identified:

– they explore the large search space of the combined problem which may be
very large.

– they use simple cost models that ignore parameters related to the cache
content, the order of queries, the size of intermediate results of joins, the
characteristic of star join queries of RDW , etc.

– they do not validate their proposals using a real DBMS with large memories.

3 Formalization and Cost Models

In this section, we give some key concepts to facilitate the formalization of our
problem. We also give a hardness study and describe our cost model. In this
work, we consider some assumptions: (1) prior knowledge of the workload (of-
fline scheduling), (2) a centralized RDW environment and (3) the initial cache
content is considered as empty.
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3.1 Concepts and Formalization

Given a workload with n queries generated by user applications presented in a
queue. Based on their MVPP, some definitions are given (Figure 3).

Definition 1. The fan-out of a query is defined as the number of overlapping
nodes with other queries.

Definition 2. The overlapping accumulated cost of a query (noted OAC) is the
total execution cost of all its overlapping nodes with other queries. It represents
the participation of this query in the overall cost reduction.

To facilitate the understanding of the formalization of the combined problem
BMQSP, we start presenting a separate formalization of both BMP and QSP.

BMP is formalized as follows: (1) Inputs : (i) RDW , (ii) a workload with
a set of queries Q = {Q1, Q2, ..., Qn} represented by a MVPP, (iii) a set of
intermediate nodes of MVPP candidates for caching N = {no1, no2, ..., nol},
(2) Constraint: a buffer size B and (3) Output : a buffer management strategy
BM that allocates nodes in the buffer to optimize the cost of processing Q.

QSP is formalized as follows: (1) Inputs : (i) RDW , (ii) a workload with a set
of queries Q = {Q1, Q2, ..., Qn} and (iii) a BM . (2) Output : scheduled queries
QS = {SQ1, SQ2, ..., SQn}.

BMQSP is described based on the above formalizations as follows:

– Inputs : (i) ARDW and (ii) a set of queriesQ = {Q1, Q2, ..., Qn} represented
by a MVPP, (iii) a set of intermediate nodes of MVPP candidates for caching
N = {no1, no2, ..., nol} ;

– Constraint: a buffer size B;
– Output : (i) scheduled queries SQ = {SQ1, SQ2, ..., SQn} and (ii) a BM ,

minimizing the overall processing cost of Q.

3.2 Hardness Study

To compute the complexity of our BMQSP, we first relax the buffer management.
Exhaustively, a workload with n queries requires n! possible schedules. If we con-
sider the cache, the number of possible subsets of nodes candidates1 for buffer-

ization is given by:
l∑

i=1

(i!). Thus, simultaneous resolution of query scheduling and

buffer management needs an exploration of a search space of size: n!×
l∑

i=1

i!, where

n and l represent respectively, the number of queries and intermediate results.
This is because different solutions may potentially interact with each other. This
complexity motivates us to develop efficient and reasonable solutions.

1 We assume that a node is cached at most once during the workload runtime.



Queen-Bee 161

3.3 Cost Model

To quantify the quality of the solutions, we define a cost model to estimate the
number of inputs/outputs (I/O) required for executing the set of OLAP queries.
We describe the cost model in two cases: without caching and with caching.

Without Caching. Most studies using cost models for selecting optimization
structures ignore buffer management aspects. Therefore, the cost of a given query
Qi may be estimated as the sum of the costs of all joins, aggregations and
projections. More concretely, the cost of executing a query Qi involving several
joins between the fact table F and the dimension tables DQi = {DQi

1 , ...,D
Qi
ni

} is
composed of three types of operations : (1) first join (FJ), (2) intermediate result
(IR) and (3) final operation (AG) (aggregation, group by). More details about
joins order and estimating result sizes are available in [10].

We assume that each query Qi is represented by an ordered set of all the
operations of its plan : opQi

1 , opQi
2 , . . . opQi

li
/opQi

k ∈ {FJ, IR,AG} from the first join
till the final operation, with li the number of operations in Qi. We define a

function size(opQi
k ) estimating the result size of opQi

k . Recursively, we estimate

the cost of a query starting from the final operation opQi
li

as follows :

Cost(opQi
k ) =

⎧⎨
⎩

size(opQi
k ) if k = 1

size(opQi
k ) + Cost(opQi

k−1) if k ∈ [2, li]}
(1)

With Caching. To take into account cache management in our cost model, a

buffer content checking is required. The cost of an operation opQi
k is ignored if :

(i) its result is cached, or (ii) one of its successors (opQi
k+α with α > 1) is cached.

For this reason, we define a function b(opQi
k ) to check if the result of opQi

k is
present in the buffer (=1) or not (=0). Therefore, the execution cost will be :

Cost(opQi
k ) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

[
size(opQi

k )
]
×

li∏
j=k

b(opQi
j ) if k = 1

[
size(opQi

k ) + Cost(opQi
k−1)

]
×

li∏
j=k

b(opQi
j ) if k ∈ [2, li]

(2)

Total Cost. The total execution cost of the workload is estimated as the sum
of all queries cost: Total cost =

∑n
i=1 Cost(opQi

li
).

4 Queen-Bee Algorithm

To reduce the complexity of the combined problem, we propose an approach
inspired from the natural life of bees. It is illustrated in Figure 4. We choose to
present our approach incrementally since it concerns two main problems: BMP
and QSP. The basic idea behind our queen-bee algorithm is to partition the
queries of the MVPP and then for each hive, elect a query (queen-bee) to be
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executed first and its nodes will be cached. We associate the dynamic buffer
management strategy DBM[11] to our queen-bee algorithm. DBM mainly tra-
verses the query plan and, for each intermediate node (operation), it checks the
buffer content: if the result of the current operation is already cached, then no
need to load it from the hard disk, else it is cached while there is enough buffer
space. Once a node of a given hive is treated, its rank2 value is decremented.
When the rank of a node is equal 0, it will be removed from the buffer since it
is useless for coming queries.

Our query scheduler works on the clusters of queries (hives) and it shall order
the queries inside each hive according the buffer content. To do so, three modules
define our queen-bee algorithm: (1) generating of a query graph with connected
components (QGCC), (2) sorting the components (α-sort) which is optional
depending on whether queries have priority or not and (3) sorting queries inside
each component (β-sort). Contrary to the scheduling strategy proposed in [11]
(called dynamic query scheduler) that takes into account only the cache content,
our scheduler considers other parameters regarding the query execution cost,
the query fan-out and the overlapping accumulated cost of a query (OAC) (see
Definitions 1 and 2). These factors are used to sort nodes of each hive.

Fig. 4. Our methodology Fig. 5. An example of QGCC

Generating the Query Graphs with Connected Components. Starting
from MVPP, a QGCC representing hives is obtained. Vertices represent the
queries of each hive. Each vertex is tagged with a value C representing the I/O
cost of its corresponding query. An edge exists between two vertices if they have
common node(s). It is labeled by the number of the shared nodes. Figure 5 shows
the corresponding QGCC for the MVPP in Figure 2.

α-Sort. In our study, all queries have the same priority. Therefore, the required
data for two different hives are disjoint ({(Q1,Q7,Q4,Q6);(Q3,Q9,Q10);(Q2,Q8,Q5)} and
{(Q3,Q9,Q10);(Q1,Q7,Q4,Q6);(Q2,Q8,Q5)} have the same cost).

β-Sort. The queries inside each component need to be scheduled. For this reason,
β-sort takes each component and schedules its queries by performing two steps:
(1) identification of the Queen-Bee based on the chosen criterion (cost, fan-
out, OAC)3 (2) exploration of the rest of nodes (using the same criterion used

2 We define the rank value of a node noi as a counter representing the number of
queries accessing noi.

3 The choice of criterion is done by the database administrator.
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Fig. 6. Traversing the component by the minimal cost

Fig. 7. Traversing the component by the maximal fan-out

for selecting the queen-bee), and (3) once the connected component is entirely
traversed, return the obtained sub-schedule. Figure 6 gives an example of β-sort
using the cost criterion in ascending order. When we traverse the component
starting from the query having the minimal execution cost, the cost of vertices
which are not traversed yet is updated depending on cache content. The next
vertex to be visited is the one with minimal cost. The algorithm repeats the
operation while the component is not entirely traversed. This sort ”sacrifices”
the query with minimal cost by executing it first. This is because it will not
get any relevant data in cache. But, this same query will give relevant data for
the other queries which are more expensive, because they share at least one
overlapping node.

The fan-out criterion may also be interesting for choosing the Queen-Bee. The
idea is to start by the query giving more relevant data to others. The figure 7 gives
an example of β-sort of fan-out in descending order. We can easily observe that
theoretically, sorting by minimal cost gives different performance than sorting
by maximal fan-out 4. Sorting criteria are studied in the experimental studies.

5 Experiments

To validate our proposal, we conduct intensive experimental studies in both
theoretical and effective ways. The theoretical experiments are based on our
mathematical cost model and our simulation tool. The results by our simulations
are then implemented on Oracle11G.

5.1 Dataset and Workload

Our experiments are done on the Star Schema Benchmark (SSB of 100GB)
having a fact table Lineorder (6,000,000 ×SF tuples) and 4 dimension tables

4 In Figure 6, total cost=1000+600+600+4000=6200 I/O, and in Figure 7, total
cost=58000+800+800+100=59700 I/O.
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with a scale factor SF = 100. A server with 32 GB of RAM is used. We consider
thirty queries, detailed in [10], covering different types of OLAP queries.

5.2 Simulation Tool

To make easier our testing, we developed a simulation tool using a Java develop-
ment environment. It contains three main modules : (1) RDW connectivity and
meta-data extraction needed for the cost model, (2) Setting RDW parameters
and handle the workload and (3) optimization module handles different param-
eters (e.g. Buffer size), the choice of algorithms and the output detailing the
obtained solutions for administrators. If they are not satisfied by these results,
the optimization module gives them the possibility to tune some parameters.
Otherwise, administrators deploy them on Oracle11G using appropriate scripts.

5.3 Obtained Results

We start by studying the impact of criteria used to select the queen-bees of
all components: cost, fan-out and OAC. We run experiments by considering
ascendant sorting (minimal value) and descend sorting (maximal value) for each
criterion. Figure 8 summarizes the obtained results. The three factors give better
performance when they are used in an ascendant sorting. Note that a query with
a minimal fan-out or OAC is usually a query with few nodes (less operations).
This explains the fact that these two factors give similar results.

In [11], we proposed some algorithms to get a near optimal query scheduling
and its buffer management using respectively dynamic query scheduler
(DQS) and dynamic buffer management (DBM). In Figure 10, our previous
algorithms and the queen-bee are compared with results obtained using LRU
policy instead of DBM, and no scheduling instead of DQS. Different buffer pool
sizes are used to show its impact on the total performance. From these results,
we observe the following: (1) DBM is more adapted than LRU in our context;
(2) DQS evolves the efficiency of the buffer management policy; and (3) Queen-
Bee gives the same performance as the heuristics that use DQS and DBM. We
also notice that beyond a threshold of buffer pool space, query scheduling has
no effect on the final performance because all candidate nodes can fit in the
cache. That’s why the DBM without scheduling gives the same performance as
DBM-DQS and Queen-Bee at a buffer space of 32GB.

One of the motivations of our proposal is to prune the search space. In Figure
9, we can see that the queen-bee algorithm is much faster than the DBM-DQS
even though they give the same query performance.

5.4 Validation on Oracle11g

For validation, we deploy our simulation results on an Oracle 11g DBMS with
the same data set (SSB of 100GB and 30 queries). Queries are executed for
each solution schema obtained by our algorithms. To perform this validation,
queries are rewritten to take into account caching solution proposed by different
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Fig. 8. Different factors used in β-sort Fig. 9. Comparing Run time

Fig. 10. Comparing different algorithm’s performance

Fig. 11. LRU vs DBM : experiments with static schedule

Fig. 12. Deploying algorithms’ results Fig. 13. Deploying Queen-Bee results
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algorithms. The DBMS parameters are tuned to prepare buffer pool[11]. To
compare LRU with the DBM, we take the same workload in a static order on
Oracle 11g with 6GB of buffer pool. The queries are executed using: (1) no
buffer management, (2) LRU, and (3) our DBM. In Figure 11, we can observe
that LRU policy gives a good performance for some queries but not enough to
cover a larger number of queries as the DBM.

The validation of the simulation experience in Figure 10 is done on our DBMS.
Real performance is given in Figure 12 which shows the similarity with the
theoretical results. This proves the quality of our cost model. Figure 13 shows
the impact of Queen-Bee optimization on the workload performance. We can see
that the number of queries that have no benefit from cache content is 6 of 30
queries. This corresponds exactly to the number of query hives of our workload.
We can see that only the first query (the queen-bee) has no reduction in cost, but
all the remaining queries have important performance gain because of sharing
at least one common result.

6 Conclusion

The query interaction is one of the most important characteristics of data ware-
house applications. It has been exploited to solve several complex optimization
problems during the physical design phase of a data warehouse. Recently, it has
been exploited to solve problems combining other sub-problems such as buffer
management and query scheduling. This integrated problem is studied in this
paper. To tackle this problem, a methodology is given. It starts from a set of
queries obtained from user applications; and placed in a queue. Then, algebraic
trees of these queries are merged to form a graph, called multiple views process-
ing plan. The intermediate nodes of this plan are candidates for bufferization.
To avoid the explosion of evaluating each intermediate node and study its effect
on query scheduling, we propose an approach inspired from the natural life of
bees. It partitions queries into clusters (hives), and for each hive, a query is
elected (called queen bee). Once it is elected, all its nodes are potentially cached
in the buffer. Based on sorting mechanism, each hive is scheduled. This sorting
is based on three main criteria: the query cost, query fan-out and the overlap-
ping accumulated cost. Experimental studies were conducted by the use of a
simulator and its results are validated on Oracle11G. The obtained results are
encouraging and show the effectiveness of our queen-bee approach.

Actually, we are extending this work to handle queries defined on semantic
data warehouses. An interesting issue that should be considered concerns the
impact of the buffer management and the query scheduling on the horizontal
partitioning problem.
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Abstract. The computation of multidimensional OLAP(On-Line An-
alytical Processing) data cube takes much time, because a data cube
with D dimensions consists of 2D cuboids. To build ROLAP(Relational
OLAP) data cubes efficiently, existing algorithms (e.g., GBLP, PipeSort,
PipeHash, BUC, etc) use several strategies sharing sort cost and input
data scan, reducing data computation, and utilizing parallel processing
techniques. On the other hand, MapReduce is recently emerging for the
framework processing a huge volume of data like web-scale data in a
distributed/parallel manner by using a large number of computers (e.g.,
several hundred or thousands). In the MapReduce framework, the degree
of parallel processing is more important to reduce total execution time
than elaborate strategies. In this paper, we propose a distributed parallel
processing algorithm, called MRPipeLevel, which takes advantage of the
MapReduce framework. It is based on the existing PipeSort algorithm
which is one of the most efficient ones for top-down cube computation.
The proposed MRPipeLevel algorithm parallelizes cube computation and
reduces the number of data scan by pipelining at the same time. We im-
plemented and evaluated the proposed algorithm under the MapReduce
framework. Through the experiments, we also identify factors for perfor-
mance enhancement in MapReduce to process very huge data.

Keywords: Data Cube, ROLAP,MapReduce, Hadoop, Distributed Par-
allel Computing.

1 Introduction

Due to the advance of information technology and WWW(World-Wide Web) re-
cently, many applications require to manage a large amount data and to analyze
them in online over multi-dimensions. In order to handle these requirements ef-
ficiently, there have been a lot of researches on multidimensional data cubes [1].
The data cube is an essential part of OLAP(On-Line Analytical Processing),
which maintains aggregate results pre-computed over source data sets. It takes
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a lot of time to compute a data cube, because each data cube keeps the values
aggregated by every possible combination of dimensional attributes. If a source
table has T tuples, the cost of T ×2D is required to compute a data cube with D
dimensions. In order to reduce such high cost problem of the multidimensional
cube computation, many algorithms have been proposed [3,4]. These algorithms
are classified into several categories such as Relational OLAP(ROLAP), Multi-
dimensional OLAP(MOLAP), and Graph-based Methods [2].

This paper focuses on ROLAP cube computation because it can be easily
incorporated into existing DBMSs. GBLP [1], PipeSort [3], PipeHash [3], and
BUC [4] are examples of ROLAP cube computation. Some others proposed par-
allel processing algorithms [5, 6] (e.g., RP, BPP, ASL [6]). While these algo-
rithms use parallel processing computers/clusters consisting of several ten CPUs,
MapReduce emerging recently can use a large number of computers (e.g., sev-
eral hundred or thousands more). It becomes a popular framework to handle
efficiently a huge volume of data like web-scale data in distributed parallel man-
ner. Several algorithms [10–13] (e.g., MRCube [13]) based on the MapReduce
framework have been also developed. However these algorithms use bottom-up
approach to compute closed cubes and/or data cubes on holistic measurements.
The bottom-up approach has to load a set of data into main memory. In case
of computing full cubes rather than closed and iceberg cubes, furthermore, it is
less efficient than the top-down approach.

Recently, it is required to analyze and manage extremely large data such as
web data and social media. In order to handle these massive data, this paper
proposes MRPipeLevel, which is a distributed parallel data cube computation
algorithm under the MapReduce framework. The MRPipeLevel is based on the
existing PipeSort algorithm known as one of the most efficient ones for top-
down ROLAP cube computation. The MRPipeLevel algorithm parallelizes the
calculation of cuboids which are in the same level of a cube lattice and should be
sorted, and it also reduces the number of data scan by pipelining the computation
of several cuboids with the same sorting order at the same time.

In this paper, we implement and evaluate the proposed algorithm through
various experiments. We carry out various experiments with large scale high-
dimensional data and comparative experiments with MRNäıve, MRGBLP and
MRPipeSort (i.e., the MapReduce version of Näıve, GBLP and PipeSort algo-
rithms respectively) which are typical top-down ROLAP data cube algorithms.
Through the experiments, we found that the proposed algorithm is more effi-
cient than the others and effective to handle large-scale multidimensional data
through the MapReduce framework. We also identify the important factors for
performance enhancement in MapReduce to process very huge data.

2 Background

2.1 Data Cube

A data cube consists of measurements and dimensions which are the data to
analyze and the analysis criteria, respectively. The cube keeps aggregate values
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for the GROUP BYs of every possible combination of dimensions. The result for
each GROUP BY is called a cuboid, and all of cuboids forms a lattice structure
according to their inclusion relationship. Fig. 1 shows a cube lattice structure
built for sales data by year, store and item dimensions.

Aggregate functions, which calculate aggregate values stored in the cells of a
data cube, can be classified into three types as follows:

– Distributive: COUNT (),MIN(),MAX(), SUM()
– Algebraic:AVG(),standard deviation(),MaxN(),MinN(), center of mass()
– Holistic: Median(),Mode(), Rank()

Among these three types, distributive and algebraic functions could compute lower
cuboids by using upper cuboids in a cube lattice structure. In Fig. 1, the 〈Y ear〉
cuboid can be computed from the 〈Y ear, Store〉 cuboid. For example, if they use
measurements as SUM(Sales), the 〈Y ear, Store〉 cuboid has 〈2012, S1, ∗, 100〉,
〈2012, S2, ∗, 81〉, 〈2011, S1, ∗, 18〉, 〈2011, S2, ∗, 57〉, and 〈2011, S3, ∗, 32〉 cells.
These cells can be used to find out 〈2012, ∗, ∗, 181〉 and 〈2011, ∗, ∗, 107〉 cells for
the 〈Y ear〉 cuboid.With this inclusion relationship between cuboids, a cuboid can
be computed from several cuboids in its upper level. By taking advantage of this in-
clusion relationship, the cube computation time can be reduced. Several top-down
algorithms have been developed by using this concept.

Fig. 1. Examples of source data and cube lattice

2.2 MapReduce

MapReduce is a distributed parallel processing framework for massive data,
which was proposed by Google in 2004 and has been applied to various ser-
vices of Google. The MapReduce is being used in various applications and it
becomes a defacto standard in large-scale parallel processing fields. This paper
utilizes the MapReduce framework and the HDFS(Hadoop Distributed File Sys-
tem) [8] developed by an open source software development project, Hadoop [7].
As shown in Fig. 2, the data flow of the MapReduce is as follows: (1) input data
is split to deliver to map functions; (2) each map function stores the split input
data into its own in-memory buffer, and it partitions, sorts, and spills the input
data into disks; (3) the copy phase merges the partitions in the result of each
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Fig. 2. The data flow on MapReduce

map function; (4) the sort phase delivers the merged results to corresponding
reduction functions; and (5) each reduce function processes the delivered data
and output its final result to HDFS.

3 The Proposed Algorithm MRPipeLevel

The MRPipeLevel is an algorithm based on the PipeSort which generates the
minimum cost sort plan tree from a cube lattice. It computes a set of cuboids
sharing the same sort order together with one scan of source table (or another
cuboid) by pipelining the computation of these cuboids. The proposed MR-
PipeLevel incorporates a distributed parallel processing strategy for the PipeSort
in the MapReduce framework which maximizes the degree of parallelism and
minimizes the number of MapReduce phases and the number of data scans.

3.1 Sort Tree with Pipeline

The MRPipeLevel builds sort trees and pipelines from a cube lattice structure
to compute data cubes efficiently. The sort trees represent the cuboids which
don’t share the sort order of their parent cuboids thus have to sort these parents
to compute them. For example, Fig. 3 includes two sort trees whose root nodes
are represented as dotted circles (i.e., ABC and AC cuboids with dotted circles).
The tree in the middle of the figure shows that the cuboid BC is computed by
sorting the cuboid ABC in the order of AB and the cuboid AC by sorting the
ABC in the order of AC. In order to reduce the number of MapReduce phases
and to maximize the degree of parallelism, the MRPipeLevel processes each sort
tree level by level which all the cuboids in the same level are sorted together from
their parents by one MapReduce phase. Thus three MapReduce phases are used
to process the sort trees in the example of Fig 3. After computing the cuboids
in sort trees, the MRPipeLevel executes the other cuboids with pipelines.
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Fig. 3. The example of Cube Execution Pipe Tree

3.2 Pipelines

Pipeline Aggregation. The MRPipeLevel’s pipeline technique is a method
used in the PipeSort algorithm [3], which computes several child cuboids without
sorting if they correspond to their parent cuboid’s prefix. As shown in Fig. 4,
the AB, A, and 〈all〉 cuboids can be calculated in the course of calculating
the ABC cuboid by the pipeline technique, without sorting and scanning input
data repeatedly. When carrying out pipeline aggregation on the first tuple, for
example, it computes ABC: 〈1 1 1, 1〉, AB: 〈1 1 ∗, 1〉, A: 〈1 ∗ ∗, 1〉, all:
〈∗ ∗ ∗, 1〉, and for the second tuple, it does ABC: 〈1 1 1, 2〉, AB: 〈1 1 ∗, 2〉, A:
〈1 ∗ ∗, 2〉, all: 〈∗ ∗ ∗, 2〉. If aggregating the third tuple, 〈1 1 1, 2〉 is emitted
as a resulting cell of the ABC cuboid and it produces ABC: 〈1 1 3, 1〉, AB:
〈1 1 ∗, 3〉, A: 〈1 ∗ ∗, 3〉, all: 〈∗ ∗ ∗, 3〉. When accepting the fourth tuple,
〈1 1 3, 1〉 and 〈1 1 ∗, 3〉 are emitted as the resulting cells of ABC and AB
cuboids respectively. If we use such a pipeline aggregation, all cells of the ABC,
AB, A, and 〈all〉 cuboids can be computed together by scanning input data once.
The MRPipeLevel minimizes the computation time by exploiting this pipeline
aggregation by distributed processing within a MapReduce phase.

Fig. 4. The example of Pipeline aggregation
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Multi-pipeline Aggregation. In the MRPipeLevel, multiple pipelines can be
simultaneously executed within one MapReduce phase. Fig. 5 shows an exam-
ple sort plan tree for a 5-dimensional data cube. It contains three aggregation
pipelines starting from ABCE, ABDE, ACDE, BCDE cuboids, while these four
cuboids can be computed from the top cuboid ABCDE. The MRPipeLevel ex-
ecutes all of these three pipelines in parallel by one MapReduce phase. That is,
ABDE, ABD, ACDE, ACD, AC, BCDE, BCD, BC and B cuboids are computed
by one MapReduce phase to maximize the degree of parallelism.

Fig. 5. The example of Multi-Pipeline aggregation

3.3 MapReduce Data Flow of MRPipeLevel

Fig. 6 is an example for a data flow in the process carried out by the MR-
PipeLevel. As shown in the figure, three MapReduce processes are carried out
for three-dimensional input data. At the first MapReduce phase, the map func-
tion emits a cell corresponding to the ABC cuboid for the original data. The
emitted cells of the ABC cuboid are aggregated for the same cell. At the second
MapReduce phase, the map function uses the ABC cuboid as an input to emit
cells of the AC and BC cuboids. The reduce function computes the AC and BC
cuboids to emit them. At the third MapReduce phase, the map function uses
the AC cuboid as an input to emit the C cuboid’s cell, and the reduce function
computes the C cuboid to emit. At the fourth MapReduce phase, it computes
the AB-A-all and B cuboids, which comprise of pipelines. However, because the
ABC and BC cuboids used as input data are the sorted data, the reduce function
is not operated and the result could be computed immediately.
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Fig. 6. The example of MRPipeLevel data flow

3.4 MRPipeLevel Algorithm

Algorithm 1 is theMRPipeLevel algorithmwhich consists of the Map(), Reduce(),
MultiPipeMap(), and MRPipeLevel() procedures. However, the
MRPipeLevel algorithm includes the features creating sort tree and pipelines from
a cube lattice and processingMultiPipeMap() procedure for multi-pipeline aggre-
gation. First, the MRPipeLevel() procedure traverses a cube lattice level by level,
finds the cuboids sharing the same prefix and connects them by a pipeline, and
constructs SortTrees for the other cuboids with the minimum cost matching. If the
whole cube lattice is traversed, all the pipelines computablewithout sorting and the
SortTree requiring sorting are constructed. First, the Map() and Reduce() are car-
ried out for the SortTree, then the MultiPipeMap() is conducted for the pipeline.

MRPipeLevel. MRPipeLevel() procedure traverses a cube lattice level by level
and constructs pipelines of cuboids with the same prefix and sort trees of the
other cuboids. For each sort tree, Map() and Reduce() functions are executed.
Then MultiPipeMap() procedure is invoked for the pipelines.

MultiPipeMap. The MultiPipeMap() procedure processes aggregation for the
pipeline introduced in the section 3.2, and it can process the multi-pipeline
aggregation together. Looking at the algorithm, there could be one or more
pipelines in the pipeline P , and each pipeline’s cuboid has a space to store a cell.
Comparing each cuboid’s cell with the cell coming into as input, measurement
is computed to store for the identical cell, the existing cell is emitted for the
non-identical cell, and the entered cell is stored.
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Algorithm 1. MRPipeLevel

1: procedure MRPipeLevel
2: for all level k in cube lattice do
3: Pipelines P ← P ∪ FindPrefixCuboid(k + 1→ k)
4: SortTree S ← S ∪ MinimumCostMatching(k + 1→ k)
5: end for
6: for all SortSubTree sk in S do
7: R ← R ∪ Map(sk) ∪ Reduce()
8: end for
9: R ← R ∪ MultiPipeMap(P )
10: return R
11: end procedure

12: procedure Map(S) � S is a Sort Tree
13: for all parent cuboid P in S do
14: for all child cuboid C in S do
15: C(cell,measure)← P (cell,measure)
16: emit (cell,measure)
17: end for
18: end for
19: end procedure

20: procedure Reduce
21: measure ← aggregation(m1,m2, · · · ,mn) � measure � m1,m2, · · · , mn

22: emit (cell, measure)
23: end procedure

24: procedure MultiPipeMap(P ) � P is a Pipelines
25: M ← function(m1,m2, · · · ,mn) � measure � m1,m2, · · · , mn

26: for all cuboid C in P do
27: if cell = cell c in C then
28: measure ← aggregation(measure ∪ M)
29: else
30: emit (cell,measure)
31: end if
32: end for
33: end procedure

4 Experiments

4.1 Experimental Setup

In the experiments, we used 1 NameNode, 20 DataNodes, and total 21 PCs
in a cluster. The NameNode is equipped with Intel Pentium 4 3.0GHz CPU,
1GB RAM, and a 400GB HDD. The DataNodes are equipped with Intel Pen-
tium 4 3.0GHz CPU, 512MB RAM, and a 150GB HDD. The operating system
is Ubuntu Linux, the Java version is JDK 1.6, and the MapReduce framework is
Hadoop 0.20.2. The network speed is 1G bps. In the experiments, we compare
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our MRPipeLevel algorithm to four algorithms: MRNäıve algorithm (which is a
näıve MapReduce algorithm), MRLevel algorithm (which parallelizes the com-
putation of cuboids in each level), and MRGBLP [12] and MRPipeSort (which
are the MapReduce version of GBLP [1] and PipeSort [3, 5], respectively).

4.2 Varying the Number of Tuples

Fig. 7 shows the elapsed time for cube computationbyvarying thenumber of tuples,
where we increase the number of tuples from 20million to 100million. As shown in
the figure, MRNäıve algorithm execution time increases significantly as the data
size increases. For the other algorithms, the difference of cube computation time
is not significant. However, MRPipeLevel algorithm shows the smallest execution
time and MRLevel algorithm shows a similar rate with MRPipeLevel algorithm.

Fig. 7. Elapsed time by varying the number of tuples

4.3 Varying the Number of Dimensions

Fig. 8 shows the elapsed time obtained by varying the number of dimensions.
In this experiment, we set the number of tuples to 50 billion and we increase
the number of dimensions from three to nine by one. As shown in Fig. 8, MR-
PipeLevel algorithm is fastest in all dimensions and MRNäıve algorithm is slow-
est. In the case of 9 dimensions, MRPipeSort and MRLevel algorithm does
not work because they emit too much data. MRGBLP algorithm is faster than
MRNäıve and MRPipeSort faster than MRLevel. MRGBLP and MRPipeLevel
are processed normally up to 9 dimensions or higher dimensions.
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Fig. 8. Elapsed time by varying the number of tuples

4.4 Varying the Number of Nodes

Fig. 9 is a comparison among algorithms as increasing the number of nodes.
Fig. 9 measured the execution time of each algorithm for 50 billion tuples with
5 dimensions as increasing the number of nodes from 4 to 20. From the result,

Fig. 9. Elapsed time by varying the number of nodes
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5 dimensions as increasing the number of nodes from 4 to 20. From the result, we
can observe that the execution time of every algorithms decreases as the number
of nodes increases. MRPipeLevel algorithm is fastest in all nodes and MRNäıve
algorithm reduces the execution time the most significantly. Up to 12 nodes, the
execution of every algorithms is reduced in a meaningful degree. But for more
than 16 nodes, the computation time is enhanced in smaller degree, because it
is getting saturated.

5 Conclusion

There have been many data cube computation algorithms but they are not
suitable for a high degree of distributed parallel processing. In this paper, we
proposed MRPipeLevel algorithm to effectively compute the data cube using
the MapReudce framework utilizing a large number of PCs. The MRPipeLevel
algorithm extracts the execution plan of sort tree and pipeline on a cube lattice
structure. Cuboids in sort tree minimize scan cost for each level at a time by
MapReduce using distributed parallel computation. Cuboids in pipelines are
computed at once using sorted cuboids without emitting the data on each node.
Thus, MRPipeLevel algorithm reduces the computation time of full cubes using a
strategy of parallel processing as much data as possible and reducing the number
of data scan.

In this paper, we implement and evaluate the MRPipeLevel algorithm through
various experiments. We carry out various experiments with both low-dimensional
and high-dimensional data, and we also perform comparative experiments with
other MapReduce data cube algorithms which are typical top-down ROLAP data
cube computation algorithms. Through the experiments, we show that the pro-
posed MRPipeLevel outperforms the other top-down algorithms in every cases.

Acknowledgements. This work was supported by Basic Science Research Pro-
gram through the National Research Foundation of Korea (NRF) funded by the
Ministry of Education, Science, and Technology (2011-0011824).
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Abstract. Parallel data processing complicates the completion of string
similarity joins because parallel data processing requires the use of a
well designed data partitioning scheme. Moreover, efficient verification
of string pairs is needed to speed up the entire string similarity join pro-
cess. We propose a novel framework that addresses these requirements
through the use of edit distance constraints. The Landmark-Join frame-
work has two functions that reduce two kinds of search spaces. The first,
q-bucket partitioning, reduces the number of verifications of dissimilar
string pairs and lowers skewness among buckets. The second, local up-
per bound calculation, prunes the search space of edit distance to speed
up each verification. Experimental results show that Landmark-Join has
good parallel scalability and that the two proposed functions speed up
the entire string similarity join process.

1 Introduction

String similarity joins enumerate similar string pairs in a given data set on
the basis of the distances between strings. They have attracted much attention
recently because of the wide range of their potential application, including simi-
lar DNA sequence discovery, duplicate record detection, and record linkage. An
overall join process is time consuming because it involves much verification (i.e.,
calculation of the distance between strings and judgment of whether they are
similar or not). Various approaches based on different distance measures have
been proposed for completing the string similarity join process quickly and effi-
ciently. In particular, we focus on edit distance, which is sensitive to differences
between characters.

Since most existing methods for completing the string similarity join process
are based on the assumption of centralized processing [1–4, 6, 9–11, 13–15],
their processing speed drops drastically when dealing with a large amount of
data. The key to overcoming this problem is to use parallel data processing,
that is, to partition input data into small buckets so that each bucket can be
processed independently. However, parallel string similarity joins suffer from
skewness among buckets and string duplication: the number of strings among
buckets is often skewed because of data skewness and a string pair may be
verified in more than one bucket unlike equi-joins. We thus need a well designed

A. Cuzzocrea and U. Dayal (Eds.): DaWaK 2012, LNCS 7448, pp. 180–191, 2012.
c© Springer-Verlag Berlin Heidelberg 2012



Landmark-Join: Hash-Join Based String Similarity Joins 181

partitioning scheme and an efficient verification technique for use in each bucket.
Vernica et al. proposed using MapReduce to compute parallel string similarity
joins following data partitioning [12]. However, the token frequency statistics
must be calculated in an additional preprocessing step. In addition, they did not
focus on making the verification efficient.

We have developed a novel framework that addresses the need for awell designed
partitioning scheme and an efficient verification technique. Our Landmark-Join
framework is based on a hash-join approach and has two functions of Landmark-
Join that reduce two kinds of search spaces. The first, q-bucket partitioning,
partitions input data into small buckets (without any preprocessing) and thereby
reduces the number of candidate similar string pairs. The second, local upper
boundcalculation, prunes candidate shortestpaths to speedupeachverification.
Furthermore, we prove by theoretical analysis that the skew among buckets can be
reduced by using parameter q, which is the length of a bucket label. Experimental
results show that Landmark-Join has good scalability and that the two proposed
functions speed up the entire string similarity join process.

The rest of this paper is organized as follows: The preliminaries are covered
in the next section. Section 3 presents the overall framework of Landmark-Join
and explains the two search space reduction functions. Section 4 describes the
partition and join algorithms. The experimental results are presented and dis-
cussed in Section 5. Section 6 discusses related work, and Section 7 summarizes
the key points and mentions future work.

2 Preliminaries

We start by defining the problem and describing the techniques used.
Let Σ be a finite domain (a set) of all unique characters and an input data set

X be a set of strings on the domain Σ. That is, a string x inX is a finite sequence
composed of Σ elements. The notation | · | is used to denote set cardinality.
Therefore, |X | is the number of strings in X , and |x| represents the length
of string x. For 0≤ k≤ |x|, x[k] denotes the k-th character in x, where x[0]
corresponds to empty character (‘’). In this paper, x[0] is not counted in any
set cardinality (e.g., |Σ| and |x|). Take x=“abbccd” for example. We know |x|=
6x[0]=‘’x[1]=‘a’and |“”|=0. We use xq

i to represent a substring in x with a length
of q starting from the i-th character. If x=“abbccd”, then x3

0=“abb”x
3
4=“ccd”and

x3
2=“bbc”. The special substring xk

0 is called prefix. Similarly, x
|x|−k+1
k is called

suffix. Because of space constraints, we will often use x∞
k in place of x

|x|−k+1
k , and

let x0
k=“”. The tuple (·) is an instance of a set of attributes where each attribute

has a domain. A string pair is represented as a tuple (x, y), where strings x, y
are attribute values.

Definition 1. Given two string sets, X and Y , and distance threshold τ , a
string similarity join finds all string pairs and their distance d, {((x, y) , d)}, for
which d ≤ τ .
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A join is a self-join when X=Y . For the ease of exposition, we will focus on the
self-join case in this paper.

Edit Distance. The edit distance between two strings is defined as the mini-
mum number of atomic edit operations needed to transform one string into the
other using insertion, deletion, or substitution of a single character. Let ed(x, y)
represent the edit distance between strings x and y. We can derive a value for
the edit distance between two strings on the basis of dynamic programming [7].

ed(xi
0, y

j
0)=

{
max(|xi

0|, |yj
0|) (i=0 ∨ j=0)

min
(
ed(xi−1

0 , yj
0)+1, ed(x

i−1
0 , y−10 )+θ, ed(x

i
0, y

j−1
0 )+1

)
(otherwise)

Here, θ is 0 if x[i]=y[j] and 1 otherwise. Note that there is an upper bound of
edit distance known generally: ed(x, y)≤max(|x|, |y|).

As an example, consider the strings x=“ceasar” and y=“caesar”. The edit
distance between them is calculated using the matrix shown in Figure 1(a). The
value in the i-th row and the j-th column (i.e., element (i, j)) corresponds to the
edit distance between prefixes ed(xi

0, y
j
0). The (6, 6)-element corresponds to edit

distance ed(x, y).

(a) (b)

Fig. 1. Example of edit distance calculation

Shortest Path Search on an Edit Graph. Calculating the edit distance of
a string pair (x, y) is equivalent to searching for the shortest path by using a
weighted grid graph, Gx,y(V,E,w). We call such a graph an edit graph and use
it to simplify our discussion. Let V be a vertex set. A vertex vi,j∈V corresponds
to a character pair (x[i], y[j]) and has weighted edges to the neighbor vertexes.
Edges in set E have a weight of 1, but only if x[i]=y[j]; the corresponding edge
from vi−1,j−1 to vi,j has a weight 0. The edit distance of the string pair (x, y)
corresponds to the shortest path length from the vertex v0,0 to v|x|,|y| on the
edit graph Gx,y.

An example edit graph for x=“ceasar” and y=“caesar” is shown in Figure 1(b).
The vertex v0,0 is the start point, and the vertex v6,6 is the end point. Edges
attached “0” have a weight 0; the other edges have a weight 1. The three paths
in bold are the shortest, and their lengths represent the edit distance, 2. We call
an edge with a weight 0 a 0-edge.
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Prefix Filtering. We apply a general filtering technique, Prefix Filtering, which
is widely used to filter out dissimilar candidate string pairs [4, 13, 15]. It works
by excluding a string pair (x, y) from consideration if x and y do not share any
characters within their prefixes, which have a length of τ+1, because ed(x,y) > τ
for a given threshold.

3 Landmark-Join

We first describe the overall framework of Landmark-Join. It is composed of
three phases: partition, join, and aggregation (see Figure 2). Let τ be the given
distance threshold and q a user-specified parameter. First, in the partition phase,
each input string is assigned to at most

(
τ + q

q

)
different buckets. The details of

this partition technique are described in 3.1, q-bucket partitioning. Next, in the
join phase, the string pairs in each bucket are verified, and a local set of similar
pairs is obtained. The verifications for each bucket are speeded up by calculating
the local upper bound rather than the edit distance. The local upper bound is
formally presented in 3.2. Finally, in the aggregation phase, the local results are
aggregated, and a complete set of similar pairs is output. Landmark-Join does
not generate false positives or false negatives.

Fig. 2. Landmark-Join framework (τ=1, q=1)

Fig. 3. Search space of
candidate paths travers-
ing two pinned land-
marks in edit graph

Before providing formal definitions, we give intuitive explanations of q-bucket
partitioning and local upper bound calculation. Let x and y be similar strings
(ed(x, y) ≤ τ), and Gx,y be the corresponding edit graph. An important intuition
underlying our idea is that the shortest path on Gx,y is likely to traverse many
0-edges (as seen in Figure 1(b)). With a user-specified parameter q, we partition
the input data into small buckets so that there are only string pairs with paths
through at least q 0-edges in each bucket. Note that we assume here that all
input strings have a enough long length (more than equal to τ + q), to simplify
the explanation. Buckets have a unique string with a length of q as a bucket
label. Thus, input strings sharing q characters c1, · · · , cq are distributed to a
same bucket with the label c1 · · · cq. This strategy results in a massive number
of dissimilar string pairs being left out of consideration.
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We similarly explain the function used to speed up verification. Figure 3 shows
the search space for the edit graph of a pair “caesar” and “ceasar” assigned to
a bucket labeled “as” (q=2). That is, “caesar” and “ceasar” may be similar
because they share the label components ‘a’ and ‘s’. Thus, in that bucket, only
those paths that pass pinned 0-edges (v2,1, v3,2) and (v3,3, v4,4) are checked as
shortest path candidates. The other paths (dashed-lined edges) are ignored. The
local shortest path with led length from the vertex v0,0 to the vertex v6,6 can be
derived by using led=ed(“ce”, “c”)+ed(“”, “e”)+ed(“ar”, “ar”). This calculation
is less expensive than that of edit distance ed(x, y) because the search space is
obviously much smaller. In this paper, we call such a pinned 0-edge a landmark,
i.e., (v2,1, v3,2), and (v3,3, v4,4) are landmarks.

Of course, a local shortest path is not always the shortest one on an edit graph
Gx,y. That is, it may be that ed(x, y) ≤ led. However, at least one of the local
shortest paths is the globally shortest path because all global shortest paths of
similar string pairs necessarily pass many 0-edges, i.e., at least q 0-edges.

3.1 q-Bucket Partitioning

We now formally define q-bucket partitioning, i.e., the partition phase in the
Landmark-Join framework. We first explain how to assign strings with a length
more than equal to τ+q to buckets. Then we explain the case of short strings.

Definition 2. Let s be a bucket label, which is a sequence of q characters. The
label s is detected from a string x if there exists a position list with a size of q
such that Px;s={i1, . . . , iq|s[1]=x[i1] ∧ · · · ∧ s[q]=x[iq ]}.
Given an input data set, the framework first traverses each string x, detects all
bucket labels with q length from x, and assigns x to all buckets corresponding
to those labels. Because a string x has

( |x|
q

)
bucket labels in total, a significant

number of bucket labels will be detected for a string if |x| is large. To reduce
detection cost, we limit the number of bucket labels detected for a string by using
the principle of Prefix Filtering and thus derive a following pruning technique.

Lemma 1. Bucket Label Pruning If ed(x, y) ≤ τ holds for strings x and y,
their prefixes with a length of τ + q share at least one bucket label.

Therefore, we detect
(

τ+q
q

)
bucket labels not for a full string but for its prefix,

xτ+q
0 , and assign x to at most

(
τ+q
q

)
buckets corresponding to the detected labels.

In many cases, τ+q is small enough relative to |x| so that Bucket Label Pruning
effectively reduces the cost of bucket label detection.

As an example of bucket label detection, we again consider strings “caesar”
and “ceasar,” this time assuming τ=2 and q=2. Figure 4 lists all

(
6
2

)
=15 bucket

labels for full strings and the corresponding position lists. Identical labels may
be detected from a string more than once, for example, “ca” is detected twice
from “caesar” with position lists {1,2} and {1,5}. The labels in gray areas are
ignored by Bucket Label Pruning because they are not included in the prefix
with τ+q length. Ignoring the gray areas, we can see that “caesar” and “ceasar”
will be verified in five buckets since they share five unique labels (underlined).
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Fig. 4. Bucket labels for “caesar” and “ceasar”
(τ=2, q=2)

Fig. 5. Bucket labels for “An”
(τ=2, q=2)

Bucket Assignment for Short Strings. Here we consider how to assign
strings with a length less than τ+q to buckets. This can be achieved in a manner
similar to that above.

We start by introducing a special character, ‘*’, that does not belong to the do-
mainΣ. For a string x, if |x|<τ+q, a temporal string x′ with τ+q length is generated
by appending τ+q−|x| instances of this special character to the tail of x, and bucket
labels with q length are generated from x′. Any successive ‘*’ (e.g., “***”) in a la-
bel are considered to be one ‘*’, and elements i in a position list are eliminated such
that i>|x|+1 because they are redundant information. Finally, x is assigned to ap-
propriate buckets in accordance with the labels detected. This approach does not
violate our basic idea that the shortest path for a similar string pair pass at least q
0-edges, so all similar string pairs always meet in at least one bucket.

We present an example in Figure 5, where τ=2 and q=2. Six labels are detected
for a temporal string “an**” by appending two special characters to the tail of
the original string “an”. After eliminating redundancy, we get four bucket labels

from “an”. Theoretically, at most
∑min(q,|x|)

k=max(0,|x|−τ)
( |x|

k

)
bucket labels are detected

from a string x with a length less than τ+q.

Analysis of Bucket Skewness. String data sets are often skewed since the
strings follow a Zipf-like distribution. Thus, bucket sizes are often skewed. While
use of a large q results in the duplication of many strings, it also results in a huge
number of buckets and thus reduces the skewness among buckets. How does it af-
fect joining cost? Let Sl be a set of all bucket labels which have l characters except
the special character ‘*’. The occurrence probability of a label s ∈ Sl is approxi-
mated by the product of a label length weight ul and

1
q+1

∏l
k=1 p(s[k]), where p(·)

is a frequency distribution of characters in input data. The number of strings in
a bucket with the label s is approximated by ms≈ ul

q+1

∏l
k=1 p(s[k])

(
τ+q
q

)|X |. Let
Nq be

(
τ+q

q

)|X |. The theoretical cost of joining entire buckets is approximated
as follows.

q∑
l=0

∑
s∈Sl

m2
s≈

q∑
l=0

∑
s∈Sl

N 2
q

u2
l

(q+1)2

l∏
k=1

p(s[k])2=
N 2

q

(q+1)2

q∑
l=0

u2
l

l∏
k=1

∑
c∈Σ

p(c)2

=
N 2

q

(q+1)2

q∑
l=0

u2
l α

l (1)

We denote by α a constant
∑

c∈Σ p(c)2. For ul, we use a Binomial distribution
for string lengths in input data, ul=bin(l), if l<q; otherwise, ul=

∑∞
k=q bin(k).

Note that 0≤l≤q.
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Figure 6 plots Formula 1 for three synthetic data sets with different skewness
where we apply a Zipf distribution to p(·). It shows that the total joining cost
increases with the data skewness. Moreover, an appropriate value of the param-
eter q reduces the joining cost because a vast number of buckets lowers skewness
among buckets. However, too large q duplicates so many strings and thus takes
much cost for joining. Optimizing q is left for future work.

Fig. 6. Theoretical joining cost for three synthetic data sets with different skews

3.2 Local Upper Bound Calculation

We now formally define the local upper bound calculation, which corresponds to
the join phase in the Landmark-Join framework and speeds up each verification.
To simplify the explanation, we focus on strings with a length more than equal
to τ + q. However, we can discuss the case of short strings in a similar fashion.

As mentioned above, we try to find, for each bucket, the local shortest path
that passes at least q 0-edges (landmarks) on the edit graph.

Definition 3. If a label s is detected for a string x in accordance with a position
list Px;s, we derive an interval list Ix;s such as Ix;s[k]=Px;s[k]−Px;s[k−1]−1, where
1≤k≤q−1 and Ix;s[0]=Px;s[0]−1. We use notations Ix and Py instead of Ix;s and
Px;s if it is obvious from the context.

We define the local shortest path length (i.e., local edit distance) of a string pair
(x, y) in a bucket with the label s as

led(x, y; s)=ed(x
Ix[0]
0 , y

Iy [0]
0 )+

q−1∑
k=1

ed(x
Ix[k]
Px[k−1], y

Iy [k]

Py [k−1])+ed(x
∞
Px[q−1], y

∞
Py [q−1]). (2)

Lemma 2. Let S be the set of detected bucket labels shared by a similar string
pair (x, y); the edit distance is specified as ed(x, y)=mins∈S led(x, y; s).

To reduce search spaces more effectively, we introduce a novel upper bound for
the local edit distance.

Definition 4. For a string pair (x, y) in a bucket with the label s, the local upper
bound, lub(x, y; s), for the local edit distance, led(x, y; s), is

lub(x, y; s)=

q−1∑
k=0

max(Ix[k], Iy[k]) + ed(x∞
Px[q−1], y

∞
Py [q−1]). (3)
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Lemma 3. From Lemma 2, ed(x, y)≤led(x, y; s)≤lub(x, y; s) for each s∈S.
Consider a label set S′ such that ed(x, y)=led(x, y; s′) for all s′∈S′. There exits

at least one label s′′∈S′ such that ed(x
Ix[k]
Px[k−1], y

Iy[k]

Py [k−1])=max(Ix[k], Iy[k]) for

any k. That is, lub(x, y; s′′)= led(x, y; s′′)=ed(x, y). Thus, we can get the edit
distance from the local upper bound for each bucket.

Theorem 1. The edit distance can be derived as ed(x, y)=mins∈S lub(x, y; s).

Thus, we derive an additional pruning method.

Lemma 4. LUB Pruning Given the threshold τ and the parameter q, a string
pair (x, y) can be pruned under the bucket labeled s if

∑q−1
k=0 max(Ix[k], Iy[k])>τ

or ed(x∞
Px[q−1], y

∞
Px[q−1])>τ−

∑q−1
k=0 max(Ix[k], Iy[k]).

Again we take as an example strings “ceasar” and “caesar”. Figure 7 presents
the search spaces for the local upper bound for the five buckets to which strings
are assigned. More paths can be ignored than in the search spaces for the local
edit distance. Moreover, the searching can often be terminated earlier due to the
use of LUB Pruning.

Fig. 7. Search spaces for local upper bound of “caesar” and “ceasar” (q=2)

4 Algorithms

Three algorithms are used in Landmark-Join corresponding to the partitioning
phase, join phase, and aggregation phase (Figure 2). These algorithms are given
string data, a distance threshold, and a parameter q and output the set of similar
string pairs. One of the many existing algorithms can be used for the join phase.
Here, as a simple example, a nested-loop algorithm is used.

Algorithm 1 shows the pseudo code for the partition function. For each input
string x, it detects all position lists by using Bucket Label Pruning. Then, for
each position list P , it creates the corresponding label and interval list I and
appends a tuple of the string x, I, and the tail position of P to the corresponding
bucket.

The simjoin function is called for each bucket process and finds all local sim-
ilar string pairs in the bucket. Here, we use the simplest algorithm, nested-loop,
in our framework (Algorithm 2). It receives each pair of (x, Ix, px) and (y, Iy, py)
from a given bucket and verifies them with LUB Pruning. If the verification re-
turns true, it appends a pair of the string pair and the local upper bound to the
set of the local results.



188 K. Narita, S. Nakadai, and T. Araki

Algorithm 1. partition

Input: string data Xthreshold τparameter q
Output: set of buckets BucketsSet
1. BucketsSet ← ∅
2. for all x ∈ X do
3. PosListsSet ← ∅
4. PosListsSet ← detect all pos lists with label pruning(x)
5. for all P ∈ PosListsSet do
6. label ← make label(x,P); I ← make interval list(P)
7. Bucket ← BucketsSet.getBucket(label)
8. append(Bucket, (x,I,P [|P| − 1]))
9. end for
10. end for

Algorithm 2. simjoin (self-join)

Input: bucket Bucket, threshold τ , parameter q
Output: a local set of similar string pairs LocalResult
1. LocalResult ← ∅
2. for all (x, Ix, px) ∈ Bucket do
3. for all (y, Iy, py) ∈ Bucket do
4. interval ← ∑q−1

k=0max (Ix[k], Iy [k])
5. if Verify(x∞

px , y
∞
py , τ − interval) is true then

6. append
(
LocalResult,

(
(x, y), interval + ed(x∞

px , y
∞
py )

))
7. end if
8. end for
9. end for

Finally, the aggregate function receives all local result sets and outputs a com-
plete set of similar stringpairs.Anymultiple elements including an individual string
pair are deleted except for the one with the minimum local upper bound.

5 Performance Evaluation

First, we show the effectiveness of two search space reductions. Second, we
present the parallel scalability. For the former evaluation, we executed a se-
rial runtime in a single machine, which had Ubuntu 10.10 OS, 3.60 GHz CPU,
and 16 GB RAM. For the latter evaluation, we executed a parallel runtime in
a four-node cluster. Each node consisted of Intel Xeon 2.00-GHz 4 Core, 12-GB
memory, 178-MB/s HDD bandwidth, and 64-bit Linux (v2.6.26-2) and connected
it to a 1-Gbps network (thus the maximum number of nodes is regarded as 16).
The parallel runtime was implemented based on a MapReduce framework, where
the first Map tasks executed the partitioning function, the first Reduce tasks cor-
responded to the join function, the second Map tasks did nothing (empty tasks)
and the second Reduce tasks aggregated results. We implemented serial and
parallel runtimes in C++ and used a g++ 4.4.5 compiler with the -O3 option.
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Data Sets. We used two synthetic data sets for the ease of analysis on data
skewness impacts. In both data sets, the character frequency followed a Zipf
distribution and the string length followed a Binomial distribution. The Zipf
distribution had two parameters, a domain size |Σ| and a skewness s , and the
Binomial distribution had two parameters, the number of trials n and the success
probability of each trial p. One data set, SkewH, was generated using s =1.5,
|Σ|=94, n=100, and p=0.2. The other one, SkewL, was generated using s=0.5,
|Σ|=94, n=100, and p=0.2. Each had 1 million strings.

Search Space Reduction. Figure 8 shows the q-bucket partitioning can re-
duce the total processing cost of Landmark-Join. L/H time corresponds to the
total processing time to complete the partition, join and aggregation phases,
L/H buckets means the number of generated buckets and L/H strings equals to
the number of partitioned (duplicated) strings for SkewL/SkewH. Both L time
and H time are similar with the theoretical joining cost in Figure 6, where parti-
tion times were proportional to the number of duplicated strings and aggregation
times depended on the number of similar string pairs. When the parameter q
is large, the join cost of each bucket decreases because each bucket has small
number of strings, while the numbers of buckets and duplicated strings increase
dramatically.

Figure 9 presents the local upper bound calculation can reduce the join pro-
cessing time. L/H All means the join processing time of the complete method,
while L/H NO LUB means that of the method without using LUB Pruning. Ac-
cording to Figure 8, we provided q = 3 to process SkewL and q = 8 to process
SkewH. As the distance threshold increases, redundant string pairs also increases
and thus LUB Pruning prunes them more effectively.

Fig. 8. Effect of partitioning (τ = 2) Fig. 9. Effect of LUB Pruning

Parallel Scalability. We measured the parallel processing times with changing
the number of nodes (i.e., the each number of tasks for four Map/Reduce) and
derived the ratios of the total processing time on N-nodes to the total processing
time on 1-node. Figure 10 and 11 show the ratios of SkewL and SkewH. We pro-
vided q = 3 to SkewL and q = 8 to SkewH, and changed the distance threshold
τ from 1 to 3. Generally, the growth of τ enlarges a processing time of a string
similarity join. However, the ratios of the processing time do not show significant
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change from τ=1 to τ=3. We thus know that the parallel scalability does not
depend on the change of τ . Moreover, our framework seems robust against data
skewness since both Figure 10 and 11 show similar processing time ratios despite
that corresponding data sets have different skewnesses.

Fig. 10. Processing time ratio of N-nodes
to 1-nodes for SkewL (q = 3)

Fig. 11. Processing time ratio of N-nodes
to 1-nodes for SkewH (q = 8)

6 Related Work

Many studies on similarity string joins used a filter-and-refine approach [1–4,
6, 9–11, 14, 15]. Filter-and-refine approaches utilized string tokens such as n-
grams and variants as signatures and filtered candidate similar string pairs to
speed up the entire join process. Another approach is to use a trie. J. Wang
et al. proposed inserting all input strings into a trie and then finding similar
pairs by using trie traversal [13]. These approaches process joins faster when
their intermediate data (inverted indexes, tries, etc.) fit into workspace memory.
However, if there is a large amount of input data or the threshold is large, their
processing speed drops drastically because a huge amount of intermediate data
causes frequent cache misses or swap-outs, and they cannot handle such cases.

Parallel processing for equi-joins was intensively studied in the 1980s, as ex-
emplified by the parallel GRACE hash-join [8]. With respect to θ-joins, parti-
tioning methods for joining records with a numerical join key were researched
in the 1990s [5]. However, parallel processing for similarity string joins has not
been well studied. One of the few such studies proposed applying set similarity
joins to MapReduce [12]. However, the partitioning needs statistics on token
frequency to partition the input data as an additional preprocessing step. In
addition, they did not focus on making the verification efficient.

7 Conclusion

We have presented a novel framework for processing string similarity joins through
the use of edit distance constraints. The Landmark-Join framework is based
on a hash-join strategy. It uses a q-bucket partitioning function to reduce the
number of verifications of dissimilar string pairs and a local upper bound cal-
culation function to prune the search space of the edit distance and thereby
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speed up each verification. Experimental results show that Landmark-Join is
robust against data skewness and has good parallel scalability, and that the two
proposed functions speed up the entire join process.

Future work includes an optimization of the parameter q and an investigation
of a recursive hash-join approach in which buckets are partitioned into sub-
buckets if they have too many strings.
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the Ministry of Economy Trade and Industry (METI) R&D of Industrial Sci-
ence and Technology Frontier Program supported by New Energy and Industrial
Technology Development Organization (NEDO).
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Abstract. Databases are updated continuously with increments and re-running 
the frequent itemset mining algorithms with every update is inefficient. Studies 
addressing incremental update problem generally propose incremental itemset 
mining methods based on Apriori and FP-Growth algorithms. Besides inherit-
ing the disadvantages of base algorithms, incremental itemset mining has chal-
lenges such as handling i) increments without re-running the algorithm, ii)  
support changes, iii) new items and iv) addition/deletions in increments. In this 
paper, we focus on the solution of incremental update problem by proposing the 
Incremental Matrix Apriori Algorithm. It scans only new transactions, allows 
the change of minimum support and handles new items in the increments. The 
base algorithm Matrix Apriori works without candidate generation, scans data-
base only twice and brings additional advantages. Performance studies show 
that Incremental Matrix Apriori provides speed-up between 41% and 92% 
while increment size is varied between 5% and 100%. 

Keywords: Itemset Mining, Matrix Apriori, Incremental Itemset Mining. 

1 Introduction 

Association rule mining, which was introduced by [1], has become a popular research 
area due to its applicability in various fields such as market analysis, forecasting and 
fraud detection. Given a market basket dataset, association rule mining discovers all 
association rules such as “A customer who buys item X, also buys item Y at the same 
time”. These rules are displayed in the form of X → Y where X and Y are sets of items 
that belong to a transactional database. Support of association rule X → Y is the per-
centage of transactions in the database that contain ∪ . Association rule mining 
aims to discover interesting relationships and patterns among items in a database. It 
has two steps; finding all frequent itemsets and generating association rules from the 
itemsets discovered. Itemset denotes a set of items and frequent itemset refers to an 
itemset whose support value is more than the threshold described as the minimum 
support.  

Since the second step of the association rule mining is straightforward, the general 
performance of an algorithm for mining association rules is determined by the first 
step [2]. Therefore, association rule mining algorithms commonly concentrate on 
finding frequent itemsets. Apriori and FP-Growth are known to be the two important 
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algorithms each having different approaches in finding frequent itemsets [3-4].  The 
Apriori Algorithm uses Apriori Property in order to improve the efficiency of the 
level-wise generation of frequent itemsets. On the other hand, candidate generation 
and multiple database scans are the drawbacks of the algorithm. FP-Growth comes 
with an approach that creates signatures of transactions on a tree structure to eliminate 
the need of database scans and outperforms compared to Apriori. A recent algorithm 
called Matrix Apriori which combines the advantages of Apriori and FP-Growth was 
proposed [5]. The algorithm eliminates the need of multiple database scans by  
creating signatures of itemsets in the form of a matrix. It provides a better overall 
performance than FP-Growth [6]. Although all these algorithms handle the problem 
of association rule mining, they ignore the dynamicity of the databases. When new 
transactions arrive, the entire process needs to be done from the beginning. The solu-
tion to this problem is incremental itemset mining, in which the idea is to keep fre-
quent itemsets up-to-date with the arrival of increments to the database.  

First group of incremental itemset mining algorithms are Apriori based [7-9]. The 
Fast UPdate Algorithm provides a solution to incremental association rule mining 
problem [7]. The frequencies of itemsets are determined by comparing itemsets in the 
original database and new transactions. The main goal of the algorithm is to reduce 
number of the candidate sets. In [8], a new incremental association rule mining algo-
rithm was proposed. It uses a trie-like tree structure that stores the frequent 1-itemsets 
and 2-itemsets with their supports in the database. When new transactions arrive, 
frequent 1-itemsets and 2-itemsets are found and the trie is updated accordingly. 
Another algorithm in this group also avoids scanning the entire database when new 
transactions arrive, however, it does not handle minimum support change [9].  

Second group of incremental itemset mining algorithms are FP-Growth based; they 
construct FP-tree incrementally. One of them was introduced by [10], which con-
structs a fast updated FP-tree (FUFP-tree) structure. It is similar to FP-tree, while the 
links between the nodes are bi-directional and it handles insertion and deletion of 
items. A new method, which constructs the FP-tree by assuming the minimum sup-
port as 1, was proposed by [11]. Therefore, when new transactions are added to the 
database, the tree is updated with scanning the increments twice.  

Adaptation of the first and the second group of incremental itemset mining algo-
rithms on stream data is also an intensive research area [12-13]. Analysis of the chal-
lenges brought by stream data and proposing a model for incremental itemset mining 
over stream data are beyond the scope of this paper.  

Generally speaking, incremental frequent itemset mining has four challenges: i) 
adapting a base frequent itemset finding algorithm as to handle increments, ii) allow-
ing new item appearances in increments, iii) being flexible to support changes during 
entire process and iv) handling deletions as well as additions in increments.  

In this study, an incremental itemset mining algorithm, which is called Incremental 
Matrix Apriori, is proposed to provide solutions to these challenges. Since the base 
algorithm Matrix Apriori works without candidate generation and avoids multiple 
database scans, the proposed incremental algorithm inherits performance advantages. 
Performance evaluations show that the Incremental Matrix Apriori Algorithm is  
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significantly faster than re-running the Matrix Apriori Algorithm when new incre-
ments arrive. 

This paper is organized as follows; Section 2 reviews incremental itemset mining 
algorithms. Section 3 presents the proposed algorithm for incremental itemset mining. 
In Section 4, test results and performance evaluations are discussed. Finally, this pa-
per is concluded in Section 5 by raising several issues for future work. 

2 Related Work 

Association rule mining aims to discover frequent itemsets in a dataset. The Apriori 
Algorithm, which was proposed by [3], is one of the best-known association rule min-
ing algorithms [14]. It uses prior knowledge of frequent itemset properties and runs an 
iterative approach called level-wise search. That is, k-itemsets are used to explore 
(k+1)-itemsets (they are called candidate itemsets before testing them against the da-
tabase) by eliminating the candidates that do not satisfy the minimum support. The 
FP-Growth Algorithm handles the weaknesses of Apriori which are multiple scans of 
the database and candidate generation. It finds frequent itemsets without candidate 
generation by using a tree structure, called FP-tree, where each node stores an item 
with its number of occurrence in the database and a link to the next node [15].  

The Matrix Apriori Algorithm offers a simple and efficient solution to the associa-
tion rule mining. Database scan step is similar to FP-Growth whereas generating  
association rules is similar to Apriori. As a result, Matrix Apriori combines the two 
algorithms by using their positive properties [5]. FP-Growth and Matrix Apriori algo-
rithms are compared with using different characteristics of data in [6].  

All of the algorithms above ignore the dynamicity of the databases. However, 
transactional databases are dynamic in general. When new transactions arrive, these 
algorithms should be re-run in order to find up-to-date frequent itemsets. The solution 
to this problem is incremental frequent itemset mining. The Fast UPdate (FUP) Algo-
rithm [7] is the first algorithm proposed for incremental mining of frequent itemsets. 
It handles the databases with transaction insertion only, relies on Apriori and uses the 
pruning techniques used in the Direct Hashing and Pruning Algorithm [16]. The main 
working principle of this algorithm can be summarized in two steps; scanning only 
new transactions to generate 1-itemsets, then comparing these itemsets with the pre-
vious ones and finally discovering all frequent itemsets of the same size iteratively. 
FUP2, an extended version of FUP, copes with both insertion and deletion of transac-
tions, was proposed by [17].  

A new algorithm, FOLDARM, which is suitable for incremental association rule 
mining, was presented by [8]. FOLDARM constructs a new data structure called Sup-
port-Ordered Trie Itemset, SOTrieIT (a trie-like tree structure). This structure only 
stores the frequent 1-itemsets and 2-itemsets with their supports in a descending order 
of support counts (the most frequent itemsets are found on the leftmost branches of 
the SOTrieIT) and is used to discover frequent 1-itemsets and 2-itemsets without 
scanning the database. When new transactions arrive, all frequent 1-itemsets and 2-
itemsets are extracted from each transaction. The extracted information is used to 
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update the SOTrieIT without considering the support threshold. In order to mine fre-
quent itemsets depth-first search is used starting from the leftmost first-level node. 
Unless a node that does not satisfy the support threshold, the traversal continues. Sub-
sequently, the Apriori Algorithm is used to obtain other frequent itemsets.  

The study by [9], proposed an incremental itemset mining algorithm based on 
Apriori which finds frequent itemsets and infrequent itemsets that are likely to be 
frequent after the arrival of new transactions. This algorithm uses the maximum sup-
port count of 1-itemsets in the database before the arrival of increments for finding 
potential frequent itemsets, called promising itemsets. In other words, in order to find 
a threshold value for finding promising itemsets, the maximum support count of 1-
itemsets is used. It scans only new transactions, however it assumes that minimum 
support value does not change. 

It is clear that when new transactions are added to the database, some frequent items 
may become frequent or infrequent. In the FP-Growth Algorithm, creating the FP-tree 
from the beginning according to the changes is time consuming. A fast upda7ted FP-tree 
(FUFP-tree) structure and an incremental FUPF-tree maintenance algorithm was pro-
posed by [10]. However, when a sufficiently large number of transactions are inserted to 
the database, the whole FUFP-tree should be re-constructed [18].  

Another method for constructing FP-tree incrementally was presented by [11]. The 
minimum support threshold is accepted as 1 and FP-tree is updated by scanning the 
new transactions twice. Five synthetic and one real datasets are used in the experi-
ments with different number of items and transactions. In both cases, this approach 
performs better compared to building the tree from the beginning. 

The comparison of incremental itemset mining algorithms is displayed in Table 1. 
All these algorithms can handle the maintenance problem in case of insertion and new 
items can be presented in the increments. FOLDARM, Incremental FP-tree and In-
cremental Matrix Apriori can handle minimum support change while FUP, FUP2, 
FUFP-tree and Promising Frequent Itemset cannot. Also FUP, FUP2 and Promising 
Frequent Itemset need candidate generation. There is a point that should be taken into 
consideration when comparing these algorithms; FOLDARM only addresses finding 
1-frequent itemsets and 2-frequent itemsets. 

Table 1. Comparison of Incremental Itemset Mining Algorithms 

 Deletion 
Support 
Change 

New Item 
Occurrence  

No Candidate 
Generation 

FUP [7]   +  

FUP2 [17] +  +  

FOLDARM [8] + + + + 

Promising Frequent Itemset [9]   +  

FUFP-tree [10] +  + + 

Incremental FP-tree [11] + + + + 

Incremental Matrix Apriori  + + + 
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3 Incremental Itemset Mining Algorithm 

The Incremental Matrix Apriori Algorithm is proposed to overcome the problem of 
mining frequent itemsets in dynamically updated databases. As seen in Table 1, be-
sides finding frequent itemsets by scanning only new transactions, this algorithm 
handles new items in the updates and allows support threshold changes. This chapter 
is divided into two subsections. The first one explains the base algorithm Matrix 
Apriori and the second one presents the Incremental Matrix Apriori Algorithm. 

3.1 Matrix Apriori Algorithm 

In Matrix Apriori, the frequent items are stored in a matrix called MFI (Matrix of 
Frequent Items) and the supports of the itemsets are stored in a vector called STE. 
Initially the database is scanned in order to determine the frequent items and the fre-
quent items list. Subsequently, in the second scan, MFI and STE are built as follows. 
Beginning from the second row of the matrix, the matrix is stored according to the 
transactions. If the transaction contains the item, the value “1”, if not, the value “0” is 
stored in the MFI and the STE value is set to “1”. If the transaction is already in-
cluded in the MFI, then it is not stored in a new row, but its STE is incremented by 1.  

After the construction of the matrix, it is modified in order to speed up the frequent 
itemset search. For each column, beginning from the first line, each cell value is set to 
the number of the line where the cell value is equal to “1” in the unmodified matrix. If 
there are not any values of “1” in the remaining lines of the unmodified matrix, the 
cell value is set to “1”. After the matrix construction, frequent itemsets are found as 
follows. Beginning from the item that has the least support value; the item is com-
pared with the items found on its left in order to find frequent itemsets. Following 
that, their support values are counted. The support value of an itemset is found by 
sequentially adding the related rows of STE from top to bottom. 

3.2 Incremental Matrix Apriori Algorithm 

In order to provide incremental mining of frequent itemsets, the matrix is constructed 
by the minimum support value of 1. That means all items are kept in the MFI without 
considering their frequencies. Doing so, flexibility for support change is enabled as 
well. Due to the structure of the matrix, items are kept in a descending support order 
in the MFI. So finding frequent itemsets with any support threshold is easy. Since all 
items are kept in the MFI, frequent itemsets can be calculated from the item that satis-
fies the minimum support.  

The process before the arrival of increments can be seen in Figure 1. The database 
is scanned and the support counts of items are calculated. The list of items in the spe-
cified order is named as 1-itemset ordered lists of items. All items in the transactions 
are included to the 1-itemset ordered list of items without considering if the item’s 
support count is more than the minimum support or not. This process is shown in 
Figure 1.a. Afterwards, the MFI is constructed and then modified as in Figure 
1.b. The way of construction of the MFI is the same as Matrix Apriori. 
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Fig. 1. Incremental Matrix Apriori – Before Increments 

When new transactions arrive, they are scanned and 1-itemset ordered list of items 
are updated as in Figure 2.a and as indicated in lines 1-2 of pseudo code in Figure 3. 
The new items in increments are included to the MFI by adding new columns as in 
lines 3-5 in Figure 3. The MFI is updated as follows. First, the new transaction is 
checked whether it exists in the MFI or does not. If it exists, its STE is incremented 
by 1; if it does not exist, it is added to the MFI. Adding to the MFI is done by setting 
the cell value to the line number of transaction where value “1” is stored in the MFI. 
When the item does not exist in the remaining transactions of the incremental data-
base, the cell value is set to “1”. This entire process is shown in Figure 2.b and in 
lines 6-12 in Figure 3. Finally, according to the change of the 1-itemset ordered list of 
items, the order of items in the MFI is changed as in Figure 2.c and in line of 13 in 
Figure 3. 

Since Matrix Aprori does not have an update feature, it runs from the beginning on 
the updated database whereas Incremental Apriori only runs on the updates when new 
transactions arrive. Needless to say, Incremental Matrix Apriori finds exactly the 
same frequent itemsets as the Matrix Apriori does. Besides avoiding database scan 
and avoiding the construction of different matrices for mining frequent items with 
different support thresholds, management of matrix is easy.  Moreover, the base al-
gorithm scans database only twice and does not generate candidate sets. 
 

TID Items

001
002
003
004

A C D
B C E
B C E
A B E

1-Itemsets Support Count

{B}
{C}
{E}
{A}
{D}

3
3
3
2
1

MFI

B C E A D

0 1 0 1 1

1 1 1 0 0

1 0 1 1 0

MFI

B C E A D

3 2 3 2 2

0 3 0 4 1

4 1 4 0 0

1 0 1 1 0

STE

1

2

1

After the modification of MFI

a.

b.

STE

1

2

1

Minimum support = 50%
1- itemset ordered list of items (IS) = { B, C, E, A, D }
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Fig. 2. Incremental Matrix Apriori – After Increments 

INPUT: MFI, STE, Additions A, 1-itemset ordered list IS  
OUTPUT: MFI, STE, 1-itemset ordered list IS

new
 

BEGIN 
1  Scan A 
2  Create IS

new
 from IS using A 

3  FOR each new item in IS
new
  

4   Add a column to MFI 
5  END 
6  FOR each transaction in A 
7   IF the transaction exists in MFI 
8     Update the STE by incrementing by 1 
9    ELSE IF the transaction does not exist in MFI 
10     Add a new line to MFI 
11     Set the STE of the new line to 1 
12  END 
13  Update and reorder MFI using IS

new
 

14  Return IS
new
, MFI, STE 

END 

Fig. 3. Update Process in Incremental Matrix Apriori Algorithm 

TID Items

005
006

C D
C F

1-Itemsets Support Count

{C}
{B}
{E}
{A}
{D}
{F}

5
3
3
2
2
1

Minimum support = 50%
1- itemset ordered list of items (ISnew) = { C, B, E, A, D, F }

MFI

C B E A D F

2 3 3 2 2 6

3 0 0 4 5 0

5 4 4 0 0 0

0 1 1 1 0 0

6 0 0 0 1 0

1 0 0 0 0 1

a.

b.

MFI

B C E A D F

3 2 3 2 2 6

0 3 0 4 5 0

4 5 4 0 0 0

1 0 1 1 0 0

0 6 0 0 1 0

0 1 0 0 0 1

STE

1

1

2

1

1

STE

1

1

2

1

1

c.
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4 Performance Evaluation 

In this section, the Incremental Matrix Apriori Algorithm is compared with the Matrix 
Apriori Algorithm when new transactions are added to the database. Both algorithms 
are implemented in Java and test runs are performed on a computer with 2.93 GHz 
dual core processor and 2 GB memory. Two synthetic datasets with different charac-
teristics are used; they are generated by utilizing ARTool (1.1.2) dataset generator [6]. 
Difficulties in finding real datasets compelled the tests to be done with synthetic data-
sets. 

In the following subsections, performance analysis of the algorithms for two case 
studies while varying the size of incremental dataset is given. The purpose is to  
observe how the percentage of the increment sizes affects the performance of the 
algorithms for the generated datasets. The algorithms are compared for 20 increasing 
addition sizes in the range of 5% and 100%. In these tests, the minimum support is 
10% and the initial database has 15000 transactions for both case studies. During 
performance evaluations, it is ensured that the system state is similar in all test runs 
and they give close results when repeated.  

4.1 Case1: Database of Long Patterns with Low Diversity of Items 

The first dataset has the following characteristics i) long patterns with low diversity of 
items, ii) number of items is 10000, iii) average size of transactions is 20 and iv) av-
erage size of patterns is 10.  The performances of Matrix Apriori and Incremental 
Matrix Apriori with different increment sizes are demonstrated in Figure 4. In every 
increment size, Incremental Matrix Apriori performs better than re-running Matrix 
Apriori.  
 

  

Fig. 4. Run-time with Different Increment Sizes for Case 1 
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In Figure 5, the speed-up with different increment sizes is shown. The speed-up in-
creases from 45% to 92% as the increment size decreases. Although the speed-up 
decreases as the increment size increases, Incremental Matrix Apriori is 45% faster 
than re-running Matrix Apriori. 

 

 

Fig. 5. Speed-up with Different Increment Sizes for Case 1 

4.2 Case2: Database of Short Patterns with High Diversity of Items 

The second dataset is composed of the following characteristics i) short patterns and 
high diversity of items, ii) number of items is 30000, iii) average size of transactions is 
20 and v) average size of patterns is 5. The performances of Matrix Apriori and Incre-
mental Matrix Apriori with different increment sizes are demonstrated in Figure 6.  
 

 

Fig. 6. Run-time with Different Increment Sizes for Case 2 

0

20

40

60

80

100

0 20 40 60 80 100

Sp
ee

d-
up

 (
%

)

Increment size (%)

Speed-Up

0

300

600

900

1200

1500

1800

0 20 40 60 80 100

T
im

e 
(s

ec
)

Increment size (%)

Matrix Apriori Incremental Matrix Apriori



 Incremental Itemset Mining Based on Matrix Apriori Algorithm 201 

 

As expected, in every increment size, Incremental Matrix Apriori outperforms the 
Matrix Apriori Algorithm as in Case 1. 

The speed-up in different increment sizes is illustrated in Figure 7.  The decrease 
in increment size increases the speed-up percentage from 41 to 81. Although there is a 
decrease in speed-up when the increment size becomes larger, Incremental Matrix 
Apriori is almost 41% faster than re-running Matrix Apriori. 

 

 

Fig. 7. Speed-up with Different Increment Sizes for Case 2 

Both the test results in Case 1 and Case 2 reveal that Incremental Matrix Apriori per-
forms better than running Matrix Apriori with each update in the range of 5% and 100%. 

4.3 Discussion on Results 

The test results demonstrate that, when the new transactions are added to database, 
Incremental Matrix Apriori finds frequent itemsets more efficiently than re-running 
Matrix Apriori. Two databases with different characteristics are used and the mini-
mum support is given as 10% in both cases. 

Performances of Incremental Matrix Apriori by using the first dataset and second 
dataset are shown in Figure 8. Finding frequent itemsets for Case 2 takes longer than 
Case 1. There are 10000 items in Case 1 while there are 30000 items in Case 2. This 
result has been expected because Incremental Matrix Apriori keeps all items in the 
MFI. The run-time increases as does the number of items. Moreover, the relationship 
between increment size and time are linear both two cases. 

Figure 9 shows the speed-up comparison of Incremental Matrix Apriori for Case 1 
and Case 2. Although the behavior in two cases is similar, the speed-up for Case 1 is 
higher than that of Case 2. This may be due to the number of items. Since Incremental 
Matrix Apriori keeps all the items in the matrix even it exists in only in one transac-
tion, when the number of items increases, the total time increases as well. On the 
other hand, Matrix Apriori keeps the items that satisfy the minimum support. So the 
speed-up is lower in Case 2. 
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Fig. 8. Run-time for Case 1 and Case 2 

 

Fig. 9. Speed-up for Case 1 and Case 2 

5 Conclusion and Future Work 

In this paper, we propose a new algorithm for the problem of incremental itemset 
mining which is based on the Matrix Apriori Algorithm. A matrix structure is used in 
order to handle new transactions. Accepting the minimum support as 1, all items are 
kept in the matrix in a descending order of support counts. Therefore, without scan-
ning the entire database, the new transactions and new items can be added to the ma-
trix easily. Moreover, this approach allows the user to change minimum support. 
Since all frequent and infrequent items exist in the matrix, the calculation of frequent 
itemsets can start from the updated minimum support count. 
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Experimental results show that Incremental Matrix Apriori performs better than re-
running Matrix Apriori for handling new transactions. The algorithms are compared 
for 20 increment sizes in the range of 5% and 100% by using two datasets with differ-
ent characteristics. When the number of items or the increment size decreases, the 
speed-up by Incremental Matrix Apriori increases. However, both tests show that 
Incremental Matrix Apriori provides speed-up between 41% and 92% while incre-
ment size is varied between 5% and 100%. 

Our work is ongoing and we aim to extend our algorithm to handle the deletion of 
transactions as well. After this step, our plan is to compare our incremental approach 
with other incremental itemset mining approaches in order to understand its strengths 
and weaknesses. In addition, we are planning to test our algorithm on real datasets. 
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Abstract. Efficient mining of frequent itemsets from a database plays
an essential role in many data mining tasks such as association rule
mining. Many algorithms use a prefix-tree to represent a database and
mine frequent itemsets by constructing recursively conditional prefix-
trees from the prefix-tree. A (conditional) prefix-tree can be stored in
various structures. The construction and traversal costs of prefix-trees,
or rather their storage structures, take a large proportion in the whole
cost for such algorithms. The PatriciaMine algorithm employs a Patricia
trie to store a prefix-tree and shows good performance. In this study, we
introduce an efficient Patricia* structure for storing a prefix-tree. A Pa-
tricia* structure is more compact and contiguous than a corresponding
Patricia trie, and thus the construction and traversal costs of the former
are less than those of the latter. Previous prefix-tree-based algorithms
adopt a similar mining procedure, in which most nodes in a prefix-tree
are repeatedly accessed when the prefix-tree is processed. The paper
presents a novel mining procedure in which node accesses for a prefix-
tree are greatly reduced. We propose the PatriciaMine* algorithm that
is the combination of the Patricia* structure with the proposed proce-
dure. Experimental data show that PatriciaMine* outperforms not only
PatriciaMine but also several fast algorithms, such as FPgrowth* and
dEclat, for various databases.

Keywords: Data mining, frequent itemset, prefix-tree.

1 Introduction

Since the introduce of frequent itemsets by Agrawal et al. [1], they have been
applied to association rule mining, inductive databases, classification, and so on.
Many problems [2, 7] derived from frequent itemsets have also been proposed.
Therefore, mining efficiently frequent itemsets from a database has been a core
problem in data mining area [3].

Let I be a set of items, each subset of I is an itemset. An itemset containing
k items is called a k-itemset. For a transaction database, each transaction has
a unique identifier (TID) and is also a subset of I. A transaction satisfies an
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Fig. 1. Database and prefix-tree storage structure (minimum support=2 )

itemset if the transaction contains all the items of the itemset. The number (or
percentage) of transactions satisfying an itemset is the support of the itemset.
An itemset is frequent if its support exceeds a user-specified minimum support
threshold. Given a database and a minimum support, the frequent itemset min-
ing problem is to identify all frequent itemsets.

Prefix-tree-based algorithms [4, 5, 8, 10, 12] are thought of as ones of the
fastest mining algorithms [3]. These algorithms employ prefix-trees to represent
databases. After identifying all the frequent items in a database and initializing
an empty tree, for each transaction, the algorithms generate a branch composed
of the frequent items in the transaction and subsequently insert the branch into
the prefix-tree. The frequent items of a branch are usually sorted in frequency-
descending order, which can increase the shared paths in a prefix-tree. Fig. 1(a)
shows a database, and the corresponding prefix-tree stored in a standard struc-
ture is depicted in Fig. 1(b) when the minimum support is 2. Each node in the
structure contains an item and a counter. The counter value of a node registers
the number of transactions containing the itemset composed of the items in the
path from the node to the root. For item i, the paths from all the nodes con-
taining i to the root constitute the conditional database of i. (The conditional
database of i can also be defined as the sub-trees rooted at all the nodes con-
taining i, which depends on algorithms.) The algorithms traverse the paths to
identify the frequent items in the conditional database, and append each frequent
item to i to generate a frequent 2-itemset. After that, the conditional prefix-tree
of i is constructed from the conditional database and is processed recursively.

A prefix-tree can be stored in various structures. Fig. 1(b) shows the standard
structure, and the famous FP-Growth algorithm [5] employs this structure. The
AFOPT algorithm [8] uses an AFOPT structure to store a prefix-tree. The al-
gorithm sorts items in frequency-ascending order, and any single branch ending
with a leaf in a prefix-tree is stored in a node in an AFOPT structure. Fig. 1(c)
depicts the AFOPT structure constructed from the database in Fig. 1(a). The
PatriciaMine algorithm [10] adopts a Patricia trie [6] to store a prefix-tree. For
a standard structure, if each node that has only one child node with the same
counter value as that in the node is merged with its child node, the structure
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becomes a Patricia trie. The prefix-tree in Fig. 1(b) can also be stored in the Pa-
tricia trie in Fig. 1(d). For a prefix-tree-based algorithm, the prefix-tree storage
structure significantly influences its performance, because the algorithm usually
constructs and processes a very large number of conditional prefix-trees [9]. An-
other important factor relevant to the performance of an algorithm is its mining
procedure. For example, using the FP-array technique, the efficient FPgrowth*
algorithm [4] merges the counting operation with the construction operation and
thereby distinctly improves the performance of the FP-Growth algorithm.

The contributions of this work are as follows. Firstly, we improve the Patricia
trie used in the PatriciaMine algorithm and introduce a Patricia* structure for
storing a prefix-tree. For a prefix-tree, the construction and traversal costs of a
Patricia* structure are less than those of a Patricia trie. Secondly, an efficient
mining procedure is introduced, in which node accesses are greatly reduced when
a prefix-tree is processed, compared with the previous universal mining proce-
dure. We propose the PatriciaMine* algorithm that is the combination of the
improved procedure with the Patricia* structure. Thirdly, extensive experimen-
tal results show that PatriciaMine* outperforms not only PatriciaMine but also
several fast algorithms for various databases. The paper is organized according to
the three points aforementioned in Section 2, 3, and 4. Our work is summarized
in Section 5.

2 Patricia* Structure

In a prefix-tree storage structure, each node contains two pieces of informa-
tion: one related to the structure itself, namely various pointers, and the other
related to frequent itemsets, namely item(s) and counter(s). When mining fre-
quent itemsets, an algorithm only makes use of the second piece of information
for which the algorithm has to access the first piece of information. No matter
what structure a prefix-tree is stored in, the amount of the information about
the structure itself can be measured in terms of the number of nodes in the
structure. The smaller the number of nodes in a storage structure is, the less
the construction and traversal costs of the structure are. In the following, we
introduce an improved Patricia trie, namely a Patricia* structure, for storing a
prefix-tree, and illustrate how to construct such a structure from a database.

2.1 One-Child Node

In a standard structure storing a prefix-tree, a node that has only one child
node is called a “one-child” node. Given a prefix-tree, although the nodes in the
Patricia trie storing it are usually fewer than those in the standard structure
storing it, it does not make sense to construct the Patricia trie if there are
a very small number of one-child nodes in the standard structure. Therefore,
we first researched various prefix-trees constructed from the databases in the
FIMI repository (http://fimi.cs.helsinki.fi/). These databases used extensively
in previous studies hold various characteristics, and their statistical information
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Fig. 3. Numbers of one-child nodes in
standard structures storing prefix-trees

is showed in Fig. 2. For each database, the size, the number of transactions,
the number of distinct items, the average transaction length, and the maximal
transaction length are listed.

Fig. 3 gives the numbers of one-child nodes in the standard structures con-
structed from the above databases. An important fact is that “there are usually
a very large number of one-child nodes in a standard structure storing a prefix-
tree”. For example, when the minimum support is 20%, the standard structure
storing the prefix-tree from database chess contains 33930 nodes in which there
are 28167 one-child nodes, and the percentage of one-child nodes amounts to
83%. The percentages of one-child nodes for all the databases exceed 80%, and
the percentage for T40I10D100K is even larger than 95%.

Since a very large number of one-child nodes exist in a standard structure
storing a prefix-tree, merging a one-child node with its child node is an efficient
method of reducing the number of nodes in a prefix-tree storage structure. A
Patricia* structure is a modification of a standard structure, in which each one-
child node in the standard structure is merged with its child node. Namely, each
maximal chain of one-child nodes in a standard structure is merged into a node
in a corresponding Patricia* structure.

Fig. 4 shows the Patricia* structure storing the same prefix-tree in the standard
structure in Fig. 1(b). Please note the differences between the Patricia trie in
Fig. 1(d) and the Patricia* structure here. In a Patricia trie, each maximal chain
of one-child nodes is merged into a node on condition that these nodes hold the
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same counter value. In a Patricia* structure, each maximal chain of one-child
nodes is unconditionally merged into a node. Therefore, the nodes in a Patri-
cia* structure are fewer than those in a corresponding Patricia trie. To store
the prefix-trees representing the database in Fig. 1(a), the standard structure,
the AFOPT structure, the Patricia trie, and the Patricia* structure respectively
contain 16, 14, 11, and 8 nodes. The Patricia* structure contains the small-
est number of nodes, which means the construction and traversal costs of the
Patricia* structure are less than those of the other structures.

2.2 Constructing a Patricia* Structure

In the process of constructing a Patricia* structure, besides the merging oper-
ation, the other operations are generating a node, extending a node, and trun-
cating a node. One node is generated in each generation operation, and two
nodes are generated in each truncation operation. Extension operations do not
increase the number of nodes. By constructing Patricia* structures from ex-
perimental databases, we observed that generation operations and truncation
operations are performed frequently while extension operations rarely happen.
Fig. 5 presents the numbers of these operations.

Fig. 6 demonstrates how the Patricia* structure in Fig. 4 is constructed from
the database in Fig. 1(a). For example, when branch < abcde > is inserted into
the structure, the node numbered 1 containing these items is generated. The
node is truncated when branch < abcdf > is inserted, and the node numbered 2
containing the truncated part and the node numbered 3 containing the remaining
part of the branch are generated after the shared items are merged. When branch
< bcde > is inserted into the structure, the node numbered 4 is extended for

���

���

���

���

����

��	

��	

��	

��	


�	

����
� ����
 �

�
���


����


�	 ��	

� ����� �
��	����


���

���

���

���

����


�	 ��	

��	

��	� �� �
�
�


� � �


�
���


���

���

���

���

����


�	 ��	

��	

��	� ��� �
�
�


� � �

�
�


� ��� �


�
���


���

���

���

���

����

��	

��	

��	


�	

��	

��	

��	

� � �

�
�


���

���

���

���

����

��	

���

���

��	


�	


�	

��	

��	

��	

� ���
 �

��
��

���

���

��	


�	

���

���

���

���

��	


�	


�	 ��	

��	

��	

��	

����

� �� �
� ���
 �
�
�

��	����


	 	

� �

�

�

Fig. 6. Patricia* structure construction



210 J.-F. Qu and M. Liu

Procedure 1. PreviousMiner(F , T)

Input: F is a frequent itemset, initially empty;
T is the conditional prefix-tree of F.

Output: all the frequent itemsets with F as prefix
foreach itemi in T do1

Fi = F ∪ itemi;2

output Fi;3

identify the frequent items in the conditional database of itemi;4

construct itemi’s conditional prefix-tree Ti;5

PreviousMiner(Fi , Ti);6

end7

items d and e. Note that although extension operations do not increase the
number of nodes in a Patricia* structure, an extension operation leads to a
memory allocation and a memory release. Fortunately, the numbers of extension
operations are small for constructing real Patricia* structures. For example, in
Fig. 5, there are 120570 generation operations, 218603 truncation operations,
and only 170 extension operations when the Patricia* structure for database
accidents is constructed (The minimum support is 3%.).

3 Mining Frequent Itemsets Using Patricia* Structures

In this section, we improve the previous universal mining procedure and combine
the Patricia* structure with the improved procedure.

3.1 Previous Mining Procedure

No matter what structure previous algorithms store a prefix-tree in, they hold
a similar mining procedure, which is showed in Procedure 1. For (conditional)
prefix-tree T , all the items in T are frequent, and they are processed one by one
as follows. Firstly, a new frequent itemset Fi, composed of an item in T denoted
by itemi and prefix itemset F , is created and outputted (lines 2-3). Secondly, the
paths from all the nodes containing itemi to the root constitute the conditional
database of itemi. To identify the frequent items in the conditional database of
itemi, these paths are traversed and the items in the paths are counted (line
4). Thirdly, these paths are traversed again for constructing itemi’s conditional
prefix-tree Ti, in which the only frequent items in the conditional database are
considered (line 5). At last, Ti is processed recursively.

Consider a path in a prefix-tree stored in a standard structure, suppose it
contains items i1, i2, . . . , i(n−1), and in from the root to a leaf node. When
in is processed, the nodes containing i1, i2, . . . , and i(n−1) are accessed twice
(one for counting, the other for constructing); when i(n−1) is processed, the
nodes containing i1, i2, . . . , and i(n−2) are accessed twice; . . . Therefore, there
are n(n − 1) node accesses for the path in the procedure. Even for FPgrowth*
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Procedure 2. ImprovedMiner(F , T)

Input: F is a frequent itemset, initially empty;
T is the conditional prefix-tree of F.

Output: all the frequent itemsets with F as prefix
identify the frequent items in the conditional databases of all the items in T ;1

construct the conditional prefix-trees of all the items in T ;2

foreach itemi in T do3

Fi = F ∪ itemi;4

output Fi;5

ImprovedMiner(Fi , Ti);6

end7

that merges the counting operations (line 4) into the construction operations
(line 5), there are n(n− 1)/2 node accesses for the path.

3.2 Improved Mining Procedure

The previous mining procedure can be improved as showed in Procedure 2. The
main modification is that both the counting operations and the construction
operations of Procedure 1 are moved out of the loop. By one depth-first traversal
of T , the items in all the conditional databases are counted, which can be thought
of as the process of counting for all the 2-itemsets in T . Using a work stack that
stores the items in the path from the currently visited node to the root, when
a node containing itemi is visited, each 2-itemset composed of itemi and an
item in the stack is counted according to the counter value in the node. After
T is traversed, the frequent items in any conditional database can be identified.
Subsequently, all the conditional prefix-trees are simultaneously constructed by
the second depth-first traversal of T . When a node containing itemi is visited, the
items in the stack that are also frequent in the conditional database of itemi are
picked out. These items are sorted and inserted into the conditional prefix-tree
of itemi. At last, each conditional prefix-tree is recursively processed.

The advantage of the improved procedure is that all the nodes in a prefix-tree
are accessed only twice when the prefix-tree is processed. Therefore, the path
aforementioned is traversed twice, and namely there are only 2n node accesses
for the path. In fact, node accesses in the procedure are far fewer than those in
the previous procedure in consideration of that many paths are overlapped in a
prefix-tree.

3.3 PatriciaMine* Algorithm

We refer to the combination of the improved mining procedure with the Patricia*
structure as the PatriciaMine* algorithm. After an initial Patricia* structure is
constructed from a database, PatriciaMine* can mine all the frequent itemsets
from the structure. As an example, each node in the Patricia* structure in Fig.
4 is numbered, and PatriciaMine* processes this structure as follows.
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Fig. 7. Counting operations

Firstly, all the 2-itemsets in the Patricia* structure are counted during one
depth-first traversal of the structure. When a node is visited, each combination
of an item in the node and an item before the item (either in the node or
in an ancestor node of the node) is counted according to the counter value
corresponding to the item in the node. For example, when the node numbered
5 in Fig. 4 is visited, the items in the node are d and e, and the items in its
ancestor node numbered 1 are a and b. Then 2-itemsets da, db, ea, eb, and ed are
counted. Note that items a and b have been stored in the work stack when the
above counting operations are performed, and thus the node numbered 1 is not
accessed. The counting operations on the Patricia* structure are demonstrated
in Fig. 7. After the depth-first traversal of the structure, the frequent items in
each conditional database can be identified, and they are respectively: {a} in Db

(representing the conditional database of item b), {b, a} in Dc, {b, c, a} in Dd,
{b, d, a, c} in De, and {c, d} in Df . (The minimum support is 2, and the frequent
items in a conditional database are sorted in frequency-descending order.)

Secondly, PatriciaMine* traverses the structure again to construct all the
conditional Patricia* structures. We denote the conditional Patricia* structure
of item i by Pi. The updated Pis are depicted in Fig. 8 when PatriciaMine*
processes each node. For example, when the node numbered 5 is processed, Pd

and Pe are updated. Branch <ba: 1> is inserted into Pd and branch <bda: 1>
is inserted into Pe.
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Fig. 8. Construction operations
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At last, each item in the structure in Fig. 4 is outputted and the item with
its conditional Patricia* structure is recursively processed.

4 Experiments and Performance Study

All the experiments were performed on a 2.83GHz Intel Core2 PC with 4GB of
memory, running on a Debian (Linux 2.6.26) operation system. We implemented
the PatriciaMine* algorithm. PatriciaMine* was compared with several famous
prefix-tree-based algorithms including FP-Growth [5], FPgrowth* [4], AFOPT
[8], PatriciaMine [10], in which FPgrowth* is the fastest algorithm in IEEE
ICDM Workshop on frequent itemset mining implementations (FIMI’03). We
also tested the significant dEclat algorithm [11, 13], in which each itemset holds
a TID-list that indicates the transactions satisfying the itemset and the length of
the TID-list is the support of the itemset. The dEclat algorithm mines frequent
itemsets by concatenating two frequent itemsets and intersecting their TID-lists.
To avoid implementation bias, the implementation of FP-Growth was down-
loaded from http://adrem.ua.ac.be/˜goethals/software/, and the implementa-
tions of the other algorithms were downloaded from http://fimi.cs.helsinki.fi/.
All of the codes were written in C++ and compiled using gcc (version 4.3.2)
with standard optimization flags. The databases showed in Fig. 2 were used in
our experiments.

4.1 Numbers of Nodes Generated during Mining Processes

The purpose of the experiment is to evaluate the total number of nodes in the
prefix-tree storage structures constructed by an algorithm for a mining task. Fig.
9 shows the experimental data. Note that FP-Growth, FPgrowth*, PatriciaMine,
and PatriciaMine* construct the same prefix-trees for a mining task, no matter
what structure the prefix-trees are stored in and no matter when/how the prefix-
trees are constructed. AFOPT sorts items in frequency-ascending order when
constructing prefix-trees that are different from the above prefix-trees.

The total numbers of nodes generated by FP-Growth/FPgrowth*, AFOPT,
PatriciaMine, and PatriciaMine* are labeled with Standard, AFOPT, Patri-
cia, and Patricia* in Fig. 9 respectively. FP-Growth and FPgrowth* employ
standard structures to store prefix-trees, and thus the nodes generated by FP-
Growth are the same as those generated by FPgrowth* for a mining task. Because
each maximal chain of one-child nodes is unconditionally merged in a Patricia*
structure, PatriciaMine* generates the smallest number of nodes for any mining
task compared with the other algorithms. Another observation is that the nodes
generated by AFOPT are more than those generated by FP-Growth/FPgrowth*
in some cases, e.g., for accidents. Although any single branch ending with a leaf
is merged in an AFOPT structure, the frequency-ascending item order leads to
the decrease in the proportion of shared paths in the AFOPT structure.

The construction and traversal costs of a structure depend on the number
of nodes in the structure to a great extent. For example, FP-Growth performs
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Fig. 9. Numbers of nodes generated during mining processes

152020719 memory allocations to construct standard structures for mining fre-
quent itemsets from database T40I10D100K when the minimum support is
0.12%; FP-Growth needs 152020719 pointer dereferences for traversing these
structures one time. To perform the same mining task, for PatriciaMine*, there
are only 48787132 memory allocations for constructing Patricia* structures and
only 48787132 pointer dereferences for traversing the structures one time. There-
fore, the construction and traversal costs of PatriciaMine* are less than those of
the other algorithms according to the experimental data in Fig. 9.

4.2 Performance Comparison

Fig. 10 depicts the running time of these algorithms. Running time was recorded
by time command and contains input time, computational time, and output
time. Output was directed to /dev/null. It can be observed that PatriciaMine*
performs the best for almost all the databases and minimum supports.

The performance curves for PatriciaMine, FPgrowth*, and AFOPT are over-
lapped in many cases, for example, in Fig. 10(b), (c), (e), and (f). AFOPT is
slower than PatriciaMine and FPgrowth* for database accidents as showed in
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Fig. 10. Performance Comparison

Fig. 10(a), and FPgrowth* is slower than PatriciaMine and AFOPT for database
retail in Fig. 10(d). PatriciaMine is more stable than FPgrowth* and AFOPT.
We can observe from Fig. 9 that the nodes generated by PatriciaMine are always
fewer than those generated by AFOPT or FPgrowth*, and thus the construction
and traversal costs of PatriciaMine are less than those of AFOPT or FPgrowth*.

PatriciaMine* distinctly outperforms PatriciaMine. The performance im-
provement of PatriciaMine* results from two factors: (1) PatriciaMine cuts a
node off as long as the counter values corresponding to any two items in the
node are different from each other, but PatriciaMine* does not. Therefore, Pa-
triciaMine* avoids a very large number of operations for cutting nodes off. For
example, according to Fig. 9, PatriciaMine generates 455339982 nodes while
PatriciaMine* generates 354735548 nodes for mining frequent itemsets from
database accidents when the minimum support is 3%, which means that Patri-
ciaMine cuts off 100604434 (=455339982-354735548) nodes while PatriciaMine*
doesn’t perform these operations. (2) The nodes generated by PatriciaMine* are
always fewer than those generated by PatriciaMine, and thus the construction
and traversal costs of PatriciaMine* are less than those of PatriciaMine.

Except for FP-Growth, prefix-tree-based mining algorithms outperform
dEclat in many cases. However, dEclat is faster than FPgrowth*, AFOPT, and
PatriciaMine for databases chess and pumsb as depicted in Fig. 10(b) and (c). It
can be learned from Fig. 2 that the numbers of transactions in chess and pumsb
(3196 and 49046 respectively) are small. Therefore, the TID-lists constructed
from the databases are very short and TID-list intersections can be performed
fast in dEclat. Even so, PatriciaMine* distinctly outperforms dEclat. Another
performance advantage of PatriciaMine* derives from its efficient mining proce-
dure. For all the nodes in a prefix-tree storage structure, previous prefix-tree-
based algorithms access most of them many times for processing the prefix-tree
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while PatriciaMine* accesses any of them only twice. The traversal cost of Pa-
triciaMine* is less than that of previous algorithms.

5 Conclusion and Future Work

The paper presents a novel algorithm, PatriciaMine*, for frequent itemset min-
ing. The advantages of PatriciaMine* over other prefix-tree-based algorithms
are: (1) PatriciaMine* stores a prefix-tree in a Patricia* structure that is more
compact and contiguous than other storage structures. (2) PatriciaMine* adopts
the improved mining procedure and can efficiently process any prefix-tree gen-
erated during its mining process. Extensive experimental data show that Pa-
triciaMine* achieves significant performance improvement over previous works.
For all the conditional Patricia* structures from a Patricia* structure, they are
independent from one another. Therefore parallel mining of these structures are
feasible, which is a further research direction.
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[1] Agrawal, R., Imieliński, T., Swami, A.: Mining Association Rules between Sets of
Items in Large Databases. In: Proc. ACM SIGMOD, pp. 207–216 (1993)

[2] Calders, T., Garboni, C., Goethals, B.: Approximation of Frequentness Probabil-
ity of Itemsets in Uncertain Data. In: Proc. IEEE ICDM, pp. 749–754 (2010)

[3] Ceglar, A., Roddick, J.F.: Association Mining. ACM Comput. Surv. 38(2), 1–42
(2006)

[4] Grahne, G., Zhu, J.: Fast Algorithms for Frequent Itemset Mining Using FP-Trees.
IEEE Trans. Knowl. Data Eng. 17(10), 1347–1362 (2005)

[5] Han, J., Pei, J., Yin, Y., Mao, R.: Mining Frequent Patterns without Candidate
Generation: A Frequent-Pattern Tree Approach*. Data Min. Knowl. Disc. 8(1),
53–87 (2004)

[6] Knuth, D.: The Art of Computer Programming, vol 3: Sorting and Searching.
Addison Wesley, Reading (1973)

[7] Lam, H.T., Calders, T.: Mining Top-K Frequent Items in a Data Stream with
Flexible Sliding Windows. In: Proc. ACM SIGKDD, pp. 283–292 (2010)

[8] Liu, G., Lu, H., Lou, W., Xu, Y., Yu, J.X.: Efficient Mining of Frequent Patterns
Using Ascending Frequency Ordered Prefix-Tree. Data Min. Knowl. Disc. 9(3),
249–274 (2004)

[9] Liu, G., Lu, H., Yu, J.X., Wang, W., Xiao, X.: Afopt: An Efficient Implementation
of Pattern Growth Approach. In: Proc. IEEE ICDM Workshop FIMI (2003)

[10] Pietracaprina, A., Zandolin, D.: Mining Frequent Itemsets Using Patricia Tries*.
In: Proc. IEEE ICDM Workshop FIMI (2003)

[11] Schmidt-thieme, L.: Algorithmic Features of Eclat. In: Proc. IEEE ICDM Work-
shop FIMI (2004)

[12] Tsay, Y.J., Hsu, T.J., Yu, J.R.: FIUT: A New Method for Mining Frequent Item-
sets. Inf. Sci. 179(11), 1724–1737 (2009)

[13] Zaki, M.J., Gouda, K.: Fast Vertical Mining Using Diffsets. In: Proc. ACM
SIGKDD, pp. 326–335 (2003)



 

A. Cuzzocrea and U. Dayal (Eds.): DaWaK 2012, LNCS 7448, pp. 217–228, 2012. 
© Springer-Verlag Berlin Heidelberg 2012 

Multi-objective Optimization for Incremental Decision 
Tree Learning  

Hang Yang, Simon Fong, and Yain-Whar Si  

Department of Science and Technology, University of Macau, 
Av. Padre Tomás Pereira Taipa, Macau, China 

ya97404@gmail.com, {ccfong,fstasp}@umac.mo  

Abstract. Decision tree learning can be roughly classified into two categories: 
static and incremental inductions. Static tree induction applies greedy search in 
splitting test for obtaining a global optimal model. Incremental tree induction 
constructs a decision model by analyzing data in short segments; during each 
segment a local optimal tree structure is formed. Very Fast Decision Tree [4] is 
a typical incremental tree induction based on the principle of Hoeffding bound 
for node-splitting test. But it does not work well under noisy data. In this paper, 
we propose a new incremental tree induction model called incrementally 
Optimized Very Fast Decision Tree (iOVFDT), which uses a multi-objective 
incremental optimization method. iOVFDT also integrates four classifiers at the 
leaf levels. The proposed incremental tree induction model is tested with a large 
volume of data streams contaminated with noise. Under such noisy data, we 
investigate how iOVFDT that represents incremental induction method working 
with local optimums compares to C4.5 which loads the whole dataset for 
building a globally optimal decision tree. Our experiment results show that 
iOVFDT is able to achieve similar though slightly lower accuracy, but the 
decision tree size and induction time are much smaller than that of C4.5. 

Keywords: Decision Tree, Classification, Incremental Optimization, Stream 
Mining. 

1 Introduction 

How to extract knowledge efficiently from massive data has been a popular research 
topic. A decision tree, which presents the knowledge in a tree-like format, can be 
easily understood by both human and machine. Due to the high degree of 
comprehensibility, considered as one of the most important methods for classification.  

In general, there are roughly two approaches for decision tree learning. The first 
approach loads full data, multi-scanning and analyzing them. This process builds a 
static tree model by greedy search, i.e. ID3 [1], C4.5 [2], CART [3]. When new data 
come, the whole data (including historical and fresh data) is re-loaded to update 
algorithm. The second approach only requires loading a small part of samples in 
terms of Hoeffding bound and comparing the best two values of heuristic function for 
node-splitting test, i.e. VFDT [4] (which will be introduced in Section 2) and its 
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extensions [7,9,12,13]. Besides, static decision tree provides a global optimal model 
because it computes across the full samples by greedy search. Incremental tree 
maintains a local optimal model because it computes on a sufficient part of samples. 

One challenge to decision tree learning is associated with noise, which generally 
renders a data stream “imperfect”. The size of a decision tree model will grow 
excessively large under noisy data, so is an undesirable effect known as over-fitting. 
The imperfection significantly impairs the accuracy of a decision tree classifier 
through the confusion and misclassification prompted by the inappropriate data.  

For static decision tree learning, pruning algorithms help keep the size of the 
decision tree in check, although the majority are post-pruning techniques that remove 
relevant tree paths after a whole model has been built from a stationary dataset [5, 6]. 
For incremental decision tree learning, post-pruning is not suitable because no extra 
time is available for stopping tree building and pruning the branches under high-speed 
data streams environment. It is said that the excessive invocation of tie breaking can 
cause significant decline in VFDT performance on complex and noise data [12], even 
with the additional condition by the parameter τ. MVFDT [7] uses an adaptive tie-
breaking to reduce tree size for incremental tree.   

In this paper, we propose a new incremental decision tree induction inheriting the 
usage of Hoeffding bound in splitting test, so called Incrementally Optimized Very 
Fast Decision Tree (iOVFDT). It contains a multi-objective incremental optimization 
mechanism so as to maintain a small tree size and comparable accuracy, even for 
imperfect data. For higher accuracy, four types of functional tree leaf are integrated 
with iOVFDT. In the experiment, we compare iOVFDT to a classical static tree 
induction C4.5 and pre-pruning incremental tree induction MVFDT. The objective of 
this paper is to shed light into the following research questions. What are the 
significant differences between static (global optimum) and incremental (local 
optimum) decision tree? The answer can be found in experiment and discussion 
sections, which also show the superior performance of our new algorithm.    

The remainder of this paper is organized as follows. In the next section, we 
describe the classification problem for decision tree. In Section 3, we define the 
optimization problem for decision tree. Our new algorithm iOVFDT is presented in 
Section 4. Moreover, we provide the experimental comparison and discussion in 
Section 5. Finally, Section 6 concludes this paper.    

2 Optimization Problem for Decision Tree  

Suppose D is the full set of data samples with the form (X, y), where X is a vector of d 
attributes and y is the actual discrete class label. Attribute Xi is the i th attribute in X 
and is assigned a value of Xi1, Xi2… Xij, where j is the range of attribute Xi, |Xi| = j and 
1 ≤ i ≤ d. Class yk is the k class in y and is assigned a value of y1, y2… yk, where K is 
the total number of discrete classes. The classification problem for decision tree is 
defined as follows: construct a decision tree classifier  so as to satisfy a 
classifying goal ← , which uses the attribute vector X to provide a predicted 
class . The tree induction builds a tree model from a set of alternatives, minimizing 
the error between predicted class and actual class (1).  
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minimize ∑ | | ,  1,  y  y0,          (1) 

The static decision tree learning, i.e. ID3, C4.5, CART, etc., looks for an attribute 
with the best value of heuristic function H(.) as splitting-attribute by greedy search. 
Post-pruning mechanism removes noisy branches so as to minimize an error-based 
cost function after full tree built. Hence, it improves accuracy by reducing tree size. 
The constructed tree model DT searches a global optimal solution from the entire 
dataset D so far timestamp t, where ∑ . When new data Dt+1 comes at 
timestamp t+1, it re-computes on full data  to update DT, where ∑ .  

. (2)

where R is the range of classes distribution and n is the number of instances which 
have fallen into a leaf,  is the confidence to support this evaluation. Different from 
static tree learning, incremental decision tree learning operates continuously arrival 
data D1, D2, ... , Dt. In the t th splitting test, it only scans the newly received data Dt 
and update the sufficient statistics by Hoeffding bound (HB) in (2). Hence 
incremental decision tree is also called Hoeffding tree (HT). Let Xja be the attribute Xj 

with the highest value of H(.), Xjb be the attribute with the second-highest H(.). ∆   is the difference between the two top quality attributes. If ∆  with n samples observed in leaf, while the HB states with probability 1-δ, 
that Xja is the attribute with highest value in H(.), then the leaf is converted into a 
decision node which splits on Xja .  

The constructed tree is a local optimum that satisfies the data D at timestamp t. 
Said it a local optimum because we never know what are the new arrival data at 
timestamp t+1, even if they contains imperfect values. Let pl be the probability that an 
example that reaches level l in a decision tree falls into a leaf at that level. If HT and 
DT use the same heuristic function for node-splitting evaluation, the possibility that 
the  is not greater than / , where /  [4]. Therefore, 
we can know that: for the full data D, where ∑  at timestamp t, an 
incremental tree HTt uses the same H(.) with DT that tree-branches of HTt should be a 
subset of DT that  with probability /  at least. 

3 Incrementally Optimized Very Fast Decision Tree (iOVFDT)   

3.1 Metrics    

Here section will provide iOVFDT in detailed. The model is growing incrementally 
so as to update an optimal decision tree under continuously arriving data. Suppose 
that a decision tree optimization problem Π is defined as a tuple ( , , Φ). The set X 
is a collection of objects to be optimized and the feasible Hoeffding tree  solutions 
are subsets of X that collectively achieve a certain optimization goal. The set of all 
feasible solutions is ⊆ 2  and Φ:  is a cost function of these solutions. 
The optimal decision tree HT* exists if X and Φ are known, and the subset S is the 
set of solutions meets the objective function where HT* is the optimum in this set. 
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Therefore, the incremental optimization functions can be expressed as a sum of 
several sub-objective cost functions:  Φ Φ                          (3) 

where Φ  is a continuously differentiable function and M is the number 
of objects in the optimization problem. The optimization goal is given in (4):  Φ    ∈                   (4) 

iOVFDT uses  to predict the class when a new data sample (X, y) arrives. 
So far timestamp t, the prediction accuracy  defined as:  ∑ | |                                 (5) 1,  0,                        (6) 

To measure the utility of the three dimensions via the minimizing function in (4), the 
measure of prediction accuracy is reflected by the prediction error in (7):  Φ 1                        (7) 

iOVFDT is a new methodology for building a desirable tree model by combining with 
an incremental optimization mechanism and seeking a compact tree model that 
balances the objects of tree size, prediction accuracy and learning time. The proposed 
method finds an optimization function Φ  in (3), where M = 3. When a new data 
arrive, it will be sorted from the root to a leaf in terms of the existing HT model.  

When a leaf is being generated, the tree size grows. A new leaf is created when the 
tree model grows incrementally in terms of newly arrival data. Therefore, up to 
timestamp t the tree size can be defined as:  Φ 1  ,  ∆          ,                     (8) 

iOVFDT is a one-pass algorithm that builds a decision model using a single scan over 
the training data. The sufficient statistics that count the number of examples passed to 
an internal node are the only updated elements in the one-pass algorithm. The 
calculation is an incremental process, which tree size is “plus-one” a new splitting-
attribute appears. It consumes little computational resources. Hence, the computation 
speed of this “plus one” operation for a new example passing is supposed as a 
constant value  in the learning process. The number of examples that have passed 
within an interval period of in node splitting control determines the learning time. nmin 
is a fixed value for controlling interval time checking node splitting. Φ                      (9) 

Suppose that  is the number of examples seen at a leaf yk and the condition that 
checks node-splitting is  0. The learning time of each node splitting 
is the interval period – the time defined in (9) – during which a certain number of 
examples have passed up to timestamp t.  

Returning to the incremental optimization problem, the optimum tree model is the 
 structure with the minimum . A triangle model is provided to illustrate the 

relationship amongst the three dimensions – the prediction accuracy, the tree size and 
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the learning time. The three dimensions construct a triangle utility function shown in 
Figure 1. A utility function computes the area of this triangle, reflecting a relationship 
amongst the three objects in (10):  

    Φ √ · · · ·    (10) 

 

Fig. 1. A multiple objectives optimization model 

The area of this triangle  changes when node splitting happens and the HT 
updates. A min-max constraint of the optimization goal in (4) controls the node 
splitting, which ensures that the new tree model keeps a  within a 
considerable range. Suppose that . Φ  is a HT model with the maximum 
utility so far and . Φ  is a HT model with the minimum utility. The 
optimum model should be within this min-max range, near . Φ : . Φ M . .

                  (11) 

According to the Chernoff bound [8], we know:  |Opt. Φ . Φ |  
          (12) 

where the range of Φ  is within the min-max model and Min. ΦOpt. Φ Max. Φ . Therefore, if Φ  goes beyond this constraint, the 
existing HT is not suitable to embrace the new data input and the tree model should 
not be updated. Node-splitting condition is adaptively optimized in iOVFDT such 
that: ∆  or Opt. Φ . Φ  or Opt. Φ . Φ , 

3.2 Functional Tree Leaf Integration     

Functional tree leaf [9], can further enhance the prediction accuracy via the embedded 
Naïve Bayes classifier.. In this paper, we embed the functional tree leaf to improve 
the performance of prediction by HT model. When these two extensions – an 
optimized node-splitting condition (∆  or Opt. Φ . Φ  or Opt. Φ . Φ ) and a refined prediction using the functional tree leaf 
– are used together, the new decision tree model is able to achieve unprecedentedly 
good performance, although the data streams are perturbed by noise and imbalanced 
class distribution.  

For the actual classification, iOVFDT uses a decision tree model   to predict the 
class label  with functional tree leaf   when a new sample (X, y) arrives, defined as   . The predictions are made according to the observed class distribution 
(OCD) in the leaves called functional tree leaf . Originally in VFDT, the prediction 
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uses only the majority class MC. The majority class only considers the counts of the 
class distribution, but not the decisions based on attribute combinations. The naïve 
Bayes NB computes the conditional probabilities of the attribute-values given a 
class at the tree leaves by naïve Bayes network. As a result, the prediction at the leaf 
is refined by the consideration of each attribute’s probabilities. To handle the 
imbalanced class distribution in a data stream, a weighted naïve Bayes WNB and an 
error-adaptive Adaptive are proposed in this paper. These four types of functional tree 
leaves are discussed in following paragraphs. 

Let Sufficient statistics nijk be an incremental count number stored in each node in 
the iOVFDT. Suppose that a node Nodeij in HT is an internal node labeled with 
attribute xij and k is the number of classes distributed in the training data, where k≥2. 
A vector Vij can be constructed from the sufficient statistics nijk in Nodeij, such that Vij 
= {nij1, nij 2…nij k}. Vij is the OCD vector of Nodeij. OCD is used to store the 
distributed class count at each tree node in iOVFDT to keep track of the occurrences 
of the instances of each attribute.  

Majority Class Functional Tree Leaf: In the OCD vector, the majority class MC 
chooses the class with the maximum distribution as the predictive class in a leaf, 
where MC: arg max r = {ni,j,1, ni, j, 2… ni, j, r… ni, j, k}, and where 0<r<k.  

Naïve Bayes Functional Tree Leaf: In the OCD vector Vi,j = {ni,j,1, ni,j,2… ni,j,r… 
ni,j,k}, where r is the number of observed classes and 0<r<k, the naïve Bayes NB 
chooses the class with the maximum possibility, as computed by the naïve Bayes, as 
the predictive class in a leaf. nij,r is updated to n’i,j,r by the naïve Bayes function such 
that ’ , ,  P | · P ⁄ P , where X is the new arrival instance. Hence, the 

prediction class is NB: arg max r = { n’i,j,1, n’i,j,2… n’i,j,r… n’i,j,k }.  

Weighted Naïve Bayes Functional Tree Leaf: In the OCD vector Vi,j = {ni,j,1, ni,j,2… 
ni,j,r … ni,j,k}, where k is the number of observed classes and 0<r<k, the weighted naïve 
Bayes WNB chooses the class with the maximum possibility, as computed by the 
weighted naïve Bayes, as the predictive class in a leaf. ni,j,r is updated to n’i,j,r by the 

weighted naïve Bayes function such that , , ω · P | · P ⁄ P  , 
where X is the latest received instance and the weight is the probability of class i 
distribution among all the observed samples, such that ∏ ∑⁄ , 
where ni,j,r is the count of class r. Hence, the prediction class is WNB: arg max  
r = { n’i,j,1, n’i,j,2… n’i,j,r… n’i,j,k }. 

Adaptive Functional Tree Leaf: In a leaf, suppose that V 
MC is the OCD with the 

majority class MC; suppose V 
NB is the OCD with the naïve Bayes NB and 

suppose that V 
WNB is the OCD with the weighted naïve Bayes WNB. Suppose that 

y is the true class of a new instance X and E  is the prediction error rate using a  
. E  is calculated by the average E=errori /n, where n is the number of examples 

and errori is the number of examples mis-predicted using . The adaptive 
Functional Tree Leaf chooses the class with the minimum error rate predicted by the 
other three strategies, where Adaptive: arg min = {E MC

, E
NB

, E
WNB}. 
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3.3 Tree-Building Process     

In this section, a pseudo code summaries the process of tree-growth presented in 
previous parts. When new data stream comes, it will be sorted by current HT and 
given a predictive class label. The OCD, which is stored on those pass-by internal 
nodes, is updated. Comparing the predicted class to the actual class, the prediction 
error is updated (Line 1 – 5). If the number of samples seen so far is greater than the 
pre-defined interval number, the node-splitting evaluation should be performed (Line 
7 – 19). If node-splitting condition that the difference of best two values of heuristic 
function H(.) is greater than HB, or the value of optimization function is out of a min-
max range, the attribute with the highest H(.) value should split to a new leaf (Line 12 
– 17). Meanwhile, new model size and learning time are updated by (8) and (9).  
 

Input:       : a data stream (X,y) arriving at timestamp t; 

  H(.): the heuristic function for splitting test; 
  : a strategy of functional tree leaf;      : the minimum interval between node-splitting tests; 

  : a desired probability for Hoeffding bound; 

Output: Incremental decision tree HT 

1. A data stream ,  arrives; 

2. If HT isn’t initialized, let HT be a tree with a single leaf 
l (the root); 

3. Sort  from the root to a leaf by HT, using • to give a 
predicted class ← ;  

4. Update OCD on each pass-by node; 
5. Compare predicted class  to actual class , and update 

error in (7); 

6. Let  be the number of instances seen at the leaf with class 

y
k
.  

7. If all instances seen so far at leaf k don’t belong to the 
same class, and (   0){ 

8.    Update the learning time in (9);  
9.    Let  and  the attributes with highest and the 2nd   

 highest heuristic function H(.).  

10.    Let ∆ ; 

11.    Compute HB and update Φ  in (3); 

12.    If (∆ ,  Φ . Φ ,  Φ . Φ { 

13.        Replace leaf k by a node splits on ; 

14.        Update the tree size in (8); 
15.        If Φ . Φ  then . Φ  Φ  

16.        If Φ . Φ  then . Φ  Φ  

17.    } End-if; 
18.    Reset OCD on the new leaf; 
19. } End-if; 
20. Return  
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4 Experiment  

4.1 Setup    

In this section, we compared C4.5, MVFDT to iOVFDT tree inductions in order to 
show the difference between global (C4.5) and local (MVFDT, iOVFDT) search 
optimal tree models. The heuristic function for splitting attribute is information gain. 
The experimental platform was built on Java. For C4.5, WEKA [10] tree 
classification J48 was used, both un-pruning and pruning mechanisms; for MVFDT, 
there are loose and strict pruning mechanisms, both of which have been verified to 
outperform VFDT described in [7]; for iOVFDT, it was programmed and integrated 
with MOA [11]. Majority Class (MC), Naïve Bayes (NB), Weighted Naïve Bayes 
(WNB) and Hybrid Adaptive (ADP) functional tree leaves are integrated in iOVFDT. 

The running environment was a Windows 7 PC with an Intel 2.8GHz CPU and 8G 
RAM. Besides, un-pruned and pruned C4.5 algorithms were applied in this 
experiment so as to analyze the tree size. The heuristic evaluation of node-splitting 
was information gain in both methods.  

4.2 Datasets  

The datasets, including discrete, continuous and mixed attributes, were either 
synthetically generated by MOA generator, or downloaded from UCI repository.  

Table 1. The description of experimental datasets 

Data Name #Nominal #Numeric #Class Source Size 
LED24 24 0 10 Synthetic 106 

Waveform 0 21 3 Synthetic 106 

Cover Type 42 12 7 UCI 581,012 

Synthetic Data LED data was generated by MOA. We added 10% noisy data to 
simulate imperfect data streams. The LED24 problem used 24 binary attributes to 
classify 10 different classes. Waveform was generated by the MOA generator. The 
goal of this task was to differentiate between three different classes of Waveform. It 
had 21 numeric attributes contained noise. UCI Data Cover Type was used to predict 
forest cover types from cartographic variables. It is a typical imbalanced class 
distribution data that all are real life samples. 

4.3 Result Analysis     

The performance measurements were evaluated in three aspects: accuracy, tree size 
and learning speed. The measurement of accuracy was 10 folds cross-validation. The 
number of leaves in the tree mode computed tree size. Learning speed was reflected 
by the time taken to build decision tree.  

Discrete Data. Obviously, un-pruned C4.5 resulted lowest accuracy, biggest tree size 
and slowest speed (Figure 2). Hence un-pruned C4.5 had the worst performance in 
this test. Compared with iOVFDT, pruned C4.5 had better accuracy for small data 
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result compares iOVFDT to C4.5 and MVFDT, and we found that: iOVFDT has 
significantly smaller tree size and faster learning speed than C4.5. It also has higher 
accuracy than MVFDT in terms of the three-object incremental optimization 
mechanism. In the second experiment, the dataset is partitioned by interleaving 
segments of perfect and noisy data, so as to simulate existence of local optimums and 
to test the difference between global and local optimal decision trees. In general, 
global optimal decision tree, which was constructed by loading full data to find out a 
global optimal model in C4.5 tree induction, was able to obtain a high accuracy for 
small scale data. Because of multi-scanning over the full dataset, the size of decision 
tree model was very large even pruning was applied and the entire process was 
relatively slow. Local optimal decision tree, which was built by iOVFDT 
incrementally, was demonstrated to be applicable for large or, even infinite datasets. 
The proposed functional tree leaf of Hybrid Adaptive had the best performance in 
synthetic data. Compact tree size and short learning time make incremental model 
practical in real-time applications. The accuracy though may not be the highest, is on 
par with C4.5. By sacrificing slight accuracy, iOVFDT can be effectively used to 
handle infinite streams as well as to build an optimized tree within a short time.  
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Abstract. The emerging of ubiquitous computing technologies in recent
years has given rise to a new field of research consisting in incorporating
context-aware preference querying facilities in database systems. One
important step in this setting is the Preference Elicitation task which
consists in providing the user ways to inform his/her choice on pairs of
objects with a minimal effort. In this paper we propose an automatic
preference elicitation method based on mining techniques. The method
consists in extracting a user profile from a set of user preference samples.
In our setting, a profile is specified by a set of contextual preference
rules verifying properties of soundness and conciseness. We evaluate the
efficacy of the proposed method in a series of experiments executed on a
real-world database of user preferences about movies.

1 Introduction

Elicitation of preferences consists basically in providing the user a way to inform
his/her preferences on objects belonging to a dataset, with a minimal effort for
him/her. It can be achieved by following different strategies: (a) by using a query
interface where users are asked to express their preferences [3], or (b) by captur-
ing implicit user’s choices and applying preference mining algorithms [9]. The
first alternative is not efficient since the users in general are not able to express
their preferences in an exact and consistent way. This paper is focused on the
second alternative for preference elicitation. We assume our data is constituted
by pairwise comparisons. We do not discuss in this paper the way the user in-
formed his/her choices, knowing that different strategies can be applied [15]. Our
method simply assume that pairs of objects expressing the user preferences have
been collected somehow. The running example below illustrates the preference
mining problem we tackle in this paper. In this example we assume that the user
preferences are informed by means of the number of clicks on certain tags.

Motivating Example. A web service regularly provides recommendation about
movies to its subscribers. In order to capture my preferences on films without

A. Cuzzocrea and U. Dayal (Eds.): DaWaK 2012, LNCS 7448, pp. 229–242, 2012.
c© Springer-Verlag Berlin Heidelberg 2012
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being too annoying and intrusive, the service offers me a trial period during which
I can freely access information about films. I indicate the films I am interested
in by clicking on different tags. For instance, I can click on tags Action, Spielberg
and War to indicate that I am interested in obtaining information on films
directed by Steve Spielberg, with a script based on a war story, and having a
lot of action. My clicks are automatically collected during the trial period. The
relationD depicted on Table 1 presents some of my access during the trial period.
Tags A, B, C, D and E stands for Spielberg, Tom Hanks, Action, Leonardo di
Caprio and War respectively. Each ti (i = 1, ...5) represents the set of tags I
selected each time I accessed the service. They are called transactions. Let us
suppose that during the trial period I accessed the service ten times by clicking
on the set of tags t1 and only five times by clicking on the set of tags t3. Thus,
I implicitly indicated that I am more interested on films associated to tags t1
than to tags t3 as indicated by the first pair (t1, t3) in relation P depicted on
Table 1. Notice that both t1 and t3 contain the tags A and C. Between them I
prefer the one containing the tag D than the one containing the tag B. So, the
following contextual preference rule can be inferred: Between two action movies
directed by Spielberg I prefer the one played by Leonardo di Caprio than the one
played by Tom Hanks. Tags Action and Spielberg constitute the context of the
rule. Notice that some pairs of transactions (for instance, (t1, t2)) do not appear
in relation P , indicating that the number of clicks on each of these sets of tags
is the same or differs by a negligible amount of clicks (below a given threshold).

D
Tid Transactions
t1 A C D
t2 A B D
t3 A B C E
t4 C D
t5 A B

P
Pid Preference
p1 〈t1, t3〉
p2 〈t2, t3〉
p3 〈t2, t4〉
p4 〈t3, t4〉
p5 〈t4, t5〉

t1 : ACD t2 : ABD

t3 : ABCE t4 : CD t5 : AB

p1

p2

p3

p4 p5

Fig. 1. Preferences on Transactions

In this paper we propose a method for building the profile of a user from a sam-
ple of his/her preferences previously captured by the system. A user’s profile is
specified by a set of contextual preference rules [1] satisfying some interestingness
criteria, namely soundness and conciseness. The soundness property guarantees
that the preference rules specifying the profiles are in agreement with a large set
of the user preferences, and contradicts a small number of them. On the other
hand, conciseness implies that profiles are small sets of preference rules. We
argue that this approach has many advantages if compared to other preference
models found in the literature. The model is easy to understand and manage due
to its conciseness and its qualitative aspect (it is constituted by a set of prefer-
ence rules and it does not employ score function explicitly assigning grades to
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each transaction [5,8,11,16]). Moreover, the soundness property guarantees that
our method builds user profiles with good predictive properties.

This paper is organized as follows. In Section 2 we discuss some related work.
In Section 3 we rigorously define the mining problems we treat in this paper.
Section 4 is dedicated to present the preference rule mining algorithm, whereas
Section 5 presents the user profile construction algorithm. In Section 6 we de-
scribe and analyze experimental results on real datasets.

2 Related Work

Methods for Preference Learning can be categorized following different crite-
ria such as Preference Specification (qualitative or quantitative) and Preference
Semantics (the pareto model, conditional preference model). The techniques pre-
sented in this section are inherently distinct. Nevertheless they have a common
main goal: given a pair of objects, to predict which one is the most preferred.

In a qualitative approach, preferences are specified by a compact set of pref-
erence rules from which a preference relation can be inferred. The method we
propose in this paper follows a qualitative approach. Some other qualitative
approaches are [9,10]. In [9] the authors propose a technique for mining user
preferences whose underlying model is the pareto preference model. Such pref-
erence rules are obtained from log data generated by the server when the user
is accessing a web site. Another approach to preference mining is presented in
[10]. In this work the authors propose using preference samples provided by the
user to infer an order on any pair of tuples in the database. Such samples are
classified into two categories, the superior and inferior samples and contain in-
formation about some preferred tuples and some non-preferred ones. From these
rules, an order is inferred on the tuples. The underlying preference model is the
pareto preference model as in [9]. In this model, preferences are not conditional
or contextual, that is, preferences on values of attributes do not depend on the
values of other attributes. Our contextual preference model is more expressive.

In contrast with the above papers, where preferences are specified following a
qualitative approach, in [5] and [7] algorithms for mining quantitative preferences
are proposed. In these works preferences are specified by a score function and
the main goal is to find automatically a prediction rule which assigns a score
to each tuple of the database. The mining task in this approach is sometimes
called learning to rank. Several efficient methods for learning to rank have been
proposed so far in the information retrieval domain, including Rank SVM [11],
RankBoost [8], RankNet [5] and AdaRank [16]. In all these methods, the learning
task is formalized as classification of object pairs in two classes: correctly or
incorrectly ranked. Different classification techniques are employed such as SVM
(Rank SVM), Boosting (AdaRank, RankBoost) and Neural Network trained by
a Gradient Descent algorithm (RankNet). In comparison, our method has the
advantage of making explicit the preferences of the user through the profile.
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3 Problem Formalization

3.1 Preference Database and Contextual Preference Rules

Let I be a set of distinct literals called items (or tags), an itemset is a subset
of I. The language of itemsets corresponds to L = 2I . A transactional dataset
D is a multi-set of itemsets in L. Each itemset, usually called transaction, is a
database entry. Figure 1 presents a transactional dataset D where 5 transactions
denoted by t1, . . . , t5 are described by 5 items denoted by A, . . . , E.

A preference database P ⊆ D×D is a set of pairs of transactions representing
a sample of user preferences over the dataset D. Intuitively, a user preference
〈t, u〉 ∈ P means that the user prefers the transaction t to the transaction u.
Given a user preference 〈t, u〉 ∈ P , t is said to be the preferred transaction (ac-
cording to the user). Figure 1 shows a set of 5 user preferences labeled p1, . . . , p5.
The preference database plus the transactions are also synthesized by a graph as
illustrated in Table 11. We emphasize that in general P is not necessarily transi-
tive as in our running example, since in this particular case the user preferences
have been obtained by comparing the number of clicks on each set of tags.

The main objective of this paper is to extract a user profile from a preference
database provided by the user. A user profile is specified by a set of preference
rules verifying some interesting properties.

Definition 1 (Contextual preference rule [1]). A contextual preference rule
is of the form i+� i− |X where X is an itemset of L, i+ and i− are items of I \X.

The left-hand side of a preference rule specifies the choice while the right-hand
side is the context. For instance, D�E |AB means that the context AB leads
to choose the item D to the item E. CP(L) denotes the set of the contextual
preference rules based on L (we often omit the language when it is implicit in
the context). Of course, the interest behind i+� i− |X is its ability to compare
transactions. A transaction t is preferred to u according to π : i+ � i− | X ,
denoted by t �π u if (Xi+ ⊆ t) ∧ (Xi− ⊆ u) ∧ (i− /∈ t) ∧ (i+ /∈ u). For instance,
ACD is preferred to ABCE according to the contextual preference ruleD�E |A
i.e., ACD �DE|A ABCE.

Naturally, a given contextual preference rule π can agree with a user preference
〈t, u〉 ∈ P (i.e. t �π u) or contradict 〈t, u〉 ∈ P (i.e. u �π t). In both cases, we say
that the contextual preference rule covers the user preference 〈t, u〉. For instance,
the user preference p1 = 〈t1, t3〉 is covered by both D�E |A (agreement) and
B�D |C (contradiction).

3.2 The Contextual Preference Rule Mining Problem

Basically, we adapt the support-confidence framework of association rules by
considering that the context X and the preference i+ � i− corresponds respec-
tively to the antecedent and the consequent of an association rule. Thereby, we

1 For the sake of simplifying the presentation, some arrows obtained by transitivity
are not depicted in the graph (for instance the arrow between t1 and t4).
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analogically define the concept of support, confidence and minimality as inter-
estingness criteria for filtering out non relevant contextual preference rules.

Definition 2 (Support). The support of a contextual preference rule π in P
is defined as: supp(π,P) = |{〈t,u〉∈P | tπu}|

|P|

The support of a contextual preference rule π (ranged from 0 to 1) estimates
the probability that π agrees with a pair of P . The interest of a contextual
preference rule increases with its support. For instance, as ACD �DE|A ABCE
and ABD �DE|A ABCE, we obtain supp(D�E |A,P) = |{p1, p2}|/|P| = 0.4.
Similarly, supp(D�E |B,P) = |{p2}|/|P| = 0.2. So,D�E |A is more interesting
than D�E |B.

Now we also need to evaluate the disagrement between a contextual preference
rule and the preference database. To this end, the confidence of a contextual
preference rule π measures the proportion of user preferences in agreement with
π among pairs covered by π:

Definition 3 (Confidence). The confidence of a contextual preference rule π

in P is defined as: conf(π,P) = |{〈t,u〉∈P | tπu}|
|{〈t,u〉∈P | tπu∨uπt}|

In other words, the confidence evaluates whether a contextual preference rule
contradicts many user preferences. This criterion shows that D�E |A is more
valuable than D � E | ∅ because conf(D � E | A,P) = 2/2 = 1 whereas
conf(D�E | ∅,P) = 2/3. The set of all contextual preference rules exceeding a
minimal support threshold σ and a minimal confidence threshold κ is denoted
by CPσ,κ(L,P) (or CPσ,κ in brief).

At this point, the support and the confidence discard respectively the infre-
quent and unreliable contextual preference rules. But, the redundancies between
several contextual preference rules of CPσ,κ are not detected. Given the example
of Figure 1, we observe that D�E |B and D�E |AB have the same support
and the same confidence. Intuitively, the contextual preference rule D�E |B is
more relevant than D�E |AB because its context is smaller. For this purpose,
we introduce the notion of minimal contextual preference rule:

Definition 4 (Minimal Preference Rule). A contextual preference rule i+�
i− |X is minimal in P iff there is no contextual preference rule i+� i− |Y such
that Y ⊂ X and supp(i+ � i− | Y,P) = supp(i+ � i− |X,P) and conf(i+ � i− |
Y,P) = conf(i+� i− |X,P).

Following on, MCPσ,κ(L,P) (orMCPσ,κ) denotes the whole set of minimal con-
textual preference rules having its support and confidence respectively greater
than σ and κ. In practice, this minimality criterion drastically reduces the num-
ber of contextual preference rules.

Given a sample preference database, the first problem that we consider deals
with the extraction of all interesting preference rules, i.e. those rules which are
minimal and have acceptable support and confidence. More precisely:
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Problem 1 (Preference Rule Mining). Given a preference database P , a minimal
support threshold σ and a minimal confidence threshold κ, find the set MCPσ,κ

of minimal contextual preference rules.

Obviously, a naive enumeration of all preference rules for computing MCPσ,κ

is unfeasible and some pruning criteria are necessary for reducing the search
space. In Section 4 we present ContPrefMiner, a levelwise algorithm inspired
on Apriori [2] which takes advantage of the downward closure of MCPσ,0 to
reduce the search space.

3.3 The User Profile Construction Problem

In our approach, a user profile is specified by a set of contextual preference rules
which is both concise and sound with respect to the preference samples he/she
has previously provided. Roughly speaking, the conciseness of a set of preference
rules is evaluated by means of its cardinality. On the other hand, the soundness
of a set of preference rules is evaluated by means of two standard measures,
precision and recall (see Definition 5).

We have to precise how two transactions can be compared according to a
set S of contextual preference rules to evaluate the ability of a user profile to
make good predictions. First, we say that two transactions are comparable with
respect to a set S of preference rules if they can be compared by at least one
rule in S. Then, one important issue is when two transactions can be compared
in different ways using different rules in S. In this paper, we define a total order
on the set of contextual preference rules (see Definition 6), and propose to select
the best preference rule to decide which transaction is the preferred one. More
precisely, we say that a transaction t ∈ L is preferred to u ∈ L according to a
user profile S, denoted by t �S u, it there exists a preference rule π ∈ S such
that t �π u and π is the best rule in S that can be used to compare t and u.

In order to evaluate the predictive quality of a user profile, we now introduce
the precision and recall measures as follows:

Definition 5 (Precision and recall). Given a preference database P and a set
of contextual preference rules S, the precision of �S with respect to P, denoted
Prec(�S ,P), is defined by:

Prec(�S ,P) =
|{〈t, u〉 ∈ P|t �S u}|

|{〈t, u〉 ∈ P|t �S u ∨ u �S t}|
Moreover, the recall of �S with respect to P, denoted Rec(�S,P), is defined by:

Rec(�S,P) =
|{〈t, u〉 ∈ P|t �S u}|

|P|
Notice that if S is a singleton then the precision and recall of S coincide with
the confidence and support of the single rule in S.

Using Definition 5, we can now define precisely the second main problem we
consider in this paper, i.e. the construction of a user profile that is concise and
sound with respect to a set of user preferences.
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Problem 2 (User profile construction). Given a preference database P and a set
of contextual preference rules S, select Π ⊆ S that maximizes precision and
recall with respect to P and that is as concise as desired. Π is called the user
profile associated to P .

Notice that in this problem statement, S can be any set of preference rules. In
practice, S will be the set of all interesting minimal contextual preferences rules,
as defined in problem 1. It is also important to note that with large datasets,
the construction of the smallest set of preference rules that maximizes recall
and precision is a hard problem. Indeed, it can be shown that this problem is
closely related to the red-blue set cover problem that is NP-complete [6]2. To
cope with this difficulty, we propose in Section 5 a heuristic approach based
on the same ideas used by associative classification methods such as CBA [12].
More precisely, given a preference database, a set of interesting preference rules
and a parameter k (called minimal agreement threshold) that allows to control
the size of the user profile returned, we present an iterative algorithm called
ProfMiner that maximizes precision and recall.

4 Discovery of Contextual Preference Rules

As indicated in the previous section, we cope with Problem 1 by using pruning
criteria stemming from anti-monotone constraints that reduce the search space
CP. Before detailing the proposed algorithm, let us recall that a constraint q is
anti-monotone iff whenever i+� i− |X satisfies q, any generalization of i+� i− |X
(i.e., i+� i− |Y such that Y ⊆ X) also satisfies q. Such constraints like the min-
imal support provide powerful pruning conditions of the search space [13]. In-
terestingly, the minimality leads to another anti-monotone constraint: whenever
a contextual preference rule i+� i− |X is minimal, all the contextual preference
rules i+ � i− | Y satisfying Y ⊆ X are also minimal. As an example, let us
consider r : D � E | AB with supp(r,P) = 0.2 and conf(r,P) = 1. Since r is
not a minimal contextual rule (because supp(r,P) = supp(D � E | B,P) and
conf(r,P) = conf(D � E | B,P)), we are sure that there is no more minimal
rule concluding on D � E containing AB in its context. Such pruning technique
drastically reduces the search space in a levelwise mining method as Algoritm 1.

Now we detail Contextual Preference ruleMiner where the set Candi (resp.
MCPi) contains all the candidates (resp. minimal contextual rules) whose con-
text has a cardinality i. Basically, Line 1 initializes the candidates with rules
having an empty context. For this purpose, all the pairs of items (i1, i2) are
considered. While there are candidates of context length i, Line 4 computes
all the minimal contextual preference rules of length i satisfying the constraint
supp(r,P) ≥ σ (test step). Line 5 generates the new candidates of length i + 1

2 Given a finite set of “‘red” elements R (here, 〈u, t〉 such that 〈t, u〉 ∈ P), a finite set
of “blue” elements B (here, P) and a family of S ⊆ 2R∪B , the red-blue set cover
problem is to find a subfamily S ⊆ S which covers all blue elements, but which
covers the minimum possible number of red elements.
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Algorithm 1. ContPrefMiner

Input: A preference database P , a minimal support threshold σ, a minimal confidence
threshold κ

Output: All the minimal contextual preference rules with support and confidence
exceeding σ and κ respectively.

1: Cand0 := {i1� i2 |∅ ∈ CP such that (i1, i2) ∈ I × I}
2: i := 0
3: while Candi �= ∅ do
4: MCPi := {r ∈ Candi such that r is minimal and satisfies supp(r,P) ≥ σ}
5: Candi+1 := {i1� i2 |X ∈ CP such that |X| = i+ 1 and ∀i ∈ X, i1� i2 |X \ {i} ∈

MCPi}
6: i := i+ 1
7: od
8: return {(r, supp(r,P), conf(r,P)) | r ∈ ⋃

j<i MCPj ∧ conf(r,P) ≥ κ}

(generate step). Finally, Line 8 returns the complete collection of the minimal
contextual preference exceeding a minimal confidence threshold (with the corre-
sponding support and confidence).

5 User Profile Construction

Basically, the construction of the user profile iterates two main principles over
the contextual preference rules returned by ContPrefMiner until all user pref-
erences in the database are in agreement with at least one preference rule in the
profile: (1) select the best contextual preference rule and (2) remove the unneces-
sary contextual preference rules. Indeed, even if the minimality criterion removes
many redundant contextual preference rules, some superfluous contextual pref-
erence rules remain among those returned by ContPrefMiner. For instance,
in our running example the preference rule D�B |A (only in agreement with
p1) can be removed from MCP0.2,0.6 (see Table 1) since D�E |A already agrees
with p1 and has a better support (with the same confidence). More generally, a
contextual preference rule π provides a substantial value if it agrees with user
preferences of P that are not in agreement with other better preference rules.
Note that such a kind of iterative process for building a model is quite classical
in the literature [4].

5.1 Ordering Contextual Preference Rules

The main strategy of the algorithm ProfMiner responsible for building user
profiles is the ability of selecting the best contextual rule to decide which trans-
action is the preferred one. The following definition introduces a total order on
the set of contextual preference rules MCP.
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Definition 6 (Best rule order). The best rule order on MCP, denoted by
>best, is a total order defined for any contextual preferences π and π′ as:

π >best π
′ ⇔

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

conf(π) > conf(π′) or
conf(π) = conf(π′) and supp(π) > supp(π′) or
conf(π) = conf(π′) and supp(π) = supp(π′)

and |context(π)| < |context(π′)| or
conf(π) = conf(π′) and supp(π) = supp(π′)

and |context(π)| = |context(π′)| and π <CP π′

As the profile should contradict at most a very small number of user preferences
(in order to have a high precision), the confidence is the most important criterion.
The support criterion naturally comes in second place, followed by the size of
the context. The fourth criterion (where <CP is an arbitrary total order) is only
used to definitely decide between two indistinguishable rules.

Table 1 (the left part) illustrates the best rule order >best over the minimal
contextual preference rules with σ = 0.2 and κ = 0.6 on our running example.
Note that the arbitrary order <CP justifies to arrange A�C |D before A�D |C
and B�C |D as well as D�B |A before D�E |AC.

Table 1. Rules ofMCP0.2,0.6 ordered according >best and profile construction (k = 1)

MCP0.2,0.6 Profile construction
Cont. pref. supp conf Agreement step 1 step 2 step 3 step 4

D�E |A 0.4 1 p1,p2 ✔

D�C |∅ 0.2 1 p2 ✗

A�C |D 0.2 1 p3 ✔

A�D |C 0.2 1 p4 ✔

B�C |D 0.2 1 p3 ✗

D�B |A 0.2 1 p1 ✗

D�E |B 0.2 1 p2 ✗

D�E |AC 0.2 1 p1 ✗

D�B |∅ 0.4 2/3 p1,p5 ✔

D�E |∅ 0.4 2/3 p1,p2 ✗

5.2 The Algorithm ProfMiner

Given a preference database P , a set of contextual preference rules S, a minimal
agreement threshold k, ProfMiner returns a user profileΠ by selecting suitable
contextual preference rules from S (see Algorithm 2). Note that the agreement
threshold k enables us to adjust the size of the user profile as indicated in
Problem 2. The greater the minimal agreement k, the smaller the profile.

After initializing the profile (Line 1), the main loop (Line 2-7) selects the best
contextual preference rule according to >best (Line 3) and adds it to the profile
(Line 4) until that S becomes empty (Line 2). This condition is ensured by the
reduction of P (Line 5) and the reduction of S (Line 6). Indeed, a contextual
preference rule π is unnecessary with respect to the profile in progress whenever
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Algorithm 2. ProfMiner

Input: A preference database P , a set of preference rules S, a minimal agreement k
Output: A user profile Π
1: Π := ∅
2: while S �= ∅ do
3: πbest = max>best S
4: Π := Π ∪ {πbest}
5: P := {〈t, u〉 ∈ P|t ��πbest u}
6: S := {π ∈ S|supp(π,P) ≥ k/|P|}
7: od
8: return Π

π does not agree with at least k remaining user preferences (i.e., not still in
agreement with other preference rules of the profile).

Table 1 (the right part) illustrates ProfMiner on our running example (see
Figure 1) with S = MCP0.2,0.6 and k = 1. At the first iteration, Line 3 selects
D�E |A (symbol ✔) as the best rule according to >best (see Table 1). Line 5
removes the user preferences p1 and p2 and then, Line 6 removes 5 contextual
preference rules from S (symbol ✗). Note that D�B | ∅ is preserved because it
also covers p5. The second iteration adds A�C |D to the profile because it is
the best remaining contextual preference rule. This process stops at the end of

the 4th iteration because S is empty (see Line 2 of ProfMiner). So, the final
profile is {D�E |A,A�C |D,A�D |C,D�B |∅}.

6 Experimental Results

This experimental study aims at evaluating the conciseness and the soundness of
user profiles mined by our approach. Indeed, a comprehensive study of the effec-
tiveness of our approach has been conducted on real world datasets based on the
APMD-Workbench [14] built from MovieLens (www.movielens.org) and IMDB
(www.imdb.com). The used datasets and detailed data preparation process are
available on the CPrefMiner project repository (www.lsi.ufu.br/cprefminer/).
All the tests were performed on a 3 GHz Intel processor with Windows XP op-
erating system and 1 GB of RAM memory. The overall process of preference
rule mining and user profile construction is performed in at most 113 seconds,
for the largest preference database P30000 described below.

Basically, the datasets consist in 6 user preference databases about movies,
one database per user. In each database, a user preference about movies is rep-
resented by a pair of movie records 〈m1,m2〉 meaning that “the user prefers the
movie m1 to the movie m2”. A movie record is based on a set of attributes such
as Genre, Director, Years, Actor, etc. Genre, Director and Actor are multi-valued
attributes. Hence, to apply our approach relying on contextual preference rules,
we shall itemize each distinct attribute value so that each movie record becomes
a transaction corresponding to our data model. Due to the space limitation, we

www.movielens.org
www.imdb.com
www.lsi.ufu.br/cprefminer/
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Database Items (I) Trans. (D)

P301 125 32
P3000 342 99
P30000 857 309

Fig. 2. Real world preference databases
over movies
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Fig. 3. Number of preference rules per
profile w.r.t various k values

only present the experimental results of 3 preference databases named P301,
P3000, and P30000 as shown by Figure 2. The results on the 3 other preference
databases are very similar. Each database is named by its number of user pref-
erences, e.g., the database P301 contains 301 user preferences corresponding to
a set D of 32 distinct movie records described by a set I of 125 distinct items.

For each preference database, the user profile mining and preference pre-
diction have been performed using a 10-fold cross-validation method, and the
metric values (e.g., precision and recall) on the different iterations are averaged
to yield an overall one. The minimal contextual preference rules are mined using
ContPrefMiner with σ = 0.001 and κ = 0.5. Note that other minimal thresh-
olds have been tested (not reported here due to space limitation) showing that
the increase of σ systematically damages the quality of user profiles while the
increase of κ has a lower impact. The user profile construction was done with
ProfMiner by varying the minimal agreement threshold k.

Table 2. Top-10 preference rules discovered from the database P3000 (k = 1)

Contextual preference rule Support Confidence

1. LAN:GermanLAN:English | ∅ 0.017 1.00
2. GEN:FantasyGEN:War |GEN:Drama 0.015 1.00
3. GEN:CrimeGEN:Adventure|GEN:Action 0.012 1.00
4. GEN:CrimeGEN:Horror |GEN:Sci-Fi 0.012 1.00
5. GEN:RomanceGEN:War |GEN:Drama 0.011 1.00
6. GEN:CrimeGEN:Adventure|GEN:Sci-Fi 0.010 1.00
7. GEN:CrimeGEN:Drama | ∅ 0.010 1.00
8. GEN:FantasyGEN:Action |GEN:Drama 0.009 1.00
9. LAN:GermanLAN:Vietnamese|GEN:War 0.009 1.00
10. GEN:Sci-FiGEN:Western|GEN:Action 0.009 1.00

We start by analyzing the conciseness of the user profile according to the
minimal agreement threshold. Figure 3 plots the number of preference rules when
the minimal agreement threshold k varies from 1 to 90. Even with k = 1, the
number of preference rules contained in the user profile is drastically reduced
compared to the inital number of contextual preference rules: from 5319.4 to
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108.7 for P301; from 4833.9 to 432.9 for P3000; and from 4913.3 to 925 for P30000.
Moreover, Figure 3 shows that the size of the user profile rapidly decreases with
k and then, the user profile can be as concise as desired by the user.

The preference prediction was performed using the orders induced by the
profile. Figure 4 estimates the effectiveness of the user profiles according to their
size. For facilitating comparisons between the different preference databases, the
size of a user profile |Π | is normalized by means of the profile reduction rate
defined by (|Πk=1| − |Π |)/|Πk=1| where |Πk=1| is the cardinality of the user
profile obtained from k = 1.

Figure 4 reports the precision, the recall and F-measure (i.e., 2× precision×
recall/(precision+recall)) for the profile when the profile reduction rate varies.
The first important observation is that the predictive quality of the mined profiles
can be very high. More precisely, the precision always remains very high, while
the recall deeply depends on the size of the user profile.
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Fig. 4. Predictive quality of constructed profiles

In brief, this set of experiments demonstrates that the conciseness of user
profiles is controlled by the minimal agreement threshold and that even with
strong reduction, the soundness of the profile remains at an acceptable level. But
what does the mined profiles look like? Table 2 lists the top-10 preference rules
of a user profile discovered from the database P3000 with k = 1. It demonstrates
that a mined profile is easy readable. For example, rules 1 and 9 means that the
user prefers german movies than english or vietnamese movies. We can also see
that the user especially enjoys crime movies (see rules 3, 4, 6 and 7). Between
two drama movies, this profile finally shows that the user prefers fantasy movies
than war movies (see rule 2) or action movies (see rule 8), that he/she prefers
romance movies than war movies (see rule 5).

7 Conclusion and Future Work

In this paper we proposed the method ProfMiner for mining user profiles
from preference databases. A set of experiments on a real-world database of user
preferences about movies showed the efficiency of the method. More interestingly,
our approach is the first one to build readable user profile based on the notion
of contextual preference rules.
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The overall aim of a profile is to order a set of transactions. Thus, it would be
expected that the preference relation associated to the user profile be a strict par-
tial order over transactions. However, this is not the case since the induced order
is not transitive in general. Presently, we are developing two other methodologies
for extracting a strict partial order from a given set of pairs of transactions, one
based on Bayesian Network classifiers and other based on a voting system.

As future work ,we finally plan to compare the predictive quality of our
method with well-known ranking methods as RankNet, Rank SVM, Ada Rank
and RankBoost [11,8,5,16], knowing that existing prototypes that implement
these methods have to be adapted (in order to take directly as input pairwise
preferences, and not only quantitative preferences).

Acknowledgments. We thank the French Embassy of Dakar, the Brazilian
Research Agencies CNPq, CAPES (SticAmSud Project 016/09) and FAPEMIG
for supporting this work.
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Abstract. We apply polarities, axiallities and the notion of entropy to
the task of identifying marketable items and the customers that should
be approached in a marketing campaign. An algorithm that computes
the criteria for identifying marketable items and the corresponding ex-
perimental work is also included.

Keywords: polarity, axiallity, closure operator, entropy.

1 Introduction

Recommender systems (RS) aim to help users deal with the immensity of offers
in electronic commerce by customizing the most adequate offerings for their spe-
cific needs. After almost two decades, this discipline is quite established following
the initial publications [11,10] and [13]. The general framework of RSs involves
a bipartite graph whose set of vertices is partitioned into customers and items
(see Figure 1). Edges of the form (c, t), where c is a customer and t is an item
are marked by numerical ratings r(c, t). Recommender systems that use ratings
generate item recommendations for customers or identify sets of customers suit-
able for sets of items and fit into one of the following broad three approaches:
content-based, collaborative, or hybrid. An excellent survey of developments in
recommender systems can be found in [3].

Further, more sophisticated types of RSs extend the user/item paradigm to
take into account temporal and other contextual characteristics of customers and
items (see [2]). All existing approaches have in common the use of additional data
(rating, survey information) and many are based on hard-to-implement complex
inference statistical approaches [1,7,9]. Furthermore, most of then aim to obtain
optimal recommendations for the consumer and ignore the business perspective.

Formal concept analysis which makes use of the notion of polarity was applied
in the study of RSs in [6] in the quest of simplifying the task of finding similar
users or similar items without loss of accuracy or coverage. The purpose of this
paper is distinct from the main topics of the area recommender systems. We
investigate possibilities to identify items that should be the object of marketing
campaigns and we intend to extend this approach to sets of items that can
be co-marketed. Thus, we approach RSs from the position of the seller rather
than from the prospective of the users. Instead of providing recommendations

A. Cuzzocrea and U. Dayal (Eds.): DaWaK 2012, LNCS 7448, pp. 243–252, 2012.
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to the users we propose to suggest items or sets of items to retailers which could
stimulate sales.

We use entropy (and some of its generalizations) as measures of scattering of
partition blocks for partitions of finite sets. Namely, if π = {B1, . . . , Bn} is a
partition of a finite set S, its generalized b-entropy (see [5,12]) is defined as

Hb =
1

1− 21−b

(
1−

n∑
i=1

( |Bi|
|S|

)b
)
,

where b > 1.
Two special cases of generalized entropy are particularly interesting. For b = 2

we have the Gini index of π given by

gini(π) = 2

(
1−

n∑
i=1

( |Bi|
|S|

)2
)
.

The largest value of gini(π) is obtained when all blocks have equal size (and this,
the elements of S are uniformly scattered in the blocks of π); in this case we
have

gini(π) = 2

(
1− 1

n

)
.

The lowest value, gini(π) = 0, is obtained when π consists of one block.
The other interesting case of generalized entropy is obtained when b tends to

1. In this case

lim
b→1

Hb(π) = −
n∑

i=1

|Bi|
|S| log2

|Bi|
|S| ,

which recaptures the well-known Shannon entropy.
The article is structured as follows. Section 2 introduces the notions of polar-

ity and axiallity in the context of recommender systems. In Section 3 we define
marketable item sets and formulate an algorithm for identifying these sets. Ex-
perimental work is described in Section 4.

2 Polarities, Axiallities and Recommender Systems

Let C and T be two finite sets, referred to as the set of customers and the set
of items, respectively and let ρ ⊆ C × T . Following the terminology of concept
lattices [8] we shall refer to the triple C = (C, T, ρ) as a recommendation context.
The fact that (c, t) ∈ ρ means that the customer c has purchased the item t.
Sets of customers will be denoted by letters from the beginning of the alphabet
D,E,K, . . .; sets of items will be denoted by letters from the end of the alphabet
U, V,W, . . ..

For a set S, the set of subsets of S is denoted by P(S). If S, T are sets, a
function f : P(S) −→ P(T ) is monotonic if for every X,Y ∈ P(S), X ⊆ Y
implies f(X) ⊆ f(Y ); f is anti-monotonic if X ⊆ Y implies f(X) ⊇ f(Y ).
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Consider the mappings φρ : P(C) −→ P(T ), and ψρ : P(T ) −→ P(C) given
by

φρ(D) = {t ∈ T | (∀d ∈ D)(d, t) ∈ ρ},
ψρ(U) = {c ∈ C | (∀u ∈ U)(c, u) ∈ ρ}

for D ∈ P(C) and U ∈ P(T ). In other words, φρ(D) consists of items that were
bought by all customers in D and ψρ(U) consists of customers who bought all
items of U . As shown in [4] (Chapter V), the mappings φρ and ψρ are anti-
monotonic. The pair Polρ = (φρ, ψρ) is the polarity of ρ,

Let ρ = (C×T )−ρ be the relation that consists of all pairs (c, t) that are not in
ρ. Another pair of functions defined by ρ is (αρ, βρ), where αρ : P(C) −→ P(T )
and βρ : P(T ) −→ P(C) are given by

αρ(D) = φρ(D̄) and βρ(U) = ψρ(U)

for D ∈ P(C) and U ∈ P(T ), where D̄ = C −D.
By applying the definition of φρ we have

αρ(D) = φρ(D̄) = φρ(C −D)

= {t ∈ T | (∀d ∈ C −D)(d, t) �∈ ρ}.
In other words, αρ(D) consists of those items t ∈ T which were not bought by
any customer who does not belong to D.

Similarly, by applying the definition of ψρ we have

βρ(U) = ψρ(U) = C − ψρ(U)

= C − {c ∈ C | (∀u ∈ U)(c, u) �∈ ρ}
= {c ∈ C | (∃u ∈ U)(c, u) ∈ ρ},

which shows that βρ(U) consists of customers who bought some items in U .
It is immediate that the functions αρ, βρ are monotonic. In other words, we

have

D1 ⊆ D2 ⇒ αρ(D1) ⊆ αρ(D2),

U1 ⊆ U2 ⇒ βρ(U1) ⊆ βρ(U2),

for D1, D2 ∈ P(C) and U1, U2 ∈ P(T ).
The pair Axlρ = (αρ, βρ) is the axiallity of ρ.
For the polarity mappings we have

D ⊆ ψρ(φρ(D)) and U ⊆ φρ(ψρ(U))

for any set of customers D ∈ P(C) and every set of items U ∈ P(T ). The
mappings ψρφρ and φρψρ are closure operators on P(C) and P(T ), respectively.

For the axiallity mappings we have

βρ(αρ(D)) = ψρ(αρ(D))

= ψρ(φρ(D)) ⊆ D,
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and

αρ(βρ(U)) = αρ(ψρ(U))

= φρ(ψρ(U)) ⊇ U,

which allows us to conclude that βραρ is an interior operator on sets of customers
and αρβρ is a closure operator on sets of items.

Let ITEMSc be the set of items acquired by customer c and let CUSTt be the
set of customers who bought item t. Also, define the sets Pc and Rt by

Pc = {c} × ITEMSc and Rt = CUSTt × {t}
for each customer c and item t (see Figure 1).
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Fig. 1. Partitions of the set of purchases generated by customers

Both collections {Pc | c ∈ C} and {Rt | t ∈ T } are partitions of the set of
purchases ρ. Also, observe that Pc ∩Rt = {(c, t)} for c ∈ C and t ∈ T .

For a set of customers D ⊆ C, the set of purchases is pur(D) =
⋃

c∈D Pc and
the collection of sets {Pc | c ∈ D,Pc �= ∅} is a partition of pur(D).

The entropy (or the Gini index) of the partition πD = {Pc | c ∈ D,Pc �= ∅}
captures the diversity of purchasing patterns for the customers in D. Note that

H1 ({Pc | c ∈ D,Pc �= ∅}) = −
∑
c∈C

|Pc|
|purD| log2

|Pc|
|purD|

= log2 |pur(D)| − 1

|pur(D)|
∑
c∈D

|Pc| log2 |Pc|.

We use the specific entropy h1(D) of a set of customers D defined as the ratio
between the entropy of the purchases of customers in D and the size of D

h1(D) =
H1 ({Pc | c ∈ D,Pc �= ∅})

|D| .
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The specific entropy is intended to compensate the growth of the entropy of the
partition {Pc | c ∈ D} due to an increase in the size of the customer population
D, and seems to be a better indicator of the diversity of the purchasing patterns
of the population in D than the entropy of the partition πD.

3 Marketable Items

We examine criteria for choosing items that should be the object of a marketing
campaign. The reason for starting a marketing campaign involving an item t is
that the set of users who purchased t is non-empty but small; in other words,
|ψρ({t})| does not exceed a threshold θ. Using the notions of polarity and axiallity
that can be defined starting from the purchasing relation defined as a binary
relation on the sets of customers and items we focus on items that satisfy several
conditions:

1. the closure φρ(ψρ({t}), which consists of items that were bought by cus-
tomers who bought t must be sufficiently large;

2. since βρ is a monotonic mapping, the set of customers who
bought some item in the previously mentioned set of items, βρ(φρ(ψρ({t}))
will, in turn be large, and

3. the purchasing patterns of these customers must be sufficiently diverse, to
ensure a reasonable chance that they will decide to buy t.

The target of the marketing campaign is the set of customers βρ(φρ(ψρ({t}))−
ψρ({t}). These criteria are summarized in Algorithm 1.

The SQL procedure that implements the algorithm and includes the compu-
tation of the entropy of purchases is given next.

create procedure market1(item1 integer)

begin

# cleaning up tables for intermediate results

call cleanup();

# custforitem(userid) contains customers who bought item1

insert into custforitem

select userid from pur where item = item1;

# items bought by every customer in custforitem

# are stored in itemsbyallcust(item)

insert into itemsbyallcust

select distinct item from pur r where

not exists(select * from custforitem where

not exists(select *
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Data: A table pur of purchases, a minimum and a maximum number of
purchases minpurand maxpur, respectively

Result: a set of customers targeted for the marketing campaign
Place in table selitems items from pur bought by at least minpur customers

but not more that maxpurcustomers ;
foreach item t in selitems do

retrieve in table custforitem customers who bought t,
ψρ({t}) = βρ({t})→ custforitem;

retrieve in table itemsbyallcust items bought by every
customer in custforitem,
φρ(ψρ({t})→ itemsbyallcust;

retrieve in table custwhoboughtsome customers who
bought some item in itemsbyallcust,
βρ(φρ(ψρ({t}))→ custwhoboughtsome;

retrieve in targetitem customers targeted for marketing
βρ(φρ(ψρ({t}))− ψρ({t})→ targetitem;

compute the entropy (or the Gini index) for the purchases
made by customers targeted for marketing;

end

Algorithm 1.Algorithm for computing the target set of a marketing campaign

from pur where

userid = custforitem.userid

and item = r.item));

# custwhoboughtsome(userid) contains customers who bought

# some item in itemsbyallcust

insert into custwhoboughtsome

select distinct userid from pur

where item in (select item from itemsbyallcust);

# targetitem(userid) contains customers targeted for marketing

insert into targetitem

select userid from custwhoboughtsome where

not exists(select * from custforitem

where userid = custwhoboughtsome.userid);

select ’Customers targeted for marketing’;

select userid from targetitem;

# calculation of entropy for the customers in targetitem

# follows
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insert into purcust(userid, noitem)

select userid, numitemcust(userid) from targetitem;

insert into custsq

select userid,noitem*log(2,noitem) from purcust;

insert into results

select sum(c),(select sum(noitem) from purcust)

from custsq;

select log(2,ct) - (1/ct) *s from results;

end

4 Experimental Study

We used the MovieLens data set that contains 100,000 anonymous ratings of
1,682 movies made by 943 customers (referred to as users in the documentation
of the data set). This data set was obtained from the University of Minnesota
GroupLens Research www.movielens.org and was processed using mySQL. The
main characteristics of the attributes of this data set are specified below.

– UserIDs are integers;
– MovieIDs range between 1 and 1,682;
– Ratings are made on a 5-star scale (whole-star ratings only);
– Timestamp is represented in seconds;
– Each user has at least 20 ratings.

The relation pur was extracted by projecting the data set on the attributes
UserId and MovieId (referred to as item). The customer sets for the analyzed
items consisted between 5 and 10 individuals, as shown in the second column of
Table 1. Dt is the set of customers targeted for the marketing campaign for t,

Dt = βρ(φρ(ψρ({t}))− ψρ({t}).

The customer population targeted for these campaigns varied between 116
and 880 individuals, as shown in Table 1. It is not a surprise that the size of
the targeted customer population Dt has a strong positive correlation with the
entropy of the partition of purchases of this set of customers. For example, for
the sample of movies we experimented the correlation coefficient is 0.91.

As it can be seen from Figure 2, the larger the targeted population of cus-
tomers, the larger the entropy is and therefore, we have a better chance that
some of these customers will buy the item t, which is the focus of the marketing
campaign. This explains the strong positive correlation between the size of the
targeted population and the entropy.
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Table 1. Size and Entropy for several items viewed by five to ten users

item cust for item cust targeted entropy spec entropy
t |ψρ(t)| |D| H1(πDt) h(Dt))

34 7 880 9.28 19.50
37 8 731 9.09 22.45
74 7 661 8.98 24.11
75 5 714 9.06 22.58
104 5 684 9 22.53
113 9 116 6.44 16.40
247 5 546 8.68 22.02
296 6 670 8.87 18.12
314 5 798 9.11 18.18
390 10 600 8.82 22.57
437 5 556 8.96 57.37
438 6 655 8.96 23.66
439 5 556 8.96 57.37
446 9 447 8.51 29.93
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Fig. 2. Entropy (∗) and Specific Entropy per Customer (�) vs. Size of Set of Targeted
Customers

For a targeted population Dt the maximum entropy of the partition of pur-
chases is log2 |Dt|. The specific entropy defined as

h(Dt) =
log2 |Dt|

log2 |Dt| − H1(πDt)

is a better indicator of the diversity of purchases because it takes into account
the relative size of the customer population targeted. Thus, the best targets for a
marketing campaign are the items 437 and 439 for which h1(Dt) has a relatively
high value (57.37).
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5 Further Work

In this paper we introduced an approach that can be used by companies to
market item sets to customer groups that possess a very likely high preference for
these products. The algorithm is easy to implement and use in a daily managerial
life. As input data, solely the past purchase data of all customers are needed,
which is usually available in a company today. Our proposed approach can be
used towards two directions. It can be used to segment the customers according
to their preference fit for an individual item (set) as well as to build groups of
items and rank them according their productivity for the existing customer base.
In future research more simulation studies are needed to show that the proposed
approach is not only easier to implement but is also equally (or better) suited
to forecast customer product fit as well as optimize profit for the implementing
company.

The productivity prod(t) of a marketing campaign for an item t can be mea-
sured by the ratio between the size of the target population of customers and
the size of the set of customers who bought t:

prod(t) =
|βρ(ψρ(φρ({t})))|

φρ({t})
This function can be extended to a set of items U by defining

prod(U) =
|βρ(ψρ(φρ(U)))|

φρ(U)

for U ⊆ T . Note that this function is monotonic with respect to U ; in other
words, U1 ⊆ U2 implies prod(U1) ≤ prod(U2). We intend to explore criteria for
marketing jointly sets of items using both productivity and the entropy of the
set of customer purchases.

Incorporating the effect of the ratings of items by users will also be investigated
in the future.
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Abstract. Most of the new social media sites such as Twitter and Flickr
are using RSS Feeds for sharing a wide variety of current and future
real-world events. Indeed, RSS Feeds is considered as a powerful real-
time means for real-world events sharing within the social Web. Thus,
by identifying these events and their associated user-contributed social
media resources, we can greatly improve event browsing and searching.
However, a thriving challenge of events mining processes is owed to an
efficient as well as a timely identification of events. In this paper, we are
mainly dealing with event mining from heterogenous social media RSS
Feeds. Therefore, we introduce a new approach, called RssE-Miner, in or-
der to get out these events. The main thrust of the introduced approach
stands in presenting a better trade-off between event mining accuracy
and swiftness. Specifically, we adopted the probabilistic Naive Bayesian
model within the exploitation of the rich context associated with social
media Rss Feeds contents, including user-provided annotations (e.g., ti-
tle, tags) and the automatically generated information (e.g., time) for
efficiently mining future events. Carried out experiments over two real-
world datasets emphasize the relevance of our proposal.

Keywords: Event Identification, Social Media, Real Time, Really Sim-
ple Syndication, News Mining, Unstructured Data.

1 Context and Motivations

The task of event identification embraces two well-known approaches: linguistic
approach and statistical one. The former constitute a hindrance since linguistic
expert uses rules for manually defining event patterns [11]. In this paper, we do
some explorations on the latter direction.

In this context, the topic detection and tracking (TDT) event detection task
[16,14], which is similar to our event identification task, was studied on a con-
tinuous stream of news documents with the aim to identify news events and
organize them. Most techniques mainly focused on formal text stream data.
However, social media RSS Feeds, which are the focus of this paper, are sub-
stantially different from formal text stream data as the text is so noisy that
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its handling becomes more difficult [12]. In this respect, searching or browsing
through the web becomes difficult and inaccurate.

Recently, RSS Feeds have become ubiquitous with the evolution of the web.
Especially, social RSS Feeds are defined as a collection of informal data that ar-
rives over time and each RSS Feed item is associated with some social attributes
such as title, description, tags. These features contain information about real
world events that are manually added by users. The key challenges that we ad-
dress are: the identification of events and their associated news items over social
media sites(e.g.,Flickr, Youtube, and Facebook).

It can happen that you think to attend the carnival in Rio de Janeiro. Hence,
you make your way to the computer to seek information about Rio Carnival
with the goal to purchase a ticket as soon as possible. Unfortunately, there are
too many photographs dealing with this event. You sift through many different
photographs interleaved with photographs of the same event happened at the
last year. At the end, you are lost among these results and there is a possibility
that you miss the deadline for buying tickets. The above scenario is a likely and
perhaps frequent occurrence on the Web today.

Many research studies have then attempted to identify events from social
media sites [4,8]. Most of them opt for the popular Support Vector Machine
as a machine learning technique. This classifier is memory-intensive and time
consuming. That’s why, we think about Naive Bayes as an accurate and fast
classifier that makes real-time use possible and does well if you have fairly little
data [9] as the case in social media. Thus, social media documents contain little
textual narrative, usually in the form of short description, title, or tags.

We apply an appropriate algorithm, namely Naive Bayes, for the event iden-
tification task in social media RSS Feeds trading off runtime performance and
classification accuracy. We apply our approach to two real-world datasets de-
rived from Flickr. We refer to these datasets as Upcoming and Last.fm, as the
labels have been extracted from these sites.

This paper is structured as follows. First, Section 2 discusses the related work.
Section 3 elaborates in the proposed approach. Then, in Section 4 the approach
is evaluated. Finally, Section 5 concludes the paper and provides future research
directions.

2 Related Work

We describe related work in four areas namely event identification or detection,
RSS Feeds studies, social media analysis, and Naive Bayes applications.

The event detection task [16,14] was studied on a continuous stream of news
documents with the aim to identify news events and organize them. This is one
of the important tasks considered by the topic detection and tracking (TDT)
[2]. However, our work is distinguished by the fact that we are interested in
event identification in social media RSS Feeds where the text is so noisy that its
handling becomes more difficult [12]. In our current endeavors, we aim to have
a fully automated application for processing social media events, fetched from
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Really Simple Syndication(RSS) Feeds in such a way that the essence of the
social media resources is extracted and captured in events that are represented
in a machine-understandable way .

There are several studies that have focused on the RSS Feeds processing: We
can talk about SPEED (Semantics-Based Pipeline for Economic Event Detec-
tion) [11] which is a framework that aims at extracting financial events from
news articles(announced through RSS Feeds) and annotated these with meta-
data at a speed that makes real-time use possible. It’s modeled as a pipeline
that reused some of the ANNIE GATE components and develop new ones. We
can found also SemNews [13] which is a Semantic Web-based application that
aims at accurately extracting information from heterogenous sources. It seeks to
discover the meaning of news items. These items are retrieved from RSS Feeds
and are processed by the NLP engine OntoSem. Our work also involves the pro-
cessing of RSS Feeds but using the statistical approach and not the linguistic
approach. The latter constitute a hindrance since linguistic expert uses rules for
manually defining event patterns, which is prone to errors.

Several efforts have focused on social media analysis [7,3]. There are those
which have focused on Flickr tags as significant descriptors [17,1]. Others are
interested in the wealth of available context [4,8] including date and location and
concluded that despite the noise that clutters the social media, take advantage of
all its context can provide relevant information about the event. Most techniques
mainly focused on context and ignore time needed for the context analysis. In
this respect, we explore the rich context of social media with respect to the
time constraint providing top-tier accuracy with a fraction the training time of
alternative methods.

There are various applications of the Naive Bayes algorithm. It has been
applied for automatic categorization of email into folders [5]. Email arrives in a
stream over time. It was mentioned that Naive Bayes is the fastest algorithm
compared to, respectively, MaxEnt, SVM and Winnow. Naive Bayes was also
used as a pre-trained model for real-time network traffic classification [6]. Naive
Bayes represents,yet, one of the most popular machine learning models applied in
the spam filtering domain [18]. Importantly, the learning process of Naive Bayes
is extremely fast compared with current discriminative learners, which makes it
practical for large real-world applications. Since the training time complexity of
Naive Bayes is linear to the number of training data, and the space complexity
is also linear in the number of features, it makes Naive Bayes both time and
storage efficient for practical systems. This led us to opt for the choice of the
Naive Bayes algorithm for social media RSS Feeds processing.

3 RssE-Miner: Efficient Events Mining from Social Media
RSS Feeds

We elaborate on event identification in social media RSS Feeds. To fulfill this
task, we propose our approach for efficient events mining from social media RSS
Feeds (c.f., figure 1). Indeed, The Naive Bayes classifier is our choice in the
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Fig. 1. The RssE-Miner approach

classification-based technique to predict when RSS Feed items correspond to the
same event. The classifier presented in this section is based on a probabilistic
model simply trying to give each resource r the label of the event e which is
most likely. Hence, our proposed approach has three steps: Data preparation,
Model learning and Event identification. In the following, we describe these
three steps in more details.

3.1 Data Preparation

Common Refinements such as Removing Stop Words and Symbols are applied to
the data. Each RSS Feed item, which is our resource, is represented as a bag of
words w1,w2,w3 etc. There are many design choices in the feature construction.
In this paper, we use the traditional bag-of-words document representation. We
do not apply stemming. Finally, we apply feature selection by identifying the
most salient features for learning. In fact, CFS(Correlation based Feature Selec-
tion) filter is used[10]. It is a simple filter algorithm that ranks feature subsets
according to a correlation based heuristic evaluation function:

MS =
khcf√

k + k(k − 1)hff

. (1)

where MS is the heuristic ”merit” of a feature subset S containing k features,
hcf is the mean feature-class correlation (f ∈ S), and hff is the average feature-
feature inter-correlation. In this paper, Best first heuristic search is used.
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3.2 Model Learning

The Naive Bayes classifier is provided by a simple theorem of probability known
as Bayes’ rule [15]:

P (e|r) = P (e).
P (r|e)
P (r)

. (2)

Hence, the Naive Bayes classifier need to compute P(e) and P(r|e). Since our
resource is represented as a bag of words, required P(ej) and P(wk|ej) terms are
calculated for each ej.

The former is given by:

P (ej) =
|rj |
|r| . (3)

where |rj | is a subset of resources for which the target event is ej .
The latter,for each word wk in the vocabulary, is given by:

P (wk|ej) = nk + l

n+ l|V ocabulary| . (4)

where nk is the total number of occurrences of wk where target event is ej, n is
the total number of words in all training examples whose target value is ej and
l is the Laplacian smoothing.

The likelihoods P(w1, w2, ..., wn|ej) are computed using the (naive) indepen-
dence assumption. A common strategy is to assume that the distribution of
w1, w2, ..., wn conditional on ej can be decomposed in this fashion for all ej :

P (w1, w2, ..., wn|ej) =
∏
i

P (wi|ej). (5)

The following section will explain the event identification stuff in detail.

3.3 Event Identification

Once the model learning step is performed, we proceed with testing the model
for identifying the appropriate event. Classification will occurs when event prob-
ability is calculated. To classify, we must find the class label e which is most
likely to generate r. Then, we choose e which gives r the best score according to
P(e|r):

g(r) = argmax
e

P (e)P (r|e). (6)

And according to the equation 5 and the equation 6, we have:

e = argmax
ej∈E

P (ej)
∏
i

P (wi|ej). (7)

Typically, the denominator in equation 2 is not explicitly computed since it is
the same for all ej .
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3.4 RssE-Miner: Application

Assuming that our data is passed through the Data preparation step, Table 1
represents the output of this step. In this example, we set the Laplacian smooth-
ing l equal to 1.

Table 1. Model learning example

w soccer election vote label
r1 1 0 0 Sports
r2 1 1 0 Sports
r3 0 0 1 Politics
r4 0 1 1 Politics
r5 0 2 2 Politics

Table 2. P(word|label) calculation

word label P(word|label)
election Sports 0.33
election Politics 0.40
soccer Sports 0.50
soccer Politics 0.10
vote Sports 0.17
vote Politics 0.50

The model computes the prior probabilities for each class label. Then, Prob-
abilities for every word are calculated.

P (Sports) = 2/5. (8)

P (Politics) = 3/5. (9)

The word ”election” occurs 1 times in ”Sports” resources.
The total number of words in ”Sports” resources = 1+1+1= 3. Then

P (”election”|Sports) = (1 + 1)/(3 + 3) = 1/3. (10)

The word ”election” occurs 3 times in ”Politics” resources.
Then

P (”election”|Politics) = (3 + 1)/(7 + 3) = 2/5. (11)

Table 2 resumes this stuff.
We try to treat the same example mentioned above to test our model. Hence,

Table 3 provides a resource that we seek the corresponding event.

Table 3. Event identification

w soccer election vote label

r6 1 1 2 ?

– ej=Sports :

P (r6|Sports) = P (”soccer”|Sports)P (”vote”|Sports)2P (”election”|Sports)
= 0.0048

(12)
– ej=Politics :

P (r6|Politics) = P (”soccer”|Politics)P (”vote”|Politics)2P (”election”|Politics)
= 0.010

(13)
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Then the event with the highest posterior probability, is selected.

ej = Politics. (14)

For this example, the event is correctly identified.

4 Experimental Evaluation

In this section we describe how our approach is evaluated on two real world
datasets derived from Flickr. We use traditional classification accuracy1 as well
as precision2 and recall3 as our evaluation measures. We elaborate on our choice
of Naive Bayes classifier.

4.1 Experimental Settings

Dataset Collect. We collected our dataset from the online photo management
and sharing application Flickr using the Flickr API4. It consists of RSS Feeds of
two real world datasets Upcoming and Last.fm. In this section we describe these
two datasets and provide some basic statistics on their content. The dataset used
is a set of news items fetched from Flickr RSS Feeds from January to June 2006.
The Upcoming dataset contains 5778 images spread over 362 unique events. The
Last.fm dataset contains 3356 images spread over 316 unique events. In order to
emulate real-world scenario, we order the items in the dataset by their time of
upload.

Baseline Models. To the best of our knowledge, event identification (using
Naive Bayes) in such social media sites have never been modeled before. Thus,
for enhancing the efficiency as well as the effectiveness of our approach, we
compare the results of our approach to three baselines:

• Most popular events identified: For each event, we counted in how many
resources it occurs and used the resources ranked by event occurrence count.
For each event, the resources are randomly selected.

• Most popular event aware extracted: Events are weighted by their
co-occurrence with a given event. Then, resources are ordered without vali-
dation.

• SMO: we compare our approach vs the Becker et al.(2010) [4] approach
(we only make use of its classification-based technique part). In fact, SVM
was used to learn document similarity functions for social media. In other

1 Ratio of correctly classified instances to the total number of instances in the test set.
2 percentage of resources correctly predicted in the class C from those predicted in
this class.

3 Percentage of resources correctly predicted in the class C from those actually in this
class.

4 http://www.flickr.com/services/api/

http://www.flickr.com/services/api/
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words, Becker et al.(2010) used SVM as a classifier with similarity scores as
features to predict whether a pair of documents belongs to the same event.
They selected Weka’s sequential minimal optimization implementation. In
this respect, We implement Naive Bayes as a part of the Weka5 software
system.

4.2 Efficiency of Our Approach

We report in the following results averaged over 10 test runs. We empirically
decide to use only description, title and tags features. Indeed, the presence of
other features such as location is an indication of document dissimilarity.

Dataset Phenomena. We evaluate the performance of the proposed approach
on a sparse and a dense datasets. The Upcoming dataset is a sparse data since
it contains different kind of events which are of public interest. That’s why, it
is less likely to find two or more items that belong to the same event. thus, it
includes fewer items per event. However, the Last.fm dataset is a dense data
since it includes only events in the area of music. That’s why, it is more likely
to find many items per event. As mentioned in Figure 1, the behavior of the two
classifiers is almost the same in the two datasets.

Figure2 (Left), depicts averages of accuracy on the Upcoming sparse dataset.
Figure 2 (Right), depicts averages of accuracy on the Last.fm dense dataset. On
both datasets, SVM demonstrates the highest accuracies. In fact, SVM outper-
forms Naive Bayes - by notable 1% in the case of Upcoming dataset and by notable
1% in case of Last.fmdataset, but the difference is not statistically significant.How-
ever, the performance of Naive Bayes could likely be improved by applying a more
sophisticated smoothing method than Laplace. Naive Bayes accuracy, for now, is
acceptable since we seek a compromise between runtime performance and classifi-
cation accuracy. Next, we elaborate in the runtime performance.

Fig. 2. Left: Average of Accuracy on the Upcoming dataset; Right: Average of Ac-
curacy on the Last.fm dataset

5 http://www.cs.waikato.ac.nz/ml/weka/

http://www.cs.waikato.ac.nz/ml/weka/
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Running Time. As mentioned above, our main goal is to achieve a meaning-
ful trade-off between runtime performance and classification accuracy. Table 4
shows that our approach has succeeded in fulfilling this task. Thus, according to
the results given, we can point out that our approach outperforms baseline one.
In fact, as expected, the Runtime of the SVM classifier are much slower than
those achieved by our approach for both datasets. We note that Naive Bayes
is by far the fastest classifier. It takes no more than 2.278 seconds on Upcom-
ing dataset and no more than 0.739 seconds on Last.fm dataset. In particular,
our approach outperforms the baseline one by a large and statistically signifi-
cant margin. To this end, Naive Bayes makes real-time use possible. This is of
paramount importance in the case of event identification in social media RSS
Feeds as faster processing of data enables one to make better informed decisions.

In all, evaluation underlines fast and accurate performance by applying our
approach. Results show that event identification using Naive Bayes model can
work in near real-time without obvious decrease in accuracy.

Table 4. Average of Runtime on the Upcoming and Last.fm datasets

Instances Features Events Runtime(s)

Naive Bayes SMO

Upcoming
3155 30 203 0.596 34.213
4121 33 280 1.215 66.392
5778 36 362 2.278 115.33

Last.fm
1637 21 171 0.18 24.571
2490 27 243 0.519 50.143
3356 23 316 0.739 85.829

4.3 Effectiveness of Our Approach

We present in figure 3 precision as well as recall measures in Upcoming and
Last.fm datasets. Indeed, according to the sketched histograms, we can point
out that our approach outperforms both baselines. On Upcoming dataset, the
average recall achieves high percentage for higher value of N. Indeed, for N = 58,
the average Recall is equal to 0.742, showing a drop of 98,38 % compared to the
average Recall for N = 36. On Last.fm dataset, the average recall achieves high
percentage for higher value of N. Indeed, for N = 46, the average Recall is equal
to 0.878, showing a drop of 99,4 % compared to the average Recall for N = 41. In
this case, for a higher value of N, by matching resources with their corresponding
events, the proposed approach can achieve event identification task successfully.
In addition, the percentage of precision for the proposed model outperforms the
two baselines. On Upcoming dataset, our approach achieves the best results when
the value of N is around 58. In fact, for N = 58, it has an average of 68,3% showing
an exceeding about 4% against the first baseline and around 59,6% against the
second one. On Last.fm dataset, our approach achieves the best results when the
value of N is around 41. In fact, for N = 41, it has an average of 87,3% showing
an exceeding about 12.9% against the first baseline and around 64,5% against
the second one. These results highlight that the proposed approach can better
improve event identification task even for a high number of extracted events.
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Fig. 3. Left: Precision and Recall on the Upcoming and Last.fm datasets

4.4 Online Evaluation

We present in figure 4 the runtime of RssE-Miner. Since it is hard to measure
the exact runtime of the proposed approach, we simulated an online execution of
our system among the Upcoming as well as the Last.fm datasets with different

Fig. 4. Left: The runtime of our system online with different values of N on the
Upcoming dataset; Right: The runtime of our system online with different values of
N on the Last.fm dataset
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values of N, i.e., the number of extracted events, ranging from 2 to 10. Hence, for
each Flickr RSS Feed, we report the average runtime of the related top N events
extracted. With respect to Figure 4, the maximum value of runtime is about
5.403(s) in the Upcoming dataset and about 4.292(s) in the Last.fm dataset,
whereas the minimum value is around 3.292(s) in the Upcoming dataset and
about 2.975(s) in the Last.fm dataset which is efficient and satisfiable.

5 Conclusion and Future Work

In this paper, we have tackled the task of event identification in social media
RSS Feeds. We have formulated this task as a real-time problem and introduced
a novel probabilistic approach for events mining from heterogenous social media
RSS Feeds, called RssE-Miner, in order to get out these events. In particular, our
approach relies on a better trade-off between event mining accuracy and swiftness
by applying the probabilistic Naive Bayesian model to Flickr data. Our experi-
ments suggest that our approach yields better performance than the baselines on
which we build. To the best of our knowledge, event identification (using Naive
Bayesian model) in such social media sites have never been modeled before. In
future work, we will focus on further study other more sophisticated smoothing
method than Laplace to improve Naive Bayes performance. Our future research
will focus also on event ontology enrichment. Indeed, from these events, we aim
to enrich an event ontology. Such an ontology is useful in providing accurate,
up-to-date information in response to user queries.
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Abstract. The performance of the k Nearest Neighbor (kNN) algorithm
depends critically on its being given a good metric over the input space.
One of its main drawbacks is that kNN uses only the geometric dis-
tance to measure the similarity and the dissimilarity between the objects
without using any statistical regularities in the data, which could help
convey the inter-class distance. We found that objects belonging to the
same cluster usually share some common traits even though their geo-
metric distance might be large. We therefore decided to define a metric
based on clustering. As there is no optimal clustering algorithm with
optimal parameter values, several clustering runs are performed yielding
an ensemble of clustering (EC) results. The distance between points is
defined by how many times the objects were not clustered together. This
distance is then used within the framework of the kNN algorithm (kNN-
EC). Moreover, objects which were always clustered together in the same
clusters are defined as members of an equivalence class. As a result the
algorithm now runs on equivalence classes instead of single objects. In
our experiments the number of equivalence classes is usually one tenth
to one fourth of the number of objects. This equivalence class represen-
tation is in effect a smart data reduction technique which can have a
wide range of applications. It is complementary to other data reduction
methods such as feature selection and methods for dimensionality re-
duction such as for example PCA. We compared kNN-EC to the original
kNN on standard datasets from different fields, and for segmenting a real
color image to foreground and background. Our experiments show that
kNN-EC performs better than or comparable to the original kNN over
the standard datasets and is superior for the color image segmentation.

Keywords: Clustering, Classification, Ensemble Clustering, Unsuper-
vised Distance Metric Learning.

1 Introduction

The performance of many learning and data mining algorithms depend critically
on there being given a good metric over the input space. Learning a "good" met-
ric from examples may therefore be the key of a successful application of these
algorithms. For instance, many researchers have demonstrated that k-nearest
neighbor (kNN) [8] classification can be significantly improved by learning a
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distance metric from labeled examples [5,10,14,16]. However, like any classifier
kNN has some drawbacks. One of its main drawbacks is that most implemen-
tations of kNN use only the geometric distance to measure the similarity and
the dissimilarity between the objects without using any statistical regularities in
the data. Thus, it does not always convey the inter-class distance. The following
example illustrates this situation. Given the dataset in Figure 1(a) with two la-
beled points. When the classifier uses the Euclidean distance, it works "poorly"
and many points belonging to the green class were classified to be black (b).
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Fig. 1. Euclidean distance does not reflect the actual similarity

To overcome this problem we turned to clustering for defining a better met-
ric. As there is no optimal clustering algorithm with optimal parameter values,
several clustering runs are performed yielding an ensemble of clustering results.
The distance between points is defined by how many times the points were not
clustered together. This distance is then used within the framework of the kNN
algorithm (kNN-EC). Returning to the previous example in Figure 1(a), we can
see that it worked very well (c). Moreover, points that are always clustered
together in the same cluster (distance= 0) are defined as members of an equiv-
alence class. As a result, the algorithm now runs on equivalence classes instead
of single points. In our experiments the number of equivalence classes is usually
less than one tenth to one fourth of the number of points. This equivalence class
representation is in effect a novel data reduction technique which can have a wide
range of applications. It is complementary to other data reduction methods such
as feature selection and methods for dimensionality reduction such as the well
known Principal Component Analysis (PCA).

This paper is organized as follows: Related work on distance metric learning is
discussed in Section 2. The distance metric using ensemble clustering is described
in Section 3. Section 4 describes the ensemble clustering method using the mean
shift and the k-means clustering algorithms. Experimental results are presented
in Section 5. Finally, our conclusions are presented in Section 6.

2 Related Work

A large body of work has been presented on the topic of distance
metrics learning, and we will just briefly mention some examples. Most of the
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work in distance metric learning can be organized into the following two cat-
egories: Supervised/semi-supervised distance metric learning and unsupervised
distance metric learning.

Most supervised/semi-supervised distance metric learning attempt to learn
metrics that keep data points within the same classes close, while separating
data points from different classes [5,16]. Goldberger et. al [14] provided a distance
metric learning method to improve the classification of the kNN algorithm. They
use a gradient decent function to reduce the chance of error under the stochas-
tic neighborhood assignments. Domeniconi et. al [10] proposed to use a locally
adaptive distance metric for kNN classification such as the decision boundaries
of SVMs. Shalev-Shwartz et. al [22] considered an online method for learning
a Mahalanobis distance metric. The goal of their method is to minimize the
distance between all similarity labeled inputs by defining margins and inducing
hinge loss functions. Recently, a similar method was presented by Weinberger et.
al [24] which uses only the similarly labeled inputs that are specified as neighbors
in order to minimize the distance.

The unsupervised distance metric learning takes an input dataset, and finds
an embedding of it in some space. Many unsupervised distance metric learn-
ing algorithms have been proposed. Gonzales and Woods [15] provided the well
known PCA which finds the subspace which best maintains the variance of the
input data. Tenenbaum et. al [23] proposed a method called ISOMAP which
finds the subspace which best maintains the geodesic inter-point distances. Saul
et. al [21] provided a locally linear embedding (LLE) method to establish the
mapping relationship between the observed data and the corresponding low di-
mensional data. Belikin et. al [1] presented an algorithm called the Laplacian
Eigenamp to focus on the maintenance of local neighbor structure.

Our method falls into the category of the unsupervised distance metric learn-
ing. Given an unlabeled dataset, a clustering procedure is applied several times
with different parameter values. The distance between points is defined as a
function of the number of times the points belonged to different clusters in the
different runs.

A clustering based learning method was proposed in Derbeko, El-Yaniv, and
Meir [9]. There, several clustering algorithms are run to generate several (unsu-
pervised) models. The learner then utilizes the labeled data to guess labels for
entire clusters (under the assumption that all points in the same cluster have
the same label). In this way the algorithm forms a number of hypotheses. The
one that minimizes the PAC-Bayesian bound is chosen and used as the classifier.
They assume that at least one of the clustering runs produces a good classifier
and that their algorithm finds it.

Our work is different from these techniques in several ways especially on the
assumptions that they made. Unlike other techniques, we only assume that the
equivalence classes, which were built by running the clustering algorithm several
times, are quite pure. We also did not assume that at least one of the clustering
runs produces a good classifier. Rather that the true classifier can be approx-
imated quite well by a set of equivalence classes (i.e the points which always
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belong to the same clusters in the different clustering iterations will define an
equivalence class) instead of single points and the distance metric defined be-
tween these equivalence classes.

3 Distance Metric Learning Using Ensemble Clustering

Consider the following paradigm. Let X be the unlabeled data - a set of un-
labeled instances where each xi is a vector in some space χ. Instances are as-
sumed to be i.i.d. distributed according to some unknown fixed distribution
ρ. Each instance xi has a label wi ∈ W (where in our case W = {0, 1})
distributed according to some unknown conditional distribution P (w|x). Let
D = {〈xi, f(xi)〉 : xi ∈ X, i = 1, ..., ND} be the training data—a set of labeled
examples already known.

The Euclidean distance does not always reflect the actual similarity or dis-
similarity of the objects to be classified. We found that on the other hand points
belonging to the same cluster usually share some common traits even though
their geometric distance might be large.

The main problem with such an approach is that there is no known method
to choose the best clustering. There have been several attempts to try to select
the optimal parameters values of the clustering algorithms in supervised and
unsupervised manners mainly within the range image and color image domain,
but a general solution to this problem has not been found [19,3,25]. We there-
fore decided to run different clustering algorithms several times with different
parameter values. The result of all these runs yields a cluster ensemble [11].

The clustering results are stored in a matrix denoted the clusters matrix
C ∈ MatN×K , where K is the number of times the clustering algorithms
were run. The ith row consists of the cluster identities of the ith point in
the different runs. This results in a new instance space χcl = Z

K which con-
tains the rows of the clusters matrix. Let Xcl be an unlabeled training set,
a set of objects drawn randomly from χcl according to distribution ρ. Let
Dcl = {〈xi, f(xi)〉 : xi ∈ X, i = 1, ..., ND} be the training data—a set of labeled
examples from Xcl.

The goal now is to adapt the kNN classifier to work with a distance func-
tion based on the new instance space. The new distance between points from
this space should be defined in such a way as to reflect our intuitive notion on
proximity among the corresponding points.

Given two points x, y ∈ χcl we define a new distance function dcl as:

dcl(x, y) =
K∑

i=1

dis(xi, yi), (1)

where dis(xi, yi) =

{
1 xi �= yi

0 xi = yi

be the metric of a single feature. This metric

is known as the Hamming distance. Over this metric we define the following
equivalence relation.
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Let E be a binary relation on χcl, where E defined as

∀x, y ∈ χcl, (x, y) ∈ E ⇔ dcl (x, y) = 0.

The relation E is an equivalence relation on χcl. By this relation, points which
always belong to the same clusters in the different clustering iterations will define
an equivalence class [·]E . Thus, all the equivalent points will be represented by
a single point in the quotient set and we can work with X/E yielding C′ ∈
MatM×K , where M = |X/E|. On the other hand, points which always belong
to different clusters in all the clustering iterations will be infinitely distant (i.e.
dcl(x, y) = ∞ if and only if x and y always belong to different clusters in all the
clustering iterations). Thus, x is a neighbor of y if and only if dcl(x, y) < ∞.
The set of the neighbors of x will be defined as: Nx = {y|dcl(x, y) < ∞}.
For each x ∈ X Nx �= ∅, since by using the reflexive property of E, we get
dcl(x, x) = 0 < ∞, thus, x ∈ Nx.

This new metric is used in the kNN classifier instead of the Euclidean distance.
In this setting all the unlabeled points in Xcl will be labeled according to a given
training dataset Dcl. Experiments using this method are presented in Section 5.

The main presumption made by the algorithm is that equivalent points have
the same label but this assumption does not always hold in practice. To over-
come this hurdle several possible options exist. One possibility is that for each
equivalence class xcl ∈ Dcl several points from its equivalence class are labeled
and xcl will then be labeled according to the majority voting. Another option
is to label xcl according to its center point. Thus, with high probability a point
will be selected from the majority class of the equivalence class. It is also pos-
sible to run the clustering algorithms more times, increasing the number of the
equivalence classes yielding smaller but hopefully purer equivalence classes.

4 Ensemble Clustering Using Mean Shift and k Means
Algorithms

As mentioned above the main problem with an approach based on clustering is
that there is no known method to choose the best clustering. It is unknown how
many clusters should be, their shapes, which clustering algorithm is best, and
which parameter values should be used? We therefore decided to run different
clustering algorithms several times with different parameter values.

Our algorithm however is general and any good clustering algorithm could be
used. We decided to work with the well known k-means algorithm [18] and the
mean shift clustering algorithm [13,7] in order to build the clusters matrix.

For completeness we will now give a short overview of the mean shift algo-
rithm. Mean shift is a non-parametric iterative clustering algorithm. The fact
that mean shift does not require prior knowledge of the number of clusters, and
does not constrain the shape of the clusters, makes it ideal for handling clusters
of arbitrary shape and number. It is also an iterative technique, but instead of
the means, it estimates the modes of the multivariate distribution underlying
the feature space. The number of clusters is obtained automatically by finding



270 L. AbedAllah and I. Shimshoni

the centers of the densest regions in the space (the modes). The density is evalu-
ated using kernel density estimation which is a non-parametric way to estimate
the density function of a random variable. This is also called the Parzen win-
dow technique. Given a kernel K, bandwidth parameter h, which is a smoothing
parameter of the estimated density function, the kernel density estimator for a
given set of d-dimensional points is:

f̂(x) =
1

nhd

n∑
i=1

K

(
x − xi

h

)
. (2)

For each data point, a gradient ascent process is performed on the local estimated
density until convergence. The convergence points represent the modes of the
density function. All points associated with the same convergence point belong
to the same cluster.

We worked with the two mean shift algorithm types; the simple, and the
adaptive (more details in [13,7]). The simple mean shift works with a fixed
bandwidth h. We chose 80 different values of h with fixed intervals from 0.1 to
0.9 of the space size. The adaptive mean shift algorithm is given the number of
neighbors k as a parameter and the bandwidth is determined for each point in
the data as the distance to its k’th neighbor. We chose 30 different values of k
with fixed intervals between 1% to 30% of N (for more details see Section 5).

Some clustering algorithms work with continuous parameters, like the mean
shift algorithm described above, or with continuous weights over the features,
like the EDISON program which will be discussed in Section 5.2. In these cases
the differences between two consecutive iterations might be small. There are two
possibilities to deal with these similar clusterings: The first one is to eliminate
the similar clustering results or simply take all of them. We preferred the second
one because if a set of samples were together in several clustering runs it means
that they might have some common features. So if we eliminate them we stand to
loose this information. However, it is not efficient to preserve similar clustering
runs. Therefore, we decided to join them, as a result the dimensionality of the
data is reduced. We use the Rand index [20] which is a measure of similarity
between two data clusterings. Let C1, C2 be two clustering iterations, then the
measure between them is:

R(C1, C2) =
α + β

α + β + γ + δ
=

α + β(
n
2

) , (3)

where α describes the number of pairs of elements in the instance space that are
in the same set (i.e cluster) in C1 and in the same set in C2, β describes the
number of pairs of elements in the instance space that are in the different set in
C1 and in the different set in C2, γ describes the number of pairs of elements in
the instance space that are in the same set in C1 and in the different set in C2
and δ describes the number of pairs of elements in the instance space that are
in the different set in C1 and in the same set in C2.
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Similar clusterings are represented by a single column, weighted by the number
of clustering it represents. Accordingly, the metric function has become:

dcln(x, y) =
q∑

i=1

nidis(xi, yi), (4)

where x, y ∈ χcln are two points in the new weighted space, q is the dimension
of χcln, and ni is the weight of each representative column.

The advantage of this method is that it maintains the relation between the
samples according to the clustering results, while maintaining a relatively small
dimension of the clustering matrix.

This method worked quite well for mean shift clustering as the bandwidth
acts as a smoothing parameter for the density estimation. However, for k-means
the differences between consecutive runs of the algorithm were significant and
thus columns could not be joined.

5 Experiments

To validate the efficiency of kNN-EC we conducted a series of experiments using
standard datasets from different fields. An additional experiment was conduct
on a color image, where the mission is to classify each pixel as a foreground or
background pixel. We compare the performance of kNN-EC to that of kNN on
the same datasets. Both algorithms were implemented in Matlab.

5.1 Datasets

In order to evaluate the performance of kNN-EC we ran experiments on four
datasets; the image segmentation dataset (UCI Machine Learning Repository
[12]), the breast cancer dataset (LIBSVM library [4]), Leo Breiman’s ringnorm
[2], and a real color image. The image segmentation dataset contains 2310 in-
stances, which are divided into 7 classes. Since we choose to work with a binary
kNN, the classes were joined to create two class labels (as was done in [17]) one
corresponding to BRICKFACE, SKY and FOLIAGE and the other correspond-
ing to CEMENT, WINDOW, PATH and GRASS. The breast cancer dataset
contains 683 instances, which are divided into two class labels, such that 444
points are from the first class and the rest are from the second. Leo Breiman’s
ring norm dataset contains 7400 instances, two-class classification problem. Each
class is drawn from a multivariate normal distribution. The last dataset is a color
image. More details on this experiment will be described in Section 5.2. All these
datasets were labeled, but this knowledge was used only to evaluate the quality
rate of the resulting classifier. In all experiments the algorithm assumes that
these datasets are unlabeled.

The mean shift algorithm was run with the k or h values, described above.
For the breast cancer and ring norm datasets the mean shift algorithm did not
yield good clustering (i.e one cluster or the same clustering for all runs). So
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we use the k-means algorithm for these two datasets. For the breast cancer the
k-means algorithm was run with k = 3..15 and for the ring norm dataset the
k-means algorithm was run with k = 3..30. The results are stored in the clusters
matrix C. The equivalence relation E was employed to build the equivalence
matrix C′. As can be seen in Table 1, the new space is usually smaller than the
original space without the equivalence classes. The ratio between the sizes of the
two spaces is given in the fourth column. Our algorithm assumes that points
belonging to the same equivalence class have the same label. However, as can be
seen from the last column the equivalence classes are not perfectly pure.

Table 1. Numerical Datasets properties

Dataset Dataset size Cluster
matrix size

Equivalence
matrix size

Ratio % Purity

Image Segmentation 2310 × 19 2310 × 38 548 × 38 24% 97%
Breast Cancer 683 × 8 683 × 13 160 × 13 23% 98%
Ring Norms 7400 × 20 7400 × 28 7400 × 28 100% 100%

At the first stage of each algorithm a training set of size 20% to 40% of the
dataset is randomly drawn and labeled. For each training dataset the algorithms
run with different numbers of neighbor values (i.e k = 3, 5, 7). For each k the
quality was evaluated by the ability of the classifier to label the rest of the
unlabeled points. The results are averaged over 10 different runs on each dataset.
A resulting curve was constructed for each dataset which evaluated how well the
algorithm performed.

Results. As can be seen from Figure 2, the kNN-EC performs better than
or comparable to the kNN with the Euclidean distance. The learning curves,
which describe the accuracy for each classifier by computing the ratio of the cor-
rect classified instances to the whole unlabeled data, of the image segmentation
dataset and that of the Breast Cancer datasets show that kNN-EC is comparable
to the kNN while glancing at the learning curves of the ring norm dataset depict
the superiority of kNN-EC. As Figure 2 shows the quality of kNN-EC is about
85% while the kNN quality is about 65%. Moreover we compute the runtime of
the two algorithms when the training dataset includes 30% of the points, and
k = 5. The runtime results are shown in Table 2.

Table 2. Runtime of the algorithms in seconds

Dataset kNN kNN-EC
Image Segmentation 0.45 0.15

Breast Cancer 0.15 0.01

Ring Norms 2.4 3.9
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Fig. 2. Results of kNN and kNN-EC for the three datasets. The first row shows the
learning curves of the Image Segmentation dataset, the second shows Breast Cancer
dataset, and the third one shows the Ring Norm dataset. The columns show the learning
curves for the different k’s values.

The Effect of the Purity of the Equivalence Classes. As shown in the
previous subsection, the performance of the kNN-EC is not always superior.
In this section we carried out an experiment in order to determine how much
our algorithm depends on the purity of the equivalence classes. In the original
experiments the equivalence classes were not pure, for instance the purity of
the image segmentation dataset was 97%. In this experiment the classes were
changed until the equivalence classes were pure (i.e 100%). As shown in this
Figure 3 there is a linear trade off between the quality and the purity of the
equivalence classes. The quality increased by about 3% while the purity increased
from 97% to 100%.

The Effect of Number of the Clustering Iterations on the Performance
of kNN-EC Algorithm. Another experiment was performed to determine
how much our algorithm depends on the number of clustering iterations. In
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Fig. 3. Results of kNN and kNN-EC for the image segmentation dataset with the
different k’s values

this experiment we evaluate the performance of the 5NN-EC classifier on the
ring norm dataset given 20% of the dataset as a training set. We run the k-
means algorithm on three different ranges k = 3..10, k = 3..20 and k = 3..30
as shown in Table 3. As the number of the clustering runs increases, the purity
of the equivalence classes increases, and the number of the equivalence classes
increases dramatically. (When the clustering runs increased from 8 to 18 runs the
purity increased from 93 to 99.8 and the equivalence classes increased from 3351
equivalence classes to 7171 equivalence classes). However, the performance of the
algorithm preserves it stability (i.e the quality increased from 81% to 83%). This
occurred because the distance function metric based on ensemble clustering is
stable, and if for example an equivalence class was partitioned then the distance
between the instances which were equivalent will be 1 instead of zero. Thus with
hight probability they will still be classified to the same class.

Table 3. The effect of the number of the clustering iterations

k-Means Equivalence
matrix size

Purity % Quality %

k = 3..10 3351 × 8 93 81
k = 3..20 7171 × 18 99.8 83
k = 3..30 7400 × 28 100 85

5.2 Experiments with Images

In a final set of experiments we tested our algorithm using a real color image.
We use images for two reasons, first images provide large complex datasets and
second that the results obtained by applying classification algorithms on images
can be easily viewed and evaluated. This image contains three birds (shown in
Figure 4(a)). It was manually segmented into two classes, the foreground (birds)
and the background yielding the ground truth (as shown in Figure 4(b)).

The reader can appreciate that segmenting these images using a color based
segmentation algorithm into foreground and background images will not be an
easy task.
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(a) (b) (c) (d)

Fig. 4. (a) The original image with three birds. (b) The classified image (the goal).
(c),(d) The output of the EDISON system.

We chose to work with the Edge Detection and Image Segmentation (EDI-
SON) System. This program implements the mean shift image segmentation
algorithm described in [6,7]. Each pixel in the image is represented by its two
image coordinates and RGB color values yielding a 5D dataset. The user is asked
to provide the algorithm with values for two bandwidths, one for the spatial do-
main hs (the image coordinates) and the other for the range domain hr (the
RGB values). The output of this program is a clustered image. Each cluster was
assigned a color, (i.e points in the same cluster have the same color). Figure 4
(c,d) shows some of these clustering results.

In our experiments we used the following values for the two bandwidths
hs = {5, 10, 20, 30} and hr = {10, 15, 20, 25, 30, 35} yielding 24 clustered im-
ages. Results for which nearly the whole image belonged to a single cluster were
automatically discarded. It is important to note that the original kNN classifier
has to choose values for these bandwidths (or actually their ratio) in order to de-
fine the distance metric between points. As optimal values for these bandwidths
are not available, it is not clear how this method can be compared to kNN-EC.
In the experiments we therefore ran them using all 24 bandwidth pair values.

For each image the EDISON algorithm was run with the hr and hs values,
described above, to build the clusters matrix C. We then joined clusterings
with small Rand index measures and worked with the weighted Cw matrix. The
equivalence relation E is employed to build the equivalence matrix C′. Table 4
summarizes the information about the three birds image.

In this table we can see that the new space is about 10 times smaller than the
original space. As the complexity of the algorithm is O(N2), the running time
of kNN-EC is two orders of magnitude smaller than the running time of kNN.

Table 4. Image properties

Dataset Picture size Cluster
matrix size

Equivalence
matrix size

Ratio % Purity Fg pixels

Three Birds 207 × 352 72864 × 24 8233 × 18 11% 100% 14407

The two classifiers were evaluated on several training sets of size 40 pixels
to 200 pixels (less than 0.3% of the data), with different numbers of neighbors
values (i.e k = 3, 5). As the optimal bandwidth parameters can not be found
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Fig. 5. Results of kNN and kNN-EC for the three birds image dataset with the different
k’s values

automatically in the kNN algorithm, then in the resulting curves we compared
the kNN-EC with the best case and the worst case of the kNN for each training
dataset which evaluated how well the algorithms perform (as shown in Figure 5).

The experimental results shown in Figure 5 show that the kNN-EC performs
better than the kNN with the Euclidean distance. Due to the learning curves
presented in the figures below we see that our algorithm is superior, where its
quality was around 95% while the best quality of the kNN algorithm was less
than 90%. Figure 6 shows the superiority of the kNN-EC. It shows an example
of running the kNN-EC and kNN (the best and the worst cases) algorithms with
k=5, and with 120 labeled pixels as a training set.

(a) (b) (c)

Fig. 6. Results of 5NN and 5NN-EC for the three birds image dataset for given 120
labeled pixels as a training dataset. (a) The output for the worst case of kNN. (b) The
output for the best case of kNN. (c) The output for the kNN-EC. The color of the
pixels represents the results of the classifier. Red is background, green is birds, blue is
wrong background and black is wrong birds pixels.

6 Conclusions and Future Work

In this work, we have presented a new unsupervised distance metric learning
based on ensemble clustering and use it within the kNN classifier. Each data
point is characterized by the identity of the clusters that it belongs to in several
clustering runs. The distance metric is defined as the Hamming distance between
these clustering results.
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This new distance has two important contributions. The first contribution is
that this distance is more meaningful than the Euclidean distance between points
resulting in a better kNN classifier. The second and more general contribution
results from the observation that all points which always belong to the same
cluster form an equivalence relation. Thus, the algorithm only has to consider one
member of each equivalence class. This reduces the complexity of the algorithm
considerably (by at least two orders of magnitude in our case). Our algorithm
however is only a private case of a more general concept, the concept of data
reduction. This concept is orthogonal to other methods of data reduction such
as feature selection or PCA which reduce the size of the representation of the
data points but not their number.
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Abstract. We consider the problem of executing collocation pattern
queries in limited memory environments. Our experiments show that if
the memory size is not sufficient to hold all internal data structures used
by the iCPI-tree algorithm, its performance decreases dramatically. We
present a new method to efficiently process collocation pattern queries
using materialized, improved candidate pattern instance tree. We have
implemented and tested the aforementioned solution and shown that it
can significantly improve the performance of the iCPI-tree algorithm.

Keywords: spatial collocation, limited memory, pattern mining.

1 Introduction

Increasing popularity of devices with GPS modules, advances in sensing tech-
nology and decreasing cost of mass storage devices, results in rapid growth of
spatial datasets. Spatial objects can be described by geometrical representation
(e.g. point, rectangle etc.), a relative position as well as various non-spatial at-
tributes. In this immense size of complex spatial data, valuable and interesting
patterns can be hidden. Spatial data mining [11] is the process of extracting
such patterns with respect to the location and spatial relationships between the
objects. Similar techniques have been successfully applied in such ’classical’ do-
mains as marketing, customer relations, medicine etc. In the context of spatial
data, one of the interesting tasks is to discover spatial collocation patterns.

The most common definition of a spatial collocation pattern (or in short a
collocation) assumes that it is a subset of spatial features whose instances are
frequently located together (in a spatial neighborhood). A spatial feature at-
tribute has a boolean nature that provides information about occurrence of this
feature in a particular location in space. Typical examples of spatial features
include species, business types, point of interest (e.g. hospitals, airports) etc.

Collocation discovery problem can be defined as the process of searching for
collocation patterns in datasets with spatial feature instances. It is substantially
similar to the frequent itemset discovery problem [2], however, direct application
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of the association mining algorithms (e.g Apriori [3]) is very challenging [10]. Dif-
ficulties arise from significant differences in the characteristics between classical
market-basket data and spatial data. Particularly noteworthy is the difference
in the concept of the sets from which instances of the frequent itemsets and
collocations are constructed. Instances in the market-basket analysis are pre-
cisely nested in transactions, while instances of spatial features are embedded
in a continuous space and share neighbor relationships. Therefore, the colloca-
tion discovery requires novel, specially designed algorithms to cope with this
computationally demanding task.

Most of the existing algorithms for collocation discovery [4] [5] [12] [14] [15] are
based on the method presented in [11]. Briefly, the proposed idea leverages the
classical Apriori algorithm. This cyclical, iterative process consists in generating
candidates and counting their usefulness. Due to the complexity of the spatial
data, internal data structures used by collocation discovery algorithms can ne-
cessitate large amounts of system memory. Nanopoulos et al. consider in their
work [9] real world database systems where OLTP and data mining queries for
association rules discovery are executed simultaneously, imposing high require-
ments for hardware resources, including system memory and processor. In this
paper, we focus on an efficient execution of the collocation discovery algorithm in
a limited memory environment. For this purpose, we introduce materialization
techniques and specially designed data access methods to improve performance
by effective usage of the cache memory.

The structure of this paper is as follows. Section 2 contains basic definitions
for the collocation discovery problem. In section 3 we present a brief description
of the existing algorithm, our observations and a modification of the algorithm.
Section 4 covers conducted experiments and their results.

1.1 Related Work

The problem of mining spatial association rules has been introduced in [8], where
the authors proposed a method to find spatial features that are frequently asso-
ciated with a particular, previously chosen feature. The main disadvantage was
that this approach divided spatial dataset into artificial and possibly overlapping
transactions. Therefore, computation of support measures could not be accurate.

In [7] and [11], the authors proposed a new measures of interest called par-
ticipation index and participation ratio together with a concept of neighbor-
hoods instead of the artificial transactions. A new algorithm, called Co-location
Miner, has been introduced. Due to a join-based strategy of generating colloca-
tion instances, its performance decreases dramatically with increasing density of
datasets. The problem has been addressed in [14], where the authors proposed
a solution that requires to divide continuous spatial data into transactions, al-
though spatial information has been kept in an additional structure. The number
of expensive join-based operations experienced significant reduction, however the
performance highly depended on the distribution of the spatial dataset.

A disparate approach to identifying collocation instances consists in dismiss-
ing a step for generating instances of candidates [15]. Instead of performing a
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computationally demanding join-based procedure, an additional data structure,
called star neighborhoods, is introduced and serves as a base for instances gen-
eration. The number of potential collocation instances is dramatically reduced,
however, some of them can form a star pattern instead of a clique, and therefore
should be removed from the result set. In [12], the authors proposed a method
that stores star neighborhoods in a tree structure. The modified procedure finds
only proper collocation instances. Therefore, there is no need to perform an ad-
ditional filtering step like in [15]. Recently, an order-clique-based algorithm [13]
has been proposed to discover maximal collocations from input dataset. The
advantage of this method consists in applying techniques based on special tree
structures to mine maximal patterns rather than using the Apriori-like algorithm
to increase the collocation size iteratively. However, one can be interested also in
characteristics of non-maximal patterns in the process of knowledge discovery.
The problem of limited memory has been addressed in [4] [5] where the efficient
method for performing joinless algorithm has been proposed. Nonetheless, there
is still need to perform additional step of filtering candidate instances.

2 Definitions and Problem Formulation

2.1 Basic Definitions

Definition 1. Let f be a spatial feature. An object x is an instance of the
feature f , if x is a type of f and is described by a location and unique identifier.

Definition 2. Let F be a set of spatial features and S be a set of their instances.
Given a neighbor relation R, we say that the collocation C is a subset of spa-
tial features C ⊆ F whose instances I ⊆ S form a clique with respect to the
relation R.

Definition 3. The participation ratio Pr (C, fi) of a feature fi in the collo-
cation C = {f1, f2, . . . , fk} is a fraction of objects representing the feature fi in
the neighborhood of instances of collocation C − {fi}

Pr (C, fi) =
Number of distincs objects of fi in instances of C

Number of all objects of fi
.

Definition 4. The participation index Pi (C) of a collocation
C = {f1, f2, . . . , fk} is defined as Pi (C) = minfi∈C {Pr (C, fi)}.
Lemma 1. The participation ratio and participation index are monotonically
non-increasing with increases in the collocation size.

Definition 5. Given a spatial object oi ∈ S whose feature type is fi ∈ F the
star neighborhood of oi is defined as a set of spatial objects:

T = {oj ∈ S ‖ oi = oj ∨ (fi < fj ∧R (oi, oj))}
where fi ∈ F is the feature type of oj and R is a neighbor relationship.
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Definition 6. Let I = {o1, . . . , ok} ⊆ S be a set of spatial objects whose feature
types {f1, f2, . . . , fk} are different. If all objects in I are neighbors to the first
object o1, I is called a star instance of collocation C = {f1, f2, . . . , fk}.

2.2 Problem Formulation

The collocation pattern mining is defined as follows. Given a set of spatial fea-
tures F = {f1, f2, . . . , fk} and a set of their instances S = S1 ∪ S2 ∪ . . . ∪ Sn

where S (1 ≤ i ≤ n) is a set of instances of feature fi ∈ F and each instance that
belongs to S contains information about its feature type, instance id and loca-
tion; a neighbor relationship R over locations; a minimum prevalence threshold
(min prev) and minimum conditional probability threshold (min cond prob); a
size of the available memory, find efficiently (with respect to the memory con-
straint) a correct and complete set of collocation rules with participation index ≥
min prev and conditional probability ≥ min cond prob. We assume that relation
R is a distance metric based neighbor relationship with a symmetric property
and spatial dataset is a point dataset.

3 Materialized Improved Candidate Pattern Tree

A general approach to the collocation mining problem consists in three major
steps that are executed iteratively: (1) generating a set of candidate collocations,
(2) identifying candidate collocation instances, (3) accepting or rejecting candi-
dates on the basis of their prevalance measure. These steps are repeated untill
there are no new candidates for collocations.

The first step applies the Apriori strategy (with prunnig based on the mono-
tonicity property). Due to the limited number of spatial features (a few dozens
at most), this step is not computationally demanding as well as computing their
prevalences (the third step). However, to calculate this measure, knowledge of all
candidate instances is required. It is the most challenging part of the algorithm
and can be executed in a variety of ways. In the next section, one of the most
popular method is briefly described.

3.1 State of the Art Solutions

An efficient method for collocation discovery, called joinless, has been proposed
in [15]. In this algorithm a concept of a star neighborhood has been introduced.
In the beginning spatial data are transformed into the set of star neighborhoods
and further processing is based only on that structure. In each iteration can-
didate collocation instances are constructed from star neighborhoods and then
filtered out. Lack of expensive spatial join results in high efficiency of the al-
gorithm. In [5], an algorithm based on the joinless method, called BCM, has
been proposed. It uses specially designed structure and operations to cope with
limited memory. However, in both algorithms, generating instances directly from
star neighborhoods can lead to incorrect collocation instances that do not form
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a clique in the neighborhood graph. This imposes an additional step of filter-
ing such instances. In [12], the authors addressed this problem and proposed
a new structure called iCPI-tree (improved Collocation Pattern Instance Tree)
that holds information about neighborhoods. The step of generating collocation
instances is performed by recursively traversing the tree. A short description of
this method is as follows.

Step 1. Convert a spatial dataset to a set of spatial ordered neighbor relation-
ships between instances - in this step, star neighborhoods are created. Each star
has a central object, i.e. an object which has a neighbor relationship with all
other objects. After sorting (with respect to the spatial feature), star neighbor-
hoods form a set of ordered spatial neighbor relationships between instances.

Step 2. Generate the iCPI-tree of the set of spatial ordered neighbor relation-
ships - from the set of ordered spatial neighbor relationships, the iCPI-tree is
iteratively created. For example, consider a star neighborhood instance A2, B1,
B3, C1, C3 in Fig. 1. A neighbor relationship between A2 and the remaining
elements is represented as a branch in the iCPI-tree. Sub-branches B and C
determine neighbors with appropriate spatial feature (B1, B3 and C1, C3).

Step 3. Iteratively mining collocation rules - this step consists of: applying the
Apriori strategy to generate candidate collocations, searching for their instances
in the iCPI-tree and filtering candidate with respect to the minimal prevalence
threshold. All one-element instances are considered as collocations with preva-
lence equal to 1. This iterative step lasts as long as there new candidates from
apriori gen method.

Step 4. Generate collocation rules - this step can be executed after each iter-
ation in the third step or at the end of the algorithm. Collocations rules are
generated from the discovered collocation patterns.
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Fig. 1. Sample structure of the iCPI-tree (Improved Candidate Pattern Instance Tree)

3.2 Potential Bottlenecks in Joinless and iCPI-Tree Methods

For independent evaluation of the efficiency of current state of the art algorithms,
we have implemented and tested both, the joinless and the iCPI-tree methods.
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Fig. 2. Performance of the joinless and the iCPI-tree methods

The acquired results are shown in Fig. 2. Our attention has been focused on
the performance of each part of the algorithms as well as their efficiency in the
limited memory environment.

As we can see, in the original joinless method, two steps have major influ-
ence on the total processing time: generating star instances and cliques filtering.
In contrast, in the iCPI-tree method, most of the time the algorithm spends
on the step generate candidate instances. This can be explained in the follow-
ing manner. In both methods, the first step is performed only once and there
are efficient methods to create star neighborhoods. In our implementation, we
used a plane sweep algorithm [6], which requires the data to be sorted (with
respect to one of the dimensions in two-dimensional input dataset). Both, the
sorting and the plane sweep, read entire dataset once. After this operation, in
the iCPI-tree method, star neighborhoods are transformed into a tree (step 2).
Candidate collocations are generated using the Apriori strategy. The number of
possible combinations, unlike the size of such sets in the market-basket analy-
sis, is very small. Typically, the number of spatial features is limited to several
dozens, therefore this step has a minor influence on the total processing time. The
biggest discrepancy is between times of generating candidate instances. While it
is seemingly quite effortless step in the joinless method, the iCPI-tree algorithm
spends almost three quarters of its processing time on this step. However, due
to possible invalid instances (i.e. those that do not hold clique property) com-
putationally demanding step of filtering cliques is applied before the prevalence
filtering in the joinless method.

The second series of experiments have been conducted in order to observe, how
the limited memory can decrease the efficiency of the aforementioned methods.
In addition, we put results for the aforementioned BCM algorithm. Results
are shown in Fig. 3. For the original joinless and iCPI-tree algorithms, we can
see dramatic increase of the processing time. This is caused by the operating
system preventing insufficient memory errors by a technique well known as page
swapping. With the limited memory, it leads to a constant state of paging and
therefore it results in a clear degradation of the execution time. Due to the huge
number of invalid instances in the joinless algorithm, it reaches the memory
limit much faster than the iCPI-tree method. Although the iCPI-tree algorithm
performs better, finally the growing tree structure cannot be held in the system
memory and efficiency falls down.
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Fig. 3. Comparison of the performance of joinless, BCM and iCPI-tree methods

3.3 Materialization of the iCPI-Tree and a New Search Procedure

The following section presents a new method for processing collocation pattern
queries in limited memory environment. A materialization step and an optimized
tree search procedure are introduced.

During our tests we have observed that iCPI-trees can reach sizes bigger than
the amount of available memory. The iCPI-tree structure is based on the star
neighborhoods, which can also be bigger than the underlying database containing
spatial objects. Moreover, the iCPI-tree requires huge number of pointers to
maintain easy access to neighbors. Finally, the conclusion is that this structure
requires more space than the corresponding set of star neighborhoods. There
are many ways of representing tree-like structures on the disk. We propose to
convert iCPI-trees into a two sets of objects stored (only when required) on disk.
The first type of objects consists of a key that contains information about the
object identifier and the feature type of particular neighbors. This type of key
can be obtained e.g. by applying some hashing techniques. Additionally, each
such element has a generated (and unique) pointer to the object representing
one of the element’s neighbors. The second type of objects consists of a key,
which is a generated pointer and of a piece of information about the current
and the next neighbor. Both types of objects share the same cache memory
having size determined by the amount of the available system memory. In the
ideal circumstances, the cache memory can hold all objects and no I/O transfer is
required. When the memory size is not sufficient, there is necessity to materialize
some nodes on the disk, to ensure that they can be retrieved if required. The best
possible hit ratio (i.e. number of reads from memory in proportion to number
of read from disk) is 100%, however, in a limited memory environment it can
be unreachable. Although, we can more effectively design the step of generating
candidate instances and therefore increase the hit ratio.

In Fig. 4(a) the original method for generating collocation instances has been
shown. Let’s assume that there is a candidate {A,B,C}. Instances for this can-
didate can be constructed from instances of the collocation {A,B} discovered
in the previous iteration of the algorithm. For each instance of the collocation
{A,B} we are searching for neighbors with feature C. If the same object is found
for each element of particular {A,B} instance, then a new candidate instance
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Fig. 4. Alternative materialized iCPI-tree search procedure

can be added to the result set. For example, using the instance {A2, B3} we can
find two neighbors with feature C: C1 and C3, however only C3 is a common
neighbor. Therefore instance {A2, B3, C3} is valid, while {A2, B3, C1} does not
hold a clique property.

Assume that k is the size of the candidate cand and col is the collocation
equal to cand with the last feature removed. The simplified pseudo code for our
new search procedure is presented in Alg. 1. The procedure works as follows.

Algorithm 1 Search method for the limited memory environment
1: procedure Search(T ,can,MEMSIZE)
2: res = ∅
3: col=subset(can, 0, length(can)-2)
4: lff=getFeature(can[length(can)-1)])
5: while (nextInstanceExists(col)) do
6: G = ∅; uMem := 0;
7: while (MEMSIZE < uMem) do
8: colInst = readNextInst(col)
9: n1st =searchT(T , colInst[0],lff)
10: uMem=uMem+size(n1st)
11: G = G ∪ {colInst, ne1st}
12: end while
13: res = res∪ prGroup(can, T ,G, lff)
14: end while
15: return res
16: end procedure

17: procedure prGroup(can,T ,G,lff)
18: x = 1 // start from 2nd feature
19: while i <length(can)-1) do
20: sort G wrt x − th
21: feature of colInst;
22: for each < colInst, cne > in G do
23: ne = searchT (T, colInst[x]), lff)
24: neigh = intersect(cne, ne)
25: end for
26: x = x + 1
27: end while
28: return not null elements from G
29: end procedure

Step 1. Read instances (lines 6-11) - discovered in the previous iteration - of
the col as long as it is possible to store them in the system memory. The upper
limit of the number of reads can be computed at runtime. It depends on the
number of neighbors of the first element with the desired feature (lines 9 and
10). During this procedure simultaneously a group G is created by storing pairs:
instance of col, neighbors of the first element of col.

Step 2. When memory is full, process the group (line 13): start with ordering
the set by x-th feature of the candidate (line 20).

Step 3. Search for neighbors of the x-th element of the instances preserved in
the memory. Keep only common neighbors of previous elements (lines 23-24).
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Step 4. x = x+ 1 (line 26), perform steps 2 and 3 while x < k (line 19).

Step 5. Perform steps 1 to 4 while there is no more collocation instances (line 5).

Using the aforementioned procedure, we are expecting to better utilize the mem-
ory cache that contains iCPI-tree elements. The desired improvement is based
on the observation that, in many cases, elements in collocation/candidate in-
stances can recur and therefore the cache hit ratio can increase. For example, in
Fig. 4(b), neighbors for objects A2 and B3 are retrieved twice from the iCPI-tree.

4 Experimental Results

In order to validate our improvements we performed a series of experiments using
both synthetic and real world datasets. Our experiments have been performed on
a Linux workstation equipped with 1800MHz Athlon CPU, 2GB RAM and 80GB
7200RPM HDD. Synthetic datasets were generated using a procedure described
in [15]. Parameters for experiments: the number of spatial features [15-50], the
minimum prevalence threshold: [25%-40%], and the neighbor distance [10-20].
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Fig. 5. The characteristic of real world dataset

Real world datasets are based on the spatial data acquired from the Open-
StreetMap Project [1]. In the end of 2011 number of spatial data points, provided
voluntarily by individu-als, exceeded 1.3 billion. We have processed this data and
filtered out potentially interesting locations based on the user-provided tags. Due
to the lack of the imposed set of possible spatial features we had to categorize
them. Eventually, we have obtained 80 top-level spatial features such as leisure,
sport, education etc. We have collected over 120 million of points with aforemen-
tioned tags. On account of the limited time for experiments, the subset of data
used for algorithm evaluation consists of approximately 100K points located in
Poland. Parameters for experiments: number of spatial features: 20; distance
threshold: [2-8] units; prevalence threshold [0.25-0.55].
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In Fig. 5(a), a density of the neighbors is shown for the distances used in the
experiments. For clarity, each distance on the chart is expressed in units and 1
unit is equivalent to approx. 111 meters. The density should be understood as
an average number of neighbors in the area of size d on the whole map. Fig. 5(b)
presents visualization of several features on the map of Poland.
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Fig. 6. The performance of the algorithms over synthetic datasets

In the first series of the experiments, we examined the processing time of
three different versions of the algorithm based on the iCPI-tree: the original
(memory based) and two implementations of our materialized iCPI-tree - using
and not using the modified gen candidate instances method, respectively. The
results presented in Fig. 6(a) are averages from 25 tests executed on the synthetic
datasets. The size of the available memory was ranging from 10% to 100% of the
required size. When no special structures to handle limited resources were used,
the performance of the algorithm decreased substantially. The execution times,
as well as I/O disk transfer (Fig. 6(b)), were better while using our improved
version of the algorithm. The performance gap was increasing with the growing
size of the input datasets.

In the second series of the conducted experiments, we examined how the
memory limit threshold will affect the performance of the algorithm. Figure 6(c)
presents the influence of the memory ratio parameter, which is the percentage of
the available memory used by algorithm to store groups of candidate instances
in the optimized version of the search method. The results indicate that this
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Fig. 7. The performance of the algorithms over real world datasets

value should be quite small and that too much memory for storing the groups
will decrease efficiency. It arises from smaller iCPI-tree cache size. Figure 6(d)
presents how the execution time of the algorithm changes with increasing mem-
ory. We can observe that the performance is rapidly improving for lower memory
sizes and finally it asymptotically approaches the optimal result.

Our final experiments were conducted on the real world dataset. We have
compared solutions proposed in this work against the original algorithm. Simi-
larly to experiments with synthetic datasets, the results presented in Fig. 7(a)
and Fig. 7(b) are total averages from 25 tests, in which the available memory size
was ranging from 20% to 100% of the required size. In Fig. 7(a) the influence
of the prevalence threshold has been investigated, while Fig. 7(b) shows how
the maximum distance between neighbors affects performance. In the first case,
increasing prevalence threshold results in lower number of possible candidates,
which translates into lower execution times. In spite of limited resources our
method performs better and the performance gain is quite stable across whole
experiment. In case of changing the distance parameter, the performance gap
increases dramatically in favor of new, proposed methods. It arises from the fact
that with higher distance threshold, the algorithm will generate larger neighbor-
hoods and this directly leads up to substantially larger size of the iCPI-tree.

5 Summary

In this paper, we have identified the problem of collocation mining in the lim-
ited memory environment. We have shown that increasing the size of spatial
databases imposes new constraints on algorithm design. The size of the internal
data structures utilized by the algorithms can be a potential bottleneck, espe-
cially when the size of the input data is significantly bigger than the size of
the available memory. We have presented that materialization and a dedicated
method for collocation pattern instance discovery can result in better efficiency
of the iCPI-tree algorithm in terms of overall execution time. The results of the
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experiments, both on synthetic and real world datasets, show that our method
performs much better than the original solution. In the future, we are going to
focus on the physical memory restrictions in the context of multiple, concurent
spatial data mining tasks.
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Abstract. Since the introduction of the frequent pattern mining prob-
lem, researchers have extended frequent patterns to different useful pat-
terns such as cyclic, emerging, periodic and regular patterns. In this
paper, we introduce popular patterns, which captures the popularity of
individuals, items, or events among their peers or groups. Moreover, we
also propose (i) the Pop-tree structure to capture the essential informa-
tion for the mining of popular patterns and (ii) the Pop-growth algorithm
for mining popular patterns. Experimental results showed that our pro-
posed tree structure is compact and space efficient and our proposed
algorithm is time efficient.

Keywords: Data mining, knowledge discovery, interesting patterns, pop-
ular patterns, useful patterns, tree-based mining.

1 Introduction and Related Work

Since the introduction of the research problem of frequent pattern mining, nu-
merous works have been proposed. These works can mostly be classified into
two broad “categories”. Works in the first “category” mainly focused on al-
gorithmic efficiency [7,8,10]. For example, to avoid the candidate generation-
and-test approach of the Apriori algorithm [1], a tree-based algorithm called
FP-growth [4] was proposed to build an FP-tree to capture the contents of trans-
actional database (TDB) so that frequent patterns can be mined recursively from
the FP-tree with a restricted test-only approach.

Works in the second “category” mainly focused on extending the notion
of frequent patterns to other interesting or useful patterns such as sequences,
episodes, maximal and closed sets. However, the mining of these patterns are
based on the support/frequency measure. While support/frequency is a useful
metric, support-based frequent pattern mining may not be sufficient to discover
many interesting knowledge (e.g., correlation, regularity, periodicity, popularity)
among patterns in a TDB. This leads to the introduction of some interestingness
measures [14] and their corresponding patterns such as emerging patterns [2],
constrained patterns [5,9], correlated patterns [6], periodic patterns [12,17], reg-
ular patterns [13], hyperclique patterns [15], and high utility patterns [16].
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In many real-life situations, users want to find popular patterns. For example,
a social analyst may want to find persons with large “groups” of friends in social
networks as these persons can be the most influential one in their groups or the
social networks [3,11]. Similarly, a new member may want to know individuals
with high connectivity so that he can get to know more members quickly. A
recommender may want to know researchers with large numbers of collaborators.
As the fourth example, an event promoter may want to find events with large
numbers of participants. With the increase in usage of social network media, it
has become more important to be able to find popular individuals (or items,
objects, events). Our key contributions of this paper include the following:

1. our introduction of notion of popular patterns;
2. our proposal of the Pop-tree, which is a tree structure to capture essential

information about the popularity of individuals, items, objects, or events;
and

3. our design and development of the Pop-growth algorithm, which mines pop-
ular patterns from the Pop-tree.

The remainder of this paper is organized as follows. We introduce popular pat-
terns in the next section. In Section 3, we propose (i) the Pop-tree structure
that captures important contents of the TDB and (ii) the Pop-growth algorithm
that constructs the Pop-tree, from which popular patterns can be mined recur-
sively. Experimental results are presented in Section 4. Finally, conclusions are
provided in Section 5.

2 Notion of Popular Patterns

Let Item={x1, x2, . . . , xm} be a set ofm domain items. A transactional database
(TDB) is the set of n transactions: {t1, t2, . . . , tn}, where each transaction tj in
the TDB is a subset of Item. We use |tj | to represent the transaction length
of tj . Let X = {x1, x2, . . . , xk} ⊆ Item be a pattern consisting of k items (i.e.,
a k-itemset), where |X | = k ≤ m. Then, The projected database of X (denoted
as DBX) is a set of TDB transactions (in the TDB) that contain X . We use
maxTL(X) and sumTL(X) to respectively represent the maximum length and
the total length of all transactions in DBX .

Table 1. A transaction database

Transaction ID Transaction

t1 {b, d}
t2 {b, c, f, g, h}
t3 {b, c, d, e, f, h}
t4 {c, e, g, h}
t5 {a, d}
t6 {a, b, i}
t7 {a, d, e}
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Example 1. Consider the TDB shown in Table 1, which consists of n=7 trans-
actions and m=9 domain items a, b, . . . , i. For pattern X = {b, c}, its projected
database DB{b,c}={t2, t3}. Hence, |DB{b,c}| = 2, |t2| = |{b, c, f, g, h}| = 5,
|t3| = |{b, c, d, e, f, h}| = 6, maxTL({b, c}) = max{|t2|, |t3|} = max{5, 6} = 6,
and sumTL({b, c}) = |t2|+ |t3| = 5 + 6 = 11. ��
Definition 1. The transaction popularity Pop(X, tj) of a pattern X in
transaction tj measures the membership degree of X in tj. For simplicity, we
compute the membership degree based on the difference between the transaction
length |tj | and the pattern size |X |:

Pop(X, tj) = |tj | − |X |. (1)

Note that, depending on real-life applications, the above equation can be adapted
to incorporate some other functional operations on tj and X .

Definition 2. The long transaction popularity Pop(X, tmaxTL(X)) of a
pattern X in transaction tmaxTL(X) measures the membership degree of X in
tmaxTL, where tmaxTL(X) is the transaction having the maximum length in DBX :

Pop(X, tmaxTL(X)) =

(
max

tj∈DBX

|tj |
)
− |X |. (2)

Definition 3. The popularity Pop(X) of a pattern X in the TDB measures
an aggregated membership degree of X in all transactions in the TDB. It is
defined as an average of all transaction popularities of X:

Pop(X) =
1

|DBX |
∑

tj∈DBX

Pop(X, tj). (3)

Example 2. Reconsider the TDB shown in Table 1. The transaction popularity of
pattern {b, c} in t2 can be computed as Pop({b, c}, t2) = |t2|−|{b, c}| = 5−2 = 3.
Similarly, Pop({b, c}, t3) = |t3|−|{b, c}| = 6−2 = 4. Recall from Example 1 that
DB{b,c}={t2, t3} (i.e., {b, c} appears only in t2 and t3). As t3 is the longest trans-
action in DB{b,c} (because maxTL({b, c})=6), the long transaction popularity
of pattern {b, c} in tmaxTL({b,c}) can be computed as Pop({b, c}, tmaxTL({b,c})) =
max{|t2|, |t3|} − |{b, c}| = 6 − 2 = 4. Hence, the popularity of pattern {b, c} is

1
|DB{b,c}| (Pop({b, c}, t2) + Pop({b, c}, t3)) = 1

2 (3+4) = 3.5 ��

Definition 4. Given a user specified minimum popularity threshold minpop,
a pattern X is considered popular if its popularity is at least minpop (i.e.,
Pop(X) ≥ minpop).

Example 3. If the user specified minpop is 3.3, then pattern {b, c} is pop-
ular in the TDB shown in Table 1 because Pop({b, c})=3.5 ≥ 3.3=minpop.
However, pattern {b} is not popular because Pop({b})= 1

|DB{b}| (Pop({b}, t1)+
Pop({b}, t2)+Pop({b}, t3)+Pop({b}, t6))= 1

4 (1+4+5+2)=3 < 3.3=minpop. ��
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3 Pop-Growth: Mining Popular Patterns with a Pop-Tree

When mining frequent patterns, the frequency measure satisfies the downward
closure property (i.e., if a pattern is infrequent, its superset is guaranteed to be
infrequent). This helps reduce the search/solution space by pruning infrequent
pattern, and thus speeds up the mining process. However, when mining popular
patterns, observant readers may notice from Example 3 that popularity does
not satisfy the downward closure property. For example, a pattern (e.g., {b}) is
unpopular, but its superset (e.g., {b, c}) may be popular. Hence, the mining of
popular patterns can be challenging.

To handle the challenge, let us revisit Equation (3) and redefine the popularity
Pop(X) of a pattern X (cf. Definition 3).

Definition 5. The popularity Pop(X) of a pattern X in the TDB measures
an aggregated membership degree of X in all transactions in the TDB. It is
defined in terms of sumTL(X) =

∑
tj∈DBX

|tj | as follows:

Pop(X) =
1

|DBX |
∑

tj∈DBX

Pop(X, tj)

=
1

|DBX |
∑

tj∈DBX

(|tj | − |X |)

=
sumTL(X)

|DBX | − |X |. (4)

Example 4. Reconsider the TDB shown in Table 1. Recall from Example 1

that sumTL({b, c})=11. Then, the popularity of pattern {b, c} is sumTL({b,c})
|{t2,t3}| −

|{b, c}| = 11
2 −2 = 3.5 Similarly, the popularity of pattern {b} is sumTL({b})

|{t1,t2,t3,t6}| −
|{b}| = |t1|+|t2|+|t3|+|t6|

|{t1,t2,t3,t6}| − |{b}| = 16
4 − 1 = 3. ��

Observant readers may notice from Example 4 that sumTL({b, c})=11 ≤ 16=
sumTL({b}). The definition of sumTL(X) further confirms that the total trans-
action length sumTL(X) of X satisfies the downward closure property (i.e.,
sumTL(X) ≥ sumTL(X ′) if X ⊆ X ′).

3.1 Construction of a Pop-Tree

To mine popular patterns, we propose the Pop-growth algorithm, which consists
of two key procedures: (i) construction of a Pop-tree and (ii) mining of popular
patterns from the Pop-tree.

We first build a tree structure—called Popular pattern tree (Pop-tree)—
to capture the necessary information from the TDB with only two scans of the
TDB. Recall from Section 2 that Pop(X) does not satisfy the downward closure
property. So, unpopular items need to be kept in the Pop-tree as some of their
supersets may be popular. Fortunately, recall from Section 2 that sumTL(X)
satisfies the downward closure property. So, not all unpopular items need to be
kept. Some of them can be pruned. See the following two lemmas.
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Lemma 1. The popularity of a pattern X is always less than or equal to its long
transaction popularity, i.e., Pop(X) ≤ Pop(X, tmaxTL(X)).

Lemma 2. For X ⊆ X ′, Pop(X ′) cannot exceed maxTL(X)− |X ′|.
Based on the above two lemmas, the following equation provides us with an upper
bound of the popularity Pop(X ′) of a patternX ′ (in terms ofmaxTL(X)), where
X ⊆ X ′:

PopUB(X ′) = maxTL(X)− |X ′|. (5)

Based on Equation (5), we can calculate the popularity upper bound of a pat-
tern X ′ from maxTL(X) (where X ⊆ X ′, and |X ′| = |X |+1 = k+1), and prune
unpopular patterns. We call this super-pattern popularity check.

Similar to FP-tree [4], each node of a Pop-tree contains the parent and child
pointers as well as horizontal node traversal pointers. To facilitate popular pat-
tern mining, we keep (i) an item x, (ii) support of Y ∪{x}, (iii) sumTL(Y ∪{x}),
and (iv) maxTL(Y ∪ {x}), where Y represents the set of items above x (i.e.,
ancestor nodes of x).

To construct a Pop-tree, we scan the TDB to find the support(x), maximum
transaction length maxTL(x) and the popularity Pop(x) for each singleton x
in the TDB. Then, we perform the super-pattern popularity check and safely
delete a pattern x if PopUB(x′) < minpop (where x′ is an extension of x). We
then scan the TDB the second time to insert each transaction into the Pop-tree
in a similar fashion as the insertion process of FP-tree.

Example 5. Let us show how to construct a Pop-tree for the TDB shown in
Table 1 with minpop=2.4. With the first database scan, we obtain the follow-
ing information in the form of 〈x: support(x), maxTL(x), Pop(x)〉 for each
of the m=9 domain items, i.e., 〈a:3,3,1.66〉, 〈b:4,6,3.0〉, 〈c:3,6,4.0〉, 〈d:4,6,2.25〉,
〈e:3,6,3.33〉, 〈f :2,6,4.5〉, 〈g:2,5,3.5〉, 〈h:3,6,4.0〉, 〈i:1,3,2.0〉. Note that all items—
except a, d & i—are popular (i.e., with popularity at least 2.4). Although a, d &
i are unpopular, their super-patterns may be popular. Hence, we cannot delete
them without performing the super-pattern popularity check. The popularity
upper bounds of the extensions of a, d & i are 3−2=1, 6−2=4 & 3−2=1, respec-
tively. As the value for d is greater than minpop, we keep d but safely delete a
& i. We sort and insert items b, c, d, e, f, g & h into a header table (H-table) in
descending order of support: 〈b, d, c, e, h, f, g〉.

We then scan the TDB the second time. We compute the length of each
transaction, remove all items that are not in the H-table, and sort the remaining
items in each transaction according to the H-table order. Fig. 1(a) shows the
contents of the H-table (〈x: support(x), sumTL(x), maxTL(x)〉) and the Pop-
tree structure after inserting t1 of TDB. Because t1 and t2 share a common prefix
(i.e., {b}), we increase the occurrence count of the common node {b : 1, 2, 2} by
one, its total transaction length (sumTL) by the transaction length of t2 (i.e.,
|t2|=5), and update its maxTL. For the remaining (uncommon) nodes of t2,
we set support=1, sumTL=|t2| and maxTL=|t2|. The contents of the Pop-tree
after insertion of t2 are shown in Fig. 1(b). The final Pop-tree after capturing
all the transactions in the TDB is shown in Fig. 1(c). ��
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Fig. 1. The Pop-tree construction

Let I(tj) be the set of items in transaction tj that pass through the first database
scan. Based on the above Pop-tree construction procedure, we observed several
important properties of Pop-trees listed as follows.

Property 1. A Pop-tree registers the projection of I(tj) for tj in the TDB only
once.

Property 2. The total transaction length sumTL in a node x in a Pop-tree cap-
tures the sum of lengths of all transactions that pass through, or end at, the
node for all the nodes in the path from x up to the root.

Property 3. The total transaction length sumTL of any node in a Pop-tree is
greater than or equal to the sum of transaction lengths of its children.

Properties 2 and 3 are the result of sharing common prefixes by different trans-
actions, which allow our Pop-tree to be compact. Based on following lemma, one
can observe that a Pop-tree is a highly compact tree structure.

Lemma 3. The size of a Pop-tree on a TDB for minpop is bounded above by∑
tj∈TDB |I(tj)|.

Lemma 4. Given a TDB and minpop, the complete set of all popular patterns
can be obtained from a Pop-tree for the minpop on the TDB.

We can justify the completeness of a Pop-tree for mining popular patterns by
Lemma 4. Based on this lemma, popular patterns can be found by mining our
Pop-tree.

3.2 Mining of Popular Patterns from the Pop-Tree

Recall that, to mine popular patterns, the Pop-growth algorithm applies two key
procedures: (i) construction of a Pop-tree and (ii) mining of popular patterns
from the Pop-tree. The Pop-growth finds popular patterns from the Pop-tree,
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Fig. 2. The Pop-tree mining

in which each tree node captures its occurrence count, total transaction length,
and maximum transaction length. The algorithm finds popular patterns by con-
structing the projected database for potential popular itemsets and recursively
mining their extensions.

While constructing the conditional database from a projected database, we
perform a super-pattern popularity check for extensions of any unpopular item,
and delete the item only when it fails the check. We call such pruning technique
the lazy pruning.

The lazy pruning technique ensures that no popular patterns (having unpop-
ular subsets) will be missed by Pop-growth. The following example illustrates
how Pop-growth mines popular patterns from the Pop-tree.

Example 6. Let us continue Example 5. In other words, let us mine popular
patterns from the Pop-tree shown in Fig. 1(c) constructed for the TDB shown
in Table 1 with minpop=2.4.

Recall that the Pop-growth recursively mines the projected databases of all items
in H-table. Before constructing the projected database for an item x in H-table,
we output the item as a popular pattern if its popularity is at least minpop.
The conditional pattern base for the {g}-projected database (i.e., DB{g}), as
shown in Fig. 2(a), is constructed by accumulating the contents in the tree path
〈b:1,5,5 c:1,5,5 h:1,5,5 f :1,5,5〉 and 〈c:1,4,4 e:1,4,4 h:1,4,4〉. The header
table for DB{g}, as shown in Fig. 2(a), contains all items that co-occur with g in
the Pop-tree. It also contains the corresponding support, sumTL and maxTL
of each item in DB{g}. We then compute the exact popularity of each item in
DB{g} by using Equation (4).

The conditional tree for any conditional pattern base of an itemset X may
contain two types of items: (i) items that are popular in DBX and (ii) items that
are unpopular in DBX but having potentially popular super-patterns. Other
items are deleted from the projected database. To find unpopular items that
having potentially popular super-patterns, we apply the lazy pruning technique
and Equation (5).

Based on Equation (4), the popularity of items in the H-table of DB{g} can

be computed: Pop({b, g}) = 5
1 − 2 = 3, Pop({f, g}) = 5

1 − 2 = 3, Pop({c, g}) =
9
2−2 = 2.5, Pop({g, h}) = 9

2−2 = 2.5 and Pop({e, g}) = 4
1−2 = 2. All items
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except e are popular together with g. By applying the lazy pruning technique,
the popularity upper bound PopUB({e, g}) for e with g can be calculated as 4−2
= 2, which is less than minpop. Hence, we can safely delete e from the projected
database of g. The conditional tree for the projected database of g is presented
in Fig 2(b).

The mining for each extension (i.e., for f, h, c& b) of g is performed recursively.
The set of patterns generated from the projected database of g is shown in
Fig. 2(c). The mining process terminates when we reach the top of H-table of
the Pop-tree. ��
The Pop-growth mining technique is efficient because it applies a pattern-growth
based mining technique on a Pop-tree. Moreover, the lazy pruning technique
further reduces the mining cost for unpopular items whose super-patterns cannot
be popular.

4 Experimental Results

For experiments, we mostly use those datasets commonly used in frequent pat-
tern mining experiments because characteristics of those transactional datasets
are well known (see Table 2). More specially, we used (i) IBM synthetic datasets
(e.g., T10I4D100K, T20I4D100K) from www.almaden.ibm.com/cs/quest and
(ii) real datasets (e.g., chess, mushroom, connect-4) from the Frequent Itemset
Mining Dataset Repository fimi.cs.helsinki.fi/data. We obtained consis-
tent results for all of these datasets. Hence, due to space constraint, we report
here the experimental results on only a subset of these datasets in the remainder
of this section.

Table 2. Dataset characteristics

Dataset #transactions #items maxTL avgTL Data density

T10I4D100K 100,000 870 29 10.10 Sparse
T20I4D100K 99,996 871 42 19.81 Sparse
mushroom 8,124 119 23 23.00 Dense

All programs were written in C and run on UNIX with a quad-core processor
with 1.3 GHz. The runtime specified indicates the total execution time (i.e.,
CPU and I/Os). The reported results are based on the average of multiple runs
for each case. In all of the below experiments, Pop-trees were constructed using
descending order of occurrence counts of items.

To the best of our knowledge, our Pop-tree is the first approach to mine
popular patterns from transactional databases. Here, we present the performance
of our Pop-tree structure and Pop-growth algorithm when varying the mining
parameters such as popularity threshold and dataset characteristics.



Mining Popular Patterns from Transactional Databases 299

Fig. 3. Runtime

4.1 Runtime

In this section, we report the execution time that the Pop-growth requires for
mining popular patterns over datasets of different types and changes in minpop.
The execution time includes all the steps of H-table construction, the Pop-tree
building and the corresponding mining. The results on one sparse dataset (e.g.,
T20I4D100K) and one dense dataset (e.g., mushroom) are presented in Fig. 3.

To observe the effect of mining on the variation in size of such datasets,
we performed popular pattern mining while increasing the size of both of the
datasets: (i) From 2K to full for the mushroom dataset and (ii) from 30K to full
for T20I4D100K. Thus, the series for “Full DB” represent the results for the full
size of datasets. Both datasets required more execution time when mining larger
datasets. As the database size increased andminpop decreased, the tree structure
size and number of popular patterns increased. Hence, a comparatively longer
time was required to generate large number of popular patterns from large trees.
Although the mushroom dataset is smaller in size, the transaction lengths of all
transactions are the same (i.e., 23). Hence, the Pop-tree mining took a longer
time when compared to a dataset with variable length such as T20I4D100K. The
experimental results show that the mining corresponding Pop-tree for popular
patterns is time efficient for both sparse and dense datasets.

4.2 Reduction on the Number of Patterns When Changing minpop

Similar to the previous experiment, we also examined the number of patterns
generated by our Pop-growth when we varied the dataset size and minpop. Fig. 4
shows the reduction in the number of patterns in percentage when increasing the
minpop values in both the mushroom and T20I4D100K datasets with different
dataset size. Each data point in the x-axes of the graphs reports the change
of minpop from a low to a high value, while the y-axes indicate the percentage
change in the number of patterns generated from a low to a high minpop value.

Note that, depending on dataset characteristics, the reduction rate varied.
For example, for the mushroom dataset, the reduction rate dropped sharply
when minpop was changed from 60%–65% to 65%–70%, but the reduction rate
rose when minpop was changed to 70%–75%. In contrast, T20I4D100K showed a
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Fig. 4. Reduction on the number of patterns when changing minpop

consistent reduction rate when lowering the minpop value. However, as observed
from the graphs for both datasets, the number of patterns reduced when increas-
ing the minpop values. For example, for the mushroom dataset, the reduction
rate was around 40% when increasing the threshold from 60% to 65%. For 30K of
T20I4D100K, the reduction rate was around 21% when increasing the threshold
from 80% to 82%. It is also interesting to note that the pattern count reduction
rate was very similar irrespective of its different size.

We observed that the pattern generation characteristics of the proposed pop-
ular pattern mining algorithm were consistent with the variation of minpop and
database size.

4.3 Compactness of the Pop-Tree

Here, we report the compactness of a Pop-tree in terms of number of Pop-tree
nodes. Note that, as the mushroom dataset has a fixed transaction length, the
maximum transaction length for every possible pattern in the dataset is always the
same. Consequently, every item in the dataset passes the lazy pruning phase and
contributes to the tree. Hence, for a particular portion of the mushroom dataset,
the tree size (i.e., number of nodes) is the same with the variation ofminpop. How-
ever, the number of nodes varied from 34523 (when |TDB| = 2K) to 91338 (when

Fig. 5. Compactness of the Pop-tree: node count on T20I4D100K
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|TDB| = 6K). For the full dataset, it is around 100K. The compactness of Pop-
tree on different portion of T20I4D100K is presented in Fig. 5. The size of the tree
structure gradually reduced in T20I4D100K with the increase of minpop.

As expected, in both datasets, the number of nodes increased with the increase
in size of database. However, as far as the total number of nodes is concerned, one
can observe that, irrespective of fixed or variable transaction length, a Pop-tree
structure is compact enough to fit into a reasonable amount of memory.

4.4 Scalability of Pop-Growth

To study the scalability of Pop-growth mining technique, we further ran our
algorithm on T10I4D100K, which is sparser than T20I4D100K. Fig. 6 presents
the results on scalability tests on the variation of minpop and required num-
ber of nodes on the dataset. Clearly, as the minpop decreases, the overall tree
construction and mining time (Fig. 6(a)), and required memory (Fig. 6(b)) in-
crease. However, the Pop-tree shows a stable performance with a linear increase
in runtime and memory consumption as the minpop decreased for the dataset.
Moreover, the results demonstrate that, the Pop-tree can mine the set of popu-
lar patterns on this dataset for a reasonably small value of popularity threshold
with a considerable amount of execution time and memory.

To recap, the above experimental results show that the proposed Pop-tree
can mine the set of popular patterns in both time and memory efficient manner
over different types of dataset. Furthermore, the Pop-tree structure and the Pop-
growth algorithm are scalable for popularity threshold values and memory.

Fig. 6. Scalability on Pop-growth

5 Conclusions

In this paper, we introduced a new type of patterns—namely, popular patterns.
We also proposed the Pop-tree (which captures important contents of transac-
tion databases for mining popular patterns) and the Pop-growth algorithm (which
finds popular patterns by mining the Pop-tree). Although the notion of popularity
does not satisfy the downward closure property, we managed to address this issue
by using the total transaction length (sumTL) together with projected databases,
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which allows lazy pruning. Experimental results showed that Pop-tree is compact,
scalable, and space efficient for both sparse and dense datasets (e.g., IBM syn-
thetic data and real data from FIMI). Moreover, results also showed that con-
struction of Pop-tree and mining of popular patterns are time efficient.
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Abstract. There has been some research in the area of rare pattern mining where
the researchers try to capture patterns involving events that are unusual in a
dataset. These patterns are considered more useful than frequent patterns in some
domain, including detection of computer attacks, or fraudulent credit transac-
tions. Until now, most of the research in this area concentrates only on find-
ing rare rules in a static dataset. There is a proliferation of applications which
generate data streams, such as network logs and banking transactions. Applying
techniques for static datasets is not practical for data streams. In this paper we
propose a novel approach called Streaming Rare Pattern Tree (SRP-Tree), which
finds rare rules in a data stream environment using a sliding window, and show
that it is faster than current approaches.

Keywords: Rare Pattern Mining, FP-Growth, Data Streams, Sliding Window.

1 Introduction

Traditionally pattern mining techniques focus on finding frequent patterns within a
dataset. However in some scenarios rare patterns may be more interesting as they repre-
sent unexpected phenomenons. Rare patterns are patterns that do not occur frequently
within the dataset and can be considered as exceptions. An example of a useful rare pat-
tern in real life could be the association of certain occurences of symptoms to diseases.
For instance, Meningitis is the inflammation of the protective membranes covering the
brain and spinal cord. Symptoms of Meningitis include headache, fever, vomiting, neck
stiffness, and altered consciousness. Most of the symptoms are commonly occuring for
the influenza except for neck stiffness. By discovering the rare occurrence of neck stiff-
ness, we are capable of flagging a patient possibly suffering from Meningitis out of a
pool of patients suffering from the common influenza. In the recent years, the problem
of extracting rare patterns from static datasets has been addressed. However as the capa-
bility to generate data streams increases, the ability to capture useful information from
these data is necessary.

Ever since its inception, data stream mining has remained one of the more challeng-
ing problems within the data mining discipline. Data from a wide variety of application
areas ranging from online retail applications such as online auctions and online book-
stores, telecommunications call data, credit card transactions, sensor data and climate
data are a few examples of applications that generate vast quantities of data on a con-
tinuous basis. Data produced by such applications are highly volatile with new patterns

A. Cuzzocrea and U. Dayal (Eds.): DaWaK 2012, LNCS 7448, pp. 303–314, 2012.
c© Springer-Verlag Berlin Heidelberg 2012



304 D. Huang, Y.S. Koh, and G. Dobbie

and trends emerging on a continuous basis. The unbounded size of data streams is con-
sidered the main obstacle to processing data streams. As it is unbounded, it makes it
infeasible to store the entire data on disk. Furthermore, we would want to process data
streams near real time. This raises two issues. Firstly, a multi-pass algorithm, entire
dataset needs to be stored before mining can commence. Secondly, obtaining the ex-
tact set of rules that includes both frequent and rare rules from the data streams is too
expensive.

To capture these types of rules, we propose a novel technique called Streaming Rare
Pattern Tree (SRP-Tree), which requires a single pass through the dataset using a slid-
ing window approach. We also propose a novel data structure called the Connection
Table which allows us to efficiently constrain the search in our tree, and keep track of
items within the window. The paper is organized as follows. In Section 2 we look at
related work in the area of rare association rule mining. In Section 3 we present pre-
liminary concepts and definitions for rare pattern mining in data streams. In Section
4 we describe our SRP-Tree approach, and in Section 5 we describe and discuss our
experimental results. Finally, Section 6 concludes the paper.

2 Related Work

There has been a lot of work in the area of rare pattern mining. However all current
research in this area is designed for static datasets and not able to handle a data stream
environment. Currently there are two different types of rare pattern mining approaches:
level-wise and tree based. Current rare itemset mining approaches which are based
on level-wise exploration of the search space are similar to the Apriori algorithm [2].
In Apriori, k-itemsets (itemsets of cardinality k) are used to generate k + 1-itemsets.
These new k+1-itemsets are pruned using the downward closure property, which states
that the superset of a non-frequent itemset cannot be frequent. Apriori terminates when
there are no new k + 1-itemsets remaining after pruning. MS-Apriori [12], Rarity [16],
ARIMA [14], AfRIM [1] and Apriori-Inverse [8] are five algorithms that detect rare
itemsets. They all use level-wise exploration similar to Apriori, which have candidate
generation and pruning steps.

MS-Apriori [12] uses a bottom-up approach similar to Apriori. In MS-Apriori, each
item can be assigned a different minimum item support value (MIS). Rare items can be
assigned a low MIS, so that during candidate pruning, itemsets that include rare items
are more likely to be retained and participate in rule generation. Apriori-Inverse [8] is
used to mine perfectly rare itemsets, which are itemsets that only consist of items below
a maximum support threshold (maxSup).

Szathmary et al. [14] proposed two algorithms that can be used together to mine rare
itemsets: MRG-Exp and ARIMA. They defined three types of itemsets: minimal gen-
erators (MG), which are itemsets with a lower support than its subsets; minimal rare
generators (MRG), which are itemsets with non-zero support and whose subsets are all
frequent; and minimal zero generators (MZG), which are itemsets with zero support and
whose subsets all have non-zero support. The first algorithm, MRG-Exp, finds all MRG
by using MGs for candidate generation in each layer in a bottom up fashion. The MRGs
represent a border that separates the frequent and rare itemsets in the search space.



Rare Pattern Mining on Data Streams 305

All itemsets above this border must be rare according to the antimonotonic property.
The second algorithm, ARIMA, uses these MRGs to generate the complete set of rare
itemsets. ARIMA stops the search for non-zero rare itemsets when the MZG border is
reached, which represents the border above which there are only zero rare itemsets.

Adda et al. [1] proposed AfRIM which begins with the itemset that contains all items
found in the database. Candidate generation occurs by finding common k-itemset sub-
sets between all combinations of rare k + 1-itemset pairs in the previous level. Troiano
et al. proposed the Rarity algorithm that begins by identifying the longest transaction
within the database and uses it to perform a top-down search for rare itemsets, thereby
avoiding the lower layers that contain only frequent itemsets.

All of the above algorithms use the fundamental generate-and-test approach used
in Apriori, which has potentially expensive candidate generation and pruning steps. In
addition, these algorithms attempt to identify all possible rare itemsets, and as a result
require a significant amount of execution time. RP-Tree algorithm was proposed by
Tsang et al. [17] as a solution to these issues. RP-Tree avoids the expensive itemset
generation and pruning steps by using a tree data structure, based on FP-Tree [7], to
find rare patterns. RP-Tree finds rare itemsets using a tree structure. However it uses a
multi-pass approach, which is not suitable in a data stream environment.

There has been much work in the area of data stream mining, but most work focuses
on capturing frequent patterns [4,5,9,3,10,11,13,15]. Up until now there has been no
research into rare pattern mining in data streams.

3 Preliminaries

In this section, we provide definitions of key terms that explain the concepts of fre-
quent pattern mining in a data stream. Let I = {i1, i2, . . . , in} be a set of literals,
called items, that represent a unit of information in an application domain. An set
X = {il, . . . , im} ⊆ I and l,m ∈ [1, n], is called a itemset, or a k-itemset if it contains
k items. A transaction t = (tid, Y ) is a tuple where tid is a transaction-id and Y is a
pattern. If X ⊆ Y , it is said that t contains X or X occurs in t. Let size(t) be the size
of t, i.e., the number of items in Y .

A data stream DS can formally be defined as an infinite sequence of transactions,
DS = [t1, t2, . . . , tm), where ti, i ∈ [1,m] is the ith transaction in data stream. A
window W is a set of all transactions between the ith and jth (where j > i) transactions
and the size of W is |W | = j − i. The count of a itemset X in a W , denoted as
countW(X), is the number of transactions in W that contain X , and the support of an
itemset X , denoted as supW(X) = countW(X)

|W| .
An association rule is an implication X → Y such that X ∪ Y ⊆ I and X ∩ Y = ∅.

X is the antecedent and Y is the consequent of the rule. The support of X → Y in W
is the proportion of transactions in W that contains X ∪ Y . The confidence of X → Y
is the proportion of transactions in W containing X that also contains Y .

3.1 Rare Itemsets

We adopted the rare itemsets concept from Tsang et al. We consider an itemset to be
rare when its support falls below a threshold, called the minimum frequent support
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(minFreqSup) threshold. One difficulty when generating rare itemsets is differentiating
noisy itemsets from the actual rare itemsets. As the support of the itemset is low, the
potential of pushing unrelated items together increases as well, thus producing noisy
itemsets. To overcome this problem, we define a noise filter threshold to prune out the
noise called the minimum rare support (minRareSup) threshold. Typically minRareSup
is set to a very low level, e.g., 0.01%.

Definition 1. An itemset x is a rare itemset in a window W iff

supW(x) ≤ minFreqSup and supW(x) > minRareSup

However not all rare itemsets that fulfill these properties are interesting. Furthermore,
rare itemsets can be divided into two types: rare item itemsets and non-rare item item-
sets.

Rare item itemsets refer to itemsets which are a combination of only rare items and
itemsets that consist of both rare and frequent items. Given 4 items {a, b, c, x} with
supports a = 0.70, b = 0.45, c = 0.50, and x = 0.10, with minFreqSup = 0.15 and
minRareSup = 0.01, the itemset {a, x} would be a rare item itemset assuming that the
support of {a, x} > 0.01, since the itemset includes the rare item x.

Definition 2. An itemset x is a rare item itemset iff

∃x ∈ X, supW(x) ≤ minFreqSup, supW(x) ≤ minFreqSup

Non-rare item itemsets only has frequent items which fall below the minimum fre-
quent support threshold. Given 4 items {a, b, c, x} with supports a = 0.70, b = 0.45, c
= 0.50, and x = 0.10, with minFreqSup = 0.15 and minRareSup = 0.01, and the itemset
{a, b, c} had a support of 0.09, then this itemset would be a non-rare item itemset as
all items within the itemset are frequent, and its support lies between minFreqSup and
minRareSup.

Definition 3. An itemset X is a non-rare item itemset iff

∀x ∈ X, supW(x) > minFreqSup, supW(x) ≤ minFreqSup

4 SRP-Tree: Rare Pattern Tree Mining for Data Streams

In this section we will be discussing the details of our proposed technique SRP-Tree
that mines rare patterns in a data stream using a sliding window approach.

4.1 SRP-Tree

Current tree based rare pattern mining approaches follow the traditional FP-Tree [7]
approach. It is a two-pass approach and is affordable when mining a static dataset.
However in a data stream environment, a two-pass approach is not suitable. To process
a static environment, traditional non-streaming rare pattern techniques, such as RP-Tree
order the items within a transaction according to its frequencies before inserting it into



Rare Pattern Mining on Data Streams 307

the tree. Using these algorithms the frequency of the items are obtained during the first
pass through the dataset.

In data streams we can only look at the transactions within the stream once, thus, a
one-pass approach is necessary. This rules out the possibility of building a tree based on
the frequency of items within the data stream. Furthermore, frequency of an item may
change as the stream progresses. There are four scenarios which we need to consider in
a stream:

Scenario 1. A frequent item x at particular time T1 may become rare at time T2.
Scenario 2. A rare item x at particular time T1 may become frequent at time T2.
Scenario 3. A frequent item x at particular time T1 may remain frequent at time T2.
Scenario 4. A rare item x at particular time T1 may remain rare at time T2.

T1 represents a point in time, and T2 represents a future point in time after T1.
To find rare patterns within data streams, we propose a new algorithm called SRP-

Tree. Our algorithm uses a tree based approach. In our approach, items from incoming
transactions in the stream are inserted into a tree based on a canonical ordering. A
canonical ordering allows us to capture the content of the transactions from the data
stream and orders tree nodes according to a particular order. In our approach we use
appearance order of the items as the canonical ordering. When we use a canonical order
to build the tree, the ordering of items is unaffected by the changes in frequency caused
by incremental updates. There has been work carried out using a canonical ordering to
build trees for a data stream mining environment [6,10]. But all of these research have
been tailored to find frequent patterns.

In our approach, the frequency of a node in the tree is at least as high as the sum of
frequencies of its children. However, this does not actually guarantee the overall down-
ward closure property which exists in a frequency ordered tree. The downward closure
property in a traditional rare pattern tree mining algorithm, whereby, rare-items will
never be the ancestor of a non-rare item in the initial tree due to the tree construction
process is violated. Hence, we propose a novel item list called the Connection Table
which keeps track of each unique item in the window and the items they co-occur with
along with their respective frequencies.

4.2 Connection Table

The Connection Table used in our SRP-Tree captures in the transactions only items that
have a lower canonical ordering. For example, given a transaction in a canonical order
of {a, b} we store in the table that a is connected to b with a frequency of 1 but it does
not store b is connected to a. This is because of the properties of the canonical ordering
in the constructed tree: item a will always be the ancestor of item b. Since mining is
carried out using a bottom-up approach, by mining item b, item a is also mined. The
opposite does not hold since mining item a does not guarantee that item b is mined.
Therefore, by using the Connection Table to keep track of connected items and adding
them as arguments to FP-Growth in the mining phase, the complete set of rare-item
itemsets can then be captured by SRP-Tree. The Connection table is designed using a
hash map which allows for O(1) access. In worst case scenarios, the table could reach
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a max size of x(x+1)
2 with x being the total amount of items; however, in reality this is

highly unlikely.
At any point of time should we decide to mine the current window, SRP-Tree uses

the initial tree of the current window to construct conditional pattern bases and condi-
tional trees for each rare-item and their connected items in the Connection Table. Note
that only connection items with an occurring frequency greater than or equal to the
minRareSup is included. Each conditional tree and corresponding item are then used as
arguments for FP-Growth. The threshold used to prune items from the conditional trees
is minRareSup. The union of the results from each of these calls to FP-Growth is a set
of itemsets that contains a rare-item, or rare item itemsets.

Example. Given the dataset in Table 1, we show how the Connection Table is built in
Table 2. The left column in Table 2 list the unique items in the window, whereas the
right column list the set of co-occurring items along with the co-occurrence frequency
of that particular item to the item in the right column. For example, item c co-occurs
twice with items d, f , and h.

Table 1. Set of transactions in a given window W of size 12

Tid Transaction
1 {a, g, h}
2 {a, g, h, i}
3 {b, c, d, f}
4 {b, d, j}

Tid Transaction
5 {c, f, h}
6 {a, g, h, e}
7 {g}
8 {h}

Tid Transaction
9 {c, d, h}

10 {b, f}
11 {a, h}
12 {a}

Table 2. Connection Table using the window of transactions listed in Table 1

Item Items Co-occurred
a {(e:1), (g:1), (h:1), (i:1)}
b {(c:1), (d:2), (f:2), (j:1)}
c {(d:2), (f:2), (h:2)}
d {(f:1), (h:1), (j:1)}
e {(g:1), (h:1)}

Item Items Co-occurred
f {(h:1)}
g {(h:1), (i:1)}
h {(i:1)}
i {∅}
j {∅}

4.3 SRP-Tree Algorithm

Our SRP-Tree algorithm is shown in Algorithm 1. SRP-Tree essentially performs in
one pass the counting of item frequencies and the building of the initial tree. There-
fore, in a given window W , for each incoming transaction t, SRP-Tree first updates the
list of item frequencies according to the transactions contained in the current window.
We refer to this as updateItemFreqList(t) method, where we increment the counts of
items contained in the new transaction and decrement the counts of items contained
in the oldest transcations to be discarded from the window. SRP-Tree then updates the
tree structure according to the transaction contained in the current window in a similar
fashion, which is referred to as updateTree(t) method in Algorithm 1.
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We mine the tree after a particular number of transactions also known as a block. We
refer to a preset block size as B. In this algorithm, R refers to the set of rare items and
C refers to the set of items that co-occur with a particular rare item.

We would also like to point out, that another difference between SRP-Tree and a
static rare pattern mining approach is that in SRP-Tree, the tree is built using all the
transactions in the window, whereas in a static rare pattern mining approach, only trans-
actions with rare items are used to build the tree. A static approach has the luxury of
looking at the dataset twice and discarding items which it is not interested in before the
tree is even built. In our case, we simply cannot know which transactions contain rare
items until we decide to mine.

Algorithm 1. SRP-Tree
1: Input: DS, W , B, minRareSup,minFreqSup;
2: Output: results (Set of rare item itemsets);

3: while exist(DS) do
4: t ←new incoming transaction from DS;
5: currentBlockSize ← currentBlockSize + 1;
6: updateItemFreqList(t);
7: updateConnectionTable(t);
8: tree ← updateTree(t);
9: Mining at the end of block

10: if B == currentBlockSize then
11: currentBlockSize ← 0;
12: results = ∅;
13: I ← {all unique items in W};
14: R ← {i ∈ I | supW(i) ≥ minRareSup ∧ supW(i) < minFreqSup};
15: C ← {k ∈ R, j ∈ connectionTable(k) | supW(k) ≥ minRareSup};
16: for item a in tree do
17: if a ∈ R or a ∈ C then
18: construct a’s conditional pattern-base and then a’s conditional FP-Tree Treea;
19: results ← results ∪ FP-Growth(Treea, a);
20: end if
21: end for
22: end if
23: end while
24: return results;

SRP-Tree Example. Applying SRP-Tree to the window W of the 12 transactions in
Table 1, the support ordered list of all items is 〈(h:6), (a:5), (g:4), (c:3), (d:3), (b:2),
(f :2), (e:1), (i:1), (j:1)〉. Using minFreqSup = 4 and minRareSup = 2, only the items
{b, c, d, f} are rare, and included in the set of rare items, R.

The initial SRP-Tree constructed for window W of size 12 is shown in Figure 1.
To find the rare-item itemsets, the initial SRP-Tree is used to build conditional pattern
bases and conditional SRP-Trees for each rare item {b, c, d, f} and any additional items
in the Connection Table that is connected with a rare item that has a frequency greater
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than the minRareSup, in this example, item h. The conditional tree for item h is shown
in Figure 2. Each of the conditional SRP-Trees and the conditional item are then used
as parameters for the FP-Growth algorithm.
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Fig. 2. Conditional tree, Treeh

5 Experimental Results

In our experiments we compared the performance of our SRP-Tree to the Streaming
Canonical Tree (SC-Tree), which is a modified version of DSTree [10] with pruning of
frequent itemsets. SRP-Tree is the very first attempt at mining rare patterns in a data
stream environment and there are no other techniques that mine rare patterns in a data
stream to compare to, so we have compared our SRP-Tree to the technique that we
call the SC-Tree with pruning which finds rare item itemsets in an unoptimized brute-
force manner. The SC-Tree is a one pass technique which stores the transactions from
the stream in a tree using the canonical ordering and stores/updates item frequencies
like that of our SRP-Tree. One of the major differences of SC-Tree is that SC-Tree
does not store or keep track of items in the Connection Table. To find all rare item
itemsets, SC-Tree finds and generates all itemsets that meet the minRareSup threshold,
then removes all other itemsets except rare item itemsets with an extra pruning step.
SC-Tree produces the same itemsets and generates the same rules as SRP-Tree. All
algorithms were implemented in Java and executed on a machine equipped with an
Intel Core i5-2400 CPU @ 3.10 GHz with 4GB of RAM running Windows 7 x 64.
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5.1 Real-World Dataset

In this section we present the time and relative time taken for itemset generation of SRP-
Tree and SC-Tree. The time is reported in seconds and the relative time is calculated by
setting RP-Tree to 1.00 and SCTree relative to that of RP-Tree.

relative time =
Time taken by SC-Tree

Time taken by SRP-Tree

We used a window size and block size of 25K for all datasets except for the
Mushroom dataset where we used 2K due to its smaller size. The minFreqSup and
minRareSup thresholds are shown in Table 3 for each dataset. The thresholds are user-
defined through examining the distribution of item frequencies in each of the datasets.
We acknowledge that given a data stream environment, this is not the most suitable
way of defining thresholds and in the future we will be looking at a way to adapt the
thresholds to the change in distribution and drift of the transactions in the stream.

We have tested the algorithms on 6 datasets from the FIMI (Frequent Itemset
Mining Implementations) repository: Mushroom, Retail, BMS-POS, T10I4D100K,
T40I10D100K, and Kosarak (250K).

Table 3. Comparision between SRP-Tree and SC-Tree

Dataset B MinRareSup MinFreqSup No. of Itemset SRP-Tree SC-Tree
Time (s) Rel. Time Time (s) Rel. Time

Mushroom 2K 0.01 0.05 14443674 1131 1.00 1321 1.17
Retail 25K 0.0001 0.0005 572673 239 1.00 339 1.42
BMS-POS 25K 0.0002 0.0005 1426 58 1.00 3783 65.22
T10I4D100K 25K 0.0001 0.0005 1161 12 1.00 19 1.58
T40I10D100K 25K 0.003 0.05 4734806 301 1.00 380 1.26
Kosarak (250K) 25K 0.001 0.15 35623519 703 1.00 7213 10.26

Table 3 shows, for each dataset, the block size, minRareSup, and minFreqSup used to
run the algorithms then the comparison between SRP-Tree and SC-Tree of the itemsets
generated, time it took to run the algorithm, and the relative time. Both SRP-Tree and
SC-Tree generate the same amount of itemsets because SRP-Tree only generates rare-
item itemsets and SC-Tree generates all itemsets that meet the minRareSup threshold
then the extra pruning step removes all other itemsets that are not rare-item itemsets.
Therefore, the final number of itemsets generated by both algorithms is the same.

In all datasets of varying item frequency distribution, SRP-Tree runs faster than
SC-Tree. The time taken to run the various datasets are highly dependent on the tree
structure built from the transactions in the datasets and generally have a positive cor-
relation with the number of itemsets generated. The number of itemsets generated also
has a great variation and is highly dependent on the composition/nature of the respec-
tive dataset. For datasets that are more sparse in nature like Retail, BMS-POS, and
T10I4D100K, the number of itemsets generated are usually than a dense dataset like
Mushroom and the run-time is usually faster.
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5.2 Case Study: T40I10D100K

The T40I10D100K dataset is generated using the generator from the IBM Almaden
Quest research group. Figure 3 and Figure 4 shows the item frequency distribution of
the T40I10D100K dataset. When we compared the distribution of the T40I10D100K
dataset, to other datasets in the FIMI repository, we observed that the T40I10D100K
dataset is more sparse in nature compared to the Mushroom dataset, but more dense than
datasets like Retail and BMS-POS. It is also important to note that T40I10D100K con-
tains a high proportion of items with a frequency of less than 0.1 (approximately 90%
of the total items). This particular distribution contains a greater number of prospective
rare items and rules to be mined from the dataset.

Fig. 3. Item frequency distribution Fig. 4. Normalized item frequency distribution

In Table 4 we show the difference in itemsets generated and the time it took to gen-
erate items of varying minFreqSup on the T40I10D100K dataset. As we increase the
minFreqSup, the number of itemsets generated increases and the relative time also in-
creases. It is important to note that the real time taken for SRP-Tree to generate itemsets
decreases as we increase the minFreqSup. This is because at a lower minFreqSup for
this particular distribution of the dataset, there is a high co-occurrence of rare items to
other items with similar item frequency (indicating that these other items are also likely
to have rare properties). The mining of these additional highly connected items with
rare association patterns incurred a larger overhead in maintaining the Connection Ta-
ble. As the minFreqSup increases and most of the highly connected potential rare items
are accounted for, the overhead decreases and the results in a faster runtime.

Table 5 shows the difference in execution time when the block size varies. The exe-
cution time is increased as the block size increases due to the increased size of the tree
being built.
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Table 4. Varying MinFreqSup for T40I10D100K

MinFreqSup Itemset SRP-Tree SC-Tree
Time(s) Rel. Time Time(s) Rel. Time

0.04 4397517 333 1.00 357 1.07
0.05 4734806 301 1.00 380 1.26
0.06 5028947 278 1.00 421 1.51
0.1 5105892 246 1.00 446 1.81
0.15 5136904 238 1.00 454 1.91

Table 5. Execution Time based on Varying Block Sizes for T40I10D100K

Block size SRP-Tree SC-Tree
Avg Time / Window (s) Relative Time Avg. Time / Window (s) Relative Time

10K 41 1.00 70 1.70
25K 75 1.00 95 1.26
50K 142 1.00 201 1.42

6 Conclusions and Future Work

We present a new method for mining rare patterns using a tree structure in a data stream
environment. To the extent of our knowledge, this is the first algorithm that looks at
mining rare patterns in a data stream. Our technique is a one-pass only strategy which
is capable of mining rare patterns in a static database or in a dynamic data stream. In
the case of mining data streams, our technique is also capable of mining at any given
point of time in the stream and with different window and block sizes. One of the
contributions of this algorithm is a novel approach using a Connection Table which
keeps track of related items in a sliding window and reduces the mining space during
itemset generation. In our evaluations on six different datasets, the SRP-Tree is capable
of generating itemsets in a more efficient manner compared to the SC-Tree.

In the future we intend to investigate on dynamically adapting the minRareSup and
minFreqSup thresholds on-the-fly because data streams are volatile and neither set-
ting fixed thresholds for all data nor defining the thresholds prior based on distribution
is deemed suitable. We will also look at the possibility of dynamically adjusting the
window size to reflect the density of incoming data in the stream. For example, if the
new transactions in the window contained uninteresting or duplicate itemsets and rules,
we could (through varying the window size) decide not to mine until more interesting
itemsets and rules are captured. It will also be interesting to investigate the limitations
of the tree with respect to the different characteristics and intensity of the incoming data
stream.
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Abstract. The main paradigm for clustering evolving data streams in
the last 10 years has been to divide the clustering process into an on-
line phase that computes and stores detailed statistics about the data in
micro-clusters and an offline phase that queries micro-cluster statistics
and returns desired clustering structures. The argument for two-phase
algorithms is that they support evolving data streams and temporal
multi-scale analysis, which single pass algorithms do not. In this pa-
per, we describe a single pass fully online trellis-based algorithm, named
ClusTrel, designed for centroid-based clustering that supports evolving
data streams and generates clustering structures right after a new point
is processed. The performance of ClusTrel is assessed and compared to
state of the art algorithms for clustering of data streams showing similar
performance with smaller memory footprint.

1 Introduction

The increasing number of sensors and monitoring devices in today’s intelligent
systems makes data stream mining a topic of current interest. Mining data
streams is of use in various application domains such as network management,
health monitoring, sports, finance, etc. Amongst the different topics related to
data stream mining, clustering the data points from a data stream is the subject
of many research works over the last few years [1–9].

Algorithms designed to cluster data streams need to deal with specific addi-
tional requirements compared to those designed for offline clustering. These ad-
ditional requirements make this topic extremely challenging. Systems designed
for clustering of data streams should comply with the following requirements:

– The points of the stream have to be processed as they arrive and cannot be
stored in memory.

– The stream cannot be interrupted to process the points: there is limited time
before the next item arrives.

– An up-to-date clustering of the stream should be maintained to give more
importance to recent points.

– Stream clustering algorithms should be capable of detecting noise in the
streams.

– No a priori information on the number of clusters in the stream. The clus-
tering algorithm must self-adapt to detect the number of clusters.

A. Cuzzocrea and U. Dayal (Eds.): DaWaK 2012, LNCS 7448, pp. 315–326, 2012.
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– The system should be able to deliver a clustering structure frequently. This
enables the detection of concept drifts promptly after they occur.

Most of the algorithms proposed in the literature for data stream clustering fulfill
the above requirements to different extents. Current algorithms for data stream
clustering rely on two different phases: a first phase that maintains sufficient
statistics about the stream and a second phase that generates the clustering
structure of the stream given the gathered statistics. The first phase is done
online and the second one is left for offline whenever a clustering snapshot is
required. This offline phase represents an increase in processing time and com-
plexity as it needs to be done every time a clustering snapshot is desired. Because
of this increase in time and complexity, the frequency of the offline process is
typically much smaller than that of the incoming data points, which introduces
delay in the detection of concept changes. Slow reaction to changes in the clus-
tering structure can prove to be detrimental to service quality and security in
application domains such as network anomaly and intrusion detection [10].

In this paper, we present ClusTrel, a single pass fully online trellis-based al-
gorithm designed for centroid-based clustering of data streams. Thanks to its
trellis structure ClusTrel updates the clustering snapshot after each point and
can hence detect concept changes for every incoming data point. This algorithm
is also capable of selecting the number of clusters based on a clustering evalu-
ation index. We use the MOA software [11] to generate synthetic streams and
compare the performance of ClusTrel with state of the art algorithms for cluster-
ing data streams. Simulation results show that ClusTrel is able to reach similar
performance while reducing the number of micro-clusters stored in memory.

The remainder of this paper is structured as follows. Related work is surveyed
in Section 2, the ClusTrel algorithm is described in Section 3. Simulation results
on synthetic and real streams are given in Section 4 and conclusions are drawn
in Section 5.

2 Related Work

The initial approaches for clustering data streams focused on supporting the
single pass requirements [1, 3]. A common pitfall of these approaches is that new
points have the same weight as old points, making it difficult to adapt to changes
in the stream. These approaches also require that the target number of clusters
is provided as input to the clustering algorithm, which is an obvious limitation
in the case of evolving data streams.

Most recent two-phase algorithms for clustering data streams rely on micro-
clusters [2, 4–7]. Micro-clusters are a compact representation of clusters that
maintain sufficient statistics that can be updated online. Creating and indexing
micro-clusters from the data stream is established as the online part of most of
these algorithms, while the offline process generates the final clustering structure
from the current set of micro-clusters.

The CluStream [2] algorithm keeps a fixed maximum number of micro-clusters
at each instant. New points that fall within the boundary of already existing



A Single Pass Trellis-Based Algorithm for Clustering Evolving Data Streams 317

micro-clusters are appended to them, while others form new micro-clusters. This
avoids having to merge clusters at every step and can be implemented using
micro-cluster feature vectors. CluStream also allows for the deletion of old micro-
clusters and can store snapshots of the current clustering structure at different
time horizons. The offline process of CluStream takes as input the desired number
of clusters and uses a k-means algorithm to generate the final clustering from the
current set of micro-clusters. ClusTree algorithm [7] uses an R∗-tree structure in
order to index the micro-clusters that are updated online. The different levels of
the tree build a hierarchical representation of the clustering. The authors propose
different strategies to insert the micro-clusters into the tree. ClusTree can hence
handle slow to very fast stream by adapting the way micro-clusters are inserted
in the tree. The LiarTree algorithm [9] extends the concepts of ClusTree to cater
for noise detection and the improvement of novelty detection in the streams.

Alternative approaches use density-based clustering such as those in [5, 6, 8].
The algorithms presented in [5] and [6] are also based on an online and an offline
phase. In [5], the online phase consists of creating and updating micro-clusters,
and separating outlier micro-clusters from core micro-clusters. A density-based
clustering strategy (e.g. DBSCAN [12]) is used as the offline phase to generate
the final clustering. The online part of D-Stream [6] is based on density grids.
In [8], the authors propose a single pass density based clustering approach named
FlockStream that makes use of so-called agents.

The ClusTrel algorithm proposed here is a single pass algorithm similar to
FlockStream but is a centroid-based approach. The state of the art algorithms
for centroid-based clustering of data streams are CluStream [2] and ClusTree [7].

The approach proposed in this paper differs from CluStream and ClusTree as
it is a single pass algorithm that gathers statistics from the stream and generates
a macro-clustering after every incoming point.

3 The ClusTrel Algorithm

3.1 Preliminary Notations

Let S = S1, . . . , Sn, . . . be a stream taking its values in R
d. We assume that our

processing system does not have enough memory to store all the points of the
stream.

Definition 1. A micro-cluster is a compact representation of a cluster. It is
defined by a cluster feature vector (CFV). In this paper, a CFV of a micro-
cluster is a (d+ 2) tuple (n, c, ssqd), where n is the number of points associated
to the cluster, c is its centroid and ssqd is the sum of the squared distances of
all points in the cluster to c.

The CFV of a micro-cluster enables the gathering of sufficient statistics about
the points of the stream assigned to that micro-cluster without the need for
storing all points in memory. We will see later how the CFVs are updated when
new points are inserted in micro-clusters.
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Definition 2. We denote by C(t)
k a clustering structure that represents the clus-

tering of the stream S up to sample St into k micro-clusters. The k micro-clusters
are represented by their CFVs.

ClusTrel uses a clustering evaluation measure named the MDB index. It is based
on the Davies-Bouldin index [13] and is defined as follows:

Definition 3. Let C(t)
k be a clustering structure. The MDB index of C(t)

k is de-
fined as :

MDB =
1

k

k∑
i=1

max
j 	=i

SSQ(Ci) + SSQ(Cj)

dist(Ci, Cj)2
, (1)

where SSQ(Ci) is the average squared distance of all points in cluster Ci to its
centroid and dist(Ci, Cj) is the distance between the centroids of Ci and Cj.

The advantage of the MDB index over the classical DB index is that it is com-
putable online from the CFVs of a clustering structure. Low values of the MDB
index are associated with clustering structures composed of compact and well-
separated clusters. The MDB is used in ClusTrel to determine the number of
clusters that is most adapted to the input stream.

ClusTrel also uses the average SSQ index as a measure of quality of a clustering
structure. The average SSQ index is simply the average square distance of the
points of the stream to the centroid of the cluster they are assigned to.

3.2 The ClusTrel Algorithm

ClusTrel is a dynamic programming algorithm, based on the Viterbi algorithm
[14]. Given the data stream, ClusTrel minimizes one of the two cluster evaluation
indices described above. It dynamically builds a trellis whose states are clustering
structures, as shown in Figure 1 where the horizontal axis represents time. The
two parameters nm and nM represent the minimum and maximum numbers
of clusters to be explored by ClusTrel to find a clustering structure for the
stream S.

ClusTrel considers three kinds of transition in the trellis from a given clus-
tering structure, as shown in Figure 1. We denote these by Inc, Dec, and Keep
transitions. Each transition generates a new clustering structure given a current
structure and an incoming point. An Inc transition generates a structure with
an additional cluster, a Dec transition generates a structure with one less clus-
ter, while the structure generated by a Keep transition has the same number of
clusters as the input one. These three transitions incorporate the incoming point
in a structure and modify the CFVs that need to be updated. With a clustering
structure of k clusters and an incoming point p as input, the three transitions of
ClusTrel are detailed in the following.

Inc transition. An Inc transition produces a clustering structure of k+1 clusters
updated with p. It generates a new cluster on the point p. The CFVs of the k
already existing clusters are unchanged and the CFV of the newly created cluster
is simply (1, p, 0).
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Fig. 1. The trellis structure of ClusTrel. The states of the trellis are clustering struc-
tures with a number of clusters varying from nm to nM . The three kinds of arrows
represent the possible transitions between structures at two consecutive time stamps.

Keep transition. A Keep transition generates a clustering structure with k
clusters. It first finds the cluster in the structure whose centroid is the closest to
p, denoted C. The point p is then appended into C. Only the CFV of C needs to
be updated. If this CFV is equal to (n, c, s), it is updated into (n′, c′, s′), where

⎧⎪⎨
⎪⎩

n′ = n+ 1,

c′ = (p+ n× c)/n′,
s′ = s+ dist(p, c′)2 + n× dist(c, c′)2, bonjour!!!!!!!!

(2)

where dist represents the Euclidean distance.

Dec transition. A Dec transition generates a clustering structure of k− 1 clus-
ters. It first merges two clusters Ci and Cj of the current clustering structure.
We denote the CFVs of these clusters (ni, ci, si) and (nj , cj , sj) respectively. Ci

and Cj are merged into C′
i whose CFV (n′

i, c
′
i, s

′
i) is equal to⎧⎪⎨

⎪⎩
n′
i = ni + nj ,

c′i = (ni × ci + nj × cj)/n
′
i,

s′i = si + sj + ni × dist(ci, c
′
i)

2 + nj × dist(cj , c
′
i)

2.

(3)

It then incorporates p into the closest cluster of the structure and updates the
appropriate CFV according to Eqn(2). Performing a Dec transition on a clus-

tering structure C(t)
k is equivalent to selecting a pair of clusters (Ci, Cj), i �=

j, 1 ≤ i, j ≤ k to merge. We propose here three different ways to choose the two
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clusters to be merged in a Dec transition. The corresponding transitions are
denoted Dec1, Dec2 and Dec3 in the following.

Dec1 transition. The Dec1 transition selects the clusters (Ci, Cj) that are the

closest in C(t)
k .

Dec2 transition. For every cluster Ci in C(t)
k , the closest cluster to Ci is

searched for. This cluster is denoted Ci. Merging Ci and Ci leads to a new clus-
tering structure whose average SSQ sqi can be computed according to Eqn(3).
The pair of clusters to merge is chosen as (Cj , Cj) such that j = argmin1≤i≤k sqi.

Dec3 transition. For the Dec3 transition, the pair (Ci, Cj) is chosen as the one
that minimizes the SSQ index over all possible pairs of clusters in the given
clustering structure.

The processing time associated with the three Dec transitions described above
increases from Dec1 to Dec3. We will see in the experimental results section that
Dec2 and Dec3 transitions can lead to better clustering performance, but also
that the gain brought by Dec3 over Dec2 is small, so that Dec2 seems to be a
good trade-off between performance and complexity. In the following, ClusTrel-
1, ClusTrel-2 and ClusTrel-3 will refer to ClusTrel used respectively with the
Dec1, Dec2 and Dec3 transitions.

Initialization Step of ClusTrel. The initialization step of ClusTrel consists of

generating the first clustering structure of the trellis : C(nm)
nm which is composed

of nm clusters of 1 point, hence taking into account the first nm points of the
stream S. All the others structures in the same vertical slice of the trellis are
empty.

Updating Step of ClusTrel. Let us now assume that the t first points of
the stream are already processed and that the trellis is filled with the cluster-

ing structures C(t)
nm , C(t)

nm+1, . . . , C(t)
nM . Given the incoming point St+1, ClusTrel

updates these nM − nm + 1 structures. As can be seen in Figure 1, a structure
at time (t + 1) can be updated from at most three different structures at time
(t) (only two if the state is at the top or bottom of the trellis). ClusTrel algo-

rithm computes C(t+1)
k by choosing the best clustering structure (in terms of a

cluster evaluation index) that ends up in state C(t+1)
k from the previous slice of

the trellis. In other words,

∀k ∈ [nm, nM ], C(t)
k = argmin(Inc(C(t−1)

k−1 ), Dec(C(t−1)
k+1 ),Keep(C(t−1)

k )), (4)

where the arg min is taken in terms of the desired cluster evaluation index (MDB
or SSQ). This step performs a local minimization of the index of the clustering
structures in the trellis given the data stream. In the following, we use ClusTrel
together with the minimization of the SSQ index.

For memory purposes, only the latest structures are kept in memory. Updat-
ing the structures at time t+1 only needs the incoming point and the structures
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at time t. Hence, the maximum number of CFVs stored in a slice of the trellis
is equal to 1/2 × (nM + nm)(nM − nm + 1). However, some micro-clusters
can appear in different clustering structures. In order to reduce the amount of
memory needed, a list of unique micro-clusters is kept by the ClusTrel algorithm.

These micro-clusters are indexed, and the clustering structures C(t)
nm , . . . , C(t)

nM

are described by the indexes of the micro-clusters that compose each structure.

Selection of the Final Clustering Structure. Whenever a snapshot of the
current clustering is desired, ClusTrel can output the clustering structure in the
trellis with the most adapted number of clusters, w.r.t. to the MDB index. This
index is used for the selection of the best clustering structure as it gives a com-
promise between compact and well-separated clusters, which the SSQ index does
not. The MDB index of the structures in the trellis is calculated online without
the need for further information. The different values of the MDB index in the
trellis can also give soft information about the different clustering structures
that might be interesting to consider for the given stream.

3.3 Summary of the ClusTrel Features

ClusTrel is a single pass centroid-based clustering algorithm that does not require
any offline process to deliver the final clustering result. ClusTrel does not need
the number of clusters to search for as an input parameter as it searches for the
best clustering structure with a number of clusters in [nm, nM ]. In addition, it
is able to output the best clustering structure (in terms of one of two cluster
evaluation indices) at any time, and without the need for further processing. The
selection and output of the best clustering structure is inherent to ClusTrel.

As far as memory is concerned, at most 1/2 × (nM + nm)(nM − nm + 1)
micro-clusters are kept in memory after the processing of an incoming point.
For each of these micro-clusters, a CF vector is stored. An important point is
that the maximum number of clusters nM does not need to be much higher than
the order of magnitude of the real number of clusters in the data, as will be
shown in the simulation results section.

ClusTrel is able to detect changes in concept in the stream when the selected
number of clusters evolves in a certain period a time. The fact that ClusTrel can
generate clustering structures at every time instant make this detection faster.
For two-phase algorithms, the offline process has to be executed frequently in
order to quickly detect changes in concept in the data stream, which leads to
a larger complexity of the overall system. The ClusTrel algorithm can also deal
with up-to-date clustering by incorporating the concept of weighing down old
points with a decay function (as in [4–8]).

As far as processing time is concerned, ClusTrel is more demanding than
CluStream, DenStream or ClusTree, as it is a single pass algorithm that performs
the statistics gathering phase and the macro-clustering phase in parallel. This
algorithm may not be designed for very fast streams but is more adapted to
applications where the focus is put on the accuracy of clustering and on fast
detection of concept changes.
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4 Experimental Results

We present some experimental results to assess the performance of ClusTrel
with synthetic streams and streams from a real data set [15]. We focus here on
the comparison between the clustering performance of ClusTrel and the ones of
the two state of the art algorithms for centroid-based data stream clustering:
CluStream [2] and ClusTree [7].

4.1 Using Synthetic Streams

The synthetic data streams used in this section were generated using the MOA
software [11]. Three different streams with the following features are used:

1. 5 kernels in 2-dimensional space, 10,000 points
2. 8 kernels in 4-dimensional space, 12,000 points
3. 12 kernels in 6-dimensional space, 18,000 points.

The kernels that compose the streams are all Gaussian kernels. The radii of
these Gaussian kernels is a parameter of the MOA stream generator. We have
chosen values of the radii so that some of the kernels overlap in the space. The
results presented for ClusTree and CluStream in this section are obtained with
the MOA software that is freely available1. For all of these experiments, the
correct number of clusters in the streams is detected by ClusTrel by looking at
the MDB index of the clustering structures in the trellis. Hence, the SSQ indices
given in this section always refer to clustering structures with as many clusters
as the number of kernels in the stream.

Figure 2-(a) shows the clustering performance for the first stream in terms
of the average SSQ index of ClusTree for different number of levels, and of
CluStream for different numbers of micro-clusters kept at each time instant.
The performance of ClusTrel-1 is also depicted as the horizontal black curve and
is obtained for nM = 6. For this stream, the clustering performance obtained
with ClusTrel-1, ClusTrel-2 and ClusTrel-3 are the same. The best SSQ indices
reached by ClusTree and CluStream are given by the last value of their respective
curves. It can be seen that CluStream reaches the same performance as ClusTrel
when 85 clusters are kept at each instant. This result highlights the benefit of
the trellis structure of ClusTrel. The optimization of the clustering made at each
time instant allows a decrease in the number of clusters (21 micro-clusters) that
need to be kept in memory in order to obtain good performance.

Similar conclusions can be drawn when the second stream is used. The corre-
sponding results are shown in Figure 2-(b). The performance of ClusTrel is again
the same for the 3 variants of ClusTrel. The horizontal line represents the SSQ
obtained by ClusTrel for nM = 10. The best average SSQ obtained with Clus-
Tree is always higher than the one obtained with ClusTrel. CluStream with 75
micro-clusters reaches the same performance as ClusTrel with 55 micro-clusters
maximum.

1 http://moa.cs.waikato.ac.nz

http://moa.cs.waikato.ac.nz
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Fig. 2. Average SSQ index obtained by ClusTrel, ClusTree and CluStream for the first
two synthetic streams

Table 1. Average SSQ index obtained by ClusTree and CluStream for the third syn-
thetic stream. The performance of ClusTrel for nm = 15 is the same as the one of
CluStream with 120 micro-clusters.

ClusTree [7]

# Levels 4 5 6 7 12
# Micro-clusters 56 133 331 677 > 10,000
SSQ index 0.018456 0.016093 0.016068 0.016035 0.015817

CluStream [2]

# Micro-clusters 20 30 40 50 120
SSQ index 0.017162 0.016059 0.015349 0.015348 0.015347

The clustering performance of ClusTree and CluStream on the third stream
are given in Table 1. For this stream, the average SSQ index obtained by ClusTrel
with nM = 15 (120 micro-clusters maximum) is equal to 0.015347, the same value
obtained using CluStream with 120 micro-clusters.

These experiments made on synthetic streams highlight the benefit of the
trellis structure of ClusTrel w.r.t. the maximum number of clusters that need
to be kept in memory. Even when the height of the trellis is close to the real
number of classes in the stream, ClusTrel is able to generate a clustering with
a good SSQ index compared to the ones obtained by ClusTree and CluStream.
In the following, we assess the performance of ClusTrel with a stream coming
from a real data set and highlight the impact of ClusTrel-2 and ClusTrel-3 on
the clustering performance.

4.2 Using Real Data

We use the Forest Covertype data set available from [15] to assess the perfor-
mance of ClusTrel with real data streams. This data set is composed of ap-
proximately 500,000 10-dimensional points (only the numerical attributes are
considered). The points are labeled with an integer from 1 to 7 corresponding to
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7 different classes. Experimental results are given here in terms of the average
SSQ index together with the widely-used purity index, defined as follows. For
a set of classes C = {c1, . . . , cL} and a set of clusters Γ = {γ1, . . . , γK}, the
purity index of the clustering is equal to

purity(C, Γ ) =
1

N

∑
k

max
l

(
card(γk ∩ cl)

)
, (5)

where N is the total number of points. This index looks at how the different
classes are distributed amongst the clusters. The closer the purity is to 1, the
better the distribution of classes in the clusters.

We built a first stream composed of 100,000 points from the Forest Covertype
data set. The proportion of the classes in this stream is similar to those in the
whole data set.

The average SSQ and purity indices obtained by ClusTrel, ClusTree and CluS-
tream for different parameters are given in Figure 3-(a) and (b) respectively. The
performance obtained by the three variants of ClusTrel is given in this figure. The
SSQ and purity index are calculated on a clustering structure of 7 clusters output
by these algorithms (not at the micro-clustering level). The results on this figure
demonstrate that the use of ClusTrel-2 and ClusTrel-3 brings an improvement in
terms of clustering performance. The SSQ index obtained with ClusTrel-2 and
ClusTrel-3 is almost always less or equal than the one of ClusTrel-1. The best
performance is reached for this stream using ClusTrel-3 and nM = 11.

Fig. 3. Average SSQ index (a) and purity index (b) obtained by ClusTrel, ClusTree and
CluStream for different parameters on a stream obtained from the Forest CoverType
data set

Table 2. Average SSQ index obtained with the three variants of ClusTrel on a second
stream based on the Forest CoverType data set

nM 12 24 36

ClusTrel-1 8.640e + 5 8.720e + 5 8.860e + 5

ClusTrel-2 8.630e + 5 8.564e + 5 8.4884e + 5

ClusTrel-3 8.630e + 5 8.564e + 5 8.4882e + 5
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Fig 3-(b) shows that the purity index obtained by ClusTrel is higher than the
ones obtained with ClusTree and CluStream for the different set of parameters.

Regarding the difference between the performance obtained by ClusTrel-2 and
ClusTrel-3, it is important to note that they are equal or very close almost every
time on this experiment. They are exactly equal for nM = 8, 9, 10 and 12. The
difference between the two is very close for nM = 13 (it cannot actually be
seen on the figure, but there is a less than a 0.1% difference). The benefit of
ClusTrel-3 is only significant for nM = 11 here. ClusTrel-1 and ClusTrel-2 hence
seems to provide a good trade-off between processing complexity and clustering
performance. The results given in Table 2 also support this observation. These
average SSQ indices are obtained on another stream of 75,000 points from the
Forest CoverType data set. It can be seen that the increase of the nM parameter
does not improve the clustering performance of ClusTrel-1 while it does for
ClusTrel-2 and ClusTrel-3. The gain obtained with ClusTrel-3 over ClusTrel-2 is
again small.

5 Conclusion

We propose in this paper ClusTrel, a single pass algorithm designed for the clus-
tering of data streams. Clustering structures with different numbers of clusters
and their statistics are maintained while processing the stream. These struc-
tures are chosen so that they minimize a cluster evaluation index at every step.
ClusTrel is able to deliver a clustering of the stream as soon as a new point
is processed. Thanks to the structure of ClusTrel, changes in concept in the
streams can be detected quickly without the need for further processing. The
performance of ClusTrel has been compared to two state of the art algorithms
for clustering data streams. Simulation results show that ClusTrel is competi-
tive with these algorithms in terms of clustering performance while enabling a
reduction in the number of clusters that need to be stored in memory.
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Abstract. Handling recurring concepts has become of interest as a challenging 
problem in the field of data stream classification in recent years.  One main fea-
ture of data streams is that they appear in nonstationary environments. This 
means that the concept which the data are drawn from, changes over the time. If 
after a long enough time, the concept reverts to one of the previous concepts, it 
is said that recurring concepts has occurred. One solution to this challenge is to 
maintain a pool of classifiers, each representing a concept in the stream. This 
paper follows this approach and holds an ensemble of classifiers for each con-
cept. As for each received batch of data, a new classifier is created; there will be 
a huge amount of classifiers which could not be maintained in the pool. To han-
dle the memory limitations, a maximum number of concepts and classifiers are 
assumed. So the necessity of managing the concepts and classifiers is obvious. 
This paper presents a novel algorithm to manage the pool. Some pool manage-
ment operations including merging and splitting the concepts are introduced. 
Experimental results show the performance dominance of using our method to 
the most promising stream classification algorithms. 

Keywords: Recurring concepts, pool management, ensemble learning, data 
stream, concept drift.  

1 Introduction  

Classical classification algorithms assume that all training data are available at first. 
The classifier learns from the training data and after training, it is used for the test data. 
However in many real problems, we could not assume that all data are in hand. They 
arrive during the time; for example in the user interest problem, the interests of a user 
are collected by time and they also could change during the time. This form of problem 
violates the use of classical classification algorithms and new solutions are needed. 
Therefore, the field of data streams has been presented. Data stream is an unlimited 
stream of data which arrives in time and have some properties. The main property is 
the occurrence of concept drift, which means that the distribution of data changes over 
the time. Concept drift is divided into three main categories: abrupt, gradual and recur-
ring [1]. Abrupt drift occurs when the distribution of data changes suddenly at a time 
slice, so that before that time the data is extracted from a distribution and after that,  
it is drawn from another distribution. Though in gradual drift, this change will not  
take place at a specific time, but in a period of time it happens. The third drift, called 
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recurring concepts, occurs when an old concept which was learnt by the classifier some 
long enough time age, reappears. As the data evolves in time and gradual or abrupt 
drifts may occur, the classifier may forget the concepts belonging to a long time age. 
This makes recurring concepts to be a very challenging problem in the data stream 
field.  

To support recurring concepts, this paper uses a pool of concepts. Each concept is 
modeled by an ensemble learner with a weighted structure, and it is represented by a 
modified version of Conceptual Vector [2, 3]. A new classifier is built on every batch 
of data and if its representing concept is detected to present one of the available con-
cepts of the pool, it will be added to the corresponding ensemble; otherwise it will be 
added as a new concept in the pool. As data streams have huge amount of data and a 
classifier is built on every batch, the number of classifiers in an ensemble learner and 
the number of concepts in the pool should be limited. This leads us to present an effec-
tive management of concepts and classifiers in the pool. The management is done by 
two operations: merge and split. Two ensembles can be merged if they describe the 
same concept and an ensemble which contains classifiers of more than one concept can 
be split into two disjoint concepts. The experimental evaluations show the effective-
ness of pool management operations especially when the data stream is huge. 

The rest of paper is organized as follows: section 2 briefly reviews previous relevant 
researches. Section 3 explains the proposed algorithm accurately. Section 4 discusses 
the experimental evaluations and section 5 concludes the paper. 

2 Related Works 

Data stream classification has received much attention in recent years. The classifica-
tion algorithms could be categorized into: single or ensemble. Examples of single clas-
sification algorithms for data streams are CVFDT [4] and SVM [5] and there are lots of 
ensemble approaches such as SEA [6], online bagging and boosting [7], DWM [8] and 
learn++.NSE [9]. The ensemble approaches differ in the way of forgetting classifiers 
and therefore data. However, none of these algorithms consider the problem of recur-
ring concepts.  

Recurring concepts algorithms have been of interest in recent years [2, 3,10-12]. 
These approaches try to extract the concepts from data and maintain all the concepts in 
a pool of concepts and classifiers. The most relevant approaches to the present paper 
are CCP framework [3] and PASC [2] which use an ensemble of classifiers, each of 
them representing a concept of the environment. The two algorithms are the same in 
extracting concepts from the batch of data, however, differ in the batch assignment and 
classification methods. To extract a concept from a batch Bt = (xt,1,xt,2,…,xt,k) of in-
stances with n features and labels Lt=(lt,1,lt,2,…,lt,k), a Conceptual Vector is defined as 
Z=(z1,…,zn) where zi is calculated from: : 1. . , 1. . , ∈, , , 1. .  (1)

where fi is the ith feature of the instances, cj is a class label between m possible values 
and v is a nominal value for fi in the set Vi. ,  and ,  are the mean and standard  
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deviation of the ith feature of the instances in the jth class. To compare the conceptual 
vectors and cluster them to detect recurring concepts, Euclidean distance measure is 
used:  , { , , / , (2)

and distance function is calculated as:  

, , (3)

where  is the kth element of . If the distance between the conceptual vector 
on the recent batch and a concept in the pool is less than a threshold, it means that the 
batch represents that concept and so the corresponding classifier in the pool will be 
updated by the batch instances. Otherwise a new classifier and concept is added to the 
pool. PASC introduces new distance measures between a labeled batch and a concept 
with thresholds which can be set more easily. Both algorithms have the shortcoming of 
not supporting the pool management operations. As a result, their performance will 
decrease significantly because of wrongly setting the threshold parameters or while 
facing large data sets. 

3 Proposed Learning Algorithm 

Our goal is to propose an ensemble method called Pool Management base Recurring 
Concepts Detection (PMRCD) to classify concept drifting data streams in the presence 
of recurring concepts. This method exploits the ideas presented in CCP framework 
method [3] and PASC method [2]. These methods maintain a pool of classifiers and 
update them according to consecutively received batches of data. Our method enriches 
these methods by providing a strong pool management and automatic parameter tuning 
strategies operating on the classifiers of the pool. In addition, some other changes have 
been made to achieve more accurate results. 

In the proposed method (Procedure 1), we maintain a pool of ensembles. Each en-
semble contains a number of classifiers and describes a concept of the nonstationary 
environment. Using an ensemble of classifiers for each concept enables us to manage 
the pool more effectively. The maximum number of concepts of the environment is 
assumed to be bounded by a parameter, maxE. In addition, the maximum number of 
classifiers of an ensemble is determined by a parameter, maxC. After receiving a batch 
of unlabeled data, Bt = (xt,1,xt,2,…,xt,k), the ensemble pool is used to classify instances 
(line 3). A pivot classifier is maintained for each ensemble and the classification pro-
cedure uses the pivots of the ensembles in a weighted scheme to classify the instances. 
Assume the true labels of instances in a batch are presented as Lt=(lt,1,lt,2,…,lt,k). The 
labeled batch is given to a learner to construct a new classifier ht (line 4). In line 5, a 
conceptual vector is made for Bt. This vector which was first introduced in [3], is a 
summarized vector for Bt and determines the concept which describes Bt. This vector is 
assigned to ht as well. A similar vector is also assigned to an ensemble. The summa-
rized vector of an ensemble is the average of the vectors of its constituting classifiers. 
These vectors are used while ensembles are being updated by a new classifier. Using 
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these vectors, each ensemble can be interpreted as a cluster of points associated to its 
classifiers and the pool is then a combination of clusters. Line 6 computes the nearest 
concept of the pool to Bt (ebest) and the distance between them (d). A modified version 
of ConDis [3] named Magnitude based ConDis (MConDis) is presented to determine 
the distance between two concepts (a concept in the ensemble and the concept describ-
ing Bt). If d is less than a parameter, , ht should be added to ebest. Adding a new clas-
sifier to an ensemble is dependent on whether the pool is full or not. If d is more than  
and the pool is not full, a new ensemble with only one member (ht) will be added to the 
pool (line 10). However, if the ensemble pool is full, no new ensemble can be added. 
In this case, it is checked by a statistical hypothesis test, whether two ensembles of the 
pool should be merged or not (line 11). The test checks if the concepts describing Bt 

and ebest are similar with high probability. If the test becomes successful, the two near-
est ensembles of the pool will be merged (line 12), the parameter θ will be increased 
according to the distance between the two nearest neighbors and a new ensemble will 
be added to the pool (line 13). If the test is not successful, ht will be added to ebest (line 
15). Line 16 tests if the classifiers of ebest can be grouped into two unlike clusters. In 
this case, a split operation will be done on ebest and the parameter θ is decreased ac-
cording to the distance between the two clusters of ebest. 

A combining procedure is needed in the merging and splitting operations while up-
dating the pivot classifier of an ensemble and adding a classifier to a full ensemble. We 
present a simple procedure to combine two classifiers into one. Our algorithm uses 
naïve Bayes classifier, although other classifiers which could be combined in a similar 
way can be used. In this procedure, it is assumed that the instances which have made 
the classifiers may not be available. The other important part of algorithm is to make 
the pivot classifier for an ensemble and to use the pivots for classifying an instance. 
Then, we should discuss how to update the ensemble pool after receiving the correct 
labels of the current batch and to make the conceptual vector (CV) for a given batch of 
data and also how to measure the distance between two conceptual vectors. These will 
be discussed in the following subsections. In addition, the merging and splitting opera-
tions and automatic parameter tuning in these operations are discussed. 

3.1 Combining Two Classifiers 

Ensemble algorithms have already been discussed in the literature. But to best of our 
knowledge, all these algorithms classify instances by evaluating the results of one or 
some of the base classifiers. As the number of classifiers in an ensemble is assumed to 
be limited, the merging operation may not maintain all the classifiers of the merging 
clusters. Meanwhile, it is needed to retain the information of both clusters in a single 
cluster. In addition, a pivot classifier of the same type of the base classifiers is main-
tained for each ensemble. This classifier needs to be updated in the merging operation. 
So we present a procedure which combines two classifiers into one classifier of the 
same type. This procedure acts only on naïve Bayes classifiers and should support the 
case when the instances which have made the classifiers are not available. A similar 
situation occurs in the splitting operation which will be discussed later. 

In the combining algorithm (Procedure 2), two classifiers C1 and C2 are combined 
and the resulted classifier is stored in Cout. If instances which have made one of the 
classifiers are available, they will be given as input to the other classifier to be updated 
(lines 1-4). Otherwise, the distributions of C1 are updated according to the distributions 
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of C2 and then C1 will become a classifier which has the information of both C1 and C2 

(lines 6-20). In line 9, the class distribution is updated for each of the class attributes. 
In a naïve Bayes classifier for each pair of class attribute, c, and instance attributes, ai, 
a distribution is maintained. According to the type of ai, these distributions are up-
dated. If ai is nominal, for each of the possible values, vi, in the domain of ai, the main-
tained distribution will be updated according the number of instances in class c which 
their ai attribute is vi. If ai is numeric, the maintained distribution of the pair ai and c 
will be updated according to the information (e.g. mean and standard deviation) stored 
in C2 and its number of training instances. 

 

Input: Bt: Batches of the stream.  

Lt,i: Labels of the instances of Bt  

maxE: the max number of ensembles in the pool. 

maxC: the max number of ensemble classifiers  

Output: Predicted labels of instances Bt,i. 

 

for t = 1 to infinity 

  if t ≠ 1      

     PLt ← Pool.classify(Bt); 

     h t ← make_classifier(Bt , Lt); 

     CVt ← make_CV(Bt , Lt); 

    , ← ,  , ; 

  if  

      add_to_ensemble(ebest , ht); 

  else if  

      Pool ← Pool ∪ {new ensemble(ht)};   else if  size(ebest) > 1 and not(similar(ebest, ht)) 

     merge_NN(Pool); 

     Pool ← Pool ∪ {new ensemble(ht)}; 
  else 

     add_to_ensemble(ebest , ht); 

  if size(ebest)>maxC/2 and can_split(ebest) 

     split (ebest , Pool); 
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Input: C1, C2: two naïve Bayes classifiers. 

Output: Cout: Combination of C1 and C2. 

if data_available(C1) 

  update_classifier(C2, dataof(C1)); 

else if data_available(C2) 

  update_classifier(C1, dataof(C2)); 

else 

  n1 ← C1.numInstances(); 

  n2 ← C2.numInstances(); 

  for each c ∈ classes 

    C1.classDistr().addvalue(c, n2);  

    for each ai ∈ attributes(C2) 

      distr1 ← C1.distribution(ai, c); 

      distr2 ← C2.distribution(ai, c); 

      if isNominal(ai)  

        count ← distr2.numInstances(vj); 

        for each vj ∈ values(ai) 

         distr1.addvalue(vj, count); 

       else              

         distr1.addvalue(distr2.info(), n2); 

C1.setNumInstances(n1+n2); 

Cout ← C1;  
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Procedure 1. PMRCD method Procedure 2. Combining two naïve Bayes 
classifiers into one classifier

3.2 Classification of Instances 

The first task after receiving an unlabeled batch is to classify its instances. A pivot 
classifier is maintained for each ensemble in the pool. These classifiers will be updated 
during the execution of the procedure and will be used in a weighted scheme to classify 
batch of instances. The more relevant the pivot classifiers are to the concept of the 
current batch, the greater weights they are assigned. 

PASC weighting scheme [2] is used here. In PASC, one classifier is maintained for 
each concept. A classifier in PASC is equivalent to an ensemble in our method (both  
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describe a concept). PASC weights the votes of classifiers of different concepts and 
update them during classification of the batch and after the classification of a specified 
number of instances. The weights of the classifiers which do not classify each of the 
selected instances correctly will be multiplied by a factor β in the interval (0,1). The 
updating rule of ensemble weights for the selected subsample instance, Bt,j, will be as: ← , , (4) 

where and are the weights of the jth ensemble after and before the update. 
M(j,i) is 0 if the jth ensemble correctly classifies Bt,i, and 1 otherwise. 

In [2], it is discussed that the accuracy of the algorithm using the majority vote of 
classifiers with the aforementioned weights will converge to the accuracy of the best 
classifier which is the ensemble with the least error on the last batch in our method, if 
the size of the batch is large enough. 

The weights of ensembles are set in the beginning of the process of a batch so that 
the ensembles with higher accuracies on the previous batch of data will have higher 
weights. The weights are set as: ← 1 , (5) 

where A(j) is the accuracy of the jth ensemble on the selected subsample of the last 
batch. Finally, for the sake of efficiency, the classifier with the highest weight is used 
for the classification and the instances which are not used for the updating task are 
classified only by one classifier. 

3.3 Updating the Ensemble Pool 

After receiving true labels, the pool will be updated. First, a new classifier, ht, is made. 
Then, a summarized vector for the current batch is constructed (line 5 of Procedure 1). 
Finally, ht will be added to the pool and the pool will be updated accordingly (lines 6-
17). It is discussed in the next subsections how to construct the summarized vector and 
measure the distance between two vectors and also how to update the pool. 

Summarized Vector of a Batch. The summarized vector of a batch is used to deter-
mine the concept that it has been drawn from. So batches of data with similar concepts 
will have summarized vectors similar to each other. Also a distance measure should be 
defined between two summarized vectors. Conceptual vector and ConDis, defined in 
(2), were first developed to satisfy these properties. A modified version of the distance 
(Magnitude based Conceptual vector) between conceptual vectors is used here. The 
Magnitude based Conceptual Distance (MConDis) between two batches A and B mod-
ifies ,  in (3). If fi is nominal, ,  will be the differ-
ence of these values. But if fi is numeric, this distance will be defined as: 

, 0, 0 , (6)

In ConDis there is no difference between nominal and numeric attributes, but it may 
cause some problems when the range of these attributes is very large or small and so a 
modified definition is presented here. 
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Adding the New Classifier to an Ensemble. The nearest ensemble to the current 
batch and its distance is computed as ebest and d, respectively. MConDis between the 
CV of the current batch and the mean of the ensembles is used as a measure of distance 
comparison. If d is less than , ht will be added to ebest (line 8 of Procedure 1). Proce-
dure 3 shows how to add a new classifier to an ensemble. If the number of ensemble 
classifiers is less than maxC, ht will be added to the ensemble. The mean of the ensem-
ble will be updated as well. Otherwise, the nearest neighbor to ht (i.e. hN) will be found 
(line 4). hN will be combined with ht and the new classifier will be replaced in the en-
semble. Note that the CV of the combined classifier will be the weighted average of 
the combining classifiers with respect to the number of instances used to train them. 
The mean and pivot classifier of the ensemble will be updated in this case, too. 

Adding a New Ensemble to the Pool. If the distance (d) between the new classifier 
and the nearest ensemble (ebest) is more than , it could not be added to ebest. If the pool 
is not full, a new ensemble with the new classifier as its only member will be added to 
the pool (line 10 of procedure 1). 

 

Input:    e: an ensemble of the pool 
              ht: a new classifier 
Output:  e: updated ensemble 

 

if size(e) < maxC 
   e ← e ∪ {h} 
else 
    ←   ∈ , ; 
   h ← combine(hN, ht); 
    ←  wavg , ; 

   e ← e.replace(hN, h);   
   pe ← combine(pe, h);   

1 
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4 
5 
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8 

Procedure 3. Adding a classifier to an ensemble 

Merging Operation. If the distance d is more than  and the ensemble is full, the two 
conditions checked in lines 7 and 9 (Procedure 1) will not be satisfied. So the concept 
describing the new classifier is not similar enough to any other concepts of the pool and 
the merging condition is checked in line 11. As it is assumed that the number of envi-
ronment concepts is at most maxE and the new concept is different from all existing 
ones, it may be the case that two ensembles of the pool describe a single concept. If so, 
these two concepts should be merged with each other and a new ensemble should be 
added to the pool with the new classifier as its only member. In this case, a hypothesis 
test can be used to decide whether the concept of the new classifier and ebest are different 
from each other with high probability or not. If the test becomes successful, the new 
classifier should not be added to ebest with high confidence. So two of the concepts 
should be merged and a new ensemble with this classifier as its only member should be 
added to the pool (lines 12-13 of Procedure 1).This can be rewritten in Procedure 4 
with more details. First it is checked whether the number of the classifiers of ebest is 
more than 1 (line 1). The hypothesis test is done as follows: An interval i1 with high 
confidence M% is found for s1, the same prediction probability of ht and ebest on Bt. In 
addition, an interval i2 with high confidence N% is found for s2, the same prediction 
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probability of the concepts describing ebest on Bt. For this reason, ebest is split into two 
parts of almost equal size and the same prediction probability of these two parts is com-
puted. If the intervals i1 and i2 have no intersection with each other, then the two nearest 
ensembles of the pool will be merged together. s1 can be estimated as a normal variable 
with mean equal to ̂  and standard deviation 1. Therefore, s1 will be in the interval:  ̂ 1, ̂ 1 , (7) 

with probability M%. The same discussion holds for the variable i2. If the intervals i1 
and i2 have no intersection, the two nearest ensembles of the pool are merged together 
(lines 10-13). To merge the two ensembles, em1 and em2, em2 is removed from the pool 
and all of its classifiers are added to em1. Finally,  is increased to the distance between 
the two merged ensembles. Because these two ensembles describe the same concept 
and so their distance should be less than . 

Let us assume that if the concept of a hypothesis is the same as ebest, the same predic-
tion probability of this concept and ebest will fall into the interval i2. Then we can state:  

Lemma 1. The probability that the merging operation (Procedure 4) is done incorrectly 
is at most (200-M-N)%. 
Proof. It is assumed that the number of environment concepts is at most maxE and the 
pool is full. If the nearest concept to ht differs from it, a new concept must be added for 
ht in the pool. Therefore, there are two ensembles describing one concept and a merg-
ing operation is needed. Hence, the probability that the merging operation is incorrect 
is at most equal to the probability that s1 or s2 falls outside the intervals i1 and i2. This 
probability is the union of the two probabilities: the probability that s1 falls outside i1 

and the probability that s2 falls outside i2. Therefore, the probability that the merging 
action is incorrect is at most: 100 % 100 % 200 %, (8) 

This probability is very low, because N and M almost equal to 100.               ▀ 

Splitting Operation. After adding the new classifier ht to ebest, it is checked whether 
ebest can be split into two groups or not (lines 16-17 of Procedure 1). The splitting pro-
cedure can be rewritten as Procedure 5. To split an ensemble, it should have at least 
some number of classifiers (line 1 of Procedure 5). Then, two parts of ebest which are 
almost far from each other are constructed (lines 2-4). The farthest classifier to the first 
classifier of the ensemble is found and named  (line 2) and the farthest classifier 
to  is found as  (line 3). Then ebest is split into two groups of classifiers e1 
and e2 based on their distances to  and  (lines 4-5). The same prediction 
probability of e1 and e2 on Bt, named as s3, can be estimated by a normal variable with 
mean  ̂  and . It can be stated that s3 is less than: ← ̂ , (9) 

with probability L%. If MI (Maximum Interval) is less than a parameter Ms, the split-
ting operation is done as follows: First, e2 is removed from ebest and if the pool is not 
full, e2 is added to the pool as a new ensemble. Else, all the classifiers in e2 are added 
to the nearest ensemble of the pool. Finally  is decreased to the distance between two 
parts of ebest. Because these two parts cannot be in an ensemble and so their distance 
should be more than . 
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4 Experimental Results 

In this section, we first introduce the data sets we used in the experiments. Second, we 
compare our method with the CCP framework, one of the best methods in the domain 
of data streams and recurring concepts. Finally, the effect of merging and splitting 
operations is discussed. 

4.1 Data Sets 

In order to evaluate the proposed method we used two data sets. The first one is the 
Sensor data set which is a very large real data set. The second is the Moving Hyper 
Planes data set which we created using the MOA stream generator [13]. 

Sensor Data Set. This data set contains the ordinal information collected by 54 sensors 
deployed in Intel Berkeley Research laboratory in a period of two months. The 
attributes of the data set contain the temperature, humidity, light and voltage measured 
by the sensors and also the time the measurement has been done. The class label is the 
sensor ID. This data set contains 54 classes, 5 attributes and 2,219,803 instances. The 
concept drift in this data set is because of the changes that occur in the attributes such 
as lightening a bulb or the temperature changes during a day[14]. 

Moving Hyper Plane Data Set. A Hyper Plane determines a decision surface charac-
terized by . 0, where  determines the orientation of the surface and 

 is an instance of the space. Changing the orientation of the hyper plane gradually or 
suddenly will simulate gradual or sudden concept drifts. The data set contains 800,000 
instances and 10 numeric attributes. There is a sudden concept drift after each 200,000 
instances. The concepts reappear after the first half of the instances. 

 

Procedure 4. Merging operation 

if  size(ebest) > 1 

 ̂ ← same_prob , , ; 

 ←  ̂ 1 ̂ / ; 
 ← ̂ , ̂ ; 

 (e1, e2)= split( ); 

 ̂ ← same_prob , , ; 

 ←  ̂ 1 ̂ / ; 
 ← ̂ , ̂ ; 

 if (not has_intersect(I1, I2)) 

   , ← , , ; 

  Pool←  Pool \ {em2}; 

  for each h ∈ em2 

    add_to_ensemble (em1, h);  

  Pool ← Pool ∪ {new ensemble(ht)}; 
   ←  max , MConDis , ; 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

Procedure 5. Splitting operation 

if  size(ebest) > macC/2 
 ← , ; 

 ← , ; 

  1 ← , , ; 

  e2 ← ebest\e1; 

  ̂ ← same_prob , , ; 

  ←  ̂ 1 ̂ / ; 

  ← ̂ ; 

  if MI < Ms                     /*split test*/ 

   ebest ← ebest \ e2; 

   if size(Pool) < maxE          

     Pool ← Pool∪e2; 

   else 

    for each h ∈ e2    

     ← , ; 

     add_to_ensemble(eN, h); 
     ← min , MConDis , ; 
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4.2 Parameter Tuning 

There are several parameters used in our method that need to be set. But setting them is 
straight forward. We will see in the next subsections that the primary value of  is not 
important. In fact, this parameter will be updated to the right value during the execu-
tion of the algorithm. The parameter maxE is set to 10 in both methods as we estimate 
that 10 concepts are sufficient to describe the data sets. The parameter maxC is set to 5 
for the Sensor data set and 3 for the Moving Hyper Plane data set. Another parameter 
is the size of the batch which is set to 50 for both data sets. M, N and L which are used 
in the merging and splitting operations and need to be near 100, are set to 95, 95 and 
97.5 respectively. Another parameter which is needed in the splitting operation is the 
MI parameter which is set to 0.5 for the Sensor data set and 0.7 for the Moving Hyper 
Plane data set. Finally, the  parameter is set to 0.1 for both data sets. 

4.3 Evaluating the PMRCD Method 

In this section, the accuracy of the proposed method is compared with the CCP frame-
work method. Parts (a) and (b) of Figure 1 show the accuracies of these methods on 
the Sensor and Moving Hyper Planes data sets, respectively. The batch size and the 
concept number parameters of the CCP framework method are set the same as our 
method. There is only a parameter, , which needs to be set for CCP method and is set 
to 2 for the Sensor data set and 0.7 for the Moving Hyper Plane data set. The value of 
the parameter  of our method is set to 15 for this experiment. 

The first part of Figure 1 shows the results for the Sensor data set. It can be seen 
that the accuracy of our method is about 70 percent more than the CCP framework 
method. In fact, the accuracy of the CCP framework method and the similar ensemble 
methods without pool management operations decrease after processing the first 
batches of instances. The reason is that the batch assignment methods to an existing 
concept will not work well and the pool management operations are needed. The same 
results can be seen for the second data set, except that the accuracy of the CCP frame-
work method is not far below ours. This is because of the small size of the Moving 
Hyper Plane data set in comparison with the Sensor data set. Therefore, the decrease in 
the performance is less than the first data set. 

4.4 Evaluating the Pool Management Operations 

Parts (a) and (b) of Figure 2 show the accuracies of the proposed method for different 
values of the parameter  and for the different pool management operations on the two 
data sets. To evaluate the pool management operations, all possible cases are ex-
amined. The first case is the one which was presented in PMRCD, i.e. using the both 
merging and splitting operations. The second case uses only the merging operation. 
The third case uses only the splitting operation. The last case uses none of the merging 
and splitting operations. When only one of the splitting or merging operations is used, 
we do not change the parameter θ. Because the splitting operation will always decrease 
the parameter and the merging operation will always increase it. So the value will be-
come so low or high and this will lead to a low performance. Therefore, it is preferable 
not to change the parameter in these cases. 
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The first part of Figure 2 shows the results for the Sensor data set. The primary val-
ue of the parameter  is changed from 0.1 to 18.1 with step size 3 which covers a wide 
range of values for this data set. Our experiments show that the regular value of 
MConDis between two concepts is in the range [14, 16] and no distance is more than 
18 or less than 10. So the range [0.1, 18.1] covers all reasonable values for . It can be 
seen that using the both operations will lead to the best performance regardless of the 
primary value of . In addition, the results are almost the same for all values of . It is 
because of the quick adaptation of the parameter to the right value during the execution 
of the algorithm. Using only one of the operations will lead to a performance less than 
the first case. In addition, the merging operation is more important for lower primary 
values of  and the splitting operation is more important for higher values of this pa-
rameter. Also, it can be seen that when the primary value is very high and no split is 
done, the performance will be very low. It is because of the fact that in this case, only 
one ensemble will be added to the pool and so only one concept will be detected. Final-
ly, using none of the pool management operations will lead to a very low accuracy. 
This means that no primary value of θ can guaranty the right assignment of batches to 
the concepts during the execution of the algorithm. 

The second part of Figure 2 shows the results for the Moving Hyper Plane data set. 
 is changed from 0.1 to 1.9 with step size 0.2 which covers a proper range for this 

data set. Similar arguments hold for this case. But for some primary values of , the 
results of the method with no pool management operation are better than using only 
one of them. This is because of the small size of this data set. In fact, the effectiveness 
of the pool management operations will be clearer for larger data sets. But still it can 
be seen that using the pool management operations will be the best choice in this case, 
too. In addition, the merging operation is necessary for lower primary values of  and 
the splitting operation is necessary for upper values.  

 

 
          (a) Sensor data set                      (b) HyperPlane data set 

 

Fig. 1. Comparison of PMRCD method with CCP framework 
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        (a) Sensor data set                          (b) HyperPlane data set 

Fig. 2. Comparison of  paramater 

5 Conclusion and Future Works 

We proposed an ensemble method to classify streaming data in the presence of concept 
drift and recurring concepts. This method maintains a pool of ensembles of classifiers. 
Each ensemble represents a concept. After receiving a batch of instances, it is classi-
fied using the ensemble pool. Then the true labels arrive and a new classifier is made 
for the labeled batch of instances. This classifier is added to an existing ensemble of 
the pool or a new ensemble. The ensembles of the pool can be merged together or split 
in case of wrong assignment of the concepts to them. Our method improves the accu-
racy of similar methods significantly, especially in case of large data sets. 

We believe that future further study on this method and similar methods is required. 
The pool of classifiers can be managed even more effectively noting the fact that each 
ensemble can be interpreted as a cluster having the classifiers as its points. So, stream 
clustering algorithms could be used. More complicated structures, such as hierarchical 
concepts could be handled using hierarchical and cascade classifiers. In addition, more 
experiments could also be done on wider range of real world data sets. 
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Abstract. Since the introduction of FP-growth there has been exten-
sive research into extending its usage to data streams or incremental
mining. This task is particularly challenging in the data stream environ-
ment because of the unbounded nature of a data stream and the need for
avoiding multiple scans of the data. In this paper, we propose an algo-
rithm, Extrapolation Prefix Tree that extracts frequent itemsets using a
landmark windowing scheme. The algorithm uses a prefix tree structure
to store arriving transactions, but unlike previous approaches estimates
the structure of the tree in the next block of data based on the arrival
pattern of items appearing in transactions that arrive in the current
block. Our experimentation shows that Extrapolation-Tree significantly
outperforms the CP-Tree, both in terms of the number of updates and
the execution time required to keep the tree current while maintaining
a compact tree.

Keywords: Landmark Model, Data Stream, Prefix Tree.

1 Introduction

Most traditional frequent pattern mining only cope with static datasets, which
provide snapshots in time of the patterns found. With the growing importance
of data streams, mining frequent patterns from data streams has become an im-
portant and challenging problem for a range of applications including real-time
surveillance systems, communication networks, Internet traffic, online transac-
tions in the financial market or retail industry, electric power grids, and remote
sensors.

Unlike traditional data sets, a data stream consists of continuous, unbounded,
data elements usually arriving with high speed and a data distribution that often
changes with time. Due to the nature of data streams, there are some inherent
challenges in mining data streams, particularly in high speed environments. Due
to the sheer volume of data arriving each data element of a stream can be exam-
ined at most once. Moreover, the memory usage in the process of mining data
streams has to be bounded by the amount of primary storage available despite
the fact that new data elements are continuously generated from the source. A
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mine anytime approach should be available, in order to be able to capture the
most recent patterns. Considering the characteristics above, an efficient data
stream mining technique should require only one scan of the streaming data and
should maintain as compact a data structure as possible.

In terms of frequent pattern mining, the key issue is the maintenance of a
compact data structure that contains an up to date version of frequent patterns.
Despite extensive research in the area of frequent pattern mining, a number of
issues remain unresolved. Among them are: (1) how to detect when the concept
has drifted to an extent that requires reorganization of the structure used to
store patterns; (2) an accurate but inexpensive estimation mechanism that will
predict the data structure required in the next block based on changes observed
in the stream in the current block of transactions. In this paper we propose a
scheme for determining when updates are required, enabling us to defer updates
at blocks when stability is observed in the stream, thus avoiding unnecessary
and expensive updates. In addition, we implement an accurate but efficient lin-
ear estimation mechanism that is used whenever our concept drift detection
mechanism signals that changes to the tree structure are required. The estima-
tion scheme anticipates changes to the structure of the tree in advance, rather
than simply assuming that the state of the stream in the next block is the same
as the state in the current block, as in the CP-Tree approach [8]. An accurate as-
sessment of the next state has a flow-on effect on subsequent states, minimizing
the changes required to the tree, improving the overall tree maintenance time.

The remainder of the paper is organized as follows. Related work is discussed
in Section 2. Section 3 contains the preliminary details. In Section 4, the Ex-
trapolation Prefix Tree algorithm is presented. Our experimentation with Ex-
trapolation Tree and comparison with CP-Tree is presented in Section 5. Finally
we summarize our research contributions in Section 6 and outline directions for
future work.

2 Related Work

In a landmark window model, mining is performed on the transactions between
a specific point in time called the landmark and the current time. The initial
attempt to mine frequent patterns over the entire history of streaming data
was proposed by Manku and Motwani [7]. They proposed two single-pass al-
gorithms, Sticky-Sampling and Lossy Counting, both of which are based on
the anti-monotone property; these algorithms provide approximate results with
an error bound. Li et al. [5,6] proposed DSM-FI and DSM-MFI to mine fre-
quent patterns using a landmark window. Each transaction is converted into k
small transactions and inserted into an extended prefix-tree-based summary data
structure called the item-suffix frequent itemset forest. Yu et al. [9] proposed an
efficient algorithm to mine false negative or false positive frequent itemsets from
high speed transactional data streams using the Chernoff bound. This approach
uses a running error parameter to prune itemsets and a reliability parameter to
control memory usage.
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Most of the methods discussed above allow us to find approximate frequent
patterns within a guaranteed error bound or require an additional pruning
threshold. Up until now only a few proposed approaches[3,1,4,8] were designed
to find the exact set of recent frequent patterns from a data stream using a land-
mark window model. We will discuss two existing FP-tree based algorithms that
mine exact sets of patterns, namely the (i) CanTree algorithm, and (ii) CP-Tree.

Leung et al. [4] proposed the Canonical-Ordered Tree for stream mining. This
algorithm is designed so that it only requires one dataset scan. In CanTree, items
are arranged in some canonical order, which can be determined by
the user prior to the mining process or at runtime during the mining process.
The items are arranged according to a prefix tree structure, thus unaffected by
the item frequency. CanTree generates compact trees if and only if the majority
of the transactions contain a common pattern-base in canonical order. Other-
wise, it may generate skewed trees with too many branches and hence with too
many nodes, thus impacting on both memory usage and tree construction time.

Tanbeer et al. [8] proposed a tree structure, called CP-Tree that constructs
a compact prefix structure. CP-Tree has a frequency descending structure that
captures part by part data from the dataset and dynamically restructures itself.
The construction operation consists of two phases: insertion phase and restruc-
turing phase. In the insertion phase transactions are inserted into the CP-Tree
according to the current sorted order of the item list while updating the frequency
of items contained within an item list. The restructuring phase rearranges the
list according to frequency-descending order of items and restructures the tree
nodes according to the new ordered item list.

One major disadvantage of these techniques is that they use data from pre-
vious blocks to build the prefix tree for the next block. These techniques work
under the assumption that drift within the stream remains fairly constant, an as-
sumption which is not always true in practice. The relaxation of this assumption
requires both a drift detection mechanism as well as an estimation mechanism
which our proposed approach implements.

3 Preliminaries

For a landmark model, a transaction data stream S = {W1,W2, . . . ,Wn} is
an infinite sequence of basic blocks, where n is the block identifier of the lat-
est block, W . Online mining of frequent itemsets utilizing a landmark window
model for data streams involves extracting the set of all frequent itemsets from
the transactions between a specified block identifier, called a landmark and the
current block identifier n. The frequency of an itemset, X , in W , denoted as
countW (X), is the number of transactions in W that support X . The support

of X in W , denoted as suppW (X), is defined as countW (X)
N , where N is the

total number of transactions received in W . X is a frequent itemset in W , if
suppW (X) ≥ minsup support threshold.

Given a transaction data stream and a minimum support threshold, minsup,
the problem of frequent itemset mining over a window, W , in the transaction
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data stream is to find the set of all itemsets whose support is greater thanminsup
when measured between a given landmark L and the current block, W . To mine
frequent items in a data stream, it is necessary to keep not only the frequent, but
also the infrequent itemsets, as an infrequent itemset can potentially become a
frequent itemset later in the stream.

3.1 Support Ordered Prefix Trees

The Support ordered tree was designed to optimize mining time. In a support
ordered tree nodes are arranged in descending order of support. For a given
minimum support threshold minsup, frequent patterns can very efficiently be
extracted by scanning the tree in a top-down fashion starting from the root
and terminating the search at each node where the support falls below the min-
sup value. However, the challenge with growing a support ordered tree is the
maintenace required to preserve the tree in suppport order when the pattern of
occurrence of items relative to each other changes continuously in time.

In order to deal with this issue Tanbeer et al. proposed a periodic reorganiza-
tion of the tree. Figure 1 illustrates the growth of the support ordered tree with
a reorganization interval of 3 transactions. A list (I-list) that indexes each item
by its support value is the key data structure used to drive the process of tree
growth. Fig 1 (b) shows the I-list based on item occurrence in the first block of
3 transactions. This I-list is used to build the tree in the next block comprising
transactions 4 to 6 and the resulting tree is shown in Fig 1 (c) . During the
arrival of the next 3 transactions the tree is grown based on the I-list from the
previous block. However, as can be seen from Fig 1 (c) the prefix tree is not in
support order and conversion to support order requires resorting the IS-list and
restructuring as in Fig 1 (d) and (e) respectively. This simple example illustrates
the drawback of the support ordered approach: tree growth based on the support
order from the previous block incurs potentially heavy overheads in resorting the
index, and more importantly restructuring a large portion of the tree during the
reorganization phase. These overheads can be greatly reduced by anticipating
the support order of the items and growing the tree using this anticipated order
instead of an outdated order from the previous block. If the anticipated order
is very close to the actual support order then the restructuring overheads can
be minimized. This the rationale behind the extrapolation prefix tree approach
that we propose in this research.

4 Extrapolation Prefix Tree (Extrapolation-Tree)

In this section we discuss the construction of our Extrapolation Prefix tree. Our
approach has two phases: Tree Construction Phase and Tree Mining Phase.

The Tree Construction phase can be broken down into two additional phases,
Insertion Phase and Reorganization phase. In the Insertion phase, items in a
transaction are inserted into the tree based on an estimated support order, as
described in Section 3.1. The tree is then reorganized after a predefined interval,
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Tid Trans

1 b a c
2 d a b
3 e c f
4 e c
5 f c
6 c e a

(a)

Item Support

a 2
b 2
d 1
c 1
e 1
f 1

(b)

{}
a:2

c:1

e:1

b:1

d:1

b:1

d:1

f:1

(c)

Item Support

c 4
a 3
e 3
f 2
b 2
d 1

(d)

{}
c:4

e:3

f:1

f:1

a:3

c:2

b:1 d:1
(e)

Fig. 1. Growth and Maintenance of a Support Ordered Tree (a) is the dataset, (b) is
the IS-list after arrival of the first 3 transactions, (c) is the tree grown in first block,
(d) is the IS-list built on second block and (e) is the tree grown on the updated IS-list
in (d)

typically the block size. However to reduce the need for unnecessary reordering
we implement a drift detection mechanism to ensure that the size of a tree has
increased sufficiently to entail a reorganization. This is particularly useful as
transactions have been inserted into the tree based on a forecast order, thus
intuitively the need for reorganization at every block can be expected to reduce.
We also introduced a delay condition whereby items are only subjected to the
extrapolation process when the delay condition is not triggered. We discuss the
delay condition in detail in Section 4.3. The Tree Mining phase follows the FP-
Growth mining technique. Once the Extrapolation-Tree is constructed we use
FP-Growth to mine patterns with support above a user defined minsup.

4.1 Extrapolation Functions

Given the information of an item in a current block,Wn, we estimate the support
for a given item for new incoming data. This allows us to predefine a prefix-order
for the tree. To approximate the support of an item there are two cases that need
to be handled. The first case is when a given item is unaffected by drift, and the
second corresponds to the situation where drift causes a change in support. In
this section we propose two functions to handle these cases. To infer the support
of an item in the next block, Wn+1 we track the support of an item within the
current block Wn. We divide the block Wn into two halves. We then track the
change in support of an item between the first half of the block denoted by
suppWn[1,

w
2 )(X) to the second half of the block denoted by suppWn[

w
2 ,w)(X) ,

where w is the block length. The change in support is then given by:

ΔsuppWn(X) = suppWn[
w
2 ,w)(X)− suppWn[1,

w
2 )(X) (1)

In order to assess which values of ΔsuppWn(X) are significant we note that the
function is a difference between the sample means of two random variables which
are drawn from unknown distributions. In order to assess significance between
the means we make use of the Hoeffding bound [2]. The Hoeffding bound is
attractive as it is independent of the probability distribution generating the
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observations. The Hoeffding bound states that, with probability 1− δ, the true
mean of a random variable r is at least r− ε when the mean is estimated over t
samples, where

ε =

√
R2 ln(1/δ)

2t

R is the range of r. In our case the variable r is denoted by |ΔsuppWn(X)|,
which has a range value R of 1, and the number of samples t = w, the block
size. Thus for any value of |ΔsuppWn(X)| ≤ ε, our assumption of no concept
drift holds, and the estimated support, suppextrap[Wl,Wn+1]

(X) of an item X at the

(n+ 1)th block measured relative to the landmark block Wl is given as follows:

suppextrap[Wl,Wn+1]
(X) ≈ suppWn(X) =

count[Wl,Wn)(X) + countWn(X)

N
(2)

where N represents the number of transactions that arrived between Wl to Wn.
However for any value of |ΔsuppWn(X)| > ε our assumption of no concept

drift is violated and an estimate of the support of item X in the (n+1)th block,
suppextrapWn+1

(X) is required.

We can now formulate the support of item X, suppextrap[Wl,Wn+1]
(X) as:

suppextrapWn+1
(X) =

{
max(suppextrap

′
Wn+1

(X), 0) if ΔsuppWn(X) < 0

min(suppextrap
′

Wn+1
(X), 1) if ΔsuppWn(X) > 0

(3)

where suppextrap
′

Wn+1
(X) is estimated using linear extrapolation. Under the linear

assumption, the difference between the support of item X at the end of the
(n + 1)th block and its support at the end of the nth block must be twice the
difference in its support between the two halves of the previous block n. Thus
we have:

suppextrap
′

Wn+1
(X)− suppWn[

w
2 ,w)(X)

|Wn+1| =
suppWn[

w
2 ,w)(X)− suppWn[1,

w
2 )(X)

|Wn|/2 (4)

where

|Wn+1| = |Wn| = w

giving,

suppextrap
′

Wn+1
(X) = 3suppWn[i+

w
2 ,i+w)(X)− 2suppWn[i,i+

w
2 )(X). (5)

The rationale behind Eq 3 is that ΔsuppWn(X) from Eq 1 represents the change
in item X . If ΔsuppWn(X) > 0, it represents an increasing occurrence of item
X within a stream, and thus any forecasted value for support will need to be
bounded above by 1. Likewise, if ΔsuppWn(X) < 0, it represents a decreasing
occurrence of item X within a stream and any forecast support value will need
to be bounded below by 0.
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4.2 Example: Extrapolation-Tree

Figure 2 shows the resulting Extrapolation-Tree tree after an initial block with
20 transactions is added. In this tree, items are inserted in canonical order. The
figure shows the tree after insertion of the first 20 transactions. The number in
bold represents the item that has |ΔsuppW1 | > ε with a δ value of 0.01.

Transactions for an initial block W1

tid transactions tid transactions tid transactions tid transactions

1 b a c e d f 6 b a 11 a c e f h 16 a c f g
2 b a c d 7 b a c e d 12 a c e f h 17 b a c e d f i
3 b a 8 b a c g 13 a c e f h 18 b a e d f g j
4 a 9 b a c e d f i 14 a c e f h 19 b a d g
5 b a c d 10 b a d g 15 b a 20 b a d g

tid 1-20
{}

b:14

a:14

c:7

e:4

d:4

f:3

i:2

d:2 g:1

d:3

g:3

e:1

d:1

f:1

g:1

j:1

a:6

c:5

e:4

f:4

h:4

f:1

g:1

Items suppW1 suppW1[1,10] suppW1[11,20] ΔsuppW1 suppextrap
[W1,W2]

a 1.00 1.00 1.00 0.00 1.00
b 0.70 0.90 0.50 -0.40 0.70
c 0.60 0.60 0.60 0.00 0.60
d 0.50 0.50 0.50 0.00 0.50
e 0.45 0.30 0.60 0.30 0.45
f 0.45 0.20 0.70 0.50 0.73
g 0.30 0.20 0.40 0.20 0.30
h 0.20 0.00 0.40 0.40 0.20
i 0.10 0.10 0.10 0.00 0.10
j 0.05 0.00 0.10 0.10 0.05

Estimated order us-
ing linear extrapola-
tion

a
f
b
c
d
e
g
h
i
j

Reorganization based on estimated order

{}
a:20

f:9

c:5

g:1 e:4

h:4

b:4

c:3

d:3

e:3

i:2

e:1

g:1

j:1

b:10

c:4

d:3

e:1

g:1

d:3

g:3

Fig. 2. Example of Extrapolation-Tree

Once the new extrapolated support has been calculated we reorder the tree
following the new extrapolated sorted order. All new incoming transactions for
W2 will be inserted according to the extrapolated sorted order.

4.3 Delay Condition

Based on our linear extrapolation function, the transactions in the current block
are inserted into the tree based on an estimated order that was the inferred order
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from the previous block. This estimation function, while reducing the need for
reorganization does not eliminate the need altogether as the gap between actual
and estimated order will in general widen, given a sufficiently wide time interval,
no mater how good the estimation function is. We thus include a mechanism that
runs at every block to determine whether reorganization is necessary.

We propose a delay condition, whereby the reorganization phase is delayed
until at least the next block if the growth in the tree is less than a specified
growth threshold, γ. We measure the growth of the tree by tracking the number
of nodes in the tree at the last reorganization point and comparing it with
the current number of nodes in the tree. We then calculate the percentage of
increased nodes which we call percentage of growth. If the percentage of growth
is less than γ, then the reorganization phase is delayed.

4.4 Extrapolation-Tree Algorithm

Algorithm 1 outlines the processes involved in constructing and maintaining
Extrapolation Tree.

Algorithm 1. Creation and maintenance of Extrapolation-Tree
Input: Transaction database DB, block size w
Output: ITree, Extrapolation-Tree for the current block
n ← 0 ITree ← {}
cmp ← Appearance Sorted Order()
while hasNextTransaction() do

Insertion Phase:
trans ← getNextTransaction()
ITree.Insert Transaction(trans, cmp)
n ← n + 1
Reorganization Phase:
if n == w and TreeGrowth() > γ then

cmp ← Extrapolation Support Order() using Eq 5
Restructure(ITree, cmp)
n ← 0

end if
end while

In the first block of transactions the function Appearance Sorted Order ()
generates a comparator based on the appearance of the items in transactions as
support ordering can only be determined after the arrival of at least one block
of data. After the arrival of the first block the support order is computed and a
support order for the next block is estimated from the arrival pattern of items
in the first block, by calling the Extrapolation Support Order() method. The
tree is then restructured if the value returned by the function TreeGrowth() is
greater than γ.

5 Experimental Results

In our experimentation we tested the Extrapolation-Tree algorithm on both real-
world and synthetic datasets. The algorithms were coded in Microsoft Visual
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C++, and ran on Windows 7 operating system (Intel core 2 Duo processor with
4GB of main memory). In all experiments, runtime excludes I/O cost.

5.1 Experimentation on Synthetic Data

To evaluate the performance of our algorithm against concept drift we modified
the IBM synthetic data generator to inject known drift patterns so that com-
puted reorganization points could be assessed against the occurrence of actual
drift points. The data generator produces two types of itemsets: large and small.
Those in the large category tend to have higher support values than those in
the small category. We divided our itemsets in the large category into two sub-
groups. We select x random points in time at which we, introduce or remove
large itemsets. The main motivation of introducing large itemset is to simulate
emerging patterns. Given the original set of large itemsets introduced, we hold
off introducing a particular large itemset until we reach a predetermined point.
The main motivation of removing large itemset is to simulate disappearing pat-
terns. When we reach a predetermined point, we reduce the occurrence of the
large itemset in the stream. All the synthetic datasets were generated using the

Fig. 3. Drift characteristics of the synthetic datasets

same parameters where the average transaction length was 10, the number of
frequent items was 100, the average length of a large item was 4 and the number
of transactions was 1 million using 1000 unique items. Figure 3 shows the drift
patterns for some of the synthetic datasets that were generated. Each line in
the graphs represents a group of large itemsets. The vertical axis represents the
cumulative frequency of the particular group.

Evaluation. We measured performance by the effort involved in updating the
tree. Table 1 shows the number of nodes updated for each of the datasets. In
these experiments we varied the block size (or interval for CP-Tree) from 50K to
200K, while using a γ value of 0.20 and a δ value of 0.01. The fewer the number
of updated nodes the more efficient the algorithm, as less processing needs to be
carried out.
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Table 1. Comparison based on Number of Updates

Dataset 50K 100K 150K 200K
Extrap CP-Tree Extrap CP-Tree Extrap CP-Tree Extrap CP-Tree

Synthetic 1 1145 1249 6096 6283 14618 15081 23315 23402
Synthetic 2 1266 1276 4488 4612 10620 10659 15718 16101
Synthetic 3 995 1008 2382 2611 4173 5190 6983 7452
Synthetic 4 334 369 919 1117 1558 2163 1182 1411
Synthetic 5 754 952 2561 3433 7585 8474 13802 15027
Synthetic 6 298 489 1474 1487 4827 6223 14745 15184
Synthetic 7 98 192 2825 2853 8566 8715 14940 14970
Synthetic 8 155 202 572 720 1623 1646 2231 2559

It is evident from Table 1 that Extrapolation tree outperforms CP-Tree, es-
pecially at the smaller block size of 50K. Significant reductions of 20.8%, 39.1%,
49.0% and 23.3% in the number of updated nodes are obtained at this block
size for datasets 5, 6, 7 and 8. We next compared the two approaches on tree
size using the same range of block sizes as in the above experiment. Our results
showed that the two methods produced trees with very similar sizes across the
entire range of datasets that we experimented with, thus confirming the accuracy
of the forecasting method used.

Table 2. Number of Nodes from Synthetic dataset 7

Block Extrapolation-Tree CP-Tree
After Reorganization Current Nodes in Tree After Reorganization

50000 112552 112552
100000 213163 213163
150000 290036 290036
200000 359934 359934
250000 Delayed 424134 424754
300000 487230 487230
350000 Delayed 543749 543286
400000 599576 599576
450000 Delayed 652671 654830
500000 Delayed 705449 706836
550000 756880 756880
600000 Delayed 805459 806855
650000 Delayed 853979 856440
700000 Delayed 901098 903038
750000 947494 947494
800000 Delayed 992137 993236
850000 Delayed 1036327 1037551
900000 Delayed 1079946 1081401
950000 Delayed 1123709 1126087
1000000 1169503 1169503

We then investigated the impact of delay on the growth pattern of Extrapola-
tion Tree. Table 2 contains the results generated from Synthetic dataset 7 with
a block size of 50000. For the Extrapolation Tree method we present the results
of the nodes after reorganization or the current nodes in the tree if the reorga-
nization is delayed. Table 2 shows that 55% of the block reorganization can be
delayed. Furthermore, after reorganization is performed after deferment, it can
be seen that the number of nodes in both Extrapolation tree and CP-Tree are
still comparable in value, indicating that the extrapolation function is accurately
estimating future states of the tree. Thus the Extrapolation Tree method is able
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to achieve approximately the same degree of compactness without the need to
perform expensive reorganizations of the tree after every block, as the CP-Tree
method does. The results produced by the rest of the synthetic datasets follow
a similar trend.

Table 3. Comparison based on Execution Time

Dataset 50K 100K 150K 200K
Extrap CP-Tree Extrap CP-Tree Extrap CP-Tree Extrap CP-Tree

Synthetic 1 31.4 61.1 25.6 38.5 24.9 27.6 22.9 27.5
Synthetic 2 27.7 54.0 25.3 34.9 23.4 25.4 21.4 24.9
Synthetic 3 28.8 55.8 23.7 35.5 23.2 25.9 21.3 24.5
Synthetic 4 30.5 59.2 24.7 37.1 24.2 40.5 22.3 25.9
Synthetic 5 31.5 57.5 26.0 36.5 25.1 26.3 23.9 25.6
Synthetic 6 31.7 56.4 26.3 35.9 24.6 26.3 23.8 25.6
Synthetic 7 29.8 56.9 24.5 35.9 24.0 26.3 22.2 25.3
Synthetic 8 28.5 54.5 23.4 34.6 22.8 25.2 21.2 24.4

Table 3 shows that on average Extrapolation-Tree was faster than CP-Tree
by 25.6% (ranging from a minimum of 4.5% to a maximum of 48.8%). This is
mainly due to the possibility of delaying the restructuring phase of the tree, thus
reducing the execution time.

5.2 Experimentation on Real World Data

In this section we tested Extrapolation Tree on five real-world datasets from the
FIMI and UCI machine learning repositories. We divided each dataset into 10
blocks and used the first transaction as the landmark point. Table 4 shows the

Table 4. Results based on Real-World Dataset

Dataset Extrapolation-Tree CP-Tree

Nodes Construction Mining
Total

Time (s)
Nodes Construction Mining

Total
Time (s)

BMS-POS 1622548 17.0 0.9 17.8 1622820 21.3 0.8 22.1
Accidents 1392600 11.1 0.2 11.2 1394813 16.5 0.2 16.6
Connect 4 366700 7.6 0.0 7.7 359969 8.9 0.4 9.3
Poker-hand-testing 3807746 46.6 0.7 47.3 3809060 66.3 0.1 66.4
Pumsb 1128555 11.6 0.2 11.8 1127574 14.0 0.2 14.2

results in terms of number of nodes, tree construction time, mining time and
total time taken for each of the datasets. The results produced by these datasets
follow the same trend as the results produced by the synthetic datasets. Both
Extrapolation-Tree and CP-Tree produce a similar number of nodes, whereas
the total time taken by Extrapolation-Tree remains significantly lower than that
of CP-Tree.
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6 Conclusions and Future Work

This research has demonstrated that linear extrapolation performs well in pre-
dicting future states of a prefix tree as opposed to an approach that simply as-
sumes that the next state of the prefix tree will be the same as the current state.
Extrapolation combined with a drift detection and delay mechanism resulted
in significant gains in maintenance effort, thus reducing the time required to
extract frequent patterns from the tree. Our experimentation also revealed that
the gains in runtime performance were not at the expense of tree size as the trees
produced by Extrapolation-Tree were similar in size to those of CP-Tree. Our
future work will concentrate on examining the performance of Extrapolation-
Tree in a sliding window environment as well as testing the effectiveness of non
linear extrapolation functions using kernel regression.
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Abstract. Incrementally computed information landscapes are an effective 
means to visualize longitudinal changes in large document repositories. Resem-
bling tectonic processes in the natural world, dynamic rendering reflects both 
long-term trends and short-term fluctuations in such repositories. To visualize 
the rise and decay of topics, the mapping algorithm elevates and lowers related 
sets of concentric contour lines. Addressing the growing number of documents 
to be processed by state-of-the-art knowledge discovery applications, we intro-
duce an incremental, scalable approach for generating such landscapes. The 
processing pipeline includes a number of sequential tasks, from crawling, filter-
ing and pre-processing Web content to projecting, labeling and rendering the 
aggregated information. Incremental processing steps are localized in the pro-
jection stage consisting of document clustering, cluster force-directed place-
ment and fast document positioning. We evaluate the proposed framework by 
contrasting layout qualities of incremental versus non-incremental versions. 
Documents for the experiments stem from the blog sample of the Media Watch 
on Climate Change (www.ecoresearch.net/climate). Experimental results indi-
cate that our incremental computation approach is capable of accurately gene-
rating dynamic information landscapes. 

Keywords: Information visualization, information landscape, incremental clus-
tering, multi-dimensional scaling. 

1 Introduction 

These days we are confronted not only with constantly growing, but also with conti-
nuously and often rapidly changing “big data” repositories. Information Landscapes 
represent a powerful visualization technique for conveying topical relatedness in large 
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document repositories [20]. Yet, the concept of information landscapes does only 
allow for visualizing static conditions. In previous research, we have introduced dy-
namic topography information landscapes [29] to address both (i) topical relatedness 
and (ii) visualization of data changes. As such, dynamic landscapes have proved valu-
able in enterprise scenarios involving visual knowledge discovery in large, dynamic 
text repositories, where they have been applied for tracking of topical relationships 
and trends in media and patent databases [30].  

Dynamic topography information landscapes are visual representations based on a 
geographic map metaphor where topical relatedness is conveyed through spatial prox-
imity in the visualization space with hills representing agglomerations (clusters) of 
topically similar documents. Hills are labeled with dominant terms from the underly-
ing documents to facilitate the users’ orientation. When a document repository 
changes over time, e.g. new documents are added or old documents are removed, the 
overall topical structure changes as well. Dynamic information landscapes convey 
these changes as tectonic processes which modify the landscape topography accor-
dingly. In the process of generating information landscapes, high-dimensional data is 
projected into a lower-dimensional space. Yet, existing dimensionality reduction ap-
proaches lack several aspects including (i) support for incremental computation, (ii) 
scalability with respect to data set size and high-dimensionality (iii) and generation of 
aesthetically pleasing layouts which are necessary for visual applications. 

This paper presents an incremental, scalable algorithmic approach for computing 
dynamic topography information landscapes capable of visualizing dynamically 
changing text repositories. Our incremental processing pipeline is introduced in Sec-
tion 3 and includes implementation details of text preprocessing, projection (dimen-
sionality reduction), labeling and rendering stages where the projection part combines 
document clustering, cluster force-directed placement and, an improved approach to 
fast document positioning. We conclude this section by visualizing a temporal se-
quence of eight incrementally computed information landscapes, which reflect weekly 
changes in the underlying document set. In Section 4, we experimentally verify our 
approach’s runtime behavior which we discuss only in theory in Section 3. In addi-
tion, we evaluate our incremental computation framework by comparing stress values 
between incrementally and non-incrementally computed layouts. Documents for these 
experiments are taken from the environmental blog sample of the Media Watch on 
Climate Change [16], a Web content aggregator on climate change and related envi-
ronmental issues. Our experimental results show that the incremental computation 
approach yields not only comparable, but even slightly better stress values and there-
by indicate our framework’s validity. 

2 Related Work 

Information landscapes are commonly used to visualize topical relatedness in large 
document repositories, for example in Krishnan et al. [20] and Andrews et al. [1]. 
Static landscape visualizations, however, cannot convey changes. ThemeRiver [13] is 
a visual representation designed to represent changes in topical clusters, but it cannot 
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express relatedness between documents or topical clusters. Visualization of topical 
changes through information landscapes with dynamic topographies were proposed in 
Sabol et al. [28]. An approach suitable for larger data sets was demonstrated in [27]. It 
relies on 3D acceleration for animated morphing of landscape geometry, which makes 
it unsuitable for Web applications. However, the performance of the incremental algo-
rithms remains unclear as it was not evaluated or compared with a non-incremental 
variant.  

Visualization techniques in general have to cope with today’s ever-growing data 
production and data consumption. Incremental algorithms provide the required func-
tionality to process big data. Incremental algorithms do not recalculate their internal 
model from scratch for newly arriving data items and are thus capable of efficiently 
handling and seamlessly integrating continuously changing or growing data. In the 
context of generating dynamic information landscapes we review work on incremen-
tal dimensionality reduction and incremental clustering techniques. 

Incremental Dimensionality Reduction. Dimensionality reduction techniques trans-
form high-dimensional data into low-dimensional data seeking to lose as little infor-
mation as possible. This transformation has turned out to be particularly useful in the 
field of visualization for projecting the high-dimension data into the low-dimensional 
visualization space. To face the growing amount of data, incremental variants have 
been developed usually on top of batch methods. Incremental unsupervised tech-
niques include multi-dimensional scaling (cf. [4]), singular value decomposition (cf. 
[31]), principal component analysis (cf. [2]), random indexing (cf. [18]) or locally 
linear embeddings (cf. [19]). Unsupervised methods are effective in finding compact 
representations, but ignore valuable class label information of the training data. In-
cremental supervised techniques are thus better suited for pattern classification tasks. 
Representatives of incremental supervised dimensionality reduction techniques in-
clude linear discriminant analysis (cf. [23]) or subspace learning (cf. [34]).  

Incremental Clustering. Incremental clustering algorithms can be traced back to the 
1970s, cf. Hartigan’s leader algorithm which requires only one pass through the data 
[12], Slagle’s shortest spanning path algorithm [33] or Fisher’s COBWEB system, an 
incremental conceptual clustering algorithm [9]. The COBWEB system, for example, 
has been successfully applied to support fault diagnosis or bridge design. Inspired by 
COBWEB, Gennari et al. proposed the CLASSIT [11] system which is capable of 
handling numerical data sets. In [5], the authors introduced an incremental clustering 
algorithm for dynamic information processing. In dynamic databases there is a con-
stant adding or removing of data items over time. The idea is that these changes 
should be recognized in the generated partition without affecting current clusters. In 
the late nineties, several incremental clustering algorithms have been presented in-
cluding BIRCH [35], incremental DBSCAN [8] to support data warehousing or Ribert 
et al.’s clustering algorithm to generate a hierarchy of clusters [26]. Incremental clus-
tering of text documents has been conducted as a part of the Topic Detection and 
Tracking initiative [1] to detect a new event from a stream of news articles. 

To compute dynamic topography information landscapes in an incremental and 
thus timely efficient manner, we integrate and combine incremental aspects into the 
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generation process. (i) For clustering, we apply a simple, spherical k-means [7] and 
use previously computed partitions of the document set as initial state for incremental 
computations. (ii) We introduce an improved approach for document positioning 
which is essentially based on a simple spring forces-based model (cf. [10]) since we 
observed that landscapes generated with standard positioning method displayed geo-
metrical edges. (iii) We use a force-directed placement (FDP) algorithm [10] for pro-
jecting these high-dimensional cluster centroids into a 2D visualization space. The 
parameters of FDP-based methods provide significant control over the layout, which 
allows them to deliver more pleasing layouts than traditional methods. The FDP algo-
rithm is intrinsically incremental when applied on a previously computed stable 
layout. Re-applying FDP on a previous layout of centroids with modified similarities 
will produce a new layout closely resembling the previous one. 

3 Algorithmic Approach 

In this section we introduce and describe our approach to generating dynamic infor-
mation landscapes. Fig. 1 depicts the overall workflow, which can be grouped into 
three main components: (i) First (shown in green), we prepare an augmented docu-
ment-term matrix by combining information from keyword relevance and word fre-
quency tables. (ii) In a second step (cyan), we cluster and position the documents. We 
use the k-means clustering algorithm to partition the documents into topically related 
clusters. We then employ force directed placement to project clusters centroid posi-
tions into 2D visualization space, and apply a fast method for positioning documents 
in 2D based on cluster positions. (iii) In the last step (magenta), we use the docu-
ments’ layout position to model a topical landscape which is essentially an elevation 
matrix on a 2D grid. A coloring scheme is used to construct landscape surface images. 
A peak detection algorithm then finds major peaks (hills) and collects underlying 
documents to compute text descriptors for labeling the peaks. Note that previous 
computation results are used as initial state for incremental processing (in orange). 
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Fig. 1. Workflow diagram for the incremental landscape computation framework 
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Details on these three main components will be provided in the following subsec-
tions 3.1 to 3.3, followed by a separate description of the architecture’s incremental 
aspects in Section 3.4. 

3.1 Document-Term Matrix Generation 

Prior to the beginning of the computation, the raw textual data to be analyzed is ga-
thered via a web crawler, then converted and annotated into the content repositories 
based on previous research [16], [32]. We utilize our experiences with webLyzard, an 
established and scalable media monitoring and Web intelligence platform 
(www.weblyzard.com), to generate the document keyword relevance table (1A) and 
the document word frequency table (1B).  

Using the information from 1A and 1B, we create the document keyword matrix 
(2A) as well as the document word matrix (2B). Both matrices are then linearly com-
bined into one augmented document term matrix (3) with unique terms IDs. 

3.2 Clustering and Projection 

The incremental clustering algorithm (4) takes the document term matrix (3) as input 
and outputs (i) a centroid-to-centroid similarity matrix (5A), (ii) a document-centroid 
relationship graph (5B), and (iii) a documents-to-centroids similarity matrix (5C).  

In incremental mode the k-means algorithm module is initialized by the previously 
computed clustering result (1C). The centroid positioning algorithm (6) uses results 
(5A) and (5B). The algorithm can be initialized with previous centroid positions (1D) 
for the incremental case, or by assigning random positions for the non-incremental 
computation. The centroid positions (6) and the document to centroid similarity ma-
trix (5C) are then used for computing the document positions (7).  

Document Clustering. We apply the spherical k-means algorithm [7] to partition the 
documents into topical clusters. The k-means algorithm is known to be highly sensi-
tive to the initial guess of the cluster partitions and the number of partitions. To over-
come this sensitivity, we use the k-means++ seeding method [3]. In addition, we split 
and merge the clusters [22] for deducting the number of clusters within the limit of 
specified minimum and maximum bounds. As human cognition puts certain limits to 
conceiving visualizations, we limited the number of clusters to account for usability. 
We observe that setting the minimum and maximum number of cluster bounds to be 
30 and 40, respectively, result in meaningful and aesthetically pleasing information 
landscapes. Therefore, in subsequent iterations we perform the splitting of large clus-
ters to obtain higher cluster cohesion as well as the merging of small, similar clusters, 
according to improvements using Bayesian Information Criterion [24].  

The algorithm’s runtime complexity is O(mnd), where m is the number of clusters, 
n is the number of documents, and d is the dimensionality of the term space. Since 
m<<n in our case, and according to Heaps' law [14], d scales logarithmically with n, 
the clustering part of our algorithm is considered to scale with O(n log(n)).  
For incremental clustering, we use previously computed partitions of the document set 
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as the initial state. For a fixed number of documents to be clustered incrementally, old 
documents are removed from their respective clusters and new documents are added to 
the most similar cluster centroid. Afterwards, additional k-means iterations, including 
the split and merge procedure, are performed to further refine the initial partition.  

Cluster Positioning. The partitioned set of documents is represented by the high-
dimensional centroids of the respective clusters. We use a force-directed placement 
(FDP) algorithm [10] for projecting these high-dimensional cluster centroids into a 
2D visualization space. The idea is that attractive forces pull together topically similar 
centroids while dissimilar centroids are repulsed. Spatial closeness between centroids 
thus relates to their topical closeness. The FDP algorithm is known to produce accu-
rate and aesthetically pleasing layouts. Most FDP variants scale poorly, e.g. O(m3). 
Yet, as in our approach m<<n, and because there is a fixed upper limit on m, in our 
case 40 clusters, the runtime complexity of cluster positioning may be considered 
constant. As stopping criterion for the FDP algorithm, we used two parameters: (i) a 
fixed maximum number of iterations, and (ii) the local minima for the stress value 
[21]. The most attractive feature of the FDP algorithm is that it is intrinsically incre-
mental when applied on a previously computed stable layout. The impact of incre-
mental clustering is reflected in similarities between cluster centroids. When changes 
in the data set are small, the similarities between the centroids will also change by a 
small proportion. Re-applying FDP on previous layout of centroids with modified 
similarities will produce a new layout closely resembling the previous one.  

Document Positioning. In an earlier version of the algorithm [29], we used an algo-
rithm based on Delaunay triangulation of centroid positions in the 2D space. The most 
similar triangle was chosen based on the similarities between the document and the 
most similar centroids, and the document position was assigned using Barycentric 
coordinates in O(m) time, m being the number of centroid vertices.  

Unfortunately, we observed that landscapes generated with this positioning method 
reflected geometrical edges; i.e., documents were positioned in straight lines. To 
maintain the viewing experience of a realistic landscape without artifacts, and to 
achieve a linear running time, we introduce an improved approach for fast document 
positioning which is essentially based on a simple spring forces-based model (cf. 
[10]). In this model we assumed that the document, in two dimensions, is attached to 
each centroid, in two dimensions, by a spring having a spring constant proportional to 
the similarity between the document and the centroid in the n-dimensional space. 

If R1, R2, R3,…, Rm are the given position vectors of all m centroids and si1, si2, 
si3,…, sim are the given similarities of the ith document with m centroids respectively, 
then an analytical solution of the equilibrium conditions for Hooke’s law forces be-
tween  ith document and all centroids eventually formulate the position of the  ith doc-
ument as ri = ∑k=1..m sik Rk / ∑k=1..m sik . This simple algorithm makes our computation 
for document positioning linear in time and, in contrast to [29], without any overhead 

3.3 Landscape Creation and Peak Labeling 

With document layout positions at hand, we compute an elevation matrix (8) that 
represents an information landscape model. We then utilize this matrix to identify 



358 K.A.A. Syed et al. 

 

peak locations, heights and a list of documents related to the peak (9). The peak detec-
tion employs a kernel window convolution over the landscape model. The peak label 
assignment module (10) determines the peak’s labels by using the list of documents 
under the peak for querying and comparing with the semantically tagged reference 
corpora (1E), which is continuously refined by the webLyzard platform. Finally, the 
assigned labels are positioned on the information landscape surface images (12), 
computed based on the coloring scheme (8) and the heuristic labeling algorithms of 
the landscape image rendering module (11). 

Landscape Modeling. Information landscapes with specific resolutions are modeled 
as elevation matrices of the same resolution. A document is thought of as a small 
Gaussian peak at the corresponding position on the underlying matrix cells. The influ-
ence of a document on a matrix cell location is reflected by the value of Gaussian 
density at that location. Thus the height and the asymptotic radius of the Gaussian 
peak reflect the document’s influence in the landscape. We further assume a docu-
ment has a fixed influence on its own location on the matrix cell. The densities of all 
documents at particular location are superimposed, adding to the elevation values of 
the underlying matrix cells.  

Peak Detection. A kernel window-based peak detection algorithm is used to detect 
the significant peaks of the landscape (cf. [15], [25]). The average of the convolution 
of the window with the elevation matrix is compared with the center value of the ma-
trix cell. A peak is assumed if the center value is higher than the average convolving 
value. After detecting the significant peaks, documents are assigned to their nearest 
peak by using the minimum Euclidean distance criterion in the 2D layout.  

Label Computation. The term distribution in the set of documents in the vicinity of a 
peak is compared with a reference distribution. A chi-square test of significance with 
Yates’ correction determines over-represented terms. The term co-occurrence analy-
sis, based on pattern matching algorithm, along with trigger phrases based on regular 
expressions, is used to identify the frequently appearing text fragments within the 
same sentences and within the documents [16], [32]. The redundancy of nouns’ singu-
lar and plural forms and synonyms in the resultant list of labels are removed by using 
a combination of regular expression queries and WordNet library lookup. 

Map Generation and Label Placement. In the final step, colors are assigned to the 
image pixels depending on the density of the corresponding density matrix cells. In 
our scheme of colors the blue is used to express lowest density, then green and brown, 
and finally light gray is used for highest density. The resulting landscape surface im-
age resembles a geographic map with peaks at areas, where document density is large, 
and oceans or valleys, where document density is low. Finally, a heuristic point fea-
ture label placement algorithm [6] is used with the labeling quality evaluation in the 
following basic rules: (i) No overlap of a label with other labels and the image boun-
dary. (ii) No overlap of a label and another peak location. (iii) Each label is placed 
among the four possible labeling rectangular spaces of the peak locations. (iv) At 
most five labels for a peak location can be assigned. 
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3.4 Incremental Computation 

Computing incremental landscapes at first requires an initial computation of a land-
scape. We apply our algorithm to an initial data set where the documents’ layout posi-
tions are saved for future use. Whenever the data set changes, the incremental  
k-means algorithm is initialized with a previously computed stable partition, i.e. with 
the old locations for the new centroids. The ongoing process of removing old docu-
ments and adding new documents to the most similar clusters leads to several k-
means iterations for the next stable partition. The successive iteration of FDP will 
stop at the first local minima for the average stress value.  

 

Fig. 2. A sequence of incrementally computed landscapes from environmental blogs, visualiz-
ing 2,000 documents each, reflects weekly changes from Sept 30th, 2011 to Oct 21th 2011. 
Approximately 10% of the data set changed between each individual step resulting in seamless 
transformations of topography portions, while the overall structure remains stable. Rising hills 
indicate the emergence of new topics (images 1, 2 and 3); shrinking hills a fading of topics 
(image 4). Hill movements towards or apart from each other indicates converging or diverging 
topical clusters. As the incremental algorithm seamlessly integrates a stream of continuous 
changes, the user retains orientation through recognition of unchanged parts of the topography. 

To acknowledge the growing number of documents to be processed by state-of-
the-art web intelligence applications, we briefly discuss scalability issues in this sec-
tion. Many processing steps of our algorithmic approach scale linearly (or even better) 
with the number of documents n. Yet, the dominating factor remains with the cluster-
ing, so the time complexity of the entire landscape generation process is O(n log(n)). 
This matches the performance of other scalable algorithms, such as [17], which  
however do not provide support for incremental layout computation. While we have 
experienced with data set sizes up to 20.000 documents, we still need to conduct 
large-scale experiments to make reliable statements with respect to scalability. 
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4 Evaluation 

For evaluating the incremental computation framework we computed ten consecutive 
landscapes for 2000 documents from the environmental blog data set of the Media 
Watch on Climate Change [16], a Web content aggregator about climate change and 
related environmental issues that serves static versions of the information landscapes 
presented in this paper as part of a multiple coordinated view representation. Each 
week new documents are gathered via the webLyzard crawler. For each incremental 
step, new documents replace an equal number of old documents from the set of 2000 
documents. Each new incremental computation is based on the previous one. For 
comparison, we compute the landscape for the same document set in a non-
incremental manner. The projection quality in both landscapes is then evaluated using 
stress values [21].  

However, the stress value computation requires the computation of distances (dis-
similarities) for all pairs of documents in high-dimensional space, which is quadratic 
in time. To speed up the process and to be capable of handling large data sets, we 
introduce a faster variant which approximates the true stress values. We used geome-
tric mean of the similarity of one document with the centroid of the second document 
and the similarity of second document with the centroid of the first document as an 
estimated value of similarity between both documents. All measurements were per-
formed on a 2.66GHz Intel Xeon X5355 CPU with 8GB of memory, running 64-bit 
versions of Linux and Java v1.6.0_29. 

The resulting stress values for both computation types are summarized in Fig. 3 
(left). The initial sample of 2000 documents was taken from September 30th, 2011. 
Every week this document selection changes, i.e. new documents arrive whereas the 
same number of documents, the oldest ones, are removed resulting in a set of constant 
size. Stress values for both computation types are decreasing while values for the 
incremental computation appear to be slightly lower than for the non-incremental 
computation. In the non-incremental case, the curve exhibits more fluctuations, e.g. 
the peak on November 4th. In our opinion this behavior is due to k-means’ and FDP’s 
sensitivity to initial conditions. We hypothesize that stress values for the incremental 
computations are lower because these weekly incremental changes have the potential 
to shake the FDP process out of local minima so that the performance can improve. 
The experimental results corroborate that our algorithmic approach is capable of accu-
rately generating dynamic information landscapes in an incremental manner. 

To examine the algorithm’s execution times for different data set sizes, we experi-
mentally verified the runtime estimates for individual processing steps given in Sec-
tions 3.1 to 3.3. Fig. 3 (right) summarizes timing results of landscape computations 
for eight different document set sizes ranging from 2000 to 16000. Processing steps 
include document-term matrix preparation (A), clustering (B), document positioning 
(C) (including cluster positioning with FDP which is in constant time for fixed num-
ber of clusters) and peak detection, label positioning and image construction (D). 
Graph (T) reflects the total runtime for generating dynamic topography information 
landscapes for different data set sizes. According to Fig. 3 (right), the clustering step 
(B) appears to be the algorithm’s runtime bottleneck.  
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Fig. 3. Left: The stress values (y-axis) for incrementally computed documents layout and for 
non-incrementally computed documents layout over a period of 10 weeks; Right: Run times in 
seconds (y-axis) for landscape computation framework with different document sets (x-axis) 

5 Conclusion 

We have introduced and evaluated an incremental approach to generating dynamic 
topography information landscapes, and applied this approach to visualize the content 
dynamics of environmental blogs. Our method combines well-known algorithmic 
approaches, such as k-means clustering and force-directed placement, and introduces 
an improved method for fast document positioning which relies on previously com-
puted cluster centroid positions. In experiments, we have compared the quality of 
incrementally and non-incrementally computed layouts where the incremental version 
achieves not only comparable, but even slightly superior stress values.  

By capturing changes in textual data repositories such as news and social media 
archives, and by revealing the emergence and decay of major topics in such reposito-
ries, an incremental version for computing information landscapes extends the reper-
toire of existing Web intelligence and social media analytics applications such as the 
Media Watch on Climate Change (www.ecoresearch.net/climate). 

Although some of incremental ideas are discussed in [27, 28, 29, 30], this paper 
contributes by presenting a novel document positioning method and evaluates docu-
ment positioning improvements on subsequent incremental landscape computations. 

Future work will focus on improving layout quality by utilizing semantic informa-
tion in the process of calculating similarities between documents. These semantics 
will help us to better handle linguistic concepts such as synonymy and thus to capture 
more implicit, meaningful associations amongst textual resources.  
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Abstract. With the large presence of organizations from different sec-
tors of economy on the web, the problem of detecting to which sector a
given website belongs to is both important and challenging. In this paper,
we study the problem of classifying websites into four non-topical cat-
egories: public, private, non-profit and commercial franchise. Our work
treats each website and all pages from the site as a single entity and clas-
sifies the entire website as opposed to a single page or a set of pages. We
analyze both the textual features including terms, part-of-speech bigrams
and named entities and structural features including the link structure
of the site and URL patterns. Our experiments on a large set of websites
related to weight loss and obesity control, under a multi-label classifica-
tion setting using the SVM classifier, reveal that with a careful selection
and treatment of features based on keywords, one can achieve an F-
measure of 70% and that adding structural, part-of-speech and named
entity based features further improves the F-measure to 74%. The im-
provement is more significant when textual features are not accurate or
sufficient.

Keywords: non-topical classification, structural features, topical fea-
tures, non-topical features, web genre.

1 Introduction

The tremendous growth of World Wide Web over the past few years has made
it extremely easy for end-users to reach the general mass public by having a
web presence. As more people, organizations and governments publish their in-
formation on the web, it is important and increasingly difficult to find and filter
the desirable information from the web. For example, one may want to know
from the website of a health clinic if it is publicly funded hence the treatment
expenses are paid by the public health insurance. In such a scenario, associating
websites with desirable labels can be helpful in improving the search by linking
labels with the search query and allowing the users to filter the websites more
easily. Automatic classification of websites can also be helpful in automating
the process of creating web directories which takes considerable effort if humans
were to label the websites manually.

Website classification can be treated under text classification assuming that a
website is a set of web pages or documents. A problem with applying a textual
classifier to non-topical classes is that these classes may not be well-described in
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text and a richer set of features need to be maintained. The problem is similar
to classifying documents based upon the sentiment [3, 4], identifying text genre
[2], etc. For example, features such as part-of-speech tags, punctuations, and
named entities in addition to words from text have turned out to be useful, as
reported in our experiments and also in some past work [5, 9]. Beyond text and
part-of-speech patterns, the link structure of the site, URL patterns [10–12] and
HTML tags [8] may also provide additional useful information that can help to
correctly classify the website.

In this research, we will be classifying websites into 4 non-topical categories:
public, private, non-profit, and commercial franchise. The non-topical categories
that we are concerned with are related to websites that fall under the domain of
weight loss/obesity control in Canada. Since many service providers for obesity
control have a web presence, classifying the entire website would reveal important
facts about these organizations, These facts may inform the users, for example,
about the cost and the reliability of a service provided by these organizations.
Our domain experts have confirmed that these facts will be useful for obesity
patients to efficiently filter the required resources from the web. With the cat-
egories that we are concerned about, a website can have more than one label,
hence we explore how the independent feature sets based on the link structure of
the site, part-of-speech and named entity distribution, and bag-of-words perform
in a multi-label classification setting.

In order to classify the entire website, we consider a collection of web pages
from a website as a single document. A website can contain hundreds of pages
and the inclusion of every page from the website increases the number of features
based on bag-of-words. It also takes a significant amount of time to extract the
part-of-speech and named entities. More attributes would also mean that the
classification takes more time and there is a high probability for the occurrence
of noise. In order to mitigate this problem, we analyze dimensionality reduction
by selecting the features based on information gain and click-depth of a page, the
number of clicks required by the user to reach a page. As the click-depth of the
website increases, there is an increase in the number of pages. We analyze how
the classifier performs when the word-based features are extracted at click-depth
of zero, one and two.

Our contributions include: (1) a study in detecting the business type of an
entity from its website, (2) a non-topical website classifier with classes that relate
to the business type of the entity a website presents, (3) applying the classifier
to the real world domain of weight loss and obesity control in Canada, and (4)
an experimental evaluation showing the performance of the classifier and the
effectiveness of the features studied.

The rest of the paper is organized as follows. Section 2 reviews the related
work and Section 3 presents the dataset and the way it is acquired and the labels
are assigned. Section 4 presents the types of features and their selection process
and Section 5 reports our results and analysis of the classification. Finally, we
draw the conclusions in Section 6.



366 C. Thapa et al.

2 Related Work

Related to our investigation is the body of work on non-topical classification on
the Web. Mishne [1] illustrated a supervised classification of blog posts based on
the mood of the writer. Turney [3] presented an unsupervised classification of
reviews and Pang et al. [4] applied supervised algorithms such as SVM, Näıve
Bayes and the maximum entropy to movie reviews. These work on non-topical
classification focus on finding the right features that work best for the dataset.
Some of the features that have been used for sentiment analysis are unigrams,
unigrams combined with bigrams and part-of-speech tags. Bekkerman [5] showed
that combining POS-bigrams along with bag-of-words improved the classification
accuracy in case of the genre classification.

Dai et al. [6] classified web pages into commercial and non-commercial classes
in an attempt to detect the online commercial intent of a page. This work is
close to ours as some of the categories overlap, however the authors only used
keywords from text and html attributes as features whereas we are combining
non-topical features with word-based features. Ester et al. [7] performed a top-
ical classification of websites using a k-order markov model and also treating
pages from the same site as a single page. Pierre [8] showed that words from
metatags are useful in the classification of websites into industrial categories.
His result showed that words from metatags alone can be more effective than
words from metatags and html body combined together; however, it also showed
that metatags is not widely used by many websites. In our research, the bag-
of-words feature comprises of words from metatags, title and the html body. A
more recent work by Eickhoff et al. [9] classified web pages based on whether it
is targeted towards children or not. They combined both topical and non-topical
aspects of a document by using features such as part of speech, shallow texts,
html features, and language complexity. They showed that combining topical
and non-topical features can work well for non-topical classification.

There is also work on analyzing the structural properties of websites. Ami-
tay et al. [10] used the structure of websites to classify them into eight func-
tional categories and showed that sites with similar functions shared similar link
structures. Lindemann and Littig [11] did a thorough study on the relationship
between the structure and functionality of the websites. Their work analyzed
1461 websites distributed among five functional categories and reported a strong
accuracy using the structural properties. Later, Lindemann and Littig [12] also
showed that utilizing both the content and structural properties for website clas-
sification performed better than using structural or word based features alone.

From the past work on non-topical classification of documents and websites, it
is evident that words are a powerful set of features even for non-topical classifica-
tion. Results have also shown that combining part-of-speech along with words im-
proves the performance for non-topical classification of documents. Non-topical
website classification also benefits from a combined feature set where words are
augmented by structural properties. Our work combines and analyzes all three
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aspects (i.e. the structure of text in the form of part-of-speech tags and named
entities, structural pattern of the website, and bag-of-words) in a real world
non-topical website classification task.

3 Dataset Preparation

We used a set of keywords related to weight loss in a search engine to come up
with the list of websites. As we were only concerned with organizations providing
services related to obesity control/weight loss and having a physical presence
in Canada, we built a collection of search queries by appending different city
names like Edmonton, Toronto, etc to useful keywords, which were suggested by
obesity experts. Some of the keywords used were “obesity clinic”, “weight man-
agement”, “fitness and exercise”,“diet program” etc. Using these search queries
with Google, we came up with a list of websites. We then did an extensive online
survey where 77 users participated in labeling the websites. The definition of the
categories that were used to label the websites are as follows:

Public: A website providing service that is offered or subsidized by the gov-
ernment.

Private: The service provider has a private firm and is a licensed health care
professional or has certification.

Non-profit : A service that has been provided on a non-profit basis.
Commercial Franchise: An organization that provides or sells services or prod-

ucts for profit. In many cases, the organization has many branches (> 2) in dif-
ferent parts of the country and is considered a chain.

We picked only those labels where two or more users agreed upon and where the
websites provided service related to obesity control. This was checked through
the online survey where the users had the option to tag websites that were not
related to obesity control. This helped us filter out many blog sites and web
directories. However, obtaining the labels this way did not give us enough labels
to populate each category as most of the websites in the search results were
either private or franchise. Hence, we also asked one patient and one student to
extensively search the web for non-profit and public categories. All the website
labels were later verified by an expert and the expert’s decision on the label was
considered final. The final list of labels we collected comprised of 215 websites
where the majority of the labels were private (116). This set was highly imbal-
anced with more than 50% of the labels comprising of private websites. Since we
are measuring the strength of each type of feature, we did not want any bias due
to over-fitting in micro and macro measures during evaluation; hence we bal-
anced the dataset by randomly selecting the websites from the over populated
category. Table 1 shows the label distribution among various combinations of
multi-label categories after the dataset was balanced.

Since the public and non-profit categories had a small number of samples, we
kept all the websites in these categories. On the other hand, we under-sampled
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Table 1. Website count for various label combination

Label Combination Number of Websites

Public 25

Non-profit 24

Franchise 21

Private 13

Public,Private 10

Public,Private,Non-profit 2

Private,Franchise 24

Public,Non-profit 6

Total 125

the franchise and private categories such that the final label distribution for each
category is: public (43), private (49), franchise (45) and non-profit (32).

In order to capture the features based on the language model, we crawled the
websites at various click-depths. The landing page or the homepage of a website
is considered at a click-depth of zero. All the links present in the homepage
are then considered at click-depth of one and so on. We crawled the internal
links of each website at click-depth of zero, one and two. We saved only those
files for which the server response was valid and the header had text/html as
the content-type. The maximum number of files we crawled for each website
was limited to 1000 pages. Table 2 shows the number of pages crawled at each
click-depth. Click depth of 2 contains all the pages at depth zero, one and two
inclusively. We will use this convention throughout the paper.

Table 2. Number of pages crawled at each click-depth

Depth Number of Pages Avg. Page Size (In KB)

Click-depth 0 125 24.9

Click-depth 1 5322 99.05

Click-depth 2 34981 127.91

The structural properties of the websites were captured by crawling the in-
ternal links of each website with valid HTML server response up to a depth of
ten. The HTML pages themselves were not saved but the URLs pertaining to
external and internal links at each depth were recorded to extract the structural
properties. We only expanded the internal links and marked the external links as
a new external link or previously appeared external link. We crawled an internal
link only once. If an internal link appears more than once, we mark them as
already visited.
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4 Features Used for Classification

4.1 Features Based on Words

Words provide useful cues as to which category a particular website belongs.
Analyzing the websites with human eye, we can see that websites in franchise
categories mostly contain words such as order, pay, success, and testimonials.
Private websites mostly contain terms like doctor, clinic, physician and other
common medical terms. Public websites mostly contain the keyword govern-
ment and non-profit ones often have words like donate, voluntary. Some of the
non-profit organization list themselves as being a not-for-profit organization in
their about page. There are many variations of the keyword non-profit expressed
as “not for profit”, “non profit” or even “not-for-profit”.We combined these vari-
ations as a single entity: nonprofit, using a regular expression.

We followed the bag-of-words approach and extracted word unigrams from
HTML documents. We used a HTML parser1 to extract the text from the body
and title of the document. Words from meta-keywords and meta-description
tags were then added to the list of unigrams. We then extracted the word-stem
for each unigram and represented the word stem in a feature vector using the
TF-IDF metric. Since we were dealing with a collection of web pages within a
website, we followed a slightly different definition of TF-IDF to normalize the
term frequency within a website.

tfidf(t,W) =
tf

P
× log

(
N

DF

)
(1)

In equation 1, tfidf(t,W) gives the TF-IDF measure of a term t for the website
W. tf is the term frequency of the word t i.e. the number of times t occurs in W.
P is total number of web pages in W where term t occurs. DF is the document
frequency of t with respect to the websites i.e. the number of websites in the
dataset in which the term t occurred. N represents the total number of websites
in the dataset. We discarded any term whose document frequency (DF ) is less
than three.

4.2 Part-of-Speech and Named Entity Based Features

Part-of-speech provides useful information about the structure of a sentence
which can be helpful in capturing the notion of the categories. It has been shown
to be useful for text classification where sentences are well formed. However, cap-
turing POS tags from HTML documents can be a bit tricky as HTML documents
can mostly contain words as opposed to sentences. In order to extract POS tags
from HTML documents, we processed the document to extract groups of text
which contain a sentence boundary, (i.e. the symbols “.” , “?” and “!”). We only
extracted those sentences which contained more than two words and removed

1 http://lxml.de/

http://lxml.de/
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the anchor tags <a> along with any formatting tags <b>, <i> from the sen-
tences. We used NLTK’s default tagger to tag the sentences with the simplified
tagset 2 and extracted POS-bigrams from each sentence. We used the frequency
of each POS-bigram as a feature.

Besides POS tags, several text patterns can help to identify the category
of a website. Franchises often indicate price of an item that is being sold in
their website. We used a regular expression to extract the patterns of price that
is indicated in dollar amount and used the frequency of price patterns in the
feature set.

In many cases, franchises also have more than two branches. In order to cap-
ture this notion, we extracted the postal addresses from the HTML page. We
looked for those URLs that are present in the home page and contain the word
stem “about”, “contact”, “locat”, and “map” in the anchor text. We then used
a geo extractor 3 that uses a regular expression based method [13] to extract the
postal addresses. We used the total number of unique addresses and the number
of different provinces as features based on address.

Some organizations often repeat their name many times in their website which
can provide useful hint about the category of the website. We extracted organi-
zation names from sentences using NLTK’s named entity tagger and counted the
occurrence of each organization name. We then picked the organization name
with highest frequency and used its frequency and occurrence per page as a
feature. We also added the total number of unique organization names and the
number of organization names per page to the feature set.

4.3 Link Structure and URL-Based Features

Amitay et al. [10] and Lindemann et al [11, 12] have analyzed many structural
features that are useful to classify the websites into functional categories. We
used 8 URL features and 8 link structure based features from [10–12]. URL
features were extracted from a collection of URLs obtained during the depth-
crawl of the website. The URL features included average number of digits in the
path, number of sub-domains encountered during the crawling of website depth,
average path length, average number of slashes in the path, fraction of PDF/PS,
HTML and script files, and number of unique file types obtained by analyzing
the file extension from the URL.

Link structures are mainly based on the external (a link pointing to a page
outside the website) and internal links (a link pointing to any other page within
the website) and the depth at which these links were found. The structural
features included from [10–12] were average external depth, average internal
depth, maximum depth of the website, average depth, total number of unique
URLs, fraction of links at the densest depth, average size of the crawled pages
in KB, and fraction of the files having javascript in it.

2 http://www.nltk.org/
3 http://www.folkarts.ca/geo/

http://www.nltk.org/
http://www.folkarts.ca/geo/
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We added more features which were mostly based on click-depth level. We
counted the external links, internal links, and outdegree at each depth and cal-
culated the maximum internal links, maximum external links and maximum out-
degree occurring at any click-depth. We also computed average external links per
depth, average internal links per depth and average outdegree per depth. Fur-
thermore, we created four bins for each depth d indicating the counts of external,
internal, repeated internal, and repeated external links at that depth. During the
crawling phase, we noticed that some of the private websites had very few in-
ternal links at a shallow depth. On the other hand, some of the public websites
contained many internal links at a shallow depth and the size of the website
rapidly grew along with the depth. By assigning count bins at each depth we
intended to capture this property. We also created three bins for the maximum
depth of the websites indicating the depth value between 0-5, 6-10 and > 10.
We assigned a value of zero or one to each bin depending upon whether or not
the maximum depth of the websites falls under the range.

In Canada, many government websites have the domain name of the format
.gov and .gc.ca. In order to capture the essence of top-level domain (TLD) names,
we created binary features based on the various patterns of top-level domain
names present in the dataset. Our dataset consisted of 7 different patterns of
domain names including .org, .com, .ca, .net, .gov, .province.ca (where .province
can be any Canadian province in its short form) and .gc.ca. We combined .gc.ca,
.gov as a single pattern representing government and used a total of six binary
features based on the occurrence of the various TLD patterns.

5 Experiments

We used a SVM based one-vs-all BR method [20] to perform multi-label classifi-
cation. As is the case with one-vs-all approach, we built 4 binary classifiers, one
for each class label, and assigned a class label to the website if the prediction of
the classifier is positive. All the experiments were performed in a stratified 10-
fold cross-validation setting. We created the folds only once and used the same
set of folds throughout the experiment for consistency.

We used the RBF (Radial Basis Function) as the kernel for SVM and per-
formed a grid search to select the best values for the parameters γ and C. We
searched for the best values of γ and C by maximizing the F-measure in a 5-fold
cross validation setting. One of the training folds was used for grid search to
obtain the value of γ and C, and the same value of γ and C was used for the
rest of the folds in the 10-fold cross-validation setting. LibSVM [14] was used for
grid search and SVM based classification.

5.1 Feature Selection

Feature selection is an important step in classification and helps to improve
the performance by selecting the most informative features. We performed two
steps of feature selection based on document frequency and information gain.
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Table 3. Number of features extracted at each click-depth

Feature click-depth 0 click-depth 1 click-depth 2

BOW 1221 7876 31923

POS-Bigram 248 307 320

Structure 90 90 90

First, we discarded any features having document frequency less than 3. We then
followed the ALA (All Labeled Assignment) [15] based document transformation
approach and calculated the Information Gain (IG) to select the features by
ranking. For a website with multiple labels, the ALA approach requires having
duplicate rows of the website each indicating one of the labels in the set of
feature vectors used for classification. Throughout this research, we measured
the information gain only from the training fold in the 10-fold cross validation
setting. Features were ranked by information gain and the top x% of the features
were selected for classification, where the value of x ranges from 10 to 100. The
information gain was calculated using the implementation of Weka [19].

We also analyzed how the number of features at each click-depth of the web-
site affects the classification performance. Table 3 shows the number of features
per click-depth. We can see that the number of features based on bag-of-words
(BOW) greatly increases along with the click-depth. On the other hand, num-
bers of POS-bigrams are not much affected. As we deal with structural features
separately, the number of features based on structure remains the same.

Figure 1 shows the performance of bag-of-words at each depth and at various
thresholds of information gain. We can see that bag-of-words has the least per-
formance at depth 0. Upon analyzing the websites, we found that the index page
of the website seldom contains important words which are able to classify the
website into the non-topical categories. Lack of words like “non-profit” which
mostly occur in the “About” page at a click depth of one supports this fact. At
depth 1, the highest micro f-measure attained by bag-of-words is 0.65, at an IG
threshold of 70%. At depth 2, it performs best with a micro f-measure of 0.70 at
an IG threshold of 60%. Although depth 2 has the higher micro f-measure, we
notice that at 60% IG threshold, bag-of-words require 19153 features at depth
2 whereas depth 1 utilizes 5513 features. This clearly suggests the addition of
noise at depth 2. Due to the large number of features, the training time of the
classifier is also more than that of depth 1.

5.2 Classification by Various Feature Types

We deal with three types of features: bag-of-words, POS-bigram and named
entity distribution, and structural properties which provide three different views
of the website. Bag-of-words represent the explicit information provided by the
website, POS-bigram and named entity distribution capture the patterns in text
and link structure and URL properties give important information about the
structure of the website. For each of these views, we created separate feature
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Fig. 1. Micro F-measure for bag-of-words at each click-depth. X-axis denotes top x%
of features when ranked by Information Gain where x is between 10 and 100.

vector to classify the websites. Table 4 shows the performance of these features
at a depth of zero, one and two. As structural properties were crawled separately,
they are not related to the number of pages crawled at each depth and has
been reported separately without the depth information. Table 4 also shows the
information gain threshold at which each set of features perform at its best.
Along with the best performance of each set of features, we also include bag-
of-words with all the features (at an IG threshold of 100%) to compare the
performance gained by selecting important features by IG ranking. Bag-of-words
with a threshold on IG seemed to collect the most informative features and as a
result performed well out of the three sets of features; however we should note
that it also has the largest number of features compared to our non-bag-of-word
features. The best performance of POS bigram and named entities require the
use of all of their feature at a depth of zero and one, and 90% of their feature at
depth two. At depth one and two, the performance of POS bigram and named
entities is comparable to that of structural features. Using only the top 30% of
their features, structural features attained a micro and macro f-measure of 0.55.

Table 5 shows some of the top features along with their information gain. We
could not provide the full list of features due to the space constraints; nonetheless
the list gives the informative strength of each set of features. The list corrobo-
rates the fact that explicit words on the website provide the most informative
features. Words like “voluntary”, “donate”, “nonprofit” are good indicators of
a website belonging to the non-profit category, whereas “testimonials”, “llc”,
“inc” are good indicators for private and franchise. Keywords “ministry”, “gov-
ernment” help to identify websites from the public category. Bag-of-words has
the highest value of information gain which is also the reason behind its good
performance in classification. Table 5 also shows that the features related to POS
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Table 4. Precision, Recall along with Micro and Macro F-measures at each click-depth

Public Private Non-Profit Franchise F-measure

Depth Features IG P R P R P R P R Micro Macro

zero
BOW 100% 0.67 0.53 0.68 0.48 0.46 0.37 0.71 0.62 0.57 0.56

POS Bigram NE 100% 0.64 0.41 0.56 0.34 0.33 0.18 0.62 0.37 0.42 0.41

one
BOW 70% 0.67 0.53 0.73 0.57 0.69 0.5 0.86 0.71 0.65 0.65
BOW 100% 0.66 0.46 0.75 0.61 0.63 0.37 0.89 0.75 0.64 0.62

POS Bigram NE 100% 0.67 0.53 0.51 0.59 0.42 0.37 0.54 0.57 0.53 0.52

two
BOW 60% 0.66 0.65 0.63 0.75 0.72 0.56 0.73 0.86 0.70 0.69
BOW 100% 0.76 0.53 0.62 0.63 0.56 0.28 0.82 0.71 0.62 0.59

POS Bigram NE 90% 0.58 0.55 0.55 0.69 0.45 0.28 0.53 0.46 0.53 0.50

- Structrue 30% 0.56 0.51 0.54 0.67 0.57 0.59 0.55 0.42 0.55 0.55

Table 5. Features ranked by Information Gain

Bag-of-words POS Bigram + NE Structure

volunt 0.318 [ADV PRO] 0.048 Fraction of PDF/PS files 0.155
committe 0.224 [DET ADV] 0.046 Max. external links per level 0.068
collabora 0.222 [TO P] 0.043 Repeated internal links at depth 5 0.061

... ... ...
ministri 0.203 [VG ADJ] 0.032 Tot. internal links at depth 5 0.059
fund 0.193 [VG PRO] 0.027 Repeated internal links at depth 6 0.056
donor 0.186 [EX ADJ] 0.023 Max.depth between 0 to 5 0.056
donat 0.150 Price Count 0.023 Tot. external links at depth 6 0.055
govern 0.147 [N NP] 0.022 Avg. digit in domain path 0.049
... ... ...

nonprofit 0.137 [VG WH] 0.018 Number of file types 0.043
community-bas 0.121 Province Count 0.015 Tot. external links at depth 4 0.039

llc 0.046 [ADJ NP] 0.014 Tot. internal links at depth 3 0.032
testimoni 0.036 Address count 0.010 Avg. outdegree per level 0.031
inc 0.023 Org. name count 0.010 Domain with .gov extension 0.011
... ... ...

bigram are more informative than the patterns captured from named entities. It
also confirms that structural features comprising of internal and external links
and related statistics at a depth level are good measures for classification. Pub-
lic websites generally have many pages at a shallow depth, while most private
websites have only a few pages at shallow depths. Also, the maximum depth of a
website is a good indicator of a government website (at large depth) and a small
private clinic (at small depth).

5.3 Combining Classifiers

As three different sets of features provide different perspective about the website,
we try to capture the notion of all three views by combining the individual
classifiers built on each view. Kittler et al. [16] show several ways to combine
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classifiers. We measured the probabilistic output from SVM using Platt’s method
[17, 18] and used the sum rule to combine the classifiers based on the three feature
types. There are 3 classifier predictions (one from each view) for each website
sample. For every sample, we summed up the confidence measure of the classifier
based on each feature type for every positive prediction. We then only picked
the positive predictions where the sum of confidence measure was more than
the best performing threshold of 0.65, which was obtained by trying different
threshold values in the range of 0.1 to 1.0 at a step of 0.1. Algorithm 1 shows
each step of the process.

Alg. 1. Algorithm used to combine the classifiers in a multi-label setting

1 for each label, l do
2 for each website,w, in test do
3 sum[w ] := 0
4 for each independent feature set,f do
5 build a classifier,C, using f,l
6 for each website,w, in test do
7 [prediction,confidence] = Classify(w,C )
8 if prediction == 1.0
9 add confidence to sum[w ]
10 for each website,w, in test do
11 if sum[w ] > 0.65
12 assign label l to w

Table 6 shows the classification result of the combined classifier based on
bag-of-words, POS tags and named entities, and structural properties. While
combining these classifiers, we choose the IG threshold for each view of feature
based on the highest performance of the classifier in terms of micro f-measure
as shown in Table 4. For instance, at depth of three we choose classifiers with
IG threshold 60%, 90% and 30% for bag-of-words, POS bigrams+Named En-
tity, and structural property respectively and combine them with the sum rule.
Table 6 shows that the combined classifiers performed significantly better than
bag-of-words alone at depths of zero and one. The results also show that the
performance of the combined classifier at depth 1 is greater than that of bag-
of-words at depth 2 and similar to the combined classifier at depth 2. This tells
us that collecting words from deeper depth of a website may not be of much
help. Moreover, the classifier at depth 1 requires significantly less time to train
because the number of features based on bag-of-words is much less than that
of depth 2. The performance of the combined classifier at depth 0, although
better than bag-of-words alone at depth 0, is the least of all three depths. This
indicates that important words available at some shallow depth greater than
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Table 6. Result of combining the classifiers using the sum-rule

Depth Features Micro F Macro F

zero
BOW (IG=100%) 0.57 0.56

Combined 0.66 0.65

one
BOW (IG=100%) 0.64 0.62
BOW (IG=70%) 0.65 0.65
Combined 0.73 0.73

two
BOW (IG=100%) 0.62 0.59
BOW (IG=60%) 0.70 0.69
Combined 0.73 0.74

zero play an important role in the classification. This also shows that words are
important features for non-topical classification and augmenting it with struc-
tural properties and POS bigrams and named entities improves the classification.

6 Conclusion

We showed that structural, part-of-speech and named entity based features help
to improve the classification performance when combined with the bag-of-words
approach. We analyzed performance of each type of feature at various depths
of the website. As the number of words increased with the depth of the web-
site, there was a slight increase in performance of bag-of-words from depth 1 to
depth 2, at a cost of significant training and crawling time. We achieved similar
performance using words from depth of 1, which takes significantly less amount
of time for crawling and training the classifier, combined with structural and
part-of-speech based features. The performance of bag-of-words increased sig-
nificantly from depth of 0 to depth 1 showing that index pages at depth zero
seldom contain informative word based features to categorize public, private,
non-profit and franchise. The non-topical features comprising of part-of-speech,
named entity and structural features boosted the performance of bag-of-words
at all three depths of zero, one and two. However, the classification performance
was the least at depth 0, which showed that words are important features even
for non-topical classification. We selected features using the ALA based infor-
mation gain and combined the most powerful classifiers of each feature-type by
sum-rule to achieve 8% gain on micro and macro f-measure at depth of 1.

As topical (bag-of-words) and non-topical (POS bigram and named entity,
structural property) features provide different views for the website, combining
both of them is extremely helpful. Future work for non-topical website classifica-
tion might involve trying various ways to combine the classifiers based on these
independent views such that performance can be further improved.
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Abstract. Cross-document knowledge discovery is dedicated to exploring mea-
ningful (but maybe unapparent) information from a large volume of textual da-
ta. The sparsity and high dimensionality of text data present great challenges for 
representing the semantics of natural language. Our previously introduced Con-
cept Chain Queries (CCQ) was specifically designed to discover semantic rela-
tionships between two concepts across documents where relationships found 
reveal semantic paths linking two concepts across multiple text units. However, 
answering such queries only employed the Bag of Words (BOW) representation 
in our previous solution, and therefore terms not appearing in the text literally 
are not taken into consideration. Explicit Semantic Analysis (ESA) is a novel 
method proposed to represent the meaning of texts in a higher dimensional 
space of concepts which are derived from large-scale human built repositories 
such as Wikipedia. In this paper, we propose to integrate the ESA technique  
into our query processing, which is capable of using vast knowledge from Wi-
kipedia to complement existing information from text corpus and alleviate the 
limitations resulted from the BOW representation. The experiments demon-
strate the search quality has been greatly improved when incorporating ESA  
into answering CCQ, compared with using a BOW-based approach. 

Keywords: Knowledge Discovery, Semantic Relatedness, Cross-Document 
Knowledge Discovery, Document Representation. 

1 Introduction 

Text is the most traditional method for information recording and knowledge repre-
sentation. Text mining focuses on mining high-quality information from mass text. 
The widely used text representation is based on the Bag of Words (BOW) model 
which represents text as a collection of words, however, this representation is limited 
to the terms appearing in the text literally, which could lead to great semantic loss 
because terms that are closely related to each other will be viewed as completely irre-
levant unless they are both mentioned in the text. Our previous work [1] introduced a 
special case of text mining focusing on detecting semantic relationships between two 
concepts across documents, which we refer to as Concept Chain Queries (CCQ). A 
concept chain query involving concepts A and B has the following meaning: find the 
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most plausible relationship between concept A and concept B assuming that one or 
more instances of both concepts occur in the corpus, but not necessarily in the same 
document. For example, both may be football lovers, but mentioned in different doc-
uments.  The previous solution used the BOW model for text representation, i.e., 
relationships between important terms that do not co-appear literally in the text are 
neglected, and thus could not contribute to the generation of the links. For instance, 
“Albert Gore” is closely related to “George W. Bush” since two men together pro-
duced the most controversial presidential election in 2000, which was the only time in 
American history that the Supreme Court has determined the outcome of a presiden-
tial election. However, “Albert Gore” will not be taken into account if it does not 
occur in the document collection where the concept chain queries are performed on. 

In our BOW based approach for answering concept chain queries [1], the weight of 
each term was measured by its *TF IDF  based value in the document collection. In 
this work, we propose to further improve the model by incorporating the Explicit 
Semantic Analysis (ESA) technique [3]. Basically, ESA maps a given text or a term 
to a conceptual vector space which is spanned by all Wikipedia articles, and thus 
more background knowledge can be integrated into semantic representation of each 
term, which is able to help overcome the shortcomings resulted from the BOW repre-
sentation. We also attempt to identify only the most relevant concepts generated from 
ESA for semantic relatedness computation. To achieve this goal, we further develop a 
sequence of heuristic steps for noise removal. Therefore, our method will not bring as 
much noise as [3] does. To validate the proposed techniques, a significant amount of 
queries covering different scenarios were conducted to show that we could rank those 
most relevant concepts to the given topics in the top positions. 

Our contribution of this effort can be summarized as follows. First, compared with 
the solution using a BOW based approach, the proposed technique is able to provide a 
much more comprehensive knowledge repository to support various queries and ef-
fectively complements existing knowledge contained in text corpus. Second, we fur-
ther improve the ESA technique by providing a sequence of heuristic strategies to 
clean the interpretation vector which we observe contains a fair amount of noise and 
is not precise enough to represent the contextual clues related to topics of interest. 
Third, to the best of our knowledge, little work has been done to consider ESA as an 
effective aid in cross-document knowledge discovery. In this work, built on the tradi-
tional BOW text representation for content analysis, we successfully integrate ESA 
into the discovery process to help measure the semantic relatedness between concepts. 
We envision this integration would also benefit other related tasks such as question 
answering and cross–document summarization. Last, the approach presented here is 
able to boost concepts that are most closely related to the topics to higher rankings, 
compared to the widely used TF-IDF based ranking scheme. 

The remainder of this paper is organized as follows: Section 2 describes the related 
work. Section 3 briefly introduces how concept chain queries work. In Section 4, we 
discuss the ESA model in detail and present our method to integrate the ESA ap-
proach into concept chain queries. Experimental results are presented and analysed in 
Section 5, and is followed by the conclusion and future work given in Section 6. 
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2 Related Work 

There has been work on discovering connections between concepts across documents 
using social network graphs, where nodes represent documents and links represent 
connections (typically URL links) between documents. However, much of the work 
on social network analysis has focused on special problems, such as detecting com-
munities [7] [12]. Our previous work [1] introduced Concept Chain Queries (CCQ), a 
special case of text mining focusing on detecting cross-document links between con-
cepts in general document collections (without hyperlinks). This was motivated by 
Srinivsan’s closed text mining algorithm which was built within the discovery frame-
work established by Swanson and Smalheiser [4]. Specifically, the solution proposed 
attempted to generate concept chains based on the “Bag of Words” (BOW) represen-
tation and extended the technique in [2] by considering multiple levels of interesting 
concepts instead of just one level as in the original method. Each document in [1] was 
represented as a vector containing all the words appearing in the relevant text snippets 
in the corpus but did not take any auxiliary knowledge into consideration, whereas in 
this new solution, in addition to content analysis, we further examine the potential of 
integrating the Explicit Semantic Analysis (ESA) technique to better serve this task 
which effectively incorporates more comprehensive knowledge from Wikipedia. Re-
lated works attempting to overcome the limitations of BOW approach and integrate 
the background knowledge into text representation have also been reported in catego-
rization and knowledge discovery applications. For example, WordNet was utilized in 
[6] to improve the BOW text representation and Scott et al [8] proposed a new repre-
sentation of text based on WordNet hypernyms. These WordNet-based approaches 
were shown to alleviate the problems of BOW model but are subject to relatively 
limited coverage of Wordnet compared to Wikipedia, the world’s largest knowledge 
base to date. Gabrilovich et al [5] applied machine learning techniques to Wikipedia 
and proposed a new method to enrich document representation from this huge know-
ledge repository. Specifically, they built a feature generator to identify most relevant 
Wikipedia articles for each document, and then used concepts corresponding to these 
articles to create new features. The experimental evaluation showed great improve-
ments across a diverse collection of datasets. However, with the process of feature 
generation so complicated, a considerable computational effort is required. 

In terms of improving semantic relatedness computation using Wikipedia, Gabrilo-
vich et al also [3] presented a novel method, Explicit Semantic Analysis (ESA), for 
fine-grained semantic representation of unrestricted natural language texts. Using this 
approach, the meaning of any text can be represented as a weighted vector of Wikipe-
dia-based concepts (articles), called an interpretation vector [3]. [3] also discussed the 
problem of possibly containing noise concepts in the vector, especially for text frag-
ments containing multi-word phrases (e.g., multi-word names like George Bush). Our 
proposed solution is motivated by this work and to tackle the above problem we fur-
ther develop a sequence of heuristic strategies to filter out irrelevant concepts and 
clean the vector. Another interesting work is an application of ESA in a cross-lingual 
information retrieval setting to allow retrieval across languages [9]. In that effort the 
authors performed article selection to filter out those irrelevant Wikipedia articles 
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(concepts). However, we observe the selection process resulted in the loss of many 
dimensions in the following mapping process, whereas in our proposed approach, the 
process of article selection is postponed until two semantic profiles have been merged 
so that the semantic loss could be possibly reduced to the minimum. 

3 Concept Chain Queries 

As described earlier, concept chain query (CCQ) is attempting to detect links between 
two concepts (e.g., two person names) across documents. A concept chain query in-
volving concept A and concept B intends to find the best path linking concept A to 
concept B. The paths found stand for potential conceptual connections between them. 

3.1 Semantic Profile for Topic Representation 

A semantic profile is essentially a set of concepts that together represent the corres-
ponding topic. To further differentiate between the concepts, semantic type (ontologi-
cal information) is employed in profile generation. Table 1 illustrates part of semantic 
type - concept mappings. Thus each profile is defined as a vector composed of a 
number of semantic types. 

 1 2( ) { , ,..., }nprofile T ST ST ST=  (1) 

Where iST  represents a semantic type to which the concepts appearing in the topic-

related text snippets belong. We used sentence as window size to measure relevance 
of appearing concepts to the topic term. Under this representation each semantic type 
is again referred to as an additional level of vector composed of a number of terms 
that belong to this semantic type. 

 ,1 1 ,2 2 ,{ , ,..., }i i i i n nST w m w m w m=  (2) 

Where jm represents a concept belonging to semantic type iST , and ,i jw represents its 

weight under the context of iST and sentence level closeness. When generating the 

profile we replace each semantic type in (1) with (2). 
In (2), to compute the weight of each concept, we employ a variation of *TF IDF  

weighting scheme and then normalize the weights: 

 , , ,/ ( )i j i j i lw s highest s=  (3) 

Where 1,2,...,l r= and there are totally r concepts for iST , , , * ( / )i j i j js df Log N df= , 

where N  is the number of sentences in the collection, jdf  is the number of sentences 

concept jm occurs, and ,i jdf  is the number of sentences in which topicT and  con-

cept jm co-occur and jm belongs to semantic type iST . By using the above three 

formulae we can build the corresponding profile representing any given topic. 
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Table 1. Semantic Type - Concept Mapping 

Semantic Type Instances 
Religion Islam, Muslim
Human Action attack, killing, covert action, international 

terrorism 
Leader vice president, chief, governor
Country Iraq, Afghanistan, Pakistan, Kuwait 
Infrastructure World Trade Centre
Diplomatic Building consulate, pentagon, UAE Embassy 

3.2 Concept Chain Generation 

We adapt Srinivasan’s closed discovery algorithm [2] to build concept chains for any 
two given topics. Each concept chain generated reveals a plausible path from concept 
A to concept C (suppose A and C are two given topics of interest). The algorithm of 
generating concept chains connecting A to C is composed of the following three 
steps. 

1. Conduct independent searches for A and C. Build the A and C profiles. Call these 
profiles AP and CP respectively. 

2. Compute a B profile (BP) composed of terms in common between AP and CP. The 
weight of a concept in BP is the sum of its weights in AP and CP. This is the first 
level of intermediate potential concepts. 

3. Expand the concept chain using the created BP profile together with the topics to 
build additional levels of intermediate concept lists which (i) connect the topics to 
each concept in BP profile in the sentence level within each semantic type, and (ii) 
also normalize and rank them (as detailed in section 3.1). 

4 Utilizing Wikipedia Knowledge in Concept Chain Queries 

Wikipedia is currently the largest human-built repository in the world. In this effort, 
we are attempting to improve our query model through integrating the Explicit  
Semantic Analysis (ESA) [3] technique that uses the space of Wikipedia articles  
to compute semantic relatedness between texts. In ESA, each term is represented  
by a vector storing the term’s association strengths to Wikipedia articles and each  
text fragment is mapped to a weighted vector of Wikipedia concepts called an inter-
pretation vector. Therefore, computing semantic relatedness between any two text 
fragments is naturally transformed into computing the Cosine similarity between in-
terpretation vectors of two texts. 

4.1 Document Representation with ESA 

In ESA, each article in Wikipedia is treated as a Wikipedia concept (the title of an 
article is used as a representative concept to represent the article content), and each 
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document given is represented by an interpretation vector containing related Wikipe-
dia concepts (articles) with regard to this document. Formally, a document d can be 
represented as follows: 

 1( ) ( , ),..., ( , )nd as d a as d aφ =< >  (4) 

Where ( , )ias d a  denotes the association strength between document d  and Wiki-

pedia article ia . Suppose d is spanned by all words appearing in it, 

i.e., 1 2, ,..., jd w w w=< > , and the association strength ( , )ias d a  is computed by the 

following function: 

 ( , ) ( ) ( )
i

j

i d j a j
w d

as d a tf w tf idf w
∈

=    (5) 

Where ( )d jtf w  is the occurrence frequency of word jw  in document d , and 

( )
ia jtf idf w is the tf idf value of word jw  in Wikipedia article ia . As a result, the 

vector for a document is represented by a list of real values indicating the association 
strength of a given document with respect to Wikipedia articles. By using efficient 
indexing strategies such as single-pass in memory indexing, the computational cost of 
building these vectors can be reduced to within 200-300 ms. In concept chain queries, 
the topic input is always a single concept (a single term or phrase), and thus equation 
(5) can be simplified as below as ( )d jtf w  always equals to 1: 

 ( , ) ( )
i

j

i a j
w d

as d a tf idf w
∈

=    (6) 

4.2 Interpretation Vector Cleaning 

As discussed above, the original ESA method is subject to the noise concepts intro-
duced, especially when dealing with multi-word phases. For example, when the input 
is “George Bush”, the generated interpretation vector will contain a fair amount of 
noise concepts such as “That’s My Bush”, which is actually an American comedy 
television series. This Wikipedia concept (article) is selected and ranked in the second 
place in the list because “Bush” occurs many times in the article “That’s My Bush”, 
but obviously this article is irrelevant to the given topic “George Bush”. 

In order to make the interpretation vector more precise and relevant to the topic, 
we have developed a sequence of heuristics to clean the vector. Basically, we use a 
modified Levenshtein Distance algorithm to measure the relevance of the given topic 
to each Wikipedia concept generated in the interpretation vector. Instead of using 
allowable edit operations of a single character to measure the similarity between two 
strings as in the original Levenshtein Distance algorithm, we view a single word as a  
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Fig. 1. The Interpretation Vector Cleaning Procedure 

unit for edit operations, and thus the adapted algorithm can be used to compute the 
similarity between any two text snippets. The heuristic steps used to remove noise 
concepts are illustrated in Figure 1.  

4.3 Integrating ESA into Concept Chain Queries 

Given the advantages of using ESA as a semantic representation method, we integrate 
the kernel of ESA into our concept chain queries, aiming to improve search quality. 
Specifically, we build interpretation vectors for both of the two given topics as well as 
each intermediate concept in the merged BP profile, and then apply the cleaning  
procedure on these vectors to remove noise concepts. Finally, we compute Cosine 
similarities between interpretation vectors for the topics and each concept in the BP 
profile. The new model of answering concept chain queries is illustrated in Figure 2. 

A combination of techniques of BOW representation and ESA method is consi-
dered in this new solution, and therefore two types of ranking schemes are integrated 
as follows. 

TF*IDF-Based Similarity. As the most widely used document representation, the 
BOW representation has demonstrated its advantages. It is simple to compute and 
strictly sticking to the terms occurring in the document, thereby preventing outside 
noise concepts that do not appear in the document from flowing into the feature space 
of the representation. Given these benefits, a variation of *TF IDF weighting scheme 
under the context of BOW representation and semantic types (detailed in Section 3.1) 
is incorporated into our final ranking where a sentence window is employed to  
further filter the noise that may incur. We call this kind of similarity TF*IDF-based 
similarity. 
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Fig. 2. The new model of answering concept chain queries 

ESA-Based Similarity. Unlike the BOW model, ESA makes use of the knowledge 
outside the documents themselves to compute semantic relatedness. It well compen-
sates for the semantic loss resulted from the BOW technique. The relatedness between 
two concepts in ESA is computed using their corresponding interpretation vectors 
containing related concepts derived from Wikipedia. In the context of concept chain 
queries, we compute the Cosine similarity between interpretation vectors of topic A 
and each concept iV in the intermediate BP profile, as well as between topic C and 

each concept iV , and take the average of two Cosine similarities as the overall similar-

ity for each concept iV  in BP. We call this kind of similarity ESA-based Similarity. 
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Integrating TF*IDF-Based Similarity and ESA-Based Similarity into the Final 
Ranking. The TF*IDF-based similarity and ESA-based similarity are finally linearly 
combined to form a final ranking for concepts generated in the intermediate profiles: 

 (1 )overall TFIDF ESAS S Sλ λ= + −  (7) 

Where λ  is a tuning parameter that can be adjusted based on the preference on the 
two similarity schemes in the experiments. TFIDFS  refers to the TF*IDF-based simi-

larity and ESAS  the ESA-based similarity. 

5 Empirical Evaluation 

We performed our evaluation using the 9/11 counterterrorism corpus. The Wikipedia 
snapshot used in the experiments was dumped on April 05, 2011. 

5.1 Processing Wikipedia Dumps 

As an open source project, the entire content of Wikipedia is easily obtainable. All the 
information from Wikipedia is available in the form of database dumps that are re-
leased periodically, from several days to several weeks apart. The version used in this 
work was released on April 05, 2011, which was separated into 15 compressed XML 
files and totally occupies 29.5 GB after decompression, containing articles, templates, 
image descriptions, and primary meta-pages. We leveraged MWDumper [13] to im-
port the XML dumps into our MediaWiki database, and after the parsing process, we 
identified 5,553,542 articles. 

5.2 Evaluation Data 

We performed concept chain queries on the 9/11 counterterrorism corpus. This in-
volves processing a large open source document collection pertaining to the 9/11 
attack, including the publicly available 9/11 commission report. The report consists of 
Executive Summary, Preface, 13 chapters, Appendix and Notes. Each of them was 
considered as a separate document resulting in 337 documents. The whole collection 
was processed using Semantex [11] and concepts were extracted and selected as 
shown in Table 1. The evaluation data generated includes 1,346 chains of length 1, 
6,709 chains of length 2, 6,036 chains of length 3, and 400 chains of length 4. 

5.3 Experimental Results 

Parameter Settings. As mentioned in Section 4.3, we use a combination of TF*IDF-
based similarity and ESA-based similarity to rank the links detected by our system. λ 
in Equation 7 is a parameter that needs to be tuned so that similarities between  
concepts best match the judgements from our assessors. To accomplish this, we first 
built a set of training data composed of 10 query pairs randomly selected from the 
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evaluation set, and then generated B profiles for each of them using our proposed 
method. Among each B profile, we selected the top 5 concepts (links) within each 
semantic type, and compared their rankings with the assessors’ judgements. The value 
of λ was tuned in the range of [0.1, 1] and the best performance was obtained when λ 
was set to 0.2. 

Query Results. The effectiveness of our approach is measured by precision and recall 
of the concept chains the system generated. Table 2 makes a comparison between the 
searching results of concept chain queries using a BOW-based approach (CCQ-BOW) 
and concept chain queries with ESA integrated (CCQ-BOW-ESA). In Table 2, SN 
means we only keep the top N concepts within each semantic type in the searching 
results and LN indicates the resulting chains of length N. The entries of Table 2 stand 
for the precision and recall values (P for precision, while R for recall). 

Table 2. Searching Results of Top N Concepts 

 CCQ-BOW/CCQ-BOW-ESA 
S1 S2 S5 S10 S20 S30 

L1 P 0.664/0.710 0.659/0.686 0.656/0.663 0.664/0.672 0.662/0.675 0.668/0.674 
R 0.340/0.339 0.474/0.474 0.627/0.643 0.767/0.782 0.848/0.878 0.902/0.918 

L2 P 0.741/0.762 0.733/0.755 0.714/0.749 0.714/0.744 0.709/0.742 0.710/0.784 
R 0.269/0.285 0.390/0.410 0.547/0.591 0 660/0.720 0.746/0.825 0.784/0.866 

L3 P 0.754/0.769 0.745/0.765 0.723/0.761 0.721/0.754 0.716/0.751 0.716/0.748 
R 0.261/0.279 0.380/0.403 0.538/0.585 0.649/0.713 0.734/0.819 0.771/0.860 

L4 P 0.261/0.432 0.296/0.369 0.578/0.693 0.252/0.286 0.261/0.279 0.260/0.268 
R 0.233/0.340 0.450/0.480 0.670/0.700 0.630/0.810 0.940/0.940 0.970/0.970 

Table 3. Searching Results of Query Pair "Abdel Rahman :: Blind Sheikh" 

BP Term Semantic 
Type 

Term Rank 
CCQ-BOW CCQ-BOW-ESA 

P=5 P=10 P=20 P=5 P=10 P=20 
Islamic Group Corporation 4 4 4 2 2 2 
Saudi Arabia Country 3 3 3 1 1 1 
CIA Government - 7 7 3 3 3 
President 
Clinton 

Man - 9 9 - 8 8 

Jihad Organization - - - - - 15 
Khifa Refugee 
Center 

Organization - 7 7 - 7 7 

Omar Abdel 
Rahman 

Man 1 1 1 1 1 1 

Terrorist Person - 10 10 2 2 2 
Islamist Religion - 9 9 3 3 3 
Abdullah Man - - 11 - 7 7 
Muslim Religion 4 4 4 2 2 2 
Government Government - 8 8 2 2 2 
Bin Ladin Person 3 3 3 2 2 2 
Attack Human Action 3 3 3 2 2 2 

 
Table 3 shows an example of the improvement of concept rankings of key BP 

terms by integrating ESA into answering concept chain queries. The terms in this 
table were produced by running a query: “Abdel Rahman” and “Blind Sheikh”. P=5 



388 P. Yan and W. Jin 

means we keep the top 5 concepts within each semantic type of BP. Each entry is the 
ranking position of the corresponding key concept in BP. The entry value “-” means 
the concept cannot be found in the results. It is obvious that for most of the key BP 
terms, the ranks are boosted. The concepts in Table 3 are strongly related to Abdel 
Rahman who is also known as “The Blind Sheikh”. For instance, Abdel Rahman was 
a blind Egyptian Muslim leader and accused of being the leader of “The Islamic 
Group” which is considered as a terrorist organization by the United States govern-
ment. Therefore, the concepts “Islamic Group”, “Islamist”, “Muslim” and “Terrorist” 
typically characterize his identity. 

 

 

Fig. 3. Result of Chains of 
Length 1 

 

Fig. 4. Result of Chains of 
Length 2 

 

Fig. 5. Result of Chains of 
Length 3 

We further use F measure−  to interpret the query results as a weighted average 
of the precision and recall. Figures 3 through 5 compare the searching results graphi-
cally between concept chain queries with BOW (CCQ-BOW) and concept chain que-
ries with ESA integrated (CCQ-BOW-ESA) in terms of how the integrated solution 
would improve the query model for chains of different lengths. The X-axis indicates 
the number of concepts kept in each semantic type in the searching results ( NS means 

we keep the top N), while the Y-axis indicates the F-score. We can see that the 
achieved F-score continues to rise as we increase the number of top concepts kept in 
the search results, and the most significant upward trend was observed when the 
number of top concepts kept increases from 1 and 5. It is also obvious that our new 
model consistently achieves better performances for different lengths than the solu-
tion based on a BOW approach. 

6 Conclusion and Future Work 

This paper proposes a new solution for improving cross-document knowledge discov-
ery through our previously introduced concept chain queries, which focus on detect-
ing semantic relationships between topics across documents where revealed semantic 
paths may lead to early discovery of hypotheses. In this effort, we propose a hybrid 
approach that integrates Wikipedia knowledge into the traditional BOW model, which 
complements existing knowledge in text corpus and further improves search quality. 
We present experiments that demonstrate the effectiveness of this new approach. 
Specifically, the key terms representing significant relationships between topics are 
greatly boosted, compared with the method using the *TF IDF  ranking scheme. 
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Future direction includes exploration of other potential resources provided by Wi-
kipedia to further improve query processing, such as categories that relevant Wiki 
articles belong to and the underlying category hierarchy. These valuable information 
resources may be combined with our defined semantic types to further contribute to 
ontology modeling. As a cross language knowledge base, we also plan to combine 
Wiki knowledge in a cross-lingual setting to better serve different query purposes. 
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Abstract. Everyday business users face the tracking of the origin of informa-
tion used in calculations and business decisions. Knowing the origin and li-
neage of data can help in the decision making process, provide a clear audit trail 
for regulation, and answer key questions such as: who, what, where, when, 
why, and how. In the case of tracking data lineage, many issues and challenges 
arise in trying to track and support a heterogeneous enterprise environment.  
This paper presents one method of tackling data lineage to answer the questions 
needed for business users, for both new and old applications in a heterogeneous 
infrastructure environment. Using trace logs from data sources, we show how 
our system performs by effectively tracking data lineage and determining data 
flows of information as it moves from one data source to another through the 
execution of applications. Utilizing SQL and NoSQL systems, we demonstrate 
the recall and precision of our proposed data lineage tracking system.   

Keywords: Lineage, Data, Data Lineage, Meta-data Management, Data Flow. 

1 Introduction 

1.1 What Is Data Lineage 

The fluidity of information flows from all points within a company and passes 
through systems and subsystems. Applications consume and export data and may or 
may not modify the data. Data can eventually become an aggregate of several other 
data points. Data may eventually be stored in one or more locations and can reside in 
databases, documents, spreadsheets, or even emails. Along the way, the origination 
point of data, its lineage information (who, what, where, when, why, and how) is 
obscured, may contain gaps, or may be lost.  Data lineage is meta-data that captures 
information about the history and provenance of data, which is critical to answering 
key business questions such as:  

• Who created, who modified, which business process touched, and what modifica-
tions were introduced into the data? 

• What were the previous values of the data and why were modifications made? 
• Were there any elements of uncertainty introduced into the data? 
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1.2 Why Is Data Lineage Important and Our Motivation 

Many analysts, consultants, managers and business users have limited time and li-
mited resources to answer questions concerning calculations and the origins of in-
formation. Highly trafficked documents and databases contain a plethora of data. 
With the copious amounts of data come errors, omissions, and modifications through 
its lifetime. Tracking down information concerning the lifecycle of data values can 
take time as conversations and emails pass rapidly between people, it can be prone to 
errors due to interactions as individuals endeavor to meet deadlines to answer ques-
tions (e.g. what is the origin and accuracy of the data). Integrating a tool to answer 
many of these questions can reduce efforts involved and decrease the time to resolve 
these issues. The lineage of data can be imperative for businesses such as financial 
institutions that must abide by governmental regulations, such as Basel II [1] and the 
Sarbanes-Oxley Act [2] as enforced by the Federal Reserve [3] and the U.S. Securi-
ties and Exchange Commission (SEC) [4]. Such regulations require knowledge of 
the life and timeline of data and institutions must provide proof to the veracity and 
authenticity of information within a timely manner (i.e. section 409 of the Sarbanes-
Oxley Act [2]). 

Our motivation is to develop a differentiated technology asset that can effectively 
capture lineage, manage meta-data, track and produce data flows, infer reasoning for 
changes, perform anomaly detection, and report rich data lineage information across 
heterogeneous platforms and applications. The utilization of the captured information 
would be in the service of key enterprise activities such as producing shorter decision-
making cycles, enabling more efficient and cost-effective compliance and audit 
cycles, enhancing data loss prevention (especially in data aggregation situations), 
allowing for finer grain access control, and enriching data analytics. The current aim 
is to integrate our approach with the creation of a data lineage infrastructure that pro-
vides lineage tracking and reference capabilities. In addition, we look to integrate 
common business user applications and tools with the support of an omnipresent 
back-end tracking capable infrastructure.     

1.3 Previous Work and Goals 

Research has been performed to trace data lineage and data flow [5] [6] in the scope 
of a data warehouse environment. Data lineage has also been examined in the context 
of file systems [7]. Previous research has proposed new ways of tracking information 
and bringing to light the pitfalls of tracing data lineage on a large scale. This includes 
looking at lineage as a set of probabilities [8]. However, much of the research has led 
to limited implementation in the enterprise environment or the concepts in general 
have had limited domain use. Despite the importance of data lineage, major software 
producers have seen limited manifestations in their business intelligence platforms 
[9]. The implementations that exist work well in a homogenous environment (e.g. 
IBM [10], Oracle [11]), but are lacking when it comes to a heterogeneous environ-
ment and is limited to the content contained within change logs. It is often too coarse 
for many enterprise activities.   
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In order to fully track lineage, a solution must be able to handle data as it flows 
from one system to another, be it between like or unalike systems such as an RDBMS 
systems (e.g. Microsoft SQL Server [12], MySQL [13], Oracle[11]) or NoSQL  
database systems (e.g. Apache Cassandra [14]).  Furthermore, a solution must con-
ceptualize data as it flows from one data source to another, via an application as that 
application may or may not change the data along its path (e.g. Microsoft Excel  
[15], etc.).   

Our goal is to create a tool that can effectively track and produce data flows with 
high precision as traces increase in size and complexity while producing results in a 
timely manner. This paper introduces our framework for tracking data lineage. We lay 
the foundation from the perspective of the user interface, describe the architecture and 
algorithm, experimental setup, evaluation of results, and finally this paper finishes 
with a conclusion of our findings.  

2 Application User Interface 

In order for full utilization of the system, our web interface provides administration 
configuration functionality for adding: assets, resources, and applications. Assets are 
analogous to the server or computer on which a data source of interest may reside. 
Resources are analogous to the actual data source of interest. Applications refer to 
programs that perform manipulations and retrieval of data from the data sources. As-
sets and resources are required as a part of the setup and configuration, whereas appli-
cations are optional. Each resource resides on an asset, contains a data source name, a 
login, a password, the SQL dialect, and type of lineage modality to utilize for track-
ing. In the case of a monitor modality choice, a user must also provide the location of 
the trace logs as well as the frequency of polling. If the available assets are unknown, 
the data lineage tool has auto-discover capabilities.   

A user may configure an application, although it is not required. A registered ap-
plication provides the ability to enrich discovered data lineage with reasons for opera-
tions. Application registration provides additional information when operating in the 
monitor modality as acquisition of information performs after-the-fact. 

While an administrator can configure the tool, our real goal is to empower the 
business user with information to execute their job.  In a scenario where a business 
user may open a document and distress over numbers presented before them, integra-
tion of our tool into a browser or other software allows for easy utilization. Through 
tool integration, acquisition of information concerning any values executes quickly 
with reduced effort required to contact people. The data lineage tool allows for inte-
gration with a myriad of external business user tools using a web service interface.  
The data lineage tool integrates using the web configuration interface with Microsoft 
Excel (Fig. 1(a)) and Microsoft Word, for example. The integration with external 
tools such as the Microsoft Office suite also allows the common business user to track 
data and embeds data persistent lineage information within documents. 

A unique feature of the tool integration is the ability to monitor and detect anoma-
lies. When a value is determined to be a certain degree different from previous  
values (e.g. in the case of a numeric value a rule may be added to the system in its 
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configuration where an anomaly is detected if the current and previous value differ by 
20%), it is highlighted (shown in the right pane in Fig. 1(a)) in light red in order to 
alert a user. This provides a starting point for an individual to investigate problems 
that may exist within a system.  The anomaly detection capability is based on rules 
that are provided to the data lineage platform.  In the future, we look to integrate 
previous work in the detection of data quality rules [16] for automatic anomaly  
detection.  

The data lineage tool provides information of a value at the table level; however, 
the discovered data flow can enrich the experience by illustrating how the data arrived 
at its current value as it passed from one database to another through applications (see 
Fig. 1(b)). The data lineage tool is able to track data flow not only within a database, 
but also across multiple databases.  Additionally, we have integrated our anomaly 
detection mechanism with the enterprise social platform “Jive” [17] with email alerts, 
discussion groups, user notification, conversation tagging, and tracking of events to 
spur discussion and awareness of data issues. 

3 Architecture 

In order to accommodate both new and existing assets within an enterprise environ-
ment, a multiple modal architecture is necessary which is minimally invasive with a 
mediation mode and a monitor mode. Existing assets and their owners may be unwil-
ling or unable to modify aspects of their assets to utilize a data lineage system, as 
opposed to newly created systems in development, where modifications are easier to 
integrate into the main development trunk or a branch.     

The overall architecture (see Fig. 2) consists of: a mediation mode interface for 
new assets; a monitoring mode interface that polls existing assets; a web service inter-
face for integration of external tools (e.g. configuration tool, Microsoft Word, Micro-
soft Excel, etc.); and the core data lineage engine connected to the repository engine.  
The different operation modes, mediation and monitor, allow the system to provide 
different levels of granularity of captured lineage information in addition to the con-
nectivity options for a given asset type (new or existing). The data lineage tool furth-
ers our goal of providing lineage at the table or local level while for a global enhanced 
view we provide data flow discovery capabilities. For our proof of concept, we initial-
ly support data lineage for Microsoft SQL Server and My SQL data sources; however, 
in theory the data source types are not a limiting factor.  

3.1 Mediation and Monitor Modalities 

The mediation mode interface, primarily for newly developed assets, transfers calls 
through a web service and in-turn routes them to their intended destination. This al-
lows the lineage tool to acquire the data as well as glean additional statistics of the 
operation such as alias information, source operating system information, invocation 
information, source machine name, IP information, etc. This mode allows for  
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enrichment of additional meta-data information for the association with an action for 
later retrieval and provides the context of data.   

The monitor modality is another mechanism by which the tool tracks data lineage, 
with minimal impact on existing enterprise assets. The monitor modality operates by 
polling a data source, retrieving information concerning all queries executing on a 
resource, processes captured trace entries, and stores them for later retrieval. While in 
monitor mode, the polling rate for each resource can differ. Furthermore, the system 
only captures the traces with subsequent timestamps from the previous capture or 
polling event.  

3.2 The Data Lineage Tool: The Lineage Engine, the Repository Engine, Data 
Lineage Tracking, and Data Flow Discovery 

The Lineage Engine 
The Lineage Engine consists of several modules: the mediation layer, the monitor 
layer, the driver layer, and the external access layer. The mediation and monitor  

 
(a) (b) 

Fig. 1. (a) The lineage tool integration with Microsoft Excel; (b) The value flow graph as 
seen from Excel 

 

Fig. 2. System Architecture 
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layers are for the mediation and monitor modalities, respectively. The external  
access layer provides access and services for the integration of external tools and 
applications. 

Contained within the driver layer are several sub modules: the configuration mod-
ule, the asset module, the graph-flow discovery module, the inference module, and the 
parser module.   

The configuration module provides a mechanism for registration of assets, re-
sources, and applications.  In addition, this module acts as a bridge for all settings 
between all other modules and layers.   

The asset module keeps track of all assets and resources.  It serves to maintain the 
connections for all assets and the resources that reside on them.  The asset module is 
also in charge of maintaining and formatting the data lineage information.  Not only 
does the asset module track registered assets and resource, but it also provides a me-
chanism for the tracking of the lineage utilizing the repository engine.   

The graph-flow discovery module discovers data flows that exist within tracked 
data lineage.  This module does this by clustering and discovering patterns in the 
SQL traces.   

The inference module determines the reasoning of actions, why was an action tak-
en and how. This module knows the “why” of information concerning asset, resource, 
and application actions based on information registered at configuration time of the 
data lineage tool.  Asset, resource, and application information that the system cap-
tures from trace entries are utilized to search for previously provided knowledge and 
on the discovered asset, resource, and application combinations.  In future work, it 
will also determine any manipulations that may have occurred to data as it passes 
through databases and applications.  

The parser module integrates the known grammar sets used to interpret the SQL 
traces. Each resource type may have its own dialect and language; therefore, the pars-
er module automatically determines which grammar to use and breaks down the SQL 
traces into actionable objects that have gone through interpretation.  The interpreta-
tions are associated with the related actions of previous SQL traces within the assets 
module. After linking the actionable SQL traces to each other the result transfers to 
the repository engine for storage and later retrieval in data linage and data flow dis-
covery requests. 

The Repository Engine 
The repository engine houses all of the data traces transformed into a data lineage 
friendly format. The repository engine is compatible with both SQL and NoSQL sto-
rage formats (MS SQL and Apache Cassandra respectively). The backend engine is 
swappable with either, although performance may vary depending on the configura-
tion. SQL repository engine support is included for those environments that may be 
wary of untried technologies and may prefer technical support. Integration with a 
SQL database engine offers reliability and support; however, it may encounter some 
speed issues. In an SQL environment configuration for lineage tracking is more cum-
bersome and associations of related lineage traces can be complex. Apache  
Cassandra integration is included for its organization qualities. Apache Cassandra 



396 C. Puri et al. 

integration offers fewer schema constraints, which lend to easier and quicker setup. 
Additionally, Apache Cassandra provides super column families and keys that allow 
for increased ease of linking lineage traces.  However, despite the existence of the 
Cassandra Query Language (CQL), one to one conversions of SQL to CQL state-
ments may not exist and make it difficult to run some queries and performance can 
degrade in some cases.  Cassandra also lacks services that the traditional data stores, 
such as auto incrementing, would otherwise make organization easier to prevent dup-
lications. Integration of both standard a SQL and NoSQL demonstrates the flexibility 
of the data lineage tool. 

Local Data Lineage Tracking 
Our system is flexible in its configuration and utilizes a My SQL server, Microsoft 
SQL server, or Apache Cassandra system for storage.  It can monitor a My SQL or 
Microsoft SQL server on the front end.  To this end, capturing and discovering li-
neage is a two-step process beginning with capturing information at the local table 
level as described in this section.   

The lineage information is stored using a backlog trace system as described in [18] 
with some modifications to suit our particular lineage needs. Our backlog trace algo-
rithm gathers information and keeps track of the differences, groups of tuples that 
reference each other, SQL trace statistics, origination information, timestamp of li-
neage creation, timestamp of the SQL trace command, unique identifiers for each 
trace, a dirty flag or liveliness indicator, and finally the actual SQL command.   

The following example illustrates a backlog trace implementation.  The example 
is a simplification for ease of readability and excludes some captured meta-data and 
statistics. Table 1 illustrates a typical aggregate view of data in a database. Table 2 
illustrates an aggregate view of data in the same typical database after a series of op-
erations.  Without data lineage tracking, it is unclear what exactly has occurred.  At 
first glance, the aggregate shows two records underwent modification with an update 
(the user “Alice” has a different age of “25” and the user name “Carlos” appears to 
have been changed to “Dan”).  Analyzing the change in the records, it becomes un-
clear as to who made modifications, the command order, what type of commands 
were issued, if an update was executed on the effected records, or were other opera-
tions issued to arrive at the same view. 

The backlog trace compensates and captures the information that is lost in aggrega-
tion of trace entries.  Furthermore, all commands are linked to related commands.  
An injection of the original data executes and inserts information so that subsequent 
manipulations on records within the database are linked.  Table 3 shows the initial 
bootstrap of data as a series of inserts. 

Following an update and insert command, “UPDATE users SET age=25 WHERE 
userid=1” and “INSERT INTO users VALUES (1,’Dan’, 30)”, the backlog trace is 
transformed. The data lineage tool will perform an insertion of any command that 
manipulates any existing data and link it to the last command that performed any 
manipulation. The tool performs a query on the backlog trace to find all records af-
fected by the command, which is an update command in this case, and then links  
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them.  After finding all related commands, the new command is inserted and has its 
“Reference” column set to the unique id value of a previous command (as is the case 
with an “UPDATE”).  In the case of an “INSERT” command, the tool inserts a new 
entry in the backlog trace table.  When using Apache Cassandra, a key groups and 
relates commands.    

Further illustrating the backlog trace example, Table 4 shows the effect of a 
“DELETE” and an “UPDATE” command.  On a replay of events, this sequence of 
commands produce the result in Table 2 and demonstrates that without a backlog 
trace it is unclear as to the sequence of events that led to the final view.  This is criti-
cal for producing the data lineage trace at the table level.   

Global Data Flow Discovery  
With tracking available at the level of a table, extraction at the global view must now 
occur.  Our algorithm then focuses on the following problem: given a linked set of 
backlog trace entries from multiple databases, can it discover the data lineage flow for 
a set of SQL commands that contribute to an instance of existing values across 
multiple backlog trace entries. This problem is challenging for several reasons. Often 
the trace log entries for a database do not specify data lineage flows but rather only 
the SQL command, timestamp, and application issuing the particular command.  
Secondly, the trace entries may be noisy, or disjointed, due to missing entries or  
 

 

Table 1. Table from a database (table 
“users”), an initial aggregate view 

 

Table 2. Final view of the “users” table 
after all issued commands.  Deleted records 
are not shown.  An aggregate view does 
show the loss of lineage information. 

UserId Name Age 
1 Alice 10 

2 Bob 20 

3 Carlos 30 
 

UserId Name Age 
1 Alice 25 

2 Bob 20 

3 Dan 30 

Table 3. List of initial SQL traces placed in the backlog trace creating initial aggregated 
view of the database table with a Apache Cassandra backend 

Key UID SQL Command App UserId Name Age Reference Alive 

1 1 INSERT INTO 

users VALUES 

(1, ‘Alice’, 10) 

Create 

User 

1 ‘Alice’ ‘10’ 0 1 

2 2 INSERT INTO 

users VALUES 

(1, ‘Bob’, 20) 

Create 

User 

2 ‘Bob’ ‘20’ 0 1 

3 3 INSERT INTO 

users VALUES 

(1, ‘Carlos’, 

30) 

Create 

User 

3 ‘Carlos’ ‘30’ 0 1 
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Table 4. Example backlog trace after a delete and a final update is issued 

Key UID SQL Command App UserId Name Age Reference Alive 

1 1 INSERT INTO users 

VALUES (1, ‘Alice’, 10) 

Create 

User 

1 ‘Alice’ ‘10’ 0 1 

 4 UPDATE users SET 

Age=25 WHERE use-

rid=1 

Audit 

User 

-- -- ‘25’ 1 1 

2 2 INSERT INTO users 

VALUES (1, ‘Bob’, 20) 

Create 

User 

2 ‘Bob’ ‘20’ 0 1 

3 3 INSERT INTO users 

VALUES (1, ‘Carlos’, 

30) 

Create 

User 

3 ‘Carlos’ ‘30’ 0 0 

 6 DELETE FROM users 

WHERE id=3 

Audit 

User 

-- -- -- 3 0 

4 5 INSERT INTO users 

VALUES (1, ‘Dan’, 30) 

Create 

User 

4 ‘Dan’ ‘30’ 0 1 

 7 UPDATE users SET 

userid=3 WHERE use-

rid=4 

Audit 

Users 

3 -- -- 5 1 

 
inadvertent modification from runtime issues.  Finally, the algorithm should be able 
to scale itself with large trace log sizes. 

We address the challenges by developing a statistic-based data mining approach 
that discovers the sequence of traces that an application typically performs (e.g. se-
lect, insert, update, delete, etc.). To discover the sequences for applications, the algo-
rithm makes use of the following observation: an application executes a sequence of 
commands repeatedly with consistent time intervals between commands.  Specifical-
ly, our algorithm performs the following steps:   

1. For each application, the system gathers the trace log commands issued. 
2. For each application, the system clusters similar trace log entries that relate accord-

ing to the tables that are affected and attributes involved. For example, the state-
ments “SELECT name FROM employee WHERE id=3” and “SELECT name 
FROM employee WHERE id=5” are clustered together because the command 
type, table name, and attribute name are identical.   

3. For every pair of command type clusters, the algorithm measures the variability of 
the temporal difference between trace entries in the two clusters.  Given two 
command clusters, c1 and c2, the algorithm identifies the mappings of traces be-
tween them.  If a command-timestamp pair, (s1, t1), is mapped to another com-
mand-timestamp pair, (s2, t2), (where s1 and s2 are trace entry commands from c1 
and c2, and t1 and t2 are timestamps for the corresponding trace entries) then the 
mappings should satisfy the following conditions:  

─ There does not exist an s1
’ in c1 such that | t1’- t2| < | t1- t2|, where s1

’ is any com-
mand in the first cluster and t1’ is the timestamp for s1

’.   
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─ There does not exist an s2
’ in c2 such that | t1’- t2| < | t1- t2|, where s2

’ is any com-
mand in the first cluster and t2’ is the timestamp for s2

’.   

Once the mappings are identified, our algorithm calculates the entropy of the tempor-
al differences (for example, t1-t2) to measure the consistency of the temporal differ-

ences. Specifically, the entropy is defined in equation (1) where  , N is total 

number of values in the list,  and  is the total number of values that are k. ∑ 0 log                              (1) 

If the temporal difference varies significantly, the entropy score will be high and 
the algorithm discards them.  The algorithm proceeds to construct a cluster chain, 
C = {c1, c2, …, cn}, of low entropies which corresponds to a sequence of trace en-
tries that an application typically performs.  

The algorithm is robust and can detect data flows in low signal-to-noise situations 
with the use of statistics and the frequency of information.  The algorithm has a time 
complexity of  where “n” is the total number of traces entries and “k” is the 
average number of type of trace entries per application.  Fig. 3 illustrates an example. 

4 Experimental Setup and Evaluation of Results 

In this section, we present our evaluation of the data flow algorithm. Specifically, we 
first evaluate the system’s accuracy by comparing the flow structure produced by the 
system to that of a gold standard.  We also evaluate the system in the presence of 
noisy input and evaluate the scalability of the data flow algorithm under varying trace 
log entry sizes.   

4.1 Experimental Setup 

To evaluate the data lineage tool proof of concept, we generated synthetic data with a 
simulator that models heterogeneous environments.  Our simulator defines the num-
ber of applications, databases, tables, and the attributes. 

The simulator defines command sequence templates that an application should per-
form repeatedly.  A template S has the form of ((c1,0), (c2, t2) …, (cn,tn)) where ci 
defines an abstract structure of a command such as “SELECT name FROM table1 
WHERE id=<VALUE>” where ti represents the mean temporal difference between ci-

1 and ci.  A timestamp for the first command of a template is chosen at random.  We 
also define a noise probability parameter p, which indicates that a command deletion 
occurs or that an additional command insertion occurs with the same probability at 
each timestamp. 

The algorithm creates two outputs: flow structure, and command sequence.  The 
flow structure defines which applications issue which SQL statements to particular 
database tables denoted by tuple (A,S,T) where A is the application name, S is the  
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1  2 ·  ·                             (4) 

For each noise probability measure, we repeat the evaluation 10 times and report the 
average of the 10 repetitions. 

4.2 Evaluation: Performance 

The F1-Score performance evaluation measures the accuracy of our system given a 
trace log with increasing sizes of 102, 103, 104, 105, and 106.  Our results reflect mea-
surements for robustness at increasing noise levels of 0%, 10%, 20%, and 30%. At the 
smallest trace log size, the data flow F1-Score values range 0.63 and 0.83, while at 
larger trace log sizes it ranges between 0.95 and 1.  The command sequence F1-
Scores trend similarly (see Fig. 4, graphs a and b, for systems accuracy as the trace 
log size increases).  This confirms our hypothesis that the system can make accurate 
decisions with sufficient and logs of increasing size.  Furthermore, the figures dem-
onstrate the robustness to noise due to the statistical nature of our algorithm.   
 
 

  

(a) (b) 

  

(c) (d) 

Fig. 4. (a) F1-Score for data flow; (b) F1-Score for command sequences; (c) Scalability of the 
Data Lineage Tool as dataset size increases; (d) Linear scaling as command sequence com-
plexity increases 
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4.3 Evaluation: Scalability 

The evaluation of scalability takes into consideration the total size of a given trace log 
as well as the average number of commands executed per application.   

Fig. 4 (graphs c and d) show the linear runtime of our data flow discovery algo-
rithm. As we increase the parameters for the trace log size and noise levels, the run-
time increases as expected in a linear fashion. This confirms our hypothesis that our 
algorithm can reliably handle increasing sizes of trace logs.   

5 Conclusion 

Our motivation was to create a proof of concept tool that could track data lineage and 
generate data flows effectively and efficiently on a heterogeneous environment. What 
is of key importance is the ability to scale and deliver in a timely manner as the data-
set increases. We have shown that our data flow detection improves as the number of 
records increase and is very robust to noise. This means that data traces may be lost 
up to 30% of the original data and a reasonable data flow generation still occurs. 
While the number of commands for several applications can affect accuracy, increas-
ing the dataset size can mitigate this effect due to the frequency analysis of the infor-
mation. Our results show that the execution time of our tool scales linearly to the 
number of records and to the number of commands per application. 

We are able to capture high-level patterns by clustering trace log entries and disco-
vering temporal relationships between clusters. As a result, our tool is able to accu-
rately discover flow and sequence structures, is robust to noise, and scales to the size 
of data. 
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Abstract. Data Warehouses (DWs) are the core of enterprise sensitive data, 
which makes protecting confidentiality in DWs a critical task. Published research 
and best practice guides state that encryption is the best way to achieve this and 
maintain high performance. However, although encryption algorithms strongly 
fulfill their security purpose, we demonstrate that they introduce massive storage 
space and response time overheads, which mostly result in unacceptable securi-
ty-performance tradeoffs, compromising their feasibility in DW environments. In 
this paper, we enumerate state-of-the-art data masking and encryption solutions 
and discuss the issues involving their use from a data warehousing perspective. 
Experimental evaluations using the TPC-H decision support benchmark and a 
real-world sales DW support our remarks, implemented in Oracle 11g and  
Microsoft SQL Server 2008. We conclude that the development of alternate so-
lutions specifically tailored for DWs that are able to balance security with  
performance still remains a challenge and an open research issue. 

Keywords: Data masking, Encryption, Data security, Confidentiality, Database 
Performance, Data Warehousing.  

1 Introduction 

Data Warehouses (DWs) store the secrets of the business and are used to produce 
business knowledge, which makes them a major target for attackers [4, 7, 20]. As the 
number and complexity of attacks increase, efficiently securing the confidentiality of 
DWs is critical [15, 18, 23]. To accomplish this, data masking and encryption solu-
tions are widely used. Although data masking routines are simpler than encryption 
routines, they provide lower security strength. Moreover, data masking routines pro-
vided by most commercial tools typically change data in an irreversible manner, i.e., 
after masking data it not possible to subsequently retrieve the original true values, 
making them useless for real live DW databases. This has made masking solutions the 
main choice for protecting published data or production data, instead of real-live da-
tabases [5, 8, 11, 12, 16, 20, 21]. Published research and best practice guides have 
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stated that encryption is the best method to protect sensitive data at the database level 
while maintaining high database performance [3, 7, 8, 11, 12, 13, 14, 18, 23]. 

Despite their security strength, encryption techniques introduce performance key 
costs from a data warehousing point of view: 

• Large processing time/resources for encrypting sensitive data, given routine or 
hardware access in very large databases such as those in DWs; 

• Extra storage space of encrypted data. Since DWs usually have many millions or 
billions of rows, even a small modification of any column size to accommodate en-
crypted output introduces large storage space overheads; 

• Overhead query response time and allocated resources for decrypting data to 
process queries. Given the huge amount of data typically accessed by DW queries, 
this is probably the most significant drawback in DWs [3]. 

The two main features that differentiate one confidentiality solution from the other are 
its security strength and its execution speed and efficiency. Given the specificity of 
DW environments, we believe there are specific performance issues to evaluate and 
discuss, regarding the use of encryption solutions. This is the foundation of this re-
search work. We present the state-of-the-art solutions for protecting stored data confi-
dentiality and evaluate their feasibility from a data warehousing perspective. It is not 
within the scope of this paper to discuss the scientific merit or soundness of the secu-
rity strength of each technique, but rather to evaluate their impact on database per-
formance and applicability in data warehousing environments. 

Thus, in this paper we analyze and discuss the technical issues involving the im-
plementation of the available state-of-the-art data confidentiality solutions, and use 
storage space and query response time as measures for evaluating performance in 
both loading and querying DW data. To support our remarks and claims, we include 
experimental evaluations using the TPC-H decision support benchmark [17] and a 
real-world sales DW, implemented in two leading commercial DataBase Management 
Systems (DBMS), such as Oracle 11g and Microsoft SQL Server 2008.  

The main contributions of our work are as follows: 

• We enumerate and describe the current state-of-the-art techniques for protecting 
stored data and discuss their application from a data warehousing perspective; 

• We present the results of several experimental evaluations using two leading com-
mercial DBMS and one leading open-source DBMS on a well-known benchmark 
(TPC-H) and a real-world DW, analyzing the impact in database performance due 
to using encryption techniques for protecting data confidentiality; 

• The issues discussed and the results from our experimental evaluations allow us to 
state that currently available encryption solutions are not suitable for most DWs. 
Our work shows that the development solutions specifically tailored for DWs that 
are able to present better tradeoffs in balancing security strength with database per-
formance remains a challenge and a relevant research issue. 

The remainder of the paper is structured as follows. In section 2, we describe state-of-
the-art data masking and encryption solutions for databases and discuss their issues 
from the DW perspective. Section 3 provides experimental evaluations of those solu-
tions using the well-known TPC-H decision support benchmark and a real-world sales 
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DW implemented in two leading commercial DBMS. In section 4 we point out re-
search challenges and opportunities regarding specific confidentiality solutions for 
DWs, from the lessons learned. Finally, section 5 presents our conclusions. 

2 State-of-the-Art Data Confidentiality 

2.1 Data Masking Solutions 

An extensive survey on data masking is given in [16]. Many organizations have 
strived to solve confidentiality issues with hand-crafted solutions within the enterprise 
to solve the problem of sharing sensitive information. The most common solution is 
probably to use scripts with triggers in order to mask and unmask each value, or to 
embed the masking/unmasking logic within the user applications themselves.  

Many commercial data masking packages have also been developed, such as the 
Oracle Data Masking (ODM) pack [11, 12], protecting data by replacing real values 
with realist-looking data with the same type and characteristics as the original data. 
Once applied, the ODM masking process is irreversible. Oracle states ODM is to be 
used as a fast and easy way to generate production databases for supporting outsourc-
ing and software application development. It can also be used to mask Microsoft SQL 
Server and DB2 databases for the same purpose. ODM requires new data to be loaded 
into the database first, and only applies the masking procedures afterwards. It is not 
possible to load previously masked data; masking in ODM is an a posteriori process. 
Most commercial data masking solutions work in a similar fashion as ODM. 

Recently, research has proposed non-deterministic methods for masking data, such 
as perturbation techniques [4, 14, 19]. The work in [4] proposes a solution based on 
data perturbation techniques and explains data reconstruction for responding to que-
ries, in a DW environment. Recent similar work proposed data anonymization solu-
tions relying on perturbation or differential techniques [14] and [19]. 

2.2 Data Encryption Algorithms 

Typical encryption algorithms include executing bit shifting and exclusive Or (XOR) 
operations within a predefined number of rounds. These operations rely on a key, 
which influences the “data mix” output of each round. There are mainly two types of 
encryption techniques: Block Ciphers and Stream Ciphers. 

A block cipher is a type of symmetric-key encryption algorithm that transforms a 
fixed-length block of plaintext (unencrypted text) data into a block of ciphertext (en-
crypted text) data of the same length, under the action of a user-provided secret key. 
Decryption is performed by applying the reverse transformation to the ciphertext 
block using the same secret key. Stream ciphers take a string (the encryption key) and 
deterministically generate a set of random-seeming text (called keystream) from that 
key. That keystream is then XORed against the message to encipher. To decipher the 
text, the recipient hands the same key to the stream cipher to produce an identical 
keystream and XORs it with the ciphertext, thus retrieving the original message. 

The Data Encryption Standard (DES) became the first encryption standard [6]. 
DES is a 64 bit block cipher, which means that data is encrypted and decrypted in 64 
bit chunks, and uses a 56 bit encryption key. As an enhancement of DES, the Triple 
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DES (3DES) standard was proposed [1]. The 3DES encryption algorithm is similar to 
the original DES, but it is applied three times to increase the encryption level, using 
three different 56 bit keys. Thus, the effective key length is 168 bits. Since the algo-
rithm increases the number of cryptographic operations it needs to execute, it is a well 
known fact that the 3DES algorithm is one of the slowest block cipher methods. 

The Advanced Encryption Standard (AES) is a symmetric block cipher algo-
rithm [2]. These algorithms are the latest generation of block ciphers, and have a sig-
nificant increase in the block size, 128 bits. AES provides three approved key lengths: 
128, 192 and 256 bits. AES is considered fast and able to provide stronger encryption 
than other well-known encryption algorithms such as DES [10, 25]. Brute force attack 
(where the attacker tries all the possible key combinations to unlock the encryption) is 
the only known effective attack known against it. 

In [3] an Order Preserving Encryption Scheme (OPES) for numeric data is pro-
posed, flattening and transforming plaintext distributions onto target distributions 
defined from value-based buckets. This solution allows any comparison operation to 
be directly applied on encrypted data, such as equality and range queries, as well as 
SUM, AVG, MAX, MIN and COUNT queries. A lightweight database encryption 
scheme for column-oriented DBMS is proposed in [7]. 

The Blowfish encryption algorithm [24] is one of the most common public do-
main encryption algorithms. It is a 64 bit block cipher, allowing a variable key length. 
Each round of the algorithm consists of a key-dependent permutation and a key-and-
data-dependent substitution. All operations are based on XORs and additions on 32-
bit words. The key has a variable length (maximum of 448 bits). Though it suffers 
from weak keys problem, no attack is known to be successful against it [10]. 

More recently, the Snuffle 2005 encryption algorithm (also known as Salsa20) was 
proposed [22]. It is a stream cipher based on a hash function with a long chain of 
simple operations (32-bit additions, 32-bit XORs, and constant distance 32-bit rota-
tions), instead of a short chain of more complex operations (typical in standard en-
cryption algorithms). Salsa20 produces a 64-bit block given a key, nonce and block 
counter. Salsa20 simply works by running the hash function in counter mode, generat-
ing the keystream by hashing the key with a message based nonce and sequential 
integers (1, 2, 3, etc) appended. This solution is relatively simple when compared with 
other standard encryption algorithms and has been recognized by the cryptology re-
search community as an interesting alternative in certain contexts. 

Since we focus on discussing if current data encryption algorithms are too slow or 
not for DWs, we are not interested in discussing the security details of each algorithm, 
but rather in pointing out their generic guidelines and how their performance is af-
fected. In cryptography, an S-box (Substitution-box) is a basic component of symme-
tric key algorithms. They are typically used to obscure the relationship between the 
keys and the generated ciphertext. In general, an S-box takes a number of input bits, 
m, and transforms them into a number of output bits, n; an m×n S-box can be imple-
mented as a lookup table with 2m words of n bits each. In many cases, the S-boxes are 
carefully chosen to resist cryptanalysis. Fixed tables are normally used, as in the Data 
Encryption Standard (DES) [6], but in some ciphers the tables are generated dynami-
cally from the key; e.g. the Blowfish encryption algorithm [18].  

The argument in favor of using complicated operations such as S-boxes is that a 
single table lookup can mangle its input quite thoroughly – more thoroughly than a 
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chain of simple integer operations – in fewer rounds. This provides a large amount of 
mixing at reasonable speed on many CPUs, reaching many desired security levels 
more quickly than simple operations. The counterargument is that potential speedup is 
fairly small and is accompanied by huge slowdowns on other CPUs. On the other 
hand, simple operations such as bit additions and XORs are consistently fast, inde-
pendently from the CPU. It is also not obvious that a series of S-box lookups (even 
with rather large S-boxes, as in AES, increasing L1 cache pressure on large CPUs and 
forcing different implementation techniques for small CPUs) is generally faster than a 
comparably complex series of simpler integer operations. 

Table 1 shows the number of rounds for achieving minimum and recommended se-
curity strength, respectively, along with block size and encryption key lengths, for 
Salsa20, 3DES and AES. The performance of Salsa20 in the ENCRYPT’s test 
framework reports the speeds (in CPU cycles per encrypted byte) for encrypting a 
576-byte packet (or a long stream) on several CPUs [25] and are shown in Table 2. 
The values for the AES encryption algorithm are from [26]. 

Table 1. Encryption algorithm variables w/ performance impact 

 Salsa20 3DES AES 
Recommended nr. of rounds 20 16 14 
Minimum nr. of rounds 8 12 10 
Block size 512 bits 64 bits 128 bits 
Encryption key length 128 or 256 bits 168 bits 128 or 256 bits 

Table 2. Encryption algorithms CPU Cycles p/ Encrypted Byte 

 CPU Cycles p/Encrypted Byte 
CPU/Algorithm Salsa20 AES128
AMD64 3GHz Intel Xeon 5160 (6f6) 4.3 9.2
Intel Core 2Duo 2.1GHz (6f6) 4.3 9.2
AMD64 3GHz Intel Pentium D (f64) 11.7 16.2
Intel Pentium 4 3GHz (f41) 13.4 19.8

Other encryption solutions, such as [3], distribute data in well-defined groups to al-
low direct operations on encrypted data. However, the impact in performance pro-
duced by these solutions, in response time and storage space overhead, depends on the 
skew in the target distributions, which can be a very serious problem in DWs. There is 
no easy way around this. The proposal from [23] also suffers from the same problem. 
The lightweight encryption in column-oriented DBMS proposed in [7] aims on pro-
viding low decryption overheads. However, their experiments show at least 50% of 
response time overhead to retrieve the encrypted tuples, which is still extremely high 
for many DW scenarios, such as long running queries.  

Analyzing the features of the referred encryption solutions that influence perfor-
mance (and security tradeoff), we have found the following conclusions: 

• Specific DW encryption solutions still show large performance overheads; 
• The type and number of operations for producing the “data mix” output in each 

round of the algorithm, the length of the used encryption keys, the size of the input 
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and output blocks, and the number of rounds to execute, are all variables that affect 
both security and performance; 

• Typically, a secure encryption algorithm will execute between 8 and 20 rounds 
against 64, 128 bit (or more) sized blocks, using a 128 or 256 bit key; 

• Encryption algorithms which make use of chains of simple operations such as bit 
additions and XORs scale better and have reduced CPU dependency than solutions 
that make use of more complex operations such as S-box lookups; 

• Salsa20 seems to provide consistent speed in a wide variety of applications across 
a wide variety of platforms. It is faster and simpler than other complex approaches 
such as the standard algorithms 3DES and AES, while granting significant security 
strength. However, most commercial vendors just include AES and 3DES routines. 
The AES became a standard only after a five-year long standardization process that 
included extensive benchmarking on a variety of platforms ranging from smart 
cards to high end parallel machines. Thus, the adoption of encryption standards is 
probably only due to legal impositions and public reliability issues. 

2.3 Data Masking/Encryption Architectures 

There are mainly two types of architecture for data masking and encryption at the 
database level: 1) masking/unmasking and encryption/decryption is executed by the 
DBMS server itself directly on the database; or 2) all masking/unmasking and encryp-
tion/decryption is executed by a third party, typically an application or service acting 
as a middleware tier between user applications and the encrypted/masked database. 
The first type of architecture is typically used with built-in packages provided by 
DBMS vendors. These routines run in the DBMS kernel and are optimized to work 
against their data structures and across a large diversity of platforms. 

Major DBMS such as Microsoft SQL Server and Oracle provide standard encryp-
tion routines. Oracle has developed TDE (Transparent Data Encryption) [11, 13] in-
corporating both AES and 3DES, providing column and tablespace encryption. These 
routines can be used transparently without requiring user application source code 
modifications. As Oracle, Microsoft SQL Server also provides column and datafile 
3DES and AES encryption routines.  

When using Oracle TDE tablespace encryption, all data in the tablespace’s physi-
cal datafiles is encrypted and nearly no storage space overhead is generated. When 
using column encryption, a storage space overhead between 1 and 52 bytes per en-
crypted value is added. The generation of independently encrypted values for each 
column is done by using an optional feature (SALT) in the encryption, which implies 
adding 16 bytes of the storage space per encrypted column to each row. If NO SALT 
is used, those extra 16 bytes are saved, but all encrypted values in the column rely on 
one key only in the encryption algorithm. Tablespace encryption uses only the data-
base master key and the tablespace’s encryption key, which makes its security level 
lower than column encryption. Oracle recommends the use of tablespace encryption 
when there is no way of determining which columns are sensitive and which are not, 
or when the majority of the data in the tablespace is sensitive [8]. They state that col-
umn encryption should be preferred when a small number of well defined columns are 
sensitive. This last scenario is typical in data warehousing environments, which 
makes column encryption the recommended solution according to Oracle. However, 
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as referred before, when using TDE column encryption in DWs the storage overhead 
will be very significant. On the other hand, since DWs store business secrets, we can 
assume that most of its data is sensitive. In this sense, we may also state that TDE 
tablespace encryption should also be highly considered.  

In most enterprises, data used for analyzing business performance is mostly stored 
in numerical attributes, called facts [9]. Fact tables typically take up 90% or more of 
the DW’s total storage space [9]. Standard encryption algorithms were designed for 
general-purpose data. Thus, they were designed for encrypting blocks of text, i.e., sets 
of character-values by default. This has led DBMS to implement encryption routines 
that just output textual or binary attributes. Since most DW columns store numerical 
values, using encryption means they need to be converted to textual format. When the 
values are decrypted for query processing, they need to be converted back into numer-
ical format in order to process sums, averages, etc. Since most decision support  
queries process mathematical functions and calculus against numerical attributes, 
conversion operations are a significant and potentially critical drawback, adding com-
putational overheads with considerable performance impact. 

Topologies involving middleware solutions such as [15] typically request the en-
crypted data from the database a priori and execute the decrypting actions themselves 
locally. The proposal in [15] aims to ensure efficient query execution over encrypted 
databases, by evaluating most queries at the application server and retrieving only the 
necessary records from the database server. Only one query (Q6) of the TPC-H 
benchmark is used in their experimental evaluation, against a very small data subset 
(ranging from 10MB to 50MB, where query execution time rises up to 5 times for the 
last). This is not a realistic dataset for DWs. In a DW environment, previously trans-
porting all the required data from the database to the middleware is unreasonable, 
since the amount of data accessed for processing decision support queries is typically 
much larger than a few tens of MB. This would strangle the network due to band-
width consumption of data roundtrips between middleware and database, jeopardizing 
data throughput and consequently, response time. Thus, all encrypted data should be 
processed at the DBMS itself, eliminating network overhead from the critical path. 

In this sense, we have found the following conclusions: 

• All major DBMS provide encryption to be used transparently by user applications; 
• When using tablespace encryption, the requested data is decrypted loaded into 

RAM memory (in the database cache) as clear text, while column encryption does 
not and is thus more secure; 

• Tablespace encryption does not create significant storage space overhead, while 
column encryption does; 

• Despite well-known pros and cons, the best choice between tablespace encryption 
and column encryption isn’t obvious; 

• Leading DBMS use standard encryption algorithms AES and 3DES, producing 
alphanumeric or binary values as a result of the encryption process, even for nu-
merical-typed attributes; 

• In DWs, transporting encrypted data to third party decrypting agents would create 
unbearable communication bandwidth consumption and compromise throughput. 
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3 Experimental Evaluation 

We implemented the TPC-H decision support benchmark (TPC-H) [17] with 1GB and 
10GB scale sizes, and a real-world sales DW with 2GB of storage size. The sales DW 
has a star schema [9] with four dimension tables and one fact table (Sales). Its dimen-
sional features are shown in Table 3. Each DBMS was installed on separate machines, 
Pentium 2.8GHz CPU with a 1.5TB SATA hard disk and 2GB RAM, with 512MB of 
RAM devoted to the database memory cache (SGA). The Oracle machine ran Win-
dows XP Professional, SQL Server ran Microsoft Windows Server 2003. The TPC-H 
database schema has one fact table (LineItem) and seven dimension tables, where four 
columns of LineItem were chosen for encryption (L_Quantity, L_ExtendedPrice, 
L_Tax and L_Discount), given they are the fact columns used in the benchmarks que-
ries to analyze the business. In Sales DW, five numerical fact columns were encrypted 
(S_ShipToCost, S_Tax, S_Quantity, S_Profit, and S_SalesAmount), for the same rea-
sons. In our tests, we used the following encryption algorithms: AES with 128 bit and 
256 bit keys, and 3DES168 (which uses triple DES with a 168 bit key), provided by 
each DBMS, in both tablespace (Tab) and column (Col) encryption modes [8, 11, 13]. 
Salsa20 [22] and OPES [3] were implemented in C++ and also tested. 

Table 3. Dimensional features of the Sales Data Warehouse 

 Times Customers Products Promotions Sales 
Number  of 

Rows 
8 760 250 000 50 000 89 812 31 536 000 

Storage Size 0,12 MB 90 MB 7 MB 10 MB 1 927 MB 

3.1 Fact Table Loading Time 

Figure 1 shows the loading time overhead percentages concerning of the fact table in 
the TPC-H 1GB and Sales DW for all the tested scenarios. The results in the TPC-H 
10GB scenarios are similar to those of the TPC-H 1GB, with absolute values approx-
imately proportional (10 times bigger), and due to lack of space are not included. 

 

 

Fig. 1. TPC-H 1GB and Sales DW loading time overheads per DBMS 



412 R.J. Santos, J. Bernardino, and M. Vieira 

It can be seen that loading time overheads range from 14,8% (more 46 seconds) to 
191,6% (more 594 seconds) in Oracle 11g, from 16,5% (more 35 seconds) to 129,2% 
(more 274 seconds) in SQL Server 2008, for loading the TPC-H 1GB LineItem fact 
table (approximately 800MB of original data). The results show that most overheads 
are indeed very considerable, although tablespace encryption present better results 
than column encryption, as it would be expected. AES also has better results than 
3DES, since it has been proven a faster algorithm. OPES shows overheads of 43,6% 
and 48,7%, while Salsa20 of 70,4% and 73,3%. OPES and Salsa20 show better results 
than column encryption, but worse than tablespace encryption.  

Loading time overheads for the Sales DW fact table (approximately 1,9GB of data) 
range from 13,3% (more 159 seconds) to 209,5% (more 2512 seconds) in Oracle 11g, 
from 15,4% (more 192 seconds) to 171,1% (more 2139 seconds) in SQL Server 2008. 
As in TPC-H 1GB, the results show that most overheads are indeed very considerable, 
tablespace encryption presents the best results and column encryption the worst, AES 
also has better results than 3DES, and OPES better than Salsa20. 

3.2 Fact Table Storage Space 

Figure 2 shows storage space overhead percentages concerning the fact table in the 
TPC-H 1GB and Sales DW. As with loading time results, storage space results in the 
TPC-H 10GB scenarios are similar those of TPC-H 1GB, with absolute values ap-
proximately proportional (10 times bigger), and due to lack of space are not included.  

Since tablespace encryption affects the datafiles’ contents as a whole, it is known 
that they do not increase storage space (this is because they use a sole key for encrypt-
ing data in the entire datafile as a single entity). OPES also minimally increases sto-
rage space, with almost no overhead (ranging from 1,9% to 3,7%), while Salsa20 has 
a space storage overhead of 26,4% to 94,1%. For column encryption in the TPC-H 
1GB fact table, storage space overhead is 153,9% (more 1188MB) and 103,6% (more 
800MB) in Oracle 11g, 94,8% (more 1173MB) and 76,3% (more 994MB) in SQL 
Server 2008. Column encryption storage space overhead for the Sales DW fact table 
is 461,5% (more 7680MB) and 307,7% (more 5120MB) in Oracle 11g, 591,3% (more 
11424MB) and 389,9% (more 7532MB) in SQL Server 2008. The results show that 
storage space overheads for column encryption are very considerable. As expected, 
3DES presents better results than AES because it outputs a smaller block size. 

 

Fig. 2. TPC-H 1GB and Sales DW storage space overheads per DBMS 
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3.3 OLAP Query Execution 

For TPC-H, the test workload was benchmark’s queries 1, 3, 6, 7, 8, 10, 12, 14, 15, 
17, 19, and 20, all queries accessing the LineItem fact table. For the Sales DW, the 
workload was a set of 29 queries, all processing facts in the Sales fact table, 
representing typical decision support queries such as customer product and promotion 
sales daily, monthly and annually values, including actions such as selection, joining, 
aggregates, and ordering. All results shown in this section are the average response 
time (in seconds) values obtained from six executions (with standard deviations be-
tween [0.52, 54.65] and [0.64, 70.10] for 1GB and 10GB TPC-H, respectively, and 
[0.32, 33.11] for the Sales DW, for individual query response times). 

Figure 3 shows total query workload response time overhead percentages in the 
TPC-H 1GB and the Sales DW. The TPC-H 10GB results are similar to those of the 
TPC-H 1GB, with absolute values approximately proportional (10 times bigger), and 
due to lack of space are not included. It can be seen that for TPC-H 1GB the response 
time overheads range from 28,3% (more 177 seconds) to 203,0% (more 1271 
seconds) in Oracle 11g, from 35,2% (more 204 seconds) to 195,2% (more 1132 
seconds) in SQL Server 2008. For the Sales DW, response time overheads range from 
79,5% (more 497 seconds) to 810,5% (more 5069 seconds) in Oracle 11g, from 
82,8% (more 518 seconds) to 758,9% (more 4746 seconds) in SQL Server 2008. 

 

Fig. 3. TPC-H 1GB and Sales DW query workload response time overheads per DBMS 

The results show most overheads are extremely high, and that tablespace encryp-
tion presents much better performance than column encryption and OPES and Sal-
sa20. AES also has better results than 3DES, since it is a faster algorithm. 

3.4 Discussion and Conclusions 

Regarding the TPC-H 1GB results, notice that for TPC-H 10GB (which is ten times 
bigger), since all overheads are approximately proportional, absolute values of storage 
space, loading and response time overheads are nearly ten times bigger. This means 
that TPC-H 10GB has approximately 8GB to 12GB of increased storage space, for 
column encryption scenarios; tablespace encryption does not introduce extra storage 
space. In what concerns loading time, TPC-H 10GB can expect an extra 6 to 13 mi-
nutes to load the data in tablespace encryption, and 44 to 99 minutes for the column 
encryption scenarios. In the TPC-H 10GB column encryption, OPES and Salsa20 
setups, query workload response time rises up from 2 to 3 hours. Given that 10GB is 
actually a small size for a DW database, it is easy to conjecture that the introduced 
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overheads due to encryption in DWs are extremely significant and may in fact be 
unacceptable. Although Oracle argues that TDE will only increase response time an 
average of 5% to 10% [13], this has shown not to be true. The results show that re-
sponse time overhead is, on average, many orders of magnitude higher. The same 
occurs in SQL Server. Conclusively, the findings were the following: 

• Using encryption does in fact introduce huge storage space, data loading time and 
query response time overheads; 

• Given that decision support environments typically execute long running queries 
(i.e., queries that run for many minutes up to hours), those response time overheads 
represent high absolute values that can easily make query responses overdue and 
jeopardize the usefulness of the DW itself; 

• Storage size and data loading time overheads are also very large, mainly in column 
encryption, with implications in database availability and storage management; 

• Although security best practice recommends using column encryption in DW envi-
ronments, tablespace encryption presents better performance results. 

4 Research Challenges and Opportunities 

In a traditional DW, data is static, i.e., there is no data loading when the databases are 
available to its end users. In these environments, the main performance issue is not 
encryption, but decryption overhead for querying. Since data loading occurs in well-
defined time windows in which the database is offline, there is no impact in user 
query response time; it only affects DW maintenance time. Nevertheless, this static 
data state paradigm has been changing, with the increasing implementation of real-
time DW solutions. Thus, given the size of DWs and the amount of data typically 
processed by decision support queries, the overheads introduced by both encryption 
and decryption need to be dealt with, for the sake of their feasibility. The develop-
ment of future solutions must consider the performance of both encryption/masking 
and decryption/unmasking as critical. 

To improve CPU performance and scalability, using long chains of simple opera-
tions instead of short chains of complex operations may allow developing faster solu-
tions while being able to maintain significant security strength, as argued in Salsa20. 
The basic argument for increasing the block size of the standard 16 bytes to a higher 
size of 256 bytes, for example, is that we do not need as many cipher rounds to 
achieve the same security level. Using a larger block size should provide just as much 
mixing as the first few cipher rounds and thus, saves time. The basic counterargument 
is that a larger block size also loses time in CPU models. On most CPUs, the commu-
nication cost of sweeping through a 256-byte block is a bottleneck, because they have 
been designed for computations that do not involve so much data. However, CPU 
trends show that evolution will allow computing larger amounts of bits. Thus, future 
algorithms should take advantage of this, increasing the currently typical 128 bit 
block size. Parallel processing is also a performance booster in speed and scalability. 

Some ciphers sacrifice security strength attempting to obtain higher speed. Nowa-
days, 256 bit keys are used and considered secure, since the computational efforts in 
trying to break their security are considered nearly impracticable. However, the recent 
multi-core CPU trends indicate this key length will be rapidly surpassed as hardware 
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processing power evolves. Thus, to avoid rapidly becoming useless, at least 256 bit or 
higher key lengths should be used in the development of new solutions. Although 
higher keys should, in principle, bring worse performance, in our opinion the problem 
is not centered on the key length, but on the used block size and the algorithm itself. 

There is always a tradeoff between performance and security; research will proba-
bly lead to solutions that are better in database performance, but have less security 
strength. The main issue is to significantly decrease storage space, resource consump-
tion and response time, while maintaining substantial security strength. A possibility 
is to develop variable-based dynamic algorithms that enable the user to choose be-
tween different key lengths and block sizes, the number of encryption/masking 
rounds, and other parameters allowing DBAs and application developers to fine tune 
the security-performance tradeoff’s balance according to the specific features and 
requirements of each DW. 

5 Conclusions 

We have presented the available confidentiality solutions for databases and described 
the performance issues concerning their use in DWs. Experimental evaluations in-
cluded in state-of-the-art standards and published research show that the storage space 
and response time overheads introduced by encryption algorithms dramatically de-
grade database performance to a magnitude that jeopardizes their feasibility in data 
warehousing environments. Our experiments have also confirmed this. 

A data confidentiality solution may be useless if it assures a high level of protec-
tion, but is too slow to be considered acceptable in practice. Since database perfor-
mance is a critical issue in data warehousing scenarios, we conclude that current  
encryption solutions are not suitable for DWs. DWs function in a well-determined 
specific environment with tight security, performance and scalability requirements 
and, therefore, need specific solutions able to cope with these directives. Since there 
is always a tradeoff between security strength and performance, developing specific 
data confidentiality solutions for DWs must always balance security requirements 
with the desire for high performance, i.e., ensuring a strong level of security while 
keeping database performance acceptable. This is a critical issue and remains a chal-
lenge, which makes ground for opportunities in this domain, given the lack of specific 
solutions for data warehousing environments. 
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Abstract. In this work we focus on using Distributed Caching Platform (DCP) 
to scale out database applications and to support relational data communication 
of multiple individual query-engines in a general graph-structured SQL 
dataflow process. While the use of DCP has gained popularity lately, 
transferring query results from one query-engine to another tuple-by-tuple 
through DCP is often inefficient; this is because the granularity of cache access 
is too small, and the overhead of data conversion and interpretation is too large.  

To deal with these issues, we leverage DCP’s binary protocol and query-
engine’s buffer management to deliver query results at the storage level 
directly. We extend the database buffer pool over multiple memory nodes to 
enable low-latency access to large volumes of data, and introduce the novel 
page-feed mechanism to allow the query results of the collaborative query-
engines to be communicated as data pages (blocks), namely, the producer query 
puts its result relation as pages in the DCP to be got by the consumer query. In 
this way, data are transferred as pages directly under DCP’s binary protocol, 
where the contained tuples are exactly in the format required by the relational 
operators, and the use of pages, as mini-batches of tuples, provides the balanced 
efficiency of query processing and DCP access. Pushing relation data 
communication down to the storage (buffer pool) level from the application 
level offers significant performance gain, and is naturally consistent with the 
SQL semantics. We have implemented these specific mechanisms on a cluster 
of PostgreSQL engines. Our experiment results are documented in this paper.  

1 Introduction 

1.1 Support Graph-Structured Dataflow with Distributed Query Engines 

In-DB analytics offers the benefits of fast data access, reduced data transfer and 
SQL’s rich expressive power [2]. Since a general graph-structured dataflow cannot be 
modeled by a single tree-structured SQL query (regardless of the query runs on a 
single node DB or on a parallel DB), we model it as a process with multiple correlated 
queries which form sequential, parallel or conditional steps. A very simple dataflow 
process example for network traffic analysis is given in Fig. 1(a). It has three named 
queries Q1, Q2 and Q3, the source table of Q1 is Traffic, with schema [tid, second, 
fromIP, toIP, bytes], describing the IP-to-IP network traffic records. Q1 retrieves the 
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IP-to-IP network traffic records, converts them to minute-based, host-to-host traffic; 
the result of Q1 is forked to Q2 and Q3 for aggregation. These queries are specified as 
follows. 
 

Q1 := SELECT tid, FLOOR(time/60)::INTEGER AS minute, h1.host-id AS from-host,  

          h2.host-id AS to-host, bytes FROM Traffic, hosts h1, hosts h2  

          WHERE h1.ip = from-ip AND h2.ip = to-ip   
    Q2 := SELECT minute, from-host, to-host, SUM(bytes) FROM $Q1 GROUP BY 

minute  
Q3 := SELECT minute, from-host, to-host, SUM(bytes) FROM $Q1  

         GROUP BY from-host, to-host  
 

 

Fig. 1. (a) A SQL dataflow process with 3 queries; (b) Execute dataflow process in terms of 
multiple distributed query engines (QEs) 

One way to scale out the above SQL dataflow process is to execute the queries by 
multiple distributed query-engines. As illustrated in Fig 1(b), Traffic tuples are 
identified and hash partitioned by tid across three query-engine nodes, to be processed 
by three Q1 instances in parallel; the union of the results from all Q1 executions, 
denoted by $Q1, is sent to the query-engines running Q2 and Q3 as their input data, for 
further processing.   

In a Query-Engine Net, the efficient transfer of data among query-engines is a 
critical issue, and we investigate the use of the unified distributed cache across 
multiple server nodes, generically referred to as a Distributed Cache Platform (DCP) 
[1,5-9], for delivering query results among distributed query-engines.   

1.2 The Issues  

Refer to Fig 2, the upper arc illustrates the current practice of using DCP for data 
sharing and exchange at the application level, which often incurs significant overhead 
in data conversion and interpretation. For example, to take the result of a query Q1 as 
the input of another query Q2, the typical way is to encode Q1’s resulting tuple-set as a 
CSV array, and then convert it back to tuples before passing to Q2, which may not be 
suitable for every kind of application, and with large or continuous data feed, become 
a serious performance bottleneck. Further, transferring query results from one query-
engine to another tuple-by-tuple through DCP is often inefficient due to the tiny 
granularity of cache access and the overhead of data conversion and interpretation. 

Q1 

Q2 Q3 

Traffic a) 

QE

Q2 Q3 
QE

Q1 Q1 Q1 

b) Traffic 
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Fig. 2. Transfer query result between query engines directly as pages (blocks) 

1.3 The Proposed Approach 

The above observations have motivated us to leverage DCP’s binary protocol for 
transporting relation data directly at the storage level as pages (blocks) instead of at 
the application level. This idea is illustrated by the lower arc in Fig 2.  

Our solution includes two steps. First, we extend the database buffer pool to the 
DCP, resulting in the unified database cache across distributed memory spaces on 
multiple machines, which allows scaled-out, low-latency in-memory data access. The 
query-engine uses the normal buffer pool management mechanism to access and 
interpret the content stored in DCP, thus eliminating the need for supporting these 
capabilities by the DCP. However, we introduce the inclusion model for extending the 
buffer pool to DCP, which is different from the existing approach and required for the 
data transfer among multiple query-engines.   

Next, we extend the above solution to provide the shared memory-based paradigm 
for the collaboration of multiple query-engines in a dataflow process, in the sense of 
allowing a query to feed its result efficiently to another query through DCP. However, 
different from having a query result passed as an application layer “object” through 
DCP, we have the query result relation delivered and retrieved directly at the storage 
layer using a page-feed mechanism, namely, the producer query puts its resulting 
relation as pages (blocks) in DCP (through its buffer pool), and the consumer query 
gets these pages from DCP directly. Since the query result pages are emitted and 
retrieved with the binary protocol, and the tuples in these pages are exactly in the 
format required by the relational operators, this approach avoids the overhead of 
application specific encoding/decoding. Further, the use of pages as the mini-batches 
of tuples reduces the overall latency of DCP access.  

We have built the proposed infrastructure by integrating the buffer management of 
multiple PostgreSQL engines with DCP (Memcached). Our experience reveals the 
value of pushing data communication from the application layer down to the storage 
layer in supporting large scale, low-latency in-memory data access, as well as 
efficient communication among multiple collaborative query-engines.  

The rest of this paper is organized as follows: Section 2 describes how to scale out 
the buffer pool with DCP under the proposed inclusion model; Section 3 deals with 
the buffer externalization of multiple query-engines for their collaboration; Section 4 
shows our experimental results; Section 5 compares with the related work and 
concludes the paper. 
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2 Extend Database Buffer Pool to Distributed Caching 
Platform 

2.1 Database Buffer Management  

The description of our solution is based on the PostgreSQL engine. In a PostgreSQL 
database, each table is physically stored in the file system under a subdirectory with 
several of files. A single file holds certain amount, up to 1GB of data, as a series of 
fixed-sized blocks (i.e. pages, typically 8K in size although configurable). A tuple 
may not span multiple pages where a large tuple is sliced to multiple physical ones by 
the TOAST utility transparently. 

A database buffer pool is a shared in-memory data structure - a simple array of 
pages (blocks), with each page entry pointing to a binary memory of 8K size. A page 
in the buffer pool is used to buffer a block of data in the corresponding file, and is 
identified by a tag - the IDs of table space, relation, file and the sequence number of 
the block in the file, as <table-space-id, relation-id, file-id, block#>. Maintaining the 
buffer pool allows the pages to be efficiently accessed in memory without going to 
disks.  

The buffer pool is accompanied by a corresponding array of data structures called 
buffer descriptors, with each recording the information about one page, such as the 
tag as its identifier, the usage frequency, the last access time, whether the data is dirty 
(updated), and whether it is extended (i.e. a newly allocated page being filled by 
inserted tuples to extend the relation). An “extended” page is a “dirty” page as well. 

When a query process needs a page corresponding to a specific file/block, if the 
block is already cached in the buffer pool, the corresponding buffered page gets 
pinned; otherwise, a page slot must be found to hold this data. If there are no slots 
free, the process selects a page to evict to make space for the requested one. If the 
page to be evicted is dirty, it is written out to disk asynchronously. Then the requested 
block on disk is read into the page in memory.  

Pages all start out pinned until the process that requested the data releases (unpins) 
them. Deciding which page to remove from the buffer pool to make space for a new 
one is the classic cache replacement problem. The usual strategy is Least Recently 
Used (LRU). The timestamp when each page was last used is kept in the 
corresponding buffer descriptor in order for the system to determine the LRU page. 
Another way to implement LRU is to keep pages sorted in order of recent access. 
There exist several other page eviction strategies such as Clock-Sweep and Usage-
Count. Hereafter we simply refer to the page to be evicted as the LRU page. 

2.2 Distributed Cache Platform (DCP) 

A DCP provides the unified cache view over multiple machine nodes, which allows 
multiple processes to access and update shared data [1,5-9] using the key-value based 
APIs such as get(), put(), delete(), etc, where keys and values are objects.  

Memcached [5] is a general-purpose distributed memory caching system that holds 
data in a large hash table distributed across multiple machines, or memory nodes. The 
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data are hash partitioned to these memory nodes. When the hash table on a node is 
full, subsequent insert causes Least Recently Used (LRU) data to be purged. 
Memchached uses the client–server architecture. The servers maintain a key–value 
associative array; the clients populate this array and query it. Keys are up to 250 bytes 
long and values can be at most 1 megabyte in size. Clients know all servers and use 
client side libraries to contact the servers.  If a client wishes to set or get the value 
corresponding to a certain key, the client's library first computes a hash of the key to 
determine which server to use; then it contacts that server. The server will compute a 
second hash of the key to determine where to store or read the corresponding value. 

2.3 Convert Buffer Pages to Key-Value Pairs  

In integrating PostgreSQL engine with the Memcached-based DCP infrastructure, the 
query-engine acts as the DCP client that connects to the Memcached server pool. The 
basic idea of extending the buffer pool with Memcached is to store the buffered pages 
as key-value pairs hash-partitioned to separate portions of the unified hash table 
residing on separate nodes. The mapping of a buffered page to a key-value pair is 
handled in the following way. 
 

Key.  The tag for identifying a page, composed of the table-space-id, relation-id, file-
id and the series number of the block in the file, is serialized to a string key. The 
mapping from tag to key is provided for Memcached access. 

Value. The 8KB binary content of a page is treated as the value corresponding to the 
page key. Adopting Memcached’s Binary Protocol this value is passed to the API 
functions of data transfer by the entry pointer plus the length of bytes.  

   

Fig. 3. Extend PostgreSQL shared buffer pool to DCP 

2.4 Scale-Out Buffer Pool with Memcached  

We extend the buffer manager of the PostgreSQL engine to allow buffered pages to 
be moved to and retrieved from the Memcached. The query engine acts as a DCP 
client. The buffered pages may be sent to different physical Memcached sites based 
on the hash value of the page key. As a result, these pages are placed in multiple 
“memory nodes” but can be accessed with the unified interface.  
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While treating DCP as additional buffer space, the concurrency control, page 
eviction management and file I/O are still handled by the database buffer pool 
manager. Any page to be cached in or retrieved from Memcached always goes 
through the buffer pool manager. There are no file I/O and database buffer 
management functionalities such as page locking, on the Memcached sites. This 
greatly simplifies the overall system design and ensures data consistency. 

Potentially there exist two page buffering models.  
 

• Overflow Model of Page Buffering, where an LRU page to be evicted from the 
buffer pool is written to Memcached; and if it is dirty, it is also “fsync’ed” to disk. 
This way, if a page is not in the buffer pool but in the Memcached, its content in 
the Memcached is up to date. A page can only be pinned in the buffer pool. In 
general given the buffer pool B and the DCP buffering space D (physically located 
in distributed memory nodes), the unified page buffer is B  D, and B ∩ D = 
empty.  

• Inclusion Model of Page Buffering, where a new page is copied to DCP soon 
after it is filled rather than waiting until the eviction time. Tuus given the buffer 
pool B and the DCP buffering space D, the unified page buffer is B  D, and B ⊆ 
D, assuming that D is larger than B [13]. We will show next that this model is 
required for externalizing pages to DCP for other query-engines to access. 

 

On a single query-engine, under both models, when a process requests a page, the 
system first tries to get the page from the local buffer pool; if the page is not found 
then it tries to get the page from DCP; if the page is not in DCP, then the page is 
loaded from disk. In general, which model will deliver better performance depends on 
the workload characteristics. However, in this research, introducing the inclusion 
model does not focus on performance variety, but on externalizing pages to DCP for 
multiple collaborative query-engines to share them. 

3 Globalize Buffers of Multiple Query-Engines 

Our next step is to externalize the buffer pools of multiple distributed query-engines 
to DCP for shared memory-based collaboration in a dataflow process.  This concept is 
illustrated in Fig 4 based on the SQL dataflow process example shown in Fig 1.  

 

Fig. 4. Connect queries and transfer results through DCP  
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In this context, a dataflow process is made of multiple “cascading” queries running 
on distributed query-engines, where a query, say Q2, is applied to the result of its 
upstream query, say Q1; the query-engine for executing Q2 checks DCP for the 
availability of Q1’s results, and retrieves them as its own input data. The buffered 
query result will be invalidated after consumed. If the DCP space reaches its limit (a 
very rare case), first the already consumed upstream query results will get evicted, 
and next the DCP data content get extended to the file system.  

For efficiency, we allow a query result relation to be delivered and retrieved as 
pages (blocks), referred to as page-feed. Since pages (blocks) are fix-length binaries, 
they are transferred with the commonly applicable binary protocol, while tuples in the 
pages are in exactly the format required by the relational operators, avoiding the 
performance overhead of data encoding/decoding.  

The page-feed approach assumes the use of homogeneous query-engines (in our 
implementation, they are all PostgreSQL engines). The specification of the 
collaborative SQL dataflow process is known to all the participating query-engines, 
such that the name of a query, say Q, and its result relation $Q, are known, and $Q’s 
schema is created at each related query-engine. The query result relations 
externalized (populated) to DCP from the query-engines, referred to as the external 
relations, form the public data scope of these engines where each engine still has its 
own private data scope. External relations always reside in DCP.   

3.1 Support Insert-Oriented Inclusion Model for Externalizing Buffered 
Pages  

For retrieving a page by a local query-engine, as far as the page is located in the 
buffer pool, DCP or disk, it is accessible; and therefore the overflow model for 
extending the buffer pool to DCP is sufficient. However, to have a page generated by 
one query-engine accessible by another, that page must be located in the DCP, since a 
query-engine cannot access the local buffer and disk of a foreign database. For the 
above reason we introduce the inclusion model to extend and externalize the buffer 
pool of a query-engine to the public DCP space.     

Specifically, we focus on the “insert-oriented” inclusion model, namely, the DCP 
content includes the buffer pool content in the insertion context only; this is because 
we assume the query results to feed in a foreign query-engine are only appended but 
never got updated.  

Under the overflow model, a page is written to Memcached only when it becomes 
the LRU page to be evicted from the buffer pool. However, under the inclusion 
model, when a page is loaded from file, or newly inserted into the buffer pool, it is 
copied to DCP immediately rather than waiting until the eviction time. When a LRU 
page is evicted, if it is dirty, it is written to the disk, as well as transmitted to DCP to 
refresh its copy in DCP. Fig 4 shows the buffer management in a single query-engine 
under the inclusion model. 
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Fig. 5. Extend local buffer pool to DCP under inclusion model 

To implement the inclusion model, it is important to figure out when to buffer a 
new page to DCP, and avoid the following two treatments. 

 

• We should avoid buffering incomplete pages in DCP when they are newly created, 
not “full” and under subsequent insertion, since which would result in fetching 
incomplete pages from DCP later, leading to data loss.   

• We should also avoid overwriting the page buffered in DCP with each tuple 
inserted (not updated) into that page, since which would generate too much traffic.  

Instead, we should buffer a page, say P, in DCP when it is “just-filled”, i.e. the insert 
to it has been just completed. In this case, the DCP copy of that page, Pd contains the 
full data that is the same as the copy of that page in the buffer pool, Pb. This 
mechanism ensures that the data in the DCP and in the buffer pool are consistent, and 
ensures the inclusion semantics. 

For identifying the just-filled buffer and sending it to the DCP, the major extension 
to the PostgreSQL engine is made in the heapam.c program under the access/heap 
directory. The basic logic is the following: when a tuple is to be inserted into a 
relation R, if the current block# of R is larger than the last-block# of R, then the last-
block is considered as “just filled” and sent to DCP.  

Extending the buffer pool to DCP under the inclusion model is critical to 
externalize the buffered pages for passing query results from one query-engine to 
another.    

3.2 Externalize Buffered Pages to DCP 

To externalize a page as a key-value pair, its key, called external key must contain a 
site-id field for indicating the query-engine where the page is originated, and the local 
relation ID must be replaced by a globally known relation name. At each query-
engine, paging is still handled by the local buffer manager, but only the local pages 
may be updated. The external pages are retrieved from DCP as read-only. For the 
external page generated locally, the mapping between its local tag and external-key is 
provided.   
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There is a conceptual difference between scaling out the buffer pool of a single 
query-engine using DCP and externalizing a query result relation to be shared by 
other query-engines using DCP. In the former case, a page in DCP should be made up 
to date only when it no longer exists in the buffer pool. In the latter case, the pages of 
an external relation in DCP must always be up to date since the DCP is the primary 
place to share them. Our Inclusion Model mechanism ensures this property as 
explained below: 

 

• First, an external relation R is always produced as a query result (e.g. Select * into 
R from T) of a query executed on the producer query-engine.  

• Next, whenever a new page  p of the external relation R is created and full with 
newly inserted tuples, or whenever the computation of R terminates, p becomes a 
regular page and is immediately transferred to DCP to satisfy the Inclusion Model.  

• Further, once the query that produces R is completed, R as the input to other 
queries is read-only, so when R’s pages are evicted from the consumer query-
engine’s buffer pool, updating their counterparts in DCP is unnecessary; as a result, 
the content of R’s pages in the DCP are kept up to date at all times under the 
inclusion model.  

• As we assume the query results to feed in a foreign query-engine are only 
appended to the DCP but never got updated, our inclusion model is “insert-
oriented”. 

3.3 Deliver Query Result to DCP as Pages 

We assign a name, say Q, to a query participated in a SQL dataflow process, and have 
the query-engine convert a named query Q into a SELECT INTO query, and put the 
query result in the “into-relation”, $Q, with its pages being held in the local buffer 
pool as well as externalized to the DCP to be accessed by distributed query-engines. 
When a page is externalized to DCP, its tag (local ID) and content are converted to 
the following key-value pair.  

 

• External-Key.  For DCP access, the string key of a page is serialized from <site-
id, table-space-id, relation-name, file-id, block#>. Different from the page key 
with a single query-engine, the site-id is introduced to identify the query-engine 
where the page is originated, and the local relation-id is replaced by the 
commonly-known relation-name. The mapping between the local tag of a page 
and its external-key is provided.   

• Value. The 8KB binary content of the page is treated as the value corresponding to 
the external page key.  
 

 

Fig. 6. Deliver query result in pages at the storage layer of query engine (QE) 
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Further, a query in the dataflow process may run in parallel at multiple sites with each 
generating a partition of the result relation   with the same name. This requires the 
following generalization:  

 

• Given an external relation, for each applicable site, a site-specific master-key is 
composed by the relation-name, say, T and site-id, say k, as T.k. A key-value pair 
<master-key, page-key-list> of T is created and stored in the DCP when the list is 
completed. Then for all the applicable sites, say site 1,…, 8, the page-key-lists of T, 
keyed by “T.1”, …, “T.8” are provided in the DCP.   

• More specifically, at the site k, the pages of T are loaded to DCP with their page 
keys kept in a list, and then the list is itself loaded to DCP with T.k as the key. 

• Since the site-ids and the resulting relation are known to every participating query-
engine, the above site-specific master keys for a relation are known to all of them. 

• When T is to be retrieved from DCP by the consumer query-engine, the known list 
of site-ids, say, 1,…, 8, are first used to compose master-keys, T.1, …, T.8, which 
are in turn used by the consumer query-engine to retrieve (using the mget, or multi-
get call) all the page keys belonging to T; then these page keys are used as keys to 
get those pages. As an example, it is easy to see that this approach naturally 
handles the delivery of Map query results to the Reduce sites in a Map-Reduce 
style dataflow process.  

3.4 Fetch External Pages from DCP 

To explain how an external page cached in DCP is accessed, we first review how a 
local page is accessed.  

A local page is identified by a tag <table-space-id, relation-id, file-id, block#>. A 
regular full-table-scan (FTS) first gets all the page tags from the system, say Data 
Dictionary (DD), indices, etc, and then retrieves the corresponding pages through the 
storage engine.  

In the situation discussed here, at a particular query-engine, a query gets input data 
as an external relation (the results of other queries) from the physically distributed but 
logically unified DCP cache space. Since the information about the external relation 
partitions on the foreign sites are not kept in the local Data Dictionary, such cache 
access cannot be guided by the local DD in the same way as the regular FTS. This 
requires us to provide a particular cache access method.  

Cache access to external pages is handled by the buffer pool manager of the 
requesting query-engine with the following constraints: the Full-Table-Cache-Scan 
(FTCS) is assumed, i.e. retrieving all pages of a relation from the DCP memory space; 
further, FTCS is made on the read-only basis. 

 

 

Fig. 7. Access query input as pages from DCP 
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As shown in Fig 7, different from the FTCS that gets page tags (IDs) from Data 
Dictionary, the Full Table Cache Scan first uses the master-keys of the requested 
relation, T, to mget (multi-get) from DCP all the page keys of T, with each composed 
with <site-id, table-space-id, relation-name, file-id, block#>; then in the second 
phase, gets the pages using these keys, to the buffer pool of the requesting query-
engine 

4 Preliminary Experimental Results 

4.1 Performance of Extending Buffer Pool to DCP `under the Inclusion Model 

We first test the effect of extending the buffer pool of a single query-engine to DCP. 
We used Linux servers with gcc version 4.1.2 20080704 (Red Hat 4.1.2-50), 32G 
RAM, 400G disk and 8 Quad-Core AMD Opteron Processor 2354 (2200.082 MHz, 
512 KB cache). One server has PostgreSQL 8.4 installed; the other 8 have 
Memcached installed.  For our experiments, we configure each of these systems with 
a buffer cache size of at least 1/8th of the database size, while varying the database 
sizes from 50MB to 10GB.  In other words in our current experiments we assume that 
Memcached is big enough to hold the entire database.  The database consists of a 
single table T with 1 million to 200 million tuples, where each tuple is 50 bytes 
containing 3 attributes: pid, x, and y. All experiments are performed with a warm 
start; i.e., after the buffer cache on both the PostgreSQL node and the Memcached 
nodes are filled with data by first running a sequence of sequential scan queries.   

The comparison is made between a conventional PostgreSQL engine under the 
regular buffer pool management and an extended engine where the data are 
additionally buffered on the distributed Memcached nodes.  

The performance comparison of sequential data retrieval (query pattern: Select * 
from T where …) is shown in Fig. 8 (left). The speedup ratio under our approach 
range from 3x to 8x with the number of input tuples from 1 million to 200 million.  

The performance comparison of indexed retrieval is given in Fig. 8 (right).  The 
average performance gains for varying database sizes range from approximately 6x to 
10x. In general, the query performance gain with DCP strongly depends on the query 
workload characteristics. 
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Fig. 8. Performance gain by extend buffer pool to DCP   
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Since only the inclusion model is suitable for consistently externalizing buffer pool 
to DCP, we need to compare the performance using our inclusion model and using the 
existing overflow model. Fig 9 compares the data access latency under the inclusion 
model and the overflow model. In this experiment the table with 10M, 50M, 100M 
and 200M are first loaded into the buffer pool and Memcached cache by the 
sequential scan query Q1 (First Query Run), after that Q1 is run again (Second Query 
Run). In the first run the performance of the overflow model is about the same as that 
of the inclusion model. However, in the second and all subsequent runs, the inclusion 
model shows a gain up to 40%. To explain the above experiment results, note that in 
our experiments, the database size is larger than the buffer pool size, B, and the total 
cache size of Memcached, M, is larger than the database size. In the initial data 
loading phase, under the overflow model, most pages loaded to B will eventually 
“overflow” (evicted and moved) to M, therefore the costs of loading pages to 
Memcached under the overflow model and the inclusion model are similar. However, 
after most or all pages already kept in M, under the overflow model, every page 
evicted from B has to be moved to M; but under the inclusion model, only the dirty 
pages evicted from B will involve moving the content to M (to refresh the 
corresponding content in M); for non-dirty pages, only a notification to M is 
performed. 
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Fig. 9. Comparison of Inclusion Model and Overflow Model 

4.2 Performance Gain by Feeding Query Results as Binary Pages  

This work is primarily motivated by leveraging DCP’s binary protocol and query 
engine’s buffer management for delivering query results from one query-engine to 
another efficiently. We compare two different ways to put-to /get-from DCP the query 
results: as a CSV array at the application layer, and as the externalized pages at the 
storage layer as we proposed in this work. Converting query results tuple by tuple as 
CSVs incurs the latency of per-tuple processing, as well as the data conversion 
overhead for each input tuple. Under the proposed page-feed approach, however, can 
overcome these problems since the query results are transferred in mini-batch (page) 
with lower latency, and the data conversion overhead can be eliminated. The 
performance comparison results given in Fig 10 show that our page-feed mechanism 
significantly out-performs the mechanism that goes through the application layer. 
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Fig. 10. Performance gain by using page-feed  

5 Conclusions 

We have examined the mechanisms of extending database buffer pool with a 
Distributed Caching Platform (DCP), externalizing the buffered pages of multiple 
query engines, and transferring intermediate query results among them directly 
through page-feed. In running a graph-structured SQL dataflow process with multiple 
query-engines, this approach supports efficient data communication.  

Several database products such as Oracle, MySQL, EnterpriseDB are provided 
with DCP interface for database applications coded in PL-SQL, PSQL, or User 
Defined Functions (UDFs)[1,5-9]. While these efforts also take advantage of DCP’s 
unified cache view for storing application data, they are orthogonal to extending 
database buffer pool with DCP. The proposed approach also differentiates from the 
existing DCP stores such as Membase[12] without the SQL interface. In using DCP at 
the database buffer pool layer, our approach differs from the Waffle Grid Project on 
MySQL [11] by using the inclusion model, rather than the overflow model, for page 
externalization.  

The proposed page-feed approach out-performs caching query results as 
“application objects” in DCP [5-8] by eliminating the data conversion overhead. 
Pushing query-engines’ data communication from the application-oriented layer down 
to the system-oriented buffer pool layer is the unique feature of our approach. Note 
that the page-feed mechanism is also applicable to chunk-wise stream processing [3, 
10].   

There exist quite a few inter-server data communication mechanisms such as 
messaging, RPC, etc, with each having the strength for a class of applications. Our 
approach for multiple query-engines to transfer intermediate query results as buffer 
pages through distributed shared memory is unique. Viewing distributed caching as 
an abstraction of messaging, we will continue examining its benefits and trade-offs in 
enabling scalable distributed analytics.   

Although our investigation to the Query Engine Net is in the initial phase, we 
envisage its potential in the distributed data intensive computation, and based on this 
vision to guide our future research direction.     
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Abstract. Many stream-based applications have plenty of resources
available to them, but there are also applications where resource con-
sumption must be limited. For one important class of stream-based joins,
where a stream is joined with a non-stream master data set, the algo-
rithm called MESHJOIN was proposed. MESHJOIN uses limited mem-
ory and is a candidate for a resource-aware system setup. The problem
that is considered in this paper is that MESHJOIN is not very selec-
tive. In particular, the performance of the algorithm is always inversely
proportional to the size of the master data table. As a consequence, the
resource consumption is in some scenarios sub-optimal. We present an
algorithm CACHEJOIN, which performs asymptotically at least as well
as MESHJOIN but performs better in realistic scenarios, particularly if
parts of the master data are used with different frequencies. In order to
quantify the performance differences, we compare both algorithms using
a synthetic data set with a known skewed distribution.

Keywords: Stream processing, Join operator, Performance
measurement.

1 Introduction

Stream-based joins are important operations in modern system architectures,
where just-in-time delivery of data is expected. We consider a particular class
of stream-based join, namely the join of a single stream with a slowly changing
table. Such a join can be applied in real-time data warehousing [7,5]. In this
application, the slowly changing table is typically a master data table. Incoming
real-time sales data may comprise the stream. The stream-based join can be
used for example to enrich the stream data with master data. The most natural
type of join in this scenario would be an equijoin, performed for example on a
foreign key in the stream data.

For executing stream-based operations, the large capacity of current main
memories as well as the availability of powerful cloud computing platforms
means, that considerable computing resources can be utilized. For master data
of the right size for example, main-memory algorithms can be used.

A. Cuzzocrea and U. Dayal (Eds.): DaWaK 2012, LNCS 7448, pp. 431–442, 2012.
c© Springer-Verlag Berlin Heidelberg 2012
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However, there are several scenarios, where stream joins that use a minimum
of resources are needed. One particular scenario is an organization trying to
reduce the carbon footprint of the IT infrastructure. A main memory approach
as well as cloud-computing approaches can be power-hungry. Also in the area of
mobile computing and embedded devices a low-resource consumption approach
can be advantageous. Therefore, approaches that can work with limited main
memory are of interest.

In the past, the algorithmMESHJOIN [10,9] was proposed for joining a stream
with a slowly changing table with limited main memory requirements. This
algorithm is an interesting candidate for a resource aware system setup. The
MESHJOIN algorithm also has few requirements with respect to the organiza-
tion of the master data table. However, a limitation of MESHJOIN is that the
performance is directly coupled to the size of the master data table, and its per-
formance is inversely proportional to the size of the master data table. This is
an undesired behavior if the master data becomes very large, and our analysis
will show that a more adaptive behavior is possible with a new join algorithm
that we will present. The problem with non-adaptive behavior becomes obvious
if we consider a scenario where the master data table contains a large part that
is never joined with the stream data. This situation can easily arise if the master
data table is storing data for long term availability, and in the current business
process only a fraction is used. A typical scenario would be catalogue data for
seasonal products. In MESHJOIN, if one contiguous half of the master data is
unused, the presence of this master data still halves the performance. This is
undesirable, especially under our resource consumption viewpoint, since the al-
gorithm still uses the same resources for half of the performance. This would
put the burden on the administrator to meticulously clean master data in order
to optimize system performance. Therefore it would be a great advantage if we
have an algorithm that shares the advantages of MESHJOIN, but adapts itself
to certain situations, for example if the algorithm is more sensitive to the usage
of the master data.

In this paper we present a new algorithm, CACHEJOIN, that is able to utilize
differences in the access frequency of master data. CACHEJOIN’s performance
is not affected, if a large set of unused data is added to the master data table.
We are interested in understanding the relative performance of the MESHJOIN
and CACHEJOIN algorithms. As we have said before CACHEJOIN will be un-
affected by contiguous unused master data, therefore it is easy to create data sets
where CACHEJOIN is arbitrarily better than MESHJOIN. However, in order to
test our algorithm in a scenario that is not biased against any algorithm, we were
looking for characteristics of data that are considered ubiquitous in real world
scenarios. A Zipfian distribution of the foreign keys in the stream data matches
distributions that are observed in a wide range of applications [2]. We therefore
created a data generator that can produce such a Zipfian distribution. A Zipfian
distribution is parameterized by the exponent of the underlying power law. In
different scenarios, different exponents are observed, and determine whether the
distribution is considered to have a short tail or a long tail. Distributions with a
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short tail would be more favourable for CACHEJOIN from the outset, therefore
we decided not to use a distribution with a short tail in order to not bias our ex-
periment towards CACHEJOIN. Instead we settled on a natural exponent that
is observed in a variety of areas, including the original Zipf’s Law in linguistics
[6] that gave rise to the popular name of these distributions. The main result of
our analysis is that CACHEJOIN performs better on a skewed data set that is
synthetic, but following a Zipfian distribution as it is found frequently in prac-
tice. For our analysis we do not consider joins on categorical attributes in master
data, e.g. we do not consider equijoins solely on attributes such as gender.

2 Related Work

In this section, we present an overview of the previous work that has been done
in this area, focusing on those which are closely related to our problem domain.

R-MESHJOIN (reduced Mesh Join) [8] clarifies the dependencies among
the components of MESHJOIN. As a result the performance has been im-
proved slightly. However, R-MESHJOIN implements the same strategy as in
the MESHJOIN algorithm for accessing the disk-based relation.

One approach to improve MESHJOIN has been a partition-based join al-
gorithm [4] which can also deal with stream intermittence. It uses a two-level
hash table in order to attempt to join stream tuples as soon as they arrive, and
uses a partition-based waiting area for other stream tuples. For the algorithm
in [4], however, the time that a tuple is waiting for execution is not bounded.
We are interested in a join approach where there is a time guarantee for when
a stream tuple will be joined, and therefore a guarantee that our algorithm is
asymptotically as fast as MESHJOIN.

Another recent approach, Semi-Streaming Index Join (SSIJ) [3] joins stream
data with disk-based data. Although SSIJ is a feasible approach for processing
stream data, the algorithm does not include the mathematical cost model.

3 CACHEJOIN

The MESHJOIN algorithm reads cyclically through the whole master data ta-
ble R. The throughput of the algorithm is inversely proportional for the size
of R, as can be understood from the following argument: In MESHJOIN, each
stream tuple must reside in main memory. The residence time of a tuple in main
memory is proportional to the size of R, since MESHJOIN is reading through
R. Hence the throughput is inversely proportional to the size of R.

In this paper, we propose a new algorithm, CACHEJOIN, that overcomes
this strict proportionality. In order to allow CACHEJOIN to access the disk-
based relation R selectively, an index is needed. However, a non-clustered index
is sufficient, if we consider equijoins on a foreign key element that is stored in
the stream.

The CACHEJOIN algorithm possesses two complementary hash join phases,
somewhat similar to Symmetric Hash Join. One phase uses R as the probe input;
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the largest part ofR will be stored in tertiary memory. We call it the disk-probing
phase. The other join phase uses the stream as the probe input, but will deal only
with a small part of relation R. For each incoming stream tuple, CACHEJOIN
first uses the stream-probing phase to find a match for frequent requests quickly,
and if no match is found, the stream tuple is forwarded to the disk-probing
phase.

The execution architecture for CACHEJOIN is shown in Figure 1. The largest
components of CACHEJOIN with respect to memory size are two hash tables,
one storing stream tuples denoted by HS and the other storing tuples from the
disk-based relation denoted by HR. The other main components of CACHEJOIN
are a disk buffer, a queue and a stream buffer. Relation R and stream S are
the external input sources. Hash table HR, for R contains the most frequently
accessed part of R and is stored permanently in memory.

CACHEJOIN alternates between the stream-probing and disk-probing phases.
According to the procedure described above, the hash table HS is used to store
only that part of the update stream which does not match tuples in HR. A
stream-probing phase ends if HS is completely filled or if the stream buffer is
empty. Then the disk-probing phase becomes active. The length of the disk-
probing phase is determined by the fact that a few disk pages of R have to be
loaded at a time in order to amortize the costly disk access. In the disk-probing
phase of CACHEJOIN, the oldest tuple in the queue is used to determine the
partition of R that is loaded for a single disk-probing phase into the disk buffer.
The stream buffer is included in the diagram for completeness, but is in reality
always a tiny component and it will not be considered in the cost model.

In this way, in CACHEJOIN it is guaranteed that every probe step processes
at least one stream tuple, while in MESHJOIN there is no such guarantee. This
can be extended to an argument that CACHEJOIN performs asymptotically at
least as well as MESHJOIN, that is given in Section 3.1. This is also the step
where CACHEJOIN needs an index on table R in order to find the partition in R
that matches the oldest stream tuple. After one probe step, a sufficient number
of stream tuples in HS is matched. These tuples are deleted; the queue supports
this process. After the disk-probing phase the algorithm switches back to the
stream-probing phase. One phase of stream-probing with a subsequent phase of
disk-probing constitutes one outer iteration of CACHEJOIN. The disk-probing
phase could work on its own; without the stream-probing phase. Therefore, in
performance experiments, we will also run the algorithm with the stream-probing
phase switched off. This further simplifies the architecture and the memory used
for the stream-probing phase should be reassigned, giving virtually a new in-
termediate algorithm and we call this mode of operation HYBRIDJOIN. We
restrict the cost model and tuning to the full CACHEJOIN algorithm, but we
provide experimental results for CACHEJOIN as well as HYBRIDJOIN. The
experimental results allow us to study which contribution is made by the disk-
probing phase alone (HYBRIDJOIN) and by both phases together. An analysis
of our proposed algorithm is presented in the following subsections.
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Fig. 1. Data structures and architecture of CACHEJOIN

3.1 Asymptotic Runtime Analysis

In the performance experiments we have focused on a data set that has a skewed
distribution but without extreme imbalances. In particular there are no large
unused master data areas. We provide a theoretical result for the most general
characterization of CACHEJOIN.

We compare the asymptotic runtime of CACHEJOINwith that of MESHJOIN
based on the processing time for a stream section. For such a time measure,
smaller values are better, as it is known from other runtime discussions. We
denote the time needed to process a stream prefix s as MEJ(s) for MESHJOIN
and as CHJ(s) for CACHEJOIN. Every stream prefix represents a binary se-
quence, and by viewing this binary sequence as a natural number, we can apply
asymptotic complexity classes to the functions. Note therefore that the follow-
ing theorem does not use functions on input lengths, but on concrete inputs
encoded as binary strings. We assume that the setup for CACHEJOIN and for
MESHJOIN is such that they have the same number hS of stream tuples in the
hash table and in the queue accordingly.

Theorem: CHJ(s) = O(MEJ(s))

Proof: To prove the theorem, we have to show CACHEJOIN performs no worse
than MESHJOIN. The cost of MESHJOIN is dominated by the number of ac-
cesses to R. For asymptotic runtime, random access of disk pages is as fast as
sequential access (seek time is a constant factor, see below for a further discus-
sion of the constant factor). For MESHJOIN with its cyclic access pattern for R,
every page of R is accessed exactly once after every hS stream tuples. We have
to show that for CACHEJOIN no page is accessed more frequently. For that we
look at an arbitrary page p of R at the time it is accessed by CACHEJOIN.
The stream tuple at the front of the queue has some position i in the stream.
There are hS stream tuples currently in the hash table, and the first tuple of the
stream that is not yet read into the hash table has position i+hS in the stream.
All stream tuples in the hash table are joined against the disk-based master data
tuples on p, and all matching tuples are removed from the queue. We now have
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Table 1. Notations used in cost estimation of CACHEJOIN

Parameter name Symbol

Number of stream tuples processed in each iteration through HR wN

Number of stream tuples processed in each iteration through HS wS

Stream tuple size (bytes) vS
Disk page size (bytes) vP
Size of disk tuple (bytes) vR
Disk buffer size (pages) k
Disk buffer size (tuples) d = k vP

vR

Size of HR (pages) l
Size of HR (tuples) hR = l vP

vR

Size of HS (tuples) hS
Disk relation size (tuples) Rt

Memory weight for the hash table α
Memory weight for the queue 1− α
Cost to read k disk pages into the disk buffer (nano secs) cI/O(k·vP )
Cost to look-up one tuple in the hash table (nano secs) cH
Cost to generate the output for one tuple (nano secs) cO
Cost to remove one tuple from the hash table and the queue (nano secs) cE
Cost to read one stream tuple into the stream buffer (nano secs) cS
Cost to append one tuple in the hash table and the queue (nano secs) cA
Cost to compare the frequency of one disk tuple with the specified threshold
value (nano secs)

cF

Total cost for one loop iteration (secs) cloop

to determine the earliest time that p could be loaded again by CACHEJOIN.
For p to be loaded again, a stream tuple must be at the front of the queue, and
has to match a master data tuple on p. The first stream tuple that can do so
is the previously mentioned stream tuple with position i+hS , because all earlier
stream tuples that match data on p have been deleted from the queue. This
proves the theorem.

In this asymptotic argument we make use of the fact that we abstract from
constant factors, particularly the influence of seek time. Our experimental results
show that CACHEJOIN does not perform much worse than MESHJOIN even
on uniform data.

3.2 Cost Model

In this section we develop the cost model for our proposed CACHEJOIN. The
cost model presented here follows the style used for MESHJOIN [9,10]. Equa-
tion 1 represents the total memory used by the algorithm (except the stream
buffer), and Equation 2 describes the processing cost for each iteration of the
algorithm. The notations we used in our cost model are given in Table 1.

Memory Cost. The major portion of the total memory is assigned to the hash
table HS together with the queue while a comparatively much smaller portion
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is assigned to HR and the disk buffer. The memory for each component can be
calculated as follows:

Memory for disk buffer (bytes)= k·vP
Memory for HR (bytes)=l·vP
Memory for HS (bytes)=α[M − (k + l)vP ]
Memory for the queue (bytes) = (1− α)[M − (k + l)vP ]
By aggregating the above, the total memory M for CACHEJOIN can be calcu-
lated as shown in Equation 1.

M = (k + l)vP + α[M − (k + l)vP ] + (1− α)[M − (k + l)vP ] (1)

Currently, the memory for the stream buffer in not included because it is small
(0.05 MB is sufficient in our experiments).

Processing Cost. In this section we calculate the processing cost for the al-
gorithm. To make it simple we first calculate the processing cost for individual
components and then sum these costs to calculate the total processing cost for
one iteration.

cI/O(k · vP ) =Cost to read k pages into the disk buffer
wN · cH =Cost to look-up wN tuples in HR

d · cH =Cost to look-up disk buffer tuples in HS

d · cF =Cost to compare the frequency of all the tuples in disk buffer with the
threshold value
wN · cO =Cost to generate the output for wN tuples
wS · cO =Cost to generate the output for wS tuples
wN · cS =Cost to read the wN tuples from the stream buffer
wS · cS =Cost to read the wS tuples from the stream buffer
wS · cA =Cost to append wS tuples into HS and the queue
wS · cE =Cost to delete wS tuples from HS and the queue
By aggregating the above costs the total cost of the algorithm for one iteration
can be calculated using Equation 2.

cloop(secs) = 10
−9[cI/O(k ·vP )+d(cH+cF )+wS(cO+cE+cS+cA)+wN(cH+cO+cS)]

(2)

Since in cloop seconds the algorithm processes wN and wS tuples of the stream
S, the service rate μ can be calculated using Equation 3.

μ =
wN + wS

cloop
(3)

3.3 Tuning

We now show how the cost model for CACHEJOIN can be used to obtain an
optimal tuning of the components, in particular the size for disk buffer and the
size of hash table HR. The algorithm can be tuned to perform optimally using
Equation 3 by knowing wN , wS and cloop. The value of cloop can be calculated
from Equation 2 if we know wN and wS .
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Mathematical Model for wN . The main components that directly affect wN

are the size of the master data on disk and the size of HR. To calculate the effect
of both components on wN we assume that Rt is the total number of tuples in
R while hR is the size of HR in terms of tuples. We now use our assumption
that the stream of updates S has a Zipfian distribution with exponent value
one. In this case the matching probability for S in the stream-probing phase can
be determined using Equation 4. The denominator is a normalization term to
ensure all probabilities sum up to 1, and we use well known approximations for
the harmonic series[1].

pN =

hR∑
x=1

1
x

Rt∑
x=1

1
x

=
lnhRγ + εhR

lnRtγ + εRt

∼ lnhR

lnRt
(4)

Now using Equation 4 we can determine the constant factors of change in pN by
changing the values of hR and Rt individually. Let us assume that pN decreases
with constant factor φN by doubling the value of Rt and increases with constant
factor ψN by doubling the value of hR. Knowing these constant factors we are
able to calculate the value of wN . Let us assume the following:

pN = Ry
t h

z
R (5)

where y and z are the unknown constants whose values need to be determined.

Determination of y: We know that by doubling Rt, the matching probability pN
decreases by a constant factor φN therefore, Equation 5 becomes:

φNpN = (2Rt)
yhz

R

Dividing the above equation by Equation 5 we get 2y = φN and therefore,
y = log2(φN ).

Determination of z: Similarly we also know that by doubling hR the matching
probability pN increases by a constant factor ψN therefore, Equation 5 can be
written as:

ψNpN = Ry
t (2hR)

z

By dividing the above equation by Equation 5 we get 2z = ψN and therefore,
z = log2(ψN ). After substituting the values of constants y and z into Equation 5
we get:

pN = R
log2(φN )
t h

log2(ψN )
R

Now if Sn is the total number of stream tuples that are processed (through both
phases) in n outer iterations then wN can be calculated using Equation 6.

wN =
(R

log2(φN )
t h

log2(ψN )
R )Sn

n
(6)
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Mathematical Model for wS. The second phase of the CACHEJOIN algo-
rithm deals with the rest of R. This part is called R′, with R′ = R − hR. The
algorithm reads R′ in segments. The size of each segment is equal to the size of
the disk buffer d. In each iteration the algorithm reads one segment of R′ using
an index on the join attribute and loads it into the disk buffer. Since we assume
a skewed distribution, the matching probability is not equal, but decreases in
the tail of the distribution.

We calculate the matching probability for each segment by summing over
the discrete Zipfian distribution separately and then aggregating all of them as
shown below.

hR+d∑
x=hR+1

1
x +

hR+2d∑
x=hR+d+1

1
x +

hR+3d∑
x=hR+2d+1

1
x + · · ·+

hR+nd∑
x=hR+(n−1)d+1

1
x

We simplify this to:

hR+nd∑
x=hR+1

1
x ⇒

Rt∑
x=hR+1

1
x

From this we can obtain the average matching probability pS in the disk-probing
phase, which we need for calculating wS . Let N be the total number of segments
in R′. In the denominator, we have to use the same normalization term as in
Equation 4, and we again use the summation formula [1]:

pS =

Rt∑
x=hR+1

1
x

N
Rt∑
x=1

1
x

∼ ln(Rt)− ln(hR)

N(ln(Rt) + γ)
(7)

To determine the effects of d, hR and Rt on pS , a similar argument can be used
as in the case of wN . Let’s suppose we double d in Equation 7, then N will be
halved and the value of pS increases by a constant factor of θS . Similarly, if we
double hR or Rt respectively, then the value of pS decreases by some constant
factor of ψS or φS respectively. Using a similar argument for wN , we get:

pS = dxhy
RR

z
t (8)

The values for the constants x, y and z in this case will be x = log2(θS), y =
log2(ψS) and z = log2(φS) respectively. Therefore by replacing the values with
constants Equation 8 will become.

pS = dlog2(θS)h
log2(ψS)
R R

log2(φS)
t

Now if hS are the number of stream tuples stored in the hash table then the
average value for wS can be calculated using Equation 9.

wS(average) = dlog2(θS)h
log2(ψS)
R R

log2(φS)
t hS (9)

Once the values of wN and wS are determined, the algorithm can be tuned using
Equation 3.
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Table 2. Data specification

Parameter value

Size of each disk tuple 120 bytes (similar to MESHJOIN)

Size of each stream tuple 20 bytes (similar to MESHJOIN)

Size of each node in the queue 12 bytes

Data set based on Zipf’s law (exponent varies from 0 to 1)

4 Experimental Evaluation

4.1 Experimental Setup Used in all Experiments

We run our experiments on Pentium-IV 2×2.13GHz. We implemented our ex-
periments in Java using the Eclipse IDE 3.3.1.1. Measurements with Apache
plugins and nanoTime() from Java API. The relation R is stored on disk using
a MySQL 5.0 database, fetch size for ResultSet is set equal to the disk buffer
size. Synthetic data, stream data is generated with a Zipfian distribution of the
foreign key with varying exponent values. The detailed specifications of the data
set that we used for analysis are shown in Table 2.

4.2 Comparison between CACHEJOIN and MESHJOIN

In this section we compare CACHEJOIN and MESHJOIN. We included two
other algorithms mentioned earlier. As explained before, CACHEJOIN becomes
HYBRIDJOIN if its stream-probing phase is switched-off. By including HY-
BRIDJOIN we can understand better, where the difference in performance comes
from. We also included R-MESHJOIN [8], which is a slight optimization of
MESHJOIN. We have identified three parameters, for which we want to un-
derstand the behavior of the algorithms in the case of different memory settings.
The three parameters are: the size of the master data table R, the total memory
available, and the exponent of the Zipfian distribution. For the sake of brevity,
we restrict the discussion for each parameter to a one-dimensional variation, i.e.
we vary one parameter at a time.

Performance Comparisons for Varying Size of R. The problem that gave
rise to CACHEJOIN was that the performance of MESHJOIN decreases in-
versely proportionally with the size of R. Therefore this performance evaluation
is of particular interest. For the total allocated memory, we use the value that
has been used by the MESHJOIN authors in their experiments. For the expo-
nent of the Zipfian distribution, we choose the exponent 1 as a natural type
of skew that is observed frequently in practice. We choose the discrete sizes of
the parameter, the size of disk-based relation R, from a simple geometric pro-
gression. The performance results are shown in Figure 2(a). In our experiments,
the performance of CACHEJOIN is better for all settings of R compared to the
other algorithms.
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Fig. 2. Performance comparisons of CACHEJOIN with related join algorithms

Performance Comparisons for Different Memory Budgets. In our second
experiment we test the performance of all algorithms using different memory
budgets while keeping the size of R fixed (2 million tuples) and choosing the
Zipfian exponent of 1. Figure 2(b) presents the comparisons of all approaches.
In our experiments, CACHEJOIN performs better for all memory budgets.

Performance Comparisons while Varying Skew in Stream S. We also
test the performance of CACHEJOIN with the other related algorithms while
varying the skew in input stream S. To vary the skew, we vary the value of the
Zipfian exponent. In our experiments we allow it to range from 0 to 1. At 0 the
input stream S is uniform while at 1 the stream has a larger skew. The results
presented in Figure 2(c) shows that CACHEJOIN performs better than the
other approaches even for only moderately skewed data. Also this improvement
becomes more pronounced for increasing exponent values. We did not present
data for exponents larger than 1, which would imply short tails. It is clear, that
for such short tails the trend continues. However, for completely uniform data,
CACHEJOIN performs worse than MESHJOIN by a constant factor of 1.2, due
to the influence of seek time.
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5 Conclusions

In this paper we propose a new semi-stream-based join called CACHEJOIN and
we compare it with MESHJOIN, an earlier well-known semi-stream-based join.
CACHEJOIN is designed to make use of skewed, non-uniformly distributed data
as found in real-world applications. In particular we consider a Zipfian distribu-
tion of foreign keys in the stream data. Contrary to MESHJOIN, CACHEJOIN
stores these most frequently accessed tuples of R permanently in memory. We
have provided a cost model that can be used to tune the algorithm and val-
idated it with experiments. We have provided experimental data showing an
improvement of CACHEJOIN over the MESHJOIN algorithm.

Source URL: We have provided an open-source implementation of both algo-
rithms used in the experiments, MESHJOIN as well as CACHEJOIN, that can
be used for further analysis, at the following URL.
https://www.cs.auckland.ac.nz/research/groups/serg/cj/
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Abstract. In the MIRABEL project, a data management system for a smart grid
is developed to enable smarter scheduling of energy consumption such that, e.g.,
charging of car batteries is done during night when there is an overcapacity of
green energy from windmills etc. Energy can then be requested by means of flex-
offers which define flexibility with respect to time, amount, and/or price. In this
paper, we describe MIRABEL DW, a data warehouse (DW) for the management
of the large amounts of complex energy data in MIRABEL. We present a unified
schema that can manage data both at the level of the entire electricity network
and at the level of individual nodes, such as a single consumer node. The schema
has a number of complexities compared to typical DW schemas. These include
facts about facts and composed non-atomic facts and unified handling of different
kinds of flex-offers and time series. We also discuss alternative data modeling
strategies and present typical queries from the energy domain and a performance
study.

1 Introduction

More and more green energy is being produced by renewable energy sources (RES)
such as windmills. It is, however, not possible to store larger amounts of energy and
use it later. Therefore, there often is an unused capacity, e.g., during nights when most
consumers sleep, but not enough green energy during day hours when most consumers
are active. The EU FP7 project MIRABEL (Micro-Request-Based Aggregation, Fore-
casting, Scheduling of Energy Demand. Supply and Distribution) [11] addresses this
challenge by proposing a “data-driven” solution for balancing supply and demand uti-
lizing their flexibilities. Flexible demand such as for dishwashers and charging an elec-
tric vehicle can often be shifted to a time when green energy is available. Non-flexible
demand such as lights, TV, or cooking stoves must still be satisfied at demand-time. In
the MIRABEL-settings, a consumer offers a so-called flex-offer [2,14] for every intent
of flexible energy demand. The flex-offer must describe when and how much energy is
needed and how flexible the demand is in time and amount. Likewise, a producer can
offer a flex-offer for every intent of energy supply. The different flex-offers can then
be accepted (or rejected if they cannot be fulfilled) and scheduled for execution at a
given time. There will be extremely large quantities of such flex-offers and they can-
not be scheduled individually. Instead flex-offers are aggregated into larger flex-offers
which become scheduled and then disaggregated into the smaller flex-offers again [14].
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To enable this, there will be smart nodes at both consumer sites and producer sites in
the electricity grid which we denote a smart grid.

There is a a strong need for efficient data management in these nodes. In this paper,
we present MIRABEL DW which is a data warehouse (DW) for the management of
large amounts of complex energy data in the MIRABEL project. This paper is the first
to present a DW schema for the important domain of energy data. The schema can rep-
resent different “actors” in different “roles” as defined by the “Harmonised Electricity
Market Role Model” [4] as well as (individual and aggregated) flex-offers, and time
series. In the future, the managed data is to be distributed over millions of nodes [2]
in non-traditional ways. In the paper, we focus on a DW on a single node, but present
a unified schema that can manage data both at the level of the entire electricity net-
work and at the level of individual nodes, such as a single consumer node. Compared
to typical DW schemas, the schema has a number of complexities which we discuss in
the paper. These include facts about facts and composed non-atomic facts and unified
handling of different kinds of flex-offers and time series. We also discuss alternative
data modeling strategies that use denormalization and arrays, respectively. Further, we
present typical queries from the energy domain and a performance study that compares
the described schemas with the denormalized and array-based alternatives.

The rest of the paper is organized as follows: Our representations of flex-offers, time
series and actors are presented in Sections 2, 3, and 4, respectively. These parts together
form the full schema which is presented in Section 5. Examples of analytical queries on
the schema are given in Section 6. A performance study is given in Section 7. Previous
work related to this is presented in Section 8 before the concluding remarks and pointers
to future work which are given in Section 9.

2 Modeling of Flex-Offers

In this and the following two sections, we first present the data model we use in MIRA-
BEL DW. Then we discuss the non-standard and advanced techniques that are applied
in the modeling.

2.1 Data Model

To represent MIRABEL’s flex-offers (both aggregated and non-aggregated) is an es-
sential task for MIRABEL DW. This is done by means of the tables shown in Fig. 1.
We first describe the dimensions (which are recognized by the prefix D in their table
names) and then the fact tables (recognized by the prefix F in their names). All dimen-
sion tables have surrogate keys with names ending with Id. The possible states for a
flex-offer (such as “offered”, “accepted”, and “rejected”) are represented in the dimen-
sion D flexEnergyState. A flex-offer has its state for a certain reason (for example, a
flex-offer becomes rejected if the offered price is too high). The possible reasons are
represented in the dimension D flexEnergyStateReason. As we expect few generic rea-
son categories (e.g, “Price too high”) and many more specific reason descriptions (e.g.
“Price (499.50 euros) too high”) to exist, we have columns for both the generic cate-
gories and the specific reasons such that a hierarchy exists. In MIRABEL DW, we repre-
sent time by discretized time intervals. This is done by D timeInterval which represents
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Fig. 1. Tables for representing flex-offers

15 minutes intervals (for now; other interval lengths can be chosen if needed). Flex-
offers are always related to at least one metering point (at the location where the energy
is to be consumed or produced), but if a flex-offer is aggregated, it will be associated
with many metering points. To capture this, D meteringPointGroup is used as bridge
table [7] between the fact table and D meteringPoint which represents the individual
metering points. To represent the aggregation level of a flex-offer, D aggregationLevel
is used.

The fact table F flexOffer holds flex-offer facts. It references all the previously de-
scribed dimension tables. There are six foreign keys to D timeInterval to represent dif-
ferent times such as when the flex-offer was created and when it at the latest has to be
assigned etc. These foreign keys thus all represent an absolute time. There is also an
attribute assignmentBeforeDuration which holds a time span telling how long before
the actual execution time the assignment must take place.

Further, F flexOffer references D legalEntityRole (explained later) twice to represent
who offered and accepted the flex-offer, respectively. Only the current information
about a flex-offer is held; if a flex-offer is modified, the old fact is overwritten. There are
measures to hold the lowest and highest amount of energy required by the flex-offer as
well as a measure to hold the “fixed” amount of energy that becomes accepted. Further,
a measure holds the total cost of the fix. Finally, each represented flex-offer is given a
unique identifier in the attribute flexOfferId which technically is a degenerate dimension.

Information about the profile intervals of flex-offers is represented in the fact table
F enProfileInterval. This fact table only has a single foreign key which references the
unique flexOfferId in F flexOffer. The imported value together with a sequential inter-
valNr forms the primary key for F enProfileInterval. The reason for this design is that a
single flex-offer can have many profile intervals. For each represented profile interval,
there is a duration specifying how many time units the profile interval spans over, and
both the lowest and highest amount of energy needed in this interval. When the flex-
offer becomes fixed, the actual amount of energy in the interval and the price for this
energy also becomes represented. An alternative to this design would be to represent
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the measures of F enProfileInterval in arrays in F flexOffer such that all data about a
given flex-offer would be represented in a single fact. Yet another alternative would be
to represent all attributes of F enProfileInterval in F flexOffer, i.e., denormalize the data
and have one (wide) fact in F flexOffer for each profile interval. (For space reasons, we
do not show the alternative schemas in figures.)

As flex-offers can be aggregated into larger flex-offers, we also introduce the ta-
ble F aggregationMeta which references F flexOffer twice to point to the aggregating
“parent flex-offer” and the smaller “child flex-offer” which has been aggregated, re-
spectively. Profiles of each child flex-offer can be shifted relatively to the profile start of
the parent flex-offer when aggregating child flex-offers into the parent. Therefore, for
every child flex-offer, the childProfileTimeShift attribute indicates the amount of time
units the profiles of the child flex-offer has been shifted in the aggregated flex-offer.
This information is used in the disaggregation.

2.2 Modeling Challenges

The fact table F flexOffer is the central fact table for representation of flex-offers. It is,
however, also used as a dimension table in the sense that each fact has a unique ID such
that F enProfileInterval and F aggregationMeta can reference F flexOffer and in effect
store facts about facts. Considering F flexOffer and F enProfileInterval, it can even be
discussed what a fact is. An energy profile interval (in this context) always belongs to
a flex-offer and any meaningful flex-offer has an energy profile interval (a flex-offer
for zero consumption/production at an undefined point in time is hardly interesting).
It could be argued that a single fact is represented by a single row in F flexOffer and
many rows in F enProfileInterval. Unlike traditional DW schemas, we thus have non-
atomic composed facts. As pointed out above, we could alternatively have modeled this
by using arrays in F flexOffer to hold the measures that currently are represented in
F enProfileInterval. This would, however, make it more cumbersome to compare dif-
ferent measures (e.g., en low with the minimum energy requirement to en fix with the
assigned energy) as the interval position currently represented by intervalNr only would
be implicitly represented by the position in the array. The denormalized variant (with a
fact in F flexOffer for each profile interval) would increase redundancy dramatically.

Another interesting aspect of MIRABEL DW is how it represents facts for both non-
aggregated and aggregated flex-offers in a unified way. The aggregation is unlike tra-
ditional aggregation since the parent flex-offer contains other flex-offers that can be
shifted within the parent flex-offer. We call the contained flex-offers shiftable child
facts.

3 Modeling of Time Series

3.1 Data Model

In MIRABEL DW, time series are represented by means of the tables shown in Fig. 2.
It is necessary to be able to represent time series of various types, for now energy,
power, and price. To represent these general classes, we use the D typeClass dimen-
sion table. Apart from its surrogate key, it has the attribute typeClassDesc which holds
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Fig. 2. Tables for representing time series

a textual description of the time series type (such as “Energy”) and the attribute unit
which holds the unit of measurements (such as “kWh”). Instances of the general types
are represented in the table D type. For example, an instance of the “Energy” class is
“Energy-Metered-Production-RES-Wind”. D type references D typeClass to represent
the hierarchy between types and type classes. For different types of time series, it is,
however, necessary to store different information. Therefore, we introduce the tables
D typeEnergy, D typePower, and D typePrice to hold the attributes that are relevant for
the different types. These tables supplement, but cannot replace, D type. The reason is
that we need a single table to reference from D timeSeries to represent the type of the
time series in question. Thus D type is referenced from D timeSeries, but the special
attributes for an energy time series are represented in D typeEnergy. The latter table has
columns to describe the origin of the time series (e.g. “Metered” or “Forecasted”), the
flow direction (i.e., if it is production or consumption), the category (e.g., energy from
renewable energy sources), and the type of energy (e.g. “Wind”). The design is likely
to evolve in the future. For example, there is a traditional hierarchy where types roll
up into categories that roll up into flow directions. A more advanced hierarchy is, how-
ever, needed to represent hybrid energy types like “At least 90% energy from renewable
energy sources and the rest produced from coal”.

D timeSeries holds a single entry for an entire time series. For each represented
time series, there is a unique ID tid and a name may be given. Further, D timeSeries
references D type (as previously described), D aggregationLevel to represent the level
of aggregation of the time series, and D meteringPointGroup to represent which me-
ters the time series describes. Thus, D timeSeries is mainly used to relate different di-
mension values that describe the represented time series. The values of the time series
are, however, represented in the fact table F timeSeriesInterval. This table references
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D timeSeries to identify the time series a value belongs to and D timeInterval to identify
the time instant when the value occured. Finally, the table holds the value itself as the
measure. A fact thus exists for each value in each time series. It can, however, also be
argued that a fact consists of what it represented in F timeSeriesInterval and what is
represented in D timeSeries which – apart from a possible name – only points out to
other dimensions.

3.2 Modeling Challenges

Similarly to the represention of flex-offers, our representation of time series also leads to
compound facts where one fact can be considered to be made up of parts in different ta-
bles (D timeSeries and F timeSeriesInterval). Actually, an alternative design is to merge
F timeSeriesInterval into D timeSeries such that the values instead are represented in an
array, meaning that a single time interval (and all its values) only would result in one
fact. Yet another alternative is to merge D timeSeries and F timeSeriesInterval and have
a row for each value in a time series. There are thus different possible ways to represent
the complex sequence-facts arising from time series. We choose the model in Fig. 2
since it both reduces complexity (compared to the first alternative where two arrays
must be processed to find the value for a given time instant) and redundancy (compared
to the second alternative where there is very wide fact for each value in the time series).

In our modeling of time series, the schema is neither a traditional star schema nor
a snowflake schema. One reason for this is of course the compound facts discussed
above. Another reason is the support for different types of time series for which differ-
ent attributes are needed. We have different tables that reference D type which also is
the dimension table referenced from the fact table. Consider for example D typeEnergy
which represents attributes that are relevant for energy time series. An alternative de-
sign would be to join all these D type* tables into one dimension table, but for every
dimension member many attribute values would then be NULL.

4 Modeling of Different Actors and Market Areas

4.1 Data Model

Many different entities are involved in different roles in energy trading and network
operation. We represent the needed actors from the “Harmonised Electricity Market
Role Model” [4] by means of the tables in Fig. 3.

The table D role represents roles such as “Producer” and “Consumer”. A role can
belong to another parent role and this is captured by a self-reference. For example, the
parent role of both “Producer” and “Consumer” is “Party Connected To Grid”. Legal
entities are represented by D legalEntity. To capture when a certain legal entity plays
a certain role (a single legal entity can play several roles), we use D legalEntityRole.
This table references both D role and D legalEntity. Further, it has an attribute to hold
a unique ID for a given legal entity playing a given role. We include this ID as it
makes it easy to point to a legal entity in a certain role. We do exactly that from a
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Fig. 3. Tables for representing different actors/roles

number of tables as shown in Fig. 3. For each role, there is a specialized table that (di-
rectly or indirectly through another table) references D legalEntityRole. Some of them,
like D lerSystemOperator, are simple and do only have one attribute which is a ref-
erence to this ID. The specialized table can be referenced and it is then explicit what
kind of role is referenced. For example, the table D lerSystemOperator is referenced
from D marketBalanceArea as shown in Fig. 5. A slightly more complex example is
D lerPartyConnectedToGrid which references D legalEntityRole and also D lerBalance-
Supplier to represent that a party connected to the grid always is so through a balance
supplier. Further, D lerPartyConnectedToGrid is itself referenced from its specializa-
tions, D lerProducer and D lerConsumer.

Fig. 4. Tables for representing market areas
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Finally, we have tables to represent market areas as shown in Fig. 4. D localMetering-
Point represents the meters that are connected to the grid. Such meters are installed
both at the producer and consumer sites. D localMeteringPoint references four different
specializations of D legalEntityRole. Further, it references D balanceGroup which in
turn references D marketBalanceArea which hierarchically groups metering points.

4.2 Modeling Challenges

To the best of our knowledge, this is the first paper to describe a DW for the complex
concepts of actors and roles in the “Harmonised Electricity Market Role Model” [4].
Our model captures both how legal entities can play different roles and how roles can
be parts of other roles. This is captured by the tables D legalEntity, D role, and D legal-
EntityRole. In addition to these tables, a (narrow) table has been added for each role
a legal entity can play (see the D ler* tables). It is then possible to represent attributes
that are only relevant for certain roles such as done for D lerBalanceSupplier. Further,
when foreign keys reference these tables (instead of just referencing D legalEntityRole),
it is explicit what kind of role playing is referenced and it helps to avoid mistakes
where, e.g., a balance supplier is referenced where a balance responsible party actually
should have been referenced. We note that if no special attributes must be stored for the
different roles, then instead of storing the D ler*’s as physical tables, they can be views
selecting from D legalEntityRole. This reduces the risk of mistakes further and makes
maintenance of them automatic.

5 The Full Schema

To summarize the previous descriptions, the full schema for MIRABEL DW is shown
in Fig. 5. The schema can capture the (needed) roles from the Harmonised Model [4]
as well as the “actor configurations” where different actors play different roles. The
schema also includes specializations of legal entities. Further, the schema can capture
different kinds of time series as complex sequence facts. The schema is thus general
enough to hold all the data that is needed in the MIRABEL project. It should, however,
be noted that no single node is intended to hold all data. Instead, a node should only
hold data that is relevant for the site where it is installed. For an end-consumer this
would typically be her own non-aggregated flex-offers and time series about metered
energy. For a balance responsible party buying electricity on the market and selling
it to end-consumers, it would include both aggregated and non-aggregated flex-offers,
forecasted and metered time series, and market areas. The data will thus be distributed
accordingly to the roles played by the owners of the nodes. The data will also be at
different aggregation levels such that some nodes have detailed data while others have
more aggregated data. For example, will a consumer know the details of her flex-offers,
i.e., when she has requested energy and how much. For a balance responsible party, the
individual non-aggregated flex-offers and end-users generating may not be known, but
the aggregated information will be known, e.g., that x MWhs must be produced in a
given time interval. Note that the different nodes can use the same schema.
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Fig. 5. The full schema for MIRABEL DW

6 Queries

In this section, we give examples of interesting queries on data in MIRABEL DW. We
first focus on queries on flex-offers and then on time series.

6.1 Queries on Flex-Offers

The first example, Q1, considers the flexibility in flex-offers, both with respect to time
and amount of energy.

Q1: SELECT AVG((enProfile_startBeforeTimeIntervalId -
enProfile_startAfterTimeIntervalId) *

(SELECT SUM((en_high - en_low) * intervalDuration)
FROM F_enProfileInterval i
WHERE i.flexOfferId = f.flexOfferId)

)
FROM F_flexOffer f;

The query uses the flexibility with respect to time, i.e., the difference between when the
flex-offer at the latest has to be executed and when it at the earliest can be scheduled.
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We assume that time interval IDs are assigned sequentially and thus use the difference
between the IDs of the time intervals to find the flexibility. This flexibility is multiplied
with the SUM of the energy flexibility in each profile interval. The energy flexibility in a
profile interval is found as the length of the profile interval multiplied with the difference
between the maximally required amount of energy and the minimally required amount
of energy. Finally, the shown query considers the average of the combined flexibility
for all flex-offers. The query is an example of a non-traditional kind of aggregation. If
we consider a graph showing the relative start and end times for profile intervals on the
X axis and the minimal and maximal energy amounts on the Y axis, the query Q1 finds
the area of energy flexibility for all flex-offers and multiplies these with the length of
their time flexibilities before the entire average is found. This number is primarily of
interest before the scheduling gets done and a high number indicates much freedom in
the scheduling while a low number shows that the considered flex-offers are not very
flexible.

The next example, Q2, is of interest after the scheduling and gives the total amount
of scheduled energy. This is a simple query which, however, must read data from many
rows in a realistic setting (the DBMS we use does currently not support materialized
views).

Q2: SELECT SUM(en_fix)
FROM F_enProfileInterval;

Q3 is a more complex query to apply after scheduling has taken place. It builds a time
series that for each time interval ID shows the amount of fixed energy.

Q3: SELECT timeIntervalId, SUM(en_fix_part)
FROM (SELECT en_fix_part, ROW_NUMBER() OVER (PARTITION BY i.flexOfferId

ORDER BY intervalNr) - 1 + f.enProfile_startFixTimeIntervalId
AS timeIntervalId

FROM (SELECT flexOfferId, intervalNr, en_fix / intervalDuration
AS en_fix_part, generate_series(1, intervalDuration)

FROM F_enProfileInterval
WHERE en_fix IS NOT NULL

) i, F_flexOffer f, D_flexEnergyState s
WHERE i.flexOfferId = f.flexOfferId AND f.stateId = s.stateId

AND s.stateDesc = ’Assigned’
) AS subquery

GROUP BY timeIntervalId
ORDER BY timeIntervalId;

The query computes the IDs of the time intervals where a flex-offer’s profile intervals
are executed. But a profile interval has a duration (in intervalDuration) which defines
how many time intervals the profile interval spans. Therefore, it is necessary to (evenly)
distribute the profile intervals’ energy amounts over one or more time intervals. To do
this, one “part” row is generated for each time interval a profile interval covers by means
of generate series. This happens in the innermost SELECT. The result of this is used
by the second SELECT which also uses the SQL window function ROW NUMBER to
enumerate the rows in each partition where a partition consists of the part rows for a
given flex offer and is ordered by the interval numbers. Thus, the resulting row number
corresponds to the number of time intervals between the assigned start time for the en-
tire flex offer and the part represented by the row (we subtract 1 since ROW NUMBER
counts from 1). When we add enProfile startFixTimeInterval for the flex-offer, we get
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the ID of tje absolute time interval when the part executes. Finally, the outermost SE-
LECT aggregates the sums of fixed energy amounts over all parts belonging to a given
time interval.

6.2 Queries on Time Series

Q4 is query that finds the balance, i.e., the difference between produced and consumed
energy, for a 24 hours period.

Q4: SELECT date, timeDesc,
SUM(CASE energyFlowDirection WHEN ’Production’ THEN value

ELSE 0 END) AS production,
SUM(CASE energyFlowDirection WHEN ’Consumption’ THEN value

ELSE 0 END) AS consumption
SUM(CASE energyFlowDirection WHEN ’Production’ THEN value

WHEN ’Consumption’ THEN -1 * value
ELSE 0 END) AS balance

FROM F_timeSeriesInterval f, D_timeSeries ts, D_type ty,
D_typeEnergy te, D_timeInterval ti

WHERE f.tid = ts.tid AND ts.typeId = ty.typeId AND te.energyTypeId =
ty.typeId AND ti.timeIntervalId = f.timeIntervalId AND
te.energyOrigin = ’Metered’ AND ti.date = ’2011-06-01’

GROUP BY ti.timeIntervalId
ORDER BY ti.timeIntervalId;

The query Q4 is an example where we use the special attributes that only apply to
some time series. In this example, we consider consumed and produced energy and we
thus use energyFlowDirection and energyOrigin which only exist for energy time series.
The query sums the production values, consumption values, and the difference between
them for each time interval that belongs to a given date.

Our last example, Q5, is a query to find those time series where the average energy
usage grouped on hours exceeds the average energy usage for the hour with 25% or
more at least 10 times.

Q5: WITH indavguse AS (
SELECT tid, hour, COUNT(value) AS indcnt, AVG(value) AS indavg
FROM F_timeSeriesInterval NATURAL JOIN D_timeInterval
GROUP BY tid, hour

),
totavguse AS (

SELECT hour, SUM(indcnt * indavg) / SUM(indcnt) AS totavg
FROM indavguse
GROUP BY hour

),
overuse AS (

SELECT tid, t.hour, indavg, totavg,
COUNT(*) OVER (PARTITION BY tid) AS cnt

FROM totavguse t, indavguse i
WHERE t.hour = i.hour AND indavg >= 1.25 * totavg

)
SELECT tid, cnt, hour, indavg, totavg
FROM overuse
WHERE cnt > 10
ORDER BY tid, hour;

The query has Common Table Expressions (CTEs) in the WITH part. In the first CTE,
indavguse, we compute a (temporary) table with the average hourly energy usage for
each time series. The result is used again to compute the second CTE, totavguse,
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where we find the average energy use per hour among all time series (we could join
F timeSeriesInterval and D timeInterval again, but it is faster to reuse the result of the
previously computed CTE). In the third CTE, overuse, we join the the results of the
two previous CTEs to find the IDs of time series and the hours fromindavgusewhere
the consumption is at least 25% higher than the general hourly average consumption
found in totavguse. Further, we use COUNT as a window function to count how
many such hours we find for a given time series. Finally, we select the ID of the time
series, the count of hours with an average energy usage at least 25% higher than the
average, and the consumption in the last SELECT clause.

7 Performance Study

In this section, we compare the performance of the queries from the previous sec-
tion. We consider them as they are on the described schema (called “MDW”) and in
addition, we consider alternative queries on the described schema alternatives with
denormalization and arrays, respectively. In the denormalized variant, F flexOffer and
F enProfileInterval are joined and so are F timeSeriesInterval and D timeSeries (how-
ever, with the name varchar attribute replaced by an integer to make it a typical fact
table). In the array variant, the same tables are joined, but now grouped on all dimen-
sion references and with measures aggregated into arrays. For the tests, we use a real
life data set with consumption data from 963 customers (the data originates from the
MeRegio project [10]) and we synthetically generate flex-offers based on this data set.
This gives rise to 963 (energy consumption) time series with 32.1 million time series
values, and 3,1 million flex-offers. We test the performance on a Linux server with two
Quad Core 1.86GHz Intel Xeon CPUs, 16 GB RAM, 4 SATA 7200RPM disks (with
one dedicated to the DBMS). The DBMS is PostgreSQL 9.1 [12] and has the param-
eter shared buffers set to 4GB, temp buffers to 128MB, and work mem to 96MB. All
tables are “fully vacuumed” such that their disk representations only take up the needed
space and do not occupy unused space. Further, the tables are “analyzed” such that their
statistics are up-to-date. Each query is executed once in a warm-up round and then the
queries are executed in a round-robin fashion such that each query gets executed five
times. We report the average execution times. The results are shown in Figure 6.

For Q1, it can be seen that the MDW variant is the fastest followed by the array
variant (38.3 seconds and 49.1 seconds, respectively). These two query variants have
similar plans, but with arrays there are fewer rows to process. On the other hand, these
rows need to have their arrays “unnested” to produce as many values as there are rows
to consider in the MDW variant. When the denormalized variant is considered, there
are also many rows and these rows are wide. Further, the plan is not similar to the plans
for the other variants as GROUP BY is necessary with this variant. This makes the
denormalized variant the slowest (123.4 seconds).

For Q2, the MDW variant is again the fastest (8.9 seconds) to use. Again, the array
variant is the second fastest (11.1 seconds). With this variant the arrays must again be
unnested to produce the values that are available in the rows in the MDW variant. The
denormalized variant uses wider rows and is the slowest (16.8 seconds).



MIRABEL DW: Managing Complex Energy Data in a Smart Grid 455

 0

 50

 100

 150

 200

 250

Q1 Q2 Q3 Q4 Q5

S
ec

on
ds

MDW
denorm.

array

Fig. 6. Results of performance study

For Q3, the MDW variant remains the fastest (172.1 seconds) while the array variant
now is the slowest (237.2 seconds) even though it avoids a join. On the other hand,
the array variant requires a SELECT clause to unnest the array and an extra use of
ROW NUMBER to recreate the values from intervalNr which only are implicitly avail-
able from the array positions. The denormalized variant (192.2 seconds) is bit slower
than the MDW variant even though it avoids a join.

For Q4, the MDW variant is significantly faster (0.8 seconds) than the others. The
denormalized variant which avoids a join, uses an order of magnitude more time (7.7
seconds). The array variant is by far the slowest (131.9 seconds) as there is no index on
timeIntervalId which is an array. Thus all rows must be processed and have their rows
unnested to perform a join with D timeInterval.

For Q5, the MDW and denormalized variants perform similarly (59.1 and 61.3 sec-
onds, respectively). The queries involve the same number of rows and are identical
apart from that the denormalized variant uses a wider table. For the array variant, the
first CTE has to unnest two arrays and the query takes longer time (143.8 seconds).

To summarize, the MDW variant performs the best for all queries. Another interest-
ing thing to consider, is the disk space usage. The tables F flexOffer, F enProfileInterval,
F timeSeriesInterval, and D timeSeries take up 4.1 GB in the MDW variant (not count-
ing indexes). Their alternative representations take up 7.0 GB in the denormalized vari-
ant and 1.9 GB in the array variant, respectively. It notable how little space the array
variant uses compared to the other variants due to its fewer number of rows (and thus
fewer space-consuming row headers). Overall, the MDW variant is a good choice con-
sidering both its performance and space requirements.

8 Related Work

In the energy sector, there is number of standardized data models used to represent the
major objects in an electric utility enterprise [6] as well as to define administrative data
internally interchanged between European electricity markets [4,5]. These models focus
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on various aspects of energy trading and physical electricity delivery, and specify 1)
components of a power system at the electrical level, 2) actors and roles involved in the
energy trading, 3) relationships and data exchange between those entities. These models
are used as a basis for the MIRACLE data model [8], which further enriches them with
the concept of shiftable consumption and production. All these models, however, focus
on a semantic rather than the storage or the management of energy-related entities. By
focusing on two most important entities in MIRABEL, i.e., time series and flex-offers,
this paper, on the other hand, presents data representation models for these two types of
entities offering a convenient storage and a good performance of analytical queries.

This paper is the first to dealt with the storage of flex-offers, but there are previ-
ous works which focus on time series and warehousing, e.g. UML-based modeling of
time-series in DWs [15], and temporal aggregation of multidimensional data [3], and
temporal DWs exploiting research results from the field of temporal databases [9]. Our
modeling of different time-series types have similarities with Bauer et al.’s work [1].
They discuss “locally valid dimensional attributes” whose existence depends on values
of dimensional elements. This is the case, e.g., for our attribute energyType which only
exists if the D type value represents an energy time-series. The problem of representing
all these attributes in a single dimension table (as in a typical star schema) is that there
will be many NULLs in the held data. Bauer et al. propose to have separate tables with
the specific attributes and then create views “on top” of these with common attributes as
well as textual values showing the name of the relation the data comes from which can
be used for hierarchical classification. In contrast, we use tables (and not views) for the
common attributes of a dimension and then represent special attributes that only exist
for some dimensional values in other tables that reference the table with the common
attributes. This makes it possible to declare foreign keys to the dimension table with
the common attributes and also declare indexes and constraints on these tables. Bauer
et al. also propose to use table inheritance to represent such cases. This would also be
possible in our DBMS [12], but constraints cannot be enforced on child tables then.

In the current paper, we consider different representations of profile intervals and
time series intervals which can be considered as facts with multi-valued measures. The
latter case also has a many-many relationship between the time series facts and the
time interval dimension. Previous work [13] has considered many-many relationships
between fact tables and dimension tables. Our denormalized representation is similar to
one of the methods of [13] whereas our other approaches with fact tables referencing
other fact tables and measure values in arrays, respectively, are different.

9 Conclusion

In this paper, we have presented a DW schema for managing the complex energy data
in a smart grid, including actors playing roles, flex-offers, and different types of time
series. The schema has a number of interesting complexities such as facts about facts
and composed non-atomic facts. The different nodes will hold different parts of the data
accordingly to the roles of the node owners and the data will be at different aggregation
levels at different nodes. The same schema can, however, be used for all kinds of nodes.
We have considered different alternatives for the schema modeling using denormaliza-
tion and arrays, respectively, but based on the performance and space usage, the chosen
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design is favourable. In the near future, we are going to perform large-scale simulations
with realistic data amounts from different types of nodes. We will also address the chal-
lenges with distribution of the data on many nodes such propagation of data through
the hierarchy, caching, etc. Further, we plan to investigate the possibilities for having
specialized versions of the schema for different types of nodes, but such that queries can
be formulated on the generic schema and automatically be translated to the specialized
schemas to make the results combinable.
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Granitzer, Michael 352
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