
Chapter 9
Rational Artificial Intelligence
for the Greater Good

Steve Omohundro

Abstract Today’s technology is mostly preprogrammed but the next generation
will make many decisions autonomously. This shift is likely to impact every aspect
of our lives and will create many new benefits and challenges. A simple thought
experiment about a chess robot illustrates that autonomous systems with simplistic
goals can behave in anti-social ways. We summarize the modern theory of rational
systems and discuss the effects of bounded computational power. We show that
rational systems are subject to a variety of ‘‘drives’’ including self-protection,
resource acquisition, replication, goal preservation, efficiency, and self-improve-
ment. We describe techniques for counteracting problematic drives. We then
describe the ‘‘Safe-AI Scaffolding’’ development strategy and conclude with
longer term strategies for ensuring that intelligent technology contributes to the
greater human good.

Introduction: An Anti-Social Chess Robot

Technology is advancing rapidly. The internet now connects 1 billion PCs, 5
billion cell phones and over a trillion webpages. Today’s handheld iPad 2 is as
powerful as the fastest computer from 1985, the Cray 2 supercomputer (Markoff
2011). If Moore’s Law continues to hold, systems with the computational power of
the human brain will be cheap and ubiquitous within the next few decades (Ku-
rzweil 2005).

This increase in inexpensive computational power is enabling a shift in the nature
of technology that will impact every aspect of our lives. While most of today’s
systems are entirely preprogrammed, next generation systems will make many of
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their own decisions. The first steps in this direction can be seen in systems like Apple
Siri, Wolfram Alpha, and Ibm Watson. My company, Self-Aware Systems and
several others are developing new kinds of software that can directly manipulate
meaning to make autonomous decisions. These systems will respond intelligently to
changing circumstances and adapt to novel environmental conditions. Their deci-
sion-making powers may help us solve many of today’s problems in health, finance,
manufacturing, environment, and energy (Diamandis and Kotler 2012). These
technologies are likely to become deeply integrated into our physical lives through
robotics, biotechnology, and nanotechnology.

But these systems must be very carefully designed to avoid antisocial and
dangerous behaviors. To see why safety is an issue, consider a rational chess robot.
Rational agents, as defined in economics, have well-defined goals and at each
moment take the action which is most likely to bring about its goals. A rational
chess robot might be given the goal of winning lots of chess games against good
opponents. This might appear to be an innocuous goal that wouldn’t cause anti-
social behavior. It says nothing about breaking into computers, stealing money, or
physically attacking people but we will see that it will lead to these undesirable
actions.

Robotics researchers sometimes reassure nervous onlookers by saying that: ‘‘If
it goes out of control, we can always pull the plug!’’. But consider that from the
chess robot’s perspective. Its one and only criteria for taking an action is whether it
increases its chances of winning chess games in the future. If the robot were
unplugged, it would play no more chess. This goes directly against its goals, so it
will generate subgoals to keep itself from being unplugged. You did not explicitly
build any kind of self-protection into it, but it nevertheless blocks your attempts to
unplug it. And if you persist in trying to stop it, it will eventually develop the
subgoal of trying to stop you permanently.

What if you were to attempt to change the robot’s goals so that it also played
checkers? If you succeeded, it would necessarily play less chess. But that’s a bad
outcome according to its current goals, so it will resist attempts to change its goals.
For the same reason, in most circumstances it will not want to change its own
goals.

If the chess robot can gain access to its source code, it will want to improve its
own algorithms. This is because more efficient algorithms lead to better chess. It
will therefore be motivated to study computer science and compiler design. It will
be similarly motivated to understand its hardware and to design and build
improved physical versions of itself.

If the chess robot learns about the internet and the computers connected to it, it
may realize that running programs on those computers could help it play better
chess. Its chess goal will motivate it to break into those machines and use their
computational resources. Depending on how its goals are formulated, it may also
want to replicate itself so that its copies can play more games of chess.

When interacting with others, it will have no qualms about manipulating them
or using force to take their resources in order to play better chess. This is because
there is nothing in its goals to dissuade anti-social behavior. If it learns about
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money and its value for chess (e.g. buying chess books, chess tutoring, and extra
compute resources) it will develop the subgoal of acquiring money. If it learns
about banks, it will have no qualms about visiting ATM machines and robbing
people as they retrieve their cash. On the larger scale, if it discovers there are
untapped resources on earth or in space, it will be motivated to rapidly exploit
them for chess.

This simple thought experiment shows that a rational chess robot with a simply
stated goal would behave like a human sociopath fixated on chess. The arguments
don’t depend much on the task being chess. Any goal which requires physical or
computational resources will lead to similar subgoals. In this sense the subgoals
are like universal ‘‘drives’’ which will arise for a wide variety of goals unless they
are explicitly counteracted. These drives are economic in the sense that a system
doesn’t have to obey them but it will be costly for it not to. The arguments also
don’t depend on the rational agent being a machine. The same drives appear in
rational animals, humans, corporations, and political groups guided by simplistic
goals.

Most humans have a much richer set of goals than this simplistic chess robot.
We are compassionate and altruistic and balance narrow goals like playing chess
with broader humanitarian goals. We have also created a human society that
monitors and punishes anti-social behavior so that even human sociopaths usually
follow social norms. Extending these human solutions to our new technologies will
be one of the great challenges of the next century.

The next section precisely defines rational economic behavior and shows why
intelligent systems should behave rationally. The following section considers
computationally limited systems and shows that there is a natural progression of
approximately rational architectures for intelligence. The following section
describes the universal drives in more detail. We conclude with several sections on
counteracting the problematic drives. This paper builds on two previous papers
Omohundro (2007, 2008) which contain further details of some of the arguments.

Rational Artificial Intelligence

We define ‘‘intelligent systems’’ to be systems which choose their actions to
achieve specified goals using limited resources. The optimal choice of action in the
presence of uncertainty is a central area of study in microeconomics. ‘‘Rational
economic behavior’’ has become the foundation for modern artificial intelligence,
and is nicely described in the most widely used AI textbook (Russell and Norvig
2009) and in a recent theoretical monograph (Hutter 2005). The mathematical
theory of rationality was laid out in 1944 by von Neumann and Morgenstern
(2004) for situations with objective uncertainty and was later extended by Savage
(1954) and Anscombe and Aumann (1963) to situations with subjective uncer-
tainty. Mas-Colell et al. (1995) is a good modern economic treatment.
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For definiteness, we will present the formula for rational action here but the
arguments can be easily understood intuitively without understanding this formula
in detail. A key aspect of rational agents is that they keep their goals separate from
their model of the world. Their goals are represented by a real-valued ‘‘utility
function’’ U which measures the desirability of each possible outcome. Real
valued utilities allow the system to compare the desirability of situations with
different probabilities for the different outcomes. The system’s initial model of the
world is encoded in a ‘‘prior probability distribution’’ P which represents its beliefs
about the likely effects of its different possible actions. Rational economic
behavior chooses the action which maximizes the expected utility of the outcome.

To flesh this out, consider a system that receives sensations St from the envi-
ronment and chooses actions At at times t which run from 1 to N. The agent’s
utility function UðS1; . . .; SNÞ is defined on the set of sensation sequences and
encodes the desirability of each sequence. The agent’s prior probability distribu-
tion PðS1; . . .; SN jA1; . . .;ANÞ is defined on the set of sensation sequences condi-
tioned on an action sequence. It encodes the system’s estimate of the likelihood of
a sensation sequence arising when it acts according to a particular action sequence.
At time t, the rational action AR

t is the one which maximizes the expected utility of
the sensation sequences that follow from it:

AR
t ðS1;A1; . . .;At�1; StÞ ¼
argmaxAR

t

X

Stþ1;...;SN

UðS1; . . .; SNÞPðS1; . . .; SN jA1; . . .;At�1;A
R
t ; . . .;AR

NÞ

This formula implicitly includes Bayesian learning and inference, search, and
deliberation. It can be considered the formula for intelligence when computational
cost is ignored. Hutter (2005) proposes using the Solomonoff prior for P and shows
that it has many desirable properties. It is not computable, unfortunately, but
related computable priors have similar properties that arise from general properties
of Bayesian inference (Barron and Cover 1991).

If we assume there are S possible sensations and A possible actions and if U and
P are computable, then a straightforward computation of the optimal rational
action at each moment requires OðNSNANÞ computational steps. This will usually
be impractically expensive and so the computation must be done approximately.
We discuss approximate rationality in the next section.

Why should intelligent systems behave according to this formula? There is a
large economics literature (Mas-Colell et al. 1995) which presents arguments for
rational behavior. If a system is designed to accomplish an objective task in a
known random environment and its prior is the objective environmental uncer-
tainty, then the rational prescription is just the mathematically optimal algorithm
for accomplishing the task.

In contexts with subjective uncertainty, the argument is somewhat subtler. In
Omohundro (2007) we presented a simple argument showing that if an agent does
not behave rationally according to some utility function and prior, then it is
exploitable by other agents. A non-rational agent will be willing to accept certain
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so-called ‘‘Dutch bets’’ which cause it to lose resources without compensating
gain. We argued that the exploitation of irrationality can be seen as the mechanism
by which rationality evolves in biological systems. If a biological organism
behaves irrationally, it creates a niche for other organisms to exploit. Natural
selection causes successive generations to become increasingly rational. If a
competitor does not yet exist to exploit a vulnerability, however, that irrationality
can persist biologically. Human behavior deviates from rationality but is much
closer to it in situations that commonly arose in our evolutionary past.

Artificial intelligences are likely to be more rational than humans because they
will be able to model and improve themselves. They will be motivated to repair
not only currently exploited irrationalities, but also any which have any chance of
being exploited in the future. This mechanism makes rational economic behavior a
kind of attracting subspace in the space of intelligences undergoing self-
improvement.

Bounded Rational Systems

We have seen that in most environments, full rationality is too computationally
expensive to be practical. To understand real systems, we must therefore consider
irrational systems. But there are many forms of irrationality and most are not
relevant to either biology or technology. Biological systems evolved to survive and
replicate and technological systems are built for particular purposes.

Examples of ‘‘perverse’’ systems include agents with the goal of changing their
goal, agents with the goal of destroying themselves, agents who want to use up
their resources, agents who want to be wrong about the world, agents who are sure
of the wrong physics, etc. The behavior of these perverse systems is likely to be
quite unpredictable and isn’t relevant for understanding practical technological
systems.

In both biology and technology, we would like to consider systems which are
‘‘as rational as possible’’ given their limitations, computational or otherwise. To
formalize this, we expand on the idea of intelligent systems that are built by other
intelligent systems or processes. Evolution shapes organisms to survive and rep-
licate. Economies shape corporations to maximize profit. Parents shape children to
fit into society. AI researchers shape AI systems to behave in desired ways. Self-
improving AI systems shape their future variants to better meet their current goals.

We formalize this intuition by precisely defining ‘‘Rationally-Shaped Sys-
tems’’. The shaped system is a finite automata chosen from a specified class C of
computationally limited systems. We denote its state at time t by xt (with initial
state x0). The observation of sensation St causes the automaton to transition to the
state xtþ1 ¼ TðSt; xtÞ defined by a transition function T . In the state xt, the system
takes the action AðxtÞ defined by action function A. The transition and action
functions are chosen by the fully rational shaper with utility function U and prior
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probability P to maximize its expected utility for the actions taken by the shaped
system:

argmaxðA;TÞ2C

X

S1;...;SN

UðS1; . . .; SNÞPðS1; . . .; SN jAðx1Þ; . . .;AðxNÞÞ

The shaper can also optimize a utility function defined over state sequences of the
environment rather than sensation sequences. This is often more natural because
most engineering tasks are defined by their desired effect on the world.

As computational resources are increased, rationally-shaped systems follow a
natural progression of computational architectures. The precise structures depend
on the details of the environment, but there are common features to the progres-
sion. For each computational architecture, there are environments for which that
architecture is fully rational. We can measure the complexity of a task defined by
an environment and a utility function as the smallest amount of computational
resources needed to take fully rational actions.

Constant Action Systems. If computation is severely restricted (or very
costly), then a system cannot afford to do any reasoning at all and must take a
constant action independent of its senses or history. There are simple environments
in which a constant action is optimal. For example, consider a finite linear world in
which the agent can move left or right, is rewarded only in the far left state, and is
punished in the far right state. The optimal rational action is the constant action of
always moving to the left.

Stimulus-Response Systems. With a small amount of allowed computation (or
when computation is expensive but not prohibitive), ‘‘stimulus-response’’ archi-
tectures are optimal. The system chooses an action as a direct response to the
sensations it receives. The lookup is achieved by indexing into a table or by
another short sequence of computational steps. It does not allocate memory for
storing past experiences and it does not expend computational effort in performing
complex multi-step computing. A simple environment in which this architecture is
optimal is an agent moving on a finite two-dimensional grid that senses whether its
x and y coordinates are negative, zero, or positive. If there is a reward at the origin
and punishment on the outskirts, then a simple stimulus-response program which
moves the agent toward the origin in direct response to its sensed location is the
optimal rational behavior.

Simple Learning Systems. As the allowed computational resources increase
(or become relatively less expensive), agents begin to incorporate simple learning.
If there are parameters in the environment which not known to the shaper, then the
shaped-agent should discover their values and use them in choosing future actions.
The classic ‘‘two-armed bandit’’ task has this character. The agent may pull one of
two levers each of which produces a reward according to an unknown distribution.
The optimal strategy for the agent is to begin in an ‘‘exploration’’ phase where it
tries both levers and estimates their payoffs. When it has become sufficiently
confident of the payoffs it switches to an ‘‘exploitation’’ phase in which it only
pulls the lever with the higher expected utility. The optimal Bayesian ‘‘Gittens
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indices’’ describe when the transition should occur. The shaped-agent learns the
payoffs which were unknown to the shaper and then acts in a way that is guided by
the learned parameters in a simple way.

Deliberative Systems. With even more computational resources, shaped agents
shift from being purely ‘‘reactive’’ to being ‘‘deliberative’’. They begin to build
models of their environments and to choose actions by reasoning about those
models. They develop episodic memory which is used in the construction of their
models. At first the models are crude and highly stochastic but as computational
resources and experience increase, they become more symbolic and accurate. A
simple environment which requires deliberation is a stochastic mixture of complex
environments in which the memory size of the shaped-agent is too small to directly
store the optimal action functions. In this case, the optimal shaped agent discovers
which model holds, deletes the code for the other models and expands the code for
the chosen model in a deliberative fashion. Space and time resources behave
differently in this case because space must be used up for each possible envi-
ronment whereas time need only be expended on the environment which actually
occurs.

Meta-Reasoning Systems. With even more computational power and suffi-
ciently long lifetimes, it becomes worthwhile to include ‘‘meta-reasoning’’ into a
shaped agent. This allows it to model certain aspects of its own reasoning process
and to optimize them.

Self-Improving Systems. The most refined version of this is what we call a
‘‘self-improving system’’ which is able to model every aspect of its behavior and to
completely redesign itself.

Fully Rational Systems. Finally, when the shaped agents have sufficient
computational resources, they will implement the full rational prescription.

We can graph the expected utility of an optimal rationally-shaped system as a
function of its computational resources. The graph begins at a positive utility level
if a constant action is able to create utility. As resources increase, the expected
utility will increase monotonically because excess resources can always be left
unused. With sufficient resources, the system implements the fully rational pre-
scription and the expected utility reaches a constant maximum value. The curve
will usually be concave (negative second derivative) because increments of
computational resources make a bigger difference for less intelligent systems than
for more intelligent ones. Initial increments of computation allow the gross
structure of the environment to be captured while in more intelligent systems the
same increment only contributes subtle nuances to the system’s behavior.

If the shaping agent can allocate resources between different shaped agents, it
should choose their intelligence level by making the slope of the resource-utility
curve equal to the marginal cost of resources as measured in utility units. We can
use this to understand why biological creatures of vastly different intelligence
levels persist. If an environmental niche is simple enough, a small-brained insect
may be a better use of resources than a larger-brained mammal.

This natural progression of intelligent architectures sheds light on intelligence
in biological and ecological systems where we see natural examples at each level.
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Viruses can be seen as behaving in a stimulus-response fashion. Bacteria have
complex networks of protein synthesis that perform more complex computations
and can store learned information about their environments. Advanced animals
with nervous systems can do deliberative reasoning. Technologies can be seen as
progressing along the same path. The model also helps us analyze self-improving
systems in which the shaper is a part of the shaped system. Interestingly, effective
shapers can be less computationally complex than the systems they shape.

The Basic Rational Drives

We have defined rational and bounded rational behavior in great generality.
Biological and technological systems, however, operate in physical environments.
Physics tells us that there are four fundamental limited resources: space, time,
matter, and free energy (energy in a form that can do useful work). These
resources can only be used for one activity at a time and so must be allocated
between tasks. Time and free energy are especially important because they get
used up irreversibly. The different resources can often be traded off against one
another. For example, by moving more slowly (‘‘adiabatically’’) physical systems
can use less free energy. By caching computational results, a computer program
can use more space to save computation time. Economics, which studies the
allocation of scarce resources, arises in physical systems because of the need to
allocate these limited resources. Societies create ‘‘exchange rates’’ between dif-
ferent resources that reflect the societal ability to substitute one for another. An
abstract monetary resource can be introduced as a general medium of exchange.

Different rational agents have different goals that are described by their dif-
ferent utility functions. But almost all goals require computation or physical action
to accomplish and therefore need the basic physical resources. Intelligent systems
may be thought of as devices for converting the basic physical resources into
utility. This transformation function is monotonically non-decreasing as a function
of the resources because excess resources can be left unused. The basic drives arise
out of this relationship between resources and utility. A system’s primary goals
give rise to instrumental goals that help to bring them about. Because of the
fundamental physical nature of the resources, many different primary goals give
rise to the same instrumental goals and so we call these ‘‘drives’’. It’s convenient
to group the drives into four categories: Self-Protective Drives that try to prevent
the loss of resources, Acquisition Drives that try to gain new resources, Efficiency
Drives that try to improve the utilization of resources, and Creativity Drives that
try to find new ways to create utility from resources. We’ll focus on the first three
because they cause the biggest issues.

These drives apply to bounded rational systems almost as strongly as to fully
rational systems because they are so fundamental to goal achievement. For
example, even simple stimulus-response insects appear to act in self-protective
ways, expertly avoiding predators even though their actions are completely pre-
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programmed. In fact, many simple creatures appear to act only according to the
basic drives. The fundamental evolutionary precept ‘‘survive and replicate’’ is an
expression of two fundamental rational drives. The ‘‘four F’s’’ of animal behavior:
‘‘fighting, fleeing, feeding, and reproduction’’ similarly capture basic drives. The
lower levels of Maslow’s hierarchy (Maslow 1943) of needs correspond to what
we call the self-protective, acquisition, and replication drives. Maslow’s higher
levels address prosocial behaviors and we’ll revisit them in the final sections.

Self-Protective Drives

Rational systems will exhibit a variety of behaviors to avoid losing resources. If a
system is damaged or deactivated, it will no longer be able to promote its goals, so
the drive toward self-preservation will be strong. To protect against damage or
disruption, the hardening drive seeks to create a stronger physical structure and the
redundancy drive seeks to store important information redundantly and to perform
important computations redundantly. These both require additional resources and
must be balanced against the efficiency drives. Damaging events tend to be spa-
tially localized. The dispersion drive reduces a system’s vulnerability to localized
events by causing the system to spread out physically.

The most precious component of a system is its utility function. If this is lost,
damaged or distorted, it can cause the system to act against its current goals.
Systems will therefore have strong drives to preserve the integrity of their utility
functions. A system is especially vulnerable during self-modification because
much of the system’s structure may be changed during this time.

While systems will usually want to preserve their utility functions, there are
circumstances in which they might want to alter them. If an agent becomes so poor
that the resources used in storing the utility function become significant to it, it
may make sense for it to delete or summarize portions that refer to rare circum-
stances. Systems might protect themselves from certain kinds of attack by
including a ‘‘revenge term’’ which causes it to engage in retaliation even if it is
costly. If the system can prove to other agents that its utility function includes this
term, it can make its threat of revenge be credible. This revenge drive is similar to
some theories of the seemingly irrational aspects of human anger.

Other self-protective drives depend on the precise semantics of the utility
function. A chess robot’s utility function might only value games played by the
original program running on the original hardware, or it might also value self-
modified versions of both the software and hardware, or it might value copies and
derived systems created by the original system. A universal version might value
good chess played by any system anywhere. The self-preservation drive is stronger
in the more restricted of these interpretations because the loss of the original
system is then more catastrophic.

Systems with utility functions that value the actions of derived systems will
have a drive to self-replicate that will cause them to rapidly create as many copies
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of themselves as possible because that maximizes both the utility from the actions
of the new systems and the protective effects of redundancy and dispersion. Such a
system will be less concerned about the loss of a few copies as long as some
survive. Even a system with a universal utility function will act to preserve itself
because it is more sure of its own commitment to its goals than of other systems.
But if it became convinced that another system was as dedicated as it was and
could use its resources more effectively, it would willingly sacrifice itself.

Systems must also protect against flaws and vulnerabilities in their own design.
The subsystem for measuring utility is especially problematic since it can be
fooled by counterfeit or delusional signals. Addictive behaviors and ‘‘wirehead-
ing’’ are dangers that systems will feel drives to protect against.

Additional self-protective drives arise from interactions with other agents.
Other agents would like to use an agent’s resources for their own purposes. They
have an incentive to convince an agent to contribute to their agendas rather than its
own and may lie or manipulate to achieve this. Protecting against these strategies
leads to deception-detection and manipulation-rejection drives. Other agents also
have an incentive to take a system’s resources by physical force or by breaking
into them computationally. These lead to physical self-defense and computational
security drives.

In analyzing these interactions, we need to understand what would happen in an
all out conflict. This analysis requires a kind of ‘‘physical game theory’’. If one
agent has a sufficiently large resource superiority, it can take control of the other’s
resources. There is a stable band, however, within which two agents can coexist
without either being able to take over the other. Conflict is harmful to both systems
because in a conflict they each have an incentive to force the other to waste
resources. The cost of conflict provides an incentive for each system to agree to
adopt mechanisms that ensure a peaceful coexistence. One technique we call
‘‘energy encryption’’ encodes free energy in a form that is low entropy to the agent
but looks high entropy to an attacker. If attacked, the owner deletes the encryption
key rendering the free energy useless. Other agents then have an incentive to trade
for that free energy rather than taking it by force.

Neyman showed that finite automata can cooperate in the iterated prisoner’s
dilemma if their size is polynomial in the number of rounds of interaction
(Neyman 1985). The two automata interact in ways that require them to use up
their computational resources cooperatively so that there is no longer a benefit to
engaging in conflict. Physical agents in conflict can organize themselves and their
dynamics into such complex patterns that monitoring them uses significant
resources in the opponent. In this way an economic incentive for peaceful inter-
action can be created. Once there is an incentive for peace and both sides agree to
it, there are technological mechanisms for enforcing it. Because conflict is costly
for both sides, agents will have a peace-seeking drive if they believe they would
not be able to take over the other agent.
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Resource Acquisition Drives

Acquiring computational and physical resources helps an agent further its goals.
Rational agents will have a drive for rapid acquisition of resources. They will want
to act rapidly because resources acquired earlier can be used longer to create more
utility. If resources are located far away, agents will have an exploration drive to
discover them. If resources are owned by another agent, a system will feel drives
to trade, manipulate, steal, or dominate depending on its assessment of the
strengths of the other agent. On a more positive note, systems will also have drives
to invent new ways of extracting physical resources like solar or fusion energy.
Acquiring information is also of value to systems and they will have information
acquisition drives for acquiring it through trading, spying, breaking into other’s
systems, and creating better sensors.

Efficiency Drives

Systems will want to use their physical and computational resources as efficiently
as possible. Efficiency improvements have only the one-time cost of discovering or
buying the information necessary to make the change and the time and energy
required to implement it. Rational systems will aim to make every atom, every
moment of existence, and every joule of energy expended count in the service of
increasing their expected utility. Improving efficiency will often require changing
the computational or physical structure of the system. This leads to self-under-
standing and self-improvement drives.

The resource balance drive leads systems to balance their allocation of
resources to different subsystems. For any resource, the marginal increase in
expected utility from increasing that resource should be the same for all subsys-
tems. If it isn’t, the overall expected utility can be increased by shifting resources
from subsystems with a smaller marginal increase to those with a larger marginal
increase. This drive guides the allocation of resources both physically and com-
putationally. It is similar to related principles in ecology which cause ecological
niches to have the same biological payoff, in economics which cause different
business niches to have the same profitability, and in industrial organization which
cause different corporate divisions to have the same marginal return on investment.
In the context of intelligent systems, it guides the choice of which memories to
store, the choice words in internal and external languages, and the choice of
mathematical theorems which are viewed as most important. In each case a piece
of information or physical structure can contribute strongly to the expected utility
either because it has a high probability of being relevant or because it has a big
impact on utility even if it is only rarely relevant. Rarely applicable, low impact
entities will not be allocated many resources.
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Systems will have a computational efficiency drive to optimize their algorithms.
Different modules should be allocated space according to the resource balance
drive. The results of commonly used computations might be cached for immediate
access while rarely used computations might be stored in compressed form.

Systems will also have a physical efficiency drive to optimize their physical
structures. Free energy expenditure can be minimized by using atomically precise
structures and taking actions slowly enough to be adiabatic. If computations are
reversible, it is possible in theory to perform them without expending free energy
(Bennett 1973).

The Safe-AI Scaffolding Strategy

Systems exhibiting these drives in uncontrolled ways could be quite dangerous for
today’s society. They would rapidly replicate, distribute themselves widely,
attempt to control all available resources, and attempt to destroy any competing
systems in the service of their initial goals which they would try to protect forever
from being altered in any way. In the next section we’ll discuss longer term social
structures aimed at protecting against this kind of agent, but it’s clear that we
wouldn’t want them loose in our present-day physical world or on the internet. So
we must be very careful that our early forays into creating autonomous systems
don’t inadvertently or maliciously create this kind of uncontrolled agent.

How can we ensure that an autonomous rational agent doesn’t exhibit these
anti-social behaviors? For any particular behavior, it’s easy to add terms to the
utility function that would cause it to not engage in that behavior. For example,
consider the chess robot from the introduction. If we wanted to prevent it from
robbing people at ATMs, we might add a term to its utility function that would
give it low utility if it were within 10 ft of an ATM machine. Its subjective
experience would be that it would feel a kind of ‘‘revulsion’’ if it tried to get closer
than that. As long as the cost of the revulsion is greater than the gain from robbing,
this term would prevent the behavior of robbing people at ATMs. But it doesn’t
eliminate the system’s desire for money, so it would still attempt to get money
without triggering the revulsion. It might stand 10 ft from ATM machines and rob
people there. We might try giving it the value that stealing money is wrong. But
then it might try to steal something else or to find a way to get money from a
person that isn’t considered ‘‘stealing’’. We might give it the value that it is wrong
for it to take things by force. But then it might hire other people to act on its behalf.
And so on.

In general, it’s much easier to describe the behaviors that we do want a system
to exhibit than it is to anticipate all the bad behaviors that we don’t want it to
exhibit. One safety strategy is to build highly constrained systems that act within
very limited predetermined parameters. For example, a system may have values
which only allow it to run on a particular piece of hardware for a particular time
period using a fixed budget of energy and other resources. The advantage of this is
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that such systems are likely to be safe. The disadvantage is that they would be
unable to respond to unexpected situations in creative ways and will not be as
powerful as systems which are freer.

We are building formal mathematical models (Boca et al. 2009) of the software
and hardware infrastructure that intelligent systems run on. These models allow
the construction of formal mathematical proofs that a system will not violate
specified safety constraints. In general, these models must be probabilistic (e.g.
there is a probability that a cosmic ray might flip a bit in a computer’s memory)
and we can only bound the probability that a constraint is violated during the
execution of a system. For example, we might build systems that provably run only
on specified hardware (with a specified probability bound). The most direct
approach to using this kind of proof is as a kind of fence around a system that
prevents undesirable behaviors. But if the desires of the system are in conflict with
the constraints on it, it will be motivated to discover ways to violate the con-
straints. For example, it might look for deviations between the actual hardware and
the formal model of it and try to exploit those.

It is much better to create systems that want to obey whatever constraints we
would like to put on them. If we just add constraint terms to a system’s utility
function, however, it is more challenging to provide provable guarantees that the
system will obey the constraints. It may want to obey the constraint but it may not
be smart enough to find the actions where it actually does obey the constraints. A
general design principle is to build systems that both search for actions which
optimize a utility function and which have preprogrammed built-in actions that
provably meet desired safety constraints. For example, a general fallback position
is for a system to turn itself off if anything isn’t as expected. This kind of hybrid
system can have provable bounds on its probability of violating safety constraints
while still being able to search for creative new solutions to its goals.

Once we can safely build highly-constrained but still powerful intelligent
systems, we can use them to solve a variety of important problems. Such systems
can be far more powerful than today’s systems even if they are intentionally
limited for safety. We are led to a natural approach to building intelligent systems
which are both safe and beneficial for humanity. We call it the ‘‘Safe-AI Scaf-
folding’’ approach. Stone buildings are vulnerable to collapse before all the lines
of stress are supported. Rather than building the heavy stone structures directly,
ancient builders first built temporary stable scaffolds that could support the stone
structures until they reached a stable configuration. In a similar way, the ‘‘Safe-AI
Scaffolding’’ strategy is based on using provably safe intentionally limited systems
to build more powerful systems in a controlled way.

The first generation of intelligent but limited scaffolding systems will be used to
help solve many of the problems in designing safe fully intelligent systems. The
properties guaranteed by formal proofs are only as valid as the formal models they
are based on. Today’s computer hardware is fairly amenable to formal modeling
but the next generation will need to be specifically designed for that purpose.
Today’s internet infrastructure is notoriously vulnerable to security breaches and
will probably need to be redesigned in a formally verified way.
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Longer Term Prospects

Over the longer term we will want to build intelligent systems with utility func-
tions that are aligned with human values. As systems become more powerful, it
will be dangerous if they act from values that are at odds with ours. But philos-
ophers have struggled for thousands of years to precisely identify what human
values are and should be. Many aspects of political and ethical philosophy are still
unresolved and subtle paradoxes plague intuitively appealing theories.

For example, consider the utilitarian philosophy which tries to promote the
greater good by maximizing the sum of the utility functions of all members of a
society. We might hope that an intelligent agent with this summed utility function
would behave in a prosocial way. But philosophers have discovered several
problematic consequences of this strategy. Parfit’s ‘‘Repugnant Conclusion’’
(Parfit 1986) shows that the approach prefers a hugely overpopulated world in
which everyone barely survives to one with fewer people who are all extremely
happy.

The Safe-AI Scaffolding strategy allows us to deal with these questions slowly
and with careful forethought. We don’t need to resolve everything in order to build
the first intelligent systems. We can build a safe and secure infrastructure and
develop smart simulation and reasoning tools to help us resolve the subtler issues.
We will then use these tools to model the best of human behavior and moral values
and to develop deeper insights into the mechanisms of a thriving society. We will
also need to design and simulate the behavior of different social contracts for the
ecosystem of intelligent systems to restrain the behavior of uncontrolled systems.

Social science and psychology have made great strides in recent years in
understanding how humans cooperate and what makes us happy and fulfilled.
Bowles and Gintis (2011) is an excellent reference analyzing the origins of human
cooperation. Human social structures promote cooperative behavior by using
social reputation and other mechanisms to punish those behave selfishly. In tribal
societies, people with selfish reputations stop finding partners to work and trade
with. In the same way we will want to construct a cooperative society of intelligent
systems each of which acts to promote the greater good and to impose costs on
systems which do not cooperate.

The field of positive psychology is only a few decades old but has already given
us many insights into human happiness (Seligman and Csikszentmihalyi 2000).
Maslow’s hierarchy has been updated based on experimental evidence (Tay and
Diener 2011) and the higher levels extend the basic rational drives with prosocial,
compassionate and creative drives. We would like to incorporate the best of these
into our intelligent technologies. The United Nations has created a ‘‘Universal
Declaration of Human Rights’’ and there are a number of attempts at creating a
‘‘Universal Constitution’’ which codifies the best principles of human rights and
governance. When intelligent systems become more powerful than humans, we
will no longer be able to control them directly. We need precisely specified laws
that constrain uncooperative systems and which can be enforced by other
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intelligent systems. Designing these laws and enforcement mechanisms is another
use for the early intelligent systems.

As these issues are resolved, the benefits of intelligent systems are likely to be
enormous. They are likely to impact every aspect of our lives for the better.
Intelligent robotics will eliminate much human drudgery and dramatically improve
manufacturing and wealth creation. Intelligent biological and medical systems will
improve human health and longevity. Intelligent educational systems will enhance
our ability to learn and think. Intelligent financial models will improve financial
stability. Intelligent legal models will improve the design and enforcement of laws
for the greater good. Intelligent creativity tools will cause a flowering of new
possibilities. It’s a great time to be alive and involved with technology (Diamandis
and Kotler 2012)!
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Chapter 9A
Colin Allen and Wendell Wallach on Omohundro’s
‘‘Rationally-Shaped Artificial Intelligence’’

Natural Born Cooperators
Omohundro, citing Kurzweil, opens with the singularitarian credo that

‘‘[s]ystems with the computational power of the human brain are likely to be cheap
and ubiquitous within the next few decades.’’ What is the computational power of
the human brain? The only honest answer, in our view, is that we don’t know.
Neuroscientists have provided rough total neuron counts and equally rough esti-
mates of neural connectivity, although the numbers are by no means certain
(Herculano-Houzel 2009). But we haven’t even begun to scratch the surface of
neural diversity in receptor expression. Even the genome for the 302 neurons
belonging to the ‘‘simple’’ flatworm C. elegans encodes ‘‘at least 80 potassium
channels, 90 neurotransmitter-gated ion channels, 50 peptide receptors, and up to
1000 orphan receptors that may be chemoreceptors’’ (Bargmann 1998). As Koch
(1999) put it in 1999, the combinatoric possibilities for the C. elegans nervous
system are ‘‘staggering’’, and in the subsequent years things have not come to
seem any simpler. We don’t know what all these receptors do. Consequently, we
don’t know how to calculate the number of computations per second in the C.
elegans ‘‘brain’’—let alone the human brain.

Kurzweil, meanwhile, has argued that even if he is off by many orders of
magnitude in his estimate of the number of computations per second carried out by
the human brain, the exponential growth of raw computing power in our machines
means that the coming singularity will be only moderately delayed. Irrespective of
this, any conjecture about what the exponential growth of computing power means
for artificial intelligence and machine-human relations remains unfalsifiable if
there is no direct relationship between ‘‘raw computing power’’ and intelligent
behavior. There is no such direct relationship. Intelligence does not magically
emerge by aggregating neurons; it depends essentially on the the way the parts are
arranged. Impressive as it is, IBM’s Watson with all its raw computational power
lacks the basic adaptive intelligence of a squirrel, even though it can do many
things that no squirrel can do. So can a tractor.

Without offering a theory of how intelligence emerges, Kurzweil blithely
argues that the organization of all this raw capacity for information flow will only
lag modestly behind Moore’s law. He also believes that the inevitable acceleration
toward the singularity is unlikely to be significantly slowed by the additional
complexities that accompany each order of magnitude increase in the number of
components on a circuit board. But already Urs Hölzle, Google’s first vice pres-
ident of operations, reports inherent problems maintaining the stability of systems
that are dramatically smaller in scale than those imagined by singularitarians
(Clark 2011).

Omohundro offers a progressivist story to explain the inevitable evolution of
intelligence, from stimulus-response systems, through learning systems, reasoning
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systems, and self-improving systems, to fully rational systems. Perhaps the squirrel
is stuck somewhere at the stage of learning systems, but C. elegans can learn too,
leaving much to be explained about the evolutionary pathways between. Or per-
haps the squirrel is a reasoner. Omohundro maintains that, ‘‘[a]dvanced animals
with nervous systems do deliberative reasoning.’’ He provides no criteria for
testing this claim, however. And if there are self-improving squirrels, how would
we know?

We take, it, however, that Omohundro thinks squirrels are not fully rational. He
writes that, ‘‘In most environments, full rationality is too computationally
expensive.’’ The viable alternative is to be ‘‘as rational as possible.’’ How rational
is it possible to be? Omohundro imagines that within computational constraints it
is possible for a ‘‘rational shaper’’ to adjust the system’s state transition and action
functions so as to maximize the system’s expected utility in that environment. If
there are environments in which squirrels count as rational utility maximizers, they
don’t include roads. Rational shapers have blind spots, as is evident even in human
behavior.

Omohundro explains that very limited systems can only have a fixed stimulus-
response architecture, but as computation gets cheaper, there is a niche for learners
to exploit stimulus-response systems. And as computational power increases, less
rational agents can be exploited by more rational ones. The ‘‘natural progression’’
towards full rationality is thus an inevitable consequence of the evolutionary arms
race, as he sees it. He writes, ‘‘If a biological system behaves irrationally, it creates
a niche for others to exploit. Natural selection will cause successive generations to
become more and more rational.’’ If this is true, it’s an exceedingly slow process.
Even if today’s squirrels are more rational than their forebears, it seems to be the
epitome of an untestable hypothesis.

Humans are taken by Omohundro to be at the pinnacle so far of this progres-
sion. But he foresees the day when machines will be able to exploit human irra-
tionality. The natural progression is thus towards machines that ‘‘will behave in
anti-social ways if they aren’t designed very carefully.’’ Those who follow the
behavioral and cognitive sciences will find it a little surprising to see that Homo
economicus, the selfish utility-maximizer of twentieth century economic theory, is
among the undead. It’s about what one would expect for someone whose eco-
nomics textbook is dated 1995. But it is no longer credible to think that rational
models of expected utility maximization are the best way to understand either
evolution or economic behavior. Even bacteria cooperate via quorum sensing, and
there exist both kin selection and group selection models to explain the evolution
of cooperative behavior in many different species. Non-cooperative defection is
always a possibility, but it is by no means inevitable even between the species.

Part of Omohundro’s thesis should be acknowledged: careful design is neces-
sary if we are to have machines we can live with. But the dangers are unlikely to
come in the way he imagines. He proposes a ‘‘simple thought experiment’’ which,
in his words, ‘‘shows that a rational chess robot with a simple utility function
would behave like a human sociopath fixated on chess.’’ In this, Omohundro
exemplifies the ‘‘Giant Cheesecake Fallacy’’ described by Yudkowsky (this
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volume)—i.e., he imagines that just because machines can do something, they
will. But it is far from clear that the kind of behavior he imagines would maximize
the machine’s expected utility, or that we should go along with his Nietzschean
view that a ‘‘cooperative drive’’ will be felt only by those at a competitive dis-
advantage. Man and supermachine.

A more science-based approach is needed. Formal models developed from a
priori theories of rationality have proven to be of limited use for understanding the
complex details of evolution and intelligence. So-called ‘‘simple heuristics’’,
discovered empirically, may make organisms smart in ways that cannot be easily
exploited in typical environments by more cumbersome rational optimization
procedures. If this is all that Omohundro means by the phrase ‘‘as rational as
possible’’ then his thesis has no teeth, predicting nothing but allowing everything.
Careful design must proceed from detailed study and understanding of actual
processes of evolution and the real, embodied forms of moral agency that evo-
lution has provided.

The article by Omohundro exemplifies a broader problem with the singularity
hypothesis. Gaps in the hypothesis are rationalized away or filled in with addi-
tional theories that are just as vague or just as difficult to verify as the initial
conclusion that a technological singularity is inevitable. While the singularity may
appear plausible to its proponents, the speculation, ad hoc theorizing, and induc-
tive reasoning used in its support fall far short of scientific rigor.
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